WorldWideScience

Sample records for biodegradable composite films

  1. Preparation and properties of biodegradable films from Sterculia urens short fiber/celluose green composites

    CSIR Research Space (South Africa)

    Jayaramudu, J

    2013-04-01

    Full Text Available of the composites films is discussed. This paper presents the developments made in the area of biodegradable S. urens short fiber/cellulose (SUSF/cellulose) composite films, buried in the soil and later investigated by the (POM), before and after biodegradation has...

  2. Comparative in situ biodegradation studies of polyhydroxybutyrate film composites.

    Science.gov (United States)

    Debbarma, Prasenjit; Raghuwanshi, Shikha; Singh, Jyoti; Suyal, Deep Chandra; Zaidi, M G H; Goel, Reeta

    2017-07-01

    Application of polyhydroxybutyrate (PHB) to plastic industry has expanded over the last decades due to its attracting features over petro-based plastic, and therefore, its waste accumulation in nature is inevitable. In the present study, a total of four bacterial strains, viz., MK3, PN12, PW1, and Lna3, were formulated into a consortium and subsequently used as biological tool for degradation of biopolymers. The consortium was tested through λ max shifts under in vitro conditions for utilization of PHB as sole carbon source. Talc-based bioformulations of consortium were used for the degradation of PHB film composites under in situ conditions. After 9 months of incubation, the recovered samples were monitored through Fourier transform infrared (FT-IR) spectroscopy and scanning electron microscopy (SEM), respectively. Analytical data, viz., changes in λ max shifts (212-219 nm), FT-IR spectra, and SEM micrographs, revealed the biodegradation potential of developed consortium against PHB film composites, i.e., higher degradation of copolymer films was found over blend films. The used consortium had enhanced the rate of natural degradation and can be further used as a natural tool to maintain and restore global environmental safety.

  3. Synthesis, characterization and antibacterial activity of biodegradable starch/PVA composite films reinforced with cellulosic fibre.

    Science.gov (United States)

    Priya, Bhanu; Gupta, Vinod Kumar; Pathania, Deepak; Singha, Amar Singh

    2014-08-30

    Cellulosic fibres reinforced composite blend films of starch/poly(vinyl alcohol) (PVA) were prepared by using citric acid as plasticizer and glutaraldehyde as the cross-linker. The mechanical properties of cellulosic fibres reinforced composite blend were compared with starch/PVA crossed linked blend films. The increase in the tensile strength, elongation percentage, degree of swelling and biodegradability of blend films was evaluated as compared to starch/PVA crosslinked blend films. The value of different evaluated parameters such as citric acid, glutaraldehyde and reinforced fibre to starch/PVA (5:5) was found to be 25 wt.%, 0.100 wt.% and 20 wt.%, respectively. The blend films were characterized using Fourier transform-infrared spectrophotometry (FTIR), scanning electron microscopy (SEM) and thermogravimetric analysis (TGA/DTA/DTG). Scanning electron microscopy illustrated a good adhesion between starch/PVA blend and fibres. The blend films were also explored for antimicrobial activities against pathogenic bacteria like Staphylococcus aureus and Escherichia coli. The results confirmed that the blended films may be used as exceptional material for food packaging. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. The Preparation and Applications of One Biodegradable Liquid Film Mulching by Oxidized Corn Starch-Gelatin Composite.

    Science.gov (United States)

    Dang, Xugang; Shan, Zhihua; Chen, Hui

    2016-11-01

    Degraded gelatin (Gel) and oxidized corn starch (OCS) as abundant, recyclable, and biodegradable materials can be applied to agricultural production, which has been investigated in this research. Firstly, the prepared oxidized corn starch-gelatin (OCS-Gel) composite material was characterized through a Fourier transform infrared spectrometer (FT-IR), a scanning electron microscope (SEM) picture, and a thermogravimetric analysis (TGA). The OCS-Gel was then used as a liquid film mulching for agricultural production, and the application performances (hygroscopicity, permeability, water retention, etc.) of the OCS-Gel were measured. Finally, the planting rapeseed experiments were carried out, and the germination and growing state of the rapeseed seeds were observed. The results from the structural analysis indicated that OCS-Gel enriches pore structure and exhibits high thermal stability up to 324.8 °C. In the application experiments, the OCS-Gel showed excellent properties of water-absorbing and water-retention and low permeability. In addition, the germination rate of the rapeseed seed reached 80 %, and the height of rapeseeds obviously increased in pot experiments after adding the liquid film mulching.

  5. Alyssum homolocarpum seed gum-polyvinyl alcohol biodegradable composite film: Physicochemical, mechanical, thermal and barrier properties.

    Science.gov (United States)

    Monjazeb Marvdashti, Leila; Koocheki, Arash; Yavarmanesh, Masoud

    2017-01-02

    Films made from Alyssum homolocarpum seeds gum (AHSG) have poor mechanical and barrier (to oxygen) properties. In the present study poly vinyl alcohol (PVA) was used to improve the physicochemical properties of AHSG films. Results indicated that the addition of PVA significantly increased the moisture content, solubility, elongation at break (EB) and transparency while it decreased the density, oxygen permeability, chroma, water contact angle and Young modulus of AHSG based films. Films with higher AHSG to PVA ratios had lower water vapor permeability (WVP). The light barrier measurements presented low values of transparency at 600nm for PVA/AHSG films, indicating that films were very transparent while they had excellent barrier properties against UV light. Results for FTIR, DSC and SEM showed a clear interaction between PVA and AHSG, forming a new material. These results indicated that PVA/AHSG blend films had good compatibility. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. [Preparation of biodegradable porous films for use as wound coverings].

    Science.gov (United States)

    Kil'deeva, N R; Vikhoreva, G A; Gal'braĭkh, L S; Mironov, A V; Bonartseva, G A; Perminov, P A; Romashova, A N

    2006-01-01

    We studied the preparation of polymeric films formed from solutions of poly-3-hydroxybutyrate and poly-epsilon-caprolactone in chloroform and methylene chloride. A morphological study of film chips (electron microscopy) showed that solvent evaporation results in the formation of a heterogeneous structure with interpenetrating pores (1-20 microm). We proposed a new method for introducing the proteolytic enzyme and the aminopolysaccharide chitosan into the composition of polyester films. Composite films possessed necrolytic activity and were characterized by increased hydrophilicity. Properties of enzyme-containing films from a mixture of polymers (proteolytic activity, porous structure, and increased hydrophilicity) account for their use in the preparation of biodegradable wound coverings.

  7. Mechanical characterization of commercial biodegradable plastic films

    Science.gov (United States)

    Vanstrom, Joseph R.

    Polylactic acid (PLA) is a biodegradable plastic that is relatively new compared to other plastics in use throughout industry. The material is produced by the polymerization of lactic acid which is produced by the fermentation of starches derived from renewable feedstocks such as corn. Polylactic acid can be manufactured to fit a wide variety of applications. This study details the mechanical and morphological properties of selected commercially available PLA film products. Testing was conducted at Iowa State University and in conjunction with the United States Department of Agriculture (USDA) BioPreferred ProgramRTM. Results acquired by Iowa State were compared to a similar study performed by the Cortec Corporation in 2006. The PLA films tested at Iowa State were acquired in 2009 and 2010. In addition to these two studies at ISU, the films that were acquired in 2009 were aged for a year in a controlled environment and then re-tested to determine effects of time (ageing) on the mechanical properties. All films displayed anisotropic properties which were confirmed by inspection of the films with polarized light. The mechanical testing of the films followed American Society for Testing and Materials (ASTM) standards. Mechanical characteristics included: tensile strength (ASTM D882), elongation of material at failure (ASTM D882), impact resistance (ASTM D1922), and tear resistance (ASTM D4272). The observed values amongst all the films ranged as followed: tensile strength 33.65--8.54 MPa; elongation at failure 1,665.1%--47.2%; tear resistance 3.61--0.46 N; and puncture resistance 2.22--0.28 J. There were significant differences between the observed data for a number of films and the reported data published by the Cortec Corp. In addition, there were significant differences between the newly acquired material from 2009 and 2010, as well as the newly acquired materials in 2009 and the aged 2009 materials, suggesting that ageing and manufacturing date had an effect on

  8. PELÍCULAS BIODEGRADABLES BASADAS EN ALMIDÓN COMPOSIÇÃO E TRANSFORMAÇÃO DE FILMES BIODEGRADÁVEIS À BASE DE AMIDO COMPOSITION AND PROCESSING OF STARCH-BASED BIODEGRADABLE FILMS

    Directory of Open Access Journals (Sweden)

    MARIO ENRÍQUEZ C

    2012-06-01

    Full Text Available El almidón es uno de los polímeros más prometedores para la elaboración de películas biodegradables que puedan reemplazar a los materiales de empaque tradicionales debido a que es económico, de alta disponibilidad y se obtiene de fuentes naturales. Sin embargo, las películas elaboradas con sólo almidón, comparadas con las películas sintéticas tradicionales, tienen varias limitaciones tales como: propiedades mecánicas pobres, alta permeabilidad al vapor de agua, tendencia a la retrogradación, alta rigidez, son quebradizas, entre otros. Debido a esto, es necesario mezclar el almidón con diversas sustancias que puedan contrarrestar o evitar dichas limitaciones, con el fin de crear formulaciones filmogénicas capaces de generar películas cada vez más parecidas a las sintéticas. A continuación se presenta una revisión literaria hecha en patentes complementada con artículos científicos en la cual se indican los componentes más comunes empleados en la elaboración de películas biodegradables basadas en almidón y los principales métodos de procesamiento para la obtención de éstas.O amido é um dos polímeros mais promissores para a produção de filmes biodegradáveis que possam substituir os materiais de embalajem tradicionais, pois ele é barato, de alta disponibilidade e é obtido de fontes naturais. No entanto, os filmes produzidos apenas com amido em comparação com os filmes sintéticos tradicionais têm várias limitações, tais como propriedades mecânicas pobres, alta permeabilidade ao vapor de água, tendência à retrogradação, rigidez elevada, são frágeis, entre outros. Devido a isso, é necessário misturar o amido com várias substâncias que podem neutralizar ou evitar essas limitações e assim criar fórmulas filmogênicas capazes de gerar filmes cada vez mais semelhantes aos sintéticos. Abaixo se apresenta uma revisão litéraria feita em patentes e complementada com artigos científicos que indicam os

  9. Biodegradation of different formulations of polyhydroxybutyrate films in soil.

    Science.gov (United States)

    Altaee, Nadia; El-Hiti, Gamal A; Fahdil, Ayad; Sudesh, Kumar; Yousif, Emad

    2016-01-01

    Petroleum polymers contribute to non-degradable waste materials and it would therefore be desirable to produce ecofriendly degradable materials. Biodegradation of polyhydroxybutyrate (PHB) in the presence of oligomer hydrolase and PHB depolymerase gave 3-hydroxybutyric acid which could be oxidized to acetyl acetate. Several bacteria and fungi can degrade PHB in the soil. Biodegradation of PHB showed a significant decrease in the molecular weight (Mw), number-average molecular weight (Mn) and the dispersity (Mw/Mn) for all the film formulations. Nanofibers of PHB and its composites showed faster degradation compared to other films and displayed complete degradation after 3 weeks. The SEM micrographs showed various surface morphology changes including alterations in appearance of pores, cavity, grooves, incisions, slots and pointers. Such changes were due to the growth of microorganisms that secreted PHB depolymerase enzyme which lead to the biopolymer films degradation. However, PHB nanofibers and its composites films in the presence of TiO2 demonstrated more surface changes with rupture of most nanofibers in which there was a drop in fibres diameter. The degradation of biopolymers help to overcome some of the pollution problems associated with the use of petroleum polymers. PHB nanofiber and its TiO2 composite were degraded faster compared to other PHB film types due to their three dimensional and high surface area structures. The presence of TiO2 nanoparticles in the composite films slowdown the degradation process compared to PHB films. Additionally, the PHB and its composite films that were prepared from UV treated PHB films led to acceleration of the degradation.Graphical abstractBiodegradation of polyhydroxybutyrate films in soil.

  10. A REVIEW ON BIODEGRADABLE STARCH BASED FILM

    Directory of Open Access Journals (Sweden)

    Hooman Molavi

    2015-04-01

    Full Text Available In recent years, biodegradable edible films have become very important in research related to food, due to their compatibility with the environment and their use in the food packaging industry. Various sources can be used in the production of biopolymers as biodegradable films that include polysaccharides, proteins and lipids. Among the various polysaccharides, starch due to its low price and its abundance in nature is of significant importance. Several factors affect the properties of starch films; such as the source which starch is obtained from, as well as the ratio of constituents of the starch. Starch films have advantages such as low thickness, flexibility and transparency though; there are some downsides to mention, such as the poor mechanical properties and water vapor permeability. Thus, using starch alone to produce the film will led to restrictions on its use. To improve the mechanical properties of starch films and also increases resistance against humidity, several methods can be used; including the starch modifying techniques such as cross linking of starch and combining starch with other natural polymers. Other methods such as the use of lipid in formulations of films to increase the resistance to moisture are possible, but lipids are susceptible to oxidation. Therefore, new approaches are based on the integration of different biopolymers in food packaging.

  11. Biodegradability and mechanical properties of starch films from Andean crops.

    Science.gov (United States)

    Torres, F G; Troncoso, O P; Torres, C; Díaz, D A; Amaya, E

    2011-05-01

    Different Andean crops were used to obtain starches not previously reported in literature as raw material for the production of biodegradable polymers. The twelve starches obtained were used to prepare biodegradable films by casting. Water and glycerol were used as plasticizers. The mechanical properties of the starch based films were assessed by means of tensile tests. Compost tests and FTIR tests were carried out to assess biodegradability of films. The results show that the mechanical properties (UTS, Young's modulus and elongation at break) of starch based films strongly depend on the starch source used for their production. We found that all the starch films prepared biodegrade following a three stage process and that the weight loss rate of all the starch based films tested was higher than the weight loss rate of the cellulose film used as control. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. Preparation and Biodegradation of Nanocellulose Reinforced Polyvinyl Alcohol Blend Films in Bioenvironmental Media

    OpenAIRE

    Nusaiba Islam; Sharmin Jahan Proma; Ashiqur Rahman; Ashok Kumar Chakraborty

    2017-01-01

    Solution casting method was used to prepare nanocellulose reinforced polyvinyl alcohol (PVOH) from Oil palm empty fruit bunches. Different environmental test were used to investigate the biodegradability of the composite in soil and compost as well as in water and acidic solution. The morphology of the composite was investigated by scanning electron microscopy. The composite film with nanocellulose and without nanocellulose were compared, nanocellulose modified PVOH film showed more highly de...

  13. PENGARUH KONSENTRASI TAPIOKA TERHADAP SIFAT FISIK BIODEGRADABLE FILM DARI BAHAN KOMPOSIT SELULOSA NANAS

    Directory of Open Access Journals (Sweden)

    Diana Fransisca

    2013-09-01

    Full Text Available This research was aimed to find the right concentration of tapioca to produce  biodegradable films from composite materials of pineapple cellulose with the best physical characteristic. The research was designed using a Completely Randomized Block Design with starch concentration as the single factor. It was consisted of five levels 1%, 2%, 3%, 4% and 5% (w/v with 5 replications.  The data of visual observation and water vapor permeability were analyzed descriptively, while data of tensile strength were processed by analysis of variance.  Data homogenity  and additivity were tested using Barlett and Tuckey tests. The data were analyzed further by LSD test at 5% level of significance. The best result was the biodegradable film from composite material of pineapple cellulose with 4% tapioca which produced 5228, 59 Mpa for tensile strength and 9.11 g/(m2/hr for the water vapor permeability. The addition of tapioca in producing biodegradable film from composite material of pineapple cellulose could eliminate floc or the heterogen clump-forming film materials. Keywords: Biodegradable film, tapioca, tensile strength.

  14. [Application of biodegradable plastic film to reduce plastic film residual pollution in Chinese agriculture].

    Science.gov (United States)

    Yan, Changrong; He, Wenqing; Xue, Yinghao; Liu, Enke; Liu, Qin

    2016-06-25

    Plastic film has become an important agriculture production material in recent years. Over the past three decades, the amount and application area of plastic film have increased steadily, and in 2014, which are 1.4 million tons and more than 180 million hm² respectively. It plays a key role for ensuring the supply of agricultural goods in China. Meanwhile, plastic film residual pollution becomes more and more serious, and in some regions, the amount of plastic film residues has reached over 250 kg/hm². In part of the Northwest region, soil structure of farmland has been destroyed by plastic film residues and then crop growth and farming operations were suppressed. It is recognized as a good choice to replace plastic film with biodegradable plastic film, an effective measure to solve the plastic film residue pollution. Now, it is in a critical stage of study and assessment of biodegradable plastic film in China and fortunately some biodegradable plastic films show effects in the production of potatoes, peanuts and tobacco. Overall, a series of challenges has still been faced by the biodegradable plastic film, mainly including improving the quality of biodegradable plastic products, such as tensile strength, flexibility, improving the controllability of rupture and degradation, enhancing the ability of increasing soil temperature and preserving soil moisture, and to satisfy the demand of crops production with mulching. In addition, it is essential to reduce the cost of the biodegradable film and promote the application of biodegradable film on large-scale. With the development of biodegradable plastic technology and agricultural production environment, the application of the biodegradable film will have a good future.

  15. A novel biodegradable nicotinic acid/calcium phosphate composite coating on Mg-3Zn alloy

    Energy Technology Data Exchange (ETDEWEB)

    Song, Yingwei, E-mail: ywsong@imr.ac.cn; Shan, Dayong; Han, En-Hou

    2013-01-01

    A novel biodegradable composite coating is prepared to reduce the biodegradation rate of Mg-3Zn alloy. The Mg-3Zn substrate is first immersed into 0.02 mol L{sup -1} nicotinic acid (NA) solution, named as vitamin B{sub 3}, to obtain a pretreatment film, and then the electrodeposition of calcium phosphate coating with ultrasonic agitation is carried out on the NA pretreatment film to obtain a NA/calcium phosphate composite coating. Surface morphology is observed by scanning electron microscopy (SEM). Chemical composition is determined by X-ray diffraction (XRD) and EDX. Protection property of the coatings is evaluated by electrochemical tests. The biodegradable behavior is investigated by immersion tests. The results indicate that a thin but compact bottom layer can be obtained by NA pretreatment. The electrodeposition calcium phosphate coating consists of many flake particles and ultrasonic agitation can greatly improve the compactness of the coating. The composite coating is biodegradable and can reduce the biodegradation rate of Mg alloys in stimulated body fluid (SBF) for twenty times. The biodegradation process of the composite coating can be attributed to the gradual dissolution of the flake particles into chippings. - Highlights: Black-Right-Pointing-Pointer NA/calcium phosphate composite coating is prepared to protect Mg-3Zn alloy implant. Black-Right-Pointing-Pointer Nicotinic acid (vitamin B{sub 3}) is available to obtain a protective bottom film. Black-Right-Pointing-Pointer Ultrasonic agitation greatly improves the compactness of calcium phosphate coating. Black-Right-Pointing-Pointer The composite coating can reduce the biodegradation rate of Mg-3Zn twenty times. Black-Right-Pointing-Pointer The composite coating is biodegraded by the dissolution of flakes into chippings.

  16. Investigation of Carboxymethyl Cellulose (CMC on Mechanical Properties of Cold Water Fish Gelatin Biodegradable Edible Films

    Directory of Open Access Journals (Sweden)

    Mahsa Tabari

    2017-05-01

    Full Text Available The tendency to use biocompatible packages, such as biodegradable films, is growing since they contain natural materials, are recyclable and do not cause environmental pollution. In this research, cold water fish gelatin and carboxymethyl cellulose were combined for use in edible films. Due to its unique properties, gelatin is widely used in creating gel, and in restructuring, stabilizing, emulsifying, and forming foam and film in food industries. This research for the first time modified and improved the mechanical properties of cold water fish gelatin films in combination with carboxymethyl cellulose. Cold water fish gelatin films along with carboxymethyl cellulose with concentrations of 0%, 5%, 10%, 20% and 50% were prepared using the casting method. The mechanical properties were tested by the American National Standard Method. Studying the absorption isotherm of the resulting composite films specified that the humidity of single-layer water decreased (p < 0.05 and caused a reduction in the equilibrium moisture of these films. In the mechanical testing of the composite films, the tensile strength and Young’s modulus significantly increased and the elongation percent significantly decreased with the increase in the concentration of carboxymethyl cellulose. Considering the biodegradability of the films and the improvement of their mechanical properties by carboxymethyl cellulose, this kind of packaging can be used in different industries, especially the food industry, as an edible coating for packaging food and agricultural crops.

  17. Resonant infrared pulsed laser deposition of thin biodegradable polymer films

    DEFF Research Database (Denmark)

    Bubb, D.M.; Toftmann, B.; Haglund Jr., R.F.

    2002-01-01

    Thin films of the biodegradable polymer poly(DL-lactide-co-glycolide) (PLGA) were deposited using resonant infrared pulsed laser deposition (RIR-PLD). The output of a free-electron laser was focused onto a solid target of the polymer, and the films were deposited using 2.90 (resonant with O...... absorbance spectrum of the films is nearly identical with that of the native polymer, the average molecular weight of the films is a little less than half that of the starting material. Potential strategies for defeating this mass change are discussed....

  18. Oxidation and biodegradation of polyethylene films containing pro-oxidantadditives: Synergistic effects of sunlight exposure, thermal aging and fungal biodegradation

    Science.gov (United States)

    Synergistic effects of sunlight exposure, thermal aging and fungal biodegradation on the oxidation and biodegradation of linear low density poly (ethylene) PE-LLD films containing pro-oxidant were examined. To achieve oxidation and degradation, films were first exposed to the sunlight for 93 days du...

  19. Preparation and performance of Ecobras/bentonite biodegrading films

    International Nuclear Information System (INIS)

    Costa, Ana Nery M.; Melo, Nadja M.C.; Canedo, Eduardo L.; Carvalho, Laura H.; Araujo, Arthur R.A.

    2011-01-01

    Compounds based on the biodegradable polymer Ecobras and bentonite clay in its pristine, sonicated, and organically modified with a quaternary ammonium salt forms were prepared as flat films. Clays and compounds were characterized by x-ray diffraction and scanning electron microscopy. Mechanical properties of the films were determined according to pertinent ASTM standards. Reasonable properties, higher than those of the matrix, were obtained with compounds prepared with purified clays and organoclays, particularly for low clay loading. (author)

  20. Biodegradable films based on gelatin extracted from chrome leather scrap.

    Science.gov (United States)

    Dang, Xugang; Shan, Zhihua; Chen, Hui

    2018-02-01

    A biodegradable film based on gelatin extracted from chrome leather scrap was studied in this paper. According to the results of a variety of characterization, the extracted gelatin contains 13 kinds of amino acid; the chrome content is 30mg/kg, mineral and salt content are both at low levels and the nitrogen content is 43.84%. Its molecular weight has been measured at about 6.5kDa ∼26.6kDa, and the average particle distribution appears to be 125nm with a narrow distribution. When the extracted gelatin was modified with the β-cyclodextrin to prepare the biodegradable films, the β-cyclodextrin and gelatin blends can build up perfect compatibility and film-forming properties. Comparing to the gelatin film without β-cyclodextrin, the viscosity, biodegradability, thermal stability and physical properties of the β-cyclodextrin and gelatin blends in the present research were significantly increased, especially when the ratio of β-cyclodextrin to gelatin was 1:2, the biodegradation rates reached 81%, elongation at break 15.74% and the tensile strength 122.34MPa. The blends show perfect swelling properties and overcome the rapid solubility drawback of extracted gelatin. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Investigation of Carboxymethyl Cellulose (CMC) on Mechanical Properties of Cold Water Fish Gelatin Biodegradable Edible Films.

    Science.gov (United States)

    Tabari, Mahsa

    2017-05-27

    The tendency to use biocompatible packages, such as biodegradable films, is growing since they contain natural materials, are recyclable and do not cause environmental pollution. In this research, cold water fish gelatin and carboxymethyl cellulose were combined for use in edible films. Due to its unique properties, gelatin is widely used in creating gel, and in restructuring, stabilizing, emulsifying, and forming foam and film in food industries. This research for the first time modified and improved the mechanical properties of cold water fish gelatin films in combination with carboxymethyl cellulose. Cold water fish gelatin films along with carboxymethyl cellulose with concentrations of 0%, 5%, 10%, 20% and 50% were prepared using the casting method. The mechanical properties were tested by the American National Standard Method. Studying the absorption isotherm of the resulting composite films specified that the humidity of single-layer water decreased ( p food industry, as an edible coating for packaging food and agricultural crops.

  2. Coatings and Biodegradable and Bioabsorbable Films

    National Research Council Canada - National Science Library

    Thames, Shelby F; Rawlins, James W

    2006-01-01

    .... Specifically focusing on the plasticizing effects of vegetable oil macromonomers as incorporated into emulsion polymers for efficient almost zero VOC film formation and the additional benefit of auto...

  3. Coatings and Biodegradable and Bioasorbable Films

    National Research Council Canada - National Science Library

    Thames, Shelby F; Rawlins, James W

    2006-01-01

    .... Specifically focusing on the plasticizing effects of vegetable oil macromonomers as incorporated into emulsion polymers for efficient almost zero VOC film formation and the additional benefit of auto...

  4. Silica in situ enhanced PVA/chitosan biodegradable films for food packages.

    Science.gov (United States)

    Yu, Zhen; Li, Baoqiang; Chu, Jiayu; Zhang, Peifeng

    2018-03-15

    Non-degradable plastic food packages threaten the security of environment. The cost-effective and biodegradable polymer films with good mechanical properties and low permeability are very important for food packages. Among of biodegradable polymers, PVA/chitosan (CS) biodegradable films have attracted considerable attention because of feasible film forming ability. However, PVA/CS biodegradable films suffered from poor mechanical properties. To improve mechanical properties of PVA/CS biodegradable films, we developed SiO 2 in situ to enhance PVA/CS biodegradable films via hydrolysis of sodium metasilicate in presence of PVA and chitosan solution. The tensile strength of PVA/CS biodegradable films was improved 45% when 0.6 wt.% SiO 2 was incorporated into the films. Weight loss of PVA/CS biodegradable films was 60% after 30 days in the soil. The permeability of oxygen and moisture of PVA/CS biodegradable films was reduced by 25.6% and 10.2%, respectively. SiO 2 in situ enhanced PVA/CS biodegradable films possessed not only excellent mechanical properties, but also barrier of oxygen and water for food packages to extend the perseveration time. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Biodegradation and cytotoxicity of ciprofloxacin-loaded hydroxyapatite-polycaprolactone nanocomposite film for sustainable bone implants.

    Science.gov (United States)

    Nithya, Rajendran; Meenakshi Sundaram, Nachiappan

    2015-01-01

    In recent years there has been a steep increase in the number of orthopedic patients for many reasons. One major reason is osteomyelitis, caused by pyrogenic bacteria, with progressive infection of the bone or bone marrow and surrounding tissues. So antibiotics must be introduced during bone implantation to avoid prolonged infection. The objective of the study reported here was to prepare a composite film of nanocrystalline hydroxyapatite (HAp) and polycaprolactone (PCL) polymer loaded with ciprofloxacin, a frequently used antibiotic agent for bone infections. Nanocrystalline HAp was synthesized by precipitation method using the precursor obtained from eggshell. The nanocomposite film (HAp-PCL-ciprofloxacin) was prepared by solvent evaporation. Drug-release and biodegradation studies were undertaken by immersing the composite film in phosphate-buffered saline solution, while a cytotoxicity test was performed using the fibroblast cell line NIH-3T3 and osteoblast cell line MG-63. The pure PCL film had quite a low dissolution rate after an initial sharp weight loss, whereas the ciprofloxacin-loaded HAp-PCL nanocomposite film had a large weight loss due to its fast drug release. The composite film had higher water absorption than the pure PCL, and increasing the concentration of the HAp increased the water absorption. The in vitro cell-line study showed a good biocompatibility and bioactivity of the developed nanocomposite film. The prepared film will act as a sustainable bone implant in addition to controlled drug delivery.

  6. Identification of market bags composition for biodegradable and oxo-biodegradable samples through thermal analysis in inert and oxidizer atmosphere

    International Nuclear Information System (INIS)

    Finzi-Quintao, Cristiane M.; Novack, Katia M.

    2015-01-01

    Plastic films used to make market bags are based on polymers such as polyethylene, polystyrene and polypropylene, these materials require a long time to degrade in the environment. The alternative technologies of polymers have been developed to reduce the degradation time and the impact on the environment caused by the conventional materials, using pro-degrading additives or by the development biodegradable polymers. In Brazil, the laws of some municipalities require the use of biodegradable material in the production of market bags but the absence of specific surveillance policies makes its chemical composition unknown. In this paper, we analyzed 7 samples that was obtained from a a trading company and commercial market of Belo Horizonte . The samples were characterized by TGA / DTA , XRF , FTIR and MEV which allowed the identification and evaluation of the thermal behavior of the material in inert and oxidizing atmosphere. (author)

  7. Polyethylene Modification as Biodegradable Composite Polymer for Packing Materials

    International Nuclear Information System (INIS)

    Deswita; Aloma KK; Sudirman; Indra Gunawan

    2008-01-01

    The synthesis of biodegradable polymer using blending method has been done. The aim of this research is to synthesize kinds of biodegradable composite polymer materials which could be applied in many kinds of requirements such as environmental friendly packaging and degradable. In this paper, the synthetic of biodegradable composite polymer was performed by adding biodegradable filler to the synthetic polymer using blending method. In this experiment Low Linier Density Polyethylene (LLDPE), High Density Polyethylene (HDPE) and filler of tapioca were used. The variation of tapioca meal composition were 50 in weight percent, 55 in weight percent, 60 in weight percent, 65 in weight percent, 70 in weight percent and 75 in weight percent. The characterization was done by means of thermal test, microstructure test, biodegradable and mechanical test. The result showed that the mechanical properties of the materials decreased with increasing composition of tapioca but did not show significant change to the polymer composite materials. For burrying time inside the ground of 8 weeks, all specimens based on polymer LLDPE for all composition of tapioca filler were degraded inside the ground, where as for all specimens based on polymer HDPE with all composition of tapioca filler did not show any degradation. (author)

  8. State-of-the-art of biodegradable composite materials; Etat de l'art sur les materiaux composites biodegradables

    Energy Technology Data Exchange (ETDEWEB)

    Baley, Ch.; Grohens, Y.; Pillin, I. [Universite de Bretagne Sud, Lab. Polymeres, Proprietes aux Interfaces et Composites, 56 - Lorient (France)

    2004-07-01

    Nowadays, the market demand for environment friendly materials is in strong growth. The biodegradable composites (biodegradable fibres and polymers) mainly extracted from renewable resources will be a major contributor to the production of new industrial high performance products partially solving the problem of waste management. At the end of the lifetime, a structural bio-composite could be be crushed and recycled through a controlled industrial composting process. This the state-of-the-art report focuses on the biopolymers the vegetable fibres properties, the mechanisms of biodegradation and the examples of biodegradable composites. Eco-design of new products requires these new materials for which a life cycle analysis is nevertheless necessary to validate their environmental benefits. (authors)

  9. Shelf life of pie caps with biodegradable films as spacers

    Directory of Open Access Journals (Sweden)

    Daniela Verónica Escobar Gianni

    2013-01-01

    Full Text Available Commonly pie caps at market use polyethylene films as spacers between them. This paper studies the conventional spacers replacement with edible and biodegradable films made with whey protein isolate (WPI and potassium sorbate as a preservative. Besides facilitating the separation of pie caps, with this application is intended to increase their shelf life. The films made by the compression molding method were used as spacers in pie caps without preservative in their formula (A and with preservative (B and they were compared with conventional polyethylene spacers (C. During four months, monthly sensory, microbiological and physicochemical (humidity evaluations were done on the pie caps, together with humidity and solubility evaluations of the films. None of the samples showed microbiological or sensory deterioration. The sensory attributes showed no or slight difference in study time. Between samples the differences were minor: the best scores were for sample A in color, sample C in flavor, and samples B and C in texture and overall liking. The edible films have an interesting potential for this application, although studies in disguise the flavor of serum should be done.

  10. KARAKTERISTIK BIODEGRADABLE FILM BERBASIS AMPAS RUMPUT LAUT EUCHEUMA COTTONII The effects of glycerol and tapioca concentration on the characteristics of Eucheuma cottonii seaweed dreg-based biodegradable films

    Directory of Open Access Journals (Sweden)

    Zulferiyenni Zulferiyenni

    2014-12-01

    Full Text Available This research was aimed to find the appropriate combination of glycerol and tapioca concentration in the production of Eucheuma cottonii seaweed dreg-based biodegradable films.  A two factors experiment was arranged in a Complete Randomized Design with three replications.  The first factor was three levels of glycerol concentration : 0.25%; 0.5% and 0.75%.  The second factor was three levels of tapioca concentration : 5%; 6% and 7%.  The data of visual observation, Fourier transform infra red  analysis, biodegradability and water vapor permeability were analyzed descriptively.  The tensile strength, elongation and solubility of biodegradable films were analyzed using by ANOVA.  The homogenity was use barlett test and the aditivity was use Tukey test.  The data were continue by HSD test at 5% level of significant.  The concentration of glycerol and tapioca significant effects on tensile strength and percent elongation, but not on solubility.  The best characteristics of the Eucheuma cottonii seaweed dreg-based biodegradable film was produced from a combination of 0.25% of  glycerol and 7% of tapioca concentration. The best biodegradabe film had  characteristic of an f 53.92  MPa tensile strength, an 3.647 % elongation, 86.17% solubility, 14 day biodegradability, 6.13 g/(m2/day water vapor permeability .  The addition of glycerol and tapioca concentration in producting of Eucheuma cottonii seaweed dreg-based biodegradable film has caused the film characteristics more plastic and homogeneous. Keywords:  Biodegradable film, Fourier transform infra red, percent elongation, seaweed dreg, tensile strength, water vapor permeability

  11. Biodegradable Plastic Mulch Films: Impacts on Soil Microbial Communities and Ecosystem Functions

    Directory of Open Access Journals (Sweden)

    Sreejata Bandopadhyay

    2018-04-01

    Full Text Available Agricultural plastic mulch films are widely used in specialty crop production systems because of their agronomic benefits. Biodegradable plastic mulches (BDMs offer an environmentally sustainable alternative to conventional polyethylene (PE mulch. Unlike PE films, which need to be removed after use, BDMs are tilled into soil where they are expected to biodegrade. However, there remains considerable uncertainty about long-term impacts of BDM incorporation on soil ecosystems. BDMs potentially influence soil microbial communities in two ways: first, as a surface barrier prior to soil incorporation, indirectly affecting soil microclimate and atmosphere (similar to PE films and second, after soil incorporation, as a direct input of physical fragments, which add carbon, microorganisms, additives, and adherent chemicals. This review summarizes the current literature on impacts of plastic mulches on soil biological and biogeochemical processes, with a special emphasis on BDMs. The combined findings indicated that when used as a surface barrier, plastic mulches altered soil microbial community composition and functioning via microclimate modification, though the nature of these alterations varied between studies. In addition, BDM incorporation into soil can result in enhanced microbial activity and enrichment of fungal taxa. This suggests that despite the fact that total carbon input from BDMs is minuscule, a stimulatory effect on microbial activity may ultimately affect soil organic matter dynamics. To address the current knowledge gaps, long term studies and a better understanding of impacts of BDMs on nutrient biogeochemistry are needed. These are critical to evaluating BDMs as they relate to soil health and agroecosystem sustainability.

  12. New Biofunctional Loading of Natural Antimicrobial Agent in Biodegradable Polymeric Films for Biomedical Applications

    Directory of Open Access Journals (Sweden)

    Bakhtawar Ghafoor

    2016-01-01

    Full Text Available The study focuses on the development of novel Aloe vera based polymeric composite films and antimicrobial suture coatings. Polyvinyl alcohol (PVA, a synthetic biocompatible and biodegradable polymer, was combined with Aloe vera, a natural herb used for soothing burning effects and cosmetic purposes. The properties of these two materials were combined together to get additional benefits such as wound healing and prevention of surgical site infections. PVA and Aloe vera were mixed in a fixed quantity to produce polymer based films. The films were screened for antibacterial and antifungal activity against bacterial (E. coli, P. aeruginosa and fungal strains (Aspergillus flavus and Aspergillus tubingensis screened. Aloe vera based PVA films showed antimicrobial activity against all the strains; the lowest Aloe vera concentration (5% showed the highest activity against all the strains. In vitro degradation and release profile of these films was also evaluated. The coating for sutures was prepared, in vitro antibacterial tests of these coated sutures were carried out, and later on in vivo studies of these coated sutures were also performed. The results showed that sutures coated with Aloe vera/PVA coating solution have antibacterial effects and thus have the potential to be used in the prevention of surgical site infections and Aloe vera/PVA based films have the potential to be used for wound healing purposes.

  13. Radiation processing of indigenous natural polymers. Properties of radiation modified blends from sago-starch for biodegradable composite

    International Nuclear Information System (INIS)

    Ghazali, Z.; Dahlan, K.Z.; Wongsuban, B.; Idris, S.; Muhammad, K.

    2001-01-01

    Research and development on biodegradable polymer blends and composites have gained wider interest to offer alternative eco-friendly products. Natural polysaccharide such as sago-starch offers the most promising raw material for the production of biodegradable composites. The potential of sago, which is so abundant in Malaysia, to produce blends for subsequent applications in composite material, was evaluated and explored. Blends with various formulations of sago starch and polyvinyl alcohol (PVA), and polyvinyl pyrrolidone (PVP) polymers were prepared and subjected to radiation modification using electron beam irradiation. The effect of irradiation on the sago and its blends was evaluated and their properties were characterized. The potential of producing composite from sago blends was explored. Foams from these blends were produced using microwave oven while films were produced through casting method. The properties such as mechanical, water absorption, expansion ratio, and biodegradability were characterized and reported in this paper. (author)

  14. Stability of biodegradable waterborne polyurethane films in buffered saline solutions.

    Science.gov (United States)

    Lin, Ying Yi; Hung, Kun-Che; Hsu, Shan-Hui

    2015-09-21

    The stability of polyurethane (PU) is of critical importance for applications such as in coating industry or as biomaterials. To eliminate the environmental concerns on the synthesis of PU which involves the use of organic solvents, the aqueous-based or waterborne PU (WBPU) has been developed. WBPU, however, may be unstable in an electrolyte-rich environment. In this study, the authors reported the stability of biodegradable WBPU in the buffered saline solutions evaluated by atomic force microscopy (AFM). Various biodegradable WBPU films were prepared by spin coating on coverslip glass, with a thickness of ∼300 nm. The surface AFM images of poly(ε-caprolactone) (PCL) diol-based WBPU revealed nanoglobular structure. The same feature was observed when 20% molar of the PCL diol soft segment was replaced by polyethylene butylenes adipate diol. After hydration in buffered saline solutions for 24 h, the surface domains generally increased in sizes and became irregular in shape. On the other hand, when the soft segment was replaced by 20% poly(l-lactide) diol, a meshlike surface structure was demonstrated by AFM. When the latter WBPU was hydrated, the surface domains appeared to be disconnected. Results from the attenuated total reflectance infrared spectroscopy and x-ray photoelectron spectroscopy indicated that the surface chemistry of WBPU films was altered after hydration. These changes were probably associated with the neutralization of carboxylate by ions in the saline solutions, resulting in the rearrangements of soft and hard segments and causing instability of the WBPU.

  15. Biodegradable polymer films from seaweed polysaccharides: A review on cellulose as a reinforcement material

    Directory of Open Access Journals (Sweden)

    H. P. S. Abdul Khalil

    2017-04-01

    Full Text Available Seaweed and cellulose are promising natural polymers. This article reviews the basic information and recent developments of both seaweed and cellulose biopolymer materials as well as analyses the feasible formation of seaweed/cellulose composite films. Seaweed and cellulose both exhibit interesting film-forming properties. Nevertheless, seaweed has poor water vapour barrier and mechanical properties, whereas cellulose is neither meltable nor soluble in water or common organic solvents due to its highly crystalline structure. Therefore, modification of these hydrocolloids has been done to exploit their useful properties. Blending of biopolymers is a must recommended approach to improve the desired characteristics. From the review, seaweed is well compatible with cellulose, which possesses excellent mechanical strength and water resistance properties. Moreover, seaweed/cellulose composite films can prolong a product’s shelf life while maintaining its biodegradability. Additionally, the films show potential in contributing to the bioeconomy. In order to widen seaweed and cellulose in biocomposite application across various industries, some of the viewpoints are highlighted to be focused for future developments and applications.

  16. Physical and Degradable Properties of Mulching Films Prepared from Natural Fibers and Biodegradable Polymers

    Directory of Open Access Journals (Sweden)

    Zhijian Tan

    2016-05-01

    Full Text Available The use of plastic film in agriculture has the serious drawback of producing vast quantities of waste. In this work, films were prepared from natural fibers and biodegradable polymers as potential substitutes for the conventional non-biodegradable plastic film used as mulching material in agricultural production. The physical properties (e.g., mechanical properties, heat preservation, water permeability, and photopermeability and degradation characteristics (evaluated by micro-organic culture testing and soil burial testing of the films were studied in both laboratory and field tests. The experimental results indicated that these fiber/polymer films exhibited favorable physical properties that were sufficient for use in mulching film applications. Moreover, the degradation degree of the three tested films decreased in the following order: fiber/starch (ST film > fiber/poly(vinyl alcohol (PVA film > fiber/polyacrylate (PA film. The fiber/starch and fiber/PVA films were made from completely biodegradable materials and demonstrated the potential to substitute non-biodegradable films.

  17. Effect of Material Parameters on Mechanical Properties of Biodegradable Polymers/Nanofibrillated Cellulose (NFC) Nano Composites

    Science.gov (United States)

    Yottha Srithep; Ronald Sabo; Craig Clemons; Lih-Sheng Turng; Srikanth Pilla; Jun Peng

    2012-01-01

    Using natural cellulosic fibers as fillers for biodegradable polymers can result in fully biodegradable composites. Biodegradable composites were prepared using nanofibrillated cellulose (NFC) as the reinforcement and poly (3-hydroxybutyrate-co-3-hydroxyvalerate, PHBV) as the polymer matrix. The objective of this study was to determine how various additives (i.e.,...

  18. Biodegradation of PVP-CMC hydrogel film: a useful food packaging material.

    Science.gov (United States)

    Roy, Niladri; Saha, Nabanita; Kitano, Takeshi; Saha, Petr

    2012-06-20

    Hydrogels can offer new opportunities for the design of efficient packaging materials with desirable properties (i.e. durability, biodegradability and mechanical strength). It is a promising and emerging concept, as most of the biopolymer based hydrogels are supposed to be biodegradable, they can be considered as alternative eco-friendly packaging materials. This article reports about synthetic (polyvinylpyrrolidone (PVP)) and biopolymer (carboxymethyl cellulose (CMC)) based a novel hydrogel film and its nature of biodegradability under controlled environmental condition. The dry hydrogel films were prepared by solution casting method and designated as 'PVP-CMC hydrogel films'. The hydrogel film containing PVP and CMC in a ratio of 20:80 shows best mechanical properties among all the test samples (i.e. 10:90, 20:80, 50:50, 80:20 and 90:10). Thus, PVP-CMC hydrogel film of 20:80 was considered as a useful food packaging material and further experiments were carried out with this particular hydrogel film. Biodegradation of the PVP-CMC hydrogel films were studied in liquid state (Czapec-Dox liquid medium+soil extracts) until 8 weeks. Variation in mechanical, viscoelastic properties and weight loss of the hydrogel films with time provide the direct evidence of biodegradation of the hydrogels. About 38% weight loss was observed within 8 weeks. FTIR spectra of the hydrogel films (before and after biodegradation) show shifts of the peaks and also change in the peak intensities, which refer to the physico-chemical change in the hydrogel structure and SEM views of the hydrogels show how internal structure of the PVP-CMC film changes in the course of biodegradation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Soil burial biodegradation studies of palm oil-based UV-curable films

    Energy Technology Data Exchange (ETDEWEB)

    Tajau, Rida, E-mail: rida@nuclearmalaysia.gov.my; Salleh, Mek Zah, E-mail: mekzah@nuclearmalaysia.gov.my; Salleh, Nik Ghazali Nik, E-mail: nik-ghazali@nuclearmalaysia.gov.my; Abdurahman, Mohamad Norahiman, E-mail: iman5031@yahoo.com [Division of Radiation Processing Technology, Malaysia Nuclear Agency, Bangi, 43000 Kajang, Selangor (Malaysia); Salih, Ashraf Mohammed, E-mail: ashraf.msalih@gmail.com [Department of Radiation Processing, Sudan Atomic Energy Commission, Khartoum, 1111 Sudan (Sudan); Fathy, Siti Farhana, E-mail: farhana811@hotmail.com [Laboratory of Molecular Biomedicine, Institute of Bioscience (IBS), Universiti Putra Malaysia (UPM), 43400 UPM, Serdang, Selangor (Malaysia); Azman, Anis Asmi, E-mail: anisasmi18@gmail.com; Hamidi, Nur Amira, E-mail: amirahamidi93@yahoo.com [School of Chemical Sciences, Universiti Sains Malaysia (USM), 11800 USM, Pulau Pinang (Malaysia)

    2016-01-22

    The palm oil-based ultraviolet (uv)-curable films were subjected to an outdoor soil burial test to investigate the biodegradation under natural environment. The films were burial in the soil experiment plot at the Nuclear Malaysia’s Dengkil complex. The uv-curable films were synthesized from the epoxidized palm oil acrylated (EPOLA) resin and the polyurethane palm oil (POBUA) resin, respectively. Biodegradation tests are more specific to burial film in soil experiments for 12 months under natural conditions. The biodegradability of palm oil resin based uv-curable films were investigated and compared with the petrochemical resin based film. The films properties were compared with respect to properties of the thermal characteristic, the crystallinity, the morphology and the weight loss which are analyzed using the thermogravimetric analysis (TGA), the differential scanning calorimetry (DSC), the scanning electron microscope (SEM), an optical microscope and the weight loss of film calculation. These findings suggested that the palm oil-based uv-curable films show quite satisfactory biodegradation levels.

  20. Soil burial biodegradation studies of palm oil-based UV-curable films

    Science.gov (United States)

    Tajau, Rida; Salleh, Mek Zah; Salleh, Nik Ghazali Nik; Abdurahman, Mohamad Norahiman; Salih, Ashraf Mohammed; Fathy, Siti Farhana; Azman, Anis Asmi; Hamidi, Nur Amira

    2016-01-01

    The palm oil-based ultraviolet (uv)-curable films were subjected to an outdoor soil burial test to investigate the biodegradation under natural environment. The films were burial in the soil experiment plot at the Nuclear Malaysia's Dengkil complex. The uv-curable films were synthesized from the epoxidized palm oil acrylated (EPOLA) resin and the polyurethane palm oil (POBUA) resin, respectively. Biodegradation tests are more specific to burial film in soil experiments for 12 months under natural conditions. The biodegradability of palm oil resin based uv-curable films were investigated and compared with the petrochemical resin based film. The films properties were compared with respect to properties of the thermal characteristic, the crystallinity, the morphology and the weight loss which are analyzed using the thermogravimetric analysis (TGA), the differential scanning calorimetry (DSC), the scanning electron microscope (SEM), an optical microscope and the weight loss of film calculation. These findings suggested that the palm oil-based uv-curable films show quite satisfactory biodegradation levels.

  1. Physicochemical properties of starch-CMC-nanoclay biodegradable films.

    Science.gov (United States)

    Almasi, Hadi; Ghanbarzadeh, Babak; Entezami, Ali A

    2010-01-01

    Novel citric acid (CA) modified starch-carboxymethyl cellulose (CMC)-montmorillonite (MMT) bionanocomposite films were prepared by casting method. X-ray diffraction (XRD) test showed that the 001 diffraction peak of nanoclay was shifted to lower angles in the bionanocomposites and it may be implied that the clay nanolayers formed an intercalated structure. However, completely exfoliated structure formed only in the pure starch-MMT nanocomposites (without CA and CMC). At the level of 7% MMT, the composite films showed the lowest solubility (7.21%). The MMT addition at content of 7% (w/w), caused to increase in ultimate tensile strength (UTS) by more than threefold in comparison to starch-CMC biocomposites. Copyright 2009 Elsevier B.V. All rights reserved.

  2. Biodegradable starch/poly (vinyl alcohol) film reinforced with titanium dioxide nanoparticles

    Science.gov (United States)

    Hejri, Zahra; Seifkordi, Ali Akbar; Ahmadpour, Ali; Zebarjad, Seyed Mojtaba; Maskooki, Abdolmajid

    2013-10-01

    Biodegradable starch/poly (vinyl alcohol)/nano-titanium dioxide (ST/PVA/nano-TiO2) nanocomposite films were prepared via a solution casting method. Their biodegradability, mechanical properties, and thermal properties were also studied in this paper. A general full factorial experimental approach was used to determine effective parameters on the mechanical properties of the prepared films. ST/PVA/TiO2 nanocomposites were characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD). The results of mechanical analysis show that ST/PVA films with higher contents of PVA have much better mechanical properties. In thermal analysis, it is found that the addition of TiO2 nanoparticles improves the thermal stability of the films. SEM micrographs, taken from the fracture surface of samples, illustrate that the addition of PVA makes the film softer and more flexible. The results of soil burial biodegradation indicate that the biodegradability of ST/PVA/TiO2 films strongly depends on the starch proportion in the film matrix. The degradation rate is increased by the addition of starch in the films.

  3. Soil solarization in open air with experimental and biodegradable plastic films [Apulia

    International Nuclear Information System (INIS)

    Russo, G.; Scarascia Mugnozza, G.; Frisullo, S.

    2004-01-01

    The use of biodegradable materials is a sustainable solution to the problem of high amounts of plastic films that must be disposed for soil solarization, since biodegradable films can be degraded directly in soil. The comparison of Mater-B biodegradable film with EVA and Polydac film for soil solarization and phythopatological tests in field is the aim of the present research. Experimental field tests were carried out in Borgo Cervaro (FG) in June and July 2002. A data logger connected with sensors was used to measure and collect climatic parameters. During field tests, climatic parameters and soil temperatures at different depth for soil under the different materials were evaluated. The performances of plastic materials were investigated measuring laceration and tensile strength and radiometric properties every 15 days. Soil samples were analysed in order to verify the reduction of infesting load of soilborne pathogens during soil solarization. The tests, although affected by adverse climatic conditions, show the capacity of the biodegradable film to obtain similar performances compared to traditional films. The traditional films produced higher temperatures in soil, longer duration and a higher number of hours with temperature higher than 40 deg C. Phytopathological results showed a higher sterilising effect for EVA and Polydac films in comparison to the Mater-B one [it

  4. Physical characterization of biodegradable films based on chitosan, polyvinyl alcohol and Opuntia mucilage

    Science.gov (United States)

    This study aimed to develop and characterize biodegradable films containing mucilage, chitosan and polyvinyl alcohol (PVA) in different concentrations. The films were prepared by casting on glass plates using glycerol as plasticizer. Mechanical properties, water vapor and oxygen barrier, as well as ...

  5. Characterizations of biodegradable epoxy-coated cellulose nanofibrils (CNF) thin film for flexible microwave applications

    Science.gov (United States)

    Hongyi Mi; Chien-Hao Liu; Tzu-Husan Chang; Jung-Hun Seo; Huilong Zhang; Sang June Cho; Nader Behdad; Zhenqiang Ma; Chunhua Yao; Zhiyong Cai; Shaoqin Gong

    2016-01-01

    Wood pulp cellulose nanofibrils (CNF) thin film is a novel recyclable and biodegradable material. We investigated the microwave dielectric properties of the epoxy coated-CNF thin film for potential broad applications in flexible high speed electronics. The characterizations of dielectric properties were carried out in a frequency range of 1–10 GHz. The dielectric...

  6. Investigation of Structure and Properties of Biodegradable Compositions of Polylactide with Ethyl Cellulose and Chitosan Plasticized by Poly(Ethylene Glycol

    Directory of Open Access Journals (Sweden)

    Rogovina Svetlana Zakharovna

    2014-12-01

    Full Text Available Compositions of polylactide (PLA with polysaccharides ethyl cellulose and chitosan are obtained at different initial ratios of components under conditions of shear deformation in a Brabender mixer. It has been shown that the addition of a given amount of low-molecular poly(ethylene glycol (PEG leads to an increase in the elongation of rigid polysaccharide–PLA compositions. The influence of molecular weight and amount of PEG on the thermal behavior of PLA is investigated by DSC method. The biodegradability of films prepared from the blends under investigation is estimated by weight loss after holding in soil and tests on the fungus resistance, and it is shown that the compositions have good biodegradability. The changes in the film morphology after holding in soil revealed by the SEM method additionally confirm that compositions are subjected to biodegradation.

  7. Characterization of biodegradable poly-3-hydroxybutyrate films and pellets loaded with the fungicide tebuconazole.

    Science.gov (United States)

    Volova, Tatiana; Zhila, Natalia; Vinogradova, Olga; Shumilova, Anna; Prudnikova, Svetlana; Shishatskaya, Ekaterina

    2016-03-01

    Biodegradable polymer poly(3-hydroxybutyrate) (P3HB) has been used as a matrix to construct slow-release formulations of the fungicide tebuconazole (TEB). P3HB/TEB systems constructed as films and pellets have been studied using differential scanning calorimetry, X-ray structure analysis, and Fourier transform infrared spectroscopy. TEB release from the experimental formulations has been studied in aqueous and soil laboratory systems. In the soil with known composition of microbial community, polymer was degraded, and TEB release after 35 days reached 60 and 36 % from films and pellets, respectively. That was 1.23 and 1.8 times more than the amount released to the water after 60 days in a sterile aqueous system. Incubation of P3HB/TEB films and pellets in the soil stimulated development of P3HB-degrading microorganisms of the genera Pseudomonas, Stenotrophomonas, Variovorax, and Streptomyces. Experiments with phytopathogenic fungi F. moniliforme and F. solani showed that the experimental P3HB/TEB formulations had antifungal activity comparable with that of free TEB.

  8. Biodegradable polyester films from renewable aleuritic acid: surface modifications induced by melt-polycondensation in air

    Science.gov (United States)

    Jesús Benítez, José; Alejandro Heredia-Guerrero, José; Inmaculada de Vargas-Parody, María; Cruz-Carrillo, Miguel Antonio; Morales-Flórez, Victor; de la Rosa-Fox, Nicolás; Heredia, Antonio

    2016-05-01

    Good water barrier properties and biocompatibility of long-chain biopolyesters like cutin and suberin have inspired the design of synthetic mimetic materials. Most of these biopolymers are made from esterified mid-chain functionalized ω-long chain hydroxyacids. Aleuritic (9,10,16-trihydroxypalmitic) acid is such a polyhydroxylated fatty acid and is also the major constituent of natural lac resin, a relatively abundant and renewable resource. Insoluble and thermostable films have been prepared from aleuritic acid by melt-condensation polymerization in air without catalysts, an easy and attractive procedure for large scale production. Intended to be used as a protective coating, the barrier's performance is expected to be conditioned by physical and chemical modifications induced by oxygen on the air-exposed side. Hence, the chemical composition, texture, mechanical behavior, hydrophobicity, chemical resistance and biodegradation of the film surface have been studied by attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FTIR), atomic force microscopy (AFM), nanoindentation and water contact angle (WCA). It has been demonstrated that the occurrence of side oxidation reactions conditions the surface physical and chemical properties of these polyhydroxyester films. Additionally, the addition of palmitic acid to reduce the presence of hydrophilic free hydroxyl groups was found to have a strong influence on these parameters.

  9. Physical Properties and Antibacterial Efficacy of Biodegradable Chitosan Films

    OpenAIRE

    中島, 照夫

    2009-01-01

    [Synopsis] Chitin, chitosan and quaternary chitosan films were prepared, and the physical properties and the antibacterial activities of chitosan and quaternary chitosan films were evaluated. The tensile strength of chitin films was 30~40% lower than that of chitosan films, but the crystallinity of chitin film was much higher than that of chitosan films. The crystallinity and orientation of crystallites were hardly affected by the four kinds of solvent chosen to cast chitosan films, but a de...

  10. Investigating the crystal growth behavior of biodegradable polymer blend thin films using in situ atomic force microscopy

    CSIR Research Space (South Africa)

    Malwela, T

    2014-01-01

    Full Text Available This article reports the crystal growth behavior of biodegradable polylactide (PLA)/poly[(butylene succinate)-co-adipate] (PBSA) blend thin films using atomic force microscopy (AFM). Currently, polymer thin films have received increased research...

  11. Biodegradability and plasticizing effect of yerba mate extract on cassava starch edible films.

    Science.gov (United States)

    Medina Jaramillo, Carolina; Gutiérrez, Tomy J; Goyanes, Silvia; Bernal, Celina; Famá, Lucía

    2016-10-20

    Biodegradable and edible cassava starch-glycerol based films with different concentrations of yerba mate extract (0, 5 and 20wt.%) were prepared by casting. The plasticizing effect of yerba mate extract when it was incorporated into the matrix as an antioxidant was investigated. Thermal degradation and biodegradability of the obtained biofilms were also studied. Thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), attenuated total reflectance Fourier transform infrared spectroscopy (ATR/FTIR), X-ray diffraction analysis (XRD), water absorbance, stability in different solutions and biodegradability studies were performed. The clear correlation among the results obtained from the different analysis confirmed the plasticizing effect of yerba mate extract on the starch-glycerol matrix. Also, the extract led to a decrease in the degradation time of the films in soil ensuring their complete biodegradability before two weeks and to films stability in acidic and alkaline media. The plasticizing effect of yerba mate extract makes it an attractive additive for starch films which will be used as packaging or coating; and its contribution to an earlier biodegradability will contribute to waste reduction. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Effect of cross linking of PVA/starch and reinforcement of modified barley husk on the properties of composite films.

    Science.gov (United States)

    Mittal, Aanchal; Garg, Sangeeta; Kohli, Deepak; Maiti, Mithu; Jana, Asim Kumar; Bajpai, Shailendra

    2016-10-20

    Barley husk (BH) was graft copolymerized by palmitic acid. The crystalline behavior of BH decreased after grafting. Poly vinyl alcohol (PVA)/starch (St) blend film, urea formaldehyde cross linked PVA/St films and composite films containing natural BH, grafted BH were prepared separately. The effect of urea/starch ratio, content of BH and grafted BH on the mechanical properties, water uptake (%), and biodegradability of the composite films was observed. With increase in urea: starch ratio from 0 to 0.5 in the blend, tensile strength of cross linked film increased by 40.23% compared to the PVA/St film. However, in grafted BH composite film, the tensile strength increased by 72.4% than PVA/St film. The degradation rate of natural BH composite film was faster than PVA/St film. Various films were characterized by SEM, FT-IR and thermal analysis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. The Effects of ZnOnanorodson the Characteristics of Sago Starch Biodegradable Films

    Directory of Open Access Journals (Sweden)

    R. Alebooyeh

    2013-01-01

    Full Text Available : Nowadays tend to use biodegradable packaging; including edible coatings and films for free from synthetic chemicals and do not cause environmental pollution, the industry is growing day by day. The aim of this research was to preparation and characterization of biodegradable films supported with ZnOnanorods. In this study, sago starch based films were prepared and   plasticized with sorbitol/ glycerol by casting method. ZnOnanorod with 0, 1, 3and 5%(w/wwas added to the films before casting the films. Films were dried at controlled conditions. Physicochemical properties such as water absorption capacity (WAC, permeability to water vapor (WVP and water solubility of the films were measured.  Also, the effects of addition of nano particles were measured on the antimicrobial properties of the films by agar diffusion method. Results showed that by increasing concentration of ZnOnanorod, solubility in water, WAC, and WVP of the films significantly (p <0.05 decreased. Furthermore, the addition of zinc oxide nanorods showed antimicrobial properties against E. Coli. In summary sago starch films supported with ZnOnanorodscan were used as active packaging for agricultural products as well as food industry. 

  14. Lipase entrapment in PVA/Chitosan biodegradable film for reactor coatings

    International Nuclear Information System (INIS)

    Batista, Karla A.; Lopes, Flavio Marques; Yamashita, Fabio; Fernandes, Kátia Flávia

    2013-01-01

    This study reports the development and characterization of novel biodegradable film, based on chitosan and polyvinyl alcohol containing lipase entrapped. The films showed a thickness of 70.4 and 79 μm to PVA/Chitosan and PVA/Chitosan/Lipase, respectively. The entrapment of lipase in PVA/Chitosan film resulted in increasing of 69.4% tensile strength (TS), and 52.4% of elongation. SEM images showed the formation of a continuous film, without pores or cracks. The lipase entrapment efficiency was estimated in 92% and the films were repeatedly used for 25 hydrolytic cycles, maintaining 62% of initial activity. The PVA/Chitosan/Lipase film was used for olive oil hydrolysis of high performance. These results indicate that PVA/Chitosan/Lipase is a promising material for biotechnology applications such as triacylglycerol hydrolysis and biodiesel production. - Highlights: ► Development and characterization of PVA/Chitosan biodegradable film ► Lipase immobilization onto PVA/Chitosan film ► PVA/Chitosan/Lipase film for reactor coating ► Olive oil hydrolysis using PVA/Chitosan/Lipase film

  15. Lipase entrapment in PVA/Chitosan biodegradable film for reactor coatings

    Energy Technology Data Exchange (ETDEWEB)

    Batista, Karla A. [Departamento de Bioquímica e Biologia Molecular, Laboratório de Química de Proteínas, Universidade Federal de Goiás, Cx. Postal 131, 74001-970, Goiânia, GO (Brazil); Lopes, Flavio Marques [Departamento de Bioquímica e Biologia Molecular, Laboratório de Química de Proteínas, Universidade Federal de Goiás, Cx. Postal 131, 74001-970, Goiânia, GO (Brazil); Unidade Universitária de Ciências Exatas e Tecnológicas, Universidade Estadual de Goiás, Anápolis, GO (Brazil); Yamashita, Fabio [Departamento de Tecnologia de Alimentos e Medicamentos, Laboratório de Tecnologia, Universidade Estadual de Londrina, Cx. Postal 6001, CEP 86051-990, Londrina, PR (Brazil); Fernandes, Kátia Flávia, E-mail: katia@icb.ufg.br [Departamento de Bioquímica e Biologia Molecular, Laboratório de Química de Proteínas, Universidade Federal de Goiás, Cx. Postal 131, 74001-970, Goiânia, GO (Brazil)

    2013-04-01

    This study reports the development and characterization of novel biodegradable film, based on chitosan and polyvinyl alcohol containing lipase entrapped. The films showed a thickness of 70.4 and 79 μm to PVA/Chitosan and PVA/Chitosan/Lipase, respectively. The entrapment of lipase in PVA/Chitosan film resulted in increasing of 69.4% tensile strength (TS), and 52.4% of elongation. SEM images showed the formation of a continuous film, without pores or cracks. The lipase entrapment efficiency was estimated in 92% and the films were repeatedly used for 25 hydrolytic cycles, maintaining 62% of initial activity. The PVA/Chitosan/Lipase film was used for olive oil hydrolysis of high performance. These results indicate that PVA/Chitosan/Lipase is a promising material for biotechnology applications such as triacylglycerol hydrolysis and biodiesel production. - Highlights: ► Development and characterization of PVA/Chitosan biodegradable film ► Lipase immobilization onto PVA/Chitosan film ► PVA/Chitosan/Lipase film for reactor coating ► Olive oil hydrolysis using PVA/Chitosan/Lipase film.

  16. Photothermal techniques applied to the study of thermal properties in biodegradable films

    Science.gov (United States)

    San Martín-Martínez, E.; Aguilar-Méndez, M. A.; Cruz-Orea, A.; García-Quiroz, A.

    2008-01-01

    The objective of the present work was to determine the thermal diffusivity and effusivity of biodegradable films by using photothermal techniques. The thermal diffusivity was studied by using the open photoacoustic cell technique. On the other hand the thermal effusivity was obtained by the photopyroelectric technique in a front detection configuration. The films were elaborated from mixtures of low density polyethylene (LDPE) and corn starch. The results showed that at high moisture values, the thermal diffusivity increased as the starch concentration was higher in the film. However at low moisture conditions (low extrusion moisture conditions (6.55%). As the moisture and starch concentration in the films were increased, the thermal effusivity diminished.

  17. Enzymatic degradation behavior of nanoclay reinforced biodegradable PLA/PBSA blend composites.

    Science.gov (United States)

    Malwela, Thomas; Ray, Suprakas Sinha

    2015-01-01

    Films of a biodegradable PLA/PBSA blend and blend-composites containing 2wt% of C20A, C30B and MEE were prepared by solvent casting and spin coating. The films were incubated in vials containing Tris-HCl buffer with Proteinase K, and their weight losses were measured after enzymatic degradation. The surface morphology before and after degradation tests was studied by SEM and in situ AFM. The results showed that neat PLA had a lower percentage weight loss than neat PBSA, whereas blending them resulted in an increased weight loss. The incorporation of C20A into the as-prepared blend accelerated the degradation rate, whereas C30B and MEE decelerated the degradation rate. Annealing at 70°C reduced the degradation rate of the blend, and the presence of nanoclays further reduced the degradation rates. Annealing at 120°C dramatically decelerated the degradation of the blend, whereas the incorporation of nanoclays accelerated the degradations rates. The enhancement of the degradation rates in the presence of nanoclays indicated that the degradation rates were mainly controlled by the PLA matrix. Thin films were also cast onto a silicon substrate using a spin coater, and enzymatic degradation on the completely crystalline surfaces revealed that enzymatic attack occurred by pitting and surface erosion of the thin films. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Fabrication and mechanical characterization of biodegradable and synthetic polymeric films: Effect of gamma radiation

    International Nuclear Information System (INIS)

    Akter, Nousin; Khan, Ruhul A.; Salmieri, Stephane; Sharmin, Nusrat; Dussault, Dominic; Lacroix, Monique

    2012-01-01

    Chitosan (1 wt%, in 2% aqueous acetic acid solution) and starch (1 wt%, in deionised water) were dissolved and mixed in different proportions (20–80 wt% chitosan) then films were prepared by casting. Tensile strength and elongation at break of the 50% chitosan containing starch-based films were found to be 47 MPa and 16%, respectively. It was revealed that with the increase of chitosan in starch, the values of TS improved significantly. Monomer, 2-butane diol-diacrylate (BDDA) was added into the film forming solutions (50% starch-based), then casted films. The BDDA containing films were irradiated under gamma radiation (5–25 kGy) and it was found that strength of the films improved significantly. On the other hand, synthetic petroleum-based polymeric films (polycaprolactone, polyethylene and polypropylene) were prepared by compression moulding. Mechanical and barrier properties of the films were evaluated. The gamma irradiated (25 kGy) films showed higher strength and better barrier properties. - Highlights: ► Chitosan and starch-based biodegradable films were prepared by casting. ► With the increase of chitosan in starch, the strength of the films improved significantly. ► Monomer, 2-Butane diol-diacrylate was grafted with the films by gamma radiation. ► Mechanical properties of synthetic polymeric films improved by gamma radiation. ► The irradiated polymer films showed better water vapor barrier properties.

  19. Ethanolic extract of propolis for biodegradable films packaging enhanced with chitosan

    Science.gov (United States)

    Ismail, M. I.; Roslan, A.; Saari, N. S.; Hashim, K. H.; Kalamullah, M. R.

    2017-09-01

    The use of industrial organic waste which are chitosan and propolis as materials for the development of biodegradable and active packaging is economical and environmentally appealing. Processing of propolis-chitosan film can minimize waste, and produce low-cost added value biopolymer packaging films for targeted applications. This aims of this research is to develop and characterize a biodegradable films by incorporating chitosan with propolis extract to enhance the functional properties for potential use as active food packaging. The film's moisture content, solubility and antimicrobial activity increase due to increasing volume of propolis extract which are 0 ml, 1.2 ml and 2.4 ml of propolis extract. Propolis-chitosan film with 2.4 ml of propolis extract is more soluble in water compared to propolis-chitosan film with 0 ml of propolis extract and 1.2 ml of propolis extract. The higher the volume of the propolis extract used, the higher the solubility of film in the water. The moisture content also will increase when higher volume of propolis extract used. Characterization of moisture content, solubility and antimicrobial activities revealed the benefits of adding propolis extract into chitosan films and the potential of using the developed film as active food packaging.

  20. Effect of degrading yellow oxo-biodegradable low-density polyethylene films to water quality

    Science.gov (United States)

    Requejo, B. A.; Pajarito, B. B.

    2017-05-01

    Polyethylene (PE) contributes largely to plastic wastes that are disposed in aquatic environment as a consequence of its widespread use. In this study, yellow oxo-biodegradable low-density PE films were immersed in deionized water at 50°C for 49 days. Indicators of water quality: pH, oxidation-reduction potential, turbidity, and total dissolved solids (TDS), were monitored at regular intervals. It was observed that pH initially rises and then slowly decreases with time, oxidation-reduction potential decreases then slowly increases with time, turbidity rises above the control at varied rates, and TDS increases abruptly and rises at a hindered rate. Moreover, the films potentially leach out lead chromate. The results imply that degrading oxo-biodegradable LDPE films results to significant reduction of water quality.

  1. Microstructure and thermal and functional properties of biodegradable films produced using zein

    Directory of Open Access Journals (Sweden)

    Crislene Barbosa de Almeida

    2018-03-01

    Full Text Available Abstract Research is being conducted in an attempt to produce biodegradable packaging to replace plastic products, thereby reducing solid waste disposal. In this work, zein films were produced from vegetable oils (macadamia, olive and buriti and from pure oleic acid. The surface of zein-based films made using oleic acid has a good lipid distribution. The high content of oleic acid produced a film with the greatest elongation at break (8.08 ± 2.71% due to the greater homogeneity of the protein matrix. The different oils did not affect the glass transition temperature (Tg. Tg curves of films with fatty acids showed a reduction in mass at between 50 and 120 °C due to water evaporation. At 120 °C the weight loss was 3-5% and above this temperature further weight loss was observed with the highest loss being seen in the film made using pure oleic acid. In conclusion, although biodegradable films were produced using the four different oils, the film made from pure oleic acid has the best characteristics.

  2. Synthesis of biodegradable films with antioxidant properties based on cassava starch containing bixin nanocapsules.

    Science.gov (United States)

    Pagno, Carlos Henrique; de Farias, Yuri Buratto; Costa, Tania Maria Haas; Rios, Alessandro de Oliveira; Flôres, Simone Hickmann

    2016-08-01

    Biodegradable and active packaging based on cassava starch incorporated bixin nanocapsules with different concentrations were developed. The physical, mechanical, barrier properties and antioxidant activity of the active packaging were studieds. The films incorporated with bixin nanocapsules were found to be homogeneous and thermally stable. Films with higher concentrations of bixin nanocapsules exhibited a significant decrease in tensile strength, water solubility and increase in elongation at break and water vapour permeability, well as, significant improvement in protection against UV and visible light. The films were used to pack sunflower oil under accelerated oxidation conditions (65 % RH/35 °C). Sunflower oil packaged in films with bixin exhibited lower oxidation rates, thus maintaining its freshness according to Codex Alimentarius guidelines (<10 mEq kg -1 ). Films containing bixin nanocapsules are very promising materials for use as packaging with antioxidant properties for maintaining food safety and extending the shelf life.

  3. Biosynthesis of Silver Nanoparticles from Persimmon Byproducts and Incorporation in Biodegradable Sodium Alginate Thin Film.

    Science.gov (United States)

    Ramachandraiah, Karna; Gnoc, Nguyen Trong Bao; Chin, Koo Bok

    2017-10-01

    Fruit industrial wastes such as persimmon seed, peel, and calyx were used to synthesize silver nanoparticles (AgNPs) and their antioxidant activities were compared with byproduct powders having different granularities. The AgNPs were incorporated in sodium alginate thin films and transparency and mechanical properties of the films was analyzed. Persimmon byproduct AgNPs were characterized by ultraviolet-visible spectroscopy, dynamic light scattering, X-ray diffraction, energy-dispersive x-ray spectroscopy, and scanning electron microscopy. The byproduct AgNPs displayed higher antioxidant activities than powders of different granularities (P silver nanoparticles (AgNPs) which were incorporated in sodium alginate thin films. This study evaluated the antioxidant activities and mechanical properties of the films that could be useful in the manufacture of food packaging using biodegradable films. © 2017 Institute of Food Technologists®.

  4. Characterization and evaluation physical properties biodegradable plastic composite from seaweed (Eucheuma cottonii)

    Science.gov (United States)

    Deni, Glar Donia; Dhaningtyas, Shalihat Afifah; Fajar, Ibnu; Sudarno

    2015-12-01

    The characterization and evaluation of biodegradable plastic composed of a mixture PVA - carrageenan - chitosan was conducted in this study. Obtained data were then compared to commercial biodegradable plastic. Characteristic of plastic was mechanical tested such as tensile - strength and elongation. Plastic degradation was studied using composting method for 7 days and 14 days. The results showed that the increase carrageenan will decrease tensile-strength and elongation plastic composite. In addition, increase carrageenan would increase the degraded plastics composite.

