WorldWideScience

Sample records for biodegradability electronic resource

  1. Biodegradability enhancement of textile wastewater by electron beam irradiation

    International Nuclear Information System (INIS)

    Kim, Tak-Hyun; Lee, Jae-Kwang; Lee, Myun-Joo

    2007-01-01

    Textile wastewater generally contains various pollutants, which can cause problems during biological treatment. Electron beam radiation technology was applied to enhance the biodegradability of textile wastewater for an activated sludge process. The biodegradability (BOD 5 /COD) increased at a 1.0 kGy dose. The biorefractory organic compounds were converted into more easily biodegradable compounds such as organic acids having lower molecular weights. In spite of the short hydraulic retention time (HRT) of the activated sludge process, not only high organic removal efficiencies, but also high microbial activities were achieved. In conclusion, textile wastewater was effectively treated by the combined process of electron beam radiation and an activated sludge process

  2. Electronic Resource Management Systems

    Directory of Open Access Journals (Sweden)

    Mark Ellingsen

    2004-10-01

    Full Text Available Computer applications which deal with electronic resource management (ERM are quite a recent development. They have grown out of the need to manage the burgeoning number of electronic resources particularly electronic journals. Typically, in the early years of e-journal acquisition, library staff provided an easy means of accessing these journals by providing an alphabetical list on a web page. Some went as far as categorising the e-journals by subject and then grouping the journals either on a single web page or by using multiple pages. It didn't take long before it was recognised that it would be more efficient to dynamically generate the pages from a database rather than to continually edit the pages manually. Of course, once the descriptive metadata for an electronic journal was held within a database the next logical step was to provide administrative forms whereby that metadata could be manipulated. This in turn led to demands for incorporating more information and more functionality into the developing application.

  3. Electronic Resource Management and Design

    Science.gov (United States)

    Abrams, Kimberly R.

    2015-01-01

    We have now reached a tipping point at which electronic resources comprise more than half of academic library budgets. Because of the increasing work associated with the ever-increasing number of e-resources, there is a trend to distribute work throughout the library even in the presence of an electronic resources department. In 2013, the author…

  4. Sustainable hybrid photocatalysts: titania immobilized on carbon materials derived from renewable and biodegradable resources

    Science.gov (United States)

    This review comprises the preparation, properties and heterogeneous photocatalytic applications of TiO2 immobilized on carbon materials derived from earth-abundant, renewable and biodegradable agricultural residues and sea food waste resources. The overview provides key scientifi...

  5. High-performance green flexible electronics based on biodegradable cellulose nanofibril paper.

    Science.gov (United States)

    Jung, Yei Hwan; Chang, Tzu-Hsuan; Zhang, Huilong; Yao, Chunhua; Zheng, Qifeng; Yang, Vina W; Mi, Hongyi; Kim, Munho; Cho, Sang June; Park, Dong-Wook; Jiang, Hao; Lee, Juhwan; Qiu, Yijie; Zhou, Weidong; Cai, Zhiyong; Gong, Shaoqin; Ma, Zhenqiang

    2015-05-26

    Today's consumer electronics, such as cell phones, tablets and other portable electronic devices, are typically made of non-renewable, non-biodegradable, and sometimes potentially toxic (for example, gallium arsenide) materials. These consumer electronics are frequently upgraded or discarded, leading to serious environmental contamination. Thus, electronic systems consisting of renewable and biodegradable materials and minimal amount of potentially toxic materials are desirable. Here we report high-performance flexible microwave and digital electronics that consume the smallest amount of potentially toxic materials on biobased, biodegradable and flexible cellulose nanofibril papers. Furthermore, we demonstrate gallium arsenide microwave devices, the consumer wireless workhorse, in a transferrable thin-film form. Successful fabrication of key electrical components on the flexible cellulose nanofibril paper with comparable performance to their rigid counterparts and clear demonstration of fungal biodegradation of the cellulose-nanofibril-based electronics suggest that it is feasible to fabricate high-performance flexible electronics using ecofriendly materials.

  6. High-performance green flexible electronics based on biodegradable cellulose nanofibril paper

    Science.gov (United States)

    Yei Hwan Jung; Tzu-Hsuan Chang; Huilong Zhang; Chunhua Yao; Qifeng Zheng; Vina W. Yang; Hongyi Mi; Munho Kim; Sang June Cho; Dong-Wook Park; Hao Jiang; Juhwan Lee; Yijie Qiu; Weidong Zhou; Zhiyong Cai; Shaoqin Gong; Zhenqiang Ma

    2015-01-01

    Today’s consumer electronics, such as cell phones, tablets and other portable electronic devices, are typically made of non-renewable, non-biodegradable, and sometimes potentially toxic (for example, gallium arsenide) materials. These consumer electronics are frequently upgraded or discarded, leading to serious environmental contamination. Thus, electronic systems...

  7. Biodegradable Polymers

    OpenAIRE

    Vroman, Isabelle; Tighzert, Lan

    2009-01-01

    Biodegradable materials are used in packaging, agriculture, medicine and other areas. In recent years there has been an increase in interest in biodegradable polymers. Two classes of biodegradable polymers can be distinguished: synthetic or natural polymers. There are polymers produced from feedstocks derived either from petroleum resources (non renewable resources) or from biological resources (renewable resources). In general natural polymers offer fewer advantages than synthetic polymers. ...

  8. Enhancement of biodegradability of real textile and dyeing wastewater by electron beam irradiation

    International Nuclear Information System (INIS)

    He, Shijun; Sun, Weihua; Wang, Jianlong; Chen, Lvjun; Zhang, Youxue; Yu, Jiang

    2016-01-01

    A textile and dyeing wastewater treatment plant is going to be upgraded due to the stringent discharge standards in Jiangsu province, China, and electron beam irradiation is considering to be used. In order to determine the suitable location of the electron accelerator in the process of wastewater treatment plant, the effects of electron beam (EB) irradiation on the biodegradability of various real wastewater samples collecting from the different stages of the wastewater treatment plant, the values of chemical oxygen demand (COD), biochemical oxygen demand (BOD 5 ), and the ratio of BOD 5 and COD (BOD 5 /COD), were compared before and after EB irradiation. During EB irradiation process, color indices and absorbance at 254 nm wavelength (UV 254 ) of wastewater were also determined. The results showed that EB irradiation pre-treatment cannot improve the biodegradability of raw textile and dyeing wastewater, which contains a large amount of biodegradable organic matters. In contrast, as to the final effluent of biological treatment process, EB irradiation can enhance the biodegradability to 224%. Therefore, the promising way is to apply EB irradiation as a post-treatment of the conventional biological process. - Highlights: • Irradiation pre-treatment did not improve the raw textile wastewater biodegradability. • Irradiation can highly enhance the biodegradability of biological treated effluent. • EB irradiation can be used as a post-treatment after biological process.

  9. Evaluation on ecological stability and biodegradation of dyeing wastewater pre-treated by electron beam

    International Nuclear Information System (INIS)

    Lee, M.J.; Park, C.K.; Yoo, D.H.; Lee, J.K.; Lee, B.J.; Han, B.S.; Kim, J.K.; Kim, Y.R.

    2005-01-01

    Biological treatment of dye wastewater pre-treated by electron beam has been performed in order to evaluate the biodegradation and ecological stability of effluent. In the process of electron-beam treatment of wastewater there are utilized chemical transformations of pollutants induced by ionizing radiation. Partial decomposition of pollutant takes place as well as transformations of pollutant molecules that result in improving subsequent purification stages like as biological processing. Dyeing wastewater contains many kind of pollutants which are difficult to be decomposed completely by microorganisms. In this study, biodegradation with dyeing wastewater pre-treated by electron beams was observed. On the other hand, consideration on public acceptance in terms of ecological stability of biological effluent pre-treated by electron beams was given in this study. The results of laboratory investigations on biodegradation and ecological stability of effluent showed that biodegradation of dye wastewater pre-treated by electron beam was enhanced compared to unirradiated one. In the initial stage of biological oxidation regardless of different HRT, dye wastewater pre-treated by electron beam could be oxidized easily compare to without treated one. More number of survived daphnia magna could be observed in the biological effluent pre-treated by electron beam. This means that biological effluent pre-treated by electron beam can be said 'it is safe on the ecological system'

  10. Managing electronic resources a LITA guide

    CERN Document Server

    Weir, Ryan O

    2012-01-01

    Informative, useful, current, Managing Electronic Resources: A LITA Guide shows how to successfully manage time, resources, and relationships with vendors and staff to ensure personal, professional, and institutional success.

  11. Electronic Resources Management Project Presentation 2012

    KAUST Repository

    Ramli, Rindra M.

    2012-11-05

    This presentation describes the electronic resources management project undertaken by the KAUST library. The objectives of this project is to migrate information from MS Sharepoint to Millennium ERM module. One of the advantages of this migration is to consolidate all electronic resources into a single and centralized location. This would allow for better information sharing among library staff.

  12. Implementing CORAL: An Electronic Resource Management System

    Science.gov (United States)

    Whitfield, Sharon

    2011-01-01

    A 2010 electronic resource management survey conducted by Maria Collins of North Carolina State University and Jill E. Grogg of University of Alabama Libraries found that the top six electronic resources management priorities included workflow management, communications management, license management, statistics management, administrative…

  13. Fabrication, characterization, and modeling of a biodegradable battery for transient electronics

    Science.gov (United States)

    Edupuganti, Vineet; Solanki, Raj

    2016-12-01

    Traditionally, emphasis has been placed on durable, long-lasting electronics. However, electronics that are meant to intentionally degrade over time can actually have significant practical applications. Biodegradable, or transient, electronics would open up opportunities in the field of medical implants, where the need for surgical removal of devices could be eliminated. Environmental sensors and, eventually, consumer electronics would also greatly benefit from this technology. An essential component of transient electronics is the battery, which serves as a biodegradable power source. This work involves the fabrication, characterization, and modeling of a magnesium-based biodegradable battery. Galvanostatic discharge tests show that an anode material of magnesium alloy AZ31 extends battery lifetime by over six times, as compared to pure magnesium. With AZ31, the maximum power and capacity of the fabricated device are 67 μW and 5.2 mAh, respectively, though the anode area is just 0.8 cm2. The development of an equivalent circuit model provided insight into the battery's behavior by extracting fitting parameters from experimental data. The model can accurately simulate device behavior, taking into account its intentional degradation. The size of the device and the power it produces are in accordance with typical levels for low-power transient systems.

  14. "Green" electronics: biodegradable and biocompatible materials and devices for sustainable future.

    Science.gov (United States)

    Irimia-Vladu, Mihai

    2014-01-21

    "Green" electronics represents not only a novel scientific term but also an emerging area of research aimed at identifying compounds of natural origin and establishing economically efficient routes for the production of synthetic materials that have applicability in environmentally safe (biodegradable) and/or biocompatible devices. The ultimate goal of this research is to create paths for the production of human- and environmentally friendly electronics in general and the integration of such electronic circuits with living tissue in particular. Researching into the emerging class of "green" electronics may help fulfill not only the original promise of organic electronics that is to deliver low-cost and energy efficient materials and devices but also achieve unimaginable functionalities for electronics, for example benign integration into life and environment. This Review will highlight recent research advancements in this emerging group of materials and their integration in unconventional organic electronic devices.

  15. Electronic Resources Management System: Recommendation Report 2017

    KAUST Repository

    Ramli, Rindra M.

    2017-01-01

    This recommendation report provides an overview of the selection process for the new Electronic Resources Management System. The library has decided to move away from Innovative Interfaces Millennium ERM module. The library reviewed 3 system

  16. Electronic Resources Management Project Presentation 2012

    KAUST Repository

    Ramli, Rindra M.

    2012-01-01

    This presentation describes the electronic resources management project undertaken by the KAUST library. The objectives of this project is to migrate information from MS Sharepoint to Millennium ERM module. One of the advantages of this migration

  17. PRINCIPLES OF CONTENT FORMATION EDUCATIONAL ELECTRONIC RESOURCE

    Directory of Open Access Journals (Sweden)

    О Ю Заславская

    2017-12-01

    Full Text Available The article considers modern possibilities of information and communication technologies for the design of electronic educational resources. The conceptual basis of the open educational multimedia system is based on the modular architecture of the electronic educational resource. The content of the electronic training module can be implemented in several versions of the modules: obtaining information, practical exercises, control. The regularities in the teaching process in modern pedagogical theory are considered: general and specific, and the principles for the formation of the content of instruction at different levels are defined, based on the formulated regularities. On the basis of the analysis, the principles of the formation of the electronic educational resource are determined, taking into account the general and didactic patterns of teaching.As principles of the formation of educational material for obtaining information for the electronic educational resource, the article considers: the principle of methodological orientation, the principle of general scientific orientation, the principle of systemic nature, the principle of fundamentalization, the principle of accounting intersubject communications, the principle of minimization. The principles of the formation of the electronic training module of practical studies in the article include: the principle of systematic and dose based consistency, the principle of rational use of study time, the principle of accessibility. The principles of the formation of the module for monitoring the electronic educational resource can be: the principle of the operationalization of goals, the principle of unified identification diagnosis.

  18. Electronic Resources Management System: Recommendation Report 2017

    KAUST Repository

    Ramli, Rindra M.

    2017-05-01

    This recommendation report provides an overview of the selection process for the new Electronic Resources Management System. The library has decided to move away from Innovative Interfaces Millennium ERM module. The library reviewed 3 system as potential replacements namely: Proquest 360 Resource Manager, Ex Libris Alma and Open Source CORAL ERMS. After comparing and trialling the systems, it was decided to go for Proquest 360 Resource Manager.

  19. CHALLENGES OF ELECTRONIC INFORMATION RESOURCES IN ...

    African Journals Online (AJOL)

    This paper discusses the role of policy for proper and efficient library services in the electronic era. It points out some of the possible dangers of embarking in electronic resources without a proper focus at hand. Thus, it calls for today's librarians and policy makers to brainstorm and come up with working policies suitable to ...

  20. Effect of electron beam irradiation on the biodegradability of aromatic aliphatic copolyester film and their blend with corn starch

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Leonardo G. Andrade e; Poveda, Patricia N.S., E-mail: lgasilva@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Rezende, Maira L.; Rosa, Derval S. [Universidade Sao Francisco, Itatiba, SP (Brazil)

    2009-07-01

    Biodegradable and green plastics have been studied in the last years. The aim of this paper is to study the effect of electron beam irradiation on the biodegradability of aromatic aliphatic copolyester film and their blend with corn starch. The samples were irradiated at different doses 10 and 40 kGy in a linear accelerator. The biodegradability of the materials was evaluated by two methods: soil simulated and enzymatic. In the method enzymatic when it was used alpha-amylase, the irradiated samples presented faster biodegradation than the references non irradiated. The blend of aromatic aliphatic copolyester with corn starch (Ecobras{sup R}) irradiated presented a bigger biodegradability than the aromatic aliphatic copolyester (Ecoflex{sup R}) film in both methods studied. (author)

  1. Effect of electron beam irradiation on the biodegradability of aromatic aliphatic copolyester film and their blend with corn starch

    International Nuclear Information System (INIS)

    Silva, Leonardo G. Andrade e; Poveda, Patricia N.S.; Rezende, Maira L.; Rosa, Derval S.

    2009-01-01

    Biodegradable and green plastics have been studied in the last years. The aim of this paper is to study the effect of electron beam irradiation on the biodegradability of aromatic aliphatic copolyester film and their blend with corn starch. The samples were irradiated at different doses 10 and 40 kGy in a linear accelerator. The biodegradability of the materials was evaluated by two methods: soil simulated and enzymatic. In the method enzymatic when it was used α-amylase, the irradiated samples presented faster biodegradation than the references non irradiated. The blend of aromatic aliphatic copolyester with corn starch (Ecobras R ) irradiated presented a bigger biodegradability than the aromatic aliphatic copolyester (Ecoflex R ) film in both methods studied. (author)

  2. Library training to promote electronic resource usage

    DEFF Research Database (Denmark)

    Frandsen, Tove Faber; Tibyampansha, Dativa; Ibrahim, Glory

    2017-01-01

    Purpose: Increasing the usage of electronic resources is an issue of concern for many libraries all over the world. Several studies stress the importance of information literacy and instruction in order to increase the usage. Design/methodology/approach: The present article presents the results...

  3. INTRODUCTION OF THE PRINCIPLES OF A SUSTAINABLE DEVELOPMENT PRODUCTION OF BIODEGRADABLE PACKING FROM SECONDARY MATERIAL RESOURCES OF FOOD PRODUCTIONS

    Directory of Open Access Journals (Sweden)

    S. T. Antipov

    2014-01-01

    Full Text Available Summary. For increase of profitability of the food enterprises, decrease in an ecological trace from technogenic activity of the food industry the concept of development of low-waste and waste-free productions considered on the example of technology of receiving a biodegradable packing material from secondary material resources of food productions is offered: beer pellet, beet press, spirit bards, Pancake week press and bone glue. The technology of receiving biodegradable material from secondary material resources of food productions includes itself the following main stages: dehydration, crushing, mixing, leveling, formation, glazing. Advantage of the offered product consists of: - low cost of packing due to use of secondary material resources and full naturalness (now the raw materials for biodegradable packing specially are grown up on technical fields with use of GMO; - full decomposition in nature less than in 6 months according to GOST R 54533-2011 (EN 13432:2000 "Resource-saving. Packing. Requirements, criteria and the scheme of utilization of packing by means of a composting and biological decomposition"; - presence at the compost received at decomposition, the elements promoting increase of fertility of the soil. Application of technology allows reach at the same time three effects of a positive orientation: economic, ecological and social.

  4. Biodegradable elastomers and silicon nanomembranes/nanoribbons for stretchable, transient electronics, and biosensors.

