WorldWideScience

Sample records for biodegradable bone fixation

  1. Mechanical and corrosion properties of newly developed biodegradable Zn-based alloys for bone fixation.

    Science.gov (United States)

    Vojtěch, D; Kubásek, J; Serák, J; Novák, P

    2011-09-01

    In the present work Zn-Mg alloys containing up to 3wt.% Mg were studied as potential biodegradable materials for medical use. The structure, mechanical properties and corrosion behavior of these alloys were investigated and compared with those of pure Mg, AZ91HP and casting Zn-Al-Cu alloys. The structures were examined by light and scanning electron microscopy (SEM), and tensile and hardness testing were used to characterize the mechanical properties of the alloys. The corrosion behavior of the materials in simulated body fluid with pH values of 5, 7 and 10 was determined by immersion tests, potentiodynamic measurements and by monitoring the pH value evolution during corrosion. The surfaces of the corroded alloys were investigated by SEM, energy-dispersive spectrometry and X-ray photoelectron spectroscopy. It was found that a maximum strength and elongation of 150MPa and 2%, respectively, were achieved at Mg contents of approximately 1wt.%. These mechanical properties are discussed in relation to the structural features of the alloys. The corrosion rates of the Zn-Mg alloys were determined to be significantly lower than those of Mg and AZ91HP alloys. The former alloys corroded at rates of the order of tens of microns per year, whereas the corrosion rates of the latter were of the order of hundreds of microns per year. Possible zinc doses and toxicity were estimated from the corrosion behavior of the zinc alloys. It was found that these doses are negligible compared with the tolerable biological daily limit of zinc. Copyright © 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  2. Preliminary experience with biodegradable implants for fracture fixation

    Directory of Open Access Journals (Sweden)

    Dhillon Mandeep

    2008-01-01

    Full Text Available Background: Biodegradable implants were designed to overcome the disadvantages of metal-based internal fixation devices. Although they have been in use for four decades internationally, many surgeons in India continue to be skeptical about the mechanical strength of biodegradable implants, hence this study. Materials and Methods: A prospective study was done to assess the feasibility and surgeon confidence level with biodegradable implants over a 12-month period in an Indian hospital. Fifteen fractures (intra-articular, metaphyseal or small bone fractures were fixed with biodegradable implants. The surgeries were randomly scheduled so that different surgeons with different levels of experience could use the implants for fixation. Results: Three fractures (one humeral condyle, two capitulum, were supplemented by additional K-wires fixation. Trans-articular fixator was applied in two distal radius and two pilon fractures where bio-pins alone were used. All fractures united, but in two cases the fracture displaced partially during the healing phase; one fibula due to early walking, and one radius was deemed unstable even after bio-pin and external fixator. Conclusions: Biodegradable -implants are excellent for carefully selected cases of intra-articular fractures and some small bone fractures. However, limitations for use in long bone fractures persist and no great advantage is gained if a "hybrid" composite is employed. The mechanical properties of biopins and screws in isolation are perceived to be inferior to those of conventional metal implants, leading to low confidence levels regarding the stability of reduced fractures; these implants should be used predominantly in fracture patterns in which internal fixation is subjected to minimal stress.

  3. Fixation of zygomatic and mandibular fractures with biodegradable plates.

    Science.gov (United States)

    Degala, Saikrishna; Shetty, Sujeeth; Ramya, S

    2013-01-01

    In this prospective study, 13 randomly selected patients underwent treatment for zygomatic-complex fractures (2 site fractures) and mandibular fractures using 1.5 / 2 / 2.5-mm INION CPS biodegradable plates and screws. To assess the fixation of zygomatic-complex and mandibular fractures with biodegradable copolymer osteosynthesis system. In randomly selected 13 patients, zygomatic-complex and mandibular fractures were plated using resorbable plates and screws using Champy's principle. All the cases were evaluated clinically and radiologically for the type of fracture, need for the intermaxillary fixation (IMF) and its duration, duration of surgery, fixation at operation, state of reduction at operation, state of bone union after operation, anatomic reduction, paresthesia, occlusal discrepancies, soft tissue infection, immediate and late inflammatory reactions related to biodegradation process, and any need for the removal of the plates. Descriptives, Frequencies, and Chi-square test were used. In our study, the age group range was 5 to 55 years. Road traffic accidents accounted for the majority of patients six, (46.2%). Postoperative occlusal discrepancies were found in seven patients as mild to moderate, which resolved with IMF for 1-8 weeks. There were minimal complications seen and only as soft tissue infection. Use of biodegradable osteosynthesis system is a reliable alternative method for the fixation of zygomatic-complex and mandibular fractures. The biodegradable system still needs to be refined in material quality and handling to match the stability achieved with metal system. Biodegradable plates and screws is an ideal system for pediatric fractures with favorable outcome.

  4. Biodegradable interlocking nails for fracture fixation

    NARCIS (Netherlands)

    van der Elst, M.; Bramer, J. A.; Klein, C. P.; de Lange, E. S.; Patka, P.; Haarman, H. J.

    1998-01-01

    Serious problems such as stress shielding, allergic reactions, and corrosion are associated with the use of metallic fracture fixation devices in fractured long bones. Metal implants often are removed during a second retrieval operation after fracture healing has completed. A biocompatible implant

  5. Fixation of zygomatic and mandibular fractures with biodegradable plates

    OpenAIRE

    Degala, Saikrishna; Shetty, Sujeeth; Ramya, S

    2013-01-01

    Context: In this prospective study, 13 randomly selected patients underwent treatment for zygomatic?complex fractures (2 site fractures) and mandibular fractures using 1.5 / 2 / 2.5-mm INION CPS biodegradable plates and screws. Aims: To assess the fixation of zygomatic-complex and mandibular fractures with biodegradable copolymer osteosynthesis system. Materials and Methods: In randomly selected 13 patients, zygomatic-complex and mandibular fractures were plated using resorbable plates and sc...

  6. Early Experience with Biodegradable Fixation of Pediatric Mandibular Fractures

    OpenAIRE

    Mazeed, Ahmed Salah; Shoeib, Mohammed Abdel-Raheem; Saied, Samia Mohammed Ahmed; Elsherbiny, Ahmed

    2014-01-01

    This clinical study aims to evaluate the stability and efficiency of biodegradable self-reinforced poly-l/dl-lactide (SR-PLDLA) plates and screws for fixation of pediatric mandibular fractures. The study included 12 patients (3–12 years old) with 14 mandibular fractures. They were treated by open reduction and internal fixation by SR-PLDLA plates and screws. Maxillomandibular fixation was maintained for 1 week postoperatively. Clinical follow-up was performed at 1 week, 6 weeks, 3 months, and...

  7. Early Experience with Biodegradable Fixation of Pediatric Mandibular Fractures.

    Science.gov (United States)

    Mazeed, Ahmed Salah; Shoeib, Mohammed Abdel-Raheem; Saied, Samia Mohammed Ahmed; Elsherbiny, Ahmed

    2015-09-01

    This clinical study aims to evaluate the stability and efficiency of biodegradable self-reinforced poly-l/dl-lactide (SR-PLDLA) plates and screws for fixation of pediatric mandibular fractures. The study included 12 patients (3-12 years old) with 14 mandibular fractures. They were treated by open reduction and internal fixation by SR-PLDLA plates and screws. Maxillomandibular fixation was maintained for 1 week postoperatively. Clinical follow-up was performed at 1 week, 6 weeks, 3 months, and 12 months postoperatively. Radiographs were done at 1 week, 3 months, and 12 months postoperatively to observe any displacement and fracture healing. All fractures healed both clinically and radiologically. No serious complications were reported in the patients. Normal occlusion was achieved in all cases. Biodegradable osteofixation of mandibular fractures offers a valuable clinical solution for pediatric patients getting the benefit of avoiding secondary surgery to remove plates, decreasing the hospital stay, further painful procedures, and psychological impact.

  8. Fixation of fractures of the condylar head of the mandible with a new magnesium-alloy biodegradable cannulated headless bone screw.

    Science.gov (United States)

    Leonhardt, H; Franke, A; McLeod, N M H; Lauer, G; Nowak, A

    2017-07-01

    It is difficult to fix fractures of the condylar head of the mandible. Several techniques have been described which show satisfactory outcomes, but stability can be questionable, and some can cause irritation of the soft tissues. We describe a technique and first results of treating such fractures with resorbable magnesium-based headless bone screws (Magnezix ® 2.7mm CS; Syntellix AG, Hanover, Germany). Copyright © 2017 The British Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  9. Development of a biodegradable bone cement

    International Nuclear Information System (INIS)

    Yusof Abdullah; Nurhaslinda Ee Abdullah; Wee Pee Chai; Norita Mohd Zain

    2002-01-01

    Biodegradable bone cement is a newly developed bone repair material, which is able to give immediate support to the implant area, and does not obstruct the bone repairing and regeneration process through appropriate biodegradation rate, which is synchronized with the mechanical load it should bear. The purpose of this study is to locally produce biodegradable bone cement using HA as absorbable filler. The cement is composed of an absorbable filler and unsaturated polyester for 100% degradation. Cross-linking effect is achieved through the action of poly (vinyl pyrrol lidone) (PVP) and an initiator. On the other hand, PPF was synthesized using direct esterification method. Characteristics of the bone cement were studied; these included the curing time, cross-linking effect and curing temperature. The products were characterized using X-Ray diffraction (XRD) to perform phase analysis and Scanning Electrons Microscopes to determine the morphology. The physical and mechanical properties of the bone cement were also investigated. The biocompatibility of the bone cement was tested using simulated body physiological solution. (Author)

  10. To evaluate the efficacy of biodegradable plating system for fixation of maxillofacial fractures: A prospective study

    OpenAIRE

    Bali, Rishi K.; Sharma, Parveen; Jindal, Shalu; Gaba, Shivani

    2013-01-01

    Aims: The present study was undertaken to evaluate the efficacy of biodegradable plating system for fixation of maxillofacial fractures and to study the morbidity associated with the use of biodegradable plates and screws. Materials and Methods: This prospective study consisted of 10 patients with maxillofacial fractures requiring open reduction and internal fixation. Fractures with infection, comminuted and pathological fractures were excluded. All were plated with biodegradable system (Inio...

  11. Biodegradable fixation of mandibular fractures in children: stability and early results.

    Science.gov (United States)

    Yerit, Kaan C; Hainich, Sibylle; Enislidis, Georg; Turhani, Dritan; Klug, Clemens; Wittwer, Gert; Ockher, Michael; Undt, Gerhard; Kermer, Christian; Watzinger, Franz; Ewers, Rolf

    2005-07-01

    The aim of this study was to assess the safety and efficiency of biodegradable self-reinforced (SR-PLDLA) bone plates and screws in open reduction and internal fixation of mandible fractures in children. Thirteen patients (5 female, 8 male; mean age 12 years, range 5-16 years) were operated on various fractures of the mandible (2 symphyseal, 6 parasymphyseal, 4 body, 3 angle, 1 ramus, 2 condylar fractures). The mean follow-up time was 26.4 months (range 10.9-43.4 months). Intermaxillary fixation was applied in cases with concomitant condylar fractures up to 3 weeks. Primary healing of the fractured mandible was observed in all patients. Postoperative complications were minor and transient. The outcome of the operations was not endangered. Adverse tissue reactions to the implants, malocclusion, and growth restrictions did not occur during the observation period. Pediatric patients benefit from the advantages of resorbable materials, especially from faster mobilization and the avoidance of secondary removal operations. Based on these preliminary results, self-reinforced fixation devices are safe and efficient in the treatment of pediatric mandible fractures. However, further clinical investigations are necessary to evaluate the long-term reliability.

  12. Can we improve fixation and outcomes? Use of bone substitutes.

    Science.gov (United States)

    Moroni, Antonio; Larsson, Sune; Hoang Kim, Amy; Gelsomini, Letizia; Giannoudis, Peter V

    2009-07-01

    Hip fractures secondary to osteoporosis are common in the elderly. Stabilizing these fractures until union is achieved is a challenge due to poor bone stock and insufficient purchase of the implant to the bone. The reported high rate of complications has prompted extensive research in the development of fixation techniques. Furthermore, manipulation of both the local fracture environment in terms of application of growth factors, scaffolds, and mesenchymal cells and the systemic administration of agents promoting bone formation and bone strength has been considered as a treatment option with promising results. There are only a few evidence-based studies reporting on fixation augmentation techniques. This article reports on the efficacy of bone graft substitutes for the fixation of hip fractures, in particular calcium phosphates, which have been used as granules, cements, and implant coatings.

  13. Fixation of tibial plateau fractures with synthetic bone graft versus natural bone graft: a comparison study.

    LENUS (Irish Health Repository)

    Ong, J C Y

    2012-06-01

    The goal of this study was to determine differences in fracture stability and functional outcome between synthetic bone graft and natural bone graft with internal fixation of tibia plateau metaphyseal defects.

  14. Bone graft materials in fixation of orthopaedic implants in sheep

    DEFF Research Database (Denmark)

    Babiker, Hassan

    2013-01-01

    Bone graft is widely used within orthopaedic surgery especially in revision joint arthroplasty and spine fusion. The early implant fixation in the revision situation of loose joint prostheses is important for the long-term survival. Bone autograft has been considered as gold standard in many...... orthopaedic procedures, whereas allograft is the gold standard by replacement of extensive bone loss. However, the use of autograft is associated with donor site morbidity, especially chronic pain. In addition, the limited supply is a significant clinical challenge. Limitations in the use of allograft include...... the risk of bacterial contamination and disease transmission as well as non-union and poor bone quality. Other bone graft and substitutes have been considered as alternative in order to improve implant fixation. Hydroxyapatite and collagen type I composite (HA/Collagen) have the potential in mimicking...

  15. Bone compaction enhances implant fixation in a canine gap model

    DEFF Research Database (Denmark)

    Kold, Søren; Rahbek, Ole; Toft, Marianne

    2005-01-01

    A new bone preparation technique, compaction, has increased fixation of implants inserted with exact-fit or press-fit to bone. Furthermore, a demonstrated spring-back effect of compacted bone might be of potential value in reducing the initial gaps that often exist between clinical inserted...... implants and bone. However, it is unknown whether the compression and breakage of trabeculae during the compaction procedure results in impaired gap-healing of compacted bone. Therefore, we compared compaction with conventional drilling in a canine gap model. Grit-blasted titanium implants (diameter 6 mm...... that the beneficial effect of reduced gap size, as compacted bone springs back, is not eliminated by an impaired gap-healing of compacted bone....

  16. Resorbable screws for fixation of autologous bone grafts

    NARCIS (Netherlands)

    Raghoebar, GM; Liem, RSB; Bos, RRM; van der Wal, JE; Vissink, A

    The aim of this study was to evaluate the suitability of resorbable screws made of poly (D,L-lactide) acid (PDLLA) for fixation of autologous bone grafts related to graft regeneration and osseointegration of dental implants. In eight edentulous patients suffering from insufficient retention of their

  17. Mechanical design optimization of bioabsorbable fixation devices for bone fractures.

    Science.gov (United States)

    Lovald, Scott T; Khraishi, Tariq; Wagner, Jon; Baack, Bret

    2009-03-01

    Bioabsorbable bone plates can eliminate the necessity for a permanent implant when used to fixate fractures of the human mandible. They are currently not in widespread use because of the low strength of the materials and the requisite large volume of the resulting bone plate. The aim of the current study was to discover a minimally invasive bioabsorbable bone plate design that can provide the same mechanical stability as a standard titanium bone plate. A finite element model of a mandible with a fracture in the body region is subjected to bite loads that are common to patients postsurgery. The model is used first to determine benchmark stress and strain values for a titanium plate. These values are then set as the limits within which the bioabsorbable bone plate must comply. The model is then modified to consider a bone plate made of the polymer poly-L/DL-lactide 70/30. An optimization routine is run to determine the smallest volume of bioabsorbable bone plate that can perform and a titanium bone plate when fixating fractures of this considered type. Two design parameters are varied for the bone plate design during the optimization analysis. The analysis determined that a strut style poly-L-lactide-co-DL-lactide plate of 690 mm2 can provide as much mechanical stability as a similar titanium design structure of 172 mm2. The model has determined a bioabsorbable bone plate design that is as strong as a titanium plate when fixating fractures of the load-bearing mandible. This is an intriguing outcome, considering that the polymer material has only 6% of the stiffness of titanium.

  18. Do biodegradable magnesium alloy intramedullary interlocking nails prematurely lose fixation stability in the treatment of tibial fracture? A numerical simulation.

    Science.gov (United States)

    Wang, Haosen; Hao, Zhixiu; Wen, Shizhu

    2017-01-01

    Intramedullary interlocking nailing is an effective technique used to treat long bone fractures. Recently, biodegradable metals have drawn increased attention as an intramedullary interlocking nailing material. In this study, numerical simulations were implemented to determine whether the degradation rate of magnesium alloy makes it a suitable material for manufacturing biodegradable intramedullary interlocking nails. Mechano-regulatory and bone-remodeling models were used to simulate the fracture healing process, and a surface corrosion model was used to simulate intramedullary rod degradation. The results showed that magnesium alloy intramedullary rods exhibited a satisfactory degradation rate; the fracture healed and callus enhancement was observed before complete dissolution of the intramedullary rod. Delayed magnesium degradation (using surface coating techniques) did not confer a significant advantage over the non-delayed degradation process; immediate degradation also achieved satisfactory healing outcomes. However, delayed degradation had no negative effect on callus enhancement, as it did not cause signs of stress shielding. To avoid risks of individual differences such as delayed union, delayed degradation is recommended. Although the magnesium intramedullary rod did not demonstrate rapid degradation, its ability to provide high fixation stiffness to achieve earlier load bearing was inferior to that of the conventional titanium alloy and stainless steel rods. Therefore, light physiological loads should be ensured during the early stages of healing to achieve bony healing; otherwise, with increased loading and degraded intramedullary rods, the fracture may ultimately fail to heal. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. To evaluate the efficacy of biodegradable plating system for fixation of maxillofacial fractures: A prospective study.

    Science.gov (United States)

    Bali, Rishi K; Sharma, Parveen; Jindal, Shalu; Gaba, Shivani

    2013-07-01

    The present study was undertaken to evaluate the efficacy of biodegradable plating system for fixation of maxillofacial fractures and to study the morbidity associated with the use of biodegradable plates and screws. This prospective study consisted of 10 patients with maxillofacial fractures requiring open reduction and internal fixation. Fractures with infection, comminuted and pathological fractures were excluded. All were plated with biodegradable system (Inion CPS) using standard plating principles and observed for a total period of 24 weeks. Characteristics of the fractures, ease of use of bioresorbable plate/screw system and post operative complications were assessed. Of total 10 patients, eight patients were of midface fracture and two pediatric patients with mandibular fracture, with nine male and one female. The mean age was 32.8 years. Out of 20 plates and 68 screws applied to the 10 fractures sites; there were three incidences of screw breakage with no other intraoperative difficulties. Paresthesia of the infraorbital nerve was present in two patients, and recovered completely in four weeks after surgery. Fracture reduction was considered to be satisfactory in all cases. One patient developed postsurgical infection and was managed with oral antibiotics and analgesics. Favorable healing can be observed through the use of biodegradable plates and screws to stabilize selected midface fractures in patients of all ages, as well as mandible fractures in early childhood, however further studies with more sample size are required.

  20. Biodegradable Magnesium Alloys Developed as Bone Repair Materials: A Review

    Directory of Open Access Journals (Sweden)

    Chen Liu

    2018-01-01

    Full Text Available Bone repair materials are rapidly becoming a hot topic in the field of biomedical materials due to being an important means of repairing human bony deficiencies and replacing hard tissue. Magnesium (Mg alloys are potentially biocompatible, osteoconductive, and biodegradable metallic materials that can be used in bone repair due to their in situ degradation in the body, mechanical properties similar to those of bones, and ability to positively stimulate the formation of new bones. However, rapid degradation of these materials in physiological environments may lead to gas cavities, hemolysis, and osteolysis and thus, hinder their clinical orthopedic applications. This paper reviews recent work on the use of Mg alloy implants in bone repair. Research to date on alloy design, surface modification, and biological performance of Mg alloys is comprehensively summarized. Future challenges for and developments in biomedical Mg alloys for use in bone repair are also discussed.

  1. A Biodegradable and Proteolipid Bone Repair Composite,

    Science.gov (United States)

    1983-11-10

    that the positive bone healing response engen - dered in experimental animals from the copolymer of PLA and PGA may be a con- sequence of several factors...residues interaction with host organic matrix could function as a mechanism engendering release from the matrix of certain polypeptides, such as bone...34 Calcif Tissue Int, 34:376-381, 1982. 19. Wuthier RE, "A Review of the Primary Mechanism of Enchondral Calcification with Special Emphasis on the

  2. Development of a Three-Dimensional (3D) Printed Biodegradable Cage to Convert Morselized Corticocancellous Bone Chips into a Structured Cortical Bone Graft

    Science.gov (United States)

    Chou, Ying-Chao; Lee, Demei; Chang, Tzu-Min; Hsu, Yung-Heng; Yu, Yi-Hsun; Liu, Shih-Jung; Ueng, Steve Wen-Neng

    2016-01-01

    This study aimed to develop a new biodegradable polymeric cage to convert corticocancellous bone chips into a structured strut graft for treating segmental bone defects. A total of 24 adult New Zealand white rabbits underwent a left femoral segmental bone defect creation. Twelve rabbits in group A underwent three-dimensional (3D) printed cage insertion, corticocancellous chips implantation, and Kirschner-wire (K-wire) fixation, while the other 12 rabbits in group B received bone chips implantation and K-wire fixation only. All rabbits received a one-week activity assessment and the initial image study at postoperative 1 week. The final image study was repeated at postoperative 12 or 24 weeks before the rabbit scarification procedure on schedule. After the animals were sacrificed, both femurs of all the rabbits were prepared for leg length ratios and 3-point bending tests. The rabbits in group A showed an increase of activities during the first week postoperatively and decreased anterior cortical disruptions in the postoperative image assessments. Additionally, higher leg length ratios and 3-point bending strengths demonstrated improved final bony ingrowths within the bone defects for rabbits in group A. In conclusion, through this bone graft converting technique, orthopedic surgeons can treat segmental bone defects by using bone chips but with imitate characters of structured cortical bone graft. PMID:27104525

  3. Development of a Three-Dimensional (3D Printed Biodegradable Cage to Convert Morselized Corticocancellous Bone Chips into a Structured Cortical Bone Graft

    Directory of Open Access Journals (Sweden)

    Ying-Chao Chou

    2016-04-01

    Full Text Available This study aimed to develop a new biodegradable polymeric cage to convert corticocancellous bone chips into a structured strut graft for treating segmental bone defects. A total of 24 adult New Zealand white rabbits underwent a left femoral segmental bone defect creation. Twelve rabbits in group A underwent three-dimensional (3D printed cage insertion, corticocancellous chips implantation, and Kirschner-wire (K-wire fixation, while the other 12 rabbits in group B received bone chips implantation and K-wire fixation only. All rabbits received a one-week activity assessment and the initial image study at postoperative 1 week. The final image study was repeated at postoperative 12 or 24 weeks before the rabbit scarification procedure on schedule. After the animals were sacrificed, both femurs of all the rabbits were prepared for leg length ratios and 3-point bending tests. The rabbits in group A showed an increase of activities during the first week postoperatively and decreased anterior cortical disruptions in the postoperative image assessments. Additionally, higher leg length ratios and 3-point bending strengths demonstrated improved final bony ingrowths within the bone defects for rabbits in group A. In conclusion, through this bone graft converting technique, orthopedic surgeons can treat segmental bone defects by using bone chips but with imitate characters of structured cortical bone graft.

  4. Autologous bone graft versus demineralized bone matrix in internal fixation of ununited long bones.

    Science.gov (United States)

    Pieske, Oliver; Wittmann, Alexandra; Zaspel, Johannes; Löffler, Thomas; Rubenbauer, Bianka; Trentzsch, Heiko; Piltz, Stefan

    2009-12-15

    Non-unions are severe complications in orthopaedic trauma care and occur in 10% of all fractures. The golden standard for the treatment of ununited fractures includes open reduction and internal fixation (ORIF) as well as augmentation with autologous-bone-grafting. However, there is morbidity associated with the bone-graft donor site and some patients offer limited quantity or quality of autologous-bone graft material. Since allogene bone-grafts are introduced on the market, this comparative study aims to evaluate healing characteristics of ununited bones treated with ORIF combined with either iliac-crest-autologous-bone-grafting (ICABG) or demineralized-bone-matrix (DBM). From 2000 to 2006 out of sixty-two consecutive patients with non-unions presenting at our Level I Trauma Center, twenty patients had ununited diaphyseal fractures of long bones and were treated by ORIF combined either by ICABG- (n = 10) or DBM-augmentation (n = 10). At the time of index-operation, patients of the DBM-group had a higher level of comorbidity (ASA-value: p = 0.014). Mean duration of follow-up was 56.6 months (ICABG-group) and 41.2 months (DBM-group). All patients were clinically and radiographically assessed and adverse effects related to bone grafting were documented. The results showed that two non-unions augmented with ICABG failed osseous healing (20%) whereas all non-unions grafted by DBM showed successful consolidation during the first year after the index operation (p = 0.146). No early complications were documented in both groups but two patients of the ICABG-group suffered long-term problems at the donor site (20%) (p = 0.146). Pain intensity were comparable in both groups (p = 0.326). However, patients treated with DBM were more satisfied with the surgical procedure (p = 0.031). With the use of DBM, the costs for augmentation of the non-union-site are more expensive compared to ICABG (calculated difference: 160 euro/case). Nevertheless, this study demonstrated that the

  5. Biodegradable Polymer-Based Scaffolds for Bone Tissue Engineering

    CERN Document Server

    Sultana, Naznin

    2013-01-01

    This book addresses the principles, methods and applications of biodegradable polymer based scaffolds for bone tissue engineering. The general principle of bone tissue engineering is reviewed and the traditional and novel scaffolding materials, their properties and scaffold fabrication techniques are explored. By acting as temporary synthetic extracellular matrices for cell accommodation, proliferation, and differentiation, scaffolds play a pivotal role in tissue engineering. This book does not only provide the comprehensive summary of the current trends in scaffolding design but also presents the new trends and directions for scaffold development for the ever expanding tissue engineering applications.

  6. Bone compaction enhances fixation of weightbearing titanium implants

    DEFF Research Database (Denmark)

    Kold, Søren; Rahbek, Ole; Vestermark, Marianne

    2005-01-01

    are weightbearing, the effects of compaction on weightbearing implants were examined. The hypothesis was that compaction would increase implant fixation compared with conventional drilling. Porous-coated titanium implants were inserted bilaterally into the weightbearing portion of the femoral condyles of dogs....... In each dog, one knee had the implant cavity prepared with drilling, and the other knee was prepared with compaction. Eight dogs were euthanized after 2 weeks, and eight dogs were euthanized after 4 weeks. Femoral condyles from an additional eight dogs represented Time 0. Compacted specimens had higher...... bone-implant contact and periimplant bone density at 0 and 2 weeks, but not at 4 weeks. A biphasic response of compaction was found with a pushout test, as compaction increased ultimate shear strength and energy absorption at 0 and 4 weeks, but not at 2 weeks. This biphasic response indicates...

  7. Press-fit Femoral Fixation in ACL Reconstruction using Bone-Patellar Tendon-Bone Graft

    Directory of Open Access Journals (Sweden)

    Kaseb Mohammad Hasan

    2009-05-01

    Full Text Available Bone-patellar tendon auto graft is probably the most widely used graft for ACL reconstruction. Several methods for graft fixation have been described. To avoid intra-articular hardware we adopt biological fixation with a femoral trapezoidal press-fit fixation. A prospective study was performed on 30 consecutive active people who underwent ACL reconstruction with this technique by two surgeons between september2004 and march2007 (mean follow-up 15.2 months. Results were evaluated by an independent examiner using radiography, subjective and objective evaluation. Assessment using the IKDC knee scoring revealed 92% of the patients with a normal or nearly normal knee joint. Lysholm's score was 63.6(40- 86 preoperatively and 91.88(73-100 at the latest follow up (P < 0.005. No patient complained of instability at latest follow up. The quadriceps muscle showed mild atrophy at 3 and 6 months and at final follow-up. Five Patients complained of anterior knee pain and had a positive kneeling test. We found no graft displacement on follow up radiographs. All cases showed radiological evidence of graft osteointegration at last follow up. Our results show that press-fit fixation of trapezoidal bone graft in femoral tunnel is a simple, reliable, and cost-effective alternative for ACL recon-struction using bone-patellar tendon-bone graft.

  8. Influence of different methods of internal bone fixation on characteristics of bone callus in experimental animals

    Directory of Open Access Journals (Sweden)

    Gajdobranski Đorđe

    2014-01-01

    Full Text Available Introduction. Correct choice of osteosynthesis method is a very important factor in providing the optimal conditions for appropriate healing of the fracture. There are still disagreements about the method of stabilization of some long bone fractures. Critically observed, no method of fracture fixation is ideal. Each osteosynthesis method has both advantages and weaknesses. Objective. The objective of this study was to compare the results of the experimental application of three different internal fixation methods: plate fixation, intramedullary nail fixation and self-dynamisable internal fixator (SIF. Methods. A series of 30 animals were used (Lepus cuniculus as experimental animals, divided into three groups of ten animals each. Femoral diaphysis of each animal was osteotomized and fixed with one of three implants. Ten weeks later all animals were sacrificed and each specimen underwent histological and biomechanical testing. Results. Histology showed that the healing process with SIF was more complete and bone callus was more mature in comparison to other two methods. During biomechanical investigation (computerized bending stress test, it was documented with high statistical significance that using SIF led to stronger healing ten weeks after the operation. Conclusion. According to the results obtained in this study, it can be concluded that SIF is a suitable method for fracture treatment.

  9. Assessment of activated porous granules on implant fixation and early bone formation in sheep

    Directory of Open Access Journals (Sweden)

    Ming Ding

    2016-04-01

    Conclusion: In conclusion, despite nice bone formation and implant fixation in all groups, bioreactor activated graft material did not convincingly induce early implant fixation similar to allograft, and neither bioreactor nor by adding BMA credited additional benefit for bone formation in this model.

  10. 21 CFR 888.3030 - Single/multiple component metallic bone fixation appliances and accessories.

    Science.gov (United States)

    2010-04-01

    ... appliances and accessories. 888.3030 Section 888.3030 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT....3030 Single/multiple component metallic bone fixation appliances and accessories. (a) Identification. Single/multiple component metallic bone fixation appliances and accessories are devices intended to be...

  11. Outcome of rail fixator system in reconstructing bone gap

    Directory of Open Access Journals (Sweden)

    Amit Lakhani

    2014-01-01

    Conclusion: All patients well tolerated rail fixator with good functional results and gap reconstruction. Easy application of rail fixator and comfortable distraction procedure suggest rail fixator a good alternative for gap reconstruction of limbs.

  12. Co-optimization of diesel fuel biodegradation and N2 fixation through the addition of particulate organic carbon

    International Nuclear Information System (INIS)

    Piehler, M.; Swistak, J.; Paerl, H.

    1995-01-01

    Petroleum hydrocarbon pollution in the marine environment is widespread and current bioremedial techniques are often not cost effective for small spills. The formulation of simple and inexpensive bioremedial methods could help reduce the impacts of frequent low volume spills in areas like marinas and ports. Particulate organic carbon (POC) was added to diesel fuel amended samples from inshore marine waters in the form of corn-slash (post-harvest leaves and stems), with and without inorganic nutrients (nitrate and phosphate). Biodegradation of diesel fuel ( 14 C hexadecane mineralization) and N 2 fixation were measured in response to the additions, The addition of POC was necessary for N 2 fixation and diesel fuel biodegradation to co-occur. The effects of diesel fuel and inorganic nutrient additions on N 2 fixation rates were not consistent, with both inhibitory and stimulatory responses to each addition observed. The highest observed diesel fuel biodegradation levels were in response to treatments that included inorganic nutrients. The addition of POC alone increased diesel fuel degradation levels above that observed in the control. In an attempt to determine the effect of the POC on the microbial community, the corn particles were observed microscopically using scanning electron microscopy and light microscopy with tetrazolium salt additions. The corn particles were found to have abundant attached bacterial communities and microscale oxygen concentration gradients occurring on individual particles. The formation of oxygen replete microzones may be essential for the co-occurrence of aerobic diesel fuel biodegradation and oxygen inhibited N2 fixation. Mesocosm experiments are currently underway to further examine the structure and function of this primarily heterotrophic system and to explore the potential contribution of N 2 fixation to the N requirements of diesel fuel biodegradation

  13. Drug-eluting Ti wires with titania nanotube arrays for bone fixation and reduced bone infection

    Science.gov (United States)

    Gulati, Karan; Aw, Moom Sinn; Losic, Dusan

    2011-10-01

    Current bone fixation technology which uses stainless steel wires known as Kirschner wires for fracture fixing often causes infection and reduced skeletal load resulting in implant failure. Creating new wires with drug-eluting properties to locally deliver drugs is an appealing approach to address some of these problems. This study presents the use of titanium [Ti] wires with titania nanotube [TNT] arrays formed with a drug delivery capability to design alternative bone fixation tools for orthopaedic applications. A titania layer with an array of nanotube structures was synthesised on the surface of a Ti wire by electrochemical anodisation and loaded with antibiotic (gentamicin) used as a model of bone anti-bacterial drug. Successful fabrication of TNT structures with pore diameters of approximately 170 nm and length of 70 μm is demonstrated for the first time in the form of wires. The drug release characteristics of TNT-Ti wires were evaluated, showing a two-phase release, with a burst release (37%) and a slow release with zero-order kinetics over 11 days. These results confirmed our system's ability to be applied as a drug-eluting tool for orthopaedic applications. The established biocompatibility of TNT structures, closer modulus of elasticity to natural bones and possible inclusion of desired drugs, proteins or growth factors make this system a promising alternative to replace conventional bone implants to prevent bone infection and to be used for targeted treatment of bone cancer, osteomyelitis and other orthopaedic diseases.

  14. Development of a Moldable, Biodegradable Polymeric Bone Repair Material

    Science.gov (United States)

    1994-03-30

    26% Cellulose 2 85% PCL 1250 15% Calcium Carbonate 2 85% PCL 1250 15% Carnauba Wax 3 80% PCL 1250 20% Carboxymethyl 4 Cellulose 85% PCL 1250 15% Gum...Tragacanth 4 83% PCL 1250 17% Gelatin 5 83% PCL 1250 17% Gum Xanthan 7 79% PCL 2000 21% Carnauba Wax 7 85% PCL 2000 15% Calcium Stearate 7 83% PLA 2000...azaum 200 wo ) After the revision of the statement of work, the objective of this contract was the development of a biodegradable bone wax . It would be

  15. The effects of bone marrow aspirate, bone graft, and collagen composites on fixation of titanium implants

    DEFF Research Database (Denmark)

    Babiker, Hassan; Ding, Ming; Sandri, Monica

    2012-01-01

    Replacement of extensive local bone loss especially in revision joint arthroplasty and spine fusion is a significant clinical challenge. Allograft and autograft have been considered as gold standards for bone replacement. However, there are several disadvantages such as donor site pain, bacterial...... contamination, and non union as well as the potential risk of disease transmission. Hydroxyapatite and collagen composites (HA/Collagen) have the potential in mimicking and replacing skeletal bones. This study attempted to determine the effects of newly developed HA/Collagen-composites with and without bone...... marrow aspirate (BMA) on enhancement of bone implant fixation. Method: Titanium alloy implants were inserted into bilateral femoral condyles of eight skeletally mature sheep, four implants per sheep. The implant had a circumferential gap of 2 mm. The gap was filled with: HA/Collagen; HA...

  16. Comparison of Monolateral External Fixation and Internal Fixation for Skeletal Stabilisation in the Management of Small Tibial Bone Defects following Successful Treatment of Chronic Osteomyelitis.

    Science.gov (United States)

    Wang, Yicun; Jiang, Hui; Deng, Zhantao; Jin, Jiewen; Meng, Jia; Wang, Jun; Zhao, Jianning; Sun, Guojing; Qian, Hongbo

    2017-01-01

    To compare the salvage rate and complication between internal fixation and external fixation in patients with small bone defects caused by chronic infectious osteomyelitis debridement. 125 patients with chronic infectious osteomyelitis of tibia fracture who underwent multiple irrigation, debridement procedure, and local/systemic antibiotics were enrolled. Bone defects, which were less than 4 cm, were treated with bone grafting using either internal fixation or monolateral external fixation. 12-month follow-up was conducted with an interval of 3 months to evaluate union of bone defect. Patients who underwent monolateral external fixation had higher body mass index and fasting blood glucose, longer time since injury, and larger bone defect compared with internal fixation. No significant difference was observed in incidence of complications (23.5% versus 19.3%), surgery time (156 ± 23 minutes versus 162 ± 21 minutes), and time to union (11.1 ± 3.0 months versus 10.9 ± 3.1 months) between external fixation and internal fixation. Internal fixation had no significant influence on the occurrence of postoperation complications after multivariate adjustment when compared with external fixation. Furthermore, patients who underwent internal fixation experienced higher level of daily living scales and lower level of anxiety. It was relatively safe to use internal fixation for stabilization in osteomyelitis patients whose bone defects were less than 4 cm and infection was well controlled.

  17. An in vivo evaluation of PLLA/PLLA-gHA nano-composite for internal fixation of mandibular bone fractures.

    Science.gov (United States)

    Peng, Weihai; Zheng, Wei; Shi, Kai; Wang, Wangshu; Shao, Ying; Zhang, Duo

    2015-11-09

    Internal fixation of bone fractures using biodegradable poly(L-lactic-acid) (PLLA)-based materials has attracted the attention of many researchers. In the present study, 36 male beagle dogs were randomly assigned to two groups: PLLA/PLLA-gHA (PLLA-grafted hydroxyapatite) group and PLLA group. PLLA/PLLA-gHA and PLLA plates were embedded in the muscular bags of the erector spinae and also implanted to fix mandibular bone fractures in respective groups. At 1, 2, 3, 6, 9, and 12 months postoperatively, the PLLA/PLLA-gHA and PLLA plates were evaluated by adsorption and degradation tests, and the mandibles were examined through radiographic analysis, biomechanical testing, and histological analysis. The PLLA/PLLA-gHA plates were non-transparent and showed a creamy white color, and the PLLA plates were transparent and faint yellow in color. At all time points following surgery, adsorption and degradation of the PLLA/PLLA-gHA plates were significantly less than those of the PLLA plates, and the lateral and longitudinal bending strengths of the surgically treated mandibles of the beagle dogs in the PLLA/PLLA-gHA group were significantly greater than those of the PLLA group and reached almost the value of intact mandibles at 12 months postoperatively. Additionally, relatively rapid bone healing was observed in the PLLA/PLLA-gHA group with the formation of new lamellar bone tissues at 12 months after the surgery. The PLLA/PLLA-gHA nano-composite can be employed as a biodegradable material for internal fixation of mandibular bone fractures.

  18. An in vivo evaluation of PLLA/PLLA-gHA nano-composite for internal fixation of mandibular bone fractures

    International Nuclear Information System (INIS)

    Peng, Weihai; Shi, Kai; Wang, Wangshu; Shao, Ying; Zhang, Duo; Zheng, Wei

    2015-01-01

    Internal fixation of bone fractures using biodegradable poly(L-lactic-acid) (PLLA)-based materials has attracted the attention of many researchers. In the present study, 36 male beagle dogs were randomly assigned to two groups: PLLA/PLLA-gHA (PLLA-grafted hydroxyapatite) group and PLLA group. PLLA/PLLA-gHA and PLLA plates were embedded in the muscular bags of the erector spinae and also implanted to fix mandibular bone fractures in respective groups. At 1, 2, 3, 6, 9, and 12 months postoperatively, the PLLA/PLLA-gHA and PLLA plates were evaluated by adsorption and degradation tests, and the mandibles were examined through radiographic analysis, biomechanical testing, and histological analysis. The PLLA/PLLA-gHA plates were non-transparent and showed a creamy white color, and the PLLA plates were transparent and faint yellow in color. At all time points following surgery, adsorption and degradation of the PLLA/PLLA-gHA plates were significantly less than those of the PLLA plates, and the lateral and longitudinal bending strengths of the surgically treated mandibles of the beagle dogs in the PLLA/PLLA-gHA group were significantly greater than those of the PLLA group and reached almost the value of intact mandibles at 12 months postoperatively. Additionally, relatively rapid bone healing was observed in the PLLA/PLLA-gHA group with the formation of new lamellar bone tissues at 12 months after the surgery. The PLLA/PLLA-gHA nano-composite can be employed as a biodegradable material for internal fixation of mandibular bone fractures. (paper)

  19. Mechanical properties of a biodegradable bone regeneration scaffold

    Science.gov (United States)

    Porter, B. D.; Oldham, J. B.; He, S. L.; Zobitz, M. E.; Payne, R. G.; An, K. N.; Currier, B. L.; Mikos, A. G.; Yaszemski, M. J.

    2000-01-01

    Poly (Propylene Fumarate) (PPF), a novel, bulk erosion, biodegradable polymer, has been shown to have osteoconductive effects in vivo when used as a bone regeneration scaffold (Peter, S. J., Suggs, L. J., Yaszemski, M. J., Engel, P. S., and Mikos, A. J., 1999, J. Biomater. Sci. Polym. Ed., 10, pp. 363-373). The material properties of the polymer allow it to be injected into irregularly shaped voids in vivo and provide mechanical stability as well as function as a bone regeneration scaffold. We fabricated a series of biomaterial composites, comprised of varying quantities of PPF, NaCl and beta-tricalcium phosphate (beta-TCP), into the shape of right circular cylinders and tested the mechanical properties in four-point bending and compression. The mean modulus of elasticity in compression (Ec) was 1204.2 MPa (SD 32.2) and the mean modulus of elasticity in bending (Eb) was 1274.7 MPa (SD 125.7). All of the moduli were on the order of magnitude of trabecular bone. Changing the level of NaCl from 20 to 40 percent, by mass, did not decrease Ec and Eb significantly, but did decrease bending and compressive strength significantly. Increasing the beta-TCP from 0.25 g/g PPF to 0.5 g/g PPF increased all of the measured mechanical properties of PPF/NVP composites. These results indicate that this biodegradable polymer composite is an attractive candidate for use as a replacement scaffold for trabecular bone.

  20. New concept of 3D printed bone clip (polylactic acid/hydroxyapatite/silk composite) for internal fixation of bone fractures.

    Science.gov (United States)

    Yeon, Yeung Kyu; Park, Hae Sang; Lee, Jung Min; Lee, Ji Seung; Lee, Young Jin; Sultan, Md Tipu; Seo, Ye Bin; Lee, Ok Joo; Kim, Soon Hee; Park, Chan Hum

    Open reduction with internal fixation is commonly used for the treatment of bone fractures. However, postoperative infection associated with internal fixation devices (intramedullary nails, plates, and screws) remains a significant complication, and it is technically difficult to fix multiple fragmented bony fractures using internal fixation devices. In addition, drilling in the bone to install devices can lead to secondary fracture, bone necrosis associated with postoperative infection. In this study, we developed bone clip type internal fixation device using three- dimensional (3D) printing technology. Standard 3D model of the bone clip was generated based on computed tomography (CT) scan of the femur in the rat. Polylacticacid (PLA), hydroxyapatite (HA), and silk were used for bone clip material. The purpose of this study was to characterize 3D printed PLA, PLA/HA, and PLA/HA/Silk composite bone clip and evaluate the feasibility of these bone clips as an internal fixation device. Based on the results, PLA/HA/Silk composite bone clip showed similar mechanical property, and superior biocompatibility compared to other types of the bone clip. PLA/HA/Silk composite bone clip demonstrated excellent alignment of the bony segments across the femur fracture site with well-positioned bone clip in an animal study. Our 3D printed bone clips have several advantages: (1) relatively noninvasive (drilling in the bone is not necessary), (2) patient-specific design (3) mechanically stable device, and (4) it provides high biocompatibility. Therefore, we suggest that our 3D printed PLA/HA/Silk composite bone clip is a possible internal fixation device.

  1. A Novel Biodegradable Polycaprolactone Fixator for Osteosynthesis Surgery of Rib Fracture: In Vitro and in Vivo Study

    Directory of Open Access Journals (Sweden)

    Yi-Hsun Yu

    2015-11-01

    Full Text Available Osteosynthesis surgery for rib fractures is controversial and challenging. This study developed a noval poly(ε-caprolactone (PCL-based biodegradable “cable-tie” fixator for osteosynthesis surgery for rib fractures. A biodegradable fixator specifically for fractured ribs was designed and fabricated by a micro-injection molding machine in our laboratory. The fixator has three belts that could be passed through matching holes individually. The locking mechanism allows the belt movement to move in only one direction. To examine the in vitro biomechanical performance, ribs 3–7 from four fresh New Zealand rabbits were employed. The load to failure and stress-strain curve was compared in the three-point bending test among native ribs, titanium plate-fixed ribs, and PCL fixator-fixed ribs. In the in vivo animal study, the sixth ribs of New Zealand rabbits were osteotomized and osteosynthesis surgery was performed using the PCL fixator. Outcomes were assessed by monthly X-ray examinations, a final micro-computed tomography (CT scan, and histological analysis. The experimental results suggested that the ribs fixed with the PCL fixator were significantly less stiff than those fixed with titanium plates (p < 0.05. All ribs fixed with the PCL fixators exhibited union. The bridging callus was confirmed by gross, radiographic micro-three-dimensional (3D CT, and histological examinations. In addition, there was no significant inflammatory response of the osteotomized ribs or the PCL-rib interface during application. The novel PCL fixator developed in this work achieves satisfactory results in osteosynthesis surgery for rib fractures, and may provide potential applications in other orthopedic surgeries.

  2. The effect of bone marrow aspirate, bone graft and collagen composites on fixation of bone implants

    DEFF Research Database (Denmark)

    Babiker, Hassan; Ding, Ming; Overgaard, Søren

    2007-01-01

     Introduction: Replacement of extensive local bone loss especially in revision joint arthroplasties is a significant clinical challenge. Autogenous and allogenic cancellous bone grafts have been the gold standard in reconstructive orthopaedic surgery, but it is well known that there is morbidity...... associated with harvesting of autogenous bone graft and limitations in the quantity of bone available. Disadvantages of allograft include the risk of bacterial or viral contamination and non union as well as the potential risk of disease transmission. Alternative options are attractive and continue...... to be sought. Hydroxyapatite and collagen composites have the potential in mimicking and replacing skeletal bones. Aim: This study attempted to determine the effect of hydroxyapatite/collagen composites in the fixation of bone implants. The composites used in this study is produced by Institute of Science...

  3. Fixation of a human rib by an intramedullary telescoping splint anchored by bone cement.

    Science.gov (United States)

    Liovic, Petar; Šutalo, Ilija D; Marasco, Silvana F

    2016-09-01

    A novel concept for rib fixation is presented that involves the use of a bioresorbable polymer intramedullary telescoping splint. Bone cement is used to anchor each end of the splint inside the medullary canal on each side of the fracture site. In this manner, rib fixation is achieved without fixation device protrusion from the rib, making the splint completely intramedullary. Finite element analysis is used to demonstrate that such a splint/cement composite can preserve rib fixation subjected to cough-intensity force loadings. Computational fluid dynamics and porcine rib experiments were used to study the anchor formation process required to complete the fixation.

  4. Design, Materials, and Mechanobiology of Biodegradable Scaffolds for Bone Tissue Engineering

    Science.gov (United States)

    Velasco, Marco A.; Narváez-Tovar, Carlos A.; Garzón-Alvarado, Diego A.

    2015-01-01

    A review about design, manufacture, and mechanobiology of biodegradable scaffolds for bone tissue engineering is given. First, fundamental aspects about bone tissue engineering and considerations related to scaffold design are established. Second, issues related to scaffold biomaterials and manufacturing processes are discussed. Finally, mechanobiology of bone tissue and computational models developed for simulating how bone healing occurs inside a scaffold are described. PMID:25883972

  5. Antibacterial glass and glass-biodegradable matrix composites for bone tissue engineering

    OpenAIRE

    Fernandes, João Pedro Silva

    2017-01-01

    Multiple joint and bone diseases affect millions of people worldwide. In fact the Bone and Joint Decade’s association predicted that the percentage of people over 50 years of age affected by bone diseases will double by 2020. Bone diseases commonly require the need for surgical intervention, often involving partial or total bone substitution. Therefore biodegradable biomaterials designed as bone tissue engineered (BTE) devices to be implanted into the human body, function as a ...

  6. High strength, biodegradable and cytocompatible alpha tricalcium phosphate-iron composites for temporal reduction of bone fractures.

    Science.gov (United States)

    Montufar, E B; Casas-Luna, M; Horynová, M; Tkachenko, S; Fohlerová, Z; Diaz-de-la-Torre, S; Dvořák, K; Čelko, L; Kaiser, J

    2018-04-01

    In this work alpha tricalcium phosphate (α-TCP)/iron (Fe) composites were developed as a new family of biodegradable, load-bearing and cytocompatible materials. The composites with composition from pure ceramic to pure metallic samples were consolidated by pulsed electric current assisted sintering to minimise processing time and temperature while improving their mechanical performance. The mechanical strength of the composites was increased and controlled with the Fe content, passing from brittle to ductile failure. In particular, the addition of 25 vol% of Fe produced a ceramic matrix composite with elastic modulus much closer to cortical bone than that of titanium or biodegradable magnesium alloys and specific compressive strength above that of stainless steel, chromium-cobalt alloys and pure titanium, currently used in clinic for internal fracture fixation. All the composites studied exhibited higher degradation rate than their individual components, presenting values around 200 μm/year, but also their compressive strength did not show a significant reduction in the period required for bone fracture consolidation. Composites showed preferential degradation of α-TCP areas rather than β-TCP areas, suggesting that α-TCP can produce composites with higher degradation rate. The composites were cytocompatible both in indirect and direct contact with bone cells. Osteoblast-like cells attached and spread on the surface of the composites, presenting proliferation rate similar to cells on tissue culture-grade polystyrene and they showed alkaline phosphatase activity. Therefore, this new family of composites is a potential alternative to produce implants for temporal reduction of bone fractures. Biodegradable alpha-tricalcium phosphate/iron (α-TCP/Fe) composites are promising candidates for the fabrication of temporal osteosynthesis devices. Similar to biodegradable metals, these composites can avoid implant removal after bone fracture healing, particularly in

  7. Comparison of the long-term clinical performance of a biodegradable and a titanium fixation system in maxillofacial surgery : A multicenter randomized controlled trial

    NARCIS (Netherlands)

    Gareb, B.; van Bakelen, N. B.; Buijs, G. J.; Jansma, J.; de Visscher, J. G. A. M.; Hoppenreijs, Th. J. M.; Bergsma, J. E.; van Minnen, B.; Stegenga, B.; Bos, R. R. M.

    2017-01-01

    Background Biodegradable fixation systems could reduce or eliminate problems associated with titanium removal of implants in a second operation. Aim The aim of this study was to compare the long-term (i.e. >5 years postoperatively) clinical performance of a titanium and a biodegradable system in

  8. Fixation strength analysis of cup to bone material using finite element simulation

    NARCIS (Netherlands)

    Anwar, Iwan Budiwan; Saputra, Eko; Ismail, Rifky; Jamari, J.; Van Der Heide, Emile

    2016-01-01

    Fixation of acetabular cup to bone material is an important initial stability for artificial hip joint. In general, the fixation in cement less-type acetabular cup uses press-fit and screw methods. These methods can be applied alone or together. Based on literature survey, the additional screw

  9. Experimental Fracture Model versus Osteotomy Model in Metacarpal Bone Plate Fixation

    Directory of Open Access Journals (Sweden)

    S. Ochman

    2011-01-01

    Full Text Available Introduction. Osteotomy or fracture models can be used to evaluate mechanical properties of fixation techniques of the hand skeleton in vitro. Although many studies make use of osteotomy models, fracture models simulate the clinical situation more realistically. This study investigates monocortical and bicortical plate fixation on metacarpal bones considering both aforementioned models to decide which method is best suited to test fixation techniques. Methods. Porcine metacarpal bones (=40 were randomized into 4 groups. In groups I and II bones were fractured with a modified 3-point bending test. The intact bones represented a further control group to which the other groups after fixation were compared. In groups III and IV a standard osteotomy was carried out. Bones were fixated with plates monocortically (group I, III and bicortically (group II, IV and tested for failure. Results. Bones fractured at a mean maximum load of 482.8 N ± 104.8 N with a relative standard deviation (RSD of 21.7%, mean stiffness was 122.3 ± 35 N/mm. In the fracture model, there was a significant difference (=0.01 for maximum load of monocortically and bicortically fixed bones in contrast to the osteotomy model (=0.9. Discussion. In the fracture model, because one can use the same bone for both measurements in the intact state and the bone-plate construct states, the impact of inter-individual differences is reduced. In contrast to the osteotomy model there are differences between monocortical and bicortical fixations in the fracture model. Thus simulation of the in vivo situation is better and seems to be suitable for the evaluation of mechanical properties of fixation techniques on metacarpals.

  10. Demineralized bone matrix and human cancellous bone enhance fixation of titanium implants

    DEFF Research Database (Denmark)

    Babiker, Hassan; Ding, Ming; Overgaard, Søren

    Best Poster 5Demineralized bone matrix and human cancellous bone enhance fixation of titanium implants AuthorsBabiker , H.; Ding M.; Overgaard S.InstitutionOrthopaedic Research Laboratory, Department of Orthopaedic Surgery, Odense University Hospital, Clinical Institute, University of Southern...... from human tissue were included (IsoTis OrthoBiologics, Inc. USA). Both materials are commercially available. Titanium alloy implants (Biomet Inc.) of 10 mm in length and 10 mm in diameter were inserted bilaterally into the femoral condyles of 8 skeletally mature sheep. Thus four implants...... with a concentric gap of 2 mm were implanted in each sheep. The gap was filled with: DBM; DBM/CB with ratio of 1/3; DBM/allograft with ratio of 1/3; or allograft (Gold standard), respectively. Standardised surgical procedure was used1. At sacrifice, 6 weeks after surgery, both distal femurs were harvested...

  11. Engineered polycaprolactone–magnesium hybrid biodegradable porous scaffold for bone tissue engineering

    Directory of Open Access Journals (Sweden)

    Hoi Man Wong

    2014-10-01

    Full Text Available In this paper, we describe the fabrication of a new biodegradable porous scaffold composed of polycaprolactone (PCL and magnesium (Mg micro-particles. The compressive modulus of PCL porous scaffold was increased to at least 150% by incorporating 29% Mg particles with the porosity of 74% using Micro-CT analysis. Surprisingly, the compressive modulus of this scaffold was further increased to at least 236% when the silane-coupled Mg particles were added. In terms of cell viability, the scaffold modified with Mg particles significantly convinced the attachment and growth of osteoblasts as compared with the pure PCL scaffold. In addition, the hybrid scaffold was able to attract the formation of apatite layer over its surface after 7 days of immersion in normal culture medium, whereas it was not observed on the pure PCL scaffold. This in vitro result indicated the enhanced bioactivity of the modified scaffold. Moreover, enhanced bone forming ability was also observed in the rat model after 3 months of implantation. Though bony in-growth was found in all the implanted scaffolds. High volume of new bone formation could be found in the Mg/PCL hybrid scaffolds when compared to the pure PCL scaffold. Both pure PCL and Mg/PCL hybrid scaffolds were degraded after 3 months. However, no tissue inflammation was observed. In conclusion, these promising results suggested that the incorporation of Mg micro-particles into PCL porous scaffold could significantly enhance its mechanical and biological properties. This modified porous bio-scaffold may potentially apply in the surgical management of large bone defect fixation.

  12. Arthroscopic Meniscal Allograft Transplantation With Soft-Tissue Fixation Through Bone Tunnels.

    Science.gov (United States)

    Spalding, Tim; Parkinson, Ben; Smith, Nick A; Verdonk, Peter

    2015-10-01

    Meniscal allograft transplantation improves clinical outcomes for patients with symptomatic meniscus-deficient knees. We describe an established arthroscopic technique for meniscal allograft transplantation without the need for bone fixation of the meniscal horns. After preparation of the meniscal bed, the meniscus is parachuted into the knee through a silicone cannula and the meniscal horns are fixed with sutures through bone tunnels. The body of the meniscus is then fixed with a combination of all-inside and inside-out sutures. This technique is reliable and reproducible and has clinical outcomes comparable with those of bone plug fixation techniques.

  13. Radiographic healing and remodelling of cortical and cancellous bone grafts after rigid plate fixation

    International Nuclear Information System (INIS)

    Waris, P.; Karaharju, E.; Slaetis, P.; Paavolainen, P.

    1980-01-01

    Cortical and cancellous interposition grafts, with rigid plate fixation, in the tibiofibular bones of 130 rabbits were followed radiographically for one year. The cancellous grafts healed earlier, but by 12 weeks both graft types had been incorporated, the distal host-graft interface being the last to heal. Progressive cancellous transformation in both the graft and host bone led to an increased over-all bone diameter, a widened medullary canal and a thinned porotic wall. (Auth.)

  14. Design and fabrication of biomimetic multiphased scaffolds for ligament-to-bone fixation.

    Science.gov (United States)

    He, Jiankang; Zhang, Wenyou; Liu, Yaxiong; Li, Xiang; Li, Dichen; Jin, Zhongmin

    2015-05-01

    Conventional ligament grafts with single material composition cannot effectively integrate with the host bones due to mismatched properties and eventually affect their long-term function in vivo. Here we presented a multi-material strategy to design and fabricate composite scaffolds including ligament, interface and bone multiphased regions. The interface region consists of triphasic layers with varying material composition and porous structure to mimic native ligament-to-bone interface while the bone region contains polycaprolactone (PCL) anchor and microchanneled ceramic scaffolds to potentially provide combined mechanical and biological implant-bone fixation. Finite element analysis (FEA) demonstrated that the multiphased scaffolds with interference value smaller than 0.5 mm could avoid the fracture of ceramic scaffold during the implantation process, which was validated by in-vitro implanting the multiphased scaffolds into porcine joint bones. Pull-out experiment showed that the initial fixation between the multiphased scaffolds with 0.47 mm interference and the host bones could withstand the maximum force of 360.31±97.51 N, which can be improved by reinforcing the ceramic scaffolds with biopolymers. It is envisioned that the multiphased scaffold could potentially induce the regeneration of a new bone as well as interfacial tissue with the gradual degradation of the scaffold and subsequently realize long-term biological fixation of the implant with the host bone. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Minimum Lateral Bone Coverage Required for Securing Fixation of Cementless Acetabular Components in Hip Dysplasia

    Directory of Open Access Journals (Sweden)

    Masanori Fujii

    2017-01-01

    Full Text Available Objectives. To determine the minimum lateral bone coverage required for securing stable fixation of the porous-coated acetabular components (cups in hip dysplasia. Methods. In total, 215 primary total hip arthroplasties in 199 patients were reviewed. The average follow-up period was 49 months (range: 24–77 months. The lateral bone coverage of the cups was assessed by determining the cup center-edge (cup-CE angle and the bone coverage index (BCI from anteroposterior pelvic radiographs. Further, cup fixation was determined using the modified DeLee and Charnley classification system. Results. All cups were judged to show stable fixation by bone ingrowth. The cup-CE angle was less than 0° in 7 hips (3.3% and the minimum cup-CE angle was −9.2° (BCI: 48.8%. Thin radiolucent lines were observed in 5 hips (2.3%, which were not associated with decreased lateral bone coverage. Loosening, osteolysis, dislocation, or revision was not observed in any of the cases during the follow-up period. Conclusion. A cup-CE angle greater than −10° (BCI > 50% was acceptable for stable bony fixation of the cup. Considering possible errors in manual implantation, we recommend that the cup position be planned such that the cup-CE angle is greater than 0° (BCI > 60%.

  16. Radiostrontium clearance and bone formation in response to simulated internal screw fixation

    International Nuclear Information System (INIS)

    Daum, W.J.; Simmons, D.J.; Fenster, R.; Shively, R.A.

    1987-01-01

    Changes in radiostrontium clearance (SrC) and bone formation (tetracycline labeling) were observed in the femurs of skeletally mature dogs following the various operative steps involved in bone screw fixation. Drilling, but not periosteal stripping, produced a small but statistically significant increase in SrC and endosteal bone formation in the distal third of the bone. Strontium clearance values equivalent to those produced by drilling alone were recorded after screw fixation at low or high torque (5 versus 20 inch pounds), as well as by the insertion of loosely fitting stainless steel implants. Bone formation (equals the percentage tetracycline-labeled trabecular bone surfaces) was increased by 30% when SrC values exceeded 3.5 ml/100 g bone/min, and the relationship was linear when SrC values ranged between 1.0 and 7.0 ml/100 g bone/min. The changes in SrC and bone formation one-week after bone screw application are primarily those associated with a response to local trauma caused by drilling

  17. Virtual haptic system for intuitive planning of bone fixation plate placement

    Directory of Open Access Journals (Sweden)

    Kup-Sze Choi

    2017-01-01

    Full Text Available Placement of pre-contoured fixation plate is a common treatment for bone fracture. Fitting of fixation plates on fractured bone can be preoperatively planned and evaluated in 3D virtual environment using virtual reality technology. However, conventional systems usually employ 2D mouse and virtual trackball as the user interface, which makes the process inconvenient and inefficient. In the paper, a preoperative planning system equipped with 3D haptic user interface is proposed to allow users to manipulate the virtual fixation plate intuitively to determine the optimal position for placement on distal medial tibia. The system provides interactive feedback forces and visual guidance based on the geometric requirements. Creation of 3D models from medical imaging data, collision detection, dynamics simulation and haptic rendering are discussed. The system was evaluated by 22 subjects. Results show that the time to achieve optimal placement using the proposed system was shorter than that by using 2D mouse and virtual trackball, and the satisfaction rating was also higher. The system shows potential to facilitate the process of fitting fixation plates on fractured bones as well as interactive fixation plate design.

  18. The effect of Hydroxyapatite/collagen I composites, bone marrow aspirate and bone graft on fixation of bone implants in sheep

    DEFF Research Database (Denmark)

    Babiker, Hassan

      The effect of Hydroxyapatite/collagen I composites, bone marrow aspirate and bone graft on fixation of bone implants IN SHEEP   Ph.D. Student, Hassan Babiker; Associate Professor, Ph.D. Ming Ding; Professor, dr.med., Soren Overgaard. Department of Orthopaedic Surgery, Odense University Hospital......, Odense, Denmark   Background: Hydroxyapatite and collagen composites (HA/coll) have the potential in mimicking and replacing skeletal bones. This study attempted to determine the effect of newly developed HA/coll-composites with and without bone marrow aspirate (BMA) in order to enhance the fixation...... of bone implants.   Materials and Methods: Titanium alloy implants were inserted into bilateral femoral condyles of 8 skeletally mature sheep, four in each sheep. The implant has a circumferential gap of 2 mm. The gap was filled with: HA/coll; HA/coll-BMA; autograft or allograft. Allograft was served...

  19. DEGRADATION AND PROCESSING OF PLA AND ITS APPLICATION IN FIXATION OF BONE FRACTURE

    Institute of Scientific and Technical Information of China (English)

    HUYushan; BAIDongren; 等

    1999-01-01

    PLA is presently considered as the most attractive compound for temporary therapeutic application in the biomedical field.In this paper we give an overview of the present knowledge on the degradation behavior,processing technology of PLA and its application in the fixation of bone fracture.

  20. Laparoscopic sacrocolpopexy with bone anchor fixation: short-term anatomic and functional results.

    NARCIS (Netherlands)

    Withagen, M.I.J.; Vierhout, M.E.; Mannaerts, G.H.; Weiden, R.M.F. van der

    2012-01-01

    INTRODUCTION AND HYPOTHESIS: The aim of this study was to evaluate short-term anatomic and functional outcomes and safety of laparoscopic sacrocolpopexy with bone anchor fixation. METHODS: A prospective cohort study of women undergoing laparoscopic sacrocolpopexy between 2004 and 2009. Anatomic

  1. Demineralized bone matrix and human cancellous bone enhance fixation of porous-coated titanium implants in sheep

    DEFF Research Database (Denmark)

    Babiker, Hassan; Ding, Ming; Overgaard, Søren

    2016-01-01

    matrix (DBM), alone or in combination with allograft or commercially available human cancellous bone (CB), may replace allografts, as they have the capability of inducing new bone and improving implant fixation through enhancing bone ongrowth. The purpose of this study was to investigate the effect...... of DBM alone, DBM with CB, or allograft on the fixation of porous-coated titanium implants. DBM100 and CB produced from human tissue were included. Both materials are commercially available. DBM granules are placed in pure DBM and do not contain any other carrier. Titanium alloy implants, 10 mm long × 10...... mm diameter, were inserted bilaterally into the femoral condyles of eight skeletally mature sheep. Thus, four implants with a concentric gap of 2 mm were implanted in each sheep. The gap was filled with: (a) DBM; (b) DBM:CB at a ratio of 1:3; (c) DBM:allograft at a ratio of 1:3; or (d) allograft...

  2. Dynamic locking screw improves fixation strength in osteoporotic bone: an in vitro study on an artificial bone model.

    Science.gov (United States)

    Pohlemann, Tim; Gueorguiev, Boyko; Agarwal, Yash; Wahl, Dieter; Sprecher, Christoph; Schwieger, Karsten; Lenz, Mark

    2015-04-01

    The novel dynamic locking screw (DLS) was developed to improve bone healing with locked-plate osteosynthesis by equalising construct stiffness at both cortices. Due to a theoretical damping effect, this modulated stiffness could be beneficial for fracture fixation in osteoporotic bone. Therefore, the mechanical behaviour of the DLS at the screw-bone interface was investigated in an artificial osteoporotic bone model and compared with conventional locking screws (LHS). Osteoporotic surrogate bones were plated with either a DLS or a LHS construct consisting of two screws and cyclically axially loaded (8,500 cycles, amplitude 420 N, increase 2 mN/cycle). Construct stiffness, relative movement, axial screw migration, proximal (P) and distal (D) screw pullout force and loosening at the bone interface were determined and statistically evaluated. DLS constructs exhibited a higher screw pullout force of P 85 N [standard deviation (SD) 21] and D 93 N (SD 12) compared with LHS (P 62 N, SD 28, p = 0.1; D 57 N, SD 25, p LHS (p = 0.01). DLS constructs showed significantly lower axial construct stiffness (403 N/mm, SD 21, p LHS (529 N/mm, SD 27; 0.8 mm, SD 0.04). Based on the model data, the DLS principle might also improve in vivo plate fixation in osteoporotic bone, providing enhanced residual holding strength and reducing screw cutout. The influence of pin-sleeve abutment still needs to be investigated.

  3. Fixation of revision implants is improved by a surgical technique to crack the sclerotic bone rim.

    Science.gov (United States)

    Kold, Søren; Bechtold, Joan E; Mouzin, Olivier; Elmengaard, Brian; Chen, Xinqian; Søballe, Kjeld

    2005-03-01

    Revision joint replacement has poorer outcomes compared with primary joint replacement, and these poor outcomes have been associated with poorer fixation. We investigated a surgical technique done during the revision operation to improve access from the marrow space to the implant interface by locally cracking the sclerotic bone rim that forms during aseptic loosening. Sixteen implants were inserted bilaterally by distal femur articulation of the knee joint of eight dogs, using our controlled experimental model that replicates the revision setting (sclerotic bone rim, dense fibrous tissue, macrophages, elevated cytokines) by pistoning a loaded 6.0-mm implant 500 microm into the distal femur with particulate PE. At 8 weeks, one of two revision procedures was done. Both revision procedures included complete removal of the membrane, scraping, lavaging, and inserting a revision plasma-spray Ti implant. The crack revision procedure also used a splined tool to circumferentially locally perforate the sclerotic bone rim before insertion of an identical revision implant. Superior fixation was achieved with the cracking procedure in this experimental model. Revision implants inserted with the rim cracking procedure had a significantly higher pushout strength (fivefold median increase) and energy to failure (sixfold median increase), compared with the control revision procedure. Additional evaluation is needed of local perforation of sclerotic bone rim as a simple bone-sparing means to improve revision implant fixation and thereby increase revision implant longevity.

  4. The biodegradation of hydroxyapatite bone graft substitutes in vivo.

    Science.gov (United States)

    Rumpel, E; Wolf, E; Kauschke, E; Bienengräber, V; Bayerlein, T; Gedrange, T; Proff, P

    2006-02-01

    Hydroxyapatite (HA) ceramics are widely used for bone reconstruction. They are osteoconductive and serve as structural scaffolds for the deposition of new bone. Generally, scaffold materials should be degradable as they affect the mechanical properties of the reconstructed bone negatively. Degradation by osteoclasts during the bone remodelling process is desirable but often does not take place. In the current study we analysed by light microscopy the degradation of two granular HA implants in critically sized defects in the mandibula of Goettingen mini-pigs five weeks after implantation. Bio-Oss consists of sintered bovine bone and NanoBone is a synthetic HA produced in a sol-gel process in the presence of SiO2. We found that both biomaterials were degraded by osteoclasts with ruffled borders and acid phosphatase activity. The osteoclasts created resorption lacunae and resorptive trails and contained mineral particles. Frequently, resorption surfaces were in direct contact with bone formative surfaces on one granule. Granules, especially of NanoBone, were also covered by osteoclasts if located in vascularised connective tissue distant from bone tissue. However, this usually occurred without the creation of resorption lacunae. The former defect margins consisted of newly formed bone often without remnants of bone substitutes. Our results show that the degradation of both biomaterials corresponds to the natural bone degradation processes and suggest the possibility of complete resorption during bone remodelling.

  5. Treatment of midshaft clavicular nonunion with plate fixation and autologous bone grafting

    DEFF Research Database (Denmark)

    Olsen, Bo Sanderhoff; Vaesel, M T; Søjbjerg, Jens Ole

    1995-01-01

    We studied the results of 16 consecutive midshaft clavicular nonunions operated on at the Shoulder and Elbow Clinic during the period from 1990 to 1993. All patients were treated with rigid 3.5 mm plate fixation and autologous cancellous bone grafting. Union of the fractures was achieved in all...... except one case, with a reconstruction ratio (restoration of bone length) of 0.96 (range 0.88 to 1.03). At follow-up 12 of 16 patients had returned to their preinjury activity level and according to the Constant score had obtained an excellent result. Two patients were graded as good, one as fair......, and one had a failure. Thirteen of 16 patients were satisfied with the cosmetic outcome, assessing their cosmetic result as either good or excellent. Rigid plate fixation and restoration of clavicular length with autologous cancellous bone graft is recommended for the treatment of symptomatic clavicular...

  6. In vitro study of a new biodegradable nanocomposite based on poly propylene fumarate as bone glue

    Energy Technology Data Exchange (ETDEWEB)

    Shahbazi, S.; Moztarzadeh, F. [Department of Medical Engineering, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Sadeghi, G. Mir Mohamad [Department of Polymer Engineering and Color Technology, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Jafari, Y., E-mail: y.j.arisman@gmail.com [Department of Analytical Chemistry, Faculty of Chemistry, University of Kashan, Kashan (Iran, Islamic Republic of)

    2016-12-01

    A novel poly propylene fumarate (PPF)-based glue which is reinforced by nanobioactive glass (NBG) particles and promoted by hydroxyethyl methacrylate (HEMA) as crosslinker agent, was developed and investigated for bone-to-bone bonding applications. In-vitro bioactivity, biodegradability, biocompatibility, and bone adhesion were tested and the results have verified that it can be used as bone glue. In an in-vitro condition, the prepared nanocomposite (PPF/HEMA/NBG) showed improved adhesion to wet bone surfaces. The combined tension and shear resistance between two wet bone surfaces was measured, and its maximum value was 9 ± 59 MPa. To investigate the bioactivity and biodegradability of the nanocomposite, it has been immersed in simulated body fluid (SBF). After 14 days exposure to SBF, a hydroxyapatite (HA) layer formed on the surface of the composite confirms the bioactivity of this material. In the XRD pattern of the nanocomposite surface, the HA characteristic diffraction peak at θ = 26 and 31.8 were observed. Also, by monitoring the weight change after 8 weeks immersion in SBF, the mass loss was about 16.46 wt%. It has been confirmed that this nanocomposite is a biodegradable material. Also, bioactivity and biodegradability of nanocomposite have been proved by SEM images. It has been showed that by using NBG particles and HEMA precursor, mechanical properties increased significantly. The ultimate tensile strength (UTS) of nanocomposite which contains 20% NBG and the ratio of 70/30 wt% PPF/HEMA (PHB.732) was approximately 62 MPa, while the UTS in the pure PPF/HEMA was about 32 MPa. High cell viability in this nanocomposite (MTT assays, 85–95%) can be attributed to the NBG nature which contains calcium phosphate and is similar to physiological environment. Furthermore, it possesses biomineralization and biodegradation which significantly affected by impregnation of hydrophilic HEMA in the PPF-based polymeric matrix. The results indicated that the new

  7. Comparative Study Between Coaptive Film Versus Suture For Wound Closure After Long Bone Fracture Fixation

    Directory of Open Access Journals (Sweden)

    IM Anuar Ramdhan

    2013-03-01

    Full Text Available INTRODUCTION: Coaptive film (i.e., Steri-StripsTM is an adhesive tape used to replace sutures in wound closure. The use of coaptive film for wound closure after long bone fracture fixation has not been well documented in the literature. METHODS: The aim of this prospective, randomized controlled trial comparing coaptive film with sutures for wound closure after long bone fracture fixation was skin closure time, incidence of wound complications and scar width at 12 week follow-up. Forty-five patients underwent femur fracture fixation (22 patients’ wound closed with sutures, 23 with coaptive film. RESULTS: The mean time for skin closure using coaptive film was 171.13 seconds compared to 437.27 seconds using suture. The mean wound lengths in the coaptive film group and suture group were 187.65 mm and 196.73 mm, respectively. One patient in each group had wound complications. CONCLUSION: Coaptive film is a time-saving procedure for skin closure following long bone fracture fixation. There is no difference in the incidence of wound complications and scar width between these two methods of skin closure.