  5. Biodegradation of New Polymer Foundry Binders for the Example of the Composition Polyacrylic Acid/Starch

    Directory of Open Access Journals (Sweden)

    Beata Grabowska

    2011-04-01

    Full Text Available The investigations on the biodegradation process pathway of the new polymer binders for the example of water soluble compositionpolyacrylic acid/starch are presented in the hereby paper. Degradation was carried out in water environment and in a soil. Thedetermination of the total oxidation biodegradation in water environment was performed under laboratory conditions in accordance with the static water test system (Zahn-Wellens method, in which the mixture undergoing biodecomposition contained inorganic nutrient,activated sludge and the polymer composition, as the only carbon and energy source. The biodecomposition progress of the polymercomposition sample in water environment was estimated on the basis of the chemical oxygen demand (COD measurements and thedetermination the biodegradation degree, Rt, during the test. These investigations indicated that the composition polyacrylic acid/starchconstitutes the fully biodegradable material in water environment. The biodegradation degree Rt determined in the last 29th day of the test duration achieved 65%, which means that the investigated polymer composition can be considered to be fully biodegradable.During the 6 months biodegradation process of the cross-linked sample of the polymer composition in a garden soil several analysis ofsurface and structural changes, resulting from the sample decomposition, were performed. Those were: thermal analyses (TG-DSC,structural analyses (Raman spectroscopy and microscopic analyses (optical microscopy, AFM.

  6. Degradation of biodegradable plastic mulch films in soil environment by phylloplane fungi isolated from gramineous plants.

    Science.gov (United States)

    Koitabashi, Motoo; Noguchi, Masako T; Sameshima-Yamashita, Yuka; Hiradate, Syuntaro; Suzuki, Ken; Yoshida, Shigenobu; Watanabe, Takashi; Shinozaki, Yukiko; Tsushima, Seiya; Kitamoto, Hiroko K

    2012-08-02

    To improve the biodegradation of biodegradable plastic (BP) mulch films, 1227 fungal strains were isolated from plant surface (phylloplane) and evaluated for BP-degrading ability. Among them, B47-9 a strain isolated from the leaf surface of barley showed the strongest ability to degrade poly-(butylene succinate-co-butylene adipate) (PBSA) and poly-(butylene succinate) (PBS) films. The strain grew on the surface of soil-mounted BP films, produced breaks along the direction of hyphal growth indicated that it secreted a BP-degrading enzyme, and has directly contributing to accelerating the degradation of film. Treatment with the culture filtrate decomposed 91.2 wt%, 23.7 wt%, and 14.6 wt% of PBSA, PBS, and commercially available BP polymer blended mulch film, respectively, on unsterlized soil within 6 days. The PCR-DGGE analysis of the transition of soil microbial community during film degradation revealed that the process was accompanied with drastic changes in the population of soil fungi and Acantamoeba spp., as well as the growth of inoculated strain B47-9. It has a potential for application in the development of an effective method for accelerating degradation of used plastics under actual field conditions.

  7. Starch/polyester films: simultaneous optimisation of the properties for the production of biodegradable plastic bags

    Directory of Open Access Journals (Sweden)

    J. B. Olivato

    2013-01-01

    Full Text Available Blends of starch/polyester have been of great interest in the development of biodegradable packaging. A method based on multiple responses optimisation (Desirability was used to evaluate the properties of tensile strength, perforation force, elongation and seal strength of cassava starch/poly(butylene adipate-co-terephthalate (PBAT blown films produced via a one-step reactive extrusion using tartaric acid (TA as a compatibiliser. Maximum results for all the properties were set as more desirable, with an optimal formulation being obtained which contained (55:45 starch/PBAT (88.2 wt. (%, glycerol (11.0 wt. (% and TA (0.8 wt. (%. Biodegradable plastic bags were produced using the film with this formulation, and analysed according to the standard method of the Associação Brasileira de Normas Técnicas (ABNT. The bags exhibited a 45% failure rate in free-falling dart impact tests, a 10% of failure rate in dynamic load tests and no failure in static load tests. These results meet the specifications set by the standard. Thus, the biodegradable plastic bags fabricated with an optimised formulation could be useful as an alternative to those made from non-biodegradable materials if the nominal capacity declared for this material is considered.

  8. Pectin- and gelatin-based film: effect of gamma irradiation on the mechanical properties and biodegradation

    Energy Technology Data Exchange (ETDEWEB)

    Jo, Cheorun; Kang, Hojin; Lee, Na Young; Kwon, Joong Ho; Byun, Myung Woo E-mail: mwbyun@kaeri.re.kr

    2005-04-01

    Agricultural by-products, pectin and gelatin, were used to prepare a biodegradable film. The film casting solution including the pectin and gelatin was irradiated at 0, 10, 20, and 30 kGy to investigate the irradiation effect on the mechanical properties of the film. The tensile strength of the 10 kGy-irradiated film was the highest among the treatments but the elongation at break, water vapour permeability, and swelling ratio were the lowest. Hunter color L*- and a*-values decreased but the b*-value increased as the irradiation dose increased. The total organic carbon content produced from the Paenibacillus polymyxa and Pseudomonas aeruginosa also showed that the film of 10 kGy-irradiated was lower than those of 0, 20, and 30 kGy-irradiated films. In conclusion, irradiation of the film casting solution at 10 kGy increased the mechanical properties of the pectin and gelatin based film. To manufacture the film by agricultural by-products, however, the irradiation dose of the film casting solution should be determined to achieve better mechanical properties.

  9. Poly(lactic acid) (PLA) Based Tear Resistant and Biodegradable Flexible Films by Blown Film Extrusion.

    Science.gov (United States)

    Mallegni, Norma; Phuong, Thanh Vu; Coltelli, Maria-Beatrice; Cinelli, Patrizia; Lazzeri, Andrea

    2018-01-17

    Poly(lactic acid) (PLA) was melt mixed in a laboratory extruder with poly(butylene adipate- co -terephthalate) (PBAT) and poly(butylene succinate) (PBS) in the presence of polypropylene glycol di glycidyl ether (EJ400) that acted as both plasticizer and compatibilizer. The process was then scaled up in a semi-industrial extruder preparing pellets having different content of a nucleating agent (LAK). All of the formulations could be processed by blowing extrusion and the obtained films showed mechanical properties dependent on the LAK content. In particular the tearing strength showed a maximum like trend in the investigated composition range. The films prepared with both kinds of blends showed a tensile strength in the range 12-24 MPa, an elongation at break in the range 150-260% and a significant crystallinity.

  10. Biodegradation of weathered polystyrene films in seawater microcosms.

    Science.gov (United States)

    Syranidou, Evdokia; Karkanorachaki, Katerina; Amorotti, Filippo; Franchini, Martina; Repouskou, Eftychia; Kaliva, Maria; Vamvakaki, Maria; Kolvenbach, Boris; Fava, Fabio; Corvini, Philippe F-X; Kalogerakis, Nicolas

    2017-12-21

    A microcosm experiment was conducted at two phases in order to investigate the ability of indigenous consortia alone or bioaugmented to degrade weathered polystyrene (PS) films under simulated marine conditions. Viable populations were developed on PS surfaces in a time dependent way towards convergent biofilm communities, enriched with hydrocarbon and xenobiotics degradation genes. Members of Alphaproteobacteria and Gammaproteobacteria were highly enriched in the acclimated plastic associated assemblages while the abundance of plastic associated genera was significantly increased in the acclimated indigenous communities. Both tailored consortia efficiently reduced the weight of PS films. Concerning the molecular weight distribution, a decrease in the number-average molecular weight of films subjected to microbial treatment was observed. Moreover, alteration in the intensity of functional groups was noticed with Fourier transform infrared spectrophotometry (FTIR) along with signs of bio-erosion on the PS surface. The results suggest that acclimated marine populations are capable of degrading weathered PS pieces.

  11. Effect of electron beam irradiation on the biodegradability of aromatic aliphatic copolyester film and their blend with corn starch

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Leonardo G. Andrade e; Poveda, Patricia N.S., E-mail: lgasilva@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Rezende, Maira L.; Rosa, Derval S. [Universidade Sao Francisco, Itatiba, SP (Brazil)

    2009-07-01

    Biodegradable and green plastics have been studied in the last years. The aim of this paper is to study the effect of electron beam irradiation on the biodegradability of aromatic aliphatic copolyester film and their blend with corn starch. The samples were irradiated at different doses 10 and 40 kGy in a linear accelerator. The biodegradability of the materials was evaluated by two methods: soil simulated and enzymatic. In the method enzymatic when it was used alpha-amylase, the irradiated samples presented faster biodegradation than the references non irradiated. The blend of aromatic aliphatic copolyester with corn starch (Ecobras{sup R}) irradiated presented a bigger biodegradability than the aromatic aliphatic copolyester (Ecoflex{sup R}) film in both methods studied. (author)

  12. Effect of electron beam irradiation on the biodegradability of aromatic aliphatic copolyester film and their blend with corn starch

    International Nuclear Information System (INIS)

    Silva, Leonardo G. Andrade e; Poveda, Patricia N.S.; Rezende, Maira L.; Rosa, Derval S.

    2009-01-01

    Biodegradable and green plastics have been studied in the last years. The aim of this paper is to study the effect of electron beam irradiation on the biodegradability of aromatic aliphatic copolyester film and their blend with corn starch. The samples were irradiated at different doses 10 and 40 kGy in a linear accelerator. The biodegradability of the materials was evaluated by two methods: soil simulated and enzymatic. In the method enzymatic when it was used α-amylase, the irradiated samples presented faster biodegradation than the references non irradiated. The blend of aromatic aliphatic copolyester with corn starch (Ecobras R ) irradiated presented a bigger biodegradability than the aromatic aliphatic copolyester (Ecoflex R ) film in both methods studied. (author)

  13. Stretch-induced biodegradation of polyelectrolyte multilayer films for drug release.

    Science.gov (United States)

    Barthes, Julien; Mertz, Damien; Bach, Charlotte; Metz-Boutigue, Marie-Hélène; Senger, Bernard; Voegel, Jean-Claude; Schaaf, Pierre; Lavalle, Philippe

    2012-09-25

    The design of stimuli-responsive polymer assemblies for the controlled release of bioactive molecules has raised considerable interest these two last decades. Herein, we report the design of mechanically responsive drug-releasing films made of polyelectrolyte multilayers. A layer-by-layer (LbL) reservoir containing biodegradable polyelectrolytes is capped with a mechanosensitive LbL barrier and responds to stretching by a total enzymatic degradation of the film. This strategy is successfully applied for the release in solution of an anticancer drug initially loaded within the architecture.

  14. Biodegradable Starch/Copolyesters Film Reinforced with Silica Nanoparticles: Preparation and Characterization

    Science.gov (United States)

    Lima, Roberta A.; Oliveira, Rene R.; Wataya, Célio H.; Moura, Esperidiana A. B.

    Biodegradable starch/copolyesters/silica nanocomposite films were prepared by melt extrusion, using a twin screw extruder machine and blown extrusion process. The influence of the silica nanoparticle addition on mechanical and thermal properties of nanocomposite films was investigated by tensile tests; X-rays diffraction (XRD), differential scanning calorimetry (DSC) and Scanning electron microscopy (SEM) analysis and the correlation between properties was discussed. The results showed that incorporation of 2 % (wt %) of SiO2 nanoparticle in the blend matrix of PBAT/Starch, resulted in a gain of mechanical properties of blend.

  15. Biodegradability Study of the Blend Film of High Density Polyethylene and Poly(lactic acid Disposable Packages Flake

    Directory of Open Access Journals (Sweden)

    Elahe Baghi Neirizi

    2016-03-01

    Full Text Available One of the major concerns of using a non-biodegradable polymer product is its disposal at the end of its life cycle. Development of biodegradable plastics promises an alternative solution to combat this problem. Blending of poly(lactic acid with non-biodegradable polymers is a practical and economical method for modifying the biodegradability properties of non-biodegradable polymers. In this study, soil biodegradability of the blends of high density polyethylene (HDPE and variable amounts of recycled poly(lactic acid (r-PLA plastic flakes at 0, 5, 10, 20, 30, 40 and 50 wt% was studied. The behavior of the force-elongation profile of the blends having r-PLA content of lower than 30 wt% was approximately the same as that of pure HDPE while, it was completely different for the other blends. Tearing force and elongation-at-yield-point of the blends films with the 20 to 50 wt% r-PLA were decreased significantly after 60 days of soil biodegradability test. Morphological study showed that biodegradability of the blend films at surface of the samples (deep pores and grooves was increased with extended biodegradability time and higher r-PLA content, while, this variation was significant for the blend films of more than 20 wt% r-PLA content. Thermal properties evaluation by differential scanning calorimetry (DSC curves indicated that the glass transition temperature and enthalpy peaks during the heating stage were eliminated with increasing the biodegradability testing time. Also, reduction in the crystallinity degree of the r-PLA component with increasing the biodegradability testing time coincided with the earlier results.

  16. Effect of xanthan and locust bean gum synergistic interaction on characteristics of biodegradable edible film.

    Science.gov (United States)

    Kurt, Abdullah; Toker, Omer Said; Tornuk, Fatih

    2017-09-01

    The present study was aimed to use different combinations of xanthan (XG) and locust bean gum (LBG) in the biodegradable edible film preparation by benefitting from their synergistic interactions for the first time. Concentrations of LBG, XG and glycerol of the optimized film sample were found to be 89.6%, 10.4% and 20%, respectively. At the optimum point the WVP, TS, E% and EM values of film were found 0.22gmmh -1 m 2 kPa, 86.97MPa, 33.34% and 177.25MPa, respectively. The optimized film was characterized for its physical, thermal and structural behavior. The scanning electron microscopy (SEM), X-ray diffraction (XRD), differential scanning calorimetry (DSC) and fourier transform infrared spectroscopy (FTIR) analyses exhibited miscibility and presence of interaction between polymers. In conclusion, XG and LBG interaction was used successfully to get biodegradable films and coatings with improved characteristics. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Study of environmental biodegradation of LDPE films in soil using optical and scanning electron microscopy.

    Science.gov (United States)

    Mumtaz, Tabassum; Khan, M R; Hassan, Mohd Ali

    2010-07-01

    An outdoor soil burial test was carried out to evaluate the degradation of commercially available LDPE carrier bags in natural soil for up to 2 years. Biodegradability of low density polyethylene films in soil was monitored using both optical and scanning electron microscopy (SEM). After 7-9 months of soil exposure, microbial colonization was evident on the film surface. Exposed LDPE samples exhibit progressive changes towards degradation after 17-22 months. SEM images reveal signs of degradation such as exfoliation and formation of cracks on film leading to disintegration. The possible degradation mode and consequences on the use and disposal of LDPE films is discussed. Copyright 2010 Elsevier Ltd. All rights reserved.

  18. Surface characterization and biodegradation behavior of magnesium implanted poly(L-lactide/caprolactone) films

    Science.gov (United States)

    Sokullu, Emel; Ersoy, Fulya; Yalçın, Eyyup; Öztarhan, Ahmet

    2017-11-01

    Biopolymers are great source for medical applications such as drug delivery, wound patch, artificial tissue studies etc., food packaging, cosmetic applications etc. due to their biocompatibility and biodegradability. Particularly, the biodegradation ability of a biomaterial makes it even advantageous for the applications. The more tunable the biodegradation rate the more desired the biopolymers. There are many ways to tune degradation rate including surface modification. In this study ion implantation method applied to biopolymer surface to determine its effect on biodegradation rate. In this study, surface modification of poly(L-lactide/caprolactone) copolymer film is practiced via Mg-ion-implantation using a MEVVA ion source. Mg ions were implanted at a fluence of 1 × 1015 ions/cm2 and ion energy of 30 keV. Surface characterization of Mg-ion-implanted samples is examined using Atomic Force Microscopy, Raman spectroscopy, contact angle measurement and FT-IR Spectroscopy. These analyses showed that the surface become more hydrophilic and rougher after the ion implantation process which is advantageous for cell attachment on medical studies. The in vitro enzymatic degradation of Mg-implanted samples was investigated in Lipase PS containing enzyme solution. Enzymatic degradation rate was examined by mass loss calculation and it is shown that Mg-implanted samples lost more than 30% of their weight while control samples lost around 20% of their weight at the end of the 16 weeks. The evaluation of the results confirmed that Mg-ion-implantation on poly(L-lactide/caprolactone) films make the surface rougher and more hydrophilic and changes the organic structure on the surface. On the other hand, ion implantation has increased the biodegradation rate.

  19. Nanocomposites biodegradable coating on BOPET films to enhance hot seal strength properties

    International Nuclear Information System (INIS)

    Barbaro, G.; Galdi, M. R.; Di Maio, L.; Incarnato, L.

    2015-01-01

    The coating technology is a strategic solution to improve the properties of flexible packaging films. Indeed, additional functional layers are often designed and added as coating on the substrate, in order to improve the characteristic of the flexible packaging and to meet the requirements for the desired gas or vapour barrier, for adhesion and sealing, or for improving the film printability, its aesthetics and durability. Moreover, this technology allows to functionalize a polymeric substrate applying materials with different chemistry, rheology, thermal and structural characteristics. BOPET films are widely used for food packaging applications thanks to their good gas barrier and mechanical properties, high transparency and for the excellent printability. In regard to sealing performance, BOPET films show poor sealing properties so they are mostly submitted to lamination processes with polyethylene. Nevertheless, this solution compromises the PET recyclability and influences the gas permeability of the multilayer PET based structures. The aim of this work is to investigate on the effect of nanocomposite biodegradable coatings for BOPET substrates in enhancing the heat sealing strength of eco-compatible PET/PLA films. At this regards, different percentages of Cloisite C30B (0%, 2% and 4% wt/wt ) have been added to PLA by solution intercalation technique and the nanocomposite biodegradable materials produced have been applied on BOPET commercial films by casting. The BOPET coated films have been characterized in order to evaluate the heat sealing strength and the mechanical, gas permeability and surface properties. The results have shown that the addition of nanoclay in PLA coating significantly enhance the hot tack properties of the PET/PLA system produced, while the oxygen and water vapour permeability are slightly increased if compared to pure BOPET films

  20. Nanocomposites biodegradable coating on BOPET films to enhance hot seal strength properties

    Energy Technology Data Exchange (ETDEWEB)

    Barbaro, G., E-mail: giovannibarbaro@email.it; Galdi, M. R., E-mail: mrgaldi@unisa.it; Di Maio, L., E-mail: ldimaio@unisa.it; Incarnato, L., E-mail: lincarnato@unisa.it [Industrial Engineering Department, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano (Italy)

    2015-12-17

    The coating technology is a strategic solution to improve the properties of flexible packaging films. Indeed, additional functional layers are often designed and added as coating on the substrate, in order to improve the characteristic of the flexible packaging and to meet the requirements for the desired gas or vapour barrier, for adhesion and sealing, or for improving the film printability, its aesthetics and durability. Moreover, this technology allows to functionalize a polymeric substrate applying materials with different chemistry, rheology, thermal and structural characteristics. BOPET films are widely used for food packaging applications thanks to their good gas barrier and mechanical properties, high transparency and for the excellent printability. In regard to sealing performance, BOPET films show poor sealing properties so they are mostly submitted to lamination processes with polyethylene. Nevertheless, this solution compromises the PET recyclability and influences the gas permeability of the multilayer PET based structures. The aim of this work is to investigate on the effect of nanocomposite biodegradable coatings for BOPET substrates in enhancing the heat sealing strength of eco-compatible PET/PLA films. At this regards, different percentages of Cloisite C30B (0%, 2% and 4%{sub wt/wt}) have been added to PLA by solution intercalation technique and the nanocomposite biodegradable materials produced have been applied on BOPET commercial films by casting. The BOPET coated films have been characterized in order to evaluate the heat sealing strength and the mechanical, gas permeability and surface properties. The results have shown that the addition of nanoclay in PLA coating significantly enhance the hot tack properties of the PET/PLA system produced, while the oxygen and water vapour permeability are slightly increased if compared to pure BOPET films.

  1. Nanocomposites biodegradable coating on BOPET films to enhance hot seal strength properties

    Science.gov (United States)

    Barbaro, G.; Galdi, M. R.; Di Maio, L.; Incarnato, L.

    2015-12-01

    The coating technology is a strategic solution to improve the properties of flexible packaging films. Indeed, additional functional layers are often designed and added as coating on the substrate, in order to improve the characteristic of the flexible packaging and to meet the requirements for the desired gas or vapour barrier, for adhesion and sealing, or for improving the film printability, its aesthetics and durability. Moreover, this technology allows to functionalize a polymeric substrate applying materials with different chemistry, rheology, thermal and structural characteristics. BOPET films are widely used for food packaging applications thanks to their good gas barrier and mechanical properties, high transparency and for the excellent printability. In regard to sealing performance, BOPET films show poor sealing properties so they are mostly submitted to lamination processes with polyethylene. Nevertheless, this solution compromises the PET recyclability and influences the gas permeability of the multilayer PET based structures. The aim of this work is to investigate on the effect of nanocomposite biodegradable coatings for BOPET substrates in enhancing the heat sealing strength of eco-compatible PET/PLA films. At this regards, different percentages of Cloisite C30B (0%, 2% and 4%wt/wt) have been added to PLA by solution intercalation technique and the nanocomposite biodegradable materials produced have been applied on BOPET commercial films by casting. The BOPET coated films have been characterized in order to evaluate the heat sealing strength and the mechanical, gas permeability and surface properties. The results have shown that the addition of nanoclay in PLA coating significantly enhance the hot tack properties of the PET/PLA system produced, while the oxygen and water vapour permeability are slightly increased if compared to pure BOPET films.

  2. Biodegradation of weathered polystyrene films in seawater microcosms

    OpenAIRE

    Syranidou, Evdokia; Karkanorachaki, Katerina; Amorotti, Filippo; Franchini, Martina; Repouskou, Eftychia; Kaliva, Maria; Vamvakaki, Maria; Kolvenbach, Boris; Fava, Fabio; Corvini, Philippe F.-X.; Kalogerakis, Nicolas

    2017-01-01

    A microcosm experiment was conducted at two phases in order to investigate the ability of indigenous consortia alone or bioaugmented to degrade weathered polystyrene (PS) films under simulated marine conditions. Viable populations were developed on PS surfaces in a time dependent way towards convergent biofilm communities, enriched with hydrocarbon and xenobiotics degradation genes. Members of Alphaproteobacteria and Gammaproteobacteria were highly enriched in the acclimated plastic associate...

  3. Development and characterization of biodegradable chitosan films containing two essential oils.

    Science.gov (United States)

    Shen, Zhu; Kamdem, Donatien Pascal

    2015-03-01

    Active biodegradable films from chitosan containing 10% to 30% w/w of citronella essential oil (CEO) and cedarwood oil (CWO) were developed by casting and solvent-evaporation method, and their physical, mechanical and thermal properties were investigated. Possible interactions between the chitosan chains and the essential oils were confirmed using Fourier-transform infrared spectroscopy (FTIR). Various amounts of CEO or CWO had significant effects on the films' mechanical properties, with the exception of 10% of CEO, which did not significantly affect the tensile strength of the films. The incorporation of the two tested oils provoked a remarkable reduction in the water-vapor permeability properties, with a decrease of about 63% when 30% CEO was added in chitosan films. Thermogravimetric analysis showed that degradation temperatures of the films containing CEO and CWO improved only slightly in comparison to control films without essential oils. FTIR spectra analysis provided some insights on the possible interactions between chitosan and the two essential oils used. This study suggests that active films can be developed by including CEO and CWO in a chitosan matrix. Such films can provide new formulation options for packaging industries in developing active packaging with potential food-technology applications. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Properties and characteristics of dual-modified rice starch based biodegradable films.

    Science.gov (United States)

    Woggum, Thewika; Sirivongpaisal, Piyarat; Wittaya, Thawien

    2014-06-01

    In this study, the dual-modified rice starch was hydroxypropylated with 6-12% of propylene oxide followed by crosslinking with 2% sodium trimetaphosphate (STMP) and a mixture of 2% STMP and 5% sodium tripolyphosphate (STPP). Increasing the propylene oxide concentrations in the DMRS yielded an increase in the molar substitution (MS) and degree of substitution (DS). However, the gelatinization parameters, paste properties, gel strength and paste clarity showed an inverse trend. The biodegradable films from the DMRS showed an increase the tensile strength, elongation at break and film solubility, while the transparency value decreased when the concentration of propylene oxide increased. However the water vapor permeability of the films did not significantly change with an increase in the concentration of propylene oxide. In addition, it was found that DMRS films crosslinked with 2% STMP demonstrated higher tensile strength, transparency value and lower water vapor permeability than the DMRS films crosslinked with a mixture of 2% STMP and 5% STPP. The XRD analysis of the DMRS films showed a decrease in crystallinity when the propylene oxide concentrations increased and the crystallinity of DMRS films with 2% STMP were higher than the DMRS films with a mixture of 2% STMP and 5% STPP. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Biodegradable modified Phba systems

    International Nuclear Information System (INIS)

    Aniscenko, L.; Dzenis, M.; Erkske, D.; Tupureina, V.; Savenkova, L.; Muizniece - Braslava, S.

    2004-01-01

    Compositions as well as production technology of ecologically sound biodegradable multicomponent polymer systems were developed. Our objective was to design some bio plastic based composites with required mechanical properties and biodegradability intended for use as biodegradable packaging. Significant characteristics required for food packaging such as barrier properties (water and oxygen permeability) and influence of γ-radiation on the structure and changes of main characteristics of some modified PHB matrices was evaluated. It was found that barrier properties were plasticizers chemical nature and sterilization with γ-radiation dependent and were comparable with corresponding values of typical polymeric packaging films. Low γ-radiation levels (25 kGy) can be recommended as an effective sterilization method of PHB based packaging materials. Purposely designed bio plastic packaging may provide an alternative to traditional synthetic packaging materials without reducing the comfort of the end-user due to specific qualities of PHB - biodegradability, Biocompatibility and hydrophobic nature

  6. Swelling, ion uptake and biodegradation studies of PE film modified through radiation induced graft copolymerization

    Energy Technology Data Exchange (ETDEWEB)

    Kaur, Inderjeet, E-mail: ij_kaur@hotmail.com [Department Chemistry, HPU Shimla 171005 (India); Gupta, Nitika; Kumari, Vandna [Department Chemistry, HPU Shimla 171005 (India)

    2011-09-15

    An attempt to develop biodegradable polyethylene film grafting of mixture of hydrophilic monomers methacrylic acid (MAAc) and acrylamide (AAm) onto PE film has been carried out by preirradiation method using benzoyl peroxide as the radical initiator. Since ether linkages are susceptible to easy cleavage during degradation process, PE film was irradiated before the grafting reactions by {gamma}-rays to introduce peroxidic linkages (PE-OO-PE) that offer sites for grafting. The effect of irradiation dose, monomer concentration, initiator concentration, temperature, time and amount of water on the grafting percent was determined. Maximum percentage of grafting of binary mixture (MAAc+AAm), (1792%) was obtained at a total concentration of binary monomer mixture=204.6x10{sup -2} mol/L ([MAAc]=176.5x10{sup -2} mol/L, [AAm]=28.1x10{sup -2} mol/L), [BPO]=8.3x10{sup -2} mol/L at 100 deg. C in 70 min. The grafted PE film was characterized by the Fourier Transform Infrared Spectroscopy (FTIR), Thermogravimetric Analysis (TGA) and Scanning Electron Microscopic (SEM) methods. Some selective properties of grafted films such as swelling studies, ion uptake and biodegradation studies have been investigated. The grafted films show good swelling in water, ion uptake studies shows promising results for desalination of brackish water and the soil burial test shows that PE film grafted with binary monomer mixture degrades up to 47% within 50 days. - Highlights: > Binary mixture of methacrylic acid (MAAc) and acrylamide (AAm) onto PE film by preirradiation method was carried out. > Graft copolymers of MAAc+AAm and PE film were characterized by FTIR, TGA and SEM studies and was found to be thermally stable. > Grafting of MAAc+AAm improved swelling behavior giving maximum swelling (485.71%) in water as against PE with 0% swelling. > The grafted PE-g-poly (MAAc-co-AAm) behaves as an excellent material for ion separation. > Biodegradation studies by soil burial test showed 47.19% of

  7. Preparation and Characterization of Some Polyethylene Modified- Starch Biodegradable Films

    International Nuclear Information System (INIS)

    Badrana, A.S.; Ramadanb, A.M.; Ibrahim, N.A.; Kahild, T.; Hussienc, H.A.

    2005-01-01

    Blends of LDPE with soluble starch, wheat flour and commercial starch were prepared by mixing starch (or flour) with styrene then blending the mixture with LDPE, The starch percents vary between 5 and 50% of the total weight. Their physical and mechanical properties were recorded and compared with pure LDPE. It was observed that the increase in starch or wheat flour contents of the mixture was reversibly proportional to the tensile strength and % elongation. Samples were tested for water absorption. All of the samples were insoluble in cold and boiling water. Moisture uptake increased with immersion time and increasing starch content. The changes in the tensile strength of LDPE/starch (or wheat flour) after the course of thermal oxidation was measured. These results show negligible changes in the tensile strength of the control sample as compared to that of the samples containing the additives. Oxidation processes take advantage of the high temperatures (40-50 degree C) and the time. It was also observed that after 10 weeks of soil burial, the mechanical properties of the films decrease, mainly, due to starch removal from the films. Also, for the weight loss a drastic decrease was observed after 10 weeks of soil burial thereafter it preceded slowly. The LDPE/ starch strips showed weight loss after treating with a-amylase this due to hydrolysis and leaching of the starch. The rate of starch hydrolysis increases with the increase in starch content of the sample. The influence of addition of starch on the overall migration of these films, with different food simulant, was studied, at different temperatures (-4 degree. 25 degree and 40 degree C). All values were significantly lower than the upper limit for overall migration set by the EU (10 mg/dirf) for food grade plastics packaging materials

  8. Biodegradable films containing α-tocopherol/β-cyclodextrin complex

    International Nuclear Information System (INIS)

    Motta, Caroline; Martelli, Silvia M.; Soldi, Valdir; Barreto, Pedro L.M.

    2011-01-01

    The growing environmental concern about pollution and the need to reduce dependence of plastic industry in relation to non-renewable resources has increased the interest of both researchers and industry in the use of biopolymers. In this work β-cyclodextrin/α-tocopherol complexes were prepared and characterized. In order to obtain polymeric active biofilms, the β-cyclodextrin/α-tocopherol complex was incorporated into a polymeric matrix of carboxymethylcellulose. The β-cyclodextrin/α-tocopherol complex was characterized through of X-ray diffraction and thermogravimetric analysis. The physicochemical properties of the films incorporated with the complex were evaluated through mechanical and colorimetric analysis and moisture sorption isotherm. (author)

  9. Biodegradation of additive PHBV/PP-co-PE films buried in soil

    Directory of Open Access Journals (Sweden)

    Barbara Rani-Borges

    Full Text Available Abstract There is considerable concern about the impact plastic materials have on the environment due to their durability and resistance to degradation. The use of pro-oxidant additives in the polymer films could be a viable way to decrease the harmful effects of these discarded materials. In this study, films of PHBV/PP-co-PE (80/20 w/w and PHBV/PP-co-PE/add (80/19/1 w/w/w (with pro-oxidant additive were employed to verify the influence of the additive on the biodegradation of these films in the soil. These films were obtained by melting the pellets in a press at 180 °C which were buried in soil columns for 3 and 6 months. Some samples were also heated before being buried in soil. The biodegradation is higher for the additive blend buried for 3 months than for the pre-heated blend. After 6 months the blend buried and heated/buried was completely degraded in soil. The effect of the additive, on chain oxidation, is more time-dependant than heat-dependant.

  10. Biodegradation of blend films PVA/PVC, PVA/PCL in soil and soil with landfill leachate

    Directory of Open Access Journals (Sweden)

    Adriana de Campos

    2011-12-01

    Full Text Available This study investigated the biodegradation of blends films of poly(vinyl alcohol/poly(vinyl chloride (PVA/PVC and poly(vinyl alcohol/poly(caprolactone (PVA/PCL blends films prepared with dimethylformamide under a variety of conditions by respirometry, spectrophotometry (FTIR, scanning electron microscopy (SEM, and contact angle. The films were buried in the garden soil and in the soil mixed with the landfill leachate for 120 days at 28ºC. Significant levels of biodegradation were achieved in fairly short incubation times in the soil. The results indicated that PVA was the most biodegradable film in the soil and in the soil with the leachate.

  11. Application of composition modulated thin films

    International Nuclear Information System (INIS)

    Hilliard, J.E.

    1979-01-01

    Film produced by evaporating two components through a rotating pinwheel shutter which cuts off the vapor first from one source and then the other are evaluated. These films have a modulated composition rather than a layered structure. Mechanical properties were determined using a bulge tester

  12. Dual growth factor delivery from bilayered, biodegradable hydrogel composites for spatially-guided osteochondral tissue repair

    NARCIS (Netherlands)

    Lu, S.; Lam, J.; Trachtenberg, J.E.; Lee, E.J.; Seyednejad, H.; van den Beucken, J.J.; Tabata, Y.; Wong, M.E.; Jansen, J.A.; Mikos, A.G.; Kasper, F.K.

    2014-01-01

    The present work investigated the use of biodegradable hydrogel composite scaffolds, based on the macromer oligo(poly(ethylene glycol) fumarate) (OPF), to deliver growth factors for the repair of osteochondral tissue in a rabbit model. In particular, bilayered OPF composites were used to mimic the

  13. Effect of chemical heterogeneity of biodegradable polymers on surface energy: A static contact angle analysis of polyester model films

    Energy Technology Data Exchange (ETDEWEB)

    Belibel, R.; Avramoglou, T. [INSERM U1148, Laboratory for Vascular Translational Science (LVTS), Institut Galilée, Université Paris 13, Sorbonne Paris Cité, 99 Avenue Jean-Baptiste Clément, Villetaneuse F-93430 (France); Garcia, A. [CNRS UPR 3407, Laboratoire des Sciences des Procédés et des Matériau, Institut Galilée, Université Paris 13, Sorbonne Paris Cité, 99 Avenue Jean-Baptiste Clément, Villetaneuse F-93430 (France); Barbaud, C. [INSERM U1148, Laboratory for Vascular Translational Science (LVTS), Institut Galilée, Université Paris 13, Sorbonne Paris Cité, 99 Avenue Jean-Baptiste Clément, Villetaneuse F-93430 (France); Mora, L., E-mail: Laurence.mora@univ-paris13.fr [INSERM U1148, Laboratory for Vascular Translational Science (LVTS), Institut Galilée, Université Paris 13, Sorbonne Paris Cité, 99 Avenue Jean-Baptiste Clément, Villetaneuse F-93430 (France)

    2016-02-01

    Biodegradable and bioassimilable poly((R,S)-3,3 dimethylmalic acid) (PDMMLA) derivatives were synthesized and characterized in order to develop a new coating for coronary endoprosthesis enabling the reduction of restenosis. The PDMMLA was chemically modified to form different custom groups in its side chain. Three side groups were chosen: the hexyl group for its hydrophobic nature, the carboxylic acid and alcohol groups for their acid and neutral hydrophilic character, respectively. The sessile drop method was applied to characterize the wettability of biodegradable polymer film coatings. Surface energy and components were calculated. The van Oss approach helped reach not only the dispersive and polar acid–base components of surface energy but also acid and basic components. Surface topography was quantified by atomic force microscopy (AFM) and subnanometer average values of roughness (Ra) were obtained for all the analyzed surfaces. Thus, roughness was considered to have a negligible effect on wettability measurements. In contrast, heterogeneous surfaces had to be corrected by the Cassie–Baxter equation for copolymers (10/90, 20/80 and 30/70). The impact of this correction was quantified for all the wettability parameters. Very high relative corrections (%) were found, reaching 100% for energies and 30% for contact angles. - Highlights: • We develop different polymers with various chemical compositions. • Wettability properties were calculated using Cassie corrected contact angles. • Percentage of acid groups in polymers is directly correlated to acid part of SFE. • Cassie corrections are necessary for heterogeneous polymers.

  14. Effect of chemical heterogeneity of biodegradable polymers on surface energy: A static contact angle analysis of polyester model films

    International Nuclear Information System (INIS)

    Belibel, R.; Avramoglou, T.; Garcia, A.; Barbaud, C.; Mora, L.

    2016-01-01

    Biodegradable and bioassimilable poly((R,S)-3,3 dimethylmalic acid) (PDMMLA) derivatives were synthesized and characterized in order to develop a new coating for coronary endoprosthesis enabling the reduction of restenosis. The PDMMLA was chemically modified to form different custom groups in its side chain. Three side groups were chosen: the hexyl group for its hydrophobic nature, the carboxylic acid and alcohol groups for their acid and neutral hydrophilic character, respectively. The sessile drop method was applied to characterize the wettability of biodegradable polymer film coatings. Surface energy and components were calculated. The van Oss approach helped reach not only the dispersive and polar acid–base components of surface energy but also acid and basic components. Surface topography was quantified by atomic force microscopy (AFM) and subnanometer average values of roughness (Ra) were obtained for all the analyzed surfaces. Thus, roughness was considered to have a negligible effect on wettability measurements. In contrast, heterogeneous surfaces had to be corrected by the Cassie–Baxter equation for copolymers (10/90, 20/80 and 30/70). The impact of this correction was quantified for all the wettability parameters. Very high relative corrections (%) were found, reaching 100% for energies and 30% for contact angles. - Highlights: • We develop different polymers with various chemical compositions. • Wettability properties were calculated using Cassie corrected contact angles. • Percentage of acid groups in polymers is directly correlated to acid part of SFE. • Cassie corrections are necessary for heterogeneous polymers.

  15. Contribution of soil esterase to biodegradation of aliphatic polyester agricultural mulch film in cultivated soils.

    Science.gov (United States)

    Yamamoto-Tamura, Kimiko; Hiradate, Syuntaro; Watanabe, Takashi; Koitabashi, Motoo; Sameshima-Yamashita, Yuka; Yarimizu, Tohru; Kitamoto, Hiroko

    2015-01-01

    The relationship between degradation speed of soil-buried biodegradable polyester film in a farmland and the characteristics of the predominant polyester-degrading soil microorganisms and enzymes were investigated to determine the BP-degrading ability of cultivated soils through characterization of the basal microbial activities and their transition in soils during BP film degradation. Degradation of poly(butylene succinate-co-adipate) (PBSA) film was evaluated in soil samples from different cultivated fields in Japan for 4 weeks. Both the degradation speed of the PBSA film and the esterase activity were found to be correlated with the ratio of colonies that produced clear zone on fungal minimum medium-agarose plate with emulsified PBSA to the total number colonies counted. Time-dependent change in viable counts of the PBSA-degrading fungi and esterase activities were monitored in soils where buried films showed the most and the least degree of degradation. During the degradation of PBSA film, the viable counts of the PBSA-degrading fungi and the esterase activities in soils, which adhered to the PBSA film, increased with time. The soil, where the film was degraded the fastest, recorded large PBSA-degrading fungal population and showed high esterase activity compared with the other soil samples throughout the incubation period. Meanwhile, esterase activity and viable counts of PBSA-degrading fungi were found to be stable in soils without PBSA film. These results suggest that the higher the distribution ratio of native PBSA-degrading fungi in the soil, the faster the film degradation is. This could be due to the rapid accumulation of secreted esterases in these soils.

  16. Graphene oxide-reinforced biodegradable genipin-cross-linked chitosan fluorescent biocomposite film and its cytocompatibility

    Directory of Open Access Journals (Sweden)

    Li JH

    2013-09-01

    Full Text Available Jianhua Li,1 Na Ren1, Jichuan Qiu,1 Xiaoning Mou,2 Hong Liu1,21Center of Bio and Micro/Nano Functional Materials, State Key Laboratory of Crystal Materials, Shandong University, Jinan, People's Republic of China; 2Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, People's Republic of ChinaAbstract: A genipin-cross-linked chitosan/graphene oxide (GCS/GO composite film was prepared using a solution casting method. Fourier transform infrared (FTIR and ultraviolet-visible (UV-Vis spectroscopy of the composite films showed that the interactions between the CS and oxygen-containing groups of GO resulted in good dispersion of the GO sheets in the CS network. The addition of GO decreased the expansion ratio of the composite films in physiological conditions and increased the resistance to degradation by lysozymes in vitro. As well, the tensile strength values of the GCS/GO films were significantly increased with the increasing load of GO. Moreover, the GCS/GO composite film also maintained the intrinsic fluorescence of GCS. The in vitro cell study results revealed that the composite films were suitable for the proliferation and adhesion of mouse preosteoblast (MC3T3-E1 cells. The GCS/GO biocomposite films might have a potential use in tissue engineering, bioimaging, and drug delivery.Keywords: chitosan film degradation, fluorescence, cytocompatibility

  17. Improving rice production sustainability by reducing water demand and greenhouse gas emissions with biodegradable films

    Science.gov (United States)

    Yao, Zhisheng; Zheng, Xunhua; Liu, Chunyan; Lin, Shan; Zuo, Qiang; Butterbach-Bahl, Klaus

    2017-01-01

    In China, rice production is facing unprecedented challenges, including the increasing demand, looming water crisis and on-going climate change. Thus, producing more rice at lower environmental cost is required for future development, i.e., the use of less water and the production of fewer greenhouse gas (GHG) per unit of rice. Ground cover rice production systems (GCRPSs) could potentially address these concerns, although no studies have systematically and simultaneously evaluated the benefits of GCRPS regarding yields and considering water use and GHG emissions. This study reports the results of a 2-year study comparing conventional paddy and various GCRPS practices. Relative to conventional paddy, GCRPSs had greater rice yields and nitrogen use efficiencies (8.5% and 70%, respectively), required less irrigation (-64%) and resulted in less total CH4 and N2O emissions (-54%). On average, annual emission factors of N2O were 1.67% and 2.00% for conventional paddy and GCRPS, respectively. A cost-benefit analysis considering yields, GHG emissions, water demand and labor and mulching costs indicated GCRPSs are an environmentally and economically profitable technology. Furthermore, substituting the polyethylene film with a biodegradable film resulted in comparable benefits of yield and climate. Overall, GCRPSs, particularly with biodegradable films, provide a promising solution for farmers to secure or even increase yields while reducing the environmental footprint.

  18. Sunitinib release from biodegradable films of poly(L-lactide-co-caprolactone)

    Energy Technology Data Exchange (ETDEWEB)

    Ha, Seung Hee [National Research and Development Center for Hepatobiliary Cancer, Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Gyeongnam 626-770 (Korea, Republic of); Hwang, Jong-Ho [Department of Internal Medicine, Medical Research Institute, Pusan National University School of Medicine and Medical Research Institute, Yangsan (Korea, Republic of); Kim, Do Hyung [National Research and Development Center for Hepatobiliary Cancer, Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Gyeongnam 626-770 (Korea, Republic of); Kim, Min-Dae; Choi, Cheol-Woong [Department of Internal Medicine, Medical Research Institute, Pusan National University School of Medicine and Medical Research Institute, Yangsan (Korea, Republic of); Jeong, Young-Il, E-mail: nanomed@naver.com [National Research and Development Center for Hepatobiliary Cancer, Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Gyeongnam 626-770 (Korea, Republic of); Chung, Chung Wook; Kim, Cy Hyun [National Research and Development Center for Hepatobiliary Cancer, Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Gyeongnam 626-770 (Korea, Republic of); Kang, Dae Hwan, E-mail: sulsulpul@yahoo.co.kr [National Research and Development Center for Hepatobiliary Cancer, Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Gyeongnam 626-770 (Korea, Republic of)

    2012-10-15

    The aim of this study was to prepare sunitinib-loaded biodegradable films using poly(L-lactide-co-ε-caprolactone) (PLCL) for anti-tumor drug delivery. Sunitinib-loaded PLCL film has a rough surface, while empty film has a smooth surface. PLCL film loaded with 5% (w/w) sunitinib showed an absence of a crystalline peak of sunitinib, while sharp peaks were observed at 10% (w/w) loading, indicating that sunitinib was molecularly distributed in the polymer matrix at 5% (w/w). A drug release study revealed an initial burst during the first 2 h, followed by continuous release until 24 h. Since weight loss of film was <10% for 1 week, drug release mechanism was dominantly dependent on the diffusion-mediated release of drugs to the medium. Sunitinib has a dose-dependent anti-proliferation effect against HuCC-T1 human cholangiocarcinoma cells in vitro. These results indicate that sunitinib-loaded PLCL film is a appropriate candidate as a vehicle for anti-tumor drug delivery.

  19. Estudo comparativo da caracterização de filmes biodegradáveis de amido de mandioca contendo polpas de manga e de acerola

    Directory of Open Access Journals (Sweden)

    Carolina Oliveira de Souza

    2012-01-01

    Full Text Available Most compounds reinforcements have been used to improve thermals, mechanical and barrier properties of biopolymers films, whose performance is usually poor when compared to those of synthetic polymers. Biodegradables films have been developed by adding mango and acerola pulps in different concentrations (0-17,1% w/w as antioxidants active compounds to cassava starch based biodegradable films. The effect of pulps was studied in terms of tensile properties, water vapor permeability, DSC, among other analysis of the films. The study demonstrated that the properties of cassava starch biodegradable films can be significantly altered through of incorporation mango and acerola pulps.

  20. [The research of biodegradation of a composite material used in reconstructive and reparative surgery of maxillofacial area].

    Science.gov (United States)

    Malanchuk, V O; Astapenko, O O; Halatenko, N A; Rozhnova, R A

    2013-09-01

    Dates about the research of biodegradation of epoxy-polyurethane composite material used in reconstructive and reparative surgery of maxillofacial area are reflected in the article. Was founded: 1) notable biodegradation of species from epoxy-polyurethane composition in the term of observation up to 6 months was not founded. That testifies their preservation of physical and mechanical properties. 2) founded, that in species from epoxy-polyurethane composition, which contain levamisole, processes of biodegradation are faster then in species from pure epoxy-polyurethane composition and in species from epoxy-polyurethane composition with hydroxyapatite; 3) material from epoxy-polyurethane composition, which contains levamisole and hydroxyapatite, stays in biological environment in small quantity of petty fragments during the incubation in term of 2 years. So, it biodegrades practically totally. Authors suggest on the basis of achieved information, that the use of epoxy-polyurethane constructions that biodegrade, is pertinently in reconstructive maxillofacial surgery.

  1. High-Performance Cellulose Nanofibril Composite Films

    Science.gov (United States)

    Yan Qing; Ronald Sabo; Yiqiang Wu; Zhiyong Cai

    2012-01-01

    Cellulose nanofibril/phenol formaldehyde (CNF/PF) composite films with high work of fracture were prepared by filtering a mixture of 2,2,6,6tetramethylpiperidine-1-oxyl (TEMPO) oxidized wood nanofibers and water-soluble phenol formaldehyde with resin contents ranging from 5 to 20 wt%, followed by hot pressing. The composites were characterized by tensile testing,...

  2. USE OF ZEIN AND ETHYLCELLULOSE AS BIODEGRADABLE FILM ON EVALUATION OF POST-HARVEST CHANGES IN TOMATO (Lycopersicum esculentum

    Directory of Open Access Journals (Sweden)

    C.E. Chávez-Murillo

    2015-02-01

    Full Text Available The worldwide pollution index registered in the last decades has conducted to develop methods for biodegradation and reutilization of contaminant materials. From here rises the necessity to elaborate biodegradable packaging materials. In this study, a biodegradable zein and ethylcellulose based film was developed and used as a covering material to evaluate its effect on the enzymatic activity of pectinmethylesterase and polygalacturonase, texture, respiration rate and weight loss of tomatoes (Lycopersicum esculentum. Biodegradable film decreased the weight loss rate and softening of the fruits. However, enzymatic activity and respiration rate were not affected by the film application. The results showed that the changes in tomato are due to physical effects of water loss more than a metabolic change. By using this material, it was possible to lower tomato’s respiration rate in comparison with controls causing a lesser loss of weight. Biodegradable film delayed change in color as well as texture compared with controls. There was a significant difference in pectin methyl esterase activity in the covered tomato, but there was no difference in polygalacturonase activity.

  3. Electrical properties of biodegradable poly(ε-caprolactone): lithium thiocyanate complexed polymer electrolyte films

    Energy Technology Data Exchange (ETDEWEB)

    Ravi, M. [Shenzhen Key Laboratory of Advanced Materials, Department of Materials Science and Engineering, Shenzhen Graduate School, Harbin Institute of Technology, Shenzhen 518055 (China); Song, Shenhua, E-mail: shsonguk@aliyun.com [Shenzhen Key Laboratory of Advanced Materials, Department of Materials Science and Engineering, Shenzhen Graduate School, Harbin Institute of Technology, Shenzhen 518055 (China); Gu, Kunming; Tang, Jiaoning [College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060 (China); Zhang, Zhongyi [Advanced Polymer and Composites (APC) Research Group, School of Engineering, University of Portsmouth, Portsmouth PO1 3DJ, Hampshire (United Kingdom)

    2015-05-15

    Graphical abstract: - Highlights: • The minimum T{sub m} and χ{sub c} values are observed in 15 wt% LiSCN complexed film. • The conductivity of PCL:LiSCN complexed films follows Johnscher's power law. • Conductivity and dielectric constant follows the same trend. • The charge carriers responsible for both conduction and relaxation are the same. - Abstract: Lithium ion conducting polymer electrolyte films based on biodegradable poly(ε-caprolactone) (PCL) complexed with lithium thiocyanate (LiSCN) salt were prepared by solution cast technique. Thermal and electrical properties of the polymer electrolyte films were studied using differential scanning calorimetry (DSC) and ac impedance spectroscopy. In order to investigate the ion conduction mechanism and relaxation behavior of complex polymer electrolyte films, the conductivity, dielectric constant, loss tangent and electric modulus were analyzed as a function of frequency and temperature. The variation of conductivity with frequency obeyed the Johnscher's power law. The dielectric constant exhibited a higher value at a lower frequency and increased with rising temperature due to the polar nature of host polymer. The activation energies for both dc conductivity and relaxation had the same value (∼0.87 eV), implying that the charge carriers responsible for both conduction and relaxation were the same.

  4. Electrical properties of biodegradable poly(ε-caprolactone): lithium thiocyanate complexed polymer electrolyte films

    International Nuclear Information System (INIS)

    Ravi, M.; Song, Shenhua; Gu, Kunming; Tang, Jiaoning; Zhang, Zhongyi

    2015-01-01

    Graphical abstract: - Highlights: • The minimum T m and χ c values are observed in 15 wt% LiSCN complexed film. • The conductivity of PCL:LiSCN complexed films follows Johnscher's power law. • Conductivity and dielectric constant follows the same trend. • The charge carriers responsible for both conduction and relaxation are the same. - Abstract: Lithium ion conducting polymer electrolyte films based on biodegradable poly(ε-caprolactone) (PCL) complexed with lithium thiocyanate (LiSCN) salt were prepared by solution cast technique. Thermal and electrical properties of the polymer electrolyte films were studied using differential scanning calorimetry (DSC) and ac impedance spectroscopy. In order to investigate the ion conduction mechanism and relaxation behavior of complex polymer electrolyte films, the conductivity, dielectric constant, loss tangent and electric modulus were analyzed as a function of frequency and temperature. The variation of conductivity with frequency obeyed the Johnscher's power law. The dielectric constant exhibited a higher value at a lower frequency and increased with rising temperature due to the polar nature of host polymer. The activation energies for both dc conductivity and relaxation had the same value (∼0.87 eV), implying that the charge carriers responsible for both conduction and relaxation were the same

  5. Pulsed laser deposition of polyhydroxybutyrate biodegradable polymer thin films using ArF excimer laser

    Science.gov (United States)

    Kecskemeti, G.; Smausz, T.; Kresz, N.; Tóth, Zs.; Hopp, B.; Chrisey, D.; Berkesi, O.

    2006-11-01

    We demonstrated the pulsed laser deposition (PLD) of high quality films of a biodegradable polymer, the polyhydroxybutyrate (PHB). Thin films of PHB were deposited on KBr substrates and fused silica plates using an ArF ( λ = 193 nm, FWHM = 30 ns) excimer laser with fluences between 0.05 and 1.5 J cm -2. FTIR spectroscopic measurements proved that at the appropriate fluence (0.05, 0.09 and 0.12 J cm -2), the films exhibited similar functional groups with no significant laser-produced modifications present. Optical microscopic images showed that the layers were contiguous with embedded micrometer-sized grains. Ellipsometric results determined the wavelength dependence ( λ ˜ 245-1000 nm) of the refractive index and absorption coefficient which were new information about the material and were not published in the scientific literature. We believe that our deposited PHB thin films would have more possible applications. For example to our supposal the thin layers would be applicable in laser induced forward transfer (LIFT) of biological materials using them as absorbing thin films.

  6. Pulsed laser deposition of polyhydroxybutyrate biodegradable polymer thin films using ArF excimer laser

    Energy Technology Data Exchange (ETDEWEB)

    Kecskemeti, G. [Department of Optics and Quantum Electronics, University of Szeged, H-6720 Szeged, Dom ter 9 (Hungary)]. E-mail: kega@physx.u-szeged.hu; Smausz, T. [Hungarian Academy of Sciences and University of Szeged, Research Group on Laser Physics, H-6720 Szeged, Dom ter 9 (Hungary)]. E-mail: tomi@physx.u-szeged.hu; Kresz, N. [Department of Optics and Quantum Electronics, University of Szeged, H-6720 Szeged, Dom ter 9 (Hungary)]. E-mail: knr@physx.u-szeged.hu; Toth, Zs. [Hungarian Academy of Sciences and University of Szeged, Research Group on Laser Physics, H-6720 Szeged, Dom ter 9 (Hungary)]. E-mail: ztoth@physx.u-szeged.hu; Hopp, B. [Hungarian Academy of Sciences and University of Szeged, Research Group on Laser Physics, H-6720 Szeged, Dom ter 9 (Hungary)]. E-mail: bhopp@physx.u-szeged.hu; Chrisey, D. [Naval Research Laboratory, Washington, DC 20375 (United States)]. E-mail: chrisey@ccf.nrl.navy.mil; Berkesi, O. [Department of Physical Chemistry, University of Szeged, H-6720 Szeged, Rerrich B. ter 1 (Hungary)]. E-mail: oberkesi@chem.u-szeged.hu

    2006-11-30

    We demonstrated the pulsed laser deposition (PLD) of high quality films of a biodegradable polymer, the polyhydroxybutyrate (PHB). Thin films of PHB were deposited on KBr substrates and fused silica plates using an ArF ({lambda} = 193 nm, FWHM = 30 ns) excimer laser with fluences between 0.05 and 1.5 J cm{sup -2}. FTIR spectroscopic measurements proved that at the appropriate fluence (0.05, 0.09 and 0.12 J cm{sup -2}), the films exhibited similar functional groups with no significant laser-produced modifications present. Optical microscopic images showed that the layers were contiguous with embedded micrometer-sized grains. Ellipsometric results determined the wavelength dependence ({lambda} {approx} 245-1000 nm) of the refractive index and absorption coefficient which were new information about the material and were not published in the scientific literature. We believe that our deposited PHB thin films would have more possible applications. For example to our supposal the thin layers would be applicable in laser induced forward transfer (LIFT) of biological materials using them as absorbing thin films.

  7. Advanced bredigite-containing magnesium-matrix composites for biodegradable bone implant applications.

    Science.gov (United States)

    Dezfuli, Sina Naddaf; Huan, Zhiguang; Mol, Arjan; Leeflang, Sander; Chang, Jiang; Zhou, Jie

    2017-10-01

    The present research was aimed at developing magnesium-matrix composites that could allow effective control over their physiochemical and mechanical responses when in contact with physiological solutions. A biodegradable, bioactive ceramic - bredigite was chosen as the reinforcing phase in the composites, based on the hypothesis that the silicon- and magnesium-containing ceramic could protect magnesium from fast corrosion and at the same time stimulate cell proliferation. Methods to prepare composites with integrated microstructures - a prerequisite to achieve controlled biodegradation were developed. A systematic experimental approach was taken in order to elucidate the in vitro biodegradation mechanisms and kinetics of the composites. It was found that the composites with 20-40% homogenously dispersed bredigite particles, prepared from powders, could indeed significantly decrease the degradation rate of magnesium by up to 24 times. Slow degradation of the composites resulted in the retention of the mechanical integrity of the composites within the strength range of cortical bone after 12days of immersion in a cell culture medium. Cell attachment, cytotoxicity and bioactivity tests confirmed the stimulatory effects of bredigite embedded in the composites on the attachment, viability and differentiation of bone marrow stromal cells. Thus, the multiple benefits of adding bredigite to magnesium in enhancing degradation behavior, mechanical properties, biocompatibility and bioactivity were obtained. The results from this research showed the excellent potential of the bredigite-containing composites for bone implant applications, thus warranting further in vitro and in vivo research. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Identification of market bags composition for biodegradable and oxo-biodegradable samples through thermal analysis in inert and oxidizer atmosphere; Identificacao da composicao de amostras de sacolas plasticas biodegradaveis e oxobiodegradaveis atraves de analises termicas em atmosfera inerte e oxidante

    Energy Technology Data Exchange (ETDEWEB)

    Finzi-Quintao, Cristiane M., E-mail: inzi@ufsj.edu.br [Universidade Federal de Sao Joao del-Rei (UFSJ), MG (Brazil); Novack, Katia M. [Universidade Federal de Ouro Preto (DEQUI/UFOP), MG (Brazil)

    2015-07-01

    Plastic films used to make market bags are based on polymers such as polyethylene, polystyrene and polypropylene, these materials require a long time to degrade in the environment. The alternative technologies of polymers have been developed to reduce the degradation time and the impact on the environment caused by the conventional materials, using pro-degrading additives or by the development biodegradable polymers. In Brazil, the laws of some municipalities require the use of biodegradable material in the production of market bags but the absence of specific surveillance policies makes its chemical composition unknown. In this paper, we analyzed 7 samples that was obtained from a a trading company and commercial market of Belo Horizonte . The samples were characterized by TGA / DTA , XRF , FTIR and MEV which allowed the identification and evaluation of the thermal behavior of the material in inert and oxidizing atmosphere. (author)

  9. Poly(vinyl chloride) film filled with microcrystalline cellulose prepared from cotton fabric waste: properties and biodegradability study.

    Science.gov (United States)

    Chuayjuljit, Saowaroj; Su-uthai, Siriwan; Charuchinda, Sireerat

    2010-02-01

    Hydrolysis of cotton fabric waste to produce microcrystalline cellulose (MCC) was carried out using 2.5 N hydrochloric acid at 100 degrees C for 30 min. Characterization of the structure, morphology, particle size as well as the thermal decomposition of the obtained MCC were studied using X-ray diffractometer, scanning electron microscope and laser light scattering particle size analyzer and thermogravimetric analyzer, respectively. These results indicated that the obtained MCC had a fibrous structure of a 40 microm average particle size and possessed a form of highly native crystalline cellulose I. In addition, its maximum degradation temperature was observed at 350 degrees C. The poly(vinyl chloride) (PVC) films in this work were produced by first blending the produced MCC with PVC resin in amounts of 5-30 parts per hundred of resin. The blends were then made into film using a two-roll mill. The tensile properties of the film were measured using a Universal Testing Machine. The biodegradation tests were carried out in soil and in a moisture-controlled chamber. The biodegradability was estimated by the loss of mass, moisture absorption capacity and electron microscope studies. It was found that the tensile strength and Young's modulus of the blends increased with increasing amounts of MCC. Similarly, moisture absorption and biodegradability of the films were also increased as the amount of MCC increased. The results implied that MCC behaved not only as a reinforcing filler but also as a biodegradability promoter of PVC films.

  10. Biodegradation of composites based on maltodextrin and wheat B-starch in compost

    Czech Academy of Sciences Publication Activity Database

    Růžek, L.; Růžková, M.; Koudela, M.; Bečková, L.; Bečka, D.; Kruliš, Zdeněk; Šárka, E.; Voříšek, K.; Ledvina, Š.; Šalounová, B.; Venyercsanová, J.

    2015-01-01

    Roč. 42, č. 4 (2015), s. 209-214 ISSN 0862-867X R&D Projects: GA ČR GA525/09/0607 Institutional support: RVO:61389013 Keywords : biodegradable plastics * acetylated maltodextrin * lettuce Subject RIV: JI - Composite Materials Impact factor: 0.436, year: 2015

  11. Biodegradable composites from polyester and sugar beet pulp with antimicrobial coating for food packaging

    Science.gov (United States)

    Totally biodegradable, double-layered antimicrobial composite Sheets were introduced for food packaging. The substrate layers of the sheets were prepared from poly (lactic acid) (PLA) and sugar beet pulp (SBP) or poly (butylene adipate-co-terephthalate (PBAT) and SBP by a twin-screw extruder. The ac...

  12. Dynamic mechanical behaviour of nanoparticle loaded biodegradable PVA films for vaginal drug delivery.

    Science.gov (United States)

    Traore, Yannick L; Fumakia, Miral; Gu, Jijin; Ho, Emmanuel A

    2018-03-01

    In this study, we investigated the viscoelastic and mechanical behaviour of polyvinyl alcohol films formulated along with carrageenan, plasticizing agents (polyethylene glycol and glycerol), and when loaded with nanoparticles as a model for potential applications as microbicides. The storage modulus, loss modulus and glass transition temperature were determined using a dynamic mechanical analyzer. Films fabricated from 2% to 5% polyvinyl alcohol containing 3 mg or 5 mg of fluorescently labeled nanoparticles were evaluated. The storage modulus and loss modulus values of blank films were shown to be higher than the nanoparticle-loaded films. Glass transition temperature determined using the storage modulus, and loss modulus was between 40-50℃ and 35-40℃, respectively. The tensile properties evaluated showed that 2% polyvinyl alcohol films were more elastic but less resistant to breaking compared to 5% polyvinyl alcohol films (2% films break around 1 N load and 5% films break around 7 N load). To our knowledge, this is the first study to evaluate the influence of nanoparticle and film composition on the physico-mechanical properties of polymeric films for vaginal drug delivery.

  13. The Mater-Bi® biodegradable film for strawberry (Fragaria x ananassa Duch. mulching: effects on fruit yield and quality

    Directory of Open Access Journals (Sweden)

    Luigi Morra

    2016-08-01

    Full Text Available Two trials in different agricultural farms were carried out from October 2014 to June 2015 with the aim to assess the advantages linked to the substitution of the low density polyethylene (LDPE films for soil mulching with the Mater-Bi® biodegradable films in the strawberry cultivation under tunnel in Campania. Lifetime of biodegradable mulch and influence of type of mulch on the yield and the quality of cvs Sabrina and Fortuna were evaluated. Plants were cultivated on mulched, raised beds, high 40 cm from bottom soil. Mater-Bi® film was 20 µm thick while LDPE film was 50 mm thick. The physical-chemical parameters (firmness, pH, total soluble solid content, titratable acidity and skin colour and some bioactive compounds (total polyphenols, flavonoids, anthocyanins, antioxidant activity of fruits were determined by three samplings effected in consecutive months (from March to May 2015 of the harvest cycle. Biodegradable film guaranteed an effective mulch along the whole strawberry cycle (9-10 months including the time of drawing up of film. Yields of cv Sabrina on LDPE was 18% higher than those on Mater-Bi® while the opposite was detected in cv Fortuna (+10%. The physical-chemical parameters of fruits were not modified by the mulches. The content of the bioactive compounds, instead, resulted, in each time of sampling, significantly higher in fruits picked on Mater-Bi® based film.

  14. Adoption of biodegradable mulching films in agriculture: is there a negative prejudice towards materials derived from organic wastes?

    Directory of Open Access Journals (Sweden)

    Myriam Anna Scaringelli

    2016-06-01

    Full Text Available During the last years ongoing research has moved towards the valorisation of organic waste by the identification of possible products with a good market perspective. In this paper we consider the possibility of using the organic fraction of municipal waste to produce biodegradable mulching films for agricultural purposes. The aim of this research was to estimate the potential demand of horticultural farms located in the province of Foggia (Italy for biodegradable films derived from organic waste. We carried out a survey of 107 producers in the area. Findings showed that the adoption of the innovative films does not depend on the nature of the raw material used and that the willingness to pay for such films is higher with respect to the price of similar products already available in the market. In addition, farmers’ preferences towards mulching films’ attributes (strength, durability, mechanical harvesting, transparency, etc. are identified.

  15. Effect of carboxymethyl cellulose concentration on physical properties of biodegradable cassava starch-based films

    Directory of Open Access Journals (Sweden)

    Sriburi Pensiri

    2011-02-01

    Full Text Available Abstract Background Cassava starch, the economically important agricultural commodity in Thailand, can readily be cast into films. However, the cassava starch film is brittle and weak, leading to inadequate mechanical properties. The properties of starch film can be improved by adding plasticizers and blending with the other biopolymers. Results Cassava starch (5%w/v based films plasticized with glycerol (30 g/100 g starch were characterized with respect to the effect of carboxymethyl cellulose (CMC concentrations (0, 10, 20, 30 and 40%w/w total solid and relative humidity (34 and 54%RH on the mechanical properties of the films. Additionally, intermolecular interactions were determined by Fourier transform infrared spectroscopy (FT-IR, melting temperature by differential scanning calorimetry (DSC, and morphology by scanning electron microscopy (SEM. Water solubility of the films was also determined. Increasing concentration of CMC increased tensile strength, reduced elongation at break, and decreased water solubility of the blended films. FT-IR spectra indicated intermolecular interactions between cassava starch and CMC in blended films by shifting of carboxyl (C = O and OH groups. DSC thermograms and SEM micrographs confirmed homogeneity of cassava starch-CMC films. Conclusion The addition of CMC to the cassava starch films increased tensile strength and reduced elongation at break of the blended films. This was ascribed to the good interaction between cassava starch and CMC. Cassava starch-CMC composite films have the potential to replace conventional packaging, and the films developed in this work are suggested to be suitable for low moisture food and pharmaceutical products.

  16. Biodegradation behaviors and color change of composites based on type of bagasse pulp/polylactic acid

    OpenAIRE

    maryam allahdadi; sahab Hedjazi; mahdi jonoobi; Ali abdolkhani; laya Jamalirad

    2017-01-01

    In this research, appearance quality and decay resistance of polylactic acid (PLA) based green composites made from monoethanolamine (MEA) bagasse pulp, alkaline sulfite-anthraquinone (AS) bagasse pulp, bleached soda (B S) bagasse pulp, unbleached soda (UN S) bagasse pulp (UN S) bagasse pulp and raw bagasse fibers (B) were investigated. For the investigation of biodegradation behaviors, effect of the white rot fungi (Coriolus versicolor) on the neat PLA and composites with natural fibers duri...

  17. Poly(ɛ-caprolactone) composites reinforced by biodegradable poly(3-hydroxybutyrate-co-3-hydroxyvalerate) fiber.

    Science.gov (United States)

    Ju, Dandan; Han, Lijing; Li, Fan; Chen, Shan; Dong, Lisong

    2014-06-01

    Biodegradable and biosourced poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) fiber was used as a reinforcing agent, and environment friendly poly(ɛ-caprolactone) (PCL) composites were prepared by melt compounding. The mechanical properties, rheological properties, and enzymatic degradation of the PCL composites were investigated in detail. With the addition of PHBV fibers, the PCL composites showed increased tensile yielding strength and modulus. Especially, the storage modulus from the results of dynamic mechanical analysis was increased significantly, suggesting that PCL was obviously reinforced by adding PHBV fibers. With increasing the PHBV fiber content, the complex viscosity and modulus of PCL increased, especially at low frequencies, indicating that a network structure was formed in the composites. The network structure resulted in evident solid-like response due to the restriction of the chain mobility of PCL matrix, which was further confirmed by the Han and Cole-Cole plots. The morphology, evaluated by scanning electron microscopy, indicated PCL and PHBV fiber were not highly incompatible and the interfacial adhesion was good, which was beneficial to the reinforcement effect. The biodegradability of the PCL was significantly promoted after composites preparation. Such studies are of great interest in the development of environment friendly composites from biodegradable polymers. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Poly (1,8 Octanediol-co-Citrate) Hydroxyapatite Composite as Antibacterial Biodegradable Bone Screw

    Science.gov (United States)

    Widiyanti, P.; Sholikhah, I.; Isfandiary, A.; Hasbiyani, NAF; Lazuardi, M. B.; Laksana, R. D.

    2017-05-01

    The high bone fracture rates reaching up to 300-400 cases per month have been treated with surgical procedure of internal fixation. Nevertheless, the commonly used metal screw has shown several weaknesses. Therefore, it is required bone screw of which primary characteristics include being biocompatible, bio-functional, biodegradable, and anticorrosive. The study aimed to synthesize Antibacterial Poly 1,8-Octanediol-co-Citrate (POC) and investigated the effect of chitosan on the antibacterial and compatibility characteristics of POC-HA composite as antibacterial biodegradable bone screw. The characterization were conducted on POC-HA composite to assess its functional cluster, antibacterial activity, cytotoxicity, degradation capacity, and morphology. Pre-polymer POC was composited with 62% nano-HA, followed by post-polymerization treatment. The sample then coated by chitosan with composition variations of 1%, 3%, and 5%. The nano-HA marked with the appearance of phosphate cluster on the wavenumber of 872.17 cm-1 and 559.51 cm-1, while the chitosan marked with C=O stretch cluster of esther at 1729 cm-1 from Fourier Transform Infra-Red (FTIR) measurement. The best result was obtained with 3% chitosan coating. The POC-HA composites showed bacterial inhibiting ability of 16.92 mm with non-toxic characteristics. These results indicated that chitosan coating Poly 1,8-Octanediol-co-Citrate (POC)-Nano Hydroxyapatite composite is a potential candidate for an antibacterial biodegradable bone screw.

  19. Plasticized Biodegradable Poly(lactic acid) Based Composites Containing Cellulose in Micro- and Nanosize

    OpenAIRE

    Halász, Katalin; Csóka, Levente

    2013-01-01

    The aim of this work was to study the characteristics of thermal processed poly(lactic acid) composites. Poly(ethylene glycol) (PEG400), microcrystalline cellulose (MCC), and ultrasound-treated microcrystalline cellulose (USMCC) were used in 1, 3, and 5 weight percents to modify the attributes of PLA matrix. The composite films were produced by twin screw extrusion followed by film extrusion. The manufactured PLA-based films were characterized by tensile testing, differential scanning calorim...

  20. Preparation and performance of Ecobras/bentonite biodegrading films; Preparacao e desempenho de filmes polimericos biodegradaveis a base de Ecobras e bentonita

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Ana Nery M.; Melo, Nadja M.C.; Canedo, Eduardo L.; Carvalho, Laura H., E-mail: laura@dema.ufcg.edu.br [Unidade Academica de Engenharia de Materiais, Universidade Federal de Campina Grande (UAEMa/UFCG) Campina Grande, PB (Brazil); Araujo, Arthur R.A. [Felinto Industria e Comercio Ltda., Campina Grande, PB (Brazil)

    2011-07-01

    Compounds based on the biodegradable polymer Ecobras and bentonite clay in its pristine, sonicated, and organically modified with a quaternary ammonium salt forms were prepared as flat films. Clays and compounds were characterized by x-ray diffraction and scanning electron microscopy. Mechanical properties of the films were determined according to pertinent ASTM standards. Reasonable properties, higher than those of the matrix, were obtained with compounds prepared with purified clays and organoclays, particularly for low clay loading. (author)

  1. High barrier multilayer packaging by the coextrusion method: The effect of nanocomposites and biodegradable polymers on flexible film properties

    Science.gov (United States)

    Thellen, Christopher T.

    The objective of this research was to investigate the use of nanocomposite and multilayer co-extrusion technologies for the development of high gas barrier packaging that is more environmentally friendly than many current packaging system. Co-extruded bio-based and biodegradable polymers that could be composted in a municipal landfill were one direction that this research was aimed. Down-gauging of high performance barrier films using nanocomposite technology and co-extrusion was also investigated in order to reduce the amount of solid waste being generated by the packaging. Although the research is focused on military ration packaging, the technologies could easily be introduced into the commercial flexible packaging market. Multilayer packaging consisting of poly(m-xylylene adipamide) nanocomposite layers along with adhesive and tie layers was co-extruded using both laboratory and pilot-scale film extrusion equipment. Co-extrusion of biodegradable polyhydroxyalkanoates (PHA) along with polyvinyl alcohol (PVOH) and tie layers was also accomplished using similar co-extrusion technology. All multilayer films were characterized for gas barrier, mechanical, and thermal properties. The biodegradability of the PVOH and PHA materials in a marine environment was also investigated. The research has shown that co-extrusion of these materials is possible at a research and pilot level. The use of nanocomposite poly(m-xylylene adipamide) was effective in down-gauging the un-filled barrier film to thinner structures. Bio-based PHA/PVOH films required the use of a malefic anhydride grafted PHA tie layer to improve layer to layer adhesion in the structure to avoid delamination. The PHA polymer demonstrated a high rate of biodegradability/mineralization in the marine environment while the rate of biodegradation of the PVOH polymer was slower.