    Science.gov (United States)

    Hwang, Suk-Won; Lee, Chi Hwan; Cheng, Huanyu; Jeong, Jae-Woong; Kang, Seung-Kyun; Kim, Jae-Hwan; Shin, Jiho; Yang, Jian; Liu, Zhuangjian; Ameer, Guillermo A; Huang, Yonggang; Rogers, John A

    2015-05-13

    Transient electronics represents an emerging class of technology that exploits materials and/or device constructs that are capable of physically disappearing or disintegrating in a controlled manner at programmed rates or times. Inorganic semiconductor nanomaterials such as silicon nanomembranes/nanoribbons provide attractive choices for active elements in transistors, diodes and other essential components of overall systems that dissolve completely by hydrolysis in biofluids or groundwater. We describe here materials, mechanics, and design layouts to achieve this type of technology in stretchable configurations with biodegradable elastomers for substrate/encapsulation layers. Experimental and theoretical results illuminate the mechanical properties under large strain deformation. Circuit characterization of complementary metal-oxide-semiconductor inverters and individual transistors under various levels of applied loads validates the design strategies. Examples of biosensors demonstrate possibilities for stretchable, transient devices in biomedical applications.

  5. Electronic resource management systems a workflow approach

    CERN Document Server

    Anderson, Elsa K

    2014-01-01

    To get to the bottom of a successful approach to Electronic Resource Management (ERM), Anderson interviewed staff at 11 institutions about their ERM implementations. Among her conclusions, presented in this issue of Library Technology Reports, is that grasping the intricacies of your workflow-analyzing each step to reveal the gaps and problems-at the beginning is crucial to selecting and implementing an ERM. Whether the system will be used to fill a gap, aggregate critical data, or replace a tedious manual process, the best solution for your library depends on factors such as your current soft

  6. use of electronic resources by graduate students of the department

    African Journals Online (AJOL)

    respondent's access electronic resources from the internet via Cybercafé .There is a high ... KEY WORDS: Use, Electronic Resources, Graduate Students, Cybercafé. INTRODUCTION ... Faculty of Education, University of Uyo, Uyo. Olu Olat ...

  7. Effect of sterilization dose on electron beam irradiated biodegradable polymers and coconut fiber based composites

    Energy Technology Data Exchange (ETDEWEB)

    Kodama, Yasko; Machado, Luci D.B., E-mail: ykodama@ipen.b, E-mail: lmachado@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Oishi, Akihiro; Nakayama, Kazuo, E-mail: a.oishi@aist.go.j, E-mail: kazuo-nakayama@jcom.home.ne.j [National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki-ken (Japan). Research Institute for Sustainable Chemical Innovation; Nagasawa, Naotsugu; Tamada, Masao, E-mail: nagasawa.naotsugu@jaea.go.j [Japan Atomic Energy Agency (JAEA), Gunma-ken (Japan). Quantum Beam Science Directorate

    2009-07-01

    In Brazil, annual production of coconut fruit is 1.5 billion in a cultivated area of 2.7 million ha. Coconut fiber applications as reinforcement for polymer composites, besides reducing the coconut waste, would reduce cost of the composite. On the other hand, biodegradable polymers have been receiving much attention due to the plastic waste problem. Poly(e-caprolactone), PCL, and poly(lactic acid), PLA, besides being biodegradable aliphatic polyesters, are biocompatible polymers. Considering the biomedical application of PLA and PCL, their products must be sterilized for use, and ionizing radiation has been widely used for medical devices sterilization. It is important to study the effect of ionizing radiation on the blends and composites due to the fact that they are based on biocompatible polymers. Is this research, hot pressed samples based on PLA:PCL (80:20, ratio of weight:weight) blend and the composites containing chemically treated or untreated coconut fiber (5, 10%) were irradiated by electron beams and gamma radiation from Co-60 source at doses in the range up to 200 kGy. Thermal mechanical analysis (TMA) and gel fraction measurements were performed in irradiated samples. From TMA curves it can be observed that thermal stability of samples with untreated coconut fiber slightly decreased with increasing fiber content. On the other hand, deformation increased with increasing fiber content. Acetylated coconut fibers slightly decreased thermal stability of samples. It seems that no interaction occurs between the natural fibers and the polymeric matrix due to irradiation. PLLA undergoes to main chain scission under ionizing irradiation according to thermal stability results and also because no gel fraction was observed. In contrast, PCL cross-linking is induced by ionizing radiation that increases thermal stability and decreases deformation. (author)

  8. Effect of sterilization dose on electron beam irradiated biodegradable polymers and coconut fiber based composites

    International Nuclear Information System (INIS)

    Kodama, Yasko; Machado, Luci D.B.; Oishi, Akihiro; Nakayama, Kazuo; Nagasawa, Naotsugu; Tamada, Masao

    2009-01-01

    In Brazil, annual production of coconut fruit is 1.5 billion in a cultivated area of 2.7 million ha. Coconut fiber applications as reinforcement for polymer composites, besides reducing the coconut waste, would reduce cost of the composite. On the other hand, biodegradable polymers have been receiving much attention due to the plastic waste problem. Poly(e-caprolactone), PCL, and poly(lactic acid), PLA, besides being biodegradable aliphatic polyesters, are biocompatible polymers. Considering the biomedical application of PLA and PCL, their products must be sterilized for use, and ionizing radiation has been widely used for medical devices sterilization. It is important to study the effect of ionizing radiation on the blends and composites due to the fact that they are based on biocompatible polymers. Is this research, hot pressed samples based on PLA:PCL (80:20, ratio of weight:weight) blend and the composites containing chemically treated or untreated coconut fiber (5, 10%) were irradiated by electron beams and gamma radiation from Co-60 source at doses in the range up to 200 kGy. Thermal mechanical analysis (TMA) and gel fraction measurements were performed in irradiated samples. From TMA curves it can be observed that thermal stability of samples with untreated coconut fiber slightly decreased with increasing fiber content. On the other hand, deformation increased with increasing fiber content. Acetylated coconut fibers slightly decreased thermal stability of samples. It seems that no interaction occurs between the natural fibers and the polymeric matrix due to irradiation. PLLA undergoes to main chain scission under ionizing irradiation according to thermal stability results and also because no gel fraction was observed. In contrast, PCL cross-linking is induced by ionizing radiation that increases thermal stability and decreases deformation. (author)

  9. Use of Electronic Resources in a Private University in Nigeria ...

    African Journals Online (AJOL)

    The study examined awareness and constraints in the use of electronic resources by lecturers and students of Ajayi Crowther University, Oyo, Nigeria. It aimed at justifying the resources expended in the provision of electronic resources in terms of awareness, patronage and factors that may be affecting awareness and use ...

  10. Gender Analysis Of Electronic Information Resource Use: The Case ...

    African Journals Online (AJOL)

    Based on the findings the study concluded that access and use of electronic information resources creates a “social digital divide” along gender lines. The study ... Finally, the library needs to change its marketing strategies on the availability of electronic information resources to increase awareness of these resources.

  11. Electronic Resource Management System. Vernetzung von Lizenzinformationen

    Directory of Open Access Journals (Sweden)

    Michaela Selbach

    2014-12-01

    Full Text Available In den letzten zehn Jahren spielen elektronische Ressourcen im Bereich der Erwerbung eine zunehmend wichtige Rolle: Eindeutig lässt sich hier ein Wandel in den Bibliotheken (fort vom reinen Printbestand zu immer größeren E-Only-Beständen feststellen. Die stetig wachsende Menge an E-Ressourcen und deren Heterogenität stellt Bibliotheken vor die Herausforderung, die E-Ressourcen effizient zu verwalten. Nicht nur Bibliotheken, sondern auch verhandlungsführende Institutionen von Konsortial- und Allianzlizenzen benötigen ein geeignetes Instrument zur Verwaltung von Lizenzinformationen, welches den komplexen Anforderungen moderner E-Ressourcen gerecht wird. Die Deutsche Forschungsgemeinschaft (DFG unterstützt ein Projekt des Hochschulbibliothekszentrums des Landes Nordrhein-Westfalen (hbz, der Universitätsbibliothek Freiburg, der Verbundzentrale des Gemeinsamen Bibliotheksverbundes (GBV und der Universitätsbibliothek Frankfurt, in dem ein bundesweit verfügbares Electronic Ressource Managementsystem (ERMS aufgebaut werden soll. Ein solches ERMS soll auf Basis einer zentralen Knowledge Base eine einheitliche Nutzung von Daten zur Lizenzverwaltung elektronischer Ressourcen auf lokaler, regionaler und nationaler Ebene ermöglichen. Statistische Auswertungen, Rechteverwaltung für alle angeschlossenen Bibliotheken, kooperative Datenpflege sowie ein über standardisierte Schnittstellen geführter Datenaustausch stehen bei der Erarbeitung der Anforderungen ebenso im Fokus wie die Entwicklung eines Daten- und Funktionsmodells. In the last few years the importance of electronic resources in library acquisitions has increased significantly. There has been a shift from mere print holdings to both e- and print combinations and even e-only subscriptions. This shift poses a double challenge for libraries: On the one hand they have to provide their e-resource collections to library users in an appealing way, on the other hand they have to manage these

  12. Electronic human resource management: Enhancing or entrancing?

    Directory of Open Access Journals (Sweden)

    Paul Poisat

    2017-07-01

    Full Text Available Orientation: This article provides an investigation into the current level of development of the body of knowledge related to electronic human resource management (e-HRM by means of a qualitative content analysis. Several aspects of e-HRM, namely definitions of e-HRM, the theoretical perspectives around e-HRM, the role of e-HRM, the various types of e-HRM and the requirements for successful e-HRM, are examined. Research purpose: The purpose of the article was to determine the status of e-HRM and examine the studies that report on the link between e-HRM and organisational productivity. Motivation for the study: e-HRM has the capacity to improve organisational efficiency and leverage the role of human resources (HR as a strategic business partner. Main findings: The notion that the implementation of e-HRM will lead to improved organisational productivity is commonly assumed; however, empirical evidence in this regard was found to be limited. Practical/managerial implications: From the results of this investigation it is evident that more research is required to gain a greater understanding of the influence of e-HRM on organisational productivity, as well as to develop measures for assessing this influence. Contribution: This article proposes additional areas to research and measure when investigating the effectiveness of e-HRM. It provides a different lens from which to view e-HRM assessment whilst keeping it within recognised HR measurement parameters (the HR value chain. In addition, it not only provides areas for measuring e-HRM’s influence but also provides important clues as to how the measurements may be approached.

  13. Utilization of electronic information resources by academic staff at ...

    African Journals Online (AJOL)

    The study investigated the utilization of Electronic Information resources by the academic staff of Makerere University in Uganda. It examined the academic staff awareness of the resources available, the types of resources provided by the Makerere University Library, the factors affecting resource utilization. The study was ...

  14. Positive effects of bio-nano Pd (0) toward direct electron transfer in Pseudomona putida and phenol biodegradation.

    Science.gov (United States)

    Niu, Zhuyu; Jia, Yating; Chen, Yuancai; Hu, Yongyou; Chen, Junfeng; Lv, Yuancai

    2018-06-08

    This study constructed a biological-inorganic hybrid system including Pseudomonas putida (P. putida) and bioreduced Pd (0) nanoparticles (NPs), and inspected the influence of bio-nano Pd (0) on the direct electron transfer and phenol biodegradation. Scanning electron microscopy and energy-dispersive X-ray spectroscopy (SEM-EDX) showed that bio-nano Pd (0) (~10 nm) were evenly dispersed on the surface and in the periplasm of P. putida. With the incorporation of bio-nano Pd (0), the redox currents of bacteria in the cyclic voltammetry (CV) became higher and the oxidation current increased as the addition of lactate, while the highest increase rates of two electron transfer system (ETS) rates were 63.97% and 33.79%, respectively. These results indicated that bio-nano Pd (0) could directly promote the electron transfer of P. putida. In phenol biodegradation process, P. putida-Pd (0)- 2 showed the highest k (0.2992 h -1 ), μ m (0.035 h -1 ) and K i (714.29 mg/L) and the lowest apparent K s (76.39 mg/L). The results of kinetic analysis indicated that bio-nano Pd (0) markedly enhanced the biocatalytic efficiency, substrate affinity and the growth of cells compared to native P. putida. The positive effects of bio-nano Pd (0) to the electron transfer of P. putida would promote the biodegradation of phenol. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. Users satisfaction with electronic information resources and services ...

    African Journals Online (AJOL)

    This study investigated users satisfaction on the use of electronic information resources and services in MTN Net libraries in ABU & UNIBEN. Two objectives and one null hypotheses were formulated and tested with respect to the users' satisfaction on electronic information resources and services in MTN Net libraries in ...

  16. The Role of the Acquisitions Librarian in Electronic Resources Management

    Science.gov (United States)

    Pomerantz, Sarah B.

    2010-01-01

    With the ongoing shift to electronic formats for library resources, acquisitions librarians, like the rest of the profession, must adapt to the rapidly changing landscape of electronic resources by keeping up with trends and mastering new skills related to digital publishing, technology, and licensing. The author sought to know what roles…

  17. Utilization of bio-resources by low energy electron beam

    International Nuclear Information System (INIS)

    Kume, Tamikazu

    2003-01-01

    Utilization of bio-resources by radiation has been investigated for recycling the natural resources and reducing the environmental pollution. Polysaccharides such as chitosan and sodium alginate were easily degraded by irradiation and induced various kinds of biological activities, i.g. anti-microbial activity, promotion of plant growth, suppression of heavy metal stress, phytoalexins induction. Radiation degraded chitosan was effective to enhance the growth of plants in tissue culture. It was demonstrated that the liquid sample irradiation system using low energy EB was effective for the preparation of degraded polysaccharides. Methylcellulose (MC) can be crosslinked under certain radiation condition as same as carboxymethylcellulose (CMC) and produced the biodegradable hydrogel for medical and agricultural use. Treatment of soybean seeds by low energy EB enhanced the growth and the number of rhizobia on the root. (author)

  18. Production of green biodegradable plastics of poly(3-hydroxybutyrate) from renewable resources of agricultural residues.

    Science.gov (United States)

    Dahman, Yaser; Ugwu, Charles U

    2014-08-01

    This work describes potential opportunities for utilization of agro-industrial residues to produce green biodegradable plastics of poly(3-hydroxybutyrate) (PHB). Wheat straws were examined with good efficacy of carbon substrates using Cupriavidus necator. Production was examined in separate hydrolysis and fermentation (SHF) in the presence and absence of WS hydrolysis enzymes, and in simultaneous saccharification and fermentation (SSF) with enzymes. Results showed that production of PHB in SSF was more efficient in terms of viable cell count, cell dry weight, and PHB production and yield compared to those of SHF and glucose-control cultures. While glucose control experiment produced 4.6 g/L PHB; SSF produced 10.0 g/L compared to 7.1 g/L in SHF when utilizing enzymes during WS hydrolysis. Results showed that most of sugars produced during the hydrolysis were consumed in SHF (~98 %) compared to 89.2 % in SSF. Results also demonstrated that a combination of glucose and xylose can compensate for the excess carbon required for enhancing PHB production by C. necator. However, higher concentration of sugars at the beginning of fermentation in SHF can lead to cell inhibition and consequently catabolite repressions. Accordingly, results demonstrated that the gradual release of sugars in SSF enhanced PHB production. Moreover, the presence of sugars other than glucose and xylose can eliminate PHB degradation in medium of low carbon substrate concentrations in SSF.

  19. Selection and Evaluation of Electronic Resources

    Directory of Open Access Journals (Sweden)

    Doğan Atılgan

    2013-11-01

    Full Text Available Publication boom and issues related to controlling and accession of printed sources have created some problems after World War II. Consequently, publishing industry has encountered the problem of finding possible solution for emerged situation. Industry of electronic publishing has started to improve with the rapid increase of the price of printed sources as well as the problem of publication boom. The first effects of electronic publishing were appeared on the academic and scholarly publications then electronic publishing became a crucial part of all types of publications. As a result of these developments, collection developments and service policies of information centers were also significantly changed. In this article, after a general introduction about selection and evaluation processes of electronic publications, the subscribed databases by a state and a privately owned university in Turkey and their usage were examined.

  20. Improving Electronic Resources through Holistic Budgeting

    Science.gov (United States)

    Kusik, James P.; Vargas, Mark A.

    2009-01-01

    To establish a more direct link between its collections and the educational goals of Saint Xavier University, the Byrne Memorial Library has adopted a "holistic" approach to collection development. This article examines how traditional budget practices influenced the library's selection of resources and describes how holistic collection…

  1. Page 170 Use of Electronic Resources by Undergraduates in Two ...

    African Journals Online (AJOL)

    undergraduate students use electronic resources such as NUC virtual library, HINARI, ... web pages articles from magazines, encyclopedias, pamphlets and other .... of Nigerian university libraries have Internet connectivity, some of the system.

  2. Utilisation of Electronic Information Resources By Lecturers in ...

    African Journals Online (AJOL)

    This study assesses the use of information resources, specifically, electronic databases by lecturers/teachers in Universities and Colleges of Education in South Western Nigeria. Information resources are central to teachers' education. It provides lecturers/teachers access to information that enhances research and ...

  3. Preservation and conservation of electronic information resources of ...

    African Journals Online (AJOL)

    The major holdings of the broadcast libraries of the Nigerian Television Authority (NTA) are electronic information resources; therefore, providing safe places for general management of these resources have aroused interest in the industry in Nigeria for sometimes. The need to study the preservation and conservation of ...

  4. Using XML Technologies to Organize Electronic Reference Resources

    OpenAIRE

    Huser, Vojtech; Del Fiol, Guilherme; Rocha, Roberto A.

    2005-01-01

    Provision of access to reference electronic resources to clinicians is becoming increasingly important. We have created a framework for librarians to manage access to these resources at an enterprise level, rather than at the individual hospital libraries. We describe initial project requirements, implementation details, and some preliminary results.

  5. Euler European Libraries and Electronic Resources in Mathematical Sciences

    CERN Document Server

    The Euler Project. Karlsruhe

    The European Libraries and Electronic Resources (EULER) Project in Mathematical Sciences provides the EulerService site for searching out "mathematical resources such as books, pre-prints, web-pages, abstracts, proceedings, serials, technical reports preprints) and NetLab (for Internet resources), this outstanding engine is capable of simple, full, and refined searches. It also offers a browse option, which responds to entries in the author, keyword, and title fields. Further information about the Project is provided at the EULER homepage.