  8. Fixation of Hydroxyapatite-Coated Revision Implants Is Improved by the Surgical Technique of Cracking the Sclerotic Bone Rim

    Science.gov (United States)

    Elmengaard, Brian; Bechtold, Joan E.; Chen, Xinqian; Søballe, Kjeld

    2013-01-01

    Revision joint replacement has poorer outcomes that have been associated with poorer mechanical fixation. We investigate a new bone-sparing surgical technique that locally cracks the sclerotic bone rim formed during aseptic loosening. We inserted 16 hydroxyapatite-coated implants bilaterally in the distal femur of eight dogs, using a controlled weight-bearing experimental model that replicates important features of a typical revision setting. At 8 weeks, a control revision procedure and a crack revision procedure were performed on contralateral implants. The crack procedure used a splined tool to perform a systematic local perforation of the sclerotic bone rim of the revision cavity. After 4 weeks, the hydroxyapatite-coated implants were evaluated for mechanical fixation by a push-out test and for tissue distribution by histomorphometry. The cracking revision procedure resulted in significantly improved mechanical fixation, significantly more bone ongrowth and bone volume in the gap, and reduced fibrous tissue compared to the control revision procedure. The study demonstrates that the sclerotic bone rim prevents bone ingrowth and promotes fixation by fibrous tissue. The effect of the cracking technique may be due to improved access to the vascular compartment of the bone. The cracking technique is a simple surgical method that potentially can improve the fixation of revision implants in sclerotic regions important for obtaining the fixation critical for overall implant stability. PMID:19148940

  9. External fixation of femoral defects in athymic rats: Applications for human stem cell implantation and bone regeneration

    Directory of Open Access Journals (Sweden)

    Terasa Foo

    2013-01-01

    Full Text Available An appropriate animal model is critical for the research of stem/progenitor cell therapy and tissue engineering for bone regeneration in vivo. This study reports the design of an external fixator and its application to critical-sized femoral defects in athymic rats. The external fixator consists of clamps and screws that are readily available from hardware stores as well as Kirschner wires. A total of 35 rats underwent application of the external fixator with creation of a 6-mm bone defect in one femur of each animal. This model had been used in several separate studies, including implantation of collagen gel, umbilical cord blood mesenchymal stem cells, endothelial progenitor cells, or bone morphogenetic protein-2. One rat developed fracture at the proximal pin site and two rats developed deep tissue infection. Pin loosening was found in nine rats, but it only led to the failure of external fixation in two animals. In 8 to 10 weeks, various degrees of bone growth in the femoral defects were observed in different study groups, from full repair of the bone defect with bone morphogenetic protein-2 implantation to fibrous nonunion with collagen gel implantation. The external fixator used in these studies provided sufficient mechanical stability to the bone defects and had a comparable complication rate in athymic rats as in immunocompetent rats. The external fixator does not interfere with the natural environment of a bone defect. This model is particularly valuable for investigation of osteogenesis of human stem/progenitor cells in vivo.

  10. Bioreactor activated graft material for early implant fixation in bone

    DEFF Research Database (Denmark)

    Snoek Henriksen, Susan; Ding, Ming; Overgaard, Søren

    2011-01-01

    from the iliac crest. For both groups, mononuclear cells were isolated, and injected into a perfusion bioreactor (Millenium Biologix AG, Switzerland). Scaffold granules (Ø~900-1500 µm, ~88% porosity) in group 1, consisted of hydroxyapatite (HA, 70%) with β-tricalcium-phosphate (β-TCP, 30%) (Danish....... The superficial part was used for mechanical testing and micro-CT scanning, and the profound part for histomorphometry. Push-out tests were performed on an 858 Bionix MTS hydraulic materials testing machine (MTS Systems Corporation, USA). Shear mechanical properties between implant and newly generated bone were...

  11. Distraction osteogenesis using combined locking plate and Ilizarov fixator in the treatment of bone defect: A report of 2 cases

    Directory of Open Access Journals (Sweden)

    John Mukhopadhaya

    2017-01-01

    Full Text Available Distraction osteogenesis and bone transport has been used to reconstruct bone loss defect by allowing new bone to form in the gap. Plate-guided bone transport has been successfully described in literature to treat bone loss defect in the femur, tibia, and mandible. This study reports two cases of fracture of femur with segmental bone loss treated with locking plate fixation and bone transport with Ilizarov ring fixator. At the time of docking, when the transport segment is compressed with bone fragment, the bone fragment is fixed with additional locking or nonlocking screws through the plate. The bone defect size was 7 cm in case 1 and 8 cm in case 2 and the external fixation indexes were 12.7 days/cm and 14 days/cm. No shortening was present in either of our cases. The average radiographic consolidation index was 37 days/cm. Both cases achieved infection-free bone segment regeneration and satisfactorily functional outcome. This technique reduces the duration of external fixation during the consolidation phase, allows correction of length and alignment and provides earlier rehabilitation.

  12. The Improvement of Bone-Tendon Fixation by Porous Titanium Interference Screw: A Rabbit Animal Model.

    Science.gov (United States)

    Tsai, Pei-I; Chen, Chih-Yu; Huang, Shu-Wei; Yang, Kuo-Yi; Lin, Tzu-Hung; Chen, San-Yuan; Sun, Jui-Sheng

    2018-05-04

    The interference screw is a widely used fixation device in the anterior cruciate ligament (ACL) reconstruction surgeries. Despite the generally satisfactory results, problems of using interference screws were reported. By using additive manufacturing (AM) technology, we developed an innovative titanium alloy (Ti 6 Al 4 V) interference screw with rough surface and inter-connected porous structure designs to improve the bone-tendon fixation. An innovative Ti 6 Al 4 V interference screws were manufactured by AM technology. In vitro mechanical tests were performed to validate its mechanical properties. Twenty-seven New Zealand white rabbits were randomly divided into control and AM screw groups for biomechanical analyses and histological analysis at 4, 8 and 12 weeks postoperatively; while micro-CT analysis was performed at 12 weeks postoperatively. The biomechanical tests showed that the ultimate failure load in the AM interference screw group was significantly higher than that in the control group at all tested periods. These results were also compatible with the findings of micro-CT and histological analyses. In micro-CT analysis, the bone-screw gap was larger in the control group; while for the additive manufactured screw, the screw and bone growth was in close contact. In histological study, the bone-screw gaps were wider in the control group and were almost invisible in the AM screw group. The innovative AM interference screws with surface roughness and inter-connected porous architectures demonstrated better bone-tendon-implant integration, and resulted in stronger biomechanical characteristics when compared to traditional screws. These advantages can be transferred to future interference screw designs to improve their clinical performance. The AM interference screw could improve graft fixation and eventually result in better biomechanical performance of the bone-tendon-screw construct. The innovative AM interference screws can be transferred to future

  13. Coupled external fixator and skin flap transposition for treatment of exposed and nonunion bone.

    Science.gov (United States)

    Zhao, Yong-gang; Ding, Jing; Wang, Neng

    2011-02-01

    To discuss the effect of coupled external fixator and skin flap transposition on exposed and nonunion bones. The data of 12 cases of infected nonunion and exposed bone following open fracture treated in our hospital during the period of March 1998 to June 2008 were analysed. There were 10 male patients, 2 female patients, whose age were between 19-52 years and averaged 28 years. There were 10 tibial fractures and 2 femoral fractures. The course of diseases lasted for 12-39 months with the mean period of 19 months. All the cases were treated by the coupled external fixator and skin flap transposition. Primary healing were achieved in 10 cases and delayed healing in 2 cases in whom the tibia was exposed due to soft tissue defect and hence local flap transposition was performed. All the 12 cases had bony union within 6-12 months after operation with the average time of 8 months. They were followed up for 1-3 years and all fractures healed up with good function and no infection recurrence. The coupled external fixator and skin flap transposition therapy have shown optimal effects on treating infected, exposed and nonunion bones.

  14. Closed reduction, internal fixation with quadratus femoris muscle pedicle bone grafting in displaced femoral neck fracture

    Directory of Open Access Journals (Sweden)

    Chaudhuri Sibaji

    2008-01-01

    Full Text Available Background: Management of femoral neck fracture is still considered as an unsolved problem. It is more evident in displaced fractures where this fracture is considered as some sort of vascular insult to the head of the femur. We have used closed reduction, internal fixation and quadratus femoris muscle pedicle bone grafting in fresh displaced femoral neck fractures. Materials and Methods: From April 1996 to December 2004 we operated 73 consecutive patients of displaced femoral neck fracture in the age group of 24 to 81 years, mean age being 54.6 years. The patients were operated within one week of injury, the mean delay being 3.6 days. Closed reduction internal fixation along with quadratus femoris muscle pedicle bone grafting was done in all cases. They were followed up for an average period of 5.6 years (range 2-11 years. Results: Results were assessed according to modified Harris Hip Scoring system and found to be excellent in 53, good in 12, fair in six and poor in two patients. Bony union occurred in 68 cases, no patient developed avascular necrosis (AVN till date. Conclusion: For fresh displaced femoral neck fracture in physiologically active patients closed reduction, internal fixation and quadratus femoris muscle pedicle bone grafting is a suitable option to secure union and prevent development of AVN.

  15. Treatment of Unicameral Bone Cysts of the Proximal Femur With Internal Fixation Lessens the Risk of Additional Surgery.

    Science.gov (United States)

    Wilke, Benjamin; Houdek, Matthew; Rao, Rameshwar R; Caird, Michelle S; Larson, A Noelle; Milbrandt, Todd

    2017-09-01

    Little data exist to guide the treatment of unicameral bone cysts in the proximal femur. Methods of treatment include corticosteroid injections, curettage and bone grafting, and internal fixation. The authors completed a multi-institutional, retrospective review to evaluate their experience with proximal femoral unicameral bone cysts. They posed the following questions: (1) Does internal fixation reduce the risk of further procedures for the treatment of a unicameral bone cyst? (2) Is radiographic healing faster with internal fixation? Following institutional review board approval, the authors conducted a retrospective review of 36 patients treated for a unicameral bone cyst of the proximal femur at their institutions between 1974 and 2014. Medical records and radiographs were reviewed to identify patient demographics and treatment outcomes. Tumor locations included femoral neck (n=13), intertrochanteric (n=16), and subtrochanteric (n=7). Initial treatment included steroid injection (n=2), curettage and bone grafting (n=9), and internal fixation with curettage and bone grafting (n=25). Mean time was 9 months to radiographic healing and 15 months to return to full activity. The number of patients requiring additional surgeries was increased among those who did not undergo internal fixation. There was no difference in time to radiographic healing. However, time to return to normal activities was reduced if patients had received internal fixation. A significant reduction in additional procedures was observed when patients had been treated with internal fixation. Although this did not influence time to radiographic healing, patients did return to normal activities sooner. Internal fixation should be considered in the treatment of proximal femoral unicameral bone cysts. [Orthopedics. 2017; 40(5):e862-e867.]. Copyright 2017, SLACK Incorporated.

  16. Alkaline biodegradable implants for osteoporotic bone defects--importance of microenvironment pH.

    Science.gov (United States)

    Liu, W; Wang, T; Yang, C; Darvell, B W; Wu, J; Lin, K; Chang, J; Pan, H; Lu, W W

    2016-01-01

    Change of microenvironment pH by biodegradable implants may ameliorate unbalanced osteoporotic bone remodeling. The present work demonstrated that a weak alkaline condition stimulated osteoblasts differentiation while suppressed osteoclast generation. In vivo, implants with an alkaline microenvironment pH (monitored by a pH microelectrode) exhibited a promising healing effect for the repair of osteoporotic bone defects. Under osteoporotic conditions, the response of the bone microenvironment to an endosseous implant is significantly impaired, and this substantially increases the risk of fracture, non-union and aseptic implant loosening. Acid-base equilibrium is an important factor influencing bone cell behaviour. The present purpose was to study the effect of a series of alkaline biodegradable implant materials on regeneration of osteoporotic bone defect, monitoring the microenvironment pH (μe-pH) over time. The proliferation and differentiation potential of osteoporotic rat bone marrow stromal cells and RAW 264.7 cells were examined under various pH conditions. Ovariectomized rat bone defects were filled with specific biodegradable materials, and μe-pH was measured by pH microelectrode. New osteoid and tartrate-resistant acid phosphatase-positive osteoclast-like cells were examined by Goldner's trichrome and TRAP staining, respectively. The intermediate layer between implants and new bone were studied using energy-dispersive X-ray spectroscopy (EDX) linear scanning. In vitro, weak alkaline conditions stimulated osteoporotic rat bone marrow stromal cells (oBMSC) differentiation, while inhibiting the formation of osteoclasts. In vivo, μe-pH differs from that of the homogeneous peripheral blood and exhibits variations over time particular to each material. Higher initial μe-pH was associated with more new bone formation, late response of TRAP-positive osteoclast-like cells and the development of an intermediate 'apatitic' layer in vivo. EDX suggested that

  17. 3D perfusion bioreactor-activated porous granules on implant fixation and early bone formation in sheep

    DEFF Research Database (Denmark)

    Ding, Ming; Snoek Henriksen, Susan; Martinetti, Roberta

    2017-01-01

    allograft, granules, granules with bone marrow aspirate or bioreactor-activated graft material. Following an observation time of 6 weeks, early implant fixation and bone formation were assessed by micro-CT scanning, mechanical testing, and histomorphometry. Bone formations were seen in all groups, while......, bone formation was observed in all groups, while the bioreactor-activated graft material did not reveal additional effects on early implant fixation comparable to allograft in this model. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2016....

  18. Influence of bone density on the cement fixation of femoral hip resurfacing components.

    Science.gov (United States)

    Bitsch, Rudi G; Jäger, Sebastian; Lürssen, Marcus; Loidolt, Travis; Schmalzried, Thomas P; Clarius, Michael

    2010-08-01

    In clinical outcome studies, small component sizes, female gender, femoral shape, focal bone defects, bad bone quality, and biomechanics have been associated with failures of resurfacing arthroplasties. We used a well-established experimental setup and human bone specimens to analyze the effects of bone density on cement fixation of femoral hip resurfacing components. Thirty-one fresh frozen femora were prepared for resurfacing using the original instruments. ASR resurfacing prostheses were implanted after dual-energy X-ray densitometer scans. Real-time measurements of pressure and temperature during implantation, analyses of cement penetration, and measurements of micro motions under torque application were performed. The associations of bone density and measurement data were examined calculating regression lines and multiple correlation coefficients; acceptability was tested with ANOVA. We found significant relations between bone density and micro motion, cement penetration, cement mantle thickness, cement pressure, and interface temperature. Mean bone density of the femora was 0.82 +/- 0.13 g/cm(2), t-score was -0.7 +/- 1.0, and mean micro motion between bone and femoral resurfacing component was 17.5 +/- 9.1 microm/Nm. The regression line between bone density and micro motion was equal to -56.7 x bone density + 63.8, R = 0.815 (p density scans are most helpful for patient selection in hip resurfacing, and a better bone quality leads to higher initial component stability. A sophisticated cementing technique is recommended to avoid vigorous impaction and incomplete seating, since increasing bone density also results in higher cement pressures, lower cement penetration, lower interface temperatures, and thicker cement mantles. Copyright 2010 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  19. Numerical analysis of an osseointegrated prosthesis fixation with reduced bone failure risk and periprosthetic bone loss

    NARCIS (Netherlands)

    Tomaszewski, P. M.; van Diest, M.; Bulstra, S. K.; Verdonschot, N.; Verkerke, G. J.

    2012-01-01

    Currently available implants for direct attachment of prosthesis to the skeletal system after transfemoral amputation (OPRA system. Integrum AB, Sweden and ISP Endo/Exo prosthesis, ESKA Implants AG, Germany) show many advantages over the conventional socket fixation. However, restraining

  20. The effect of infection and lag screw fixation on revascularization and new bone deposition in membranous bone grafts in a rabbit model.

    Science.gov (United States)

    Fialkov, J A; Phillips, J H; Walmsley, S L; Morava-Protzner, I

    1996-08-01

    We have suggested that rigid fixation of membranous bone grafts in the presence of infection may improve graft-recipient bone union by facilitating graft revascularzation. To test this hypothesis, we grafted autogenous membranous bone grafts to the mandibles of 94 New Zealand White rabbits. Lag screw fixation was applied in half the animals. The wounds were inoculated with a range of Staphylococcus aureus doses. Infected and noninfected rabbits were injected weekly over a 5-week course with fluorescein bone markers and with a marker of vascular endothelium (procion red) just prior to sacrifice. Revascularization and new bone deposition in the grafts were then quantified histologically for the 75 rabbits available for data collection. Infection decreased the amount of graft revascularized and the amount of new bone deposited for both rigidly fixated and nonfixated grafts. Grafts fixated with a lag screw showed a greater amount of revascularization and new bone deposition in the presence and absence of infection when compared with nonfixated grafts, supporting the hypothesis that rigid fixation of membranous bone grafts in the presence of infection may promote graft survival and union by improving revascularization and osteogenesis within the graft.

  1. In vitro evaluation of allogeneic bone screws for use in internal fixation of transverse fractures created in proximal sesamoid bones obtained from equine cadavers.

    Science.gov (United States)

    Sasaki, Naoki; Takakuwa, Jun; Yamada, Haruo; Mori, Ryuji

    2010-04-01

    To evaluate effectiveness of allogeneic bone screws and pins for internal fixation of midbody transverse fractures of equine proximal sesamoid bones (PSBs) in vitro. 14 forelimbs from cadavers of 3-year-old Thoroughbreds. Allogeneic cortical bone fragments were collected from the limbs of a male Thoroughbred, and cortical bone screws were prepared from the tissue by use of a precision desktop microlathe programmed with the dimensions of a metal cortical bone screw. A midbody transverse osteotomy of each PSB was performed by use of a bone-shaping oscillating saw and repaired via 1 of 3 internal fixation techniques: 1 allogeneic bone screw with 1 allogeneic bone pin (type I; n = 6 PSBs), 2 allogeneic bone screws (type II; 8), or 1 stainless steel cortical bone screw (control repair; 6). Mechanical tension measurements were obtained by use of a commercially available materials testing system. Mean +/- SD tensile strength (TS) was 668.3 +/- 216.6 N for type I repairs, 854.4 +/- 253.2 N for type II repairs, and 1,150.0 +/- 451.7 N for control repairs. Internal fixation of PSB fractures by the use of allogeneic bone screws and bone pins was successful. Although mean TS of control repairs with stainless steel cortical bone screws was greater than the mean TS of type I and type II repairs, the difference between type II and control repairs was not significant. Allogeneic screws may advance healing and result in fewer complications in a clinical setting.

  2. Drug loaded biodegradable load-bearing nanocomposites for damaged bone repair

    Science.gov (United States)

    Gutmanas, E. Y.; Gotman, I.; Sharipova, A.; Psakhie, S. G.; Swain, S. K.; Unger, R.

    2017-09-01

    In this paper we present a short review-scientific report on processing and properties, including in vitro degradation, of load bearing biodegradable nanocomposites as well as of macroporous 3D scaffolds for bone ingrowth. Biodegradable implantable devices should slowly degrade over time and disappear with ingrown of natural bone replacing the synthetic graft. Compared to low strength biodegradable polymers, and brittle CaP ceramics, biodegradable CaP-polymer and CaP-metal nanocomposites, mimicking structure of natural bone, as well as strong and ductile metal nanocomposites can provide to implantable devices both strengths and toughness. Nanostructuring of biodegradable β-TCP (tricalcium phosphate)-polymer (PCL and PLA), β-TCP-metal (FeMg and FeAg) and of Fe-Ag composites was achieved employing high energy attrition milling of powder blends. Nanocomposite powders were consolidated to densities close to theoretical by high pressure consolidation at ambient temperature—cold sintering, with retention of nanoscale structure. The strength of developed nanocomposites was significantly higher as compared with microscale composites of the same or similar composition. Heat treatment at moderate temperatures in hydrogen flow resulted in retention of nanoscale structure and higher ductility. Degradation of developed biodegradable β-TCP-polymer, β-TCP-metal and of Fe-Ag nanocomposites was studied in physiological solutions. Immersion tests in Ringer's and saline solution for 4 weeks resulted in 4 to 10% weight loss and less than 50% decrease in compression or bending strength, the remaining strength being significantly higher than the values reported for other biodegradable materials. Nanostructuring of Fe-Ag based materials resulted also in an increase of degradation rate because of creation on galvanic Fe-Ag nanocouples. In cell culture experiments, the developed nanocomposites supported the attachment the human osteoblast cells and exhibited no signs of cytotoxicity

  3. Stress state during fixation determines susceptibility to fatigue-linked biodegradation in bioprosthetic heart valve materials.

    Science.gov (United States)

    Margueratt, Sean D; Lee, J Michael

    2002-01-01

    Mechanical loading contributes to the structural deterioration of bioprosthetic heart valves. The influence of stress state during fixation may play a substantial role in their failure, linking fatigue damage caused by buckling and tension and the enzymatic degradation of glutaraldehyde-crosslinked collagen. Bovine pericardia were obtained immediately postmortem and 100 mm x 15 mm samples were cut in the base-to-apex direction. Half the samples were subjected to a uniaxial tensile stress of 250 kPa and half remained unloaded during a crosslinking treatment in 0.5% glutaraldehyde. Tissue samples were rinsed and cut into 16 mm x 4 mm test strips. Half of these strips were exposed to cyclic compressive buckling and alternating tension at 30 Hz for 20 million cycles (approx. 7.5 days) using a custom-built multi-sample fatigue system. Fatigue-damaged and non-damaged samples were subsequently incubated at 37 C for 48 hrs in: (i) Type I bacterial collagenase (20 U/ml) buffered in 0.05 M Tris, 10 mM CaCl2 2H2O (pH 7.4) or (ii) 0.05 M Tris buffer (pH 7.4) only. In both cases, the samples were loaded sinusoidally between 40 and 80 g using a previously described microtensile culture system. Tissue removed from the bath was rinsed in 0.1 M EDTA solution and mounted in a servo-hydraulic mechanical testing system (MTS). Ultimate tensile strength (UTS), maximum tissue modulus, and fracture strain were determined. The percent collagen solubilized was assessed by a colourmetric hydroxyproline assay of the enzyme bath and tissue sample. All data were analyzed by analysis of variance (ANOVA). The results confirmed the synergy between fatigue damage and collagenase proteolysis in these materials; however, there were no significant differences in this effect between simple fixation and stress-fixation up to 20 million cycles. There were significant decreases in the mechanical properties and an increase in the amount of collagen solubilized with increased exposure to fatigue cycling.

  4. Nanocomposites of Polyacrylic Acid Nanogels and Biodegradable Polyhydroxybutyrate for Bone Regeneration and Drug Delivery

    Directory of Open Access Journals (Sweden)

    Mikael Larsson

    2014-01-01

    Full Text Available Biodegradable cell scaffolds and local drug delivery to stimulate cell response are currently receiving much scientific attention. Here we present a nanocomposite that combines biodegradation with controlled release of lithium, which is known to enhance bone growth. Nanogels of lithium neutralized polyacrylic acid were synthesized by microemulsion-templated polymerization and were incorporated into a biodegradable polyhydroxybutyrate (PHB matrix. Nanogel size was characterized using dynamic light scattering, and the nanocomposites were characterized with regard to structure using scanning electron microscopy, mechanical properties using tensile testing, permeability using tritiated water, and lithium release in PBS using a lithium specific electrode. The nanogels were well dispersed in the composites and the mechanical properties were good, with a decrease in elastic modulus being compensated by increased tolerance to strain in the wet state. Approximately half of the lithium was released over about three hours, with the remaining fraction being trapped in the PHB for subsequent slow release during biodegradation. The prepared nanocomposites seem promising for use as dual functional scaffolds for bone regeneration. Here lithium ions were chosen as model drug, but the nanogels could potentially act as carriers for larger and more complex drugs, possibly while still carrying lithium.

  5. Poly(dopamine) coating to biodegradable polymers for bone tissue engineering.

    Science.gov (United States)

    Tsai, Wei-Bor; Chen, Wen-Tung; Chien, Hsiu-Wen; Kuo, Wei-Hsuan; Wang, Meng-Jiy

    2014-02-01

    In this study, a technique based on poly(dopamine) deposition to promote cell adhesion was investigated for the application in bone tissue engineering. The adhesion and proliferation of rat osteoblasts were evaluated on poly(dopamine)-coated biodegradable polymer films, such as polycaprolactone, poly(l-lactide) and poly(lactic-co-glycolic acid), which are commonly used biodegradable polymers in tissue engineering. Cell adhesion was significantly increased to a plateau by merely 15 s of dopamine incubation, 2.2-4.0-folds of increase compared to the corresponding untreated substrates. Cell proliferation was also greatly enhanced by poly(dopamine) deposition, indicated by shortened cell doubling time. Mineralization was also increased on the poly(dopamine)-deposited surfaces. The potential of poly(dopamine) deposition in bone tissue engineering is demonstrated in this study.

  6. Internal fixation and muscle pedicle bone grafting in femoral neck fractures

    Directory of Open Access Journals (Sweden)

    Gupta A

    2008-01-01

    Full Text Available Background: The treatment of displaced intracapsular femoral neck fracture is still an unsolved problem. Non-union and avascular necrosis are the two main complications of this fracture, especially if patient presents late. Muscle pedicle bone grafting has been advocated to provide additional blood supply. We present analysis of our 32 cases of displaced femoral neck fracture treated by internal fixation and quadratus femoris based muscle pedicle bone grafting. Materials and Methods: Open reduction and internal fixation with muscle pedicle grafting was done in 32 patients. The age of patients varied from 14-62 years (average age 45 years with male to female ratio of 13:3. Twenty-nine fractures were more than three weeks old. All the cases were treated by Meyers′ procedure. The fracture was internally fixed after open reduction and then a muscle pedicle graft was applied. It was supplemented by cancellous bone graft in seven cases. Fixation was done by parallel cancellous lag screws ( n = 19, crossed Garden′s screws ( n = 7, parallel Asnis screws ( n = 5 and Moore′s pin ( n = 1.Quadratus femoris muscle pedicle graft was used in 32 cases. In the initial 12 cases the graft was fixed with circumferential proline sutures, but later, to provide a secure fixation, the graft was fixed with a cancellous screw ( n = 20. Postoperative full weight bearing was deferred to an average of 10 weeks. Results: Union was achieved in 26/29 (89.65% cases which could be followed for an average period of 3.4 years, (2-8.5 years with good functional results and had the ability to squat and sit cross-legged. Results were based on hip rating system given by Salvatti and Wilson. The results were excellent in 15 cases, good in four cases, fair in four cases and poor in six cases. Complications were avascular necrosis ( n = 2, transient foot drop ( n = 2, coxa-vara ( n = 1 and temporary loss of scrotal sensation ( n = 1. Conclusion: Muscle pedicle bone grafting with

  7. Advanced bredigite-containing magnesium-matrix composites for biodegradable bone implant applications.

    Science.gov (United States)

    Dezfuli, Sina Naddaf; Huan, Zhiguang; Mol, Arjan; Leeflang, Sander; Chang, Jiang; Zhou, Jie

    2017-10-01

    The present research was aimed at developing magnesium-matrix composites that could allow effective control over their physiochemical and mechanical responses when in contact with physiological solutions. A biodegradable, bioactive ceramic - bredigite was chosen as the reinforcing phase in the composites, based on the hypothesis that the silicon- and magnesium-containing ceramic could protect magnesium from fast corrosion and at the same time stimulate cell proliferation. Methods to prepare composites with integrated microstructures - a prerequisite to achieve controlled biodegradation were developed. A systematic experimental approach was taken in order to elucidate the in vitro biodegradation mechanisms and kinetics of the composites. It was found that the composites with 20-40% homogenously dispersed bredigite particles, prepared from powders, could indeed significantly decrease the degradation rate of magnesium by up to 24 times. Slow degradation of the composites resulted in the retention of the mechanical integrity of the composites within the strength range of cortical bone after 12days of immersion in a cell culture medium. Cell attachment, cytotoxicity and bioactivity tests confirmed the stimulatory effects of bredigite embedded in the composites on the attachment, viability and differentiation of bone marrow stromal cells. Thus, the multiple benefits of adding bredigite to magnesium in enhancing degradation behavior, mechanical properties, biocompatibility and bioactivity were obtained. The results from this research showed the excellent potential of the bredigite-containing composites for bone implant applications, thus warranting further in vitro and in vivo research. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Efficacy of a small cell-binding peptide coated hydroxyapatite substitute on bone formation and implant fixation in sheep

    DEFF Research Database (Denmark)

    Ding, Ming; Andreasen, Christina Møller; Dencker, Mads L.

    2015-01-01

    hydroxyapatite (ABM/P-15); hydroxyapatite + βtricalciumphosphate+ Poly-Lactic-Acid (HA/βTCP-PDLLA); or ABM/P-15+HA/βTCP-PDLLA. After nine weeks, bone-implant blocks were harvested and sectioned for micro-CT scanning, push-out test, and histomorphometry. Significant bone formation and implant fixation could...

  9. An alternative graft fixation technique for scaphoid nonunions treated with vascular bone grafting.

    Science.gov (United States)

    Korompilias, Anastasios V; Lykissas, Marios G; Kostas-Agnantis, Ioannis P; Gkiatas, Ioannis; Beris, Alexandros E

    2014-07-01

    To present our experience with vascularized bone grafting based on the 1,2-intercompartmental supraretinacular artery for the management of established scaphoid nonunion and to investigate the efficacy of graft immobilization with a combination of Kirschner wires and transarticular external fixation. A retrospective chart and radiographic review was conducted for patients with the diagnosis of scaphoid nonunion of the proximal pole or the waist treated with the 1,2-intercompartmental supraretinacular artery-based vascularized graft and fixed with a combination of Kirschner wires and transarticular external fixation between 2007 and 2011. We observed 23 consecutive patients for a mean of 34 ± 4 months. All patients were males with mean age of 25 ± 5 years. All patients had scaphoid nonunion and associated humpback deformity. The mean duration of nonunion was 7 ± 1 months. All scaphoid nonunions united after the index procedure at a mean of 10 ± 1 weeks. Two patients had avascular necrosis of the proximal pole based on the preoperative magnetic resonance imaging findings. After surgery, deformity correction was achieved in all patients, as recorded by the decrease in the lateral intrascaphoid angle and the increase in the dorsal scaphoid angle. At the last follow-up, no patients reported wrist pain. The mean Disabilities of the Arm, Shoulder, and Hand score improved significantly from 32 ± 12 before the operation to 5 ± 3 at the last postoperative visit. All patients showed statistically significant improvement in the range of motion and the grip strength of the involved wrist. The results of this study support the combined use of Kirschner wires and transarticular external fixation for fixation of a 1,2-intercompartmental supraretinacular artery-based vascular bone graft in the treatment of scaphoid nonunions. Therapeutic IV. Copyright © 2014 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.

  10. The prediction of cyclic proximal humerus fracture fixation failure by various bone density measures.

    Science.gov (United States)

    Varga, Peter; Grünwald, Leonard; Windolf, Markus

    2018-02-22

    Fixation of osteoporotic proximal humerus fractures has remained challenging, but may be improved by careful pre-operative planning. The aim of this study was to investigate how well the failure of locking plate fixation of osteoporotic proximal humerus fractures can be predicted by bone density measures assessed with currently available clinical imaging (realistic case) and a higher resolution and quality modality (theoretical best-case). Various density measures were correlated to experimentally assessed number of cycles to construct failure of plated unstable low-density proximal humerus fractures (N = 18). The influence of density evaluation technique was investigated by comparing local (peri-implant) versus global evaluation regions; HR-pQCT-based versus clinical QCT-based image data; ipsilateral versus contralateral side; and bone mineral content (BMC) versus bone mineral density (BMD). All investigated density measures were significantly correlated with the experimental cycles to failure. The best performing clinically feasible parameter was the QCT-based BMC of the contralateral articular cap region, providing significantly better correlation (R 2  = 0.53) compared to a previously proposed clinical density measure (R 2  = 0.30). BMC had consistently, but not significantly stronger correlations with failure than BMD. The overall best results were obtained with the ipsilateral HR-pQCT-based local BMC (R 2  = 0.74) that may be used for implant optimization. Strong correlations were found between the corresponding density measures of the two CT image sources, as well as between the two sides. Future studies should investigate if BMC of the contralateral articular cap region could provide improved prediction of clinical fixation failure compared to previously proposed measures. © 2018 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res. © 2018 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  11. Nanocomposite bone scaffolds based on biodegradable polymers and hydroxyapatite.

    Science.gov (United States)

    Becker, Johannes; Lu, Lichun; Runge, M Brett; Zeng, Heng; Yaszemski, Michael J; Dadsetan, Mahrokh

    2015-08-01

    In tissue engineering, development of an osteoconductive construct that integrates with host tissue remains a challenge. In this work, the effect of bone-like minerals on maturation of pre-osteoblast cells was investigated using polymer-mineral scaffolds composed of poly(propylene fumarate)-co-poly(caprolactone) (PPF-co-PCL) and nano-sized hydroxyapatite (HA). The HA of varying concentrations was added to an injectable formulation of PPF-co-PCL and the change in thermal and mechanical properties of the scaffolds was evaluated. No change in onset of degradation temperature was observed due to the addition of HA, however compressive and tensile moduli of copolymer changed significantly when HA amounts were increased in composite formulation. The change in mechanical properties of copolymer was found to correlate well to HA concentration in the constructs. Electron microscopy revealed mineral nucleation and a change in surface morphology and the presence of calcium and phosphate on surfaces was confirmed using energy dispersive X-ray analysis. To characterize the effect of mineral on attachment and maturation of pre-osteoblasts, W20-17 cells were seeded on HA/copolymer composites. We demonstrated that cells attached more to the surface of HA containing copolymers and their proliferation rate was significantly increased. Thus, these findings suggest that HA/PPF-co-PCL composite scaffolds are capable of inducing maturation of pre-osteoblasts and have the potential for use as scaffold in bone tissue engineering. © 2014 Wiley Periodicals, Inc.

  12. Successful correction of tibial bone deformity through multiple surgical procedures, liquid nitrogen-pretreated bone tumor autograft, three-dimensional external fixation, and internal fixation in a patient with primary osteosarcoma: a case report.

    Science.gov (United States)

    Takeuchi, Akihiko; Yamamoto, Norio; Shirai, Toshiharu; Nishida, Hideji; Hayashi, Katsuhiro; Watanabe, Koji; Miwa, Shinji; Tsuchiya, Hiroyuki

    2015-12-07

    In a previous report, we described a method of reconstruction using tumor-bearing autograft treated by liquid nitrogen for malignant bone tumor. Here we present the first case of bone deformity correction following a tumor-bearing frozen autograft via three-dimensional computerized reconstruction after multiple surgeries. A 16-year-old female student presented with pain in the left lower leg and was diagnosed with a low-grade central tibial osteosarcoma. Surgical bone reconstruction was performed using a tumor-bearing frozen autograft. Bone union was achieved at 7 months after the first surgical procedure. However, local tumor recurrence and lung metastases occurred 2 years later, at which time a second surgical procedure was performed. Five years later, the patient developed a 19° varus deformity and underwent a third surgical procedure, during which an osteotomy was performed using the Taylor Spatial Frame three-dimensional external fixation technique. A fourth corrective surgical procedure was performed in which internal fixation was achieved with a locking plate. Two years later, and 10 years after the initial diagnosis of tibial osteosarcoma, the bone deformity was completely corrected, and the patient's limb function was good. We present the first report in which a bone deformity due to a primary osteosarcoma was corrected using a tumor-bearing frozen autograft, followed by multiple corrective surgical procedures that included osteotomy, three-dimensional external fixation, and internal fixation.

  13. Stress analysis of implant-bone fixation at different fracture angle

    Science.gov (United States)

    Izzawati, B.; Daud, R.; Afendi, M.; Majid, MS Abdul; Zain, N. A. M.; Bajuri, Y.

    2017-10-01

    Internal fixation is a mechanism purposed to maintain and protect the reduction of a fracture. Understanding of the fixation stability is necessary to determine parameters influence the mechanical stability and the risk of implant failure. A static structural analysis on a bone fracture fixation was developed to simulate and analyse the biomechanics of a diaphysis shaft fracture with a compression plate and conventional screws. This study aims to determine a critical area of the implant to be fractured based on different implant material and angle of fracture (i.e. 0°, 30° and 45°). Several factors were shown to influence stability to implant after surgical. The stainless steel, (S. S) and Titanium, (Ti) screws experienced the highest stress at 30° fracture angle. The fracture angle had a most significant effect on the conventional screw as compared to the compression plate. The stress was significantly higher in S.S material as compared to Ti material, with concentrated on the 4th screw for all range of fracture angle. It was also noted that the screws closest to the intense concentration stress areas on the compression plate experienced increasing amounts of stress. The highest was observed at the screw thread-head junction.

  14. The effect of infection and lag screw fixation on the union of membranous bone grafts in a rabbit model.

    Science.gov (United States)

    Fialkov, J A; Phillips, J H; Walmsley, S L

    1994-03-01

    Infection complicating craniofacial procedures contributes significantly to patient morbidity and health care costs. The role of fixation materials in this setting remains unclear. As foreign material, does fixation hardware increase patients' susceptibility to developing postoperative infection? Furthermore, once infection is established, should fixation hardware be removed? To answer these questions, we performed an onlay membranous bone grafting procedure to the mandible in 94 New Zealand White rabbits, applied lag-screw fixation in half the animals, and inoculated the wounds with different bacterial doses. We quantified the differential rates of infection and rates of graft union in the presence of infection. The infection rates for the rigidly fixated group were not significantly different from the rates for the nonfixated group for a range of bacterial inoculum doses. There was no significant difference in the rates of resolution of infection and sepsis between the two groups. Gross and histologic assessments revealed a significantly lower union rate for infected grafts when compared with uninfected grafts. Furthermore, grafts rigidly fixated with a lag screw showed a higher rate of union when compared with nonfixated grafts in the presence of infection. In the absence of infection, the union rates for fixated and nonfixated groups did not differ significantly. While fixation hardware has been cited as a risk factor for postoperative infection, we were unable to show that lag-screw fixation contributes to this risk. Although infection impaired the union of membranous bone grafts to the recipient mandible, fixation of the grafts with a lag screw significantly decreased this deleterious effect of infection.(ABSTRACT TRUNCATED AT 250 WORDS)

  15. Osteosynthesis of ununited femoral neck fracture by internal fixation combined with iliac crest bone chips and muscle pedicle bone grafting

    Directory of Open Access Journals (Sweden)

    D D Baksi

    2016-01-01

    Full Text Available Background: Ununited femoral neck fracture is seen commonly in developing countries due to delayed presentation or failure of primary internal fixation. Such fractures, commonly present with partial or total absorption of femoral neck, osteonecrosis of femoral head in 8-30% cases with upward migration of trochanter posing problem for osteosynthesis, especially in younger individuals. Several techniques for treatment of such conditions are described like osteotomies or nonvascularied cortical or cancellous bone grafting provided varying degrees of success in terms of fracture union but unsatisfactory long term results occurred due to varying incidence of avascular necrosis (AVN of femoral head. Moreover, in presence of AVN of femoral head neither free fibular graft nor cancellous bone graft is satisfactory. The vascularied bone grafting by deep circumflex iliac artery based on iliac crest bone grafting, free vascularied fibular grafting and muscle pedicle periosteal grafting showed high incidence of success rate. Osteosynthesis is the preferred treatment of choice in ununited femoral neck fracture in younger individuals. Materials and Methods: Of the 293 patients operated during the period from June 1977 to June 2009, 42 were lost to followup. Seven patients with gluteus medius muscle pedicle bone grafting (MPBG were excluded. Thus, out of 244 patients, 208 (85.3% untreated nonunion and 36 (14.7% following failure of primary internal fixation were available for studies. Time interval between the date of injury and operation in untreated nonunion cases was mean 6.5 months and in failed internal fixation cases was mean 11.2 months. Ages of the patients varied from 16 to 55 years. Seventy patients had partial and 174 had subtotal absorption of the femoral neck. Evidence of avascular necrosis (AVN femoral head was found histologically in 135 (54.3% and radiologically in 48 (19.7% patients. The patients were operated by open reduction of fracture

  16. Aspects of internal fixation of fractures in porotic bone. Principles, technologies and procedures using locked plate screws.

    Science.gov (United States)

    Perren, S M; Linke, B; Schwieger, K; Wahl, D; Schneider, E

    2005-01-01

    Fractures of the bones of elderly people occur more often and have a more important effect because of a generally diminished ability to coordinate stance and walking. These fractures occur at a lower level of load because of lack of strength of the porotic bone. Prompt recovery of skeletal support function is essential to avoid respiratory and circulatory complications in the elderly. To prevent elderly people from the risks of being bedridden, demanding internal fixation of fractures is required. The weak porotic bone and the high level of uncontrolled loading after internal fixation pose complex problems. A combination of several technical elements of design, application and aftercare in internal fixation are proposed. Internal fixators with locked screws improve the biology and the mechanics of internal fixation. When such fixators are used as elevated splints they may stimulate early callus formation because of their flexibility, the limit of flexibility being set by the demands of resistance and function of the limb. Our own studies of triangulation of locked screws have demonstrated their beneficial effects and unexpected limitations.

  17. 3D perfusion bioreactor-activated porous granules on implant fixation and early bone formation in sheep.

    Science.gov (United States)

    Ding, Ming; Henriksen, Susan S; Martinetti, Roberta; Overgaard, Søren

    2017-11-01

    Early fixation of total joint arthroplasties is crucial for ensuring implant survival. An alternative bone graft material in revision surgery is needed to replace the current gold standard, allograft, seeing that the latter is associated with several disadvantages. The incubation of such a construct in a perfusion bioreactor has been shown to produce viable bone graft materials. This study aimed at producing larger amounts of viable bone graft material (hydroxyapatite 70% and β-tricalcium-phosphate 30%) in a novel perfusion bioreactor. The abilities of the bioreactor-activated graft material to induce early implant fixation were tested in a bilateral implant defect model in sheep, with allograft as the control group. Defects were bilaterally created in the distal femurs of the animals, and titanium implants were inserted. The concentric gaps around the implants were randomly filled with either allograft, granules, granules with bone marrow aspirate or bioreactor-activated graft material. Following an observation time of 6 weeks, early implant fixation and bone formation were assessed by micro-CT scanning, mechanical testing, and histomorphometry. Bone formations were seen in all groups, while no significant differences between groups were found regarding early implant fixation. The microarchitecture of the bone formed by the synthetic graft materials resembled that of allograft. Histomorphometry revealed that allograft induced significantly more bone and less fibrous tissue (p formation was observed in all groups, while the bioreactor-activated graft material did not reveal additional effects on early implant fixation comparable to allograft in this model. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 2465-2476, 2017. © 2016 Wiley Periodicals, Inc.

  18. Relationships between head fixation pins for radiosurgery and the skull bone. Usefulness of a torque wrench

    International Nuclear Information System (INIS)

    Toyota, Shun; Seta, Hidetoshi; Muramatsu, Masatoshi; Kubo, Hitoshi; Takeda, Kan

    2003-01-01

    In stereotactic radiosurgery (SRS), fixation devices are secured to the patient's head with pins. However, there have been no standards for the use of such pins, which must be inserted with appropriate torque based on the surgeon's clinical judgment. Therefore, the pins may sometimes be tightened excessively and penetrate too deeply into the patient's skull. To improve safety in SRS, a torque wrench was used for pin insertion. The usefulness of the torque wrench was then evaluated by examining the relationships between the pins and skull bone and identifying differences according to the wrench used and the patient's bone thickness. CT images of patients who had previously undergone SRS were used to assess the relationships between the pins and skull bone. Differences according to the wrench used and pin insertion site were investigated. Compared with a standard wrench, use of the torque wrench decreased the insertion depth of pins in the skull bone. In terms of site, pins in the forehead were inserted more deeply. No differences related to the frontal sinus were observed. The use of a torque wrench improved safety during pin insertion for SRS procedures. (author)

  19. Guided bone regeneration with a synthetic biodegradable membrane: a comparative study in dogs.

    Science.gov (United States)

    Jung, Ronald E; Kokovic, Vladimir; Jurisic, Milan; Yaman, Duygu; Subramani, Karthikeyan; Weber, Franz E

    2011-08-01

    The aim of the present study was to compare a newly developed biodegradable polylactide/polyglycolide/N-methyl-2-pyrrolidone (PLGA/NMP) membrane with a standard resorbable collagen membrane (RCM) in combination with and without the use of a bone substitute material (deproteinized bovine bone mineral [DBBM]) looking at the proposed tenting effect and bone regeneration. In five adult German sheepdogs, the mandibular premolars P2, P3, P4, and the molar M1 were bilaterally extracted creating two bony defects on each site. A total of 20 dental implants were inserted and allocated to four different treatment modalities within each dog: PLGA/NMP membrane only (Test 1), PLGA/NMP membrane with DBBM (Test 2), RCM only (negative control), and RCM with DBBM (positive control). A histomorphometric analysis was performed 12 weeks after implantation. For statistical analysis, a Friedman test and subsequently a Wilcoxon signed ranks test were applied. In four out of five PLGA/NMP membrane-treated defects, the membranes had broken into pieces without the support of DBBM. This led to a worse outcome than in the RCM group. In combination with DBBM, both membranes revealed similar amounts of area of bone regeneration and bone-to-implant contact without significant differences. On the level of the third implant thread, the PLGA/NMP membrane induced more horizontal bone formation beyond the graft than the RCM. The newly developed PLGA/NMP membrane performs equally well as the RCM when applied in combination with DBBM. Without bone substitute material, the PLGA/NMP membrane performed worse than the RCM in challenging defects, and therefore, a combination with a bone substitute material is recommended. © 2010 John Wiley & Sons A/S.

  20. A Paradigm for the Development and Evaluation of Novel Implant Topologies for Bone Fixation: In Vivo Evaluation

    OpenAIRE

    Long, Jason P.; Hollister, Scott J.; Goldstein, Steven A.

    2012-01-01

    While contemporary prosthetic devices restore some function to individuals who have lost a limb, there are efforts to develop bio-integrated prostheses to improve functionality. A critical step in advancing this technology will be to securely attach the device to remnant bone. To investigate mechanisms for establishing robust implant fixation in bone while undergoing loading, we previously used a topology optimization scheme to develop optimized orthopaedic implants and then fabricated select...

  1. Outcome after open reduction and internal fixation of intraarticular fractures of the calcaneum without the use of bone grafts

    Directory of Open Access Journals (Sweden)

    Pendse Aniruddha

    2006-01-01

    Full Text Available Background: Intraarticular fractures of calcaneum are commenest type of calcaneal fractures. Lots of controversies exist about the ideal management for them. The focus is now shifting on operative management by open reduction and internal fixation for these fractures with or without the use of bone grafts. Method: Thirty intraarticular fractures classified by Essex Lopresti radiological classification, were treated by open reduction and fixation. The patients were followed over a mean period of 30 months (25-40 months. Results: All the fractures united at a mean duration of 14 weeks. 86% patients had excellent functional outcome with one patient having fair and one having poor functional outcome. Conclusion: Open reduction and internal fixation with plate is a good method for treatment of intraarticular fractures of calcaneum to achieve anatomical restoration of articular surface under vision, stable fixation, early mobilization and an option for primary subtalar arthrodesis if deemed necessary.

  2. Limitations of using micro-computed tomography to predict bone-implant contact and mechanical fixation.

    Science.gov (United States)

    Liu, S; Broucek, J; Virdi, A S; Sumner, D R

    2012-01-01

    Fixation of metallic implants to bone through osseointegration is important in orthopaedics and dentistry. Model systems for studying this phenomenon would benefit from a non-destructive imaging modality so that mechanical and morphological endpoints can more readily be examined in the same specimens. The purpose of this study was to assess the utility of an automated microcomputed tomography (μCT) program for predicting bone-implant contact (BIC) and mechanical fixation strength in a rat model. Femurs in which 1.5-mm-diameter titanium implants had been in place for 4 weeks were either embedded in polymethylmethacrylate (PMMA) for preparation of 1-mm-thick cross-sectional slabs (16 femurs: 32 slabs) or were used for mechanical implant pull-out testing (n= 18 femurs). All samples were scanned by μCT at 70 kVp with 16 μm voxels and assessed by the manufacturer's software for assessing 'osseointegration volume per total volume' (OV/TV). OV/TV measures bone volume per total volume (BV/TV) in a 3-voxel-thick ring that by default excludes the 3 voxels immediately adjacent to the implant to avoid metal-induced artefacts. The plastic-embedded samples were also analysed by backscatter scanning electron microscopy (bSEM) to provide a direct comparison of OV/TV with a well-accepted technique for BIC. In μCT images in which the implant was directly embedded within PMMA, there was a zone of elevated attenuation (>50% of the attenuation value used to segment bone from marrow) which extended 48 μm away from the implant surface. Comparison of the bSEM and μCT images showed high correlations for BV/TV measurements in areas not affected by metal-induced artefacts. In addition for bSEM images, we found that there were high correlations between peri-implant BV/TV within 12 μm of the implant surface and BIC (correlation coefficients ≥0.8, p implant pull-out strength (r= 0.401, p= 0.049) and energy to failure (r= 0.435, p= 0.035). Thus, the need for the 48-μm-thick exclusion

  3. Cortical bone trajectory screw fixation versus traditional pedicle screw fixation for 2-level posterior lumbar interbody fusion: comparison of surgical outcomes for 2-level degenerative lumbar spondylolisthesis.

    Science.gov (United States)

    Sakaura, Hironobu; Miwa, Toshitada; Yamashita, Tomoya; Kuroda, Yusuke; Ohwada, Tetsuo

    2018-01-01

    OBJECTIVE The cortical bone trajectory (CBT) screw technique is a new nontraditional pedicle screw (PS) insertion method. However, the biomechanical behavior of multilevel CBT screw/rod fixation remains unclear, and surgical outcomes in patients after 2-level posterior lumbar interbody fusion (PLIF) using CBT screw fixation have not been reported. Thus, the purposes of this study were to examine the clinical and radiological outcomes after 2-level PLIF using CBT screw fixation for 2-level degenerative lumbar spondylolisthesis (DS) and to compare these outcomes with those after 2-level PLIF using traditional PS fixation. METHODS The study included 22 consecutively treated patients who underwent 2-level PLIF with CBT screw fixation for 2-level DS (CBT group, mean follow-up 39 months) and a historical control group of 20 consecutively treated patients who underwent 2-level PLIF using traditional PS fixation for 2-level DS (PS group, mean follow-up 35 months). Clinical symptoms were evaluated using the Japanese Orthopaedic Association (JOA) scoring system. Bony union was assessed by dynamic plain radiographs and CT images. Surgery-related complications, including symptomatic adjacent-segment disease (ASD), were examined. RESULTS The mean operative duration and intraoperative blood loss were 192 minutes and 495 ml in the CBT group and 218 minutes and 612 ml in the PS group, respectively (p 0.05, respectively). The mean JOA score improved significantly from 12.3 points before surgery to 21.1 points (mean recovery rate 54.4%) at the latest follow-up in the CBT group and from 12.8 points before surgery to 20.4 points (mean recovery rate 51.8%) at the latest follow-up in the PS group (p > 0.05). Solid bony union was achieved at 90.9% of segments in the CBT group and 95.0% of segments in the PS group (p > 0.05). Symptomatic ASD developed in 2 patients in the CBT group (9.1%) and 4 patients in the PS group (20.0%, p > 0.05). CONCLUSIONS Two-level PLIF with CBT screw fixation

  4. Magnetic biodegradable Fe3O4/CS/PVA nanofibrous membranes for bone regeneration

    International Nuclear Information System (INIS)

    Wei Yan; Zhang Xuehui; Hu Xiaoyang; Deng Xuliang; Song Yu; Lin Yuanhua; Han Bing; Wang Xinzhi

    2011-01-01

    In recent years, interest in magnetic biomimetic scaffolds for tissue engineering has increased considerably. The aim of this study is to develop magnetic biodegradable fibrous materials with potential use in bone regeneration. Magnetic biodegradable Fe 3 O 4 /chitosan (CS)/poly vinyl alcohol (PVA) nanofibrous membranes were achieved by electrospinning with average fiber diameters ranging from 230 to 380 nm and porosity of 83.9-85.1%. The influences of polymer concentration, applied voltage and Fe 3 O 4 nanoparticles loading on the fabrication of nanofibers were investigated. The polymer concentration of 4.5 wt%, applied voltage of 20 kV and Fe 3 O 4 nanoparticles loading of lower than 5 wt% could produce homogeneous, smooth and continuous Fe 3 O 4 /CS/PVA nanofibrous membranes. X-ray diffraction (XRD) data confirmed that the crystalline structure of the Fe 3 O 4 , CS and PVA were maintained during electrospinning process. Fourier transform infrared spectroscopy (FT-IR) demonstrated that the Fe 3 O 4 loading up to 5 wt% did not change the functional groups of CS/PVA greatly. Transmission electron microscopy (TEM) showed islets of Fe 3 O 4 nanoparticles evenly distributed in the fibers. Weak ferrimagnetic behaviors of membranes were revealed by vibrating sample magnetometer (VSM) test. Tensile test exhibited Young's modulus of membranes that were gradually enhanced with the increase of Fe 3 O 4 nanoparticles loading, while ultimate tensile stress and ultimate strain were slightly reduced by Fe 3 O 4 nanoparticles loading of 5%. Additionally, MG63 human osteoblast-like cells were seeded on the magnetic nanofibrous membranes to evaluate their bone biocompatibility. Cell growth dynamics according to MTT assay and scanning electron microscopy (SEM) observation exhibited good cell adhesion and proliferation, suggesting that this magnetic biodegradable Fe 3 O 4 /CS/PVA nanofibrous membranes can be one of promising biomaterials for facilitation of osteogenesis.

  5. In Vitro Corrosion Assessment of Additively Manufactured Porous NiTi Structures for Bone Fixation Applications

    Directory of Open Access Journals (Sweden)

    Hamdy Ibrahim

    2018-03-01

    Full Text Available NiTi alloys possess distinct functional properties (i.e., shape memory effect and superelasticity and biocompatibility, making them appealing for bone fixation applications. Additive manufacturing offers an alternative method for fabricating NiTi parts, which are known to be very difficult to machine using conventional manufacturing methods. However, poor surface quality, and the presence of impurities and defects, are some of the major concerns associated with NiTi structures manufactured using additive manufacturing. The aim of this study is to assess the in vitro corrosion properties of additively manufactured NiTi structures. NiTi samples (bulk and porous were produced using selective laser melting (SLM, and their electrochemical corrosion characteristics and Ni ion release levels were measured and compared with conventionally fabricated NiTi parts. The additively manufactured NiTi structures were found to have electrochemical corrosion characteristics similar to those found for the conventionally fabricated NiTi alloy samples. The highest Ni ion release level was found in the case of 50% porous structures, which can be attributed to their significantly higher exposed surface area. However, the Ni ion release levels reported in this work for all the fabricated structures remain within the range of most of values for conventionally fabricated NiTi alloys reported in the literature. The results of this study suggest that the proposed SLM fabrication process does not result in a significant deterioration in the corrosion resistance of NiTi parts, making them suitable for bone fixation applications.

  6. Acromioclavicular joint dislocation: a Dog Bone button fixation alone versus Dog Bone button fixation augmented with acromioclavicular repair-a finite element analysis study.

    Science.gov (United States)

    Sumanont, Sermsak; Nopamassiri, Supachoke; Boonrod, Artit; Apiwatanakul, Punyawat; Boonrod, Arunnit; Phornphutkul, Chanakarn

    2018-03-20

    Suspension suture button fixation was frequently used to treat acromioclavicular joint (ACJ) dislocation. However, there were many studies reporting about complications and residual horizontal instability after fixation. Our study compared the stability of ACJ after fixation between coracoclavicular (CC) fixation alone and CC fixation combined with ACJ repair by using finite element analysis (FEA). A finite element model was created by using CT images from the normal shoulder. The model 1 was CC fixation with suture button alone, and the model 2 was CC fixation with suture button combined with ACJ repair. Three different forces (50, 100, 200 N) applied to the model in three planes; inferior, anterior and posterior direction load to the acromion. The von Mises stress of the implants and deformation at ACJs was recorded. The ACJ repair in the model 2 could reduce the peak stress on the implant after applying the loading forces to the acromion which the ACJ repair could reduce the peak stress of the FiberWire at suture button about 90% when compared to model 1. And, the ACJ repair could reduce the deformation of the ACJ after applying the loading forces to the acromion in both vertical and horizontal planes. This FEA supports that the high-grade injuries of the ACJ should be treated with CC fixation combined with ACJ repair because this technique provides excellent stability in both vertical and horizontal planes and reduces stress to the suture button.

  7. Biodegradation, biocompatibility, and osteoconduction evaluation of collagen-nanohydroxyapatite cryogels for bone tissue regeneration.

    Science.gov (United States)

    Salgado, Christiane Laranjo; Grenho, Liliana; Fernandes, Maria Helena; Colaço, Bruno Jorge; Monteiro, Fernando Jorge

    2016-01-01

    Designing biomimetic biomaterials inspired by the natural complex structure of bone and other hard tissues is still a challenge nowadays. The control of the biomineralization process onto biomaterials should be evaluated before clinical application. Aiming at bone regeneration applications, this work evaluated the in vitro biodegradation and interaction between human bone marrow stromal cells (HBMSC) cultured on different collagen/nanohydroxyapatite cryogels. Cell proliferation, differentiation, morphology, and metabolic activity were assessed through different protocols. All the biocomposite materials allowed physiologic apatite deposition after incubation in simulated body fluid and the cryogel with the highest nanoHA content showed to have the highest mechanical strength (DMA). The study clearly showed that the highest concentration of nanoHA granules on the cryogels were able to support cell type's survival, proliferation, and individual functionality in a monoculture system, for 21 days. In fact, the biocomposites were also able to differentiate HBMSCs into osteoblastic phenotype. The composites behavior was also assessed in vivo through subcutaneous and bone implantation in rats to evaluate its tissue-forming ability and degradation rate. The cryogels Coll/nanoHA (30 : 70) promoted tissue regeneration and adverse reactions were not observed on subcutaneous and bone implants. The results achieved suggest that scaffolds of Coll/nanoHA (30 : 70) should be considered promising implants for bone defects that present a grotto like appearance with a relatively small access but a wider hollow inside. This material could adjust to small dimensions and when entering into the defect, it could expand inside and remain in close contact with the defect walls, thus ensuring adequate osteoconductivity. © 2015 Wiley Periodicals, Inc.

  8. Internal fixation of proximal fractures of the 2nd and 4th metacarpal and metatarsal bones using bioabsorbable screws.

    Science.gov (United States)

    Mageed, M; Steinberg, T; Drumm, N; Stubbs, N; Wegert, J; Koene, M

    2018-03-01

    Fractures involving the proximal one-third of the splint bone are relatively rare and are challenging to treat. A variety of management techniques have been reported in the literature. The aim of this retrospective case series was to describe the clinical presentation and evaluate the efficacy of bioabsorbable polylactic acid screws in internal fixation of proximal fractures of the 2nd and 4th metacarpal and metatarsal bones in horses. The medical records, diagnostic images and outcome of all horses diagnosed with a proximal fracture of the splint bones and treated with partial resection and internal fixation of the proximal stump using bioabsorbable polylactic acid screws between 2014 and 2015 were reviewed. Eight horses met the inclusion criteria. The results showed that there were no complications encountered during screw placement or postoperatively. Six horses returned to full work 3 months after the operation and two horses remained mildly lame. On follow-up radiographs 12 months postoperatively (n = 2) the screws were not completely absorbed. The screws resulted in a cone-shaped radiolucency, which was progressively replaced from the outer margins by bone sclerosis. The use of bioabsorbable screws for fixation of proximal fractures of the splint bone appears to be a safe and feasible technique and may offer several advantages over the use of traditional metallic implants. © 2018 Australian Veterinary Association.

  9. Multiple Rib Nonunion: Open Reduction and Internal Fixation and Iliac Crest Bone Graft Aspirate.

    Science.gov (United States)

    Kaplan, Daniel J; Begly, John; Tejwani, Nirmal

    2017-08-01

    Rib fractures are a common chest injury that can typically be treated nonoperatively. However, a percentage of these will go on to nonunion, either because of unique characteristics of the fracture itself or because of a variety of poor healing factors of the host. If a patient has continued symptomology beyond 3 months, surgeons may consider operative management. Although isolated resection of fibrous scar tissue from the nonunion site may be sufficient in some cases, it may also be necessary to provide additional structural integrity to the rib depending on the extent of the fracture pattern and resection. This goal can be achieved operatively with rib plating and bone grafting to promote healing. This video demonstrates the use of plating in the treatment of rib nonunion. It begins with relevant background information on rib fractures and nonunions, then details the approach, open reduction and internal fixation of 3 ribs using plates and bone graft aspirate. Pearls and pitfalls are included during the surgical technique aspect of the video to both help guide surgeons new to the procedure and provide potentially advantageous technical details to more experienced surgeons.

  10. Osteogenic protein-1 increases the fixation of implants grafted with morcellised bone allograft and ProOsteon bone substitute: an experimental study in dogs

    DEFF Research Database (Denmark)

    Jensen, T B; Overgaard, S; Lind, M

    2007-01-01

    Impacted bone allograft is often used in revision joint replacement. Hydroxyapatite granules have been suggested as a substitute or to enhance morcellised bone allograft. We hypothesised that adding osteogenic protein-1 to a composite of bone allograft and non-resorbable hydroxyapatite granules...... (ProOsteon) would improve the incorporation of bone and implant fixation. We also compared the response to using ProOsteon alone against bone allograft used in isolation. We implanted two non-weight-bearing hydroxyapatite-coated implants into each proximal humerus of six dogs, with each implant...... surrounded by a concentric 3 mm gap. These gaps were randomly allocated to four different procedures in each dog: 1) bone allograft used on its own; 2) ProOsteon used on its own; 3) allograft and ProOsteon used together; or 4) allograft and ProOsteon with the addition of osteogenic protein-1. After three...

  11. A novel combined method of osteosynthesis in treatment of tibial fractures: a comparative study on sheep with application of rod-through-plate fixator and bone plating.

    Science.gov (United States)

    Tralman, G; Andrianov, V; Arend, A; Männik, P; Kibur, R T; Nõupuu, K; Uksov, D; Aunapuu, M

    2013-04-01

    The study compares the efficiency of a new bone fixator combining periostal and intramedullary osteosynthesis to bone plating in treatment of tibial fractures in sheep. Experimental osteotomies were performed in the middle third of the left tibia. Animals were divided into two groups: in one group (four animals) combined osteosynthesis (rod-through-plate fixator, RTP fixator) was applied, and in the other group (three animals) bone plating was used. The experiments lasted for 10 weeks during which fracture union was followed by radiography, and the healing process was studied by blood serum markers reflecting bone turnover and by histological and immunohistochemical investigations. In the RTP fixator group, animals started to load body weight on the operated limbs the next day after the surgery, while in the bone plating group, this happened only on the seventh day. In the RTP fixator group, consolidation of fractures was also faster, as demonstrated by radiographical, histological, and immunohistochemical investigations and in part by blood serum markers for bone formation. It can be concluded that application of RTP fixation is more efficient than plate fixation in the treatment of experimental osteotomies of long bones in sheep. © 2012 Blackwell Verlag GmbH.

  12. The role of bone SPECT/CT in the evaluation of lumbar spinal fusion with metallic fixation devices

    DEFF Research Database (Denmark)

    Damgaard, Morten; Nimb, Lars; Madsen, Jan L

    2010-01-01

    PURPOSE: It is difficult to evaluate the stability of the lumbar spondylodesis with metallic fixation devices by conventional imaging methods such as radiography or magnetic resonance imaging. It is unknown whether single photon emission computed tomography/computed tomography (SPECT/CT) may......, whereas in 1 case loose pedicle screws were detected at a wrong vertebral level. CONCLUSION: SPECT/CT may be useful to detect a lack of fixation of the metallic implants, and hence instability of the spondylodesis by evaluating the focal bone mineralization activity in relation to the pedicle screws....

  13. [Early application of the antibiotic-laden bone cement (ALBC) combined with the external fixation support in treating the open fractures of lower limbs complicated with bone defect].

    Science.gov (United States)

    Xiao, Jian; Mao, Zhao-Guang; Zhu, Hui-Hua; Guo, Liang

    2017-03-25

    To discuss the curative effect of the early application of the antibiotic-laden bone cement (ALBC) combined with the external fixation support in treating the open fractures of lower limbs complicated with bone defect. From December 2013 to January 2015, 36 cases of lower limb open comminuted fractures complicated with bone defects were treated by the vancomycin ALBC combined with the external fixation support, including 26 males and 10 females with an average age of 38.0 years old ranging from 19 to 65 years old. The included cases were all open fractures of lower limbs complicated with bone defects with different degree of soft tissue injuries. Among them, 25 cases were tibial fractures, 11 cases were femoral fractures. The radiographs indicated a presence of bone defects, which ranged from 3.0 to 6.1 cm with an average of 4.0 cm. The Gustilo classification of open fractures:24 cases were type IIIA, 12 cases were typr IIIB. The percentage of wound infection, bone grafting time, fracture healing time and postoperative joint function of lower limb were observed. The function of injured limbs was evaluated at 1 month after the clinical healing of fracture based on Paley evaluation criterion. All cases were followed up for 3 to 24 months with an average of (6.0±3.0) months. The wound surface was healed well, neither bone infections nor unhealed bone defects were presented. The reoperation of bone grafting was done at 6 weeks after the patients received an early treatment with ALBC, some of them were postponed to 8 weeks till the approximate healing of fractures, the treatment course lasted for 4 to 8 months with an average of(5.5±1.5) months. According to Paley and other grading evaluations of bone and function, there were 27 cases as excellent, 5 cases as good, 3 cases as ordinary. The ALBC combined with external fixation support was an effective method for early treatment to treat the traumatic lower limb open fractures complicated with bone defects. This method

  14. Taylor spatial frame fixation in patients with multiple traumatic injuries: study of 57 long-bone fractures.

    Science.gov (United States)

    Sala, Francesco; Elbatrawy, Yasser; Thabet, Ahmed M; Zayed, Mahmoud; Capitani, Dario

    2013-08-01

    To evaluate the Taylor spatial frame (TSF) for primary and definitive fixation of lower limb long-bone fractures in patients with multiple traumatic injuries. Retrospective. Level I trauma center. Consecutive series of 52 patients, 57 fractures (25 femoral and 32 tibial), treated between 2005 and 2009. Forty-nine fractures (86%) were open. Injury Severity Score ≥16 for all patients. Fifty-four fractures (95%) underwent definitive fixation with the TSF and 3 were treated primarily within 48 hours of injury. In 22 cases (39%), fractures were acutely reduced with the TSF, fixed to bone and the struts in sliding mode without further adjustment, and in 35 cases (61%), the total residual deformity correction program was undertaken. Clinical and radiological. Complete union was obtained in 52 fractures (91%) without additional surgery at an average of 29 weeks. Four nonunions and 1 delayed union occurred. Results based on Association for the Study and Application of the Method of Ilizarov criteria: 74% excellent, 16% good, 4% fair, and 7% poor for bone outcomes and 35% excellent, 47% good, and 18% fair for functional outcomes. Eighty-eight percent of patients returned to preinjury work activities. Primary and definitive fixation with the TSF is effective. Advantages include continuity of device until union, reduced risk of infection, early mobilization, restoration of primary defect caused by bone loss, easy and accurate application, convertibility and versatility compared with a monolateral fixator, and improved union rate and range of motion for lower extremity long-bone fractures in patients with multiple traumatic injuries.

  15. The effects of hydroxyapatite coating and bone allograft on fixation of loaded experimental primary and revision implants.

    Science.gov (United States)

    Søballe, Kjeld; Mouzin, Olivier R G; Kidder, Louis A; Overgaard, Søren; Bechtold, Joan E

    2003-06-01

    We used our established experimental model of revision joint replacement to examine the roles of hydroxyapatite coating and bone graft in improving the fixation of revision implants. The revision protocol uses the Søballe micromotion device in a preliminary 8-week period of implant instability for the presence of particulate polyethylene. During this procedure, a sclerotic endosteal bone rim forms, and a dense fibrous membrane is engendered, having macrophages with ingested polyethylene and high levels of inflammatory cytokines. At the time of revision after 8 weeks, the cavity is revised with either a titanium alloy (Ti) or a hydroxyapatite (HA) 6.0 mm plasma-sprayed implant, in the presence or absence of allograft packed into the initial 0.75 mm peri-implant gap. The contralateral limb is subjected to primary surgery with the same implant configuration, and serves as control. 8 implants were included in each of the 8 treatment groups (total 64 implants in 32 dogs). The observation period was 4 weeks after revision. Outcome measures are based on histomorphometry and mechanical pushout properties. The revision setting was always inferior to its primary counterpart. Bone graft improved the revision fixation in all treatment groups, as also did the HA coating. The sole exception was revision-grafted HA implants, which reached the same fixation as primary Ti and HA grafted implants. The revision, which was less active in general, seems to need the dual stimulation of bone graft and HA implant surface, to obtain the same level of fixation associated with primary implants. Our findings suggest that the combination of HA implant and bone graft may be of benefit in the clinical revision implant setting.

  16. [Effectiveness of U-shape titanium screw-rod fixation system with bone autografting for lumbar spondylolysis of young adults].

    Science.gov (United States)

    Pu, Xiaobing; Yang, Shuangshi; Cao, Haiquan; Jing, Xingquan; Yin, Jun

    2014-03-01

    To investigate the effectiveness of U-shape titanium screw-rod fixation system with bone autografting for lumbar spondylolysis of young adults. Between January 2008 and December 2011, 32 patients with lumbar spondylolysis underwent U-shape titanium screw-rod fixation system with bone autografting. All patients were male with an average age of 22 years (range, 19-32 years). The disease duration ranged from 3 to 24 months (mean, 14 months). L3 was involved in spondylolysis in 2 cases, L4 in 10 cases, and L5 in 20 cases. The preoperative visual analogue scale (VAS) and Oswestry disability index (ODI) scores were 8.0 +/- 1.1 and 75.3 +/- 11.2, respectively. The operation time was 80-120 minutes (mean, 85 minutes), and the blood loss was 150-250 mL (mean, 210 mL). Primary healing of incision was obtained in all patients without complications of infection and nerve symptom. Thirty-two patients were followed up 12-24 months (mean, 14 months). Low back pain was significantly alleviated after operation. The VAS and ODI scores at 3 months after operation were 1.0 +/- 0.5 and 17.6 +/- 3.4, respectively, showing significant differences when compared with preoperative ones (t = 30.523, P = 0.000; t = 45.312, P = 0.000). X-ray films and CT showed bone fusion in the area of isthmus defects, with the bone fusion time of 6-12 months (mean, 9 months). During follow-up, no secondary lumbar spondyloly, adjacent segment degeneration, or loosening or breaking of internal fixator was found. The U-shape titanium screw-rod fixation system with bone autografting is a reliable treatment for lumbar spondylolysis of young adults because of a high fusion rate, minimal invasive, and maximum retention of lumbar range of motion.

  17. Comparison of the long-term skeletal stability between a biodegradable and a titanium fixation system following BSSO advancement - A cohort study based on a multicenter randomised controlled trial

    NARCIS (Netherlands)

    van Bakelen, N. B.; Boermans, B. D. A.; Buijs, G. J.; Jansma, J.; Pruim, G. J.; Hoppenreijs, Th. J. M.; Bergsma, J. E.; Stegenga, B.; Bos, R. R. M.

    2014-01-01

    Biodegradable fixation systems could reduce or eliminate the problems associated with removal of titanium plates. A multicenter randomised controlled trial (RCT) was performed in the Netherlands from December 2006-July 2009, and originally 230 injured and orthognathic patients were included. The

  18. Enhancement of tendon–bone healing via the combination of biodegradable collagen-loaded nanofibrous membranes and a three-dimensional printed bone-anchoring bolt

    Directory of Open Access Journals (Sweden)

    Chou YC

    2016-08-01

    Full Text Available Ying-Chao Chou,1,2 Wen-Lin Yeh,2 Chien-Lin Chao,1 Yung-Heng Hsu,1,2 Yi-Hsun Yu,1,2 Jan-Kan Chen,3 Shih-Jung Liu1,2 1Department of Mechanical Engineering, Chang Gung University, 2Department of Orthopedic Surgery, Chang Gung Memorial Hospital, 3Department of Physiology and Pharmacology, Chang Gung University, Taoyuan, Taiwan Abstract: A composite biodegradable polymeric model was developed to enhance tendon graft healing. This model included a biodegradable polylactide (PLA bolt as the bone anchor and a poly(D,L-lactide-co-glycolide (PLGA nanofibrous membrane embedded with collagen as a biomimic patch to promote tendon–bone interface integration. Degradation rate and compressive strength of the PLA bolt were measured after immersion in a buffer solution for 3 months. In vitro biochemical characteristics and the nanofibrous matrix were assessed using a water contact angle analyzer, pH meter, and tetrazolium reduction assay. In vivo efficacies of PLGA/collagen nanofibers and PLA bolts for tendon–bone healing were investigated on a rabbit bone tunnel model with histological and tendon pullout tests. The PLGA/collagen-blended nanofibrous membrane was a hydrophilic, stable, and biocompatible scaffold. The PLA bolt was durable for tendon–bone anchoring. Histology showed adequate biocompatibility of the PLA bolt on a medial cortex with progressive bone ingrowth and without tissue overreaction. PLGA nanofibers within the bone tunnel also decreased the tunnel enlargement phenomenon and enhanced tendon–bone integration. Composite polymers of the PLA bolt and PLGA/collagen nanofibrous membrane can effectively promote outcomes of tendon reconstruction in a rabbit model. The composite biodegradable polymeric system may be useful in humans for tendon reconstruction. Keywords: polylactide–polyglycolide nanofibers, PLGA, collagen, 3D printing, polylactide, PLA, bone-anchoring bolts, tendon healing

  19. Orthopedic infections in equine long bone fractures and arthrodeses treated by internal fixation: 192 cases (1990-2006).