  2. Preparation and Characterization of PLA-Starch Biodegradable Composites Via Radiation Processing

    International Nuclear Information System (INIS)

    Hemvichian, K.; Suwanmala, P.; Kungsumrith, W.; Pongprayoon, T.

    2011-01-01

    This research project aims to apply the use of radiation processing to prepare biodegradable composites from poly(lactic acid) or polylactide (PLA) and cassava starch. Cassava starch, a natural polymer that is inexpensive and abundant, especially in Thailand, will be used as starting material. Functional group of cassava starch will be modified first in order to render starch more compatible with PLA. The monomer with desired functional groups will be grafted onto the backbone of starch via radiation-induced grafting polymerization. Different parameters will be examined to determine the optimum conditions for the grafting polymerization. The modified starch will subsequently be blended with PLA, with and without clay, to form biodegradable composites. In order to further improve the thermal properties, the blends and their composites will be subjected to radiation to induce crosslinking between the molecules of PLA and starch derivatives. (author)

  3. Low-biodegradable composite chemical wastewater treatment by biofilm configured sequencing batch reactor (SBBR).

    Science.gov (United States)

    Mohan, S Venkata; Rao, N Chandrasekhara; Sarma, P N

    2007-06-01

    Biofilm configured system with sequencing/periodic discontinuous batch mode operation was evaluated for the treatment of low-biodegradable composite chemical wastewater (low BOD/COD ratio approximately 0.3, high sulfate content: 1.75 g/l) in aerobic metabolic function. Reactor was operated under anoxic-aerobic-anoxic microenvironment conditions with a total cycle period of 24 h [fill: 15 min; reaction: 23 h (aeration along with recirculation); settle: 30 min; decant: 15 min] and the performance of the system was studied at organic loading rates (OLR) of 0.92, 1.50, 3.07 and 4.76 kg COD/cum-day. Substrate utilization showed a steady increase with increase in OLR and system performance sustained at higher loading rates. Maximum non-cumulative substrate utilization was observed after 4h of the cycle operation. Sulfate removal efficiency of 20% was observed due to the induced anoxic conditions prevailing during the sequence phase operation of the reactor and the existing internal anoxic zones in the biofilm matrix. Biofilm configured sequencing batch reactor (SBR) showed comparatively higher efficiency to the corresponding suspended growth and granular activated carbon (GAC) configured systems studied with same wastewater. Periodic discontinuous batch mode operation of the biofilm reactors results in a more even distribution of the biomass throughout the reactor and was able to treat large shock loads than the continuous flow process. Biofilm configured system coupled with periodic discontinuous batch mode operation imposes regular variations in the substrate concentration on biofilm organisms. As a result, organisms throughout the film achieve maximum growth rates resulting in improved reaction potential leading to stable and robust system which is well suited for treating highly variable wastes.

  4. Biodegradable starch-based films containing saturated fatty acids: thermal, infrared and raman spectroscopic characterization

    Directory of Open Access Journals (Sweden)

    Marcelo M. Nobrega

    Full Text Available Biodegradable films of thermoplastic starch and poly (butylene adipate co-terephthalate (PBAT containing fatty acids were characterized thermally and with infrared and Raman spectroscopies. The symmetrical character of the benzene ring in PBAT provided a means to illustrate the difference between these spectroscopic techniques, because a band appeared in the Raman spectrum but not in the infrared. The thermal analysis showed three degradation stages related to fatty acids, starch and PBAT. The incorporation of saturated fatty acids with different molecular mass (caproic, lauric and stearic did not change the nature of the chemical bonds among the components in the blends of starch, PBAT and glycerol, according to the thermal analysis, infrared and Raman spectroscopies.

  5. Biodegradable starch-based films containing saturated fatty acids: thermal, infrared and raman spectroscopic characterization

    Directory of Open Access Journals (Sweden)

    Nobrega

    2012-01-01

    Full Text Available Biodegradable films of thermoplastic starch and poly (butylene adipate co-terephthalate (PBAT containing fatty acids were characterized thermally and with infrared and Raman spectroscopies. The symmetrical character of the benzene ring in PBAT provided a means to illustrate the difference between these spectroscopic techniques, because a band appeared in the Raman spectrum but not in the infrared. The thermal analysis showed three degradation stages related to fatty acids, starch and PBAT. The incorporation of saturated fatty acids with different molecular mass (caproic, lauric and stearic did not change the nature of the chemical bonds among the components in the blends of starch, PBAT and glycerol, according to the thermal analysis, infrared and Raman spectroscopies.

  6. Biodegradable composites based on L-polylactide and jute fibres

    DEFF Research Database (Denmark)

    Plackett, David; Løgstrup Andersen, T.; Batsberg Pedersen, W.

    2003-01-01

    in the 180-220 degreesC range were significantly higher than those of polylactide alone. Composite samples failed in a brittle fashion under tensile load and showed little sign of fibre pull-out. Examination of composite fracture surfaces using electron microscopy showed voids occurring between the jute...

  7. Filmes Biodegradáveis: Incorporação de Microfibras e Nanofibras de Celulose Obtidas de Fontes Vegetais

    Directory of Open Access Journals (Sweden)

    Margarita María Andrade Mahecha

    2011-04-01

    Full Text Available Different studies have shown that cellulose incorporated into polymeric matrices acts as a reinforcing material that improves the mechanical strength of biodegradable films and, in some cases, the water vapor permeability. The efficacy of this reinforcement is associated with the nature of cellulose, its crystallinity, and the characteristics of the reinforcement/polymeric matrix interface. Studies on cellulose micro and nanofibers as a reinforcing phase in biodegradable films began 15 years ago. Since then there has been an increasing interest in the use of agricultural wastes and in the study of processes for the attainment and incorporation of these materials into polymeric matrices. Thus, this paper presents a literature review on cellulose microfibers and nanofibers as reinforcing materials in biodegradable films based on biopolymers. It addresses topics such as vegetable fibers, due to their lignocellulosic nature; differences between micro and nanofibers; the explored vegetable sources; and the methods developed over the last decade in order to obtain these materials. Finally, a compilation of recent works on biodegradable microcomposites and nanocomposites show promising results in terms of the mechanical and barrier properties of these polymeric structures. The presented information reveals the potential of this area for future research into the development of technology for the production of these materials on an industrial scale and their use as food packaging

  8. Sandwich-Architectured Poly(lactic acid)-Graphene Composite Food Packaging Films.

    Science.gov (United States)

    Goh, Kunli; Heising, Jenneke K; Yuan, Yang; Karahan, Huseyin E; Wei, Li; Zhai, Shengli; Koh, Jia-Xuan; Htin, Nanda M; Zhang, Feimo; Wang, Rong; Fane, Anthony G; Dekker, Matthijs; Dehghani, Fariba; Chen, Yuan

    2016-04-20

    Biodegradable food packaging promises a more sustainable future. Among the many different biopolymers used, poly(lactic acid) (PLA) possesses the good mechanical property and cost-effectiveness necessary of a biodegradable food packaging. However, PLA food packaging suffers from poor water vapor and oxygen barrier properties compared to many petroleum-derived ones. A key challenge is, therefore, to simultaneously enhance both the water vapor and oxygen barrier properties of the PLA food packaging. To address this issue, we design a sandwich-architectured PLA-graphene composite film, which utilizes an impermeable reduced graphene oxide (rGO) as the core barrier and commercial PLA films as the outer protective encapsulation. The synergy between the barrier and the protective encapsulation results in a significant 87.6% reduction in the water vapor permeability. At the same time, the oxygen permeability is reduced by two orders of magnitude when evaluated under both dry and humid conditions. The excellent barrier properties can be attributed to the compact lamellar microstructure and the hydrophobicity of the rGO core barrier. Mechanistic analysis shows that the large rGO lateral dimension and the small interlayer spacing between the rGO sheets have created an extensive and tortuous diffusion pathway, which is up to 1450-times the thickness of the rGO barrier. In addition, the sandwiched architecture has imbued the PLA-rGO composite film with good processability, which increases the manageability of the film and its competency to be tailored. Simulations using the PLA-rGO composite food packaging film for edible oil and potato chips also exhibit at least eight-fold extension in the shelf life of these oxygen and moisture sensitive food products. Overall, these qualities have demonstrated the high potential of a sandwich-architectured PLA-graphene composite film for food packaging applications.

  9. The impact of nanoclay on the crystal growth kinetics and morphology of biodegradable poly(ethylene succinate) composite

    CSIR Research Space (South Africa)

    Bandyopadhyay, J

    2012-07-01

    Full Text Available The impact of nanoclay on the isothermal crystal growth kinetics and morphology of biodegradable poly(ethylene succinate) (PES) is reported. A PES composite (PESNC) containing 5 wt% organically modified montmorillonite, was prepared via solvent...

  10. New biodegradable air-entraining admixture based on LAS for cement-based composites

    International Nuclear Information System (INIS)

    Mendes, J.C.; Moro, T.K.; Dias, L.S.; Campos, P.A.M.; Silva, G.J.B.; Peixoto, R.A.F.; Cury, A.A.

    2016-01-01

    The active principle of Air Entraining Admixtures (AEA) are surfactants, analogously to washing up liquids. Washing up (or dishwashing) liquids are widely available products, relatively inexpensive, non-toxic and biodegradable, thus presenting smaller environmental impact. Therefore, the present work proposes the use of a biodegradable surfactant comprised in washing up liquids, Linear Alkylbenzene Sulfonate (LAS), as sustainable air entraining agent for cement-based composites. In this sense, a performance evaluation of the proposed AEA is carried out, by comparing the properties of mortars with proposed AEA, commercial AEA and ones without any admixture. Through the physical, mechanical and microstructural analysis, it was possible to determine the efficiency of the proposed AEA, as well as its optimum range of dosage. As a result, we seek to contribute to the technical development of cement-based composites in Brazil and in the world. (author)

  11. Graphene reinforced biodegradable poly(3-hydroxybutyrate-co-4-hydroxybutyrate nano-composites

    Directory of Open Access Journals (Sweden)

    V. Sridhar

    2013-04-01

    Full Text Available Novel biodegradable poly(3-hydroxybutyrate-co-4-hydroxybutyrate [PHBV]/graphene nanocomposites were prepared by solution casting. The thermal properties, crystallization behavior, microstructure, and fracture morphology of the composites were investigated. Scanning electron microscope (SEM results show that graphene layers are homogeneously dispersed in the polymer matrix. X-ray diffraction (XRD and dynamic scanning calorimetry (DSC studies show that the well dispersed graphene sheets act as nucleating agent for crystallization. Consequently, the mechanical properties of the composites have been substantially improved as evident from dynamic mechanical and static tensile tests. Differential thermal analysis (DTA showed an increase in temperature of maximum degradation. Soil degradation tests of PHBV/graphene nanocomposites showed that presence of graphene doesn’t interfere in its biodegradability.

  12. Resistance to moist conditions of whey protein isolate and pea starch biodegradable films and low density polyethylene nondegradable films: a comparative study

    Science.gov (United States)

    Mehyar, G. F.; Bawab, A. Al

    2015-10-01

    Biodegradable packaging materials are degraded under the natural environmental conditions. Therefore using them could alleviate the problem of plastics accumulation in nature. For effective replacement of plastics, with biodegradable materials, biodegradable packages should keep their properties under the high relative humidity (RH) conditions. Therefore the objectives of the study were to develop biodegradable packaging material based on whey protein isolate (WPI) and pea starch (PS). To study their mechanical, oxygen barrier and solubility properties under different RHs compared with those of low density polyethylene (LDPE), the most used plastic in packaging. Films of WPI and PS were prepared separately and conditioned at different RH (30-90%) then their properties were studied. At low RHs ( 40% RH. Oxygen permeability of WPI and LDPE did not adversely affected by increasing RH to 65%. Furthermore, WPI and LDPE films had lower degree of hydration at 50% and 90% RH and total soluble matter than PS films. These results suggest that WPI could be successfully replacing LDPE in packaging of moist products.

  13. Computational modeling of biodegradable starch based polymer composites

    Science.gov (United States)

    Joshi, Sachin Sudhakar

    2007-12-01

    Purpose. The goal of this study is to improve the favorable molecular interactions between starch and PPC by addition of grafting monomers MA and ROM as compatibilizers, which would advance the mechanical properties of starch/PPC composites. Methodology. DFT and semi-empirical methods based calculations were performed on three systems: (a) starch/PPC, (b) starch/PPC-MA, and (c) starch-ROM/PPC. Theoretical computations involved the determination of optimal geometries, binding-energies and vibrational frequencies of the blended polymers. Findings. Calculations performed on five starch/PPC composites revealed hydrogen bond formation as the driving force behind stable composite formation, also confirmed by the negative relative energies of the composites indicating the existence of binding forces between the constituent co-polymers. The interaction between starch and PPC is also confirmed by the computed decrease in stretching CO and OH group frequencies participating in hydrogen bond formation, which agree qualitatively with the experimental values. A three-step mechanism of grafting MA on PPC was proposed to improve the compatibility of PPC with starch. Nine types of 'blends' produced by covalent bond formation between starch and MA-grafted PPC were found to be energetically stable, with blends involving MA grafted at the 'B' and 'C' positions of PPC indicating a binding-energy increase of 6.8 and 6.2 kcal/mol, respectively, as compared to the non-grafted starch/PPC composites. A similar increase in binding-energies was also observed for three types of 'composites' formed by hydrogen bond formation between starch and MA-grafted PPC. Next, grafting of ROM on starch and subsequent blend formation with PPC was studied. All four types of blends formed by the reaction of ROM-grafted starch with PPC were found to be more energetically stable as compared to the starch/PPC composite and starch/PPC-MA composites and blends. A blend of PPC and ROM grafted at the '

  14. Performance properties, lactic acid specific migration and swelling by simulant of biodegradable poly(lactic acid)/nanoclay multilayer films for food packaging.

    Science.gov (United States)

    Scarfato, Paola; Di Maio, Luciano; Milana, Maria Rosaria; Giamberardini, Silvia; Denaro, Massimo; Incarnato, Loredana

    2017-10-01

    The aim of the study was the development of a multifunctional, high-performance, fully biodegradable multilayer polylactic acid (PLA) film for food packaging applications. In particular, sealable multilayer PLA-clay nanocomposite systems with different layouts in terms of composition and relative thickness of the layers, all consisting of a PLA-clay nanocomposite layer between two pure PLA layers for direct food contact, were designed and produced by blown film co-extrusion. The films obtained were analysed for their morphology, functional properties and lactic acid (LA)-specific migration in 50% ethanol. The results showed that, with respect to the unfilled multilayer system, taken as a reference, the nanocomposite films had significant improvements, up to about 40%, in their barriers to oxygen and tensile strengths, and resulted in being more easily sealable over a wide heat-sealing temperature range (80-100°C) with higher seal strength. Moreover, all films had LA migrations always well below the former generic overall migration limit of 60 mg kg -1 food (10 mg dm - 2 ) of European Union Regulation No. 10/2011 (deleted by the amending Regulation No. 2016/1416), even if their morphology was strongly modified during the migration tests due to the strong swelling action of the used simulant (simulant D1 = 50% ethanol (aq.) (v/v)) towards PLA.

  15. Biodegradable nano-films for capture and non-invasive release of circulating tumor cells

    Science.gov (United States)

    Park, Myoung-Hwan; Castleberry, Steven; Deng, Jason Z.; Hsu, Bryan; Mayner, Sarah; Jensen, Anne E.; Sequist, Lecia V.; Maheswaran, Shyamala; Haber, Daniel A.; Toner, Mehmet; Stott, Shannon L.; Hammond, Paula T.

    2016-01-01

    Selective isolation and purification of circulating tumor cells (CTCs) from whole blood is an important capability for both clinical medicine and biological research. Current techniques to perform this task place the isolated cells under excessive stresses that reduce cell viability, and potentially induce phenotype change, therefore losing valuable information about the isolated cells. We present a biodegradable nano-film coating on the surface of a microfluidic chip, which can be used to effectively capture as well as non-invasively release cancer cell lines such as PC-3, LNCaP, DU 145, H1650 and H1975. We have applied layer-by-layer (LbL) assembly to create a library of ultrathin coatings using a broad range of materials through complementary interactions. By developing an LbL nano-film coating with an affinity-based cell-capture surface that is capable of selectively isolating cancer cells from whole blood, and that can be rapidly degraded on command, we are able to gently isolate cancer cells and recover them without compromising cell viability or proliferative potential. Our approach has the capability to overcome practical hurdles and provide viable cancer cells for downstream analyses, such as live cell imaging, single cell genomics, and in vitro cell culture of recovered cells. Furthermore, CTCs from cancer patients were also captured, identified, and successfully released using the LbL-modified microchips. PMID:26142780

  16. The effect of combination of sugar palm fruit, carrageenan, and citric acid on mechanical properties of biodegradable film

    Science.gov (United States)

    Rinanda, S. A.; Nastabiq, M.; Raharjo, S. H.; Hayati, S. K.; Yaqin, M. A.; Ratnawati

    2017-11-01

    Biodegradable film is a type of plastic material that can be degraded naturally and is usually made of organic material. The material commonly used is polysaccharides. The purpose of this study is to observe the effect of the combination of sugar palm fruit, carrageenan, and citric acid (CA) on the mechanical properties of the biodegradable films, such as tensile strength, elongation and film thickness. The experiment begins with dissolving the sugar palm fruit porridge and carrageenan with ratios of 1:0, 3:1, 2:1, 1:1 in water. The mixture was heated using a heater and magnetic stirrer at 80° C for 10 minutes. Glycerol and citric acid (CA) were added to the solution and stirred for 5 minutes. Each film solution was printed on a modified acrylic and, dried for 18 hours in an oven at 55° C. The formed film layer was then removed from the acrylic mold and inserted in a desiccatorsat 23° C for 1 hour. Then the film analyzed for its tensile strength, elongation using Dynamic Mechanical Thermal Analysis (DMTA), and thickness. The optimum result shown by sugar palm fruit and carrageenan ratio of 1:1 with 1% citric acid (CA).

  17. Biodegradable and biocompatible poly(ethylene glycol)-based hydrogel films for the regeneration of corneal endothelium.

    Science.gov (United States)

    Ozcelik, Berkay; Brown, Karl D; Blencowe, Anton; Ladewig, Katharina; Stevens, Geoffrey W; Scheerlinck, Jean-Pierre Y; Abberton, Keren; Daniell, Mark; Qiao, Greg G

    2014-09-01

    Corneal endothelial cells (CECs) are responsible for maintaining the transparency of the human cornea. Loss of CECs results in blindness, requiring corneal transplantation. In this study, fabrication of biocompatible and biodegradable poly(ethylene glycol) (PEG)-based hydrogel films (PHFs) for the regeneration and transplantation of CECs is described. The 50-μm thin hydrogel films have similar or greater tensile strengths to human corneal tissue. Light transmission studies reveal that the films are >98% optically transparent, while in vitro degradation studies demonstrate their biodegradation characteristics. Cell culture studies demonstrate the regeneration of sheep corneal endothelium on the PHFs. Although sheep CECs do not regenerate in vivo, these cells proliferate on the films with natural morphology and become 100% confluent within 7 d. Implantation of the PHFs into live sheep corneas demonstrates the robustness of the films for surgical purposes. Regular slit lamp examinations and histology of the cornea after 28 d following surgery reveal minimal inflammatory responses and no toxicity, indicating that the films are benign. The results of this study suggest that PHFs are excellent candidates as platforms for the regeneration and transplantation of CECs as a result of their favorable biocompatibility, degradability, mechanical, and optical properties. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Eco-nano composite films containing copper as potential antimicrobial active packaging

    International Nuclear Information System (INIS)

    Bruna, Julio E.; Gonzalez, Valeska; Rodriguez, Francisco; Guarda, Abel; Galotto, Maria Jose

    2011-01-01

    The antimicrobial efficiency of Cellulose Acetate/MMTCu and Chitosan/MMTCu nano composites against Escherichia Coli 0157:H7 n/t has been studied in the present work. The MMT modified with copper were obtained using cation interchange in solution and the nano composites films were prepared using casting solution technique, being the biodegradable polymer (Cellulose Acetate or Chitosan) the main component and the montmorillonite modified with copper, the minority component. Characterization of MMTCu and the nano composites (CA/MMTCu and Ch/MMTCu), were carried out using XRD, AA, TGA, DSC and microbiological analysis. The nano composites showed to be more stable at higher temperature, resulting from the incorporation of MMTCu into the polymer. On the other hand, the results indicated that the antibacterial effect of nano composite increased with the proportion of MMTCu added. (author)

  19. THE COMPOSITE COMPONENT PROPERTY RELATIONSHIP OF PLASTIC FILMS.

    Science.gov (United States)

    The relationship of certain properties of composite plastic films to the properties of the plastic films comprising their structure was studied. It...was ascertained that tensile, tearing strength, puncture resistance and moisture vapor transmission rates of composite films can be closely

  20. Morphology and transport in biodegradable polymer compositions based on poly(3-hydroxybutyrate) and polyamide 54C

    Energy Technology Data Exchange (ETDEWEB)

    Zhul' kina, A. L.; Ivantsova, E. L.; Filatova, A. G.; Kosenko, R. Yu.; Gumargalieva, K. Z.; Iordanskii, A. L., E-mail: iordan@chph.ras.ru [Russian Academy of Sciences, Semenov Institute of Chemical Physics (Russian Federation)

    2009-05-15

    Complex investigation of the equilibrium sorption of water, diffusive transport of antiseptic, and morphology of mixed compositions based on polyoxybutirate and polyamide resin 54C has been performed to develop and analyze new biodegradable polymer compositions for controlled release of medicinal substances. Samples of mixtures were prepared by two methods: pressing under pressure and solvent evaporation from a polymer solution. The samples were compared and their morphology was analyzed by scanning electron microscopy. It is shown that the component ratio in the obtained mixtures affects their morphological, transport, and sorption characteristics.

  1. Morphology and transport in biodegradable polymer compositions based on poly(3-hydroxybutyrate) and polyamide 54C

    International Nuclear Information System (INIS)

    Zhul'kina, A. L.; Ivantsova, E. L.; Filatova, A. G.; Kosenko, R. Yu.; Gumargalieva, K. Z.; Iordanskii, A. L.

    2009-01-01

    Complex investigation of the equilibrium sorption of water, diffusive transport of antiseptic, and morphology of mixed compositions based on polyoxybutirate and polyamide resin 54C has been performed to develop and analyze new biodegradable polymer compositions for controlled release of medicinal substances. Samples of mixtures were prepared by two methods: pressing under pressure and solvent evaporation from a polymer solution. The samples were compared and their morphology was analyzed by scanning electron microscopy. It is shown that the component ratio in the obtained mixtures affects their morphological, transport, and sorption characteristics.

  2. Engineering Biodegradable Flame Retardant Wood-Plastic Composites

    Science.gov (United States)

    Zhang, Linxi

    Wood-plastic composites (WPCs), which are produced by blending wood and polymer materials, have attracted increasing attentions in market and industry due to the low cost and excellent performance. In this research, we have successfully engineered WPC by melt blending Polylactic Acid (PLA) and Poly(butylene adipate-co-terphthalate) (PBAT) with recycled wood flour. The thermal property and flammability of the composite are significantly improved by introducing flame retardant agent resorcinol bis(biphenyl phosphate) (RDP). The mechanical and morphological properties are also investigated via multiple techniques. The results show that wood material has increased toughness and impact resistance of the PLA/PBAT polymer matrix. SEM images have confirmed that PLA and PBAT are immiscible, but the incompatibility is reduced by the addition of wood. RDP is initially dispersed in the blends evenly. It migrates to the surface of the sample after flame application, and serves as a barrier between the fire and underlying polymers and wood mixture. It is well proved in the research that RDP is an efficient flame retardant agent in the WPC system.

  3. Plasticized Biodegradable Poly(lactic acid Based Composites Containing Cellulose in Micro- and Nanosize

    Directory of Open Access Journals (Sweden)

    Katalin Halász

    2013-01-01

    Full Text Available The aim of this work was to study the characteristics of thermal processed poly(lactic acid composites. Poly(ethylene glycol (PEG400, microcrystalline cellulose (MCC, and ultrasound-treated microcrystalline cellulose (USMCC were used in 1, 3, and 5 weight percents to modify the attributes of PLA matrix. The composite films were produced by twin screw extrusion followed by film extrusion. The manufactured PLA-based films were characterized by tensile testing, differential scanning calorimetry (DSC, scanning electron microscopy (SEM, wide angle X-ray diffraction (WAXD, and degradation test.

  4. Obtenção de nanocelulose da fibra de coco verde e incorporação em filmes biodegradáveis de amido plastificados com glicerol

    Directory of Open Access Journals (Sweden)

    Bruna A. S. Machado

    2014-01-01

    Full Text Available Composites strengthened with nanocellulose have been developed with the aim of improving mechanical, barrier, and thermal properties of materials. This improvement is primarily due to the nanometric size and the high crystallinity of the incorporated cellulose. Cassava starch films plasticized with glycerol and incorporated with nanocellulose from coconut fibers were developed in this study. The effect of this incorporation was studied with respect to the water activity, solubility, mechanical properties, thermal analysis, and biodegradability. The study demonstrated that the film properties can be significantly altered through the incorporation of small concentrations of nanocellulose.

  5. Biocompatibility, osteointegration, osteoconduction, and biodegradation of a hydroxyapatite-polyhydroxybutyrate composite

    Directory of Open Access Journals (Sweden)

    Emily Correna Carlo Reis

    2010-08-01

    Full Text Available In this work, biocompatibility, osteointegration, osteoconductivity, and biodegradation of a hydroxyapatite polyhydroxybutyrate new composite were evaluated. The composite was implanted in rabbits' bone defects and clinical, radiographic, histological, and histomorphometric data of these animals were compared with those of unfilled defects on the days 8th, 45th, and 90th after surgery. No significant differences existed between the groups for the evaluated clinical parameters. Radiographs showed bone-composite direct contact. Bone formed within the defect, interface and inside the composite. Significant differences were found between the bone and connective tissues percentage within the defect at all dates and at the interface on the 45th day, bone tissue prevailing. Composite's biodegradation signs were evident: giant cells on the surface of composite fragments separated from the original block in the absence of inflammatory infiltrate. These data supported that such composite was biocompatible, biodegradable, osteoconductive and integrate to bone.A biocompatibilidade, osteointegração, osteocondução e biodegradação de um novo compósito de hidroxiapatita e polihidroxibutirato foram avaliados. O compósito foi implantado em defeitos ósseos em coelhos e dados clínicos, radiográficos, histológicos e histomorfométricos foram comparados aos de defeitos não preenchidos aos 8, 45 e 90 dias após a cirurgia. Não foram observadas diferenças significantes entre os grupos para os parâmetros clínicos avaliados. Contato direto entre osso e compósito foi observado nas radiografias. Tecido ósseo se formou dentro do defeito, interface e dentro do compósito. Foram observadas diferenças significativas entre a porcentagem dos tecidos ósseo e conjuntivo dentro do defeito em todas as datas de avaliação e na interface aos 45 dias, com predominância do tecido ósseo. Sinais de biodegradação foram observados: células gigantes na superf

  6. Pneumatically Powered Drilling of Carbon Fibre Composites Using Synthetic Biodegradable Lubricating Oil: An Experimental Study

    Directory of Open Access Journals (Sweden)

    Corydon M. J. Morrell

    2018-01-01

    Full Text Available Carbon fibre composites are a key component of aircraft structures because of their enhanced material properties such as favourable strength to weight ratios when compared to metal alloys. During the assembly process of an aircraft, carbon fibre components are joined to other structures using rivets, bolts, and fasteners, and as part of the joining process, the components will need to be machined or drilled. Unlike metal alloys, composites are sensitive to heat and are vulnerable to internal structural damage from machining tools. They are also susceptible to a reduction in strength when fibres are exposed to moisture. In the machining process, carbon fibre composites may be drilled using oils to lubricate carbide machining tools. In this study, a description of the experimental apparatus is provided along with an investigation to determine the influence synthetic biodegradable lubricating oil has on drill rotational speed, drilling load, and drilling temperature when using a pneumatic drill to machine carbon fibre composite material.

  7. Disposal Options of Bamboo Fabric-Reinforced Poly(Lactic Acid Composites for Sustainable Packaging: Biodegradability and Recyclability

    Directory of Open Access Journals (Sweden)

    M.R. Nurul Fazita

    2015-08-01

    Full Text Available The present study was conducted to determine the recyclability and biodegradability of bamboo fabric-reinforced poly(lactic acid (BF-PLA composites for sustainable packaging. BF-PLA composite was recycled through the granulation, extrusion, pelletization and injection processes. Subsequently, mechanical properties (tensile, flexural and impact strength, thermal stability and the morphological appearance of recycled BF-PLA composites were determined and compared to BF-PLA composite (initial materials and virgin PLA. It was observed that the BF-PLA composites had the adequate mechanical rigidity and thermal stability to be recycled and reused. Moreover, the biodegradability of BF-PLA composite was evaluated in controlled and real composting conditions, and the rate of biodegradability of BF-PLA composites was compared to the virgin PLA. Morphological and thermal characteristics of the biodegradable BF-PLA and virgin PLA were obtained by using environment scanning electron microscopy (ESEM and differential scanning calorimetry (DSC, respectively. The first order decay rate was found to be 0.0278 and 0.0151 day−1 in a controlled composting condition and 0.0008 and 0.0009 day−1 in real composting conditions for virgin PLA and BF-PLA composite, respectively. Results indicate that the reinforcement of bamboo fabric in PLA matrix minimizes the degradation rate of BF-PLA composite. Thus, BF-PLA composite has the potential to be used in product packaging for providing sustainable packaging.

  8. Biodegradable aliphatic-aromatic copolyester/corn starch blend composite reinforced with coffee parchment husk

    International Nuclear Information System (INIS)

    Silva, Valquiria A.; Teixeira, Jaciele G.; Gomes, Michelle G.; Ortiz, Angel V.; Oliveira, Rene R.; Scapin, Marcos A.; Moura, Esperidiana A.B.; Colombo, Maria A.

    2013-01-01

    In recent years, studies have shown that the addition of natural fiber or proper filler is an effective strategy for achieving improved properties in biodegradable polymer materials. Moreover, is especially important if such fibers are residues of agro-industrial processes. In this work, a promising technique to develop biodegradable polymer matrix composite based on aliphatic-aromatic copolyester/corn starch blend (Evela®) and coffee parchment husk, which is residue from coffee processing is described. The biodegradable polymeric blend (Evela®) with 5 % (w/w) of ball-milled coffee parchment husk fiber powder, with size ≤250 μm, without any modification was prepared by melt-mixing processing, using a twin screw extruder machine and then pelletized. In a second step, the pelletized Evela®)/coffee parchment (Composite) was then dried at 70 ± 2 deg C for 24 h in a circulating air oven, fed into injection molding machine and test specimens were obtained. The Composite specimen samples were irradiated using an electron beam accelerator, at radiation dose of 20 and 40 kGy, at room temperature in presence of air. The irradiated and non-irradiated samples were characterized by means of scanning electron microscopy (SEM), X-Ray diffraction (XRD), tensile tests and sol-gel analysis and the correlation between their properties was discussed. In addition, coffee parchment husk fiber characterization by SEM, EDS, XRD and WDXRF have also been carried out with a view to evaluate its importance in determining the end-use properties of the composite. (author)

  9. Effects of amphiphilic PCL-PEG-PCL copolymer addition on 5-fluorouracil release from biodegradable PCL films for stent application.

    Science.gov (United States)

    Lu, Fei; Lei, Lei; Shen, Yuan-Yuan; Hou, Jing-Wen; Chen, Wei-Luan; Li, Yang-Gong; Guo, Sheng-Rong

    2011-10-31

    Biodegradable film-based stents emerged as a promising medical platform for drug delivery to resolve stenosis encountered in physiological conduits (e.g. blood vessels, biliary and urethral tracts). Drug release kinetics significantly affects the pharmacological effects of a stent, thus it is desirable for a stent to possess highly adjustable drug release kinetics. In this study, a series of amphiphilic poly(ɛ-caprolactone)-poly(ethylene glycol)-poly(ɛ-caprolactone) (PCL-PEG-PCL) copolymers were used as additives to adjust 5-fluorouracil (5-FU) release from PCL films. The effects of the copolymer addition on drug release behavior, drug permeability, crystalline states, and surface and internal morphologies of the films were investigated. It was found that, the addition of PCL-PEG-PCL could accelerate 5-FU release. The release rate of 5-FU increased with increasing content of PCL-PEG-PCL in the film, but it decreased with the ratio of PCL blocks in the PCL-PEG-PCL copolymer. The diffusion test results showed that 5-FU diffused through the film containing PCL-PEG-PCL faster than it permeated through the pure PCL film, indicating that the addition of PCL-PEG-PCL can improve the permeability of 5-FU in PCL film. The addition of PCL-PEG-PCL copolymer showed high drug-release-regulating ability in the 5-FU-loaded PCL films. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. Core–shell composite particles composed of biodegradable polymer particles and magnetic iron oxide nanoparticles for targeted drug delivery

    Energy Technology Data Exchange (ETDEWEB)

    Oka, Chiemi; Ushimaru, Kazunori [Department of Innovative and Engineered Materials, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8502 (Japan); Horiishi, Nanao [Bengala Techno Laboratory, 9-5-1006, 1-1 Kodai, Miyamae-ku, Kawasaki 216-0007 (Japan); Tsuge, Takeharu [Department of Innovative and Engineered Materials, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8502 (Japan); Kitamoto, Yoshitaka, E-mail: kitamoto.y.aa@m.titech.ac.jp [Department of Innovative and Engineered Materials, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8502 (Japan)

    2015-05-01

    Core–shell composite particles with biodegradability and superparamagnetic behavior were prepared using a Pickering emulsion for targeted drug delivery based on magnetic guidance. The composite particles were composed of a core of biodegradable polymer and a shell of assembled magnetic iron oxide nanoparticles. It was found that the dispersibility of the nanoparticles is crucial for controlling the core–shell structure. The addition of a small amount of dispersant into the nanoparticle's suspension could improve the dispersibility and led to the formation of composite particles with a thin magnetic shell covering a polymeric core. The composite particles were also fabricated with a model drug loaded into the core, which was released via hydrolysis of the core under strong alkaline conditions. Because the core can also be biodegraded by lipase, this result suggests that the slow release of the drug from the composite particles should occur inside the body. - Highlights: • Core−shell composites with biodegradability and magnetism are prepared. • O/W emulsion stabilized by iron oxide nanoparticles is utilized for the preparation. • The nanoparticle's dispersibility is crucial for controlling the composite structure. • Composites loading a model drug are also prepared. • The model drug is released with decomposition of the composites.

  11. Core–shell composite particles composed of biodegradable polymer particles and magnetic iron oxide nanoparticles for targeted drug delivery

    International Nuclear Information System (INIS)

    Oka, Chiemi; Ushimaru, Kazunori; Horiishi, Nanao; Tsuge, Takeharu; Kitamoto, Yoshitaka

    2015-01-01

    Core–shell composite particles with biodegradability and superparamagnetic behavior were prepared using a Pickering emulsion for targeted drug delivery based on magnetic guidance. The composite particles were composed of a core of biodegradable polymer and a shell of assembled magnetic iron oxide nanoparticles. It was found that the dispersibility of the nanoparticles is crucial for controlling the core–shell structure. The addition of a small amount of dispersant into the nanoparticle's suspension could improve the dispersibility and led to the formation of composite particles with a thin magnetic shell covering a polymeric core. The composite particles were also fabricated with a model drug loaded into the core, which was released via hydrolysis of the core under strong alkaline conditions. Because the core can also be biodegraded by lipase, this result suggests that the slow release of the drug from the composite particles should occur inside the body. - Highlights: • Core−shell composites with biodegradability and magnetism are prepared. • O/W emulsion stabilized by iron oxide nanoparticles is utilized for the preparation. • The nanoparticle's dispersibility is crucial for controlling the composite structure. • Composites loading a model drug are also prepared. • The model drug is released with decomposition of the composites

  12. Developing tricalcium phosphate/polyhydroxybutyrate composite as a new biodegradable material for clinical applications

    Energy Technology Data Exchange (ETDEWEB)

    Wang, M.; Weng, J.; Ni, J.; Goh, C.H.; Wang, C.X. [Nanyang Technological Univ. (Singapore). School of Mechanical and Production Engineering

    2001-07-01

    Two biodegradable materials, namely, tricalcium phosphate (TCP) and polyhydroxybutyrate (PHB), were used to produce a new composite material for tissue replacement/regeneration. Commercially available TCP and PHB were used, with both materials being in the form of fine powders. They were characterised prior to composite production. TCP/PHB composite containing up to 30vol% of TCP was produced. Manufacture of the composite consisted of compounding, milling, drying and compression moulding. During the manufacturing process, the temperature and time for maintaining PHB in the molten state were carefully controlled as PHB is very heat-sensitive. Thermogravimetric analysis (TGA) of the composite indicated that intended compositions for the composite had been achieved. Examinations using a scanning electron microscope (SEM) revealed that TCP particles were well distributed in compounded and compression moulded materials. Differential scanning calorimetry (DSC) analysis showed that an increase in the TCP content resulted in decreases in both the melting temperature and the crystallinity of PHB. An ascending trend of microhardness was observed for TCP/PHB with an increase in the TCP volume percentage. Dynamic mechanical analysis (DMA) showed that the storage modulus increased from 2.76 GPa for the unfilled PHB to 4.80 GPa for the composite containing 20vol% of TCP. (orig.)

  13. Development of biodegradable metaloxide/polymer nanocomposite films based on poly-ε-caprolactone and terephthalic acid.

    Science.gov (United States)

    Varaprasad, Kokkarachedu; Pariguana, Manuel; Raghavendra, Gownolla Malegowd; Jayaramudu, Tippabattini; Sadiku, Emmanuel Rotimi

    2017-01-01

    The present investigation describes the development of metal-oxide polymer nanocomposite films from biodegradable poly-ε-caprolactone, disposed poly(ethylene terephthalate) oil bottles monomer and zinc oxide-copper oxide nanoparticles. The terephthalic acid and zinc oxide-copper oxide nanoparticles were synthesized by using a temperature-dependent precipitation technique and double precipitation method, respectively. The terephthalic acid synthesized was confirmed by FTIR analysis and furthermore, it was characterized by thermal analysis. The as-prepared CuO-ZnO nanoparticles structure was confirmed by XRD analysis and its morphology was analyzed by SEM/EDS and TEM. Furthermore, the metal-oxide polymer nanocomposite films have excellent mechanical properties, with tensile strength and modulus better than pure films. The metal-oxide polymer nanocomposite films that were successfully developed show a relatively brighter colour when compared to CuO film. These new metal-oxide polymer nanocomposite films can replace many non-degradable plastics. The new metal-oxide polymer nanocomposite films developed are envisaged to be suitable for use in industrial and domestic packaging applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Toluene biodegradation and biofilm growth in an aerobic fixed-film reactor

    DEFF Research Database (Denmark)

    Arcangeli, Jean-Pierre; Arvin, Erik

    1992-01-01

    Aerobic biodegradation of toluene in a biofilm system was investigated. Toluene is easily biodegradable, like several other aromatic compounds. The degradation was first order at bulk concentrations lower than 0.14 mg/l and zero order above 6–8 mg/l. An average yield coefficient of 1 mg biomass/m...

  15. Nanocellulose reinforced chitosan composite films as affected by nanofiller loading and plasticizer content.

    Science.gov (United States)

    Azeredo, Henriette M C; Mattoso, Luiz Henrique C; Avena-Bustillos, Roberto J; Filho, Gino Ceotto; Munford, Maximiliano L; Wood, Delilah; McHugh, Tara H

    2010-01-01

    Chitosan is a biopolymer obtained by N-deacetylation of chitin, produced from shellfish waste, which may be employed to elaborate edible films or coatings to enhance shelf life of food products. This study was conducted to evaluate the effect of different concentrations of nanofiller (cellulose nanofibers, CNF) and plasticizer (glycerol) on tensile properties (tensile strength-TS, elongation at break-EB, and Young's modulus-YM), water vapor permeability (WVP), and glass transition temperature (T(g)) of chitosan edible films, and to establish a formulation to optimize their properties. The experiment was conducted according to a central composite design, with 2 variables: CNF (0 to 20 g/100 g) and glycerol (0 to 30 g/100 g) concentrations in the film (on a dry basis), which was produced by the so-called casting technique. Most responses (except by EB) were favored by high CNF concentrations and low glycerol contents. The optimization was based on maximizing TS, YM, and T(g), and decreasing WVP, while maintaining a minimum acceptable EB of 10%. The optimum conditions were defined as: glycerol concentration, 18 g/100 g; and CNF concentration, 15 g/100 g. AFM imaging of films suggested good dispersion of the CNF and good CNF-matrix interactions, which explains the good performance of the nanocomposite films. Chitosan is a biodegradable polymer which may be used to elaborate edible films or coatings to enhance shelf life of foods. This study demonstrates how cellulose nanofibers (CNF) can improve the mechanical and water vapor barrier properties of chitosan films. A nanocomposite film with 15% CNF and plasticized with 18% glycerol was comparable to some synthetic polymers in terms of strength and stiffness, but with poorer elongation and water vapor barrier, indicating that they can be used for applications that do not require high flexibility and/or water vapor barrier. The more important advantage of such films when compared to synthetic polymer films is their

  16. Biodegradation behaviors and color change of composites based on type of bagasse pulp/polylactic acid

    Directory of Open Access Journals (Sweden)

    maryam allahdadi

    2017-05-01

    Full Text Available In this research, appearance quality and decay resistance of polylactic acid (PLA based green composites made from monoethanolamine (MEA bagasse pulp, alkaline sulfite-anthraquinone (AS bagasse pulp, bleached soda (B S bagasse pulp, unbleached soda (UN S bagasse pulp (UN S bagasse pulp and raw bagasse fibers (B were investigated. For the investigation of biodegradation behaviors, effect of the white rot fungi (Coriolus versicolor on the neat PLA and composites with natural fibers during 30 and 60 days were studied. It is found that when the bagasse fibers were incorporated into composites matrix, percentage weight reduction and stiffness of samples have been increased. Also, the rate of loss mentioned of the composites made from bagasse pulp fibers were superior to the relevant raw bagase fibers. This can be explained by the removal of non-cellulosic components such as lignin and hemicelluloses from the fibers by pulping process. Also, the results indicates the inferior of surface qualities of fabricated composites regarding to neat PLA. Depending on the fiber type, different reductions of the surface qualities were attained. However, the degree of color change of the composites with any type of bagasse pulp fibers were lower compared with composite with raw bagasse fiber. Finally, as compared with the raw bagasse fibers, bagasse pulp fibers have better reinforcing capability.

  17. Effect of pre-heating composites on film thickness

    OpenAIRE

    Goulart, Marcelo; Damin, Deisi Fátima; Melara, Rafael; Conceição, Andréa de Azevedo Brito

    2013-01-01

    Resin composite has been suggested as a luting material for aesthetic indirect restorations and temperature affects material viscosity. Reports of film thickness from new composites are important. The aim of this study was to analyze the influence of pre-heating two resin composites on its film thickness in order to use it as a luting agent for indirect restorations (inlays and onlays). Three materials were divided into 5 groups. Two resin composites, nanofilled (Z350 XT/3MESPE) and microhybr...

  18. Effect of degumming time on silkworm silk fibre for biodegradable polymer composites

    Science.gov (United States)

    Ho, Mei-po; Wang, Hao; Lau, Kin-tak

    2012-02-01

    Recently, many studies have been conducted on exploitation of natural materials for modern product development and bioengineering applications. Apart from plant-based materials (such as sisal, hemp, jute, bamboo and palm fibre), animal-based fibre is a kind of sustainable natural materials for making novel composites. Silkworm silk fibre extracted from cocoon has been well recognized as a promising material for bio-medical engineering applications because of its superior mechanical and bioresorbable properties. However, when producing silk fibre reinforced biodegradable/bioresorbable polymer composites, hydrophilic sericin has been found to cause poor interfacial bonding with most polymers and thus, it results in affecting the resultant properties of the composites. Besides, sericin layers on fibroin surface may also cause an adverse effect towards biocompatibility and hypersensitivity to silk for implant applications. Therefore, a proper pre-treatment should be done for sericin removal. Degumming is a surface modification process which allows a wide control of the silk fibre's properties, making the silk fibre possible to be used for the development and production of novel bio-composites with unique/specific mechanical and biodegradable properties. In this paper, a cleaner and environmentally friendly surface modification technique for tussah silk in polymer based composites is proposed. The effectiveness of different degumming parameters including degumming time and temperature on tussah silk is discussed through the analyses of their mechanical and morphological properties. Based on results obtained, it was found that the mechanical properties of tussah silk are affected by the degumming time due to the change of the fibre structure and fibroin alignment.

  19. Fabrication of carbon film composites for high-strength structures

    Science.gov (United States)

    Preiswerk, P. R.; Lippman, M.

    1972-01-01

    Physical and mechanical properties of fiber composite materials consisting of carbon films are described. Application of carbon film structural composites for constructing microwave filters or optical instruments is proposed. Applications in aerospace and architectural structures for high strength and low density properties are discussed.

  20. Spectroscopic study on the in vitro degradation of a biodegradable composite periodontal membrane

    Science.gov (United States)

    Taddei, P.; Simoni, R.; Fini, G.

    2001-05-01

    The hydrolithic in vitro degradation of a commercial biodegradable hydroxyapatite (HA)-polymer (poly(ɛ-caprolactone)-poly(oxyethylene)-poly(ɛ-caprolactone) block copolymer, PCL-POE-PCL) composite membrane was investigated by Raman and IR spectroscopies in three aqueous media at 37°C; 0.01 M NaOH solution, saline phosphate buffer (SPB) at pH 7.4 and simulated body fluid (SBF) buffered at pH 7.5. The vibrational results showed that the polymeric component undergoes preferential degradation of POE blocks while HA is removed by the degradation media faster than the polymer. Vibrational spectroscopy appeared to be a valid non-destructive method for investigating the degradation mechanism of the composite membrane.

  1. PENGARUH PENAMBAHAN ASAM SITRAT TERHADAP KARAKTERISTIK FILM PLASTIK BIODEGRADABLE DARI PATI KULIT PISANG KEPOK (Musa acuminata balbisiana Colla

    Directory of Open Access Journals (Sweden)

    Hardjono Hardjono

    2016-06-01

    Full Text Available Banana peels can be used as raw material for biodegradable plastic film because the banana peels was consists of starch. Starch was derived from banana peels would be rapidly changing color or browning. Browning was prevented by the addition of citric acid during the process of starch extraction from banana peels. The aim of this study was to determine the effect of citric acid on mechanical properties and capabilities degradation of starch biodegradable film made from this starch (film plastik pati kulit pisang – FPKP. FPKP was made with banana peel starch (pati kulit pisang – PKP as raw materials, with the addition of glycerol as a plasticizer, and both CaCO3 and CMC as filler, whereas the PKP was obtained by simple extraction methods with or without the addition of citric acid. Glycerol concentration was varied from 20% w/w to 60% w/w, while CaCO3 and CMC were added in a fixed amount. The results was showed that the addition of citric acid affects the color of a PKP produced. The addition of citric acid can enhance the tensile strength of FPKP, up to 4,202 MPa for FPKP with CaCO3 filler and 4.032 MPa for FPKP with CMC filler. For biodegrability of FPKP, the affect of citric acid apply vice versa.

  2. Effect of sterilization dose on electron beam irradiated biodegradable polymers and coconut fiber based composites

    International Nuclear Information System (INIS)

    Kodama, Yasko; Machado, Luci D.B.; Oishi, Akihiro; Nakayama, Kazuo; Nagasawa, Naotsugu; Tamada, Masao

    2009-01-01

    In Brazil, annual production of coconut fruit is 1.5 billion in a cultivated area of 2.7 million ha. Coconut fiber applications as reinforcement for polymer composites, besides reducing the coconut waste, would reduce cost of the composite. On the other hand, biodegradable polymers have been receiving much attention due to the plastic waste problem. Poly(e-caprolactone), PCL, and poly(lactic acid), PLA, besides being biodegradable aliphatic polyesters, are biocompatible polymers. Considering the biomedical application of PLA and PCL, their products must be sterilized for use, and ionizing radiation has been widely used for medical devices sterilization. It is important to study the effect of ionizing radiation on the blends and composites due to the fact that they are based on biocompatible polymers. Is this research, hot pressed samples based on PLA:PCL (80:20, ratio of weight:weight) blend and the composites containing chemically treated or untreated coconut fiber (5, 10%) were irradiated by electron beams and gamma radiation from Co-60 source at doses in the range up to 200 kGy. Thermal mechanical analysis (TMA) and gel fraction measurements were performed in irradiated samples. From TMA curves it can be observed that thermal stability of samples with untreated coconut fiber slightly decreased with increasing fiber content. On the other hand, deformation increased with increasing fiber content. Acetylated coconut fibers slightly decreased thermal stability of samples. It seems that no interaction occurs between the natural fibers and the polymeric matrix due to irradiation. PLLA undergoes to main chain scission under ionizing irradiation according to thermal stability results and also because no gel fraction was observed. In contrast, PCL cross-linking is induced by ionizing radiation that increases thermal stability and decreases deformation. (author)

  3. Effect of sterilization dose on electron beam irradiated biodegradable polymers and coconut fiber based composites

    Energy Technology Data Exchange (ETDEWEB)

    Kodama, Yasko; Machado, Luci D.B., E-mail: ykodama@ipen.b, E-mail: lmachado@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Oishi, Akihiro; Nakayama, Kazuo, E-mail: a.oishi@aist.go.j, E-mail: kazuo-nakayama@jcom.home.ne.j [National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki-ken (Japan). Research Institute for Sustainable Chemical Innovation; Nagasawa, Naotsugu; Tamada, Masao, E-mail: nagasawa.naotsugu@jaea.go.j [Japan Atomic Energy Agency (JAEA), Gunma-ken (Japan). Quantum Beam Science Directorate

    2009-07-01

    In Brazil, annual production of coconut fruit is 1.5 billion in a cultivated area of 2.7 million ha. Coconut fiber applications as reinforcement for polymer composites, besides reducing the coconut waste, would reduce cost of the composite. On the other hand, biodegradable polymers have been receiving much attention due to the plastic waste problem. Poly(e-caprolactone), PCL, and poly(lactic acid), PLA, besides being biodegradable aliphatic polyesters, are biocompatible polymers. Considering the biomedical application of PLA and PCL, their products must be sterilized for use, and ionizing radiation has been widely used for medical devices sterilization. It is important to study the effect of ionizing radiation on the blends and composites due to the fact that they are based on biocompatible polymers. Is this research, hot pressed samples based on PLA:PCL (80:20, ratio of weight:weight) blend and the composites containing chemically treated or untreated coconut fiber (5, 10%) were irradiated by electron beams and gamma radiation from Co-60 source at doses in the range up to 200 kGy. Thermal mechanical analysis (TMA) and gel fraction measurements were performed in irradiated samples. From TMA curves it can be observed that thermal stability of samples with untreated coconut fiber slightly decreased with increasing fiber content. On the other hand, deformation increased with increasing fiber content. Acetylated coconut fibers slightly decreased thermal stability of samples. It seems that no interaction occurs between the natural fibers and the polymeric matrix due to irradiation. PLLA undergoes to main chain scission under ionizing irradiation according to thermal stability results and also because no gel fraction was observed. In contrast, PCL cross-linking is induced by ionizing radiation that increases thermal stability and decreases deformation. (author)

  4. Mechanical, corrosion and biocompatibility behaviour of Mg-3Zn-HA biodegradable composites for orthopaedic fixture accessories.

    Science.gov (United States)

    Jaiswal, Satish; Kumar, R Manoj; Gupta, Pallavi; Kumaraswamy, Murali; Roy, Partha; Lahiri, Debrupa

    2018-02-01

    Development of biodegradable implants has grown into one of the important areas in medical science. Degradability becomes more important for orthopaedic accessories used to support fractured and damaged bones, in order to avoid second surgery for their removal after healing. Clinically available biodegradable orthopaedic materials are mainly made of polymers or ceramics. These orthopaedic accessories have an unsatisfactory mechanical strength, when used in load-bearing parts. Magnesium and its alloys can be suitable candidate for this purpose, due to their outstanding strength to weight ratio, biodegradability, non-toxicity and mechanical properties, similar to natural bone. The major drawback of magnesium is its low corrosion resistance, which also influences its mechanical and physical characteristics in service condition. An effort has been taken in this research to improve the corrosion resistance, bioactivity and mechanical strength of biodegradable magnesium alloys by synthesizing Mg-3wt% Zn matrix composite, reinforced with thermally treated hydroxyapatite(HA) [Ca 10 (PO 4 ) 6 (OH) 2 ], a bioactive and osteogenic ceramic. Addition of 5wt% HA is found effective in reducing the corrosion rate by 42% and improvement in the compressive yield strength of biodegradable magnesium alloy by 23%. In-vitro evaluation, up to 56 days, reveal improved resistance to degradation with HA reinforcement to Mg. Osteoblast cells show better growth and proliferation on HA reinforced surfaces of the composite. Mg-HA composite structure shows impressive potential to be used in orthopaedic fracture fixing accessories. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Enhanced stability and mechanical strength of sodium alginate composite films.

    Science.gov (United States)

    Liu, Sijun; Li, Yong; Li, Lin

    2017-03-15

    This work aims to study how three kinds of nanofillers: graphene oxide (GO), ammonia functionalized graphene oxide (AGO), and triethoxylpropylaminosilane functionalized silica, can affect stability and mechanical strength of sodium alginate (SA) composite films. The filler/sodium alginate (SA) solutions were first studied by rheology to reveal effects of various fillers on zero shear viscosity η 0 . SA composite films were then prepared by a solution mixing-evaporation method. The structure, morphology and properties of SA composite films were characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffractometry (XRD), thermogravimetric analysis (TGA), field emission scanning electron microscopy (FESEM), contact angle and mechanical testing. Compared to GO and silica, the presence of AGO significantly improved the interaction between AGO and SA, which led to the increase in stability and mechanical strength of the resulting SA composite films. The tensile strength and elongation at break of AGO/SA composite film at 3wt% AGO loading were increased by 114.9% and 194.4%, respectively, in contrast to pure SA film. Furthermore, the stability of AGO/SA composite films at high temperatures and in a wet environment were better than that of silica/SA and GO/SA composite films. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Filmes biodegradáveis à base de proteínas miofibrilares de pescado Biodegradable films based on myofibrillar proteins of fish

    Directory of Open Access Journals (Sweden)

    Elessandra da Rosa Zavareze

    2012-05-01

    Full Text Available O objetivo deste trabalho foi estudar as propriedades físicas, mecânicas e de barreira dos filmes produzidos a partir de diferentes concentrações de proteínas miofibrilares de pescado de baixo valor comercial. O pescado utilizado foi a corvina (Micropogonias furnieri, que foi eviscerada e filetada. As proteínas miofibrilares foram obtidas do músculo, em sucessivas lavagens com água destilada. Os filmes foram produzidos com 3, 4 e 5% de proteínas miofibrilares pelo método de casting. Os filmes foram analisados nos seguintes aspectos: espessura, solubilidade, opacidade, resistência à tração, elongação e permeabilidade ao vapor de água (PVA. O aumento da concentração de proteínas miofibrilares atribuiu aos filmes maior espessura, opacidade, resistência à tração e PVA; no entanto, conferiu menor elongação na ruptura dos mesmos.The objective of this work was to study the physical, mechanical and barrier properties of the films produced from different concentrations of myofibrillar proteins of fish. The fish used was croaker (Micropogonias furnieri, which was gutted and filleted. The myofibrillar proteins were obtained through the muscle with successive washes with distilled water. The films were made with 3, 4 and 5% of myofibrillar proteins by the method of casting. The films were analyzed by thickness, solubility, opacity, tensile strength, elongation and water vapor permeability (PVA. The increase of myofibrillar proteins concentration in the films increased thickness, opacity, tensile strength and water vapor permeability and reduced elongation at break of the film.

  7. Corn gluten meal as a biodegradable matrix material in wood fibre reinforced composites

    Energy Technology Data Exchange (ETDEWEB)

    Beg, M.D.H. [Department of Materials and Process Engineering, University of Waikato, Private Bag 3105, Hamilton (New Zealand); Pickering, K.L. [Department of Materials and Process Engineering, University of Waikato, Private Bag 3105, Hamilton (New Zealand)]. E-mail: klp@waikato.ac.nz; Weal, S.J. [Department of Materials and Process Engineering, University of Waikato, Private Bag 3105, Hamilton (New Zealand)

    2005-12-05

    This study was undertaken to investigate corn gluten meal (CGM) as a biodegradable matrix material for wood fibre reinforced composites. CGM was used alone, as well as hybridized with polypropylene, and reinforced with radiata pine (Pinus Radiata) fibre using a twin-screw extruder followed by injection moulding. Tensile testing, scanning electron microscopy and differential scanning calorimetry were carried out to assess the composites. For composites from CGM and wood fibres, extrusion was carried out with the aid of the following plasticizers: octanoic acid, glycerol, polyethylene glycol and water. Windows of processability for the different plasticizers were obtained for all plasticizers. These were found to lie between 20 and 50 wt.% of plasticizer with a maximum of approximately 20% wood fibre reinforcement. The best mechanical properties were obtained with a matrix containing 10 wt.% octanoic acid and 30 wt.% water, which gave a tensile strength and Young's modulus of 18.7 MPa and 4 GPa, respectively. Hybrid matrix composites were compounded with a maleated polypropylene coupling agent and benzoyl peroxide as a cross-linking agent. The highest tensile strength and Young's modulus obtained from hybrid matrix composites were 36.9 MPa and 5.8 GPa with 50 wt.% fibre.

  8. Optical study on doped polyaniline composite films

    International Nuclear Information System (INIS)

    Li, G; Zheng, P; Wang, N L; Long, Y Z; Chen, Z J; Li, J C; Wan, M X

    2004-01-01

    Localization driven by disorder has a strong influence on the conducting properties of conducting polymers. Some authors hold the opinion that disorder in the material is homogeneous and that the conducting polymer is a disordered metal close to the Anderson-Mott metal-insulator (MI) transition, while others treat the disorder as inhomogeneous and have the opinion that conducting polymers are a composite of ordered metallic regions and disordered insulating regions. The morphology of conducting polymers is an important factor that has an influence on the type and extent of disorder. Different protonic acids used as dopants and moisture have influence on the polymer chain arrangement and interchain interactions. We performed optical reflectance measurements on several PANI-CSA/PANI-DBSA composite films with different dopant ratios and moisture contents. Optical conductivity and the real part of the dielectric function are calculated by Kramers-Kronig (KK) relations. σ 1 (ο) and ε 1 (ο) deviate from the simple Drude model in the low frequency range and the tendencies of the three sample are different and non-monotonic. The localization modified Drude model (LMD) in the framework of the Anderson-Mott theory cannot give a good fit to the experimental data. By introducing the distribution of relaxation time into the LMD, reasonable fits for all three samples are obtained. This result supports the inhomogeneous picture

  9. Preparation of Cellulose Nanofibrils from Bamboo Pulp by Mechanical Defibrillation for Their Applications in Biodegradable Composites.

    Science.gov (United States)

    Guimarães, Mario; Botaro, Vagner Roberto; Novack, Kátia Monteiro; Neto, Wilson Pires Flauzino; Mendes, Lourival Marin; Tonoli, Gustavo H D

    2015-09-01

    There is a growing interest in cellulose nanofibrils from renewable sources for various industrial applications. However, there is a lack of information on cellulose arising from bamboo pulps. Nanofibrils from refined bamboo pulps, including bleached, unbleached, and unrefined/unbleached, were obtained by mechanical defibrillation for use in biodegradable composites. The influence of industrial processes, such as pulping and refining of unbleached pulps, as well as of alkali pretreatments and bleaching of refined pulps, on the chemical composition of the samples was analyzed. Morphological, structural, thermal, optical and viscometric properties were investigated as a function of the number of passages of refined/bleached suspensions through a defibrillator. For the unbleached suspensions, the effects of refining and bleaching on the properties of nanofibrils were evaluated, fixing the number of passages through the defibrillator. Microscopic studies demonstrated that nanoscale cellulose fibers were obtained from both pulps, with a higher yield for the refined/bleached and refined/unbleached pulp, at the expense of the unbleached/unrefined pulps. The study showed that, in addition to the effectiveness of the pre-treatments, there was an increase in the production efficiency of nanofibrils, as well as in the transparency of the bleached suspensions, while viscosity, thermal stability and crystallinity had reduced levels as the number of passages through the defibrillator increased, showing a gradual improvement in the transition from the micro- to the nano-scale. The present study contributed to the different methods that are available for the production of bamboo cellulose nanofibrils, which can be used in the production of biodegradable composites for various applications.

  10. Formulation and In Vitro Characterization of Composite Biodegradable Magnetic Nanoparticles for Magnetically Guided Cell Delivery

    Science.gov (United States)

    Alferiev, Ivan S.; Fishbein, Ilia; Tengood, Jillian E.; Folchman-Wagner, Zoë; Forbes, Scott P.; Levy, Robert J.

    2012-01-01

    Purpose Cells modified with magnetically responsive nanoparticles (MNP) can provide the basis for novel targeted therapeutic strategies. However, improvements are required in the MNP design and cell treatment protocols to provide adequate magnetic properties in balance with acceptable cell viability and function. This study focused on select variables controlling the uptake and cell compatibility of biodegradable polymer-based MNP in cultured endothelial cells. Methods Fluorescent-labeled MNP were formed using magnetite and polylactide as structural components. Their magnetically driven sedimentation and uptake were studied fluorimetrically relative to cell viability in comparison to non-magnetic control conditions. The utility of surface-activated MNP forming affinity complexes with replication-deficient adenovirus (Ad) for transduction achieved concomitantly with magnetic cell loading was examined using the green fluorescent protein reporter. Results A high-gradient magnetic field was essential for sedimentation and cell binding of albumin-stabilized MNP, the latter being rate-limiting in the MNP loading process. Cell loading up to 160 pg iron oxide per cell was achievable with cell viability >90%. Magnetically driven uptake of MNP-Ad complexes can provide high levels of transgene expression potentially useful for a combined cell/gene therapy. Conclusions Magnetically responsive endothelial cells for targeted delivery applications can be obtained rapidly and efficiently using composite biodegradable MNP. PMID:22274555

  11. Biodegradation Resistance and Bioactivity of Hydroxyapatite Enhanced Mg-Zn Composites via Selective Laser Melting

    Directory of Open Access Journals (Sweden)

    Cijun Shuai

    2017-03-01

    Full Text Available Mg-Zn alloys have attracted great attention as implant biomaterials due to their biodegradability and biomechanical compatibility. However, their clinical application was limited due to the too rapid degradation. In the study, hydroxyapatite (HA was incorporated into Mg-Zn alloy via selective laser melting. Results showed that the degradation rate slowed down due to the decrease of grain size and the formation of protective layer of bone-like apatite. Moreover, the grain size continually decreased with increasing HA content, which was attributed to the heterogeneous nucleation and increased number of nucleation particles in the process of solidification. At the same time, the amount of bone-like apatite increased because HA could provide favorable areas for apatite nucleation. Besides, HA also enhanced the hardness due to the fine grain strengthening and second phase strengthening. However, some pores occurred owing to the agglomerate of HA when its content was excessive, which decreased the biodegradation resistance. These results demonstrated that the Mg-Zn/HA composites were potential implant biomaterials.

  12. Biodegradation Resistance and Bioactivity of Hydroxyapatite Enhanced Mg-Zn Composites via Selective Laser Melting.

    Science.gov (United States)

    Shuai, Cijun; Zhou, Yuanzhuo; Yang, Youwen; Feng, Pei; Liu, Long; He, Chongxian; Zhao, Mingchun; Yang, Sheng; Gao, Chengde; Wu, Ping

    2017-03-17

    Mg-Zn alloys have attracted great attention as implant biomaterials due to their biodegradability and biomechanical compatibility. However, their clinical application was limited due to the too rapid degradation. In the study, hydroxyapatite (HA) was incorporated into Mg-Zn alloy via selective laser melting. Results showed that the degradation rate slowed down due to the decrease of grain size and the formation of protective layer of bone-like apatite. Moreover, the grain size continually decreased with increasing HA content, which was attributed to the heterogeneous nucleation and increased number of nucleation particles in the process of solidification. At the same time, the amount of bone-like apatite increased because HA could provide favorable areas for apatite nucleation. Besides, HA also enhanced the hardness due to the fine grain strengthening and second phase strengthening. However, some pores occurred owing to the agglomerate of HA when its content was excessive, which decreased the biodegradation resistance. These results demonstrated that the Mg-Zn/HA composites were potential implant biomaterials.

  13. Investigation of photo-biodegradation of starch-filled polyethylene films under the environment conditions of Tehran

    International Nuclear Information System (INIS)

    Naeimian, F.; Khoylou, F.; Sheikh, N.; Akhavan, A.; Hassanpour, S.; Sohrabpour, M.

    2006-01-01

    In this work biodegradable polymers have been formulated for packaging purposes and with a view to reduce the environmental accumulation of plastic waste. Degradation of the polymers under the specific weathering conditions of Tehran was studied. In this work low-density polyethylene was formulated with two wheat starch concentrations, maleic anhydride, glycerol as well as a pro-oxidant system of oleic acid, benzoyl peroxide and ferric stearate. The formulated master batches were mixed by using a laboratory two-roll mill at 190 d ig C prepared master batches were mixed with the commercial low-density polyethylene to prepare compounds 1 and 2 containing 1.2 and 6.4 percents wheat starch. The low-density polyethylene control films as well as the formulated compounds were compression moulded in a hot press at 130 d ig C films were subjected to three general conditions of atmospheric exposure, buried in soil and combined conditions of soil burial/ atmospheric exposure. The three environmental conditions impact upon the formulated and control films were investigated through tensile strength, elongation-at-break, carbonyl index, water absorption, weight loss as well as SEM analysis. The microbial investigation was followed by growing the Penicillium Asymmetrica, which had the main population in microbial flora of the soil, on formulated and control films. The studies revealed that the incorporation of this pro-oxidant system with the addition of 6.4% wheat starch enhance the degradation rate of commercial low-density polyethylene films to a significant degree

  14. Structure and Barrier Properties of Multinanolayered Biodegradable PLA/PBSA Films: Confinement Effect via Forced Assembly Coextrusion.

    Science.gov (United States)

    Messin, Tiphaine; Follain, Nadège; Guinault, Alain; Sollogoub, Cyrille; Gaucher, Valérie; Delpouve, Nicolas; Marais, Stéphane

    2017-08-30

    Multilayer coextrusion processing was applied to produce 2049-layer film of poly(butylene succinate-co-butylene adipate) (PBSA) confined against poly(lactic acid) (PLA) using forced assembly, where the PBSA layer thickness was about 60 nm. This unique technology allowed to process semicrystalline PBSA as confined polymer and amorphous PLA as confining polymer in a continuous manner. The continuity of PBSA layers within the 80/20 wt % PLA/PBSA layered films was clearly evidenced by atomic force microscopy (AFM). Similar thermal events to the reference films were revealed by thermal studies; indicating no diffusion of polymers during the melt-processing. Mechanical properties were measured for the multilayer film and the obtained results were those expected considering the fraction of each polymer, revealing the absence of delamination in the PLA/PBSA multinanolayer film. The confinement effect induced by PLA led to a slight orientation of the crystals, an increase of the rigid amorphous fraction (RAF) in PBSA with a densification of this fraction without changing film crystallinity. These structural changes allowed to strongly improve the water vapor and gas barrier properties of the PBSA layer into the multilayer film up to two decades in the case of CO 2 gas. By confining the PBSA structure in very thin and continuous layers, it was then possible to improve the barrier performances of a biodegradable system and the resulting barrier properties were successfully correlated to the effect of confinement on the microstructure and the chain segment mobility of the amorphous phase. Such investigation on these multinanolayers of PLA/PBSA with the aim of evidencing relationships between microstructure implying RAF and barrier performances has never been performed yet. Besides, gas and water permeation results have shown that the barrier improvement obtained from the multilayer was mainly due to the reduction of solubility linked to the reduction of the free volume while

  15. Biodegradable nanofibers-reinforced microfibrous composite scaffolds for bone tissue engineering.

    Science.gov (United States)

    Martins, Albino; Pinho, Elisabete D; Correlo, Vítor M; Faria, Susana; Marques, Alexandra P; Reis, Rui L; Neves, Nuno M

    2010-12-01

    Native bone extracellular matrix (ECM) is a complex hierarchical fibrous composite structure, resulting from the assembling of collagen fibrils at several length scales, ranging from the macro to the nanoscale. The combination of nanofibers within microfibers after conventional reinforcement methodologies seems to be a feasible solution to the rational design of highly functional synthetic ECM substitutes. The present work aims at the development of bone ECM inspired structures, conjugating electrospun chitosan (Cht) nanofibers within biodegradable polymeric microfibers [poly(butylene succinate)-PBS and PBS/Cht], assembled in a fiber mesh structure. The nanofibers-reinforced composite fiber mesh scaffolds were seeded with human bone marrow mesenchymal stem cells (hBMSCs) and cultured under osteogenic differentiation conditions. These nanofibers-reinforced composite scaffolds sustained ECM deposition and mineralization, mainly in the PBS/Cht-based fiber meshes, as depicted by the increased amount of calcium phosphates produced by the osteogenic differentiated hBMSCs. The osteogenic genotype of the cultured hBMSCs was confirmed by the expression of osteoblastic genes, namely Alkaline Phosphatase, Osteopontin, Bone Sialoprotein and Osteocalcin, and the transcription factors Runx2 and Osterix, all involved in different stages of the osteogenesis. These data represent the first report on the biological functionality of nanofibers-reinforced composite scaffolds, envisaging the applicability of the developed structures for bone tissue engineering.

  16. Implications of SPION and NBT nanoparticles upon in-vitro and in-situ biodegradation of LDPE film.

    Science.gov (United States)

    Kapri, Anil; Zaidi, M G H; Goel, Reeta

    2010-06-01

    Comparative influence of two nanoparticles viz. superparamagnetic iron oxide nanoparticles (SPION) and nanobarium titanate (NBT) was studied upon the in-vitro and in-situ low-density polyethylene (LDPE) biodegradation efficiency of a potential polymer-degrading microbial consortium. Supplementation of 0.01% concentration (w/v) of the nanoparticles in minimal broth significantly increased the bacterial growth, along with early onset of the exponential phase. Under in-vitro conditions, lambda-max shifts were quicker with nanoparticles and Fourier transform infrared spectroscopy (FTIR) illustrated significant changes in CH/CH2 vibrations, along with introduction of hydroxyl residues in the polymer backbone. Further, simultaneous thermogravimetric-differential thermogravimetry-differential thermal analysis (TG-DTG-DTA) reported multiple-step decomposition of LDPE degraded in the presence of nanoparticles. These findings were supported by scanning electron micrographs (SEM) which revealed greater dissolution of film surface in the presence of nanoparticles. Furthermore, progressive degradation of the film was greatly enhanced when it was incubated under soil conditions for 3 months with the nanoparticles. The study highlights the significance of bacteria-nanoparticle interactions which can dramatically influence key metabolic processes like biodegradation. The authors also propose the exploration of nanoparticles to influence various other microbial processes for commercial viabilities.

  17. Interfaces study of all-polysaccharide composite films

    Czech Academy of Sciences Publication Activity Database

    Šimkovic, I.; Kelnar, Ivan; Mendichi, R.; Tracz, A.; Filip, J.; Bertók, T.; Kasák, P.

    2018-01-01

    Roč. 72, č. 3 (2018), s. 711-718 ISSN 0366-6352 Institutional support: RVO:61389013 Keywords : all-polysaccharide composites * elemental analysis * film properties study Subject RIV: JI - Composite Materials OBOR OECD: Composites (including laminates, reinforced plastics, cermets, combined natural and synthetic fibre fabrics Impact factor: 1.258, year: 2016

  18. Redução da hidrofilicidade de filmes biodegradáveis à base de amido por meio de polimerização por plasma Reduction of hydrophilicity of biodegradable starch-based films by plasma polymerization

    Directory of Open Access Journals (Sweden)

    Rossana M. S. M. Thiré

    2004-03-01

    Full Text Available Devido ao baixo custo de produção e excelente biodegradabilidade, o amido constitui-se em matéria-prima promissora para a produção de plásticos biodegradáveis. No entanto, a grande hidrofilicidade dos filmes à base de amido representa uma séria limitação tecnológica à sua comercialização, uma vez que as propriedades dos filmes são afetadas pela variação da umidade relativa do ar durante a sua estocagem ou o seu uso. Neste trabalho, filmes de amido termoplástico foram recobertos com uma fina camada protetora polimérica gerada por intermédio da tecnologia de plasma frio. 1-Buteno e 1,3-butadieno foram utilizados como monômeros para a polimerização por plasma. Os filmes recobertos apresentaram uma redução de até 80% na absorção de água e aumento do ângulo de contato em relação à água. Estes resultados indicaram uma redução significativa na natureza hidrofílica do material à base de amido após o recobrimento.Due to low cost and excellent biodegradability, the use of starch as a raw material for bioplastic production is growing in interest. However, the properties of starch-based materials are affected by relative humidity during their use and storage due to their hydrophilic character. In this work, thermoplastic cornstarch films were coated by cold plasma technology with a protective thin layer in order to reduce water sensitivity. 1-Butene and 1,3-butadiene were used as monomers for plasma polymerization. Coated films presented a reduction of water absorption up to 80% an increase in contact angle related to water. These results indicated that the coating process reduced significantly the hydrophilic nature of the starch-based materials.