  6. Building an electronic resource collection a practical guide

    CERN Document Server

    Lee, Stuart D

    2004-01-01

    This practical book guides information professionals step-by-step through building and managing an electronic resource collection. It outlines the range of electronic products currently available in abstracting and indexing, bibliographic, and other services and then describes how to effectively select, evaluate and purchase them.

  7. Organizational matters of competition in electronic educational resources

    Directory of Open Access Journals (Sweden)

    Ирина Карловна Войтович

    2015-12-01

    Full Text Available The article examines the experience of the Udmurt State University in conducting competitions of educational publications and electronic resources. The purpose of such competitions is to provide methodological support to educational process. The main focus is on competition of electronic educational resources. The technology of such contests is discussed through detailed analysis of the main stages of the contest. It is noted that the main task of the preparatory stage of the competition is related to the development of regulations on competition and the definition of criteria for selection of the submitted works. The paper also proposes a system of evaluation criteria of electronic educational resources developed by members of the contest organizing committee and jury members. The article emphasizes the importance of not only the preparatory stages of the competition, but also measures for its completion, aimed at training teachers create quality e-learning resources.

  8. Why and How to Measure the Use of Electronic Resources

    Directory of Open Access Journals (Sweden)

    Jean Bernon

    2008-11-01

    Full Text Available A complete overview of library activity implies a complete and reliable measurement of the use of both electronic resources and printed materials. This measurement is based on three sets of definitions: document types, use types and user types. There is a common model of definitions for printed materials, but a lot of questions and technical issues remain for electronic resources. In 2006 a French national working group studied these questions. It relied on the COUNTER standard, but found it insufficient and pointed out the need for local tools such as web markers and deep analysis of proxy logs. Within the French national consortium COUPERIN, a new working group is testing ERMS, SUSHI standards, Shibboleth authentication, along with COUNTER standards, to improve the counting of the electronic resources use. At this stage this counting is insufficient and its improvement will be a European challenge for the future.

  9. Access to electronic resources by visually impaired people

    Directory of Open Access Journals (Sweden)

    Jenny Craven

    2003-01-01

    Full Text Available Research into access to electronic resources by visually impaired people undertaken by the Centre for Research in Library and Information Management has not only explored the accessibility of websites and levels of awareness in providing websites that adhere to design for all principles, but has sought to enhance understanding of information seeking behaviour of blind and visually impaired people when using digital resources.

  10. Practical guide to electronic resources in the humanities

    CERN Document Server

    Dubnjakovic, Ana

    2010-01-01

    From full-text article databases to digitized collections of primary source materials, newly emerging electronic resources have radically impacted how research in the humanities is conducted and discovered. This book, covering high-quality, up-to-date electronic resources for the humanities, is an easy-to-use annotated guide for the librarian, student, and scholar alike. It covers online databases, indexes, archives, and many other critical tools in key humanities disciplines including philosophy, religion, languages and literature, and performing and visual arts. Succinct overviews of key eme

  11. Discipline, availability of electronic resources and the use of Finnish National Electronic Library - FinELib

    Directory of Open Access Journals (Sweden)

    Sanna Torma

    2004-01-01

    Full Text Available This study elaborated relations between digital library use by university faculty, users' discipline and the availability of key resources in the Finnish National Electronic Library (FinELib, Finnish national digital library, by using nationwide representative survey data. The results show that the perceived availability of key electronic resources by researchers in FinELib was a stronger predictor of the frequency and purpose of use of its services than users' discipline. Regardless of discipline a good perceived provision of central resources led to a more frequent use of FinELib. The satisfaction with the services did not vary with the discipline, but with the perceived availability of resources.

  12. Access to electronic information resources by students of federal ...

    African Journals Online (AJOL)

    The paper discusses access to electronic information resources by students of Federal Colleges of Education in Eha-Amufu and Umunze. Descriptive survey design was used to investigate sample of 526 students. Sampling technique used was a Multi sampling technique. Data for the study were generated using ...

  13. Electronic Commerce Resource Centers. An Industry--University Partnership.

    Science.gov (United States)

    Gulledge, Thomas R.; Sommer, Rainer; Tarimcilar, M. Murat

    1999-01-01

    Electronic Commerce Resource Centers focus on transferring emerging technologies to small businesses through university/industry partnerships. Successful implementation hinges on a strategic operating plan, creation of measurable value for customers, investment in customer-targeted training, and measurement of performance outputs. (SK)

  14. ANALYTICAL REVIEW OF ELECTRONIC RESOURCES FOR THE STUDY OF LATIN

    Directory of Open Access Journals (Sweden)

    Olena Yu. Balalaieva

    2014-04-01

    Full Text Available The article investigates the current state of development of e-learning content in the Latin language. It is noted that the introduction of ICT in the educational space has expanded the possibility of studying Latin, opened access to digital libraries resources, made it possible to use scientific and educational potential and teaching Latin best practices of world's leading universities. A review of foreign and Ukrainian information resources and electronic editions for the study of Latin is given. Much attention was paid to the didactic potential of local and online multimedia courses of Latin, electronic textbooks, workbooks of interactive tests and exercises, various dictionaries and software translators, databases and digital libraries. Based on analysis of the world market of educational services and products the main trends in the development of information resources and electronic books are examined. It was found that multimedia courses with interactive exercises or workbooks with interactive tests, online dictionaries and translators are the most widely represented and demanded. The noticeable lagging of Ukrainian education and computer linguistics in quantitative and qualitative measures in this industry is established. The obvious drawback of existing Ukrainian resources and electronic editions for the study of Latin is their noninteractive nature. The prospects of e-learning content in Latin in Ukraine are outlined.

  15. Adoption and use of electronic information resources by medical ...

    African Journals Online (AJOL)

    This study investigated the adoption and use of electronic information resources by medical science students of the University of Benin. The descriptive survey research design was adopted for the study and 390 students provided the data. Data collected were analysed with descriptive Statistics(Simple percentage and ...

  16. Modern ICT Tools: Online Electronic Resources Sharing Using Web ...

    African Journals Online (AJOL)

    Modern ICT Tools: Online Electronic Resources Sharing Using Web 2.0 and Its Implications For Library And Information Practice In Nigeria. ... The PDF file you selected should load here if your Web browser has a PDF reader plug-in installed (for example, a recent version of Adobe Acrobat Reader). If you would like more ...

  17. Technical Communicator: A New Model for the Electronic Resources Librarian?

    Science.gov (United States)

    Hulseberg, Anna

    2016-01-01

    This article explores whether technical communicator is a useful model for electronic resources (ER) librarians. The fields of ER librarianship and technical communication (TC) originated and continue to develop in relation to evolving technologies. A review of the literature reveals four common themes for ER librarianship and TC. While the…

  18. MODEL OF AN ELECTRONIC EDUCATIONAL RESOURCE OF NEW GENERATION

    Directory of Open Access Journals (Sweden)

    Anatoliy V. Loban

    2016-01-01

    Full Text Available The mathematical structure of the modular architecture of an electronic educational resource (EER of new generation, which allows to decompose the process of studying the subjects of the course at a hierarchically ordered set of data (knowledge and procedures for manipulating them, to determine the roles of participants of process of training of and technology the development and use of EOR in the study procrate.

  19. End-of-life resource recovery from emerging electronic products

    DEFF Research Database (Denmark)

    Parajuly, Keshav; Habib, Komal; Cimpan, Ciprian

    2016-01-01

    Integrating product design with appropriate end-of-life (EoL) processing is widely recognized to have huge potentials in improving resource recovery from electronic products. In this study, we investigate both the product characteristics and EoL processing of robotic vacuum cleaner (RVC), as a case...... of emerging electronic product, in order to understand the recovery fate of different materials and its linkage to product design. Ten different brands of RVC were dismantled and their material composition and design profiles were studied. Another 125 RVCs (349 kg) were used for an experimental trial...... at a conventional ‘shred-and-separate’ type preprocessing plant in Denmark. A detailed material flow analysis was performed throughout the recycling chain. The results show a mismatch between product design and EoL processing, and the lack of practical implementation of ‘Design for EoL’ thinking. In the best...

  20. Analysis of Human Resources Management Strategy in China Electronic Commerce Enterprises

    Science.gov (United States)

    Shao, Fang

    The paper discussed electronic-commerce's influence on enterprise human resources management, proposed and proved the human resources management strategy which electronic commerce enterprise should adopt from recruitment strategy to training strategy, keeping talent strategy and other ways.

  1. Effects of Electronic Information Resources Skills Training for Lecturers on Pedagogical Practices and Research Productivity

    Science.gov (United States)

    Bhukuvhani, Crispen; Chiparausha, Blessing; Zuvalinyenga, Dorcas

    2012-01-01

    Lecturers use various electronic resources at different frequencies. The university library's information literacy skills workshops and seminars are the main sources of knowledge of accessing electronic resources. The use of electronic resources can be said to have positively affected lecturers' pedagogical practices and their work in general. The…

  2. Electronic Resources and Mission Creep: Reorganizing the Library for the Twenty-First Century

    Science.gov (United States)

    Stachokas, George

    2009-01-01

    The position of electronic resources librarian was created to serve as a specialist in the negotiation of license agreements for electronic resources, but mission creep has added more functions to the routine work of electronic resources such as cataloging, gathering information for collection development, and technical support. As electronic…

  3. Electronic Document Management: A Human Resource Management Case Study

    Directory of Open Access Journals (Sweden)

    Thomas Groenewald

    2004-11-01

    Full Text Available This case study serve as exemplar regarding what can go wrong with the implementation of an electronic document management system. Knowledge agility and knowledge as capital, is outlined against the backdrop of the information society and knowledge economy. The importance of electronic document management and control is sketched thereafter. The literature review is concluded with the impact of human resource management on knowledge agility, which includes references to the learning organisation and complexity theory. The intervention methodology, comprising three phases, follows next. The results of the three phases are presented thereafter. Partial success has been achieved with improving the human efficacy of electronic document management, however the client opted to discontinue the system in use. Opsomming Die gevalle studie dien as voorbeeld van wat kan verkeerd loop met die implementering van ’n elektroniese dokumentbestuur sisteem. Teen die agtergrond van die inligtingsgemeenskap en kennishuishouding word kennissoepelheid en kennis as kapitaal bespreek. Die literatuurstudie word afgesluit met die inpak van menslikehulpbronbestuur op kennissoepelheid, wat ook die verwysings na die leerorganisasie en kompleksietydsteorie insluit. Die metodologie van die intervensie, wat uit drie fases bestaan, volg daarna. Die resultate van die drie fases word vervolgens aangebied. Slegs gedeelte welslae is behaal met die verbetering van die menslike doeltreffendheid ten opsigte van elektroniese dokumentbestuur. Die klient besluit egter om nie voort te gaan om die huidige sisteem te gebruik nie.

  4. Electronic Safety Resource Tools -- Supporting Hydrogen and Fuel Cell Commercialization

    Energy Technology Data Exchange (ETDEWEB)

    Barilo, Nick F.

    2014-09-29

    The Pacific Northwest National Laboratory (PNNL) Hydrogen Safety Program conducted a planning session in Los Angeles, CA on April 1, 2014 to consider what electronic safety tools would benefit the next phase of hydrogen and fuel cell commercialization. A diverse, 20-person team led by an experienced facilitator considered the question as it applied to the eight most relevant user groups. The results and subsequent evaluation activities revealed several possible resource tools that could greatly benefit users. The tool identified as having the greatest potential for impact is a hydrogen safety portal, which can be the central location for integrating and disseminating safety information (including most of the tools identified in this report). Such a tool can provide credible and reliable information from a trustworthy source. Other impactful tools identified include a codes and standards wizard to guide users through a series of questions relating to application and specific features of the requirements; a scenario-based virtual reality training for first responders; peer networking tools to bring users from focused groups together to discuss and collaborate on hydrogen safety issues; and a focused tool for training inspectors. Table ES.1 provides results of the planning session, including proposed new tools and changes to existing tools.

  5. Controlling user access to electronic resources without password

    Science.gov (United States)

    Smith, Fred Hewitt

    2015-06-16

    Described herein are devices and techniques for remotely controlling user access to a restricted computer resource. The process includes pre-determining an association of the restricted computer resource and computer-resource-proximal environmental information. Indicia of user-proximal environmental information are received from a user requesting access to the restricted computer resource. Received indicia of user-proximal environmental information are compared to associated computer-resource-proximal environmental information. User access to the restricted computer resource is selectively granted responsive to a favorable comparison in which the user-proximal environmental information is sufficiently similar to the computer-resource proximal environmental information. In at least some embodiments, the process further includes comparing user-supplied biometric measure and comparing it with a predetermined association of at least one biometric measure of an authorized user. Access to the restricted computer resource is granted in response to a favorable comparison.

  6. Oil biodegradation

    NARCIS (Netherlands)

    Rahsepar, Shokouhalsadat; Langenhoff, Alette A.M.; Smit, Martijn P.J.; Eenennaam, van Justine S.; Murk, Tinka; Rijnaarts, Huub H.M.

    2017-01-01

    During the Deepwater Horizon (DwH) oil spill, interactions between oil, clay particles and marine snow lead to the formation of aggregates. Interactions between these components play an important, but yet not well understood, role in biodegradation of oil in the ocean water. The aim of this study

  7. The Internet School of Medicine: use of electronic resources by medical trainees and the reliability of those resources.

    Science.gov (United States)

    Egle, Jonathan P; Smeenge, David M; Kassem, Kamal M; Mittal, Vijay K

    2015-01-01

    Electronic sources of medical information are plentiful, and numerous studies have demonstrated the use of the Internet by patients and the variable reliability of these sources. Studies have investigated neither the use of web-based resources by residents, nor the reliability of the information available on these websites. A web-based survey was distributed to surgical residents in Michigan and third- and fourth-year medical students at an American allopathic and osteopathic medical school and a Caribbean allopathic school regarding their preferred sources of medical information in various situations. A set of 254 queries simulating those faced by medical trainees on rounds, on a written examination, or during patient care was developed. The top 5 electronic resources cited by the trainees were evaluated for their ability to answer these questions accurately, using standard textbooks as the point of reference. The respondents reported a wide variety of overall preferred resources. Most of the 73 responding medical trainees favored textbooks or board review books for prolonged studying, but electronic resources are frequently used for quick studying, clinical decision-making questions, and medication queries. The most commonly used electronic resources were UpToDate, Google, Medscape, Wikipedia, and Epocrates. UpToDate and Epocrates had the highest percentage of correct answers (47%) and Wikipedia had the lowest (26%). Epocrates also had the highest percentage of wrong answers (30%), whereas Google had the lowest percentage (18%). All resources had a significant number of questions that they were unable to answer. Though hardcopy books have not been completely replaced by electronic resources, more than half of medical students and nearly half of residents prefer web-based sources of information. For quick questions and studying, both groups prefer Internet sources. However, the most commonly used electronic resources fail to answer clinical queries more than half

  8. Biodegradation of pharmaceuticals and endocrine disruptors with oxygen, nitrate, manganese (IV), iron (III) and sulfate as electron acceptors

    Science.gov (United States)

    Schmidt, Natalie; Page, Declan; Tiehm, Andreas

    2017-08-01

    Biodegradation of pharmaceuticals and endocrine disrupting compounds was examined in long term batch experiments for a period of two and a half years to obtain more insight into the effects of redox conditions. A mix including lipid lowering agents (e.g. clofibric acid, gemfibrozil), analgesics (e.g. diclofenac, naproxen), beta blockers (e.g. atenolol, propranolol), X-ray contrast media (e.g. diatrizoic acid, iomeprol) as well as the antiepileptic carbamazepine and endocrine disruptors (e.g. bisphenol A, 17α-ethinylestradiol) was analyzed in batch tests in the presence of oxygen, nitrate, manganese (IV), iron (III), and sulfate. Out of the 23 selected substances, 14 showed a degradation of > 50% of their initial concentrations under aerobic conditions. The beta blockers propranolol and atenolol and the analgesics pentoxifylline and naproxen showed a removal of > 50% under anaerobic conditions. In particular naproxen proved to be degradable with oxygen and under most anaerobic conditions, i.e. with manganese (IV), iron (III), or sulfate. The natural estrogens estriol, estrone and 17β-estradiol showed complete biodegradation under aerobic and nitrate-reducing conditions, with a temporary increase of estrone during transformation of estriol and 17β-estradiol. Transformation of 17β-estradiol under Fe(III)-reducing conditions resulted in an increase of estriol as well. Concentrations of clofibric acid, carbamazepine, iopamidol and diatrizoic acid, known for their recalcitrance in the environment, remained unchanged.

  9. Pretreatment techniques of biodegradable municipal wastewater for sustainable development of surface and groundwater resources: a survey/case studies (abstract)

    International Nuclear Information System (INIS)

    Rashid, A.; Sajjad, M.R.

    1999-01-01

    Water being a scarce commodity, recharge of groundwater with clean surface water is important to maintain good quality water resources. This paper reviews and discusses the advantages and disadvantages of different techniques for the treatment of municipal wastewater's in developing countries. Different processes discussed include from simple stabilization ponds and land treatment to aerated lagoons and oxidation ditches. More sophisticated techniques of activated sludge and anaerobic digestion are also discussed. The feasibility of these techniques in terms of cost, land area, removal of pathogens, effluent quality and need of technical expertise is discussed. (author)

  10. Developing Humanities Collections in the Digital Age: Exploring Humanities Faculty Engagement with Electronic and Print Resources

    Science.gov (United States)

    Kachaluba, Sarah Buck; Brady, Jessica Evans; Critten, Jessica

    2014-01-01

    This article is based on quantitative and qualitative research examining humanities scholars' understandings of the advantages and disadvantages of print versus electronic information resources. It explores how humanities' faculty members at Florida State University (FSU) use print and electronic resources, as well as how they perceive these…

  11. Electronic resource management practical perspectives in a new technical services model

    CERN Document Server

    Elguindi, Anne

    2012-01-01

    A significant shift is taking place in libraries, with the purchase of e-resources accounting for the bulk of materials spending. Electronic Resource Management makes the case that technical services workflows need to make a corresponding shift toward e-centric models and highlights the increasing variety of e-formats that are forcing new developments in the field.Six chapters cover key topics, including: technical services models, both past and emerging; staffing and workflow in electronic resource management; implementation and transformation of electronic resource management systems; the ro

  12. Electronic resources access and usage among the postgraduates of ...

    African Journals Online (AJOL)

    ... and usage among the postgraduates of a Nigerian University of Technology. ... faced by postgraduates in using e-resources include takes too much time to find, ... Resources, Access, Use, Postgraduat, Students, University, Technology, Nigeria ... By Country · List All Titles · Free To Read Titles This Journal is Open Access.