    Science.gov (United States)

    Ahern, Benjamin J; Richardson, Dean W; Boston, Raymond C; Schaer, Thomas P

    2010-07-01

    To determine the rate of postoperative infection (POI) for internal fixation repaired equine long bone fractures and arthrodeses and identify associated risk factors. Case series. Horses (n=192) with fracture repair of the third metacarpal and metatarsal bones, radius, ulna, humerus, tibia, and femur, or arthrodesis with internal fixation. Medical records (1990-2006) were reviewed for signalment, anatomic location, fracture classification and method of repair, technique and surgical duration, bacterial species isolated, postoperative care, onset of POI, and outcome. Of 192 horses (171 [89%] closed, 21 [11%] open fractures), 157 (82%) were discharged from the hospital. Infection occurred in 53 (28% horses), of which 31 (59%) were discharged. Repairs without POI were 7.25 times more likely to be discharged from the hospital. Closed fractures were 4.23 times more likely to remain uninfected and 4.59 times more likely to be discharged from the hospital compared with open fractures. Closed reduction and internal fixation was associated with a 2.5-fold reduction in rate of POI and a 5.9 times greater chance for discharge from the hospital compared with open reduction and internal fixation. Females had a strong trend for increased POI when compared with colts and stallion but not geldings. Overall rate of POI was 28%. Fracture classification, method of repair, gender, and surgical duration were significant risk factors.

  20. Treatment of Atypical Ulnar Fractures Associated with Long-Term Bisphosphonate Therapy for Osteoporosis: Autogenous Bone Graft with Internal Fixation

    Directory of Open Access Journals (Sweden)

    Yohei Shimada

    2017-01-01

    Full Text Available Long-term bisphosphonate use has been suggested to result in decreased bone remodelling and an increased risk of atypical fractures. Fractures of this nature commonly occur in the femur, and relatively few reports exist to show that they occur in other bones. Among eight previous reports of atypical ulnar fractures associated with bisphosphonate use, one report described nonunion in a patient who was treated with cast immobilization and another described ulna nonunion in one of three patients, all of whom were treated surgically with a locking plate. The remaining two surgical patients achieved bone union uneventfully following resection of the osteosclerotic lesion and iliac bone grafting before rigid fixation. We hypothesized that the discontinuation of bisphosphonate therapy, the use of teriparatide treatment, and low-intensity pulsed ultrasound (LIPUS might have been associated with fracture healing.

  1. In vitro biomechanical properties of 2 compression fixation methods for midbody proximal sesamoid bone fractures in horses.

    Science.gov (United States)

    Woodie, J B; Ruggles, A J; Litsky, A S

    2000-01-01

    To evaluate 2 methods of midbody proximal sesamoid bone repair--fixation by a screw placed in lag fashion and circumferential wire fixation--by comparing yield load and the adjacent soft-tissue strain during monotonic loading. Experimental study. 10 paired equine cadaver forelimbs from race-trained horses. A transverse midbody osteotomy of the medial proximal sesamoid bone (PSB) was created. The osteotomy was repaired with a 4.5-mm cortex bone screw placed in lag fashion or a 1.25-mm circumferential wire. The limbs were instrumented with differential variable reluctance transducers placed in the suspensory apparatus and distal sesamoidean ligaments. The limbs were tested in axial compression in a single cycle until failure. The cortex bone screw repairs had a mean yield load of 2,908.2 N; 1 limb did not fail when tested to 5,000 N. All circumferential wire repairs failed with a mean yield load of 3,406.3 N. There was no statistical difference in mean yield load between the 2 repair methods. The maximum strain generated in the soft tissues attached to the proximal sesamoid bones was not significantly different between repair groups. All repaired limbs were able to withstand loads equal to those reportedly applied to the suspensory apparatus in vivo during walking. Each repair technique should have adequate yield strength for repair of midbody fractures of the PSB immediately after surgery.

  2. Central tarsal bone fractures in horses not used for racing: Computed tomographic configuration and long-term outcome of lag screw fixation

    OpenAIRE

    Gunst, S; Del Chicca, Francesca; Fürst, Anton; Kuemmerle, Jan M

    2016-01-01

    REASONS FOR PERFORMING STUDY: There are no reports on the configuration of equine central tarsal bone fractures based on cross-sectional imaging and clinical and radiographic long-term outcome after internal fixation. OBJECTIVES: To report clinical, radiographic and computed tomographic findings of equine central tarsal bone fractures and to evaluate the long-term outcome of internal fixation. STUDY DESIGN: Retrospective case series. METHODS: All horses diagnosed with a central tarsa...

  3. Should in the treatment of osteochondritis dissecans biodegradable or metallic fixation devices be used? A comparative study in goat knees

    NARCIS (Netherlands)

    Wouters, Diederick B.; Bos, Rudolf R. M.; van Horn, Jim R.; van Luyn, Marja J. A.

    Most of the metallic devices have to be removed, treating osteochondritis dissecans lesions. This animal study describes the biological and mechanical behavior of screws and pins, made of commercially available PGA/PLA and PLA96 and metallic screws and pins, used for fragment fixation. A sham

  4. Anterior debridement and fusion followed by posterior pedicle screw fixation in pyogenic spondylodiscitis: autologous iliac bone strut versus cage.

    Science.gov (United States)

    Pee, Yong Hun; Park, Jong Dae; Choi, Young-Geun; Lee, Sang-Ho

    2008-05-01

    An anterior approach for debridement and fusion with autologous bone graft has been recommended as the gold standard for surgical treatment of pyogenic spondylodiscitis. The use of anterior foreign body implants at the site of active infection is still a challenging procedure for spine surgeons. Several authors have recently introduced anterior grafting with titanium mesh cages instead of autologous bone strut in the treatment of spondylodiscitis. The authors present their experience of anterior fusion with 3 types of cages followed by posterior pedicle screw fixation. They also compare their results with the use of autologous iliac bone strut. The authors retrospectively reviewed the cases of 60 patients with pyogenic spondylodiscitis treated by anterior debridement between January 2003 and April 2005. Fusion using either cages or iliac bone struts was performed during the same course of anesthesia followed by posterior fixation. Twenty-three patients underwent fusion with autologous iliac bone strut, and 37 patients underwent fusion with 1 of the 3 types of cages. The infections resolved in all patients, as noted by normalization of their erythrocyte sedimentation rates and C-reactive protein levels. Patients in both groups were evaluated in terms of their preoperative and postoperative clinical and imaging findings. Single-stage anterior debridement and cage fusion followed by posterior pedicle screw fixation can be effective in the treatment of pyogenic spondylodiscitis. There was no difference in clinical and imaging outcomes between the strut group and cage group except for the subsidence rate. The subsidence rate was higher in the strut group than in the cage group. The duration until subsidence was also shorter in the strut group than in the cage group.

  5. [Treatment of thoracolumbar burst fracture with lateral anterior decompression, internal fixation with Ventrofix and bone graft with titanic mesh].

    Science.gov (United States)

    Zhang, Shi-min; Zhang, Zhao-jie; Liu, Yu-zhang; Zhang, Lu-tang; Li, Xing

    2011-11-01

    To discuss the efficacy of lateral anterior decompression, internal fixation with Ventrofix and bone graft with titanic mesh in the treatment of severe thoracolumbar burst fracture. From January 2008 to January 2010, 21 patients with severe thoracolumbar burst fracture were treated with lateral anterior decompression, internal fixation with Ventrofix, bone graft with titanic mesh. There were 15 males and 6 females, ranging in age from 21 to 46 years with an average of 32.2 years. Segment of fracture: 3 cases were in T11, 6 cases in T12, 7 cases in L1, 5 cases in L2. The mean kyphosis angle was 20.1 degrees and loading of fracture was 7.8 scores. Twenty-one cases accompany with incomplete paralysis. Nerves functions were observed according to Frankel grade; correction and maintain of kyphosis angle were observed by X-rays and CT. All the patients were followed up from 12 to 34 months with an average of 18.5 years. Postoperative complication including injury of pleura in 1 case, dynamic ileus in 2 cases, ilioinguinal nerve injury in 1 case, faulty union of wound in 1 case. All the above complications got recovery after symptomatic treatment. The mean kyphosis angle in fusional segment were 4.2 degrees and the rate of correction was 79%. Nerves functions of all patients got improvement and no internal fixation fail, kyphosis angle obviously lost, titanium mesh shifting, loosening and breakage of screw were found at final follow-up. Lateral anterior decompression, bone graft with titanic mesh, internal fixation with Ventrofix is an idea technique for severe thoracolumber burst fracture, but the method can not be used for patient with severity osteoporosis.

  6. The psychological impact of external fixation using the Ilizarov or Orthofix LRS method to treat tibial osteomyelitis with a bone defect.

    Science.gov (United States)

    Abulaiti, Alimujiang; Yilihamu, Yilizati; Yasheng, Tayierjiang; Alike, Yamuhanmode; Yusufu, Aihemaitijiang

    2017-12-01

    To examine the psychological impact of external fixation for a tibial bone defect due to osteomyelitis, and to compare the Orthofix limb reconstruction system (LRS) with the Ilizarov external fixator. The SCL-90-R questionnaire was administered at four different time points (before surgery, while patients wore the external fixation device, when the device was removed, and two to three months after). The scores at the four time points were compared, as were the two different methods of external fixation (Orthofix LRS vs. Ilizarov). The patients experienced a significant adverse impact on their mental health, with the worst outcomes at Time 2 (while wearing the external fixator), but with some negative effects still present even several months after removal of the fixation device. Although the Orthofix LRS and Ilizarov groups showed similar mental health scores at Time 1 (preoperatively) and Time 3 (upon removal of the fixation device), the Orthofix LRS was associated with better scores, specifically in the Hostility (Time 2), Phobic Anxiety (Time 2), Psychoticism (Times 2 and 4), and Other (Time 2) sub-scores, as well as the total score (Times 2 and 4). Although both Ilizarov and Orthofix LRS fixation resolved the bone defects, external fixation had a negative impact on the patients' mental health, which persisted even after removal of the devices. Although both methods led to negative effects on the patients' mental, the impact of the Orthofix LRS was less severe. Copyright © 2017. Published by Elsevier Ltd.

  7. Design, fabrication and structural optimization of tubular carbon/Kevlar®/PMMA/graphene nanoplate composite for bone fixation prosthesis.

    Science.gov (United States)

    Nasiri, F; Ajeli, S; Semnani, D; Jahanshahi, M; Emadi, R

    2018-05-02

    The present work investigates the mechanical properties of tubular carbon/Kevlar ® composite coated with poly(methyl methacrylate)/graphene nanoplates as used in the internal fixation of bones. Carbon fibers are good candidates for developing high-strength biomaterials and due to better stress transfer and electrical properties, they can enhance tissue formation. In order to improve carbon brittleness, ductile Kevlar ® was added to the composite. The tubular carbon/Kevlar ® composites have been prepared with tailorable braiding technology by changing the fiber pattern and angle in the composite structure and the number of composite layers. Fuzzy analyses are used for optimizing the tailorable parameters of 80 prepared samples and then mechanical properties of selected samples are discussed from the viewpoint of mechanical properties required for a bone fixation device. Experimental results showed that with optimizing braiding parameters the desired composite structure with mechanical properties close to bone properties could be produced. Results showed that carbon/Kevlar ® braid's physical properties, fiber composite distribution and diameter uniformity resulted in matrix uniformity, which enhanced strength and modulus due to better ability for distributing stress on the composite. Finally, as graphene nanoplates demonstrated their potential properties to improve wound healing intended for bone replacement, so reinforcing the PMMA matrix with graphene nanoplates enhanced the composite quality, for use as an implant.

  8. Partially Biodegradable Distraction Implant to Replace Conventional Implants in Alveolar Bone of Insufficient Height: A Preliminary Study in Dogs.

    Science.gov (United States)

    Li, Tao; Zhang, Yongqiang; Shao, Bo; Gao, Yuan; Zhang, Chen; Cao, Qiang; Kong, Liang

    2015-12-01

    Dental implants have been widely used in the last few decades. However, patients with insufficient bone height need reconstructive surgeries before implant insertion. The distraction implant (DI) has been invented to simplify the treatment procedure, but the shortcomings of DIs have limited their clinical use. We incorporated biodegradable polyester into a novel DI called the partially biodegradable distraction implant (PBDI). The purpose of this study was to assess the radiological, histological, and biomechanical properties of the PBDI in animal models. PBDIs were manufactured and inserted into the atrophied mandibles of nine dogs. Box-shaped alveolar bones were segmented and distracted. The dogs were randomly divided into three groups that were sacrificed 1, 2, and 3 months after the implant insertion. Actual augmentation height (AAH) of the bone segments was measured to evaluate the effect of distraction. X-ray examination and micro-CT reconstruction and analysis were used to evaluate the regenerated bone in the distraction gap and bone around the functional element. Histological sections were used to evaluate the osseointegration and absorption of the PBDI. Fatigue tests were used to evaluate the biomechanical properties of the PBDI. Little change was found in AAH among the three groups. X-ray examination and micro-CT reconstruction showed good growth of regenerated bone in the distraction gap. Alveolar bone volume around the functional element increased steadily. No obvious bone absorption occurred in the alveolar crest around PBDI. Three months after distraction, the functional element achieved osseointegration, and the support element began to be absorbed. All PBDIs survived the fatigue test. The PBDI is a novel and reliable dental implant. It becomes a conventional implant after the absorption of the support element and the removal of the distraction screw. It is a promising replacement for conventional implants in patients with insufficient alveolar bone

  9. Effect of the biodegradation rate controlled by pore structures in magnesium phosphate ceramic scaffolds on bone tissue regeneration in vivo.

    Science.gov (United States)

    Kim, Ju-Ang; Lim, Jiwon; Naren, Raja; Yun, Hui-Suk; Park, Eui Kyun

    2016-10-15

    Similar to calcium phosphates, magnesium phosphate (MgP) ceramics have been shown to be biocompatible and support favorable conditions for bone cells. Micropores below 25μm (MgP25), between 25 and 53μm (MgP53), or no micropores (MgP0) were introduced into MgP scaffolds using different sizes of an NaCl template. The porosities of MgP25 and MgP53 were found to be higher than that of MgP0 because of their micro-sized pores. Both in vitro and in vivo analysis showed that MgP scaffolds with high porosity promoted rapid biodegradation. Implantation of the MgP0, MgP25, and MgP53 scaffolds into rabbit calvarial defects (with 4- and 6-mm diameters) was assessed at two times points (4 and 8weeks), followed by analysis of bone regeneration. The micro-CT and histologic analyses of the 4-mm defect showed that the MgP25 and MgP53 scaffolds were degraded completely at 4weeks with simultaneous bone and marrow-like structure regeneration. For the 6-mm defect, a similar pattern of regeneration was observed. These results indicate that the rate of degradation is associated with bone regeneration. The MgP25 and MgP53 scaffold-implanted bone showed a better lamellar structure and enhanced calcification compared to the MgP0 scaffold because of their porosity and degradation rate. Tartrate-resistant acid phosphatase (TRAP) staining indicated that the newly formed bone was undergoing maturation and remodeling. Overall, these data suggest that the pore architecture of MgP ceramic scaffolds greatly influence bone formation and remodeling activities and thus should be considered in the design of new scaffolds for long-term bone tissue regeneration. The pore structural conditions of scaffold, including porosity, pore size, pore morphology, and pore interconnectivity affect cell ingrowth, mechanical properties and biodegradabilities, which are key components of scaffold in bone tissue regeneration. In this study, we designed hierarchical pore structure of the magnesium phosphate (Mg

  10. Enhancement of osteogenesis and biodegradation control by brushite coating on Mg-Nd-Zn-Zr alloy for mandibular bone repair.

    Science.gov (United States)

    Guan, Xingmin; Xiong, Meiping; Zeng, Feiyue; Xu, Bin; Yang, Lingdi; Guo, Han; Niu, Jialin; Zhang, Jian; Chen, Chenxin; Pei, Jia; Huang, Hua; Yuan, Guangyin

    2014-12-10

    To diminish incongruity between bone regeneration and biodegradation of implant magnesium alloy applied for mandibular bone repair, a brushite coating was deposited on a matrix of a Mg-Nd-Zn-Zr (hereafter, denoted as JDBM) alloy to control the degradation rate of the implant and enhance osteogenesis of the mandible bone. Both in vitro and in vivo evaluations were carried out in the present work. Viability and adhesion assays of rabbit bone marrow mesenchyal stem cells (rBM-MSCs) were applied to determine the biocompatibility of a brushite-coated JDBM alloy. Osteogenic gene expression was characterized by quantitative real-time polymerase chain reaction (RT-PCR). Brushite-coated JDBM screws were implanted into mandible bones of rabbits for 1, 4, and 7 months, respectively, using 316L stainless steel screws as a control group. In vivo biodegradation rate was determined by synchrotron radiation X-ray microtomography, and osteogenesis was observed and evaluated using Van Gieson's picric acid-fuchsin. Both the naked JDBM and brushite-coated JDBM samples revealed adequate biosafety and biocompatibility as bone repair substitutes. In vitro results showed that brushite-coated JDBM considerably induced osteogenic differentiation of rBM-MSCs. And in vivo experiments indicated that brushite-coated JDBM screws presented advantages in osteoconductivity and osteogenesis of mandible bone of rabbits. Degradation rate was suppressed at a lower level at the initial stage of implantation when new bone tissue formed. Brushite, which can enhance oeteogenesis and partly control the degradation rate of an implant, is an appropriate coating for JDBM alloys used for mandibular repair. The Mg-Nd-Zn-Zr alloy with brushite coating possesses great potential for clinical applications for mandibular repair.

  11. The efficacy of poly-d,l-lactic acid- and hyaluronic acid-coated bone substitutes on implant fixation in sheep

    Directory of Open Access Journals (Sweden)

    Christina M. Andreasen

    2017-01-01

    Conclusion: This study demonstrates that HA/βTCP granules coated with PDLLA and HyA have similar bone ingrowth and implant fixation as those with allograft, and with mechanical properties resembling those of allograft in advance, they may be considered as alternative substitute materials for bone formation in sheep.

  12. Development of biodegradable polycaprolactone film as an internal fixation material to enhance tendon repair: an in vitro study.

    Science.gov (United States)

    Hu, Jian-Zhong; Zhou, Yong-Chun; Huang, Li-Hua; Lu, Hong-Bin

    2013-08-19

    Current tendon repair techniques do not provide sufficient tensile strength at the repair site, and thus early active motion rehabilitation after tendon repair is discouraged. To enhance the post-operative tensile strength, we proposed and tested an internal fixation technique using a polycaprolactone (PCL) biofilm. PCL was chosen for its good biocompatibility, excellent mechanical strength, and an appropriate degradation time scale. PCL biofilms were prepared by a modified melt-molding/leaching technique, and the physical and mechanical properties and in vitro degradation rate were assessed. The pore size distribution of the biofilm and the paratenon of native tendons were observed using scanning electron microscopy. Next, we determined whether this biofilm could enhance the tensile strength of repaired tendons. We performed tensile tests on rabbit Achilles tendons that were first lacerated and then repaired: 1) using modified Kessler suture combined with running peripheral suture ('control' group), or 2) using biofilm to wrap the tendon and then fixation with sutures ('biofilm' group). The influence of different repair techniques on tendon tensile strength was evaluated by mechanical testing. The novel biofilm had supple texture and a smooth surface. The mean thickness of the biofilm was 0.25 mm. The mean porosity of the biofilm was 45.3%. The paratenon of the rabbit Achilles tendon had pores with diameters ranging from 1 to 9 μm, which were similar to the 4-12 μm diameter pores in the biofilm cross-section. The weight loss of the biofilms at 4 weeks was only 0.07%. The molecular weight of PCL biofilms did not change after immersion in phosphate buffered saline for 4 weeks. The failure loads of the biofilm were similar before (48 ± 9 N) and after immersion (47 ± 7 N, P > 0.1). The biofilm group had ~70% higher mean failure loads and 93% higher stiffness compared with the control group. We proposed and tested an internal fixation technique

  13. Bone suture anchor fixation in the lower extremity: a review of insertion principles and a comparative biomechanical evaluation.

    Science.gov (United States)

    Scranton, Pierce E; Lawhon, S Michael; McDermott, John E

    2005-07-01

    Suture anchors have been developed for the fixation of ligaments, capsules, or tendons to bone. These devices have led to improved fixation, smaller incisions, earlier limb mobility, and improved outcomes. They were originally developed for use in shoulder reconstructions but are now used in almost all extremities. In the lower leg they are used in the tibia, the talus, the calcaneus, tarsal bones, and phalanges. Nevertheless, techniques for insertion and mechanisms of failure are not well described. Five suture anchors were studied to determine the pullout strength in four distal cadaver femurs and four proximal cadaver tibias from 55- and 62-year-old males. Eight hundred ninety Newton line was used, testing the anchors to failure with an Instron testing device (Instron, Norwood, MA). The anchor devices were inserted randomly and tested blindly (12 tests per anchor device, 60 tests in all). Two anchors in each group tested failed at low loads. Both types of plastic anchors had failures at the eyelet. Average pullout strength varied from 85.4 to 185.6 N. Insertion techniques are specific for each device, and they must be followed for optimal fixation. In this study, in all five groups of anchors tested two of the 12 anchors in each group failed with minimal force. On the basis of this finding we recommend that, if suture anchor fixation is necessary, at least two anchors should be used. Since there appears to be a percentage of failure in all devices, the second anchor can serve as a backup. It is imperative that surgeons be familiar with the insertion techniques of each device before use.

  14. Aluminum-free glass-ionomer bone cements with enhanced bioactivity and biodegradability

    Energy Technology Data Exchange (ETDEWEB)

    Gomes, Filipa O.; Pires, Ricardo A., E-mail: rpires@dep.uminho.pt; Reis, Rui L.

    2013-04-01

    Al-free glasses of general composition 0.340SiO{sub 2}:0.300ZnO:(0.250-a-b)CaO:aSrO:bMgO:0.050Na{sub 2}O:0.060P{sub 2}O{sub 5} (a, b = 0.000 or 0.125) were synthesized by melt quenching and their ability to form glass-ionomer cements was evaluated using poly(acrylic acid) and water. We evaluated the influence of the poly(acrylic acid) molecular weight and glass particle size in the cement mechanical performance. Higher compressive strength (25 ± 5 MPa) and higher compressive elastic modulus (492 ± 17 MPa) were achieved with a poly(acrylic acid) of 50 kDa and glass particle sizes between 63 and 125 μm. Cements prepared with glass formulation a = 0.125 and b = 0.000 were analyzed after immersion in simulated body fluid; they presented a surface morphology consistent with a calcium phosphate coating and a Ca/P ratio of 1.55 (similar to calcium-deficient hydroxyapatite). Addition of starch to the cement formulation induced partial degradability after 8 weeks of immersion in phosphate buffer saline containing α-amylase. Micro-computed tomography analysis revealed that the inclusion of starch increased the cement porosity from 35% to 42%. We were able to produce partially degradable Al-free glass-ionomer bone cements with mechanical performance, bioactivity and biodegradability suitable to be applied on non-load bearing sites and with the appropriate physical characteristics for osteointegration upon partial degradation. Zn release studies (concentrations between 413 μM and 887 μM) evidenced the necessity to tune the cement formulations to reduce the Zn concentration in the surrounding environment. Highlights: ► We developed partially degradable, bioactive, Al-free glass-ionomer cements (GICs). ► Enhanced mechanical behavior was achieved using 63–125 μm glass particle size range. ► The highest mechanical resistance was obtained using poly(acrylic acid) of 50 kDa. ► Biodegradation was successfully tuned to start 8 weeks after GIC preparation. ► Zn

  15. Aluminum-free glass-ionomer bone cements with enhanced bioactivity and biodegradability

    International Nuclear Information System (INIS)

    Gomes, Filipa O.; Pires, Ricardo A.; Reis, Rui L.

    2013-01-01

    Al-free glasses of general composition 0.340SiO 2 :0.300ZnO:(0.250-a-b)CaO:aSrO:bMgO:0.050Na 2 O:0.060P 2 O 5 (a, b = 0.000 or 0.125) were synthesized by melt quenching and their ability to form glass-ionomer cements was evaluated using poly(acrylic acid) and water. We evaluated the influence of the poly(acrylic acid) molecular weight and glass particle size in the cement mechanical performance. Higher compressive strength (25 ± 5 MPa) and higher compressive elastic modulus (492 ± 17 MPa) were achieved with a poly(acrylic acid) of 50 kDa and glass particle sizes between 63 and 125 μm. Cements prepared with glass formulation a = 0.125 and b = 0.000 were analyzed after immersion in simulated body fluid; they presented a surface morphology consistent with a calcium phosphate coating and a Ca/P ratio of 1.55 (similar to calcium-deficient hydroxyapatite). Addition of starch to the cement formulation induced partial degradability after 8 weeks of immersion in phosphate buffer saline containing α-amylase. Micro-computed tomography analysis revealed that the inclusion of starch increased the cement porosity from 35% to 42%. We were able to produce partially degradable Al-free glass-ionomer bone cements with mechanical performance, bioactivity and biodegradability suitable to be applied on non-load bearing sites and with the appropriate physical characteristics for osteointegration upon partial degradation. Zn release studies (concentrations between 413 μM and 887 μM) evidenced the necessity to tune the cement formulations to reduce the Zn concentration in the surrounding environment. Highlights: ► We developed partially degradable, bioactive, Al-free glass-ionomer cements (GICs). ► Enhanced mechanical behavior was achieved using 63–125 μm glass particle size range. ► The highest mechanical resistance was obtained using poly(acrylic acid) of 50 kDa. ► Biodegradation was successfully tuned to start 8 weeks after GIC preparation. ► Zn release should be

  16. Intramedullary screw fixation with bone autografting to treat proximal fifth metatarsal metaphyseal-diaphyseal fracture in athletes: a case series

    Directory of Open Access Journals (Sweden)

    Tsukada Sachiyuki

    2012-07-01

    Full Text Available Abstract Background Delayed unions or refractures are not rare following surgical treatment for proximal fifth metatarsal metaphyseal-diaphyseal fractures. Intramedullary screw fixation with bone autografting has the potential to resolve the issue. The purpose of this study was to evaluate the result of the procedure. Methods The authors retrospectively reviewed 15 athletes who underwent surgical treatment for proximal fifth metatarsal metaphyseal-diaphyseal fracture. Surgery involved intramedullary cannulated cancellous screw fixation after curettage of the fracture site, followed by bone autografting. Postoperatively, patients remain non weight-bearing in a splint or cast for two weeks and without immobilization for an additional two weeks. Full weight-bearing was allowed six weeks postoperatively. Running was permitted after radiographic bone union, and return-to-play was approved after gradually increasing the intensity. Results All patients returned to their previous level of athletic competition. Mean times to bone union, initiation of running, and return-to-play were 8.4, 8.8, and 12.1 weeks, respectively. Although no delayed unions or refractures was observed, distal diaphyseal stress fractures at the distal tip of the screw occurred in two patients and a thermal necrosis of skin occurred in one patient. Conclusions There were no delayed unions or refractures among patients after carrying out a procedure in which bone grafts were routinely performed, combined with adequate periods of immobilization and non weight-bearing. These findings suggest that this procedure may be useful option for athletes to assuring return to competition level.

  17. A feasibility study for in vitro evaluation of fixation between prosthesis and bone with bone marrow-derived mesenchymal stem cells.

    Science.gov (United States)

    Morita, Yusuke; Yamasaki, Kenichi; Hattori, Koji

    2010-10-01

    It is difficult to quantitatively evaluate adhesive strength between an implant and the neighboring bone using animal experiments, because the degree of fixation of an implant depends on differences between individuals and the clearance between the material and the bone resulting from surgical technique. A system was designed in which rat bone marrow cells were used to quantitatively evaluate the adhesion between titanium alloy plates and bone plates in vitro. Three kinds of surface treatment were used: a sand-blasted surface, a titanium-sprayed surface and a titanium-sprayed surface coated with hydroxyapatite. Bone marrow cells obtained from rat femora were seeded on the titanium alloy plates, and the cells were cultured between the titanium alloy plates and the bone plates sliced from porcine ilium for 2 weeks. After cultivation, adhesive strength was measured using a tensile test, after which DNA amount and Alkaline phosphatase activity were measured. The seeded cells accelerated adhesion of the titanium alloy plate to the bone plate. Adhesive strength of the titanium-sprayed surface was lower than that of the sand-blasted surface because of lower initial contact area, although there was no difference in Alkaline phosphatase activity between two surface treatments. A hydroxyapatite coating enhanced adhesive strength between the titanium alloy palate and the bone plate, as well as enhancing osteogenic differentiation of bone marrow cells. It is believed that this novel experimental method can be used to simultaneously evaluate the osteogenic differentiation and the adhesive strength of an implant during in vitro cultivation. 2010 Elsevier Ltd. All rights reserved.

  18. The effects of hydroxyapatite coating and bone allograft on fixation of loaded experimental primary and revision implants

    DEFF Research Database (Denmark)

    Søballe, Kjeld; Mouzin, Olivier R G; Kidder, Louis A

    2003-01-01

    We used our established experimental model of revision joint replacement to examine the roles of hydroxyapatite coating and bone graft in improving the fixation of revision implants. The revision protocol uses the Søballe micromotion device in a preliminary 8-week period of implant instability...... a titanium alloy (Ti) or a hydroxyapatite (HA) 6.0 mm plasma-sprayed implant, in the presence or absence of allograft packed into the initial 0.75 mm peri-implant gap. The contralateral limb is subjected to primary surgery with the same implant configuration, and serves as control. 8 implants were included...

  19. Effect of implantation of biodegradable magnesium alloy on BMP-2 expression in bone of ovariectomized osteoporosis rats

    International Nuclear Information System (INIS)

    Guo, Yue; Ren, Ling; Liu, Chang; Yuan, Yajiang; Lin, Xiao; Tan, Lili; Chen, Shurui; Yang, Ke; Mei, Xifan

    2013-01-01

    The study was focused on the implantation of a biodegradable AZ31 magnesium alloy into the femoral periosteal of the osteoporosis modeled rats. The experimental results showed that after 4 weeks implantation of AZ31 alloy in the osteoporosis modeled rats, the expression of BMP-2 in bone tissues of the rats was much enhanced, even higher than the control group, which should promote the bone formation and be beneficial for reducing the harmful effect of osteoporosis. Results of HE stains showed that the implantation of AZ31 alloy did not have obvious pathological changes on both the liver and kidney of the animal. - Highlights: • Mg alloy greatly increased expression of BMP-2 in osteoporosis modeled rat bone. • Mg alloy showed good biological safety. • Mg alloy is beneficial for reducing the symptom of osteoporosis

  20. Biodegradable X-ray markers of controlled radio-opacity. Temporary position measurements in bone

    NARCIS (Netherlands)

    Stallmann, H.P.; Faber, C.; Plokker, H.M.; Wuisman, P.I.J.M.

    2005-01-01

    In order to analyze X-ray markers for potential use in biodegradable implants or radiostereogrammatic analysis (RSA), we combined iopromide contrast fluid with biodegradable calcium phosphate cement. The radio-opacity of 10 × 10 mm markers containing different iodine concentrations (0,120, 240, 360

  1. Influence of fracture geometry on bone healing under locking plate fixations: A comparison between oblique and transverse tibial fractures.

    Science.gov (United States)

    Miramini, Saeed; Zhang, Lihai; Richardson, Martin; Mendis, Priyan; Ebeling, Peter R

    2016-10-01

    Mechano-regulation plays a crucial role in bone healing and involves complex cellular events. In this study, we investigate the change of mechanical microenvironment of stem cells within early fracture callus as a result of the change of fracture obliquity, gap size and fixation configuration using mechanical testing in conjunction with computational modelling. The research outcomes show that angle of obliquity (θ) has significant effects on interfragmentary movement (IFM) which influences mechanical microenvironment of the callus cells. Axial IFM at near cortex of fracture decreases with θ, while shear IFM significantly increases with θ. While a large θ can increase shear IFM by four-fold compared to transverse fracture, it also result in the tension-stress effect at near cortex of fracture callus. In addition, mechanical stimuli for cell differentiation within the callus are found to be strongly negatively correlated to angle of obliquity and gap size. It is also shown that a relatively flexible fixation could enhance callus formation in presence of a large gap but could lead to excessive callus strain and interstitial fluid flow when a small transverse fracture gap is present. In conclusion, there appears to be an optimal fixation configuration for a given angle of obliquity and gap size. Copyright © 2016 IPEM. Published by Elsevier Ltd. All rights reserved.

  2. Graft fixation in cruciate ligament reconstruction.

    Science.gov (United States)

    Brand, J; Weiler, A; Caborn, D N; Brown, C H; Johnson, D L

    2000-01-01

    Cruciate ligament reconstruction has progressed dramatically in the last 20 years. Anatomic placement of ligament substitutes has fostered rehabilitation efforts that stress immediate and full range of motion, immediate weightbearing, neuromuscular strength and coordination, and early return to athletic competition (3 months). This has placed extreme importance on secure graft fixation at the time of ligament reconstruction. Current ligament substitutes require a bony or soft tissue component to be fixed within a bone tunnel or on the periosteum at a distance from the normal ligament attachment site. Fixation devices have progressed from metal to biodegradable and from far to near-normal native ligament attachment sites. Ideally, the biomechanical properties of the entire graft construct would approach those of the native ligament and facilitate biologic incorporation of the graft. Fixation should be done at the normal anatomic attachment site of the native ligament (aperture fixation) and, over time, allow the biologic return of the histologic transition zone from ligament to fibrocartilage, to calcified fibrocartilage, to bone. The purpose of this article is to review current fixation devices and techniques in cruciate ligament surgery.

  3. Outcome of nonunion fractures in dogs treated with fixation, compression resistant matrix, and recombinant human bone morphogenetic protein-2.

    Science.gov (United States)

    Massie, Anna M; Kapatkin, Amy S; Fuller, Mark C; Verstraete, Frank J M; Arzi, Boaz

    2017-03-20

    To report the use of compression resistant matrix (CRM) infused with recombinant human bone morphogenetic protein (rhBMP-2) prospectively in the healing of nonunion long-bone fractures in dogs. A longitudinal cohort of dogs that were presented with nonunion fractures were classified and treated with CRM soaked with rhBMP-2 and fracture fixation. They were followed with serial radiographs and evaluated for healing times and complications according to the time frame and definitions previously established for orthopaedic clinical cases. Eleven nonunion fractures in nine dogs were included. Median healing time was 10 weeks (range: 7-20 weeks). Major perioperative complications due to bandage morbidity were encountered in two of 11 limbs and resolved. All other complications were minor. They occurred perioperatively in eight of 11 limbs. Minor follow-up complications included short-term in one of two limbs, mid-term in one of three, and long-term in four of five limbs. Nine limbs returned to full function and two limbs returned to acceptable function at the last follow-up. Nonunion fractures given a poor prognosis via standard-of-care treatment were successfully repaired using CRM with rhBMP-2 accompanying fixation. These dogs, previously at high risk of failure, returned to full or acceptable function.

  4. Acceleration and holographic studies on different types of dynamization of external fixators of the bones

    Science.gov (United States)

    Podbielska, Halina; Kasprzak, Henryk T.; Voloshin, Arkady S.; Pennig, Dietmar; von Bally, Gert

    1992-08-01

    The unilateral axially dynamic fixator (Orthofix) was mounted on a sheep tibial shaft. Three fixation modes: static, dynamic controlled, and dynamic free were examined by means of double exposure holographic interferometry. Simultaneously, the acceleration was measured by an accelerometer and displayed on the monitor together with loading characteristics. The first exposure was made before the acting force was applied to the tibia plateau. The second one after the moment when the acceleration wave started to propagate through the specimen. We stated that in the case of dynamization less torsion occurs at the fracture site. So far, we have not been able to determine any correlation between results of holographic and accelerometric measurements.

  5. Primary fixation and delayed nailing of long bone fractures in severe trauma

    DEFF Research Database (Denmark)

    Friedl, H.P.; Stoker, R.; Czermak, B.

    1996-01-01

    skeletal conditions (particularly of the lower extremities) impede optimal intensive care of these patients. Therefore in a polytrauma setup, primary operative stabilization of the femur is mandatory and generally accepted, whereas the optimal fixation procedure is still a source of controversies...

  6. A comparative finite-element analysis of bone failure and load transfer of osseointegrated prostheses fixations.

    NARCIS (Netherlands)

    Tomaszewski, P.K.; Verdonschot, N.J.J.; Bulstra, S.K.; Verkerke, G.J.

    2010-01-01

    An alternative solution to conventional stump-socket prosthetic limb attachment is offered by direct skeletal fixation. This study aimed to assess two percutaneous trans-femoral implants, the OPRA system (Integrum AB, Goteborg, Sweden), and the ISP Endo/Exo prosthesis (ESKA Implants AG, Lubeck,

  7. A Comparative Finite-Element Analysis of Bone Failure and Load Transfer of Osseointegrated Prostheses Fixations

    NARCIS (Netherlands)

    Tomaszewski, P. K.; Verdonschot, N.; Bulstra, S. K.; Verkerke, G. J.

    An alternative solution to conventional stump-socket prosthetic limb attachment is offered by direct skeletal fixation. This study aimed to assess two percutaneous trans-femoral implants, the OPRA system (Integrum AB, Goteborg, Sweden), and the ISP Endo/Exo prosthesis (ESKA Implants AG, Lubeck,

  8. A Comparative Finite-Element Analysis of Bone Failure and Load Transfer of Osseointegrated Prostheses Fixations.

    NARCIS (Netherlands)

    Tomaszewski, P.K.; Verdonschot, Nicolaas Jacobus Joseph; Bulstra, S.K.; Verkerke, Gijsbertus Jacob

    2010-01-01

    An alternative solution to conventional stump–socket prosthetic limb attachment is offered by direct skeletal fixation. This study aimed to assess two percutaneous trans-femoral implants, the OPRA system (Integrum AB, Göteborg, Sweden), and the ISP Endo/Exo prosthesis (ESKA Implants AG, Lübeck,

  9. Depot injectable biodegradable nanoparticles loaded with recombinant human bone morphogenetic protein-2: preparation, characterization, and in vivo evaluation

    Directory of Open Access Journals (Sweden)

    Hassan AH

    2015-07-01

    Full Text Available Ali Habiballah Hassan,1 Khaled Mohamed Hosny,2,3 Zuahir A Murshid,1 Adel Alhadlaq,4 Ahmed Alyamani,5 Ghada Naguib6 1Department of Orthodontics, Faculty of Dentistry, 2Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia; 3Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni Suef University, Beni Suef, Egypt; 4Department of Pediatric Dentistry and Orthodontics, College of Dentistry, King Saud University, Riyadh, 5Department of Oral Surgery, 6Department of Restorative Dentistry, Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia Objective: The aim of this study is to utilize the biocompatibility characteristics of biodegradable polymers, viz, poly lactide-co-glycolide (PLGA and polycaprolactone (PCL, to prepare sustained-release injectable nanoparticles (NPs of bone morphogenetic protein-2 (BMP-2 for the repair of alveolar bone defects in rabbits. The influence of formulation parameters on the functional characteristics of the prepared NPs was studied to develop a new noninvasive injectable recombinant human BMP-2 (rhBMP-2 containing grafting material for the repair of alveolar bone clefts.Materials and methods: BMP-2 NPs were prepared using a water-in-oil-in-water double-emulsion solvent evaporation/extraction method. The influence of molar ratio of PLGA to PCL on a suitable particle size, encapsulation efficiency, and sustained drug release was studied. Critical size alveolar defects were created in the maxilla of 24 New Zealand rabbits divided into three groups, one of them treated with 5 µg/kg of rhBMP-2 NP formulations.Results: The results found that NPs formula prepared using blend of PLGA and PCL in 4:2 (w/w ratio showed the best sustained-release pattern with lower initial burst, and showed up to 62.7% yield, 64.5% encapsulation efficiency, 127 nm size, and more than 90% in vitro release. So, this formula was selected for

  10. Diels-Alder functionalized carbon nanotubes for bone tissue engineering: in vitro/in vivo biocompatibility and biodegradability

    Science.gov (United States)

    Mata, D.; Amaral, M.; Fernandes, A. J. S.; Colaço, B.; Gama, A.; Paiva, M. C.; Gomes, P. S.; Silva, R. F.; Fernandes, M. H.

    2015-05-01

    The risk-benefit balance for carbon nanotubes (CNTs) dictates their clinical fate. To take a step forward at this crossroad it is compulsory to modulate the CNT in vivo biocompatibility and biodegradability via e.g. chemical functionalization. CNT membranes were functionalised combining a Diels-Alder cycloaddition reaction to generate cyclohexene (-C6H10) followed by a mild oxidisation to yield carboxylic acid groups (-COOH). In vitro proliferation and osteogenic differentiation of human osteoblastic cells were maximized on functionalized CNT membranes (p,f-CNTs). The in vivo subcutaneously implanted materials showed a higher biological reactivity, thus inducing a slighter intense inflammatory response compared to non-functionalized CNT membranes (p-CNTs), but still showing a reduced cytotoxicity profile. Moreover, the in vivo biodegradation of CNTs was superior for p,f-CNT membranes, likely mediated by the oxidation-induced myeloperoxidase (MPO) in neutrophil and macrophage inflammatory milieus. This proves the biodegradability faculty of functionalized CNTs, which potentially avoids long-term tissue accumulation and triggering of acute toxicity. On the whole, the proposed Diels-Alder functionalization accounts for the improved CNT biological response in terms of the biocompatibility and biodegradability profiles. Therefore, CNTs can be considered for use in bone tissue engineering without notable toxicological threats.The risk-benefit balance for carbon nanotubes (CNTs) dictates their clinical fate. To take a step forward at this crossroad it is compulsory to modulate the CNT in vivo biocompatibility and biodegradability via e.g. chemical functionalization. CNT membranes were functionalised combining a Diels-Alder cycloaddition reaction to generate cyclohexene (-C6H10) followed by a mild oxidisation to yield carboxylic acid groups (-COOH). In vitro proliferation and osteogenic differentiation of human osteoblastic cells were maximized on functionalized CNT

  11. Monitoring of Postoperative Bone Healing Using Smart Trauma-Fixation Device With Integrated Self-Powered Piezo-Floating-Gate Sensors.

    Science.gov (United States)

    Borchani, Wassim; Aono, Kenji; Lajnef, Nizar; Chakrabartty, Shantanu

    2016-07-01

    Achieving better surgical outcomes in cases of traumatic bone fractures requires postoperative monitoring of changes in the growth and mechanical properties of the tissue and bones during the healing process. While current in-vivo imaging techniques can provide a snapshot of the extent of bone growth, it is unable to provide a history of the healing process, which is important if any corrective surgery is required. Monitoring the time evolution of in-vivo mechanical loads using existing technology is a challenge due to the need for continuous power while maintaining patient mobility and comfort. This paper investigates the feasibility of self-powered monitoring of the bone-healing process using our previously reported piezo-floating-gate (PFG) sensors. The sensors are directly integrated with a fixation device and operate by harvesting energy from microscale strain variations in the fixation structure. We show that the sensors can record and store the statistics of the strain evolution during the healing process for offline retrieval and analysis. Additionally, we present measurement results using a biomechanical phantom comprising of a femur fracture fixation plate; bone healing is emulated by inserting different materials, with gradually increasing elastic moduli, inside a fracture gap. The PFG sensor can effectively sense, compute, and record continuously evolving statistics of mechanical loading over a typical healing period of a bone, and the statistics could be used to differentiate between different bone-healing conditions. The proposed sensor presents a reliable objective technique to assess bone-healing progress and help decide on the removal time of the fixation device.

  12. Lag screw fixation of dorsal cortical stress fractures of the third metacarpal bone in 116 racehorses.

    Science.gov (United States)

    Jalim, S L; McIlwraith, C W; Goodman, N L; Anderson, G A

    2010-10-01

    The effectiveness and best method to manage dorsal cortical stress fractures is not clear. This study was performed to evaluate the success of lag screw fixation of such fractures in a population of Thoroughbred racehorses. Lag screw fixation of dorsal cortical stress fractures is an effective surgical procedure allowing racehorses to return to their preoperative level of performance. The records of 116 racehorses (103 Thoroughbreds) admitted to Equine Medical Centre, California between 1986 and 2008 were assessed. Information obtained from medical records included subject details, limb(s) affected, fracture configuration, length of screw used in repair and presence of concurrent surgical procedures performed. Racing performance was evaluated relative to these factors using Fisher's exact test and nonparametric methods with a level of significance of Phorses, 83% raced preoperatively and 83% raced post operatively, with 63% having ≥5 starts. There was no statistically significant association between age, gender, limb affected, fracture configuration or presence of concurrent surgery and likelihood of racing post operatively or of having 5 or more starts. The mean earnings per start and the performance index for the 3 races following surgery were lower compared to the 3 races prior to surgery; however, 29 and 45% of horses either improved or did not change their earnings per start and performance index, respectively. Data show that lag screw fixation is successful at restoring ability to race in horses suffering from dorsal cortical stress fractures. © 2010 EVJ Ltd.

  13. Central tarsal bone fractures in horses not used for racing: Computed tomographic configuration and long-term outcome of lag screw fixation.

    Science.gov (United States)

    Gunst, S; Del Chicca, F; Fürst, A E; Kuemmerle, J M

    2016-09-01

    There are no reports on the configuration of equine central tarsal bone fractures based on cross-sectional imaging and clinical and radiographic long-term outcome after internal fixation. To report clinical, radiographic and computed tomographic findings of equine central tarsal bone fractures and to evaluate the long-term outcome of internal fixation. Retrospective case series. All horses diagnosed with a central tarsal bone fracture at our institution in 2009-2013 were included. Computed tomography and internal fixation using lag screw technique was performed in all patients. Medical records and diagnostic images were reviewed retrospectively. A clinical and radiographic follow-up examination was performed at least 1 year post operatively. A central tarsal bone fracture was diagnosed in 6 horses. Five were Warmbloods used for showjumping and one was a Quarter Horse used for reining. All horses had sagittal slab fractures that began dorsally, ran in a plantar or plantaromedial direction and exited the plantar cortex at the plantar or plantaromedial indentation of the central tarsal bone. Marked sclerosis of the central tarsal bone was diagnosed in all patients. At long-term follow-up, 5/6 horses were sound and used as intended although mild osteophyte formation at the distal intertarsal joint was commonly observed. Central tarsal bone fractures in nonracehorses had a distinct configuration but radiographically subtle additional fracture lines can occur. A chronic stress related aetiology seems likely. Internal fixation of these fractures based on an accurate diagnosis of the individual fracture configuration resulted in a very good prognosis. © 2015 EVJ Ltd.

  14. Advanced bredigite-containing magnesium-matrix composites for biodegradable bone implant applications

    NARCIS (Netherlands)

    Naddaf Dezfuli, S.; Huan, Z.; Mol, J.M.C.; Leeflang, M.A.; Chang, Jiang; Zhou, J.

    2017-01-01

    The present research was aimed at developing magnesium-matrix composites that could allow effective control over their physiochemical and mechanical responses when in contact with physiological solutions. A biodegradable, bioactive ceramic - bredigite was chosen as the reinforcing phase in the

  15. Design and application of hybrid maxillomandibular fixation for facial bone fractures.

    Science.gov (United States)

    Park, Kang-Nam; Oh, Seung-Min; Lee, Chang-Youn; Kim, Jwa-Young; Yang, Byoung-Eun

    2013-01-01

    A novel maxillomandibular fixation (MMF) procedure using a skeletal anchorage screw (SAS) (in the maxilla) and an arch bar (in the mandible), which we call "hybrid maxillomandibular fixation," was explored in this study. The aims of the study were to examine the efficacy of our hybrid MMF method and to compare periodontal tissue health and occlusal rehabilitation among 3 MMF methods. In total, 112 patients who had undergone open reduction at the Department of Oral and Maxillofacial Surgery between September 2005 and December 2012 were selected for this study. The participants were assigned to one of the following groups: SAS (maxilla), SAS (mandible), SAS-arch bar, or arch bar-arch bar. Periodontal health was evaluated using the Gingival Index, and the perioperative occlusal reproducibility was evaluated using a score of 1 to 3. Statistical analysis was performed using parametric tests (Student t test or 1-way analysis of variance followed by post hoc Tukey test). In the Gingival Index comparison performed 1 month after the surgery, only the group using the arch bars and wiring was significantly different from the other groups (P fractures. In addition, it overcomes many problems presented by previous MMF methods.

  16. A STUDY OF POSTERIOR LUMBAR INTERBODY FUSION WITH LOCALLY HARVESTED SPINOLAMINECTOMY BONE GRAFT AND PEDICLE SCREW FIXATION IN SPONDYLOLISTHESIS

    Directory of Open Access Journals (Sweden)

    Pardhasaradhi M

    2017-08-01

    Full Text Available BACKGROUND Posterior Lumbar Interbody Fusion (PLIF and Transforaminal Lumbar Interbody Fusion (TLIF create intervertebral fusion by means of a posterior approach. Successful results have been reported with allograft, various cages (for interbody support, autograft and recombinant human bone morphogenetic protein‐2. Interbody fusion techniques facilitate reduction and enhance fusion. Corticocancellous laminectomy bone chips alone can be used as a means of spinal fusion in patients with single level instrumented PLIF. This has got a good fusion rate. PLIF with cage gives better fusion on radiology than PLIF with iliac bone graft, but no statistical difference in the clinical outcome. Cage use precludes complications associated with iliac bone harvesting. The reported adjacent segment degeneration was 40.5% and reoperation was 8.1% after 10 years of follow up. MATERIALS AND METHODS 30 cases of spondylolisthesis who attended the Orthopaedic Outpatient Department of Andhra Medical College, Visakhapatnam, from 2014 to 2016 were taken up for study. All the cases were examined clinically and confirmed radiologically. The patient’s age, sex, symptoms and duration were noted and were examined clinically for the status of the spine. Straight leg raising test was done and neurological examination of the lower limbs performed. All the patients were subjected to the radiological examination of the lumbosacral spine by taking anteroposterior, lateral (flexion and extension views, oblique views to demonstrate spondylolysis and spondylolisthesis. MRI and x-rays studies were done in all the cases to facilitate evaluation of the root compression disk changes and spinal cord changes. RESULTS In our study, we followed all the 30 patients after the surgery following procedure of removal of loose lamina, spinous process and fibrocartilaginous mass, PLIF with only the laminectomy bone mass and CD screw system fixation up to 2 years. 12 patients (40% had excellent

  17. Outcomes of operative treatment of unstable ankle fractures: a comparison of metallic and biodegradable implants.

    Science.gov (United States)

    Noh, Jung Ho; Roh, Young Hak; Yang, Bo Gyu; Kim, Seong Wan; Lee, Jun Suk; Oh, Moo Kyung

    2012-11-21

    Biodegradable implants for internal fixation of ankle fractures may overcome some disadvantages of metallic implants, such as imaging interference and the potential need for additional surgery to remove the implants. The purpose of this study was to evaluate the outcomes after fixation of ankle fractures with biodegradable implants compared with metallic implants. In this prospectively randomized study, 109 subjects with an ankle fracture underwent surgery with metallic (Group I) or biodegradable implants (Group II). Radiographic results were assessed by the criteria of the Klossner classification system and time to bone union. Clinical results were assessed with use of the American Orthopaedic Foot & Ankle Society (AOFAS) ankle-hindfoot scale, Short Musculoskeletal Function Assessment (SMFA) dysfunction index, and the SMFA bother index at three, six, and twelve months after surgery. One hundred and two subjects completed the study. At a mean of 19.7 months, there were no differences in reduction quality between the groups. The mean operative time was 30.2 minutes in Group I and 56.4 minutes in Group II (p implants were inferior to those after fixation with metallic implants in terms of the score on the AOFAS scale and time to bone union. However, the difference in the final AOFAS score between the groups may not be clinically important. The outcomes associated with the use of biodegradable implants for the fixation of isolated lateral malleolar fractures were comparable with those for metallic implants.

  18. Modifying bone scaffold architecture in vivo with permanent magnets to facilitate fixation of magnetic scaffolds.

    Science.gov (United States)

    Panseri, S; Russo, A; Sartori, M; Giavaresi, G; Sandri, M; Fini, M; Maltarello, M C; Shelyakova, T; Ortolani, A; Visani, A; Dediu, V; Tampieri, A; Marcacci, M

    2013-10-01

    The fundamental elements of tissue regeneration are cells, biochemical signals and the three-dimensional microenvironment. In the described approach, biomineralized-collagen biomaterial functions as a scaffold and provides biochemical stimuli for tissue regeneration. In addition superparamagnetic nanoparticles were used to magnetize the biomaterials with direct nucleation on collagen fibres or impregnation techniques. Minimally invasive surgery was performed on 12 rabbits to implant cylindrical NdFeB magnets in close proximity to magnetic scaffolds within the lateral condyles of the distal femoral epiphyses. Under this static magnetic field we demonstrated, for the first time in vivo, that the ability to modify the scaffold architecture could influence tissue regeneration obtaining a well-ordered tissue. Moreover, the association between NdFeB magnet and magnetic scaffolds represents a potential technique to ensure scaffold fixation avoiding micromotion at the tissue/biomaterial interface. © 2013.

  19. Coating of biodegradable magnesium alloy bone implants using nanostructured diopside (CaMgSi{sub 2}O{sub 6})

    Energy Technology Data Exchange (ETDEWEB)

    Razavi, Mehdi, E-mail: mehdi.razavi@okstate.edu [Biomaterials Research Group, Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Torabinejad Dental Research Center, School of Dentistry, Isfahan University of Medical Sciences, Isfahan 81746-73461 (Iran, Islamic Republic of); Department of Anatomical Sciences and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan 81746-73461 (Iran, Islamic Republic of); School of Materials Science and Engineering, Helmerich Advanced Technology Research Center, Oklahoma State University, Tulsa, OK 74106 (United States); School of Electrical and Computer Engineering, Helmerich Advanced Technology Research Center, Oklahoma State University, Tulsa, OK 74106 (United States); Fathi, Mohammadhossein [Biomaterials Research Group, Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Dental Materials Research Center, Isfahan University of Medical Sciences, Isfahan (Iran, Islamic Republic of); Savabi, Omid [Torabinejad Dental Research Center, School of Dentistry, Isfahan University of Medical Sciences, Isfahan 81746-73461 (Iran, Islamic Republic of); Beni, Batoul Hashemi [Department of Anatomical Sciences and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan 81746-73461 (Iran, Islamic Republic of); Razavi, Seyed Mohammad [School of Dentistry, Isfahan University of Medical Sciences, Isfahan 81746-73461 (Iran, Islamic Republic of); Vashaee, Daryoosh [School of Electrical and Computer Engineering, Helmerich Advanced Technology Research Center, Oklahoma State University, Tulsa, OK 74106 (United States); and others

    2014-01-01

    Magnesium alloys with their biodegradable characteristic can be a very good candidate to be used in orthopedic implants. However, magnesium alloys may corrode and degrade too fast for applications in the bone healing procedure. In order to enhance the corrosion resistance and the in vitro bioactivity of a magnesium alloy, a nanostructured diopside (CaMgSi{sub 2}O{sub 6}) film was coated on AZ91 magnesium alloy through combined micro-arc oxidation (MAO) and electrophoretic deposition (EPD) methods. The crystalline structures, morphologies and compositions of the coated and uncoated substrates were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive spectroscopy. Polarization, electrochemical impedance spectroscopy, and immersion test in simulated body fluid (SBF) were employed to evaluate the corrosion resistance and the in vitro bioactivity of the samples. The results of our investigation showed that the nanostructured diopside coating deposited on the MAO layer increases the corrosion resistance and improves the in vitro bioactivity of the biodegradable magnesium alloy.

  20. Coating of biodegradable magnesium alloy bone implants using nanostructured diopside (CaMgSi2O6)

    Science.gov (United States)

    Razavi, Mehdi; Fathi, Mohammadhossein; Savabi, Omid; Beni, Batoul Hashemi; Razavi, Seyed Mohammad; Vashaee, Daryoosh; Tayebi, Lobat

    2014-01-01

    Magnesium alloys with their biodegradable characteristic can be a very good candidate to be used in orthopedic implants. However, magnesium alloys may corrode and degrade too fast for applications in the bone healing procedure. In order to enhance the corrosion resistance and the in vitro bioactivity of a magnesium alloy, a nanostructured diopside (CaMgSi2O6) film was coated on AZ91 magnesium alloy through combined micro-arc oxidation (MAO) and electrophoretic deposition (EPD) methods. The crystalline structures, morphologies and compositions of the coated and uncoated substrates were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive spectroscopy. Polarization, electrochemical impedance spectroscopy, and immersion test in simulated body fluid (SBF) were employed to evaluate the corrosion resistance and the in vitro bioactivity of the samples. The results of our investigation showed that the nanostructured diopside coating deposited on the MAO layer increases the corrosion resistance and improves the in vitro bioactivity of the biodegradable magnesium alloy.

  1. Coating of biodegradable magnesium alloy bone implants using nanostructured diopside (CaMgSi2O6)

    International Nuclear Information System (INIS)

    Razavi, Mehdi; Fathi, Mohammadhossein; Savabi, Omid; Beni, Batoul Hashemi; Razavi, Seyed Mohammad; Vashaee, Daryoosh

    2014-01-01

    Magnesium alloys with their biodegradable characteristic can be a very good candidate to be used in orthopedic implants. However, magnesium alloys may corrode and degrade too fast for applications in the bone healing procedure. In order to enhance the corrosion resistance and the in vitro bioactivity of a magnesium alloy, a nanostructured diopside (CaMgSi 2 O 6 ) film was coated on AZ91 magnesium alloy through combined micro-arc oxidation (MAO) and electrophoretic deposition (EPD) methods. The crystalline structures, morphologies and compositions of the coated and uncoated substrates were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive spectroscopy. Polarization, electrochemical impedance spectroscopy, and immersion test in simulated body fluid (SBF) were employed to evaluate the corrosion resistance and the in vitro bioactivity of the samples. The results of our investigation showed that the nanostructured diopside coating deposited on the MAO layer increases the corrosion resistance and improves the in vitro bioactivity of the biodegradable magnesium alloy.

  2. A paradigm for the development and evaluation of novel implant topologies for bone fixation: in vivo evaluation.

    Science.gov (United States)

    Long, Jason P; Hollister, Scott J; Goldstein, Steven A

    2012-10-11

    While contemporary prosthetic devices restore some function to individuals who have lost a limb, there are efforts to develop bio-integrated prostheses to improve functionality. A critical step in advancing this technology will be to securely attach the device to remnant bone. To investigate mechanisms for establishing robust implant fixation in bone while undergoing loading, we previously used a topology optimization scheme to develop optimized orthopedic implants and then fabricated selected designs from titanium (Ti)-alloy with selective laser sintering (SLS) technology. In the present study, we examined how implant architecture and mechanical stimulation influence osseointegration within an in vivo environment. To do this, we evaluated three implant designs (two optimized and one non-optimized) using a unique in vivo model that applied cyclic, tension/compression loads to the implants. Eighteen (six per implant design) adult male canines had implants surgically placed in their proximal, tibial metaphyses. Experimental duration was 12 weeks; daily loading (peak load of ±22 N for 1000 cycles) was applied to one of each animal's bilateral implants for the latter six weeks. Following harvest, osseointegration was assessed by non-destructive mechanical testing, micro-computed tomography (microCT) and back-scatter scanning electron microscopy (SEM). Data revealed that implant loading enhanced osseointegration by significantly increasing construct stiffness, peri-implant trabecular morphology, and percentages of interface connectivity and bone ingrowth. While this experiment did not demonstrate a clear advantage associated with the optimized implant designs, osseointegration was found to be significantly influenced by aspects of implant architecture. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Development of Novel Biodegradable Amino Acid Ester Based Polyphosphazene-Hydroxyapatite Composites for Bone Tissue Engineering

    National Research Council Canada - National Science Library

    Sethuraman, Swaminathan; Nair, Lakshmi S; Singh, Anurima; Bender, Jared D; Greish, Yaser E; Brown, Paul W; Allcock, H. R; Laurencin, Cato T

    2005-01-01

    .... CPCs are attractive candidates for the development of scaffolds for bone tissue engineering, since they are moldable, resorbable, set at physiological temperature without the use of toxic chemicals...

  4. Introducing an attractive method for total biomimetic creation of a synthetic biodegradable bioactive bone scaffold based on statistical experimental design.

    Science.gov (United States)

    Shahbazi, Sara; Zamanian, Ali; Pazouki, Mohammad; Jafari, Yaser

    2018-05-01

    A new total biomimetic technique based on both the water uptake and degradation processes is introduced in this study to provide an interesting procedure to fabricate a bioactive and biodegradable synthetic scaffold, which has a good mechanical and structural properties. The optimization of effective parameters to scaffold fabrication was done by response surface methodology/central composite design (CCD). With this method, a synthetic scaffold was fabricated which has a uniform and open-interconnected porous structure with the largest pore size of 100-200μm. The obtained compressive ultimate strength of ~35MPa and compression modulus of 58MPa are similar to some of the trabecular bone. The pore morphology, size, and distribution of the scaffold were characterized using a scanning electron microscope and mercury porosimeter. Fourier transform infrared spectroscopy, EDAX and X-ray diffraction analyses were used to determine the chemical composition, Ca/P element ratio of mineralized microparticles, and the crystal structure of the scaffolds, respectively. The optimum biodegradable synthetic scaffold based on its raw materials of polypropylene fumarate, hydroxyethyl methacrylate and nano bioactive glass (PPF/HEMA/nanoBG) as 70/30wt/wt%, 20wt%, and 1.5wt/wt% (PHB.732/1.5) with desired porosity, pore size, and geometry were created by 4weeks immersion in SBF. This scaffold showed considerable biocompatibility in the ranging from 86 to 101% for the indirect and direct contact tests and good osteoblast cell attachment when studied with the bone-like cells. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Design and Optimization of Resorbable Silk Internal Fixation Devices

    Science.gov (United States)

    Haas, Dylan S.

    Limitations of current material options for internal fracture fixation devices have resulted in a large gap between user needs and hardware function. Metal systems offer robust mechanical strength and ease of implantation but require secondary surgery for removal and/or result in long-term complications (infection, palpability, sensitivity, etc.). Current resorbable devices eliminate the need for second surgery and long-term complications but are still associated with negative host response as well as limited functionality and more difficult implantation. There is a definitive need for orthopedic hardware that is mechanically capable of immediate fracture stabilization and fracture fixation during healing, can safely biodegrade while allowing complete bone remodeling, can be resterilized for reuse, and is easily implantable (self-tapping). Previous work investigated the use of silk protein to produce resorbable orthopedic hardware for non- load bearing fracture fixation. In this study, silk orthopedic hardware was further investigated and optimized in order to better understand the ability of silk as a fracture fixation system and more closely meet the unfulfilled market needs. Solvent-based and aqueous-based silk processing formulations were cross-linked with methanol to induce beta sheet structure, dried, autoclaved and then machined to the desired device/geometry. Silk hardware was evaluated for dry, hydrated and fatigued (cyclic) mechanical properties, in vitro degradation, resterilization, functionalization with osteoinductive molecules and implantation technique for fracture fixation. Mechanical strength showed minor improvements from previous results, but remains comparable to current resorbable fixation systems with the advantages of self-tapping ability for ease of implantation, full degradation in 10 months, ability to be resterilized and reused, and ability to release molecules for osteoinudction. In vivo assessment confirmed biocompatibility, showed

  6. Magnetic biodegradable Fe{sub 3}O{sub 4}/CS/PVA nanofibrous membranes for bone regeneration

    Energy Technology Data Exchange (ETDEWEB)

    Wei Yan; Zhang Xuehui; Hu Xiaoyang; Deng Xuliang [Department of Geriatric Dentistry, School and Hospital of Stomatology, Peking University, Beijing, 100081 (China); Song Yu; Lin Yuanhua [State Key Laboratory of New Ceramics and Fine Processing, Department of Materials Science and Engineering, Tsinghua University, Beijing, 100084 (China); Han Bing [Department of Orthodontics, School and Hospital of Stomatology, Peking University, Beijing, 100081 (China); Wang Xinzhi, E-mail: kqdengxuliang@bjmu.edu.cn [Department of Prosthodontics, School and Hospital of Stomatology, Peking University, Beijing, 100081 (China)

    2011-10-15

    In recent years, interest in magnetic biomimetic scaffolds for tissue engineering has increased considerably. The aim of this study is to develop magnetic biodegradable fibrous materials with potential use in bone regeneration. Magnetic biodegradable Fe{sub 3}O{sub 4}/chitosan (CS)/poly vinyl alcohol (PVA) nanofibrous membranes were achieved by electrospinning with average fiber diameters ranging from 230 to 380 nm and porosity of 83.9-85.1%. The influences of polymer concentration, applied voltage and Fe{sub 3}O{sub 4} nanoparticles loading on the fabrication of nanofibers were investigated. The polymer concentration of 4.5 wt%, applied voltage of 20 kV and Fe{sub 3}O{sub 4} nanoparticles loading of lower than 5 wt% could produce homogeneous, smooth and continuous Fe{sub 3}O{sub 4}/CS/PVA nanofibrous membranes. X-ray diffraction (XRD) data confirmed that the crystalline structure of the Fe{sub 3}O{sub 4}, CS and PVA were maintained during electrospinning process. Fourier transform infrared spectroscopy (FT-IR) demonstrated that the Fe{sub 3}O{sub 4} loading up to 5 wt% did not change the functional groups of CS/PVA greatly. Transmission electron microscopy (TEM) showed islets of Fe{sub 3}O{sub 4} nanoparticles evenly distributed in the fibers. Weak ferrimagnetic behaviors of membranes were revealed by vibrating sample magnetometer (VSM) test. Tensile test exhibited Young's modulus of membranes that were gradually enhanced with the increase of Fe{sub 3}O{sub 4} nanoparticles loading, while ultimate tensile stress and ultimate strain were slightly reduced by Fe{sub 3}O{sub 4} nanoparticles loading of 5%. Additionally, MG63 human osteoblast-like cells were seeded on the magnetic nanofibrous membranes to evaluate their bone biocompatibility. Cell growth dynamics according to MTT assay and scanning electron microscopy (SEM) observation exhibited good cell adhesion and proliferation, suggesting that this magnetic biodegradable Fe{sub 3}O{sub 4}/CS/PVA nanofibrous

  7. Modifications to a 3D-printed temporal bone model for augmented stapes fixation surgery teaching.

    Science.gov (United States)

    Nguyen, Yann; Mamelle, Elisabeth; De Seta, Daniele; Sterkers, Olivier; Bernardeschi, Daniele; Torres, Renato

    2017-07-01

    Functional outcomes and complications in otosclerosis surgery are governed by the surgeon's experience. Thus, teaching the procedure to residents to guide them through the learning process as quickly as possible is challenging. Artificial 3D-printed temporal bones are replacing cadaver specimens in many institutions to learn mastoidectomy, but these are not suitable for middle ear surgery training. The goal of this work was to adapt such an artificial temporal bone to aid the teaching of otosclerosis surgery and to evaluate this tool. We have modified a commercially available 3D-printed temporal bone by replacing the incus and stapes of the model with in-house 3D-printed ossicles. The incus could be attached to a 6-axis force sensor. The stapes footplate was fenestrated and attached to a 1-axis force sensor. Six junior surgeons (residents) and seven senior surgeons (fellows or consultants) were enrolled to perform piston prosthesis placement and crimping as performed during otosclerosis surgery. The time required to perform the tasks and the forces applied to the incus and stapes were collected and analyzed. No statistically significant differences were observed between the junior and senior groups for time taken to perform the tasks and the forces applied to the incus during crimping and placement of the prosthesis. However, significantly lower forces were applied to the stapes by the senior surgeons in comparison with the junior surgeons during prosthesis placement (junior vs senior group, 328 ± 202.9 vs 80 ± 99.6 mN, p = 0.008) and during prosthesis crimping (junior vs senior group, 565 ± 233 vs 66 ± 48.6 mN, p = 0.02). We have described a new teaching tool for otosclerosis surgery based on the modification of a 3D-printed temporal bone to implement force sensors on the incus and stapes. This tool could be used as a training tool to help the residents to self-evaluate their progress with recording of objective measurements.

  8. Do Bone Graft and Cracking of the Sclerotic Cavity Improve Fixation of Titanium and Hydroxyapatite-coated Revision Implants in an Animal Model?

    Science.gov (United States)

    Elmengaard, Brian; Baas, Joergen; Jakobsen, Thomas; Kold, Soren; Jensen, Thomas B; Bechtold, Joan E; Soballe, Kjeld

    2017-02-01

    We previously introduced a manual surgical technique that makes small perforations (cracks) through the sclerotic bone shell that typically forms during the process of aseptic loosening ("crack" revision technique). Perforating just the shell (without violating the proximal cortex) can maintain overall bone continuity while allowing marrow and vascular elements to access the implant surface. Because many revisions require bone graft to fill defects, we wanted to determine if bone graft could further increase implant fixation beyond what we have experimentally shown with the crack technique alone. Also, because both titanium (Ti6Al4V) and hydroxyapatite (HA) implant surfaces are used in revisions, we also wanted to determine their relative effectiveness in this model. We hypothesized that both (1) allografted plasma-sprayed Ti6Al4V; and (2) allografted plasma-sprayed HA-coated implants inserted with a crack revision technique have better fixation compared with a noncrack revision technique in each case. Under approval from our Institutional Animal Care and Use Committee, a female canine animal model was used to evaluate the uncemented revision technique (crack, noncrack) using paired contralateral implants while implant surface (Ti6Al4V, HA) was qualitatively compared between the two (unpaired) series. All groups received bone allograft tightly packed around the implant. This revision model includes a cylindrical implant pistoning 500 μm in a 0.75-mm gap, with polyethylene particles, for 8 weeks. This engenders a bone and tissue response representative of the metaphyseal cancellous region of an aseptically loosened component. At 8 weeks, the original implants were revised and followed for an additional 4 weeks. Mechanical fixation was assessed by load, stiffness, and energy to failure when loaded in axial pushout. Histomorphometry was used to determine the amount and location of bone and fibrous tissue in the grafted gap. The grafted crack revision improved

  9. The treatment of scaphoid nonunion using the Ilizarov fixator without bone graft, a study of 18 cases

    Directory of Open Access Journals (Sweden)

    Bumbaširević Marko

    2011-11-01

    Full Text Available Abstract Objectives Evaluating the safety and efficacy of the Ilizarov fine-wire compression/distraction technique in the treatment of scaphoid nonunion (SNU, without the use of bone graft. Design A retrospective review of 18 consecutive patients in one centre. Patients and Methods 18 patients; 17 males; 1 female, with a mean SNU duration of 13.9 months. Patients with carpal instability, humpback deformity, carpal collapse, avascular necrosis or marked degenerative change, were excluded. Following frame application the treatment consisted of three stages: the frame was distracted 1 mm per day until radiographs showed a 2-3 mm opening at the SNU site (mean 10 days; the SNU site was then compressed for 5 days, at a rate of 1 mm per day, with the wrist in 15 degrees of flexion and 15 degrees of radial deviation; the third stage involved immobilization with the Ilizarov fixator for 6 weeks. The technique is detailed herein. Results Radiographic (CT and clinical bony union was achieved in all 18 patients after a mean of 89 days (70-130 days. Mean modified Mayo wrist scores improved from 21 to 86 at a mean follow-up of 37 months (24-72 months, with good/excellent results in 14 patients. All patients returned to their pre-injury occupations and levels of activity at a mean of 117 days. Three patients suffered superficial K-wire infections, which resolved with oral antibiotics. Conclusions In these selected patients this technique safely achieved bony union without the need to open the SNU site and without the use of bone graft.

  10. Fe and Fe-P Foam for Biodegradable Bone Replacement Material: Morphology, Corrosion Behaviour, and Mechanical Properties

    Directory of Open Access Journals (Sweden)

    Monika Hrubovčáková

    2016-01-01

    Full Text Available Iron and iron-phosphorus open-cell foams were manufactured by a replica method based on a powder metallurgical approach to serve as a temporary biodegradable bone replacement material. Iron foams alloyed with phosphorus were prepared with the aim of enhancing the mechanical properties and manipulating the corrosion rate. Two different types of Fe-P foams containing 0.5 wt.% of P were prepared: Fe-P(I foams from a phosphated carbonyl iron powder and Fe-P(II foams from a mixture of carbonyl iron and commercial Fe3P. The microstructure of foams was analyzed using scanning electron microscopy. The mechanical properties and the corrosion behaviour were studied by compression tests and potentiodynamic polarization in Hank’s solution and a physiological saline solution. The results showed that the manufactured foams exhibited an open, interconnected, microstructure similar to that of a cancellous bone. The presence of phosphorus improved the mechanical properties of the foams and decreased the corrosion rate as compared to pure iron foams.