  19. Novel 'nano in nano' composites for sustained drug delivery: biodegradable nanoparticles encapsulated into nanofiber non-wovens.

    Science.gov (United States)

    Beck-Broichsitter, Moritz; Thieme, Marcel; Nguyen, Juliane; Schmehl, Thomas; Gessler, Tobias; Seeger, Werner; Agarwal, Seema; Greiner, Andreas; Kissel, Thomas

    2010-12-08

    Novel 'nano in nano' composites consisting of biodegradable polymer nanoparticles incorporated into polymer nanofibers may efficiently modulate drug delivery. This is shown here using a combination of model compound-loaded biodegradable nanoparticles encapsulated in electrospun fibers. The dye coumarin 6 is used as model compound for a drug in order to simulate drug release from loaded poly(lactide-co-glycolide) nanoparticles. Dye release from the nanoparticles occurs immediately in aqueous solution. Dye-loaded nanoparticles which are encapsulated by electrospun polymer nanofibers display a significantly retarded release. Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. New Fabrication Technique of Conductive Polymer / Insulating Polymer Composite Films

    Science.gov (United States)

    Abe, Yayoi; Mathur, Paramatma Chandra; Bhatnagar, Pramod Kumar; Tada, Kazuya; Onoda, Mitsuyoshi

    The electrochemical polymerization of pyrrole on an ITO (indium-tin oxide) coated glass electrode with an insulating film of poly(vinyl alcohol), PVA produces a flexible composite polymer film with electrical, optical and electrochemical properties very similar to polypyrrole (PPy). The rate of electrochemical polymerization depends on the diffusion of the electrolyte across the PVA film to the ITO electrode. Especially, the solvent with hydrophilic nature easily penetrates into the PVA film. By applying this new process, we demonstrate a unique method to form electrically conductive pattern in PVA film. It will be possible to develop electrodes for electrical stimulation of the nervous system using conducting polymer, PPy. Then, by using similar technique we have fabricated poly (3,4-ethylenedioxythiophene), PEDOT/PVA composite films and investigated their electrochemical basic properties.

  1. Mechanical, Thermomechanical and Reprocessing Behavior of Green Composites from Biodegradable Polymer and Wood Flour.

    Science.gov (United States)

    Morreale, Marco; Liga, Antonio; Mistretta, Maria Chiara; Ascione, Laura; Mantia, Francesco Paolo La

    2015-11-11

    The rising concerns in terms of environmental protection and the search for more versatile polymer-based materials have led to an increasing interest in the use of polymer composites filled with natural organic fillers (biodegradable and/or coming from renewable resources) as a replacement for traditional mineral inorganic fillers. At the same time, the recycling of polymers is still of fundamental importance in order to optimize the utilization of available resources, reducing the environmental impact related to the life cycle of polymer-based items. Green composites from biopolymer matrix and wood flour were prepared and the investigation focused on several issues, such as the effect of reprocessing on the matrix properties, wood flour loading effects on virgin and reprocessed biopolymer, and wood flour effects on material reprocessability. Tensile, Dynamic-mechanical thermal (DMTA), differential scanning calorimetry (DSC) and creep tests were performed, pointing out that wood flour leads to an improvement of rigidity and creep resistance in comparison to the pristine polymer, without compromising other properties such as the tensile strength. The biopolymer also showed a good resistance to multiple reprocessing; the latter even allowed for improving some properties of the obtained green composites.

  2. Mechanical, Thermomechanical and Reprocessing Behavior of Green Composites from Biodegradable Polymer and Wood Flour

    Directory of Open Access Journals (Sweden)

    Marco Morreale

    2015-11-01

    Full Text Available The rising concerns in terms of environmental protection and the search for more versatile polymer-based materials have led to an increasing interest in the use of polymer composites filled with natural organic fillers (biodegradable and/or coming from renewable resources as a replacement for traditional mineral inorganic fillers. At the same time, the recycling of polymers is still of fundamental importance in order to optimize the utilization of available resources, reducing the environmental impact related to the life cycle of polymer-based items. Green composites from biopolymer matrix and wood flour were prepared and the investigation focused on several issues, such as the effect of reprocessing on the matrix properties, wood flour loading effects on virgin and reprocessed biopolymer, and wood flour effects on material reprocessability. Tensile, Dynamic-mechanical thermal (DMTA, differential scanning calorimetry (DSC and creep tests were performed, pointing out that wood flour leads to an improvement of rigidity and creep resistance in comparison to the pristine polymer, without compromising other properties such as the tensile strength. The biopolymer also showed a good resistance to multiple reprocessing; the latter even allowed for improving some properties of the obtained green composites.

  3. Biodegradation improvement of poly(3-hydroxy-butyrate) films by entomopathogenic fungi and UV-assisted surface functionalization.

    Science.gov (United States)

    Kessler, Felipe; Marconatto, Leticia; Rodrigues, Roberta da Silva Bussamara; Lando, Gabriela Albara; Schrank, Augusto; Vainstein, Marilene Henning; Weibel, Daniel Eduardo

    2014-01-05

    Ultraviolet (UV)-assisted surface modification in the presence of oxygen was used as initial step to achieve controlled degradation of poly(3-hydroxy-butyrate), PHB, films by entomopathogenic fungi. Treated surfaces were investigated by surface analysis techniques (water contact angle, Fourier Transformed Infrared Spectroscopy in Attenuated Total Reflectance mode, X-ray Photoelectron Spectroscopy, Near-edge X-ray Absorption Fine Structure, Gel Permeation Chromatography, Optical Microscopy, Scanning Electron Microscopy, and weight loss). After the UV-assisted treatments, new carbonyl groups in new chemical environments were detected by XPS and NEXAFS spectroscopy. The oxidizing atmosphere did not allow the formation of CC bonds, indicating that Norrish Type II mechanism is suppressed during or by the treatments. The higher hydrophilicity and concentration of oxygenated functional groups at the surface of the treated films possibly improved the biodegradation of the films. It was observed a clear increase in the growth of this fungus when oxygenated groups were grafted on the polymers surfaces. This simple methodology can be used to improve and control the degradation rate of PHB films in applications that require a controllable degradation rate. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. High strength, biodegradable and cytocompatible alpha tricalcium phosphate-iron composites for temporal reduction of bone fractures.

    Science.gov (United States)

    Montufar, E B; Casas-Luna, M; Horynová, M; Tkachenko, S; Fohlerová, Z; Diaz-de-la-Torre, S; Dvořák, K; Čelko, L; Kaiser, J

    2018-04-01

    In this work alpha tricalcium phosphate (α-TCP)/iron (Fe) composites were developed as a new family of biodegradable, load-bearing and cytocompatible materials. The composites with composition from pure ceramic to pure metallic samples were consolidated by pulsed electric current assisted sintering to minimise processing time and temperature while improving their mechanical performance. The mechanical strength of the composites was increased and controlled with the Fe content, passing from brittle to ductile failure. In particular, the addition of 25 vol% of Fe produced a ceramic matrix composite with elastic modulus much closer to cortical bone than that of titanium or biodegradable magnesium alloys and specific compressive strength above that of stainless steel, chromium-cobalt alloys and pure titanium, currently used in clinic for internal fracture fixation. All the composites studied exhibited higher degradation rate than their individual components, presenting values around 200 μm/year, but also their compressive strength did not show a significant reduction in the period required for bone fracture consolidation. Composites showed preferential degradation of α-TCP areas rather than β-TCP areas, suggesting that α-TCP can produce composites with higher degradation rate. The composites were cytocompatible both in indirect and direct contact with bone cells. Osteoblast-like cells attached and spread on the surface of the composites, presenting proliferation rate similar to cells on tissue culture-grade polystyrene and they showed alkaline phosphatase activity. Therefore, this new family of composites is a potential alternative to produce implants for temporal reduction of bone fractures. Biodegradable alpha-tricalcium phosphate/iron (α-TCP/Fe) composites are promising candidates for the fabrication of temporal osteosynthesis devices. Similar to biodegradable metals, these composites can avoid implant removal after bone fracture healing, particularly in

  5. Performance and environmental impact of biodegradable polymers as agricultural mulching films.

    Science.gov (United States)

    Touchaleaume, François; Martin-Closas, Lluís; Angellier-Coussy, Hélène; Chevillard, Anne; Cesar, Guy; Gontard, Nathalie; Gastaldi, Emmanuelle

    2016-02-01

    In the aim of resolving environmental key issues such as irreversible soil pollution by non-biodegradable and non-recoverable polyethylene (PE) fragments, a full-scale field experiment was set up to evaluate the suitability of four biodegradable materials based on poly(butylene adipate-co-terephtalate) (PBAT) to be used as sustainable alternatives to PE for mulching application in vineyard. Initial ultimate tensile properties, functional properties during field ageing (water vapour permeability and radiometric properties), biodegradability and agronomical performance of the mulched vines (wood production and fruiting yield) were studied. In spite of their early loss of physical integrity that occurred only five months after vine planting, the four materials satisfied all the requested functional properties and led to agronomic performance as high as polyethylene. In the light of the obtained results, the mulching material lifespan was questioned in the case of long-term perennial crop such as grapevine. Taking into account their mulching efficiency and biodegradability, the four PBAT-based studied materials are proven to constitute suitable alternatives to the excessively resistant PE material. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Role of organoclay in controlling the morphology and crystal-growth behavior of biodegradable polymer-blend thin films studied using atomic force microscopy

    CSIR Research Space (South Africa)

    Malwela, T

    2014-09-01

    Full Text Available This study reports the effect of organically modified nanoclay on the morphology and crystal growth behavior of biodegradable polylactide/poly[(butylene succinate)-co-adipate] (PLA/PBSA) blend thin films with the average thickness of 280 nm...

  7. Effect of Plasticizer Type and Concentration on Tensile, Thermal and Barrier Properties of Biodegradable Films Based on Sugar Palm (Arenga pinnata Starch

    Directory of Open Access Journals (Sweden)

    Muhammed L. Sanyang

    2015-06-01

    Full Text Available The use of starch based films as a potential alternative choice to petroleum derived plastics is imperative for environmental waste management. This study presents a new biopolymer (sugar palm starch for the preparation of biodegradable packaging films using a solution casting technique. The effect of different plasticizer types (glycerol (G, sorbitol (S and glycerol-sorbitol (GS combination with varying concentrations (0, 15, 30 and 45, w/w% on the tensile, thermal and barrier properties of sugar palm starch (SPS films was evaluated. Regardless of plasticizer types, the tensile strength of plasticized SPS films decreased, whereas their elongation at break (E% increased as the plasticizer concentrations were raised. However, the E% for G and GS-plasticized films significantly decreased at a higher plasticizer concentration (45% w/w due to the anti-plasticization effect of plasticizers. Change in plasticizer concentration showed an insignificant effect on the thermal properties of S-plasticized films. The glass transition temperature of SPS films slightly decreased as the plasticizer concentration increased from 15% to 45%. The plasticized films exhibited increased water vapor permeability values from 4.855 × 10−10 to 8.70 × 10−10 g·m−1·s−1·Pa−1, irrespective of plasticizer types. Overall, the current study manifested that plasticized sugar palm starch can be regarded as a promising biopolymer for biodegradable films.

  8. Thin composite films consisting of polypyrrole and polyparaphenylene

    International Nuclear Information System (INIS)

    Golovtsov, I.; Bereznev, S.; Traksmaa, R.; Opik, A.

    2007-01-01

    This study demonstrates that the combined method for the formation of thin composite films, consisting of polypyrrole (PPy) as a film forming agent and polyparaphenylene (PPP) with controlled electrical properties and high stability, enables one to avoid the low processability of PPP and to extend the possibilities for the development of electronic devices. The high temperature (250-600 deg. C) doping method was used for PPP preparation. The crystallinity and grindability of PPP was found to be increasing with the thermochemical modification. Thin composite films were prepared onto the light transparent substrates using the simple electropolymerization technique. The properties of films were characterized by the optical transmittance and temperature-dependent conductivity measurements. The morphology and thickness of the prepared films were determined using the scanning electron microscopy. The composite films showed a better adhesion to an inorganic substrate. It was found to be connected mostly with the improved properties of the high temperature doped PPP. The current-voltage characteristics of indium tin oxide/film/Au hybrid organic-inorganic structures showed the influence of the doping conditions of PPP inclusions in the obtained films

  9. Innovative biodegradable poly(L-lactide/collagen/hydroxyapatite composite fibrous scaffolds promote osteoblastic proliferation and differentiation

    Directory of Open Access Journals (Sweden)

    Zhou GQ

    2017-10-01

    Full Text Available Guoqiang Zhou,1–3 Sudan Liu,1 Yanyan Ma,1 Wenshi Xu,1 Wei Meng,1 Xue Lin,1 Wenying Wang,1,3 Shuxiang Wang,1–3 Jinchao Zhang1–3 1College of Chemistry and Environmental Science, 2Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, 3Key Laboratory of Chemical Biology of Hebei Province, Hebei University, Baoding, Hebei, People’s Republic of China Abstract: The development of an artificial bone graft which can promote the regeneration of fractures or diseased bones is currently the most challenging aspect in bone tissue engineering. To achieve the purpose of promoting bone proliferation and differentiation, the artificial graft needs have a similar structure and composition of extracellular matrix. One-step electrospinning method of biocomposite nanofibers containing hydroxyapatite (HA nanoparticles and collagen (Coll were developed for potential application in bone tissue engineering. Nanocomposite scaffolds of poly(L-lactide (PLLA, PLLA/HA, PLLA/Coll, and PLLA/Coll/HA were fabricated by electrospinning. The morphology, diameter, elements, hydrophilicity, and biodegradability of the composite scaffolds have been investigated. The biocompatibility of different nanocomposite scaffolds was assessed using mouse osteoblasts MC3T3-E1 in vitro, and the proliferation, differentiation, and mineralization of cells on different nanofibrous scaffolds were investigated. The results showed that PLLA/Coll/HA nanofiber scaffolds enhanced cell adhesion, spreading, proliferation, differentiation, mineralization, and gene expression of osteogenic markers compared to other scaffolds. In addition, the nanofibrous scaffolds maintained a stable composition at the beginning of the degradation period and morphology wastage and weight loss were observed when incubated for up to 80 days in physiological simulated conditions. The PLLA/Coll/HA composite nanofibrous scaffolds could be a potential material for guided bone regeneration

  10. Drug release kinetics from carboxymethylcellulose-bacterial cellulose composite films.

    Science.gov (United States)

    Juncu, Gheorghe; Stoica-Guzun, Anicuta; Stroescu, Marta; Isopencu, Gabriela; Jinga, Sorin Ion

    2016-08-30

    Composite films of sodium carboxymethyl cellulose and bacterial cellulose (NaCMC-BC) cross-linked with citric acid (CA) were prepared by solution casting method. Ibuprofen sodium salt (IbuNa) has been used to study the mechanism of drug release from composite films. Surface morphology was investigated by scanning electron microscopy (SEM) and proved that the BC content influences the aspect of the films. Fourier transformed infrared spectroscopy (FTIR) revealed specific peaks in IR spectra of composite films which sustain that NaCMC was cross-linked with CA. Starting from swelling observations, the release kinetic of IbuNa was described using a model which neglects the volume expansion due to polymer swelling and which considers non-linear diffusion coefficients for drug and solvent. The IbuNa release is also influenced by BC content, the drug release rate was decreasing with the increase of BC content. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Temperature-controlled transparent-film heater based on silver nanowire-PMMA composite film

    Science.gov (United States)

    He, Xin; Liu, A.'lei; Hu, Xuyang; Song, Mingxia; Duan, Feng; Lan, Qiuming; Xiao, Jundong; Liu, Junyan; Zhang, Mei; Chen, Yeqing; Zeng, Qingguang

    2016-11-01

    We fabricated a high-performance film heater based on a silver nanowire and polymethyl methacrylate (Ag NW-PMMA) composite film, which was synthesized with the assistance of mechanical lamination and an in situ transfer method. The films exhibit excellent conductivity, high figure of merit, and strong adhesion of percolation network to substrate. By controlling NW density, we prepared the films with a transmittance of 44.9-85.0% at 550 nm and a sheet resistance of 0.13-1.40 Ω sq-1. A stable temperature ranging from 130 °C-40 °C was generated at 3.0 V within 10-30 s, indicating that the resulting film heaters show a rapid thermal response, low driving voltage and stable temperature recoverability. Furthermore, we demonstrated the applications of the film heater in defrosting and a physical therapeutic instrument. A fast defrosting on the composite film with a transmittance of 88% was observed by applying a 9 V driving voltage for 20 s. Meanwhile, we developed a physical therapeutic instrument with two modes of thermotherapy and electronic-pulse massage by using the composite films as two electrodes, greatly decreasing the weight and power consumption compared to a traditional instrument. Therefore, Ag NW-PMMA film can be a promising candidate for diversified heating applications.

  12. Biodegradation of Methylene Blue Dye by Sequential Treatment Using Anaerobic Hybrid Reactor and Submerged Aerobic Fixed Film Bioreactor

    Science.gov (United States)

    Farooqi, Izharul H.; Basheer, Farrukh; Tiwari, Pradeepika

    2017-12-01

    Laboratory scale experiments were carried out to access the feasibility of sequential anaerobic/aerobic biological treatment for the biodegradation of Methylene Blue (MB) dye. Anaerobic studies were performed using anaerobic hybrid reactor (consisting of UASB and Anaerobic filter) whereas submerged aerobic fixed film reactor was used as aerobic reactor. Degradation of MB dye was attempted using neutralized acetic acid (1000 mg/L) as co-substrate. MB dye concentration was stepwise increased from 10 to 70 mg/L after reaching steady state in each dye concentration. Such a gradual increase in the dye concentration helps in the proper acclimatization of the sludge to dyes thereby avoiding the possible inhibitory effects to biological activities at high dye concentrations. The overall treatment efficiency of MB through sequential anaerobic-aerobic reactor operation was 90% at maximum attempted dye concentration of 70 mg/L. The effluent from anaerobic reactor was analysed for intermediate biodegradation products through HPLC. It was observed that catechol, quinone, amino pyrine, 1,4 diamino benzene were present. However they were absent in final effluent.

  13. Effect of chemical heterogeneity of biodegradable polymers on surface energy: A static contact angle analysis of polyester model films.

    Science.gov (United States)

    Belibel, R; Avramoglou, T; Garcia, A; Barbaud, C; Mora, L

    2016-02-01

    Biodegradable and bioassimilable poly((R,S)-3,3 dimethylmalic acid) (PDMMLA) derivatives were synthesized and characterized in order to develop a new coating for coronary endoprosthesis enabling the reduction of restenosis. The PDMMLA was chemically modified to form different custom groups in its side chain. Three side groups were chosen: the hexyl group for its hydrophobic nature, the carboxylic acid and alcohol groups for their acid and neutral hydrophilic character, respectively. The sessile drop method was applied to characterize the wettability of biodegradable polymer film coatings. Surface energy and components were calculated. The van Oss approach helped reach not only the dispersive and polar acid-base components of surface energy but also acid and basic components. Surface topography was quantified by atomic force microscopy (AFM) and subnanometer average values of roughness (Ra) were obtained for all the analyzed surfaces. Thus, roughness was considered to have a negligible effect on wettability measurements. In contrast, heterogeneous surfaces had to be corrected by the Cassie-Baxter equation for copolymers (10/90, 20/80 and 30/70). The impact of this correction was quantified for all the wettability parameters. Very high relative corrections (%) were found, reaching 100% for energies and 30% for contact angles. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Fabrication and mechanical characterization of biodegradable and synthetic polymeric films: Effect of gamma radiation

    Science.gov (United States)

    Akter, Nousin; Khan, Ruhul A.; Salmieri, Stephane; Sharmin, Nusrat; Dussault, Dominic; Lacroix, Monique

    2012-08-01

    Chitosan (1 wt%, in 2% aqueous acetic acid solution) and starch (1 wt%, in deionised water) were dissolved and mixed in different proportions (20-80 wt% chitosan) then films were prepared by casting. Tensile strength and elongation at break of the 50% chitosan containing starch-based films were found to be 47 MPa and 16%, respectively. It was revealed that with the increase of chitosan in starch, the values of TS improved significantly. Monomer, 2-butane diol-diacrylate (BDDA) was added into the film forming solutions (50% starch-based), then casted films. The BDDA containing films were irradiated under gamma radiation (5-25 kGy) and it was found that strength of the films improved significantly. On the other hand, synthetic petroleum-based polymeric films (polycaprolactone, polyethylene and polypropylene) were prepared by compression moulding. Mechanical and barrier properties of the films were evaluated. The gamma irradiated (25 kGy) films showed higher strength and better barrier properties.

  15. Effect of filler loading and silane modification on the biodegradability of SBR composites reinforced with peanut shell powder

    Science.gov (United States)

    Shaniba, V.; Balan, Aparna K.; Sreejith, M. P.; Jinitha, T. V.; Subair, N.; Purushothaman, E.

    2017-06-01

    The development of biocomposites and their applications are important in material science due to environmental and sustainability issues. The extent of degradation depends on the nature of reinforcing filler, particle size and their modification. In this article, we tried to focus on the biodegradation of composites of Styrene Butadiene Rubber (SBR) reinforced with Peanut Shell Powder (PSP) by soil burial test. The composites of SBR with untreated PSP (UPSP) and silane modified PSP (SPSP) of 10 parts per hundred rubber (phr) and 20 phr filler loading in two particle size were buried in the garden soil for six months. The microbial degradation were assessed through the measurement of weight loss, tensile strength and hardness at definite period. The study shows that degradation increases with increase in filler loading and particle size. The chemical treatment of filler has been found to resist the degradation. The analysis of morphological properties by the SEM also confirmed biodegradation process by the microorganism in the soil.

  16. [Spectroscopic study on film formation mechanism and structure of composite silanes-V-Zr passive film].

    Science.gov (United States)

    Wang, Lei; Liu, Chang-sheng; Shi, Lei; An, Cheng-qiang

    2015-02-01

    A composite silanes-V-Zr passive film was overlayed on hot-dip galvanized steel. Attenuated total reflection Fourier transformed infrared spectroscopy (ATR-FTIR), X-ray photoelectron spectrometer (XPS) and radio frequency glow discharge optical emission spectrometry (rf-GD-OES) were used to characterize the molecular structure of the silanes-V-Zr passive film. The mechanism of film formation was discussed: The results show that the silane molecules are crosslinked as the main film former and inorganic inhibitor is even distributed in the film. The fitting peak of 100.7 eV in XPS single Si2p energy range spectra of the composite silanes-V-Zr passive film and the widening and strengthening of the Si--O infrared absorption peak at 1100 cm(-1) indicate that the silanes were adsorbed on the surface of zinc with chemical bond of Si--O--Zn, and the silane molecules were connected with each other by bond of Si--O--Si. Two characteristic absorption peaks of amide at 1650 and 1560 cm(-1) appear in the infrared spectroscopy of the composite silanes-V-Zr passive film, and a characteristic absorption peak of epoxy groups at 910 cm(-1) disappears in the infrared spectroscopy of the passive film. The results indicate that gamma-APT can be prepared through nucleophilic ring-opening of ethylene oxide in gamma-GPT molecule to form C--N covalent bonds. The rf-GD-OES results indicate that there is a oxygen enriched layer in 0.3 microm depth of the composite silanes-V-Zr passive film. Moreover, ZrF4, ZrO2 and some inorganic matter obtained by the reaction during the forming processof the composite silanes-V-Zr passive film are distributed evenly throughout the film. According to the film composition, the physical processes and chemical reactions during the film forming process were studied by using ATR-FTIR. Based on this, the film forming mechanism was proposed.

  17. Influence of copper composition on mechanical properties of biodegradable material Mg-Zn-Cu for orthopedic application

    Science.gov (United States)

    Purniawan, A.; Maulidiah, H. M.; Purwaningsih, H.

    2018-04-01

    Implant is usually used as a treatment of bone fracture. At the moment, non-biodegradable implants is still widely employed in this application. Non-biodegradable implant requires re-surgery to retrieve implants that are installed in the body. It increase the cost and it is painful for the patient itself. In order to solve the problem, Mg-based biodegradable metals is developing so that the material will be compatible with body and gradually degrade in patient's body. However, magnesium has several disadvantages such as high degradation rates and low mechanical properties when compared to the mechanical properties of natural bone. Therefore, it is necessary to add elements into the magnesium alloy. In this research, copper (Cu) was alloyed in Mg alloy based biodegradable material. In addition, Cu is not only strengthening the structure but also for supporting element for the immune system, antibacterial and antifungal. The purpose of this research is to improve mechanical properties of Mg-based biodegradable material using Cu alloying. Powder metallurgy method was used to fabricate the device. The variation used in this research is the composition of Cu (0.5, 1, and 1.5% Cu). The porosity test was performed using apparent porosity test, compressive test and hardness test to know the mechanical properties of the alloy, and the weightless test to find out the material degradation rate. Based on the results can be conclude that Mg-Zn-Cu alloy material with 1% Cu composition is the most suitable specimen to be applied as a candidate for orthopedic devices material with hardness value is 393.6 MPa. Also obtained the value of the compressive test is 153 MPa.

  18. Synthesis and characterization of silver-polypyrrole film composite

    Energy Technology Data Exchange (ETDEWEB)

    Ayad, Mohamad M., E-mail: mayad12000@yahoo.com [Department of Chemistry, Faculty of Science, University of Tanta, Tanta (Egypt); Zaki, Eman [Department of Chemistry, Faculty of Science, University of Tanta, Tanta (Egypt)

    2009-11-15

    In this work, we report the chemical polymerization of pyrrole to obtain thin film of polypyrrole (PPy) hydrochloride deposited onto the electrode of the quartz crystal microbalance (QCM). The film in the base form was exposed to a solution of AgNO{sub 3}. Electroless reduction for silver ions by the PPy film took place and silver particles were adsorbed onto the film surface. The silver particles content at the PPy films were analyzed by QCM and the results showed that the concentrations of silver uptakes increase as the original AgNO{sub 3} solution increases. The morphology of the surface of the PPy film and the silver-PPy film composite were studied by the scanning electron microscopy (SEM) coupled with energy dispersive X-ray spectrometry (EDX). They showed that the obtained silver particles have spherical, cubic and tetrahedral structures. X-ray diffraction (XRD) and Fourier transformed infra-red spectroscopy (FTIR) were used to characterize the structure of the powder composite. This work reveals the capability of PPy film coating on QCM in sensing and removing silver from several environmental samples.

  19. Synthesis and characterization of silver-polypyrrole film composite

    International Nuclear Information System (INIS)

    Ayad, Mohamad M.; Zaki, Eman

    2009-01-01

    In this work, we report the chemical polymerization of pyrrole to obtain thin film of polypyrrole (PPy) hydrochloride deposited onto the electrode of the quartz crystal microbalance (QCM). The film in the base form was exposed to a solution of AgNO 3 . Electroless reduction for silver ions by the PPy film took place and silver particles were adsorbed onto the film surface. The silver particles content at the PPy films were analyzed by QCM and the results showed that the concentrations of silver uptakes increase as the original AgNO 3 solution increases. The morphology of the surface of the PPy film and the silver-PPy film composite were studied by the scanning electron microscopy (SEM) coupled with energy dispersive X-ray spectrometry (EDX). They showed that the obtained silver particles have spherical, cubic and tetrahedral structures. X-ray diffraction (XRD) and Fourier transformed infra-red spectroscopy (FTIR) were used to characterize the structure of the powder composite. This work reveals the capability of PPy film coating on QCM in sensing and removing silver from several environmental samples.

  20. Synthesis and characterization of silver-polypyrrole film composite

    Science.gov (United States)

    Ayad, Mohamad. M.; Zaki, Eman

    2009-11-01

    In this work, we report the chemical polymerization of pyrrole to obtain thin film of polypyrrole (PPy) hydrochloride deposited onto the electrode of the quartz crystal microbalance (QCM). The film in the base form was exposed to a solution of AgNO 3. Electroless reduction for silver ions by the PPy film took place and silver particles were adsorbed onto the film surface. The silver particles content at the PPy films were analyzed by QCM and the results showed that the concentrations of silver uptakes increase as the original AgNO 3 solution increases. The morphology of the surface of the PPy film and the silver-PPy film composite were studied by the scanning electron microscopy (SEM) coupled with energy dispersive X-ray spectrometry (EDX). They showed that the obtained silver particles have spherical, cubic and tetrahedral structures. X-ray diffraction (XRD) and Fourier transformed infra-red spectroscopy (FTIR) were used to characterize the structure of the powder composite. This work reveals the capability of PPy film coating on QCM in sensing and removing silver from several environmental samples.

  1. Electrical and thermal properties of PLA/CNT composite films

    OpenAIRE

    Ceregatti, Thayara; Pecharki, Paloma; Pachekoski, Wagner M.; Becker, Daniela; Dalmolin, Carla

    2017-01-01

    ABSTRACT Conducting polymers presents many potential applications such as biosensors and biofuelcells. However, to be used in those devices, a thin film must be deposited onto a conducting and biocompatible substrate. In this work, carbon nanotubes (CNT) were mixed in a poly (lactic acid) - PLA - matrix with different compositions (from 0.25 to 5.0 %) in order to form conducting composites suitable to the deposition of a conducting polymer. Thermal properties of PLA/CNT composites were evalua...

  2. Biodegradation of porous versus non-porous poly(L-lactic acid) films

    NARCIS (Netherlands)

    Lam, K.H.; Nieuwenhuis, P.; Molenaar, I.; Esselbrugge, H.; Esselbrugge, H.; Feijen, Jan; Dijkstra, Pieter J.; Schakenraad, J.M.

    1994-01-01

    The influence of porosity on the degradation rate of poly(L-lactic acid) (PLLA) films was investigated in vitro and in vivo. Non-porous, porous and “combi” (porous with a non-porous layer) PLLA films were used. Changes in Mw, Mn, polydispersity (Mw/Mn) ratio, melting temperature (Tm), heat of

  3. In vitro degradation of biodegradable polylactic acid/magnesium composites: Relevance of Mg particle shape.

    Science.gov (United States)

    Cifuentes, S C; Gavilán, R; Lieblich, M; Benavente, R; González-Carrasco, J L

    2016-03-01

    Absorbable medical devices must be developed in order to have an appropriate degradation rate in agreement with the healing rate of bone in the implantation site. In this work, biodegradable composites formed by a polylactic acid matrix reinforced with 10%wt. magnesium microparticles were processed and their in vitro degradation investigated during 28 days. A joint analysis of the amount of H2 released, the changes in pH in buffered (PBS) and non-buffered media (distilled water), the variations in mass, microstructure and the mechanical performance of the specimens was developed. The main aim was to elucidate the relevance of Mg particles shape on tailoring the degradation kinetics of these novel composites. The results show that the shape of the Mg reinforcing particles plays a crucial role in the degradation rate of PLA/Mg composites, with spherical particles promoting a lower degradation rate than irregular particles. This fact is only partially due to the smaller surface area to volume ratio of the spherical particles. Irregular particles promote a faster formation of cracks and, therefore, an increasingly faster degradation of the polymeric matrix. In every case, the amount of H2 released by the composites was well below that released by monolithic Mg. The pH of PBS during degradation remained always within 7.2 and 7.4. PLA/Mg reinforced with spherical particles retains more than 90% of its mechanical properties after 7 days of immersion and more than 60% after 28 days. The increasing demand for temporary orthopaedic implants is the driving force to seek new strategies to decrease costs and simultaneously improve patients comfort as well as simplify surgical procedures. Resorbable medical devices must be developed in order to have an appropriate degradation rate in agreement with the healing rate of bone. We are presenting for the first time results of the degradation kinetics of a new material based on polylactic acid reinforced with 10%wt. Mg microparticles

  4. Digital Compositing Dalam Film Animasi 3 Dimensi

    Directory of Open Access Journals (Sweden)

    Cito Yasuki Yasuki Rahmad

    2016-01-01

    Full Text Available Animation is a technique mostly used in the film world. Nowadays it is growing intechnical animation creation. Animation has evolved from 2D animation to the nextstage in the new form, more realistic and interesting, that is the 3D animation. With thedevelopment of existing technology, the 3D animation is more amazing for the audience,especially 3D animation combined with real action (live action. With the digitalcompositing, the result of a combination of 3D and real action to make the film seemmore alive, because the animation is really close to the original in real life.

  5. Edible films and coatings based on biodegradable residues applied to acerolas (Malpighia punicifolia L.).

    Science.gov (United States)

    Ferreira, Mariana S L; Fai, Ana Elizabeth C; Andrade, Cristina T; Picciani, Paulo H; Azero, Edwin G; Gonçalves, Édira C B A

    2016-03-30

    This study aimed to produce and characterize edible films and coatings from fruit and vegetable residue (FVR) flour and potato peel (P) flour. Two coating approaches (immersion and film) were studied on the quality of acerolas. Film-forming solutions (FFS) presented a viscoelastic behavior and a gelation process occurring at 70 °C. Maximum density (1.018 g cm(-3) ), viscosity (44.404 cP) and starch content were obtained for FFS based on 8% FVR flour with 4% P flour. This same film presented enhanced mechanical properties such as tensile strength and elongation at break (0.092 MPa and 36% respectively). Solubility of the films averaged 87%, demonstrating high hydrophilicity. Improved performance was obtained for film-packaged acerolas, which exhibited an increase in shelf life of 50% compared with control fruits. A lower loss of weight was observed for these samples by about 30-57% compared with control fruits, but minor modifications of pH, titratable acidity and soluble solid content occurred during storage. This study demonstrated the potential of FVR flour for edible coating and film formulation. Practical application on acerolas constituted a motivating route to evaluate and optimize this process; however, microbiological and sensory analyses are necessary to assess the material acceptability and safety. © 2015 Society of Chemical Industry.

  6. Development of an active biodegradable film containing tocopherol and avocado peel extract

    Directory of Open Access Journals (Sweden)

    J.C.F. Fidelis

    2015-12-01

    Full Text Available Thermoplastic starch (TPS films and poly(butylene adipate co-terephthalate (PBAT (60/40 m/m containing TOCO-70 (tocopherol/soybean oil 70/30 m/m and avocado peel extract (ExA were produced using blown film extrusion. The formulations of the 5 films (FC/F1/F2/F3 and F4 were established through mixture design with constraints maintaining constant PBAT and TPS proportion, and varying the antioxidant concentrations. Adding antioxidants reduced the water vapour permeability (Kw of the films, with formulation F2 presenting higher decrease in relationto FC, 77.8%. The presence of ExA improved the mechanical properties of the films. The production of the films was determined to be viable after they presented good processability in a pilotextruder, as well as mechanical properties appropriate to production and utilization in industry.The presence of ExA and TOCO 70 provided the films with antioxidant activity; their application as active packaging requires further studies.

  7. Preparation and Tribological Study of Biodegradable Lubrication Films on Si Substrate

    Directory of Open Access Journals (Sweden)

    Shih-Chen Shi

    2015-04-01

    Full Text Available A novel method for preparing eco-biodegradable lubricant based on hydroxypropyl methylcellulose (HPMC via hydration process is demonstrated. The smooth and homogeneous HPMC coating has a uniform thickness (~35 μm. It has been demonstrated that the preparation parameters play a critical role in controlling the lubricating behavior of the coating; in addition, excess HPMC and water concentration suppress the tribology properties. Nevertheless, a remarkable friction-reduction and anti-wear performance has been obtained. Impressively, the preparation parameter of 5% HPMC + 30 mL water significantly improves lubricant performance and durability. A simple approach for the water-degradability evaluation of HPMC is proposed.

  8. Preparation and Tribological Study of Biodegradable Lubrication Films on Si Substrate.

    Science.gov (United States)

    Shi, Shih-Chen; Huang, Teng-Feng; Wu, Jhen-Yu

    2015-04-14

    A novel method for preparing eco-biodegradable lubricant based on hydroxypropyl methylcellulose (HPMC) via hydration process is demonstrated. The smooth and homogeneous HPMC coating has a uniform thickness (~35 μm). It has been demonstrated that the preparation parameters play a critical role in controlling the lubricating behavior of the coating; in addition, excess HPMC and water concentration suppress the tribology properties. Nevertheless, a remarkable friction-reduction and anti-wear performance has been obtained. Impressively, the preparation parameter of 5% HPMC + 30 mL water significantly improves lubricant performance and durability. A simple approach for the water-degradability evaluation of HPMC is proposed.

  9. Improved Biodegradable Radiation Cured Polymeric Film Prepared from Chitosan-Gelatin Blend

    OpenAIRE

    Nasreen, Zinia; Khan, Mubarak A.; Mustafa, A. I.

    2016-01-01

    The mechanical, thermal, swelling, and release properties of chitosan-gelatin (CG) films have been investigated in order to verify the influence of UV and gamma radiation on the stability of the films. Thin films of chitosan and gelatin (1 : 3, w/w) that were radiated with 100 krad of gamma dose showed the best performance and the TS values reached 25, 45, and 49 MPa, respectively, for chitosan, gelatin, and blend. The corresponding highest TS values were 23, 42, and 45 MPa, respectively, for...

  10. A biodegradable colorimetric film for rapid low-cost field determination of formaldehyde contamination by digital image colorimetry.

    Science.gov (United States)

    Wongniramaikul, Worawit; Limsakul, Wadcharawadee; Choodum, Aree

    2018-05-30

    A biodegradable colorimetric film was fabricated on the lid of portable tube for in-tube formaldehyde detection. Based on the entrapment of colorimetric reagents within a thin film of tapioca starch, the yellow reaction product was observed with formaldehyde. Intensity of the blue channel from the digital image of yellow product showed a linear relationship in the range of 0-25 mg L -1 with low detection limit of 0.7 ± 0.1 mg L -1 . Inter-day precision of 0.61-3.10%RSD were obtained with less than 4.2% relative error from control samples. The developed method was applied for various food samples in Phuket and formaldehyde concentration range was non-detectable to 1.413 mg kg -1 . The quantified concentrations of formaldehyde in fish and squid samples provided relative errors of -7.7% and +10.8% compared to spectrophotometry. This low cost sensor (∼0.04 USD/test) with digital image colorimetry was thus an effective alternative for formaldehyde detection in food sample. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Wearable near-field communication antennas with magnetic composite films

    Directory of Open Access Journals (Sweden)

    Bihong Zhan

    2017-06-01

    Full Text Available The flexible near-field communication (NFC antennas integrated with Fe3O4/ethylene-vinyl acetate copolymer (EVA magnetic films were presented, and the influence of the magnetic composite films on the performance and miniaturization capability of the NFC antennas was investigated. Theoretical analysis and experimental results show that the integration of the magnetic composite films is conducive to the miniaturization of the NFC antennas. However, the pattern design of the integrated magnetic film is very important to improve the communication performance of NFC antenna. When magnetic film covers whole antenna, the inductance (L and quality factor (Q of the NFC antenna at 13MHz are increased by 60% and 5% respectively, but the communication distance of NFC system is decreased by 70%. When the magnetic film is located at the center of the antenna, the L value, Q value and communication distance of the NFC antenna are increased by 16.5%, 15.5% and 20% respectively. It can be seen that the application of the integrated magnetic film with optimized pattern to the NFC antenna can not only reduce the size of the antenna, but also improve the overall performance of the antenna.

  12. Improved Biodegradable Radiation Cured Polymeric Film Prepared from Chitosan-Gelatin Blend

    Directory of Open Access Journals (Sweden)

    Zinia Nasreen

    2016-01-01

    Full Text Available The mechanical, thermal, swelling, and release properties of chitosan-gelatin (CG films have been investigated in order to verify the influence of UV and gamma radiation on the stability of the films. Thin films of chitosan and gelatin (1 : 3, w/w that were radiated with 100 krad of gamma dose showed the best performance and the TS values reached 25, 45, and 49 MPa, respectively, for chitosan, gelatin, and blend. The corresponding highest TS values were 23, 42, and 45 MPa, respectively, for 10 passes of UV radiation. The effect of radiation over gelatin, chitosan, and CG blend caused modification in the arrangement of molecules in the crystal lattice that is significant by XRD analysis. Surfaces of the films were also investigated by scanning electron microscope (SEM. Fourier transform infrared spectroscopy (FTIR studies further revealed structural changes of the films. These changes were attributed to understanding the behavior of the irradiated chitosan, gelatin, and CG blend on application of thermal energy using DSC and TGA studies, water uptake of the films in aqueous medium, and soil degradation properties to observe the best possibility for its application.

  13. Fabrication of polypeptide-based piezoelectric composite polymer film

    International Nuclear Information System (INIS)

    Farrar, Dawnielle; West, James E.; Busch-Vishniac, Ilene J.; Yu, Seungju M.

    2008-01-01

    A new class of molecular composite piezoelectric material was produced by simultaneous poling and curing of a homogeneous solution comprising poly(γ-benzyl α,L-glutamate) and methylmethacrylate via corona discharge methods. This film exhibited high piezoelectricity (d 33 = 23 pC N -1 ), and its mechanical characteristics (modulus = 450 MPa) were similar to those of low molecular weight poly(methylmethacrylate). As it is produced via solution-based fabrication processes, the composite film is conducive to miniaturization for small sensors with integrated electronics, and could also potentially be used in piezoelectric coating applications

  14. Improving the physical and moisture barrier properties of Lepidium perfoliatum seed gum biodegradable film with stearic and palmitic acids.

    Science.gov (United States)

    Seyedi, Samira; Koocheki, Arash; Mohebbi, Mohebbat; Zahedi, Younes

    2015-01-01

    Stearic and palmitic fatty acids (10%, 20% and 30%, W/W gum) were used to improve the barrier properties of Lepidium perfoliatum seed gum (LPSG) film. The impact of the incorporation of fatty acids into the film matrix was studied by investigating the physical, mechanical, and barrier properties of the films. Addition of stearic and palmitic fatty acids to LPSG films reduced their water vapor permeability (WVP), moisture content, water solubility and water adsorption. Increasing fatty acid concentration from 10% to 30%, reduced the elongation at break (EB). Lower values of tensile strength (TS) and elastic modulus (EM) were obtained in the presence of higher fatty acids concentrations. Incorporation of fatty acids led to production of opaque films and the opacity increased as function of fatty acids concentration. Results showed that moisture content, water solubility and WVP decreased as the chain length of fatty acid increased. Therefore, LPSG-fatty acids composite film could be used for packaging in which a low affinity toward water is needed. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Composite elastic magnet films with hard magnetic feature

    Science.gov (United States)

    Wang, Weisong; Yao, Zhongmei; Chen, Jackie C.; Fang, Ji

    2004-10-01

    Hard magnetic materials with high remnant magnetic moment, Mr, have unique advantages that can achieve bi-directional (push-pull) movement in an external magnetic field. This paper presents the results on the fabrication and testing of novel composite elastic permanent magnet films. The microsize hard barium ferrite powder, NdFeB powder, and different silicone elastomers have been used to fabricate various large elongation hard magnetic films. Three different fabrication methods, screen-coating processing, moulding processing and squeegee-coating processing, have been investigated, and the squeegee-coating process was proven to be the most successful method. The uniform composite elastic permanent magnet films range from 40 µm to 216 µm in thickness have been successfully fabricated. These films were then magnetized in the thickness direction after fabrication. They exhibited permanent magnet behaviour; for instance, the film (0.640 mm3 in volume) made of polydimethyl siloxane (PDMS) and hard barium ferrite powders is measured to give a coercive force, Hc, of 3.24 × 105 A m-1 and Mr of 1.023 × 10-5 A m2, and the film (0.504 mm3 in volume) made of PDMS and NdFeB powders gives 1.55 × 105 A m-1 Hc and 8.081 × 10-5 A m2 Mr. These composite elastic permanent magnet films' mechanical properties, like Young's modulus and deflection force, have been evaluated. To validate the films' Young's modulus, a finite-element computer simulation (ANSYS®) is used and one film is chosen whose Young's modulus (16.60 MPa) is confirmed by the simulation results with ANSYS®. The large elongation composite elastic permanent magnet film provides an excellent diaphragm material, which plays an important role in the micropump or valve. The movement of the 126 µm thick film with 4.5 mm diameter made of PDMS and NdFeB powders has been tested in a 0.21 Tesla external magnetic field. It was proven to have large deflection of 125 µm.

  16. Effect of seaweed on mechanical, thermal, and biodegradation properties of thermoplastic sugar palm starch/agar composites.

    Science.gov (United States)

    Jumaidin, Ridhwan; Sapuan, Salit M; Jawaid, Mohammad; Ishak, Mohamad R; Sahari, Japar

    2017-06-01

    The aim of this paper is to investigate the characteristics of thermoplastic sugar palm starch/agar (TPSA) blend containing Eucheuma cottonii seaweed waste as biofiller. The composites were prepared by melt-mixing and hot pressing at 140°C for 10min. The TPSA/seaweed composites were characterized for their mechanical, thermal and biodegradation properties. Incorporation of seaweed from 0 to 40wt.% has significantly improved the tensile, flexural, and impact properties of the TPSA/seaweed composites. Scanning electron micrograph of the tensile fracture showed homogeneous surface with formation of cleavage plane. It is also evident from TGA results that thermal stability of the composites were enhanced with addition of seaweed. After soil burial for 2 and 4 weeks, the biodegradation of the composites was enhanced with addition of seaweed. Overall, the incorporation of seaweed into TPSA enhances the properties of TPSA for short-life product application such as tray, plate, etc. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. In vitro degradation behavior and cytocompatibility of biodegradable AZ31 alloy with PEO/HT composite coating.

    Science.gov (United States)

    Tian, Peng; Liu, Xuanyong; Ding, Chuanxian

    2015-04-01

    Biodegradable magnesium-based implants have attracted much attention recently in orthopedic applications because of their good mechanical properties and biocompatibility. However, their rapid degradation in vivo will not only reduce their mechanical strength, but also induce some side effects, such as local alkalization and gas cavity, which may lead to a failure of the implant. In this work, a hydroxyapatite (HA) layer was prepared on plasma electrolytic oxidization (PEO) coating by hydrothermal treatment (HT) to fabricate a PEO/HT composite coating on biodegradable AZ31 alloy. The in vitro degradation behaviors of all samples were evaluated in simulated body fluid (SBF) and their surface cytocompatibility was also investigated by evaluating the adhesion and proliferation of osteoblast cells (MC3T3-E1). The results showed that the HA layer consisted of a dense inner layer and a needle-like outer layer, which successfully sealed the PEO coating. The in vitro degradation tests showed that the PEO/HT composite coating improved the corrosion resistance of AZ31 alloy in SBF, presenting nearly no severe local alkalization and hydrogen evolution. The lasting corrosion resistance of the PEO/HT composite coating may attribute to the new hydroxyapatite formation during the degradation process. Moreover, compared with AZ31 alloy and PEO coating, PEO/HT composite coating was more suitable for cells adhesion and proliferation, indicating improved surface cytocompatibility. The results show that the PEO/HT composite coating is promising as protective coating on biodegradable magnesium-based implants to enhance their corrosion resistance as well as improve their surface cytocompatibility for orthopedic applications. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Effect of carrageenan on properties of biodegradable thermoplastic cassava starch/low-density polyethylene composites reinforced by cotton fibers

    International Nuclear Information System (INIS)

    Prachayawarakorn, Jutarat; Pomdage, Wanida

    2014-01-01

    Highlights: • We prepared the TPCS/LDPE composites modified by carrageenan and/or cotton fibers. • The IR O–H stretching peak of the modified composites shifts to lower wavenumber. • Stress and Young’s modulus of the modified composites increase significantly. • The modified composites degrade faster than the non-modified composite. - Abstract: Applications of biodegradable thermoplastic starch (TPS) have been restricted due to its poor mechanical properties, limited processability and high water uptake. In order to improve properties and processability, thermoplastic cassava starch (TPCS) was compounded with low-density polyethylene (LDPE). The TPCS/LDPE blend was, then, modified by a natural gelling agent, i.e. carrageenan and natural fibers, i.e. cotton fibers. All composites were compounded and processed using an internal mixer and an injection molding machine, respectively. It was found that stress at maximum load and Young’s modulus of the TPCS/LDPE composites significantly increased by the addition of the carrageenan and/or the cotton fibers. The highest mechanical properties were obtained from the TPCS/LDPE composites modified by both the carrageenan and the cotton fibers. Percentage water absorption of all of the TPCS/LDPE composites was found to be similar. All modified composites were also degraded easier than the non-modified one. Furthermore, all the composites were analyzed using Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and Scanning electron microscopy (SEM)

  19. Bioinspired Transparent Laminated Composite Film for Flexible Green Optoelectronics.

    Science.gov (United States)

    Lee, Daewon; Lim, Young-Woo; Im, Hyeon-Gyun; Jeong, Seonju; Ji, Sangyoon; Kim, Yong Ho; Choi, Gwang-Mun; Park, Jang-Ung; Lee, Jung-Yong; Jin, Jungho; Bae, Byeong-Soo

    2017-07-19

    Herein, we report a new version of a bioinspired chitin nanofiber (ChNF) transparent laminated composite film (HCLaminate) made of siloxane hybrid materials (hybrimers) reinforced with ChNFs, which mimics the nanofiber-matrix structure of hierarchical biocomposites. Our HCLaminate is produced via vacuum bag compressing and subsequent UV-curing of the matrix resin-impregnated ChNF transparent paper (ChNF paper). It is worthwhile to note that this new type of ChNF-based transparent substrate film retains the strengths of the original ChNF paper and compensates for ChNF paper's drawbacks as a flexible transparent substrate. As a result, compared with high-performance synthetic plastic films, such as poly(ethylene terephthalate), poly(ether sulfone), poly(ethylene naphthalate), and polyimide, our HCLaminate is characterized to exhibit extremely smooth surface topography, outstanding optical clarity, high elastic modulus, high dimensional stability, etc. To prove our HCLaminate as a substrate film, we use it to fabricate flexible perovskite solar cells and a touch-screen panel. As far as we know, this work is the first to demonstrate flexible optoelectronics, such as flexible perovskite solar cells and a touch-screen panel, actually fabricated on a composite film made of ChNF. Given its desirable macroscopic properties, we envision our HCLaminate being utilized as a transparent substrate film for flexible green optoelectronics.

  20. Characterization of biodegradable film based on zein and oleic acid added with nanocarbonate

    Directory of Open Access Journals (Sweden)

    Wanessa Ximenes Ribeiro

    2015-10-01

    Full Text Available Zein oleic acid films added with 1, 2 and 3 % (w/w of nanocarbonate and 30 % glycerol as plasticizer, were produced and evaluated according to their structure and functional properties. Structural characteristics were analyzed by optical and scanning electron microscopy (SEM. Water solubility and mechanical properties were determined according to ASTM methods. The increase of nanocarbonate concentration increased water solubility and influenced the color and mechanical properties. Optical and SEM of film samples added with nanocarbonate, shown low amount of pores and great fat globules size.

  1. Action of colloidal silica films on different nano-composites

    Science.gov (United States)

    Abdalla, S.; Al-Marzouki, F.; Obaid, A.; Gamal, S.

    Nano-composite films have been the subject of extensive work to develop the energy-storage efficiency of electrostatic capacitors. Factors such as polymer purity, nano-particles size, and film morphology drastically affect the electrostatic efficiency of the dielectric material that form an insulating film between conductive electrodes of a capacitor. This in turn affects the energy storage performance of the capacitor. In the present work, we have studied the dielectric properties of 4 high pure amorphous polymer films: polymethylmethacrylate (PMMA), polystyrene, polyimide and poly-4-vinylpyridine. Comparison between the dielectric properties of these polymers has revealed that the higher break down performance is a character of polyimide PI and PMMA. Also, our experimental data shows that adding colloidal silica to PMMA and PI leads to a net decrease in the dielectric properties compared to the pure polymer.

  2. Thin Film Composite Membranes: Mechanical and Antifouling Properties

    Directory of Open Access Journals (Sweden)

    Kassim Shaari Norin Zamiah

    2017-01-01

    Full Text Available As compared to membranes produced from pure polymer or pure inorganic materials, a hybrid membrane possesses better mechanical and thermal properties. This paper reported on the effect of incorporating silica nano-precursor (tetraethylorthosilicate as well as glycerol in the formulation of hybrid membrane on the mechanical properties and antifouling properties of the resultant thin film composite membranes. The mechanical properties were measured in terms of tensile strength, tensile strain and elastic modulus. Whereas for antifouling properties, it was evaluated through the measurements of relative flux decay (RFD and relative flux recovery (RFR, along with the permeate flux rate, percentage glycerol permeated and NaCl rejection. Results showed that the presence of silica and glycerol in hybrid membrane’s formulation had increased the tensile strength and elongation of the resultant membranes. In addition to that, the incorporation of glycerol has resulted in thin film composite with better antifouling properties as compared to the thin film composite with barrier layer from the pure polymer blend. Based on its performance, the fabricated thin film composite has a great potential to be used as a pathway for crude glycerol purification due to some advantages over the existing process that employ membrane.

  3. Structure and properties of highly toughened biodegradable polylactide/ZnO biocomposite films

    CSIR Research Space (South Africa)

    Jayaramudu, J

    2014-03-01

    Full Text Available Zinc oxide (ZnO) powder was investigated in terms of its use as filler in order to improve the inherent properties of PLA. Biocomposite films of PLA with different loadings of ZnO were prepared by solution casting method. Morphological analyses...

  4. Impact Strength and Flexural Properties Enhancement of Methacrylate Silane Treated Oil Palm Mesocarp Fiber Reinforced Biodegradable Hybrid Composites

    Directory of Open Access Journals (Sweden)

    Chern Chiet Eng

    2014-01-01

    Full Text Available Natural fiber as reinforcement filler in polymer composites is an attractive approach due to being fully biodegradable and cheap. However, incompatibility between hydrophilic natural fiber and hydrophobic polymer matrix restricts the application. The current studies focus on the effects of incorporation of silane treated OPMF into polylactic acid (PLA/polycaprolactone (PCL/nanoclay/OPMF hybrid composites. The composites were prepared by melt blending technique and characterize the composites with Fourier transform infrared spectroscopy (FTIR, thermogravimetric analysis (TGA, and scanning electron microscopy (SEM. FTIR spectra indicated that peak shifting occurs when silane treated OPMF was incorporated into hybrid composites. Based on mechanical properties results, incorporation of silane treated OPMF enhances the mechanical properties of unmodified OPMF hybrid composites with the enhancement of flexural and impact strength being 17.60% and 48.43%, respectively, at 10% fiber loading. TGA thermogram shows that incorporation of silane treated OPMF did not show increment in thermal properties of hybrid composites. SEM micrographs revealed that silane treated OPMF hybrid composites show good fiber/matrix adhesion as fiber is still embedded in the matrix and no cavity is present on the surface. Water absorption test shows that addition of less hydrophilic silane treated OPMF successfully reduces the water uptake of hybrid composites.

  5. Impact strength and flexural properties enhancement of methacrylate silane treated oil palm mesocarp fiber reinforced biodegradable hybrid composites.

    Science.gov (United States)

    Eng, Chern Chiet; Ibrahim, Nor Azowa; Zainuddin, Norhazlin; Ariffin, Hidayah; Yunus, Wan Md Zin Wan

    2014-01-01

    Natural fiber as reinforcement filler in polymer composites is an attractive approach due to being fully biodegradable and cheap. However, incompatibility between hydrophilic natural fiber and hydrophobic polymer matrix restricts the application. The current studies focus on the effects of incorporation of silane treated OPMF into polylactic acid (PLA)/polycaprolactone (PCL)/nanoclay/OPMF hybrid composites. The composites were prepared by melt blending technique and characterize the composites with Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), and scanning electron microscopy (SEM). FTIR spectra indicated that peak shifting occurs when silane treated OPMF was incorporated into hybrid composites. Based on mechanical properties results, incorporation of silane treated OPMF enhances the mechanical properties of unmodified OPMF hybrid composites with the enhancement of flexural and impact strength being 17.60% and 48.43%, respectively, at 10% fiber loading. TGA thermogram shows that incorporation of silane treated OPMF did not show increment in thermal properties of hybrid composites. SEM micrographs revealed that silane treated OPMF hybrid composites show good fiber/matrix adhesion as fiber is still embedded in the matrix and no cavity is present on the surface. Water absorption test shows that addition of less hydrophilic silane treated OPMF successfully reduces the water uptake of hybrid composites.

  6. mwnts composite film modified glassy carbon electrode

    African Journals Online (AJOL)

    Preferred Customer

    ABSTRACT: A poly p-aminosalicylic acid (Poly(p-ASA)) and multiwall carbon nanotubes. (MWCNTs) composite modified glassy carbon (GC) electrode was constructed by casting the MWNTs on the GC electrode surface followed by electropolymerization of the p-ASA on the MWCNTs/GCE. The electrochemical behaviours ...

  7. Controlled drug release from a novel injectable biodegradable microsphere/scaffold composite based on poly(propylene fumarate).

    Science.gov (United States)

    Kempen, Diederik H R; Lu, Lichun; Kim, Choll; Zhu, Xun; Dhert, Wouter J A; Currier, Bradford L; Yaszemski, Michael J

    2006-04-01

    The ideal biomaterial for the repair of bone defects is expected to have good mechanical properties, be fabricated easily into a desired shape, support cell attachment, allow controlled release of bioactive factors to induce bone formation, and biodegrade into nontoxic products to permit natural bone formation and remodeling. The synthetic polymer poly(propylene fumarate) (PPF) holds great promise as such a biomaterial. In previous work we developed poly(DL-lactic-co-glycolic acid) (PLGA) and PPF microspheres for the controlled delivery of bioactive molecules. This study presents an approach to incorporate these microspheres into an injectable, porous PPF scaffold. Model drug Texas red dextran (TRD) was encapsulated into biodegradable PLGA and PPF microspheres at 2 microg/mg microsphere. Five porous composite formulations were fabricated via a gas foaming technique by combining the injectable PPF paste with the PLGA or PPF microspheres at 100 or 250 mg microsphere per composite formulation, or a control aqueous TRD solution (200 microg per composite). All scaffolds had an interconnected pore network with an average porosity of 64.8 +/- 3.6%. The presence of microspheres in the composite scaffolds was confirmed by scanning electron microscopy and confocal microscopy. The composite scaffolds exhibited a sustained release of the model drug for at least 28 days and had minimal burst release during the initial phase of release, as compared to drug release from microspheres alone. The compressive moduli of the scaffolds were between 2.4 and 26.2 MPa after fabrication, and between 14.9 and 62.8 MPa after 28 days in PBS. The scaffolds containing PPF microspheres exhibited a significantly higher initial compressive modulus than those containing PLGA microspheres. Increasing the amount of microspheres in the composites was found to significantly decrease the initial compressive modulus. The novel injectable PPF-based microsphere/scaffold composites developed in this study

  8. Biodegradable films containing {alpha}-tocopherol/{beta}-cyclodextrin complex; Filmes biodegradaveis contendo {alpha}-tocoferol complexado em {beta}-ciclodextrina

    Energy Technology Data Exchange (ETDEWEB)

    Motta, Caroline; Martelli, Silvia M.; Soldi, Valdir, E-mail: vsoldi@qmc.ufsc.br [Lab. de Materiais Polimericos (POLIMAT), Dept. de Quimica, Universidade Federal de Santa Catarina, Florianopolis, SC (Brazil); Barreto, Pedro L.M. [Lab. de Reologia (REOLAB), Dept. de Ciencia e Tecnologia de Alimentos, Universidade Federal de Santa Catarina, Florianopolis, SC (Brazil)

    2011-07-01

    The growing environmental concern about pollution and the need to reduce dependence of plastic industry in relation to non-renewable resources has increased the interest of both researchers and industry in the use of biopolymers. In this work {beta}-cyclodextrin/{alpha}-tocopherol complexes were prepared and characterized. In order to obtain polymeric active biofilms, the {beta}-cyclodextrin/{alpha}-tocopherol complex was incorporated into a polymeric matrix of carboxymethylcellulose. The {beta}-cyclodextrin/{alpha}-tocopherol complex was characterized through of X-ray diffraction and thermogravimetric analysis. The physicochemical properties of the films incorporated with the complex were evaluated through mechanical and colorimetric analysis and moisture sorption isotherm. (author)

  9. Biodegradability and aging study of rubber films obtained by gamma radiation vulcanization processes of latex

    International Nuclear Information System (INIS)

    Martins, Carlos Felipe Pinto

    2005-01-01

    The natural rubber latex (NRL) is industrially crosslinked by the conventional process of vulcanization, which uses sulphur and heat. Otherwise, the network can also be done by the alternative process with ionizing radiation. In this work the crosslinking of NRL was studied by the comparison of the conventional vulcanization system and the ionizing radiation process of 60 C source. The products obtained, the irradiated latex, the irradiated latex with approximately 1% of soy lecithin and the sulphur vulcanized latex were tested by accelerated aging with ultraviolet (UV) and outdoor aging with compostage, tensile strength at break, swelling and gel fraction, fungi micro biota, scanning electron microscopy (SEM), infrared spectroscopy (FTIR) and thermogravimetry and differential scanning calorimetry analysis (TG and DSC). The results showed that the aging with microorganisms have a great influence in the physical properties of the samples. The thermal stability order observed showed that the sulphur vulcanized latex is more resistant, what is probably associated to a network more stable under the aging conditions. On the other hand, the irradiated latex showed intense biodegradation aspects, particularly with the presence of the soy lecithin. (author)

  10. Polyester fabric coated with Ag/ZnO composite film by magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Xiaohong, E-mail: yxhong1981_2004@126.com [Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, Jiangsu (China); Faculty of Clothing and Design, Minjiang University, Fuzhou 350121, Fujian (China); Xu, Wenzheng, E-mail: xwz8199@126.com [Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, Jiangsu (China); Huang, Fenglin, E-mail: windhuang325@163.com [Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, Jiangsu (China); Chen, Dongsheng, E-mail: mjuchen@126.com [Faculty of Clothing and Design, Minjiang University, Fuzhou 350121, Fujian (China); Wei, Qufu, E-mail: qfwei@jiangnan.edu.cn [Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, Jiangsu (China)

    2016-12-30

    Highlights: • Ag/ZnO composite film was successfully deposited on polyester fabric by magnetron sputtering technique. • Ag film was easily oxidized into Ag{sub 2}O film in high vacuum oxygen environment. • The zinc film coated on the surface of Ag film before RF reactive sputtering could protect the silver film from oxidation. • Polyester fabric coated with Ag/ZnO composite film can obtained structural color. • The anti-ultraviolet and antistatic properties of polyester fabric coated with Ag/ZnO composite film all were good. - Abstract: Ag/ZnO composite film was successfully deposited on polyester fabric by using direct current (DC) magnetron sputtering and radio frequency (RF) magnetron reaction sputtering techniques with pure silver (Ag) and zinc (Zn) targets. X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD) were used to examine the deposited film on the fabric. It was found that the zinc film coated on Ag film before RF reactive sputtering could protect the silver film from oxidation. Anti-ultraviolet property and antistatic property of the coated samples using different magnetron sputtering methods were also investigated. The experimental results showed that Ag film was oxidized into in Ag{sub 2}O film in high vacuum oxygen environment. The deposition of Zn film on the surface of the fabric coated with Ag film before RF reactive sputtering, could successfully obtained Ag/ZnO composite film, and also generated structural color on the polyester fabric.

  11. Chitosan-based films composites for wound healing purposes

    International Nuclear Information System (INIS)

    Alves, Natali de O.; Silva, Gabriela T. da; Schulz, Gracelie A.S.; Fajardo, Andre R.

    2015-01-01

    Chitosan has been extensively applied in the developing of biomaterials due to its desirable good physico-chemical and biological properties. According to this, here films composite of chitosan, poly(vinyl alcohol) and bovine bone powder were prepared by casting willing to be applied in wound healing purposes. Moreover, the first step was the developing of a suitable method to obtain bovine bone powder, which was utilized here as filler. All the materials and films were fully characterized by FTIR, DRX and thermal analysis. Water uptake capacity was measured by swelling assays. (author)

  12. Aligned Carbon Nanotubes for High-Performance Films and Composites

    Science.gov (United States)

    Zhang, Liwen

    Carbon nanotubes (CNTs) with extraordinary properties and thus many potential applications have been predicted to be the best reinforcements for the next-generation multifunctional composite materials. Difficulties exist in transferring the most use of the unprecedented properties of individual CNTs to macroscopic forms of CNT assemblies. Therefore, this thesis focuses on two main goals: 1) discussing the issues that influence the performance of bulk CNT products, and 2) fabricating high-performance dry CNT films and composite films with an understanding of the fundamental structure-property relationship in these materials. Dry CNT films were fabricated by a winding process using CNT arrays with heights of 230 mum, 300 im and 360 mum. The structures of the as-produced films, as well as their mechanical and electrical properties were examined in order to find out the effects of different CNT lengths. It was found that the shorter CNTs synthesized by shorter time in the CVD furnace exhibited less structural defects and amorphous carbon, resulting in more compact packing and better nanotube alignment when made into dry films, thus, having better mechanical and electrical performance. A novel microcombing approach was developed to mitigate the CNT waviness and alignment in the dry films, and ultrahigh mechanical properties and exceptional electrical performance were obtained. This method utilized a pair of sharp surgical blades with microsized features at the blade edges as micro-combs to, for the first time, disentangle and straighten the wavy CNTs in the dry-drawn CNT sheet at single-layer level. The as-combed CNT sheet exhibited high level of nanotube alignment and straightness, reduced structural defects, and enhanced nanotube packing density. The dry CNT films produced by microcombing had a very high Young's modulus of 172 GPa, excellent tensile strength of 3.2 GPa, and unprecedented electrical conductivity of 1.8x10 5 S/m, which were records for CNT films or

  13. Biodegradable Composites Based on Starch/EVOH/Glycerol Blends and Coconut Fibers

    Science.gov (United States)

    Unripe coconut fibers were used as fillers in a biodegradable polymer matrix of starch/Ethylene vinyl alcohol (EVOH)/glycerol. The effects of fiber content on the mechanical, thermal and structural properties were evaluated. The addition of coconut fiber into starch/EVOH/glycerol blends reduced the ...

  14. High performance thin-film composite forward osmosis membrane.

    Science.gov (United States)

    Yip, Ngai Yin; Tiraferri, Alberto; Phillip, William A; Schiffman, Jessica D; Elimelech, Menachem

    2010-05-15

    Recent studies show that osmotically driven membrane processes may be a viable technology for desalination, water and wastewater treatment, and power generation. However, the absence of a membrane designed for such processes is a significant obstacle hindering further advancements of this technology. This work presents the development of a high performance thin-film composite membrane for forward osmosis applications. The membrane consists of a selective polyamide active layer formed by interfacial polymerization on top of a polysulfone support layer fabricated by phase separation onto a thin (40 mum) polyester nonwoven fabric. By careful selection of the polysulfone casting solution (i.e., polymer concentration and solvent composition) and tailoring the casting process, we produced a support layer with a mix of finger-like and sponge-like morphologies that give significantly enhanced membrane performance. The structure and performance of the new thin-film composite forward osmosis membrane are compared with those of commercial membranes. Using a 1.5 M NaCl draw solution and a pure water feed, the fabricated membranes produced water fluxes exceeding 18 L m(2-)h(-1), while consistently maintaining observed salt rejection greater than 97%. The high water flux of the fabricated thin-film composite forward osmosis membranes was directly related to the thickness, porosity, tortuosity, and pore structure of the polysulfone support layer. Furthermore, membrane performance did not degrade after prolonged exposure to an ammonium bicarbonate draw solution.

  15. High Performance Thin-Film Composite Forward Osmosis Membrane

    KAUST Repository

    Yip, Ngai Yin

    2010-05-15

    Recent studies show that osmotically driven membrane processes may be a viable technology for desalination, water and wastewater treatment, and power generation. However, the absence of a membrane designed for such processes is a significant obstacle hindering further advancements of this technology. This work presents the development of a high performance thin-film composite membrane for forward osmosis applications. The membrane consists of a selective polyamide active layer formed by interfacial polymerization on top of a polysulfone support layer fabricated by phase separation onto a thin (40 μm) polyester nonwoven fabric. By careful selection of the polysulfone casting solution (i.e., polymer concentration and solvent composition) and tailoring the casting process, we produced a support layer with a mix of finger-like and sponge-like morphologies that give significantly enhanced membrane performance. The structure and performance of the new thin-film composite forward osmosis membrane are compared with those of commercial membranes. Using a 1.5 M NaCl draw solution and a pure water feed, the fabricated membranes produced water fluxes exceeding 18 L m2-h-1, while consistently maintaining observed salt rejection greater than 97%. The high water flux of the fabricated thin-film composite forward osmosis membranes was directly related to the thickness, porosity, tortuosity, and pore structure of the polysulfone support layer. Furthermore, membrane performance did not degrade after prolonged exposure to an ammonium bicarbonate draw solution. © 2010 American Chemical Society.

  16. Obtaining of biodegradable polylactide films and fibers filled hydroxyapatite for medical purposes

    Energy Technology Data Exchange (ETDEWEB)

    Lytkina, D. N., E-mail: darya-lytkina@yandex.ru; Shapovalova, Y. G., E-mail: elena.shapovalova@ro.ru; Rasskazova, L. A., E-mail: ly-2207@mail.ru; Kurzina, I. A., E-mail: kurzina99@mail.ru; Filimoshkin, A. G., E-mail: filag05@rambler.ru [National Research Tomsk State University 36, Lenina Avenue, Tomsk, 634050 (Russian Federation)

    2015-11-17

    Relevance of the work is due to the need for new materials that are used in medicine (orthopedics, surgery, dentistry, and others) as a substitute for natural bone tissue injuries, fractures, etc. The aim of presented work is developing of a method of producing biocompatible materials based on polyesters of hydroxycarboxylic acids and calcium phosphate ceramic (hydroxyapatite, HA) with homogeneous distribution of the inorganic component. Bioactive composites based on poly-L-lactide (PL) and hydroxyapatite with homogeneous distribution were prepared. The results of scanning electron microscopy confirm homogeneous distribution of the inorganic filler in the polymer matrix. The positive effect of ultrasound on the homogeneity of the composites was determined. The rate of hydrolysis of composites was evaluated. The rate of hydrolysis of polylactide as an individual substance is 7 times lower than the rate of hydrolysis of the polylactide as a part of the composite. It was found that materials submarines HA composite and do not cause a negative response in the cells of the immune system, while contributing to anti-inflammatory cytokines released by cells.

  17. Biodegradable polyesters based on succinic acid

    Directory of Open Access Journals (Sweden)

    Nikolić Marija S.

    2003-01-01

    Full Text Available Two series of aliphatic polyesters based on succinic acid were synthesized by copolymerization with adipic acid for the first series of saturated polyesters, and with fumaric acid for the second series. Polyesters were prepared starting from the corresponding dimethyl esters and 1,4-butanediol by melt transesterification in the presence of a highly effective catalyst tetra-n-butyl-titanate, Ti(0Bu4. The molecular structure and composition of the copolyesters was determined by 1H NMR spectroscopy. The effect of copolymer composition on the physical and thermal properties of these random polyesters were investigated using differential scanning calorimetry. The degree of crystallinity was determined by DSC and wide angle X-ray. The degrees of crystallinity of the saturated and unsaturated copolyesters were generally reduced with respect to poly(butylene succinate, PBS. The melting temperatures of the saturated polyesters were lower, while the melting temperatures of the unsaturated copolyesters were higher than the melting temperature of PBS. The biodegradability of the polyesters was investigated by enzymatic degradation tests. The enzymatic degradation tests were performed in a buffer solution with Candida cylindracea lipase and for the unsaturated polyesters with Rhizopus arrhizus lipase. The extent of biodegradation was quantified as the weight loss of polyester films. Also the surface of the polyester films after degradation was observed using optical microscopy. It could be concluded that the biodegradability depended strongly on the degree of crystallinity, but also on the flexibility of the chain backbone. The highest biodegradation was observed for copolyesters containing 50 mol.% of adipic acid units, and in the series of unsaturated polyesters for copolyesters containing 5 and 10 mol.% of fumarate units. Although the degree of crystallinity of the unsaturated polyesters decreased slightly with increasing unsaturation, the biodegradation

  18. Influence of anionic monomer content on the biodegradation and toxicity of polyvinyl-urethane carbonate-ceramic interpenetrating phase composites.