  13. Strategic Planning for Electronic Resources Management: A Case Study at Gustavus Adolphus College

    Science.gov (United States)

    Hulseberg, Anna; Monson, Sarah

    2009-01-01

    Electronic resources, the tools we use to manage them, and the needs and expectations of our users are constantly evolving; at the same time, the roles, responsibilities, and workflow of the library staff who manage e-resources are also in flux. Recognizing a need to be more intentional and proactive about how we manage e-resources, the…

  14. Biodegradable Polydepsipeptides

    Directory of Open Access Journals (Sweden)

    Jintang Guo

    2009-02-01

    Full Text Available This paper reviews the synthesis, characterization, biodegradation and usage of bioresorbable polymers based on polydepsipeptides. The ring-opening polymerization of morpholine-2,5-dione derivatives using organic Sn and enzyme lipase is discussed. The dependence of the macroscopic properties of the block copolymers on their structure is also presented. Bioresorbable polymers based on polydepsipeptides could be used as biomaterials in drug controlled release, tissue engineering scaffolding and shape-memory materials.

  15. impact of the use of electronic resources on research output

    African Journals Online (AJOL)

    manda

    ... Julita Nawe. University of Dar Es Salaam Library, P.O. Box 35092, Dar Es Salaam, Tanzania .... significantly, while 28.3% observed that quality of service to the community had improved .... resources and evaluate them is an important area.

  16. Anaerobic biodegradability of macropollutants

    DEFF Research Database (Denmark)

    Angelidaki, Irini

    2002-01-01

    A variety of test procedures for determination of anaerobic biodegradability has been reported. This paper reviews the methods developed for determination of anaerobic biodegradability of macro-pollutants. Anaerobic biodegradability of micro-pollutants is not included. Furthermore, factors...

  17. Preservation of and Permanent Access to Electronic Information Resources

    National Research Council Canada - National Science Library

    Hodge, Gail

    2004-01-01

    The rapid growth in the creation and dissemination of electronic information has emphasized the digital environment's speed and ease of dissemination with little regard for its long-term preservation and access...

  18. Electronic conferencing for continuing medical education: a resource survey.

    Science.gov (United States)

    Sternberg, R J

    1986-10-01

    The use of electronic technologies to link participants for education conferences is an option for providers of Continuing Medical Education. In order to profile the kinds of electronic networks currently offering audio- or videoteleconferences for physician audiences, a survey was done during late 1985. The information collected included range of services, fees, and geographic areas served. The results show a broad diversity of providers providing both interactive and didactic programming to both physicians and other health care professionals.

  19. Controlling user access to electronic resources without password

    Science.gov (United States)

    Smith, Fred Hewitt

    2017-08-22

    Described herein are devices and techniques for remotely controlling user access to a restricted computer resource. The process includes obtaining an image from a communication device of a user. An individual and a landmark are identified within the image. Determinations are made that the individual is the user and that the landmark is a predetermined landmark. Access to a restricted computing resource is granted based on the determining that the individual is the user and that the landmark is the predetermined landmark. Other embodiments are disclosed.

  20. Biodegradation and bioremediation

    DEFF Research Database (Denmark)

    Albrechtsen, H.-J.

    1996-01-01

    Anmeldelse af Alexander,M.: Biodegradation and bioremediation. Academic Press, Sandiego, USA, 1994......Anmeldelse af Alexander,M.: Biodegradation and bioremediation. Academic Press, Sandiego, USA, 1994...

  1. Biodegradation of bioplastics in natural environments.

    Science.gov (United States)

    Emadian, S Mehdi; Onay, Turgut T; Demirel, Burak

    2017-01-01

    The extensive production of conventional plastics and their use in different commercial applications poses a significant threat to both the fossil fuels sources and the environment. Alternatives called bioplastics evolved during development of renewable resources. Utilizing renewable resources like agricultural wastes (instead of petroleum sources) and their biodegradability in different environments enabled these polymers to be more easily acceptable than the conventional plastics. The biodegradability of bioplastics is highly affected by their physical and chemical structure. On the other hand, the environment in which they are located, plays a crucial role in their biodegradation. This review highlights the recent findings attributed to the biodegradation of bioplastics in various environments, environmental conditions, degree of biodegradation, including the identified bioplastic-degrading microorganisms from different microbial communities. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Electron beam pasteurised oil palm waste: a potential feed resource

    International Nuclear Information System (INIS)

    Mat Rasol Awang; Hassan Hamdani Mutaat; Tamikazu Kume; Tachibana, H.

    2002-01-01

    Pasteurization of oil palm empty fruit bunch (EFB) was performed using electron beam single sided irradiation. The dose profiles of oil palm EFB samples for different thickness in both directions X and Y were established. The results showed the usual characteristics dose uniformity as sample thickness decreased. The mean average absorbed dose on both sides at the surface and bottom of the samples for different thickness samples lead to establishing depth dose curve. Based on depth dose curve and operation conditions of electron beam machine, the process throughput for pasteurized oil palm EFB were estimated. (Author)

  3. Effect of electron beam radiation processing on mechanical and thermal properties of fully biodegradable crops straw/poly (vinyl alcohol) biocomposites

    Science.gov (United States)

    Guo, Dan

    2017-01-01

    Fully biodegradable biocomposites based on crops straw and poly(vinyl alcohol) was prepared through thermal processing, and the effect of electron beam radiation processing with N,N-methylene double acrylamide as radiation sensitizer on mechanical and thermal properties of the biocomposites were investigated. The results showed that, when the radiation dose were in the range of 0-50 kGy, the mechanical and thermal properties of the biocomposites could be improved significantly through the electron beam radiation processing, and the interface compatibility was also improved because of the formation of stable cross-linked network structure, when the radiation dose were above the optimal value (50 kGy), the comprehensive properties of the biocomposites were gradually destroyed. EB radiation processing could be used as an effective technology to improve the comprehensive performance of the biocomposites, and as a green and efficient processing technology, radiation processing takes place at room temperature, and no contamination and by-product are possible.

  4. Availability of Electronic Resources for Service Provision in ...

    African Journals Online (AJOL)

    The study also revealed that majority of the University libraries have adequate basic infrastructure for effective electronic information services. ... acquired by the library are put into maximal use by the library clientele, thereby ensuring the achievement of the library's objective which is satisfying the users, information needs.

  5. Analysis of Pedagogic Potential of Electronic Educational Resources with Elements of Autodidactics

    Directory of Open Access Journals (Sweden)

    Igor A.

    2018-03-01

    Full Text Available Introduction: in recent years didactic properties of electronic educational resources undergo considerable changes, nevertheless, the question of studying of such complete phenomenon as “an electronic educational resource with autodidactics elements” remains open, despite sufficient scientific base of researches of the terms making this concept. Article purpose – determination of essence of electronic educational resources with autodidactics elements. Materials and Methods: the main method of research was the theoretical analysis of the pedagogical and psychological literature on the problem under study. We used the theoretical (analysis, synthesis, comparison and generalization methods, the method of interpretation, pedagogical modeling, and empirical methods (observation, testing, conversation, interview, analysis of students’ performance, pedagogical experiment, peer review. Results: we detected the advantages of electronic educational resources in comparison with traditional ones. The concept of autodidactics as applied to the subject of research is considered. Properties of electronic educational resources with a linear and nonlinear principle of construction are studied.The influence of the principle of construction on the development of the learners’ qualities is shown. We formulated an integral definition of electronic educational resources with elements of autodidactics, namely, the variability, adaptivity and cyclicity of training. A model of the teaching-learning process with electronic educational resources is developed. Discussion and Conclusions: further development of a problem will allow to define whether electronic educational resources with autodidactics elements pedagogical potential for realization of educational and self-educational activity of teachers have, to modify technological procedures taking into account age features of students, their specialties and features of the organization of process of training of

  6. A Study on Developing Evaluation Criteria for Electronic Resources in Evaluation Indicators of Libraries

    Science.gov (United States)

    Noh, Younghee

    2010-01-01

    This study aimed to improve the current state of electronic resource evaluation in libraries. While the use of Web DB, e-book, e-journal, and other e-resources such as CD-ROM, DVD, and micro materials is increasing in libraries, their use is not comprehensively factored into the general evaluation of libraries and may diminish the reliability of…

  7. Managing Selection for Electronic Resources: Kent State University Develops a New System to Automate Selection

    Science.gov (United States)

    Downey, Kay

    2012-01-01

    Kent State University has developed a centralized system that manages the communication and work related to the review and selection of commercially available electronic resources. It is an automated system that tracks the review process, provides selectors with price and trial information, and compiles reviewers' feedback about the resource. It…

  8. Where Do Electronic Books Fit in the College Research Arsenal of Resources?

    Science.gov (United States)

    Barbier, Patricia

    2007-01-01

    Student use of electronic books has become an accepted supplement to traditional resources. Student use and satisfaction was monitored through an online course discussion board. Increased use of electronic books indicate this service is an accepted supplement to the print book collection.

  9. Biodegradable Piezoelectric Force Sensor.

    Science.gov (United States)

    Curry, Eli J; Ke, Kai; Chorsi, Meysam T; Wrobel, Kinga S; Miller, Albert N; Patel, Avi; Kim, Insoo; Feng, Jianlin; Yue, Lixia; Wu, Qian; Kuo, Chia-Ling; Lo, Kevin W-H; Laurencin, Cato T; Ilies, Horea; Purohit, Prashant K; Nguyen, Thanh D

    2018-01-30

    Measuring vital physiological pressures is important for monitoring health status, preventing the buildup of dangerous internal forces in impaired organs, and enabling novel approaches of using mechanical stimulation for tissue regeneration. Pressure sensors are often required to be implanted and directly integrated with native soft biological systems. Therefore, the devices should be flexible and at the same time biodegradable to avoid invasive removal surgery that can damage directly interfaced tissues. Despite recent achievements in degradable electronic devices, there is still a tremendous need to develop a force sensor which only relies on safe medical materials and requires no complex fabrication process to provide accurate information on important biophysiological forces. Here, we present a strategy for material processing, electromechanical analysis, device fabrication, and assessment of a piezoelectric Poly-l-lactide (PLLA) polymer to create a biodegradable, biocompatible piezoelectric force sensor, which only employs medical materials used commonly in Food and Drug Administration-approved implants, for the monitoring of biological forces. We show the sensor can precisely measure pressures in a wide range of 0-18 kPa and sustain a reliable performance for a period of 4 d in an aqueous environment. We also demonstrate this PLLA piezoelectric sensor can be implanted inside the abdominal cavity of a mouse to monitor the pressure of diaphragmatic contraction. This piezoelectric sensor offers an appealing alternative to present biodegradable electronic devices for the monitoring of intraorgan pressures. The sensor can be integrated with tissues and organs, forming self-sensing bionic systems to enable many exciting applications in regenerative medicine, drug delivery, and medical devices.

  10. The National Site Licensing of Electronic Resources: An Institutional Perspective

    Directory of Open Access Journals (Sweden)

    Xiaohua Zhu

    2011-06-01

    Full Text Available While academic libraries in most countries are struggling to negotiate with publishers and vendors individually or collaboratively via consortia, a few countries have experimented with a different model, national site licensing (NSL. Because NSL often involves government and large-scale collaboration, it has the potential to solve many problems in the complex licensing world. However, not many nations have adopted it. This study uses historical research approach and the comparative case study research method to explore the seemingly low level of adoption. The cases include the Canadian National Site Licensing Project (CNSLP, the United Kingdom’s National Electronic Site Licensing Initiative (NESLI, and the United States, which has not adopted NSL. The theoretical framework guiding the research design and data collection is W. Richard Scott’s institutional theory, which utilizes three supporting pillars—regulative, normative, and cultural-cognitive—to analyze institutional processes. In this study, the regulative pillar and the normative pillar of NSL adoption— an institutional construction and change—are examined. Data were collected from monographs, research articles, government documents, and relevant websites. Based on the analysis of these cases, a preliminary model is proposed for the adoption of NSL. The factors that support a country’s adoption of NSL include the need for new institutions, a centralized educational policy-making system and funding system, supportive political trends, and the tradition of cooperation. The factors that may prevent a country from adopting NSL include decentralized educational policy and funding, diversity and the large number of institutions, the concern for the “Big Deal,” and the concern for monopoly.

  11. Proceedings of biodegradation

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    This book contains the proceedings of Biodegradation. Topics include:biodegradation using the tools of biotechnology, basic science aspects of biodegradation, the physiological characteristics of microorganisms, the use of selective techniques that enhance the process of microbial evolution of biodegradative genes in nature, the genetic characteristics of microorganisms allowing them to biodegrade both natural and synthetic toxic chemicals, the molecular techniques that allow selective assembly of genetic segments form a variety of bacterial strains to a single strain, and methods needed to advance biodegradation research as well as the high-priority chemical problems important to the Department of Defense or to the chemical industry

  12. A survey of the use of electronic scientific information resources among medical and dental students

    Directory of Open Access Journals (Sweden)

    Aarnio Matti

    2006-05-01

    Full Text Available Abstract Background To evaluate medical and dental students' utilization of electronic information resources. Methods A web survey sent to 837 students (49.9% responded. Results Twenty-four per cent of medical students and ninteen per cent of dental students searched MEDLINE 2+ times/month for study purposes, and thiry-two per cent and twenty-four per cent respectively for research. Full-text articles were used 2+ times/month by thirty-three per cent of medical and ten per cent of dental students. Twelve per cent of respondents never utilized either MEDLINE or full-text articles. In multivariate models, the information-searching skills among students were significantly associated with use of MEDLINE and full-text articles. Conclusion Use of electronic resources differs among students. Forty percent were non-users of full-text articles. Information-searching skills are correlated with the use of electronic resources, but the level of basic PC skills plays not a major role in using these resources. The student data shows that adequate training in information-searching skills will increase the use of electronic information resources.

  13. Analytical Study of Usage of Electronic Information Resources at Pharmacopoeial Libraries in India

    Directory of Open Access Journals (Sweden)

    Sunil Tyagi

    2014-02-01

    Full Text Available The objective of this study is to know the rate and purpose of the use of e-resource by the scientists at pharmacopoeial libraries in India. Among other things, this study examined the preferences of the scientists toward printed books and journals, electronic information resources, and pattern of using e-resources. Non-probability sampling specially accidental and purposive technique was applied in the collection of primary data through administration of user questionnaire. The sample respondents chosen for the study consists of principle scientific officer, senior scientific officer, scientific officer, and scientific assistant of different division of the laboratories, namely, research and development, pharmaceutical chemistry, pharmacovigilance, pharmacology, pharmacogonosy, and microbiology. The findings of the study reveal the personal experiences and perceptions they have had on practice and research activity using e-resource. The major findings indicate that of the total anticipated participants, 78% indicated that they perceived the ability to use computer for electronic information resources. The data analysis shows that all the scientists belonging to the pharmacopoeial libraries used electronic information resources to address issues relating to drug indexes and compendia, monographs, drugs obtained through online databases, e-journals, and the Internet sources—especially polices by regulatory agencies, contacts, drug promotional literature, and standards.

  14. Biodegradation of lubricant oil

    African Journals Online (AJOL)

    M

    2012-09-25

    Sep 25, 2012 ... lubricating oil, showed high biodegradation efficiency for different used lubricating oils. Capability of ..... amount after biodegradation showed no difference in the .... products polluted sites in Elele, Rivers State, Ngeria.

  15. Considering Point-of-Care Electronic Medical Resources in Lieu of Traditional Textbooks for Medical Education.

    Science.gov (United States)

    Hale, LaDonna S; Wallace, Michelle M; Adams, Courtney R; Kaufman, Michelle L; Snyder, Courtney L

    2015-09-01

    Selecting resources to support didactic courses is a critical decision, and the advantages and disadvantages must be carefully considered. During clinical rotations, students not only need to possess strong background knowledge but also are expected to be proficient with the same evidence-based POC resources used by clinicians. Students place high value on “real world” learning and therefore may place more value on POC resources that they know practicing clinicians use as compared with medical textbooks. The condensed nature of PA education requires students to develop background knowledge and information literacy skills over a short period. One way to build that knowledge and those skills simultaneously is to use POC resources in lieu of traditional medical textbooks during didactic training. Electronic POC resources offer several advantages over traditional textbooks and should be considered as viable options in PA education.

  16. Elektronik Bilgi Kaynaklarının Seçimi / Selection of Electronic Information Resources

    Directory of Open Access Journals (Sweden)

    Pınar Al

    2003-04-01

    Full Text Available For many years, library users have used only from the printed media in order to get the information that they have needed. Today with the widespread use of the Web and the addition of electronic information resources to library collections, the use of information in the electronic environment as well as in printed media is started to be used. In time, such types of information resources as, electronic journals, electronic books, electronic encyclopedias, electronic dictionaries and electronic theses have been added to library collections. In this study, selection criteria that can be used for electronic information resources are discussed and suggestions are provided for libraries that try to select electronic information resources for their collections.

  17. Biodegradable and compostable alternatives to conventional plastics

    Science.gov (United States)

    Song, J. H.; Murphy, R. J.; Narayan, R.; Davies, G. B. H.