  11. Manufacturing of individual biodegradable bone substitute implants using selective laser melting technique.

    Science.gov (United States)

    Lindner, Markus; Hoeges, Simon; Meiners, Wilhelm; Wissenbach, Konrad; Smeets, Ralf; Telle, Rainer; Poprawe, Reinhart; Fischer, Horst

    2011-06-15

    The additive manufacturing technique selective laser melting (SLM) has been successfully proved to be suitable for applications in implant manufacturing. SLM is well known for metal parts and offers direct manufacturing of three-dimensional (3D) parts with high bulk density on the base of individual 3D data, including computer tomography models of anatomical structures. Furthermore, an interconnecting porous structure with defined and reproducible pore size can be integrated during the design of the 3D virtual model of the implant. The objective of this study was to develop the SLM processes for a biodegradable composite material made of β-tricalcium phosphate (β-TCP) and poly(D, L)-lactide (PDLLA). The development of a powder composite material (β-TCP/PDLLA) suitable for the SLM process was successfully performed. The microstructure of the manufactured samples exhibit a homogeneous arrangement of ceramic and polymer. The four-point bending strength was up to 23 MPa. The X-ray diffraction (XRD) analysis of the samples confirmed β-TCP as the only present crystalline phase and the gel permeations chromatography (GPC) analysis documented a degradation of the polymer caused by the laser process less than conventional manufacturing processes. We conclude that SLM presents a new possibility to manufacture individual biodegradable implants made of β-TCP/PDLLA. Copyright © 2011 Wiley Periodicals, Inc.

  12. Studies on Poly(propylene fumarate-co-caprolactone diol Thermoset Composites towards the Development of Biodegradable Bone Fixation Devices

    Directory of Open Access Journals (Sweden)

    M. Jayabalan

    2009-01-01

    Full Text Available The effect of reinforcement in the cross-linked poly(propylene fumarate-co-caprolactone diol thermoset composites based on Kevlar fibres and hydroxyapatite was studied. Cross-linked poly(propylene fumarate-co-caprolactone diol was also studied without any reinforcement for comparison. The reinforcing fibre acts as a barrier for the curing reaction leading to longer setting time and lesser cross-link density. The fibre and HA reinforced composites have almost the same compressive strength. Nonreinforced material undergoes greater degree of swelling. Among the reinforced materials, the hydroxyapatite reinforced composite has a much higher swelling percentage than the fibre reinforced one. The studies on in vitro degradation of the cured materials reveal hydrolytic degradation in Ringer's solution and PBS medium during aging. All the three materials are found to swell initially in Ringer's solution and PBS medium during aging and then undergo gradual degradation. Compression properties of these cross-linked composites increase with aging; HA reinforced composite has the highest compressive strength and compressive modulus, whereas the aged fibre-reinforced composite has the least compressive strength and modulus.

  13. Studies on Poly(propylene fumarate-co-caprolactone diol) Thermoset Composites towards the Development of Biodegradable Bone Fixation Devices.

    Science.gov (United States)

    Jayabalan, M

    2009-01-01

    The effect of reinforcement in the cross-linked poly(propylene fumarate-co-caprolactone diol) thermoset composites based on Kevlar fibres and hydroxyapatite was studied. Cross-linked poly(propylene fumarate-co-caprolactone diol) was also studied without any reinforcement for comparison. The reinforcing fibre acts as a barrier for the curing reaction leading to longer setting time and lesser cross-link density. The fibre and HA reinforced composites have almost the same compressive strength. Nonreinforced material undergoes greater degree of swelling. Among the reinforced materials, the hydroxyapatite reinforced composite has a much higher swelling percentage than the fibre reinforced one. The studies on in vitro degradation of the cured materials reveal hydrolytic degradation in Ringer's solution and PBS medium during aging. All the three materials are found to swell initially in Ringer's solution and PBS medium during aging and then undergo gradual degradation. Compression properties of these cross-linked composites increase with aging; HA reinforced composite has the highest compressive strength and compressive modulus, whereas the aged fibre-reinforced composite has the least compressive strength and modulus.

  14. Evaluation of four biodegradable, injectable bone cements in an experimental drill hole model in sheep.

    Science.gov (United States)

    von Rechenberg, Brigitte; Génot, Oliver R; Nuss, Katja; Galuppo, Larry; Fulmer, Mark; Jacobson, Evan; Kronen, Peter; Zlinszky, Kati; Auer, Jörg A

    2013-09-01

    Four cement applications were tested in this investigation. Two dicalcium phosphate dihydrate (DCPD-brushite) hydraulic cements, an apatite hydraulic fiber loaded cement, and a calcium sulfate cement (Plaster of Paris) were implanted in epiphyseal and metaphyseal cylindrical bone defects in sheep. The in vivo study was performed to assess the biocompatibility and bone remodeling of four cement formulations. After time periods of 2, 4, and 6 months, the cement samples were clinically and histologically evaluated. Histomorphometrically, the amount of new bone formation, fibrous tissue, and bone marrow and the area of remaining cement were measured. In all specimens, no signs of inflammation were detectable either macroscopically or microscopically. Cements differed mainly in their resorption time. Calcium sulfate was already completely resorbed at 2 months and showed a variable amount of new bone formation and/or fibrous tissue in the original drill hole over all time periods. The two DCPD cements in contrast were degraded to a large amount at 6 months, whereas the apatite was almost unchanged over all time periods. Copyright © 2013. Published by Elsevier B.V.

  15. Early Conversion of External Fixation to Interlocked Nailing in Open Fractures of Both Bone Leg Assisted with Vacuum Closure (VAC) - Final Outcome.

    Science.gov (United States)

    Gill, Simrat Pal Singh; Raj, Manish; Kumar, Sunil; Singh, Pulkesh; Kumar, Dinesh; Singh, Jasveer; Deep, Akash

    2016-02-01

    Management of compound grade III fractures of both bone leg includes external stabilization for long period, followed by various soft tissue coverage procedures. Primary interlocking of tibia had been also done with variable results. External fixation for long time without any bone loss often leads to infected nonunion, loss of reduction, pin tract infection and failure of fixation, primary interlocking in compound grade III fractures had shown high medullary infection rate. We managed all cases of compound grade III A/B fractures with primary external fixation, simultaneous wound management using vacuum assisted closure (VAC) followed by early conversion to interlocking within 2 weeks of fixator application. To determine the effectiveness of vacuum assisted closure (VAC) for the early conversion of external fixator to definitive interlocking in open fractures of the both bone leg. In current study we selected 84 cases of compound grade IIIA/B diaphyseal fractures of both bone leg during period of May 2010 to September 2013. We managed these cases by immediate debridement and application of external fixation followed by repeated debridement, application of vacuum assisted closure (VAC) and conversion to interlocking within two weeks. Out of 84 cases union was achieved in 80(95%) of cases with definitive tibial interlocking. Excellent to good result were obtained in 77(91.8%) of cases and fair to poor result seen in rest of 7(8.2%) of cases according to modified Ketenjian's criteria. 5 out of these 7 poor result group cases were from Compound Grade III B group to start with. Deep infection rate in our series were 7% i.e. total 6 cases and 4 out of these were from compound Grade III B group to start with. Vacuum assisted closure (VAC) give a good help for rapid closure of the wound and help in early conversion to definitive intramedullary nailing. Reamed nail could well be used in compound grade IIIA/B fractures without increasing the risk of infection. It gives

  16. The impact of zoledronic acid on regenerate and native bone after consolidation and removal of the external fixator: an animal model study.

    Science.gov (United States)

    Saghieh, Said; Khoury, Nabil J; Tawil, Ayman; Masrouha, Karim Z; Musallam, Khaled M; Khalaf, Kinda; Dosh, Laura; Jaouhari, Rosemarie Reich; Birjawi, Ghina; El-Hajj-Fuleihan, Ghada

    2010-02-01

    We investigated the role of zoledronic acid on the regenerate and native bone after consolidation and removal of the external fixator in a rabbit model of distraction osteogenesis using 28 New Zealand white rabbits. The rabbits were randomly distributed into two groups. The first group received three doses of zoledronic acid (ZA) 0.1 mg/kg subcutaneously at weekly intervals while the second group received injections of sterile saline. Distraction started on day 7 at a rate of 0.8 mm/day for 12 days. At week 3 the average lengthening, regenerate density, and regenerate continuity were comparable between the two groups. At week 11 the regenerate in the treated group had a significant increase in Bone Mineral Density (BMD) and Bone Mineral Content (BMC) compared to the placebo group. On axial compression, the regenerate showed an increase in the peak load and a higher modulus of elasticity in the treated group. At 6 months, radiographs demonstrated signs of osteopenia of the proximal metaphysis in the control group, and failure of new bone formation around the pin sites in the treated group. BMC and BMD value differences between the two groups were not statistically significant. Histologically, there was persistence of more bone trabeculae in the medullary canal of the regenerate with the persistence of the pin-holes in the treated group. Mechanically, the regenerates in the treated group remain stronger in resisting the axial compression. The proximal fragment in the treated group exhibited a statistically significant decrease in the peak load, toughness and efail %. In conclusion, bisphosphonate-treated rabbits have a stronger regenerate during distraction, and directly after removal of the fixator. They do not develop disuse osteopenia in their lengthened tibia. This treatment may shorten the time in the external fixator and prevent fragility fractures in the treated extremity. However, its long-term safety has not yet been established. (c) 2009 Elsevier Inc. All

  17. An Osteoinductive Polymer Composite for Cranial and Maxillofacial Bone Repair,

    Science.gov (United States)

    1985-01-01

    a suitable level of anesthesia , a semi-lunar incision was made in the midline from the superior sagittal crest to the middle of the nasal bone. The...internal fixation of Fractures, and as intraosseous bone repair materials. A promising use for these polymers has been as carriers for osteogenic...acids. Oral Surg. 37:142, 1974. 7. Getter, L., Cutright, D.E., Bhaskar, S.N., and Augsburg, J.K. A biodegradable intraosseous apliance in the

  18. Percutaneous internal fixation of proximal fifth metatarsal jones fractures (Zones II and III) with Charlotte Carolina screw and bone marrow aspirate concentrate: an outcome study in athletes.

    Science.gov (United States)

    Murawski, Christopher D; Kennedy, John G

    2011-06-01

    Internal fixation is a popular first-line treatment method for proximal fifth metatarsal Jones fractures in athletes; however, nonunions and screw breakage can occur, in part because of nonspecific fixation hardware and poor blood supply. To report the results from 26 patients who underwent percutaneous internal fixation with a specialized screw system of a proximal fifth metatarsal Jones fracture (zones II and III) and bone marrow aspirate concentrate. Case series; Level of evidence, 4. Percutaneous internal fixation for a proximal fifth metatarsal Jones fracture (zones II and III) was performed on 26 athletic patients (mean age, 27.47 years; range, 18-47). All patients were competing at some level of sport and were assessed preoperatively and postoperatively using the Foot and Ankle Outcome Score and SF-12 outcome scores. The mean follow-up time was 20.62 months (range, 12-28). Of the 26 fractures, 17 were traditional zone II Jones fractures, and the remaining 9 were zone III proximal diaphyseal fractures. The mean Foot and Ankle Outcome Score significantly increased, from 51.15 points preoperatively (range, 14-69) to 90.91 at final follow-up (range, 71-100; P fracture healing on standard radiographs was 5 weeks after surgery (range, 4-24). Two patients did not return to their previous levels of sporting activity. One patient experienced a delayed union, and 1 healed but later refractured. Percutaneous internal fixation of proximal fifth metatarsal Jones fractures, with a Charlotte Carolina screw and bone marrow aspirate concentrate, provides more predictable results while permitting athletes a return to sport at their previous levels of competition, with few complications.

  19. Management of extra-articular segmental defects in long bone using a titanium mesh cage as an adjunct to other methods of fixation.

    Science.gov (United States)

    Attias, N; Thabet, A M; Prabhakar, G; Dollahite, J A; Gehlert, R J; DeCoster, T A

    2018-05-01

    Aims This study reviews the use of a titanium mesh cage (TMC) as an adjunct to intramedullary nail or plate reconstruction of an extra-articular segmental long bone defect. Patients and Methods A total of 17 patients (aged 17 to 61 years) treated for a segmental long bone defect by nail or plate fixation and an adjunctive TMC were included. The bone defects treated were in the tibia (nine), femur (six), radius (one), and humerus (one). The mean length of the segmental bone defect was 8.4 cm (2.2 to 13); the mean length of the titanium mesh cage was 8.3 cm (2.6 to 13). The clinical and radiological records of the patients were analyzed retrospectively. Results The mean time to follow-up was 55 months (12 to 126). Overall, 16 (94%) of the patients achieved radiological filling of their bony defect and united to the native bone ends proximally and distally, resulting in a functioning limb. Complications included device failure in two patients (12%), infection in two (12%), and wound dehiscence in one (6%). Four patients (24%) required secondary surgery, four (24%) had a residual limb-length discrepancy, and one (6%) had a residual angular limb deformity. Conclusion A titanium mesh cage is a useful adjunct in the treatment of an extra-articular segmental defect in a long bone. Cite this article: Bone Joint J 2018;100-B:646-51.

  20. Fabrication of highly porous biodegradable biomimetic nanocomposite as advanced bone tissue scaffold

    OpenAIRE

    Abdalla Abdal-hay; Khalil Abdelrazek Khalil; Abdel Salam Hamdy; Fawzi F. Al-Jassir

    2017-01-01

    Development of bioinspired or biomimetic materials is currently a challenge in the field of tissue regeneration. In-situ 3D biomimetic microporous nanocomposite scaffold has been developed using a simple lyophilization post hydrothermal reaction for bone healing applications. The fabricated 3D porous scaffold possesses advantages of good bonelike apatite particles distribution, thermal properties and high porous interconnected network structure. High dispersion bonelike apatite nanoparticles ...

  1. Biodegradable chitin conduit tubulation combined with bone marrow mesenchymal stem cell transplantation for treatment of spinal cord injury by reducing glial scar and cavity formation

    Directory of Open Access Journals (Sweden)

    Feng Xue

    2015-01-01

    Full Text Available We examined the restorative effect of modified biodegradable chitin conduits in combination with bone marrow mesenchymal stem cell transplantation after right spinal cord hemisection injury. Immunohistochemical staining revealed that biological conduit sleeve bridging reduced glial scar formation and spinal muscular atrophy after spinal cord hemisection. Bone marrow mesenchymal stem cells survived and proliferated after transplantation in vivo, and differentiated into cells double-positive for S100 (Schwann cell marker and glial fibrillary acidic protein (glial cell marker at 8 weeks. Retrograde tracing showed that more nerve fibers had grown through the injured spinal cord at 14 weeks after combination therapy than either treatment alone. Our findings indicate that a biological conduit combined with bone marrow mesenchymal stem cell transplantation effectively prevented scar formation and provided a favorable local microenvironment for the proliferation, migration and differentiation of bone marrow mesenchymal stem cells in the spinal cord, thus promoting restoration following spinal cord hemisection injury.

  2. Biodegradable chitin conduit tubulation combined with bone marrow mesenchymal stem cell transplantation for treatment of spinal cord injury by reducing glial scar and cavity formation

    Science.gov (United States)

    Xue, Feng; Wu, Er-jun; Zhang, Pei-xun; Li-ya, A; Kou, Yu-hui; Yin, Xiao-feng; Han, Na

    2015-01-01

    We examined the restorative effect of modified biodegradable chitin conduits in combination with bone marrow mesenchymal stem cell transplantation after right spinal cord hemisection injury. Immunohistochemical staining revealed that biological conduit sleeve bridging reduced glial scar formation and spinal muscular atrophy after spinal cord hemisection. Bone marrow mesenchymal stem cells survived and proliferated after transplantation in vivo, and differentiated into cells double-positive for S100 (Schwann cell marker) and glial fibrillary acidic protein (glial cell marker) at 8 weeks. Retrograde tracing showed that more nerve fibers had grown through the injured spinal cord at 14 weeks after combination therapy than either treatment alone. Our findings indicate that a biological conduit combined with bone marrow mesenchymal stem cell transplantation effectively prevented scar formation and provided a favorable local microenvironment for the proliferation, migration and differentiation of bone marrow mesenchymal stem cells in the spinal cord, thus promoting restoration following spinal cord hemisection injury. PMID:25788929

  3. Biodegradable magnesium-based implants in bone studied by synchrotron radiation microtomography

    Science.gov (United States)

    Moosmann, Julian; Zeller-Plumhoff, Berit; Wieland, D. C. Florian; Galli, Silvia; Krüger, Diana; Dose, Thomas; Burmester, Hilmar; Wilde, Fabian; Bech, Martin; Peruzzi, Niccolò; Wiese, Björn; Hipp, Alexander; Beckmann, Felix; Hammel, Jörg; Willumeit-Römer, Regine

    2017-09-01

    Permanent implants made of titanium or its alloys are the gold standard in many orthopedic and traumatological applications due to their good biocompatibility and mechanical properties. However, a second surgical intervention is required for this kind of implants as they have to be removed in the case of children that are still growing or on patient's demand. Therefore, magnesium-based implants are considered for medical applications as they are degraded under physiological conditions. The major challenge is tailoring the degradation in a manner that is suitable for a biological environment and such that stabilization of the bone is provided for a controlled period. In order to understand failure mechanisms of magnesium-based implants in orthopedic applications and, further, to better understand the osseointegration, screw implants in bone are studied under mechanical load by means of a push-out device installed at the imaging beamline P05 of PETRA III at DESY. Conventional absorption contrast microtomography and phasecontrast techniques are applied in order to monitor the bone-to-implant interface under increasing load conditions. In this proof-of-concept study, first results from an in situ push-out experiment are presented.

  4. A Novel Murine Model of Established Staphylococcal Bone Infection in the Presence of a Fracture Fixation Plate to Study Therapies Utilizing Antibiotic-laden Spacers after Revision Surgery

    Science.gov (United States)

    Inzana, Jason A.; Schwarz, Edward M.; Kates, Stephen L.; Awad, Hani A.

    2014-01-01

    Mice are the small animal model of choice in biomedical research due to the low cost and availability of genetically engineered lines. However, the devices utilized in current mouse models of implant-associated bone infection have been limited to intramedullary or trans-cortical pins, which are not amenable to treatments involving extensive debridement of a full-thickness bone loss and placement of a segmental antibiotic spacer. To overcome these limitations, we developed a clinically faithful model that utilizes a locking fracture fixation plate to enable debridement of an infected segmental bone defect (full-thickness osteotomy) during a revision surgery, and investigated the therapeutic effects of placing an antibiotic-laden spacer in the segmental bone defect. To first determine the ideal time point for revision following infection, a 0.7 mm osteotomy in the femoral mid-shaft was stabilized with a radiolucent PEEK fixation plate. The defect was inoculated with bioluminescent Staphylococcus aureus, and the infection was monitored over 14 days by bioluminescent imaging (BLI). Osteolysis and reactive bone formation were assessed by X-ray and micro-computed tomography (micro-CT). The active bacterial infection peaked by 5 days post-inoculation, however the stability of the implant fixation became compromised by 10–14 days post-inoculation due to osteolysis around the screws. Thus, day 7 was defined as the ideal time point to perform the revision surgery. During the revision surgery, the infected tissue was debrided and the osteotomy was widened to 3 mm to place a poly-methyl methacrylate spacer, with or without vancomycin. Half of the groups also received systemic vancomycin for the remaining 21 days of the study. The viable bacteria remaining at the end of the study were measured using colony forming unit assays. Volumetric bone changes (osteolysis and reactive bone formation) were directly measured using micro-CT image analysis. Mice that were treated with

  5. [Analysis of tension-distraction state in the shin bones fractures in conditions of external fixation with application of apparatuses with different spatially oriented supports].

    Science.gov (United States)

    Hutsuliak, V I

    2014-09-01

    In Autodesk Inventor 11 program, using method of end-capping elements, a three- dimensional computeric modelling of biomechanical systems of two models was conducted: I - "tibia - Ilizarov's apparatus with concentric location of supports"; II - "tibia - Ilizarov's apparatus with excentric location of supports". The loading, which was applied towards distal fragment in 6 standard degrees of freedom, was modelled for studying of the fixation rigidity of tibial fragments in these systems. Determination of the loading value in various directions, in which the fragment have had shifted by 1 mm, have constituted the main task of the investigation. In a model II a rigidity of the fragments fixation, in comparison with such in a model I, is bigger by 631.43% - while applying a compression loading, by 8.35 - 31.75% - the transversal one and by 19.72% - the rotation loading. While choosing the method of transosteal osteosynthesis of the shin bones the advantage, have the apparatuses with excentric location of supports, what secures the enhanced rigidity of the fragments fixation in comparison with such in apparatuses with concentric location of supports. Although, even in excentric location of supports in the apparatus the fixation rigidity is insufficient for early full loading of the traumatized extremity while walking. It is necessary to elaborate such apparatus, the form of which may be adopted toanatomic configuration of segment.

  6. Bone-repair properties of biodegradable hydroxyapatite nano-rod superstructures

    Science.gov (United States)

    D'Elía, Noelia L.; Mathieu, Colleen; Hoemann, Caroline D.; Laiuppa, Juan A.; Santillán, Graciela E.; Messina, Paula V.

    2015-11-01

    Nano-hydroxyapatite (nano-HAp) materials show an analogous chemical composition to the biogenic mineral components of calcified tissues and depending on their topography they may mimic the specific arrangement of the crystals in bone. In this work, we have evaluated the potential of four synthesized nano-HAp superstructures for the in vitro conditions of bone-repair. Experiments are underway to investigate the effects of the material microstructure, surface roughness and hydrophilicity on their osseo-integration, osteo-conduction and osteo-induction abilities. Materials were tested in the presence of both, rat primary osteoblasts and rabbit mesenchymal stem cells. The following aspects are discussed: (i) cytotoxicity and material degradation; (ii) rat osteoblast spreading, proliferation and differentiation; and (iii) rabbit mesenchymal stem cell adhesion on nano-HAp and nano-HAp/collagen type I coatings. We effectively prepared a material based on biomimetic HAp nano-rods displaying the appropriate surface topography, hydrophilicity and degradation properties to induce the in vitro desired cellular responses for bone bonding and healing. Cells seeded on the selected material readily attached, proliferated and differentiated, as confirmed by cell viability, mitochondrial metabolic activity, alkaline phosphatase (ALP) activity and cytoskeletal integrity analysis by immunofluorescence localization of alpha-smooth muscle actin (α-SMA) protein. These results highlight the influence of material's surface characteristics to determine their tissue regeneration potential and their future use in engineering osteogenic scaffolds for orthopedic implants.Nano-hydroxyapatite (nano-HAp) materials show an analogous chemical composition to the biogenic mineral components of calcified tissues and depending on their topography they may mimic the specific arrangement of the crystals in bone. In this work, we have evaluated the potential of four synthesized nano-HAp superstructures

  7. A biomechanical comparison of headless tapered variable pitch and AO cortical bone screws for fixation of a simulated slab fracture in equine third carpal bones.

    Science.gov (United States)

    Bueno, Aloisio C D; Galuppo, Larry D; Taylor, Kenneth T; Jensen, David G; Stover, Susan M

    2003-01-01

    To compare the mechanical shear strengths and stiffnesses obtained from in vitro testing of a simulated complete third carpal bone (C3) frontal plane radial facet slab fracture (osteotomy) stabilized with either a 4/5 Acutrak (AT) compression screw or a 4.5-mm AO cortical bone (AO) screw inserted in lag fashion. Drilling, tapping, and screw insertion torques, forces, and times also were compared between AT and AO implants. In vitro biomechanical assessment of site preparation, screw insertion, and shear failure test variables of bone screw stabilized simulated C3 slab fracture in paired cadaveric equine carpi. Eight pairs of cadaveric equine C3 without orthopedic abnormalities. Standardized simulated C3 slab fractures were repaired with either AO or AT screws (AO/C3 and AT/C3 groups, respectively). Drilling, tapping, and screw insertion torques, forces, and times were measured with a materials testing machine for each screw type. Repaired specimens were tested in axially oriented shear until failure. Paired Students t-tests were used to assess differences between site preparation, screw insertion, and shear testing variables. Significance was set at P bone fragment measurements of the standardized simulated C3 slab fractures created for AO or AT screws. There were no significant differences for mean and maximum drilling torques; however, the tapered AT drill had greater maximum drilling force compared with the 3.2-mm and 4.5-mm AO drill bits. Mean insertion torque and force measured from the self-tapping AT screw were not significantly different compared with the 4.5-mm AO tap. There were no significant differences in maximum screw torque among constructs. Total procedure time was significantly longer for the AT group (5.8 +/- 1.6 minutes) compared with the AO group (2.9 +/- 1.1 minutes; P =.001). AT stabilized specimens had significantly greater mean +/- SD initial shear stiffness (3.64 +/- 1.08 kN/mm) than AO specimens (1.64 +/- 0.73 kN/mm; P =.005). All other

  8. In vitro cartilage tissue engineering using cancellous bone matrix gelatin as a biodegradable scaffold

    International Nuclear Information System (INIS)

    Yang Bo; Yin Zhanhai; Cao Junling; Shi Zhongli; Zhang Zengtie; Liu Fuqiang; Song Hongxing; Caterson, Bruce

    2010-01-01

    In this study, we constructed tissue-engineered cartilage using allogeneic cancellous bone matrix gelatin (BMG) as a scaffold. Allogeneic BMG was prepared by sequential defatting, demineralization and denaturation. Isolated rabbit chondrocytes were seeded onto allogeneic cancellous BMG, and cell-BMG constructs were harvested after 1, 3 and 6 weeks for evaluation by hematoxylin and eosin staining for overall morphology, toluidine blue for extracellular matrix (ECM) proteoglycans, immunohistochemical staining for collagen type II and a transmission electron microscope for examining cellular microstructure on BMG. The prepared BMG was highly porous with mechanical strength adjustable by duration of demineralization and was easily trimmed for tissue repair. Cancellous BMG showed favorable porosity for cell habitation and metabolism material exchange with larger pore sizes (100-500 μm) than in cortical BMG (5-15 μm), allowing cell penetration. Cancellous BMG also showed good biocompatibility, which supported chondrocyte proliferation and sustained their differentiated phenotype in culture for up to 6 weeks. Rich and evenly distributed cartilage ECM proteoglycans and collagen type II were observed around chondrocytes on the surface and inside the pores throughout the cancellous BMG. Considering the large supply of banked bone allografts and relatively convenient preparation, our study suggests that allogeneic cancellous BMG is a promising scaffold for cartilage tissue engineering.

  9. Fabrication of highly porous biodegradable biomimetic nanocomposite as advanced bone tissue scaffold

    Directory of Open Access Journals (Sweden)

    Abdalla Abdal-hay

    2017-02-01

    Full Text Available Development of bioinspired or biomimetic materials is currently a challenge in the field of tissue regeneration. In-situ 3D biomimetic microporous nanocomposite scaffold has been developed using a simple lyophilization post hydrothermal reaction for bone healing applications. The fabricated 3D porous scaffold possesses advantages of good bonelike apatite particles distribution, thermal properties and high porous interconnected network structure. High dispersion bonelike apatite nanoparticles (NPs rapidly nucleated and deposited from surrounding biological minerals within chitosan (CTS matrices using hydrothermal technique. After that, freeze-drying method was applied on the composite solution to form the desired porous 3D architecture. Interestingly, the porosity and pore size of composite scaffold were not significantly affected by the particles size and particles content within the CTS matrix. Our results demonstrated that the compression modulus of porous composite scaffold is twice higher than that of plain CTS scaffold, indicating a maximization of the chemical interaction between polymer matrix and apatite NPs. Cytocompatibility test for MC3T3-E1 pre-osteoblasts cell line using MTT-indirect assay test showed that the fabricated 3D microporous nanocomposite scaffold possesses higher cell proliferation and growth than that of pure CTS scaffold. Collectively, our results suggest that the newly developed highly porous apatite/CTS nanocomposite scaffold as an alternative of hydroxyapatite/CTS scaffold may serve as an excellent porous 3D platform for bone tissue regeneration.

  10. In vitro cartilage tissue engineering using cancellous bone matrix gelatin as a biodegradable scaffold

    Energy Technology Data Exchange (ETDEWEB)

    Yang Bo; Yin Zhanhai; Cao Junling; Shi Zhongli; Zhang Zengtie; Liu Fuqiang [College of Medicine, Xi' an Jiaotong University, Yanta West Road, No 76, Yanta District, Xi' an, Shaanxi Province 710061 (China); Song Hongxing [Department of Orthopedics, Xuanwu Hospital, Capital Medical University, Beijing 100053 (China); Caterson, Bruce, E-mail: caojl@mail.xjtu.edu.c [Connective Tissue Biology Laboratories, Cardiff School of Biosciences, Cardiff University, Biomedical Building, Museum Avenue, Cardiff, CF10 3US (United Kingdom)

    2010-08-01

    In this study, we constructed tissue-engineered cartilage using allogeneic cancellous bone matrix gelatin (BMG) as a scaffold. Allogeneic BMG was prepared by sequential defatting, demineralization and denaturation. Isolated rabbit chondrocytes were seeded onto allogeneic cancellous BMG, and cell-BMG constructs were harvested after 1, 3 and 6 weeks for evaluation by hematoxylin and eosin staining for overall morphology, toluidine blue for extracellular matrix (ECM) proteoglycans, immunohistochemical staining for collagen type II and a transmission electron microscope for examining cellular microstructure on BMG. The prepared BMG was highly porous with mechanical strength adjustable by duration of demineralization and was easily trimmed for tissue repair. Cancellous BMG showed favorable porosity for cell habitation and metabolism material exchange with larger pore sizes (100-500 {mu}m) than in cortical BMG (5-15 {mu}m), allowing cell penetration. Cancellous BMG also showed good biocompatibility, which supported chondrocyte proliferation and sustained their differentiated phenotype in culture for up to 6 weeks. Rich and evenly distributed cartilage ECM proteoglycans and collagen type II were observed around chondrocytes on the surface and inside the pores throughout the cancellous BMG. Considering the large supply of banked bone allografts and relatively convenient preparation, our study suggests that allogeneic cancellous BMG is a promising scaffold for cartilage tissue engineering.

  11. Stable fixation of an osseointegated implant system for above-the-knee amputees: titel RSA and radiographic evaluation of migration and bone remodeling in 55 cases.

    Science.gov (United States)

    Nebergall, Audrey; Bragdon, Charles; Antonellis, Anne; Kärrholm, Johan; Brånemark, Rickard; Malchau, Henrik

    2012-04-01

    Rehabilitation of patients with transfemoral amputations is particularly difficult due to problems in using standard socket prostheses. We wanted to assess long-term fixation of the osseointegrated implant system (OPRA) using radiostereometric analysis (RSA) and periprosthetic bone remodeling. 51 patients with transfemoral amputations (55 implants) were enrolled in an RSA study. RSA and plain radiographs were scheduled at 6 months and at 1, 2, 5, 7, and 10 years after surgery. RSA films were analyzed using UmRSA software. Plain radiographs were graded for bone resorption, cancellization, cortical thinning, and trabecular streaming or buttressing in specifically defined zones around the implant. At 5 years, the median (SE) migration of the implant was -0.02 (0.06) mm distally. The rotational movement was 0.42 (0.32) degrees around the longitudinal axis. There was no statistically significant difference in median rotation or migration at any follow-up time. Cancellization of the cortex (plain radiographic grading) appeared in at least 1 zone in over half of the patients at 2 years. However, the prevalence of cancellization had decreased by the 5-year follow-up. The RSA analysis for the OPRA system indicated stable fixation of the implant. The periprosthetic bone remodeling showed similarities with changes seen around uncemented hip stems. The OPRA system is a new and promising approach for addressing the challenges faced by patients with transfemoral amputations.

  12. Biodegradable Thermogel as Culture Matrix of Bone Marrow Mesenchymal Stem Cells for Potential Cartilage Tissue Engineering

    Institute of Scientific and Technical Information of China (English)

    Yan-bo Zhang; Jian-xun Ding; Wei-guo Xu; Jie Wu; Fei Chang; Xiu-li Zhuang; Xue-si Chen

    2014-01-01

    Poly(lactide-co-glycolide)-poly(ethylene glycol)-poly(lactide-co-glycolide) (PLGA-PEG-PLGA) triblock copolymer was synthesized through the ring-opening polymerization of LA and GA with PEG as macroinitiator and stannous octoate as catalyst.The amphiphilic copolymer self-assembled into micelles in aqueous solutions,and formed hydrogels as the increase of temperature at relatively high concentrations (> 15 wt%).The favorable degradability of the hydrogel was confirmed by in vitro and in vivo degradation experiments.The good cellular and tissular compatibilities of the thermogel were demonstrated.The excellent adhesion and proliferation of bone marrow mesenchymal stem cells endowed PLGA-PEG-PLGA thermogelling hydrogel with fascinating prospect for cartilage tissue engineering.

  13. Gradual digital lengthening with autologous bone graft and external fixation for correction of flail toe in a patient with Raynaud's disease.

    Science.gov (United States)

    Lamm, Bradley M; Ades, Joe K

    2009-01-01

    Iatrogenic flail toe is a complication of hammertoe surgery that occurs when an overaggressive resection of the proximal phalanx occurs. This can cause both functional and cosmetic concerns for the patient. We present a case report of the correction of a flail second toe in a patient with Raynaud's disease. The correction was achieved by means of gradual soft tissue lengthening with external fixation and an interposition autologous bone graft digital arthrodesis. After 5 months, this 2-stage procedure lengthened, stabilized, and restored the function of the toe. 4.

  14. Fabrication of novel biodegradable porous bone scaffolds based on amphiphilic hydroxyapatite nanorods

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Xiaoyan; Hui, Junfeng [Shaanxi Key Laboratory of Degradable Biomedical Materials, Shaanxi R& D Center of Biomaterials and Fermentation Engineering, School of Chemical and Engineering, Northwest University, Xi' an 710069, Shaanxi, PR China2 (China); Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry & Materials Science, Northwest University, Xi' an 710069, Shaanxi (China); Li, Hui; Zhu, Chenhui [Shaanxi Key Laboratory of Degradable Biomedical Materials, Shaanxi R& D Center of Biomaterials and Fermentation Engineering, School of Chemical and Engineering, Northwest University, Xi' an 710069, Shaanxi, PR China2 (China); Hua, Xiufu, E-mail: hua_xiufu@163.com [Department of Scientific Research and Development, Tsinghua University, Beijing 100084 (China); Ma, Haixia, E-mail: mahx@nwu.edu.cn [Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry & Materials Science, Northwest University, Xi' an 710069, Shaanxi (China); Fan, Daidi, E-mail: fandaidi@nwu.edu.cn [Shaanxi Key Laboratory of Degradable Biomedical Materials, Shaanxi R& D Center of Biomaterials and Fermentation Engineering, School of Chemical and Engineering, Northwest University, Xi' an 710069, Shaanxi, PR China2 (China)

    2017-06-01

    This paper describes a new synthetic strategy and biological application for novel amphiphilic hydroxyapatite (HAp) nanorods. The prepared HAp nanorods were able to be dispersed in water, ethyl alcohol and cyclohexane. The co-anchoring of the multidentate ligands of PEG 20000 and hydrophobic oleic acid (OA) on the rods' surfaces endowed them with excellent amphibious properties. Utilizing amphiphilic HAp nanorods with excellent biocompatibility as the inorganic phase, human-like collagen (HLC) as the organic phase and natural genipin as the cross-linker, optimal HLC/HAp porous scaffolds (HLC: HAp = 1:4, w/w) were fabricated. The compression stress and three-point bending strength of the scaffolds with pore diameters of 150 to 200 μm reached approximately 3.4 MPa and 5.4 MPa, respectively, and their porosity was 77.35 ± 3.75%. Cytological tests showed that HLC/HAp scaffolds could contribute to cell proliferation and differentiation. The results indicated that these novel amphiphilic HAp nanorods can be expected to become recognized as an excellent inorganic material for the porous scaffolds used in repairing bone and related applications. - Highlights: • A simple and effective hydrothermal method was developed for preparing uniform HAp nanorods with amphiphilic surfaces. • The synthesized amphiphilic HAp nanorods could be dispersed in water, ethyl alcohol or cyclohexane. • The prepared HLC/HAp porous scaffolds had good mechanical properties, biocompatibility and osteoconductive etc.

  15. Fabrication of novel biodegradable porous bone scaffolds based on amphiphilic hydroxyapatite nanorods

    International Nuclear Information System (INIS)

    Zheng, Xiaoyan; Hui, Junfeng; Li, Hui; Zhu, Chenhui; Hua, Xiufu; Ma, Haixia; Fan, Daidi

    2017-01-01

    This paper describes a new synthetic strategy and biological application for novel amphiphilic hydroxyapatite (HAp) nanorods. The prepared HAp nanorods were able to be dispersed in water, ethyl alcohol and cyclohexane. The co-anchoring of the multidentate ligands of PEG 20000 and hydrophobic oleic acid (OA) on the rods' surfaces endowed them with excellent amphibious properties. Utilizing amphiphilic HAp nanorods with excellent biocompatibility as the inorganic phase, human-like collagen (HLC) as the organic phase and natural genipin as the cross-linker, optimal HLC/HAp porous scaffolds (HLC: HAp = 1:4, w/w) were fabricated. The compression stress and three-point bending strength of the scaffolds with pore diameters of 150 to 200 μm reached approximately 3.4 MPa and 5.4 MPa, respectively, and their porosity was 77.35 ± 3.75%. Cytological tests showed that HLC/HAp scaffolds could contribute to cell proliferation and differentiation. The results indicated that these novel amphiphilic HAp nanorods can be expected to become recognized as an excellent inorganic material for the porous scaffolds used in repairing bone and related applications. - Highlights: • A simple and effective hydrothermal method was developed for preparing uniform HAp nanorods with amphiphilic surfaces. • The synthesized amphiphilic HAp nanorods could be dispersed in water, ethyl alcohol or cyclohexane. • The prepared HLC/HAp porous scaffolds had good mechanical properties, biocompatibility and osteoconductive etc.

  16. CT-guided percutaneous screw fixation plus cementoplasty in the treatment of painful bone metastases with fractures or a high risk of pathological fracture

    Energy Technology Data Exchange (ETDEWEB)

    Pusceddu, Claudio; Ballicu, Nicola; Fele, Rosa Maria; Sotgia, Barbara; Melis, Luca [Oncological Hospital ' ' A. Businco' ' , Regional Referral Center for Oncologic Diseases, Division of Interventional Radiology, Department of Oncological Radiology, Cagliari (Italy); Fancellu, Alessandro [University of Sassari, Department of Clinical and Experimental Medicine, Sassari (Italy)

    2017-04-15

    To evaluate the feasibility and effectiveness of computed tomography (CT)-guided percutaneous screw fixation plus cementoplasty (PSFPC), for either treatment of painful metastatic fractures or prevention of pathological fractures, in patients who are not candidates for surgical stabilization. Twenty-seven patients with 34 metastatic bone lesions underwent CT-guided PSFPC. Bone metastases were located in the vertebral column, femur, and pelvis. The primary end point was the evaluation of feasibility and complications of the procedure, in addition to the length of hospital stay. Pain severity was estimated before treatment and 1 and 6 months after the procedure using the visual analog scale (VAS). Functional outcome was assessed by improved patient walking ability. All sessions were completed and well tolerated. There were no complications related to either incorrect positioning of the screws during bone fixation or leakage of cement. All patients were able to walk within 6 h after the procedure and the average length of hospital stay was 2 days. The mean VAS score decreased from 7.1 (range, 4-9) before treatment to 1.6 (range, 0-6), 1 month after treatment, and to 1.4 (range 0-6) 6 months after treatment. Neither loosening of the screws nor additional bone fractures occurred during a median follow-up of 6 months. Our results suggest that PSFPC might be a safe and effective procedure that allows the stabilization of the fracture and the prevention of pathological fractures with significant pain relief and good recovery of walking ability, although further studies are required to confirm this preliminary experience. (orig.)

  17. Dynamic compression plate (DCP) fixation of propagating medial condylar fractures of the third metacarpal/metatarsal bone in 30 racehorses: retrospective analysis (1990-2005).

    Science.gov (United States)

    Goodrich, L R; Nixon, A J; Conway, J D; Morley, P S; Bladon, B M; Hogan, P M

    2014-11-01

    An in-depth review of dynamic compression plate (DCP) fixation of propagating medial condyle fractures of the third metacarpus or metatarsus has not been previously reported. To describe the technique, evaluate short-term outcome and long-term race performance of racehorses that underwent DCP fixation for repair of propagating or spiralling medial condylar fractures of the third metacarpal (McIII) or metatarsal (MtIII) bone. Retrospective case series. The surgical case records of 30 horses with propagating fractures of the medial condyle of McIII or MtIII were reviewed. Medical information included: age, breed, sex, presentation, how injury occurred (racing or training), surgical treatment and post operative complications. Racing information included: starts, top 3 placing and career earnings. Long propagating fractures of the medial condyle of Mc/tIII were identified in 23 Thoroughbred (TB) and 7 Standardbred (STB) racehorses. The fracture spiralled proximally in 22 of 30 cases (73%). Standardbreds had a higher propensity for hindlimb involvement (71%), whereas TBs tended to have more front limb involvement (61%). Twelve of 30 (40%) horses raced post surgery. Career earnings were significantly lower for TB horses with medial condylar fractures; $34,916 when compared with the national average of $60,841 (P≤0.03). Overall, horses having DCP fixation for medial condylar fractures had less starts post surgery (3.1 TBs and 5.8 STBs) compared with the national average (7 TBs and 17.3 STBs) and decreased lifetime starts 13.4 (TBs) compared with 17.3 nationally. Propagating medial condyle fractures can be repaired with plate fixation to potentially lessen the risk of catastrophic fracture destabilisation and return to racing can be expected in 40% of horses. Further prospective studies are warranted comparing lag screw fixation with DCP fixation for repair of severe medial condylar fractures of the metacarpus/metatarsus. © 2013 The Authors. Equine Veterinary Journal

  18. Therapeutic efficacy of pedicle screw-rod internal fixation after one-stage posterior transforaminal lesion debridement and non-structural bone grafting for tuberculosis of lumbar vertebra

    Directory of Open Access Journals (Sweden)

    Jia-ming LIU

    2015-11-01

    Full Text Available Objective To evaluate the efficacy and safety of pedicle screw-rod internal fixation after one-stage posterior transforaminal lesion debridement and non-structural bone grafting in the treatment of tuberculosis of mono-segmental lumbar vertebra. Methods From January 2010 to April 2013, 21 patients (9 males and 12 females with an average age of 49.1 years with mono-segmental tuberculosis of lumbar vertebra underwent surgery in our hospital were included. Eight patients had neurological deficit. The focus of tuberculosis was located on one side of the vertebral body, and all the patients had obvious signs of bone destruction on CT and MRI. All the patients were given anti-tuberculosis chemotherapy for 2-3 weeks before surgery. The local bone chips and autologous iliac cancellous bone were used as the intervertebral bone graft. Postoperative plain radiographs and CT were obtained to evaluate the fusion rate and degree of lumbar lordosis. The visual analogue scale score (VAS, erythrocyte sedimentation rate (ESR, and C-reactive protein (CRP before and after operation, and at final follow-up date were recorded. Results All the patients were followed up for 25.3±4.2 months. The mean operation time was 157±39 minutes, and the average blood loss was 470±143ml. The fusion rate of the interbody bone graft was 95.2%, with an average fusion period of 6.1±2.5 months. The neurological function was improved by 100%, and no severe complication or neurological injury occured. The preoperative and postoperative lordosis angles of the lumbar spine were 21.4°±5.7° and 33.6°±3.1°, respectively, and it was 31.3°±2.7° at the final follow up. The preoperative and postoperative VAS scores were 7.8±2.6 and 2.4±1.7 respectively, and it was 0.9±0.7 at the final follow up. The ESR and CRP were significantly decreased 3 months after surgery, and they became normal at 6 months. Conclusion Pedicle screw-rod internal fixation after one-stage posterior

  19. Pedicle screws with a thin hydroxyapatite coating for improving fixation at the bone-implant interface in the osteoporotic spine: experimental study in a porcine model.

    Science.gov (United States)

    Ohe, Makoto; Moridaira, Hiroshi; Inami, Satoshi; Takeuchi, Daisaku; Nohara, Yutaka; Taneichi, Hiroshi

    2018-03-30

    strengthens bonding at the BII, which might improve early implant fixation after spinal surgery for osteoporosis. However, the absence of increased bone mass around the screw remains a concern; prescribing osteoporosis treatment to improve bone quality might be necessary to prevent fractures around the screws.

  20. Endochondral fracture healing with external fixation in the Sost knockout mouse results in earlier fibrocartilage callus removal and increased bone volume fraction and strength.

    Science.gov (United States)

    Morse, A; Yu, N Y C; Peacock, L; Mikulec, K; Kramer, I; Kneissel, M; McDonald, M M; Little, D G

    2015-02-01

    Sclerostin deficiency, via genetic knockout or anti-Sclerostin antibody treatment, has been shown to cause increased bone volume, density and strength of calluses following endochondral bone healing. However, there is limited data on the effect of Sclerostin deficiency on the formative early stage of fibrocartilage (non-bony tissue) formation and removal. In this study we extensively investigate the early fibrocartilage callus. Closed tibial fractures were performed on Sost(-/-) mice and age-matched wild type (C57Bl/6J) controls and assessed at multiple early time points (7, 10 and 14days), as well as at 28days post-fracture after bony union. External fixation was utilized, avoiding internal pinning and minimizing differences in stability stiffness, a variable that has confounded previous research in this area. Normal endochondral ossification progressed in wild type and Sost(-/-) mice with equivalent volumes of fibrocartilage formed at early day 7 and day 10 time points, and bony union in both genotypes by day 28. There were no significant differences in rate of bony union; however there were significant increases in fibrocartilage removal from the Sost(-/-) fracture calluses at day 14 suggesting earlier progression of endochondral healing. Earlier bone formation was seen in Sost(-/-) calluses over wild type with greater bone volume at day 10 (221%, p<0.01). The resultant Sost(-/-) united bony calluses at day 28 had increased bone volume fraction compared to wild type calluses (24%, p<0.05), and the strength of the fractured Sost(-/-) tibiae was greater than that that of wild type fractured tibiae. In summary, bony union was not altered by Sclerostin deficiency in externally-fixed closed tibial fractures, but fibrocartilage removal was enhanced and the resultant united bony calluses had increased bone fraction and increased strength. Crown Copyright © 2014. Published by Elsevier Inc. All rights reserved.

  1. The role of bone SPECT/CT in the evaluation of lumbar spinal fusion with metallic fixation devices

    DEFF Research Database (Denmark)

    Damgaard, Morten; Nimb, Lars; Madsen, Jan L

    2010-01-01

    PURPOSE: It is difficult to evaluate the stability of the lumbar spondylodesis with metallic fixation devices by conventional imaging methods such as radiography or magnetic resonance imaging. It is unknown whether single photon emission computed tomography/computed tomography (SPECT/CT) may be u...

  2. Macro-structural effect of metal surfaces treated using computer-assisted yttrium-aluminum-garnet laser scanning on bone-implant fixation.

    Science.gov (United States)

    Hirao, Makoto; Sugamoto, Kazuomi; Tamai, Noriyuki; Oka, Kunihiro; Yoshikawa, Hideki; Mori, Yusuke; Sasaki, Takatomo

    2005-05-01

    Porous coatings have been applied to the surface of prosthetic devices to foster stable device fixation. The coating serves as a source of mechanical interlocking and may stimulate healthy bone growth through osseointegrated load transfer in cementless arthroplasty. Joint arthroplasty by porous-coated prostheses is one of the most common surgical treatments, and has provided painless and successful joint mobility. However, long-term success is often impaired by the loss of fixation between the prosthesis and bone. Porous-coated prostheses are associated with several disadvantages, including metal debris from porous coatings (third body wear particles) and irregular micro-texture of metal surfaces. Consequently, quantitative histological analysis has been very difficult. These issues arise because the porous coating treatment is based on addition of material and is not precisely controllable. We recently developed a precisely controllable porous texture technique based on material removal by yttrium-aluminum-garnet laser. Free shapes can be applied to complex, three-dimensional hard metal surfaces using this technique. In this study, tartan check shapes made by crossing grooves and dot shapes made by forming holes were produced on titanium (Ti6A14V) or cobalt chrome (CoCr) and evaluated with computer-assisted histological analysis and measurement of bone-metal interface shear strength. Width of grooves or holes ranged from 100 to 800 mum (100, 200, 500, and 800 microm), with a depth of 500 microm. When the cylindrical porous-texture-treated metal samples (diameter, 5 mm; height, 15 mm) were implanted into a rabbit femoral condyle, bone tissue with bone trabeculae formed in the grooves and holes after 2 or 4 weeks, especially in 500-microm-wide grooves. Abundant osteoconduction was consistently observed throughout 500-microm-wide grooves in both Ti6A14V and CoCr. Speed of osteoconduction was faster in Ti6A14V than in CoCr, especially in the tartan check shape made of

  3. Delivery of S1P receptor-targeted drugs via biodegradable polymer scaffolds enhances bone regeneration in a critical size cranial defect.

    Science.gov (United States)

    Das, Anusuya; Tanner, Shaun; Barker, Daniel A; Green, David; Botchwey, Edward A

    2014-04-01

    Biodegradable polymer scaffolds can be used to deliver soluble factors to enhance osseous remodeling in bone defects. To this end, we designed a poly(lactic-co-glycolic acid) (PLAGA) microsphere scaffold to sustain the release of FTY720, a selective agonist for sphingosine 1-phosphate (S1P) receptors. The microsphere scaffolds were created from fast degrading 50:50 PLAGA and/or from slow-degrading 85:15 PLAGA. Temporal and spatial regulation of bone remodeling depended on the use of appropriate scaffolds for drug delivery. The release profiles from the scaffolds were used to design an optimal delivery system to treat critical size cranial defects in a rodent model. The ability of local FTY720 delivery to maximize bone regeneration was evaluated with micro-computed tomography (microCT) and histology. Following 4 weeks of defect healing, FTY720 delivery from 85:15 PLAGA scaffolds resulted in a significant increase in bone volumes in the defect region compared to the controls. A 85:15 microsphere scaffolds maintain their structural integrity over a longer period of time, and cause an initial burst release of FTY720 due to surface localization of the drug. This encourages cellular in-growth and an increase in new bone formation. Copyright © 2013 Wiley Periodicals, Inc.

  4. Delivery of S1P Receptor-Targeted Drugs via Biodegradable Polymer Scaffolds Enhances Bone Regeneration in a Critical Size Cranial Defect*

    Science.gov (United States)

    Das, Anusuya; Tanner, Shaun; Barker, Daniel A.; Green, David; Botchwey, Edward A.

    2014-01-01

    Biodegradable polymer scaffolds can be used to deliver soluble factors to enhance osseous remodeling in bone defects. To this end, we designed a poly(lactic-co-glycolic acid) (PLAGA) microsphere scaffold to sustain the release of FTY720, a selective agonist for sphingosine 1-phosphate (S1P) receptors. The microsphere scaffolds were created from fast degrading 50:50 PLAGA and/or from slow-degrading 85:15 PLAGA. Temporal and spatial regulation of bone remodeling depended on the use of appropriate scaffolds for drug delivery. The release profiles from the scaffolds were used to design an optimal delivery system to treat critical size cranial defects in a rodent model. The ability of local FTY720 delivery to maximize bone regeneration was evaluated with microcomputed tomography (microCT) and histology. Following 4 weeks of defect healing, FTY720 delivery from 85:15 PLAGA scaffolds resulted in a significant increase in bone volumes in the defect region compared to the controls. 85:15 microsphere scaffolds maintain their structural integrity over a longer period of time, and cause an initial burst release of FTY720 due to surface localization of the drug. This encourages cellular in-growth and an increase in new bone formation. PMID:23640833

  5. Tissue reaction and material biodegradation of a calcium sulfate/apatite biphasic bone substitute in rat muscle

    Directory of Open Access Journals (Sweden)

    Jian-Sheng Wang

    2016-07-01

    Conclusion: Calcium sulfate hydroxyapatite bone substitute can be used as a carrier for antibiotics or other drugs, without adverse reaction due to the fast resorption of the calcium sulfate. No bone formation was seen despite treating the bone substitute with autologous bone marrow.

  6. Application of biodegradable plates for treating pediatric mandibular fractures.

    Science.gov (United States)

    An, Jingang; Jia, Pengcheng; Zhang, Yi; Gong, Xi; Han, Xiaodong; He, Yang

    2015-05-01

    We assessed the clinical results of a biodegradable plate system for the internal fixation of mandibular fractures in children, and observed the imaging features of fracture healing and bone changes around the biodegradable plates and screws during follow-up. We enrolled 39 patients (22 male, 17 female, average age 4 years 10 months) with different mandibular fractures. We used 2.0-mm resorbable plates to repair the fractures. Postoperative follow-up ranged from 6 months to 5 years; average follow-up was 1 year 2 months. The outcome measures identified and assessed included facial symmetry, mouth opening, occlusal relationship, infection, nonunion, malunion, and plate dehiscence. We fixed 42 fractures with 43 resorbable plates; the fracture site of one patient (aged 11 years 3 months) was fixed with two plates. Two patients developed small fistulas at the intraoral incision 2 months after surgery; the fistulas healed after 1 month without special treatment. In the other patients, the incision healed well, there was facial symmetry, mouth opening was >35 mm, and occlusion was good. Follow-up computed tomography examination data were available for 20 cases, and revealed different degrees of radiolucency indicating that osteolysis had occurred. Radiolucency was observed around the resorbable plates 1 month after the surgery. The extent and depth of the radiolucent region were obvious within 1 year of surgery. In the second year, there were obvious repairs, with the bony defect areas becoming shallower. After 2 years, the bony defect areas had almost disappeared. Biodegradable fixation devices are safe and efficient for treating pediatric mandibular fractures. Osteolysis commonly follows biodegradable fixation of pediatric mandibular fractures, and has no adverse effect on fracture healing. Copyright © 2015 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  7. Tissue engineering rib with the incorporation of biodegradable polymer cage and BMSCs/decalcified bone: an experimental study in a canine model.

    Science.gov (United States)

    Tang, Hua; Wu, Bin; Qin, Xiong; Zhang, Lu; Kretlow, Jim; Xu, Zhifei

    2013-05-20

    The reconstruction of large bone defects, including rib defects, remains a challenge for surgeons. In this study, we used biodegradable polydioxanone (PDO) cages to tissue engineer ribs for the reconstruction of 4cm-long costal defects. PDO sutures were used to weave 6cm long and 1cm diameter cages. Demineralized bone matrix (DBM) which is a xenograft was molded into cuboids and seeded with second passage bone marrow mesenchymal stem cells (BMSCs) that had been osteogenically induced. Two DBM cuboids seeded with BMSCs were put into the PDO cage and used to reconstruct the costal defects. Radiographic examination including 3D reconstruction, histologic examination and mechanical test was performed after 24 postoperative weeks. All the experimental subjects survived. In all groups, the PDO cage had completely degraded after 24 weeks and been replaced by fibrous tissue. Better shape and radian were achieved in PDO cages filled with DBM and BMSCs than in the other two groups (cages alone, or cages filled with acellular DBM cuboids). When the repaired ribs were subjected to an outer force, the ribs in the PDO cage/DBMs/BMSCs group kept their original shape while ribs in the other two groups deformed. In the PDO cage/DBMs/BMSCs groups, we also observed bony union at all the construct interfaces while there was no bony union observed in the other two groups. This result was also confirmed by radiographic and histologic examination. This study demonstrates that biodegradable PDO cage in combination with two short BMSCs/DBM cuboids can repair large rib defects. The satisfactory repair rate suggests that this might be a feasible approach for large bone repair.

  8. Bone grafting via reamer-irrigator-aspirator for nonunion of open Gustilo-Anderson type III tibial fractures treated with multiplanar external fixator

    Directory of Open Access Journals (Sweden)

    Kusnezov Nicholas

    2017-01-01

    Full Text Available Introduction: The purpose of this investigation was to evaluate the outcomes following reamer-irrigator-aspirator (RIA autogenous bone grafting (ABG of high-grade open tibia fracture nonunions stabilized via multiplanar external fixation. Methods: We retrospectively reviewed all patients with Gustilo-Anderson type III open tibia fractures treated with multiplanar external fixation and who underwent RIA ABG for nonunion at our institutional Level 1 Trauma Center between 2008 and 2015. All patients between 15 and 65 years of age with a minimum of six-month follow-up were included. The primary outcomes of interest were achievement of union, time to union, and incidence of revision surgery. Complications and all-cause reoperation were recorded as secondary endpoints. Results: Fifteen patients met the inclusion criteria with a mean age of 41.1 ± 14.0 years. RIA ABG was harvested from the femur in all cases, with a mean volume of 34 ± 15 mL. At an average follow-up of 13.3 ± 6.8 months, all patients achieved union, including two who required repeat RIA ABG. One patient experienced a femoral shaft fracture four months following RIA that required intramedullary fixation. The average time to union was 6.0 ± 6.3 months. Twelve patients (80% went on to union within six months and 13 (86.7% within one year. Five patients experienced a total of six post-operative complications including three deep infections, one refracture through the nonunion site, and one gradual varus deformity. Two patients in this series required a subsequent RIA autografting procedure secondary to persistent nonunion despite initial RIA. Conclusion: We found that RIA ABG offered a reliable solution to nonunion of Gustilo-Anderson type III open tibial fractures treated with multiplanar external fixation, circumventing the need to change the method of fixation.

  9. A dual-task design of corrosion-controlling and osteo-compatible hexamethylenediaminetetrakis- (methylene phosphonic acid) (HDTMPA) coating on magnesium for biodegradable bone implants application.

    Science.gov (United States)

    Zhao, Sheng; Chen, Yingqi; Liu, Bo; Chen, Meiyun; Mao, Jinlong; He, Hairuo; Zhao, Yuancong; Huang, Nan; Wan, Guojiang

    2015-05-01

    Magnesium as well as its alloys appears increasingly as a revolutionary bio-metal for biodegradable implants application but the biggest challenges exist in its too fast bio-corrosion/degradation. Both corrosion-controllable and bio-compatible Mg-based bio-metal is highly desirable in clinic. In present work, hexamethylenediaminetetrakis (methylenephosphonic acid) [HDTMPA, (H2 O3 P-CH2 )2 -N-(CH2 )6 -N-(CH2 -PO3 H2 )2 ], as a natural and bioactive organic substance, was covalently immobilized and chelating-deposited onto Mg surface by means of chemical conversion process and dip-coating method, to fullfill dual-task performance of corrosion-protective and osteo-compatible functionalities. The chemical grafting of HDTMPA molecules, by participation of functional groups on pretreated Mg surface, ensured a firmly anchored base layer, and then sub-sequential chelating reactions of HDTMPA molecules guaranteed a homogenous and dense HDTMPA coating deposition on Mg substrate. Electrochemical corrosion and immersion degradation results reveal that the HDTMPA coated Mg provides a significantly better controlled bio-corrosion/degradation behavior in phosphate buffer saline solution as compared with untreated Mg from perspective of clinic requirement. Moreover, the HDTMPA coated Mg exhibits osteo-compatible in that it induces not only bioactivity of bone-like apatite precipitation but also promotes osteoblast cells adhesion and proliferation. Our well-controlled biodegradable and biocompatible HDTMPA modified Mg might bode well for next generation bone implant application. © 2014 Wiley Periodicals, Inc.

  10. The new concept of the monitoring and appraisal of bone union inflexibility of fractures treated by Dynastab DK external fixator.

    Science.gov (United States)

    Lenz, Gerhard P; Stasiak, Andrzej; Deszczyński, Jarosław; Karpiński, Janusz; Stolarczyk, Artur; Ziółkowski, Marcin; Szczesny, Grzegorz

    2003-10-30

    Background. This work focuses on problems of heuristic techniques based on artificial intelligence. Mainly about artificial non-linear and multilayer neurons, which were used to estimate the bone union fractures treatment process using orthopaedic stabilizers Dynastab DK. Material and methods. The author utilizes computer software based on multilayer neuronal network systems, which allows to predict the curve of the bone union at early stages of therapy. The training of the neural net has been made on fifty six cases of bone fracture which has been cured by the Dynastab stabilizers DK. Using such trained net, seventeen fractures of long bones shafts were being examined on strength and prediction of the bone union as well. Results. Analyzing results, it should be underlined that mechanical properties of the bone union in the slot of fracture are changing in nonlinear way in function of time. Especially, major changes were observed during the forth month of the fracture treatment. There is strong correlation between measure number two and measure number six. Measure number two is more strict and in the matter of fact it refers to flexion, as well as the measure number six, to compression of the bone in the fracture slot. Conclusions. Consequently, deflection loads are especially hazardous for healing bone. The very strong correlation between real curves and predicted curves shows the correctness of the neuronal model.

  11. The initial instability of cemented and non-cemented femoral stems fixated with a bone grafting technique

    NARCIS (Netherlands)

    Schreurs, B.W.; Huiskes, H.W.J.; Slooff, T.J.J.H.

    1994-01-01

    To reconstruct intramedullary bone stock in revision surgery of failed total hip arthroplasties, a method was developed using impacted trabecular bone grafts. In an in vitro model with femora of the goat, the initial stabilities of both cemented and non-cemented hydroxylapatite-coated stems in this

  12. The application of closed reduction internal fixation and iliac bone block grafting in the treatment of acute displaced femoral neck fractures.

    Directory of Open Access Journals (Sweden)

    Zhiyong Li

    Full Text Available OBJECTIVE: This study aimed to evaluate the preliminary clinical and radiographic outcomes of acute displaced femoral neck fracture treated by closed reduction and internal fixation (CRIF with free iliac bone block grafting with comparison to a routine protocol of CRIF without bone grafting. METHODS: From December 2008 to February 2010, 220 adult patients with acute displaced femoral neck fractures were enrolled in this study. In study group, there were 124 patients (57 males, 67 females with a mean age of 44.8 years (range, 20-64 years. There were 70 transcervical fractures and 54 subcapital fractures. The patients were treated by CRIF and free iliac bone block grafting. The control group consisted of 96 adult patients (46 males, 50 females with a mean age of 46.3 years (range, 23-64 years. There were 61 transcervical fractures and 35 subcapital fractures. The patients in control group were treated by CRIF without bone grafting. RESULTS: In study group, 112 patients were followed up for an average of 27.4 months (range, 24-34 months. All fractures healed within 5 months. However, 10 patients presented AVN of the femoral heads. The mean Harris score was 88.6 (range, 41-100. In control group, 68 patients were followed up for an average of 31.2 months (range, 24-42 months. The rates of AVN of the femoral head and fracture nonunion in control group were 26.5% (18/68 and 16.2% (11/68, respectively, significantly higher than those in study group (both P<0.05. The mean Harris score in control group was 83.8 (41-100, significantly lower than that in study group (P<0.05. CONCLUSION: Acute displaced femoral neck fractures can be treated by CRIF and free iliac bone block grafting in a minimally invasive manner. This technique can guarantee uneventful fracture healing and significantly reduce the rate of femoral head osteonecrosis.

  13. An in vitro biomechanical comparison of hydroxyapatite coated and uncoated ao cortical bone screws for a limited contact: dynamic compression plate fixation of osteotomized equine 3rd metacarpal bones.

    Science.gov (United States)

    Durham, Myra E; Sod, Gary A; Riggs, Laura M; Mitchell, Colin F

    2015-02-01

    To compare the monotonic biomechanical properties of a broad 4.5 mm limited contact-dynamic compression plate (LC-DCP) fixation secured with hydroxyapatite (HA) coated cortical bone screws (HA-LC-DCP) versus uncoated cortical bone screws (AO-LC-DCP) to repair osteotomized equine 3rd metacarpal (MC3) bones. Experimental. Adult equine cadaveric MC3 bones (n = 12 pair). Twelve pairs of equine MC3 were divided into 3 test groups (4 pairs each) for: (1) 4 point bending single cycle to failure testing; (2) 4 point bending cyclic fatigue testing; and (3) torsional single cycle to failure testing. For the HA-LC-DCP-MC3 construct, an 8-hole broad LC-DCP (Synthes Ltd, Paoli, PA) was secured on the dorsal surface of each randomly selected MC3 bone with a combination of four 5.5 mm and four 4.5 mm HA-coated cortical screws. For the AO-LC-DCP-MC3 construct, an 8-hole 4.5 mm broad LC-DCP was secured on the dorsal surface of the contralateral MC3 bone with a combination of four 5.5 mm and four 4.5 mm uncoated cortical screws. All MC3 bones had mid-diaphyseal osteotomies. Mean test variable values for each method were compared using a paired t-test within each group. Significance was set at P < .05. Mean yield load, yield bending moment, composite rigidity, failure load, and failure bending moment, under 4 point bending, single cycle to failure, of the HA-LC-DCP fixation were significantly greater than those of the AO-LC-DCP fixation. Mean ± SD values for the HA-LC-DCP and the AO-LC-DCP fixation techniques, respectively, in single cycle to failure under 4 point bending were: yield load, 26.7 ± 2.15 and 16.3 ± 1.38 kN; yield bending moment, 527.4 ± 42.4 and 322.9 ± 27.2 N-m; composite rigidity, 5306 ± 399 and 3003 ± 300 N-m/rad; failure load, 40.6 ± 3.94 and 26.5 ± 2.52 kN; and failure bending moment, 801.9 ± 77.9 and 522.9 ± 52.2 N-m. Mean cycles to failure in 4 point bending of the HA

  14. Positive effect of removal of subchondral bone plate for cemented acetabular component fixation in total hip arthroplasty: a randomised RSA study with ten-year follow-up.

    Science.gov (United States)

    Flivik, G; Kristiansson, I; Ryd, L

    2015-01-01

    We hypothesised that the removal of the subchondral bone plate (SCBP) for cemented acetabular component fixation in total hip arthroplasty (THA) offers advantages over retention by improving the cement-bone interface, without jeopardising implant stability. We have previously published two-year follow-up data of a randomised controlled trial (RCT), in which 50 patients with primary osteoarthritis were randomised to either retention or removal of the SCBP. The mean age of the retention group (n = 25, 13 males) was 70.0 years (sd 6.8). The mean age in the removal group (n = 25, 16 males) was 70.3 years (sd 7.9). Now we have followed up the patients at six (retention group, n = 21; removal group, n = 20) and ten years (retention group: n = 17, removal group: n = 18), administering clinical outcome questionnaires and radiostereometric analysis (RSA), and determining the presence of radiolucent lines (RLLs) on conventional radiographs. RSA demonstrated similar translation and rotation patterns up to six years. Between six and ten years, proximal acetabular component migration and changes of inclination were larger in the retention group, although the mean differences did not reach statistical significance. Differences in migration were driven by two patients in the SCBP retention group with extensive migration versus none in the SCBP removal group. The significant difference (p < 0.001) in the development of radiolucent lines in the retention group, previously observed at two years, increased even further during the course of follow-up (p < 0.001). While recognising SCBP removal is a more demanding technique, we conclude that, wherever possible, the SCBP should be removed to improve the cement-bone interface in order to maximise acetabular component stability and longevity. ©2015 The British Editorial Society of Bone & Joint Surgery.

  15. Bone Regeneration after Treatment with Covering Materials Composed of Flax Fibers and Biodegradable Plastics: A Histological Study in Rats

    Science.gov (United States)

    Gedrange, Tomasz

    2016-01-01

    The aim of this study was to examine the osteogenic potential of new flax covering materials. Bone defects were created on the skull of forty rats. Materials of pure PLA and PCL and their composites with flax fibers, genetically modified producing PHB (PLA-transgen, PCL-transgen) and unmodified (PLA-wt, PCL-wt), were inserted. The skulls were harvested after four weeks and subjected to histological examination. The percentage of bone regeneration by using PLA was less pronounced than after usage of pure PCL in comparison with controls. After treatment with PCL-transgen, a large amount of new formed bone could be found. In contrast, PCL-wt decreased significantly the bone regeneration, compared to the other tested groups. The bone covers made of pure PLA had substantially less influence on bone regeneration and the bone healing proceeded with a lot of connective tissue, whereas PLA-transgen and PLA-wt showed nearly comparable amount of new formed bone. Regarding the histological data, the hypothesis could be proposed that PCL and its composites have contributed to a higher quantity of the regenerated bone, compared to PLA. The histological studies showed comparable bone regeneration processes after treatment with tested covering materials, as well as in the untreated bone lesions. PMID:27597965

  16. Bone Regeneration after Treatment with Covering Materials Composed of Flax Fibers and Biodegradable Plastics: A Histological Study in Rats.

    Science.gov (United States)

    Gredes, Tomasz; Kunath, Franziska; Gedrange, Tomasz; Kunert-Keil, Christiane

    2016-01-01

    The aim of this study was to examine the osteogenic potential of new flax covering materials. Bone defects were created on the skull of forty rats. Materials of pure PLA and PCL and their composites with flax fibers, genetically modified producing PHB (PLA-transgen, PCL-transgen) and unmodified (PLA-wt, PCL-wt), were inserted. The skulls were harvested after four weeks and subjected to histological examination. The percentage of bone regeneration by using PLA was less pronounced than after usage of pure PCL in comparison with controls. After treatment with PCL-transgen, a large amount of new formed bone could be found. In contrast, PCL-wt decreased significantly the bone regeneration, compared to the other tested groups. The bone covers made of pure PLA had substantially less influence on bone regeneration and the bone healing proceeded with a lot of connective tissue, whereas PLA-transgen and PLA-wt showed nearly comparable amount of new formed bone. Regarding the histological data, the hypothesis could be proposed that PCL and its composites have contributed to a higher quantity of the regenerated bone, compared to PLA. The histological studies showed comparable bone regeneration processes after treatment with tested covering materials, as well as in the untreated bone lesions.

  17. Bone Regeneration after Treatment with Covering Materials Composed of Flax Fibers and Biodegradable Plastics: A Histological Study in Rats

    Directory of Open Access Journals (Sweden)

    Tomasz Gredes

    2016-01-01

    Full Text Available The aim of this study was to examine the osteogenic potential of new flax covering materials. Bone defects were created on the skull of forty rats. Materials of pure PLA and PCL and their composites with flax fibers, genetically modified producing PHB (PLA-transgen, PCL-transgen and unmodified (PLA-wt, PCL-wt, were inserted. The skulls were harvested after four weeks and subjected to histological examination. The percentage of bone regeneration by using PLA was less pronounced than after usage of pure PCL in comparison with controls. After treatment with PCL-transgen, a large amount of new formed bone could be found. In contrast, PCL-wt decreased significantly the bone regeneration, compared to the other tested groups. The bone covers made of pure PLA had substantially less influence on bone regeneration and the bone healing proceeded with a lot of connective tissue, whereas PLA-transgen and PLA-wt showed nearly comparable amount of new formed bone. Regarding the histological data, the hypothesis could be proposed that PCL and its composites have contributed to a higher quantity of the regenerated bone, compared to PLA. The histological studies showed comparable bone regeneration processes after treatment with tested covering materials, as well as in the untreated bone lesions.

  18. A biomechanical comparison of headless tapered variable pitch compression and ao cortical bone screws for fixation of a simulated midbody transverse fracture of the proximal sesamoid bone in horses.

    Science.gov (United States)

    Eddy, Alison L; Galuppo, Larry D; Stover, Susan M; Taylor, Kenneth T; Jensen, David G

    2004-01-01

    To compare mechanical properties and failure characteristics of 2 methods of fixation for repair of a transverse, midbody fracture of the proximal sesamoid bone (PSB): 4.5-mm AO cortical bone screw (AO) placed in lag fashion and 4/5-mm Acutrak (AT) self-compressing screw. An in vitro biomechanical evaluation of intact forelimb preparations and forelimb preparations with a simulated midbody PSB fracture stabilized by a bone screw. Sixteen paired and 8 unilateral cadaveric equine forelimbs. A midbody transverse osteotomy was created in the medial PSB of bilateral forelimbs of 8 equine cadavers. The osteotomized PSB in 1 forelimb from each cadaver was repaired with an AO screw. The osteotomized PSB in each contralateral limb was repaired with an AT screw. Eight unilateral intact control limbs were also studied. Mechanical properties were determined from axial compression, single cycle to failure, load-deformation curves. Failure characteristics were determined by evaluation of video images and radiographs. No statistically significant differences were found between repair groups. Both AO and AT groups had significantly lower mechanical properties than intact limbs except for stiffness. AO and AT constructs were mechanically comparable when used to stabilize a simulated midbody fracture of the medial PSB. Both constructs were mechanically inferior to intact limbs. Clinical Relevance- The AT screw should be considered for clinical use because of the potential for less soft tissue impingement and superior biocompatibility compared with the stainless-steel AO screw. However, postoperative external coaptation is necessary to augment initial fracture stability for either fixation method, and to maintain a standing metacarpophalangeal joint dorsiflexion angle between 150 degrees and 155 degrees.

  19. Ipsilateral Femoral Fracture Non-Union and Delayed Union Treated By Hybrid Plate Nail Fixation and Vascularized Fibula Bone Grafting: A Case Report

    Directory of Open Access Journals (Sweden)

    CK Chan

    2013-07-01

    Full Text Available Non-union is a well recognized complication of femoral neck fractures. The decision whether to attempt fracture fixation or to resort to hip replacement is particularly difficult in patients in the borderline age group in whom complex attempts at gaining union may fail and later present a difficult revision. On the other hand the patient may be young enough that arthroplasty best be avoided . Besides, presence of ipsilateral femoral shaft fracture with delayed union in addition to the femoral neck non-union will pose major problems at operation. We share our experience in treating a femoral neck fracture non-union with ipsilateral femoral shaft delayed union in the shaft and in the distal femur in a fifty years old patient. The fracture was treated with an angle blade plate and supracondylar nail supplemented with a free vascularised fibular bone grafting and autologous cancellous graft. There was radiological union at fourth month. At sixth months, the patient was free of pain and able to walk without support. Thus, we would like to suggest that vascularised fibula bone grafting with supracondylar nailing is a viable option for this pattern of fracture.