    Science.gov (United States)

    Yang, Liu; Hong, Jason; Wang, Jian; Pilliar, Robert M; Santerre, J Paul

    2005-10-01

    The objective of this study was to characterize a series of anionic biodegradable polymer resins for their compatibility in a biological environment, comparing them with respect to the influence of ionic function on enzyme catalyzed biodegradation when the polymers were incorporated into a porous calcium polyphosphate (CPP) 3-D structure to form an interpenetrating phase composite (IPC). The swelling behavior of the polymers was investigated by immersing the cured polymer resins in growth media at 37 degrees C. In vitro cytotoxicity of the polymer resins was assessed using a HeLa cell line. Cell viability increased when the amount of low molecular weight monomer was minimized. Despite observing that the addition of carboxylic acid groups into the polymer resin chains contributed to an improvement of the chemical bonding between the polymer and the CPP, the addition of high ionic content into the resin led to the greatest loss of bending strength for the samples incubated in phosphate buffer and cholesterol esterase enzyme solutions, when compared to their as made state. The increased degradation for the higher ionic component materials and their loss of physical strength was attributed to enhanced hydrolysis within the materials and by water transport deep within the composites, via the anionic components of the resin. The findings indicated that the introduction of anionic content must be optimized to promote increased mechanical performance for the CPP, balancing the features of polymer CPP bonding versus polymer swelling and cytotoxicity.

  19. Thin film composition with biological substance and method of making

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, A.A.; Song, L.

    1999-09-28

    The invention provides a thin-film composition comprising an underlying substrate of a first material including a plurality of attachment sites; a plurality of functional groups chemically attached to the attachment sites of the underlying substrate; and a thin film of a second material deposited onto the attachment sites of the underlying substrate, and a biologically active substance deposited with the thin-film. Preferably the functional groups are attached to a self assembling monolayer attached to the underlying substrate. Preferred functional groups attached to the underlying substrate are chosen from the group consisting of carboxylates, sulfonates, phosphates, optionally substituted, linear or cyclo, alkyl, alkene, alkyne, aryl, alkylaryl, amine, hydroxyl, thiol, silyl, phosphoryl, cyano, metallocenyl, carbonyl, and polyphosphate. Preferred materials for the underlying substrate are selected from the group consisting of a metal, a metal alloy, a plastic, a polymer, a proteic film, a membrane, a glass or a ceramic. The second material is selected from the group consisting of inorganic crystalline structures, inorganic amorphous structures, organic crystalline structures, and organic amorphous structures. Preferred second materials are phosphates, especially calcium phosphates and most particularly calcium apatite. The biologically active molecule is a protein, peptide, DNA segment, RNA segment, nucleotide, polynucleotide, nucleoside, antibiotic, antimicrobial, radioisotope, chelated radioisotope, chelated metal, metal salt, anti-inflammatory, steroid, nonsteroid anti-inflammatory, analgesic, antihistamine, receptor binding agent, or chemotherapeutic agent, or other biologically active material. Preferably the biologically active molecule is an osteogenic factor consisting of the compositions listed above.

  20. Natural zeolite polypropylene composite film preparation and characterization

    OpenAIRE

    Özmıhçı, Filiz; Balköse, Devrim; Ülkü, Semra

    2001-01-01

    In this research, the preparation and characterization of polypropylene (PP) and natural zeolite composites were studied. Natural zeolite mined in Gördes, Turkey was used as an alternative filler to CaCO3. Films were prepared by the extrusion of PP, and surface-modified zeolite was made by polyethylene glycol 4000 with 2-4% zeolite. Zeolite-filled composites had densities between 0.73 and 0.83 g/cm3 and had void fractions of 0.07-0.20. Although the permeability of water vapour through 2% zeol...

  1. Structural determination and magnetic properties for Co–rubrene composite films on Si(1 0 0)

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Yong-Jhih; Chang, Cheng-Hsun-Tony; Yang, Chun-Kai; Hsu, Chih-Yu; Jhou, Yen-Wei; Tsay, Jyh-Shen, E-mail: jstsay@phy.ntnu.edu.tw

    2015-11-01

    Graphical abstract: - Highlights: • For Co–rubrene composite films, a layered structure is observed. • For thick composite films, surfactant effects of rubrene cause reduced interaction at the film/Si interface. • For thin composite films, the formation of separated Co clusters results in a larger coercive force. • By the rubrene concentration, rubrene enhances the quality of the films. - Abstract: Because of the potential uses toward low-cost and flexible-substrate-based electronics, semiconducting organic materials have attracted much attention. In this contribution, structures and magnetic properties of Co–rubrene composite films on Si(1 0 0) have been studied by employing atomic force microscopy (AFM) and magneto-optic Kerr effect techniques. For composite films prepared by co-depositions of Co and rubrene on Si(1 0 0), the surface is smooth while a layered distribution of Co atoms is detected. For thick composite films, surfactant effects of rubrene molecules cause smooth surfaces and reduced interaction at the film/Si interface. For thin composite films, the formation of separated Co clusters in the films results in a larger coercive force due to the imperfection introduced by rough interface to impede the magnetization reversal. By increasing the rubrene concentration, more Co/rubrene interfaces are introduced in the composite films and the more rubrene served as a surfactant enhances the quality of the films. These information are valuable for future applications combining organic semiconductor and spintronics.

  2. Cellulose acetate-based SiO2/TiO2 hybrid microsphere composite aerogel films for water-in-oil emulsion separation

    Science.gov (United States)

    Yang, Xue; Ma, Jianjun; Ling, Jing; Li, Na; Wang, Di; Yue, Fan; Xu, Shimei

    2018-03-01

    The cellulose acetate (CA)/SiO2-TiO2 hybrid microsphere composite aerogel films were successfully fabricated via water vapor-induced phase inversion of CA solution and simultaneous hydrolysis/condensation of 3-aminopropyltrimethoxysilane (APTMS) and tetrabutyl titanate (TBT) at room temperature. Micro-nano hierarchical structure was constructed on the surface of the film. The film could separate nano-sized surfactant-stabilized water-in-oil emulsions only under gravity. The flux of the film for the emulsion separation was up to 667 L m-2 h-1, while the separation efficiency was up to 99.99 wt%. Meanwhile, the film exhibited excellent stability during multiple cycles. Moreover, the film performed excellent photo-degradation performance under UV light due to the photocatalytic ability of TiO2. Facile preparation, good separation and potential biodegradation maked the CA/SiO2-TiO2 hybrid microsphere composite aerogel films a candidate in oil/water separation application.

  3. Effect of preheating on the film thickness of contemporary composite restorative materials

    Directory of Open Access Journals (Sweden)

    Dimitrios Dionysopoulos

    2014-12-01

    Conclusion: The film thickness of the composites tested is material dependent. The thickness of the preheated conventional composites is significantly lower than those at room temperature. The conventional composites provide film thickness values greater than those of the flowable composites regardless of preheating temperature.

  4. Zeta-potential of fouled thin film composite membrane

    Energy Technology Data Exchange (ETDEWEB)

    Ikeda, K.; Hachisuka, H.; Nakamura, T. [Nitto denko Corp., Ibaraki, (Japan); Kimura, S. [Kogakuin University, Tokyo (Japan). Dept. of Environ. Chemical Engineering; Ueyama, K. [Osaka University, Osaka (Japan). Dept. of Chemical Engineering

    1999-10-01

    The surface zeta-potential of a cross-linked polyamide thin film composite reverse osmosis membrane was measured using an electrophoresis method. It was confirmed that this method could be effectively applied to analyze the fouling of such membranes. It is known that the water flux of membranes drastically decreases as a result of fouling by surfactants. Although the surfactants adsorbed on reverse osmosis membranes could not be detected by conventional methods such as SEM, EDX and FT-IR, their presence could be clarified by the profile measurements of the surface zeta-potential. The profiles of the membrane surface zeta-potentials changed to more positive values in the measured pH range as a result of fouling by cationic or amphoteric surfactants. This measuring method of surface zeta-potentials allowed us to analyze a very small amount of fouling of a thin film composite reverse osmosis membrane. This method could be used to analyze the fouled surface of the thin film composite reverse osmosis membrane which is used for production of ultrapure water and shows a remarkable decrease in flux. It also became clear that this method is easy and effective for the reverse osmosis membrane surface analysis of adsorbed materials such as surfactants. (author)

  5. Molecular interactions in gelatin/chitosan composite films.

    Science.gov (United States)

    Qiao, Congde; Ma, Xianguang; Zhang, Jianlong; Yao, Jinshui

    2017-11-15

    Gelatin and chitosan were mixed at different mass ratios in solution forms, and the rheological properties of these film-forming solutions, upon cooling, were studied. The results indicate that the significant interactions between gelatin and chitosan promote the formation of multiple complexes, reflected by an increase in the storage modulus of gelatin solution. Furthermore, these molecular interactions hinder the formation of gelatin networks, consequently decreasing the storage modulus of polymer gels. Both hydrogen bonds and electrostatic interactions are formed between gelatin and chitosan, as evidenced by the shift of the amide-II bands of polymers. X-ray patterns of composite films indicate that the contents of triple helices decrease with increasing chitosan content. Only one glass transition temperature (T g ) was observed in composite films with different composition ratios, and it decreases gradually with an increase in chitosan proportion, indicating that gelatin and chitosan have good miscibility and form a wide range of blends. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. FILMES Y REVESTIMIENTOS COMESTIBLES COMO EMPAQUES ACTIVOS BIODEGRADABLES EN LA CONSERVACIÓN DE ALIMENTOS FILMES E REVESTIMENTOS COMESTÍVEIS COMO EMBALAGEM ATIVA BIODEGRADÁVEL NA CONSERVAÇÃO DE ALIMENTOS EDIBLE FILMS AND COATINGS AS BIODEGRADABLE ACTIVE PACKAGING IN THE PRESERVATION OF FOOD PRODUCTS

    Directory of Open Access Journals (Sweden)

    ALBA MANUELA DURANGO

    2011-06-01

    Full Text Available Los filmes y revestimientos comestibles son una innovación dentro del concepto de empaque activo biodegradable, los cuales interactúan con los alimentos con el fin de extender su vida útil, mejorar su seguridad y/o propiedades sensoriales o funcionales, mientras mantiene la calidad del alimento empacado. El uso de filmes y revestimientos comestibles a base de biopolímeros ha tomado un auge importante en la industria de alimentos, debido a muchos factores como sus características de biodegradabilidad, que contribuyen a disminuir la contaminación ambiental, su potencial para evitar la alteración de los alimentos y la posibilidad de generar nuevos mercados a productos derivados de fuentes naturales renovables. Los filmes y revestimientos comestibles han demostrado ser efectivos en la preservación de muchos alimentos, especialmente en frutas y hortalizas para mantener su apariencia fresca, su firmeza, el brillo, aumentando la calidad del producto y su valor comercial.Os Filmes e revestimentos comestíveis são uma inovação do conceito de embalagem ativa biodegradável, os quais interagem com os alimentos com o fim de estender sua vida útil, melhorar sua segurança y/o propriedades sensoriais o funcionais, enquanto mantêm a qualidade do alimento empacado. O uso de filmes e revestimentos comestíveis a base de biopolímeros têm-se tornado importante na indústria de alimentos, devido a fatores tais como suas características de biodegradabilidade, que contribuem a diminuir a contaminação ambiental; seu potencial para evitar a alteração dos alimentos e a possibilidade de gerar novos mercados a produtos originários de fontes naturais renováveis. Os filmes e revestimentos comestíveis têm demonstrado ser efetivos na preservação de muitos alimentos, especialmente em frutas e hortaliças para manter sua aparência fresca, sua firmeza, o brilho, aumentando a qualidade do produto y seu valor comercial.Edible films and coatings are an

  7. Effects of dissolution of some lignocellulosic materials with ionic liquids as green solvents on mechanical and physical properties of composite films.

    Science.gov (United States)

    Abdulkhani, Ali; Marvast, Ebrahim Hojati; Ashori, Alireza; Karimi, Ali Naghi

    2013-06-05

    In this study two imidazole-based ionic liquids (ILs), namely 1-butyl-3-methyl-1-imidazolium chloride ([BMIM]Cl) and 1,3-methyl imidazolium dimethyl sulfate ([DiMIM][MeSO4]), were used to dissolve ball-milled poplar wood (PW), chemi-mechanical pulp (CMP), and cotton linter (CEL). A set of comparative experiments was carried out, and physical and mechanical properties of the composite films from three different raw materials were determined by means of optical transparency (OT), scanning electron microscopy (SEM), water absorption (WA), thickness swelling (TS), water vapor permeability (WVP), and tensile strength (σb). The overall evaluation indicates the inability of [DiMIM][MeSO4] in complete dissolution of lignocellulosic materials, and sample treatment with this solvent did not lead to water soluble degradation products. However, dissolution trials using [BMIM]Cl were able to dissolve all used lignocellulosic materials by destroying inter and intramolecular hydrogen bonds between lignocelluloses. The OT, WA, TS, and σb of regenerated CEL films were much higher than those of CMP and PW composites. In addition, CEL film showed the lowest WVP compared to WF and CMP composite films. This work demonstrated a promising route for the preparation of biodegradable green cellulose composite films. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. One-Step Synthesis of Silver Nanoparticles on Polydopamine-Coated Sericin/Polyvinyl Alcohol Composite Films for Potential Antimicrobial Applications.

    Science.gov (United States)

    Cai, Rui; Tao, Gang; He, Huawei; Song, Kai; Zuo, Hua; Jiang, Wenchao; Wang, Yejing

    2017-04-30

    Silk sericin has great potential as a biomaterial for biomedical applications due to its good hydrophilicity, reactivity, and biodegradability. To develop multifunctional sericin materials for potential antibacterial application, a one-step synthesis method for preparing silver nanoparticles (AgNPs) modified on polydopamine-coated sericin/polyvinyl alcohol (PVA) composite films was developed. Polydopamine (PDA) acted as both metal ion chelating and reducing agent to synthesize AgNPs in situ on the sericin/PVA composite film. Scanning electron microscopy and energy dispersive spectroscopy analysis revealed that polydopamine could effectively facilitate the high-density growth of AgNPs as a 3-D matrix. X-ray diffractometry studies suggested the synthesized AgNPs formed good face-centered cubic crystalline structures. Contact angle measurement and mechanical test indicated AgNPs modified PDA-sericin/PVA composite film had good hydrophilicity and mechanical property. The bacterial growth curve and inhibition zone assays showed the AgNPs modified PDA-sericin/PVA composite film had long-term antibacterial activities. This work develops a new method for the preparation of AgNPs modified PDA-sericin/PVA film with good hydrophilicity, mechanical performance and antibacterial activities for the potential antimicrobial application in biomedicine.

  9. One-Step Synthesis of Silver Nanoparticles on Polydopamine-Coated Sericin/Polyvinyl Alcohol Composite Films for Potential Antimicrobial Applications

    Directory of Open Access Journals (Sweden)

    Rui Cai

    2017-04-01

    Full Text Available Silk sericin has great potential as a biomaterial for biomedical applications due to its good hydrophilicity, reactivity, and biodegradability. To develop multifunctional sericin materials for potential antibacterial application, a one-step synthesis method for preparing silver nanoparticles (AgNPs modified on polydopamine-coated sericin/polyvinyl alcohol (PVA composite films was developed. Polydopamine (PDA acted as both metal ion chelating and reducing agent to synthesize AgNPs in situ on the sericin/PVA composite film. Scanning electron microscopy and energy dispersive spectroscopy analysis revealed that polydopamine could effectively facilitate the high-density growth of AgNPs as a 3-D matrix. X-ray diffractometry studies suggested the synthesized AgNPs formed good face-centered cubic crystalline structures. Contact angle measurement and mechanical test indicated AgNPs modified PDA-sericin/PVA composite film had good hydrophilicity and mechanical property. The bacterial growth curve and inhibition zone assays showed the AgNPs modified PDA-sericin/PVA composite film had long-term antibacterial activities. This work develops a new method for the preparation of AgNPs modified PDA-sericin/PVA film with good hydrophilicity, mechanical performance and antibacterial activities for the potential antimicrobial application in biomedicine.

  10. Preparation and Properties of Silver Nanowire-Based Transparent Conductive Composite Films

    Science.gov (United States)

    Tian, Ji-Li; Zhang, Hua-Yu; Wang, Hai-Jun

    2016-06-01

    Silver nanowire-based transparent conductive composite films with different structures were successfully prepared using various methods, including liquid polyol, magnetron sputtering and spin coating. The experimental results revealed that the optical transmittance of all different structural composite films decreased slightly (1-3%) compared to pure films. However, the electrical conductivity of all composite films had a great improvement. Under the condition that the optical transmittance was greater than 78% over the wavelength range of 400-800 nm, the AgNW/PVA/AgNW film became a conductor, while the AZO/AgNW/AZO film and the ITO/AgNW/ITO film showed 88.9% and 94% reductions, respectively, for the sheet resistance compared with pure films. In addition, applying a suitable mechanical pressure can improve the conductivity of AgNW-based composite films.

  11. Electron field emission from screen-printed graphene/DWCNT composite films

    International Nuclear Information System (INIS)

    Xu, Jinzhuo; Pan, Rong; Chen, Yiwei; Piao, Xianqin; Qian, Min; Feng, Tao; Sun, Zhuo

    2013-01-01

    Highlights: ► The field emission performance improved significantly when adding graphene into DWCNTs as the emission material. ► We set up a model of pure DWCNT films and graphene/DWCNT composite films. ► We discussed the contact barrier between emission films and electric substrates by considering the Fermi energies of silver, DWCNT and graphene. - Abstract: The electron field emission properties of graphene/double-walled carbon nanotube (DWCNT) composite films prepared by screen printing have been systematically studied. Comparing with the pure DWCNT films and pure graphene films, a significant enhancement of electron emission performance of the composite films are observed, such as lower turn-on field, higher emission current density, higher field enhancement factor, and long-term stability. The optimized composite films with 20% weight ratio of graphene show the best electron emission performance with a low turn-on field of 0.62 V μm −1 (at 1 μA cm −2 ) and a high field enhancement factor β of 13,000. A model of the graphene/DWCNT composite films is proposed, which indicate that a certain amount of graphene will contribute the electron transmission in the silver substrate/composite films interface and in the interior of composite films, and finally improve the electron emission performance of the graphene/DWCNT composite films.

  12. Synthesis and characterization of polyvinyl alcohol- carboxymethyl tamarind gum based composite films.

    Science.gov (United States)

    Yadav, Indu; Rathnam, V S Sharan; Yogalakshmi, Yamini; Chakraborty, Subhabrata; Banerjee, Indranil; Anis, Arfat; Pal, Kunal

    2017-06-01

    The present study delineates the synthesis of novel composite films using polyvinyl alcohol and carboxymethyl tamarind gum. The microscopic study results confirmed the formation of composite matrices. FTIR spectroscopy suggested the occurrence of hydrogen-bonding amongst the components of the films. The extent of hydrogen bonding was composition-dependent which reached a critical higher limit at a particular composition. At the critical composition, the instantaneous and the intermediate polymer relaxation time were longer. All the films were found to be viscoelastic in nature. The melting endotherm was also highest for the composition described above. Ciprofloxacin loaded films showed excellent antimicrobial property against E. coli, suggesting that the drug was released in its active form. Cell proliferation study using human keratinocytes suggested better cell proliferation in the CMT containing films as compared to the control (PVA only) film. In gist, the developed films can be explored for skin tissue engineering and drug delivery applications. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Does magnesium compromise the high temperature processability of novel biodegradable and bioresorbables PLLA/Mg composites?

    Directory of Open Access Journals (Sweden)

    Cifuentes, Sandra C.

    2014-06-01

    Full Text Available This paper addresses the influence of magnesium on melting behaviour and thermal stability of novel bioresorbable PLLA/Mg composites as a way to investigate their processability by conventional techniques, which likely will require a melt process at high temperature to mould the material by using a compression, extrusion or injection stage. For this purpose, and to avoid any high temperature step before analysis, films of PLLA loaded with magnesium particles of different sizes and volume fraction were prepared by solvent casting. DSC, modulated DSC and thermogravimetry analysis demonstrate that although thermal stability of PLLA is reduced, the temperature window for processing the PLLA/Mg composites by conventional thermoplastic routes is wide enough. Moreover, magnesium particles do not alter the crystallization behaviour of the polymer from the melt, which allows further annealing treatments to optimize the crystallinity in terms of the required combination of mechanical properties and degradation rate.Este trabajo aborda la influencia de magnesio en el comportamiento a fusión y en la estabilidad térmica de nuevos compuestos de PLLA / Mg biorreabsorbibles como una forma de investigar su procesabilidad mediante técnicas convencionales, lo que probablemente requerirá una etapa en estado fundido a alta temperatura para moldear el material mediante el uso de una etapa de compresión, extrusión o inyección. Para este fin, los materiales de PLLA cargados con partículas de magnesio, de diferentes tamaños y fracción de volumen, se prepararon por la técnica de disolución y colada, evitando así el procesado a alta temperatura antes del análisis. El análisis mediante DSC, DSC modulada y termogravimetría demuestra que, aunque la estabilidad térmica de PLLA se reduce, el intervalo de temperatura para su procesado por rutas convencionales es suficientemente amplio. Además, las partículas de magnesio no alteran la cristalización del pol

  14. Magnetic coupling mechanisms in particle/thin film composite systems

    Directory of Open Access Journals (Sweden)

    Giovanni A. Badini Confalonieri

    2010-12-01

    Full Text Available Magnetic γ-Fe2O3 nanoparticles with a mean diameter of 20 nm and size distribution of 7% were chemically synthesized and spin-coated on top of a Si-substrate. As a result, the particles self-assembled into a monolayer with hexagonal close-packed order. Subsequently, the nanoparticle array was coated with a Co layer of 20 nm thickness. The magnetic properties of this composite nanoparticle/thin film system were investigated by magnetometry and related to high-resolution transmission electron microscopy studies. Herein three systems were compared: i.e. a reference sample with only the particle monolayer, a composite system where the particle array was ion-milled prior to the deposition of a thin Co film on top, and a similar composite system but without ion-milling. The nanoparticle array showed a collective super-spin behavior due to dipolar interparticle coupling. In the composite system, we observed a decoupling into two nanoparticle subsystems. In the ion-milled system, the nanoparticle layer served as a magnetic flux guide as observed by magnetic force microscopy. Moreover, an exchange bias effect was found, which is likely to be due to oxygen exchange between the iron oxide and the Co layer, and thus forming of an antiferromagnetic CoO layer at the γ-Fe2O3/Co interface.

  15. Enhancement of Fluorescent Labeling via a Composited Thin Film

    Directory of Open Access Journals (Sweden)

    Taikei Suyama

    2014-01-01

    Full Text Available Fluorescent labeling is the prevailing imaging technique in cell biological research. When statistical investigations on a large number of cells are involved, experimental study is required for both low magnification to get a reliable statistical population and high contrast to achieve accurate diagnosis on the nature of the cells’ perturbation. As microscope objectives of low magnification generally yield low collection efficiency, such studies are limited by the fluorescence signal weakness. To overcome this technological insufficiency, Le Moal et al. proposed a method based on metal-coated substrates that enhanced the fluorescence process and improved collection efficiency in fluorescence microscope observation and that could be directly used with a common microscope setup. In this paper, we use an Ag-Si3N4-Ag multilayer film coated on the substrate and numerically analyse the optical behavior of a fluorophore which was placed above the composited film coated on the substrate. The results shows that by using an Ag-Si3N4-Ag composited film the fluorescence imaging can be enhanced remarkably.

  16. Desenvolvimento e caracterização de filmes biodegradáveis obtidos de amido e de farinha de arroz

    OpenAIRE

    Dias, Amanda Borba

    2008-01-01

    Dissertação (mestrado) - Universidade Federal de Santa Catarina, Centro Tecnológico. Programa de Pós-Graduação em Engenharia de Alimentos. O desenvolvimento de polímeros biodegradáveis a partir de recursos renováveis, tem se apresentado como uma alternativa para a redução do impacto ambiental provocado pelos polímeros derivados do petróleo. O arroz é um cereal encontrado em larga escala no sul do Brasil. Poucos trabalhos na literatura citam a produção de filmes a partir de amido de arroz e...

  17. Fabrication and characterization of a biodegradable Mg-2Zn-0.5Ca/1β-TCP composite.

    Science.gov (United States)

    Huang, Yan; Liu, Debao; Anguilano, Lorna; You, Chen; Chen, Minfang

    2015-09-01

    A biodegradable magnesium matrix and beta-tricalcium phosphate (β-TCP) particles reinforced composite Mg-2Zn-0.5Ca/1beta-TCP (wt.%) was fabricated for biomedical applications by the novel route of combined high shear solidification (HSS) and equal channel angular extrusion (ECAE). The as-cast composite obtained by HSS showed a fine and equiaxed grain structure with globally uniformly distributed β-TCP particles in aggregates of 2-25 μm in size. The ECAE processing at 300 °C resulted in further microstructural refinement and the improvement of β-TCP particle distribution. During ECAE, the β-TCP aggregates were broken into smaller ones or individual particles, forming a dispersion in the matrix. Such fabricated composite exhibited enhanced hardness and in vitro corrosion resistance. The enhanced hardness was attributed to both the addition of β-TCP particles and grain refinement while the development of a Ca-P rich surface layer from β-TCP during corrosion was responsible for the improvement in corrosion resistance. The composite was characterized in terms of microstructural evolution during fabrication, mechanical properties and electrochemical performance during polarization and immersion tests in a simulated body fluid. Discussions are made on the benefits of both HSS and ECAE and the mechanisms responsible for the enhanced corrosion resistance. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Mechanical and degradation properties of biodegradable Mg strengthened poly-lactic acid composite through plastic injection molding.

    Science.gov (United States)

    Butt, Muhammad Shoaib; Bai, Jing; Wan, Xiaofeng; Chu, Chenglin; Xue, Feng; Ding, Hongyan; Zhou, Guanghong

    2017-01-01

    Full biodegradable magnesium alloy (AZ31) strengthened poly-lactic acid (PLA) composite rods for potential application for bone fracture fixation were prepared by plastic injection process in this work. Their surface/interfacial morphologies, mechanical properties and vitro degradation were studied. In comparison with untreated Mg rod, porous MgO ceramic coating on Mg surface formed by Anodizing (AO) and micro-arc-oxidation (MAO)treatment can significantly improve the interfacial binding between outer PLA cladding and inner Mg rod due to the micro-anchoring action, leading to better mechanical properties and degradation performance of the composite rods.With prolonging immersion time in simulated body fluid (SBF) solution until 8weeks, the MgO porous coating were corroded gradually, along with the disappearance of original pores and the formation of a relatively smooth surface. This resulted in a rapidly reduction in mechanical properties for corresponding composite rods owing to the weakening of interfacial binding capacity. The present results indicated that this new PLA-clad Mg composite rods show good potential biomedical applications for implants and instruments of orthopedic inner fixation. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Biodegradation of films of low density polyethylene (LDPE, poly(hydroxibutyrate-co-valerate (PHBV, and LDPE/PHBV (70/30 blend with Paecilomyces variotii

    Directory of Open Access Journals (Sweden)

    Thayse Marques Passos

    2015-02-01

    Full Text Available The increased consumption of plastics in the world has been a subject of great concern and special attention by the scientific community. The aim is to promote development of materials that are biodegradable in a shorter time upon disposal in the environment. The most used synthetic plastics are difficult to biodegrade because they are made of long hydrocarbon chains, such as polyethylene (PE, polypropylene (PP, poly(vinyl chloride (PVC, which are hydrophobic and resistant to the action of microbial enzymes. The use of alternative materials (natural polyesters can minimize the harm to dumps and landfills upon their disposal, because they are susceptible to the action of microorganisms. In this study we evaluated the biodegradation/biodeterioration of PHBV (poly(3-hydroxybutyrate-co-hydroxyvalerate films, LDPE (low density polyethylene and the blend of LDPE/PHBV (70/30 by the fungus Paecilomyces variotii, using different methods: optical microscopy (OM, scanning electronic microscopy (SEM and Fourier Transform Infrared spectroscopy (FTIR.

  20. Electrochemical deposition of Mg(OH2/GO composite films for corrosion protection of magnesium alloys

    Directory of Open Access Journals (Sweden)

    Fengxia Wu

    2015-09-01

    Full Text Available Mg(OH2/graphene oxide (GO composite film was electrochemical deposited on AZ91D magnesium alloys at constant potential. The characteristics of the Mg(OH2/GO composite film were investigated by scanning electron microscope (SEM, energy-dispersive X-ray spectrometry (EDS, X-ray diffractometer (XRD and Raman spectroscopy. It was shown that the flaky GO randomly distributed in the composite film. Compared with the Mg(OH2 film, the Mg(OH2/GO composite film exhibited more uniform and compact structure. Potentiodynamic polarization tests revealed that the Mg(OH2/GO composite film could significantly improve the corrosion resistance of Mg(OH2 film with an obvious positive shift of corrosion potential by 0.19 V and a dramatic reduction of corrosion current density by more than one order of magnitude.

  1. Nonlinear Analysis of Actuation Performance of Shape Memory Alloy Composite Film Based on Silicon Substrate

    Directory of Open Access Journals (Sweden)

    Shuangshuang Sun

    2014-01-01

    Full Text Available The mechanical model of the shape memory alloy (SMA composite film with silicon (Si substrate was established by the method of mechanics of composite materials. The coupled action between the SMA film and Si substrate under thermal loads was analyzed by combining static equilibrium equations, geometric equations, and physical equations. The material nonlinearity of SMA and the geometric nonlinearity of bending deformation were both considered. By simulating and analyzing the actuation performance of the SMA composite film during one cooling-heating thermal cycle, it is found that the final cooling temperature, boundary condition, and the thickness of SMA film have significant effects on the actuation performance of the SMA composite film. Besides, the maximum deflection of the SMA composite film is affected obviously by the geometric nonlinearity of bending deformation when the thickness of SMA film is very large.

  2. Polyester fabric coated with Ag/ZnO composite film by magnetron sputtering

    Science.gov (United States)

    Yuan, Xiaohong; Xu, Wenzheng; Huang, Fenglin; Chen, Dongsheng; Wei, Qufu

    2016-12-01

    Ag/ZnO composite film was successfully deposited on polyester fabric by using direct current (DC) magnetron sputtering and radio frequency (RF) magnetron reaction sputtering techniques with pure silver (Ag) and zinc (Zn) targets. X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD) were used to examine the deposited film on the fabric. It was found that the zinc film coated on Ag film before RF reactive sputtering could protect the silver film from oxidation. Anti-ultraviolet property and antistatic property of the coated samples using different magnetron sputtering methods were also investigated. The experimental results showed that Ag film was oxidized into in Ag2O film in high vacuum oxygen environment. The deposition of Zn film on the surface of the fabric coated with Ag film before RF reactive sputtering, could successfully obtained Ag/ZnO composite film, and also generated structural color on the polyester fabric.

  3. Biodegradação de filmes de PP/PCL em solo e solo com chorume Study of biodegradation of PP/PCL films in soil and soil with leachate landfill

    Directory of Open Access Journals (Sweden)

    Adriana de Campos

    2010-01-01

    Full Text Available Filmes de blenda de poli(ε-caprolactona (PCL e polipropileno (PP foram obtidos por moldagem por compressão. O estudo da biodegradação de filmes de blendas de PP/PCL em solo e solo com chorume foi obtido pela evolução de CO2, perda de massa, ângulo de contato, microscopia eletrônica de varredura (MEV e calorimetria exploratória diferencial (DSC. As análises de evolução de CO2 mostraram que a biodegradação da blenda de PP/PCL em solo com chorume foi maior que a dos homopolímeros, sugerindo que os polímeros na blenda são mais suscetíveis à degradação, o que se deve à não interação entre PP e PCL. Os resultados também mostraram que os microrganismos do solo com chorume provocaram uma erosão superficial. Verificou-se que a biodegradação do PCL é inibida pelos microrganismos do chorume adicionados no solo.Blend films of polycaprolactone (PCL and polypropylene (PP have been obtained by melt-pressing of both components. The biodegradation of PP/PCL blend films in soil and soil with leachate landfill has been assessed with measurements of evolution of CO2, weight loss, contact angle, scanning electronic microscopy (SEM and differential scanning calorimetry (DSC. The respirometric tests showed that the PP/PCL biodegradation in the soil with leachate was higher than the homopolymers, suggesting that the polymers in the blend are more susceptible to biodegradation owing to the lack of interaction between PP and PCL. The results also showed that biodegradation due to microorganisms in the soil with leachate occurred by surface erosion. It was found that the PCL biodegradation is inhibited by the leachate microorganisms added in the soil.

  4. The properties of chitosan and gelatin films incorporated with ethanolic red grape seed extract and Ziziphora clinopodioides essential oil as biodegradable materials for active food packaging.

    Science.gov (United States)

    Shahbazi, Yasser

    2017-06-01

    The aim of this study was to improve different characteristics including antibacterial, antioxidant, physical and mechanical properties of chitosan (Ch) and gelatin (Ge) films by incorporating Ziziphora clinopodioides essential oil (ZEO; 0 and 1% v/w) and ethanolic grape seed extract (GSE; 0 and 1% v/w). The main compounds of the ZEO were carvacrol (65.22%) and thymol (19.51%). According to our findings, addition of aforementioned materials could improve total phenolic content, antibacterial and antioxidant activities, thickness and also water vapor barrier property. ZEO and GSE reduces swelling index, tensile strength, puncture force and puncture deformation of Ch and Ge films. Pure Ch and Ge films had slightly yellow and white appearances, respectively, while films incorporated with GSE in combination with ZEO had grey appearances. This study indicated the some benefits of addition of ZEO and GSE into Ch and Ge films and their potentials for application as biodegradable active packaging. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Mechanical properties and fire retardancy of bidirectional reinforced composite based on biodegradable starch resin and basalt fibres

    Directory of Open Access Journals (Sweden)

    2008-11-01

    Full Text Available Environmental problems caused by extensive use of polymeric materials arise mainly due to lack of landfill space and depletion of finite natural resources of fossil raw materials, such as petroleum or natural gas. The substitution of synthetic petroleum-based resins with natural biodegradable resins appears to be one appropriate measure to remedy the above-mentioned situation. This study presents the development of a composite that uses environmentally degradable starch-based resin as matrix and basalt fibre plain fabric as reinforcement. Prepreg sheets were manufactured by means of a modified doctor blade system and a hot power press. The sheets were used to manufacture bidirectional-reinforced specimens with fibre volume contents ranging from 33 to 61%. Specimens were tested for tensile and flexural strength, and exhibited values of up to 373 and 122 MPa, respectively. Through application of silane coupling agents to the reinforcement fibres, the flexural composite properties were subsequently improved by as much as 38%. Finally, in order to enhance the fire retardancy and hence the applicability of the composite, fire retardants were applied to the resin, and their effectiveness was tested by means of flame rating (according to UL 94 and thermogravimetric analysis (TGA, respectively.

  6. Effects of Excess Cu Addition on Photochromic Properties of AgCl-Urethane Resin Composite Films

    Directory of Open Access Journals (Sweden)

    Hidetoshi Miyazaki

    2013-01-01

    Full Text Available AgCl-resin photochromic composite films were prepared using AgNO3, HCl-EtOH, CuCl2 ethanol solutions, and a urethane resin as starting materials. The AgCl particle size in the composite films, which was confirmed via TEM observations, was 23–43 nm. The AgCl composite films showed photochromic properties: coloring induced by UV-vis irradiation and bleaching induced by cessation of UV-vis irradiation. The coloring and bleaching speed of the composite film increases with increasing CuCl2 mixing ratio.

  7. Effect of grape seed extract against biodegradation of composite resin-dentin shear bond strength

    Science.gov (United States)

    Generosa, D. M.; Suprastiwi, E.; Asrianti, D.

    2017-08-01

    This study aimed to analyze the effect of grape seed extract (GSE) on resin-dentin shear bond strength. A group of 48 dentin samples were divided into 6 groups. The six groups, each with eight specimens, included group 1 (control), group 2 (control + NaOCl 10%), group 3 (2.9% GSE application before etching), group 4 (2.9% GSE application before etching + NaOCl 10%), group 5 (2.9% GSE application after etching), and group 6 (2.9% GSE application after etching + NaOCl 10%). Shear bond strengths were measured using a universal testing machine. Statistical analysis was done with the Kruskal-Wallis test and the Mann-Whitney U test. The highest median value was in group 3, and the lowest value was in group 5. GSE can improve the shear bond strength (p = 0.002 and 0.001), but it has no effect on reducing biodegradation (p = 0.141).

  8. Optimization of medium composition for 3-hydroxycarboxylic acid production by Pseudomonas mendocina-biodegraded polyhydroxybutyrate.

    Science.gov (United States)

    Wang, Zhanyong; Mao, Hailong; Liu, Huifang; Su, Tingting; Jiang, Husheng

    2015-01-01

    We optimized the culture medium for 3-hydroxycarboxylic acid production by Pseudomonas mendocina DS-04-T-biodegraded polyhydroxybutyrate (PHB) using the Plackett-Burman design, steepest ascent method, and Box-Behnken design. The optimized concentrations of the constituents of the culture medium were as follows: PHB (7.57 g/L), NH4 Cl (5.0 g/L), KH2 PO4 (2.64 g/L), Na2 HPO4 ·12H2 O (12 g/L), MgSO4 ·7H2 O (0.5 g/L), and CaCl2 ·2H2 O (5 mg/L). The yield of 3-hydroxycarboxylic acid obtained using the optimized culture medium was 56.8 ± 1.64%, which was 2.5-fold higher than that obtained when the unoptimized culture medium was used. © 2014 International Union of Biochemistry and Molecular Biology, Inc.

  9. Temperature dependence of gas sensing behaviour of TiO2 doped PANI composite thin films

    International Nuclear Information System (INIS)

    Srivastava, Subodh; Sharma, Preetam; Singh, M.; Vijay, Y. K.; Sharma, S. S.; Sharma, Vinay; Rajura, Rajveer Singh

    2014-01-01

    In the present work we have reported the effect of temperature on the gas sensing properties of TiO 2 doped PANI composite thin film based chemiresistor type gas sensors for hydrogen gas sensing application. PANI and TiO 2 doped PANI composite were synthesized by in situ chemical oxidative polymerization of aniline at low temperature. The electrical properties of these composite thin films were characterized by I-V measurements as function of temperature. The I-V measurement revealed that conductivity of composite thin films increased as the temperature increased. The changes in resistance of the composite thin film sensor were utilized for detection of hydrogen gas. It was observed that at room temperature TiO 2 doped PANI composite sensor shows higher response value and showed unstable behavior as the temperature increased. The surface morphology of these composite thin films has also been characterized by scanning electron microscopy (SEM) measurement

  10. Compositional analysis of silicon oxide/silicon nitride thin films

    Directory of Open Access Journals (Sweden)

    Meziani Samir

    2016-06-01

    Full Text Available Hydrogen, amorphous silicon nitride (SiNx:H abbreviated SiNx films were grown on multicrystalline silicon (mc-Si substrate by plasma enhanced chemical vapour deposition (PECVD in parallel configuration using NH3/SiH4 gas mixtures. The mc-Si wafers were taken from the same column of Si cast ingot. After the deposition process, the layers were oxidized (thermal oxidation in dry oxygen ambient environment at 950 °C to get oxide/nitride (ON structure. Secondary ion mass spectroscopy (SIMS, Rutherford backscattering spectroscopy (RBS, Auger electron spectroscopy (AES and energy dispersive X-ray analysis (EDX were employed for analyzing quantitatively the chemical composition and stoichiometry in the oxide-nitride stacked films. The effect of annealing temperature on the chemical composition of ON structure has been investigated. Some species, O, N, Si were redistributed in this structure during the thermal oxidation of SiNx. Indeed, oxygen diffused to the nitride layer into Si2O2N during dry oxidation.

  11. Preparation of Surlyn films reinforced with cellulose nanofibres and feasibility of applying the transparent composite films for organic photovoltaic encapsulation

    Science.gov (United States)

    Lertngim, Anantaya; Phiriyawirut, Manisara; Wootthikanokkhan, Jatuphorn; Yuwawech, Kitti; Sangkhun, Weradesh; Kumnorkaew, Pisist; Muangnapoh, Tanyakorn

    2017-10-01

    This research concerns the development of Surlyn film reinforced with micro-/nanofibrillated celluloses (MFC) for use as an encapsulant in organic photovoltaic (OPV) cells. The aim of this work was to investigate the effects of fibre types and the mixing methods on the structure-properties of the composite films. Three types of cellulose micro/nanofibrils were prepared: the as-received MFC, the dispersed MFC and the esterified MFC. The fibres were mixed with Surlyn via an extrusion process, using two different mixing methods. It was found that the extent of fibre disintegration and tensile modulus of the composite films prepared by the master-batching process was superior to that of the composite system prepared by the direct mixing method. Using the esterified MFC as a reinforcement, compatibility between polymer and the fibre increased, accompanied with the improvement of the percentage elongation of the Surlyn composite film. The percentage of light transmittance of the Surlyn/MFC films was above 88, regardless of the fibre types and fibre concentrations. The water vapour transmission rate of the Surlyn/esterified MFC film was 65% lower than that of the neat Surlyn film. This contributed to the longer lifetime of the OPV encapsulated with the Surlyn/esterified MFC film.

  12. Evaluation of the influence of the use of waste from the processing of rice in physicochemical properties and biodegradability of PHB in composites

    Directory of Open Access Journals (Sweden)

    Ana Paula Wünsch Boitt

    2014-12-01

    Full Text Available The high calorific value of rice husks has elevated its reuse as an energy source; however, the burning of these shells generates a waste ash from rice husk ash (RHA, which makes its disposal a concern. Despite advances, biodegradable polymers are not yet able to compete with those of traditional thermoplastics, which have lower production cost and higher performance. Based on this background, this paper studies the feasibility of reuse of RHA as filler in polymer matrices replacing the conventional filler. This study consists of applying different percentages of RHA in the formulation of polyhydroxybutyrate composite (PHB and the use of talc (TA for comparison purposes as conventional filler. The composites used in this assay were obtained by twin-screw extrusion and injection molding of the polymer plus the fillers under study. Physicochemical and biodegradability properties of the composites were evaluated. The composite PHB/RHA was superior in the biodegradability tests and the properties remain practically unchanged in the presence of the filler. Thus, composites with RHA are promising because they take an abundant residue combined with degradation capacity of the polymer, therefore reducing cost and the environmental impact.

  13. MANUFACTURING BIODEGRADABLE COMPOSITE MATERIALS BASED ON POLYETHYLENE AND FUNCTIONALIZED BY ALCOHOLYSIS OF ETHYLENE-VINYL ACETATE COPOLYMER

    Directory of Open Access Journals (Sweden)

    Aleksandr A. Shabarin

    2016-06-01

    Full Text Available Introduction. The continuous growth of production and consumption of plastic packaging creates a serious problem of disposal of package. This problem has ecological character, because the contents of the landfills decompose for decades, emit toxic com¬pounds and pollute the environment. The work is devoted to obtaining and investigation mechanical and rheological properties of biodegradable composite materials based on polyethylene and starch. Materials and Methods. In this work the author used polyethylene grade HDPE 273- 83 (GOST 16338-85, Sevilen brand 12206-007 (TU 6-05-1636-97 and potato starch (GOST 53876-2010 as a filler. Functionalization of sevilen was carried in the 30 % ethanol solution KOH at a temperature 80 °C during 3 hours. Compounding components was carried out at the laboratory of the two rotary mixer HAAKE PolyLab Rheomix 600 OS with rotors Banbury. Formation of plates for elastic strength and rheological studies were carried out on a hydraulic press Gibitre. Elastic and strength tests were carried out on the tensile machine the UAI-7000 M. Rheology tests were carried out on the rheometer Haake MARS III. The humidity filler (starch authors determined by the thermogravimetric method on the analyzer of moisture “Evlas-2M”. Results. It is shown, that the filler should not contain more than 7% moisture. Functionalization of ethylene with vinyl acetate copolymer (sevilen has performed by the method of alkaline alcoholysis. By the method of IC – spectroscopy the authors confirmed the presence of hydroxyl groups in the polymer. Using as a compatibilizer functionalized by the method of alcoholises has greatly ( significantly improved physical, mechanical and rheological properties of composite materials. Optimal content of sevilen (F in the compound according to the results of experiments amount 10 %. Discussion and Conclusions. Using of functionalized by the method of alcoholysis ethy-lene-vinyl acetate copolymer as a

  14. Functional chitosan-based grapefruit seed extract composite films for applications in food packaging technology

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Y.M. [Department of Mechanical Engineering, National University of Singapore (Singapore); Lim, S.H.; Tay, B.Y. [Forming Technology Group, Singapore Institute of Manufacturing Technology (Singapore); Lee, M.W. [Food Innovation and Resource Centre, Singapore Polytechnic (Singapore); Thian, E.S., E-mail: mpetes@nus.edu.sg [Department of Mechanical Engineering, National University of Singapore (Singapore)

    2015-09-15

    Highlights: • Chitosan-based grapefruit seed extract (GFSE) films were solution casted. • GFSE was uniformly dispersed within all chitosan film matrices. • All chitosan-based composite films showed remarkable transparency. • Increasing amounts of GFSE incorporated increased the elongation at break of films. • Chitosan-based GFSE composite films inhibited the proliferation of fungal growth. - Abstract: Chitosan-based composite films with different amounts of grapefruit seed extract (GFSE) (0.5, 1.0 and 1.5% v/v) were fabricated via solution casting technique. Experimental results showed that GFSE was uniformly dispersed within all chitosan film matrices. The presence of GFSE made the films more amorphous and tensile strength decreased, while elongation at break values increased as GFSE content increased. Results from the measurement of light transmission revealed that increasing amounts of GFSE (from 0.5 to 1.5% v/v) did not affect transparency of the films. Furthermore, packaging of bread samples with chitosan-based GFSE composite films inhibited the proliferation of fungal growth as compared to control samples. Hence, chitosan-based GFSE composite films have the potential to be a useful material in the area of food technology.

  15. Tribological behavior of in situ Ag nanoparticles/polyelectrolyte composite molecular deposition films

    International Nuclear Information System (INIS)

    Guo Yanbao; Wang Deguo; Liu Shuhai

    2010-01-01

    Multilayer polyelectrolyte films containing silver ions were obtained by molecular deposition method on a glass plate or a quartz substrate. The in situ Ag nanoparticles were synthesized in the multilayer polyelectrolyte films which were put into fresh NaBH 4 aqueous solution. The structure and surface morphology of composite molecular deposition films were observed by UV-vis spectrophotometer, X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM). Tribological characteristic was investigated by AFM and micro-tribometer. It was found that the in situ Ag nanoparticles/polyelectrolyte composite molecular deposition films have lower coefficient of friction and higher anti-wear life than pure polyelectrolyte molecular deposition films.

  16. Poly(trimethylene carbonate) as an elastic biodegradable film for human embryonic stem cell-derived retinal pigment epithelial cells

    NARCIS (Netherlands)

    Sorkio, Anni; Haimi, Suvi; Verdoold, Vincent; Juuti-Uusitalo, Kati; Grijpma, Dirk; Skottman, Heli

    2017-01-01

    Human embryonic stem cell-derived retinal pigment epithelial (hESC-RPE) cell therapies show tremendous potential for the treatment of retinal degenerative diseases. A tissue engineering approach, where cells are delivered to the subretinal space on a biodegradable carrier as a sheet, shows great

  17. Modeling and analysis of film composition on mechanical properties of maize starch based edible films.

    Science.gov (United States)

    Prakash Maran, J; Sivakumar, V; Thirugnanasambandham, K; Kandasamy, S

    2013-11-01

    The present study investigates the influence of composition (content of maize starch (1-3 g), sorbitol (0.5-1.0 ml), agar (0.5-1.0 g) and tween-80 (0.1-0.5 ml)) on the mechanical properties (tensile strength, elongation, Young's modulus, puncture force and puncture deformation) of the maize starch based edible films using four factors with three level Box-Behnken design. The edible films were obtained by casting method. The results showed that, tween-80 increases the permeation of sorbitol in to the polymer matrix. Increasing concentration of sorbitol (hydrophilic nature and plasticizing effect of sorbitol) decreases the tensile strength, Young's modulus and puncture force of the films. The results were analyzed by Pareto analysis of variance (ANOVA) and second order polynomial models were obtained for all responses with high R(2) values (R(2)>0.95). 3D response surface plots were constructed to study the relationship between process variables and the responses. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Enhanced piezoelectric performance of composite sol-gel thick films evaluated using piezoresponse force microscopy

    Science.gov (United States)

    Liu, Yuanming; Lam, Kwok Ho; Kirk Shung, K.; Li, Jiangyu; Zhou, Qifa

    2013-01-01

    Conventional composite sol-gel method has been modified to enhance the piezoelectric performance of ceramic thick films. Lead zirconate titanate (PZT) and lead magnesium niobate–lead titanate (PMN-PT) thick films were fabricated using the modified sol-gel method for ultrasonic transducer applications. In this work, piezoresponse force microscopy was employed to evaluate the piezoelectric characteristics of PZT and PMN-PT composite sol-gel thick films. The images of the piezoelectric response and the strain-electric field hysteresis loop behavior were measured. The effective piezoelectric coefficient (d33,eff) of the films was determined from the measured loop data. It was found that the effective local piezoelectric coefficient of both PZT and PMN-PT composite films is comparable to that of their bulk ceramics. The promising results suggest that the modified composite sol-gel method is a promising way to prepare the high-quality, crack-free ceramic thick films. PMID:23798771

  19. Preparation of ZnO nanoribbon–MWCNT composite film and its ...

    Indian Academy of Sciences (India)

    This composite film displayed a strong antimicrobial property and porous structure, whichhas potential application as an antimicrobial bandage material. The composite film successfully removed the Escherichiacoli bacteria from water and destroyed the bacteria retained on its surface due to the antibacterial action of ZnO ...

  20. Influence of high loading of cellulose nanocrystals in polyacrylonitrile composite films

    Science.gov (United States)

    Jeffrey Luo; Huibin Chang; Amir A. Bakhtiary Davijani; H. Clive Liu; Po-Hsiang Wang; Robert J. Moon; Satish Kumar

    2017-01-01

    Polyacrylonitrile-co-methacrylic acid (PAN-co-MAA) and cellulose nanocrystal (CNC) composite films were produced with up to 40 wt% CNC loading through the solution casting method. The rheological properties of the solution/suspensions and the structural, optical, thermal, and mechanical properties of the resulting films were investigated. The viscosity of the composite...

  1. Mechanical and microstructural properties of "wet" alginate and composite films containing various carbohydrates.

    Science.gov (United States)

    Harper, B Allison; Barbut, Shai; Smith, Alexandra; Marcone, Massimo F

    2015-01-01

    Composite "wet" alginate films were manufactured from alginate-carbohydrate solutions containing 5% alginate and 0.25% pectin, carrageenan (kappa or iota), potato starch (modified or unmodified), gellan gum, or cellulose (extracted or commercial). The "wet" alginate films were used as a model to understand co-extruded alginate sausage casings that are currently being used by several sausage manufacturers. The mechanical, optical, and microstructural properties of the calcium cross-linked composite films were explored. In addition, the water holding capacity and textural profile analysis properties of the alginate-carbohydrate gels were studied. The results indicate that the mechanical properties of "wet" alginate films/casings can be modified by adding various carbohydrates to them. Alginate films with pectin, carrageenan, and modified potato starch had significantly (P < 0.05) greater elongation values than pure alginate films. The alginate-pectin films also had greater (P < 0.05) tensile strengths than the pure alginate films. Alginate films with extracted cellulose, commercial cellulose, and modified potato starch had lower (P < 0.05) puncture force, distance, and work values than the alginate control films. Transmission electron microscopy images showed a very uniform alginate network in the control films. Several large cellulose fibers were visible in the films with extracted cellulose, while the cellulose fibers in the films with commercial cellulose were difficult to distinguish. Despite these apparent differences in cellulose fiber length, the 2 cellulose films had similar puncture and tensile properties. © 2014 Institute of Food Technologists®

  2. Effect of single flame retardant aluminum tri-hydroxide and boric acid against inflammability and biodegradability of recycled PP/KF composites

    Science.gov (United States)

    Suharty, Neng Sri; Dihardjo, Kuncoro; Handayani, Desi Suci; Firdaus, Maulidan

    2016-03-01

    Composites rPP/DVB/AA/KF had been reactively synthesized in melt using starting material: recycled polypropylene (rPP), kenaf fiber (KF), multifunctional compound acrylic acid (AA), compatibilizer divinyl benzene (DVB). To improve the inflammability of composites, single flame retardant aluminum tri-hydroxide (ATH) and boric acid (BA) as an additive was added. The inflammability of the composites was tested according to ASTM D635. By using 20% ATH and 5% BA additive in the composites it is effectively inhibiting its time to ignition (TTI). Its burning rate (BR) can be reduced and its heat realease (%HR) decreases. The biodegradability of composites was quantified by its losing weight (LW) of composites after buried for 4 months in the media with rich cellulolytic bacteria. The result shows that the LW of composites in the presence 20% ATH and 5% BA is 6.3%.

  3. Elution characteristics of teicoplanin-loaded biodegradable borate glass/chitosan composite.

    Science.gov (United States)

    Jia, Wei-Tao; Zhang, Xin; Zhang, Chang-Qing; Liu, Xin; Huang, Wen-Hai; Rahaman, Mohamed N; Day, Delbert E

    2010-03-15

    Local antibiotic delivery system has an advantage over systemic antibiotic for osteomyelitis treatment due to the delivery of high local antibiotic concentration while avoiding potential systemic toxicity. Composite biomaterials with multifunctional roles, consisting of a controlled antibiotic release, a mechanical (load-bearing) function, and the ability to promote bone regeneration, gradually become the most active area of investigation and development of local antibiotic delivery vehicles. In the present study, a composite of borate glass and chitosan (designated BG/C) was developed as teicoplanin delivery vehicle. The in vitro elution kinetics and antibacterial activity of teicoplanin released from BG/C composite as a function of immersion time were determined. Moreover, the pH changes of eluents and the bioactivity of the composite were characterized using scanning electron microscopy coupled with energy-dispersive spectroscopy and X-ray diffraction analysis. 2009 Elsevier B.V. All rights reserved.

  4. Study of dielectric properties of biodegradable composites using (Poly)lactic acid and Luffa fiber

    Science.gov (United States)

    Parida, Chhatrapati; Patra, Subhasree; Mohanta, Kamal lochan; Dash, Sarat kumar; Parashar, S. K. S.

    2017-05-01

    Composites were made from bio degradable polymer (poly)lactic acid and lignocellulosic materials derived from natural fibers of luffa cylindrica using injection moulding technique. Before reinforcement in the poymer, the fibers were subjected to chemical treatments like alkali treatment, bleaching and acid hydrolysis. Frequency dependence of dielectric parameters like dielectric constant, di electric loss and ac conductivity of the composites were investigated in the frequency range from 1000Hz to 1MHz. The effect of wt of fiber in the composites on the above mentioned dielectric parameters were also evaluated. The experimental results show that the values of dielectric constant, ac conductivity and loss factor increase with increase in wt of fiber in the polymer matrix. However when fibers exposed to alkali treatment, bleaching and acid hydrolysis were incorporated in to the matrix, the composites showed inferior dielectric response compared to composites having fibers exposed to alkali treatment and bleaching only. It was also found that dielectric constant and dielectric loss factor of all the composite samples decreased with increase in frequency of the applied field. However, the ac conductivity of all the samples is found to increase with increase in frequency.

  5. Harnessing Compositional Marangoni Flows in Depositing Nanoparticle Films

    Science.gov (United States)

    Majumder, Mainak; Pasquali, Matteo; Monash University/Rice University Team

    2012-11-01

    Attempts at depositing uniform films of nanoparticles by drop-drying have been frustrated by the ``coffee-stain'' effect, arising from the convective macroscopic flow into the solid-liquid-vapor contact line of a droplet. We have recently demonstrated that uniform deposition of nanoparticles from aqueous suspensions can be obtained by drying the droplet in an ethanol vapor atmosphere.(.).............(Majumder et al., 2012). This technique allows the particle-laden water droplets to spread on a variety of surfaces such as glass, silicon, mica, PDMS, and even Teflon® due to absorption of ethanol from the vapor. Visualization of droplet shape and internal flow shows initial droplet spreading and strong re-circulating flow during spreading and shrinkage. During the drying phase, the vapor is saturated in ethanol, leading to preferential evaporation of water at the contact line; thereby generating a surface tension gradient (or Marangoni forces) that drive a strong recirculating flow. We show that this method can be used for depositing catalyst nanoparticles for the growth of single-walled carbon nanotubes as well as to manufacture plasmonic films of well-spaced, unaggregated gold nanoparticles. MAJUMDER, M., RENDALL, C. S., PASQUALI, M. et al. 2012. Overcoming the ``Coffee-Stain'' Effect by Compositional Marangoni-Flow-Assisted Drop-Drying. J.Phys.Chem.B, 116, 6536-6542.

  6. An asymmetric electrically conducting self-aligned graphene/polymer composite thin film for efficient electromagnetic interference shielding

    Science.gov (United States)

    Kumar, Pradip; Kumar, Asheesh; Cho, Kie Yong; Das, Tapas Kumar; Sudarsan, V.

    2017-01-01

    Here, we study the self-aligned asymmetric electrically conductive composite thin film prepared via casting of graphene oxide (GO)/poly (vinylidene-hexafluoropropylene) (PVDF-HFP) dispersion, followed by low temperature hydriodic acid reduction. The results showed that composite thin film revealed the high orientation of graphene sheets along the direction of film surface. However, graphene sheets are asymmetrically distributed along the film thickness direction in the composite film. Both sides of as prepared composite film showed different surface characteristics. The asymmetric surface properties of composite film induced distinction of surface resistivity response; top surface resistivity (21 Ohm) is ˜ 4 times higher than bottom surface resistivity (5 Ohm). This asymmetric highly electrically conducting composite film revealed efficient electromagnetic interference (EMI) shielding effectiveness of ˜ 30 dB. This study could be crucial for achieving aligned asymmetric composite thin film for high-performance EMI shielding radiation.

  7. An asymmetric electrically conducting self-aligned graphene/polymer composite thin film for efficient electromagnetic interference shielding

    Directory of Open Access Journals (Sweden)

    Pradip Kumar

    2017-01-01

    Full Text Available Here, we study the self-aligned asymmetric electrically conductive composite thin film prepared via casting of graphene oxide (GO/poly (vinylidene-hexafluoropropylene (PVDF-HFP dispersion, followed by low temperature hydriodic acid reduction. The results showed that composite thin film revealed the high orientation of graphene sheets along the direction of film surface. However, graphene sheets are asymmetrically distributed along the film thickness direction in the composite film. Both sides of as prepared composite film showed different surface characteristics. The asymmetric surface properties of composite film induced distinction of surface resistivity response; top surface resistivity (21 Ohm is ∼ 4 times higher than bottom surface resistivity (5 Ohm. This asymmetric highly electrically conducting composite film revealed efficient electromagnetic interference (EMI shielding effectiveness of ∼ 30 dB. This study could be crucial for achieving aligned asymmetric composite thin film for high-performance EMI shielding radiation.

  8. Superhydrophobicity and regeneration of PVDF/SiO2 composite films

    Science.gov (United States)

    Liu, Tao; Li, Xianfeng; Wang, Daohui; Huang, Qinglin; Liu, Zhen; Li, Nana; Xiao, Changfa

    2017-02-01

    Superhydrophobicity of polymers is easily destroyed by careless touching due to the softness of microstructures. In this study, based on a well-constructed polyvinylidene fluoride (PVDF) surface, a novel superhydrophobic PVDF/SiO2 composite film was fabricated by adding hydrophobic SiO2 nanoparticle and solvent into a coagulation bath. The water contact angle of the composite film reached 162.3° and the sliding angle was as low as 1.5°. More importantly, the composite film could be regenerated only through immersing the composite film in the designed regeneration agent. The composition of the designed regeneration agent ensured that SiO2 nanoparticles were firmly adhered on the film surface even under the ultrasonic cleaning. Hence, the superhydrophobicity and self-cleaing property could be regenerated and maintained effectively, and moreover, these propeties could resist a proper pressure. In addition, after many rubbing-regenerating cycles, the regeneration method was still valid.

  9. Biodegradability and mechanical properties of PP/HMSPP and natural polymers bio-composites in function of gamma-irradiation

    International Nuclear Information System (INIS)

    Cardoso, Elisabeth C.L.; Scagliusi, Sandra R.; Lima, Luis F.C.P.; Bueno, Nelson R.; Parra, Duclerc F.; Lugao, Ademar B.

    2013-01-01

    PP, expressed as C n H 2n , is one of the most widely used linear hydrocarbon polymers; its versatility arises from the fact that it is made from cheap petrochemical feed stocks through efficient catalytic polymerization process and easy processing to various products. Thus, enormous production and utilization of polymers, in general, lead to their accumulation in the environment, since they are not easily degraded by microorganisms, presenting a serious source of pollution affecting both flora and fauna. These polymers are very bio-resistant due to the involvement of only carbon atoms in main chain with no hydrolyzable functional group. Non-degradable plastics accumulate in the environment at a rate of 25 million tons per year. In recent years, as a result of growing environmental awareness, natural polymers have been increasingly used as reinforcing fillers in thermoplastic composite materials. Sugarcane bagasse was used as reinforcing filler, considering that Brazil is the largest world producer of this crop, with a 101 Mt main agro-industrial residue of sugarcane processing from 340 Mt of sugarcane. Bio-composites were compounded on a twin-screw extruder and samples collected directly from the die. This study aims to investigate mechanical properties of PP/HMSPP-sugarcane bagasse 10, 15, 30 and 50% blends gamma-irradiated at 50, 100, 150 and 200 kGy doses. Degradation essays will comprise DSC and TGA tests and biodegradability behavior will be indicated by Laboratory Soil Burial Test. The main objective of this work is to support the application of these composites as environmentally friendly materials, without prejudicing mechanicals properties, in spite of applied gamma-irradiation. (author)

  10. Effects of composite formulation on the mechanical properties of biodegradable poly(propylene fumarate)/bone fiber scaffolds.

    Science.gov (United States)

    Zhu, Xun; Liu, Nathan; Yaszemski, Michael J; Lu, Lichun

    2010-01-01

    The objective of our study was to determine the effects of composite formulation on the compressive modulus and ultimate strength of a biodegradable, in situ polymerizable poly(propylene fumarate) (PPF) and bone fiber scaffold. The following parameters were investigated: the incorporation of bone fibers (either mineralized or demineralized), PPF molecular weight, N-vinyl pyrrolidinone (NVP) crosslinker amount, benzoyl peroxide (BP) initiator amount, and sodium chloride porogen amount. Eight formulations were chosen based on a resolution III two level fractional factorial design. The compressive modulus and ultimate strength of these formulations were measured on a materials testing machine. Absolute values for compressive modulus varied from 21.3 to 271 MPa and 2.8 to 358 MPa for dry and wet samples, respectively. The ultimate strength of the crosslinked composites varied from 2.1 to 20.3 MPa for dry samples and from 0.4 to 16.6 MPa for wet samples. Main effects of each parameter on the measured property were calculated. The incorporation of mineralized bone fibers and an increase in PPF molecular weight resulted in higher compressive modulus and ultimate strength. Both mechanical properties also increased as the amount of benzoyl peroxide increased or the NVP amount decreased in the formulation. Sodium chloride had a dominating effect on the increase of mechanical properties in dry samples but showed little effects in wet samples. Demineralization of bone fibers led to a decrease in the compressive modulus and ultimate strength. Our results suggest that bone fibers are appropriate as structural enforcement components in PPF scaffolds. The desired orthopaedic PPF scaffold might be obtained by changing a variety of composite formulation parameters.

  11. Biodegradability and mechanical properties of PP/HMSPP and natural polymers bio-composites in function of gamma-irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Cardoso, Elisabeth C.L.; Scagliusi, Sandra R.; Lima, Luis F.C.P.; Bueno, Nelson R.; Parra, Duclerc F.; Lugao, Ademar B., E-mail: eclcardo@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2013-07-01

    PP, expressed as C{sub n}H{sub 2n}, is one of the most widely used linear hydrocarbon polymers; its versatility arises from the fact that it is made from cheap petrochemical feed stocks through efficient catalytic polymerization process and easy processing to various products. Thus, enormous production and utilization of polymers, in general, lead to their accumulation in the environment, since they are not easily degraded by microorganisms, presenting a serious source of pollution affecting both flora and fauna. These polymers are very bio-resistant due to the involvement of only carbon atoms in main chain with no hydrolyzable functional group. Non-degradable plastics accumulate in the environment at a rate of 25 million tons per year. In recent years, as a result of growing environmental awareness, natural polymers have been increasingly used as reinforcing fillers in thermoplastic composite materials. Sugarcane bagasse was used as reinforcing filler, considering that Brazil is the largest world producer of this crop, with a 101 Mt main agro-industrial residue of sugarcane processing from 340 Mt of sugarcane. Bio-composites were compounded on a twin-screw extruder and samples collected directly from the die. This study aims to investigate mechanical properties of PP/HMSPP-sugarcane bagasse 10, 15, 30 and 50% blends gamma-irradiated at 50, 100, 150 and 200 kGy doses. Degradation essays will comprise DSC and TGA tests and biodegradability behavior will be indicated by Laboratory Soil Burial Test. The main objective of this work is to support the application of these composites as environmentally friendly materials, without prejudicing mechanicals properties, in spite of applied gamma-irradiation. (author)

  12. Researches on the development of new composite materials complete / partially biodegradable using natural textile fibers of new vegetable origin and those recovered from textile waste

    Science.gov (United States)

    Todor, M. P.; Bulei, C.; Heput, T.; Kiss, I.

    2018-01-01

    The objective of the research is to develop new fully / partially biodegradable composite materials by using new natural fibers and those recovered from various wastes. Thus, the research aims to obtain some composites with matrix of various types of polymeric materials and the reinforcement phase of textile materials (of different natures, morphologies and composites) so that the resulting products to be (bio)degradable. The textile inserts used as raffle are ecological, non-toxic and biodegradable and they contain (divided or in combination) bast fibers (flax, hemp, jute) and other vegetable fibers (cotton, wool) as plain yarn or fabric, which can replace fibers of glass commonly used in polymeric composites. The main activities described in this article are carried out during the first phase of the research (phase I - initiation of research) and they are oriented towards the choice of types of textile inserts from which the composites will be obtained (the materials needed for the raffle), the choice of the types of polymers (the necessary materials for matrices) and choosing the variants of composites with different types and proportions of the constituent content (proposals and working variants) and choosing the right method for obtaining samples of composite materials (realization technology). The purpose of the research is to obtain composite materials with high structural, thermo-mechanical and / or tribological performances, according to ecological norms and international requirements in order to replace the existing classical materials, setting up current, innovative and high performance solutions, for applications in top areas such as automotive industry and not only.

  13. Bacteriocin-like substances of Lactobacillus curvatus P99: characterization and application in biodegradable films for control of Listeria monocytogenes in cheese.

    Science.gov (United States)

    Marques, Juliana de Lima; Funck, Graciele Daiana; Dannenberg, Guilherme da Silva; Cruxen, Claudio Eduardo Dos Santos; Halal, Shanise Lisie Mello El; Dias, Alvaro Renato Guerra; Fiorentini, Ângela Maria; Silva, Wladimir Padilha da

    2017-05-01

    The aim of this study was to evaluate the effectiveness of a biodegradable film, with antimicrobial metabolites produced by Lactobacillus curvatus P99 incorporated, targeting the control of Listeria monocytogenes in sliced "Prato" cheese. Tests were performed to evaluate the spectrum of action of cell-free supernatant (CFS) of P99 against different microorganisms, as well as to detect the minimum inhibitory (MIC) and bactericidal (MBC) concentrations against L. monocytogenes Scott A. The detection of genes that encode for the production of bacteriocins and evaluation of their expression were performed. Antimicrobial films were prepared, followed by in vitro and in situ analysis. The MIC and MBC of CFS against L. monocytogenes Scott A was 15.6 μL/mL and 62.5 μL/mL, respectively. Lactobacillus curvatus P99 presented two genes coding for the bacteriocins, which were expressed. Films with added MBC showed activity against different indicator microorganisms and were able to control L. monocytogenes Scott A when used in sliced "Prato" cheese. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Production of Antimicrobial Films by Incorporation of Partially Purified Lysozyme into Biodegradable Films of Crude Exopolysaccharides Obtained from Aureobasidium pullulans Fermentation

    Directory of Open Access Journals (Sweden)

    Nilay Kandemir

    2005-01-01

    Full Text Available Antimicrobial films were produced by incorporating partially purified lysozyme into films of crude exopolysaccharides (59 % pullulan obtained from Aureobasidium pullulans fermentation. After film making, the films containing lysozyme at 100, 260, 520 and 780 μg/cm2 showed 23 to 70 % of their expected enzyme activities. The highest recovery of enzyme activity (65–70 % after the film making was obtained in films prepared by incorporating lysozyme at 260 μg/cm2 (1409 U/cm2. The incorporation of disodium EDTA×2H2O and sucrose did not affect the initial lysozyme activity of the films significantly. With or without the presence of disodium EDTA×2H2O at 52 or 520 μg/cm2, lysozyme activity showed sufficient stability in the films during 21 days of cold storage. However, the presence of sucrose at 10 mg/cm2 in the films caused the destabilization of part of enzyme activity (almost 35 % at the end of storage. The combinational incorporation of lysozyme at 780 μg/cm2 (4227 U/cm2 and disodium EDTA×2H2O at 520 μg/cm2 gave antimicrobial films effective on Escherichia coli. However, in the studied lysozyme concentration range the films did not show any antimicrobial activity against Lactobacillus plantarum. This study clearly showed that the partially purified lysozyme and crude exopolysaccharides from Aureobasidium pullulans may be used to obtain antimicrobial films to increase the safety of foods.

  15. Composite film fabricated on biomedical material with corona streamer plasma processing to mitigate bacterial adhesion

    Science.gov (United States)

    Alhamarneh, Ibrahim; Pedrow, Patrick; Eskhan, Asma; Abu-Lail, Nehal

    2011-10-01

    Composite films might control bacterial adhesion and concomitant biofouling that afflicts biomedical materials. Different size molecules of polyethylene glycol (PEG) with nominal molecular weights 600, 2000, and 20000 g/mol were used to synthesize composite films with plasma processing and dip-coating procedures on surgical-grade 316L stainless steel. Before dip-coating, the substrate was pre-coated with plasma-polymerized di(ethylene glycol) vinyl ether (pp-EO2V) in an atmospheric pressure corona streamer plasma reactor. The PEG dip-coating step followed immediately in the same chamber due to the finite lifetime of radicals associated with freshly deposited pp-EO2V. Morphology of the composite film was investigated with an ESEM. FTIR confirmed incorporation of pp-EO2V and PEG species into the composite film. More investigations on the composite film were conducted by XPS measurements. Adhesion of the composite film was evaluated with a standard peel-off test. Stability of the composite film in buffer solution was evaluated by AFM. AFM was also used to measure the film roughness and thickness. Polar and non-polar contact angle measurements were included.

  16. Fabrication and performances of AI/CuO nano composite films for ignition application

    Science.gov (United States)

    Li, Yong; Gao, Yun; Jia, Xin; Zhou, Bin; Shen, Rui-Qi

    2015-07-01

    In an effort to explore the application possibility of composite films in ignition field, Al/CuO was fabricated on semiconductor bridge (SCB) chip by ion beam sputtering technique. Surface morphology and elemental composition of the composite films were analysed by scanning electron microscope (SEM) and energy dispersive spectrometer (EDS). Spatial size and duration of the products was detected with the open-air combustion experiment. The results showed that the prepared composite films surface is smooth, flat, and uniform. Element weight ratio meets the design requirements. And the chemical reaction of the Al/CuO nCFs improves output performances of ignition chip.

  17. Production and Properties of Nano Fiber (NCC) and Nano Tube (CNT) Reinforced Biodegradable Packaging Films: Effect of Gamma Radiation

    International Nuclear Information System (INIS)

    Lacroix, Monique; Khan, Ruhul A.; Salmieri, Stephane; Huq, Tanzina; Khan, Avik; Safrany, Agnes

    2011-01-01

    Biopolymeric (methylcellulose, chitosan and alginate) films were prepared by solution casting and their thermo-mechanical properties were evaluated. Nano crystalline cellulose (NCC) was incorporated into the optimized biopolymeric films. It was found that NCC acted as an excellent reinforcing agent which improved the mechanical properties of the films significantly. The NCC containing biopolymeric films were exposed to gamma radiation (2-25 kGy) and it revealed that biopolymeric films gained strength below 5 kGy dose. Monomer grafting onto the biopolymers were carried out to improve the filler (NCC)-matrix (biopolymers) compatibility. Two monomers (Trimethylol propane tri-methacrylate and 2-Hydroxyethyl methacrylate) were grafted using gamma radiation at 5-25 kGy doses. It was found that monomers were successfully grafted with biopolymers and NCC. Grafted films showed excellent mechanical properties. NCC and carbon nanotubes (CNT) were also incorporated in polycaprolactone-based films prepared by compression molding. It was found that NCC (5% by wt) and CNT (0.2% by wt) improved the mechanical properties of the PCL films significantly. The nano materials containing PCL films were gamma irradiated and found better mechanical and barrier properties. Surface morphology of the nano films was studied by scanning electron microscopy. (author)

  18. Casein and soybean protein-based thermoplastics and composites as alternative biodegradable polymers for biomedical applications

    NARCIS (Netherlands)

    Vaz, C.M.; Fossen, M.; Tuil, van R.F.; Graaf, de L.A.; Reis, R.L.; Cunha, A.M.