    2009-01-01

    Packaging waste forms a significant part of municipal solid waste and has caused increasing environmental concerns, resulting in a strengthening of various regulations aimed at reducing the amounts generated. Among other materials, a wide range of oil-based polymers is currently used in packaging applications. These are virtually all non-biodegradable, and some are difficult to recycle or reuse due to being complex composites having varying levels of contamination. Recently, significant progress has been made in the development of biodegradable plastics, largely from renewable natural resources, to produce biodegradable materials with similar functionality to that of oil-based polymers. The expansion in these bio-based materials has several potential benefits for greenhouse gas balances and other environmental impacts over whole life cycles and in the use of renewable, rather than finite resources. It is intended that use of biodegradable materials will contribute to sustainability and reduction in the environmental impact associated with disposal of oil-based polymers. The diversity of biodegradable materials and their varying properties makes it difficult to make simple, generic assessments such as biodegradable products are all ‘good’ or petrochemical-based products are all ‘bad’. This paper discusses the potential impacts of biodegradable packaging materials and their waste management, particularly via composting. It presents the key issues that inform judgements of the benefits these materials have in relation to conventional, petrochemical-based counterparts. Specific examples are given from new research on biodegradability in simulated ‘home’ composting systems. It is the view of the authors that biodegradable packaging materials are most suitable for single-use disposable applications where the post-consumer waste can be locally composted. PMID:19528060

  18. Biodegradable and compostable alternatives to conventional plastics.

    Science.gov (United States)

    Song, J H; Murphy, R J; Narayan, R; Davies, G B H

    2009-07-27

    Packaging waste forms a significant part of municipal solid waste and has caused increasing environmental concerns, resulting in a strengthening of various regulations aimed at reducing the amounts generated. Among other materials, a wide range of oil-based polymers is currently used in packaging applications. These are virtually all non-biodegradable, and some are difficult to recycle or reuse due to being complex composites having varying levels of contamination. Recently, significant progress has been made in the development of biodegradable plastics, largely from renewable natural resources, to produce biodegradable materials with similar functionality to that of oil-based polymers. The expansion in these bio-based materials has several potential benefits for greenhouse gas balances and other environmental impacts over whole life cycles and in the use of renewable, rather than finite resources. It is intended that use of biodegradable materials will contribute to sustainability and reduction in the environmental impact associated with disposal of oil-based polymers. The diversity of biodegradable materials and their varying properties makes it difficult to make simple, generic assessments such as biodegradable products are all 'good' or petrochemical-based products are all 'bad'. This paper discusses the potential impacts of biodegradable packaging materials and their waste management, particularly via composting. It presents the key issues that inform judgements of the benefits these materials have in relation to conventional, petrochemical-based counterparts. Specific examples are given from new research on biodegradability in simulated 'home' composting systems. It is the view of the authors that biodegradable packaging materials are most suitable for single-use disposable applications where the post-consumer waste can be locally composted.

  19. Recovery of resources for advanced life support space applications: effect of retention time on biodegradation of two crop residues in a fed-batch, continuous stirred tank reactor

    Science.gov (United States)

    Strayer, R. F.; Finger, B. W.; Alazraki, M. P.; Cook, K.; Garland, J. L.

    2002-01-01

    Bioreactor retention time is a key process variable that will influence costs that are relevant to long distance space travel or long duration space habitation. However. little is known about the effects of this parameter on the microbiological treatment options that are being proposed for Advanced Life Support (ALS) systems. Two bioreactor studies were designed to examine this variable. In the first one, six retention times ranging from 1.3 to 21.3 days--were run in duplicate, 81 working-volume continuous stirred tank reactors (CSTR) that were fed ALS wheat residues. Ash-free dry weight loss, carbon mineralization, soluble TOC reduction, changes in fiber content (cellulose, hemicellulose, and lignin), bacterial numbers, and mineral recoveries were monitored. At short retention times--1.33 days--biodegradation was poor (total: 16-20%, cellulose - 12%, hemicellulose - 28%) but soluble TOC was decreased by 75-80% and recovery of major crop inorganic nutrients was adequate, except for phosphorus. A high proportion of the total bacteria (ca. 83%) was actively respiring. At the longest retention time tested, 21.3 days, biodegradation was good (total: 55-60%, cellulose ca. 70%, hemicellulose - ca. 55%) and soluble TOC was decreased by 80%. Recovery of major nutrients, except phosphorus, remained adequate. A very low proportion of total bacteria was actively respiring (ca. 16%). The second bioreactor study used potato residue to determine if even shorter retention times could be used (range 0.25-2.0 days). Although overall biodegradation deteriorated, the degradation of soluble TOC continued to be ca. 75%. We conclude that if the goal of ALS bioprocessing is maximal degradation of crop residues, including cellulose, then retention times of 10 days or longer will be needed. If the goal is to provide inorganic nutrients with the smallest volume/weight bioreactor possible, then a retention time of 1 day (or less) is sufficient.

  20. Use of electronic sales data to tailor nutrition education resources for an ethnically diverse population.

    Science.gov (United States)

    Eyles, H; Rodgers, A; Ni Mhurchu, C

    2010-02-01

    Nutrition education may be most effective when personally tailored. Individualised electronic supermarket sales data offer opportunities to tailor nutrition education using shopper's usual food purchases. The present study aimed to use individualised electronic supermarket sales data to tailor nutrition resources for an ethnically diverse population in a large supermarket intervention trial in New Zealand. Culturally appropriate nutrition education resources (i.e. messages and shopping lists) were developed with the target population (through two sets of focus groups) and ethnic researchers. A nutrient database of supermarket products was developed using retrospective sales data and linked to participant sales to allow tailoring by usual food purchases. Modified Heart Foundation Tick criteria were used to identify 'healthier' products in the database suitable for promotion in the resources. Rules were developed to create a monthly report listing the tailored and culturally targeted messages to be sent to each participant, and to produce automated, tailored shopping lists. Culturally targeted nutrition messages (n = 864) and shopping lists (n = 3 formats) were developed. The food and nutrient database (n = 3000 top-selling products) was created using 12 months of retrospective sales data, and comprised 60%'healthier' products. Three months of baseline sales data were used to determine usual food purchases. Tailored resources were successfully mailed to 123 Māori, 52 Pacific and 346 non-Māori non-Pacific participants over the 6-month trial intervention period. Electronic supermarket sales data can be used to tailor nutrition education resources for a large number of ethnically diverse supermarket shoppers.

  1. Biodegradability of polyurethane/polysaccharide blends

    International Nuclear Information System (INIS)

    Mothe, Cheila G.; Leite, Selma G.

    2001-01-01

    Biodegradable polymers for use in environmental waste-management has been the subject of much discussion over the last few years. Polyurethane mixtures with polysaccharide (80/20 and 90/10 w/w ) have been prepared and films obtained. These films were inoculated, according to ASTM G22-76 rule and analysed by thermogravimetry and scanning electronic microscopy (SEM). The results are discussed in terms of thermal degradation and biodegradability. (author)

  2. REVIEW OF MOODLE PLUGINS FOR DESIGNING MULTIMEDIA ELECTRONIC EDUCATIONAL RESOURCES FROM LANGUAGE DISCIPLINES

    Directory of Open Access Journals (Sweden)

    Anton M. Avramchuk

    2015-09-01

    Full Text Available Today the problem of designing multimedia electronic educational resources from language disciplines in Moodle is very important. This system has a lot of different, powerful resources, plugins to facilitate the learning of students with language disciplines. This article presents an overview and comparative analysis of the five Moodle plugins for designing multimedia electronic educational resources from language disciplines. There have been considered their key features and functionality in order to choose the best for studying language disciplines in the Moodle. Plugins are compared by a group of experts according to the criteria: efficiency, functionality and easy use. For a comparative analysis of the plugins it is used the analytic hierarchy process.

  3. Effects of the Use of Electronic Human Resource Management (EHRM Within Human Resource Management (HRM Functions at Universities

    Directory of Open Access Journals (Sweden)

    Chux Gervase Iwu

    2016-09-01

    Full Text Available This study set out to examine the effect of e-hrm systems in assisting human resource practitioners to execute their duties and responsibilities. In comparison to developed economies of the world, information technology adoption in sub-Saharan Africa has not been without certain glitches. Some of the factors that are responsible for these include poor need identification, sustainable funding, and insufficient skills. Besides these factors, there is also the issue of change management and users sticking to what they already know. Although, the above factors seem negative, there is strong evidence that information systems such as electronic human resource management present benefits to an organization. To achieve this, a dual research approach was utilized. Literature assisted immensely in both the development of the conceptual framework upon which the study hinged as well as in the development of the questionnaire items. The study also made use of an interview checklist to guide the participants. The findings reveal a mix of responses that indicate that while there are gains in adopting e-hrm systems, it is wiser to consider supporting resources as well as articulate the needs of the university better before any investment is made.

  4. The Electron Microscopy Outreach Program: A Web-based resource for research and education.

    Science.gov (United States)

    Sosinsky, G E; Baker, T S; Hand, G; Ellisman, M H

    1999-01-01

    We have developed a centralized World Wide Web (WWW)-based environment that serves as a resource of software tools and expertise for biological electron microscopy. A major focus is molecular electron microscopy, but the site also includes information and links on structural biology at all levels of resolution. This site serves to help integrate or link structural biology techniques in accordance with user needs. The WWW site, called the Electron Microscopy (EM) Outreach Program (URL: http://emoutreach.sdsc.edu), provides scientists with computational and educational tools for their research and edification. In particular, we have set up a centralized resource containing course notes, references, and links to image analysis and three-dimensional reconstruction software for investigators wanting to learn about EM techniques either within or outside of their fields of expertise. Copyright 1999 Academic Press.

  5. Identifying and evaluating electronic learning resources for use in adult-gerontology nurse practitioner education.

    Science.gov (United States)

    Thompson, Hilaire J; Belza, Basia; Baker, Margaret; Christianson, Phyllis; Doorenbos, Ardith; Nguyen, Huong

    2014-01-01

    Enhancing existing curricula to meet newly published adult-gerontology advanced practice registered nurse (APRN) competencies in an efficient manner presents a challenge to nurse educators. Incorporating shared, published electronic learning resources (ELRs) in existing or new courses may be appropriate in order to assist students in achieving competencies. The purposes of this project were to (a) identify relevant available ELR for use in enhancing geriatric APRN education and (b) to evaluate the educational utility of identified ELRs based on established criteria. A multilevel search strategy was used. Two independent team members reviewed identified ELR against established criteria to ensure utility. Only resources meeting all criteria were retained. Resources were found for each of the competency areas and included formats such as podcasts, Web casts, case studies, and teaching videos. In many cases, resources were identified using supplemental strategies and not through traditional search or search of existing geriatric repositories. Resources identified have been useful to advanced practice educators in improving lecture and seminar content in a particular topic area and providing students and preceptors with additional self-learning resources. Addressing sustainability within geriatric APRN education is critical for sharing of best practices among educators and for sustainability of teaching and related resources. © 2014.

  6. USE OF ELECTRONIC EDUCATIONAL RESOURCES WHEN TRAINING IN WORK WITH SPREADSHEETS

    Directory of Open Access Journals (Sweden)

    Х А Гербеков

    2017-12-01

    Full Text Available Today the tools for maintaining training courses based on opportunities of information and communication technologies are developed. Practically in all directions of preparation and on all subject matters electronic textbook and self-instruction manuals are created. Nevertheless the industry of computer educational and methodical materials actively develops and gets more and more areas of development and introduction. In this regard more and more urgent is a problem of development of the electronic educational resources adequate to modern educational requirements. Creation and the organization of training courses with use of electronic educational resources in particular on the basis of Internet technologies remains a difficult methodical task.In article the questions connected with development of electronic educational resources for use when studying the substantial line “Information technologies” of a school course of informatics in particular for studying of spreadsheets are considered. Also the analysis of maintenance of a school course and the unified state examination from the point of view of representation of task in him corresponding to the substantial line of studying “Information technologies” on mastering technology of information processing in spreadsheets and the methods of visualization given by means of charts and schedules is carried out.

  7. Light-microscopic and electron-microscopic evaluation of short-term nerve regeneration using a biodegradable poly(DL-lactide-epsilon-caprolacton) nerve guide

    NARCIS (Netherlands)

    denDunnen, WFA; Stokroos, [No Value; Blaauw, EH; Holwerda, A; Pennings, AJ; Robinson, PH; Schakenraad, JM

    The aim of this study was to evaluate short-term peripheral nerve regeneration across a IO-mm gap, using a biodegradable poly(DL-lactide-epsilon-caprolacton) nerve guide, with an internal diameter of 1.5 mm and a wall thickness of 0.30 mm. To do so, we evaluated regenerating nerves using light

  8. From Millennium ERM to Proquest 360 Resource Manager: Implementing a new Electronic Resources Management System ERMS in an International Graduate Research University in Saudi Arabia

    KAUST Repository

    Ramli, Rindra M.

    2017-01-01

    An overview of the Recommendation Study and the subsequent Implementation of a new Electronic Resources Management system ERMS in an international graduate research university in the Kingdom of Saudi Arabia. It covers the timeline, deliverables

  9. Products Based on Bio-Resourced Materials for Agriculture. Radiation Processed Biodegradable Polymers, Plant Growth Promoters and Superabsorbent Polymers. Chapter 9

    Energy Technology Data Exchange (ETDEWEB)

    Dubey, K. A.; Bhardwaj, Y. K.; Chaudhari, C. V.; Varshney, L. [Radiation Technology Development Division, Bhabha Atomic Research Centre (India)

    2014-07-15

    Radiation-processed natural polymers and their derivatives, namely starch, alginate, chitosan and carboxymethyl cellulose (CMC) were explored for different agricultural applications such as biodegradable mulch films, super adsorbent polymers (SAPs), and plant growth promoters (PGPs). It was observed that gamma radiation-processed starch can lead to a better processability of starch/synthetic polymer alloys, and can offer tuneable biodegradability (as low as one month) with acceptable physico-mechanical properties. Acrylic acid/CMC-based SAP was prepared using {sup 60}Co gamma radiation, for soil conditioning. The equilibrium degree of swelling (EDS) of the acrylic acid/CMC SAP was found to be 460 g/g. The field trial of the SAP was conducted on sorghum. It was found that, with the use of 20 kg/ha of SAP, the crop yield can be increased by almost 18.5% whereas the increase in plant height was 8.5%. A new super adsorbent polymer with a much higher water uptake capacity was also developed by adding a small fraction of carrageenan to neutralized acrylic acid (AA). This SAP had EDS of 800 g/g, with the addition of only 1% carrageenan. Experiments to check the soil conditioning efficacy of AA/carrageenan SAP are in progress. Oligomers of chitosan and alginates were prepared by gamma irradiation and were tried as plant growth promoters in wheat (Triticum aestivum), mung bean (Vigna radiata), linseed (Linum usitatissimum), mentha (Mentha arvensis), and lemon grass. The results suggest that these oligomers have a significant impact on the grain and oil yield. Large scale field trials on Mentha arvensis in collaboration with an industry are in progress, and efforts are going on to formulate a policy framework for the use of oligosaccharides as plant growth promoters. (author)

  10. Availability, Level of Use and Constraints to Use of Electronic Resources by Law Lecturers in Public Universities in Nigeria

    Science.gov (United States)

    Amusa, Oyintola Isiaka; Atinmo, Morayo

    2016-01-01

    (Purpose) This study surveyed the level of availability, use and constraints to use of electronic resources among law lecturers in Nigeria. (Methodology) Five hundred and fifty-two law lecturers were surveyed and four hundred and forty-two responded. (Results) Data analysis revealed that the level of availability of electronic resources for the…

  11. Anaerobic biodegradation of hexazinone in four sediments

    International Nuclear Information System (INIS)

    Wang Huili; Xu Shuxia; Tan Chengxia; Wang Xuedong

    2009-01-01

    Anaerobic biodegradation of hexazinone was investigated in four sediments (L1, L2, Y1 and Y2). Results showed that the L2 sediment had the highest biodegradation potential among four sediments. However, the Y1 and Y2 sediments had no capacity to biodegrade hexazinone. Sediments with rich total organic carbon, long-term contamination history by hexazinone and neutral pH may have a high biodegradation potential because the former two factors can induce the growth of microorganisms responsible for biodegradation and the third factor can offer suitable conditions for biodegradation. The addition of sulfate or nitrate as electron acceptors enhanced hexazinone degradation. As expected, the addition of electron donors (lactate, acetate or pyruvate) substantially inhibited the degradation. In natural environmental conditions, the effect of intermediate A [3-(4-hydroxycyclohexyl)-6-(dimethylamino)-1-methyl-1,3,5-triazine-2,4(1H, 3H)dione] on anaerobic hexazinone degradation was negligible because of its low level.

  12. GUIDELINES FOR EVALUATION OF PSYCHOLOGICAL AND PEDAGOGICAL QUALITY CHARACTERISTICS OF ELECTRONIC EDUCATIONAL RESOURCES

    Directory of Open Access Journals (Sweden)

    Galina P. Lavrentieva

    2014-05-01

    Full Text Available The article highlights the causes of insufficient effective use of electronic learning resources and sets out the guidelines on ways to solve the aforementioned problems. The set of didactic, methodical, psychological, pedagogical, design and ergonomic quality requirements is considered for evaluation, selection and application of information and communication technologies in the educational process. The most appropriate mechanisms for the ICT introduction into the learning process are disclosed as it should meet the specific learning needs of the student and the objectives of the educational process. The guidance for psycho-educational assessment of quality of electronic educational resources is provided. It is argued that the effectiveness of the ICT use is to be improved by means of quality evaluation mechanisms involved into the educational process.

  13. Model of e-learning with electronic educational resources of new generation

    OpenAIRE

    A. V. Loban; D. A. Lovtsov

    2017-01-01

    Purpose of the article: improving of scientific and methodical base of the theory of the е-learning of variability. Methods used: conceptual and logical modeling of the е-learning of variability process with electronic educational resource of new generation and system analysis of the interconnection of the studied subject area, methods, didactics approaches and information and communication technologies means. Results: the formalization complex model of the е-learning of variability with elec...