  20. A Novel Surgical Technique for Fixation of Recurrent Acromioclavicular Dislocations: AC Dog Bone Technique in Combination with Autogenous Semitendinosus Tendon Graft

    Directory of Open Access Journals (Sweden)

    Patrick Holweg

    2017-01-01

    Full Text Available Various surgical techniques have been described for the fixation of acromioclavicular (AC dislocations. However, recurrent dislocation is one of the main complications associated with the majority of these techniques. We report a case of postoperative AC joint redislocation. In order to overcome recurrent dislocation after revision surgery, a reconstruction of the conoid and trapezoid ligament with the use of a free tendon graft in combination with a FiberTape was provided within a novel surgical technique. After 12 months, the patient was very satisfied with the functional outcome. The patient achieved excellent results in the Constant (98 points, SPADI (0 points, and QuickDASH score (0 points. The described technique results in an anatomic reconstruction of the AC joint. The nonrigid nature of the intervention seems to restore the normal arthrokinematics by reconstructing the coracoclavicular ligaments with an autograft which is then protected by the AC Dog Bone artificial ligaments during the healing period. The arthroscopic approach to the AC joint with minimal exposure reduces the risks and complications of the intervention. This is the first case in literature that utilizes the artificial dog bone ligament securing the autograft in an anatomic AC reconstruction.

  1. Low bone mineral density is not related to failure in femoral neck fracture patients treated with internal fixation

    DEFF Research Database (Denmark)

    Viberg, Bjarke; Ryg, Jesper; Overgaard, Søren

    2014-01-01

    the importance of low bone mineral density (BMD). Patients and methods - 140 consecutive patients (105 females, median age 80) treated with IF had a dual-energy X-ray absorptiometry (DXA) scan of the hip performed median 80 days after treatment. The patients' radiographs were evaluated for fracture displacement......, implant positioning, and quality of reduction. From a questionnaire completed during admission, 2 variables for comorbidity and walking disability were chosen. Primary outcome was low hip BMD (amount of mineral matter per square centimeter of hip bone) compared to hip failure (resection, arthroplasty...

  2. Technical Report: Correlation Between the Repair of Cartilage and Subchondral Bone in an Osteochondral Defect Using Bilayered, Biodegradable Hydrogel Composites.

    Science.gov (United States)

    Lu, Steven; Lam, Johnny; Trachtenberg, Jordan E; Lee, Esther J; Seyednejad, Hajar; van den Beucken, Jeroen J J P; Tabata, Yasuhiko; Kasper, F Kurtis; Scott, David W; Wong, Mark E; Jansen, John A; Mikos, Antonios G

    2015-12-01

    The present work investigated correlations between cartilage and subchondral bone repair, facilitated by a growth factor-delivering scaffold, in a rabbit osteochondral defect model. Histological scoring indices and microcomputed tomography morphological parameters were used to evaluate cartilage and bone repair, respectively, at 6 and 12 weeks. Correlation analysis revealed significant associations between specific cartilage indices and subchondral bone parameters that varied with location in the defect (cortical vs. trabecular region), time point (6 vs. 12 weeks), and experimental group (insulin-like growth factor-1 only, bone morphogenetic protein-2 only, or both growth factors). In particular, significant correlations consistently existed between cartilage surface regularity and bone quantity parameters. Overall, correlation analysis between cartilage and bone repair provided a fuller understanding of osteochondral repair and can help drive informed studies for future osteochondral regeneration strategies.

  3. A Modified Technique of Fixation for Proximal Femoral Valgus Osteotomy in Abnormal Bone: A Report of Two Cases

    Directory of Open Access Journals (Sweden)

    Logheswaren S

    2017-07-01

    Full Text Available The ideal size of intramedullary device to fix corrective osteotomy of proximal femur in abnormal bone in children and small patients may not be easily available. We report the successful use of Rush rod in combination with multiple Kirschner wires to fix the corrective osteotomy of coxa vara and shepherd crook deformity in two patients with osteogenesis imperfecta and fibrous dysplasia. The union was achieved on time, neck shaft angle and rotation were maintained.

  4. Technical Report: Correlation Between the Repair of Cartilage and Subchondral Bone in an Osteochondral Defect Using Bilayered, Biodegradable Hydrogel Composites

    NARCIS (Netherlands)

    Lu, S.; Lam, J.; Trachtenberg, J.E.; Lee, E.J.; Seyednejad, H.; Beucken, J.J.J.P van den; Tabata, Y.; Kasper, F.K.; Scott, D.W.; Wong, M.E.; Jansen, J.A.; Mikos, A.G.

    2015-01-01

    The present work investigated correlations between cartilage and subchondral bone repair, facilitated by a growth factor-delivering scaffold, in a rabbit osteochondral defect model. Histological scoring indices and microcomputed tomography morphological parameters were used to evaluate cartilage and

  5. Encapsulated dental-derived mesenchymal stem cells in an injectable and biodegradable scaffold for applications in bone tissue engineering.

    Science.gov (United States)

    Moshaverinia, Alireza; Chen, Chider; Akiyama, Kentaro; Xu, Xingtian; Chee, Winston W L; Schricker, Scott R; Shi, Songtao

    2013-11-01

    Bone grafts are currently the major family of treatment options in modern reconstructive dentistry. As an alternative, stem cell-scaffold constructs seem to hold promise for bone tissue engineering. However, the feasibility of encapsulating dental-derived mesenchymal stem cells in scaffold biomaterials such as alginate hydrogel remains to be tested. The objectives of this study were, therefore, to: (1) develop an injectable scaffold based on oxidized alginate microbeads encapsulating periodontal ligament stem cells (PDLSCs) and gingival mesenchymal stem cells (GMSCs); and (2) investigate the cell viability and osteogenic differentiation of the stem cells in the microbeads both in vitro and in vivo. Microbeads with diameters of 1 ± 0.1 mm were fabricated with 2 × 10(6) stem cells/mL of alginate. Microbeads containing PDLSCs, GMSCs, and human bone marrow mesenchymal stem cells as a positive control were implanted subcutaneously and ectopic bone formation was analyzed by micro CT and histological analysis at 8-weeks postimplantation. The encapsulated stem cells remained viable after 4 weeks of culturing in osteo-differentiating induction medium. Scanning electron microscopy and X-ray diffraction results confirmed that apatitic mineral was deposited by the stem cells. In vivo, ectopic mineralization was observed inside and around the implanted microbeads containing the immobilized stem cells. These findings demonstrate for the first time that immobilization of PDLSCs and GMSCs in alginate microbeads provides a promising strategy for bone tissue engineering. Copyright © 2013 Wiley Periodicals, Inc.

  6. Biodegradable Orthopedic Magnesium-Calcium (MgCa Alloys, Processing, and Corrosion Performance

    Directory of Open Access Journals (Sweden)

    Yuebin Guo

    2012-01-01

    Full Text Available Magnesium-Calcium (Mg-Ca alloy has received considerable attention as an emerging biodegradable implant material in orthopedic fixation applications. The biodegradable Mg-Ca alloys avoid stress shielding and secondary surgery inherent with permanent metallic implant materials. They also provide sufficient mechanical strength in load carrying applications as opposed to biopolymers. However, the key issue facing a biodegradable Mg-Ca implant is the fast corrosion in the human body environment. The ability to adjust degradation rate of Mg-Ca alloys is critical for the successful development of biodegradable orthopedic implants. This paper focuses on the functions and requirements of bone implants and critical issues of current implant biomaterials. Microstructures and mechanical properties of Mg-Ca alloys, and the unique properties of novel magnesium-calcium implant materials have been reviewed. Various manufacturing techniques to process Mg-Ca based alloys have been analyzed regarding their impacts on implant performance. Corrosion performance of Mg-Ca alloys processed by different manufacturing techniques was compared. In addition, the societal and economical impacts of developing biodegradable orthopedic implants have been emphasized.

  7. Biodegradable Polymers

    OpenAIRE

    Vroman, Isabelle; Tighzert, Lan

    2009-01-01

    Biodegradable materials are used in packaging, agriculture, medicine and other areas. In recent years there has been an increase in interest in biodegradable polymers. Two classes of biodegradable polymers can be distinguished: synthetic or natural polymers. There are polymers produced from feedstocks derived either from petroleum resources (non renewable resources) or from biological resources (renewable resources). In general natural polymers offer fewer advantages than synthetic polymers. ...

  8. Assessment of the suitability of biodegradable rods for use in posterior lumbar fusion: An in-vitro biomechanical evaluation and finite element analysis.

    Directory of Open Access Journals (Sweden)

    Fon-Yih Tsuang

    Full Text Available Interbody fusion with posterior instrumentation is a common method for treating lumbar degenerative disc diseases. However, the high rigidity of the fusion construct may produce abnormal stresses at the adjacent segment and lead to adjacent segment degeneration (ASD. As such, biodegradable implants are becoming more popular for use in orthopaedic surgery. These implants offer sufficient stability for fusion but at a reduced stiffness. Tailored to degrade over a specific timeframe, biodegradable implants could potentially mitigate the drawbacks of conventional stiff constructs and reduce the loading on adjacent segments. Six finite element models were developed in this study to simulate a spine with and without fixators. The spinal fixators used both titanium rods and biodegradable rods. The models were subjected to axial loading and pure moments. The range of motion (ROM, disc stresses, and contact forces of facet joints at adjacent segments were recorded. A 3-point bending test was performed on the biodegradable rods and a dynamic bending test was performed on the spinal fixators according to ASTM F1717-11a. The finite element simulation showed that lumbar spinal fusion using biodegradable implants had a similar ROM at the fusion level as at adjacent levels. As the rods degraded over time, this produced a decrease in the contact force at adjacent facet joints, less stress in the adjacent disc and greater loading on the anterior bone graft region. The mechanical tests showed the initial average fatigue strength of the biodegradable rods was 145 N, but this decreased to 115N and 55N after 6 months and 12 months of soaking in solution. Also, both the spinal fixator with biodegradable rods and with titanium rods was strong enough to withstand 5,000,000 dynamic compression cycles under a 145 N axial load. The results of this study demonstrated that biodegradable rods may present more favourable clinical outcomes for lumbar fusion. These polymer rods

  9. Is the pull-out force of the Meniscus Arrow in bone affected by the inward curling of the barbs during biodegradation? An in vitro study.

    Science.gov (United States)

    Wouters, Diederick B; Burgerhof, Johannes G M; de Hosson, Jeff T M; Bos, Rudolf R M

    2009-04-01

    Inward curling of the barbs of Meniscus Arrows during degradation was observed in a previous study, in which swelling, distention, and water uptake by Meniscus Arrows was evaluated. This change of configuration could have consequences with respect to anchorage capacity in bone. Eight non-degraded Meniscus Arrows in the original configuration were pulled out of thawed, fresh-frozen human femoral condyle, and pull-out force was measured and compared with that of 6 Meniscus Arrows after 31 days of degradation under controlled conditions. No significant difference was found between the 2 groups with respect to the required pull-out force (t test), the distribution of the data, or the interaction between degradation and location, as evaluated by Mann-Whitney test, and no significant difference was found between the 2 groups with respect to the degradation state or position in the condyles, as evaluated by 2-way analysis of variance. Our results indicate that the decrease in barb-barb diameter during the first month of degradation of the Meniscus Arrows has no significant effect on the tensile pull-out force required for removal from human femur condyle. Further research should be undertaken to examine whether the same is true for other biodegradable devices with barbs.

  10. Open reduction and cranial bone plate fixation of fractures involving the distal aspect of the radius and ulna in miniature- and toy-breed dogs: 102 cases (2008-2015).

    Science.gov (United States)

    De Arburn Parent, Rebecca; Benamou, Jérôme; Gatineau, Matthieu; Clerfond, Pierre; Planté, Jérôme

    2017-06-15

    OBJECTIVE To determine outcomes and complication rates of open reduction and cranial bone plate fixation of fractures involving the distal aspect of the radius and ulna in miniature- and toy-breed dogs. DESIGN Retrospective case series. ANIMALS 102 miniature- and toy-breed dogs (105 fractures) weighing ≤ 7 kg (15.4 lb) that had undergone open reduction and cranial bone plate fixation of a fracture involving the distal aspect of the radius and ulna from 2008 through 2015. PROCEDURES Medical records were reviewed and information extracted regarding dog and fracture characteristics, surgical variables, and follow-up examination data (including postoperative complications). Postoperative radiographs were examined for distal fragment size, implant placement, apposition, alignment, and healing stage. A long-term follow-up questionnaire was completed by telephone interview with dog owners at least 6 months after surgery. RESULTS Mean length of the distal bone fragment in all fractures was 19.2 mm, with a mean distal-to-total radial length ratio of 0.21. At last follow-up examination (typically 6 weeks after surgery), 97 (95%) dogs had no signs of lameness; minor lameness was identified in 5 (5%) dogs. Complications developed in 26 (25%) fractures (23 [22%] minor and 3 [3%] major complications). Sixty-eight of 71 (96%) owners rated the overall and long-term outcome as excellent and 3 (4%) as good; 68 of 71 (96%) dogs reportedly had no signs of residual lameness. CONCLUSIONS AND CLINICAL RELEVANCE Open reduction and cranial bone plate fixation for the treatment of radius-ulna fractures in miniature- and toy-breed dogs provided an excellent outcome with a low complication rate.

  11. Fixation compliance in a mouse osteotomy model induces two different processes of bone healing but does not lead to delayed union

    NARCIS (Netherlands)

    Gröngröft, I.; Heil, P.H.; Matthys, R.; Lezuo, P.; Tami, A.E.; Perren, S.; Montavon, P.M.; Ito, K.

    2009-01-01

    Delayed unions are a problematic complication of fracture healing whose pathophysiology is not well understood. Advanced molecular biology methods available with mice would be advantageous for investigation. In humans, decreased fixation rigidity and poor reduction are generally associated with

  12. Strain-stress analysis of lower limb with applied fixator

    Directory of Open Access Journals (Sweden)

    Mrázek M.

    2010-07-01

    Full Text Available This paper compares physiological state of tibia before and after application of an external fixator. The fixator systems’ models but also model of tibia are loaded in the direction of body axis. The paper is focused on the examination of differences in stiffness before and after the application of fixation. Two types of axial external fixators are compared. Both fixators differ in their construction. The first fixator is two-frame and fixation rods are used for fixing the bone tissue (variant I. The second one is fixed into tibia with screws (variant II. We have found out that the two-frame external fixator has much bigger stiffness during limb fixation than the fixator with one body. Much higher deformations compared to physiological state of tibia occur in the variant II.

  13. Biomechanical analysis of titanium fixation plates and screws in ...

    African Journals Online (AJOL)

    Conclusions: It was concluded that the use of double 4-hole straight plates provided the sufficient stability on the osteotomy site when compared with the other rigid fixation methods used in this study. Key words: Bone plates, bone screws, finite element analysis, jaw fixation techniques, mandible, mandibular osteotomy ...

  14. COMPUTER-AIDED OPTIMIZATION OF CHOICE AND POSITIONING OF BONE PLATES AND SCREWS USED FOR INTERNAL-FIXATION OF MANDIBULAR FRACTURES

    NARCIS (Netherlands)

    ROZEMA, FR; BOS, RRM; BOERING, G; VANWILLIGEN, JD

    1992-01-01

    The present study describes a biomechanical integrated model of the mandibular system in which the maxilla and mandible, the masticatory muscles, and the temporomandibular joints are regarded as one system. In this model, strains in plate-osteosynthesis devices for internal fixation of mandibular

  15. Rapid Prototyping Amphiphilic Polymer/Hydroxyapatite Composite Scaffolds with Hydration-Induced Self-Fixation Behavior

    Science.gov (United States)

    Kutikov, Artem B.; Gurijala, Anvesh

    2015-01-01

    Two major factors hampering the broad use of rapid prototyped biomaterials for tissue engineering applications are the requirement for custom-designed or expensive research-grade three-dimensional (3D) printers and the limited selection of suitable thermoplastic biomaterials exhibiting physical characteristics desired for facile surgical handling and biological properties encouraging tissue integration. Properly designed thermoplastic biodegradable amphiphilic polymers can exhibit hydration-dependent hydrophilicity changes and stiffening behavior, which may be exploited to facilitate the surgical delivery/self-fixation of the scaffold within a physiological tissue environment. Compared to conventional hydrophobic polyesters, they also present significant advantages in blending with hydrophilic osteoconductive minerals with improved interfacial adhesion for bone tissue engineering applications. Here, we demonstrated the excellent blending of biodegradable, amphiphilic poly(D,L-lactic acid)-poly(ethylene glycol)-poly(D,L-lactic acid) (PLA-PEG-PLA) (PELA) triblock co-polymer with hydroxyapatite (HA) and the fabrication of high-quality rapid prototyped 3D macroporous composite scaffolds using an unmodified consumer-grade 3D printer. The rapid prototyped HA-PELA composite scaffolds and the PELA control (without HA) swelled (66% and 44% volume increases, respectively) and stiffened (1.38-fold and 4-fold increases in compressive modulus, respectively) in water. To test the hypothesis that the hydration-induced physical changes can translate into self-fixation properties of the scaffolds within a confined defect, a straightforward in vitro pull-out test was designed to quantify the peak force required to dislodge these scaffolds from a simulated cylindrical defect at dry versus wet states. Consistent with our hypothesis, the peak fixation force measured for the PELA and HA-PELA scaffolds increased 6-fold and 15-fold upon hydration, respectively. Furthermore, we showed that

  16. Biomechanical properties of patellar and hamstring graft tibial fixation techniques in anterior cruciate ligament reconstruction: experimental study with roentgen stereometric analysis.

    Science.gov (United States)

    Adam, Frank; Pape, Dietrich; Schiel, Karin; Steimer, Oliver; Kohn, Dieter; Rupp, Stefan

    2004-01-01

    Reliable fixation of the soft hamstring grafts in ACL reconstruction has been reported as problematic. The biomechanical properties of patellar tendon (PT) grafts fixed with biodegradable screws (PTBS) are superior compared to quadrupled hamstring grafts fixed with BioScrew (HBS) or Suture-Disc fixation (HSD). Controlled laboratory study with roentgen stereometric analysis (RSA). Ten porcine specimens were prepared for each group. In the PT group, the bone plugs were fixed with a 7 x 25 mm BioScrew. In the hamstring group, four-stranded tendon grafts were anchored within a tibial tunnel of 8 mm diameter either with a 7 x 25 mm BioScrew or eight polyester sutures knotted over a Suture-Disc. The grafts were loaded stepwise, and micromotion of the graft inside the tibial tunnel was measured with RSA. Hamstring grafts failed at lower loads (HBS: 536 N, HSD 445 N) than the PTBS grafts (658 N). Stiffness in the PTBS group was much greater compared to the hamstring groups (3500 N/mm versus HBS = 517 N/mm and HSD = 111 N/mm). Irreversible graft motion after graft loading with 200 N was measured at 0.03 mm (PTBS), 0.38mm (HBS), and 1.85mm (HSD). Elasticity for the HSD fixation was measured at 0.67 mm at 100 N and 1.32 mm at 200 N load. Hamstring graft fixation with BioScrew and Suture-Disc displayed less stiffness and early graft motion compared to PTBS fixation. Screw fixation of tendon grafts is superior to Suture-Disc fixation with linkage material since it offers greater stiffness and less graft motion inside the tibial tunnel. Our results revealed graft motion for hamstring fixation with screw or linkage material at loads that occur during rehabilitation. This, in turn, may lead to graft laxity.

  17. Oil biodegradation

    NARCIS (Netherlands)

    Rahsepar, Shokouhalsadat; Langenhoff, Alette A.M.; Smit, Martijn P.J.; Eenennaam, van Justine S.; Murk, Tinka; Rijnaarts, Huub H.M.

    2017-01-01

    During the Deepwater Horizon (DwH) oil spill, interactions between oil, clay particles and marine snow lead to the formation of aggregates. Interactions between these components play an important, but yet not well understood, role in biodegradation of oil in the ocean water. The aim of this study

  18. Fracture healing using degradable magnesium fixation plates and screws.

    Science.gov (United States)

    Chaya, Amy; Yoshizawa, Sayuri; Verdelis, Kostas; Noorani, Sabrina; Costello, Bernard J; Sfeir, Charles

    2015-02-01

    Internal bone fixation devices made with permanent metals are associated with numerous long-term complications and may require removal. We hypothesized that fixation devices made with degradable magnesium alloys could provide an ideal combination of strength and degradation, facilitating fracture fixation and healing while eliminating the need for implant removal surgery. Fixation plates and screws were machined from 99.9% pure magnesium and compared with titanium devices in a rabbit ulnar fracture model. Magnesium device degradation and the effect on fracture healing and bone formation were assessed after 4 weeks. Fracture healing with magnesium device fixation was compared with that of titanium devices using qualitative histologic analysis and quantitative histomorphometry. Micro-computed tomography showed device degradation after 4 weeks in vivo. In addition, 2-dimensional micro-computed tomography slices and histologic staining showed that magnesium degradation did not inhibit fracture healing or bone formation. Histomorphology showed no difference in bone-bridging fractures fixed with magnesium and titanium devices. Interestingly, abundant new bone was formed around magnesium devices, suggesting a connection between magnesium degradation and bone formation. Our results show potential for magnesium fixation devices in a loaded fracture environment. Furthermore, these results suggest that magnesium fixation devices may enhance fracture healing by encouraging localized new bone formation. Copyright © 2015 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  19. Biodegradable Polydepsipeptides

    Directory of Open Access Journals (Sweden)

    Jintang Guo

    2009-02-01

    Full Text Available This paper reviews the synthesis, characterization, biodegradation and usage of bioresorbable polymers based on polydepsipeptides. The ring-opening polymerization of morpholine-2,5-dione derivatives using organic Sn and enzyme lipase is discussed. The dependence of the macroscopic properties of the block copolymers on their structure is also presented. Bioresorbable polymers based on polydepsipeptides could be used as biomaterials in drug controlled release, tissue engineering scaffolding and shape-memory materials.

  20. Anaerobic biodegradability of macropollutants

    DEFF Research Database (Denmark)

    Angelidaki, Irini

    2002-01-01

    A variety of test procedures for determination of anaerobic biodegradability has been reported. This paper reviews the methods developed for determination of anaerobic biodegradability of macro-pollutants. Anaerobic biodegradability of micro-pollutants is not included. Furthermore, factors...

  1. Results of screw fixation combined with cortical drilling for treatment of dorsal cortical stress fractures of the third metacarpal bone in 56 Thoroughbred racehorses

    International Nuclear Information System (INIS)

    Dallap, B.L.; Bramlage, L.R.; Embertson, R.M.

    1999-01-01

    The purpose of this study was to evaluate screw fixation with cortical drilling as a surgical treatment for dorsal cortical stress fractures of MCIII in the Thoroughbred racehorse. Details of age, sex, limb affected, fracture assessment, and post operative recommendations were obtained from medical records and radiographs. Fracture healing was assessed radiographically at the time of screw removal. Performance evaluation was determined from race records obtained from The Jockey Club Information System, Lexington, Kentucky. Fifty-six Thoroughbred racehorses were treated surgically for stress fracture of MCIII with screw fixation and cortical drilling. Stress fractures occurred primarily in the left front limb of the male 3-year-olds, in the dorsolateral cortex of the middle third of MCIII. Ninety-seven percent of the fractures travelled in a dorsodistal to palmaroproximal direction. Median period to screw removal was 2.0 months. Evaluation at time of screw removal revealed 98% of single stress fractures of the left front limb were healed radiographically. Median period to resume training was 2.75 months (single stress fractures); median period to race was 7.62 months. There was no statistically significant difference in earnings/start before and after surgical intervention. Of the 63 fractures treated, two recurred. There were no catastrophic failures, and no incisional infections

  2. Biodegradation and bioremediation

    DEFF Research Database (Denmark)

    Albrechtsen, H.-J.

    1996-01-01

    Anmeldelse af Alexander,M.: Biodegradation and bioremediation. Academic Press, Sandiego, USA, 1994......Anmeldelse af Alexander,M.: Biodegradation and bioremediation. Academic Press, Sandiego, USA, 1994...

  3. Enhancement of biodegradation and osseointegration of poly(ε-caprolactone)/calcium phosphate ceramic composite screws for osteofixation using calcium sulfate.

    Science.gov (United States)

    Wu, Chang-Chin; Hsu, Li-Ho; Tsai, Yuh-Feng; Sumi, Shoichiro; Yang, Kai-Chiang

    2016-04-04

    Internal fixation devices, which can stabilize and realign fractured bone, are widely used in fracture management. In this paper, a biodegradable composite fixator, composed of poly(ε-caprolactone), calcium phosphate ceramic and calcium sulfate (PCL/CPC/CS), is developed. The composition of CS, which has a high dissolution rate, was expected to create a porous structure to improve osteofixation to the composite fixator. PCL, PCL/CPC, and PCL/CPC/CS samples were prepared and their physical properties were characterized in vitro. In vivo performance of the composite screws was verified in the distal femurs of rabbits. Results showed that the PCL/CPC/CS composite had a higher compressive strength (28.55 ± 3.32 MPa) in comparison with that of PCL (20.64 ± 1.81 MPa) (p < 0.05). A larger amount of apatite was formed on PCL/CPC/CS than on PCL/CPC, while no apatite was found on PCL after simulated body fluid immersion. In addition, PCL/CPC/CS composites also had a faster in vitro degradation rate (13.05 ± 3.42% in weight loss) relative to PCL (1.79 ± 0.23%) and PCL/CPC (4.32 ± 2.18%) (p < 0.001). In animal studies, PCL/CPC/CS screws showed a greater volume loss than that of PCL or PCL/CPC at 24 weeks post-implantation. Under micro-computerized tomography observation, animals with PCL/CPC/CS implants had better osseointegration in terms of the structural parameters of the distal metaphysis, including trabecular number, trabecular spacing, and connectivity density, than the PCL screw. This study reveals that the addition of CS accelerates the biodegradation and enhanced apatite formation of the PCL/CPC composite screw. This osteoconductive PCL/CPC/CS is a good candidate material for internal fixation devices.

  4. Development of an in vitro three dimensional loading-measurement system for long bone fixation under multiple loading conditions: a technical description

    Directory of Open Access Journals (Sweden)

    Wilson David A

    2007-11-01

    Full Text Available Abstract The purpose of this investigation was to design and verify the capabilities of an in vitro loading-measurement system that mimics in vivo unconstrained three dimensional (3D relative motion between long bone ends, applies uniform load components over the entire length of a test specimen, and measures 3D relative motion between test segment ends to directly determine test segment construct stiffness free of errors due to potting-fixture-test machine finite stiffness. Intact equine cadaveric radius bones, which were subsequently osteotomized/ostectomized and instrumented with bone plates were subjected to non-destructive axial, torsion, and 4-point bending loads through fixtures designed to allow unconstrained components of non-load associated 3D relative motion between radius ends. 3D relative motion between ends of a 50 mm long test segment was measured by an infrared optical tracking system to directly determine its stiffness. Each specimen was then loaded to ultimate failure in either torsion or bending. Cortical bone cross-section diameters and published bone biomechanical properties were substituted into classical mechanics equations to predict the intact test segment theoretical stiffness for comparison and thus loading-measurement system verification. Intact measured stiffness values were the same order of magnitude as theoretically predicted. The primary component of relative motion between ends of the test segment corresponded to that of the applied load with the other 3D components being evident and consistent in relative magnitude and direction for unconstrained loading of an unsymmetrical double plate oblique fracture configuration. Bone failure configurations were reproducible and consistent with theoretically predicted. The 3D loading-measurement system designed: a mimics unconstrained relative 3D motion between radius ends that occurs in clinical situations, b applies uniform compression, torsion, and 4-point bending loads

  5. Indications and outcome of Open Reduction and Internal Fixation of ...

    African Journals Online (AJOL)

    Background: Open reduction and internal fixation (ORIF) is a well-established surgical treatment of fractures worldwide. However, the indications and modes of stabilization of long bone fractures vary and are evolving .The general trend now is towards fixation with locked intramedullary nail (i.m nail) rather than plate and ...

  6. Bone--bone marrow interactions

    International Nuclear Information System (INIS)

    Patt, H.M.

    1976-01-01

    Within medullary cavities, blood formation tends to be concentrated near bone surfaces and this raises interesting questions about hematopoietic consequences of radionuclide fixation in osseous tissue. Thus, it may be important, on the one hand, to consider the medullary radiation dose distribution as well as total marrow dose from bone-bound radioelements and, on the other, to inquire about possible hematopoietic implications of radiation damage to endosteal surfaces per se. The reasons for this are discussed

  7. The effect on implant fixation of soaking tricalcium phosphate granules in bisphosphonate

    DEFF Research Database (Denmark)

    Jakobsen, Thomas; Baas, Jørgen; Bechtold, Joan E

    2012-01-01

    The use of bone grafting is a well-established way to enhance initial implant fixation in situations with reduced bone stock. Ceramic bone substitutes are inferior alternatives to autogenous or allogeneic bone graft. Improvement of bone graft substitutes is needed. We investigated whether...

  8. CSF coccidioides complement fixation

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/003526.htm CSF coccidioides complement fixation test To use the sharing features on this page, please enable JavaScript. CSF coccidioides complement fixation is a test that checks ...

  9. Intrascleral IOL Fixation.

    Science.gov (United States)

    Jacob, Soosan

    2017-01-01

    Intrascleral sutureless intraocular lens (IOL) fixation utilizes direct haptic fixation within the sclera in eyes with deficient capsular support. This has advantages of long-term stability, good control of tilt and decentration, and lesser pseudophakodonesis. This review summarizes various techniques for intrascleral haptic fixation, results, complications, adaptations in special situations, modifications of the technique, combination surgeries, and intrascleral capsular bag fixation techniques (glued capsular hook). Copyright 2017 Asia-Pacific Academy of Ophthalmology.

  10. Fusion Surgery Required for Recurrent Pediatric Atlantoaxial Rotatory Fixation after Failure of Temporary Fixation with Instrumentation

    Directory of Open Access Journals (Sweden)

    Yoshiyuki Matsuyama

    2017-01-01

    Full Text Available In cases of chronic irreducible and recurrent unstable atlantoaxial rotatory fixation (AARF, closed reduction and its maintenance are often unsuccessful, requiring surgical treatment. The purpose of the present report is to describe a rare case of pediatric AARF that required multiple treatments. A 6-year-old boy was diagnosed as having type 2 AARF. After conservative treatment, the patient was treated with temporary fixation surgery (C1-C2 Magerl without a bone graft in consideration of motion preservation after screw removal. AARF recurred after the screw removal and required fusion surgery (Magerl–Brooks with an iliac bone graft. Ultimately, bone union was achieved and the screws were removed 11 months after the surgery. We recommend surgeons be cautious when choosing temporary fixation surgery for AARF in small children. Further investigation is needed to determine the optimal time before screw removal.

  11. Four quadrant parallel peripheral screw fixation for displaced femoral neck fractures in elderly patients

    Directory of Open Access Journals (Sweden)

    Bhava RJ Satish

    2013-01-01

    Conclusion: Closed reduction and cannulated cancellous screw fixation gives satisfactory functional results in large group of elderly patients. The four quadrant parallel peripheral (FQPP screw fixation technique gives good stability, allows controlled collapse, avoids fixation failure and achieves predictable bone healing in displaced femoral neck fracture in patients ≥50 years of age.

  12. Craniotomy Frontal Bone Defect

    African Journals Online (AJOL)

    2018-03-01

    Mar 1, 2018 ... Defect reconstruction and fixation of the graft: The defect of ... where all loose fragments of fractured frontal bone was removed via the ... Mandible. • Ilium. • Allograft ... pediatric patients owing to skull growth. Thus, autologous ...

  13. Premaxillary osteotomy fixation in bilateral cleft lip/palate: Introducing a new technique

    Directory of Open Access Journals (Sweden)

    Amin Rahpeyma

    2016-04-01

    Conclusion: In protruding premaxilla, osteotomy and fixation of premaxilla with miniplate to the vomer bone during alveolar bone grafting through a lip-split approach yielded satisfactory results in patients requiring secondary functional cheilorhinoplasty.

  14. Development and evaluation of novel biodegradable chitosan based metformin intrapocket dental film for the management of periodontitis and alveolar bone loss in a rat model.

    Science.gov (United States)

    Khajuria, Deepak Kumar; Patil, Omprakash Nandikamba; Karasik, David; Razdan, Rema

    2018-01-01

    The aim of this study was to develop a chitosan-metformin based intrapocket dental film (CMIDF) for applications in the treatment of periodontitis and alveolar bone loss in an rat model of periodontitis. CMIDF inserts were fabricated by the solvent casting technique. The fabricated inserts were evaluated for physical characteristics such as folding endurance, surface pH, mucoadhesive strength, metformin content uniformity, and release. X-ray diffraction analysis indicates no crystallinity of metformin in presence of chitosan which confirmed successful entrapment of metformin into the CMIDF. Fourier-transform infrared spectroscopy revealed stability of CMIDF and compatibility between metformin and chitosan. Periodontitis was induced by a combination of Porphyromonas gingivalis- lipopolysaccharide injections in combinations with ligatures around the mandibular first molar. We divided rats into 5 groups (8 rats/group): healthy, untreated periodontitis; periodontitis plus CMIDF-A (1.99±0.09mg metformin; total mass-4.01±0.05mg), periodontitis plus CMIDF-B (2.07±0.06mg metformin; total mass-7.56±0.09mg), and periodontitis plus chitosan film (7.61±0.08mg). After four weeks, mandibles were extracted to evaluate alveolar bone loss by micro-computerized tomography and histological techniques. Alveolar bone was intact in the healthy group. Local administration of CMIDF resulted in significant improvements in the alveolar bone properties when compared to the untreated periodontitis group. The study reported here demonstrates that novel CMIDF showed good antibacterial activity and effectively reduced alveolar bone destruction in a rat model of experimental periodontitis. Novel CMIDF showed good antibacterial activity and improved alveolar bone properties in a rat model. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. THE FUNCTIONAL OUTCOME OF MANAGEMENT OF SCHATZKER TYPE II AND III TIBIAL PLATEAU FRACTURES TREATED WITH INDIRECT ELEVATION, PERCUTANEOUS FIXATION AND BONE GRAFTING

    Directory of Open Access Journals (Sweden)

    Sheshagiri

    2016-02-01

    Full Text Available INTRODUCTION Damage to the joint is more extensive in tibia plateau fractures than the roentgenograms Indicate. It may be associated with soft tissue trauma, ligament injuries (4-33% medial Collateral ligament being the most common, meniscal injuries (20%, lateral collateral Ligament injury (3%, peroneal nerve injuries (3%. Posttraumatic arthritis is associated with residual instability or axial malalignment rather than joint depression. So we use minimally invasive approach to the depressed tibial plateau fractures (Schatzker type II & III. MATERIALS AND METHODS 32 patients were studied. They were followed up for maximum of 3yrs and a minimum of 1.5yrs with an average of 2.2yrs. Inclusion criteria included those patients with an age group between 20yrs and 60yrs, joint depression more than 3mm. Patients with open fracture, severe osteoporotic bones and with radiographic evidence of osteoarthritis are excluded from the study. CT was done in all patients. Mean age group was 28.8yrs and 19(76% were males; the mean articular depression was 11.32 mm measured in CT. Pre-op evaluation includes x-rays of the knee, stress x-rays if needed, and CT was done with 2mm limited cuts. Cancellous Bone graft was taken from opposite tibia through a 3-4cm long incision made below the tibial tuberosity over the medial aspect of the tibia. Cortical window was made in the affected limb, just enough to introduce the punch, and its position was confirmed under c-arm and depressed fragment was elevated with punch and reduction was held with k wires in subarticular plane and later two cannulated cancellous screws was introduced and the defect packed with bone grafts, Post-operatively all patients were immobilized with plaster of Paris (POP for 3 weeks and then mobilized. RESULTS The mean duration of the follow up was 2.2yrs. Results were excellent in 21 patients (84%, good 3(12% and fair in 1 patients (4% according to anatomic and functional criteria by Hohl and Luck

  16. Effectiveness of external fixator combined with T-plate internal fixation for the treatment of comminuted distal radius fractures.

    Science.gov (United States)

    Han, L R; Jin, C X; Yan, J; Han, S Z; He, X B; Yang, X F

    2015-03-31

    This study compared the efficacy between external fixator combined with palmar T-plate internal fixation and simple plate internal fixation for the treatment of comminuted distal radius fractures. A total of 61 patients classified as type C according to the AO/ASIF classification underwent surgery for comminuted distal radius fractures. There were 54 and 7 cases of closed and open fractures, respectively. Moreover, 19 patients received an external fixator combined with T-plate internal fixation, and 42 received simple plate internal fixation. All patients were treated successfully during 12-month postoperative follow-up. The follow-up results show that the palmar flexion and dorsiflexion of the wrist, radial height, and palmar angle were significantly better in those treated with the external fixator combined with T-plate compared to those treated with the simple plate only (P 0.05). Hence, the effectiveness of external fixator combined with T-plate internal fixation for the treatment of comminuted distal radius fractures was satisfactory. Patients sufficiently recovered wrist, forearm, and hand function. In conclusion, compared to the simple T-plate, the external fixator combined with T-plate internal fixation can reduce the possibility of the postoperative re-shifting of broken bones and keep the distraction of fractures to maintain radial height and prevent radial shortening.

  17. Percutaneous Image-Guided Screw Fixation of Bone Lesions in Cancer Patients: Double-Centre Analysis of Outcomes including Local Evolution of the Treated Focus

    Energy Technology Data Exchange (ETDEWEB)

    Cazzato, Roberto Luigi, E-mail: gigicazzato@hotmail.it; Koch, Guillaume, E-mail: guillaume.koch@chru-strasbourg.fr [Hôpitaux Universitaires de Strasbourg, HUS, Department of Interventional Radiology, Nouvel Hôpital Civil (France); Buy, Xavier, E-mail: x.buy@bordeaux.unicancer.fr [Institut Bergonié, Department of Radiology (France); Ramamurthy, Nitin, E-mail: nitin-ramamurthy@hotmail.com [Norfolk and Norwich University Hospital, Department of Radiology (United Kingdom); Tsoumakidou, Georgia, E-mail: georgia.tsoumakidou@chru-strasbourg.fr; Caudrelier, Jean, E-mail: jean.caudrelier@chru-strasbourg.fr [Hôpitaux Universitaires de Strasbourg, HUS, Department of Interventional Radiology, Nouvel Hôpital Civil (France); Catena, Vittorio, E-mail: v.catena@bordeaux.unicancer.fr [Institut Bergonié, Department of Radiology (France); Garnon, Julien, E-mail: juleiengarnon@gmail.com [Hôpitaux Universitaires de Strasbourg, HUS, Department of Interventional Radiology, Nouvel Hôpital Civil (France); Palussiere, Jean, E-mail: j.palussiere@bordeaux.unicancer.fr [Institut Bergonié, Department of Radiology (France); Gangi, Afshin, E-mail: gangi@unistra.fr [Hôpitaux Universitaires de Strasbourg, HUS, Department of Interventional Radiology, Nouvel Hôpital Civil (France)

    2016-10-15

    AimTo review outcomes and local evolution of treated lesions following percutaneous image-guided screw fixation (PIGSF) of pathological/insufficiency fractures (PF/InF) and impeding fractures (ImF) in cancer patients at two tertiary centres.Materials and methodsThirty-two consecutive patients (mean age 67.5 years; range 33–86 years) with a range of tumours and prognoses underwent PIGSF for non/minimally displaced PF/InF and ImF. Screws were placed under CT/fluoroscopy or cone-beam CT guidance, with or without cementoplasty. Clinical outcomes were assessed using a simple 4-point scale (1 = worse; 2 = stable; 3 = improved; 4 = significantly improved). Local evolution was reviewed on most recent follow-up imaging. Technical success, complications, and overall survival were evaluated.ResultsThirty-six lesions were treated with 74 screws mainly in the pelvis and femoral neck (58.2 %); including 47.2 % PF, 13.9 % InF, and 38.9 % ImF. Cementoplasty was performed in 63.9 % of the cases. Technical success was 91.6 %. Hospital stay was ≤3 days; 87.1 % of lesions were improved at 1-month follow-up; three major complications (early screw-impingement radiculopathy; accelerated coxarthrosis; late coxofemoral septic arthritis) and one minor complication were observed. Unfavourable local evolution at imaging occurred in 3/24 lesions (12.5 %) at mean 8.7-month follow-up, including poor consolidation (one case) and screw loosening (two cases, at least 1 symptomatic). There were no cases of secondary fractures.ConclusionsPIGSF is feasible for a wide range of oncologic patients, offering good short-term efficacy, acceptable complication rates, and rapid recovery. Unfavourable local evolution at imaging may be relatively frequent, and requires close clinico-radiological surveillance.

  18. Is the pull-out force of the Meniscus Arrow in bone affected by the inward curling of the barbs during biodegradation? An in vitro study

    NARCIS (Netherlands)

    Wouters, Diederick B.; Burgerhof, Johannes G. M.; de Hosson, Jeff T. M.; Bos, Rudolf R. M.

    Background: Inward curling of the barbs of Meniscus Arrows during degradation was observed in a previous study, in which swelling, distention, and water uptake by Meniscus Arrows was evaluated. This change of configuration could have consequences with respect to anchorage capacity in bone.

  19. Proceedings of biodegradation

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    This book contains the proceedings of Biodegradation. Topics include:biodegradation using the tools of biotechnology, basic science aspects of biodegradation, the physiological characteristics of microorganisms, the use of selective techniques that enhance the process of microbial evolution of biodegradative genes in nature, the genetic characteristics of microorganisms allowing them to biodegrade both natural and synthetic toxic chemicals, the molecular techniques that allow selective assembly of genetic segments form a variety of bacterial strains to a single strain, and methods needed to advance biodegradation research as well as the high-priority chemical problems important to the Department of Defense or to the chemical industry

  20. Correção de falhas ósseas diafisárias: trasnporte ósseo fixado com placa Corretive procedure in diaphyseal bone gaps: bone trasnpot fixated with plate

    Directory of Open Access Journals (Sweden)

    Celso Hermínio Ferraz Picado

    2007-01-01

    Full Text Available O objetivo deste estudo é descrever um novo sistema de transporte ósseo que dispensa o uso de fios transfixantes. O sistema, constituído por uma placa, um carro móvel e por um dispositivo tracionador, foi instalado na tíbia direita de 17 ovelhas para preencher um defeito ósseo de 1 cm. O transporte ósseo foi iniciado 7 dias após a cirurgia numa taxa de 0,8 mm/dia, dividido em 0,2 mm a cada 6 horas. Radiografias em ântero-posterior e perfil foram realizadas imediatamente após a cirurgia e semanalmente até o término do transporte. Em todos os 12 animais que completaram o estudo, o defeito ósseo foi preenchido com formação do regenerado e consolidação do foco alvo. O estudo demonstra que o sistema aqui apresentado realiza o transporte ósseo de maneira efetiva, eliminando o uso de fios ou pinos transfixantes.The objective of this study is to describe a new bone transport system not requiring the use of transfixating wires. The system, which is constituted by a plate, a movable conveyor and a hauling device, was set up on the right tibia of 17 sheep intending to fill a 1-cm bone gap. Bone transport started 7 days after surgery on a rate of 0.8 mm/day, divided into 0.2 mm at each 6 hours. X-ray images of anteroposterior and lateral planes were taken immediately after surgery and on a weekly basis until transport was finished. In all 12 animals completing the study, the bone gap was filled with regenerated formation and target focus consolidation. The study shows that the system presented here effectively performs bone transport, eliminating the use of transfixating wires or pins.

  1. Locking plate fixation for proximal humerus fractures.

    LENUS (Irish Health Repository)

    Burke, Neil G

    2012-02-01

    Locking plates are increasingly used to surgically treat proximal humerus fractures. Knowledge of the bone quality of the proximal humerus is important. Studies have shown the medial and dorsal aspects of the proximal humeral head to have the highest bone strength, and this should be exploited by fixation techniques, particularly in elderly patients with osteoporosis. The goals of surgery for proximal humeral fractures should involve minimal soft tissue dissection and achieve anatomic reduction of the head complex with sufficient stability to allow for early shoulder mobilization. This article reviews various treatment options, in particular locking plate fixation. Locking plate fixation is associated with a high complication rate, such as avascular necrosis (7.9%), screw cutout (11.6%), and revision surgery (13.7%). These complications are frequently due to the varus deformation of the humeral head. Strategic screw placement in the humeral head would minimize the possibility of loss of fracture reduction and potential hardware complications. Locking plate fixation is a good surgical option for the management of proximal humerus fractures. Complications can be avoided by using better bone stock and by careful screw placement in the humeral head.

  2. The influence on the contact condition and initial fixation stability of the main design parameters of a self-expansion type anterior cruciate ligament fixation device

    International Nuclear Information System (INIS)

    Kim, Jong Dae; Oh, Chae Youn; Kim, Cheol Sang

    2008-01-01

    This paper proposes a self-expansion type anterior cruciate ligament fixation device. The proposed fixation device provides graft fixation force by maintaining contact with the bone tunnel. Since the device maintains contact with the bone tunnel by the force that expands by the self-driven elastic force of the device, the main design parameters that determine the performance of this device are the ring thickness and expansion angle. This paper develops the three-dimensional finite element models of the fixation device and bone. By simulation with the developed finite element model, this paper studies the influence of the main design parameters of the device on the maximum stress around the ring when grasping the fixation device. Through the analysis of the stress on the bone tunnel wall when the fixation device comes in contact with the bone tunnel, this paper shows the influence of the main design parameters of the fixation device on the contact condition. In addition, through the analysis of the migration that occur upon application of the pull-out force, this paper studies the influence of the main design parameters on the initial fixation stability of the fixation device

  3. The influence on the contact condition and initial fixation stability of the main design parameters of a self-expansion type anterior cruciate ligament fixation device

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jong Dae [Jeonju University, Jeonju (Korea, Republic of); Oh, Chae Youn; Kim, Cheol Sang [Chonbuk National University, Jeonju (Korea, Republic of)

    2008-12-15

    This paper proposes a self-expansion type anterior cruciate ligament fixation device. The proposed fixation device provides graft fixation force by maintaining contact with the bone tunnel. Since the device maintains contact with the bone tunnel by the force that expands by the self-driven elastic force of the device, the main design parameters that determine the performance of this device are the ring thickness and expansion angle. This paper develops the three-dimensional finite element models of the fixation device and bone. By simulation with the developed finite element model, this paper studies the influence of the main design parameters of the device on the maximum stress around the ring when grasping the fixation device. Through the analysis of the stress on the bone tunnel wall when the fixation device comes in contact with the bone tunnel, this paper shows the influence of the main design parameters of the fixation device on the contact condition. In addition, through the analysis of the migration that occur upon application of the pull-out force, this paper studies the influence of the main design parameters on the initial fixation stability of the fixation device

  4. Biodegradation of lubricant oil

    African Journals Online (AJOL)

    M

    2012-09-25

    Sep 25, 2012 ... lubricating oil, showed high biodegradation efficiency for different used lubricating oils. Capability of ..... amount after biodegradation showed no difference in the .... products polluted sites in Elele, Rivers State, Ngeria.

  5. Unicortical self-drilling external fixator pins reduce thermal effects during pin insertion.

    Science.gov (United States)

    Greinwald, Markus; Varady, Patrick A; Augat, Peter

    2017-12-14

    External fixation is associated with the risk of pin loosening and pin infection potentially associated to thermal bone necrosis during pin insertion. This study aims to investigate if the use of external fixator systems with unicortical pins reduces the heat production during pin insertion compared to fixators with bicortical pins. Porcine bone specimens were employed to determine bone temperatures during insertion of fixator pins. Two thermographic cameras were used for a simultaneous temperature measurement on the bone surface (top view) and a bone cross-section (front view). Self-drilling unicortical and bicortical pins were inserted at different rotational speeds: (30-600) rpm. Maximum and mean temperatures of the emerging bone debris, bone surface and bone cross-section were analyzed. Maximum temperatures of up to 77 ± 26 °C were measured during pin insertion in the emerging debris and up to 42 ± 2 °C on the bone surface. Temperatures of the emerging debris increased with increasing rotational speeds. Bicortical pin insertion generated significantly higher temperatures at low insertion speed (30 rpm) CONCLUSION: The insertion of external fixator pins can generate a considerable amount of heat around the pins, primarily emerging from bone debris and at higher insertion speeds. Our findings suggest that unicortical, self-drilling fixator pins have a decreased risk for thermal damage, both to the surrounding tissue and to the bone itself.

  6. The experiment of magnesium ECAP miniplate as alternative biodegradable material (on male white New Zealand rabbits)

    Science.gov (United States)

    Wiwanto, Siska; Sulistyani, Lilies Dwi; Latief, Fourier Dzar Eljabbar; Supriadi, Sugeng; Priosoeryanto, Bambang Pontjo; Latief, Benny Syariefsyah

    2018-02-01

    Study of biodegradations of Magnesium ECAP (Equal Channel Angular Pressing) miniplate in the osteosynthesis system has been used as a new material for plate and screw in oral and maxillofacial surgery. This miniplate and screw that were made of Magnesium ECAP were implanted in the femurs of New Zealand rabbits. The degradation process was detected through pocket gas that appeared in hard and soft tissues surrounding in the implanted miniplates and screws. From the changes on the tissues, we can assess the biodegradation process by measuring the gas pocket through micro-CT Scan. Upon the first month of study we euthanized the rabbits and made a micro-CT Scan to see how far the effect of the gas pocket was. Histological analyses were performed to investigate the local tissue response adjacent to the Magnesium ECAP miniplates. We analyzed the femur of a rabbit a month, three months, and five months after implantation. The result showed a degradation rate in the implanted Magnesium ECAP miniplate of 0.61±0.39 mm/year. Unlike the screws, miniplates have higher water content and blood flow than bone, therefore they degrade faster. This study shows promising results for further development of Magnesium ECAP and in the production of osteosynthesis material for rigid fixation in Oral and Maxillofacial skeleton.

  7. External fixation of tibial pilon fractures and fracture healing.

    Science.gov (United States)

    Ristiniemi, Jukka

    2007-06-01

    Distal tibial fractures are rare and difficult to treat because the bones are subcutaneous. External fixation is commonly used, but the method often results in delayed union. The aim of the present study was to find out the factors that affect fracture union in tibial pilon fractures. For this purpose, prospective data collection of tibial pilon fractures was carried out in 1998-2004, resulting in 159 fractures, of which 83 were treated with external fixation. Additionally, 23 open tibial fractures with significant > 3 cm bone defect that were treated with a staged method in 2000-2004 were retrospectively evaluated. The specific questions to be answered were: What are the risk factors for delayed union associated with two-ring hybrid external fixation? Does human recombinant BMP-7 accelerate healing? What is the role of temporary ankle-spanning external fixation? What is the healing potential of distal tibial bone loss treated with a staged method using antibiotic beads and subsequent autogenous cancellous grafting compared to other locations of the tibia? The following risk factors for delayed healing after external fixation were identified: post-reduction fracture gap of >3 mm and fixation of the associated fibula fracture. Fracture displacement could be better controlled with initial temporary external fixation than with early definitive fixation, but it had no significant effect on healing time, functional outcome or complication rate. Osteoinduction with rhBMP-7 was found to accelerate fracture healing and to shorten the sick leave. A staged method using antibiotic beads and subsequent autogenous cancellous grafting proved to be effective in the treatment of tibial bone loss. Healing potential of the bone loss in distal tibia was at least equally good as in other locations of the tibia.

  8. MRI study of bioabsorbable poly-L-lactic acid devices used for fixation of fracture and osteotomies

    International Nuclear Information System (INIS)

    Marumo, Keishi; Sato, Yasutomo; Suzuki, Hidehiko; Kurosaka, Daisaburo

    2006-01-01

    The overall clinical results of bioabsorbable fixation devices made of poly-L-lactic acid (PLLA) used for fixation of fractures, bone grafting, and osteotomies have been favorable. However, clinical studies demonstrated no sign of normal bony architecture restored after surgery, although implant channels had been filled with fibrous tissue. The purpose of the present retrospective study was to examine the extent of structural changes in PLLA devices (PLLA-Ds) for fixation of rotational acetabular osteotomies and displaced malleolar ankle fractures using magnetic resonance imaging (MRI). Altogether, 14 patients with osteoarthritis of hip joints and 15 with displaced malleolar ankle fractures were operated on using PLLA-D (NEOFIX). Of these patients, 22 were finally enrolled in the study, and the period from operation to the time of the study ranged from 17 to 78 months. The postoperative radiographic findings were evaluated for union, and changes around the implant holes were classified as sclerosis, resorption, or no change. MRI was carried out to estimate changes in the PLLA-Ds. Bone union was obtained in all cases; clinical complications such as infection, joint effusion, soft tissue irritation due to PLLA-D deviation, and motion pain in the joints were not observed. The MRI study suggested that water content in PLLA-D increased mainly due to biodegradation and that implants were not replaced by bony tissue. The PLLA-Ds were degraded but were not replaced by bony tissue during the observation period. Considering these findings and the assumption that in bony tissues mechanical strength of PLLA-D decreases with time, attention should be paid to mechanical insufficiency, which may occur when the cross-sectional area of a PLLA-D extends beyond the cross-sectional area of the osteosynthesis site. (author)

  9. Guide to radiation fixatives

    International Nuclear Information System (INIS)

    Tawil, J.J.; Bold, F.C.

    1983-11-01

    This report identifies and then characterizes a variety of substances available in the market place for potential effectiveness as a fixative on radiologically contaminated surfaces. The substances include both generic chemicals and proprietary products. In selecting a fixative for a particular application, several attributes of the fixative may be relevant to the choice. These attributes include: toxicity, durability, and cleanliness and removability. In addition to the attributes of the fixative, one should also take into account certain characteristics of the site to be treated. These characteristics relate to climate, nature of the surface, use to which the treated surface will be put, subsequent cleanup operations, and type of neighboring surfaces. Finally, costs and potential environmental effects may influence the decision. A variety of fixatives are evaluated with respect to these various attributes and summarized in a reference table

  10. Surgical management of proximal splint bone fractures in the horse

    International Nuclear Information System (INIS)

    Peterson, P.R.; Pascoe, J.R.; Wheat, J.D.

    1987-01-01

    Fractures of Metacarpal and Metatarsal II and IV (the splint bones) were treated in 283 horses over an 11 year period. In 21 cases the proximal portion of the fractured bone was stabilized with metallic implants. One or more cortical bone screws were used in 11 horses, and bone plates were applied in 11 horses. One horse received both treatments. Complications of screw fixation included bone failure, implant failure, radiographic lucency around the screws, and proliferative new bone at the ostectomy site. Only two of the horses treated with screw fixation returned to their intended use. Complications of plate fixation included partial fixation failure (backing out of screws), wound drainage, and proliferative bony response around the plate. Six of the 11 horses treated by plate fixation returned to their intended use. The authors recommend consideration of plate fixation techniques for repair of fractures in the proximal third of the splint bone

  11. Scaphoid Fracture Fixation with an Acutrak? Screw

    OpenAIRE

    Loving, Vilert A.; Richardson, Michael L.

    2015-01-01

    We report a case of fixation of a scaphoid fracture using an Acutrak? screw. This screw is cannulated and headless, which allows it to be implanted below the surface of the bone. It uses the same concept of variable thread pitch as the Herbert screw, but unlike the Herbert screw, is fully threaded, with continuously varying pitch along its length. This variable pitch creates constant compression across a fracture as the screw is advanced, and gives the screw its unique appearance. This featur...

  12. Results of application of external fixation with different types of fixators

    Directory of Open Access Journals (Sweden)

    Grubor Predrag

    2012-01-01

    Full Text Available Introduction. Extra-focal or external fixation is the method of fracture fixation through the healthy part of the bone using pins or wires. Objective. The aim was to determine which external splints (Ortofix, Mitković, Charnley and Ilizarov had the best biomechanical properties in primary stabilization of spiral, transverse and commutative bone fractures. Methods. To determine the investigation methodology of biomechanical characteristics of the external fixator we used mathematical and computer simulator (software, juvidur physical model and clinical examination. Results. Values of advancing fragments in millimetres obtained by the study of mathematical and computer simulator (software: Charnley - 0.080 mm, Mitković M 20 - 0.785 mm, Ilizarov - 2.245 mm and Ortofix - 1.400 mm. In testing the juvidur model the following values were obtained: the external fixator Mitković M20 - 1.380 mm, Ortofix - 1.470 mm, Ilizarov - 2.410 mm, and Charnley - 2.510 mm. Clinical research of biomechanical characteristics of the effect of vertical force yielded the following results: Mitković M20 - 0.89 mm, Ortofix - 0.14 mm, Charnley - 0.80 mm and Ilizarov - 1.23 mm. Conclusion. When determining the total number of the stability test splints under the effect of vertical force (compression and force effect in antero-posterior, later-lateral plane of cross, spiral and comminuted long bone fractures, the best unified biomechanical stability was shown by the following external fixators: firstly, Mitković M20 (0.93mm, secondly, Charnley fixator (1.14 mm, thirdly, Ortofix (1.22 mm, and fourthly, Ilizarov (1.60 mm.

  13. Postinflammatory ossicular fixation: CT analysis with surgical correlation

    International Nuclear Information System (INIS)

    Swartz, J.D.; Wolfson, R.J.; Marlowe, F.I.; Popky, G.L.

    1985-01-01

    Postinflammatory ossicular fixation is a common problem encountered by the otologic surgeon upon exploration because of conductive hearing loss in patients with chronic otitis media. These nonotosclerotic noncongenital lesions take three pathologic forms: fibrous tissue fixation (chronic adhesive otitis media), hyalinization of collagen (tympanosclerosis), and new bone formation (fibro-osseous sclerosis). More than 300 patients with the clinical diagnosis of chronic otitis media have been examined. This study encompasses 23 proved cases

  14. Free flap reconstructions of tibial fractures complicated after internal fixation.

    Science.gov (United States)

    Nieminen, H; Kuokkanen, H; Tukiainen, E; Asko-Seljavaara, S

    1995-04-01

    The cases of 15 patients are presented where microvascular soft-tissue reconstructions became necessary after internal fixation of tibial fractures. Primarily, seven of the fractures were closed. Eleven fractures had originally been treated by open reduction and internal fixation using plates and screws, and four by intramedullary nailing. All of the patients suffered from postoperative complications leading to exposure of the bone or fixation material. The internal fixation material was removed and radical revision of dead and infected tissue was carried out in all cases. Soft tissue reconstruction was performed using a free microvascular muscle flap (11 latissimus dorsi, three rectus abdominis, and one gracilis). In eight cases the nonunion of the fracture indicated external fixation. The microvascular reconstruction was successful in all 15 patients. In one case the recurrence of deep infection finally indicated a below-knee amputation. In another case, chronic infection with fistulation recurred postoperatively. After a mean follow-up of 26 months the soft tissue coverage was good in all the remaining 13 cases. All the fractures united. Microvascular free muscle flap reconstruction of the leg is regarded as a reliable method for salvaging legs with large soft-tissue defects or defects in the distal leg. If after internal fixation of the tibial fracture the osteosynthesis material or fracture is exposed, reconstruction of the soft-tissue can successfully be performed by free flap transfer. By radical revision, external fixation, bone grafting, and a free flap the healing of the fracture can be achieved.

  15. Regeneration of rat corpora cavernosa tissue by transplantation of CD133+ cells derived from human bone marrow and placement of biodegradable gel sponge sheet

    Directory of Open Access Journals (Sweden)

    Shogo Inoue

    2017-01-01

    Full Text Available The objective is to develop an easier technique for regenerating corpora cavernosa tissue through transplantation of human bone marrow-derived CD133 + cells into a rat corpora cavernosa defect model. We excised 2 mm × 2 mm squares of the right corpora cavernosa of twenty-three 8-week-old male nude rats. Alginate gel sponge sheets supplemented with 1 × 10 4 CD133 + cells were then placed over the excised area of nine rats. Functional and histological evaluations were carried out 8 weeks later. The mean intracavernous pressure/mean arterial pressure ratio for the nine rats (0.34258 ± 0.0831 was significantly higher than that for eight rats with only the excision (0.0580 ± 0.0831, P = 0.0238 and similar to that for five rats for which the penis was exposed, and there was no excision (0.37228 ± 0.1051, P = 0.8266. Immunohistochemical analysis revealed that the nine fully treated rats had venous sinus-like structures and quantitative reverse transcription polymerase chain reaction analysis of extracts from their alginate gel sponge sheets revealed that the amounts of mRNA encoding the nerve growth factor (NGF, and vascular endothelial growth factor (VEGF were significantly higher than those for rats treated with alginate gel sheets without cell supplementation (NGF: P = 0.0309; VEGF: P < 0.0001. These findings show that transplantation of CD133 + cells accelerates functional and histological recovery in the corpora cavernosa defect model.

  16. External fixation combined with delayed internal fixation in treatment of tibial plateau fractures with dislocation.

    Science.gov (United States)

    Tao, Xingguang; Chen, Nong; Pan, Fugen; Cheng, Biao

    2017-10-01

    The aim of this study was to evaluate the clinical efficacy of external fixation, delayed open reduction, and internal fixation in treating tibial plateau fracture with dislocation.Clinical data of 34 patients diagnosed with tibial plateau fracture complicated with dislocation between January 2009 and May 2015 were retrospectively analyzed. Fifteen patients in group A underwent early calcaneus traction combined with open reduction and internal fixation and 19 in group B received early external fixation combined with delayed open reduction and internal fixation. Operation time, postoperative complication, bone healing time, knee joint range of motion, initial weight-bearing time, Rasmussen tibial plateau score, and knee function score (HSS) were statistically compared between 2 groups.The mean follow-up time was 18.6 months (range: 5-24 months). The mean operation time in group A was 96 minutes, significantly longer than 71 minutes in group B (P  .05). In group A, initial weight-bearing time in group A was (14.0 ± 3.6) weeks, significantly differing from (12.9 ± 2.8) weeks in group B (P  0.05). Rasmussen tibial plateau score in group A was slightly lower than that in group B (P > .05). The excellent rate of knee joint function in group A was 80% and 84.21% in group B (P > .05).External fixation combined with delayed open reduction and internal fixation is a safer and more efficacious therapy of tibial plateau fracture complicated with dislocation compared with early calcaneus traction and open reduction and internal fixation.

  17. Biodegradability of Plastics

    Directory of Open Access Journals (Sweden)

    Yutaka Tokiwa

    2009-08-01

    Full Text Available Plastic is a broad name given to different polymers with high molecular weight, which can be degraded by various processes. However, considering their abundance in the environment and their specificity in attacking plastics, biodegradation of plastics by microorganisms and enzymes seems to be the most effective process. When plastics are used as substrates for microorganisms, evaluation of their biodegradability should not only be based on their chemical structure, but also on their physical properties (melting point, glass transition temperature, crystallinity, storage modulus etc.. In this review, microbial and enzymatic biodegradation of plastics and some factors that affect their biodegradability are discussed.

  18. Biodegradability of plastics.

    Science.gov (United States)

    Tokiwa, Yutaka; Calabia, Buenaventurada P; Ugwu, Charles U; Aiba, Seiichi

    2009-08-26

    Plastic is a broad name given to different polymers with high molecular weight, which can be degraded by various processes. However, considering their abundance in the environment and their specificity in attacking plastics, biodegradation of plastics by microorganisms and enzymes seems to be the most effective process. When plastics are used as substrates for microorganisms, evaluation of their biodegradability should not only be based on their chemical structure, but also on their physical properties (melting point, glass transition temperature, crystallinity, storage modulus etc.). In this review, microbial and enzymatic biodegradation of plastics and some factors that affect their biodegradability are discussed.

  19. Fixation method does not affect restoration of rotation center in hip replacements: A single-site retrospective study

    OpenAIRE

    Wegner, Alexander; Kauther, Max Daniel; Landgraeber, Stefan; von Knoch, Marius

    2012-01-01

    Abstract Background Aseptic loosening is one of the greatest problems in hip replacement surgery. The rotation center of the hip is believed to influence the longevity of fixation. The aim of this study was to compare the influence of cemented and cementless cup fixation techniques on the position of the center of rotation because cemented cup fixation requires the removal of more bone for solid fixation than the cementless technique. Methods We retrospectively compared pre- and post-operativ...

  20. Compacted cancellous bone has a spring-back effect

    DEFF Research Database (Denmark)

    Kold, S; Bechtold, JE; Ding, Ming

    2003-01-01

    A new surgical technique, compaction, has been shown to improve implant fixation. It has been speculated that the enhanced implant fixation with compaction could be due to a spring-back effect of compacted bone. However, such an effect has yet to be shown. Therefore we investigated in a canine mo....... Thus we found a spring-back effect of compacted bone, which may be important for increasing implant fixation by reducing initial gaps between the implant and bone....

  1. Miniplate fixation of Le Fort I osteotomies.

    Science.gov (United States)

    Rosen, H M

    1986-12-01

    The use of rigid, internal, three-dimensional fixation using vitallium bone plates in 28 consecutive Le Fort I osteotomies is presented. A minimum follow-up period of 6 months was required for inclusion in this patient group. Maxillary movements included advancements (17), intrusions (9), lengthenings (5), and retrusions (2). The majority of maxillae were moved in more than one plane of space. Technical details, complications, and relapse potential are discussed. Advantages of rigid plate fixation include marked reductions in the length of intermaxillary fixation with light training elastics only. Immediate postoperative airway problems are thereby eliminated. Six months of follow-up would appear to indicate a low potential for osseous relapse when compared to wire osteosynthesis, regardless of the direction of maxillary movement. The major disadvantage is the decreased ability of postoperative orthodontics to move dento-osseous segments if skeletal occlusal disharmony persists postoperatively. For this reason, close attention to preoperative planning and operative technique is critical for the success of this fixation method.

  2. Mechanical and degradation properties of biodegradable Mg strengthened poly-lactic acid composite through plastic injection molding.

    Science.gov (United States)

    Butt, Muhammad Shoaib; Bai, Jing; Wan, Xiaofeng; Chu, Chenglin; Xue, Feng; Ding, Hongyan; Zhou, Guanghong

    2017-01-01

    Full biodegradable magnesium alloy (AZ31) strengthened poly-lactic acid (PLA) composite rods for potential application for bone fracture fixation were prepared by plastic injection process in this work. Their surface/interfacial morphologies, mechanical properties and vitro degradation were studied. In comparison with untreated Mg rod, porous MgO ceramic coating on Mg surface formed by Anodizing (AO) and micro-arc-oxidation (MAO)treatment can significantly improve the interfacial binding between outer PLA cladding and inner Mg rod due to the micro-anchoring action, leading to better mechanical properties and degradation performance of the composite rods.With prolonging immersion time in simulated body fluid (SBF) solution until 8weeks, the MgO porous coating were corroded gradually, along with the disappearance of original pores and the formation of a relatively smooth surface. This resulted in a rapidly reduction in mechanical properties for corresponding composite rods owing to the weakening of interfacial binding capacity. The present results indicated that this new PLA-clad Mg composite rods show good potential biomedical applications for implants and instruments of orthopedic inner fixation. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Grey water biodegradability.

    Science.gov (United States)

    Ghunmi, Lina Abu; Zeeman, Grietje; Fayyad, Manar; van Lier, Jules B

    2011-02-01

    Knowing the biodegradability characteristics of grey water constituents is imperative for a proper design and operation of a biological treatment system of grey water. This study characterizes the different COD fractions of dormitory grey water and investigates the effect of applying different conditions in the biodegradation test. The maximum aerobic and anaerobic biodegradability and conversion rate for the different COD fractions is determined. The results show that, on average, dormitory grey water COD fractions are 28% suspended, 32% colloidal and 40% dissolved. The studied factors incubation time, inoculum addition and temperature are influencing the determined biodegradability. The maximum biodegradability and biodegradation rate differ between different COD fractions, viz. COD(ss), COD(col) and COD(diss). The dissolved COD fraction is characterised by the lowest degradation rate, both for anaerobic and aerobic conditions. The maximum biodegradability for aerobic and anaerobic conditions is 86 and 70% respectively, whereas the first order conversion rate constant, k₂₀, is 0.119 and 0.005 day⁻¹, respectively. The anaerobic and aerobic conversion rates in relation to temperature can be described by the Arrhenius relation, with temperature coefficients of 1.069 and 1.099, respectively.

  4. Hydroxyapatite particles maintain peri-implant bone mantle during osseointegration in osteoporotic bone

    NARCIS (Netherlands)

    Tami, A.E.; Leitner, M.M.; Baucke, M.G.; Mueller, T.L.; Lenthe, van G.H.; Müller, R.; Ito, K.

    2009-01-01

    In osteoporotic bones, resorption exceeds formation during the remodelling phase of bone turnover. As a consequence, decreased bone volume and bone contact result in the peri-implant region. This may subsequently lead to loss of fixation. In this study we investigated whether the presence of

  5. Desenvolvimento e desempenho de um fixador flexível na consolidação de fraturas diafisárias transversais provocadas iatrogênicamente na tíbia de carneiros Development and performance of a flexible fixator on bone healing of transverse diaphyseal fracture caused iatrogenically in the sheep tibiae

    Directory of Open Access Journals (Sweden)

    Giuliano Barbieri

    2011-06-01

    Full Text Available Foi realizado um estudo experimental sobre o desenvolvimento e desempenho de um fixador externo flexível no processo de consolidação de tíbias de carneiros submetidas à osteotomia transversa mediodiafisária. Foram empregados no estudo 20 carneiros da raça Santa Inês, com massa corporal média de 37kg, divididos em diferentes grupos conforme o período de observação pós-operatória, de 30, 45, 60 e 90 dias. Ao final, os animais sofreram a eutanásia e as tíbias foram removidas para estudo de volumetria transversal do calo ósseo por tomografia computadorizada e ensaio mecânico destrutivo. Os resultados mostraram que ocorreu a formação de calo ósseo volumoso, caracterizando assim a ocorrência de deslocamento de carga axial para o foco da osteotomia, promovida pelo fixador externo utilizado. No ensaio mecânico, observou-se que as comparações entre os grupos respectivos intactos e operados foram significantemente diferentes (PAn experimental study was carried out to verify the development and performance of a flexible external fixator on the bone healing process of the tibia of sheep submitted to a transverse diaphyseal osteotomy. It was used twenty Santa Inês sheep with average weigh of 37kg divided in groups, according to the period of postoperative observation of 30, 45, 60 and 90 days. At the end, the animals were sacrificed and the tibiae were removed for study of transverse callus volumetric by computed tomography and destructive mechanical testing. The results had shown that the formation of voluminous callus occurred, thus characterizing the occurrence of displacement of axial load to the focus of the osteotomy, promoted by the used external fixator used. The mechanical testing showed that the comparisons between the respective intact and operated groups were significantly different (P<0.05 except for the group with 90 days, which demonstrated equivalent stiffness when compared to normal bone. In none of the animals

  6. Hydrolytic And Enzymatic Degradation Characteristics Of Biodegradable Aliphatic Polysters

    Institute of Scientific and Technical Information of China (English)

    LI Suming

    2004-01-01

    Aliphatic polyesters, especially those derived from lactide (PLA), glycolide (PGA) and ε-caprolactone (PCL), are being investigated worldwide for applications in the field of surgery (suture material, devices for internal bone fracture fixation), pharmacology (sustained drug delivery systems), and tissue engineering (scaffold for tissue regeneration) [1,2]. This is mainly due to their good biocompatibility and variable degradability. These polymers present also a growing interest for environmental applications in agriculture (mulch films) and in our everyday life (packaging material)as the development of biodegradable materials is now considered as one of the potential solutions to the problem of plastic waste management.For both biomedical and environmental applications, it is of major importance to understand the degradation characteristics of the polymers. The hydrolytic degradation of aliphatic polyesters has been investigated by many research groups. Our group has shown that degradation of PLAGA large size devices is faster inside than at the surface. This heterogeneous degradation is due to the autocatalytic effect of carboxylic endgroups formed by ester bond cleavage. Moreover,degradation-induced morphological and compositional changes were also elucidated. In the case of PCL, the hydrolytic degradation is very slow due to its hydrophobicity and crystallinity.The enzymatic degradation of these polymers has been investigated by a number of authors. A specific enzyme, proteinase K, has been shown to have significant effects on PLA degradation. This enzyme preferentially degrade L-lactate units as opposed to D-lactate ones, amorphous zones as opposed to crystalline ones [3]. The enzymatic degradation of PCL polymers has also been investigated. A number of lipase-type enzymes were found to significantly accelerate the degradation of PCL despite its high crystallinity. In the case of PLA/PCL blends, the two components exhibited well separated crystalline domains

  7. Comparative study on the biodegradation and biocompatibility of silicate bioceramic coatings on biodegradable magnesium alloy as biodegradable biomaterial

    Science.gov (United States)

    Razavi, M.; Fathi, M. H.; Savabi, O.; Razavi, S. M.; Hashemibeni, B.; Yazdimamaghani, M.; Vashaee, D.; Tayebi, L.

    2014-03-01

    Many clinical cases as well as in vivo and in vitro assessments have demonstrated that magnesium alloys possess good biocompatibility. Unfortunately, magnesium and its alloys degrade too quickly in physiological media. In order to improve the biodegradation resistance and biocompatibility of a biodegradable magnesium alloy, we have prepared three types of coating include diopside (CaMgSi2O6), akermanite (Ca2MgSi2O6) and bredigite (Ca7MgSi4O16) coating on AZ91 magnesium alloy through a micro-arc oxidation (MAO) and electrophoretic deposition (EPD) method. In this research, the biodegradation and biocompatibility behavior of samples were evaluated in vitro and in vivo. The in vitro analysis was performed by cytocompatibility and MTT-assay and the in vivo test was conducted on the implantation of samples in the greater trochanter of adult rabbits. The results showed that diopside coating has the best bone regeneration and bredigite has the best biodegradation resistance compared to others.