    2003-01-01

    This work reports on the development and characterization of novel meltable polymers and composites based on casein and soybean proteins. The effects of inert (Al2O3) and bioactive (tricalcium phosphate) ceramic reinforcements over the mechanical performance, water absorption, and bioactivity

  19. Pyroelectric composite film for X-ray intensity detection

    Directory of Open Access Journals (Sweden)

    Walter Katsumi Sakamoto

    2012-04-01

    Full Text Available Composite material obtained with modified lead titanate (Pz34 ferroelectric ceramic and polyether-ether-ketone (PEEK polymer matrix was used as sensitive component to measure X-ray intensity in a novel detection system. The sensing element works as a thermal transducer, converting a non-quantified thermal flux into an output measurable quantity of electrical voltage. The samples were obtained up to 60 vol.% of ceramic, by hot pressing the mixture of Pz34 and PEEK powders at 368 °C and applying 12 MPa pressure for 2.0 hours. The sensor response varies from 2.70 to 0.80 V in the energy fluence rate range of 6.30 to 37.20 W.m-2. The absorbed incident energy was analyzed as a function of the ionizing energy. Furthermore, by measuring the pyroelectric activity of the composite film it was observed that there is no degradation of the sensor after the irradiation.

  20. Reduction of VOC emission from natural flours filled biodegradable bio-composites for automobile interior.

    Science.gov (United States)

    Kim, Ki-Wook; Lee, Byoung-Ho; Kim, Sumin; Kim, Hyun-Joong; Yun, Ju-Ho; Yoo, Seung-Eul; Sohn, Jong Ryeul

    2011-03-15

    Various experiments, such as the thermal extract (TE) method, field and emission cell (FLEC) method and 20 L small chamber, were performed to examine the total volatile organic compound (TVOC) emissions from bio-composites. The TVOC of neat poly(lactic acid) (PLA) was ranged from 0.26 mg/m(2)h to 4.11 mg/m(2)h with increasing temperature. For both PLA bio-composites with pineapple flour and destarched cassava flour, the temperature increased from 0.30 mg/m(2)h to 3.72 mg/m(2)h and from 0.19 mg/m(2)h to 8.74 mg/m(2)h, respectively. The TVOC emission factors of all samples increased gradually with increasing temperature. Above 70°C, both PLA-P and PLA-C composites had higher TVOC emission factors than neat PLA due to the rapid emission of natural volatile organic compounds (VOCs), such as furfural (2-furancarboxyaldehyde). PLA composites containing 30 wt% flour had high 1,4-dioxane reduction ability, >50%. The TVOC of poly(butylene succinate) (PBS) was emitted rapidly from 50 °C to 90 °C due to succinic acid from the pyrolysis of PBS. The TVOC emission factors of PLA bio-composite and PBS bio-composites were reduced using the bake-out method (temperature at 70 °C and baking time 5h). The initial TVOC emission factors of the PLA and PBS bio-composites with pineapple flour and destarched cassava flour were reduced by the baking treatment using FLEC. The TVOC factors from PLA and PBS decreased until 5 days and were commonly maintained a relatively constant value after 5 days using 20L small chamber. The decrease in TVOC emission showed a similar trend to that of the TE and FLEC method. This method confirmed the beneficial effect of the baking treatment effect for polypropylene and linear density polyethylene (LDPE). Copyright © 2010 Elsevier B.V. All rights reserved.

  1. Influence of ionizing radiation and use of plasticizers on the mechanical properties and barrier properties of biodegradable films

    International Nuclear Information System (INIS)

    Ponce, Patricia; Parra, Duclerc F.; Carr, Laura G.; Sato, Juliana S.; Lugao, Ademar B.

    2005-01-01

    This work reports the influence of radiation and plasticizers on the barrier properties [water vapour permeability (WVP)] and mechanical properties (tensile strength and elongation) of edible films made of starch. These films were prepared with 4 g of starch/100 mL of water; 2-10 g polyethylene glycol (PEG)/100 g starch; and at natural pH. Tensile strength and percentage elongation were measured using a Mechanical Universal Testing Machine Instron 4400R and the water vapour permeability was determined according to ASTM E96-80 (ASTM, 1989). The mechanical properties of starch films are influenced by the plasticizer concentration. An increase in PEG content showed a considerable increase in elongation percentage and a decrease in the tensile strength of the films, also increase the permeability of the films in water. After irradiation, the barrier properties [water vapour permeability (WVP)] and mechanical properties (tensile strength and elongation) of the films were improved due to chemical reactions among polymer molecules. The films were irradiated at room temperature with gamma radiation. Irradiated starch cassava films with polyethylene glycol (PEG) as plasticizer have good flexibility and low water permeability, which indicate potential application as edible films (author)

  2. Electrophoretic deposition of composite halloysite nanotube–hydroxyapatite–hyaluronic acid films

    Energy Technology Data Exchange (ETDEWEB)

    Deen, I. [Department of Materials Science and Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada L8S 4L7 (Canada); Zhitomirsky, I., E-mail: zhitom@mcmaster.ca [Department of Materials Science and Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada L8S 4L7 (Canada)

    2014-02-15

    Highlights: ► Composite halloysite nanotubes–hydroxyapatite–hyaluronic acid films were prepared. ► Electrophoretic deposition method was used for deposition. ► Natural hyaluronic acid was used as a dispersing, charging and film forming agent. ► Film composition and deposition yield can be varied. ► The films can be used for biomedical implants with controlled release of drugs. -- Abstract: Electrophoretic deposition method has been developed for the deposition of biocomposite films containing halloysite nanotubes (HNTs), hydroxyapatite (HA) and hyaluronic acid. The method is based on the use of natural hyaluronate biopolymer as a dispersing and charging agent for HNT and HA and film forming agent for the fabrication of the composite films. The deposition kinetics was studied by the quartz crystal microbalance method. The composite films were studied by X-ray diffraction, thermogravimetric analysis, differential thermal analysis and electron microscopy. The composite films are promising materials for the fabrication of biomedical implants with advanced functional properties.

  3. Quantitative characterization of the composition, thickness and orientation of thin films in the analytical electron microscope

    International Nuclear Information System (INIS)

    Williams, D.B.; Watanabe, M.; Papworth, A.J.; Li, J.C.

    2003-01-01

    Compositional variations in thin films can introduce lattice-parameter changes and thus create stresses, in addition to the more usual stresses introduced by substrate-film mismatch, differential thermal expansion, etc. Analytical electron microscopy comprising X-ray energy-dispersive spectrometry within a probe-forming field-emission gun scanning transmission electron microscope (STEM) is one of the most powerful methods of composition measurement on the nanometer scale, essential for thin-film analysis. Recently, with the development of improved X-ray collection efficiencies and quantitative computation methods it has proved possible to map out composition variations in thin films with a spatial resolution approaching 1-2 nm. Because the absorption of X-rays is dependent on the film thickness, concurrent composition and film thickness determination is another advantage of X-ray microanalysis, thus correlating thickness and composition variations, either of which may contribute to stresses in the film. Specific phenomena such as segregation to interfaces and boundaries in the film are ideally suited to analysis by X-ray mapping. This approach also permits multiple boundaries to be examined, giving some statistical certainty to the analysis particularly in nano-crystalline materials with grain sizes greater than the film thickness. Boundary segregation is strongly affected by crystallographic misorientation and it is now possible to map out the orientation between many different grains in the (S)TEM

  4. Electrophoretic deposition of composite halloysite nanotube–hydroxyapatite–hyaluronic acid films

    International Nuclear Information System (INIS)

    Deen, I.; Zhitomirsky, I.

    2014-01-01

    Highlights: ► Composite halloysite nanotubes–hydroxyapatite–hyaluronic acid films were prepared. ► Electrophoretic deposition method was used for deposition. ► Natural hyaluronic acid was used as a dispersing, charging and film forming agent. ► Film composition and deposition yield can be varied. ► The films can be used for biomedical implants with controlled release of drugs. -- Abstract: Electrophoretic deposition method has been developed for the deposition of biocomposite films containing halloysite nanotubes (HNTs), hydroxyapatite (HA) and hyaluronic acid. The method is based on the use of natural hyaluronate biopolymer as a dispersing and charging agent for HNT and HA and film forming agent for the fabrication of the composite films. The deposition kinetics was studied by the quartz crystal microbalance method. The composite films were studied by X-ray diffraction, thermogravimetric analysis, differential thermal analysis and electron microscopy. The composite films are promising materials for the fabrication of biomedical implants with advanced functional properties

  5. Editorial: Biodegradable Materials

    Directory of Open Access Journals (Sweden)

    Carl Schaschke

    2014-11-01

    Full Text Available This Special Issue “Biodegradable Materials” features research and review papers concerning recent advances on the development, synthesis, testing and characterisation of biomaterials. These biomaterials, derived from natural and renewable sources, offer a potential alternative to existing non-biodegradable materials with application to the food and biomedical industries amongst many others. In this Special Issue, the work is expanded to include the combined use of fillers that can enhance the properties of biomaterials prepared as films. The future application of these biomaterials could have an impact not only at the economic level, but also for the improvement of the environment.

  6. Preparation and Characterazition of Copolyimide/Carboxylated Multiple-walled Carbon Nanotubes Composite Films

    Science.gov (United States)

    Xing, Liangchen; Chen, Xiaoqi; Zhou, Mengmeng; Xiao, Jijun; Li, Yantao

    2018-01-01

    The copolyimide/MWCNTs-COOH composites were synthesized by pyromellitic dianhydride (PMDA), 3,3'4,4'-biphenyltetracarboxylic dianhydride (BPDA), 4,4'-diaminodiphenyl ether (ODA) and the carboxylated multiple-walled carbon nanotubes (MWCNTs-COOH) through ultrasonic dispersion in situ polymerization. And the mechanical and thermal properties of the composite films were studied. The results showed that the carbon nanotubes were well dispersed in the polyimide composite films, the tensile properties and thermal stability were improved significantly.

  7. Quinoline biodegradation by filamentous fungus Cunninghamella elegans and adaptive modifications of the fungal membrane composition.

    Science.gov (United States)

    Felczak, Aleksandra; Bernat, Przemysław; Różalska, Sylwia; Lisowska, Katarzyna

    2016-05-01

    Quinoline, which belongs to N-heterocyclic compounds, occurs naturally in the environment and is used in numerous industrial processes. The structures of various chemicals, such as dyes and medicines, are based on this compound. Due to that fact, quinoline and its derivatives are widely distributed in environment and can exert toxic effects on organisms from different trophic levels. The ability of the filamentous fungus Cunninghamella elegans IM 1785/21Gp to degrade quinoline and modulate the membrane composition in response to the pollutant was studied. C. elegans IM 1785/21Gp removes quinoline with high efficiency and transforms the pollutant into two novel hydroxylated derivatives, 2-hydroxyquinoline and 3-hydroxyquinoline. Moreover, due to the disruption in the membrane stability by quinoline, C. elegans IM 1785/21Gp modulates the fatty acid composition and phospholipid profile.

  8. Biodegradable polyester-based eco-composites containing hemp fibers modified with macrocyclic oligomers

    Science.gov (United States)

    Conzatti, Lucia; Utzeri, Roberto; Hodge, Philip; Stagnaro, Paola

    2016-05-01

    An original compatibilizing pathway for hemp fibers/poly(1,4-butylene adipate-co-terephtalate) (PBAT) eco-composites was explored exploiting the capability of macrocyclic oligomers (MCOs), obtained by cyclodepolymerization (CDP) of PBAT at high dilution, of being re-converted into linear chains by entropically-driven ring-opening polymerization (ED-ROP) that occurs simply heating the MCOS in the bulk. CDP reaction of PBAT was carried out varying solvent, catalyst and reaction time. Selected MCOs were used to adjust the conditions of the ED-ROP reaction. The best experimental conditions were then adopted to modify hemp fibers. Eco-composites based on PBAT and hemp fibers as obtained or modified with PBAT macrocyclics or oligomers were prepared by different process strategies. The best fiber-PBAT compatibility was observed when the fibers were modified with PBAT oligomers before incorporation in the polyester matrix.

  9. Mechanical, thermal, and fire properties of biodegradable polylactide/boehmite alumina composites

    CSIR Research Space (South Africa)

    Das, K

    2013-05-01

    Full Text Available -Smith‡ †Department of Applied Chemistry, University of Johannesburg, Doornforntein 2028, Johannesburg, South Africa ‡DST/CSIR National Centre for Nano-Structured Materials, Council for Scientific and Industrial Research, Pretoria 0001, South Africa §Polymer... and Composites, Materials Science and Manufacturing, Council for Scientific and Industrial Research, Port Elizabeth 6000, South Africa Abstract Boehmite alumina (BAl) was investigated in terms of its use as an filler to improve the inherent properties...

  10. Strong composite films with layered structures prepared by casting silk fibroin-graphene oxide hydrogels

    Science.gov (United States)

    Huang, Liang; Li, Chun; Yuan, Wenjing; Shi, Gaoquan

    2013-04-01

    Composite films of graphene oxide (GO) sheets and silk fibroin (SF) with layered structures have been prepared by facile solution casting of SF-GO hydrogels. The as-prepared composite film containing 15% (by weight, wt%) of SF shows a high tensile strength of 221 +/- 16 MPa and a failure strain of 1.8 +/- 0.4%, which partially surpass those of natural nacre. Particularly, this composite film also has a high modulus of 17.2 +/- 1.9 GPa. The high mechanical properties of this composite film can be attributed to its high content of GO (85 wt%), compact layered structure and the strong hydrogen bonding interaction between SF chains and GO sheets.Composite films of graphene oxide (GO) sheets and silk fibroin (SF) with layered structures have been prepared by facile solution casting of SF-GO hydrogels. The as-prepared composite film containing 15% (by weight, wt%) of SF shows a high tensile strength of 221 +/- 16 MPa and a failure strain of 1.8 +/- 0.4%, which partially surpass those of natural nacre. Particularly, this composite film also has a high modulus of 17.2 +/- 1.9 GPa. The high mechanical properties of this composite film can be attributed to its high content of GO (85 wt%), compact layered structure and the strong hydrogen bonding interaction between SF chains and GO sheets. Electronic supplementary information (ESI) available: XPS spectrum of the SF-GO hybrid film, SEM images of lyophilized GO dispersion and the failure surface of GO film. See DOI: 10.1039/c3nr00196b

  11. Investigation of polypyrrole/polyvinyl alcohol-titanium dioxide composite films for photo-catalytic applications

    Science.gov (United States)

    Cao, Shaoqiang; Zhang, Hongyang; Song, Yuanqing; Zhang, Jianling; Yang, Haigang; Jiang, Long; Dan, Yi

    2015-07-01

    Polypyrrole/polyvinyl alcohol-titanium dioxide (PPy/PVA-TiO2) composite films used as photo-catalysts were fabricated by combining TiO2 sol with PPy/PVA solution in which PPy was synthesized by in situ polymerization of pyrrole (Py) in polyvinyl alcohol (PVA) matrix and loaded on glass. The prepared photo-catalysts were investigated by X-ray diffraction (XRD), ultraviolet-visible diffuse reflection spectroscopy (UV-vis DRS), scanning electron microscopy (SEM), Fourier transform infrared (FT-IR) spectra and photoluminescence (PL). The results indicate that the composites have same crystal structure as the TiO2 and extend the optic absorption from UV region to visible light region. By detecting the variation ratio, detected by ultraviolet-vis spectroscopy, of model pollutant rhodamine B (RhB) solution in the presence of the composite films under both UV and visible light irradiation, the photo-catalytic performance of the composite films was investigated. The results show that the PPy/PVA-TiO2 composite films show better photo-catalytic properties than TiO2 film both under UV and visible light irradiation, and the photo-catalytic degradation of RhB follows the first-order kinetics. The effects of the composition of composite films and the concentration of RhB on the photo-catalytic performance, as well as the possible photo-catalytic mechanism, were also discussed. By photo-catalytic recycle experiments, the structure stability of the PPy/PVA-TiO2 composite film was investigated and the results show that the photo-catalytic activity under both UV and visible light irradiation have no significant decrease after four times of recycle experiments, suggesting that the photo-catalyst film is stable during the photo-catalytic process, which was also confirmed by the XRD pattern and FT-IR spectra of the composite film before and after photo-catalytic.

  12. Preparation and corrosion resistance of magnesium phytic acid/hydroxyapatite composite coatings on biodegradable AZ31 magnesium alloy.

    Science.gov (United States)

    Zhang, Min; Cai, Shu; Zhang, Feiyang; Xu, Guohua; Wang, Fengwu; Yu, Nian; Wu, Xiaodong

    2017-06-01

    In this work, a magnesium phytic acid/hydroxyapatite composite coating was successfully prepared on AZ31 magnesium alloy substrate by chemical conversion deposition technology with the aim of improving its corrosion resistance and bioactivity. The influence of hydroxyapatite (HA) content on the microstructure and corrosion resistance of the coatings was investigated. The results showed that with the increase of HA content in phytic acid solution, the cracks on the surface of the coatings gradually reduced, which subsequently improved the corrosion resistance of these coated magnesium alloy. Electrochemical measurements in simulated body fluid (SBF) revealed that the composite coating with 45 wt.% HA addition exhibited superior surface integrity and significantly improved corrosion resistance compared with the single phytic acid conversion coating. The results of the immersion test in SBF showed that the composite coating could provide more effective protection for magnesium alloy substrate than that of the single phytic acid coating and showed good bioactivity. Magnesium phytic acid/hydroxyapatite composite, with the desired bioactivity, can be synthesized through chemical conversion deposition technology as protective coatings for surface modification of the biodegradable magnesium alloy implants. The design idea of the new type of biomaterial is belong to the concept of "third generation biomaterial". Corrosion behavior and bioactivity of coated magnesium alloy are the key issues during implantation. In this study, preparation and corrosion behavior of magnesium phytic acid/hydroxyapatite composite coatings on magnesium alloy were studied. The basic findings and significance of this paper are as follows: 1. A novel environmentally friendly, homogenous and crack-free magnesium phytic acid/hydroxyapatite composite coating was fabricated on AZ31 magnesium alloy via chemical conversion deposition technology with the aim of enhancing its corrosion resistance and

  13. PEO + PVP blended polymer composite films for multifunctional ...

    Indian Academy of Sciences (India)

    has been noticed from PEO + PVP : Ni2+ polymer film at 373 K. Emission analysis of Co2+: PEO + PVP poly- mer film has exhibited a ... suggested that these TM ions doped PEO + PVP polymer films are found to be potential multifunctional materi- ..... tion of semicircle with the real axis the bulk resistance of the polymer ...

  14. Physical, structural, antioxidant and antimicrobial properties of gelatin-chitosan composite edible films.

    Science.gov (United States)

    Jridi, Mourad; Hajji, Sawssan; Ayed, Hanen Ben; Lassoued, Imen; Mbarek, Aïcha; Kammoun, Maher; Souissi, Nabil; Nasri, Moncef

    2014-06-01

    Physico-chemical and mechanical properties of cuttlefish skin gelatin (G), chitosan (C) from shrimp (Penaeus kerathurus) and composite films (G75/C25, G50/C50, G25/C75) plasticized with glycerol were investigated. The results indicated that chitosan film had higher tensile strength and lower elongation at break when compared with the other films. Composite films show no significant difference in tensile strength (TS), thickness and transparency. The structural properties evaluated by FTIR and DSC showed total miscibility between both polymers. DSC scans showed that the increase of chitosan content in the composite films increases the transition temperature (Tg) and enthalpy (ΔHg) of films. The morphology study of gelatin, chitosan and composite films showed a compact and homogenous structure. In addition, gelatin and G75/C25 films demonstrated a high antioxidant activities monitored by β-carotene bleaching, DPPH radical-scavenging and reducing power activities, while films contained chitosan exhibited higher antimicrobial activity against Gram-positive than Gram-negative bacteria. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Films of post-consumer polypropylene composites for the support layer in synthetic paper

    Directory of Open Access Journals (Sweden)

    Cristiano R. de Santi

    2006-06-01

    Full Text Available Composite films were studied as possible candidates for the central or support layer of synthetic paper in a multilayer structure. Recycled post-consumer polypropylene films were reinforced with inorganic fillers at various compositions and under several processing conditions, with the aim of optimizing the physical and mechanical properties of rigidity and low density. Three types of CaCO3, with and without surface treatment of the particles, were used, but only the treated ones were suitable for use in paper films. These samples were then used to analyze possible correlations of properties with composition and processing conditions, varying the CaCO3 particle size distribution and the film processing method, from casting extrusion (flat die to blown-film extrusion (tubular die. An increase in film stiffness was observed as a function of CaCO3 content and a concentration of 30% CaCO3 was found to be best for the specific application. The flat films were stiffer than the tubular ones. The densities of all the composite films were considered high, compared to a pulp-based paper and a commercial synthetic paper. No significant effect on the physical-mechanical properties analyzed was observed when the CaCO3 particle size distribution was varied. Microcavities were found to form at the surface of flat films submitted to a bi-orientation process performed at laboratory scale; no other sample showed this surface morphology.

  16. Rapid erasing of wettability patterns based on TiO2-PDMS composite films

    International Nuclear Information System (INIS)

    Nakata, Kazuya; Udagawa, Keizo; Ochiai, Tsuyoshi; Sakai, Hideki; Murakami, Taketoshi; Abe, Masahiko; Fujishima, Akira

    2011-01-01

    Research highlights: → TiO 2 -PDMS composite films are prepared using the sol-gel method. → The films show wettability conversion by irradiation with oxygen plasma. → Hydrophobic-superhydrophilic patterns based on the TiO 2 -PDMS films are fabricated. → The wettability patterns are rapidly erasable upon plasma irradiation for 1 s. - Abstract: TiO 2 -polydimethylsiloxane (TiO 2 -PDMS) composite films are prepared using the sol-gel method from a Ti(OBu) 4 -benzoylacetone solution containing PDMS. The prepared films are cured by irradiation with ultraviolet (UV) light. Structural changes in the films after UV irradiation are confirmed by UV-vis absorption experiments, which show that an absorption band characteristic of the benzoylacetonate chelate rings disappears. This finding is ascribed to structural changes associated with the dissociation of the chelate rings. The IR spectra of the thin films exhibit a broad absorption band after UV irradiation, indicating that a Ti-O-Ti network forms in the thin film. Contact angles are measured for the TiO 2 -PDMS thin films, showing wettability conversion from hydrophobic to superhydrophilic states by irradiation with oxygen plasma for 1 s. This phenomenon is explained by XPS experiments which reveal that the number of carbon atoms decreases, whereas the number of oxygen atoms increases on the surface of the TiO 2 -PDMS composite films. Finally, hydrophobic-superhydrophilic patterns are fabricated based on a patterned TiO 2 -PDMS composite film. The film displays a rapid change to superhydrophilicity over the whole film surface upon plasma irradiation for 1 s, which means that the wettability patterns are rapidly erasable.

  17. Preparation of reduced graphene oxide/gelatin composite films with reinforced mechanical strength

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Wenchao [School of Science, Tianjin University, Tianjin (China); Wang, Zhipeng [School of Science, Tianjin University, Tianjin (China); School of Chemical Engineering, Tianjin University, Tianjin (China); Liu, Yu; Li, Nan [School of Science, Tianjin University, Tianjin (China); Wang, Wei [School of Chemical Engineering, Tianjin University, Tianjin (China); Gao, Jianping, E-mail: jianpingg@eyou.com [School of Chemical Engineering, Tianjin University, Tianjin (China)

    2012-09-15

    Highlights: ► We used and compared different proportion of gelatin and chitosan as reducing agents. ► The mechanical properties of the films are investigated, especially the wet films. ► The cell toxicity of the composite films as biomaterial is carried out. ► The water absorption capabilities of the composite films also studied. -- Abstract: Graphene oxide (GO) was reduced by chitosan/gelatin solution and added to gelatin (Gel) to fabricate reduced graphene oxide/gelatin (RGO/Gel) films by a solvent-casting method using genipin as cross-linking agent. The structure and properties of the films were characterized by scanning electron microscopy (SEM), X-ray powder diffraction (XRD), thermogravimetric analysis (TGA) and UV–vis spectroscopy. The addition of RGO increased the tensile strength of the RGO/Gel films in both dry and wet states, but decreased their elongation at break. The incorperation of RGO also decreased the swelling ability of the films in water. Cell cultures were carried out in order to test the cytotoxicity of the films. The cells grew and reproduced well on the RGO/Gel films, indicating that the addition of RGO has no negative effect on the compatibility of the gelatin. Therefore, the reduced graphene oxide/gelatin composite is a promising biomaterial with excellent mechanical properties and good cell compatibility.

  18. Electrochemical preparation of Photosystem I-polyaniline composite films for biohybrid solar energy conversion.

    Science.gov (United States)

    Gizzie, Evan A; LeBlanc, Gabriel; Jennings, G Kane; Cliffel, David E

    2015-05-13

    In this work, we report for the first time the entrapment of the biomolecular supercomplex Photosystem I (PSI) within a conductive polymer network of polyaniline via electrochemical copolymerization. Composite polymer-protein films were prepared on gold electrodes through potentiostatic electropolymerization from a single aqueous solution containing both aniline and PSI. This study demonstrates the controllable integration of large membrane proteins into rapidly prepared composite films, the entrapment of such proteins was observed through photoelectrochemical analysis. PSI's unique function as a highly efficient biomolecular photodiode generated a significant enhancement in photocurrent generation for the PSI-loaded polyaniline films, compared to pristine polyaniline films, and dropcast PSI films. A comprehensive study was then performed to separately evaluate film thickness and PSI concentration in the initial polymerization solution and their effects on the net photocurrent of this novel material. The best performing composite films were prepared with 0.1 μM PSI in the polymerization solution and deposited to a film thickness of 185 nm, resulting in an average photocurrent density of 5.7 μA cm(-2) with an efficiency of 0.005%. This photocurrent output represents an enhancement greater than 2-fold over bare polyaniline films and 200-fold over a traditional PSI multilayer film of comparable thickness.

  19. Potentiality of the composite fulleren based carbon films as the stripper foils for tandem accelerators

    CERN Document Server

    Vasin, A V; Rusavsky, A V; Totsky, Y I; Vishnevski, I N

    2001-01-01

    The problem of the radiation resistance of the carbon stripper foils is considered. The short review of the experimental data available in literature and original experimental results of the are presented. In the paper discussed is the possibility of composite fulleren based carbon films to be used for preparation of the stripper foils. Some technological methods for preparation of composite fulleren based carbon films are proposed. Raman scattering and atom force microscopy were used for investigation of the fulleren and composite films deposited by evaporation of the C sub 6 sub 0 fulleren powder.

  20. VIS-NIR spectroscopy as a process analytical technology for compositional characterization of film biopolymers and correlation with their mechanical properties.

    Science.gov (United States)

    Barbin, Douglas Fernandes; Valous, Nektarios A; Dias, Adriana Passos; Camisa, Jaqueline; Hirooka, Elisa Yoko; Yamashita, Fabio

    2015-11-01

    There is an increasing interest in the use of polysaccharides and proteins for the production of biodegradable films. Visible and near-infrared (VIS-NIR) spectroscopy is a reliable analytical tool for objective analyses of biological sample attributes. The objective is to investigate the potential of VIS-NIR spectroscopy as a process analytical technology for compositional characterization of biodegradable materials and correlation to their mechanical properties. Biofilms were produced by single-screw extrusion with different combinations of polybutylene adipate-co-terephthalate, whole oat flour, glycerol, magnesium stearate, and citric acid. Spectral data were recorded in the range of 400-2498nm at 2nm intervals. Partial least square regression was used to investigate the correlation between spectral information and mechanical properties. Results show that spectral information is influenced by the major constituent components, as they are clustered according to polybutylene adipate-co-terephthalate content. Results for regression models using the spectral information as predictor of tensile properties achieved satisfactory results, with coefficients of prediction (R(2)C) of 0.83, 0.88 and 0.92 (calibration models) for elongation, tensile strength, and Young's modulus, respectively. Results corroborate the correlation of NIR spectra with tensile properties, showing that NIR spectroscopy has potential as a rapid analytical technology for non-destructive assessment of the mechanical properties of the films. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Biodegradable Polymers

    OpenAIRE

    Vroman, Isabelle; Tighzert, Lan

    2009-01-01

    Biodegradable materials are used in packaging, agriculture, medicine and other areas. In recent years there has been an increase in interest in biodegradable polymers. Two classes of biodegradable polymers can be distinguished: synthetic or natural polymers. There are polymers produced from feedstocks derived either from petroleum resources (non renewable resources) or from biological resources (renewable resources). In general natural polymers offer fewer advantages than synthetic polymers. ...

  2. Preparation of ZnO nanoribbon–MWCNT composite film and its ...

    Indian Academy of Sciences (India)

    2017-07-28

    Jul 28, 2017 ... A zinc oxide nanoribbon (ZnO NR)–multiwall carbon nanotube (MWCNT) composite film was prepared by filtration technique. ... carbon fibre composites imparted fire shielding property to the composite, where the ... in applications like electromagnetic induction shielding and packaging of integrated circuits ...

  3. Corrosion resistance of a composite polymeric coating applied on biodegradable AZ31 magnesium alloy.

    Science.gov (United States)

    Zomorodian, A; Garcia, M P; Moura e Silva, T; Fernandes, J C S; Fernandes, M H; Montemor, M F

    2013-11-01

    The high corrosion rate of magnesium alloys is the main drawback to their widespread use, especially in biomedical applications. There is a need for developing new coatings that provide simultaneously corrosion resistance and enhanced biocompatibility. In this work, a composite coating containing polyether imide, with several diethylene triamine and hydroxyapatite contents, was applied on AZ31 magnesium alloys pre-treated with hydrofluoric acid by dip coating. The coated samples were immersed in Hank's solution and the coating performance was studied by electrochemical impedance spectroscopy and scanning electron microscopy. In addition, the behavior of MG63 osteoblastic cells on coated samples was investigated. The results confirmed that the new coatings not only slow down the corrosion rate of AZ31 magnesium alloys in Hank's solution, but also enhance the adhesion and proliferation of MG63 osteoblastic cells, especially when hydroxyapatite nanoparticles were introduced in the coating formulation. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  4. Analysis and modeling of moisture sorption behavior for antimicrobial composite protein films.

    Science.gov (United States)

    Lei, Qiao; Pan, Jiazhen; Bao, Jianqiang; Huang, Zhiying; Zhang, Yuting

    2014-01-01

    The WPI-NaCas-GLY antimicrobial film takes full advantage of the controlled release of active or antimicrobial agents as well as demonstrates a great potential for functioning as an alternative biodegradable polymer in practical applications. The moisture sorption kinetics of the film as an important carrier of active agents was investigated at various relative humidities (RH). The results indicated that the moisture sorption characterization and procedure of this film can be described well by the empirical Peleg model with higher confidence and concordance. The model could predict the film's moisture content at any time (Mt), the time to reach any given level of R (tR), the equilibrium moisture at any RH condition (Me), and isotherm trend based upon experimental data and modeled constants k(1), k(2), a, b, c, and d without giving consideration to their physical meaning. The water vapor transmission rate of the WPI-NaCas-GLY antimicrobial film increased exponentially with increasing RH due to its hydrophilicity, which was primarily caused by the presence of glycerol in a higher content. The results also suggested that aw predominately affects the film's Me values compared with the temperature factor by fixed nonlinear multiple regression analyses.

  5. Preparation and characterization of keratin and chicken egg white-templated luminescent Au cluster composite film

    Science.gov (United States)

    Xing, Yao; Liu, Hongling; Yu, Weidong

    2016-02-01

    The characterization of keratin-chicken egg white-templated luminescent Au cluster composite films were studied using fourier-transform infrared spectroscopy (FTIR) to demonstrate and quantify the secondary transformation of composite films. The results showed that the secondary structure of treated films was transformed from disordered structure to ordered conformation including α-helix conformation and β-pleated-sheet conformation due to the increase of protein-templated luminescent Au cluster. The absorption features of treated films were exhibited by the UV-vis spectra. The bule-shift and decreased intensity indicated the change of microenvironment due to the concentration of protein-templated luminescent Au cluster. The transmission electron microscopy images of composite films supported the aggregation resulting from microenvironment. The effect of protein-templated luminescent Au cluster was characterized by the laser scanning confocal microscope (LSCM) images which showed the gradually intensive luminescence with increasing Au cluster and the transformation from the whiskers to nanoparticle.

  6. Composition changes in sputter deposition of Y-Ba-Cu-O films

    International Nuclear Information System (INIS)

    Hoshi, Y.; Naoe, M.

    1989-01-01

    The authors discuss the mechanism of the composition change in sputter deposition of Y-BA-Cu-O film from YBa 2 Cu 3 O 7-chi target investigated by means of a rf planar magnetron sputtering apparatus. Film composition changes significantly with not only substrate temperature Ts and sputtering gas pressure, but also substrate position. Lack of Cu and Ba content is significant in the film deposited at the substrate position just above the erosion area of the sputtering target. Suppression of bombardment of the substrate surface by negative ions emitted from the target and substrate is effective in increasing Cu and Ba content in the film. These results indicate not only that the sticking probability of the sputtered particles changes with Ts and incident particle energy, but also that high energy particle bombardment of the substrate surface plays an important role in the change of the film composition

  7. Wet chemically grown composite thin film for room temperature LPG sensor

    Science.gov (United States)

    Birajadar, Ravikiran; Desale, Dipalee; Shaikh, Shaheed; Mahajan, Sandip; Upadhye, Deepak; Ghule, Anil; Sharma, Ramphal

    2014-04-01

    We have synthesized thin film of zinc oxide-polyaniline (ZnO/PANI) composite using a simple wet chemical approach. As-synthesized ZnO/PANI composite thin film studied using different characterization techniques. The optical study reveals the penetration and interaction of PANI molecules with ZnO thin film. Prominent blue shift in UV-vis due to interaction between ZnO and PANI indicate presence of zinc oxide in polyaniline matrix. It is observed that ZnO thin film is not sensitive to LPG (liquefied petroleum gas) at room temperature. On the other hand ZnO/PANI composite thin film shows good response and recovery behaviors at room temperature.

  8. Magnetic and electromagnetic properties of Pr doped strontium ferrite/polyaniline composite film

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Ying; Li, Yuqing; Wang, Yan, E-mail: wangyan287580632@126.com

    2014-11-15

    This paper reported three acid (including hydrochloric acid HCl, p-toluenesulfonic acid PTS and D-camphor-10-acid CSA) doped SrPr{sub 0.2}Fe{sub 11.8}O{sub 19}/PANI composite film and the HCl–PANI film prepared by a sol–gel method and in-situ oxidative polymerization. The characteristics of the film phase structure, surface morphology, conductivity and magnetic and electromagnetic properties were studied by using XRD, XPS, FESEM, four-probe tester, VSM and Vector Network Analyzer. The resistivity of organic acid doped composite films is higher than that of the HCl doped one. The saturation and remanent magnetization of PTS and HCl doped composite films are greater than the CSA-doped one; however, the coercivity of the three acid doped composite films is basically 5546 Oe. The saturation magnetization, remanent magnetization and coercivity of SrPr{sub 0.2}Fe{sub 11.8}O{sub 19} film are greater than those of the SrPr{sub 0.2}Fe{sub 11.8}O{sub 19}–PANI composite film. In the frequency range of 8–12 GHz, the dielectric loss of HCl–PANI film is the maximum, and the dielectric loss of SrPr{sub 0.2}Fe{sub 11.8}O{sub 19} film is the minimum; the magnetic loss of the four films is in descending order as SrPr{sub 0.2}Fe{sub 11.8}O{sub 19} film, PrSrM/(HCl–PANI) composite film, PrSrM/(CSA–PANI) and HCl–PANI film. - Highlights: • Synthesizing three acid doped SrPr{sub 0.2}Fe{sub 11.8}O{sub 19}/PANI composite films. • By sol–gel method and in-situ oxidative polymerization. • With excellent magnetic and electromagnetic properties. • The particular coating structure of PANI and Sr-ferrite. • Great interest for magnetic material and microwave absorbers.

  9. Tailoring the Composition and Properties of Sprayed CuSbS2 Thin Films by Using Polymeric Additives

    Directory of Open Access Journals (Sweden)

    Ionut Popovici

    2012-01-01

    Full Text Available CuSbS2 thin films were obtained by spray pyrolysis deposition, using polymeric additives for controlling the surface properties and film’s composition. Ternary crystalline chalcostibite compounds have been obtained without any postdeposition treatments. XRD spectra and IR spectroscopy were used to characterize films composition and interactions between components. Films morphology and surface energy were investigated using AFM microscopy and contact angle measurements. Hydrophobic and hydrophilic polymers strongly influence the composition and film morphology.

  10. Effect of Continuous Multi-Walled Carbon Nanotubes on Thermal and Mechanical Properties of Flexible Composite Film

    Directory of Open Access Journals (Sweden)

    Ji Eun Cha

    2016-10-01

    Full Text Available To investigate the effect of continuous multi-walled carbon nanotubes (MWCNTs on the thermal and mechanical properties of composites, we propose a fabrication method for a buckypaper-filled flexible composite film prepared by a two-step process involving buckypaper fabrication using vacuum filtration of MWCNTs, and composite film fabrication using the dipping method. The thermal conductivity and tensile strength of the composite film filled with the buckypaper exhibited improved results, respectively 76% and 275% greater than those of the individual MWCNT-filled composite film. It was confirmed that forming continuous MWCNT fillers is an important factor which determines the physical characteristics of the composite film. In light of the study findings, composite films using buckypaper as a filler and polydimethylsiloxane (PDMS as a flexible matrix have sufficient potential to be applied as a heat-dissipating material, and as a flexible film with high thermal conductivity and excellent mechanical properties.

  11. Effects of organic composition on the anaerobic biodegradability of food waste.

    Science.gov (United States)

    Li, Yangyang; Jin, Yiying; Borrion, Aiduan; Li, Hailong; Li, Jinhui

    2017-11-01

    This work investigated the influence of carbohydrates, proteins and lipids on the anaerobic digestion of food waste (FW) and the relationship between the parameters characterising digestion. Increasing the concentrations of proteins and lipids, and decreasing carbohydrate content in FW, led to high buffering capacity, reduction of proteins (52.7-65.0%) and lipids (57.4-88.2%), and methane production (385-627 mLCH 4 /g volatile solid), while achieving a short retention time. There were no significant correlations between the reduction of organics, hydrolysis rate constant (0.25-0.66d -1 ) and composition of organics. Principal Component Analysis revealed that lipid, C, and N contents as well as the C/N ratio were the principal components for digestion. In addition, methane yield, the final concentrations of total ammonia nitrogen and free ammonia nitrogen, final pH values, and the reduction of proteins and lipids could be predicted by a second-order polynomial model, in terms of the protein and lipid weight fraction. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Polymer compositions, polymer films and methods and precursors for forming same

    Science.gov (United States)

    Klaehn, John R; Peterson, Eric S; Orme, Christopher J

    2013-09-24

    Stable, high performance polymer compositions including polybenzimidazole (PBI) and a melamine-formaldehyde polymer, such as methylated, poly(melamine-co-formaldehyde), for forming structures such as films, fibers and bulky structures. The polymer compositions may be formed by combining polybenzimidazole with the melamine-formaldehyde polymer to form a precursor. The polybenzimidazole may be reacted and/or intertwined with the melamine-formaldehyde polymer to form the polymer composition. For example, a stable, free-standing film having a thickness of, for example, between about 5 .mu.m and about 30 .mu.m may be formed from the polymer composition. Such films may be used as gas separation membranes and may be submerged into water for extended periods without crazing and cracking. The polymer composition may also be used as a coating on substrates, such as metal and ceramics, or may be used for spinning fibers. Precursors for forming such polymer compositions are also disclosed.

  13. Filmes compostos de gelatina, triacetina, ácido esteárico ou capróico: efeito do pH e da adição de surfactantes sobre a funcionalidade dos filmes Composite films made with gelatin, tracetin, stearic and caproic acids: effect of pH and surfactants addition on the functionality of films

    Directory of Open Access Journals (Sweden)

    Taciana Davanço

    2007-06-01

    Full Text Available O desenvolvimento de biofilmes tem crescido devido à possibilidade de substituição parcial de materiais plásticos não biodegradáveis. Proteínas e polissacarídeos têm sido utilizados para a produção de filmes com boas propriedades mecânicas. Porém, filmes a partir desses materiais apresentam alta permeabilidade ao vapor de água. Uma alternativa usada para diminuir a permeabilidade ao vapor de água dos filmes é a incorporação de substâncias hidrofóbicas na composição da solução filmogênica, porém essa incorporação não ocorre de maneira homogênea. Com o objetivo de melhorar a incorporação das substâncias hidrofóbicas (ácido esteárico e ácido capróico na matriz protéica (gelatina do filme foram adicionados os surfactantes (SDS e Tween 80, que são substâncias capazes de interagir com a proteína e com o ácido graxo, tornando a matriz filmogênica menos heterogênea. O efeito do pH também foi estudado, com a finalidade de observar se este exerce influência na homogeneidade da matriz filmogênica. A adição do ácido esteárico aos filmes de gelatina foi mais eficiente na redução da permeabilidade ao vapor de água do que o ácido capróico. A adição do surfactante SDS reduziu a permeabilidade ao vapor de água dos filmes contendo ácido esteárico, ou ácido capróico. O ajuste de pH nos filmes sem adição de surfactantes também produziu matrizes mais homogêneas.The development of biofilms has grown considering the possibility of partial substitution of plastic materials which are not biodegradable. Proteins and polysaccharides have been used to produce films with good mechanical properties. However, films produced with these materials present a high permeability in water vapor. An alternative to improve the water vapor barrier of films is to incorporate hydrophobic substances (stearic and caproic fatty acids in the composition of the filmogenic solution, however this incorporation does not occur

  14. Physical and mechanical properties of gelatin-CMC composite films under the influence of electrostatic interactions.

    Science.gov (United States)

    Esteghlal, Sara; Niakousari, Mehrdad; Hosseini, Seyed Mohammad Hashem

    2018-03-17

    The objective of current study was to examine the electrostatic interactions between gelatin and carboxymethyl cellulose (CMC) as a function of pH and mixing ratio (MR) and to observe how the physical and mechanical properties of gelatin-CMC composite films are affected by these interactions. The interaction between biopolymers was studied using turbidometric analysis at different gelatin: CMC MRs and pH values. A reduction in pH and MR enhanced the electrostatic interactions; while, decreased the relative viscosity of mixed system. Physical and mechanical properties of resultant composite films were examined and compared with those of control gelatin films. Changes in the intensity of interactions between the two biopolymers resulted in films with different properties. Polymer complexation led to formation of resistant film networks of less solubility and swellability. Water vapor permeability (WVP) was not significantly (P≤0.05) influenced by incorporating CMC into continuous gelatin films. Composite films prepared at MR of 9:1 and pH opt (corresponding to the maximum amount of interaction) revealed different characteristics such as maximum amounts of WVP and swelling and minimum amounts of tensile strength and solubility. FTIR spectra of composite films confirmed that gelatin and CMC were not covalently bonded. Copyright © 2018. Published by Elsevier B.V.

  15. A Facile Pathway to Modify Cellulose Composite Film by Reducing Wettability and Improving Barrier towards Moisture

    Directory of Open Access Journals (Sweden)

    Xiaorong Hu

    2017-01-01

    Full Text Available The hydrophilic property of cellulose is a key limiting factor for its wide application. Here, a novel solution impregnation pathway was developed to increase the hydrophobic properties of cellulose. When compared with the regenerated cellulose (RC, the composite films showed a decrease in water uptake ability towards water vapor, and an increase of the water contact angle from 29° to 65° with increasing resin content in the composites, with only a slight change in the transmittance. Furthermore, the Young’s modulus value increased from 3.2 GPa (RC film to 5.1 GPa (RCBEA50 film. The results indicated that the composites had combined the advantages of cellulose and biphenyl A epoxy acrylate prepolymer (BEA resin. The presented method has great potential for the preparation of biocomposites with improved properties. The overall results suggest that composite films can be used as high-performance packaging materials.

  16. Growth of BaTiO3-PVDF composite thick films by using aerosol deposition

    Science.gov (United States)

    Cho, Sung Hwan; Yoon, Young Joon

    2016-01-01

    Barium titanate (BaTiO3)-polyvinylidene fluoride (PVDF) composite thick films were grown by using aerosol deposition at room temperature with BaTiO3 and PVDF powders. To produce a uniform composition in ceramic and polymer composite films, which show a substantial difference in specific gravity, we used PVDF-coated BaTiO3 powders as the starting materials. An examination of the microstructure confirmed that the BaTiO3 were well distributed in the PVDF matrix in the form of a 0 - 3 compound. The crystallite size in the BaTiO3-PVDF composite thick films was 5 ˜ 50 times higher than that in pure BaTiO3 thick films. PVDF plays a role in suppressing the fragmentation of BaTiO3 powder during the aerosol deposition process and in controlling the relative permittivity.

  17. One-step synthesis of PbSe-ZnSe composite thin film

    Directory of Open Access Journals (Sweden)

    Abe Seishi

    2011-01-01

    Full Text Available Abstract This study investigates the preparation of PbSe-ZnSe composite thin films by simultaneous hot-wall deposition (HWD from multiple resources. The XRD result reveals that the solubility limit of Pb in ZnSe is quite narrow, less than 1 mol%, with obvious phase-separation in the composite thin films. A nanoscale elemental mapping of the film containing 5 mol% PbSe indicates that isolated PbSe nanocrystals are dispersed in the ZnSe matrix. The optical absorption edge of the composite thin films shifts toward the low-photon-energy region as the PbSe content increases. The use of a phase-separating PbSe-ZnSe system and HWD techniques enables simple production of the composite package.

  18. Properties of composite film based on bigeye snapper surimi protein and lipids

    Directory of Open Access Journals (Sweden)

    Thummanoon Prodpran

    2005-12-01

    Full Text Available Lipids were incorporated into bigeye snapper surimi protein films through emulsification using Tween-20 as a surfactant to form protein/lipid composite films. The effects of lipid types (palm oil, butter or shortening and concentrations (0-100% glycerol substitution on film properties were investigated. Additionof lipids up to 75% glycerol substitution resulted in the improved water vapor barrier, lowered tensile strength (TS and increased elongation at break (EAB of the composite film (P<0.05. However, an increase in TS was observed with increasing lipid concentration, plausibly caused by increasing protein aggregation in film matrix. Transparency of films was decreased with increasing lipid concentrations used (P<0.05, especially for those added with solid lipids. Generally, the mechanical properties and water resistance of surimi protein films incorporated with palm oil were superior to those modified with butter or shortening. An increase in Tween-20, nonionic surfactant, might be associated with the decrease in non-disulfide covalent cross-links in the film. Scanning electron microscopic study revealed that dispersion of palm oil in the film was more uniform than that of butter and shortening. This might contribute to the varying properties of resulting films.

  19. A dense and strong bonding collagen film for carbon/carbon composites

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Sheng; Li, Hejun, E-mail: lihejun@nwpu.edu.cn; Li, Kezhi; Lu, Jinhua; Zhang, Leilei

    2015-08-30

    Graphical abstract: - Highlights: • Significantly enhancement of biocompatibility on C/C composites by preparing a collagen film. • The dense and continuous collagen film had a strong bonding strength with C/C composites after dehydrathermal treatment (DHT) crosslink. • Numerous oxygen-containing functional groups formed on the surface of C/C composites without matrix damage. - Abstract: A strong bonding collagen film was successfully prepared on carbon/carbon (C/C) composites. The surface conditions of the modified C/C composites were detected by contact angle measurements, scanning electron microscope (SEM), X-ray photoelectron spectroscopy (XPS) and Raman spectra. The roughness, optical morphology, bonding strength and biocompatibility of collagen films at different pH values were detected by confocal laser scanning microscope (CLSM), universal test machine and cytology tests in vitro. After a 4-h modification in 30% H{sub 2}O{sub 2} solution at 100 °C, the contact angle on the surface of C/C composites was decreased from 92.3° to 65.3°. Large quantities of hydroxyl, carboxyl and carbonyl functional groups were formed on the surface of the modified C/C composites. Then a dense and continuous collagen film was prepared on the modified C/C substrate. Bonding strength between collagen film and C/C substrate was reached to 8 MPa level when the pH value of this collagen film was 2.5 after the preparing process. With 2-day dehydrathermal treatment (DHT) crosslinking at 105 °C, the bonding strength was increased to 12 MPa level. At last, the results of in vitro cytological test showed that this collagen film made a great improvement on the biocompatibility on C/C composites.

  20. Investigation of polypyrrole/polyvinyl alcohol–titanium dioxide composite films for photo-catalytic applications

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Shaoqiang; Zhang, Hongyang; Song, Yuanqing; Zhang, Jianling; Yang, Haigang; Jiang, Long, E-mail: jianglong@scu.edu.cn; Dan, Yi, E-mail: danyichenweiwei@163.com

    2015-07-01

    Graphical abstract: - Highlights: • The study provides an easy and convenient method to fabricate films, which will give guidance for the preparation of three-dimensional materials. • The PPy/PVA–TiO{sub 2} films can keep better photo-catalytic activities both under UV and visible light irradiation when compared with TiO{sub 2} film. • There exist electron transfers between PPy/PVA and TiO{sub 2}. - Abstract: Polypyrrole/polyvinyl alcohol–titanium dioxide (PPy/PVA–TiO{sub 2}) composite films used as photo-catalysts were fabricated by combining TiO{sub 2} sol with PPy/PVA solution in which PPy was synthesized by in situ polymerization of pyrrole (Py) in polyvinyl alcohol (PVA) matrix and loaded on glass. The prepared photo-catalysts were investigated by X-ray diffraction (XRD), ultraviolet–visible diffuse reflection spectroscopy (UV–vis DRS), scanning electron microscopy (SEM), Fourier transform infrared (FT-IR) spectra and photoluminescence (PL). The results indicate that the composites have same crystal structure as the TiO{sub 2} and extend the optic absorption from UV region to visible light region. By detecting the variation ratio, detected by ultraviolet–vis spectroscopy, of model pollutant rhodamine B (RhB) solution in the presence of the composite films under both UV and visible light irradiation, the photo-catalytic performance of the composite films was investigated. The results show that the PPy/PVA–TiO{sub 2} composite films show better photo-catalytic properties than TiO{sub 2} film both under UV and visible light irradiation, and the photo-catalytic degradation of RhB follows the first-order kinetics. The effects of the composition of composite films and the concentration of RhB on the photo-catalytic performance, as well as the possible photo-catalytic mechanism, were also discussed. By photo-catalytic recycle experiments, the structure stability of the PPy/PVA–TiO{sub 2} composite film was investigated and the results show that

  1. Biodegradation of BOD and ammonia-free using bacterial consortium in aerated fixed film bioreactor (AF2B)

    Science.gov (United States)

    Prayitno, Rulianah, Sri; Saroso, Hadi; Meilany, Diah

    2017-06-01

    BOD and Ammonia-free (NH3-N) are pollutants of hospital wastewater which often exceed the quality standards. It is because biological processes in wastewater treatment plant (WWTP) have not been effective in degrading BOD and NH3-N. Therefore, a study on factors that influence the biodegradation of BOD and NH3-N by choosing the type of bacteria to improve the mechanisms of biodegradation processes is required. Bacterial consortium is a collection of several types of bacteria obtained from isolation process, which is known to be more effective than a single bacterial in degrading pollutants. On the other hand, AF2B is a type of reactor in wastewater treatment system. The AF2B contains a filter media that has a large surface area so that the biodegradation process of pollutants by microorganism can be improved. The objective of this research is to determine the effect of volume of starter and air supplies on decreasing BOD and NH3-N in hospital wastewater using bacterial consortium in the AF2B on batch process. The research was conducted in three stages: the making of the growth curve of the bacterial consortium, bacterial consortium acclimatization, and hospital wastewater treatment in the AF2B with batch process. The variables used are the volume of starter (65%, 75%, and 85% in volume) and air supplies (2.5, 5, and 7.5 L/min). Meanwhile, the materials used are hospital wastewater, bacterial consortium (Pseudomonas diminuta, Pseudomonas capica, Bacillius sp, and Nitrobacter sp), blower, and AF2B. AF2B is a plastic basin containing a filter media with a wasp-nest shape used as a medium for growing the bacterial consortium. In the process of making the growth curve, a solid form of bacterial consortium was dissolved in sterilized water, then grown in a nutrient broth (NB). Then, shaking and sampling were done at any time to determine the path growth of bacterial consortium. In the acclimatization process, bacterial isolates were grown using hospital wastewater as a

  2. Efeito de fibras vegetais nas propriedades de compósitos biodegradáveis de amido de mandioca produzidos via extrusão Effects of vegetal fibers on properties of cassava starch biodegradable composites produced by extrusion

    Directory of Open Access Journals (Sweden)

    Flávia Debiagi

    2010-12-01

    Full Text Available A preocupação com o volume de lixo tem gerado interesse no desenvolvimento de embalagens biodegradáveis capazes de substituir, ao menos em parte, os plásticos convencionais sintéticos, como é o caso das embalagens de poliestireno expandido (Isopor. Ojvetivou-se,neste trabalho caracterizar, quanto ao índice de expansão (IE, densidade, índice de absorção em água (IAA, índice de solubilidade em água (ISA e cor (coordenadas L*, a* e b*, compósitos biodegradáveis expandidos produzidos via extrusão, a partir da mistura de amido de mandioca, glicerol (plastificante e dois tipos de fibras vegetais. Os compósitos foram preparados em extrusora mono-rosca, com três diferentes teores de fibras de aveia ou de cana-de-açúcar (0, 5 e 10 g/100 g amido, dois teores de umidade (18 e 26% e teor fixo de glicerol (20g/100 g sólidos. A adição das fibras não afetou significativamente o IE, a densidade e o IAA, porém diminuiu o ISA dos materiais, o que é uma vantagem, favorecendo a utilização das fibras no reforço dos compósitos. A adição de fibras levou ao escurecimento das amostras, com decréscimo da luminosidade (L* e, ainda, ao aumento nos valores dos parâmetros de cor a* e b*. Este estudo é passo fundamental para produção em escala industrial dos compósitos, que necessitam de condições de processo que forneçam resultados reprodutíveis de expansão e capacidade de absorção e solubilidade em água, propriedades de grande importância nesses produtos.The concern with the volume of waste has generated interest in the development of biodegradable packaging able to replace, at least in part, the conventional synthetic plastics, such as packs of expanded polystyrene (Isopor. This study aimed to characterize the expansion index, density, the water absorption index (WAI, water solubility index (WSI and color (coordinates L*, a* and b* of expanded biodegradable composites produced by extrusion, from the mixture cassava starch

  3. From Nanofibrillar to Nanolaminar Poly(butylene succinate): Paving the Way to Robust Barrier and Mechanical Properties for Full-Biodegradable Poly(lactic acid) Films.

    Science.gov (United States)

    Xie, Lan; Xu, Huan; Chen, Jing-Bin; Zhang, Zi-Jing; Hsiao, Benjamin S; Zhong, Gan-Ji; Chen, Jun; Li, Zhong-Ming

    2015-04-22

    The traditional approach toward barrier property enhancement of poly(lactic acid) (PLA) is the incorporation of sheet-like fillers such as nanoclay and graphene, unfortunately leading to the sacrificed biocompatibility and degradability. Here we unveil the first application of a confined flaking technique to establish the degradable nanolaminar poly(butylene succinate) (PBS) in PLA films based on PLA/PBS in situ nanofibrillar composites. The combination of high pressure (10 MPa) and appropriate temperature (160 °C) during the flaking process desirably enabled sufficient deformation of PBS nanofibrils and retention of ordered PLA channels. Particularly, interlinked and individual nanosheets were created in composite films containing 10 and 20 wt % PBS, respectively, both of which presented desirable alignment and large width/thickness ratio (nanoscale thickness with a width of 428±13.1 and 76.9±8.2 μm, respectively). With the creation of compact polymer "nano-barrier walls", a dramatic decrease of 86% and 67% in the oxygen permeability coefficient was observed for the film incorporated with well-organized 20 wt % PBS nanosheets compared to pure PLA and pure PBS (1.4 and 0.6×10(-14) cm3·cm·cm(-2)·s(-1)·Pa(-1)), respectively. Unexpectedly, prominent increases of 21% and 28% were achieved in the tensile strength and modulus of composite films loaded 20 wt % PBS nanosheets compared to pure PLA films, although PBS intrinsically presents poor strength and stiffness. The unusual combination of barrier and mechanical performances established in the fully degradable system represent specific properties required in packaging beverages, food and medicine.

  4. Composites structures for bone tissue reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Neto, W.; Santos, João [Universidade Federal de São Carlos, Departament of Materials Engineering - Rd. Washington Luis, Km 235, 13565-905, São Carlos-SP (Brazil); Avérous, L.; Schlatter, G.; Bretas, Rosario, E-mail: bretas@ufscar.br [Université de Strasbourg, ECPM-LIPHT - 25 rue Becquerel, 67087, Strasbourg (France)

    2015-05-22

    The search for new biomaterials in the bone reconstitution field is growing continuously as humane life expectation and bone fractures increase. For this purpose, composite materials with biodegradable polymers and hydroxyapatite (HA) have been used. A composite material formed by a film, nanofibers and HA has been made. Both, the films and the non-woven mats of nanofibers were formed by nanocomposites made of butylene adipate-co-terephthalate (PBAT) and HA. The techniques used to produce the films and nanofibers were spin coating and electrospinning, respectively. The composite production and morphology were evaluated. The composite showed an adequate morphology and fibers size to be used as scaffold for cell growth.

  5. Composites structures for bone tissue reconstruction

    International Nuclear Information System (INIS)

    Neto, W.; Santos, João; Avérous, L.; Schlatter, G.; Bretas, Rosario

    2015-01-01

    The search for new biomaterials in the bone reconstitution field is growing continuously as humane life expectation and bone fractures increase. For this purpose, composite materials with biodegradable polymers and hydroxyapatite (HA) have been used. A composite material formed by a film, nanofibers and HA has been made. Both, the films and the non-woven mats of nanofibers were formed by nanocomposites made of butylene adipate-co-terephthalate (PBAT) and HA. The techniques used to produce the films and nanofibers were spin coating and electrospinning, respectively. The composite production and morphology were evaluated. The composite showed an adequate morphology and fibers size to be used as scaffold for cell growth

  6. CARACTERIZACIÓN MORFOLÓGICA DE PELÍCULAS BIODEGRADABLES A PARTIR DE ALMIDÓN MODIFICADO DE YUCA, AGENTE ANTIMICROBIANO Y PLASTIFICANTE CARACTERIZAÇÃO MORFOLÓGICA DE FILMES BIODEGRADÁVEIS A PARTIR DE AMIDO MODIFICADO DE MANDIOCA, AGENTE ANTIMICROBIANO E PLASTIFICANTE MORPHOLOGICAL CHARACTERIZATION OF BIODEGRADABLE FILMS MADE FROM MODIFIED CASSAVA STARCH, ANTIMICROBIAL AGENT AND PLASTICIZER

    Directory of Open Access Journals (Sweden)

    REINALDO VELASCO M

    2012-12-01

    Full Text Available Se ha evaluado la morfología superficial de almidones termoplásticos (TPS obtenidos de tres variedades de almidón modificado de yuca, plastificante y un agente antimicrobiano. Las películas fueron obtenidas por extrusión soplado, se acondicionaron a una temperatura de 25°C y humedad relativa de 50% durante 48 horas y se extendieron sobre un portaobjetos; se procedió a tomar las fotomicrografías con los objetivos de 4x y 10x. Se usó la técnica microscopia óptica de alta resolución (MOAR para caracterizar las imágenes. La técnica mostró que la adición del plastificante afecta la microestructura de películas de almidón de yuca demostrando una falta de homogeneidad, sin embargo se presentaron regiones lisas relacionadas con el tamaño y forma del gránulo de almidón, la concentración del plastificante y las condiciones del proceso de extrusión como la velocidad del tornillo y el perfil de temperatura. Esta investigación contribuyó a caracterizar las propiedades microestructurales de los almidones termoplásticos, que son imprescindibles para la continuidad en el estudio de películas biodegradables.Avaliou-se a morfologia superficial dos amidos termoplásticos (TPS obtidos de três variedades de amido modificado da mandioca, plastificante e um agente antimicrobiano. Os filmes foram obtidos por extrusão soprada e espalhados sobre uma lâmina; passou - se a tomar as fotomicrografias com os objetivos de 4x e 10x. Foi usada a técnica da microscopia óptica de alta resolução (MOAR para caracterizar as imagens. A técnica mostrou que a adição do plastificante afeta a microestrutura dos filmes de amido de mandioca mostrando uma falta de homogeneidade, no entanto presentearam - se regiões lisas relacionadas com o tamanho y forma do granulo do amido, a concentração de plastificante e as condições do processo de extrusão como a velocidade do parafuso e o perfil de temperatura. Esta pesquisa contribuiu a caracterizar as

  7. PEO + PVP blended polymer composite films for multifunctional ...

    Indian Academy of Sciences (India)

    polymeric materials have been characterized by vibrating sample magnetometre (VSM) system in understanding their magnetic properties. Further, these materials exhibit a para- magnetic behaviour from the host film and ferromagnetism from the doped films. In addition, ionic conductivity and dielectric properties have also ...

  8. Characterization of multilayered and composite edible films from chitosan and beeswax.

    Science.gov (United States)

    Velickova, Elena; Winkelhausen, Eleonora; Kuzmanova, Slobodanka; Moldão-Martins, Margarida; Alves, Vitor D

    2015-03-01

    Chitosan-based edible films were prepared and subjected to cross-linking reactions using sodium tripolyphosphate and/or to beeswax coating on both films interfaces. In addition, chitosan-beeswax emulsion-based films were produced. The goal of these modifications of the chitosan films was the improvement of their barrier to water vapor and to decrease their affinity to liquid water maintaining or improving the mechanical and optical properties of the original chitosan films. The cross-linking with tripolyphosphate decreased both the water vapor permeability and the water absorption capacity to about 55% and 50% of that of the original chitosan films, respectively. However, there was an increase in the films stiffness, revealed by the increased Young modulus from 42 kPa up to 336 kPa. The multilayered wax-chitosan-wax films exhibited a similar improvement of the barrier properties to water vapor, with the advantage of maintaining the mechanical properties of the original chitosan films. However, these wax-coated films showed a higher water absorption capacity, which is believed to be a consequence of water entry into small pores between the film and the wax layers. Regarding the film samples subjected to cross-linking and further coating with beeswax, a similar behavior as the uncoated cross-linked films was observed. The emulsion-based composite films were characterized by a substantial decrease of the water vapor permeability (40%), along with a decrease in their stiffness. Regarding the optical properties, all films presented a yellowish color with similar values of lightness, chroma, and hue. © The Author(s) 2013 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  9. Structure and properties of composite films formed by cellulose nanocrystals and charged latex nanoparticles.

    Science.gov (United States)

    Thérien-Aubin, Héloïse; Lukach, Ariella; Pitch, Natalie; Kumacheva, Eugenia

    2015-04-21

    We report the structural and optical properties of composite films formed from mixed suspensions of cellulose nanocrystals (CNCs) and fluorescent latex nanoparticles (NPs). We explored the effect of NP concentration, size, surface charge, glass transition temperature and film processing conditions on film structure and properties. The chiral nematic order, typical of CNC films, was preserved in films with up to 50 wt% of negatively-charged latex NPs. Composite films were characterized by macroscopically close-to-uniform fluorescence, birefringence, and circular dichroism properties. In contrast, addition of positively charged latex NPs led to gelation of CNC-latex suspensions and disruption of the chiral nematic order in the composite films. Large latex NPs disrupted the chiral nematic order to a larger extend than small NPs. Furthermore, the glass transition of latex NPs had a dramatic effect on the structure of CNC-latex films. Latex particles in the rubbery state were easily incorporated in the ordered CNC matrix and improved the structural integrity of its chiral nematic phase.

  10. Properties and Applications of High Emissivity Composite Films Based on Far-Infrared Ceramic Powder

    Directory of Open Access Journals (Sweden)

    Yabo Xiong

    2017-11-01

    Full Text Available Polymer matrix composite materials that can emit radiation in the far-infrared region of the spectrum are receiving increasing attention due to their ability to significantly influence biological processes. This study reports on the far-infrared emissivity property of composite films based on far-infrared ceramic powder. X-ray fluorescence spectrometry, Fourier transform infrared spectroscopy, thermogravimetric analysis, and X-ray powder diffractometry were used to evaluate the physical properties of the ceramic powder. The ceramic powder was found to be rich in aluminum oxide, titanium oxide, and silicon oxide, which demonstrate high far-infrared emissivity. In addition, the micromorphology, mechanical performance, dynamic mechanical properties, and far-infrared emissivity of the composite were analyzed to evaluate their suitability for strawberry storage. The mechanical properties of the far-infrared radiation ceramic (cFIR composite films were not significantly influenced (p ≥ 0.05 by the addition of the ceramic powder. However, the dynamic mechanical analysis (DMA properties of the cFIR composite films, including a reduction in damping and shock absorption performance, were significant influenced by the addition of the ceramic powder. Moreover, the cFIR composite films showed high far-infrared emissivity, which has the capability of prolonging the storage life of strawberries. This research demonstrates that cFIR composite films are promising for future applications.

  11. Mango kernel starch-gum composite films: Physical, mechanical and barrier properties.

    Science.gov (United States)

    Nawab, Anjum; Alam, Feroz; Haq, Muhammad Abdul; Lutfi, Zubala; Hasnain, Abid

    2017-05-01

    Composite films were developed by the casting method using mango kernel starch (MKS) and guar and xanthan gums. The concentration of both gums ranged from 0% to 30% (w/w of starch; db). Mechanical properties, oxygen permeability (OP), water vapor permeability (WVP), solubility in water and color parameters of composite films were evaluated. The crystallinity and homogeneity between the starch and gums were also evaluated by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The scanning electron micrographs showed homogeneous matrix, with no signs of phase separation between the components. XRD analysis demonstrated diminished crystalline peak. Regardless of gum type the tensile strength (TS) of composite films increased with increasing gum concentration while reverse trend was noted for elongation at break (EAB) which found to be decreased with increasing gum concentration. The addition of both guar and xanthan gums increased solubility and WVP of the composite films. However, the OP was found to be lower than that of the control with both gums. Furthermore, addition of both gums led to changes in transparency and opacity of MKS films. Films containing 10% (w/w) xanthan gum showed lower values for solubility, WVP and OP, while film containing 20% guar gum showed good mechanical properties. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Preparation and properties of Starch-g-PLA/poly(vinyl alcohol) composite film.

    Science.gov (United States)

    Hu, Yingmo; Wang, Qingling; Tang, Mingru

    2013-07-25

    Starch/lactic acid graft copolymer (Starch-g-PLA) was prepared by the in situ copolymerization of starch grafted with lactic acid catalyzed with sodium hydroxide, and then mixed with poly(vinyl alcohol) (PVA) to get composite films. The structures of the graft copolymer and composite films were characterized by Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD) and scanning electron microscopy (SEM). The mechanical properties, water resistance, and thermal stability were also investigated. It was found that the compatibility of Starch-g-PLA and PVA was better than that of starch and PVA in the composite films. The tensile strength and elongation at break of the Starch-g-PLA/PVA composite film increased by 69.15% and 84.22%, respectively, while the water absorption decreased by 50.39%, which overcame the shortcomings of hydrophilicity and poor mechanical properties of Starch/PVA film. Thermogravimetric analysis (TGA) also showed that the thermal stability of Starch-g-PLA/PVA film was improved compared with Starch/PVA film. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Mercuric iodide composite films using polyamide, polycarbonate and polystyrene fabricated by casting

    International Nuclear Information System (INIS)

    Ugucioni, J.C.; Ghilardi Netto, T.; Mulato, M.

    2010-01-01

    Mercuric iodide (HgI 2 ) composite films were obtained by using the casting technique. Insulator polymers such as polyamide, polycarbonate and polystyrene were mixed to HgI 2 crystallites forming a final sub-millimeter thick self-standing film. Fabrication temperature varied from 10 to 100 o C, and total fabrication time reached at most 5 min. The larger the fabrication temperature, the thinner the film and the smaller its electrical resistivity. Electrical characterization was performed in the dark, under UV illumination and under mammographic X-ray exposure. The final properties of the films are discussed and related to fabrication conditions. The optimized composite film might be a better candidate for use as X-ray detector for medical imaging, in place of the single HgI 2 crystalline device.

  14. PEDOT: PSS/PEDOT composite film for high performance electrochemical electrode

    Science.gov (United States)

    Lu, Fei; Chen, Yan; Mao, Xiling; Xu, Lu; Xu, Jianhua

    2017-01-01

    Micro-supercapacitors are promising energy storage devices that can complement batteries in miniaturized portable electronics and microelectromechanical systems. Here, we develop a facile method to fabricate a hierarchically structured film as electrode material of supercapacitor. The hybrid PEDOT: PSS/PEDOT film is prepared via a two-step process: PEDOT: PSS film was spin-coated on the substrate in the first step and followed by the vapor phase polymerization (VPP) of PEDOT film on the PEDOT: PSS film in the second step. Each component in the hybrid film provides unique and crucial function to achieve optimized electrochemical properties. Volumetric capacity of composite film (238.63 F/cm3) is much higher than that of pure VPP PEDOT film (87.36 F/cm3). The hybrid film also exhibits excellent charge/discharge rate and good cycling stability, retaining 90.2% of its initial charge after 5500 cycles. The enhanced electrochemical performances of such composites indicate a promising future as electrode material for electrochemical energy storage devices.

  15. Synthesis and characterization of Au-MWCNT/PEDOT: PSS composite film for optoelectronic applications

    Science.gov (United States)

    Jasna, M.; Anjana, R.; Jayaraj, M. K.

    2017-08-01

    Recently, flexible organic optoelectronics have got great attention because of their light weight, mechanical flexibility and cost effective fabrication process. Conjugated polymers like PEDOT: PSS are widely used for the transparent electrode applications due to its chemical stability, high conductivity, flexibility and optical transparency in the visible region. Conductivity of the PEDOT: PSS polymer can be enhanced by adding organic solvents or conducting nano fillers like CNT, graphene, etc. Carbon nanotubes are good nano fillers to enhance the conductivity and mechanical strength of PEDOT: PSS composite film. Inthe present work, the effect of gold nano particles in PEDOT: PSS/CNT composite is studied. The conductivity enhancement in PEDOT: PSS/CNT thin films can be attributed to the formation of CNT network in the polymer matrix and conformational change of the PEDOT from benzoid to quinoid structure. Even though the conductivity was enhanced, the transparency of the composite thin films decreased with increase in CNT concentration. To overcome this problem, gold nano particles were attached to CNT walls via chemical route. AuMWCNT/PEDOT: PSS composite films were prepared by spin coating method. TEM images confirmed the decoration of gold nano particles on CNT walls. Electrical and optical properties of the composite films were studied. This simple solution processed conducting films are suitable for optoelectronic applications

  16. Synthesis of PVDF/SBT composite thin films by spin coating technology and their ferroelectric properties

    Directory of Open Access Journals (Sweden)

    Chen Changchun

    2016-09-01

    Full Text Available Ferroelectric composite thin films of x-SBT/PVDF with different SBT content (weight ratios of SBT to PVDF, x = 0 %, 5 %, 10 %, 15 %, 20 % were prepared by spin-coating method. The crystal structures of x-SBT/PVDF films were analyzed by X-ray diffraction (XRD measurements and Fourier transform-infrared spectroscopy (FT-IR, respectively. Experimental results demonstrated that both α, β-phases PVDF and the layered perovskite SBT co-existed in the x-SBT/PVDF samples. With an increase of SBT content in the x-SBT/PVDF thin films, both the dielectric constant and the saturated polarization were also increased, compared with those of pure PVDF thin film. More importantly, when the SBT content in the x-SBT/PVDF thin films was larger than 15 %, the coercive field of x-SBT/PVDF thin films was also decreased.

  17. Chitosan-based films composites for wound healing purposes; Filmes compositos de quitosana para aplicacao no revestimento de ferimentos

    Energy Technology Data Exchange (ETDEWEB)

    Alves, Natali de O.; Silva, Gabriela T. da; Schulz, Gracelie A.S.; Fajardo, Andre R., E-mail: natalioliveiraalves@gmail.com [Universidade Federal de Pelotas (LaCoPol/UFPel), Pelotas, RS (Brazil). Centro de Ciencias Quimicas, Farmaceuticas e de Alimentos. Lab. de Tecnologia e Desenvolvimento de Compositos e Materiais Polimericos

    2015-07-01

    Chitosan has been extensively applied in the developing of biomaterials due to its desirable good physico-chemical and biological properties. According to this, here films composite of chitosan, poly(vinyl alcohol) and bovine bone powder were prepared by casting willing to be applied in wound healing purposes. Moreover, the first step was the developing of a suitable method to obtain bovine bone powder, which was utilized here as filler. All the materials and films were fully characterized by FTIR, DRX and thermal analysis. Water uptake capacity was measured by swelling assays. (author)

  18. Evaluation of a bio-based hydrophobic cellulose laurate film as biomaterial--study on biodegradation and cytocompatibility.