  14. A systematic review of portable electronic technology for health education in resource-limited settings.

    Science.gov (United States)

    McHenry, Megan S; Fischer, Lydia J; Chun, Yeona; Vreeman, Rachel C

    2017-08-01

    The objective of this study is to conduct a systematic review of the literature of how portable electronic technologies with offline functionality are perceived and used to provide health education in resource-limited settings. Three reviewers evaluated articles and performed a bibliography search to identify studies describing health education delivered by portable electronic device with offline functionality in low- or middle-income countries. Data extracted included: study population; study design and type of analysis; type of technology used; method of use; setting of technology use; impact on caregivers, patients, or overall health outcomes; and reported limitations. Searches yielded 5514 unique titles. Out of 75 critically reviewed full-text articles, 10 met inclusion criteria. Study locations included Botswana, Peru, Kenya, Thailand, Nigeria, India, Ghana, and Tanzania. Topics addressed included: development of healthcare worker training modules, clinical decision support tools, patient education tools, perceptions and usability of portable electronic technology, and comparisons of technologies and/or mobile applications. Studies primarily looked at the assessment of developed educational modules on trainee health knowledge, perceptions and usability of technology, and comparisons of technologies. Overall, studies reported positive results for portable electronic device-based health education, frequently reporting increased provider/patient knowledge, improved patient outcomes in both quality of care and management, increased provider comfort level with technology, and an environment characterized by increased levels of technology-based, informal learning situations. Negative assessments included high investment costs, lack of technical support, and fear of device theft. While the research is limited, portable electronic educational resources present promising avenues to increase access to effective health education in resource-limited settings, contingent

  15. Biodegradability of Plastics

    Directory of Open Access Journals (Sweden)

    Yutaka Tokiwa

    2009-08-01

    Full Text Available Plastic is a broad name given to different polymers with high molecular weight, which can be degraded by various processes. However, considering their abundance in the environment and their specificity in attacking plastics, biodegradation of plastics by microorganisms and enzymes seems to be the most effective process. When plastics are used as substrates for microorganisms, evaluation of their biodegradability should not only be based on their chemical structure, but also on their physical properties (melting point, glass transition temperature, crystallinity, storage modulus etc.. In this review, microbial and enzymatic biodegradation of plastics and some factors that affect their biodegradability are discussed.

  16. Biodegradability of plastics.

    Science.gov (United States)

    Tokiwa, Yutaka; Calabia, Buenaventurada P; Ugwu, Charles U; Aiba, Seiichi

    2009-08-26

    Plastic is a broad name given to different polymers with high molecular weight, which can be degraded by various processes. However, considering their abundance in the environment and their specificity in attacking plastics, biodegradation of plastics by microorganisms and enzymes seems to be the most effective process. When plastics are used as substrates for microorganisms, evaluation of their biodegradability should not only be based on their chemical structure, but also on their physical properties (melting point, glass transition temperature, crystallinity, storage modulus etc.). In this review, microbial and enzymatic biodegradation of plastics and some factors that affect their biodegradability are discussed.

  17. Time Course-Dependent Methanogenic Crude Oil Biodegradation: Dynamics of Fumarate Addition Metabolites, Biodegradative Genes, and Microbial Community Composition

    Directory of Open Access Journals (Sweden)

    Courtney R. A. Toth

    2018-01-01

    Full Text Available Biodegradation of crude oil in subsurface petroleum reservoirs has adversely impacted most of the world's oil, converting this resource to heavier forms that are of lower quality and more challenging to recover. Oil degradation in deep reservoir environments has been attributed to methanogenesis over geological time, yet our understanding of the processes and organisms mediating oil transformation in the absence of electron acceptors remains incomplete. Here, we sought to identify hydrocarbon activation mechanisms and reservoir-associated microorganisms that may have helped shape the formation of biodegraded oil by incubating oilfield produced water in the presence of light (°API = 32 or heavy crude oil (°API = 16. Over the course of 17 months, we conducted routine analytical (GC, GC-MS and molecular (PCR/qPCR of assA and bssA genes, 16S rRNA gene sequencing surveys to assess microbial community composition and activity changes over time. Over the incubation period, we detected the formation of transient hydrocarbon metabolites indicative of alkane and alkylbenzene addition to fumarate, corresponding with increases in methane production and fumarate addition gene abundance. Chemical and gene-based evidence of hydrocarbon biodegradation under methanogenic conditions was supported by the enrichment of hydrocarbon fermenters known to catalyze fumarate addition reactions (e.g., Desulfotomaculum, Smithella, along with syntrophic bacteria (Syntrophus, methanogenic archaea, and several candidate phyla (e.g., “Atribacteria”, “Cloacimonetes”. Our results reveal that fumarate addition is a possible mechanism for catalyzing the methanogenic biodegradation of susceptible saturates and aromatic hydrocarbons in crude oil, and we propose the roles of community members and candidate phyla in our cultures that may be involved in hydrocarbon transformation to methane in crude oil systems.

  18. Model of e-learning with electronic educational resources of new generation

    Directory of Open Access Journals (Sweden)

    A. V. Loban

    2017-01-01

    Full Text Available Purpose of the article: improving of scientific and methodical base of the theory of the е-learning of variability. Methods used: conceptual and logical modeling of the е-learning of variability process with electronic educational resource of new generation and system analysis of the interconnection of the studied subject area, methods, didactics approaches and information and communication technologies means. Results: the formalization complex model of the е-learning of variability with electronic educational resource of new generation is developed, conditionally decomposed into three basic components: the formalization model of the course in the form of the thesaurusclassifier (“Author of e-resource”, the model of learning as management (“Coordination. Consultation. Control”, the learning model with the thesaurus-classifier (“Student”. Model “Author of e-resource” allows the student to achieve completeness, high degree of didactic elaboration and structuring of the studied material in triples of variants: modules of education information, practical task and control tasks; the result of the student’s (author’s of e-resource activity is the thesaurus-classifier. Model of learning as management is based on the principle of personal orientation of learning in computer environment and determines the logic of interaction between the lecturer and the student when determining the triple of variants individually for each student; organization of a dialogue between the lecturer and the student for consulting purposes; personal control of the student’s success (report generation and iterative search for the concept of the class assignment in the thesaurus-classifier before acquiring the required level of training. Model “Student” makes it possible to concretize the learning tasks in relation to the personality of the student and to the training level achieved; the assumption of the lecturer about the level of training of a

  19. Review of material recovery from used electric and electronic equipment-alternative options for resource conservation.

    Science.gov (United States)

    Friege, Henning

    2012-09-01

    For waste from electric and electronic equipment, the WEEE Directive stipulates the separate collection of electric and electronic waste. As to new electric and electronic devices, the Restriction of Hazardous Substances (RoHS) Directive bans the use of certain chemicals dangerous for man and environment. From the implementation of the WEEE directive, many unsolved problems have been documented: poor collection success, emission of dangerous substances during collection and recycling, irretrievable loss of valuable metals among others. As to RoHS, data from the literature show a satisfying success. The problems identified in the process can be reduced to some basic dilemmas at the borders between waste management, product policy and chemical safety. The objectives of the WEEE Directive and the specific targets for use and recycling of appliances are not consistent. There is no focus on scarce resources. Extended producer responsibility is not sufficient to guarantee sustainable waste management. Waste management reaches its limits due to problems of implementation but also due to physical laws. A holistic approach is necessary looking at all branch points and sinks in the stream of used products and waste from electric and electronic equipment. This may be done with respect to the general rules for sustainable management of material streams covering the three dimensions of sustainable policy. The relationships between the players in the field of electric and electronic devices have to be taken into account. Most of the problems identified in the implementation process will not be solved by the current amendment of the WEEE Directive.

  20. [Use of internet and electronic resources among Spanish intensivist physicians. First national survey].

    Science.gov (United States)

    Gómez-Tello, V; Latour-Pérez, J; Añón Elizalde, J M; Palencia-Herrejón, E; Díaz-Alersi, R; De Lucas-García, N

    2006-01-01

    Estimate knowledge and use habits of different electronic resources in a sample of Spanish intensivists: Internet, E-mail, distribution lists, and use of portable electronic devices. Self-applied questionnaire. A 50-question questionnaire was distributed among Spanish intensivists through the hospital marketing delegates of a pharmaceutical company and of electronic forums. A total of 682 questionnaires were analyzed (participation: 74%). Ninety six percent of those surveyed used Internet individually: 67% admitted training gap. Internet was the second source of clinical consultations most used (61%), slightly behind consultation to colleagues (65%). The pages consulted most were bibliographic databases (65%) and electronic professional journals (63%), with limited use of Evidence Based Medicine pages (19%). Ninety percent of those surveyed used e-mail regularly in the practice of their profession, although 25% admitted that were not aware of its possibilities. The use of E-mail decreased significantly with increase in age. A total of 62% of the intensivists used distribution lists. Of the rest, 42% were not aware of its existence and 32% admitted they had insufficient training to handle them. Twenty percent of those surveyed had portable electronic devices and 64% considered it useful, basically due to its rapid consultation at bedside. Female gender was a negative predictive factor of its use (OR 0.35; 95% CI 0.2-0.63; p=0.0002). A large majority of the Spanish intensivists use Internet and E-mail. E-mail lists and use of portable devices are still underused resources. There are important gaps in training and infrequent use of essential pages. There are specific groups that require directed educational policies.

  1. The Synthesis of the Hierarchical Structure of Information Resources for Management of Electronic Commerce Entities

    Directory of Open Access Journals (Sweden)

    Krutova Anzhelika S.

    2017-06-01

    Full Text Available The aim of the article is to develop the theoretical bases for the classification and coding of economic information and the scientific justification of the content of information resources of an electronic commerce enterprise. The essence of information resources for management of electronic business entities is investigated. It is proved that the organization of accounting in e-commerce systems is advisable to be built on the basis of two circuits: accounting for financial flows and accounting associated with transformation of business factors in products and services as a result of production activities. There presented a sequence of accounting organization that allows to combine the both circuits in a single information system, which provides a possibility for the integrated replenishment and distributed simultaneous use of the e-commerce system by all groups of users. It is proved that the guarantee of efficient activity of the information management system of electronic commerce entities is a proper systematization of the aggregate of information resources on economic facts and operations of an enterprise in accordance with the management tasks by building the hierarchy of accounting nomenclatures. It is suggested to understand nomenclature as an objective, primary information aggregate concerning a certain fact of the economic activity of an enterprise, which is characterized by minimum requisites, is entered into the database of the information system and is to be reflected in the accounting system. It is proposed to build a database of e-commerce systems as a part of directories (constants, personnel, goods / products, suppliers, buyers and the hierarchy of accounting nomenclatures. The package of documents regulating the organization of accounting at an enterprise should include: the provision on the accounting services, the order on the accounting policy, the job descriptions, the schedules of information exchange, the report card and

  2. ELECTRONIC EDUCATIONAL RESOURCES FOR ONLINE SUPPORT OF MODERN CHEMISTRY CLASSES IN SPECIALIZED SCHOOL

    Directory of Open Access Journals (Sweden)

    Maria D. Tukalo

    2013-09-01

    Full Text Available This article contains material of some modern electronic educational resources that can be used via the Internet to support the modern chemistry classes in specialized school. It was drawn attention to the educational chemical experiments as means of knowledge; simulated key motivational characteristics to enhance students interest for learning subjects, their cognitive and practical activity in the formation of self-reliance and self-creative; commented forecasts for creating of conditions to enhance the creative potential of students in a modern learning environment.

  3. THE MODEL OF LINGUISTIC TEACHERS’ COMPETENCY DEVELOPMENT ON DESIGNING MULTIMEDIA ELECTRONIC EDUCATIONAL RESOURCES IN THE MOODLE SYSTEM

    Directory of Open Access Journals (Sweden)

    Anton M. Avramchuk

    2017-10-01

    Full Text Available The article is devoted to the problem of developing the competency of teachers of language disciplines on designing multimedia electronic educational resources in the Moodle system. The concept of "the competence of teachers of language disciplines on designing multimedia electronic educational resources in the Moodle system" is justified and defined. Identified and characterized the components by which the levels of the competency development of teachers of language disciplines on designing multimedia electronic educational resources in the Moodle system should be assessed. Developed a model for the development of the competency of teachers of language disciplines on designing multimedia electronic educational resources in the Moodle system, which is based on the main scientific approaches, used in adult education, and consists of five blocks: target, informative, technological, diagnostic and effective.

  4. A preliminary categorization of end-of-life electrical and electronic equipment as secondary metal resources

    International Nuclear Information System (INIS)

    Oguchi, Masahiro; Murakami, Shinsuke; Sakanakura, Hirofumi; Kida, Akiko; Kameya, Takashi

    2011-01-01

    Highlights: → End-of-life electrical and electronic equipment (EEE) as secondary metal resources. → The content and the total amount of metals in specific equipment are both important. → We categorized 21 EEE types from contents and total amounts of various metals. → Important equipment types as secondary resources were listed for each metal kind. → Collectability and possible collection systems of various EEE types were discussed. - Abstract: End-of-life electrical and electronic equipment (EEE) has recently received attention as a secondary source of metals. This study examined characteristics of end-of-life EEE as secondary metal resources to consider efficient collection and metal recovery systems according to the specific metals and types of EEE. We constructed an analogy between natural resource development and metal recovery from end-of-life EEE and found that metal content and total annual amount of metal contained in each type of end-of-life EEE should be considered in secondary resource development, as well as the collectability of the end-of-life products. We then categorized 21 EEE types into five groups and discussed their potential as secondary metal resources. Refrigerators, washing machines, air conditioners, and CRT TVs were evaluated as the most important sources of common metals, and personal computers, mobile phones, and video games were evaluated as the most important sources of precious metals. Several types of small digital equipment were also identified as important sources of precious metals; however, mid-size information and communication technology (ICT) equipment (e.g., printers and fax machines) and audio/video equipment were shown to be more important as a source of a variety of less common metals. The physical collectability of each type of EEE was roughly characterized by unit size and number of end-of-life products generated annually. Current collection systems in Japan were examined and potentially appropriate collection

  5. Open-Source Electronic Health Record Systems for Low-Resource Settings: Systematic Review.

    Science.gov (United States)

    Syzdykova, Assel; Malta, André; Zolfo, Maria; Diro, Ermias; Oliveira, José Luis

    2017-11-13

    Despite the great impact of information and communication technologies on clinical practice and on the quality of health services, this trend has been almost exclusive to developed countries, whereas countries with poor resources suffer from many economic and social issues that have hindered the real benefits of electronic health (eHealth) tools. As a component of eHealth systems, electronic health records (EHRs) play a fundamental role in patient management and effective medical care services. Thus, the adoption of EHRs in regions with a lack of infrastructure, untrained staff, and ill-equipped health care providers is an important task. However, the main barrier to adopting EHR software in low- and middle-income countries is the cost of its purchase and maintenance, which highlights the open-source approach as a good solution for these underserved areas. The aim of this study was to conduct a systematic review of open-source EHR systems based on the requirements and limitations of low-resource settings. First, we reviewed existing literature on the comparison of available open-source solutions. In close collaboration with the University of Gondar Hospital, Ethiopia, we identified common limitations in poor resource environments and also the main requirements that EHRs should support. Then, we extensively evaluated the current open-source EHR solutions, discussing their strengths and weaknesses, and their appropriateness to fulfill a predefined set of features relevant for low-resource settings. The evaluation methodology allowed assessment of several key aspects of available solutions that are as follows: (1) integrated applications, (2) configurable reports, (3) custom reports, (4) custom forms, (5) interoperability, (6) coding systems, (7) authentication methods, (8) patient portal, (9) access control model, (10) cryptographic features, (11) flexible data model, (12) offline support, (13) native client, (14) Web client,(15) other clients, (16) code

  6. THE MODEL OF LINGUISTIC TEACHERS’ COMPETENCY DEVELOPMENT ON DESIGNING MULTIMEDIA ELECTRONIC EDUCATIONAL RESOURCES IN THE MOODLE SYSTEM

    OpenAIRE

    Anton M. Avramchuk

    2017-01-01

    The article is devoted to the problem of developing the competency of teachers of language disciplines on designing multimedia electronic educational resources in the Moodle system. The concept of "the competence of teachers of language disciplines on designing multimedia electronic educational resources in the Moodle system" is justified and defined. Identified and characterized the components by which the levels of the competency development of teachers of language disciplines on designing ...

  7. Determining the level of awareness of the physicians in using the variety of electronic information resources and the effecting factors.

    Science.gov (United States)

    Papi, Ahmad; Ghazavi, Roghayeh; Moradi, Salimeh

    2015-01-01

    Understanding of the medical society's from the types of information resources for quick and easy access to information is an imperative task in medical researches and management of the treatment. The present study was aimed to determine the level of awareness of the physicians in using various electronic information resources and the factors affecting it. This study was a descriptive survey. The data collection tool was a researcher-made questionnaire. The study population included all the physicians and specialty physicians of the teaching hospitals affiliated to Isfahan University of Medical Sciences and numbered 350. The sample size based on Morgan's formula was set at 180. The content validity of the tool was confirmed by the library and information professionals and the reliability was 95%. Descriptive statistics were used including the SPSS software version 19. On reviewing the need of the physicians to obtain the information on several occasions, the need for information in conducting the researches was reported by the maximum number of physicians (91.9%) and the usage of information resources, especially the electronic resources, formed 65.4% as the highest rate with regard to meeting the information needs of the physicians. Among the electronic information databases, the maximum awareness was related to Medline with 86.5%. Among the various electronic information resources, the highest awareness (43.3%) was related to the E-journals. The highest usage (36%) was also from the same source. The studied physicians considered the most effective deterrent in the use of electronic information resources as being too busy and lack of time. Despite the importance of electronic information resources for the physician's community, there was no comprehensive knowledge of these resources. This can lead to less usage of these resources. Therefore, careful planning is necessary in the hospital libraries in order to introduce the facilities and full capabilities of the

  8. Success criteria for electronic medical record implementations in low-resource settings: a systematic review.

    Science.gov (United States)

    Fritz, Fleur; Tilahun, Binyam; Dugas, Martin

    2015-03-01

    Electronic medical record (EMR) systems have the potential of supporting clinical work by providing the right information at the right time to the right people and thus make efficient use of resources. This is especially important in low-resource settings where reliable data are also needed to support public health and local supporting organizations. In this systematic literature review, our objectives are to identify and collect literature about success criteria of EMR implementations in low-resource settings and to summarize them into recommendations. Our search strategy relied on PubMed queries and manual bibliography reviews. Studies were included if EMR implementations in low-resource settings were described. The extracted success criteria and measurements were summarized into 7 categories: ethical, financial, functionality, organizational, political, technical, and training. We collected 381 success criteria with 229 measurements from 47 articles out of 223 articles. Most papers were evaluations or lessons learned from African countries, published from 1999 to 2013. Almost half of the EMR systems served a specific disease area like human immunodeficiency virus (HIV). The majority of criteria that were reported dealt with the functionality, followed by organizational issues, and technical infrastructures. Sufficient training and skilled personnel were mentioned in roughly 10%. Political, ethical, and financial considerations did not play a predominant role. More evaluations based on reliable frameworks are needed. Highly reliable data handling methods, human resources and effective project management, as well as technical architecture and infrastructure are all key factors for successful EMR implementation. © The Author 2015. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. Grey water biodegradability.