  8. Flexible fixation and fracture healing

    DEFF Research Database (Denmark)

    Schmal, Hagen; Strohm, Peter C; Jaeger, Martin

    2011-01-01

    , noncomminuted fractures. External fixation uses external bars for stabilization, whereas internal fixation is realized by subcutaneous placement of locking plates. Both of these "biologic" osteosynthesis methods allow a minimally invasive approach and do not compromise fracture hematoma and periosteal blood...

  9. Sacroiliac Screw Fixation

    NARCIS (Netherlands)

    E.W. van den Bosch

    2003-01-01

    textabstractThe aim of this thesis is to evaluate three major aspects of the use of sacroiliac screws in patients with unstable pelvic ring fractures: the optimal technique for sacroiliac screw fixation, the reliability of peroperative fluoroscopy and the late results. We focused on the questions

  10. Biodegradable modified Phba systems

    International Nuclear Information System (INIS)

    Aniscenko, L.; Dzenis, M.; Erkske, D.; Tupureina, V.; Savenkova, L.; Muizniece - Braslava, S.

    2004-01-01

    Compositions as well as production technology of ecologically sound biodegradable multicomponent polymer systems were developed. Our objective was to design some bio plastic based composites with required mechanical properties and biodegradability intended for use as biodegradable packaging. Significant characteristics required for food packaging such as barrier properties (water and oxygen permeability) and influence of γ-radiation on the structure and changes of main characteristics of some modified PHB matrices was evaluated. It was found that barrier properties were plasticizers chemical nature and sterilization with γ-radiation dependent and were comparable with corresponding values of typical polymeric packaging films. Low γ-radiation levels (25 kGy) can be recommended as an effective sterilization method of PHB based packaging materials. Purposely designed bio plastic packaging may provide an alternative to traditional synthetic packaging materials without reducing the comfort of the end-user due to specific qualities of PHB - biodegradability, Biocompatibility and hydrophobic nature

  11. Biomechanical Comparison of External Fixation and Compression Screws for Transverse Tarsal Joint Arthrodesis.

    Science.gov (United States)

    Latt, L Daniel; Glisson, Richard R; Adams, Samuel B; Schuh, Reinhard; Narron, John A; Easley, Mark E

    2015-10-01

    Transverse tarsal joint arthrodesis is commonly performed in the operative treatment of hindfoot arthritis and acquired flatfoot deformity. While fixation is typically achieved using screws, failure to obtain and maintain joint compression sometimes occurs, potentially leading to nonunion. External fixation is an alternate method of achieving arthrodesis site compression and has the advantage of allowing postoperative compression adjustment when necessary. However, its performance relative to standard screw fixation has not been quantified in this application. We hypothesized that external fixation could provide transverse tarsal joint compression exceeding that possible with screw fixation. Transverse tarsal joint fixation was performed sequentially, first with a circular external fixator and then with compression screws, on 9 fresh-frozen cadaveric legs. The external fixator was attached in abutting rings fixed to the tibia and the hindfoot and a third anterior ring parallel to the hindfoot ring using transverse wires and half-pins in the tibial diaphysis, calcaneus, and metatarsals. Screw fixation comprised two 4.3 mm headless compression screws traversing the talonavicular joint and 1 across the calcaneocuboid joint. Compressive forces generated during incremental fixator foot ring displacement to 20 mm and incremental screw tightening were measured using a custom-fabricated instrumented miniature external fixator spanning the transverse tarsal joint. The maximum compressive force generated by the external fixator averaged 186% of that produced by the screws (range, 104%-391%). Fixator compression surpassed that obtainable with screws at 12 mm of ring displacement and decreased when the tibial ring was detached. No correlation was found between bone density and the compressive force achievable by either fusion method. The compression across the transverse tarsal joint that can be obtained with a circular external fixator including a tibial ring exceeds that

  12. Biodegradable Sonobuoy Decelerators

    Science.gov (United States)

    2015-06-01

    of Water Temperature and the Presence of Salt on the Disintegration Time of MonoSol A200 PVOH...polyhydroxyalkanoate (PHA). The proposed film would disintegrate , dissolve, and eventually biodegrade to prevent long-term effects on marine life. Ensuring no...Standard Specification for Non-Floating Biodegradable Plastics in the Marine Environment. Results showed that no PHA grades were toxic to the marine

  13. Biodegradable micromechanical sensors

    DEFF Research Database (Denmark)

    Keller, Stephan Sylvest; Greve, Anders; Schmid, Silvan

    of mechanical and thermal properties of polymers. For example, measurements of the resonance frequency of cantilevers were used to characterize thin polymer coatings in various environmental conditions [2]. Also, the influence of humidity on the Young’s modulus of SU-8 was evaluated [3]. However, introduction...... (NIL). Second, we used spray-coating to deposit thin biodegradable films on microcantilevers. Both approaches allowed the determination of the Young’s modulus of the biopolymer. Furthermore, biodegradation by enzymes was investigated....

  14. A Meta-Analysis for Postoperative Complications in Tibial Plafond Fracture: Open Reduction and Internal Fixation Versus Limited Internal Fixation Combined With External Fixator.

    Science.gov (United States)

    Wang, Dong; Xiang, Jian-Ping; Chen, Xiao-Hu; Zhu, Qing-Tang

    2015-01-01

    The treatment of tibial plafond fractures is challenging to foot and ankle surgeons. Open reduction and internal fixation and limited internal fixation combined with an external fixator are 2 of the most commonly used methods of tibial plafond fracture repair. However, conclusions regarding the superior choice remain controversial. The present meta-analysis aimed to quantitatively compare the postoperative complications between open reduction and internal fixation and limited internal fixation combined with an external fixator for tibial plafond fractures. Nine studies with 498 fractures in 494 patients were included in the present study. The meta-analysis found no significant differences in bone healing complications (risk ratio [RR] 1.17, 95% confidence interval [CI] 0.68 to 2.01, p = .58], nonunion (RR 1.09, 95% CI 0.51 to 2.36, p = .82), malunion or delayed union (RR 1.24, 95% CI 0.57 to 2.69, p = .59), superficial (RR 1.56, 95% CI 0.43 to 5.61, p = .50) and deep (RR 1.89, 95% CI 0.62 to 5.80) infections, arthritis symptoms (RR 1.20, 95% CI 0.92 to 1.58, p = .18), or chronic osteomyelitis (RR 0.31, 95% CI 0.05 to 1.84, p = .20) between the 2 groups. Copyright © 2015 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.

  15. [Ex Vivo Testing of Mechanical Properties of Canine Metacarpal/Metatarsal Bones after Simulated Implant Removal].

    Science.gov (United States)

    Srnec, R; Fedorová, P; Pěnčík, J; Vojtová, L; Sedlinská, M; Nečas, A

    2016-01-01

    EXP, were compared and the difference was found to be statistically significant (p ≤ 0.05). CONCLUSIONS The recently developed biodegradable polymer-composite gel is easy and quick to apply to any defect, regardless of its shape, in bone tissue. The ex vivo mechanical tests on canine short bones showed that the composite applied to defects, which simulated holes left after screw removal, provided sufficient mechanical support to the bone architecture. The results of measuring maximum loading forces were statistically significant. However, before the composite could be recommended for use in veterinary or human medical practice, thorough pre-clinical studies will be required. fracture fixation, mechanical testing, bone plate, cortical screw, refracture.

  16. A cell shrinkage artefact in growth plate chondrocytes with common fixative solutions: importance of fixative osmolarity for maintaining morphology

    Directory of Open Access Journals (Sweden)

    MY Loqman

    2010-05-01

    Full Text Available The remarkable increase in chondrocyte volume is a major determinant in the longitudinal growth of mammalian bones. To permit a detailed morphological study of hypertrophic chondrocytes using standard histological techniques, the preservation of normal chondrocyte morphology is essential. We noticed that during fixation of growth plates with conventional fixative solutions, there was a marked morphological (shrinkage artifact, and we postulated that this arose from the hyper-osmotic nature of these solutions. To test this, we fixed proximal tibia growth plates of 7-day-old rat bones in either (a paraformaldehyde (PFA; 4%, (b glutaraldehyde (GA; 2% with PFA (2% with ruthenium hexamine trichloride (RHT; 0.7%, (c GA (2% with RHT (0.7%, or (d GA (1.3% with RHT (0.5% and osmolarity adjusted to a ‘physiological’ level of ~280mOsm. Using conventional histological methods, confocal microscopy, and image analysis on fluorescently-labelled fixed and living chondrocytes, we then quantified the extent of cell shrinkage and volume change. Our data showed that the high osmolarity of conventional fixatives caused a shrinkage artefact to chondrocytes. This was particularly evident when whole bones were fixed, but could be markedly reduced if bones were sagittally bisected prior to fixation. The shrinkage artefact could be avoided by adjusting the osmolarity of the fixatives to the osmotic pressure of normal extracellular fluids (~280mOsm. These results emphasize the importance of fixative osmolarity, in order to accurately preserve the normal volume/morphology of cells within tissues.

  17. Isotopes in biological dinitrogen fixation

    Energy Technology Data Exchange (ETDEWEB)

    1978-10-01

    Nineteen papers were presented at the conference. Some topics discussed are as follows: biochemistry and genetics of dinitrogen fixation; genetics of the Rhizobium-legume symbiosis and of the nitrogen-fixing bacteria; studies on nonsymbiotic dinitrogen fixation in grass-bacteria associations and blue--green algae; use of /sup 15/N and /sup 13/N for the assay of dinitrogen fixation; effects of management practices on dinitrogen fixation; economy of C and N in nitrogen-fixing legumes; and survey of international and national programs on dinitrogen fixation. (HLW)

  18. Closed External Fixation for Failing or Failed Femoral Shaft Plating in a Developing Country.

    Science.gov (United States)

    Aliakbar, Adil; Witwit, Ibrahim; Al-Algawy, Alaa A Hussein

    2017-08-01

    Femoral shaft fractures are one of the common injuries that is treated by open reduction, with internal fixation by plate and screws or intramedullary nailing, which can achieve a high union rate. To evaluate the outcome of using closed external fixation to augment a failing plate; with signs of screw loosening and increasing bone/plate gap; a failed plate; broken plate; screws completely out of bone with redisplacement of fracture. A retrospective study on 18 patients, aged between 17-42 years, who presented between 6-18 weeks after initial surgical fixation, with pain, difficulty in limb function, deformity and abnormal movement at fracture site, was done. X-Rays showed plating failure with acceptable amount of callus, which unfortunately had refractured. Cases associated with infection and no radiological evidence of callus formation were excluded from this study. Closed reduction was done by manipulation, then fracture fixation by AO external fixator. The patients were encouraged for full weight bearing as early as possible with dynamization later on. Of the 18 patients who underwent external fixation after close reduction, 15 cases showed bone healing in a period between 11-18 weeks (mean of 14.27 weeks) with good alignment (Radiologically). Removal of external fixator was done followed by physical therapy thereafter. Closed external fixation for treatment of failing or failed femoral plating, achieves good success rate and has less complications, is a short time procedure, especially in a hospital with limited resources.

  19. CARBON DIOXIDE FIXATION.

    Energy Technology Data Exchange (ETDEWEB)

    FUJITA,E.

    2000-01-12

    Solar carbon dioxide fixation offers the possibility of a renewable source of chemicals and fuels in the future. Its realization rests on future advances in the efficiency of solar energy collection and development of suitable catalysts for CO{sub 2} conversion. Recent achievements in the efficiency of solar energy conversion and in catalysis suggest that this approach holds a great deal of promise for contributing to future needs for fuels and chemicals.

  20. Immunological Response to Biodegradable Magnesium Implants

    Science.gov (United States)

    Pichler, Karin; Fischerauer, Stefan; Ferlic, Peter; Martinelli, Elisabeth; Brezinsek, Hans-Peter; Uggowitzer, Peter J.; Löffler, Jörg F.; Weinberg, Annelie-Martina

    2014-04-01

    The use of biodegradable magnesium implants in pediatric trauma surgery would render surgical interventions for implant removal after tissue healing unnecessary, thereby preventing stress to the children and reducing therapy costs. In this study, we report on the immunological response to biodegradable magnesium implants—as an important aspect in evaluating biocompatibility—tested in a growing rat model. The focus of this study was to investigate the response of the innate immune system to either fast or slow degrading magnesium pins, which were implanted into the femoral bones of 5-week-old rats. The main alloying element of the fast-degrading alloy (ZX50) was Zn, while it was Y in the slow-degrading implant (WZ21). Our results demonstrate that degrading magnesium implants beneficially influence the immune system, especially in the first postoperative weeks but also during tissue healing and early bone remodeling. However, rodents with WZ21 pins showed a slightly decreased phagocytic ability during bone remodeling when the degradation rate reached its maximum. This may be due to the high release rate of the rare earth-element yttrium, which is potentially toxic. From our results we conclude that magnesium implants have a beneficial effect on the innate immune system but that there are some concerns regarding the use of yttrium-alloyed magnesium implants, especially in pediatric patients.

  1. Fractures of the proximal fifth metatarsal: percutaneous bicortical fixation.

    Science.gov (United States)

    Mahajan, Vivek; Chung, Hyun Wook; Suh, Jin Soo

    2011-06-01

    Displaced intraarticular zone I and displaced zone II fractures of the proximal fifth metatarsal bone are frequently complicated by delayed nonunion due to a vascular watershed. Many complications have been reported with the commonly used intramedullary screw fixation for these fractures. The optimal surgical procedure for these fractures has not been determined. All these observations led us to evaluate the effectiveness of percutaneous bicortical screw fixation for treating these fractures. Twenty-three fractures were operatively treated by bicortical screw fixation. All the fractures were evaluated both clinically and radiologically for the healing. All the patients were followed at 2 or 3 week intervals till fracture union. The patients were followed for an average of 22.5 months. Twenty-three fractures healed uneventfully following bicortical fixation, with a mean healing time of 6.3 weeks (range, 4 to 10 weeks). The average American Orthopaedic Foot & Ankle Society (AOFAS) score was 94 (range, 90 to 99). All the patients reported no pain at rest or during athletic activity. We removed the implant in all cases at a mean of 23.2 weeks (range, 18 to 32 weeks). There was no refracture in any of our cases. The current study shows the effectiveness of bicortical screw fixation for displaced intraarticular zone I fractures and displaced zone II fractures. We recommend it as one of the useful techniques for fixation of displaced zone I and II fractures.

  2. Biodegradation of selected offshore chemicals

    OpenAIRE

    Wennberg, Aina C.; Petersen, Karina

    2017-01-01

    A review of biodegradation data for specific oil field chemicals and chemical groups were performed in order to evaluate if the current categorisation of these were appropriate based on the biodegradation properties. Data were compiled from databases like ECHA and MITI and from the literature. For compounds with limited or inconclusive test data, biodegradation was also estimated by the BIOWIN models, and the EAWAG-BBD pathway prediction system was used to predict plausible biodegradation pat...

  3. Fixation distance and fixation duration to vertical road signs.

    Science.gov (United States)

    Costa, Marco; Simone, Andrea; Vignali, Valeria; Lantieri, Claudio; Palena, Nicola

    2018-05-01

    The distance of first-fixation to vertical road signs was assessed in 22 participants while driving a route of 8.34 km. Fixations to road signs were recorded by a mobile eye-movement-tracking device synchronized to GPS and kinematic data. The route included 75 road signs. First-fixation distance and fixation duration distributions were positively skewed. Median distance of first-fixation was 51 m. Median fixation duration was 137 ms with a modal value of 66 ms. First-fixation distance was linearly related to speed and fixation duration. Road signs were gazed at a much closer distance than their visibility distance. In a second study a staircase procedure was used to test the presentation-time threshold that lead to a 75% accuracy in road sign identification. The threshold was 35 ms, showing that short fixations to a road signs could lead to a correct identification. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Editorial: Biodegradable Materials

    Directory of Open Access Journals (Sweden)

    Carl Schaschke

    2014-11-01

    Full Text Available This Special Issue “Biodegradable Materials” features research and review papers concerning recent advances on the development, synthesis, testing and characterisation of biomaterials. These biomaterials, derived from natural and renewable sources, offer a potential alternative to existing non-biodegradable materials with application to the food and biomedical industries amongst many others. In this Special Issue, the work is expanded to include the combined use of fillers that can enhance the properties of biomaterials prepared as films. The future application of these biomaterials could have an impact not only at the economic level, but also for the improvement of the environment.

  5. Stimulation of Diesel Fuel Biodegradation by Indigenous Nitrogen Fixing Bacterial Consortia.

    Science.gov (United States)

    Piehler; Swistak; Pinckney; Paerl

    1999-07-01

    > Abstract Successful stimulation of N2 fixation and petroleum hydrocarbon degradation in indigenous microbial consortia may decrease exogenous N requirements and reduce environmental impacts of bioremediation following petroleum pollution. This study explored the biodegradation of petroleum pollution by indigenous N2 fixing marine microbial consortia. Particulate organic carbon (POC) in the form of ground, sterile corn-slash (post-harvest leaves and stems) was added to diesel fuel amended coastal water samples to stimulate biodegradation of petroleum hydrocarbons by native microorganisms capable of supplying a portion of their own N. It was hypothesized that addition of POC to petroleum amended water samples from N-limited coastal waters would promote the growth of N2 fixing consortia and enhance biodegradation of petroleum. Manipulative experiments were conducted using samples from coastal waters (marinas and less polluted control site) to determine the effects of POC amendment on biodegradation of petroleum pollution by native microbial consortia. Structure and function of the microbial consortia were determined by measurement of N2 fixation (acetylene reduction), hydrocarbon biodegradation (14C hexadecane mineralization), bacterial biomass (AODC), number of hydrocarbon degrading bacteria (MPN), and bacterial productivity (3H-thymidine incorporation). Throughout this study there was a consistent enhancement of petroleum hydrocarbon degradation in response to the addition of POC. Stimulation of diesel fuel biodegradation following the addition of POC was likely attributable to increases in bacterial N2 fixation, diesel fuel bioavailability, bacterial biomass, and metabolic activity. Toxicity of the bulk phase water did not appear to be a factor affecting biodegradation of diesel fuel following POC addition. These results indicate that the addition of POC to diesel-fuel-polluted systems stimulated indigenous N2 fixing microbial consortia to degrade petroleum

  6. Phthalates biodegradation in the environment.

    Science.gov (United States)

    Liang, Da-Wei; Zhang, Tong; Fang, Herbert H P; He, Jianzhong

    2008-08-01

    Phthalates are synthesized in massive amounts to produce various plastics and have become widespread in environments following their release as a result of extensive usage and production. This has been of an environmental concern because phthalates are hepatotoxic, teratogenic, and carcinogenic by nature. Numerous studies indicated that phthalates can be degraded by bacteria and fungi under aerobic, anoxic, and anaerobic conditions. This paper gives a review on the biodegradation of phthalates and includes the following aspects: (1) the relationship between the chemical structure of phthalates and their biodegradability, (2) the biodegradation of phthalates by pure/mixed cultures, (3) the biodegradation of phthalates under various environments, and (4) the biodegradation pathways of phthalates.

  7. Grey water biodegradability

    NARCIS (Netherlands)

    Abu Ghunmi, L.; Zeeman, G.; Fayyad, M.; Van Lier, J.B.

    2010-01-01

    Knowing the biodegradability characteristics of grey water constituents is imperative for a proper design and operation of a biological treatment system of grey water. This study characterizes the different COD fractions of dormitory grey water and investigates the effect of applying different

  8. Grey water biodegradability

    NARCIS (Netherlands)

    Abu Ghunmi, L.; Zeeman, G.; Fayyad, M.; Lier, van J.B.

    2011-01-01

    Knowing the biodegradability characteristics of grey water constituents is imperative for a proper design and operation of a biological treatment system of grey water. This study characterizes the different COD fractions of dormitory grey water and investigates the effect of applying different

  9. Systemic approaches to biodegradation.

    Science.gov (United States)

    Trigo, Almudena; Valencia, Alfonso; Cases, Ildefonso

    2009-01-01

    Biodegradation, the ability of microorganisms to remove complex chemicals from the environment, is a multifaceted process in which many biotic and abiotic factors are implicated. The recent accumulation of knowledge about the biochemistry and genetics of the biodegradation process, and its categorization and formalization in structured databases, has recently opened the door to systems biology approaches, where the interactions of the involved parts are the main subject of study, and the system is analysed as a whole. The global analysis of the biodegradation metabolic network is beginning to produce knowledge about its structure, behaviour and evolution, such as its free-scale structure or its intrinsic robustness. Moreover, these approaches are also developing into useful tools such as predictors for compounds' degradability or the assisted design of artificial pathways. However, it is the environmental application of high-throughput technologies from the genomics, metagenomics, proteomics and metabolomics that harbours the most promising opportunities to understand the biodegradation process, and at the same time poses tremendous challenges from the data management and data mining point of view.

  10. Employment of the adhesive buthyl-2-cyanoacrylate in the fixation of bone fragments in femural fractures in dogs. Radiologic study; Emprego de adesivo butil-2-cianoacrilato na fixaçäo de esquírolas em fraturas de fêmur de cäes. Aspectos radiológicos

    Energy Technology Data Exchange (ETDEWEB)

    Borges, A. P.B.; Rezende, C. M.F.; Sampaio, R.; Oliveira, H. P.; Ponpermayer, L. G.

    1992-02-15

    The butyl-2-cyanoacrylate adhesive was utilized in the fixation of bone fragments in femoral fractures in 30 clinically healthy dogs of both sexes. All animals were anesthetized with sodium pentobarbital and the left femur exposed and fractured at the middle third of the bone. A triangular bone fragment, approximately of 2.0 cm in length was taken off from the proximal fragment of the femur. The fracture was immediately reduced and immobilized using an intramedular Steinman pin. The bone fragment was then reintroduced in the same position and glued on with the adhesive butyl-2-cyanoacrylate, applied in droplets at a distance of 8 mm approximately. Healing was assessed through radiographs at 10 day intervals, when it was observed, in all animals, the bone fragment in place right after the surgical procedure. At the end of the experiment 6.67% of animals showed the bone fragment shifted from the focus of fracture. In 30% of the animals the fracture did not consolidate [Portuguese] O adesivo butil-2-cianoacrilato foi empregado na fixaçäo de esquírolas, em fraturas de fêmur de 30 cäes clinicamente sadios, de ambos os sexos. Os animais foram anestesiados com pentobarbital sódico e tiveram o fêmur esquerdo exposto e fraturado no seu terço médio. Uma esquírola, de aproximadamente 20 mm e de forma triangular, foi retirada do fragmento proximal do fêmur. A fratura foi imediatamente reduzida e imobilizada, utilizando-se pino intramedular de Steinmann. A esquírola foi recolocada em oposiçäo e fixada pelo adesivo butil-2-cianoacrilato, aplicado em gotículas, espaçadas cerca de 8 mm. A consolidaçäo foi avaliada através de radiografias (crânio-caudal e médio-lateral) a intervalos de 10 dias, onde observou-se, em todos os animais, a esquírola em oposiçäo logo após o ato cirúrgico. No final do experimento observou-se, em 6,6//dos casos, a esquírola afastada do foco da fratura. Em 30//dos animais näo houve consolidaçäo da fratura.

  11. Salvage of infected total knee arthroplasty with Ilizarov external fixator

    Directory of Open Access Journals (Sweden)

    Venkata Gurava Reddy

    2011-01-01

    Full Text Available Background: Knee arthrodesis may be the only option of treatment in cases of chronic infected total knee arthroplasty (TKA with concomitant irreparable extensor mechanism disruption, extensive bone loss or severe systemic morbidities. Circular external fixation offers possible progressive adjustment to stimulate the bony fusion and to make corrections in alignment. We evaluated the results of knee arthrodesis with one or two stage circular external fixator for infected TKA. Materials and Methods: 16 cases of femoro-tibial fusion were retrospectively evaluated. Male-to-female ratio was 10:6. Mean age of the patients was 62.2 years. Cierney-Mader classification was used for anatomical and physiological evaluation while the bone stock deficiency was classified into mild, moderate and severe. Surgical technique involved either single or two stage arthrodesis using circular external fixator. Results: Union was achieved in 15 patients (93.75%. The mean duration for union (frame application time in these patients was 28.33 weeks (range 22 to 36 weeks. Analysis showed that in the group with frame application time of less than 28 weeks, the incidence of mild to moderate bone deficiency was 83.33%, while in the frame application time more than 28 weeks group the incidence was 20% (P-value 0.034. Similarly the incidence of Cierney-Mader 4B (Bl, Bs, Bls was found to be 33.33% in the group of frame application time of less than 28 weeks, while it was 90% in the group with frame application time more than 28 weeks (P-value 0.035. Conclusion: Circular external fixator is a safe and reliable method to achieve knee arthrodesis in cases of deep infection following TKA. Severe bone stock deficiency and Cierney- Mader type B host are likely risk factors for prolonged frame application time. We recommend a two-stage procedure especially when there is compromised host or severe bone loss.

  12. [Biomaterials in bone repair].

    Science.gov (United States)

    Puska, Mervi; Aho, Allan J; Vallittu, Pekka K

    2013-01-01

    In orthopedics, traumatology, and craniofacial surgery, biomaterials should meet the clinical demands of bone that include shape, size and anatomical location of the defect, as well as the physiological load-bearing stresses. Biomaterials are metals, ceramics, plastics or materials of biological origin. In the treatment of large defects, metallic endoprostheses or bone grafts are employed, whereas ceramics in the case of small defects. Plastics are employed on the artificial joint surfaces, in the treatment of vertebral compression fractures, and as biodegradable screws and plates. Porosity, bioactivity, and identical biomechanics to bone are fundamental for achieving a durable, well-bonded, interface between biomaterial and bone. In the case of severe bone treatments, biomaterials should also imply an option to add biologically active substances.

  13. Spatial mapping of humeral head bone density.

    Science.gov (United States)

    Alidousti, Hamidreza; Giles, Joshua W; Emery, Roger J H; Jeffers, Jonathan

    2017-09-01

    Short-stem humeral replacements achieve fixation by anchoring to the metaphyseal trabecular bone. Fixing the implant in high-density bone can provide strong fixation and reduce the risk of loosening. However, there is a lack of data mapping the bone density distribution in the proximal humerus. The aim of the study was to investigate the bone density in proximal humerus. Eight computed tomography scans of healthy cadaveric humeri were used to map bone density distribution in the humeral head. The proximal humeral head was divided into 12 slices parallel to the humeral anatomic neck. Each slice was then divided into 4 concentric circles. The slices below the anatomic neck, where short-stem implants have their fixation features, were further divided into radial sectors. The average bone density for each of these regions was calculated, and regions of interest were compared using a repeated-measures analysis of variance with significance set at P density was found to decrease from proximal to distal regions, with the majority of higher bone density proximal to the anatomic neck of the humerus (P density increases from central to peripheral regions, where cortical bone eventually occupies the space (P density distribution in the medial calcar region was also observed. This study indicates that it is advantageous with respect to implant fixation to preserve some bone above the anatomic neck and epiphyseal plate and to use the denser bone at the periphery. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  14. Single absorbable polydioxanone pin fixation for distal chevron bunion osteotomies.

    Science.gov (United States)

    Deorio, J K; Ware, A W

    2001-10-01

    The distal chevron osteotomy is a well-established technique for correction of symptomatic mild to moderate metatarsus primus varus with hallux valgus deformity. Fixation of the osteotomy ranges from none to bone pegs, Kirschner wires, screws, or absorbable pins. We evaluated one surgeon's (J.K.D.) results of distal chevron osteotomy fixation with a single, nonpredrilled, 1.3-mm poly-p-dioxanone pin and analyzed any differences in patients with unilateral or bilateral symptomatic metatarsus primus varus with hallux valgus deformities. All osteotomies healed without evidence of infection, osteolysis, nonunion, or necrosis. Equal correction was achieved in unilateral and bilateral procedures. The technique is quick and easy, and adequate fixation is achieved.

  15. Mechanical evaluation of external skeletal fixator-intramedullary pin tie-in configurations applied to cadaveral humeri from red-tailed hawks (Buteo jamaicensis).

    Science.gov (United States)

    Van Wettere, Arnaud J; Redig, Patrick T; Wallace, Larry J; Bourgeault, Craig A; Bechtold, Joan E

    2009-12-01

    Use of external skeletal fixator-intramedullary pin (ESF-IM) tie-in fixators is an adjustable and effective method of fracture fixation in birds. The objective of this study was to determine the contribution of each of the following parameters to the compressive and torsional rigidity of an ESF-IM pin tie-in applied to avian bones with an osteotomy gap: (1) varying the fixation pin position in the proximal bone segment and (2) increasing the number of fixation pins in one or both bone segments. ESF-IM pin tie-in constructs were applied to humeri harvested from red-tailed hawks (Buteo jamaicensis) (n=24) that had been euthanatized for clinical reasons. Constructs with a variation in the placement of the proximal fixation pin and with 2, 3, or 4 fixation pins applied to avian bone with an osteotomy gap were loaded to a defined displacement in torque and axial compression. Response variables were determined from resulting load-displacement curves (construct stiffness, load at 1-mm displacement). Increasing the number of fixation pins from 1 to 2 per bone segment significantly increased the stiffness in torque (110%) and compression (60%), and the safe load in torque (107%) and compression (50%). Adding a fixation pin to the distal bone segment to form a 3-pin fixator significantly increased the stiffness (27%) and safe load (20%) in torque but not in axial compression. In the configuration with 2 fixation pins, placing the proximal pin distally in the proximal bone segment significantly increased the stiffness in torque (28%), and the safe load in torque (23%) and in axial compression (32%). Results quantified the relative importance of specific parameters affecting the rigidity of ESF-IM pin tie-in constructs as applied to unstable bone fracture models in birds.

  16. Fixation Time for Evolutionary Graphs

    Science.gov (United States)

    Nie, Pu-Yan; Zhang, Pei-Ai

    Evolutionary graph theory (EGT) is recently proposed by Lieberman et al. in 2005. EGT is successful for explaining biological evolution and some social phenomena. It is extremely important to consider the time of fixation for EGT in many practical problems, including evolutionary theory and the evolution of cooperation. This study characterizes the time to asymptotically reach fixation.

  17. Complement fixation test to C burnetii

    Science.gov (United States)

    ... complement fixation test; Coxiella burnetii - complement fixation test; C burnetii - complement fixation test ... a specific foreign substance ( antigen ), in this case, C burnetii . Antibodies defend the body against bacteria, viruses, ...

  18. Eighth international congress on nitrogen fixation

    Energy Technology Data Exchange (ETDEWEB)

    1990-01-01

    This volume contains the proceedings of the Eighth International Congress on Nitrogen Fixation held May 20--26, 1990 in Knoxville, Tennessee. The volume contains abstracts of individual presentations. Sessions were entitled Recent Advances in the Chemistry of Nitrogen Fixation, Plant-microbe Interactions, Limiting Factors of Nitrogen Fixation, Nitrogen Fixation and the Environment, Bacterial Systems, Nitrogen Fixation in Agriculture and Industry, Plant Function, and Nitrogen Fixation and Evolution.

  19. Enhancing biological nitrogen fixation

    Energy Technology Data Exchange (ETDEWEB)

    Danso, S.K.A.; Eskew, D.L. (Joint FAO/IAEA Div. of Isotope and Radiation Applications of Atomic Energy for Food and Agricultural Development, Vienna (Austria))

    1984-06-01

    Several co-ordinated research programmes (CRPs) conducted by the Soil Fertility, Irrigation and Crop Production Section of the Joint FAO/IAEA Division have concentrated on finding the most efficient way of applying nitrogen fertilizers to various crops, using nitrogen-15 (/sup 15/N) as a tracer. The findings of these studies have been adopted in many countries around the world, resulting in savings of nitrogen fertilizers worth many millions of dollars every year. More recently, the Section's CRPs have focused on enhancing the natural process of biological di-nitrogen fixation. The /sup 15/N isotope technique has proven to be very valuable in studies of the legume-Rhizobium symbiosis, allowing many more experiments than before to be done and yielding much new practical information. The Soils Section is now working to extend the use of the technique to other nitrogen-fixing symbioses.

  20. Accuracy of a hexapod parallel robot kinematics based external fixator.

    Science.gov (United States)

    Faschingbauer, Maximilian; Heuer, Hinrich J D; Seide, Klaus; Wendlandt, Robert; Münch, Matthias; Jürgens, Christian; Kirchner, Rainer

    2015-12-01

    Different hexapod-based external fixators are increasingly used to treat bone deformities and fractures. Accuracy has not been measured sufficiently for all models. An infrared tracking system was applied to measure positioning maneuvers with a motorized Precision Hexapod® fixator, detecting three-dimensional positions of reflective balls mounted in an L-arrangement on the fixator, simulating bone directions. By omitting one dimension of the coordinates, projections were simulated as if measured on standard radiographs. Accuracy was calculated as the absolute difference between targeted and measured positioning values. In 149 positioning maneuvers, the median values for positioning accuracy of translations and rotations (torsions/angulations) were below 0.3 mm and 0.2° with quartiles ranging from -0.5 mm to 0.5 mm and -1.0° to 0.9°, respectively. The experimental setup was found to be precise and reliable. It can be applied to compare different hexapod-based fixators. Accuracy of the investigated hexapod system was high. Copyright © 2014 John Wiley & Sons, Ltd.

  1. Button fixation technique for Achilles tendon reinsertion: a biomechanical study.

    Science.gov (United States)

    Awogni, David; Chauvette, Guillaume; Lemieux, Marie-Line; Balg, Frédéric; Langelier, Ève; Allard, Jean-Pascal

    2014-01-01

    Chronic insertional tendinopathy of the Achilles tendon is a frequent and disabling pathologic entity. Operative treatment is indicated for patients for whom nonoperative management has failed. The treatment can consist of the complete detachment of the tendon insertion and extensive debridement. We biomechanically tested a new operative technique that uses buttons for fixation of the Achilles tendon insertion on the posterior calcaneal tuberosity and compared it with 2 standard bone anchor techniques. A total of 40 fresh-frozen cadaver specimens were used to compare 3 fixation techniques for reinserting the Achilles tendon: single row anchors, double row anchors, and buttons. The ultimate loads and failure mechanisms were recorded. The button assembly (median load 764 N, range 713 to 888) yielded a median fixation strength equal to 202% (range 137% to 251%) of that obtained with the double row anchors (median load 412 N, range 301 to 571) and 255% (range 213% to 317%) of that obtained with the single row anchors (median load 338 N, range 241 to 433N). The most common failure mechanisms were suture breakage with the buttons (55%) and pull out of the implant with the double row (70%) and single row (85%) anchors. The results of the present biomechanical cadaver study have shown that Achilles tendon reinsertion fixation using the button technique provides superior pull out strength than the bone anchors tested. Copyright © 2014 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.

  2. Nonunited humerus shaft fractures treated by external fixator augmented by intramedullary rod

    Directory of Open Access Journals (Sweden)

    Mahmoud A El-Rosasy

    2012-01-01

    Full Text Available Background: Nonunion of humeral shaft fractures after previously failed surgical treatment presents a challenging therapeutic problem especially in the presence of osteoporosis, bone defect, and joint stiffness. It would be beneficial to combine the use of external fixation technique and intramedullary rod in the treatment of such cases. The present study evaluates the results of using external fixator augmented by intramedullary rod and autogenous iliac crest bone grafting (ICBG for the treatment of humerus shaft nonunion following previously failed surgical treatment. Materials and Methods: Eighteen patients with atrophic nonunion of the humeral shaft following previous implant surgery with no active infection were included in the present study. The procedure included exploration of the nonunion, insertion of intramedullary rod (IM rod, autogenous ICBG and application of external fixator for compression. Ilizarov fixator was used in eight cases and monolateral fixator in ten cases. The monolateral fixator was preferred for females and obese patients to avoid abutment against the breast or chest wall following the use of Ilizarov fixator. The fixator was removed after clinical and radiological healing of the nonunion, but the IM rod was left indefinitely. The evaluation of results included both bone results (union rate, angular deformity and limb shortening and functional outcome using the University of California, Los Angeles (UCLA rating scale. Results: The mean follow-up was 35 months (range 24 to 52 months. Bone union was obtained in all cases. The functional outcome was satisfactory in 15 cases (83% and unsatisfactory in 3 cases (17% due to joint stiffness. The time to bone healing averaged 4.2 months (range 3 to 7 months. The external fixator time averaged 4.5 months (range 3.2 to 8 months. Superficial pin tract infection occurred in 39% (28/72 of the pins. No cases of nerve palsy, refracture, or deep infection were encountered

  3. Bone tumor

    Science.gov (United States)

    Tumor - bone; Bone cancer; Primary bone tumor; Secondary bone tumor; Bone tumor - benign ... The cause of bone tumors is unknown. They often occur in areas of the bone that grow rapidly. Possible causes include: Genetic defects ...

  4. [Staple fixation for the treatment of hamate metacarpal joint injury].

    Science.gov (United States)

    Tang, Yang-Hua; Zeng, Lin-Ru; Huang, Zhong-Ming; Yue, Zhen-Shuang; Xin, Da-Wei; Xu, Can-Da

    2014-03-01

    To investigate the effcacy of the staple fixation for the treatment of hamate metacarpal joint injury. From May 2009 to November 2012,16 patients with hamate metacarpal joint injury were treated with staple fixation including 10 males and 6 females with an average age of 33.6 years old ranging from 21 to 57 years. Among them, 11 cases were on the fourth or fifth metacarpal base dislocation without fractures, 5 cases were the fourth or fifth metacarpal base dislocation with avulsion fractures of the back of hamatum. Regular X-ray review was used to observe the fracture healing, joint replacement and position of staple fixation. The function of carpometacarpal joint and metacarpophalangeal joint were evaluated according to ASIA (TAM) system evaluation method. All incision were healed well with no infection. All patients were followed up from 16 to 24 months with an average of (10.0 +/- 2.7) months. No dislocation recurred, the position of internal fixator was good,no broken nail and screw withdrawal were occurred. Five patients with avulsion fracture of the back of hamatum achieved bone healing. The function of carpometacarpal joint and metacarpophalangeal was excellent in 10 cases,good in 5 cases, moderate in 1 case. The application of the staple for the treatment of hamatometacarpal joint injury has the advantages of simple operation, small trauma, reliable fixation, early postoperative function exercise and other advantages, which is the ideal operation mode for hamatometacarpal joint injury.

  5. Relative strength of tailor's bunion osteotomies and fixation techniques.

    Science.gov (United States)

    Haddon, Todd B; LaPointe, Stephan J

    2013-01-01

    A paucity of data is available on the mechanical strength of fifth metatarsal osteotomies. The present study was designed to provide that information. Five osteotomies were mechanically tested to failure using a materials testing machine and compared with an intact fifth metatarsal using a hollow saw bone model with a sample size of 10 for each construct. The osteotomies tested were the distal reverse chevron fixated with a Kirschner wire, the long plantar reverse chevron osteotomy fixated with 2 screws, a mid-diaphyseal sagittal plane osteotomy fixated with 2 screws, the mid-diaphyseal sagittal plane osteotomy fixated with 2 screws, and an additional cerclage wire and a transverse closing wedge osteotomy fixated with a box wire technique. Analysis of variance was performed, resulting in a statistically significant difference among the data at p chevron was statistically the strongest construct at 130 N, followed by the long plantar osteotomy at 78 N. The chevron compared well with the control at 114 N, and they both fractured at the proximal model to fixture interface. The other osteotomies were statistically and significantly weaker than both the chevron and the long plantar constructs, with no statistically significant difference among them at 36, 39, and 48 N. In conclusion, the chevron osteotomy was superior in strength to the sagittal and transverse plane osteotomies and similar in strength and failure to the intact model. Copyright © 2013 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.

  6. Comparison of cemented and uncemented fixation in total knee arthroplasty.

    Science.gov (United States)

    Brown, Thomas E; Harper, Benjamin L; Bjorgul, Kristian

    2013-05-01

    As a result of reading this article, physicians should be able to :1. Understand the rationale behind using uncemented fixation in total knee arthroplasty.2.Discuss the current literature comparing cemented and uncemented total knee arthroplasty3. Describe the value of radiostereographic analysis in assessing implant stability.4. Appreciate the limitations in the available literature advocating 1 mode of fixation in total knee arthroplasty. Total knee arthroplasty performed worldwide uses either cemented, cementless, or hybrid (cementless femur with a cemented tibia) fixation of the components. No recent literature review concerning the outcomes of cemented vs noncemented components has been performed. Noncemented components offer the potential advantage of a biologic interface between the bone and implants, which could demonstrate the greatest advantage in long-term durable fixation in the follow-up of young patients undergoing arthroplasty. Several advances have been made in the backing of the tibial components that have not been available long enough to yield long-term comparative follow-up studies. Short-term radiostereographic analysis studies have yielded differing results. Although long-term, high-quality studies are still needed, material advances in biologic fixation surfaces, such as trabecular metal and hydroxyapatite, may offer promising results for young and active patients undergoing total knee arthroplasty when compared with traditional cemented options. Copyright 2013, SLACK Incorporated.

  7. Safe biodegradable fluorescent particles

    Science.gov (United States)

    Martin, Sue I [Berkeley, CA; Fergenson, David P [Alamo, CA; Srivastava, Abneesh [Santa Clara, CA; Bogan, Michael J [Dublin, CA; Riot, Vincent J [Oakland, CA; Frank, Matthias [Oakland, CA

    2010-08-24

    A human-safe fluorescence particle that can be used for fluorescence detection instruments or act as a safe simulant for mimicking the fluorescence properties of microorganisms. The particle comprises a non-biological carrier and natural fluorophores encapsulated in the non-biological carrier. By doping biodegradable-polymer drug delivery microspheres with natural or synthetic fluorophores, the desired fluorescence can be attained or biological organisms can be simulated without the associated risks and logistical difficulties of live microorganisms.

  8. Absorbable and biodegradable polymers

    CERN Document Server

    Shalaby, Shalaby W

    2003-01-01

    INTRODUCTION NOTES: Absorbable/Biodegradable Polymers: Technology Evolution. DEVELOPMENT AND APPLICATIONOF NEW SYSTEMS: Segmented Copolyesters with Prolonged Strength Retention Profiles. Polyaxial Crystalline Fiber-Forming Copolyester. Polyethylene Glycol-Based Copolyesters. Cyanoacrylate-Based Systems as Tissue Adhesives. Chitosan-Based Systems. Hyaluronic Acid-Based Systems. DEVELOPMENTS IN PREPARATIVE, PROCESSING, AND EVALUATION METHODS: New Approaches to the Synthesis of Crystalline. Fiber-Forming Aliphatic Copolyesters. Advances in Morphological Development to Tailor the Performance of Me

  9. Biodegradability of bacterial surfactants.

    Science.gov (United States)

    Lima, Tânia M S; Procópio, Lorena C; Brandão, Felipe D; Carvalho, André M X; Tótola, Marcos R; Borges, Arnaldo C

    2011-06-01

    This work aimed at evaluating the biodegradability of different bacterial surfactants in liquid medium and in soil microcosms. The biodegradability of biosurfactants by pure and mixed bacterial cultures was evaluated through CO(2) evolution. Three bacterial strains, Acinetobacter baumanni LBBMA ES11, Acinetobacter haemolyticus LBBMA 53 and Pseudomonas sp. LBBMA 101B, used the biosurfactants produced by Bacillus sp. LBBMA 111A (mixed lipopeptide), Bacillus subtilis LBBMA 155 (lipopeptide), Flavobacterium sp. LBBMA 168 (mixture of flavolipids), Dietzia Maris LBBMA 191(glycolipid) and Arthrobacter oxydans LBBMA 201(lipopeptide) as carbon sources in minimal medium. The synthetic surfactant sodium dodecyl sulfate (SDS) was also mineralized by these microorganisms, but at a lower rate. CO(2) emitted by a mixed bacterial culture in soil microcosms with biosurfactants was higher than in the microcosm containing SDS. Biosurfactant mineralization in soil was confirmed by the increase in surface tension of the soil aqueous extracts after incubation with the mixed bacterial culture. It can be concluded that, in terms of biodegradability and environmental security, these compounds are more suitable for applications in remediation technologies in comparison to synthetic surfactants. However, more information is needed on structure of biosurfactants, their interaction with soil and contaminants and scale up and cost for biosurfactant production.

  10. EXTERNAL FIXATION OF METACARPAL AND PHALANGAL FRACTURES

    Directory of Open Access Journals (Sweden)

    Krunoslav Margić

    2001-11-01

    Full Text Available Background. In past three years we have used smallexternal fixator in the treatment of: 18 closed fractures of metacarpalbones, 15 phalangeal fractures, four dislocated fracturesof MCP and five of PIP joint, ten arthrodesis, five replantations/revascularisations, two pathological fractures, and infew post-traumatic infection of bones and joints.Results. Results were graded as excellent (completely normalfunction, very good (15° deficit of total ROM, good (30° deficitof total ROM; can flex the fingers to the palm, and poor.Excellent result was obtained in the treatment of all 18 metacarpalfractures. The final results in the treatment of 12 closedfragmentated fractures of phalanges were as follows: excellent3, very good 2, good 2 and five poor results (three patientsin this group have fallen on their hands causing refractureand reoperation. Three of four fractures of MCP joint andfour of five fractures involving PIP joint have good mobility.In eight of ten patients arthrodeses are stable and withoutpain. In two cases pathological fractures were first stabilizedand than the tumor was evacuated and grafted with minimaldissection; booth have good results.Conclusion. Author suggests that, in selected cases, with applicationof small external fixator reasonable good results can beobtained.

  11. Mini-Fragment Fixation Is Equivalent to Bicortical Screw Fixation for Horizontal Medial Malleolus Fractures.

    Science.gov (United States)

    Wegner, Adam M; Wolinsky, Philip R; Robbins, Michael A; Garcia, Tanya C; Amanatullah, Derek F

    2018-05-01

    Horizontal fractures of the medial malleolus occur through application of valgus or abduction force through the ankle that creates a tension failure of the medial malleolus. The authors hypothesize that mini-fragment T-plates may offer improved fixation, but the optimal fixation construct for these fractures remains unclear. Forty synthetic distal tibiae with identical osteotomies were randomized into 4 fixation constructs: (1) two parallel unicortical cancellous screws; (2) two parallel bicortical cortical screws; (3) a contoured mini-fragment T-plate with 2 unicortical screws in the fragment and 2 bicortical screws in the shaft; and (4) a contoured mini-fragment T-plate with 2 bicortical screws in the fragment and 2 unicortical screws in the shaft. Specimens were subjected to offset axial tension loading on a servohydraulic testing system and tracked using high-resolution video. Failure was defined as 2 mm of articular displacement. Analysis of variance followed by a Tukey-Kramer post hoc test was used to assess for differences between groups, with significance defined as Pfragment T-plate constructs (239±83 N/mm and 190±37 N/mm) and the bicortical screw construct (240±17 N/mm) were not statistically different. The mean stiffness values of both mini-fragment T-plate constructs and the bicortical screw construct were higher than that of a parallel unicortical screw construct (102±20 N/mm). Contoured T-plate constructs provide stiffer initial fixation than a unicortical cancellous screw construct. The T-plate is biomechanically equivalent to a bicortical screw construct, but may be superior in capturing small fragments of bone. [Orthopedics. 2018; 41(3):e395-e399.]. Copyright 2018, SLACK Incorporated.

  12. REVISION ANKLE SYNDESMOSIS FIXATION - FUNCTIONAL OUTCOME AFTER TIGHTROPE ® FIXATION

    Directory of Open Access Journals (Sweden)

    Sendhilvelan Rajagopalan

    2016-07-01

    Full Text Available BACKGROUND Syndesmotic disruptions are often seen in ankle fractures. Malreduction of these fractures can result in arthritis and instability. A proportion of these patients with malreduction require revision fixation. This study presents the results of revision fixation in such patients, using the Ankle TightRope ® (Arthrex system. METHODS Between January 2000 to December 2009, 124 patients who underwent ankle fracture fixations with syndesmotic stabilisation were analysed. Out of 124 patients, 8 patients were diagnosed with failure of primary stabilisation (based on radiological and clinical criteria and subjected to revision fixation using the Ankle TightRope ® (Arthrex system. Followup was done at periodic time intervals of 3, 6 and 12 months. Both clinical and radiological assessment was performed. Complications and duration of hospital stay was recorded. Functional evaluation was performed using the American Orthopaedic Foot and Ankle Society (AOFAS scoring system. RESULTS Five patients had good results, one satisfactory and two had poor outcomes. CONCLUSIONS Ankle TightRope ® fixation is an alternative method of stabilisation in patients who require revision syndesmosis fixation. Further studies are required to evaluate this method of revision stabilisation as compared to screws.

  13. The Role of Minimally Invasive Plate Osteosynthesis in Rib Fixation: A Review

    Science.gov (United States)

    Bemelman, Michael; van Baal, Mark; Yuan, Jian Zhang; Leenen, Luke

    2016-01-01

    More than a century ago, the first scientific report was published about fracture fixation with plates. During the 1950’s, open reduction and plate fixation for fractures were standardized by the founders of Arbeitsgemeinschaft für osteosynthesefragen/Association for the Study of Internal Fixation. Since the introduction of plate fixation for fractures, several plates and screws have been developed, all with their own characteristics. To accomplice more fracture stability, it was thought the bigger the plate, the better. The counter side was a compromised blood supply of the bone, often resulting in bone necrosis and ultimately delayed or non-union. With the search and development of new materials and techniques for fracture fixation, less invasive procedures have become increasingly popular. This resulted in the minimally invasive plate osteosynthesis (MIPO) technique for fracture fixation. With the MIPO technique, procedures could be performed with smaller incisions and thus with less soft tissue damage and a better preserved blood supply. The last 5 years rib fixation has become increasingly popular, rising evidence has become available suggesting that surgical rib fixation improves outcome of patients with a flail chest or isolated rib fractures. Many surgical approaches for rib fixation have been described in the old literature, however, most of these techniques are obscure nowadays. Currently mostly large incisions with considerable surgical insult are used to stabilize rib fractures. We think that MIPO deserves a place in the surgical treatment of rib fractures. We present the aspects of diagnosis, preoperative planning and operative techniques in regard to MIPO rib fixation. PMID:26889439

  14. The Role of Minimally Invasive Plate Osteosynthesis in Rib Fixation: A Review

    Directory of Open Access Journals (Sweden)

    Michael Bemelman

    2016-02-01

    Full Text Available More than a century ago, the first scientific report was published about fracture fixation with plates. During the 1950’s, open reduction and plate fixation for fractures were standardized by the founders of Arbeitsgemeinschaft für osteosynthesefragen/Association for the Study of Internal Fixation. Since the introduction of plate fixation for fractures, several plates and screws have been developed, all with their own characteristics. To accomplice more fracture stability, it was thought the bigger the plate, the better. The counter side was a compromised blood supply of the bone, often resulting in bone necrosis and ultimately delayed or non-union. With the search and development of new materials and techniques for fracture fixation, less invasive procedures have become increasingly popular. This resulted in the minimally invasive plate osteosynthesis (MIPO technique for fracture fixation. With the MIPO technique, procedures could be performed with smaller incisions and thus with less soft tissue damage and a better preserved blood supply. The last 5 years rib fixation has become increasingly popular, rising evidence has becomeavailable suggesting that surgical rib fixation improves outcome of patients with a flail chest or isolated rib fractures. Many surgical approaches for rib fixation have been described in the old literature, however, most of these techniques are obscure nowadays. Currently mostly large incisions with considerable surgical insult are used to stabilize rib fractures. We think that MIPO deserves a place in the surgical treatment of rib fractures. We present the aspects of diagnosis, preoperative planning and operative techniques in regard to MIPO rib fixation.

  15. Treatment of inherently unstable open or infected fractures by open wound management and external skeletal fixation.

    Science.gov (United States)

    Ness, M G

    2006-02-01

    To assess the use of external skeletal fixation with open wound management for the treatment of inherently unstable open or infected fractures in dogs. A retrospective review of 10 cases. Fracture stabilisation and wound management required only a single anaesthetic, and despite the challenging nature of these injuries, the final outcome was acceptable or good in every case. However, minor complications associated with the fixator pins were quite common, and two dogs developed complications which required additional surgery. Open management of wounds, even when bone was exposed, proved to be an effective technique, and external skeletal fixators were usually effective at maintaining stability throughout an inevitably extended fracture healing period.

  16. Bone regeneration potential of sub-microfibrous membranes with ...

    African Journals Online (AJOL)

    electrospinning. Cell viability, biocompatibility, and bone regeneration were measured. ... human mesenchymal stem cells (hMSCs) were grown on the ... In vivo biocompatibility test ..... biodegradability and drug release behavior of aliphatic.

  17. Biodegradable Piezoelectric Force Sensor.

    Science.gov (United States)

    Curry, Eli J; Ke, Kai; Chorsi, Meysam T; Wrobel, Kinga S; Miller, Albert N; Patel, Avi; Kim, Insoo; Feng, Jianlin; Yue, Lixia; Wu, Qian; Kuo, Chia-Ling; Lo, Kevin W-H; Laurencin, Cato T; Ilies, Horea; Purohit, Prashant K; Nguyen, Thanh D

    2018-01-30

    Measuring vital physiological pressures is important for monitoring health status, preventing the buildup of dangerous internal forces in impaired organs, and enabling novel approaches of using mechanical stimulation for tissue regeneration. Pressure sensors are often required to be implanted and directly integrated with native soft biological systems. Therefore, the devices should be flexible and at the same time biodegradable to avoid invasive removal surgery that can damage directly interfaced tissues. Despite recent achievements in degradable electronic devices, there is still a tremendous need to develop a force sensor which only relies on safe medical materials and requires no complex fabrication process to provide accurate information on important biophysiological forces. Here, we present a strategy for material processing, electromechanical analysis, device fabrication, and assessment of a piezoelectric Poly-l-lactide (PLLA) polymer to create a biodegradable, biocompatible piezoelectric force sensor, which only employs medical materials used commonly in Food and Drug Administration-approved implants, for the monitoring of biological forces. We show the sensor can precisely measure pressures in a wide range of 0-18 kPa and sustain a reliable performance for a period of 4 d in an aqueous environment. We also demonstrate this PLLA piezoelectric sensor can be implanted inside the abdominal cavity of a mouse to monitor the pressure of diaphragmatic contraction. This piezoelectric sensor offers an appealing alternative to present biodegradable electronic devices for the monitoring of intraorgan pressures. The sensor can be integrated with tissues and organs, forming self-sensing bionic systems to enable many exciting applications in regenerative medicine, drug delivery, and medical devices.

  18. Successful operative rib fixation of traumatic flail chest in a patient with osteogenesis imperfecta.

    Science.gov (United States)

    Kulaylat, Afif N; Chesnut, Charles H; Santos, Ariel P; Armen, Scott B

    2014-09-01

    Increasing attention has been directed towards operative rib fixation of traumatic flail chest; reported benefits include more rapid weaning from the ventilator, decreased intensive care unit stays, decreased complications and improved functional results. The outcomes of this surgical intervention in patients with osteogenesis imperfecta, a rare condition characterized by low bone density and bone fragility, are unknown. This case demonstrates that, in the management of traumatic flail chest in a patient with osteogenesis imperfecta, surgical fixation can be successful and should be considered early. © The Author 2014. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.

  19. Biomechanical Strength of Retrograde Fixation in Proximal Third Scaphoid Fractures.

    Science.gov (United States)

    Daly, Charles A; Boden, Allison L; Hutton, William C; Gottschalk, Michael B

    2018-04-01

    Current techniques for fixation of proximal pole scaphoid fractures utilize antegrade fixation via a dorsal approach endangering the delicate vascular supply of the dorsal scaphoid. Volar and dorsal approaches demonstrate equivalent clinical outcomes in scaphoid wrist fractures, but no study has evaluated the biomechanical strength for fractures of the proximal pole. This study compares biomechanical strength of antegrade and retrograde fixation for fractures of the proximal pole of the scaphoid. A simulated proximal pole scaphoid fracture was produced in 22 matched cadaveric scaphoids, which were then assigned randomly to either antegrade or retrograde fixation with a cannulated headless compression screw. Cyclic loading and load to failure testing were performed and screw length, number of cycles, and maximum load sustained were recorded. There were no significant differences in average screw length (25.5 mm vs 25.6 mm, P = .934), average number of cyclic loading cycles (3738 vs 3847, P = .552), average load to failure (348 N vs 371 N, P = .357), and number of catastrophic failures observed between the antegrade and retrograde fixation groups (3 in each). Practical equivalence between the 2 groups was calculated and the 2 groups were demonstrated to be practically equivalent (upper threshold P = .010). For this model of proximal pole scaphoid wrist fractures, antegrade and retrograde screw configuration have been proven to be equivalent in terms of biomechanical strength. With further clinical study, we hope surgeons will be able to make their decision for fixation technique based on approaches to bone grafting, concern for tenuous blood supply, and surgeon preference without fear of poor biomechanical properties.

  20. Permanganate Fixation of Plant Cells

    Science.gov (United States)

    Mollenhauer, Hilton H.

    1959-01-01

    In an evaluation of procedures explored to circumvent some of the problems of osmium tetroxide-fixation and methacrylate embedding of plant materials, excised segments of root tips of Zea mays were fixed for electron microscopy in potassium permanganate in the following treatment variations: unbuffered and veronal-acetate buffered solutions of 0.6, 2.0, and 5.0 per cent KMnO4 at pH 5.0, 6.0, 6.7, and 7.5, and temperatures of 2–4°C. and 22°C. After fixation the segments were dehydrated, embedded in epoxy resin, sectioned, and observed or photographed. The cells of the central region of the rootcap are described. The fixation procedures employing unbuffered solutions containing 2.0 to 5.0 per cent KMnO4 at a temperature of 22°C. gave particularly good preservation of cell structure and all membrane systems. Similar results were obtained using a solution containing 2.0 per cent KMnO4, buffered with veronal-acetate to pH 6.0, and a fixation time of 2 hours at 22°C. The fixation procedure utilizing veronal-acetate buffered, 0.6 per cent KMnO4 at 2–4°C. and pH 6.7 also gave relatively good preservation of most cellular constituents. However, preservation of the plasma membrane was not so good, nor was the intensity of staining so great, as that with the group of fixatives containing greater concentrations of KMnO4. The other fixation procedures did not give satisfactory preservation of fine structure. A comparison is made of cell structures as fixed in KMnO4 or OsO4. PMID:14423414

  1. Porous surface modified bioactive bone cement for enhanced bone bonding.

    Directory of Open Access Journals (Sweden)

    Qiang He

    bone cement for prosthetic fixation in total joint replacement.

  2. Fixador esquelético pino-resina acrílica e enxerto ósseo esponjoso no tratamento de complicações secundárias à imobilização inadequada de fratura do rádio e ulna em cães Acrylic-pin external fixator and cancellous bone graft in the treatment of complications caused by inadequate immobilization of radius and ulna fracture in dogs

    Directory of Open Access Journals (Sweden)

    Sheila Canevese Rahal

    2005-10-01

    Full Text Available O objetivo do estudo foi avaliar a eficácia do fixador esquelético pino-resina, configuração tipo II, coadjuvado pelo enxerto ósseo esponjoso autólogo, no tratamento das complicações secundárias à imobilização inadequada de fraturas do rádio e ulna em 10 cães, com peso entre 1,8 e 33,6 kg. Detectou-se não-união (n=4, osteomielite (n=1, má-união (n=1, falência ou quebra de implante (n=4, sendo 60% das lesões referente ao uso prévio de pino intramedular no rádio. A montagem do fixador foi realizada com transfixação de pinos lisos em sua maioria angulados, cujas extremidades excedentes foram dobradas e estabilizadas com resina acrílica. Em todos os casos, utilizou-se enxerto esponjoso autólogo fresco, após debridamento do foco de fratura. O tempo de permanência do aparelho variou entre 45 dias e 5 meses e a maior complicação foi o afrouxamento dos pinos transfixantes. A consolidação das fraturas ocorreu por formação de calo periosteal de mínimo a moderado, indicando boa rigidez da montagem.The aim of this study was to evaluate the acrylic-pin external fixator, type II-configuration, and cancellous bone autograft for treating complications of radius and ulna fractures in 10 dogs weighing between 1.8 and 33.6 kg. Nonunion (n=4, osteomyelitis (n=1, malunion (n=1, failure or breakage of implant (n=4 were detected, and 60 % of them were associated with previous intramedullary pin placement in the radius. The fixator frame was constructed using most of the smooth transfixation pins angled. The fixation rods were constructed by placing acrylic resin over the ends of the transfixation pins that were previously bent. In all cases fresh cancellous bone autograft was used after cleaning of the fracture site. The permanence time of the external fixator ranged from 45 days to 5 months, and the most important complication was pin loosening. Fracture healing was by minimal to moderate periosteal callus, suggesting good rigidity

  3. External fixation of "intertrochanteric" fractures.

    Science.gov (United States)

    Gani, Naseem Ul; Kangoo, Khursheed Ahmed; Bashir, Arshad; Muzaffer, Rahil; Bhat, Mohammad Farooq; Farooq, Munir; Badoo, Abdul Rashid; Dar, Imtiyaz Hussian; Wani, Mudassir Maqbool

    2009-10-10

    In developing countries, due to limited availability of modern anesthesia and overcrowding of the hospitals with patients who need surgery, high-risk patients with "intertrochanteric" fractures remain unsuita ble for open reduction and internal fixation.The aim of this study was to analyze the results of external fixation of "intertrochanteric" fractures in high-risk geriatric patients in a developing country.The results of 62 ambulatory high-risk geriatric patients with a mean age of 70 years (range 58-90 years) with "intertrochanteric" fractures, in whom external fixation was performed, are reported.Eight patients died during follow-up due to medical causes unrelated to the surgical procedure. So only 54 patients were available for final assessment. Procedure is simple, performed under local anesthesia, requires less time for surgery and is associated with less blood loss. Good fixation and early ambulation was achieved in most of the patients. Average time to union was 14 weeks. Thirty-one patients developed superficial pin tract infection and 28 patients had average shortening of 15 mm due to impaction and varus angulation. Functional outcome was assessed using Judet's point system. Good to excellent results were achieved in 44 patients.This study demonstrated that external fixation of "intertrochantric" fractures performed under local anesthesia offers significant advantage in ambulatory high-risk geriatric patients especially in a developing country.

  4. Operative fixation of chest wall fractures: an underused procedure?

    Science.gov (United States)

    Richardson, J David; Franklin, Glen A; Heffley, Susan; Seligson, David

    2007-06-01

    Chest wall fractures, including injuries to the ribs and sternum, usually heal spontaneously without specific treatment. However, a small subset of patients have fractures that produce overlying bone fragments that may produce severe pain, respiratory compromise, and, if untreated mechanically, result in nonunion. We performed open reduction and internal fixation on seven patients with multiple rib fractures-five in the initial hospitalization and two delayed--as well as 35 sternal fractures (19 immediate fixation and 16 delayed). Operative fixation was accomplished using titanium plates and screws in both groups of patients. All patients with rib fractures did well; there were no major complications or infections, and no plates required removal. Clinical results were excellent. There was one death in the sternal fracture group in a patient who was ventilator-dependent preoperatively and extubated himself in the early postoperative period. Otherwise, the results were excellent, with no complications occurring in this group. Three patients had their plates removed after boney union was achieved. No evidence of infection or nonunion occurred. The excellent results achieved in the subset of patients with severe chest wall deformities treated initially at our institution and those referred from outside suggest that operative fixation is a useful modality that is likely underused.

  5. Stress Fractures of Tibia Treated with Ilizarov External Fixator.

    Science.gov (United States)

    Górski, Radosław; Żarek, Sławomir; Modzelewski, Piotr; Górski, Ryszard; Małdyk, Paweł

    2016-08-30

    Stress fractures are the result of cyclic loading of the bone, which gradually becomes damaged. Most often they are treated by rest or plaster cast and, in rare cases, by internal fixation. There is little published data on initial reposition followed by stabilization with the Ilizarov apparatus in such fractures. Six patients were treated with an external fixator according to the Ilizarov method for a stress fracture of the tibia between 2007 and 2015. Three patients were initially treated conservatively. Due to increasing tibial deformation, they were qualified for surgical treatment with external stabilization. In the other patients, surgery was the first-line treatment. All patients demonstrated risk factors for a stress fracture. After the surgery, they fully loaded the operated limb. No patient developed malunion, nonunion, infection or venous thrombosis. The average time from the first operation to the removal of the external fixator was 19 weeks. Radiographic and clinical outcomes were satisfactory in all patients. 1. The Ilizarov method allows for successful stabilization of stress fractures of the tibia. 2. It may be a good alternative to internal stabilization, especially in patients with multiple comorbidities which affect bone quality and may impair soft tissue healing.

  6. Liquifying PLDLLA Anchor Fixation in Achilles Reconstruction for Insertional Tendinopathy.

    Science.gov (United States)

    Boden, Stephanie A; Boden, Allison L; Mignemi, Danielle; Bariteau, Jason T

    2018-04-01

    Insertional Achilles tendinopathy (IAT) is a frequent cause of posterior heel pain and is often associated with Haglund's deformity. Surgical correction for refractory cases of IAT has been well studied; however, the method of tendon fixation to bone in these procedures remains controversial, and to date, no standard technique has been identified for tendon fixation in these surgeries. Often, after Haglund's resection, there is large exposed cancellous surface for Achilles reattachment, which may require unique fixation to optimize outcomes. Previous studies have consistently demonstrated improved patient outcomes after Achilles tendon reconstruction with early rehabilitation with protected weight bearing, evidencing the need for a strong and stable anchoring of the Achilles tendon that allows early weight bearing without tendon morbidity. In this report, we highlight the design, biomechanics, and surgical technique of Achilles tendon reconstruction with Haglund's deformity using a novel technique that utilizes ultrasonic energy to liquefy the suture anchor, allowing it to incorporate into surrounding bone. Biomechanical studies have demonstrated superior strength of the suture anchor utilizing this novel technique as compared with prior techniques. However, future research is needed to ensure that outcomes of this technique are favorable when compared with outcomes using traditional suture anchoring methods. Level V: Operative technique.

  7. Biodegradation of Polypropylene Nonwovens

    Science.gov (United States)

    Keene, Brandi Nechelle

    The primary aim of the current research is to document the biodegradation of polypropylene nonwovens and filament under composting environments. To accelerate the biodegradat ion, pre-treatments and additives were incorporated into polypropylene filaments and nonwovens. The initial phase (Chapter 2) of the project studied the biodegradation of untreated polypropylene with/without pro-oxidants in two types of composting systems. Normal composting, which involved incubation of samples in food waste, had little effect on the mechanical properties of additive-free spunbond nonwovens in to comparison prooxidant containing spunbond nonwovens which were affected significantly. Modified composting which includes the burial of samples with food and compressed air, the polypropylene spunbond nonwovens with/without pro-oxidants displayed an extreme loss in mechanical properties and cracking on the surface cracking. Because the untreated spunbond nonwovens did not completely decompose, the next phase of the project examined the pre-treatment of gamma-irradiation or thermal aging prior to composting. After exposure to gamma-irradiation and thermal aging, polypropylene is subjected to oxidative degradation in the presence of air and during storage after irradiat ion. Similar to photo-oxidation, the mechanism of gamma radiation and thermal oxidative degradation is fundamentally free radical in nature. In Chapter 3, the compostability of thermal aged spunbond polypropylene nonwovens with/without pro-oxidant additives. The FTIR spectrum confirmed oxidat ion of the polypropylene nonwovens with/without additives. Cracking on both the pro-oxidant and control spunbond nonwovens was showed by SEM imaging. Spunbond polypropylene nonwovens with/without pro-oxidants were also preirradiated by gamma rays followed by composting. Nonwovens with/without pro-oxidants were severely degraded by gamma-irradiation after up to 20 kGy exposure as explained in Chapter 4. Furthermore (Chapter 5), gamma

  8. The manufacture of synthetic non-sintered and degradable bone grafting substitutes.

    Science.gov (United States)

    Gerike, W; Bienengräber, V; Henkel, K-O; Bayerlein, T; Proff, P; Gedrange, T; Gerber, Th

    2006-02-01

    A new synthetic bone grafting substitute (NanoBone, ARTOSS GmbH, Germany) is presented. This is produced by a new technique, the sol-gel-method. This bone grafting substitute consists of nanocrystalline hydroxyapatite (HA) and nanostructured silica (SiO2). By achieving a highly porous structure good osteoconductivity can be seen. In addition, the material will be completely biodegraded and new own bone is formed. It has been demonstrated that NanoBone is biodegraded by osteoclasts in a manner comparable to the natural bone remodelling process.

  9. [Usefullness of intrasacral fixation in an extremely unstable lumbosacral spine].

    Science.gov (United States)

    Nishiura, Tsukasa; Nishiguchi, Mitsuhisa; Kusaka, Noboru; Takayama, Kazuhiro; Maeda, Yasuhiko; Ogihara, Kotaro; Nakagawa, Minoru

    2007-04-01

    Intrasacral fixation technique devised by Jackson is said to provide rigid lumbosacral fixation. We treated 3 cases of lumbosacral lesions using this technique in which lumbosacral segment had become extremely unstable during surgical intervention adding to the effect of original lesions. In all cases, surgeries were performed in 2 stages, intrasacral fixation and anterior stabilization. Case 1: A 52-year-old male was diagnosed fungal discitis and spondylitis at L4 and L5. X-ray showed destruction of the vertebral bodies. L2, L3 and sacrum were fixed posteriorly using the intrasacral fixation technique. One week after the first operation, L4 and L5 vertebral bodies were replaced by long fibula grafts through the extraperitoneal approach. Case 2: A 25-year-old female with cauda equina syndrome and abnormal body form diagnosed as having spondyloptosis in which the entire vertebral body of L5 had descended below the endplate of S1. MR imaging revealed marked canal stenosis at the S1 level. In the first surgery, L5 vertebral body was resected through the transperitoneal approach. After 1 week of bed rest, posterior segments of L5 were resected, L4 was affixed to the sacrum and anterior stabilization was achieved with 2 mesh cages and lumbosacral spine was fixed using the intrasacral fixation technique. Case 3: A 64-year-old female was diagnosed as having pyogenic discitis and osteomyelitis at the L5-S1 level. In spite of successful medical treatment for infection, low back pain continued. Radiologically, L5 vertebral body was shown to have collapsed and slipped anteriorly over the sacrum. L3, L4 and sacrum were fixed by intrasacral fixation. One week after the first operation, the L5/S1 disc and the suppurtive vertebral bodies were resected through the extraperitoneal approach and anterior stabilization was performed with iliac bone grafts. At follow-up for a minimum of 6 months, initial fixation was maintained in all 3 cases and bony fusion was obtained. The

  10. Biodegradation of biodiesel fuels

    International Nuclear Information System (INIS)

    Zhang, X.; Haws, R.; Wright, B.; Reese, D.; Moeller, G.; Peterson, C.

    1995-01-01

    Biodiesel fuel test substances Rape Ethyl Ester (REE), Rape Methyl Ester (RME), Neat Rape Oil (NR), Say Methyl Ester (SME), Soy Ethyl Ester (SEE), Neat Soy Oil (NS), and proportionate combinations of RME/diesel and REE/diesel were studied to test the biodegradability of the test substances in an aerobic aquatic environment using the EPA 560/6-82-003 Shake Flask Test Method. A concurrent analysis of Phillips D-2 Reference Diesel was also performed for comparison with a conventional fuel. The highest rates of percent CO 2 evolution were seen in the esterified fuels, although no significant difference was noted between them. Ranges of percent CO 2 evolution for esterified fuels were from 77% to 91%. The neat rape and neat soy oils exhibited 70% to 78% CO 2 evolution. These rates were all significantly higher than those of the Phillips D-2 reference fuel which evolved from 7% to 26% of the organic carbon to CO 2 . The test substances were examined for BOD 5 and COD values as a relative measure of biodegradability. Water Accommodated Fraction (WAF) was experimentally derived and BOD 5 and COD analyses were carried out with a diluted concentration at or below the WAF. The results of analysis at WAF were then converted to pure substance values. The pure substance BOD 5 and COD values for test substances were then compared to a control substance, Phillips D-2 Reference fuel. No significant difference was noted for COD values between test substances and the control fuel. (p > 0.20). The D-2 control substance was significantly lower than all test substances for BCD, values at p 5 value

  11. Machining of a bioactive nanocomposite orthopedic fixation device.

    Science.gov (United States)

    Sparnell, Amie; Aniket; El-Ghannam, Ahmed

    2012-08-01

    Bioactive ceramics bond to bone and enhance bone formation. However, they have poor mechanical properties which restrict their machinability as well as their application as load bearing implants. The goal of this study was to machine bioactive fixation screws using a silica-calcium phosphate nanocomposite (SCPC50). The effect of compact pressure, holding time, and thermal treatment on the microstructure, machinability, and mechanical properties of SCPC50 cylinders were investigated. Samples prepared by powder metallurgy technique at compact pressure range of 100-300 MPa and treated at 900°C/1 h scored a poor machinability rating of (1/5) due to the significant formation of amorphous silicate phase at the grain boundaries. On the other hand, lowering of compact pressure and sintering temperature to 30 MPa/3 h and 700°C/2 h, respectively, minimized the formation of the amorphous phase and raised the machinability rating to (5/5). The modulus of elasticity and ultimate strength of machinable SCPC50 were 10.8 ± 2.0 GPa and 72.8 ± 22.8 MPa, respectively, which are comparable to the corresponding values for adult human cortical bone. qRT-PCR analyses showed that bone cells attached to SCPC50 significantly upregulated osteocalcin mRNA expression as compared to the cells on Ti-6Al-4V. Moreover, cells attached to SCPC50 produced mineralized bone-like tissue within 8 days. On the other hand, cells attached to Ti-6Al-4V failed to produce bone mineral under the same experimental conditions. Results of the study suggest that machinable SCPC50 has the potential to serve as an attractive new material for orthopedic fixation devices. Copyright © 2012 Wiley Periodicals, Inc.