    Science.gov (United States)

    Crépy, Lucie; Monchau, Francine; Chai, Feng; Raoul, Gwénaël; Hivart, Philippe; Hildebrand, Hartmut F; Martin, Patrick; Joly, Nicolas

    2012-05-01

    The study aims to validate an original bio-based material, obtained by grafting fatty chains, and more especially lauric chains (C12) onto cellulose, for medical applications. The mechanical properties of the synthesized cellulose laurate (C12) are close to those of petrochemical ones such as low density polyethylene. This cellulose-based polymer is transparent, flexible, and hydrophobic. To evaluate the stability of the cellulosic films in biological fluids the samples are soaked in simulated body fluid or blood plasma for a few hours to 6 months, and then submitted to mechanical and chemical analyses. The simultaneously performed cytocompatibility tests were the colony-forming viability, the vitality and cell proliferation tests using NIH 3T3 fibroblasts and MC 3T3 osteoblast-like cells. The results show the stability, the biocompatibility, and the noncytotoxicity of the synthesized cellulose laurate films. This biomaterial may so be considered for surgical applications. Copyright © 2012 Wiley Periodicals, Inc.

  19. Electrochemical Reduction of CO2 on Compositionally Variant Au-Pt Bimetallic Thin Films

    DEFF Research Database (Denmark)

    Ma, Ming; Hansen, Heine Anton; Valenti, Marco

    2017-01-01

    by a magnetron sputtering co-deposition technique with tunable composition. It was found that the syngas ratio (CO:H2) on the Au-Pt films is able to be tuned by systematically controlling the binary composition. This tunable catalytic selectivity is attributed to the variation of binding strength of COOH and CO...

  20. Filmes compostos biodegradáveis a base de amido de mandioca e proteína de soja

    Directory of Open Access Journals (Sweden)

    Geisa Oliveira Rocha

    2014-10-01

    Full Text Available Filmes provenientes de biopolímeros (polissacarídeos e proteínas apresentam-se como alternativa ao uso de derivados petroquímicos, possibilitando a formação de matrizes contínuas, e a otimização de parâmetros como pH e tipo de plastificante pode resultar em materiais com propriedades melhoradas. Neste estudo, filmes de amido de mandioca produzidos por casting foram avaliados quanto a adição de extrato proteico de soja (EPS, glicerol e pH do meio. O aumento da concentração de EPS levou ao escurecimento dos filmes, ao aumento da solubilidade e aumentou o pH. O maior teor de plastificante e o menor pH elevaram a permeabilidade ao vapor de água (PVA. A menor PVA (0,057 g mm h-1 m-2 kPa-1 foi obtida com máximo teor de EPS (47% e 13% de glicerol em pH 12. A força de perfuração variou de 0,08 a 2,78 N, sendo os maiores valores com adição de EPS e glicerol em nível intermediário (30% em pH neutro. A maior deformação na perfuração (31,9% ocorreu no teor de EPS mais baixo (13% e de glicerol mais alto (47%. Considerando-se os fatores desejáveis: baixa PVA, baixa solubilidade e boa resistência mecânica, os filmes produzidos com 15,2% de EPS, 29,2% de glicerol em pH 6,1 foram os que mais bem atenderam a estas características.

  1. In Situ Synthesis of Reduced Graphene Oxide-Reinforced Silicone-Acrylate Resin Composite Films Applied in Erosion Resistance

    Directory of Open Access Journals (Sweden)

    Yang Cao

    2015-01-01

    Full Text Available The reduced graphene oxide reinforced silicone-acrylate resin composite films (rGO/SAR composite films were prepared by in situ synthesis method. The structure of rGO/SAR composite films was characterized by Raman spectrum, atomic force microscope, scanning electron microscopy, and thermogravimetric analyzer. The results showed that the rGO were uniformly dispersed in silicone-acrylate resin matrix. Furthermore, the effect of rGO loading on mechanical properties of composite films was investigated by bulge test. A significant enhancement (ca. 290% and 320% in Young’s modulus and yield stress was obtained by adding the rGO to silicone-acrylate resin. At the same time, the adhesive energy between the composite films and metal substrate was also improved to be about 200%. Moreover, the erosion resistance of the composite films was also investigated as function of rGO loading. The rGO had great effect on the erosion resistance of the composite films, in which the Rcorr (ca. 0.8 mm/year of composite film was far lower than that (28.7 mm/year of pure silicone-acrylate resin film. Thus, this approach provides a novel route to investigate mechanical stability of polymer composite films and improve erosion resistance of polymer coating, which are very important to be used in mechanical-corrosion coupling environments.

  2. Polyethylene-Carbon Nanotube Composite Film Deposited by Cold Spray Technique

    Science.gov (United States)

    Ata, Nobuhisa; Ohtake, Naoto; Akasaka, Hiroki

    2017-10-01

    Carbon nanotubes (CNTs) are high-performance materials because of their superior electrical conductivity, thermal conductivity, and self-lubrication, and they have been studied for application to polymer composite materials as fillers. However, the methods of fabricating polymer composites with CNTs, such as injection molding, are too complicated for industrial applications. We propose a simple cold spray (CS) technique to obtain a polymer composite of polyethylene (PE) and CNTs. The composite films were deposited by CS on polypropylene and nano-porous structured aluminum substrates. The maximum thickness of the composite film was approximately 1 mm. Peaks at G and D bands were observed in the Raman spectra of the films. Scanning electron microscopy images of the film surface revealed that PE particles were melted by the acceleration gas and CNTs were attached with melted PE. The PE particles solidified after contact with the substrate. These results indicate that PE-CNT composite films were successfully deposited on polypropylene and nano-porous structured aluminum substrates by CS.

  3. Plasma deposition of polymer composite films incorporating nanocellulose whiskers

    Science.gov (United States)

    Samyn, P.; Airoudj, A.; Laborie, M.-P.; Mathew, A. P.; Roucoules, V.

    2011-11-01

    In a trend for sustainable engineering and functionalization of surfaces, we explore the possibilities of gas phase processes to deposit nanocomposite films. From an analysis of pulsed plasma polymerization of maleic anhydride in the presence of nanocellulose whiskers, it seems that thin nanocomposite films can be deposited with various patterns. By specifically modifying plasma parameters such as total power, duty cycle, and monomer gas pressure, the nanocellulose whiskers are either incorporated into a buckled polymer film or single nanocellulose whiskers are deposited on top of a polymeric film. The density of the latter can be controlled by modifying the exact positioning of the substrate in the reactor. The resulting morphologies are evaluated by optical microscopy, AFM, contact angle measurements and ellipsometry.

  4. Effect of Structure, Composition, and Micromorphology on the Hydrophobic Property of F-DLC Film

    Directory of Open Access Journals (Sweden)

    Aihua Jiang

    2013-01-01

    Full Text Available Fluorinated diamond-like carbon (F-DLC films were prepared by radio frequency plasma-enhanced chemical vapor deposition technique with CF4 and CH4 as source gases under different deposition conditions. The chemical bonding structure and composition of the films were detected by Raman, Fourier transform infrared absorption spectrometry (FTIR, and X-ray photoelectron spectroscopy (XPS characterization. The micromorphology and surface roughness of the film were observed and analyzed by atomic force microscopy (AFM. The results indicated that all the prepared films presented a diamond-like carbon structure. The relative content of fluorine in the films increased, containing more CF2 groups. The ratio of hybrid structure sp3/sp2 decreased. The surface roughness of the films increased when the gas flow ratio R (R = CF4/[CH4 + CF4] or the deposition power increased. The contact angle of water with the surface of the F-DLC film was measured with a static drop-contact angle/surface tension measuring instrument. The hydrophobic property of the F-DLC films was found to be dependent on the sp2 structure, fluorine content, and surface roughness of the films. The contact angle increased when the relative content of fluorine in the films and sp2 content increased, whereas the contact angle first increased and then decreased with the surface roughness.

  5. Direct electrochemistry and electrocatalysis of hemoglobin protein entrapped in graphene and chitosan composite film.

    Science.gov (United States)

    Xu, Huifeng; Dai, Hong; Chen, Guonan

    2010-04-15

    A novel, biocompatible sensing strategy based on graphene and chitosan composite film for immobilizing the hemoglobin protein was firstly adopted. The direct electron transfer and bioelectrocatalytic activity of hemoglobin after incorporation into the composite film were investigated. A pair of reversible redox waves of hemoglobin was appeared, and hemoglobin could exhibit its bioelectrocatalytic activity toward H(2)O(2) in a long term. Such results indicated that graphene and chitosan composite could be a friendly biocompatible interface for immobilizing biomolecules and keeping their native structure. Furthermore, the appearance of graphene in the composite film could facilitate the electron transfer between matrix and the electroactive center of hemoglobin. Hence, this graphene and chitosan based protocol would be a promising platform for protein immobilization and biosensor preparation. (c) 2010 Elsevier B.V. All rights reserved.

  6. High-performance flexible hydrogen sensor made of WS2 nanosheet–Pd nanoparticle composite film

    International Nuclear Information System (INIS)

    Kuru, Cihan; Choi, Duyoung; Liu, Chin Hung; Yavuz, Serdar; Jin, Sungho; Kargar, Alireza; Choi, Chulmin; Bandaru, Prabhakar R

    2016-01-01

    We report a flexible hydrogen sensor, composed of WS 2 nanosheet–Pd nanoparticle composite film, fabricated on a flexible polyimide substrate. The sensor offers the advantages of light-weight, mechanical durability, room temperature operation, and high sensitivity. The WS 2 –Pd composite film exhibits sensitivity (R 1 /R 2, the ratio of the initial resistance to final resistance of the sensor) of 7.8 to 50 000 ppm hydrogen. Moreover, the WS 2 –Pd composite film distinctly outperforms the graphene–Pd composite, whose sensitivity is only 1.14. Furthermore, the ease of fabrication holds great potential for scalable and low-cost manufacturing of hydrogen sensors. (paper)

  7. Electrochemical and Antimicrobial Properties of Diamondlike Carbon-Metal Composite Films

    Energy Technology Data Exchange (ETDEWEB)

    MORRISON, M. L.; BUCHANAN, R. A.; LIAW, P. K.; BERRY, C. J.; BRIGMON, R.; RIESTER, L.; JIN, C.; NARAYAN, R. J.

    2005-05-11

    Implants containing antimicrobial metals may reduce morbidity, mortality, and healthcare costs associated with medical device-related infections. We have deposited diamondlike carbon-silver (DLC-Ag), diamondlike carbon-platinum (DLC-Pt), and diamondlike carbon-silver-platinum (DLC-AgPt) thin films using a multicomponent target pulsed laser deposition process. Transmission electron microscopy of the DLC-silver and DLC-platinum composite films revealed that the silver and platinum self-assemble into nanoparticle arrays within the diamondlike carbon matrix. The diamondlike carbon-silver film possesses hardness and Young's modulus values of 37 GPa and 331 GPa, respectively. The diamondlike carbon-metal composite films exhibited passive behavior at open-circuit potentials. Low corrosion rates were observed during testing in a phosphate-buffered saline (PBS) electrolyte. In addition, the diamondlike carbon-metal composite films were found to be immune to localized corrosion below 1000 mV (SCE). DLC-silver-platinum films demonstrated exceptional antimicrobial properties against Staphylococcus bacteria. It is believed that a galvanic couple forms between platinum and silver, which accelerates silver ion release and provides more robust antimicrobial activity. Diamondlike carbon-silver-platinum films may provide unique biological functionalities and improved lifetimes for cardiovascular, orthopaedic, biosensor, and implantable microelectromechanical systems.

  8. Friction and wear performance of boron doped, undoped microcrystalline and fine grained composite diamond films

    Science.gov (United States)

    Wang, Xinchang; Wang, Liang; Shen, Bin; Sun, Fanghong

    2015-01-01

    Chemical vapor deposition (CVD) diamond films have attracted more attentions due to their excellent mechanical properties. Whereas as-fabricated traditional diamond films in the previous studies don't have enough adhesion or surface smoothness, which seriously impact their friction and wear performance, and thus limit their applications under extremely harsh conditions. A boron doped, undoped microcrystalline and fine grained composite diamond (BD-UM-FGCD) film is fabricated by a three-step method adopting hot filament CVD (HFCVD) method in the present study, presenting outstanding comprehensive performance, including the good adhesion between the substrate and the underlying boron doped diamond (BDD) layer, the extremely high hardness of the middle undoped microcrystalline diamond (UMCD) layer, as well as the low surface roughness and favorable polished convenience of the surface fine grained diamond (FGD) layer. The friction and wear behavior of this composite film sliding against low-carbon steel and silicon nitride balls are studied on a ball-on-plate rotational friction tester. Besides, its wear rate is further evaluated under a severer condition using an inner-hole polishing apparatus, with low-carbon steel wire as the counterpart. The test results show that the BD-UM-FGCD film performs very small friction coefficient and great friction behavior owing to its high surface smoothness, and meanwhile it also has excellent wear resistance because of the relatively high hardness of the surface FGD film and the extremely high hardness of the middle UMCD film. Moreover, under the industrial conditions for producing low-carbon steel wires, this composite film can sufficiently prolong the working lifetime of the drawing dies and improve their application effects. This research develops a novel composite diamond films owning great comprehensive properties, which have great potentials as protecting coatings on working surfaces of the wear-resistant and anti

  9. Preparation of the flexible ZrO{sub 2}/C composite nanofibrous film via electrospinning

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Xin; Song, Lixin; Xie, Xueyao; Zhou, Yangyang; Guan, Yingli; Xiong, Jie [Zhejiang Sci-Tech University, College of Materials and Textiles, Hangzhou (China); Zhejiang Sci-Tech University, Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, Hangzhou (China)

    2016-07-15

    The flexible ZrO{sub 2}/C composite nanofibrous film was fabricated by electrospinning and thermal treatment. Field-emission scanning electron microscopy, transmission electron microscopy, X-ray diffractometer, and Fourier transform infrared spectra were used to characterize the morphology and microstructure of the ZrO{sub 2}/C composite nanofibrous film. The ZrO{sub 2}/C nanofibers exhibited rough surface and had the average diameter of about 230 ± 35 nm. And the ZrO{sub 2} nanoparticles were incorporated in carbon matrix and in tetragonal and monoclinic. The flexural property of the ZrO{sub 2}/C composite nanofibrous film was investigated in detail. The results showed that the flexural property of the nanofibrous film was greatly improved with addition of the ZrO{sub 2} nanoparticles. Besides, with the increase of the contents of ZrO{sub 2} nanoparticles, the flexural modulus of the nanofibrous film decreased, reached a lowest value, and then increased. The lowest flexural modulus of the ZrO{sub 2}/C composite nanofibrous film in precursor concentration of 7.0 wt% was 8.55 ± 0.06 MPa. (orig.)

  10. Desenvolvimento e avaliação da eficácia de filmes biodegradáveis de amido de mandioca com nanocelulose como reforço e com extrato de erva-mate como aditivo antioxidante Development and evaluation of the effectiveness of biodegradable films of cassava starch with nanocelulose as reinforcement and yerba mate extract as an additive antioxidant

    Directory of Open Access Journals (Sweden)

    Bruna Aparecida Souza Machado

    2012-11-01

    Full Text Available O objetivo do trabalho foi desenvolver uma embalagem biodegradável utilizando como matriz polimérica o amido de mandioca plastificada com glicerol e reforçada com a incorporação de nanocelulose da fibra de coco, bem como, avaliar o efeito da adição de um aditivo natural (erva-mate nas formulações de nanobiocompósitos com ação antioxidante. Os nanocristais de celulose (L/D=39 foram obtidos por hidrólise ácida com H2SO4 a 65%. Os filmes foram preparados por casting contendo 4,5 e 6,0% de amido, 0,5 e 1,5% de glicerol, 0,3% de nanocelulose e 20% de extrato de erva-mate. O armazenamento do azeite de dendê embalado com os filmes contendo o aditivo foi monitorado por 40 dias sob condições de oxidação acelerada (63%UR/30°C. Constatou-se que, à medida que aumentam as perdas de Polifenóis Totais nos filmes, ocorre um menor aumento do Índice de Peróxidos do produto embalado, demonstrando, assim, que, ao invés do produto, os compostos da embalagem é quem estão sofrendo oxidação. A incorporação de extrato de erva-mate não alterou as propriedades mecânicas e de barreira desses filmes.The objective was to develop biodegradable packaging using a polymer matrix as the cassava starch plasticized with glycerol and reinforced with the incorporation of nanocelulose of coconut fiber, as well as to evaluate the effect of the addition of an additive nature (yerba mate in nanobiocompósitos formulations with antioxidant action. The nanocrystal cellulose (L/D=39 were obtained by acid hydrolysis with 65% H2SO4. The films were prepared by casting containing 4.5 and 6.0% starch, 0.5 and 1.5% glycerol, 0.3% nanocelulose and 20% extract of yerba mate. The palm oil storage packed with films containing the additive was monitored for 40 days under conditions of accelerated oxidation (63%UR/30°C. It was found that as the losses increase polyphenol films, there is a smaller increase of the peroxide value of the packaged product, thus

  11. Photoelectric Properties of Film Composites Based on Poly(Vinyl Butyral) and Heterometallic Complexes

    Science.gov (United States)

    Davidenko, N. A.; Kokozay, V. N.; Studzinsky, S. L.; Petrusenko, S. R.; Plyuta, N. I.; Davidenko, I. I.

    2018-01-01

    Photosensitive polymeric film composites based on nonphotoconducting poly(vinyl butyral) doped with heterometallic Cu/M complexes (M = Ca, Sr) were synthesized and investigated. These composites possessed photoconducting and photovoltaic properties and electron-type photoconductivity. The greater photocurrent for composites with complexes having shorter distances between the nearest Cu metal centers was attributed to the greater probability of electron transfer between these centers.

  12. Evaluation of structure and mechanical properties of Ni-rich NiTi/Kapton composite film

    Energy Technology Data Exchange (ETDEWEB)

    Mohri, Maryam [Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Karlsruhe (Germany); School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, Tehran (Iran, Islamic Republic of); Nili-Ahmadabadi, Mahmoud [School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, Tehran (Iran, Islamic Republic of); PouryazdanPanah, Mohsen; Hahn, Horst [Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Karlsruhe (Germany); Joint Research Labaratory Nanomaterials, Technische Universität Darmstadt, Darmstadt (Germany)

    2016-06-21

    NiTi thin films are usually sputtered on silicon wafers by magnetron sputtering. But the systems composed of thin film on flexible polymeric substrate are used in many applications such as micro electro-mechanical systems (MEMS). Investigation on mechanical properties of thin films has attracted much attention due to their widespread applications. In this paper, the mechanical properties of 1 µm-thick crystallized Ni-49.2 at%Ti thin film alloy deposited by DC magnetron sputtering on Kapton substrate are investigated by using tensile test. The as-deposited thin films are in amorphous state, then for crystallization, the thin film was annealed at 450 °C for 30 min. Formation of the austenite phase after annealing was confirmed by X-ray diffractometry (XRD) and differential scanning calorimetry (DSC). The surface morphology of as deposited and crystallized thin films were examined by scanning electron microscopy (SEM). Stress-strain curves of the NiTi alloy thin film were obtained by subtracting of the stress-strain Kapton curves from the corresponding curves of the NiTi/Kapton composite. The XRD results revealed that the NiTi thin film deposited on the Kapton is austenitic and presents super-elastic effect at room temperature. This pseudo elastic effect leads to more recoverable strain in NiTi/Kapton composite film compared with Kapton foils on loading/unloading test. Furthermore, it was concluded that nanostructure of the NiTi thin film is responsible for remarkable improvement of ultimate tensile strength (1.4 GPa) at a strain of 30% compared with the bulk material.

  13. Effect of Organic Loading Rates on biodegradation of linear alkyl benzene sulfonate, oil and grease in greywater by Integrated Fixed-film Activated Sludge (IFAS).

    Science.gov (United States)

    Eslami, Hadi; Ehrampoush, Mohammad Hassan; Ghaneian, Mohammad Taghi; Mokhtari, Mehdi; Ebrahimi, Aliasghar

    2017-05-15

    In this study, performance of Integrated Fixed-film Activated Sludge (IFAS) system in treatment of Linear Alkylbenzene Sulfonate (LAS), and oil & grease in synthetic greywater and effect of Organic Loading Rates (OLRs) on removal efficiency within a period of 105 days were investigated. Present study was carried out in a pilot scale under such conditions as temperature of 30 ± 1 °C, dissolved oxygen of 2.32 ± 0.91 mg/l, pH of 8.01 ± 0.95 and OLRs of 0.11-1.3gCOD/L.d. Also, Scanning Electron Microscopy (SEM) images were employed to specify rate of the biofilm formed on the media inside the reactor IFAS. The best removal efficiency for COD, LAS and oil and grease were respectively obtained as 92.52%, 94.24% and 90.07% in OLR 0.44gCOD/L.d. The assessment of loading rate indicated that with increased OLR to 0.44gCOD/L.d, removal efficiency of COD, oil and grease was increased while with increased OLR, removal efficiency was decreased. In doing so, based on the statistical test ANOVA, such a difference between removal efficiencies in diverse OLRs was significant for COD (p = 0.003), oil and grease (p = 0.01). However, in terms of LAS, with increased value of OLR to 0.44gCOD/L.d, the removal efficiency was increased and then with higher OLRs, removal efficiency was slightly decreased that is insignificant (p = 0.35) based on the statistical test ANOVA. The SEM images also showed that the biofilm formed on the media inside IFAS reactor plays a considerable role in adsorption and biodegradation of LAS, and oil & grease in greywater. The linear relation between inlet COD values and rate of removed LAS indicated that the ratio of inlet COD (mg/L) to removed LAS (mg/L) was 0.4. Therefore, use of IFAS system for biodegradation of LAS, oil and grease in greywater can be an applicable option. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Magnetic Composite Thin Films of FexOy Nanoparticles and Photocrosslinked Dextran Hydrogels

    International Nuclear Information System (INIS)

    Brunsen, Annette; Utech, Stefanie; Maskos, Michael; Knoll, Wolfgang; Jonas, Ulrich

    2012-01-01

    Magnetic hydrogel composites are promising candidates for a broad field of applications from medicine to mechanical engineering. Here, surface-attached composite films of magnetic nanoparticles (MNP) and a polymeric hydrogel (HG) were prepared from magnetic iron oxide nanoparticles and a carboxymethylated dextran with photoreactive benzophenone substituents. A blend of the MNP and the dextran polymer was prepared by mixing in solution, and after spin-coating and drying the blend film was converted into a stable MNP–HG composite by photocrosslinking through irradiation with UV light. The bulk composite material shows strong mobility in a magnetic field, imparted by the MNPs. By utilizing a surface layer of a photoreactive adhesion promoter on the substrates, the MNP–HG films were covalently immobilized during photocrosslinking. The high stability of the composite was documented by rinsing experiments with UV–Vis spectroscopy, while surface plasmon resonance and optical waveguide mode spectroscopy was employed to investigate the swelling behavior in dependence of the nanoparticle concentration, the particle type, and salt concentration. - Highlights: ► blending of iron oxide nanoparticles with photocrosslinkable carboxymethyldextran. ► UV irradiation of blend yields surface-attached, magnetic hydrogel films. ► film characterization by surface plasmon resonance/optical waveguide spectroscopy. ► swelling decreases with increasing nanoparticle content. ► swelling decreases with increasing NaCl salt concentration in the aqueous medium.

  15. Effects of Two Different Cellulose Nanofiber Types on Properties of Poly(vinyl alcohol Composite Films

    Directory of Open Access Journals (Sweden)

    Kitti Yuwawech

    2015-01-01

    Full Text Available This work concerns a study on the effects of fiber types and content of cellulose nanofiber on mechanical, thermal, and optical properties polyvinyl alcohol (PVA composites. Two different types of cellulose nanofibers, which are nanofibrillated cellulose (NFC and bacterial cellulose (BC, were prepared under various mechanical treatment times and then incorporated into the PVA prior to the fabrication of composite films. It was found that tensile modulus of the PVA film increased with nanofibers content at the expense of its percentage elongation value. DSC thermograms indicate that percentage crystallinity of PVA increased after adding 2–4 wt% of the fibers. This contributed to the better mechanical properties of the composites. Tensile toughness values of the PVA/BC nanocomposite films were also superior to those of the PVA/NFC system containing the same fiber loading. SEM images of the composite films reveal that tensile fractured surface of PVA/BC experienced more ductile deformation than the PVA/NFC analogue. The above discrepancies were discussed in the light of differences between the two types of fibers in terms of diameter and their intrinsic properties. Lastly, percentage total visible light transmittance values of the PVA composite films were greater than 90%, regardless of the fiber type and content.

  16. Enhanced thermoelectric properties of PEDOT/PSS/Te composite films treated with H2SO4

    International Nuclear Information System (INIS)

    Song, Haijun; Cai, Kefeng; Shen, Shirley

    2016-01-01

    Firstly, tellurium (Te) nanorods with a high Seebeck coefficient have been integrated into a conducting polymer PEDOT/PSS to form PEDOT/PSS/Te composite films. The Seebeck coefficient of the PEDOT/PSS/Te (90 wt.%) composite films is ~191 μV/K, which is about 13 times greater than that of pristine PEDOT/PSS. Then, H 2 SO 4 treatment has been used to further tune the thermoelectric properties of the composite films by adjusting the doping level and increasing the carrier concentration. After the acid treatment, the electrical conductivity of the composite films has increased from 0.22 to 1613 S/cm due to the removal of insulating PSS and the structural rearrangement of PEDOT. An optimized power factor of 42.1 μW/mK 2 has been obtained at room temperature for a PEDOT/PSS/Te (80 wt.%) sample, which is about ten times larger than that of the untreated PEDOT/PSS/Te composite film.

  17. Automated Fiber Placement of PEEK/IM7 Composites with Film Interleaf Layers

    Science.gov (United States)

    Hulcher, A. Bruce; Banks, William I., III; Pipes, R. Byron; Tiwari, Surendra N.; Cano, Roberto J.; Johnston, Norman J.; Clinton, R. G., Jr. (Technical Monitor)

    2001-01-01

    The incorporation of thin discrete layers of resin between plies (interleafing) has been shown to improve fatigue and impact properties of structural composite materials. Furthermore, interleafing could be used to increase the barrier properties of composites used as structural materials for cryogenic propellant storage. In this work, robotic heated-head tape placement of PEEK/IM7 composites containing a PEEK polymer film interleaf was investigated. These experiments were carried out at the NASA Langley Research Center automated fiber placement facility. Using the robotic equipment, an optimal fabrication process was developed for the composite without the interleaf. Preliminary interleaf processing trials indicated that a two-stage process was necessary; the film had to be tacked to the partially-placed laminate then fully melted in a separate operation. Screening experiments determined the relative influence of the various robotic process variables on the peel strength of the film-composite interface. Optimization studies were performed in which peel specimens were fabricated at various compaction loads and roller temperatures at each of three film melt processing rates. The resulting data were fitted with quadratic response surfaces. Additional specimens were fabricated at placement parameters predicted by the response surface models to yield high peel strength in an attempt to gage the accuracy of the predicted response and assess the repeatability of the process. The overall results indicate that quality PEEK/lM7 laminates having film interleaves can be successfully and repeatability fabricated by heated head automated fiber placement.

  18. Thermal, Morphological, and Biodegradability Properties of Bioplastic Fertilizer Composites Made of Oil Palm Biomass, Fertilizer, and Poly(hydroxybutyrate-co-valerate

    Directory of Open Access Journals (Sweden)

    A. S. Harmaen

    2016-01-01

    Full Text Available Slow-release bioplastic fertilizer (BpF composites were developed by processing oil palm empty fruit bunch (EFB, fertilizer, and poly(hydroxybutyrate-co-valerate (PHBv using extrusion techniques with controlled formulation and temperature. The temperature was kept at 150°C for 3 to 5 min during processing using twin-screw extruder. The PHBv lost weight gradually with the increasing temperature and its thermal degradation occurred initially at 263.4°C and reached the maximum at 300.7°C. Scanning electron microscope (SEM images showed that the bonding of all composites created small gaps between matrices polymer and fiber because the hydrophilic characteristic of EFB fibers weakened the interfacial bonding. PHBv/EFB/NPKC2 showed faster biodegradation over PHBv/NPKC1 and PHBv/NPKC2, which was 99.35% compared to 68.66% and 90.28%, respectively.

  19. Theory of magnetoelectric coupling in 2-2-type magnetostrictive/piezoelectric composite film with texture

    International Nuclear Information System (INIS)

    Liu Chaoqian; Fei Weidong; Li Weili

    2008-01-01

    It is well accepted that textures in polycrystalline films have significant effects on film properties. The magnetoelectric (ME) coupling in a 2-2-type multiferroic composite film was theoretically discussed using Landau-Ginsburg-Devonshire theory, where the influences of dispersive texture and residual stress were considered. As an example, the 2-2-type CoFe 2 O 4 /BaTiO 3 composite film was theoretically analysed, wherein the case of both the magnetostrictive phase and the piezoelectric phase with (0 0 1)-oriented texture was considered. Our results show that the ME coupling is enhanced with the texture degree of the piezoelectric phase and/or the magnitude of the residual tensile stress, but weakened with the magnitude of residual compressive stress. With increasing texture degree of the magnetostrictive phase, the ME coupling is enhanced when the texture degree is smaller than a critical value, but weakened when the texture degree is larger than the critical value

  20. Change in the Crystallite Orientation of Poly(ethylene oxide)/Cellulose Nanofiber Composite Films.

    Science.gov (United States)

    Fukuya, Miki Noda; Senoo, Kazunobu; Kotera, Masaru; Yoshimoto, Mamoru; Sakata, Osami

    2017-12-11

    The crystallite orientation and crystallographic domain structure of poly(ethylene oxide) (PEO) in cellulose nanofiber-incorporated (CNF-incorporated) PEO films developed for packaging materials were observed using wide-angle X-ray diffraction for different CNF filling ratios. When a CNF filling ratio of 50 wt %, the PEO molecular chains were oriented in a direction parallel to the surface of the film. The fiber axis of the CNFs became parallel to the surface of the PEO/CNF composite film when the filling ratio was >25 wt %. The change in the orientation of the PEO crystals occurred because increasing the amount of CNF in the composite films decreased the space in which the PEO could be crystallized. Furthermore, the hydrogen bonds between the PEO and the CNF may behave as crystallization nuclei for the PEO. Our results thus pave the way toward the development of packaging materials that are more impermeable to gases than the current materials.

  1. Environmental biodegradability of diesel oil: composition and performances of degradative micro-floras; Biodegradabilite du gazole dans l'environnement: composition et performances des microflores degradatrices

    Energy Technology Data Exchange (ETDEWEB)

    Penet, S.

    2004-09-01

    The large use of petroleum products makes them a significant source of pollutants in ground water and soils. Biodegradation studies are therefore relevant either to evaluate possibilities of natural attenuation or define bio-remediation strategies. In this study, the possible relationship between the environmental microflora structures and their capabilities for diesel oil biodegradation was investigated. The degradation capacities, i.e. kinetics and extent of biodegradation, were evaluated in closed batch systems by hydrocarbon consumption and CO{sub 2} production, both determined by gas chromatography. The intrinsic biodegradability of different types of diesel oils and the degradation capacities of microflora from ten polluted and ten unpolluted soils samples were determined. The data showed that: i) diesel oil was biodegradable, ii) n-alkanes were totally degraded by each microflora, the final amount of residual hydrocarbons being variable, iii) polluted-soil samples exhibited a slightly higher degradation rate (80%) that polluted-soil samples (67%) or activated sludge (64%). In order to define the contribution of various bacterial groups to diesel oil degradation, enrichment cultures were performed on hydrocarbons representative from the structural classes of diesel oil: hexadecane for n-alkanes, pristane for iso-alkanes, decalin for cyclo-alkanes, phenanthrene for aromatics. By using a 16S rDNA-sequencing method, the bacterial structures of the adapted microflora were determined and compared to that of the native microflora. A marked effect of the selection pressure was observed on the diversity of the microflora, each microflora harboring a major and specific bacterial group. The degradation capacities of the adapted microflora and the occurrence of genes coding for initial hydrocarbon oxidation (alkB, nahAc, cypP450) were also studied. No clear relationship between microflora genes and degradation performances was noted. This seemed to indicate that

  2. Structural, chemical and electrical characterisation of conductive graphene-polymer composite films

    Energy Technology Data Exchange (ETDEWEB)

    Brennan, Barry; Spencer, Steve J.; Belsey, Natalie A. [National Physical Laboratory, Teddington, TW11 0LW (United Kingdom); Faris, Tsegie [DZP Technologies Ltd., Future Business Centre, Cambridge, CB4 2HY (United Kingdom); Cronin, Harry [DZP Technologies Ltd., Future Business Centre, Cambridge, CB4 2HY (United Kingdom); Advanced Technology Institute (ATI), University of Surrey, Guildford, GU2 7XH (United Kingdom); Silva, S. Ravi P. [Advanced Technology Institute (ATI), University of Surrey, Guildford, GU2 7XH (United Kingdom); Sainsbury, Toby; Gilmore, Ian S. [National Physical Laboratory, Teddington, TW11 0LW (United Kingdom); Stoeva, Zlatka [DZP Technologies Ltd., Future Business Centre, Cambridge, CB4 2HY (United Kingdom); Pollard, Andrew J., E-mail: andrew.pollard@npl.co.uk [National Physical Laboratory, Teddington, TW11 0LW (United Kingdom)

    2017-05-01

    Graphical abstract: Secondary Ion Mass Spectrometry (SIMS) imaging of the dispersion of graphene within graphene-polymer composites using the Na{sup +} signal. - Highlights: • Relation of properties of graphene flakes with electrical properties of composite. • Standardised characterisation method for structural properties of graphene flakes. • Structural and chemical characterisation of commercial graphene flakes. • ToF-SIMS used to determine dispersion of graphene in polymer. - Abstract: Graphene poly-acrylic and PEDOT:PSS nanocomposite films were produced using two alternative commercial graphene powders to explore how the graphene flake dimensions and chemical composition affected the electrical performance of the film. A range of analytical techniques, including scanning electron microscopy (SEM), atomic force microscopy (AFM), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (ToF-SIMS), were employed to systematically analyse the initial graphene materials as well as the nanocomposite films. Electrical measurements indicated that the sheet resistance of the films was affected by the properties of the graphene flakes used. To further explore the composition of the films, ToF-SIMS mapping was employed and provided a direct means to elucidate the nature of the graphene dispersion in the films and to correlate this with the electrical analysis. These results reveal important implications for how the dispersion of the graphene material in films produced from printable inks can be affected by the type of graphene powder used and the corresponding effect on electrical performance of the nanocomposites. This work provides direct evidence for how accurate and comparable characterisation of the graphene material is required for real-world graphene materials to develop graphene enabled films and proposes a measurement protocol for comparing graphene materials that can be used for international

  3. Low temperature composite bolometers using RuO2 films as a thermistor

    International Nuclear Information System (INIS)

    Chapellier, M.; Rasmussen, F.B.

    1989-01-01

    Results from a massive composite bolometer made of a sapphire crystal and ruthenium oxide films are presented. The properties of such RuO 2 films, in the temperature range [50 mK, 200 mK] have been studied. Individual particle detections, using an 241 Am source, have been used to calibrate the system in this temperature interval. Improvements in the performances of such detectors lead to consider them as realistic candidates for the detection of Dark Matter

  4. Electrochemical reduction of graphene oxide in electrically conducting poly(3,4-ethylenedioxythiophene) composite films

    International Nuclear Information System (INIS)

    Lindfors, Tom; Österholm, Anna; Kauppila, Jussi; Pesonen, Markus

    2013-01-01

    Here we show that the graphene oxide (GO) can be electrochemically reduced in composite films of poly(3,4-ethylenedioxythiophene) (PEDOT) and GO. EDOT was electropolymerized in an aqueous GO dispersion at a constant potential resulting in the incorporation of GO in the PEDOT matrix. Scanning electron microscopy (SEM) images revealed that the formed PEDOT–GO films had a layered structure. X-ray photoelectron spectra measured after 10, 20 and 30 min of electrochemical reduction at −0.85 V, verified that the reduction efficiently removed the epoxy and hydroxyl groups from the GO surface. The number of oxygen-containing functional groups decreased considerably already after 10 min of electrochemical reduction and the C:O ratio of the composite films increased with increasing reduction time confirming that GO was successfully reduced in the polymer matrix. In contrast to chemical reduction in 0.15 M NaBH 4 , we show that the PEDOT matrix withstands the electrochemical reduction without any degradation in electroactivity. We also studied the effect of pH of the GO dispersion on the subsequent redox behavior of the PEDOT–GO films. Increasing the pH from 2.5 to 4.5 improved the electroactivity of the films and also facilitated film formation probably due to the presence of a higher amount of ionized carboxylic groups on the GO surface. Electrochemical impedance measurements showed that increasing the pH of the GO dispersion resulted in films with a higher redox capacitance. Atomic force microscopy measurements revealed that the electrochemical reduction slightly increased the surface roughness of the composite films. The simple and fully electrochemical synthesis and reduction procedure of the PEDOT–GO films are expected to be useful in the fabrication of interfacial materials for electrochemical all-solid-state devices where it is desirable to have reversible ion-to-electron transduction in combination with high redox capacitance

  5. Composition and corrosion properties of high-temperature oxide films on steel type 18-10

    International Nuclear Information System (INIS)

    Vakulenko, B.F.; Morozov, O.N.; Chernysheva, M.V.

    1985-01-01

    The composition and propeties of oxide films, formed in the process of tube production of steel type 18-10, as well as the behaviour of the steels coated with oxide films under operating conditions of NPP heat-exchange equipment at the 20-300 deg C temperatures are determined. It is found, that the films have a good adhesion to the steel surface and repeat the metal structure without interfering with, the surface defect determination. Introduction of the NaNO 2 corrosion inhibitor decreases the film destruction rate to the level of the base metal corrosion. It is found acceptable to use tubes of steel 18-10 coated with dense oxide films in the heat-exchange and water supply systems of NPP

  6. Composite Films of Arabinoxylan and Fibrous Sepiolite: Morphological, Mechanical, and Barrier Properties

    DEFF Research Database (Denmark)

    Sárossy, Zsuzsa; Blomfeldt, J.O.; Hedenqvist, Mikael S.

    2012-01-01

    in the arabinoxylan films and sepiolite fiber aggregation was not found. FT-IR spectroscopy provided some evidence for hydrogen bonding between sepiolite and arabinoxylan. Consistent with these findings, mechanical testing showed increases in film stiffness and strength with sepiolite addition and the effect of poly......Hemicelluloses represent a largely unutilized resource for future bioderived films in packaging and other applications. However, improvement of film properties is needed in order to transfer this potential into reality. In this context, sepiolite, a fibrous clay, was investigated as an additive...... to enhance the properties of rye flour arabinoxylan. Composite films cast from arabinoxylan solutions and sepiolite suspensions in water were transparent or semitransparent at additive loadings in the 2.5−10 wt % range. Scanning electron microscopy showed that the sepiolite was well dispersed...

  7. Structure, phase analysis and component composition of multilayer films depositing in T-10 tokamak

    International Nuclear Information System (INIS)

    Guseva, M.I.; Gureev, V.M.; Khimchenko, L.N.; Kolbasov, B.N.; Vukolov, K.Yu.

    2005-01-01

    The structure and composition of the deuterocarbon films, formed on the internal surfaces of the T-10 tokamak vacuum chamber and on the stainless steel mirror-specimens positioned inside the T-10 tokamak upper stub pipe during the experimental campaigns in spring-summer of 2002 and autumn of 2003, are compared. Before the 2003 experimental campaign the ring diaphragm made of MPG-8 graphite was removed from the tokamak and MPG-8 graphite in the movable limiter was replaced by RGT-91 graphite. All the films have a multilayer structure. In the 2002 campaign all the films had homogeneous layer structure and smooth surface without any signs of physical sputtering. The films formed on the chamber walls in both campaigns were 'soft' and had reddish-brown colour. The average atomic D/C ratio in these films during 2002 campaign was of 0.66. The 'soft' film formation was caused by the plasma-wall interaction during the vacuum chamber conditioning under deuterium discharges. Preliminary X-ray diffraction analysis suggests that these films have amorphous structure and contain from 4 to 10 % fullerene-like substance with lattice constant in the range of 1.2-1.4 nm. Mirror surfaces could be screened during chamber conditioning and exposed to plasma only during working discharges. The films on mirrors were thinner than those on the vacuum chamber walls and, as a rule, semitransparent. The films deposited on the mirror surface, exposed to plasma only during working discharges, in 2002 were 'hard' with D/C = 0.26. Two crystalline phases with interplanar spacings of 0.359 and 0.304 nm at the Bragg angles 2θ of 24.8 and 28.8 deg respectively were revealed in a diffractogram of these films. In the 2003 campaign both types of films (formed on vacuum chamber walls and deposited on mirror specimens) were 'soft' with D/C ratio of 0.57 and 1.55 respectively. Deuterium concentration in the films is determined by the temperature of film formation - <370 K on mirror specimens and ∼520 K

  8. Compositional tuning of yttrium iron garnet film properties by multi-beam pulsed laser deposition

    International Nuclear Information System (INIS)

    Sposito, Alberto; Stenning, Gavin B.G.; Gregory, Simon A.; Groot, Peter A.J. de; Eason, Robert W.

    2014-01-01

    We report an investigation of the effects of variation of composition on the properties of yttrium iron garnet films grown on yttrium aluminium garnet substrates by multi-beam pulsed laser deposition. The ferromagnetic resonance linewidth is used as a quality factor: a significant variation is noticed from changing composition, with an experimentally observed optimum at Y 3.5 Fe 4.5 O 12 . - Highlights: • Compositional tuning of materials is demonstrated via multi-pulsed laser deposition. • YIG (yttrium iron garnet) films with variable composition are prepared. • Variation of YIG properties with changing composition is investigated. • Growth dynamics of YIG is investigated to optimise FMR (ferromagnetic resonance). • FMR linewidth is minimised approximately at Y 3.5 Fe 4.5 O 12

  9. Compositional tuning of yttrium iron garnet film properties by multi-beam pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Sposito, Alberto, E-mail: as11g10@orc.soton.ac.uk [Optoelectronics Research Centre, University of Southampton, Southampton SO171BJ (United Kingdom); Stenning, Gavin B.G.; Gregory, Simon A.; Groot, Peter A.J. de [Physics and Astronomy, University of Southampton, Southampton SO171BJ (United Kingdom); Eason, Robert W. [Optoelectronics Research Centre, University of Southampton, Southampton SO171BJ (United Kingdom)

    2014-10-01

    We report an investigation of the effects of variation of composition on the properties of yttrium iron garnet films grown on yttrium aluminium garnet substrates by multi-beam pulsed laser deposition. The ferromagnetic resonance linewidth is used as a quality factor: a significant variation is noticed from changing composition, with an experimentally observed optimum at Y{sub 3.5}Fe{sub 4.5}O{sub 12}. - Highlights: • Compositional tuning of materials is demonstrated via multi-pulsed laser deposition. • YIG (yttrium iron garnet) films with variable composition are prepared. • Variation of YIG properties with changing composition is investigated. • Growth dynamics of YIG is investigated to optimise FMR (ferromagnetic resonance). • FMR linewidth is minimised approximately at Y{sub 3.5}Fe{sub 4.5}O{sub 12}.

  10. Green and Efficient Processing of Cinnamomum cassia Bark by Using Ionic Liquids: Extraction of Essential Oil and Construction of UV-Resistant Composite Films from Residual Biomass.

    Science.gov (United States)

    Mehta, Mohit J; Kumar, Arvind

    2017-12-14

    There is significant interest in the development of a sustainable and integrated process for the extraction of essential oils and separation of biopolymers by using novel and efficient solvent systems. Herein, cassia essential oil enriched in coumarin is extracted from Cinnamomum cassia bark by using a protic ionic liquid (IL), ethylammonium nitrate (EAN), through dissolution and the creation of a biphasic system with the help of diethyl ether. The process has been perfected, in terms of higher biomass dissolution ability and essential oil yield through the addition of aprotic ILs (based on the 1-butyl-3-methylimidazolium (C 4 mim) cation and chloride or acetate anions) to EAN. After extraction of oil, cellulose-rich material and free lignin were regenerated from biomass-IL solutions by using a 1:1 mixture of acetone-water. The purity of the extracted essential oil and biopolymers were ascertained by means of FTIR spectroscopy, NMR spectroscopy, and GC-MS techniques. Because lignin contains UV-blocking chromophores, the oil-free residual lignocellulosic material has been directly utilized to construct UV-light-resistant composite materials in conjunction with the biopolymer chitosan. Composite material thus obtained was processed to form biodegradable films, which were characterized for mechanical and optical properties. The films showed excellent UV-light resistance and mechanical properties, thereby making it a material suitable for packaging and light-sensitive applications. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. The Formation Mechanism and Corrosion Resistance of a Composite Phosphate Conversion Film on AM60 Alloy.

    Science.gov (United States)

    Chen, Jun; Lan, Xiangna; Wang, Chao; Zhang, Qinyong

    2018-03-08

    Magnesium alloy AM60 has high duc and toughness, which is expected to increase in demand for automotive applications. However, it is too active, and coatings have been extensively studied to prevent corrosion. In this work, a Ba-containing composite phosphate film has been prepared on the surface of AM60. The composition and formation mechanism of the film have been investigated using a scanning electronic microscope equipped with energy dispersive X-ray spectroscopy, Fourier transform infrared, X-ray photoelectron spectroscopy, and X-ray diffractometry tests. The corrosion resistance of the film has been measured by electrochemical and immersion tests. The results show that the deposition film has fully covered the substrate but there are some micro-cracks. The structure of the film is complex, and consists of MgHPO₄·3H₂O, MnHPO₄·2.25H₂O, BaHPO₄·3H₂O, BaMg₂(PO₄)₂, Mg₃(PO₄)₂·22H₂O, Ca₃(PO₄)₂·xH₂O, and some amorphous phases. The composite phosphate film has better anticorrosion performance than the AM60 and can protect the bare alloy from corrosion for more than 12 h in 0.6 M NaCl.

  12. Effect of Fermented Chitin Nano whiskers on Properties of Polylactic Acid Bio composite Films

    International Nuclear Information System (INIS)

    Syazeven Effatin Azma Mohd Asri; Zainoha Zakaria

    2014-01-01

    The fermented chitin nano whiskers (FCNW) filled polylactic acid (PLA) bio composite films were successfully produced using solution casting method. The bio composite films were characterized in terms of tensile properties. The Young's modulus increased with increasing FCNW content while the tensile strength increased and reached the maximum value at 4 phr FCNW loading. Therefore it can be concluded that the optimum loading of FCNW is at 4 phr and further addition of FCNW may lead to agglomeration resulting in a decrease in tensile strength. The elongation at break of the bio composite films decreased rapidly upon addition of FCNW into PLA. From the Atomic Force Microscopy, the surface morphology of the PLA changed upon addition of FCNW and tendency for agglomeration of FCNW at high loading was observed. (author)

  13. Dielectric and Energy Storage Properties of the Heterogeneous P(VDF-HFP)/PC Composite Films

    Science.gov (United States)

    Zhao, Xiaojia; Peng, Guirong; Zhan, Zaiji

    2017-12-01

    Polymer-based materials with a high discharge energy and low energy loss have attracted considerable attention for energy storage applications. A new class of polymer-based composite films composed of amorphous polycarbonate (PC) and poly(vinylidene fluoride-hexafluoropropylene) [P(VDF-HFP)] has been fabricated by simply solution blending followed by thermal treatment under vacuum. The results show that the diameter of the spherical phase for PC and the melting temperature of P(VDF-HFP) increase, and the crystallinity and crystallization temperature of P(VDF-HFP) decrease with increasing PC content. The phase transition from the polar β phase to weak polarity γ phase is induced by PC addition. Moreover, the Curie temperature of the P(VDF-HFP)/PC composite films shifts to a lower temperature. With the addition of PC, the permittivity, polarization and discharge energy of the P(VDF-HFP)/PC composite films slightly decrease. However, the energy loss is significantly reduced.

  14. Preparation of Composite Films of a Conjugated Polymer and C60NWs and Their Photovoltaic Application

    Directory of Open Access Journals (Sweden)

    Takatsugu Wakahara

    2016-01-01

    Full Text Available Composite films of conjugated polymers, such as poly[2-methoxy-5-(3′,7′-dimethyloctyloxy-1,4-phenylenevinylene] (MDMO-PPV and poly(3-hexylthiophene (P3HT, with C60 nanowhiskers (C60NWs were prepared. The photoluminescence originating from the conjugated MDMO-PPV polymers was effectively quenched in the composite film, indicating a strong interaction between the conjugated polymer and C60NWs. The photovoltaic devices were fabricated using C60NW (conjugated polymer composite films, resulting in a power conversion efficiency of ~0.01% for P3HT with short length thin C60NWs, which is higher than that previously reported for thick C60 nanorods. The present study gives new guidance on the selection of the type of C60NWs and the appropriate polymer for new photovoltaic devices.

  15. Large built-in electric fields due to flexoelectricity in compositionally graded ferroelectric thin films

    Science.gov (United States)

    Karthik, J.; Mangalam, R. V. K.; Agar, J. C.; Martin, L. W.

    2013-01-01

    We investigate the origin of large built-in electric fields that have been reported in compositionally graded ferroelectric thin films using PbZr1-xTixO3 (0.2material. Using a Ginzburg-Landau-Devonshire phenomenological formalism that includes the effects of compositional gradients, mechanical strain relaxation, and flexoelectricity, we demonstrate that the flexoelectric coupling between the out-of-plane polarization and the gradient of the epitaxial strain throughout the thickness of the film, not other inhomogeneities (i.e., composition or polarization), is directly responsible for the observed voltage offsets. This work demonstrates the importance of flexoelectricity in influencing the properties of ferroelectric thin films and provides a powerful mechanism to control their properties.

  16. Properties of polyvinyl alcohol/xylan composite films with citric acid.

    Science.gov (United States)

    Wang, Shuaiyang; Ren, Junli; Li, Weiying; Sun, Runcang; Liu, Shijie

    2014-03-15

    Composite films of xylan and polyvinyl alcohol were produced with citric acid as a new plasticizer or a cross-linking agent. The effects of citric acid content and polyvinyl alcohol/xylan weight ratio on the mechanical properties, thermal stability, solubility, degree of swelling and water vapor permeability of the composite films were investigated. The intermolecular interactions and morphology of composite films were characterized by FTIR spectroscopy and SEM. The results indicated that polyvinyl alcohol/xylan composite films had good compatibility. With an increase in citric acid content from 10% to 50%, the tensile strength reduced from 35.1 to 11.6 MPa. However, the elongation at break increased sharply from 15.1% to 249.5%. The values of water vapor permeability ranged from 2.35 to 2.95 × 10(-7)g/(mm(2)h). Interactions between xylan and polyvinyl alcohol in the presence of citric acid become stronger, which were caused by hydrogen bond and ester bond formation among the components during film forming. Copyright © 2013. Published by Elsevier Ltd.

  17. Quantifying Local Thickness and Composition in Thin Films of Organic Photovoltaic Blends by Raman Scattering

    KAUST Repository

    Rodríguez-Martínez, Xabier

    2017-07-06

    We report a methodology based on Raman spectroscopy that enables the non-invasive and fast quantitative determination of local thickness and composition in thin films (from few monolayers to hundreds of nm) of one or more components. We apply our methodology to blends of organic conjugated materials relevant in the field of organic photovoltaics. As a first step, we exploit the transfer-matrix formalism to describe the Raman process in thin films including reabsorption and interference effects of the incoming and scattered electric fields. This allows determining the effective solid-state Raman cross-section of each material by studying the dependence of the Raman intensity on film thickness. These effective cross sections are then used to estimate the local thickness and composition in a series of polymer:fullerene blends. We find that the model is accurate within ±10 nm in thickness and ±5 vol% in composition provided that (i) the film thickness is kept below the thickness corresponding to the first maximum of the calculated Raman intensity oscillation; (ii) the materials making up the blend show close enough effective Raman cross-sections; and (iii) the degree of order attained by the conjugated polymer in the blend is similar to that achieved when cast alone. Our methodology opens the possibility to make quantitative maps of composition and thickness over large areas (from microns to centimetres squared) with diffraction-limited resolution and in any multi-component system based thin film technology.

  18. Fabrication of superhydrophobic sol-gel composite films using hydrophobically modified colloidal zinc hydroxide.

    Science.gov (United States)

    Lakshmi, R V; Basu, Bharathibai J

    2009-11-15

    A superhydrophobic sol-gel composite film was fabricated by incorporating hydrophobically modified colloidal zinc hydroxide (CZH) in sol-gel matrix. CZH was prepared by controlled precipitation and modified by treatment with stearic acid. The concentration of stearic acid and stirring time were optimized to obtain modified CZH with very high water contact angle (WCA) of 165 degrees and sliding angle (SA)superhydrophobic surfaces. FTIR spectrum also confirmed the presence of zinc stearate in the composite film. The method is simple and cost-effective and does not involve any expensive chemicals or equipments.

  19. Radiation grafting on natural films

    Science.gov (United States)

    Lacroix, M.; Khan, R.; Senna, M.; Sharmin, N.; Salmieri, S.; Safrany, A.

    2014-01-01

    Different methods of polymer grafting using gamma irradiation are reported in the present study for the preparation of newly functionalized biodegradable films, and some important properties related to their mechanical and barrier properties are described. Biodegradable films composed of zein and poly(vinyl alcohol) (PVA) were gamma-irradiated in presence of different ratios of acrylic acid (AAc) monomer for compatibilization purpose. Resulting grafted films (zein/PVA-g-AAc) had their puncture strength (PS=37-40 N mm-1) and puncture deformation (PD=6.5-9.8 mm) improved for 30% and 50% PVA in blend, with 5% AAc under 20 kGy. Methylcellulose (MC)-based films were irradiated in the presence of 2-hydroxyethyl methacrylate (HEMA) or silane, in order to determine the effect of monomer grafting on the mechanical properties of films. It was found that grafted films (MC-g-HEMA and MC-g-silane) using 35% monomer performed higher mechanical properties with PS values of 282-296 N mm-1 and PD of 5.0-5.5 mm under 10 kGy. Compatibilized polycaprolactone (PCL)/chitosan composites were developed via grafting silane in chitosan films. Resulting trilayer grafted composite film (PCL/chitosan-g-silane/PCL) presented superior tensile strength (TS=22 MPa) via possible improvement of interfacial adhesion (PCL/chitosan) when using 25% silane under 10 kGy. Finally, MC-based films containing crystalline nanocellulose (CNC) as a filling agent were prepared and irradiated in presence of trimethylolpropane trimethacrylate (TMPTMA) as a grafted plasticizer. Grafted films (MC-g-TMPTMA) presented superior mechanical properties with a TS of 47.9 MPa and a tensile modulus (TM) of 1792 MPa, possibly due to high yield formation of radicals to promote TMPTMA grafting during irradiation. The addition of CNC led to an additional improvement of the barrier properties, with a significant 25% reduction of water vapor permeability (WVP) of grafted films.

  20. Improved thermal stability of polylactic acid (PLA) composite film via PLA-β-cyclodextrin-inclusion complex systems.

    Science.gov (United States)

    Byun, Youngjae; Rodriguez, Katia; Han, Jung H; Kim, Young Teck

    2015-11-01

    The effects of the incorporation of PLA-β-cyclodextrin-inclusion complex (IC) and β-cyclodextrin (β-CD) on biopolyester PLA films were investigated. Thermal stability, surface morphology, barrier, and mechanical properties of the films were measured at varying IC (1, 3, 5, and 7%) and β-CD (1 and 5%) concentrations. The PLA-IC-composite films (IC-PLA-CFs) showed uniform morphological structure, while samples containing β-CD (β-CD-PLA-CFs) showed high agglomeration of β-CD due to poor interfacial interaction between β-CD and PLA moieties. According to the thermal property analysis, the 5% IC-PLA-CFs showed 6.6 times lower dimensional changes (6.5%) at the temperature range of 20-80°C than that of pure PLA film (43.0%). The increase of IC or β-CD content in the PLA-composite films shifted the glass transition and crystallization temperature to higher temperature regions. The crystallinity of both composite films improved by increasing IC or β-CD content. Both composite films had higher oxygen and water vapor permeability as IC or β-CD content increased in comparison to pure PLA film. All the composite films had less flexibility and lower tensile strength than the pure PLA film. In conclusion, this study shows that the IC technique is valuable to improve the thermal expansion stability of PLA-based films. Published by Elsevier B.V.

  1. Barium Titanate Film Interfaces for Hybrid Composite Energy Harvesters.

    Science.gov (United States)

    Bowland, Christopher C; Malakooti, Mohammad H; Sodano, Henry A

    2017-02-01

    Energy harvesting utilizing piezoelectric materials has become an attractive approach for converting mechanical energy into electrical power for low-power electronics. Structural composites are ideally suited for energy scavenging due to the large amount of mechanical energy they are subjected to. Here, a multifunctional composite with embedded sensing and energy harvesting is developed by integrating an active interface into carbon fiber reinforced polymer composites. By modifying the composite matrix, both rigid and flexible multifunctional composites are fabricated. Through electromechanical testing of a cantilever beam of the rigid composite, it reveals a power density of 217 pW/cc from only 1 g root-mean-square acceleration when excited at its resonant frequency of 47 Hz. Electromechanical sensor testing of the flexible multifunctional composite reveals an average voltage generation of 23.5 mV/g at its resonant frequency of 96 Hz. This research introduces a route for integrating nonstructural functionality into structural fiber composites by utilizing BaTiO 3 coated woven carbon fiber fabrics with power scavenging and passive sensing capabilities.

  2. Composite films prepared from agricultural by-products

    Czech Academy of Sciences Publication Activity Database

    Šimkovic, I.; Kelnar, Ivan; Mendichi, R.; Bertok, T.; Filip, J.

    2017-01-01

    Roč. 156, 20 January (2017), s. 77-85 ISSN 0144-8617 Institutional support: RVO:61389013 Keywords : sugar beet residue * bagasse * holocellulose Subject RIV: JI - Composite Materials OBOR OECD: Composites (including laminates, reinforced plastics, cermets, combined natural and synthetic fibre fabrics Impact factor: 4.811, year: 2016

  3. Tuning cationic composition of La:EuTiO3−δ films

    Directory of Open Access Journals (Sweden)

    Andrey Shkabko

    2013-11-01

    Full Text Available Eu1−xLaxTiO3−δ (x = 0, 0.3, 0.5 films were deposited in a p(Ar(96%/H2(4% = 4 × 10−4 mbar atmosphere on (LaAlO30.3-(Sr2AlTaO60.7 vicinal substrates (0.1°. Reflection high-energy electron diffraction oscillation characteristics of a layer-by-layer growth mode were observed for stoichiometric and Ti-rich films and the laser fluence suited to deposit stoichiometric films was identified to be 1.25 J/cm2 independent of the La content. The variety of resulting film compositions follows the general trend of Eu-enrichment for low laser and Ti-enrichment for high laser fluence. X-ray diffraction confirms that all the films are compressively strained with a general trend of an increase of c-axis elongation for non-stoichiometric films. The surfaces of non-stoichiometric films have an increased roughness, the highest sheet resistances, exhibit the presence of islands, and are Eu3+ rich for films deposited at low laser fluence.

  4. Enhancement of Moisture Protective Properties and Stability of Pectin through Formation of a Composite Film: Effects of Shellac and Plasticizer.

    Science.gov (United States)

    Luangtana-Anan, Manee; Soradech, Sitthiphong; Saengsod, Suthep; Nunthanid, Jurairat; Limmatvapirat, Sontaya

    2017-12-01

    The aim of this investigation was to develop the high moisture protective ability and stable pectin through the design of composite films based on varying shellac concentrations. A film casting method was applied to prepare a free film. The moisture protective properties and mechanical properties were investigated. The findings was the composite films exhibited the reductions in the hydrophilicity, water vapor permeability, and the moisture content compared with pectin films. The single and composite films were then study for their stability at 40 °C and 75% RH for 90 d. Among the concentrations of shellac, 50% (w/w) could improve stability in terms of moisture protection after 90 d of storage, whereas lower concentrations of shellac (10% to 40%) could not achieve this. However, the higher shellac content also contributed to weaker mechanical properties. The mechanical improvement and stability of composite films with the incorporation of plasticizers were further investigated. Polyethylene glycol 400 and diethyl phthalate at a concentration of 10% were used. The results indicated that both plasticizers could enhance the mechanical characteristics and had a slight effect on moisture protection. The stability of pectin in terms of moisture protective properties could, therefore, be modified through the fabrication of composite films with hydrophobic polymers, that is, shellac and the addition of proper plasticizers to enhance mechanical properties, which could offer wide applications for edible film in food, agro, and pharmaceutical industries. The composite film with 50% shellac could improve moisture protective properties of pectin film. Adding a plasticizer could build up the higher mechanical characteristics of composite film. Stability of pectin could be modified by fabrication of composite films with proper content of shellac and plasticizer. © 2017 Institute of Food Technologists®.

  5. Plasmonic properties of silver nanoparticles embedded in diamond like carbon films: Influence of structure and composition

    Energy Technology Data Exchange (ETDEWEB)

    Meškinis, Š., E-mail: sarunas.meskinis@fei.lt [Kaunas University of Technology, Institute of Materials Science, Savanoriu Ave. 271, Kaunas LT-50131 (Lithuania); Čiegis, A.; Vasiliauskas, A.; Tamulevičienė, A.; Šlapikas, K. [Kaunas University of Technology, Institute of Materials Science, Savanoriu Ave. 271, Kaunas LT-50131 (Lithuania); Juškėnas, R.; Niaura, G. [Institute of Chemistry, Center for Physical Sciences and Technology, Goštauto Str. 9, Vilnius LT-01108 (Lithuania); Tamulevičius, S. [Kaunas University of Technology, Institute of Materials Science, Savanoriu Ave. 271, Kaunas LT-50131 (Lithuania)

    2014-10-30

    Highlights: • Optical properties of DLC films containing silver (DLC:Ag) depends on substrate bias. • Position of the plasmonic peak depends on composition of DLC:Ag films. • Position of the plasmonic peak depends on structure of Ag nanoclusters. • Influence of composition prevails influence of the structure of DLC matrix. - Abstract: In the present study optical properties of hydrogenated diamond like carbon nanocomposite films containing silver nanoparticles (DLC:Ag) deposited by direct current (DC) unbalanced reactive magnetron sputtering were studied in 180–1100 nm range. Different substrate bias was used during deposition of the films. Structure of the films was investigated by multiwavelength Raman scattering spectroscopy and X-ray diffractometry (XRD). Chemical composition of the samples was studied by X-ray photoelectron spectroscopy (XPS), surface morphology was investigated by atomic force microscopy (AFM). Red shift of the surface plasmon resonance peak of DLC:Ag films with the increase of Ag atomic concentration was observed. It was found that high atomic concentration of oxygen in DLC:Ag films results in some redshift of the plasmonic peak, too. Such a behavior is explained by increase of the refractive index of the dielectric medium surrounding silver nanoparticle due to possible presence of the silver oxide interlayer at the Ag nanocluster and diamond like carbon matrix interface. It was demonstrated that influence of the increased Ag atomic concentration on position of the surface plasmon resonance peak of DLC:Ag films clearly prevails influence of the increased sp{sup 3}/sp{sup 2} ratio of the diamond like carbon matrix. Correlation between the structure of Ag nanocrystallites studied by XRD and position of the surface plasmon resonance peak position was observed.

  6. Optical Properties and Surface Morphology of Nano-composite PMMA: TiO2 Thin Films

    International Nuclear Information System (INIS)

    Lyly Nyl Ismail; Ahmad Fairoz Aziz; Habibah Zulkefle

    2011-01-01

    There are two nano-composite PMMA: TiO 2 solutions were prepared in this research. First solution is nano-composite PMMA commercially available TiO 2 nanopowder and the second solution is nano-composite PMMA with self-prepared TiO 2 powder. The self-prepared TiO 2 powder is obtained by preparing the TiO 2 sol-gel. Solvo thermal method were used to dry the TiO 2 sol-gel and obtained TiO 2 crystal. Ball millers were used to grind the TiO 2 crystal in order to obtained nano sized powder. Triton-X was used as surfactant to stabilizer the composite between PMMA: TiO 2 . Besides comparing the nano-composite solution, we also studied the effect of the thin films thickness on the optical properties and surface morphology of the thin films. The thin films were deposited by sol-gel spin coating method on glass substrates. The optical properties and surface characterization were measured with UV-VIS spectrometer equipment and atomic force microscopy (AFM). The result showed that nano-composite PMMA with self prepared TiO 2 give high optical transparency than nano-composite PMMA with commercially available TiO 2 nano powder. The results also indicate as the thickness is increased the optical transparency are decreased. Both AFM images showed that the agglomerations of TiO 2 particles are occurred on the thin films and the surface roughness is increased when the thickness is increased. High agglomeration particles exist in the AFM images for nano-composite PMMA: TiO 2 with TiO 2 nano powder compare to the other nano-composite solution. (author)

  7. Properties of cellulose/Thespesia lampas short fibers bio-composite films.

    Science.gov (United States)

    Ashok, B; Reddy, K Obi; Madhukar, K; Cai, J; Zhang, L; Rajulu, A Varada

    2015-01-01

    Cellulose was dissolved in pre cooled environment friendly solvent (aq.7% sodium hydroxide+12% urea) and regenerated with 5%H2SO4 as coagulation bath. Using cellulose as matrix and alkali treated short natural fibers extracted from the newly identified Thespesia lampas plant as fillers the green composite films were prepared. The films were found to be non toxic. The effect of fiber loading on the tensile properties and thermal stability was studied. The fractographs indicated better interfacial bonding between the fibers and cellulose. The crystallinity of the composite films was found to be lower than the matrix and decreased with increasing fiber content. In spite of better interfacial bonding, the tensile properties of the composites were found to be lower than those of the matrix and decreased with increasing fiber content and this behavior was attributed to the random orientation of the fibers in the composites. The thermal stability of the composite films was higher than the matrix and increased with fiber content. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Modification of natural matrix lac-bagasse for matrix composite films

    Science.gov (United States)

    Nurhayati, Nanik Dwi; Widjaya, Karna; Triyono

    2016-02-01

    Material technology continues to be developed in order to a material that is more efficient with composite technology is a combination of two or more materials to obtain the desired material properties. The objective of this research was to modification and characterize the natural matrix lac-bagasse as composite films. The first step, natural matrix lac was changed from solid to liquid using an ethanol as a solvent so the matrix homogenly. Natural matrix lac was modified by adding citric acid with concentration variation. Secondly, the bagasse delignification using acid hydrolysis method. The composite films natural matrix lac-bagasse were prepared with optimum modified the addition citric acid 5% (v/v) and delignification bagasse optimum at 1,5% (v/v) in hot press at 80°C 6 Kg/cm-1. Thirdly, composite films without and with modification were characterized functional group analysis using FTIR spectrophotometer and mechanical properties using Universal Testing Machine. The result of research showed natural matrix lac can be modified by reaction with citric acid. FTIR spectra showed without and with modification had functional groups wide absorption 3448 cm-1 group -OH, C=O ester strong on 1712 cm-1 and the methylene group -CH2 on absorption 1465 cm-1. The mechanical properties showed tensile strength 0,55 MPa and elongation at break of 0,95 %. So that composite films natural matrix lac can be made with reinforcement bagasse for material application.

  9. Three-dimensional microporous polypyrrole/polysulfone composite film electrode for supercapacitance performance

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Xiaojuan, E-mail: cherry-820@163.com; Shi, Yanlong; Jin, Shuping

    2015-10-30

    The three-dimensional microporous polypyrrole/polysulfone (PPY/PSF) composite film was fabricated via a simple polymerization method. The morphology structure and chemical composition of the composite film were characterized by scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR), respectively. The electrochemical properties of the composite film electrode were evaluated by cyclic voltammetry, galvanostatic charging-discharging and electrochemical impedance spectroscopy. The material exhibits excellent capacitance performance including high capacitance of 500 F g{sup −1} at 0.3 A g{sup −1} current density, good cycle stability in 800 continuous cycles (only 4.5% decay after 800 cycles at 0.3 A g{sup −1}), and low inter resistance. The good property of the PPY/PSF electrode should be attributed to its structural features, including two-layer microporous structure which facilitates the penetration of electrolytes into the inner surface, high surface area which provides more active sites. These results show that the composite film is a promising candidate for high energy electrochemical capacitors.

  10. Biodegradable neural cell culture sheet made of poly(lactic-co-glycolic acid) thin film with micropatterns of Dulbecco’s phosphate-buffered saline (‑) containing laminin layers

    Science.gov (United States)

    Nakamura, Yuki; Horiuchi, Shunpu; Nishioka, Yasushiro

    2018-02-01

    In the regenerative medicine field of nervous systems, techniques used to fabricate microstructures of neurons on flexible and biodegradable substrates have attracted attention. In this research, biodegradable and flexible neuron culture thin films that enable the selective axonal outgrowth of neurons were fabricated using poly(lactic-co-glycolic acid) (PLGA) thin films with micropatterns of Dulbecco’s phosphate-buffered saline (D-PBS) (‑) containing laminin layers. The 100-µm-thick PLGA thin films were fabricated by diluting PLGA in acetone (5% w/w) and the solution was distributed onto a poly(dimethylsiloxane) (PDMS) mold. D-PBS (‑) micropatterns containing laminin layers with widths of 10–150 µm were fabricated by micromolding in capillaries (MIMIC) and the microstencil method. Rat neurons were selectively cultured for 3 d on the laminin micropatterns; using the MIMIC method, the cells properly adhered to a pattern wider than 30 µm, while with the microstencil method, the necessary pattern width for proper adhesion was more than 50 µm.

  11. Thermoplastic Cassava Starch-PVA Composite Films with Cellulose Nanofibers from Oil Palm Empty Fruit Bunches as Reinforcement Agent

    Directory of Open Access Journals (Sweden)

    Farah Fahma

    2017-01-01

    Full Text Available Thermoplastic starch-polyvinyl alcohol composite films were prepared by casting method with cellulose nanofibers as reinforcement agent and glycerol as plasticizer. The obtained cellulose nanofibers with a diameter of 27.23±8.21 nm were isolated from oil palm empty fruit bunches (OPEFBs by mechanical treatment. The addition of cellulose nanofibers until 3 wt% increased tensile strength and crystallinity of the composite films. In contrast, it decreased their elongation at break and water vapor transmission rate. Meanwhile, the addition of glycerol increased elongation at break and water vapor transmission rate of film matrix but lowers tensile strength of composite films.

  12. Fluorine-containing composition for forming anti-reflection film on resist surface and pattern formation method

    Science.gov (United States)

    Nishi, Mineo; Makishima, Hideo

    1996-01-01

    A composition for forming anti-reflection film on resist surface which comprises an aqueous solution of a water soluble fluorine compound, and a pattern formation method which comprises the steps of coating a photoresist composition on a substrate; coating the above-mentioned composition for forming anti-reflection film; exposing the coated film to form a specific pattern; and developing the photoresist, are provided. Since the composition for forming anti-reflection film can be coated on the photoresist in the form of an aqueous solution, not only the anti-reflection film can be formed easily, but also, the film can be removed easily by rinsing with water or alkali development. Therefore, by the pattern formation method according to the present invention, it is possible to form a pattern easily with a high dimensional accuracy.

  13. Nanodiamond embedded ta-C composite film by pulsed filtered vacuum arc deposition from a single target

    Science.gov (United States)

    Iyer, Ajai; Etula, Jarkko; Ge, Yanling; Liu, Xuwen; Koskinen, Jari

    2016-11-01

    Detonation Nanodiamonds (DNDs) are known to have sp3 core, sp2 shell, small size (few nm) and are gaining importance as multi-functional nanoparticles. Diverse methods have been used to form composites, containing detonation nanodiamonds (DNDs) embedded in conductive and dielectric matrices for various applications. Here we show a method, wherein DND-ta-C composite film, consisting of DNDs embedded in ta-C matrix have been co-deposited from the same cathode by pulsed filtered cathodic vacuum arc method. Transmission Electron Microscope analysis of these films revel the presence of DNDs embedded in the matrix of amorphous carbon. Raman spectroscopy indicates that the presence of DNDs does not adversely affect the sp3 content of DND-ta-C composite film compared to ta-C film of same thickness. Nanoindentation and nanowear tests indicate that DND-ta-C composite films possess improved mechanical properties in comparison to ta-C films of similar thickness.

  14. Al–Ni–Y–X (X = Cu, Ta, Zr) metallic glass composite thin films for broad-band uniform reflectivity

    International Nuclear Information System (INIS)

    Chang, C.M.; Wang, C.H.; Hsu, J.H.; Huang, J.C.