    Science.gov (United States)

    Ghunmi, Lina Abu; Zeeman, Grietje; Fayyad, Manar; van Lier, Jules B

    2011-02-01

    Knowing the biodegradability characteristics of grey water constituents is imperative for a proper design and operation of a biological treatment system of grey water. This study characterizes the different COD fractions of dormitory grey water and investigates the effect of applying different conditions in the biodegradation test. The maximum aerobic and anaerobic biodegradability and conversion rate for the different COD fractions is determined. The results show that, on average, dormitory grey water COD fractions are 28% suspended, 32% colloidal and 40% dissolved. The studied factors incubation time, inoculum addition and temperature are influencing the determined biodegradability. The maximum biodegradability and biodegradation rate differ between different COD fractions, viz. COD(ss), COD(col) and COD(diss). The dissolved COD fraction is characterised by the lowest degradation rate, both for anaerobic and aerobic conditions. The maximum biodegradability for aerobic and anaerobic conditions is 86 and 70% respectively, whereas the first order conversion rate constant, k₂₀, is 0.119 and 0.005 day⁻¹, respectively. The anaerobic and aerobic conversion rates in relation to temperature can be described by the Arrhenius relation, with temperature coefficients of 1.069 and 1.099, respectively.

  10. Impact of Knowledge Resources Linked to an Electronic Health Record on Frequency of Unnecessary Tests and Treatments

    Science.gov (United States)

    Goodman, Kenneth; Grad, Roland; Pluye, Pierre; Nowacki, Amy; Hickner, John

    2012-01-01

    Introduction: Electronic knowledge resources have the potential to rapidly provide answers to clinicians' questions. We sought to determine clinicians' reasons for searching these resources, the rate of finding relevant information, and the perceived clinical impact of the information they retrieved. Methods: We asked general internists, family…

  11. Resource conservation approached with an appropriate collection and upgrade-remanufacturing for used electronic products.

    Science.gov (United States)

    Zlamparet, Gabriel I; Tan, Quanyin; Stevels, A B; Li, Jinhui

    2018-03-01

    This comparative research represents an example for a better conservation of resources by reducing the amount of waste (kg) and providing it more value under the umbrella of remanufacturing. The three discussed cases will expose three issues already addressed separately in the literature. The generation of waste electrical and electronic equipment (WEEE) interacts with the environmental depletion. In this article, we gave the examples of addressed issues under the concept of remanufacturing. Online collection opportunity eliminating classical collection, a business to business (B2B) implementation for remanufactured servers and medical devices. The material reuse (recycling), component sustainability, reuse (part harvesting), product reuse (after repair/remanufacturing) indicates the recovery potential using remanufacturing tool for a better conservation of resources adding more value to the products. Our findings can provide an overview of new system organization for the general collection, market potential and the technological advantages using remanufacturing instead of recycling of WEEE or used electrical and electronic equipment. Copyright © 2017. Published by Elsevier Ltd.

  12. Biodegradation of flax fiber reinforced poly lactic acid

    Directory of Open Access Journals (Sweden)

    2010-07-01

    Full Text Available Woven and nonwoven flax fiber reinforced poly lactic acid (PLA biocomposites were prepared with amphiphilic additives as accelerator for biodegradation. The prepared composites were buried in farmland soil for biodegradability studies. Loss in weight of the biodegraded composite samples was determined at different time intervals. The surface morphology of the biodegraded composites was studied with scanning electron microscope (SEM. Results indicated that in presence of mandelic acid, the composites showed accelerated biodegradation with 20–25% loss in weight after 50–60 days. On the other hand, in presence of dicumyl peroxide (as additive, biodegradation of the composites was relatively slow as confirmed by only 5–10% loss in weight even after 80–90 days. This was further confirmed by surface morphology of the biodegraded composites. We have attempted to show that depending on the end uses, we can add different amphiphilic additives for delayed or accelerated biodegradability. This work gives us the idea of biodegradation of materials from natural fiber reinforced PLA composites when discarded carelessly in the environment instead of proper waste disposal site.

  13. Electronic theses and dissertations: a review of this valuable resource for nurse scholars worldwide.

    Science.gov (United States)

    Goodfellow, L M

    2009-06-01

    A worldwide repository of electronic theses and dissertations (ETDs) could provide worldwide access to the most up-to-date research generated by masters and doctoral students. Until that international repository is established, it is possible to access some of these valuable knowledge resources. ETDs provide a technologically advanced medium with endless multimedia capabilities that far exceed the print and bound copies of theses and dissertations housed traditionally in individual university libraries. CURRENT USE: A growing trend exists for universities worldwide to require graduate students to submit theses or dissertations as electronic documents. However, nurse scholars underutilize ETDs, as evidenced by perusing bibliographic citation lists in many of the research journals. ETDs can be searched for and retrieved through several digital resources such as the Networked Digital Library of Theses and Dissertations (http://www.ndltd.org), ProQuest Dissertations and Theses (http://www.umi.com), the Australasian Digital Theses Program (http://adt.caul.edu.au/) and through individual university web sites and online catalogues. An international repository of ETDs benefits the community of nurse scholars in many ways. The ability to access recent graduate students' research electronically from anywhere in the world is advantageous. For scholars residing in developing countries, access to these ETDs may prove to be even more valuable. In some cases, ETDs are not available for worldwide access and can only be accessed through the university library from which the student graduated. Public access to university library ETD collections is not always permitted. Nurse scholars from both developing and developed countries could benefit from ETDs.

  14. Biodegradable compounds: Rheological, mechanical and thermal properties

    Science.gov (United States)

    Nobile, Maria Rossella; Lucia, G.; Santella, M.; Malinconico, M.; Cerruti, P.; Pantani, R.

    2015-12-01

    Recently great attention from industry has been focused on biodegradable polyesters derived from renewable resources. In particular, PLA has attracted great interest due to its high strength and high modulus and a good biocompatibility, however its brittleness and low heat distortion temperature (HDT) restrict its wide application. On the other hand, Poly(butylene succinate) (PBS) is a biodegradable polymer with a low tensile modulus but characterized by a high flexibility, excellent impact strength, good thermal and chemical resistance. In this work the two aliphatic biodegradable polyesters PBS and PLA were selected with the aim to obtain a biodegradable material for the industry of plastic cups and plates. PBS was also blended with a thermoplastic starch. Talc was also added to the compounds because of its low cost and its effectiveness in increasing the modulus and the HDT of polymers. The compounds were obtained by melt compounding in a single screw extruder and the rheological, mechanical and thermal properties were investigated. The properties of the two compounds were compared and it was found that the values of the tensile modulus and elongation at break measured for the PBS/PLA/Talc compound make it interesting for the production of disposable plates and cups. In terms of thermal resistance the compounds have HDTs high enough to contain hot food or beverages. The PLA/PBS/Talc compound can be, then, considered as biodegradable substitute for polystyrene for the production of disposable plates and cups for hot food and beverages.

  15. From Millennium ERM to Proquest 360 Resource Manager: Implementing a new Electronic Resources Management System ERMS in an International Graduate Research University in Saudi Arabia

    KAUST Repository

    Ramli, Rindra M.

    2017-05-17

    An overview of the Recommendation Study and the subsequent Implementation of a new Electronic Resources Management system ERMS in an international graduate research university in the Kingdom of Saudi Arabia. It covers the timeline, deliverables and challenges as well as lessons learnt by the Project Team.

  16. Biodegradable modified Phba systems

    International Nuclear Information System (INIS)

    Aniscenko, L.; Dzenis, M.; Erkske, D.; Tupureina, V.; Savenkova, L.; Muizniece - Braslava, S.

    2004-01-01

    Compositions as well as production technology of ecologically sound biodegradable multicomponent polymer systems were developed. Our objective was to design some bio plastic based composites with required mechanical properties and biodegradability intended for use as biodegradable packaging. Significant characteristics required for food packaging such as barrier properties (water and oxygen permeability) and influence of γ-radiation on the structure and changes of main characteristics of some modified PHB matrices was evaluated. It was found that barrier properties were plasticizers chemical nature and sterilization with γ-radiation dependent and were comparable with corresponding values of typical polymeric packaging films. Low γ-radiation levels (25 kGy) can be recommended as an effective sterilization method of PHB based packaging materials. Purposely designed bio plastic packaging may provide an alternative to traditional synthetic packaging materials without reducing the comfort of the end-user due to specific qualities of PHB - biodegradability, Biocompatibility and hydrophobic nature

  17. [Progress on biodegradation of polylactic acid--a review].

    Science.gov (United States)

    Li, Fan; Wang, Sha; Liu, Weifeng; Chen, Guanjun

    2008-02-01

    Polylactic acid is a high molecular-weight polyester made from renewable resources such as corn or starch. It is a promising biodegradable plastic due to its mechanical properties, biocompatibility and biodegradability. To achieve natural recycling of polylactic acid, relative microorganisms and the underlying mechanisms in the biodegradation has become an important issue in biodegradable materials. Up to date, most isolated microbes capable of degrading polylactic acid belong to actinomycetes. Proteases secreted by these microorganisms are responsible for the degradation. However, subtle differences exist between these polylactic acid degrading enzymes and typical proteases with respect to substrate binding and catalysis. Amino acids relative to catalysis are postulated to be highly plastic allowing their catalytic hydrolysis of polylactic acid. In this paper we reviewed current studies on biodegradation of polylactic acid concerning its microbial, enzymatic reactions and the possible mechanisms. We also discussed the probability of biologically recycling PLA by applying highly efficient strains and enzymes.

  18. Biodegradable Sonobuoy Decelerators

    Science.gov (United States)

    2015-06-01

    of Water Temperature and the Presence of Salt on the Disintegration Time of MonoSol A200 PVOH...polyhydroxyalkanoate (PHA). The proposed film would disintegrate , dissolve, and eventually biodegrade to prevent long-term effects on marine life. Ensuring no...Standard Specification for Non-Floating Biodegradable Plastics in the Marine Environment. Results showed that no PHA grades were toxic to the marine

  19. Biodegradable micromechanical sensors

    DEFF Research Database (Denmark)

    Keller, Stephan Sylvest; Greve, Anders; Schmid, Silvan

    of mechanical and thermal properties of polymers. For example, measurements of the resonance frequency of cantilevers were used to characterize thin polymer coatings in various environmental conditions [2]. Also, the influence of humidity on the Young’s modulus of SU-8 was evaluated [3]. However, introduction...... (NIL). Second, we used spray-coating to deposit thin biodegradable films on microcantilevers. Both approaches allowed the determination of the Young’s modulus of the biopolymer. Furthermore, biodegradation by enzymes was investigated....

  20. Electronic tracking of human resource skills and knowledge, just in time training, manageable due diligence

    Energy Technology Data Exchange (ETDEWEB)

    Kolodziej, M.A. [Quick Test International Inc., (Canada). Canadian Technology Human Resource Board; Baker, O. [KeySpan Energy Canada, Calgary, AB (Canada)

    2001-06-01

    KeySpan Energy Canada is in the process of obtaining recognition of various occupational profiles including pipeline operators, inspectors, and field and plant operators from various certifying organizations. The process of allowing individuals to obtain certification is recognized by Canadian Technology Human Resources Board as a step towards national standards for technologists and technicians. Proven competency is a must for workers in todays oil industry in response to increasingly stringent government safety regulations, environmental concerns and high public scrutiny. Quick Test international Inc. has developed a management tool in collaboration with end users at KeySpan Energy Canada. It is an electronic, Internet based competency tool for tracking personal competencies and maintaining continued competency. Response to the tool has been favourable. 2 refs., 4 figs.

  1. Availability, Use and Constraints to Use of Electronic Information Resources by Postgraduates Students at the University of Ibadan

    Directory of Open Access Journals (Sweden)

    Dare Samuel Adeleke

    2017-12-01

    Full Text Available Availability, awareness and use of electronic resources provide access to authoritative, reliable, accurate and timely access to information. The use of electronic information resources (EIRs can enable innovation in teaching and increase timeliness in research of postgraduate students which will eventual result into encouragement of the expected research-led enquiry in this digital age. The study adopted a descriptive survey design. Samples of 300 of postgraduate students within seven out 13 Faculties were randomly selected. Data were collected using questionnaire designed to elicit response from respondents and data were analyzed using descriptive statistics methods percentages, mean, and standard deviation. Results indicated that internet was ranked most available and used in the university. Low level of usage of electronic resources, in particular, full texts data bases is linked to a number of constraints: Interrupted power supply was ranked highest among other factors as speed and capacity of computers, retrieval of records with high recall and low precision, retrieving records relevant to information need, lack of knowledge of search techniques to retrieve information effectively, non possession of requisite IT skills and problems accessing the internet. The study recommended that usage of electronic resources be made compulsory, intensifying awareness campaigns concerning the availability, training on use of electronic resources and the problem of power outage be addressed.

  2. Using mobile electronic devices to deliver educational resources in developing countries.

    Science.gov (United States)

    Mazal, Jonathan Robert; Ludwig, Rebecca

    2015-01-01

    Developing countries have far fewer trained radiography professionals than developed countries, which exacerbates the limited access to imaging services. The lack of trained radiographers reflects, in part, limited availability of radiographer-specific educational resources. Historically, organizations that provided such resources in the developing world faced challenges related to the limited stock of current materials as well as expenses associated with shipping and delivery. Four mobile electronic devices (MEDs) were loaded with educational content (e-books, PDFs, and digital applications) spanning major radiography topics. The MEDs were distributed to 4 imaging departments in Ghana, India, Nepal, and Nigeria based on evidence of need for radiography-specific resources, as revealed by survey responses. A cost comparison of postal delivery vs digital delivery of educational content was performed. The effectiveness of delivering additional content via Wi-Fi transmission also was evaluated. Feedback was solicited on users' experience with the MEDs as a delivery tool for educational content. An initial average per e-book expense of $30.05, which included the cost of the device, was calculated for the MED delivery method compared with $15.56 for postal delivery of printed materials. The cost of the MED delivery method was reduced to an average of $10.05 for subsequent e-book deliveries. Additional content was successfully delivered via Wi-Fi transmission to all recipients during the 3-month follow-up period. Overall user feedback on the experience was positive, and ideas for enhancing the MED-based method were identified. Using MEDs to deliver radiography-specific educational content appears to be more cost effective than postal delivery of printed materials on a long-term basis. MEDs are more efficient for providing updates to educational materials. Customization of content to department needs, and using projector devices could enhance the usefulness of MEDs for

  3. The electronic encapsulation of knowledge in hydraulics, hydrology and water resources

    Science.gov (United States)

    Abbott, Michael B.

    The rapidly developing practice of encapsulating knowledge in electronic media is shown to lead necessarily to the restructuring of the knowledge itself. The consequences of this for hydraulics, hydrology and more general water-resources management are investigated in particular relation to current process-simulation, real-time control and advice-serving systems. The generic properties of the electronic knowledge encapsulator are described, and attention is drawn to the manner in which knowledge 'goes into hiding' through encapsulation. This property is traced in the simple situations of pure mathesis and in the more complex situations of taxinomia using one example each from hydraulics and hydrology. The consequences for systems architectures are explained, pointing to the need for multi-agent architectures for ecological modelling and for more general hydroinformatics systems also. The relevance of these developments is indicated by reference to ongoing projects in which they are currently being realised. In conclusion, some more general epistemological aspects are considered within the same context. As this contribution is so much concerned with the processes of signification and communication, it has been partly shaped by the theory of semiotics, as popularised by Eco ( A Theory of Semiotics, Indiana University, Bloomington, 1977).

  4. Plastics disassembly versus bulk recycling: engineering design for end-of-life electronics resource recovery.

    Science.gov (United States)

    Rios, Pedro; Stuart, Julie Ann; Grant, Ed

    2003-12-01

    Annual plastic flows through the business and consumer electronics manufacturing supply chain include nearly 3 billion lb of high-value engineering plastics derived from petroleum. The recovery of resource value from this stream presents critical challenges in areas of materials identification and recycling process design that demand new green engineering technologies applied together with life cycle assessment and ecological supply chain analysis to create viable plastics-to-plastics supply cycles. The sustainable recovery of potentially high-value engineering plastics streams requires that recyclers either avoid mixing plastic parts or purify later by separating smaller plastic pieces created in volume reduction (shredding) steps. Identification and separation constitute significant barriers in the plastics-to-plastics recycling value proposition. In the present work, we develop a model that accepts randomly arriving electronic products to study scenarios by which a recycler might identify and separate high-value engineering plastics as well as metals. Using discrete eventsimulation,we compare current mixed plastics recovery with spectrochemical plastic resin identification and subsequent sorting. Our results show that limited disassembly with whole-part identification can produce substantial yields in separated streams of recovered engineering thermoplastics. We find that disassembly with identification does not constitute a bottleneck, but rather, with relatively few workers, can be configured to pull the process and thus decrease maximum staging space requirements.