  12. Management strategy for unicameral bone cyst.

    Science.gov (United States)

    Chuo, Chin-Yi; Fu, Yin-Chih; Chien, Song-Hsiung; Lin, Gau-Tyan; Wang, Gwo-Jaw

    2003-06-01

    The management of a unicameral bone cyst varies from percutaneous needle biopsy, aspiration, and local injection of steroid, autogenous bone marrow, or demineralized bone matrix to the more invasive surgical procedures of conventional curettage and grafting (with autogenous or allogenous bone) or subtotal resection with bone grafting. The best treatment for a unicameral bone cyst is yet to be identified. Better understanding of the pathology will change the concept of management. The aim of treatment is to prevent pathologic fracture, to promote cyst healing, and to avoid cyst recurrence and re-fracture. We retrospectively reviewed 17 cases of unicameral bone cysts (12 in the humerus, 3 in the femur, 2 in the fibula) managed by conservative observation, curettage and bone grafting with open reduction and internal fixation, or continuous decompression and drainage with a cannulated screw. We suggest percutaneous cannulated screw insertion to promote cyst healing and prevent pathologic fracture. We devised a protocol for the management of unicameral bone cysts.

  13. Comparison of Outcomes of Operatively Treated Bicondylar Tibial Plateau Fractures by External Fixation and Internal Fixation

    Directory of Open Access Journals (Sweden)

    CC Chan

    2012-03-01

    Full Text Available The outcome of bicondylar tibial plateau fractures treated with either external fixation (35 patients or internal fixation (24 patients was reviewed. Outcome measures included the Rasmussen score, clinical complications, development of osteoarthritis and the requirement for total knee replacement (TKR. Twenty-two (92% anatomical reductions were achieved in the internal fixation group compared to 27 (77% in the external fixation group. Infective complications were more common in the external fixation group (9 patients, 26% due to pin tract infection. There were no deep infections in the internal fixation group. The mean Rasmussen score was not significantly different (mean score 32 in external fixation and 29 in internal fixation between the two groups and the incidence of osteoarthritis was the same in both groups. Four patients in the external fixation group underwent a TKR compared to 5 patients in the internal fixation group. Bicondylar tibial plateau fractures have similar outcomes following external or internal fixation.

  14. Fixation methods in mandibular reconstruction using fibula grafts: a comparative study into the relative strength of three different types of osteosynthesis

    NARCIS (Netherlands)

    Strackee, S. D.; Kroon, F. H.; Bos, K. E.

    2001-01-01

    Bone staples made of a nickel titanium alloy exert dynamic compression, require little dissection, and may provide an alternative to conventional fixation in mandibular reconstruction with a free vascularized fibula graft. To evaluate its stability relative to conventional methods of fixation with

  15. Targeted Therapies for Myeloma and Metastatic Bone Cancers

    Science.gov (United States)

    2010-09-01

    Cancer J Clin 2003; 53:5. Kasugai S, Fujisawa R, Waki Y, Miyamoto K, Ohya K 2000 Selective drug delivery system to bone: small peptide (Asp)6...page. Bone targeted nanoparticles , bone cancer myeloma, mice studies, PLGA , Biodegradable materials. Targeted Therapies for Myeloma and Metastatic Bone...present results from this program at talk at the Particles 2006 –Medical/Biochemical Diagnostic , Pharmaceutical, and Drug Delivery . 3

  16. Bone tumors

    International Nuclear Information System (INIS)

    Unni, K.K.

    1988-01-01

    This book contains the proceedings on bone tumors. Topics covered include: Bone tumor imaging: Contribution of CT and MRI, staging of bone tumors, perind cell tumors of bone, and metastatic bone disease

  17. External fixation using locking plate in distal tibial fracture: a finite element analysis.

    Science.gov (United States)

    Zhang, Jingwei; Ebraheim, Nabil; Li, Ming; He, Xianfeng; Schwind, Joshua; Liu, Jiayong; Zhu, Limei

    2015-08-01

    External fixation of tibial fractures using a locking plate has been reported with favorable results in some selected patients. However, the stability of external plate fixation in this fracture pattern has not been previously demonstrated. We investigated the stability of external plate fixation with different plate-bone distances. In this study, the computational processing model of external fixation of a distal tibial metaphyseal fracture utilizing the contralateral femoral less invasive stabilization system plate was analyzed. The plate was placed on the anteromedial aspect of tibia with different plate-bone distances: 1, 10, 20, and 30 mm. Under axial load, the stiffness of construct in all groups was higher than intact tibia. Under axial load with an internal rotational force, the stiffness of construct with 1 and 10 mm plate-bone distances was similar to that of an intact tibia and the stiffness of the construct with 20 and 30 mm distances was lower than that of an intact tibia. Under axial load with an external rotational force, the stiffness of the construct in all groups was lower than that of an intact tibia. The maximum plate stresses were concentrated at the two most distal screws and were highest in the construct with the 10 mm plate-bone distance, and least in the construct with a 1 mm plate-bone distance. To guarantee a stable external plate fixation in distal tibial fracture, the plate-bone distance should be less than 30 mm.

  18. Analysis and an overview of fixators in medicine and the methods of processing materials for producing fixators

    Directory of Open Access Journals (Sweden)

    Dalibor Milojko Đenadić

    2013-06-01

    Full Text Available The fixator is a medical device that provides support to fractured biological structures. Metal biomaterials are mainly used for replacing broken or damaged hard tissues such as bones because of their high strenght, toughness and corrosion resistance. Materials such as stainless steel, titanium and aluminium alloys (Ti-6Al-4V, cobalt and chromium alloys, composite materials and other biocompatible materials are used in orthopedy for the stabilization of connective tissue injuries or as a substitute for the bone tissues. Fixators are classified according to the place of installation to external and internal fixators. Widely used medical fixators are pins, rods plates, screws, pipes, wires, nails and external fixators. Conventional and non-conventional methods of processing are used in the production process for all types of fixators. Introduction Fixators are medical devices manufactured to support damaged biological structures. In the field of orthopedic surgery that deals with skeletal disorders such as bone, spine, joints, muscles and tendons injuries and diseases, various metals, titanium and cobalt alloys etc. are used to stabilize the supporting tissue injuries or as a substitute for bone tissues. Metallic implants are frequently used in orthopedic surgery as joint prosthesis (hip, knee and elbow fracture fixation devices (plates, screws, external fixators and devices for the fixation of the spine. In principle, fixators are devided into external and internal ones, depending on the place of installation (outside or inside the body. The most common types of medical fixators are pins, rods and plates. This paper presents some of the most common materials used for the production of fixators, their processing and possibilties of use in medicine for various purposes. Types of fixators and materials used for their production Nowadays, biocompatible materials are usually used for the production of fixators and implants. These materials show good

  19. Synthesis of biodegradable styrene copolymers

    OpenAIRE

    Gevers, Dries; Kobben, Stephan; Junkers, Tanja; Copinet, Alain; Buntinx, Mieke; Peeters, Roos

    2017-01-01

    Polystyrene (PS), a versatile polymer with many applications (e.g. packaging) representing about 10% of the total annual polymer consumption, shows practically no biodegradability. In this study a styrene (ST) based copolymer is synthesized and examined regarding its ability to degrade in a composting test. As second monomer, to introduce biodegradable ester groups, 5,6-benzo-2-metylene-dioxepane (BMDO) has been used in radical copolymerization reactions performed in inert and stirred 10 m...

  20. Defect nonunion of a metatarsal bone fracture in a cow: successful management with bone plating and autogenous cancellous bone graft.

    Science.gov (United States)

    Raghunath, M; Singh, N; Singh, T; Gopinathan, A; Mohindroo, J; Atri, K

    2013-01-01

    A two-and-half-year-old cow was presented with a defect nonunion of the right metatarsal III/IV bone following a severely comminuted open fracture two months previously. The animal underwent open fixation using a 4.5 mm, broad, 10-hole, dynamic compression plate and autogenous cancellous bone graft collected from the contralateral iliac shaft. The animal started partial weight bearing after the third postoperative day and resumed complete weight bearing after the 10th day. Fracture healing was complete and the implants were removed after the 120th postoperative day. Stable fixation by means of a bone plate in conjunction with a cancellous bone graft facilitated complete healing and restoration of the bone column of the defect and the metatarsal fracture. The animal made a complete recovery.

  1. Understanding Nitrogen Fixation

    Energy Technology Data Exchange (ETDEWEB)

    Paul J. Chirik

    2012-05-25

    synthesis of ammonia, NH{sub 3}, from its elements, H{sub 2} and N{sub 2}, via the venerable Haber-Bosch process is one of the most significant technological achievements of the past century. Our research program seeks to discover new transition metal reagents and catalysts to disrupt the strong N {triple_bond} N bond in N{sub 2} and create new, fundamental chemical linkages for the construction of molecules with application as fuels, fertilizers and fine chemicals. With DOE support, our group has discovered a mild method for ammonia synthesis in solution as well as new methods for the construction of nitrogen-carbon bonds directly from N{sub 2}. Ideally these achievements will evolve into more efficient nitrogen fixation schemes that circumvent the high energy demands of industrial ammonia synthesis. Industrially, atmospheric nitrogen enters the synthetic cycle by the well-established Haber-Bosch process whereby N{sub 2} is hydrogenated to ammonia at high temperature and pressure. The commercialization of this reaction represents one of the greatest technological achievements of the 20th century as Haber-Bosch ammonia is responsible for supporting approximately 50% of the world's population and serves as the source of half of the nitrogen in the human body. The extreme reaction conditions required for an economical process have significant energy consequences, consuming 1% of the world's energy supply mostly in the form of pollution-intensive coal. Moreover, industrial H{sub 2} synthesis via the water gas shift reaction and the steam reforming of methane is fossil fuel intensive and produces CO{sub 2} as a byproduct. New synthetic methods that promote this thermodynamically favored transformation ({Delta}G{sup o} = -4.1 kcal/mol) under milder conditions or completely obviate it are therefore desirable. Most nitrogen-containing organic molecules are derived from ammonia (and hence rely on the Haber-Bosch and H{sub 2} synthesis processes) and direct synthesis from

  2. Scanning electron microscopy of bone.

    Science.gov (United States)

    Boyde, Alan

    2012-01-01

    This chapter described methods for Scanning Electron Microscopical imaging of bone and bone cells. Backscattered electron (BSE) imaging is by far the most useful in the bone field, followed by secondary electrons (SE) and the energy dispersive X-ray (EDX) analytical modes. This chapter considers preparing and imaging samples of unembedded bone having 3D detail in a 3D surface, topography-free, polished or micromilled, resin-embedded block surfaces, and resin casts of space in bone matrix. The chapter considers methods for fixation, drying, looking at undersides of bone cells, and coating. Maceration with alkaline bacterial pronase, hypochlorite, hydrogen peroxide, and sodium or potassium hydroxide to remove cells and unmineralised matrix is described in detail. Attention is given especially to methods for 3D BSE SEM imaging of bone samples and recommendations for the types of resin embedding of bone for BSE imaging are given. Correlated confocal and SEM imaging of PMMA-embedded bone requires the use of glycerol to coverslip. Cathodoluminescence (CL) mode SEM imaging is an alternative for visualising fluorescent mineralising front labels such as calcein and tetracyclines. Making spatial casts from PMMA or other resin embedded samples is an important use of this material. Correlation with other imaging means, including microradiography and microtomography is important. Shipping wet bone samples between labs is best done in glycerol. Environmental SEM (ESEM, controlled vacuum mode) is valuable in eliminating -"charging" problems which are common with complex, cancellous bone samples.

  3. Surgical treatment of neglected clubfoot using external fixator

    Directory of Open Access Journals (Sweden)

    Rodrigo Mota Pacheco Fernandes

    Full Text Available ABSTRACT The definition of neglected clubfoot (NC includes a variable range of complex deformities of the foot that are refractory to conventional treatments or are treated inappropriately. Several etiologies may be related to this. The Ilizarov method has become established as a tool for treating these deformities. It minimizes soft-tissue damage through gradual correction of the deformity, with a high success rate in relation to achieving a plantigrade foot, with low incidence of recurrence. The indications for treatment include severe rigid deformities (Dimeglio III and IV, or adverse skin conditions. Careful clinical and radiological examination is fundamental for proper planning and installation of the external fixator. The techniques used include selection of external fixation assemblies, which can be closed when there is a connection between the leg, hindfoot and forefoot. This closed assembly may or may not be constricted, according to whether hinges are provided or whether use of the natural anatomical hinges during correction of the deformity is envisaged. An open assembly makes it possible to add flexibility to the foot through histogenesis, while allowing closed corrections of greater precision later on. Hexapod fixators are an innovation with high potential for accuracy in correcting deformities. Procedures associated with external fixation include soft-tissue release and bone procedures. These procedures enable corrections that are more anatomical, for different degrees of severity and stiffness of deformity. It can be concluded from analyzing this case series that treatment of neglected clubfoot using an external fixator has a high rate of good and excellent results, with low frequency of complications.

  4. Novel anterior cruciate ligament graft fixation device reduces slippage

    Directory of Open Access Journals (Sweden)

    Lopez MJ

    2013-05-01

    Full Text Available Mandi J Lopez,1 Allen Borne,2 W Todd Monroe,3 Prakash Bommala,1 Laura Kelly,1 Nan Zhang11Laboratory for Equine and Comparative Orthopedic Research, Department of Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, 2Louisiana State University, New Orleans Health Sciences Center, School of Medicine, New Orleans, 3Department of Biological and Agricultural Engineering, Agricultural Center, Louisiana State University, Baton Rouge, LA, USAAbstract: Clinically significant laxity occurs in 10%–30% of knees after anterior cruciate ligament reconstruction. Graft slippage and tension loss at the hamstring graft tibial fixation site during and after reconstruction surgery contribute to postoperative joint laxity and are detrimental to long-term knee stability and graft properties. Limiting graft slippage will reduce associated complications. We sought to compare the in vitro mechanical properties and in vivo joint stabilization, postoperative limb use, and graft incorporation of the novel GraftGrab™ (GG device designed to reduce hamstring graft tibial fixation slippage with the commercially available bioabsorbable Bio-Post™ and spiked washer (BP. Mechanical testing was performed on canine tibia-hamstring graft constructs to quantify initial fixation properties. In vivo joint stabilization, postoperative limb use and graft incorporation of hamstring graft reconstructions were determined in a canine model. Outcomes included tibial translation and ground reaction forces preoperatively and 4 and 8 weeks postoperatively, three-dimensional graft and bone tunnel dimensions at the latter two time points, and graft-bone microstructure, as well as mechanical properties 8 weeks after implantation. Immediately after fixation, all grafts slipped from the BP constructs versus about 30% of GG constructs. In vivo limb use remained low, and tibial translation increased with time in the BP cohort. These results together

  5. Stabilisation of a mandibular fracture in a cow by means of a pinless external fixator

    International Nuclear Information System (INIS)

    Lischer, C.J.; Fluri, E.; Auer, J.A.

    1997-01-01

    A four months pregnant, four-year-old Brown Swiss cow with mandibular fractures of the right horizontal ramus and the symphysis was treated surgically with a new pinless external fixator. Healing was complicated by the sequestration of bone at the fracture site. After the sequestrum had been removed a radiographic examination revealed that the fracture had healed completely

  6. SURGICAL TREATMENT OF PATIENTS WITH HALLUX VALGUS BY MINI-APPARATUS OF EXTERNAL FIXATION

    Directory of Open Access Journals (Sweden)

    K.K. Levchenko

    2008-06-01

    Full Text Available The authors of article suggest methods of surgical correction of pathology by means of fixation of the first metatarsal bone with specialconstruction ofmini-apparatus for externalfixation. This approach provides decrease of recovery period, reduces complications riskas well as deformation relapse.

  7. Use of a biomimetic strategy to engineer bone.

    Science.gov (United States)

    Holy, C E; Fialkov, J A; Davies, J E; Shoichet, M S

    2003-06-15

    Engineering trabecular-like, three-dimensional bone tissue throughout biodegradable polymer scaffolds is a significant challenge. Using a novel processing technique, we have created a biodegradable scaffold with geometry similar to that of trabecular bone. When seeded with bone-marrow cells, new bone tissue, the geometry of which reflected that of the scaffold, was evident throughout the scaffold volume and to a depth of 10 mm. Preseeded scaffolds implanted in non-healing rabbit segmental bone defects allowed new functional bone formation and bony union to be achieved throughout the defects within 8 weeks. This marks the first report of successful three-dimensional bone-tissue engineering repair using autologous marrow cells without the use of supplementary growth factors. We attribute our success to the novel scaffold morphology. Copyright 2003 Wiley Periodicals, Inc. J Biomed Mater Res 65A: 447-453, 2003

  8. Progress of biodegradable metals

    Directory of Open Access Journals (Sweden)

    Huafang Li

    2014-10-01

    Full Text Available Biodegradable metals (BMs are metals and alloys expected to corrode gradually in vivo, with an appropriate host response elicited by released corrosion products, then dissolve completely upon fulfilling the mission to assist with tissue healing with no implant residues. In the present review article, three classes of BMs have been systematically reviewed, including Mg-based, Fe-based and Zn-based BMs. Among the three BM systems, Mg-based BMs, which now have several systems reported the successful of clinical trial results, are considered the vanguards and main force. Fe-based BMs, with pure iron and Fe–Mn based alloys as the most promising, are still on the animal test stage. Zn-based BMs, supposed to have the degradation rate between the fast Mg-based BMs and the slow Fe-based BMs, are a rising star with only several reports and need much further research. The future research and development direction for the BMs are proposed, based on the clinical requirements on controllable degradation rate, prolonged mechanical stability and excellent biocompatibility, by optimization of alloy composition design, regulation on microstructure and mechanical properties, and following surface modification.

  9. Treatment of biodegradable material

    Energy Technology Data Exchange (ETDEWEB)

    Pannell, S D; Greenshields, R N

    1981-05-13

    Biodegradable effluents, e.g. containing carbohydrates and/or proteins, were treated by passing up a tower fermenter tapered at the top and with an aspect ratio of greater than or equal to 3:1. A flocculant microorganism aerobically digested the effluent in the tower and the mixture of treated medium, gas, and surplus microorganism was discharged through an inverted-U-shaped outlet at the top. After separation of the biomass, which could be used as an animal feed, the purified effluent could be discharged. A milk-processing effluent (2.5 g solids/l, of which 65% was sucrose and 35% milk solids) was treated in a fermentation tower (aspect ratio 10:1). Aspergillus niger in the tower readily digested sucrose and at least some lactose as air and NH/sub 4/NO/sub 3/ were added. At least 90% of the casein was trapped by the microorganisms and discharged with them from the tower. The microrganisms were separated with a vibrating sieve giving a final discharged liquid containing 0.2 g solids/l.

  10. Lactic Acid Polymers as Biodegradable Carriers of Fluoroquinolones: An In Vitro Study

    OpenAIRE

    Kanellakopoulou, Kyriaki; Kolia, Maria; Anastassiadis, Antonios; Korakis, Themistoklis; Giamarellos-Bourboulis, Evangelos J.; Andreopoulos, Andreas; Dounis, Eleftherios; Giamarellou, Helen

    1999-01-01

    A biodegradable polymer of dl-dilactide that facilitates release of ciprofloxacin or pefloxacin at levels exceeding MICs for the causative microorganisms of chronic osteomyelitis is described. Duration and peak of release were found to depend on the molecular weight of the polymer. Its characteristics make it promising for treating chronic bone infections.

  11. Histological study on the new bone formation of the implanted bone allograft in sheep

    International Nuclear Information System (INIS)

    Li Youchen; Sun Guiying; Shi Zhancheng

    1999-01-01

    The purpose of this study is to compare the formation of new bone in the implanted frozen irradiated bone allograft with the fresh bone autograft. The work on animal model included resection and implantation of sheep's tibial diaphysis and intramedullary nail fixation, with total number 20. Tibias were harvested at 6, 12, and 24 months after operation. Sheep were fed with tetracycline I week before bone harvesting. Bones were examined with usual and fluorescence microscopes. The results showed that the progress of graft incorporation in allografts were generally similar to that of autografts. Capillaries penetration and callus formation extended from the host end to surround the host-graft junction in 6 months. Incorporation of new bone was nearly completed in 12 months; then the speed of new bone formation was decreased, and the implanted bone graft was almost completely substituted with non-nal bone structure in 24 months

  12. Cellular Therapy to Obtain Rapid Endochondral Bone Formation

    Science.gov (United States)

    2008-02-01

    length from the tibial fusion site, and then stop which would be consistent with the resorption being associated with the lack of weight bearing load. In...Defect in the Rat Femur with Use of a Vascularized Periosteal Flap, a Biodegradable Matric, and Bone Morphogenetic Protein. J Bone Joint Surg 87-A(6

  13. Bone regeneration potential of sub-microfibrous membranes with ...

    African Journals Online (AJOL)

    Conclusion: The results indicate that biodegradable PCL sub-microfibrous membrane produced by electrospinning process seems to have excellent biocompatibility, and may be used as a scaffold for bone tissue engineering. Keywords: Biocompatibility, Hard tissue, Biomaterial availability, Bone remodeling, Polylactic acid, ...

  14. The Application of Corals in Bone Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Iraj Nabipour

    2017-05-01

    Full Text Available Natural coral exoskeleton and coralline hydroxyapatite have been used as bone replacement graft for repairing of bone defects in animal models and humans since two decades ago. These bone replacement grafts have an osteoconductive, biodegradable and biocompatible features. Currently, three lines of researches in bone tissue engineering are conducting on corals. Corals have been used for construction of bony composites, stem cells attachments, and the growth factors-scaffold-based approaches. This review have paid to the wide range of coral use in clinical experiments as a bone graft substitute and cell-scaffold-based approaches in bone tissue engineering.

  15. Effect of osteoporosis on fixation of osseointegrated implants in rats.

    Science.gov (United States)

    Li, Yunfeng; He, Sheng; Hua, Yunwei; Hu, Jing

    2017-11-01

    The effect of osteoporosis on implant osseointegration has been widely investigated, whereas osteoporosis may also newly occur in patient with previously osseointegrated implant. This study was designed to investigate the effect of osteoporosis on implant fixation in rats after successful osseointegration had been obtained. Seventy female Sprague-Dawley rats were included, and each animal received two titanium implants in the distal metaphysis of femur bilaterally. Eight weeks later, ten rats were sacrificed to confirm the establishment of implant osseointegration. All left rats were randomly subjected to bilateral ovariectomy (OVX) or sham operation. Three, six, and twelve weeks later, implant osseointegration, peri-implant bone tissue, and biomechanical properties of implant were analyzed. Right femurs with implants were used for micro-CT and histological analysis, and left femurs with implants were used for biomechanical test. Micro-CT, histology, and biomechanical test confirmed the destructive effect of OVX on previously osseointegrated implant in rats; when compared to sham-operated rats, peri-implant bone volume, trabecular architecture, bone-to-implant contact ratio, as well as biomechanical parameters decreased progressively within 12 weeks. Results also indicated that the effect of OVX on undisturbed bone (proximal tibiae) was much stronger than that on peri-implant bone. Osteoporosis produced a progressive negative effect on previously osseointegrated implant in distal femora of rats during 12 weeks. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 2426-2432, 2017. © 2016 Wiley Periodicals, Inc.

  16. Finite Element Simulation and Additive Manufacturing of Stiffness-Matched NiTi Fixation Hardware for Mandibular Reconstruction Surgery

    Directory of Open Access Journals (Sweden)

    Ahmadreza Jahadakbar

    2016-12-01

    Full Text Available Process parameters and post-processing heat treatment techniques have been developed to produce both shape memory and superelastic NiTi using Additive Manufacturing. By introducing engineered porosity, the stiffness of NiTi can be tuned to the level closely matching cortical bone. Using additively manufactured porous superelastic NiTi, we have proposed the use of patient-specific, stiffness-matched fixation hardware, for mandible skeletal reconstructive surgery. Currently, Ti-6Al-4V is the most commonly used material for skeletal fixation devices. Although this material offers more than sufficient strength for immobilization during the bone healing process, the high stiffness of Ti-6Al-4V implants can cause stress shielding. In this paper, we present a study of mandibular reconstruction that uses a dry cadaver mandible to validate our geometric and biomechanical design and fabrication (i.e., 3D printing of NiTi skeletal fixation hardware. Based on the reference-dried mandible, we have developed a Finite Element model to evaluate the performance of the proposed fixation. Our results show a closer-to-normal stress distribution and an enhanced contact pressure at the bone graft interface than would be in the case with Ti-6Al-4V off-the-shelf fixation hardware. The porous fixation plates used in this study were fabricated by selective laser melting.

  17. A customized fixation plate with novel structure designed by topological optimization for mandibular angle fracture based on finite element analysis.

    Science.gov (United States)

    Liu, Yun-Feng; Fan, Ying-Ying; Jiang, Xian-Feng; Baur, Dale A

    2017-11-15

    The purpose of this study was to design a customized fixation plate for mandibular angle fracture using topological optimization based on the biomechanical properties of the two conventional fixation systems, and compare the results of stress, strain and displacement distributions calculated by finite element analysis (FEA). A three-dimensional (3D) virtual mandible was reconstructed from CT images with a mimic angle fracture and a 1 mm gap between two bone segments, and then a FEA model, including volume mesh with inhomogeneous bone material properties, three loading conditions and constraints (muscles and condyles), was created to design a customized plate using topological optimization method, then the shape of the plate was referenced from the stress concentrated area on an initial part created from thickened bone surface for optimal calculation, and then the plate was formulated as "V" pattern according to dimensions of standard mini-plate finally. To compare the biomechanical behavior of the "V" plate and other conventional mini-plates for angle fracture fixation, two conventional fixation systems were used: type A, one standard mini-plate, and type B, two standard mini-plates, and the stress, strain and displacement distributions within the three fixation systems were compared and discussed. The stress, strain and displacement distributions to the angle fractured mandible with three different fixation modalities were collected, respectively, and the maximum stress for each model emerged at the mandibular ramus or screw holes. Under the same loading conditions, the maximum stress on the customized fixation system decreased 74.3, 75.6 and 70.6% compared to type A, and 34.9, 34.1, and 39.6% compared to type B. All maximum von Mises stresses of mandible were well below the allowable stress of human bone, as well as maximum principal strain. And the displacement diagram of bony segments indicated the effect of treatment with different fixation systems. The

  18. Anterior fixation of the axis.

    Science.gov (United States)

    Traynelis, Vincent C; Fontes, Ricardo B V

    2010-09-01

    Although anterior fixation of the axis is not commonly performed, plate fixation of C2 is an important technique for treating select upper cervical traumatic injuries and is also useful in the surgical management of spondylosis. To report the technique and outcomes of C2 anterior plate fixation for a series of patients in which the majority presented with symptomatic degenerative spondylosis. Forty-six consecutive patients underwent single or multilevel fusions over a 7-year period; 30 of these had advanced degenerative disease manifested by myelopathy or deformity. Exposure was achieved with rostral extension of the standard anterior cervical exposure via careful soft tissue dissection, mobilization of the superior thyroid artery, and the use of a table-mounted retractor. It was not necessary to remove the submandibular gland, section the digastric muscle, or make additional skin incisions. Screws were placed an average of 4.6 mm (+/- 2.3 mm) from the inferior C2 endplate with a mean sagittal trajectory of 15.7 degrees (+/- 7.6 degrees). Short- and long-term procedure-related mortality was 4.4%, and perioperative morbidity was 8.9%. Patients remained intubated an average of 2.5 days following surgery. Dysphagia was initially reported by 15.2% of patients but resolved by the 8th postoperative week in all patients. Arthrodesis was achieved in all patients available for long-term follow-up. Multilevel fusions were not associated with longer hospitalization or morbidity. Anterior plate fixation of the axis for degenerative disease can be accomplished with acceptable morbidity employing an extension of the standard anterolateral route.

  19. Smaller Fixation Target Size Is Associated with More Stable Fixation and Less Variance in Threshold Sensitivity.

    Directory of Open Access Journals (Sweden)

    Kazunori Hirasawa

    Full Text Available The aims of this randomized observational case control study were to quantify fixation behavior during standard automated perimetry (SAP with different fixation targets and to evaluate the relationship between fixation behavior and threshold variability at each test point in healthy young participants experienced with perimetry. SAP was performed on the right eyes of 29 participants using the Octopus 900 perimeter, program 32, dynamic strategy. The fixation targets of Point, Cross, and Ring were used for SAP. Fixation behavior was recorded using a wearable eye-tracking glass. All participants underwent SAP twice with each fixation target in a random fashion. Fixation behavior was quantified by calculating the bivariate contour ellipse area (BCEA and the frequency of deviation from the fixation target. The BCEAs (deg2 of Point, Cross, and Ring targets were 1.11, 1.46, and 2.02, respectively. In all cases, BCEA increased significantly with increasing fixation target size (p < 0.05. The logarithmic value of BCEA demonstrated the same tendency (p < 0.05. A positive correlation was identified between fixation behavior and threshold variability for the Point and Cross targets (ρ = 0.413-0.534, p < 0.05. Fixation behavior increased with increasing fixation target size. Moreover, a larger fixation behavior tended to be associated with a higher threshold variability. A small fixation target is recommended during the visual field test.

  20. External fixation to correct tarsal-metatarsal fracture in rock pigeon (Columba livia

    Directory of Open Access Journals (Sweden)

    Leandro Almeida Rui

    Full Text Available ABSTRACT Orthopedic conditions, such as bone fractures, are very common in avian medicine. External fixators have been considered the gold standard for birds, since they allow early movement of the limbs and minimal invasive surgery. Fractures in several bones have been successfully treated in pigeons. However, to the best of our knowledge, this case represents the first report of successful surgical repair of tarsal-metatarsal fracture in rock pigeon. External fixator was made with four 24G catheters, being inserted manually proximal and distal to the fracture and connected with polymerizable acrylic. Radiographic consolidation of fracture was observed 60 days post-surgery and anti-inflammatory and antibiotic protocols were successful on avoiding pain and infection during surgery and bone healing.

  1. Ilizarov fixator in management of nonunited and infected tibial shaft fractures

    Directory of Open Access Journals (Sweden)

    Abhinay Singh

    2015-01-01

    Full Text Available Background: Management of nonunion with bony defect and infection in long bones is a challenging problem for orthopedic surgeons. Objectives: Evaluation of Ilizarov circular fixation method of treatment for the management of nonunited and infected fractures of tibia. Materials and Methods: This prospective study was conducted in a tertiary care hospital of eastern region of India on 30 subjects in a time span of 3 years after taking clearance of the Institutional Ethical Committee and informed consent of the patients. Results: All the patients had infected nonunion before undergoing Ilizarov procedure. Following initial injury, 22 patients were treated with external fixation and 8 cases were treated with internal fixation. At the time of presentation, 18 patients had infected gap nonunion, 5 patients had infected hypertrophic and 2 patients had atrophic nonunion. The Ilizarov fixator was kept for an average period of 303.7 days. Based on Association for the Study and Application of Methods of Ilizarov scoring system, bony and functional results were assessed. The bony result was excellent in 16 patients, good in eight, fair in four and poor in two. The functional result was excellent in 10 patients, good in 16, fair in two, poor in two. Conclusion: Ilizarov ring fixator still remains an excellent treatment modality for tibial nonunion with a defect, regarding bone union, deformity correction, infection eradication, limb-length achievement, and limb function.

  2. Is staged external fixation a valuable strategy for war injuries to the limbs?

    Science.gov (United States)

    Lerner, Alexander; Fodor, Lucian; Soudry, Michael

    2006-07-01

    High-energy weapons or blast injuries usually result in substantial tissue damage and are serious medical and public health problems. We report our experience with staged external fixation for war injuries to the extremities. Forty-seven patients with 64 high-energy limb fractures caused by war weapons were retrospectively reviewed. The fractures were associated with severe soft tissue damage. There were 14 Gustilo-Anderson Type IIIA fractures, 40 Type IIIB fractures, and 10 Type IIIC fractures. Soft tissue débridement followed by axial realignment of the fractured bones with immediate skeletal stabilization using the AO/ASIF unilateral tubular external fixator was performed on the day of admission. The primary tubular fixators were exchanged 5 to 7 days later for Ilizarov frames. Delayed primary closure, skin grafts, or flaps were used for soft tissue coverage. The mean followup was 40 months, and the Ilizarov/hybrid external fixator was the definitive treatment in all patients. Bone union was achieved at an average of 8 months in 58 (90.6%) fractures. Three patients had nonunions and one patient required an amputation. Two patients were lost to followup. Staged external fixation is a valuable strategy for treatment of war injuries to the extremities. Therapeutic study, Level IV. See the Guidelines for Authors for a complete description of levels of evidence.

  3. Treatment of neglected elbow dislocations with the help of hinged external fixator: Report of two cases

    Directory of Open Access Journals (Sweden)

    Özgür Karakoyun

    2014-06-01

    Full Text Available Elbow dislocations are cases that have to be treated in emergency conditions. Neglected elbow dislocations are seen very rarely and the treatment of such cases are more complicated than acute cases. We present two cases of neglected elbow dislocations treated with open reduction and hinged external fixators. Case 1: 23 year old female patient had a neglected posterior dislocation of left elbow with ipsilateral humeral shaft fracture caused by car accident. The patient was treated after 3 months of initial trauma. We have performed open reduction for the joint. After that we fixed the joint whit a hinged external fixator. The humeral shaft fracture was also fixed with the components of the external fixator. Case 2: 33 year male patient had a large bone and soft tissue defect around the left elbow accompanying with neglected medial elbow dislocation. He presented to our clinic with a delay of 2 months. The patient was treated with open reduction and hinged external fixator after reconstruction of bone defect of distal humerus. Conclusion: The treatment of neglected cases is quite challenging. Open reduction and external fixation has satisfactory results in treatment of late cases of elbow dislocation with the possibility of early rehabilitation. This method can be considered as an option for such cases. J Clin Exp Invest 2014; 5 (2: 443-446

  4. Pedicle screw-rod fixation: a feasible treatment for dogs with severe degenerative lumbosacral stenosis.

    Science.gov (United States)

    Tellegen, Anna R; Willems, Nicole; Tryfonidou, Marianna A; Meij, Björn P

    2015-12-07

    Degenerative lumbosacral stenosis is a common problem in large breed dogs. For severe degenerative lumbosacral stenosis, conservative treatment is often not effective and surgical intervention remains as the last treatment option. The objective of this retrospective study was to assess the middle to long term outcome of treatment of severe degenerative lumbosacral stenosis with pedicle screw-rod fixation with or without evidence of radiological discospondylitis. Twelve client-owned dogs with severe degenerative lumbosacral stenosis underwent pedicle screw-rod fixation of the lumbosacral junction. During long term follow-up, dogs were monitored by clinical evaluation, diagnostic imaging, force plate analysis, and by using questionnaires to owners. Clinical evaluation, force plate data, and responses to questionnaires completed by the owners showed resolution (n = 8) or improvement (n = 4) of clinical signs after pedicle screw-rod fixation in 12 dogs. There were no implant failures, however, no interbody vertebral bone fusion of the lumbosacral junction was observed in the follow-up period. Four dogs developed mild recurrent low back pain that could easily be controlled by pain medication and an altered exercise regime. Pedicle screw-rod fixation offers a surgical treatment option for large breed dogs with severe degenerative lumbosacral stenosis with or without evidence of radiological discospondylitis in which no other treatment is available. Pedicle screw-rod fixation alone does not result in interbody vertebral bone fusion between L7 and S1.

  5. Kinetics of transfemoral amputees with osseointegrated fixation performing common activities of daily living.

    Science.gov (United States)

    Lee, Winson C C; Frossard, Laurent A; Hagberg, Kerstin; Haggstrom, Eva; Brånemark, Rickard; Evans, John H; Pearcy, Mark J

    2007-07-01

    Direct anchorage of a lower-limb prosthesis to the bone through an implanted fixation (osseointegration) has been suggested as an excellent alternative for amputees experiencing complications from use of a conventional socket-type prosthesis. However, an attempt needs to be made to optimize the mechanical design of the fixation and refine the rehabilitation program. Understanding the load applied on the fixation is a crucial step towards this goal. The load applied on the osseointegrated fixation of nine transfemoral amputees was measured using a load transducer, when the amputees performed activities which included straight-line level walking, ascending and descending stairs and a ramp as well as walking around a circle. Force and moment patterns along each gait cycle, magnitudes and time of occurrence of the local extrema of the load, as well as impulses were analysed. Managing a ramp and stairs, and walking around a circle did not produce a significant increase (P>0.05) in load compared to straight-line level walking. The patterns of the moment about the medio-lateral axis were different among the six activities which may reflect the different strategies used in controlling the prosthetic knee joint. This study increases the understanding of biomechanics of bone-anchored osseointegrated prostheses. The loading data provided will be useful in designing the osseointegrated fixation to increase the fatigue life and to refine the rehabilitation protocol.

  6. Nonunion of the humerus following intramedullary nailing treated by Ilizarov hybrid fixation.

    Science.gov (United States)

    Raschke, M; Khodadadyan, C; Maitino, P D; Hoffmann, R; Südkamp, N P

    1998-02-01

    A case of a posttraumatic humeral shaft nonunion, after intramedullary stabilization with a Seidel nail, is presented. Severe osteoporosis, an oligotrophic nonunion, subclinical infection, and adhesive capsulitis of the glenohumeral joint were present. Due to the subclinical infection and severe osteoporosis, other major invasive therapeutic options such as intramedullary nailing or compression plating and bone grafting were not applicable. Nonoperative treatment was also not indicated secondary to the pain and disability present. External fixation with the Ilizarov hybrid fixator seemed to offer a minimally invasive treatment modality without the need of additional bone grafting. After fourteen weeks of "callus massage," consisting of closed alternating compression and distraction with an Ilizarov hybrid fixator, osseous consolidation was achieved. Eight months after Ilizarov treatment the patient had returned to work as a mechanic. At the one-year follow-up examination, the patient presented pain free and with near normal shoulder and elbow motion, with stable osseous consolidation of the humerus. In some cases of nonunion of the humerus shaft, when standard treatment options are not recommended, external fixation with an Ilizarov hybrid fixator may offer a salvage procedure with a successful clinical outcome.

  7. Biodegradability engineering of biodegradable Mg alloys: Tailoring the electrochemical properties and microstructure of constituent phases

    Science.gov (United States)

    Cha, Pil-Ryung; Han, Hyung-Seop; Yang, Gui-Fu; Kim, Yu-Chan; Hong, Ki-Ha; Lee, Seung-Cheol; Jung, Jae-Young; Ahn, Jae-Pyeong; Kim, Young-Yul; Cho, Sung-Youn; Byun, Ji Young; Lee, Kang-Sik; Yang, Seok-Jo; Seok, Hyun-Kwang

    2013-01-01

    Crystalline Mg-based alloys with a distinct reduction in hydrogen evolution were prepared through both electrochemical and microstructural engineering of the constituent phases. The addition of Zn to Mg-Ca alloy modified the corrosion potentials of two constituent phases (Mg + Mg2Ca), which prevented the formation of a galvanic circuit and achieved a comparable corrosion rate to high purity Mg. Furthermore, effective grain refinement induced by the extrusion allowed the achievement of much lower corrosion rate than high purity Mg. Animal studies confirmed the large reduction in hydrogen evolution and revealed good tissue compatibility with increased bone deposition around the newly developed Mg alloy implants. Thus, high strength Mg-Ca-Zn alloys with medically acceptable corrosion rate were developed and showed great potential for use in a new generation of biodegradable implants. PMID:23917705

  8. Pectoralis Major Repair With Unicortical Button Fixation And Suture Tape.

    Science.gov (United States)

    Sanchez, Anthony; Ferrari, Marcio B; Frangiamore, Salvatore J; Sanchez, George; Kruckeberg, Bradley M; Provencher, Matthew T

    2017-06-01

    Although injuries of the pectoralis major muscle are generally uncommon, ruptures of the pectoralis major are occasionally seen in younger, more active patients who participate in weightlifting activities. These injuries usually occur during maximal contraction of the muscle, while in extension and external rotation. In the case of a rupture, operative treatment is advocated especially in young, active patients regardless of the chronicity of the injury. Various surgical techniques for reattachment of the avulsed tendon have been described, but bone tunnel and suture anchor repair techniques are most widely used. In this Technical Note, we present our preferred technique for acute pectoralis major rupture repair involving use of cortical buttons for tendon stump-to-bone fixation.

  9. Management of complex femoral nonunion with monorail external fixator: A prospective study.

    Science.gov (United States)

    Agrawal, Hemendra Kumar; Garg, Mohit; Singh, Balvinder; Jaiman, Ashish; Khatkar, Vipin; Khare, Shailender; Batra, Sumit; Sharma, Vinod Kumar

    2016-01-01

    To evaluate 30 patients who underwent distraction osteogenesis with monorail external fixator for complex femoral nonunion. Complex femoral nonunion includes infective non-union, gap nonunion, and limb-length discrepancy secondary to traumatic bone loss, which needs specialized treatment to ensure the functional integrity of femoral bone. 30 patients, including 28 male and 2 female (aged 22-62 years) patients, underwent surgical debridement followed by bone transport with monorail fixator. The lengthening index, radiographic consolidation index, functional status, bone healing, and various problems, obstacles, and complications encountered during the treatment were assessed. Patients underwent a mean of 2.2 (range 1-4) surgeries before presentation. The mean bone defect after surgical debridement was 5.83 cm (range 2-16 cm). The mean treatment duration was 204.7 days (range 113-543 days). The mean lengthening index was 13.06 days/cm with range from 12 to 16 days/cm. Mean maturation index was 23.51 days/cm with range from 17 to 45.5 days/cm. In our study, bone result was excellent in 17, good in 9, fair in 3, and poor in 1 patient. In our study functional outcome is excellent in 9 [30%], good in 14 [46.67%], fair in 5, and poor in 2 patients. In our study, we encountered 34 problems, 17 obstacles, and 8 complications. We concluded that monorail external fixator is an effective treatment option for complex nonunion femoral shaft fracture and its functional outcome is comparable with any other treatment options. Lack of complications and its effectiveness makes monorail external fixator the treatment of choice for complex nonunion femoral shaft.

  10. REVERSE ENGINEERING OF THE MITKOVIC TYPE INTERNAL FIXATOR FOR LATERAL TIBIAL PLATEAU

    Directory of Open Access Journals (Sweden)

    Nikola Vitković

    2015-12-01

    Full Text Available In orthopaedic surgery it is very important to use proper fixation techniques in the treatment of various medical conditions, i.e. bone fractures or other traumas. If an internal fixation method, such as plating, is required, it is possible to use Dynamic Compression Plates (DCP or Locking Compression Plates (LCP and their variants. For DCP implants it is important to match the patient's bone shape with the most possible accuracy, so that the most frequent implant bending is applied in the surgery. For LCP implants it is not so important to match the patient’s bone shape, but additional locking screw holes are required. To improve the geometrical accuracy and anatomical correctness of the shape of DCP and to improve the LCP geometric definition, new geometrical modelling methods for the Mitkovic type internal fixator for Lateral Tibia Plateau are developed and presented in this research. The presented results are quite promising; it can be concluded that these methods can be applied to the creation of geometrical models of internal fixator customized for the given patient or optimized for a group of patients with required geometrical accuracy and morphological correctness.

  11. ANAEROBIC BIODEGRADATION OF A BIODEGRADABLE MATERIAL UNDER ANAEROBIC - THERMOPHILIC DIGESTION

    Directory of Open Access Journals (Sweden)

    RICARDO CAMACHO-MUÑOZ

    2014-12-01

    Full Text Available This paper dertermined the anaerobic biodegradation of a polymer obtained by extrusion process of native cassava starch, polylactic acid and polycaprolactone. Initially a thermophilic - methanogenic inoculum was prepared from urban solid waste. The gas final methane concentration and medium’s pH reached values of 59,6% and 7,89 respectively. The assay assembly was carried out according ASTM D5511 standard. The biodegradation percent of used materials after 15 day of digestion were: 77,49%, 61,27%, 0,31% for cellulose, sample and polyethylene respectively. Due cellulose showed biodegradation levels higher than 70% it’s deduced that the inoculum conditions were appropriate. A biodegradation level of 61,27%, 59,35% of methane concentration in sample’s evolved gas and a medium’s finale pH of 7,71 in sample’s vessels, reveal the extruded polymer´s capacity to be anaerobically degraded under thermophilic- high solid concentration conditions.

  12. Comparison of two-staged ORIF and limited internal fixation with external fixator for closed tibial plafond fractures.

    Science.gov (United States)

    Wang, Cheng; Li, Ying; Huang, Lei; Wang, Manyi

    2010-10-01

    To compare the results of two-staged open reduction and internal fixation (ORIF) and limited internal fixation with external fixator (LIFEF) for closed tibial plafond fractures. From January 2005 to June 2007, 56 patients with closed type B3 or C Pilon fractures were randomly allocated into groups I and II. Two-staged ORIF was performed in group I and LIFEF in group II. The outcome measures included bone union, nonunion, malunion, pin-tract infection, wound infection, osteomyelitis, ankle joint function, etc. These postoperative data were analyzed with Statistical Package for Social Sciences (SPSS) 13.0. Incidence of superficial soft tissue infection (involved in wound infection or pin-tract infection) in group I was lower than that in group II (P delayed union, and arthritis symptoms, with no statistical significance. Both groups resulted similar ankle joint function. Logistic regression analysis indicated that smoking and fracture pattern were the two factors significantly influencing the final outcomes. In the treatment of closed tibial plafond fractures, both two-staged ORIF and LIFEF offer similar results. Patients undergo LIFEF carry significantly greater radiation exposure and higher superficial soft tissue infection rate (usually occurs on pin tract and does not affect the final outcomes).

  13. History of internal fixation (part 1): early developments with wires and plates before World War II.

    Science.gov (United States)

    Hernigou, Philippe; Pariat, Jacques

    2017-06-01

    Though the date at which an orthopaedic implant was first used cannot be ascertained with any certainty, the fixation of bone fracture using an iron wire was reported for the first time in a French manuscript in 1775. The first techniques of operative fracture treatment were developed at the end of the 18th and in the beginning of the 19th centuries. The use of cerclage wires to fix fractures was the most frequent fixation at this time. The French Berenger-Feraud (1832-1900) had written the first book on internal fixation. However internal fixation of fractures could not become a practical method before Lister had ensured the safety of open reduction and internal fixation in the treatment of fractures. Lister is not only the father of asepsis; he also used metal wires to fix even closed fractures. The first internal fixation by means of a plate and screws was described by Carl Hansmann in 1858 in Hamburg. Nevertheless, Arbuthnot Lane (1892) and Albin Lambotte (1905) are considered to be the founders of this method, which was further developed by Sherman in the first part of the 20th century.

  14. The effects of fixation of the ulna to the radius in young foals

    International Nuclear Information System (INIS)

    Clem, M.F.; DeBowes, R.M.; Douglass, J.P.; Leipold, H.W.; Chalman, J.A.

    1988-01-01

    The effects of radioulnar fixation were studied in 21 Quarter horse foals by applying a bone plate to the caudal aspect of the proximal part of the ulna, with screws engaging both the radius and the ulna. The plates were applied at 1 month of age in six foals (group I), 5 months of age in six foals (group II), and 7 months of age in three foals (group III). Six foals underwent sham operations at 1 month of age to serve as controls (group IV). Ulnar dysplasia and elbow subluxation developed in all treated foals. The magnitude of ulnar dysplasia was inversely related to the patient's age at fixation and was accompanied by degenerative joint disease and lameness in foals undergoing fixation at 1 and 5 months of age. Removal of the fixation appliances 16 weeks after implantation in three foals from each of groups I and II failed to reverse the degree of ulnar dysplasia. Although foals undergoing fixation at 7 months of age (group III) were not lame, radiographic evidence of subluxation and subtle degenerative changes in the articular cartilage of the treated elbow did develop. Recommendations for avoidance of radioulnar fixation were developed from these observations

  15. Fixation method does not affect restoration of rotation center in hip replacements: A single-site retrospective study

    Directory of Open Access Journals (Sweden)

    Wegner Alexander

    2012-06-01

    Full Text Available Abstract Background Aseptic loosening is one of the greatest problems in hip replacement surgery. The rotation center of the hip is believed to influence the longevity of fixation. The aim of this study was to compare the influence of cemented and cementless cup fixation techniques on the position of the center of rotation because cemented cup fixation requires the removal of more bone for solid fixation than the cementless technique. Methods We retrospectively compared pre- and post-operative positions of the hip rotation center in 25 and 68 patients who underwent artificial hip replacements in our department in 2007 using cemented or cementless cup fixation, respectively, with digital radiographic image analysis. Results The mean horizontal and vertical distances between the rotation center and the acetabular teardrop were compared in radiographic images taken pre- and post-operatively. The mean horizontal difference was −2.63 mm (range: -11.00 mm to 10.46 mm, standard deviation 4.23 mm for patients who underwent cementless fixation, and −2.84 mm (range: -10.87 to 5.30 mm, standard deviation 4.59 mm for patients who underwent cemented fixation. The mean vertical difference was 0.60 mm (range: -20.15 mm to 10.00 mm, standard deviation 3.93 mm and 0.41 mm (range: -9.26 mm to 6.54 mm, standard deviation 3.58 mm for the cementless and cemented fixation groups, respectively. The two fixation techniques had no significant difference on the position of the hip rotation center in the 93 patients in this study. Conclusions The hip rotation center was similarly restored using either the cemented or cementless fixation techniques in this patient cohort, indicating that the fixation technique itself does not interfere with the position of the center of rotation. To completely answer this question further studies with more patients are needed.

  16. Alveolar bone tissue engineering using composite scaffolds for drug delivery

    Directory of Open Access Journals (Sweden)

    Tomonori Matsuno

    2010-08-01

    Full Text Available For many years, bone graft substitutes have been used to reconstruct bone defects in orthopedic and dental fields. However, synthetic bone substitutes such as hydroxyapatite or β-tricalcium phosphate have no osteoinductive or osteogenic abilities. Bone tissue engineering has also been promoted as an alternative approach to regenerating bone tissue. To succeed in bone tissue engineering, osteoconductive scaffolding biomaterials should provide a suitable environment for osteogenic cells and provide local controlled release of osteogenic growth factors. In addition, the scaffold for the bone graft substitute should biodegrade to replace the newly formed bone. Recent advances in bone tissue engineering have allowed the creation of composite scaffolds with tailored functional properties. This review focuses on composite scaffolds that consist of synthetic ceramics and natural polymers as drug delivery carriers for alveolar bone tissue engineering.

  17. Surface modification of implants in long bone.

    Science.gov (United States)

    Förster, Yvonne; Rentsch, Claudia; Schneiders, Wolfgang; Bernhardt, Ricardo; Simon, Jan C; Worch, Hartmut; Rammelt, Stefan

    2012-01-01

    Coatings of orthopedic implants are investigated to improve the osteoinductive and osteoconductive properties of the implant surfaces and thus to enhance periimplant bone formation. By applying coatings that mimic the extracellular matrix a favorable environment for osteoblasts, osteoclasts and their progenitor cells is provided to promote early and strong fixation of implants. It is known that the early bone ongrowth increases primary implant fixation and reduces the risk of implant failure. This review presents an overview of coating titanium and hydroxyapatite implants with components of the extracellular matrix like collagen type I, chondroitin sulfate and RGD peptide in different small and large animal models. The influence of these components on cells, the inflammation process, new bone formation and bone/implant contact is summarized.

  18. The initial safe range of motion of the ankle joint after three methods of internal fixation of simulated fractures of the medial malleolus.

    Science.gov (United States)

    Shimamura, Yoshio; Kaneko, Kazuo; Kume, Kazuhiko; Maeda, Mutsuhiro; Iwase, Hideaki

    2006-07-01

    Previous studies have demonstrated the safe passive range of ankle motion for inter-bone stiffness after internal fixation under load but there is a lack of information about the safe range of ankle motion for early rehabilitation in the absence of loading. The present study was designed to assess the effect of ankle movement on inter-bone displacement characteristics of medial malleolus fractures following three types of internal fixation to determine the safe range of motion. Five lower legs obtained during autopsy were used to assess three types of internal fixation (two with Kirschner-wires alone; two with Kirschner-wires plus tension band wiring; and, one with an AO/ASIF malleolar screw alone). Following a simulated fracture by sawing through the medial malleolus the displacement between the fractured bone ends was measured during a passive range of movement with continuous monitoring using omega (Omega) shaped transducers and a biaxial flexible goniometer. Statistical analysis was performed with repeated measures analysis of variance. Inter-bone displacement was not proportional to the magnitude of movement throughout the range of ankle motion as, when separation exceeded 25 microm, there was increasingly wide separation as plantar-flexion or dorsal-flexion was increased. There was no statistical significant difference between the small amount of inter-bone displacement observed with three types of fixation within the safe range of dorsal-flexion and plantar-flexion for early rehabilitation. However the inter-bone separation when fixation utilized two Kirschner-wires alone tended to be greater than when using the other two types of fixation during dorsal-flexion and eversion. The present study revealed a reproducible range of ankle motion for early rehabilitation which was estimated to be within the range of 20 degrees of dorsal-flexion and 10 degrees of plantar-flexion without eversion. Also, internal fixation with two Kirschner-wires alone does not seem to

  19. Bone density and anisotropy affect periprosthetic cement and bone stresses after anatomical glenoid replacement: A micro finite element analysis.

    Science.gov (United States)

    Chevalier, Yan; Santos, Inês; Müller, Peter E; Pietschmann, Matthias F

    2016-06-14

    Glenoid loosening is still a main complication for shoulder arthroplasty. We hypothesize that cement and bone stresses potentially leading to fixation failure are related not only to glenohumeral conformity, fixation design or eccentric loading, but also to bone volume fraction, cortical thickness and degree of anisotropy in the glenoid. In this study, periprosthetic bone and cement stresses were computed with micro finite element models of the replaced glenoid depicting realistic bone microstructure. These models were used to quantify potential effects of bone microstructural parameters under loading conditions simulating different levels of glenohumeral conformity and eccentric loading simulating glenohumeral instability. Results show that peak cement stresses were achieved near the cement-bone interface in all loading schemes. Higher stresses within trabecular bone tissue and cement mantle were obtained within specimens of lower bone volume fraction and in regions of low anisotropy, increasing with decreasing glenohumeral conformity and reaching their maxima below the keeled design when the load is shifted superiorly. Our analyses confirm the combined influences of eccentric load shifts with reduced bone volume fraction and anisotropy on increasing periprosthetic stresses. They finally suggest that improving fixation of glenoid replacements must reduce internal cement and bone tissue stresses, in particular in glenoids of low bone density and heterogeneity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Postoperative complications associated with external skeletal fixators in cats.

    Science.gov (United States)

    Beever, Lee; Giles, Kirsty; Meeson, Richard

    2017-07-01

    The objective of this study was to quantify complications associated with external skeletal fixators (ESFs) in cats and to identify potential risk factors. A retrospective review of medical records and radiographs following ESF placement was performed. Case records of 140 cats were reviewed; fixator-associated complications (FACs) occurred in 19% of cats. The region of ESF placement was significantly associated with complication development. Complications developed most frequently in the femur (50%), tarsus (35%) and radius/ulna (33%). Superficial pin tract infection (SPTI) and implant failure accounted for 45% and 41% of all FACs, respectively. SPTI occurred more frequently in the femur, humerus and tibia, with implant failure more frequent in the tarsus. No association between breed, age, sex, weight, fracture type (open vs closed), ESF classification, number of pins per bone segment, degree of fracture load sharing, and the incidence or type of FAC was identified. No association between region of placement, breed, age, sex, weight, fracture type (open vs closed), ESF classification, number of pins per bone segment, fracture load sharing and the time to complication development was identified. Complication development is not uncommon in cats following ESF placement. The higher complication rate in the femur, tarsus and radius/ulna should be considered when reviewing options for fracture management. However, cats appear to have a lower rate of pin tract infections than dogs.

  1. Biodegradable congress 2012; Bioschmierstoff-Kongress 2012

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-11-01

    Within the Guelzower expert discussions at 5th and 6th June, 2012 in Oberhausen (Federal Republic of Germany) the following lectures were held: (1) Promotion of biodegradable lubricants by means of research and development as well as public relations (Steffen Daebeler); (2) Biodegradable lubricants - An overview of the advantages and disadvantages of the engaged product groups (Hubertus Murrenhoff); (3) Standardization of biodegradable lubricants - CEN/DIN standard committees - state of the art (Rolf Luther); (4) Market research for the utilization of biodegradable lubricants and means of proof of sustainability (Norbert Schmitz); (5) Fields of application for high performance lubricants and requirements upon the products (Gunther Kraft); (6) Investigations of biodegradable lubricants in rolling bearings and gears (Christoph Hentschke); (7) Biodegradable lubricants in central lubrication systems Development of gears and bearings of offshore wind power installations (Reiner Wagner); (8) Investigations towards environmental compatibility of biodegradable lubricants used in offshore wind power installations (Tolf Schneider); (9) Development of glycerine based lubricants for the industrial metalworking (Harald Draeger); (10) Investigations and utilization of biodegradable oils as electroinsulation oils in transformers (Stefan Tenbohlen); (11) Operational behaviour of lubricant oils in vegetable oil operation and Biodiesel operation (Horst Hamdorf); (12) Lubrication effect of lubricating oil of the third generation (Stefan Heitzig); (13) Actual market development from the view of a producer of biodegradable lubricants (Frank Lewen); (14) Utilization of biodegradable lubricants in forestry harvesters (Guenther Weise); (15) New biodegradable lubricants based on high oleic sunflower oil (Otto Botz); (16) Integrated fluid concept - optimized technology and service package for users of biodegradable lubricants (Juergen Baer); (17) Utilization of a bio oil sensor to control

  2. [Preparation of nano-nacre artificial bone].

    Science.gov (United States)

    Chen, Jian-ting; Tang, Yong-zhi; Zhang, Jian-gang; Wang, Jian-jun; Xiao, Ying

    2008-12-01

    To assess the improvements in the properties of nano-nacre artificial bone prepared on the basis of nacre/polylactide acid composite artificial bone and its potential for clinical use. The compound of nano-scale nacre powder and poly-D, L-lactide acid (PDLLA) was used to prepare the cylindrical hollow artificial bone, whose properties including raw material powder scale, pore size, porosity and biomechanical characteristics were compared with another artificial bone made of micron-scale nacre powder and PDLLA. Scanning electron microscope showed that the average particle size of the nano-nacre powder was 50.4-/+12.4 nm, and the average pore size of the artificial bone prepared using nano-nacre powder was 215.7-/+77.5 microm, as compared with the particle size of the micron-scale nacre powder of 5.0-/+3.0 microm and the pore size of the resultant artificial bone of 205.1-/+72.0 microm. The porosities of nano-nacre artificial bone and the micron-nacre artificial bone were (65.4-/+2.9)% and (53.4-/+2.2)%, respectively, and the two artificial bones had comparable compressive strength and Young's modulus, but the flexural strength of the nano-nacre artificial bone was lower than that of the micro-nacre artificial bone. The nano-nacre artificial bone allows better biodegradability and possesses appropriate pore size, porosity and biomechanical properties for use as a promising material in bone tissue engineering.

  3. Overcoming fixation with repeated memory suppression.

    Science.gov (United States)

    Angello, Genna; Storm, Benjamin C; Smith, Steven M

    2015-01-01

    Fixation (blocks to memories or ideas) can be alleviated not only by encouraging productive work towards a solution, but, as the present experiments show, by reducing counterproductive work. Two experiments examined relief from fixation in a word-fragment completion task. Blockers, orthographically similar negative primes (e.g., ANALOGY), blocked solutions to word fragments (e.g., A_L_ _GY) in both experiments. After priming, but before the fragment completion test, participants repeatedly suppressed half of the blockers using the Think/No-Think paradigm, which results in memory inhibition. Inhibiting blockers did not alleviate fixation in Experiment 1 when conscious recollection of negative primes was not encouraged on the fragment completion test. In Experiment 2, however, when participants were encouraged to remember negative primes at fragment completion, relief from fixation was observed. Repeated suppression may nullify fixation effects, and promote creative thinking, particularly when fixation is caused by conscious recollection of counterproductive information.

  4. Implant failure in osteosynthesis of fractures of long bones ...

    African Journals Online (AJOL)

    Patients who had open operative treatment of fractures of long bones were reviewed retrospectively to identify the incidence of and risk factors for implant failure. One hundred and five patients had open reduction and internal fixation of 117 fractures of long bones, out of which four patients suffered implant failure.

  5. Relative motion at the bone-prosthesis interface

    NARCIS (Netherlands)

    Keja, M.; Wevers, H.W.; Siu, D.; Grootenboer, H.J.

    1994-01-01

    Bone ingrowth in porous surfaces of human joint implants is a desired condition for long-term fixation in patients who are physically active (such as in sport or work). It is generally recognized that little actual bone ingrowth occurs. The best clinical results report between 10 and 20% of the

  6. Osteoporotic rat models for evaluation of osseointegration of bone implants

    NARCIS (Netherlands)

    Alghamdi, H.S.A.; Beucken, J.J.J.P van den; Jansen, J.A.

    2014-01-01

    Osseointegration of dental and orthopedic bone implants is the important process that leads to mechanical fixation of implants and warrants implant functionality. In view of increasing numbers of osteoporotic patients, bone implant surface optimization strategies with instructive and drug-loading

  7. Biodegradable poly(lactic acid)

    Indian Academy of Sciences (India)

    The fabrication of biodegradable poly(lactic acid) (PLA) microspheres containing total alkaloids of Caulis sinomenii was investigated. The formation, diameter, morphology and properties of the microspheres were characterized using Fourier transform infrared spectroscopy (FT–IR), laser particle size analyser and scanning ...

  8. Nanocomposites Based on Biodegradable Polymers

    Directory of Open Access Journals (Sweden)

    Ilaria Armentano

    2018-05-01

    Full Text Available In the present review paper, our main results on nanocomposites based on biodegradable polymers (on a time scale from 2010 to 2018 are reported. We mainly focused our attention on commercial biodegradable polymers, which we mixed with different nanofillers and/or additives with the final aim of developing new materials with tunable specific properties. A wide list of nanofillers have been considered according to their shape, properties, and functionalization routes, and the results have been discussed looking at their roles on the basis of different adopted processing routes (solvent-based or melt-mixing processes. Two main application fields of nanocomposite based on biodegradable polymers have been considered: the specific interaction with stem cells in the regenerative medicine applications or as antimicrobial materials and the active role of selected nanofillers in food packaging applications have been critically revised, with the main aim of providing an overview of the authors’ contribution to the state of the art in the field of biodegradable polymeric nanocomposites.

  9. Biodegradable polymeric prodrugs of naltrexone

    NARCIS (Netherlands)

    Bennet, D.B.; Li, X.; Adams, N.W.; Kim, S.W.; Hoes, C.J.T.; Hoes, C.J.T.; Feijen, Jan

    1991-01-01

    The development of a biodegradable polymeric drug delivery system for the narcotic antagonist naltrexone may improve patient compliance in the treatment of opiate addiction. Random copolymers consisting of the ¿-amino acids N5-(3-hydroxypropyl--glutamine and -leucine were synthesized with equimolar

  10. Ilizarov bone transport versus fibular graft for reconstruction of tibial bone defects in children.

    Science.gov (United States)

    Abdelkhalek, Mostafa; El-Alfy, Barakat; Ali, Ayman M

    2016-11-01

    The aim of this study was to compare the results of treatment of segmental tibial defects in the pediatric age group using an Ilizarov external fixator versus a nonvascularized fibular bone graft. This study included 24 patients (age range from 5.5 to 15 years) with tibial bone defects: 13 patients were treated with bone transport (BT) and 11 patients were treated with a nonvascularized fibular graft (FG). The outcome parameters were bone results (union, deformity, infection, leg-length discrepancy) and functional results: external fixation index and external fixation time. In group A (BT), one patient developed refracture at the regenerate site, whereas, in group B (FG), after removal of the external fixator, one of the FGs developed a stress fracture. The external fixator time in group A was 10.7 months (range 8-14.5) versus 7.8 months (range 4-11.5 months) in group B (FG). In group A (BT), one patient had a limb-length discrepancy (LLD), whereas, in group B (FG), three patients had LLD. The functional and bone results of the Ilizarov BT technique were excellent in 23.1 and 30.8%, good in 38.5 and 46.2, fair in 30.8 and 15.4, and poor in 7.6 and 7.6%, respectively. The poor functional result was related to the poor bone result because of prolonged external fixator time resulting in significant pain, limited ankle motion, whereas the functional and bone results of fibular grafting were excellent in 9.1 and 18.2%, good in 63.6 and 45.5%, fair in 18.2 and 27.2%, and poor in 9.1 and 9.1%, respectively. Segmental tibial defects can be effectively treated with both methods. The FG method provides satisfactory results, with early removal of the external fixator. However, it had a limitation in patients with severe infection and those with LLD. Also, it requires a long duration of limb bracing until adequate hypertrophy of the graft. The Ilizarov method has the advantages of early weight bearing, treatment of postinfection bone defect in a one-stage surgery, and the

  11. Management of paediatric tibial fractures using two types of circular external fixator: Taylor spatial frame and Ilizarov circular fixator.

    Science.gov (United States)

    Tafazal, Suhayl; Madan, Sanjeev S; Ali, Farhan; Padman, Manoj; Swift, Simone; Jones, Stanley; Fernandes, James A

    2014-05-01

    The use of circular fixators for the treatment of tibial fractures is well established in the literature. The aim of this study was to compare the Ilizarov circular fixator (ICF) with the Taylor spatial frame (TSF) in terms of treatment results in consecutive patients with tibial fractures that required operative management. A retrospective analysis of patient records and radiographs was performed to obtain patient data, information on injury sustained, the operative technique used, time duration in frame, healing time and complications of treatment. The minimum follow-up was 24 months. Ten patients were treated with ICF between 2000 and 2005, while 15 patients have been treated with TSF since 2005. Two of the 10 treated with ICF and 5 of the 15 treated with TSF were open fractures. All patients went on to achieve complete union. Mean duration in the frame was 12.7 weeks for ICF and 14.8 weeks for the TSF group. Two patients in the TSF group had delayed union and required additional procedures including adjustment of fixator and bone grafting. There was one malunion in the TSF group that required osteotomy and reapplication of frame. There were seven and nine pin-site infections in the ICF and TSF groups, respectively, all of which responded to antibiotics. There were no refractures in either group. In an appropriate patient, both types of circular fixator are equally effective but have different characteristics, with TSF allowing for postoperative deformity correction. Of concern are the two cases of delayed union in the TSF group, all in patients with high-energy injuries. We feel another larger study is required to provide further clarity in this matter. Level II-comparative study.

  12. Polymeric media for tritium fixation. Supplement I

    International Nuclear Information System (INIS)

    Franz, J.A.; Burger, L.L.

    1976-01-01

    Procedures for the fixation of tritium as TH or THO in two different polymeric media are described. The complete procedure for THO fixation in a polyureylene-polyurethane polumer, including polymer molding procedures and leach tests is presented. The catalytic tritiation of polystyrene under very mild conditions using a rhodium catalyst is also described. Thermal stabilities and cost estimates for the polymers examined under this program are discussed. Organic polymers were found to have attractive features for the fixation and storage of concentrated tritium wastes due to the convenience of fixation procedures and favorable properties of the resulting media

  13. Modeling fixation locations using spatial point processes.

    Science.gov (United States)

    Barthelmé, Simon; Trukenbrod, Hans; Engbert, Ralf; Wichmann, Felix

    2013-10-01

    Whenever eye movements are measured, a central part of the analysis has to do with where subjects fixate and why they fixated where they fixated. To a first approximation, a set of fixations can be viewed as a set of points in space; this implies that fixations are spatial data and that the analysis of fixation locations can be beneficially thought of as a spatial statistics problem. We argue that thinking of fixation locations as arising from point processes is a very fruitful framework for eye-movement data, helping turn qualitative questions into quantitative ones. We provide a tutorial introduction to some of the main ideas of the field of spatial statistics, focusing especially on spatial Poisson processes. We show how point processes help relate image properties to fixation locations. In particular we show how point processes naturally express the idea that image features' predictability for fixations may vary from one image to another. We review other methods of analysis used in the literature, show how they relate to point process theory, and argue that thinking in terms of point processes substantially extends the range of analyses that can be performed and clarify their interpretation.

  14. Methanotrophy induces nitrogen fixation during peatland development

    Science.gov (United States)

    Larmola, Tuula; Leppänen, Sanna M.; Tuittila, Eeva-Stiina; Aarva, Maija; Merilä, Päivi; Fritze, Hannu; Tiirola, Marja

    2014-01-01

    Nitrogen (N) accumulation rates in peatland ecosystems indicate significant biological atmospheric N2 fixation associated with Sphagnum mosses. Here, we show that the linkage between methanotrophic carbon cycling and N2 fixation may constitute an important mechanism in the rapid accumulation of N during the primary succession of peatlands. In our experimental stable isotope enrichment study, previously overlooked methane-induced N2 fixation explained more than one-third of the new N input in the younger peatland stages, where the highest N2 fixation rates and highest methane oxidation activities co-occurred in the water-submerged moss vegetation. PMID:24379382

  15. Additional Equipment for Soil Biodegradation

    Science.gov (United States)

    Vondráčková, Terezie; Kraus, Michal; Šál, Jiří

    2017-12-01

    Intensification of industrial production, increasing citizens’ living standards, expanding the consumer assortment mean in the production - consumption cycle a constantly increasing occurrence of waste material, which by its very nature must be considered as a source of useful raw materials in all branches of human activity. In addition to strict legislative requirements, a number of circumstances characterize waste management. It is mainly extensive transport associated with the handling and storage of large volumes of substances with a large assortment of materials (substances of all possible physical and chemical properties) and high demands on reliability and time coordination of follow-up processes. Considerable differences in transport distances, a large number of sources, processors and customers, and not least seasonal fluctuations in waste and strong price pressures cannot be overlooked. This highlights the importance of logistics in waste management. Soils that are contaminated with oil and petroleum products are hazardous industrial waste. Methods of industrial waste disposal are landfilling, biological processes, thermal processes and physical and chemical methods. The paper focuses on the possibilities of degradation of oil pollution, in particular biodegradation by bacteria, which is relatively low-cost among technologies. It is necessary to win the fight with time so that no ground water is contaminated. We have developed two additional devices to help reduce oil accident of smaller ranges. In the case of such an oil accident, it is necessary to carry out the permeability test of contaminated soil in time and, on this basis, to choose the technology appropriate to the accident - either in-sit biodegradation - at the site of the accident, or on-sit - to remove the soil and biodegrade it on the designated deposits. A special injection drill was developed for in-sit biodegradation, tossing and aeration equipment of the extracted soil was developed for

  16. Bone tissue engineering on amorphous carbonated apatite and crystalline octacalcium phosphate-coated titanium discs

    NARCIS (Netherlands)

    Dekker, Robert J.; de Bruijn, Joost Dick; Stigter, Martin; Barrère, F.; Layrolle, Pierre; van Blitterswijk, Clemens

    2005-01-01

    Poor fixation of bone replacement implants, e.g. the artificial hip, in implantation sites with inferior bone quality and quantity may be overcome by the use of implants coated with a cultured living bone equivalent. In this study, we tested, respectively, amorphous carbonated apatite (CA)- and

  17. Improved Reactive Dye-fixation in Pad-Steam Process of Dyeing Cotton Fabric Using Tetrasodium N, NBiscarboxylatomethyl- L-Glutamate

    Directory of Open Access Journals (Sweden)

    Awais Khatri

    2012-04-01

    Full Text Available Pad steam process of dyeing cotton with reactive dyes is known to give lower levels of dye-fixation on the fiber because of excessive dye-hydrolysis. This research presents improved reactive dye-fixation in padsteam process of dyeing cotton found in an effort of using biodegradable organic salts to improve the effluent quality. The CI Reactive Blue 250, a bissulphatoethylsulphone dye and the Tetrasodium N, Nbiscarboxylatomethyl- L-Glutamate, a biodegradable organic salt, were used. The new dye-bath formulation using the organic salt gave more than 90% dye-fixation. Traditional pad-steam process of dyeing cotton with reactive dyes requires the use of inorganic electrolyte, sodium-chloride, and alkali, sodium-carbonate, to ensure effective dye consumption and fixation. These inorganic chemicals when drained generate heavy contents of dissolved solids and oxygen demand in the effluent leading to environmental pollution. Thus, Tetrasodium N, N-biscarboxylatomethyl-L-Glutamate was used in place of inorganic electrolyte and alkali to improve effluent quality. A significant increase in dye-fixation and ultimate color-yield was obtained with same colorfastness properties of the dyed fabric comparing to the traditional pad-steam dye-bath formulation.

  18. [Comparison of external fixation with or without limited internal fixation for open knee fractures].