    2014-01-01

    The Al–Ni–Y–X (X = Cu, Ta, Zr) thin film metallic glasses are manufactured by sputtering, and their optical reflectivity characteristics are explored. The relationship among composition, atomic structure and reflectivity performance is established. Compared with pure Al films, the Al–Ni–Y film surface roughness is much lower and hardness is much higher, more suitable for optical reflector applications. For composite Al–Ni–Y films, the reflectance varies within 80–91%. For fully amorphous films, the reflectivity exhibits unusual uniform reflection at ∼ 70%, perfect for broad-band reflector. - Highlights: • The optical reflection properties of the Al–Ni–Y based sputtered thin films are examined. • The highest reflection level of the Al–Ni–Y film can reach 91%. • The fully amorphous Al–Ni–Y based films exhibit unusual highly uniform reflectivity

  15. Fotocromismo em filmes finos de óxidos de tungstênio de diferentes composições Photochromism in tungsten oxide thin films of different compositions

    Directory of Open Access Journals (Sweden)

    José R. Galvão

    2003-08-01

    Full Text Available Tungsten oxide thin films with three different compositions were deposited by reactive sputtering in an oxygen-argon plasma. In a system composed of a home made photochemical reactor coupled with an optic fiber spectrophotometer, the photochromic effect was studied in these oxide films as function of UV irradiation time, in ethanol, methanol and formaldehyde atmospheres. It was observed that the photochromic efficiency depends on the vapor chemical nature where the film is irradiated as well as the film composition. Kinetic analysis suggest that two kinds of optical absorption centers should respond by the photochromic effect in these films, one generated at film surface and other inside it, which one presenting a different time constant.

  16. Composition and growth procedure-dependent properties of electrodeposited CuInSe 2 thin films

    Science.gov (United States)

    Babu, S. Moorthy; Ennaoui, A.; Lux-Steiner, M. Ch.

    2005-02-01

    CuInSe 2 thin films were deposited on molybdenum-coated glass substrates by electrodeposition. Deposition was carried out with a variety of electrochemical bath compositions. The quality of the deposits depends very much on the source materials as well as the concentration of the same in the electrolyte. The deposition potential was varied from -0.4 to -0.75 V vs. SCE. The pH of the solution was adjusted to 1.5-2 using diluted sulphuric acid. Chloride salts containing bath yield good surface morphology, but there is always excess of the metallic content in the deposited films. Different growth procedures, like initial metallic layers of copper or indium, layers of copper selenide or indium selenide before the actual deposition of ternary chalcopyrite layers were attempted. Fabrication pathway, morphological and compositional changes due to the different precursor route has been analysed. The quality of the deposits prepared by one-step electrodeposition is better than the deposits with a two-stage process. The deposited films were characterized with XRD, SEM-EDAX, UV-visible spectroscopy and I- V characteristics. The deposited films were annealed in air as well as in nitrogen atmosphere. The influence of annealing temperature, environment and annealing time on the properties of the films are evaluated. Attempts were made to fabricate solar cell structure from the deposited absorber films. The structure of Mo/CuInSe 2/CdS/ZnO/Ni was characterized with surface, optical and electrical studies.

  17. SnO{sub 2}/reduced graphene oxide composite films for electrochemical applications

    Energy Technology Data Exchange (ETDEWEB)

    Bondarenko, E.A. [Belarusian State University, Nezalezhnastsi Av. 4, Minsk 220030 (Belarus); Mazanik, A.V., E-mail: mazanikalexander@gmail.com [Belarusian State University, Nezalezhnastsi Av. 4, Minsk 220030 (Belarus); Streltsov, E.A. [Belarusian State University, Nezalezhnastsi Av. 4, Minsk 220030 (Belarus); Kulak, A.I., E-mail: kulak@igic.bas-net.by [Institute of General and Inorganic Chemistry, National Academy of Sciences of Belarus, Surganova str., 9/1, Minsk 220072 (Belarus); Korolik, O.V. [Belarusian State University, Nezalezhnastsi Av. 4, Minsk 220030 (Belarus)

    2015-12-15

    Highlights: • SnO{sub 2}/GO composites with mass fraction of carbon phase 0.01% ≤ w{sub C} ≤ 80% have been formed. • 400 °C annealing was applied for GO reduction in the composites. • SnO{sub 2}/rGO composites demonstrate a high electrocatalytic activity in anodic processes. • Exchange current density grows linearly with carbon phase concentration at w{sub C} ≤ 10%. - Abstract: SnO{sub 2}/GO (GO is graphene oxide) composite films with GO mass fraction w{sub C} ranging from 0.01 to 80% have been prepared using colloidal solutions. Heat treatment of SnO{sub 2}/GO films in Ar atmosphere at 400 °C leads to GO reduction accompanied by partial exfoliation and decreasing of the particle thickness. SnO{sub 2}/rGO (rGO is reduced GO) film electrodes demonstrate a high electrocatalytic activity in the anodic oxidation of inorganic (iodide-, chloride-, sulfite-anions) and organic (ascorbic acid) substances. The increase of the anodic current in these reactions is characterized by overpotential inherent to the individual rGO films and exchange current density grows linearly with rGO concentration at w{sub C} ≤ 10% indicating that the rGO particles in composites act as sites of electrochemical process. The SnO{sub 2}/rGO composite films, in which the chemically stable oxide matrix encapsulates the rGO inclusions, can be considered as a promising material for applied electrochemistry.

  18. Oil biodegradation

    NARCIS (Netherlands)

    Rahsepar, Shokouhalsadat; Langenhoff, Alette A.M.; Smit, Martijn P.J.; Eenennaam, van Justine S.; Murk, Tinka; Rijnaarts, Huub H.M.

    2017-01-01

    During the Deepwater Horizon (DwH) oil spill, interactions between oil, clay particles and marine snow lead to the formation of aggregates. Interactions between these components play an important, but yet not well understood, role in biodegradation of oil in the ocean water. The aim of this study

  19. Preparation of poly (arylene ether nitrile)/NzdFeB composite film with excellent thermal properties and tensile strength

    Science.gov (United States)

    Pan, Hai; Xu, Mingzhen; Liu, Xiaobo

    2017-12-01

    PEN/NdFeB composite films were prepared by the solution casting method. The thermal properties, fracture morphology and tensile strength of the composite films were tested by DSC, TGA, SEM and electromechanical universal testing machine, respectively. The results reveal that the composite film has good thermal properties and tensile strength. Glass-transition temperature and decomposition temperatures at weight loss of 5% ot the composite films retain at 166±1 C and 462±4 C, respectively. The composite film with 5 wt.% NdFeB has the best tensile strength value for 100.5 MPa. In addition, it was found that the NdFeB filler was well dispersed in PEN matrix by SEM analysis.

  20. Preparation and properties of films cast from mixtures of poly(vinyl alcohol) and submicron particles prepared from amylose-palmitic acid inclusion complexes

    Science.gov (United States)

    The use of starch in polymer composites for film production has been studied extensively for increasing biodegradability, improving film properties and reducing cost. Starch nanoparticles have received much attention, primarily those obtained by acid hydrolysis of starch granules. In this study, nan...

  1. Ag induced suppression of irradiation response in YBCO/Ag composite thin films

    International Nuclear Information System (INIS)

    Behera, D.; Mohanty, T.; Mohanta, D.; Patnaik, K.; Mishra, N.C.; Senapati, L.; Kanjilal, D.; Mehta, G.K.; Pinto, R.

    1999-01-01

    Practical application of cuprate superconductors in radiation environment demands that these systems remain insensitive to the irradiation induced defects. The cuprate superconductors however are many orders of magnitude more sensitive than the conventional low T c superconductors. To suppress the irradiation sensitivity of cuprates we consider a crystal engineering approach where metal ions as Ag is made to occupy inter and intra-granular sites of YBa 2 Cu 3 O 7 thin films. We show that superconducting and normal state properties of YBCO/Ag composite thin films prepared by laser ablation remain unchanged under 140 MeV Si ion irradiation up to fluence of 8 x 10 14 ions/cm 2 . The inter- and intra-granular occupancy of Ag is shown to induce microstructural modifications and rigidity to the CuO chains respectively which in turn lead to the radiation insensitivity of the composite films. (author)

  2. POLYMER COMPOSITE FILMS WITH SIZE-SELECTED METAL NANOPARTICLES FABRICATED BY CLUSTER BEAM TECHNIQUE

    DEFF Research Database (Denmark)

    Ceynowa, F. A.; Chirumamilla, Manohar; Popok, Vladimir

    2017-01-01

    Formation of polymer films with size-selected silver and copper nanoparticles (NPs) is studied. Polymers are prepared by spin coating while NPs are fabricated and deposited utilizing a magnetron sputtering cluster apparatus. The particle embedding into the films is provided by thermal annealing...... after the deposition. The degree of immersion can be controlled by the annealing temperature and time. Together with control of cluster coverage the described approach represents an efficient method for the synthesis of thin polymer composite layers with either partially or fully embedded metal NPs....... Combining electron beam lithography, cluster beam deposition and thermal annealing allows to form ordered arrays of metal NPs on polymer films. Plasticity and flexibility of polymer host and specific properties added by coinage metal NPs open a way for different applications of such composite materials...

  3. Optical absorption properties of Ag/SiO sub 2 composite films induced by gamma irradiation

    CERN Document Server

    Pan, A L; Yang, Z P; Liu, F X; Ding, Z J; Qian, Y T

    2003-01-01

    Mesoporous SiO sub 2 composite films with small Ag particles or clusters dispersed in them were prepared by a new method: first the matrix SiO sub 2 films were prepared by the sol-gel process combined with the dip-coating technique; then they were soaked in AgNO sub 3 solutions; this was followed by irradiation with gamma-rays at room temperature and ambient pressure. The structure of these films was examined by high-resolution transmission electron microscopy, and their optical absorption spectra were examined. It has been shown that the Ag particles grown within the porous SiO sub 2 films are very small and are highly dispersed. On increasing the soaking concentration and subjecting the samples to an additional annealing, a different peak-shift effect for the surface plasmon resonance was observed in the optical absorption measurement. Possible mechanisms of this behaviour are discussed in this paper.

  4. Elaboration of m-cresol polyamide12/ polyaniline composite films for antistatic applications

    Science.gov (United States)

    Mezdour, D.; Tabellout, M.; Sahli, S.; Bardeau, J.-F.

    2013-12-01

    The present work deals with the preparation of transparent antistatic films from an extreme dilution of an intrinsically conducting polymer (ICP) with not coloured polymers. Our approach is based on the chemical polymerization of a very thin layer of Polyaniline (PANI) around particles of an insulating polymer (PA12). Films were obtained by dissolving the synthesized core-shell particles in m-Cresol. The electric property and structure relationships were investigated by using dielectric relaxation spectroscopy, X-ray diffraction and micro-Raman spectroscopy. Composite films exhibited a well established dc conductivity over all the frequency range for 10 wt. % of PANI concentration related to the conductive properties of the PANI clusters. X-ray diffraction data show broader and lower intensity of PA12 peaks when increasing PANI content, probably due to the additional doping effect of m- cresol. The doping of PA12/PANI films with Dodecyl benzene sulfonic acid (DBSA) was unequivocally verified by Raman spectroscopy.

  5. Residual stress and Young's modulus of pulsed laser deposited PZT thin films: Effect of thin film composition and crystal direction of Si cantilevers

    NARCIS (Netherlands)

    Nazeer, H.; Nguyen, Duc Minh; Rijnders, Augustinus J.H.M.; Abelmann, Leon; Sardan Sukas, Ö.

    2016-01-01

    We investigated the residual stress and Young's modulus of Pb(ZrxTi1 - x)O3 (PZT) thin films with a (110) preferred orientation and a composition x ranging from 0.2 to 0.8. The films are grown by pulsed laser deposition on silicon cantilevers aligned along the <110> and <100> silicon crystal

  6. Perfluorocyclobutyl polymer thin-film composite membrane fabrication, plasticization and physical aging

    Science.gov (United States)

    Zhou, Jinxiang

    My research consists of three parts: 1) study of perfluorocyclobutyl (PFCB) thin film formation, 2) development and characterization of PFCB thin-film composite membranes, and 3) elucidation of the roles that plasticization and physical aging play on PFCB thin-film performance. In part 1, I conducted comprehensive research to understand how PFCB thin films form by the method of dip coating. Through the control of solvents, polymer solution concentrations, and withdrawal speeds, a series of PFCB thin films were formed on silicon wafers. Film thickness and refractive index were characterized by ellipsometry. Results suggested that when the withdrawal speeds are higher than 50 mm/min, film thickness increases with increasing withdrawal speeds, as it is predicted in the proposed extension of the Landau-Levich model. When the withdrawal speeds are lower than 50 mm/min, film thickness increases with decreasing withdrawal speeds, which could be explained by the phenomenon of PFCB surface excess. Subsequent surface tension studies proved the existence of this surface excess. Surface images of these films were measured by atomic force microscope. Films prepared from tetrahydrofuran and chloroform yielded uniform nanolayers. However, films prepared using acetone as solvent yielded a partial dewetting pattern, which could be explained by a surface depletion layer of pure solvent between the bulk PFCB/acetone solution and the substrate. Based on the knowledge generated in part 1, I developed, from scratch, procedures to prepare PFCB TFC membranes that were free of major defects. I used mathematical models based on resistance in series to predict composite membrane performance. In many cases, surface defects are the major reason for poor separation ability of TFC membranes. Mathematical analysis showed that the surface defects are less critical in thinner films but are still an important factor causing selectivity loss. Surface defects occur mainly from polymer dewetting on the

  7. Synthesis of TiO 2-doped SiO 2 composite films and its applications

    Indian Academy of Sciences (India)

    In XRD, FT–IR, and TEM investigations of these TiO2-doped SiO2 composite films, the titanium oxide species are highly dispersed in the SiO2 matrixes and exist in a ... Anhui Key Laboratory of Functional Molecular Solids, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P.R. China ...

  8. Thermal and structural stability of composite systems based on polyaniline deposited on porous polyethylene films

    Czech Academy of Sciences Publication Activity Database

    Elyashevich, G. K.; Sidorovich, A. V.; Smirnov, M. A.; Kuryndin, I. S.; Bobrova, N. V.; Trchová, Miroslava; Stejskal, Jaroslav

    2006-01-01

    Roč. 91, č. 11 (2006), s. 2786-2792 ISSN 0141-3910 Grant - others:Russian Foundation for Basic Research 04-03-32229 Institutional research plan: CEZ:AV0Z40500505 Keywords : polyaniline * polyethylene porous films * composites Subject RIV: CD - Macromolecular Chemistry Impact factor: 2.174, year: 2006

  9. Exploring the structure-properties relationships of novel polyamide thin film composite membranes

    DEFF Research Database (Denmark)

    Briceño, Kelly; Javakhishvili, Irakli; Guo, Haofei

    Polysulfone (PSU) is a material widely used in the fabrication of membranes for ultrafiltration and as a support for nanofiltration and reverse osmosis membranes. Interfacial polymerization usually combines amine and acid chloride monomers for the fabrication of thin film composite membranes[1...

  10. Synthesis of TiO2-doped SiO2 composite films and its applications

    Indian Academy of Sciences (India)

    Wintec

    And special attention has been focused on the relationship between the local structure of the titanium oxide species in the TiO2-doped SiO2 composite films and the photocatalytic reactiv- ity in order to provide vital information for the design and application of such highly efficient photocatalytic systems in the degradation of ...

  11. Synthesis and characterization of MoO3–WO3 composite thin films ...

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 36; Issue 1. Synthesis and characterization of MoO3–WO3 composite thin films by liquid phase deposition technique: Investigation of its photochromic properties. H M Farveez Ahmed Noor Shahina Begum. Volume 36 Issue 1 February 2013 pp 45-49 ...

  12. Composite films of arabinoxylan and fibrous sepiolite: Morphological, mechanical, and barrier properties

    CSIR Research Space (South Africa)

    Sarossy, Z

    2012-06-01

    Full Text Available fibrous clay, was investigated as an additive to enhance the properties of rye flour arabinoxylan. Composite films cast from arabinoxylan solutions and sepiolite suspensions in water were transparent or semitransparent at additive loadings in the 2.5-10 wt...

  13. Development of Biopolymer Composite Films Using a Microfluidization Technique for Carboxymethylcellulose and Apple Skin Particles

    Directory of Open Access Journals (Sweden)

    Inyoung Choi

    2017-06-01

    Full Text Available Biopolymer films based on apple skin powder (ASP and carboxymethylcellulose (CMC were developed with the addition of apple skin extract (ASE and tartaric acid (TA. ASP/CMC composite films were prepared by mixing CMC with ASP solution using a microfluidization technique to reduce particle size. Then, various concentrations of ASE and TA were incorporated into the film solution as an antioxidant and an antimicrobial agent, respectively. Fourier transform infrared (FTIR, optical, mechanical, water barrier, and solubility properties of the developed films were then evaluated to determine the effects of ASE and TA on physicochemical properties. The films were also analyzed for antioxidant effect on 2,2-diphenyl-1-picrylhydrazyl radical scavenging activity and antimicrobial activities against Listeria monocytogenes, Staphylococcus aureus, Salmonella enterica, and Shigella flexneri. From the results, the ASP/CMC film containing ASE and TA was revealed to enhance the mechanical, water barrier, and solubility properties. Moreover, it showed the additional antioxidant and antimicrobial properties for application as an active packaging film.

  14. Angular dependence of preferential sputtering and composition in aluminum--copper thin films

    International Nuclear Information System (INIS)

    Rudeck, P.J.; Harper, J.M.E.; Fryer, P.M.

    1989-01-01

    The copper concentration in aluminum--copper alloys can be altered by ion bombardment during film deposition. We have measured the sputtering yields of aluminum and copper in Al--Cu alloys as a function of the Cu concentration (5--13 at. %) and the angle of ion incidence (0--40 0 from normal). During deposition, the films were partially resputtered by 500-eV Ar + ion bombardment from a Kaufman ion source. We found that the Cu sputtering yield decreases by up to a factor of 10 in the alloy, relative to elemental Cu. The Al sputtering yield remains close to the elemental value. The net effect is a strong preferential sputtering of Al relative to Cu, which enhances the Cu concentration in an ion bombarded film. The Al/Cu sputtering yield ratio for normal incidence ion bombardment ranges from 3 to 5 as a function of Cu concentration. This ratio decreases with increasing angle of incidence to as low as 2 for 40 0 incident ions. However, since a higher fraction of the film is resputtered from a sloping surface, a higher Cu concentration is found on a sloping surface relative to a flat surface. These results show that in multicomponent film deposition under ion bombardment, the film composition will vary as a function of the surface topography. We will also show how the level of argon left trapped in the films varies inversely with respect to the ion flux

  15. Fabrication and Surface Properties of Composite Films of SAM/Pt/ZnO/SiO 2

    KAUST Repository

    Yao, Ke Xin

    2008-12-16

    Through synthetic architecture and functionalization with self-assembled monolayers (SAMs), complex nanocomposite films of SAM/Pt/ZnO/SiO2 have been facilely prepared in this work. The nanostructured films are highly uniform and porous, showing a wide range of tunable wettabilities from superhydrophilicity to superhydrophobicity (water contact angles: 0° to 170°). Our approach offers synthetic flexibility in controlling film architecture, surface topography, coating texture, crystallite size, and chemical composition of modifiers (e.g., SAMs derived from alkanethiols). For example, wettability properties of the nanocomposite films can be finely tuned with both inorganic phase (i.e., ZnO/SiO2 and Pt/ZnO/SiO2) and organic phase (i.e., SAMs on Pt/ZnO/SiO2). Due to the presence of catalytic components Pt/ZnO within the nanocomposites, surface reactions of the organic modifiers can further take place at room temperature and elevated temperatures, which provides a means for SAM formation and elimination. Because the Pt/ZnO forms an excellent pair of metal-semiconductors for photocatalysis, the anchored SAMs can also be modified or depleted by UV irradiation (i.e., the films possess self-cleaning ability). Potential applications of these nanocomposite films have been addressed. Our durability tests also confirm that the films are thermally stable and structurally robust in modification- regeneration cycles. © 2008 American Chemical Society.

  16. Uma visão sobre a estrutura, composição e biodegradação da madeira A vision of wood structure, composition and biodegradation

    Directory of Open Access Journals (Sweden)

    Walter Carvalho

    2009-01-01

    Full Text Available Wood is the main raw material used in the pulp and paper industry. It is a material that presents heterogeneous structure and complex composition, which results in a relatively resistant material to the biodegradation process. In the present review, we attempted to summarize the structural characteristics of wood and describe the chemical nature of its major components to, afterwards, comment about its biodegradation. The role of the enzyme manganese peroxidase in the lignin degradation by a selective white-rot fungus, Ceriporiopsis subvermispora, was highlighted.

  17. Biodegradation of films of low density polyethylene (LDPE), poly(hydroxibutyrate-co-valerate) (PHBV), and LDPE/PHBV (70/30) blend with Paecilomyces variotii

    OpenAIRE

    Passos, Thayse Marques [UNESP; Marconato, Jose Carlos [UNESP; Martins Franchetti, Sandra Mara [UNESP

    2015-01-01

    The increased consumption of plastics in the world has been a subject of great concern and special attention by the scientific community. The aim is to promote development of materials that are biodegradable in a shorter time upon disposal in the environment. The most used synthetic plastics are difficult to biodegrade because they are made of long hydrocarbon chains, such as polyethylene (PE), polypropylene (PP), poly(vinyl chloride) (PVC), which are hydrophobic and resistant to the action o...

  18. Constitution of novel polyamic acid/polypyrrole composite films by in-situ electropolymerization

    International Nuclear Information System (INIS)

    Hess, Euodia H.; Waryo, Tesfaye; Sadik, Omowunmi A.; Iwuoha, Emmanuel I.; Baker, Priscilla G.L.

    2014-01-01

    The preparation and characterization of polyamic acid-polypyrrole (PAA/PPy) composite films are reported in this paper. The thin films were synthesized by electrochemical method from a solution containing controlled molar ratio of chemically synthesized polyamic acid (PAA) and pyrrole monomer. Homogenous films were obtained by incorporating PAA into electropolymerized polypyrrole (PPy) thin film. The concentration of PAA (1.37 × 10 −6 M) was kept fixed throughout the composite ratio analysis, whilst the concentration of PPy was varied from 1.90 × 10 −3 M to 9.90 × 10 −3 M. The PAA/PPy thin films were electrodeposited at a glassy carbon electrode (GCE) and characterized using Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, Atomic force microscopy (AFM), Scanning electron microscopy (SEM) and voltammetry. The composition that best represented the homogenous incorporation of PAA into PPy matrix was observed at a PAA/PPy ratio of 1: 4.13 × 10 −3 . This composite was observed to have two sets of coupled peaks with formal potential 99 mV and 567 mV respectively. The D e determined from cyclic voltammetry using the anodic peak currents were found to be twice as high (5.82 × 10 −4 cm 2 /s) compared to the D e calculated using the cathodic peak currents (2.60 × 10 −4 cm 2 /s), indicating that the composite favours anodic electron mobility. Surface morphology and spectroscopy data support the formation of a homogenous polymer blend at the synthesis ratio of 1: 4.13 × 10 −3

  19. Green synthesis of high conductivity silver nanoparticle-reduced graphene oxide composite films

    Energy Technology Data Exchange (ETDEWEB)

    Dinh, D.A. [School of Materials Science and Engineering, Pusan National University, San 30 Jangjeon-dong, Geumjeong-gu, Busan 609-735 (Korea, Republic of); Hui, K.S., E-mail: kshui@hanyang.ac.kr [Department of Mechanical Engineering, Hanyang University, 17 Haengdang-dong, Seongdong-gu, Seoul 133-791 (Korea, Republic of); Hui, K.N., E-mail: bizhui@pusan.ac.kr [School of Materials Science and Engineering, Pusan National University, San 30 Jangjeon-dong, Geumjeong-gu, Busan 609-735 (Korea, Republic of); Cho, Y.R. [School of Materials Science and Engineering, Pusan National University, San 30 Jangjeon-dong, Geumjeong-gu, Busan 609-735 (Korea, Republic of); Zhou, Wei [Department of Mechanical and Electrical Engineering, Xiamen University, Xiamen 361005 (China); Hong, Xiaoting [School of Chemistry and Environment, South China Normal University, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, Guangzhou 510006 (China); Chun, Ho-Hwan [Global Core Research Center for Ships and Offshore Plants (GCRC-SOP), Pusan National University, San 30 Jangjeon-dong, Geumjeong-gu, Busan 609-735 (Korea, Republic of)

    2014-04-01

    Graphical abstract: - Highlights: • A green facile chemical approach to control the dimensions of Ag nanoparticles–graphene oxide (AgNPs/GO) composites was performed at room temperature. • With decreasing ultrasonication time, the size of the Ag nanoparticles decreased and became uniformly distributed over the surface of the GO nanosheets. • The as-prepared AgNPs/rGO composite films were then formed using a spin coating method and reduced at 500 °C under N{sub 2}/H{sub 2} gas flow for 1 h. • The lowest sheet resistance of 270 Ω/sq was obtained in the film corresponding to 1 min of ultrasonication, which showed a 40 times lower resistivity than the rGO film (10.93 kΩ/sq). - Abstract: A green facile chemical approach to control the dimensions of Ag nanoparticles–graphene oxide (AgNPs/GO) composites was performed by the in situ ultrasonication of a mixture of AgNO{sub 3} and graphene oxide solutions with the assistance of vitamin C acting as an environmentally friendly reducing agent at room temperature. With decreasing ultrasonication time, the size of the Ag nanoparticles decreased and became uniformly distributed over the surface of the GO nanosheets. The as-prepared AgNPs/rGO composite films were then formed using a spin coating method and reduced at 500 °C under N{sub 2}/H{sub 2} gas flow for 1 h. Four-point probe measurements showed that the sheet resistance of the AgNPs/rGO films decreased with decreasing AgNPs size. The lowest sheet resistance of 270 Ω/sq was obtained in the film corresponding to 1 min of ultrasonication, which showed a 40 times lower resistivity than the rGO film (10.93 kΩ/sq). The formation mechanisms of the as-prepared AgNPs/rGO films are proposed. This study provides a guide to controlling the dimensions of AgNPs/rGO films, which might hold promise as advanced materials for a range of analytical applications, such as catalysis, sensors and microchips.

  20. Effect of blend ratio and pH on the physical properties of edible composite films prepared from silver carp surimi and skin gelatin.

    Science.gov (United States)

    Tao, Zhong; Weng, Wu-Yin; Cao, Min-Jie; Liu, Guang-Ming; Su, Wen-Jin; Osako, Kazufumi; Tanaka, Munehiko

    2015-03-01

    The effect of blend ratio and pH on the physical properties of surimi-gelatin composite films was investigated. Tensile strength (TS), film water solubility and soluble proteins of composite films increased with the increasing proportion of gelatin, while elongation at break (EAB) decreased. The TS of neutral films with the same ratio of surimi and gelatin were lowest, while increased at acidic or alkaline conditions. Similar tendency was also found in protein solubility and surface hydrophobicity of the film-forming solutions. On the other hand, the film water solubility and soluble proteins of neutral composite films were higher than those of acidic and alkaline films. Furthermore, it was revealed that the dissolved surimi and gelatin proteins could form strong composite films, which were insoluble in water. These results suggested that dissolved proteins were mainly involved in the formation of surimi-gelatin composite films.

  1. /UV Synergistic Aging of Polyester Polyurethane Film Modified by Composite UV Absorber

    Directory of Open Access Journals (Sweden)

    Yanzhi Wang

    2013-01-01

    Full Text Available The pure polyester polyurethane (TPU film and the modified TPU (M-TPU film containing 2.0 wt.% inorganic UV absorbers mixture (nano-ZnO/CeO2 with weight ratio of 3 : 2 and 0.5 wt.% organic UV absorbers mixture (UV-531/UV-327 with weight ratio of 1 : 1 were prepared by spin-coating technique. The accelerated aging tests of the films exposed to constant UV radiation of 400 ± 20 µW/cm2 (313 nm with an ozone atmosphere of 100 ± 2 ppm were carried out by using a self-designed aging equipment at ambient temperature and relative humidity of 20%. The aging resistance properties of the films were evaluated by UV-Vis spectra, Fourier transform infrared spectra (FT-IR, photooxidation index, and carbonyl index analysis. The results show that the composite UV absorber has better protection for TPU system, which reduces distinctly the degradation of TPU film. O3/UV aging of the films increases with incremental exposure time. PI and CI of TPU and M-TPU films increase with increasing exposure time, respectively. PI and CI of M-TPU films are much lower than that of TPU film after the same time of exposure, respectively. Distinct synergistic aging effect exists between ozone aging and UV aging when PI and CI are used as evaluation index, respectively. Of course, the formula of these additives needs further improvement for industrial application.

  2. Composition and structure variation for magnetron sputtered tantalum oxynitride thin films, as function of deposition parameters

    Energy Technology Data Exchange (ETDEWEB)

    Cristea, D.; Pătru, M.; Crisan, A.; Munteanu, D. [Department of Materials Science, Transilvania University, 500036 Brasov (Romania); Crăciun, D. [Laser Department, National Institute for Laser, Plasma, and Radiation Physics, Magurele (Romania); Barradas, N.P. [Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, E.N. 10 ao km 139,7, 2695-066 Bobadela LRS (Portugal); Alves, E. [Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, E.N. 10 ao km 139,7, 2695-066 Bobadela LRS (Portugal); Apreutesei, M. [Université de Lyon, Institut des Nanotechnologies de Lyon INL-UMR 5270, CNRS, Ecole Centrale de Lyon, Ecully F-69134 (France); MATEIS Laboratory-INSA de Lyon, Bât. B. Pascal, 7 Avenue Jean Capelle, 69621 Villeurbanne Cedex (France); Moura, C. [Center of Physics, University of Minho, Campus de Gualtar, 4710-057 Braga (Portugal); Cunha, L., E-mail: lcunha@fisica.uminho.pt [Center of Physics, University of Minho, Campus de Gualtar, 4710-057 Braga (Portugal)

    2015-12-15

    Highlights: • Structural evolution from β-Ta, to fcc-Ta(O,N), to amorphous Ta{sub 2}O{sub 5} with increasing P(N{sub 2} + O{sub 2}). • The substrate bias influences the N content, but does not influence the O content of the films. • The structural features of the films appear at lower P(N{sub 2} + O{sub 2}) when produced with grounded substrate. - Abstract: Tantalum oxynitride thin films were produced by magnetron sputtering. The films were deposited using a pure Ta target and a working atmosphere with a constant N{sub 2}/O{sub 2} ratio. The choice of this constant ratio limits the study concerning the influence of each reactive gas, but allows a deeper understanding of the aspects related to the affinity of Ta to the non-metallic elements and it is economically advantageous. This work begins by analysing the data obtained directly from the film deposition stage, followed by the analysis of the morphology, composition and structure. For a better understanding regarding the influence of the deposition parameters, the analyses are presented by using the following criterion: the films were divided into two sets, one of them produced with grounded substrate holder and the other with a polarization of −50 V. Each one of these sets was produced with different partial pressure of the reactive gases P(N{sub 2} + O{sub 2}). All the films exhibited a O/N ratio higher than the N/O ratio in the deposition chamber atmosphere. In the case of the films produced with grounded substrate holder, a strong increase of the O content is observed, associated to the strong decrease of the N content, when P(N{sub 2} + O{sub 2}) is higher than 0.13 Pa. The higher Ta affinity for O strongly influences the structural evolution of the films. Grazing incidence X-ray diffraction showed that the lower partial pressure films were crystalline, while X-ray reflectivity studies found out that the density of the films depended on the deposition conditions: the higher the gas pressure, the

  3. LTCC Phase Shifters Based on Tunable Ferroelectric Composite Thick Films

    Science.gov (United States)

    Nikfalazar, M.; Kohler, C.; Heunisch, A.; Wiens, A.; Zheng, Y.; Schulz, B.; Mikolajek, M.; Sohrabi, M.; Rabe, T.; Binder, J. R.; Jakoby, R.

    2015-11-01

    This paper presents, the investigation of tunable components based on LTCC technology, implementing ferroelectric tunable thick-film dielectric. The tunable loaded line phase shifters are fabricated with metal-insulator-metal (MIM) varactors to demonstrate the capabilities of this method for packaging of the tunable components. The MIM varactors consist of one tunable dielectric paste layer that is printed between two silver layers. The tunable ferroelectric paste is optimized for LTCC sintering temperature around 850°C. The phase shifters are fabricated in two different process. They were achieved a figure of merit of 24°/dB (phase shift 192°) at 3 GHz and 18°/dB (phase shift 98°) at 4.4 GHz by using seven unit cells that each unit cell consisting of two MIM varactors.

  4. Agronomic evaluation of green biodegradable mulch on melon

    Directory of Open Access Journals (Sweden)

    Ferruccio Filippi

    2011-05-01

    Full Text Available A two-year research was carried out in 2004-2005 in order to evaluate the effects of biodegradable green mulch on melon (Cucumis melo L. var. reticulatus Naud. yield and quality. The loss of quality due to the presence of spot caused by the residues of biodegradable plastics was also investigated. The research was conducted over two years, in open field, at S. Piero a Grado, Pisa, Italy, (lat. 43.67498, long. 10.34737, from the beginning of May to the end of July of each year. The films tested in the first year experiment were two biodegradable ones with different colours (black and green compared with a low-density polyethylene (LDPE film, while in 2005 three biodegradable films, (two green and one black were compared with a traditional LDPE film. The two green biodegradable films had different properties related to the biodegradation rate, faster in film Cv205, because of a different degree of Mater Bi polymer inside the film. In each year a randomized block design with four replications was followed. Green biodegradable films allowed obtaining a higher yield than LDPE films maybe because of the higher soil temperatures reached, and excellent fruit quality, especially for the soluble solids content and the ripening process. At the same time, the presence of residues on the fruit skin was rather low because of the degradation of films occurred at the ripening time. In the first year, the percentage of spotted fruits was low for every kind of film, while in the second one the green film showed a higher presence of residues on skin compared with the black one. The biodegradable materials covered the soil for the whole crop cycle with a good mulching effect, and the successive degradation allowed to avoid the removal and disposal of plastic film, with a certain economic advantage.

  5. Luminescent Polymer Composite Films Containing Coal-Derived Graphene Quantum Dots.

    Science.gov (United States)

    Kovalchuk, Anton; Huang, Kewei; Xiang, Changsheng; Martí, Angel A; Tour, James M

    2015-12-02

    Luminescent polymer composite materials, based on poly(vinyl alcohol) (PVA), as a matrix polymer and graphene quantum dots (GQDs) derived from coal, were prepared by casting from aqueous solutions. The coal-derived GQDs impart fluorescent properties to the polymer matrix, and the fabricated composite films exhibit solid state fluorescence. Optical, thermal, and fluorescent properties of the PVA/GQD nanocomposites have been studied. High optical transparency of the composite films (78 to 91%) and excellent dispersion of the nanoparticles are observed at GQD concentrations from 1 to 5 wt %. The maximum intensity of materials photoluminescence has been achieved at 10 wt % GQD content. These materials could be used in light emitting diodes (LEDs), flexible electronic displays, and other optoelectronic applications.

  6. Formulation and characterization of novel composite semi-refined iota carrageenan-based edible film incorporating palmitic acid

    Science.gov (United States)

    Praseptiangga, Danar; Giovani, Sarah; Manuhara, Godras Jati; Muhammad, Dimas Rahadian Aji

    2017-09-01

    Novel composite films based on semi-refined iota-carrageenan (SRIC) incorporating palmitic acid (PA) were prepared by an emulsification method. Palmitic acid (PA) as hydrophobic material was incorporated into semi-refined iota-carrageenan edible films in order to improve water vapor barrier properties. Composite SRIC-based films with varying concentrations of PA (10%, 20%, and 30% w/w) were obtained by a solvent casting method. Their mechanical and barrier properties were investigated. Results showed that the incorporation of PA in films caused a significant increase (p films improved the tensile strength (TS). Interestingly, the TS value increased to a peak at 20% w/w PA. However, the TS value showed a decrease when PA were added at 30% w/w. Elongation-at-break (EAB) were significantly (p films increased (from 10% to 30% w/w). Furthermore, the incorporation of PA also affected the water vapor barrier properties of the films. Water vapor transmission rate (WVTR) of the composite semi-refined iota-carrageenan-based edible film decreased significantly (p edible film incorporating 30% w/w of PA presented better water vapor barrier properties as compared to other films with 10% and 20% w/w PA incorporation. Thus, formulation containing 30% w/w palmitic acid promoted films with a highly beneficial to improve water vapor barrier properties and it has the potential for food packaging applications.

  7. Effects of mechanical properties of polymer on ceramic-polymer composite thick films fabricated by aerosol deposition

    OpenAIRE

    Kwon, Oh-Yun; Na, Hyun-Jun; Kim, Hyung-Jun; Lee, Dong-Won; Nam, Song-Min

    2012-01-01

    Two types of ceramic-polymer composite thick films were deposited on Cu substrates by an aerosol deposition process, and their properties were investigated to fabricate optimized ceramic-based polymer composite thick films for application onto integrated substrates with the advantage of plasticity. When polymers with different mechanical properties, such as polyimide (PI) and poly(methyl methacrylate) (PMMA), are used as starting powders together with α-Al2O3 powder, two types of composite fi...

  8. Thin film bismuth(III) sulfide/zinc sulfide composites deposited by spray pyrolysis

    Science.gov (United States)

    Benattou, H.; Benramdane, N.; Berouaken, M.

    (Bi2S3)(x)(ZnS)(1-x) composites in thin films were successfully grown on glass substrates by the spray pyrolysis technique. The films growth were prepared by the reaction of aqueous solutions of bismuth(III) chloride (BiCl3) and zinc chloride (ZnCl) with Thiourea on substrates heated to a temperature of 280 °C. The structural properties have been identified using X-ray diffraction spectra. The deposited films are of polycrystalline natures. The both of the two phases mixed (Bi2S3 and ZnS) were well observed in the X-ray diffraction plots. The optical properties were also studied using transmittance and reflectance measurements in the wavelength range (200-2500 nm). Optical gaps were evaluated; we are found that (Bi2S3)(x)(ZnS)(1-x) (x = 0-1) composites in thin films are characterized by two optical gaps limited between the gap of Bi2S3 and that of ZnS films in the pure phase.

  9. Antimicrobial property and microstructure of micro-emulsion edible composite films against Listeria.

    Science.gov (United States)

    Guo, Mingming; Jin, Tony Z; Yadav, Madhav P; Yang, Ruijin

    2015-09-02

    Edible antimicrobial composite films from micro-emulsions containing all natural compounds were developed and their antimicrobial properties and microstructures were investigated. Chitosan, allyl isothiocyanate (AIT), barley straw arabinoxylan (BSAX), and organic acids (acetic, lactic and levulinic acids) were used as film-forming agent, antimicrobial agent, emulsifier, and solvent, respectively. Micro-emulsions were obtained using high pressure homogenization (HPH) processing at 138MPa for 3cycles. The composite films made from the micro-emulsions significantly (p<0.05) inactivated Listeria innocua in tryptic soy broth (TSB) and on the surface of ready-to-eat (RTE) meat samples, achieving microbial reductions of over 4logCFU/ml in TSB after 2days at 22°C and on meat samples after 35days at 10°C. AIT was a major contributor to the antimicrobial property of the films and HPH processing further enhanced its antimicrobial efficacy, while the increase of chitosan from 1.5% to 3%, or addition of acetic acid to the formulations didn't result in additional antimicrobial effects. This study demonstrated an effective approach to developing new edible antimicrobial films and coatings used for food applications. Published by Elsevier B.V.

  10. Co nanoparticles induced resistive switching and magnetism for the electrochemically deposited polypyrrole composite films.

    Science.gov (United States)

    Xu, Zedong; Gao, Min; Yu, Lina; Lu, Liying; Xu, Xiaoguang; Jiang, Yong

    2014-10-22

    The resistive switching behavior of Co-nanoparticle-dispersed polypyrrole (PPy) composite films is studied. A novel design method for resistive random access memory (ReRAM) is proposed. The conducting polymer films with metal nanocrystal (NC)-dispersed carbon chains induce the spontaneous oxidization of the conducting polymer at the surface. The resistive switching behavior is achieved by an electric field controlling the oxygen ion mobility between the metal electrode and the conducting polymer film to realize the mutual transition between intrinsic conduction (low resistive state) and oxidized layer conduction (high resistive state). Furthermore, the formation process of intrinsic conductive paths can be effectively controlled in the conducting polymer ReRAM using metal NCs in films because the inner metal NCs induce electric field lines converging around them and the intensity of the electric field at the tip of NCs can greatly exceed that of the other region. Metal NCs can also bring new characteristics for ReRAM, such as magnetism by dispersing magnetic metal NCs in polymer, to obtain multifunctional electronic devices or meet some special purpose in future applications. Our works will enrich the application fields of the electromagnetic PPy composite films and present a novel material for ReRAM devices.

  11. Electric conductance of films prepared from polymeric composite nanoparticles

    Czech Academy of Sciences Publication Activity Database

    Hain, J.; Pich, A.; Adler, H. J.; Rais, David; Nešpůrek, Stanislav

    2008-01-01

    Roč. 268, č. 1 (2008), s. 61-65 ISSN 1022-1360. [Microsymposium on Advanced Polymer Materials for Photonics and Electronics /47./. Prague, 15.07.2007-19.07.2007] R&D Projects: GA AV ČR KAN400720701; GA MŠk OC 138 Institutional research plan: CEZ:AV0Z40500505 Keywords : coatings * composites * conducting polymers Subject RIV: BM - Solid Matter Physics ; Magnetism

  12. Cadmium-manganese oxide composite thin films: Synthesis, characterization and photoelectrochemical properties

    Energy Technology Data Exchange (ETDEWEB)

    Mansoor, M.A. [Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur 50603 (Malaysia); Low Dimensional Materials Research Centre, Department of Physics, University of Malaya, Faculty of Science, Kuala Lumpur 50603 (Malaysia); Ebadi, M. [Solar Energy Research Institute, University Kebangsaan Malaysia, Bangi 43600, Selangor (Malaysia); Mazhar, M., E-mail: mazhar42pk@yahoo.com [Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur 50603 (Malaysia); Huang, N.M. [Low Dimensional Materials Research Centre, Department of Physics, University of Malaya, Faculty of Science, Kuala Lumpur 50603 (Malaysia); Mun, L.K.; Misran, M. [Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur 50603 (Malaysia); Basirun, W.J. [Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur 50603 (Malaysia); Institute of Nanotechnology and Catalysis (NanoCat), University Malaya, Kuala Lumpur 50603 (Malaysia)

    2017-01-15

    Ceramic composite CdO–Mn{sub 2}O{sub 3} thin films have been deposited on fluorine doped tin oxide (FTO) coated glass substrates by aerosol assisted chemical vapour deposition (AACVD) using a 1:1 mixture of cadmium complex, [Cd(dmae){sub 2}(OAc){sub 2}]·H{sub 2}O (1) (where dmae = 2-dimethylaminoethanolato and OAc = acetato), and diacetatomanganese (II). The phase purity, stoichiometry and thickness of the films were examined by X-ray diffraction (XRD), Fourier transformed infra-red (FTIR), Raman spectroscopy, field emission gun scanning electron microscopy (FEG-SEM), energy dispersive X-ray spectroscopy (EDX), UV–Vis spectroscopy and profilometer. The FEG-SEM analysis illustrated that the morphology of the fabricated films was influenced by the type of solvent. The optical direct band gap of the film fabricated from THF solution was 1.95 eV. From the current–voltage characteristics it is evident that the CdO–Mn{sub 2}O{sub 3} composite semiconductor electrode exhibits n-type behaviour and the photocurrent density was found to be dependent on the deposition medium. The film deposited from THF solution displayed maximum photocurrent density of 4.80 mA cm{sup −2} at 0.65 V vs. Ag/AgCl/3 M KCl (∼1.23 V vs. RHE) in 0.5 M NaOH electrolyte. - Highlights: • Single crystal X-ray structure of [Cd(dmae){sub 2}(OAc){sub 2}]·H{sub 2}O (1). • CdO-Mn{sub 2}O{sub 3} composite photoanode thin films. • Optical band gap of CdO-Mn{sub 2}O{sub 3} photoanode. • Photoelectrochemical and EIS studies.

  13. Crystallographic Textures and Morphologies of Solution Cast Ibuprofen Composite Films at Solid Surfaces

    Science.gov (United States)

    2014-01-01

    The preparation of thin composite layers has promising advantages in a variety of applications like transdermal, buccal, or sublingual patches. Within this model study the impact of the matrix material on the film forming properties of ibuprofen–matrix composite films is investigated. As matrix materials polystyrene, methyl cellulose, or hydroxyl-ethyl cellulose were used. The film properties were either varied by the preparation route, i.e., spin coating or drop casting, or via changes in the relative ratio of the ibuprofen and the matrix material. The resulting films were investigated via X-ray diffraction and atomic force microscope experiments. The results show that preferred (100) textures can be induced via spin coating with respect to the glass surface, while the drop casting results in a powder-like behavior. The morphologies of the films are strongly impacted by the ibuprofen amount rather than the preparation method. A comparison of the various matrix materials in terms of their impact on the dissolution properties show a two times faster zero order release from methyl cellulose matrix compared to a polystyrene matrix. The slowest rate was observed within the hydroxyl ethyl cellulose as the active pharmaceutical ingredients (APIs) release is limited by diffusion through a swollen matrix. The investigation reveals that the ibuprofen crystallization and film formation is only little effected by the selected matrix material than that compared to the dissolution. A similar experimental approach using other matrix materials may therefore allow to find an optimized composite layer useful for a defined application. PMID:25275801

  14. Production of porous PTFE-Ag composite thin films by pulsed laser deposition

    International Nuclear Information System (INIS)

    Kecskeméti, Gabriella; Hopp, Béla; Smausz, Tomi; Tóth, Zsolt; Szabó, Gábor

    2012-01-01

    The suitability of pulsed laser deposition technique for preparation of polytetrafluoroethylene (PTFE) and silver (Ag) composite thin films was demonstrated. Disk-shaped targets combined from silver and Teflon with various percentages were ablated with pulses of an ArF excimer laser. The chemical composition of the deposited layers was estimated based on deposition rates determined for the pure PTFE and Ag films. EDX and SEM analyses using secondary electron and backscattered electron images proved that the morphology of the layers is determined by the PTFE which is the main constituent and it is transferred mostly in form of grains and clusters forming a sponge-like structure with high specific surface. The Ag content is distributed over the surface of the PTFE structure. Contact angle measurements showed that with increasing the amount of Ag in the deposited layers the surface significantly enhanced the wetting properties. Conductivity experiments demonstrated that when the average silver content of the layers was increased from 0.16 to 3.28 wt% the resistance of our PTFE-Ag composite films decreased with about three orders of magnitudes (from ∼10 MΩ to ∼10 kΩ). The properties of these films suggest as being a good candidate for future electrochemical sensor applications.

  15. High-loading Fe2O3/SWNT composite films for lithium-ion battery applications

    Science.gov (United States)

    Wang, Ying; Guo, Jiahui; Li, Li; Ge, Yali; Li, Baojun; Zhang, Yingjiu; Shang, Yuanyuan; Cao, Anyuan

    2017-08-01

    Single-walled carbon nanotube (SWNT) films are a potential candidate as porous conductive electrodes for energy conversion and storage; tailoring the loading and distribution of active materials grafted on SWNTs is critical for achieving maximum performance. Here, we show that as-synthesized SWNT samples containing residual Fe catalyst can be directly converted to Fe2O3/SWNT composite films by thermal annealing in air. The mass loading of Fe2O3 nanoparticles is tunable from 63 wt% up to 96 wt%, depending on the annealing temperature (from 450 °C to 600 °C), while maintaining the porous network structure. Interconnected SWNT networks containing high-loading active oxides lead to synergistic effect as an anode material for lithium ion batteries. The performance is improved consistently with increasing Fe2O3 loading. As a result, our Fe2O3/SWNT composite films exhibit a high reversible capacity (1007.1 mA h g-1 at a current density of 200 mA g-1), excellent rate capability (384.9 mA h g-1 at 5 A g-1) and stable cycling performance with the discharge capacity up to 567.1 mA h g-1 after 600 cycles at 2 A g-1. The high-loading Fe2O3/SWNT composite films have potential applications as nanostructured electrodes for various energy devices such as supercapacitors and Li-ion batteries.

  16. Amine Enrichment of Thin-Film Composite Membranes via Low Pressure Plasma Polymerization for Antimicrobial Adhesion.

    Science.gov (United States)

    Reis, Rackel; Dumée, Ludovic F; He, Li; She, Fenghua; Orbell, John D; Winther-Jensen, Bjorn; Duke, Mikel C

    2015-07-15

    Thin-film composite membranes, primarily based on poly(amide) (PA) semipermeable materials, are nowadays the dominant technology used in pressure driven water desalination systems. Despite offering superior water permeation and salt selectivity, their surface properties, such as their charge and roughness, cannot be extensively tuned due to the intrinsic fabrication process of the membranes by interfacial polymerization. The alteration of these properties would lead to a better control of the materials surface zeta potential, which is critical to finely tune selectivity and enhance the membrane materials stability when exposed to complex industrial waste streams. Low pressure plasma was employed to introduce amine functionalities onto the PA surface of commercially available thin-film composite (TFC) membranes. Morphological changes after plasma polymerization were analyzed by SEM and AFM, and average surface roughness decreased by 29%. Amine enrichment provided isoelectric point changes from pH 3.7 to 5.2 for 5 to 15 min of plasma polymerization time. Synchrotron FTIR mappings of the amine-modified surface indicated the addition of a discrete 60 nm film to the PA layer. Furthermore, metal affinity was confirmed by the enhanced binding of silver to the modified surface, supported by an increased antimicrobial functionality with demonstrable elimination of E. coli growth. Essential salt rejection was shown minimally compromised for faster polymerization processes. Plasma polymerization is therefore a viable route to producing functional amine enriched thin-film composite PA membrane surfaces.

  17. Optimization of arc evaporated (Ti,Al)N film composition for cutting tool applications

    Energy Technology Data Exchange (ETDEWEB)

    Coll, B.F.; Sathrum, P.; Fontana, R. (Multi-Arc Scientific Coatings, Rockaway, NJ (United States)); Peyre, J.P.; Duchateau, D. (CETIM, 60 - Senlis (France)); Benmalek, M. (CRV S.A., Pechiney Group, 38 - Voreppe (France))

    1992-03-15

    The arc evaporation process is commonly used to deposit TiN coatings for protection against wear and friction. The suitability of this established process for depositing ternary compound films of (Ti{sub x}Al{sub 1-x})N by using alloyed Ti-Al cathodes of various compositions is presented. The influence of the coating parameters on the final composition of the (Ti,Al)N films has been investigated. The bias voltage appears to be the main parameter controlling the final composition. Graded films with three different Al:Ti ratios (0.2, 0.3 and 0.8) have been prepared and comparative four-point-bending tests show a ductility of around 1.2%-1.5% for the (Ti,Al)N coatings. Comparative cutting tool experiments show the superior performance of (Ti,Al)N films for milling difficult-to-machine materials such as titanium alloys, stainless steels and nickel-based superalloys. (orig.).

  18. Novel composite films based on amidated pectin for cationic dye adsorption.

    Science.gov (United States)

    Nesic, Aleksandra R; Velickovic, Sava J; Antonovic, Dusan G

    2014-04-01

    Pectin, with its tendency to gel in the presence of metal ions has become a widely used material for capturing the metal ions from wastewaters. Its dye-capturing properties have been much less investigated, and this paper is the first to show how films based on amidated pectin can be used for cationic dye adsorption. In the present study amidated pectin/montmorillonite composite films were synthesized by membrane casting, and they are stable in aqueous solution both below and above pectin pKa. FTIR, thermogravimetry and SEM-EDAX have confirmed the presence of montmorillonite in the cast films and the interactions between the two constituents. In order to evaluate the cationic dye adsorption of these films Basic Yellow 28 was used, showing that the films have higher adsorption capacity compared to the others reported in the literature. The results were fitted into Langmuir, Freundlich and Temkin isotherms indicating an exothermic process and setting the optimum amount of montmorillonite in the films to 30% of pectin mass. According to the Langmuir isotherm the maximum adsorption capacity is 571.4 mg/g. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Growth Aspects of Thin-Film Composite Heterostructures of Oxide Multicomponent Perovskites for Electronics

    Science.gov (United States)

    Endo, Kazuhiro; Badica, Petre; Arisawa, Shunichi; Kezuka, Hiroshi; Endo, Tamio

    2012-11-01

    We review, based on our results, the problems and solutions for the growth of thin films and composite heterostructures emphasizing the general growth aspects and principles vs specifics for each material or heterostructure. The materials used in our examples are Bi2Sr2Ca2Cu3O10, Bi2Sr2CaCu2O8, YBa2Cu3O7, (Sr, Ca)CuO2, (Ba, Ca)CuO2, and Bi4Ti3O12. The growth method was metal organic chemical vapor deposition (MOCVD). The presented thin films or heterostructures have c- and non-c-axis orientations. We discuss the implications of the film-substrate lattice relationships, paying attention to film-substrate lattice mismatch anisotropy and to film-film lattice mismatch, which has a significant influence on the quality of the non-c-axis heterostructures. We also present growth control through the use of vicinal substrates and two-temperature (template) and interrupted growth routes allowing significant quality improvements or optimization. Other key aspects of the growth mechanism, that is, roughness, morphology, and interdiffusion, are addressed. It is concluded that the requirements for the growth of non-c-axis heterostructures are more severe than those for the c-axis ones.

  20. Controlling compositional homogeneity and crystalline orientation in Bi0.8Sb0.2 thermoelectric thin films

    Science.gov (United States)

    Rochford, C.; Medlin, D. L.; Erickson, K. J.; Siegal, M. P.

    2015-12-01

    Compositional-homogeneity and crystalline-orientation are necessary attributes to achieve high thermoelectric performance in Bi1-xSbx thin films. Following deposition in vacuum, and upon air exposure, we find that 50%-95% of the Sb in 100-nm thick films segregates to form a nanocrystalline Sb2O3 surface layer, leaving the film bulk as Bi-metal. However, we demonstrate that a thin SiN capping layer deposited prior to air exposure prevents Sb-segregation, preserving a uniform film composition. Furthermore, the capping layer enables annealing in forming gas to improve crystalline orientations along the preferred trigonal axis, beneficially reducing electrical resistivity.

  1. Water-in-model oil emulsions studied by small-angle neutron scattering: interfacial film thickness and composition.

    Science.gov (United States)

    Verruto, Vincent J; Kilpatrick, Peter K

    2008-11-18

    The ever-increasing worldwide demand for energy has led to the upgrading of heavy crude oil and asphaltene-rich feedstocks becoming viable refining options for the petroleum industry. Traditional problems associated with these feedstocks, particularly stable water-in-petroleum emulsions, are drawing increasing attention. Despite considerable research on the interfacial assembly of asphaltenes, resins, and naphthenic acids, much about the resulting interfacial films is not well understood. Here, we describe the use of small-angle neutron scattering (SANS) to elucidate interfacial film properties from model emulsion systems. Modeling the SANS data with both a polydisperse core/shell form factor as well as a thin sheet approximation, we have deduced the film thickness and the asphaltenic composition within the stabilizing interfacial films of water-in-model oil emulsions prepared in toluene, decalin, and 1-methylnaphthalene. Film thicknesses were found to be 100-110 A with little deviation among the three solvents. By contrast, asphaltene composition in the film varied significantly, with decalin leading to the most asphaltene-rich films (30% by volume of the film), while emulsions made in toluene and methylnaphthalene resulted in lower asphaltenic contents (12-15%). Through centrifugation and dilatational rheology, we found that trends of decreasing water resolution (i.e., increasing emulsion stability) and increasing long-time dilatational elasticity corresponded with increasing asphaltene composition in the film. In addition to the asphaltenic composition of the films, here we also deduce the film solvent and water content. Our analyses indicate that 1:1 (O/W) emulsions prepared with 3% (w/w) asphaltenes in toluene and 1 wt % NaCl aqueous solutions at pH 7 and pH 10 resulted in 80-90 A thick films, interfacial areas around 2600-3100 cm (2)/mL, and films that were roughly 25% (v/v) asphaltenic, 60-70% toluene, and 8-12% water. The increased asphaltene and water film

  2. Effects of mechanical properties of polymer on ceramic-polymer composite thick films fabricated by aerosol deposition

    Science.gov (United States)

    Kwon, Oh-Yun; Na, Hyun-Jun; Kim, Hyung-Jun; Lee, Dong-Won; Nam, Song-Min

    2012-05-01

    Two types of ceramic-polymer composite thick films were deposited on Cu substrates by an aerosol deposition process, and their properties were investigated to fabricate optimized ceramic-based polymer composite thick films for application onto integrated substrates with the advantage of plasticity. When polymers with different mechanical properties, such as polyimide (PI) and poly(methyl methacrylate) (PMMA), are used as starting powders together with α-Al2O3 powder, two types of composite films are formed with different characteristics - surface morphologies, deposition rates, and crystallite size of α-Al2O3. Through the results of micro-Vickers hardness testing, it was confirmed that the mechanical properties of the polymer itself are associated with the performances of the ceramic-polymer composite films. To support and explain these results, the microstructures of the two types of polymer powders were observed after planetary milling and an additional modeling test was carried out. As a result, we could conclude that the PMMA powder is distorted by the impact of the Al2O3 powder, so that the resulting Al2O3-PMMA composite film had a very small amount of PMMA and a low deposition rate. In contrast, when using PI powder, the Al2O3-PI composite film had a high deposition rate due to the cracking of PI particles. Consequently, it was revealed that the mechanical properties of polymers have a considerable effect on the properties of the resulting ceramic-polymer composite thick films.

  3. Electro–optical properties of poly(vinyl acetate)/polyindole composite film

    International Nuclear Information System (INIS)

    Bhagat, D. J.; Dhokane, G. R.; Bajaj, N. S.

    2016-01-01

    In present work, electrical and optical properties of poly(vinyl acetate)/polyindole (PVAc/PIN) composite film are reported. The prepared composite was characterized via X–ray diffraction (XRD), UV–Vis spectroscopy and DC conductivity measurements. The polymer chain separation was determined using XRD analysis. An attempt has been made to study the temperature dependence of DC conductivity of PVAc/PIN composite in temperature range 308–373 K. The DC conductivity initially increases and reaches to 2.45×10–7 S/cm. The optical band gap value of composite is determined as 4.77 eV. The semiconducting nature of composite observed from electronic as well as optical band gap and Arrhenius behavior of DC plot.

  4. An Observation of Diamond-Shaped Particle Structure in a Soya Phosphatidylcohline and Bacteriorhodopsin Composite Langmuir Blodgett Film Fabricated by Multilayer Molecular Thin Film Method

    Science.gov (United States)

    Tsujiuchi, Y.; Makino, Y.

    A composite film of soya phosphatidylcohline (soya PC) and bacteriorhodopsin (BR) was fabricated by the multilayer molecular thin film method using fatty acid and lipid on a quartz substrate. Direct Force Microscopy (DFM), UV absorption spectra and IR absorption spectra of the film were characterized on the detail of surface structure of the film. The DFM data revealed that many rhombus (diamond-shaped) particles were observed in the film. The spectroscopic data exhibited the yield of M-intermediate of BR in the film. On our modelling of molecular configuration indicate that the coexistence of the strong inter-molecular interaction and the strong inter-molecular interaction between BR trimmers attributed to form the particles.

  5. Preparation, Characterization and Thermal Degradation of Polyimide (4-APS/BTDA/SiO2 Composite Films

    Directory of Open Access Journals (Sweden)

    Arash Dehzangi

    2012-04-01

    Full Text Available Polyimide/SiO2 composite films were prepared from tetraethoxysilane (TEOS and poly(amic acid (PAA based on aromatic diamine (4-aminophenyl sulfone (4-APS and aromatic dianhydride (3,3,4,4-benzophenonetetracarboxylic dianhydride (BTDA via a sol-gel process in N-methyl-2-pyrrolidinone (NMP. The prepared polyimide/SiO2 composite films were characterized using X-ray diffraction (XRD, Fourier transform infrared spectroscopy (FTIR, scanning electron microscope (SEM and thermogravimetric analysis (TGA. The FTIR results confirmed the synthesis of polyimide (4-APS/BTDA and the formation of SiO2 particles in the polyimide matrix. Meanwhile, the SEM images showed that the SiO2 particles were well dispersed in the polyimide matrix. Thermal stability and kinetic parameters of the degradation processes for the prepared polyimide/SiO2 composite films were investigated using TGA in N2 atmosphere. The activation energy of the solid-state process was calculated using Flynn–Wall–Ozawa’s method without the knowledge of the reaction mechanism. The results indicated that thermal stability and the values of the calculated activation energies increased with the increase of the TEOS loading and the activation energy also varied with the percentage of weight loss for all compositions.

  6. Cementitious Composites Engineered with Embedded Carbon Nanotube Thin Films for Enhanced Sensing Performance

    International Nuclear Information System (INIS)

    Loh, Kenneth J; Gonzalez, Jesus

    2015-01-01

    Cementitious composites such as concrete pavements are susceptible to different damage modes, which are primarily caused by repeated loading and long-term deterioration. There is even greater concern that damage could worsen and occur more frequently with the use of heavier vehicles or new aircraft carrying greater payloads. Thus, the objective of this research is to engineer cementitious composites with capabilities of self-sensing or detecting damage. The approach was to enhance the damage sensitivity of cementitious composites by incorporating multi-walled carbon nanotubes (MWNT) as part of the mix design and during casting. However, as opposed to directly dispersing MWNTs in the cement matrix, which is the current state-of-art, MWNT-based thin films were airbrushed and coated onto sand particles. The film-coated sand was then used as part of the mix design for casting mortar specimens. Mortar specimens were subjected to compressive cyclic loading tests while their electrical properties were recorded simultaneously. The results showed that the electrical properties of these cementitious composites designed with film-coated sand exhibited extremely high strain sensitivities. The electrical response was also stable and consistent between specimens. (paper)

  7. Cementitious Composites Engineered with Embedded Carbon Nanotube Thin Films for Enhanced Sensing Performance

    Science.gov (United States)

    Loh, Kenneth J.; Gonzalez, Jesus

    2015-07-01

    Cementitious composites such as concrete pavements are susceptible to different damage modes, which are primarily caused by repeated loading and long-term deterioration. There is even greater concern that damage could worsen and occur more frequently with the use of heavier vehicles or new aircraft carrying greater payloads. Thus, the objective of this research is to engineer cementitious composites with capabilities of self-sensing or detecting damage. The approach was to enhance the damage sensitivity of cementitious composites by incorporating multi-walled carbon nanotubes (MWNT) as part of the mix design and during casting. However, as opposed to directly dispersing MWNTs in the cement matrix, which is the current state-of-art, MWNT-based thin films were airbrushed and coated onto sand particles. The film-coated sand was then used as part of the mix design for casting mortar specimens. Mortar specimens were subjected to compressive cyclic loading tests while their electrical properties were recorded simultaneously. The results showed that the electrical properties of these cementitious composites designed with film-coated sand exhibited extremely high strain sensitivities. The electrical response was also stable and consistent between specimens.

  8. Anaerobic biodegradability of macropollutants

    DEFF Research Database (Denmark)

    Angelidaki, Irini

    2002-01-01

    A variety of test procedures for determination of anaerobic biodegradability has been reported. This paper reviews the methods developed for determination of anaerobic biodegradability of macro-pollutants. Anaerobic biodegradability of micro-pollutants is not included. Furthermore, factors...

  9. Optical and structural properties of ZnO/ZnMgO composite thin films prepared by sol–gel technique

    International Nuclear Information System (INIS)

    Xu, Linhua; Su, Jing; Chen, Yulin; Zheng, Gaige; Pei, Shixin; Sun, Tingting; Wang, Junfeng; Lai, Min

    2013-01-01

    Highlights: ► ZnMgO thin film and ZnO/ZnMgO composite thin film have been prepared by sol–gel method. ► The intensity of ultraviolet emission of ZnMgO thin film is enhanced two times compared with that of pure ZnO thin film. ► Compared with ZnMgO thin film, ZnO/ZnMgO composite thin film shows better crystallization and optical properties. ► ZnO/ZnMgO composite thin films prepared by sol–gel method have potential applications in many optoelectronic devices. - Abstract: In this study, pure ZnO thin film, Mg-doped ZnO (ZnMgO) thin film, ZnO/ZnMgO and ZnMgO/ZnO composite thin films were prepared by sol–gel technique. The structural and optical properties of the samples were analyzed by X-ray diffraction, scanning electron microscopy, UV–visible spectrophotometer, ellipsometer and photoluminescence spectra, respectively. The results showed that the incorporation of Mg increased the strain, broadened the optical bandgap, and improved the intensity of ultraviolet emission of ZnO thin film. The full width at half maximum (FWHM) of the ultraviolet emission peak was also increased due to Mg-doping at the same time. Compared with pure ZnO and ZnMgO thin films, the ZnO/ZnMgO thin film showed better crystalline quality and ultraviolet emission performance, smaller strains and higher transmittance in the visible range.

  10. Multiscale mechanics of graphene oxide and graphene based composite films

    Science.gov (United States)

    Cao, Changhong

    The mechanical behavior of graphene oxide is length scale dependent: orders of magnitude different between the bulk forms and monolayer counterparts. Understanding the underlying mechanisms plays a significant role in their versatile application. A systematic multiscale mechanical study from monolayer to multilayer, including the interactions between layers of GO, can provide fundamental support for material engineering. In this thesis, an experimental coupled with simulation approach was used to study the multiscale mechanics of graphene oxide (GO) and the methods developed for GO study are proved to be applicable also to mechanical study of graphene based composites. GO is a layered nanomaterial comprised of hierarchical units whose characteristic dimension lies between monolayer GO (0.7 nm - 1.2 nm) and bulk GO papers (≥ 1 mum). Mechanical behaviors of monolayer GO and GO nanosheets (10 nm- 100 nm) were comprehensively studied this work. Monolayer GO was measured to have an average strength of 24.7 GPa,, orders of magnitude higher than previously reported values for GO paper and approximately 50% of the 2D intrinsic strength of pristine graphene. The huge discrepancy between the strength of monolayer GO and that of bulk GO paper motivated the study of GO at the intermediate length scale (GO nanosheets). Experimental results showed that GO nanosheets possess high strength in the gigapascal range. Molecular Dynamic simulations showed that the transition in the failure behavior from interplanar fracture to intraplanar fracture was responsible for the huge strength discrepancy between nanometer scale GO and bulk GO papers. Additionally, the interfacial shear strength between GO layers was found to be a key contributing factor to the distinct mechanical behavior among hierarchical units of GO. The understanding of the multiscale mechanics of GO is transferrable in heterogeneous layered nanomaterials, such as graphene-metal oxide based anode materials in Li

  11. Investigations of microelectronic humidity sensors made of composite oxides thin films

    International Nuclear Information System (INIS)

    Pogossyan, A.S.; Arutyunyan, V.M.

    1996-01-01

    Basic characteristics (the moisture sensitivity, lag, hysteresis and stability) of humidity sensors made of Fe 2 O 3 thin films with different K 2 content, as well as CaSiO 3 and NaBiTi 2 O 6 films,-new materials for the humidity sensors, are investigated. A composition Fe 2 O 3 (K) is found to be optimal with respect to high moisture sensitivity, speed of response, and a linearity in a wide range of the relative humidity. A mechanism of the moisture-sensitivity of films investigated is discussed. Criteria for the design parameters of the high-impedance humidity sensors are defined with the aim to broadening of the working range of the relative humidity in a side way of low values of the humidity.10 refs

  12. The role of film composition and nanostructuration on the polyphenol sensor performance

    Directory of Open Access Journals (Sweden)

    Cibely Silva Martin

    2016-12-01

    Full Text Available The recent advances in the supramolecular control in nanostructured films have improved the performance of organic-based devices. However, the effect of different supramolecular arrangement on the sensor or biosensor performance is poorly studied yet. In this paper, we show the role of the composition and nanostructuration of the films on the impedance and voltammetric-based sensor performance to catechol detection. The films here studied were composed by a perylene derivative (PTCD-NH2 and a metallic phthalocyanine (FePc, using Langmuir-Blodgett (LB and physical vapor deposition (PVD techniques. The deposition technique and intrinsic properties of compounds showed influence on electrical and electrocatalytic responses. The PVD PTCD-NH2 shows the best sensor performance to the detection of catechol. Quantification of catechol contents in mate tea samples was also evaluated, and the results showed good agreement compared with Folin-Ciocalteu standard method for polyphenol detection.

  13. Thin film of lignocellulosic nanofibrils with different chemical composition for QCM-D study.

    Science.gov (United States)

    Kumagai, Akio; Lee, Seung-Hwan; Endo, Takashi

    2013-07-08

    Thin films of lignocellulosic nanofibrils (LCNFs) with different chemical compositions were prepared for real-time observation of their enzymatic adsorption and degradation behavior by using a quartz crystal microbalance with dissipation monitoring (QCM-D). LCNFs were obtained by disk milling followed by high-pressure homogenization of Hinoki cypress. The lignin contents were adjusted by the sodium chlorite treatment. The film thickness was adjusted by controlling the concentration of the LCNF suspension, which was determined from its proportional relationship to the UV absorbance of lignin. The enzymatic degradation behavior was investigated with a commercial enzyme mixture. The results of the QCM-D showed that changes in frequency and dissipation in the initial reaction stage were different from the typical changes reported for pure cellulose. To the best of our knowledge, this is the first report of the preparation of thin films of LCNFs with high lignin and hemicellulose contents and their application in a QCM-D study.

  14. (Biodegradable Ionomeric Polyurethanes Based on Xanthan: Synthesis, Properties, and Structure

    Directory of Open Access Journals (Sweden)

    T. V. Travinskaya

    2017-01-01

    Full Text Available New (biodegradable environmentally friendly film-forming ionomeric polyurethanes (IPU based on renewable biotechnological polysaccharide xanthan (Xa have been obtained. The influence of the component composition on the colloidal-chemical and physic-mechanical properties of IPU/Xa and based films, as well as the change of their properties under the influence of environmental factors, have been studied. The results of IR-, PMS-, DMA-, and X-ray scattering study indicate that incorporation of Xa into the polyurethane chain initiates the formation of a new polymer structure different from the structure of the pure IPU (matrix: an amorphous polymer-polymer microdomain has occurred as a result of the chemical interaction of Xa and IPU. It predetermines the degradation of the IPU/Xa films as a whole, unlike the mixed polymer systems, and plays a key role in the improvement of material performance. The results of acid, alkaline hydrolysis, and incubation into the soil indicate the increase of the intensity of degradation processes occurring in the IPU/Xa in comparison with the pure IPU. It has been shown that the introduction of Xa not only imparts the biodegradability property to polyurethane, but also improves the mechanical properties.

  15. Biodegradation and bioremediation

    DEFF Research Database (Denmark)

    Albrechtsen, H.-J.

    1996-01-01

    Anmeldelse af Alexander,M.: Biodegradation and bioremediation. Academic Press, Sandiego, USA, 1994......Anmeldelse af Alexander,M.: Biodegradation and bioremediation. Academic Press, Sandiego, USA, 1994...

  16. Effects of rf power on chemical composition and surface roughness of glow discharge polymer films

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Ling; He, Xiaoshan; Chen, Guo; Wang, Tao; Tang, Yongjian; He, Zhibing, E-mail: hezhibing802@163.com

    2016-03-15

    Graphical abstract: - Highlights: • The growth mechanism of defects in GDP films was studied upon plasma diagnosis. • Increasing rf power enhanced the etching effects of smaller-mass species. • The “void” defect was caused by high energy hydrocarbons bombardment on the surface. • The surface roughness was only 12.76 nm, and no “void” defect was observed at 30 W. - Abstract: The glow discharge polymer (GDP) films for laser fusion targets were successfully fabricated by plasma enhanced chemical vapor deposition (PECVD) at different radio frequency (rf) powers. The films were deposited using trans-2-butene (T{sub 2}B) mixed with hydrogen as gas sources. The composition and state of plasma were diagnosed by quadrupole mass spectrometer (QMS) and Langmuir probe during the deposition process. The composition, surface morphology and roughness were investigated by Fourier transform infrared spectroscopy (FTIR), scanning electron microscope (SEM) and white-light interferometer (WLI), respectively. Based on these observation and analyses, the growth mechanism of defects in GDP films were studied. The results show that, at low rf power, there is a larger probability for secondary polymerization and formation of multi-carbon C-H species in the plasma. In this case, the surface of GDP film turns to be cauliflower-like. With the increase of rf power, the degree of ionization is high, the relative concentration of smaller-mass hydrocarbon species increases, while the relative concentration of larger-mass hydrocarbon species decreases. At higher rf power, the energy of smaller-mass species are high and the etching effects are strong correspondingly. The GDP film's surface roughness shows a trend of decrease firstly and then increase with the increasing rf power. At rf power of 30 W, the surface root-mean-square roughness (Rq) drops to the lowest value of 12.8 nm, and no “void” defect was observed.

  17. Characterization of casein and casein-silver conjugated nanoparticle containing multifunctional (pectin–sodium alginate/casein) bilayer film

    OpenAIRE

    Bora, Anupama; Mishra, Poonam

    2016-01-01

    Casein nano particles and casein-silver conjugated nano composite containing edible bilayer pouch was developed from a heat sealable casein layer laminated with sodium alginate–pectin layer. The physicochemical, mechanical,