    Science.gov (United States)

    Li, K N; Lan, H; He, Z Y; Wang, X J; Yuan, J; Zhao, P; Mu, J S

    2018-03-01

    Objective: To explore the characteristics and methods of different fixation methods and prevention of open knee joint fracture. Methods: The data of 86 cases of open knee joint fracture admitted from January 2002 to December 2015 in Department of Orthopaedics, Affiliated Hospital of Chengdu University were analyzed retrospectively.There were 65 males and 21 females aged of 38.6 years. There were 38 cases treated with trans articular external fixation alone, 48 cases were in the trans articular external fixation plus auxiliary limited internal fixation group. All the patients were treated according to the same three stages except for different fixation methods. Observation of external fixation and fracture fixation, fracture healing, wound healing and treatment, treatment and related factors of infection control and knee function recovery. χ(2) test was used to analyze data. Results: Eleven patients had primary wound healing, accounting for 12.8%. Seventy-five patients had two wounds healed, accounting for 87.2%. Only 38 cases of trans articular external fixator group had 31 cases of articular surface reduction, accounting for 81.6%; Five cases of trans articular external fixator assisted limited internal fixation group had 5 cases of poor reduction, accounting for 10.4%; There was significant difference between the two groups (χ(2)=44.132, P external fixation group, a total of 23 cases of patients with infection, accounted for 60.5% of external fixation group; trans articular external fixation assisted limited internal fixation group there were 30 cases of patients with infection, accounting for the assistance of external fixator and limited internal fixation group 62.5%; There was significant difference between the two groups(χ(2)=0.035, P >0.05). Five cases of fracture nonunion cases of serious infection, patients voluntarily underwent amputation. The Lysholm Knee Scale: In the external fixation group, 23 cases were less than 50 points, accounting for 60

  19. Toxicity of magnesium alloy biodegradation products in experiment

    Directory of Open Access Journals (Sweden)

    Yu. M. Neryanov

    2013-08-01

    Full Text Available The article presents information on the study of possible toxic effects of biodegradation products of original magnesium-based alloy on laboratory rats. The used laboratory methods of investigation are described. Author has examined biochemical parameters of plasma on the base of which endogenous intoxication in rats was studied. It was found out that products of alloy biological resorption don’t cause toxic effects on tissues and don’t enhance cell destruction, that is evidenced by the absence of signs of endogenous intoxication and oxidative damage of functional macromolecules. Materials and methods. We used white mongrel male rats weighing 220-270 g (n = 20. Fixator consisting of a modified magnesium alloy ML-10 was implanted into the femur muscle mass of the animals of the experimental group (n = 14. The control group consisted of white mongrel male rats weighing 230-250 g (n = 6, which were not subjected to surgery (intact group. The degree of oxidative damage to proteins, the content of the average molecular weight, nucleic acids and the stable metabolites of nitric oxide were evaluated in plasma. Results and discussion. The studies revealed the reliable (relative to the intact group increase in the content of all fractions of middle molecules in the plasma of the experimental group of rats, the increase shows only that the immune system of animals with magnesium implants is in a reactive state and responds with minor release of biologically active substances into the bloodstream. At this rate of endogenous intoxication this exponent usually increases tenfold, but we have not seen that. Levels of stable metabolites of nitric oxide increase insignificantly(1,4 times, that likely indicates more on the start of adaptive signaling processes than a pathological condition. The experimental data concerning the content of nucleic acids in the plasma of animals with magnesium implants testifies in support of this hypothesis. There were no

  20. Remodeled articular surface after surgical fixation of patella fracture in a child

    Directory of Open Access Journals (Sweden)

    Moruf Babatunde Yusuf

    2017-01-01

    Full Text Available Patella fracture is uncommon in pediatric age group and their patella is better preserved in any class of patella fracture. We reported a case of a 13-year-old male with right patella fracture nonunion. He had open reduction and internal fixation using tension band wire device. Fracture union was monitored with serial radiographs and he was followed up for 60 weeks. There was articular surface step after surgical fixation of the patella fracture. At 34 weeks postoperative, there was complete remodeling of the articular surface with good knee function after removal of the tension band wire. Children have good capacity of bone remodeling after fracture. Little retropatella step in a child after patella fracture surgical fixation will remodel with healing.

  1. Intraoperative CT navigation for glenoid component fixation in reverse shoulder arthroplasty

    Directory of Open Access Journals (Sweden)

    Ashok S Gavaskar

    2013-01-01

    Full Text Available CT navigation has been shown to improve component positioning in total shoulder arthroplasty. The technique can be useful in achieving strong initial fixation of the metal backed glenoid in reverse shoulder arthroplasty. We report a 61 years male patient who underwent reverse shoulder arthroplasty for rotator cuff arthropathy. CT navigation was used intraoperatively to identify best possible glenoid bone and to maximize the depth of the fixation screws that anchor the metaglene portion of the metal backed glenoid component. Satisfactory positioning of screws and component was achieved without any perforation or iatrogenic fracture in the scapula. CT navigation can help in maximizing the purchase of the fixation screws that dictate the initial stability of the glenoid component in reverse shoulder arthroplasty. The technique can be extended to improve glenoid component position [version and tilt] with the availability of appropriate software.

  2. Demineralized Freeze-Dried Bovine Cortical Bone: Its Potential for Guided Bone Regeneration Membrane

    Directory of Open Access Journals (Sweden)

    David B. Kamadjaja

    2017-01-01

    Full Text Available Background. Bovine pericardium collagen membrane (BPCM had been widely used in guided bone regeneration (GBR whose manufacturing process usually required chemical cross-linking to prolong its biodegradation. However, cross-linking of collagen fibrils was associated with poorer tissue integration and delayed vascular invasion. Objective. This study evaluated the potential of bovine cortical bone collagen membrane for GBR by evaluating its antigenicity potential, cytotoxicity, immune and tissue response, and biodegradation behaviors. Material and Methods. Antigenicity potential of demineralized freeze-dried bovine cortical bone membrane (DFDBCBM was done with histology-based anticellularity evaluation, while cytotoxicity was analyzed using MTT Assay. Evaluation of immune response, tissue response, and biodegradation was done by randomly implanting DFDBCBM and BPCM in rat’s subcutaneous dorsum. Samples were collected at 2, 5, and 7 days and 7, 14, 21, and 28 days for biocompatibility and tissue response-biodegradation study, respectively. Result. DFDBCBM, histologically, showed no retained cells; however, it showed some level of in vitro cytotoxicity. In vivo study exhibited increased immune response to DFDBCBM in early healing phase; however, normal tissue response and degradation rate were observed up to 4 weeks after DFDBCBM implantation. Conclusion. Demineralized freeze-dried bovine cortical bone membrane showed potential for clinical application; however, it needs to be optimized in its biocompatibility to fulfill all requirements for GBR membrane.

  3. [Pedicle flap transfer combined with external fixator to treat leg open fracture with soft tissue defect].

    Science.gov (United States)

    Luo, Zhongchun; Lou, Hua; Jiang, Junwei; Song, Chunlin; Gong, Min; Wang, Yongcai

    2008-08-01

    To investigate the clinical results of treating leg open fracture with soft tissue defect by pedicle flap transfer in combination with external fixator. From May 2004 to June 2007, 12 cases of leg open fracture with soft tissue defect, 9 males and 3 females aged 18-75 years, were treated. Among them, 8 cases were caused by traffic accidents, 2 crush, 1 falling and 1 mechanical accident. According to the Gustilo Classification, there were 2 cases of type II, 5 of type IIIA and 5 of type IIIB. There were 2 cases of upper-tibia fracture, 3 of middle-tibia and 7 of middle-lower. The sizes of soft tissue defect ranged from 5 cm x 3 cm to 22 cm x 10 cm.The sizes of exposed bone ranged from 3 cm x 2 cm to 6 cm x 3 cm. The course of the disease was 1-12 hours. Fracture fixation was reached by external fixators or external fixators and limited internal fixation with Kirschner wire. The wounds with exposed tendons and bones were repaired by ipsilateral local rotation flap, sural neurocutaneous flap and saphenous nerve flap. The size of selected flap ranged from 5 cm x 4 cm to 18 cm x 12 cm. Granulation wounds were repaired by skin grafting or direct suture. All patients were followed up for 6 months to 2 years. All patients survived, among whom 2 with the wound edge infection and 1 with the distal necrosis were cured by changing the dressing, 8 with pin hole infection were treated by taking out the external fixator, 1 with nonunion received fracture healing after bone graft in comminuted fracture of lower tibia, 2 suffered delayed union in middle-lower tibia fracture. The ROM of ankle in 3 cases was mildly poor with surpass-joint fixation, with plantar extension of 0-10 degrees and plantar flexion of 10-30 degrees, while the others had plantar extension of 10-20 degrees and plantar flexion of 30-50 degrees. The method of pedicle flap transfer combined with external fixator is safe and effective for the leg open fracture with soft tissue defect.

  4. Improper tube fixation causing a leaky cuff

    Directory of Open Access Journals (Sweden)

    Gupta Babita

    2010-01-01

    Full Text Available Leaking endotracheal tube cuffs are common problems in intensive care units. We report a case wherein the inflation tube was damaged by the adhesive plaster used for tube fixation and resulted in leaking endotracheal tube cuff. We also give some suggestions regarding the tube fixation and some remedial measures for damaged inflation system.

  5. Nitrogen fixation by legumes in retorted shale

    Energy Technology Data Exchange (ETDEWEB)

    Hersman, L E; Molitoris, E; Klein, D A

    1981-01-01

    A study was made to determine whether retorted shale additions would significantly affect symbiotic N/sub 2/ fixation. Results indicate that small additions of the shale may stimulate plant growth but with higher concentrations plants are stressed, resulting in a decreased biomass and a compensatory effect of an increased number of nodules and N/sub 2/ fixation potential. (JMT)

  6. Bone Cancer

    Science.gov (United States)

    Cancer that starts in a bone is uncommon. Cancer that has spread to the bone from another ... more common. There are three types of bone cancer: Osteosarcoma - occurs most often between ages 10 and ...

  7. Bone Diseases

    Science.gov (United States)

    Your bones help you move, give you shape and support your body. They are living tissues that rebuild constantly ... childhood and your teens, your body adds new bone faster than it removes old bone. After about ...

  8. EFFECT OF EMBEDDING METHODS VERSUS FIXATIVE TYPE ON KARYOMETRIC MEASURES

    NARCIS (Netherlands)

    BOON, ME; VANDERPOEL, HG; TAN, CJA; KOK, LP

    The influence of fixation and embedding methods in seven urologic tumor samples was studied karyometrically for 12 preparatory techniques. Routine histologic formalin fixation was compared with Carbowax and Kryofix fixatives. Also, histologic material was studied embedded in paraffin and plastic

  9. Aerobic biodegradation of a nonylphenol polyethoxylate and toxicity of the biodegradation metabolites.

    Science.gov (United States)

    Jurado, Encarnación; Fernández-Serrano, Mercedes; Núñez-Olea, Josefa; Lechuga, Manuela

    2009-09-01

    In this paper a study was made of the biodegradation of a non-ionic surfactant, a nonylphenol polyethoxylate, in biodegradability tests by monitoring the residual surfactant matter. The influence of the concentration on the extent of primary biodegradation, the toxicity of biodegradation metabolites, and the kinetics of degradation were also determined. The primary biodegradation was studied at different initial concentrations: 5, 25 and 50 mg/L, (at sub-and supra-critical micelle concentration). The NPEO used in this study can be considered biodegradable since the primary biodegradation had already taken place (a biodegradation greater than 80% was found for the different initial concentration tested). The initial concentration affected the shape of the resulting curve, the mean biodegradation rate and the percentage of biodegradation reached (99% in less than 8 days at 5 mg/L, 98% in less than 13 days at 25 mg/L and 95% in 14 days at 50 mg/L). The kinetic model of Quiroga and Sales (1991) was applied to predict the biodegradation of the NPEO. The toxicity value was measured as EC(20) and EC(50). In addition, during the biodegradation process of the surfactant a toxicity analysis was made of the evolution of metabolites generated, confirming that the subproducts of the biodegradation process were more toxic than the original.

  10. The management of tibial pilon fractures with the Ilizarov fixator: The role of ankle arthroscopy.

    Science.gov (United States)

    El-Mowafi, Hani; El-Hawary, Ahmed; Kandil, Yasser

    2015-12-01

    Pilon fractures usually result from high energy trauma, and are commonly associated with extensive soft tissue damage which prevents the use of open reduction and internal fixation. This study was designed to evaluate the use of the Ilizarov external fixator in the treatment of pilon fractures of the ankle, and to determine whether arthroscopy of the ankle could improve the outcome. From February 2011 to May 2013 a total of 23 patients with unilateral closed pilon fractures were divided into two groups treated with and without arthroscopy during fixation with the Ilizarov external fixator. The fractures were classified according to the AO Rüdi and Allgőwer classification. Follow up ranged from 10 to 37 months with a mean of 18 months. All cases were evaluated at follow up by the AOFAS and the Bone et al. grading system. According to Bone et al. there were 3 cases excellent, 4 cases good, 2 cases fair, and 2 cases poor in Group A (without arthroscopy), whereas there were 4 cases excellent, 6 cases good, 2 cases fair in Group B (with arthroscopy). The AOFAS score for Group A was 77.8±5.8, and for Group B was 78.4±6.9. We concluded that the Ilizarov external fixator is an excellent method in treating pilon fractures as it minimizes the need for extensive surgery. We also conclude that the use of arthroscopy during pilon fracture fixation did not add statistically significant improvement to our results and it needs longer term investigation to assess its advantage - if any - to the final outcome. level 2. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Biodegradable radioactive implants for glaucoma filtering surgery produced by ion implantation

    Energy Technology Data Exchange (ETDEWEB)

    Assmann, W. [Department fuer Physik, Ludwig-Maximilians-Universitaet Muenchen, 85748 Garching (Germany)]. E-mail: walter.assmann@lmu.de; Schubert, M. [Department fuer Physik, Ludwig-Maximilians-Universitaet Muenchen, 85748 Garching (Germany); Held, A. [Augenklinik, Technische Universitaet Muenchen, 81675 Munich (Germany); Pichler, A. [Augenklinik, Technische Universitaet Muenchen, 81675 Muenchen (Germany); Chill, A. [Zentralinstitut fuer Medizintechnik, Technische Universitaet Muenchen, 85748 Garching (Germany); Kiermaier, S. [Zentralinstitut fuer Medizintechnik, Technische Universitaet Muenchen, 85748 Garching (Germany); Schloesser, K. [Forschungszentrum Karlsruhe, 76021 Karlsruhe (Germany); Busch, H. [NTTF GmbH, 53619 Rheinbreitbach (Germany); Schenk, K. [NTTF GmbH, 53619 Rheinbreitbach (Germany); Streufert, D. [Acri.Tec GmbH, 16761 Hennigsdorf (Germany); Lanzl, I. [Augenklinik, Technische Universitaet Muenchen, 81675 Munich (Germany)

    2007-04-15

    A biodegradable, {beta}-emitting implant has been developed and successfully tested which prevents fresh intraocular pressure increase after glaucoma filtering surgery. Ion implantation has been used to load the polymeric implants with the {beta}-emitter {sup 32}P. The influence of ion implantation and gamma sterilisation on degradation and {sup 32}P-fixation behavior has been studied by ion beam and chemical analysis. Irradiation effects due to the applied ion fluence (10{sup 15} ions/cm{sup 2}) and gamma dose (25 kGy) are found to be tolerable.

  12. Biodegradable behaviors of AZ31 magnesium alloy in simulated body fluid

    International Nuclear Information System (INIS)

    Song Yingwei; Shan Dayong; Chen Rongshi; Zhang Fan; Han Enhou

    2009-01-01

    Magnesium alloys have unique advantages to act as biodegradable implants for clinical application. The biodegradable behaviors of AZ31 in simulated body fluid (SBF) for various immersion time intervals were investigated by electrochemical impedance spectroscopy (EIS) tests and scanning electron microscope (SEM) observation, and then the biodegradable mechanisms were discussed. It was found that a protective film layer was formed on the surface of AZ31 in SBF. With increasing of immersion time, the film layer became more compact. If the immersion time was more than 24 h, the film layer began to degenerate and emerge corrosion pits. In the meantime, there was hydroxyapatite particles deposited on the film layer. The hydroxyapatite is the essential component of human bone, which indicates the perfect biocompatibility of AZ31 magnesium alloy.

  13. Eighth international congress on nitrogen fixation. Final program

    Energy Technology Data Exchange (ETDEWEB)

    1990-12-31

    This volume contains the proceedings of the Eighth International Congress on Nitrogen Fixation held May 20--26, 1990 in Knoxville, Tennessee. The volume contains abstracts of individual presentations. Sessions were entitled Recent Advances in the Chemistry of Nitrogen Fixation, Plant-microbe Interactions, Limiting Factors of Nitrogen Fixation, Nitrogen Fixation and the Environment, Bacterial Systems, Nitrogen Fixation in Agriculture and Industry, Plant Function, and Nitrogen Fixation and Evolution.

  14. 3D artificial bones for bone repair prepared by computed tomography-guided fused deposition modeling for bone repair.

    Science.gov (United States)

    Xu, Ning; Ye, Xiaojian; Wei, Daixu; Zhong, Jian; Chen, Yuyun; Xu, Guohua; He, Dannong

    2014-09-10

    The medical community has expressed significant interest in the development of new types of artificial bones that mimic natural bones. In this study, computed tomography (CT)-guided fused deposition modeling (FDM) was employed to fabricate polycaprolactone (PCL)/hydroxyapatite (HA) and PCL 3D artificial bones to mimic natural goat femurs. The in vitro mechanical properties, in vitro cell biocompatibility, and in vivo performance of the artificial bones in a long load-bearing goat femur bone segmental defect model were studied. All of the results indicate that CT-guided FDM is a simple, convenient, relatively low-cost method that is suitable for fabricating natural bonelike artificial bones. Moreover, PCL/HA 3D artificial bones prepared by CT-guided FDM have more close mechanics to natural bone, good in vitro cell biocompatibility, biodegradation ability, and appropriate in vivo new bone formation ability. Therefore, PCL/HA 3D artificial bones could be potentially be of use in the treatment of patients with clinical bone defects.

  15. Polymeric media for tritium fixation

    International Nuclear Information System (INIS)

    Franz, J.A.; Burger, L.L.

    1975-01-01

    The synthesis and leach testing of several polymeric media for tritium fixation are presented. Tritiated bakelite, poly(acrylonitrile) and polystyrene successfully fixed tritium. Tritium leach rates at the tracer level appear to be negligible. Advantages and disadvantages of the processes are discussed, and further bench-scale investigations underway are reported. Rough cost estimates are presented for the different media and are compared with alternate approaches such as deep-well injection and long-term tank storage. Polymeric media costs are high compared to deep-well storage and are of the same order of magnitude per liter of water as for isotopic enrichment. With this limitation, polymeric media can be economically feasible only for highly concentrated tritiated wastes. It is recommended that the bakelite and polystyrene processes be examined on a larger scale to permit more accurate cost analysis and process design. (auth)

  16. Radionuclide fixation mechanisms in rocks

    International Nuclear Information System (INIS)

    Nakashima, S.

    1991-01-01

    In the safety evaluation of the radioactive waste disposal in geological environment, the mass balance equation for radionuclide migration is given. The sorption of radionuclides by geological formations is conventionally represented by the retardation of the radionuclides as compared with water movement. In order to quantify the sorption of radionuclides by rocks and sediments, the distribution ratio is used. In order to study quantitatively the long term behavior of waste radionuclides in geological environment, besides the distribution ratio concept in short term, slower radionuclide retention reaction involving mineral transformation should be considered. The development of microspectroscopic method for long term reaction path modeling, the behavior of iron during granite and water interaction, the reduction precipitation of radionuclides, radionuclide migration pathways, and the representative scheme of radionuclide migration and fixation in rocks are discussed. (K.I.)

  17. Review of fixation techniques for the four-part fractured proximal humerus in hemiarthroplasty

    Directory of Open Access Journals (Sweden)

    Lorenzetti Silvio

    2011-07-01

    Full Text Available Abstract Introduction The clinical outcome of hemiarthroplasty for proximal humeral fractures is not satisfactory. Secondary fragment dislocation may prevent bone integration; the primary stability by a fixation technique is therefore needed to accomplish tuberosity healing. Present technical comparison of surgical fixation techniques reveals the state-of-the-art approach and highlights promising techniques for enhanced stability. Method A classification of available fixation techniques for three- and four part fractures was done. The placement of sutures and cables was described on the basis of anatomical landmarks such as the rotator cuff tendon insertions, the bicipital groove and the surgical neck. Groups with similar properties were categorized. Results Materials used for fragment fixation include heavy braided sutures and/or metallic cables, which are passed through drilling holes in the bone fragments. The classification resulted in four distinct groups: A: both tuberosities and shaft are fixed together by one suture, B: single tuberosities are independently connected to the shaft and among each other, C: metallic cables are used in addition to the sutures and D: the fragments are connected by short stitches, close to the fragment borderlines. Conclusions A plurality of techniques for the reconstruction of a fractured proximal humerus is found. The categorisation into similar strategies provides a broad overview of present techniques and supports a further development of optimized techniques. Prospective studies are necessary to correlate the technique with the clinical outcome.

  18. MANAGEMENT OF INFECTED NON UNION TIBIAL FRACTURES WITH ILIZAROV EXTERNAL FIXATION

    Directory of Open Access Journals (Sweden)

    Nageshwara Rao

    2015-10-01

    Full Text Available BACKGROUND & OBJECTIVES: Infected non - union of tibia per se is a challenge to treat. Subcutaneous bone causes susceptibility to compartment syndrome, non - responsive infection, non - union, fibrosis, sinuses, deformities, shortening and various other sets of problems which are assoc iated with it. Ilizarov External fixation provides correction of all the complications associated with non - union, bone gap, infection, shortening, and deformities. Objective of this study is to assess the efficacy and safety of Ilizarov fixator method of t reatment in infected non - union tibia and to study various complications associated with Ilizarov external fixation. MATERIALS AND METHODS: 23 patients admitted and treated in Government General Hospital under the Department of Orthopaedics during the perio d of May 2010 to December 2012 were included in the study. Results were evaluated according to ASAMI criteria . 1 RESULTS : 59% patients had excellent bony results, 27.3% had good bony results, 9.1% had fair bony results, 4.6% had poor bony results. 68.1% had excellent functional results, 9.1% had good functional results, 9.1% had fair functional results, 13.7% had poor functional results. CONCLUSION : Ilizarov external fixator system is the best device and best solution for infected non - union tibia management.

  19. Radiation effects on biodegradable polyesters

    International Nuclear Information System (INIS)

    Hiroshi Mitomo; Darmawan Darwis; Fumio Yoshii; Keizo Makuuchi

    1999-01-01

    Poly(3-hydroxybutyrate) [P(3HB)] and its copolymer poly(3-hydroxybutyrate-co-3hydroxyvalerate) [P(3HB-co-3HV)] are microbial biodegradable polyesters produced by many types of bacteria. Poly(butylene succinate) (PBS) and poly(E-caprolactone) (PCL) are also biodegradable synthetic polyesters which have been commercialized. These thermoplastics are expected for wide usage in environmental protection and blocompatible applications. Radiation grafting of hydrophilic monomers onto many polymers, e.g., polyethylene and polypropylene has been studied mainly for biomedical applications. In the present study, radiation-induced graft polymerization of vinyl monomers onto PHB and P(3HB-co-3HV) was carried out and improvement of their properties was studied. Changes in the properties and biodegradability were compared with the degree of grafting. Radiation-induced crosslinking of PBS and PCL which relatively show thermal and irradiation stability was also carried out to improve their thermal stability or processability. Irradiation to PBS and PCL mainly resulted in crosslinking and characterization of these crosslinked polyesters was investigated

  20. Osseointegration: a review of the fundamentals for assuring cementless skeletal fixation

    Directory of Open Access Journals (Sweden)

    Isaacson BM

    2014-04-01

    Full Text Available Brad M Isaacson,1,2 Sujee Jeyapalina3,4 1Henry M Jackson Foundation for the Advancement of Military Medicine, 2The Center for Rehabilitation Sciences Research, Department of Physical Medicine and Rehabilitation, Uniformed Services University of Health Sciences, Bethesda, MD, USA; 3Department of Orthopedics, 4Orthopedic Research Laboratory, University of Utah, Salt Lake City, UT, USA Abstract: Direct skeletal fixation, termed osseointegration, has expanded in the last century and includes use in total joint replacements, the edentulous mandible and maxilla, and percutaneous osseointegrated prosthetics. Although it is well known that titanium and bone have the ability to form a durable bone–implant interface, new applications have emerged in the field of orthopedics, which requires a more thorough assessment of the literature. This review aims to introduce the basic biological principles for attaining osseointegration and discusses the major factors for assuring successful cementless fixation. Keywords: osseointegration, bone, skeletal attachment, total joint replacements, dental implants, percutaneous

  1. Surgical strategies to improve fixation in the osteoporotic spine: the effects of tapping, cement augmentation, and screw trajectory.

    Science.gov (United States)

    Kuhns, Craig A; Reiter, Michael; Pfeiffer, Ferris; Choma, Theodore J

    2014-02-01

    Study Design Biomechanical study of pedicle screw fixation in osteoporotic bone. Objective To investigate whether it is better to tap or not tap osteoporotic bone prior to placing a cement-augmented pedicle screw. Methods Initially, we evaluated load to failure of screws placed in cancellous bone blocks with or without prior tapping as well as after varying the depths of tapping prior to screw insertion. Then we evaluated load to failure of screws placed in bone block models with a straight-ahead screw trajectory as well as with screws having a 23-degree cephalad trajectory (toward the end plate). These techniques were tested with nonaugmented (NA) screws as well as with bioactive cement (BioC) augmentation prior to screw insertion. Results In the NA group, pretapping decreased fixation strength in a dose-dependent fashion. In the BioC group, the tapped screws had significantly greater loads to failure (p tapping prior to cement augmentation will substantially improve fixation when compared with not tapping. Angulating screws more cephalad also seems to enhance aging spine fixation.

  2. Prevention of pin tract infection in external stainless steel fixator frames using electric current in a goat model

    NARCIS (Netherlands)

    van der Borden, Arnout J.; Maathuis, Patrick G. M.; Engels, Eefje; Rakhorst, Gerhard; van der Mei, Henny C.; Busscher, Henk J.; Sharma, Prashant Kumar

    Pin tract infections of external fixators used in orthopacclic reconstructive bone surgery are serious cornplications that can eventually lead to periostitis and osteomyelitis. In vitro experiments have demonstrated that bacteria adhering to stainless steel in a biotilm mode of growth detach under

  3. Two-stage open reduction and internal fixation versus limited internal fixation combined with external fixation: a meta-analysis of postoperative complications in patients with severe Pilon fractures.

    Science.gov (United States)

    Cui, Xueliang; Chen, Hui; Rui, Yunfeng; Niu, Yang; Li, He

    2018-01-01

    Objectives Two-stage open reduction and internal fixation (ORIF) and limited internal fixation combined with external fixation (LIFEF) are two widely used methods to treat Pilon injury. However, which method is superior to the other remains controversial. This meta-analysis was performed to quantitatively compare two-stage ORIF and LIFEF and clarify which method is better with respect to postoperative complications in the treatment of tibial Pilon fractures. Methods We conducted a meta-analysis to quantitatively compare the postoperative complications between two-stage ORIF and LIFEF. Eight studies involving 360 fractures in 359 patients were included in the meta-analysis. Results The two-stage ORIF group had a significantly lower risk of superficial infection, nonunion, and bone healing problems than the LIFEF group. However, no significant differences in deep infection, delayed union, malunion, arthritis symptoms, or chronic osteomyelitis were found between the two groups. Conclusion Two-stage ORIF was associated with a lower risk of postoperative complications with respect to superficial infection, nonunion, and bone healing problems than LIFEF for tibial Pilon fractures. Level of evidence 2.

  4. Dinitrogen fixation in aphotic oxygenated marine environments

    Directory of Open Access Journals (Sweden)

    Eyal eRahav

    2013-08-01

    Full Text Available We measured N2 fixation rates from oceanic zones that have traditionally been ignored as sources of biological N2 fixation; the aphotic, fully oxygenated, nitrate (NO3--rich, waters of the oligotrophic Levantine Basin (LB and the Gulf of Aqaba (GA. N2 fixation rates measured from pelagic aphotic waters to depths up to 720 m, during the mixed and stratified periods, ranged from 0.01 nmol N L-1 d-1 to 0.38 nmol N L-1 d-1. N2 fixation rates correlated significantly with bacterial productivity and heterotrophic diazotrophs were identified from aphotic as well as photic depths. Dissolved free amino acid amendments to whole water from the GA enhanced bacterial productivity by 2to 3.5 and N2 fixation rates by ~ 2 fold in samples collected from aphotic depths while in amendments to water from photic depths bacterial productivity increased 2 to 6 fold while N2 fixation rates increased by a factor of 2 to 4 illustrating that both BP an heterotrophic N2 fixation are carbon limited. Experimental manipulations of aphotic waters from the LB demonstrated a significant positive correlation between transparent exopolymeric particles (TEP concentration and N2 fixation rates. This suggests that sinking organic material and high carbon (C: nitrogen (N micro-environments (such as TEP-based aggregates or marine snow could support high heterotrophic N2 fixation rates in oxygenated surface waters and in the aphotic zones. Indeed, our calculations show that aphotic N2 fixation accounted for 37 to 75 % of the total daily integrated N2 fixation rates at both locations in the Mediterranean and Red Seas with rates equal or greater to those measured from the photic layers. Moreover, our results indicate that that while N2 fixation may be limited in the surface waters, aphotic, pelagic N2 fixation may contribute significantly to new N inputs in other oligotrophic basins, yet it is currently not included in regional or global N budgets.

  5. Evaluation of the syndesmotic-only fixation for Weber-C ankle fractures with syndesmotic injury.

    Science.gov (United States)

    Mohammed, R; Syed, S; Metikala, S; Ali, Sa

    2011-09-01

    With the length of the fibula restored and the syndesmosis reduced anatomically, internal fixation using a plating device may not be necessary for supra-syndesmotic fibular fractures combined with diastasis of inferior tibio-fibular joint. A retrospective observational study was performed in patients who had this injury pattern treated with syndesmosis-only fixation. 12 patients who had Weber type-C injury pattern were treated with syndesmosis only fixation. The treatment plan was followed only if the fibular length could be restored and if the syndesmosis could be anatomically reduced. Through a percutaneous or mini-open reduction and clamp stabilization of the syndesmosis, all but one patient had a single tricortical screw fixation across the syndesmosis. Patients were kept non-weight-bearing for 6 weeks, followed by screw removal at an average of 8 weeks. Outcomes were assessed using an objective ankle scoring system (Olerud and Molander scale) and by radiographic assessment of the ankle mortise. At a mean follow-up of 13 months, the functional outcome score was 75. Excellent to good outcomes were noted in 83% of the patients. Ankle mortise was reduced in all cases, and all but one fibular fracture united without loss of fixation. Six patients had more than one malleolar injury, needing either screw or anchor fixations. One patient had late diastasis after removal of the syndesmotic screw and underwent revision surgery with bone grafting of the fibula. This was probably due to early screw removal, before union of the fibular fracture had occurred. We recommend syndesmosis-only fixation as an effective treatment option for a combination of syndesmosis disruption and Weber type-C lateral malleolar fractures.

  6. Correction of axial deformity during lengthening in fibular hypoplasia: Hexapodal versus monorail external fixation.

    Science.gov (United States)

    Chalopin, A; Geffroy, L; Pesenti, S; Hamel, A; Launay, F

    2017-09-01

    Childhood fibular hypoplasia is a rare pathology which may or may not involve limb-length discrepancy and axial deformity in one or more dimensions. The objective of the present study was to compare the quality of the axial correction achieved in lengthening procedures by hexapodal versus monorail external fixators. The hypothesis was that the hexapodal fixator provides more precise correction. A retrospective multicenter study included 52 children with fibular hypoplasia. Seventy-two tibias were analyzed, in 2 groups: 52 using a hexapodal fixator, and 20 using a monorail fixator. Mean age was 10.2 years. Mean lengthening was 5.7cm. Deformities were analyzed and measured in 3 dimensions and classified in 4 preoperative types and 4 post-lengthening types according to residual deformity. Complete correction was achieved in 26 tibias in the hexapodal group (50%) and 2 tibias in the monorail group (10%). Mean post-correction mechanical axis deviation was smaller in the hexapodal group: 12.83mm, versus 14.29mm in the monorail group. Mean post-correction mechanical lateral distal femoral angle was 87.5° in the hexapodal group, versus 84.3° in the monorail group (P=0.002), and mean mechanical medial proximal tibial angle 86.9° versus 89.5°, respectively (P=0.015). No previous studies focused on this congenital pathology in lengthening and axial correction programs for childhood lower-limb deformity. The present study found the hexapodal fixator to be more effective in conserving or restoring mechanical axes during progressive bone lengthening for fibular hypoplasia. The hexapodal fixator met the requirements of limb-length equalization in childhood congenital lower-limb hypoplasia, providing better axial correction than the monorail fixator. IV. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  7. Biodegradable Implants in Orthopaedics and Traumatology

    OpenAIRE

    YETKIN, Haluk

    2014-01-01

    Biodegradable implants are an alternative to metallic implants and have the advantage of not being necessary to remove once the fracture has healed. Twenty-two patients with fractures were treated with biodegradable implants. There were osteolysis in eleven patients; however, no serious complication was encountered. Although biodegradable implants are expensive, a second surgical procedure to remove the implants is not necessary, relieving the patient of the related costs and risks.

  8. Treatment of Spinal Tuberculosis by Debridement, Interbody Fusion and Internal Fixation via Posterior Approach Only.

    Science.gov (United States)

    Tang, Ming-xing; Zhang, Hong-qi; Wang, Yu-xiang; Guo, Chao-feng; Liu, Jin-yang

    2016-02-01

    Surgical treatment for spinal tuberculosis includes focal tuberculosis debridement, segmental stability reconstruction, neural decompression and kyphotic deformity correction. For the lesions mainly involved anterior and middle column of the spine, anterior operation of debridement and fusion with internal fixation has been becoming the most frequently used surgical technique for the spinal tuberculosis. However, high risk of structural damage might relate with anterior surgery, such as damage in lungs, heart, kidney, ureter and bowel, and the deformity correction is also limited. Due to the organs are in the front of spine, there are less complications in posterior approach. Spinal pedicle screw passes through the spinal three-column structure, which provides more powerful orthopedic forces compared with the vertebral body screw, and the kyphotic deformity correction effect is better in posterior approach. In this paper, we report a 68-year-old male patient with thoracic tuberculosis who underwent surgical treatment by debridement, interbody fusion and internal fixation via posterior approach only. The patient was placed in prone position under general anesthesia. Posterior midline incision was performed, and the posterior spinal construction was exposed. Then place pedicle screw, and fix one side rod temporarily. Make the side of more bone destruction and larger abscess as lesion debridement side. Resect the unilateral facet joint, and retain contralateral structure integrity. Protect the spinal cord, nerve root. Clear sequestrum, necrotic tissue, abscess of paravertebral and intervertebral space. Specially designed titanium mesh cages or bone blocks were implanted into interbody. Fix both side rods and compress both sides to make the mesh cages and bone blocks tight. Reconstruct posterior column structure with allogeneic bone and autologous bone. Using this technique, the procedures of debridement, spinal cord decompression, deformity correction, bone grafting

  9. Trochanteric Fixation With a Third-Generation Cable-Plate System: An Independent Experience.

    Science.gov (United States)

    Stewart, Andrew D; Abdelbary, Hesham; Beaulé, Paul E

    2017-09-01

    Greater trochanteric fracture/nonunion can be a devastating complication with significant functional impact after total hip arthroplasty, and their fixation remains a challenge because of the significant forces being transmitted as well as the poor bone quality often associated with these fractures. The objective of this study is to investigate the rates of reoperation and trochanteric nonunion using a third-generation cable-plate system at one center. Thirty-five patients, mean age 72.9 years (range 46-98 years) with 24 women and 11 men, underwent fixation of their fractured greater trochanter using a third-generation cable-plate system. The indications were: periprosthetic fracture (n = 17), complex primary arthroplasty (n = 5), and complex revision arthroplasty (n = 13). Primary outcomes included rates of reoperation and radiographic union. At a mean follow-up of 2.5 years, trochanteric union rate was 62.9% with nonunion rate of 31.4%, and fibrous union in 5.7%. In regard to quality of initial apposition, only 40% achieved a perfect bone on bone reduction. Ten patients (28.6%) had evidence of wire breakage. Five patients (14.3%) required reoperation and removal of the internal fixation because of lateral hip pain. Fixation of the trochanteric fractures remains a challenge with a relatively high reoperation rate. Poor bone quality and capacity to maintain a stable reduction continue to make this complication after total hip arthroplasty a difficult problem to solve. Copyright © 2017. Published by Elsevier Inc.

  10. Humeral repair in birds by guided tissue regeneration and external and internal associated fixation techniques

    International Nuclear Information System (INIS)

    Delogu, M.

    1993-01-01

    Ten pigeons (Columba livia domestic form) with humeral diaphyseal fracture were treated with external and internal fixation techniques (Boston technique and intamedullary pin). Longitudinal space was intentionally left between fracture surfaces during osteosynthesis. This space was filled with bovine lyophilized collagen, set around an intramedullary pin, in five samples. Ossification process was checked by radiography every seven days. Results show the utility of this technique in pneumatic bird bones. In fact, shortening control and callus formation facility were observed [it

  11. Treatment of Early Post-Op Wound Infection after Internal Fixation

    Science.gov (United States)

    2016-10-01

    Obremskey, M.D. CONTRACTING ORGANIZATION: Vanderbilt University Medical Center Nashville TN 37203 REPORT DATE: October 2016 TYPE OF REPORT: Annual...NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1. REPORT DATE (DD-MM-YYYY) October 2016 2. REPORT TYPE Annual 3. DATES COVERED (From - To) 15Sep2015...effect of treatment of post-op wound infection in long bones after fracture fixation or joint fusion and either: (Group 1) operative debridement and

  12. Chitosan-coated Stainless Steel Screws for Fixation in Contaminated Fractures

    OpenAIRE

    Greene, Alex H.; Bumgardner, Joel D.; Yang, Yunzhi; Moseley, Jon; Haggard, Warren O.

    2008-01-01

    Stainless steel screws and other internal fixation devices are used routinely to stabilize bacteria-contaminated bone fractures from multiple injury mechanisms. In this preliminary study, we hypothesize that a chitosan coating either unloaded or loaded with an antibiotic, gentamicin, could lessen or prevent these devices from becoming an initial nidus for infection. The questions investigated for this hypothesis were: (1) how much of the sterilized coating remains on the screw with simulated ...

  13. A review of plastic waste biodegradation.

    Science.gov (United States)

    Zheng, Ying; Yanful, Ernest K; Bassi, Amarjeet S

    2005-01-01

    With more and more plastics being employed in human lives and increasing pressure being placed on capacities available for plastic waste disposal, the need for biodegradable plastics and biodegradation of plastic wastes has assumed increasing importance in the last few years. This review looks at the technological advancement made in the development of more easily biodegradable plastics and the biodegradation of conventional plastics by microorganisms. Additives, such as pro-oxidants and starch, are applied in synthetic materials to modify and make plastics biodegradable. Recent research has shown that thermoplastics derived from polyolefins, traditionally considered resistant to biodegradation in ambient environment, are biodegraded following photo-degradation and chemical degradation. Thermoset plastics, such as aliphatic polyester and polyester polyurethane, are easily attacked by microorganisms directly because of the potential hydrolytic cleavage of ester or urethane bonds in their structures. Some microorganisms have been isolated to utilize polyurethane as a sole source of carbon and nitrogen source. Aliphatic-aromatic copolyesters have active commercial applications because of their good mechanical properties and biodegradability. Reviewing published and ongoing studies on plastic biodegradation, this paper attempts to make conclusions on potentially viable methods to reduce impacts of plastic waste on the environment.

  14. External validation of EPIWIN biodegradation models.

    Science.gov (United States)

    Posthumus, R; Traas, T P; Peijnenburg, W J G M; Hulzebos, E M

    2005-01-01

    The BIOWIN biodegradation models were evaluated for their suitability for regulatory purposes. BIOWIN includes the linear and non-linear BIODEG and MITI models for estimating the probability of rapid aerobic biodegradation and an expert survey model for primary and ultimate biodegradation estimation. Experimental biodegradation data for 110 newly notified substances were compared with the estimations of the different models. The models were applied separately and in combinations to determine which model(s) showed the best performance. The results of this study were compared with the results of other validation studies and other biodegradation models. The BIOWIN models predict not-readily biodegradable substances with high accuracy in contrast to ready biodegradability. In view of the high environmental concern of persistent chemicals and in view of the large number of not-readily biodegradable chemicals compared to the readily ones, a model is preferred that gives a minimum of false positives without a corresponding high percentage false negatives. A combination of the BIOWIN models (BIOWIN2 or BIOWIN6) showed the highest predictive value for not-readily biodegradability. However, the highest score for overall predictivity with lowest percentage false predictions was achieved by applying BIOWIN3 (pass level 2.75) and BIOWIN6.

  15. Immaturity of Visual Fixations in Dyslexic Children.

    Directory of Open Access Journals (Sweden)

    TIADI eBi Kuyami Guy Aimé

    2016-02-01

    Full Text Available To our knowledge, behavioral studies recording visual fixations abilities in dyslexic children are scarce. The object of this paper is to explore further the visual fixation ability in dyslexics compared to chronological age-matched and reading age-matched non-dyslexic children. Fifty-five dyslexic children from 7 to 14 years old, fifty-five chronological age-matched non-dyslexic children and fifty-five reading age-matched non-dyslexic children participated to this study. Eye movements from both eyes were recorded horizontally and vertically by a video-oculography system (EyeBrain® T2. The fixation task consisted in fixating a white-filled circle appearing in the centre of the screen for 30 seconds. Results showed that dyslexic children produced a significantly higher number of unwanted saccades than both groups of non-dyslexic children. Moreover, the number of unwanted saccades significantly decreased with age in both groups of non-dyslexic children, but not in dyslexics. Furthermore, dyslexics made more saccades during the last 15 sec of fixation period with respect to both groups of non-dyslexic children. Such poor visual fixation capability in dyslexic children could be due to impaired attention abilities, as well as to an immaturity of the cortical areas controlling the fixation system.

  16. Sutureless Intrascleral Fixated Intraocular Lens Implantation.

    Science.gov (United States)

    Karadag, Remzi; Celik, Haci Ugur; Bayramlar, Huseyin; Rapuano, Christopher J

    2016-08-01

    To review sutureless intrascleral intraocular lens (IOL) fixation methods. Review of published literature. Sutureless intrascleral IOL fixation methods are newer and have been developed to eliminate the suture-related complications of sutured scleral fixation methods such as suture-induced inflammation or infection and IOL dislocation or subluxation due to suture degradation or suture breakage. Sutureless intrascleral fixation methods aim for intrascleral haptic fixation to achieve stability of the IOL. Various methods of sutureless scleral fixation have been described. Using a needle, a blade, or a trochar, sclerostomies are created in all techniques for intraocular access. Some surgeons prefer to create scleral tunnels, whereas others use scleral flaps for scleral fixation of haptics. The stability of IOLs is attained by the scar tissue formed around the haptics. Short-term results of these new methods are acceptable; studies including more cases with longer follow-up are needed to determine their long-term success. [J Cataract Refract Surg. 2016;32(9):586-597.]. Copyright 2016, SLACK Incorporated.

  17. Experimental and Numerical Analysis of Screw Fixation in Anterior Cruciate Ligament Reconstruction

    Science.gov (United States)

    Chizari, Mahmoud; Wang, Bin; Snow, Martyn; Barrett, Mel

    2008-09-01

    This paper reports the results of an experimental and finite element analysis of tibial screw fixation in anterior cruciate ligament (ACL) reconstruction. The mechanical properties of the bone and tendon graft are obtained from experiments using porcine bone and bovine tendon. The results of the numerical study are compared with those from mechanical testing. Analysis shows that the model may be used to establish the optimum placement of the tunnel in anterior cruciate ligament reconstruction by predicting mechanical parameters such as stress, strain and displacement at regions in the tunnel wall.

  18. Laser-assisted fixation of a nitinol stapes prosthesis.

    Science.gov (United States)

    Schrötzlmair, Florian; Suchan, Fabian; Pongratz, Thomas; Krause, Eike; Müller, Joachim; Sroka, Ronald

    2018-02-01

    Otosclerosis is an inner ear bone disease characterized by fixation of the stapes and consequently progressive hearing loss. One treatment option is the surgical replacement of the stapes by a prosthesis. When so called "smart materials" like nitinol are used, prosthesis fixation can be performed using a laser without manual crimping on the incus. However, specific laser-prosthesis interactions have not been described yet. The aim of the present study was to elucidate the thermo-mechanical properties of the NiTiBOND® prosthesis as a basis for handling instructions for laser-assisted prosthesis fixation. Closure of the NiTiBOND® prosthesis was induced ex vivo by either a diode laser emitting at λ = 940 nm or a CO 2 laser (λ = 10,600 nm). Total energy for closure was determined. Suitable laser parameters (pulse duration, power per pulse, distance between tip of the laser fiber and prosthesis) were assessed. Specific laser-prosthesis interactions were recorded. Especially the diode laser was found to be an appropriate energy source. A total energy deposit of 60 mJ by pulses in near contact application was found to be sufficient for prosthesis closure ex vivo. Energy should be transmitted through a laser fiber equipollent to the prosthesis band diameter. Specific deformation characteristics due to the zonal prosthesis composition have to be taken into account. NiTiBOND® stapes prosthesis can be closed by very little energy when appropriate energy sources like diode lasers are used, suggesting a relatively safe application in vivo. Lasers Surg. Med. 50:153-157, 2018. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  19. Allogenic bone rods with freeze drying and gamma rays irradiation for treatment of fracture

    International Nuclear Information System (INIS)

    Zhou Zhenbin

    1999-01-01

    Opened reduction and internal fixation are the usual treatment of fracture, but both methods need a second operation for removal implants. The benefits of the bone rods are that they can avoid the removement of internal fixation and will be absorbed spontaneously. The bone rods are made of allogeneic compact bones with freeze-drying and gamma rays irradiation supplied by Shanxi Provincial Tissue Bank. The purpose of this study is to evaluate allograft reaction, the stability of the internal fixation, osteoinduction in the treatment of fracture using allogeneic bone rods with freeze drying and gamma rays irradiation. From May 1997 to May 1998, fourteen cases (male 12, female 2) of treatment were reviewed. The mean age was 37.3 (21-5 1). There were 3 medial malleolus fractures, 7 tibia and fibula fractures, 1 ulna and radius fracture, 1 lateral condyle of humerus fracture. The clinical results were satisfactory. Because the strength of the bone rods are weaker than that of screws, the bone rods are only indicated in the fixation of cancellous bones fracture and unloaded bone fracture. It can be used as a supplementary fixation of loaded bone. It is not indicated for fixation of comminuted fracture. More than two bone rods may be used in the fixation of fracture in order to get stability of the fracture and decrease stress between rods which will prevent the break of the bone rods. Allogeneic bone rods with freeze-drying and gamma rays irradiation can be used as implants of non-immunogenicity. There are no allograft reactions in all cases (including fever, leukocytosis, exudation or swelling in the wound). Although plenty of experimental studies have showed that freeze drying with gamma rays irradiation (below 50 KGy) would not destroy BMP of bone allograft, but there is no osteoinduction in our cases. The healing of a fracture and bridging external callus are similar as other operations. This new technique may have the following advantages compare with the screws: 1

  20. Micromotion in knee arthroplasty. A roentgen stereophotogrammetric analysis of four different concepts of prosthetic fixation

    International Nuclear Information System (INIS)

    Ryd, L.

    1985-05-01

    In a prospective study, micromotion between tibial components and bone was analysed using roentgen stereophotogrammetric analysis (RSA), the potential of which was assessed. The patient material consisted of 96 arthrotic knees subjected to arthroplasty with six types of prosthese representing four different fixation concepts with and without bone cement. Provided stable conditions of the objects studied, RSA proved to have an accuracy (=resolution) of 0.3 degrees for rotation and 0.2 mm for translation (3 S.D.). This resolution was 10 times better than conventional radiography and sufficient for the study of micromotion. Micromotion, both gradual over time (migration) and instant, in response to applied forces (inducible displacement), was found for all tibial components studied. For conventional cemented prostheses the mean migration was 1-1.5 mm for the different groups. Most of the migration occurred during the first 6 months. Inducible displacement of 0.2-1.0 mm was found in most cases. Metal support did not improve the prosthetic fixation. For the non-cemented cases both migration and inducible displacement was significantly larger than in cemented cases. All prostheses proved to be bonded to the bone in a semi-rigid way permitting micromotion. The newer fixation concept did not prove superior to conventional cementing of all-polyethylene prostheses. The micromotion occurred wihtin the soft tissue layer constituing the radiolucent zone, which in some cases was of tensile origin. Other radiographic of clinical variables did not correlate with the micromotion. (Author)

  1. Clinical efficacy of open reduction and semirigid internal fixation in management of displaced pediatric mandibular fractures: A series of 10 cases and surgical guidelines

    OpenAIRE

    Samir Joshi; Rajesh Kshirsagar; Akshay Mishra; Rahul Shah

    2015-01-01

    Aim: To evaluate the efficacy of open reduction and semirigid internal fixation in the management of displaced pediatric mandibular fractures. Method: Ten patients with displaced mandibular fractures treated with 1.5 mm four holed titanium mini-plate and 4 mm screws which were removed within four month after surgery. Results: All cases showed satisfactory bone healing without any growth disturbance. Conclusion: Open reduction and rigid internal fixation (ORIF) with 1.5 mm titanium mini- plate...

  2. 14CO2 fixation pattern of cyanobacteria

    International Nuclear Information System (INIS)

    Erdmann, N.; Schiewer, U.

    1985-01-01

    The 14 CO 2 fixation pattern of three cyanobacteria in the light and dark were studied. Two different chromatographic methods widely used for separating labelled photosynthetic intermediates were compared. After ethanolic extraction, a rather uniform fixation pattern reflecting mainly the β-carboxylation pathway is obtained for all 3 species. Of the intermediates, glucosylglycerol is specific and high citrulline and low malate contents are fairly specific to cyanobacteria. The composition of the 14 CO 2 fixation pattern is hardly affected by changes in temperature or light intensity, but it is severely affected by changes in the water potential of the medium. (author)

  3. Carbon dioxide fixation in isolated Kalanchoe chloroplasts

    Energy Technology Data Exchange (ETDEWEB)

    Levi, C.; Gibbs, M.

    1975-07-01

    Chloroplasts isolated from Kalanchoe diagremontiana leaves were capable of photosynthesizing at a rate of 5.4 ..mu..moles of CO/sub 2/ per milligram of chlorophyll per hour. The dark rate of fixation was about 1 percent of the light rate. A high photosynthetic rate was associated with low starch content of the leaves. Ribose 5-phosphate, fructose 1, 6-diphosphate, and dithiothreitol stimulated fixation, whereas phosphoenolpyruvate and azide were inhibitors. The products of CO/sub 2/ fixation were primarily those of the photosynthetic carbon reduction cycle. (auth)

  4. Drilling of bone: A comprehensive review

    Science.gov (United States)

    Pandey, Rupesh Kumar; Panda, S.S.

    2013-01-01

    Background Bone fracture treatment usually involves restoring of the fractured parts to their initial position and immobilizing them until the healing takes place. Drilling of bone is common to produce hole for screw insertion to fix the fractured parts for immobilization. Orthopaedic drilling during surgical process causes increase in the bone temperature and forces which can cause osteonecrosis reducing the stability and strength of the fixation. Methods A comprehensive review of all the relevant investigations carried on bone drilling is conducted. The experimental method used, results obtained and the conclusions made by the various researchers are described and compared. Result Review suggests that the further improvement in the area of bone drilling is possible. The systematic review identified several consequential factors (drilling parameters and drill specifications) affecting bone drilling on which there no general agreement among investigators or are not adequately evaluated. These factors are highlighted and use of more advanced methods of drilling is accentuated. The use of more precise experimental set up which resembles the actual situation and the development of automated bone drilling system to minimize human error is addressed. Conclusion In this review, an attempt has been made to systematically organize the research investigations conducted on bone drilling. Methods of treatment of bone fracture, studies on the determination of the threshold for thermal osteonecrosis, studies on the parameters influencing bone drilling and methods of the temperature measurement used are reviewed and the future work for the further improvement of bone drilling process is highlighted. PMID:26403771

  5. [DESIGN AND CLINICAL APPLICATION OF LESSER TROCHANTERIC REDUCTION FIXATION SYSTEM].

    Science.gov (United States)

    Guo, Xiaoze; Zhang, Ying; Xiao, Jin; Xie, Huibin; Yu, Jiefeng

    2015-02-01

    To design and produce a lesser trochanteric reduction fixation system and verify its value and effectiveness. A lesser trochanteric reduction fixation system was designed and produced according to the anatomical features of the lesser trochanteric fractures. Sixty-six patients with intertrochanteric fractures of Evans type III were included between January 2010 and July 2012. Of 66 patients, 32 were treated with dynamic hip screw (DHS) assisted with the lesser trochanteric reduction fixation system (study group), and 34 cases were treated with DHS only (control group). The 2 groups were comparable with no significant difference in gender, age, the reasons, and the types of the fractures (P > 0.05). The operation time, intraoperative blood loss, neck-shaft angle, bone healing time, ratio of successful fixations, and the functional evaluation of the hip joint after operation were compared between 2 groups. The study group had shorter operation time [(58.4 ± 5.3) minutes] and less intraoperative blood loss [(186.3 ± 6.6) mL than the control group [(78.5 ± 6.2)minutes and (246.2 ± 8.7) mL], showing significant differences (t = -14.040, P = 0.000; t = -31.145, P = 0.000). There was no significant difference in neck-shaft angle between study group [(138.6 ± 3.0)] and control group [(139.4 ± 2.9) degrees] (t = -1.044, P = 0.301). The wounds healed by first intention in both groups. The 30 and 31 patients were followed up 12 to 24 months (mean, 15 months) in the study group, and 13 to 25 months (mean, 16 months) in the control group, respectively. All fractures healed well in 2 groups. The study group had significantly shorter healing time [(8.8 ± 2.0) weeks] than the control group [(10.7 ± 3.4) weeks] (t = -2.871, P = 0.006). At 12 months after operation, coxa vara happened in 2 cases of the study group with a successful fixation ratio of 93.3% and in 10 cases of the control group with a successful fixation ratio of 67.7%, showing significant difference (Χ2 = 6

  6. The mechanical study of acrylic bone cement reinforced with carbon nanotube

    International Nuclear Information System (INIS)

    Nien, Yu-Hsun; Huang, Chiao-li

    2010-01-01

    Bone cement is used as filler between prosthesis and bone for fixation and force distribution. The major composition of bone cement is polymethylmethacrylate (PMMA). Some disadvantages of PMMA bone cement are found such as significant poor mechanical properties which may cause failure of the cement. In this paper, we exploited carbon nanotube to enhance the mechanical properties of bone cement. The mechanical properties of the bone cement were characterized using tensile and compressive analysis as well as dynamic mechanical analysis (DMA). The result shows that carbon nanotube is able to enhance the mechanical properties of the modified bone cement.

  7. Numeric scintigraphy in the exploration of bone metastases. About 619 patients, 819 scans and 97 biopsy

    International Nuclear Information System (INIS)

    Robillard, J.; Couette, J.E.; Ly Van Hoa; Chedeville, R.; Mandard, A.M.; Chasles, J.

    1977-01-01

    Histograms which show uptake rate distribution on bone metastases and on normal bones, arthrosic bone, uncalcified bone, have been drawn up. 819 scans performed on 627 patients have been classified according to ratio of bone segment/knee, bone segment/whole body and bone segment/minimum (knee, whole body). Henry's straight lines have been drawn in man and in woman for these different ratios in order to select the best discriminant. At last a biopsy on 97 patients has controlled the validity of the method. Quantitative scanning allows, on the other hand, to observe the evaluation of metastases under treatment as shown by the fixation curves during this time [fr

  8. The mechanical study of acrylic bone cement reinforced with carbon nanotube

    Energy Technology Data Exchange (ETDEWEB)

    Nien, Yu-Hsun, E-mail: nienyh@yuntech.edu.tw [Department of Chemical and Materials Engineering, National Yunlin University of Science and Technology, Douliou, Yunlin 64002, Taiwan (China); Huang, Chiao-li [Department of Chemical and Materials Engineering, National Yunlin University of Science and Technology, Douliou, Yunlin 64002, Taiwan (China)

    2010-05-25

    Bone cement is used as filler between prosthesis and bone for fixation and force distribution. The major composition of bone cement is polymethylmethacrylate (PMMA). Some disadvantages of PMMA bone cement are found such as significant poor mechanical properties which may cause failure of the cement. In this paper, we exploited carbon nanotube to enhance the mechanical properties of bone cement. The mechanical properties of the bone cement were characterized using tensile and compressive analysis as well as dynamic mechanical analysis (DMA). The result shows that carbon nanotube is able to enhance the mechanical properties of the modified bone cement.

  9. Functional fixation of autotransplanted tooth germs by using bioresorbable membranes.

    Science.gov (United States)

    Gérard, Eric; Membre, Hervé; Gaudy, Jean-François; Mahler, Patrick; Bravetti, Pierre

    2002-12-01

    The purpose of this study was to evaluate the contribution of a bioresorbable membrane placement to the healing of immature teeth after autotransplantation of tooth buds. Six cases were selected: 2 transplantations of wisdom teeth, 2 for premolar agenesis, 1 for ectopia, and 1 premolar in an incisor position. The crown of each tooth germ and the marginal alveolar bone were covered with a resorbable membrane. The radicular edification was nearly complete, neither ankylosis nor inflammatory resorption was observable, the pulp vitality was preserved, and the periodontal integration was identical to that of other teeth. The membrane ensured contention and stabilization of the transplant, allowed functional stimulation, permitted protection of the coagulum and periodontal cells, and kept the epithelium at a distance. The transplantations of immature teeth were improved by the use of a resorbable membrane, which caused an optimal functional fixation of the transplanted tooth.

  10. Hydroxyapatite coatings of fracture fixation plates for orthopedic applications

    International Nuclear Information System (INIS)

    Omar, M.A.; Abdullah, N.S.; Yahya, N.M.; Subuki, I.; Hassan, N.; Mohamad, S.M.

    2007-01-01

    The plasma sprayed hydroxyapatite (HA) coatings are used on metallic implants to improve their adhesion to bone. The present study investigates the plasma sprayed process of HA on the fracture fixation plates fabricated by metal injection moulding process. The phase and microstructure of the coatings were studied and their microhardness measured. The phase composition of coatings was analyzed by the use of X-ray diffraction method. The homogeneity of the deposit and coating thickness were evaluated using scanning electron microscope (SEM). The results suggest that the nature of the coating morphology, phase and crystallinity changes with respect to the plasma sprayed processing parameters. The XRD revealed the presence of both amorphous and crystalline phases. In addition, the powder particles also melt partially in some region and coating microstructure varied from a porous structure to a smooth glassy structure or a typical lamellar structure. (author)

  11. [Effectiveness comparison of suspension fixation plus hinged external fixator and double plate internal fixation in treatment of type C humeral intercondylar fractures].

    Science.gov (United States)

    Zhang, Jian; Lin, Xu; Zhong, Zeli; Wu, Chao; Tan, Lun

    2017-07-01

    To compare the effectiveness of suspension fixation plus hinged external fixator with double plate internal fixation in the treatment of type C humeral intercondylar fractures. Between January 2014 and April 2016, 30 patients with type C (Association for the Study of Internal Fixation, AO/ASIF) humeral intercondylar fractures were treated. Kirschner wire suspension fixation plus hinged external fixator was used in 14 cases (group A), and double plate internal fixation in 16 cases (group B). There was no significant difference in gender, age, injury cause, disease duration, injury side, and type of fracture between 2 groups ( P >0.05). There was no significant difference in operation time and hospitalization stay between 2 groups ( P >0.05). But the intraoperative blood loss in group A was significantly less than that in group B ( P internal fixation removal, the intraoperative blood loss, and VAS score at 1 day and 3 days after operation in group A were significant better than those in group B ( P external fixator and double plate internal fixation for the treatment of type C humeral intercondylar fractures have ideal outcome in elbow function. But the suspension fixation plus hinged external fixator is better than double plate internal fixation in intraoperative blood loss, postoperative VAS score, and time of internal fixation removal.

  12. Angular Stable Miniplate Fixation of Chronic Unstable Scaphoid Nonunion.

    Science.gov (United States)

    Schormans, Philip M J; Brink, Peter R G; Poeze, Martijn; Hannemann, Pascal F W

    2018-02-01

    Background  Around 5 to 15% of all scaphoid fractures result in nonunion. Treatment of long-lasting scaphoid nonunion remains a challenge for the treating surgeon. Healing of scaphoid nonunion is essential for prevention of scaphoid nonunion advanced collapse and the subsequent predictable pattern of radiocarpal osteoarthritis. Purpose  The purpose of this study was to investigate the feasibility of fixation of the scaphoid nonunion with a volar angular stable miniplate and cancellous bone grafting. We hypothesized that this technique could be successful, even in patients with previous surgery for nonunion and in patients with a long duration of nonunion. Patients and Methods  A total of 21 patients enrolled in a single-center prospective cohort study. Healing of nonunion was assessed on multiplanar computed tomography scan of the wrist at a 3-month interval. Functional outcome was assessed by measuring grip strength, range of motion, and by means of the patient-rated wrist and hand evaluation (PRWHE) questionnaire. Results  During follow-up, 19 out of 21 patients (90%) showed radiological healing of the nonunion. The range of motion did not improve significantly. Postoperative PRWHE scores decreased by 34 points. Healing occurred regardless of the length of time of the nonunion (range: 6-183 months) and regardless of previous surgery (38% of patients). Conclusion  Volar angular stable miniplate fixation with autologous cancellous bone grafting is a successful technique for the treatment of chronic unstable scaphoid nonunion, even in patients with long-lasting nonunion and in patients who underwent previous surgery for a scaphoid fracture. Rotational interfragmentary stability might be an important determining factor for the successful treatment of unstable scaphoid nonunion. Level of Evidence  Level IV.

  13. Lateral column lengthening using allograft interposition and cervical plate fixation.

    Science.gov (United States)

    Philbin, Terrence M; Pokabla, Christopher; Berlet, Gregory C

    2008-10-01

    Lateral column lengthening has been used successfully in the treatment of stage II adult-acquired pes planovalgus deformity. The purpose of this study is to review the union rate when allograft material is used and the osteotomy stabilized with a cervical plate. A retrospective review was performed on 28 feet in 26 patients who underwent correction of stage II pes planovalgus deformity using a lateral column lengthening with allograft tricortical iliac crest stabilized with a cervical plate. Patients were evaluated preoperatively and postoperatively using a modified American Orthopaedic Foot and Ankle Society (AOFAS) Ankle-Hindfoot Scale and the Short Form-12 health survey, as well as radiographically by assessing the talonavicular coverage angle. At a mean follow-up of 9 months, the mean total modified AOFAS score and pain subscore were significantly higher (45.6 and 25.0, respectively) versus preoperatively (27.3 and 11.2, respectively). Graft incorporation occurred in all but one case, and the average length of time to union was 10.06 weeks. Complications included 4 hardware removals, 1 nonunion, 1 graft penetration of the calcaneocuboid joint, and 2 cases of calcaneocuboid joint arthritis. Lateral column lengthening using allograft tricortical iliac crest bone graft with cervical plate fixation is a viable option for the correction of acquired pes planovalgus deformity. Allograft bone avoids donor site morbidity of autogenous iliac crest grafts and was not shown to increase rates of nonunion. Cervical plate fixation avoids the necessity of penetrating the graft with a screw and is associated with high patient satisfaction and radiographic union.

  14. The materials used in bone tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Tereshchenko, V. P., E-mail: tervp@ngs.ru; Kirilova, I. A.; Sadovoy, M. A.; Larionov, P. M. [Novosibirsk Research Institute of Traumatology and Orthopedics n.a. Ya.L. Tsivyan, Novosibirsk (Russian Federation)

    2015-11-17

    Bone tissue engineering looking for an alternative solution to the problem of skeletal injuries. The method is based on the creation of tissue engineered bone tissue equivalent with stem cells, osteogenic factors, and scaffolds - the carriers of these cells. For production of tissue engineered bone equivalent is advisable to create scaffolds similar in composition to natural extracellular matrix of the bone. This will provide optimal conditions for the cells, and produce favorable physico-mechanical properties of the final construction. This review article gives an analysis of the most promising materials for the manufacture of cell scaffolds. Biodegradable synthetic polymers are the basis for the scaffold, but it alone cannot provide adequate physical and mechanical properties of the construction, and favorable conditions for the cells. Addition of natural polymers improves the strength characteristics and bioactivity of constructions. Of the inorganic compounds, to create cell scaffolds the most widely used calcium phosphates, which give the structure adequate stiffness and significantly increase its osteoinductive capacity. Signaling molecules do not affect the physico-mechanical properties of the scaffold, but beneficial effect is on the processes of adhesion, proliferation and differentiation of cells. Biodegradation of the materials will help to fulfill the main task of bone tissue engineering - the ability to replace synthetic construct by natural tissues that will restore the original anatomical integrity of the bone.

  15. Fixation probability on clique-based graphs

    Science.gov (United States)

    Choi, Jeong-Ok; Yu, Unjong

    2018-02-01

    The fixation probability of a mutant in the evolutionary dynamics of Moran process is calculated by the Monte-Carlo method on a few families of clique-based graphs. It is shown that the complete suppression of fixation can be realized with the generalized clique-wheel graph in the limit of small wheel-clique ratio and infinite size. The family of clique-star is an amplifier, and clique-arms graph changes from amplifier to suppressor as the fitness of the mutant increases. We demonstrate that the overall structure of a graph can be more important to determine the fixation probability than the degree or the heat heterogeneity. The dependence of the fixation probability on the position of the first mutant is discussed.

  16. Fixation of Selenium by Clay Minerals and Iron Oxides

    DEFF Research Database (Denmark)

    Hamdy, A. A.; Nielsen, Gunnar Gissel

    1977-01-01

    In studying Se fixation, soil components capable of retaining Se were investigated. The importance of Fe hydrous oxides in the fixation of Se was established. The clay minerals common to soils, such as kaolinite, montmorillonite and vermiculite, all exhibited Se fixation, but greater fixation occ...

  17. Reconstruction of segmental bone defect of long bones after tumor resection by devitalized tumor-bearing bone.

    Science.gov (United States)

    Qu, Huayi; Guo, Wei; Yang, Rongli; Li, Dasen; Tang, Shun; Yang, Yi; Dong, Sen; Zang, Jie

    2015-09-24

    The reconstruction of an intercalary bone defect after a tumor resection of a long bone remains a challenge to orthopedic surgeons. Though several methods have been adopted to enhance the union of long segmental allografts or retrieved segmental autografts to the host bones, still more progresses are required to achieve a better union rate. Several methods have been adopted to devitalize tumor bone for recycling usage, and the results varied. We describe our experiences of using devitalized tumor-bearing bones for the repairing of segmental defects after tumor resection. Twenty-seven eligible patients treated from February 2004 to May 2012 were included. The segmental tumor bone (mean length, 14 cm) was resected, and then devitalized in 20% sterile saline at 65 °C for 30 min after the tumor tissue was removed. The devitalized bone was implanted back into the defect by using nails or plates. Complete healing of 50 osteotomy ends was achieved at a median time of 11 months (interquartile range (IQR) 9-13 months). Major complications included bone nonunion in four bone junctions (7.4%), devitalized bone fracture in one patient (3.7%), deep infection in three patients (11.1%), and fixation failure in two patients (7.4%). The bone union rates at 1 and 2 years were 74.1 and 92.6%, respectively. The average functional score according to the Musculoskeletal Tumor Society (MSTS) 93 scoring system was 93 % (IQR 80-96.7%). Incubation in 20% sterile saline at 65 °C for 30 min is an effective method of devitalization of tumor-bearing bone. The retrieved bone graft may provide as a less expensive alternative for limb salvage. The structural bone and the preserved osteoinductivity of protein may improve bone union.

  18. Use of Radiographic Densitometry to Predict the Bone Healing Index in Distraction Osteogenesis

    OpenAIRE

    A Saw; S Manimaran; S Faizal; AM Bulgiba

    2008-01-01

    Bone lengthening with distraction osteogenesis involves prolonged application of an external fixator frame. Qualitative and quantitative evaluation of callus has been described using various imaging modalities but there is no simple reliable and readily available method. This study aims to investigate the use of a densitometer to analyze plain radiographic images and correlate them with the rate of new bone formation as represented by the bone healing index. A total of 34 bone lengthening pro...

  19. Here today, gone tomorrow: biodegradable soft robots

    Science.gov (United States)

    Rossiter, Jonathan; Winfield, Jonathan; Ieropoulos, Ioannis

    2016-04-01

    One of the greatest challenges to modern technologies is what to do with them when they go irreparably wrong or come to the end of their productive lives. The convention, since the development of modern civilisation, is to discard a broken item and then procure a new one. In the 20th century enlightened environmentalists campaigned for recycling and reuse (R and R). R and R has continued to be an important part of new technology development, but there is still a huge problem of non-recyclable materials being dumped into landfill and being discarded in the environment. The challenge is even greater for robotics, a field which will impact on all aspects of our lives, where discards include motors, rigid elements and toxic power supplies and batteries. One novel solution is the biodegradable robot, an active physical machine that is composed of biodegradable materials and which degrades to nothing when released into the environment. In this paper we examine the potential and realities of biodegradable robotics, consider novel solutions to core components such as sensors, actuators and energy scavenging, and give examples of biodegradable robotics fabricated from everyday, and not so common, biodegradable electroactive materials. The realisation of truly biodegradable robots also brings entirely new deployment, exploration and bio-remediation capabilities: why track and recover a few large non-biodegradable robots when you could speculatively release millions of biodegradable robots instead? We will consider some of these exciting developments and explore the future of this new field.

  20. Primary biodegradation of petroleum hydrocarbons in seawater

    Energy Technology Data Exchange (ETDEWEB)

    Comber, M.I.H.; Den Haan, K.H.; Djemel, N.; Eadsforth, C.V.; King, D.; Paumen, M.L.; Parkerton, T.; Dmytrasz, B.

    2012-12-15

    This report describes primary biodegradation experiments performed to determine the persistence of higher molecular weight petroleum hydrocarbons in seawater. Results from the biodegradation experiments show that the majority of tested petroleum hydrocarbons have half-lives in seawater less than 60 days.

  1. Simultaneous adsorption and biodegradation of synthetic melanoidin

    African Journals Online (AJOL)

    Being an antioxidant, melanoidin removal through purely biodegradation has been inadequate. Consequently, in the current study, simultaneous adsorption and biodegradation (SAB) was employed in a stirred tank system to remove melanoidin from synthetic wastewater. Mixed microbial consortium was immobilized onto ...

  2. Biomechanical Evaluation of Standard Versus Extended Proximal Fixation Olecranon Plates for Fixation of Olecranon Fractures.

    Science.gov (United States)

    Boden, Allison L; Daly, Charles A; Dalwadi, Poonam P; Boden, Stephanie A; Hutton, William C; Muppavarapu, Raghuveer C; Gottschalk, Michael B

    2018-01-01

    Small olecranon fractures present a significant challenge for fixation, which has resulted in development of plates with proximal extension. Olecranon-specific plates with proximal extensions are widely thought to offer superior fixation of small proximal fragments but have distinct disadvantages: larger dissection, increased hardware prominence, and the increased possibility of impingement. Previous biomechanical studies of olecranon fracture fixation have compared methods of fracture fixation, but to date there have been no studies defining olecranon plate fixation strength for standard versus extended olecranon plates. The purpose of this study is to evaluate the biomechanical utility of the extended plate for treatment of olecranon fractures. Sixteen matched pairs of fresh-frozen human cadaveric elbows were used. Of the 16, 8 matched pairs received a transverse osteotomy including 25% and 8 including 50% of the articular surface on the proximal fragment. One elbow from each pair was randomly assigned to a standard-length plate, and the other elbow in the pair received the extended-length plate, for fixation of the fracture. The ulnae were cyclically loaded and subsequently loaded to failure, with ultimate load, number of cycles, and gap formation recorded. There was no statistically significant difference between the standard and extended fixation plates in simple transverse fractures at either 25% or 50% from the proximal most portion of the articular surface of the olecranon. Standard fixation plates are sufficient for the fixation of small transverse fractures, but caution should be utilized particularly with comminution and nontransverse fracture patterns.

  3. Three-phase bone scanning in reflex sympathetic dystrophy of the extremities: a semi-quantitative analysis

    International Nuclear Information System (INIS)

    Granier, P.; Manicourt, D.H.; Pauwels, S.; Nagant de Deuxchaisnes, C.; Beckers, C.

    1994-01-01

    Three-phase bone scanning of the extremities (foot or hand) was performed in 40 normal subjects and in 56 patients with an unequivocal clinical diagnosis of reflex sympathetic dystrophy. The scintigraphic parameters studied were the ratios of tracer (SUPD SUPG Tc) activity in the affected side over the healthy side established for blood flow, blood pool, early vasculo-tissular fixation, and late bone fixation. In the controls, blood flow, blood pool, and early fixation showed considerable interindividual variation and only the variation of late fixation remained within narrow limits. Statistical analysis revealed that late fixation was most closely correlated with early fixation, which in turn was most close correlated with blood pool. The clinical and pathophysiological significance of these data is discussed. (authors). 33 refs., 2 figs., 5 tabs

  4. Bone marrow aspiration

    Science.gov (United States)

    Iliac crest tap; Sternal tap; Leukemia - bone marrow aspiration; Aplastic anemia - bone marrow aspiration; Myelodysplastic syndrome - bone marrow aspiration; Thrombocytopenia - bone marrow aspiration; Myelofibrosis - bone marrow aspiration

  5. Maxwellian Eye Fixation during Natural Scene Perception

    Directory of Open Access Journals (Sweden)

    Jean Duchesne

    2012-01-01

    Full Text Available When we explore a visual scene, our eyes make saccades to jump rapidly from one area to another and fixate regions of interest to extract useful information. While the role of fixation eye movements in vision has been widely studied, their random nature has been a hitherto neglected issue. Here we conducted two experiments to examine the Maxwellian nature of eye movements during fixation. In Experiment 1, eight participants were asked to perform free viewing of natural s