  5. SAGES: a suite of freely-available software tools for electronic disease surveillance in resource-limited settings.

    Directory of Open Access Journals (Sweden)

    Sheri L Lewis

    Full Text Available Public health surveillance is undergoing a revolution driven by advances in the field of information technology. Many countries have experienced vast improvements in the collection, ingestion, analysis, visualization, and dissemination of public health data. Resource-limited countries have lagged behind due to challenges in information technology infrastructure, public health resources, and the costs of proprietary software. The Suite for Automated Global Electronic bioSurveillance (SAGES is a collection of modular, flexible, freely-available software tools for electronic disease surveillance in resource-limited settings. One or more SAGES tools may be used in concert with existing surveillance applications or the SAGES tools may be used en masse for an end-to-end biosurveillance capability. This flexibility allows for the development of an inexpensive, customized, and sustainable disease surveillance system. The ability to rapidly assess anomalous disease activity may lead to more efficient use of limited resources and better compliance with World Health Organization International Health Regulations.

  6. Biodegradation of selected offshore chemicals

    OpenAIRE

    Wennberg, Aina C.; Petersen, Karina

    2017-01-01

    A review of biodegradation data for specific oil field chemicals and chemical groups were performed in order to evaluate if the current categorisation of these were appropriate based on the biodegradation properties. Data were compiled from databases like ECHA and MITI and from the literature. For compounds with limited or inconclusive test data, biodegradation was also estimated by the BIOWIN models, and the EAWAG-BBD pathway prediction system was used to predict plausible biodegradation pat...

  7. Electronic Human Resources Management (e-HRM Adoption Studies: Past and Future Research

    Directory of Open Access Journals (Sweden)

    Winarto Winarto

    2018-05-01

    Full Text Available Electronic human resource management (e-HRM systems become more widely used by profit and non-profit organization. However, the field currently lacks sound theoretical frameworks that can be useful in addressing a key issue concerning the implementation of e-HRM systems, in particular to obtain a better understanding of the factors influencing the adoption of e-HRM systems. The objective of this paper is to provide a foundation towards the development of a theoretical framework for the implementation of e-HRM systems and develop a conceptual model that would reflect the nature of e-HRM systems’ adoption through systematic literature review. Adopting Crossan and Apaydin’s procedure of systematic review, this paper investigated 21 empirical papers of electronics human resources management, then categorized them into 4 characteristics which influence the adoption; System and technology characteristics; Organizational characteristics; User/individual characteristics, and Environmental and contextual characteristics. Finally, the e-HRM adoption research framework is drawn and based on the framework; avenues for future research are discussed.   Bahasa Indonesia Abstrak: Manajemen sumber daya manusia elektronik (selanjutnya disebut dengan e-HRM semakin banyak digunakan oleh organisasi profit dan nonprofit. Namun, bidang dan topik ini belum memiliki kerangka teori yang mapan, yang dapat digunakan untuk menganalisis isu-isu terkait penerapan e-HRM, terutama mengenai faktor-faktor yang mempengaruhi adopsi sistem e-HRM. Tujuan penelitian ini adalah untuk memberikan landasan bagi pengembangan kerangka teoritis untuk implementasi sistem e-HRM dan mengembangkan model konseptual yang akan menggambarkan adopsi sistem e-HRM melalui tinjauan literatur sistematis. Mengadopsi prosedur dan metode Crossan dan Apaydin untuk melakukan telaah literatur secara sistematis, paper ini menyelidiki 21 publikasi empiris manajemen sumber daya manusia elektronik dari 2

  8. Editorial: Biodegradable Materials

    Directory of Open Access Journals (Sweden)

    Carl Schaschke

    2014-11-01

    Full Text Available This Special Issue “Biodegradable Materials” features research and review papers concerning recent advances on the development, synthesis, testing and characterisation of biomaterials. These biomaterials, derived from natural and renewable sources, offer a potential alternative to existing non-biodegradable materials with application to the food and biomedical industries amongst many others. In this Special Issue, the work is expanded to include the combined use of fillers that can enhance the properties of biomaterials prepared as films. The future application of these biomaterials could have an impact not only at the economic level, but also for the improvement of the environment.

  9. Impact of Electronic Resources and Usage in Academic Libraries in Ghana: Evidence from Koforidua Polytechnic & All Nations University College, Ghana

    Science.gov (United States)

    Akussah, Maxwell; Asante, Edward; Adu-Sarkodee, Rosemary

    2015-01-01

    The study investigates the relationship between impact of electronic resources and its usage in academic libraries in Ghana: evidence from Koforidua Polytechnic & All Nations University College, Ghana. The study was a quantitative approach using questionnaire to gather data and information. A valid response rate of 58.5% was assumed. SPSS…

  10. Utilization of Electronic Information Resources by Undergraduate Students of University of Ibadan: A Case Study of Social Sciences and Education

    Science.gov (United States)

    Owolabi, Sola; Idowu, Oluwafemi A.; Okocha, Foluke; Ogundare, Atinuke Omotayo

    2016-01-01

    The study evaluated utilization of electronic information resources by undergraduates in the Faculties of Education and the Social Sciences in University of Ibadan. The study adopted a descriptive survey design with a study population of 1872 undergraduates in the Faculties of Education and the Social Sciences in University of Ibadan, from which a…

  11. Phthalates biodegradation in the environment.

    Science.gov (United States)

    Liang, Da-Wei; Zhang, Tong; Fang, Herbert H P; He, Jianzhong

    2008-08-01

    Phthalates are synthesized in massive amounts to produce various plastics and have become widespread in environments following their release as a result of extensive usage and production. This has been of an environmental concern because phthalates are hepatotoxic, teratogenic, and carcinogenic by nature. Numerous studies indicated that phthalates can be degraded by bacteria and fungi under aerobic, anoxic, and anaerobic conditions. This paper gives a review on the biodegradation of phthalates and includes the following aspects: (1) the relationship between the chemical structure of phthalates and their biodegradability, (2) the biodegradation of phthalates by pure/mixed cultures, (3) the biodegradation of phthalates under various environments, and (4) the biodegradation pathways of phthalates.

  12. Grey water biodegradability

    NARCIS (Netherlands)

    Abu Ghunmi, L.; Zeeman, G.; Fayyad, M.; Van Lier, J.B.

    2010-01-01

    Knowing the biodegradability characteristics of grey water constituents is imperative for a proper design and operation of a biological treatment system of grey water. This study characterizes the different COD fractions of dormitory grey water and investigates the effect of applying different

  13. Grey water biodegradability

    NARCIS (Netherlands)

    Abu Ghunmi, L.; Zeeman, G.; Fayyad, M.; Lier, van J.B.

    2011-01-01

    Knowing the biodegradability characteristics of grey water constituents is imperative for a proper design and operation of a biological treatment system of grey water. This study characterizes the different COD fractions of dormitory grey water and investigates the effect of applying different

  14. Systemic approaches to biodegradation.

    Science.gov (United States)

    Trigo, Almudena; Valencia, Alfonso; Cases, Ildefonso

    2009-01-01

    Biodegradation, the ability of microorganisms to remove complex chemicals from the environment, is a multifaceted process in which many biotic and abiotic factors are implicated. The recent accumulation of knowledge about the biochemistry and genetics of the biodegradation process, and its categorization and formalization in structured databases, has recently opened the door to systems biology approaches, where the interactions of the involved parts are the main subject of study, and the system is analysed as a whole. The global analysis of the biodegradation metabolic network is beginning to produce knowledge about its structure, behaviour and evolution, such as its free-scale structure or its intrinsic robustness. Moreover, these approaches are also developing into useful tools such as predictors for compounds' degradability or the assisted design of artificial pathways. However, it is the environmental application of high-throughput technologies from the genomics, metagenomics, proteomics and metabolomics that harbours the most promising opportunities to understand the biodegradation process, and at the same time poses tremendous challenges from the data management and data mining point of view.

  15. Systematic review of electronic surveillance of infectious diseases with emphasis on antimicrobial resistance surveillance in resource-limited settings.

    Science.gov (United States)

    Rattanaumpawan, Pinyo; Boonyasiri, Adhiratha; Vong, Sirenda; Thamlikitkul, Visanu

    2018-02-01

    Electronic surveillance of infectious diseases involves rapidly collecting, collating, and analyzing vast amounts of data from interrelated multiple databases. Although many developed countries have invested in electronic surveillance for infectious diseases, the system still presents a challenge for resource-limited health care settings. We conducted a systematic review by performing a comprehensive literature search on MEDLINE (January 2000-December 2015) to identify studies relevant to electronic surveillance of infectious diseases. Study characteristics and results were extracted and systematically reviewed by 3 infectious disease physicians. A total of 110 studies were included. Most surveillance systems were developed and implemented in high-income countries; less than one-quarter were conducted in low-or middle-income countries. Information technologies can be used to facilitate the process of obtaining laboratory, clinical, and pharmacologic data for the surveillance of infectious diseases, including antimicrobial resistance (AMR) infections. These novel systems require greater resources; however, we found that using electronic surveillance systems could result in shorter times to detect targeted infectious diseases and improvement of data collection. This study highlights a lack of resources in areas where an effective, rapid surveillance system is most needed. The availability of information technology for the electronic surveillance of infectious diseases, including AMR infections, will facilitate the prevention and containment of such emerging infectious diseases. Copyright © 2018 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.

  16. Modeling aerobic biodegradation in the capillary fringe.

    Science.gov (United States)

    Luo, Jian; Kurt, Zohre; Hou, Deyi; Spain, Jim C

    2015-02-03

    Vapor intrusion from volatile subsurface contaminants can be mitigated by aerobic biodegradation. Laboratory column studies with contaminant sources of chlorobenzene and a mixture of chlorobenzene, 1,2-dichlorobenzene, and 1,4-dichlorobenzene showed that contaminants were rapidly degraded in thin reactive zones with high biomass and low substrate concentrations in the vicinity of the capillary fringe. Such behavior was well characterized by a model that includes oxygen-, substrate-, and biomass-dependent biodegradation kinetics along with diffusive transport processes. An analytical solution was derived to provide theoretical support for the simplification of reaction kinetics and the approximation of reactive zone location and mass flux relationships at steady state. Results demonstrate the potential of aerobic natural attenuation in the capillary fringe for preventing contaminant migration in the unsaturated zone. The solution indicates that increasing contaminant mass flux into the column creates a thinner reactive zone and pushes it toward the oxygen boundary, resulting in a shorter distance to the oxygen source and a larger oxygen mass flux that balances the contaminant mass flux. As a consequence, the aerobic biodegradation can reduce high contaminant concentrations to low levels within the capillary fringe and unsaturated zone. The results are consistent with the observations of thin reactive layers at the interface in unsaturated zones. The model considers biomass while including biodegradation in the capillary fringe and unsaturated zone and clearly demonstrates that microbial communities capable of using the contaminants as electron donors may lead to instantaneous degradation kinetics in the capillary fringe and unsaturated zone.

  17. Processing and characterization of solid and microcellular biobased and biodegradable PHBV-based polymer blends and composites

    Science.gov (United States)

    Javadi, Alireza

    Petroleum-based polymers have made a significant contribution to human society due to their extraordinary adaptability and processability. However, due to the wide-spread application of plastics over the past few decades, there are growing concerns over depleting fossil resources and the undesirable environmental impact of plastics. Most of the petroleum-based plastics are non-biodegradable and thus will be disposed in landfills. Inappropriate disposal of plastics may also become a potential threat to the environment. Many approaches, such as efficient plastics waste management and replacing petroleum-based plastics with biodegradable materials obtained from renewable resources, have been put forth to overcome these problems. Plastics waste management is at its beginning stages of development which is also more expensive than expected. Thus, there is a growing interest in developing sustainable biobased and biodegradable materials produced from renewable resources such as plants and crops, which can offer comparable performance with additional advantages, such as biodegradability, biocompatibility, and reducing the carbon footprint. Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) is one of the most promising biobased and biodegradable polymers, In fact many petroleum based polymers such as poly(propylene) (PP) can be potentially replaced by PHBV because of the similarity in their properties. Despite PHBV's attractive properties, there are many drawbacks such as high cost, brittleness, and thermal instability, which hamper the widespread usage of this specific polymer. The goals of this study are to investigate various strategies to address these drawbacks, including blending with other biodegradable polymers such as poly (butylene adipate-coterephthalate) (PBAT) or fillers (e.g., coir fiber, recycled wood fiber, and nanofillers) and use of novel processing technologies such as microcellular injection molding technique. Microcellular injection molding technique

  18. The Use of Electronic Resources by Academic Staff at the University of Ilorin, Nigeria

    Science.gov (United States)

    Tella, Adeyinka; Orim, Faith; Ibrahim, Dauda Morenikeji; Memudu, Suleiman Ajala

    2018-01-01

    The use of e-resources is now commonplace among academics in tertiary educational institutions the world over. Many academics including those in the universities are exploring the opportunities of e-resources to facilitate teaching and research. As the use of e-resources is increasing particularly among academics at the University of Ilorin,…

  19. Modeling antecedents of electronic medical record system implementation success in low-resource setting hospitals.

    Science.gov (United States)

    Tilahun, Binyam; Fritz, Fleur

    2015-08-01

    With the increasing implementation of Electronic Medical Record Systems (EMR) in developing countries, there is a growing need to identify antecedents of EMR success to measure and predict the level of adoption before costly implementation. However, less evidence is available about EMR success in the context of low-resource setting implementations. Therefore, this study aims to fill this gap by examining the constructs and relationships of the widely used DeLone and MacLean (D&M) information system success model to determine whether it can be applied to measure EMR success in those settings. A quantitative cross sectional study design using self-administered questionnaires was used to collect data from 384 health professionals working in five governmental hospitals in Ethiopia. The hospitals use a comprehensive EMR system since three years. Descriptive and structural equation modeling methods were applied to describe and validate the extent of relationship of constructs and mediating effects. The findings of the structural equation modeling shows that system quality has significant influence on EMR use (β = 0.32, P quality has significant influence on EMR use (β = 0.44, P service quality has strong significant influence on EMR use (β = 0.36, P effect of EMR use on user satisfaction was not significant. Both EMR use and user satisfaction have significant influence on perceived net-benefit (β = 0.31, P mediating factor in the relationship between service quality and EMR use (P effect on perceived net-benefit of health professionals. EMR implementers and managers in developing countries are in urgent need of implementation models to design proper implementation strategies. In this study, the constructs and relationships depicted in the updated D&M model were found to be applicable to assess the success of EMR in low resource settings. Additionally, computer literacy was found to be a mediating factor in EMR use and user satisfaction of

  20. State-of-the-art of biodegradable composite materials

    International Nuclear Information System (INIS)

    Baley, Ch.; Grohens, Y.; Pillin, I.

    2004-01-01

    Nowadays, the market demand for environment friendly materials is in strong growth. The biodegradable composites (biodegradable fibres and polymers) mainly extracted from renewable resources will be a major contributor to the production of new industrial high performance products partially solving the problem of waste management. At the end of the lifetime, a structural bio-composite could be be crushed and recycled through a controlled industrial composting process. This the state-of-the-art report focuses on the biopolymers the vegetable fibres properties, the mechanisms of biodegradation and the examples of biodegradable composites. Eco-design of new products requires these new materials for which a life cycle analysis is nevertheless necessary to validate their environmental benefits. (authors)

  1. Use and Cost of Electronic Resources in Central Library of Ferdowsi University Based on E-metrics

    Directory of Open Access Journals (Sweden)

    Mohammad Reza Davarpanah

    2012-07-01

    Full Text Available The purpose of this study was to investigate the usage of electronic journals in Ferdowsi University, Iran based on e-metrics. The paper also aimed to emphasize the analysis of cost-benefit and the correlation between the journal impact factors and the usage data. In this study experiences of Ferdowsi University library on licensing and usage of electronic resources was evaluated by providing a cost-benefit analysis based on the cost and usage statistics of electronic resources. Vendor-provided data were also compared with local usage data. The usage data were collected by tracking web-based access locally, and by collecting vender-provided usage data. The data sources were one-year of vendor-supplied e-resource usage data such as Ebsco, Elsevier, Proquest, Emerald, Oxford and Springer and local usage data collected from the Ferdowsi university web server. The study found that actual usage values differ for vendor-provided data and local usage data. Elsevier has got the highest usage degree in searches, sessions and downloads. Statistics also showed that a small number of journals satisfy significant amount of use while the majority of journals were used less frequent and some were never used at all. The users preferred the PDF rather than HTML format. The data in subject profile suggested that the provided e-resources were best suited to certain subjects. There was no correlation between IF and electronic journal use. Monitoring the usage of e-resources gained increasing importance for acquisition policy and budget decisions. The article provided information about local metrics for the six surveyed vendors/publishers, e.g. usage trends, requests per package, cost per use as related to the scientific specialty of the university.

  2. Biodegradation of phenol-formaldehyde resins modified with commercial lignins

    Energy Technology Data Exchange (ETDEWEB)

    Bernard, M.; Nicolau, V. V. [Universidad Tecnologica Nacional (UTN), Cordoba (Argentina); Sponon, M.; Estenoz, D.A. [Instituto de Desarrollo Tecnologico para la Industria Quimica (INTEC/UNL/CONICET), Santa Fe (Argentina)

    2014-07-01

    Full text: In this work the biodegradation of partially-modified resols with 10% w/w of sodium lignosulfonate and 10 and 20 % w/w of Kraft lignin type is studied. The experimental work involved preliminary studies of biodegradation in Petri dish (clear zones), the degradation of resols by enzymatic attack of Pseudomonas aeruginosa under aerobic conditions for a period of 200 days and the characterization of the polymers before and after biodegradation by FT-IR and RMN spectroscopy, gas chromatography (GC) and scanning electron microscopy (SEM). The number of viable cells showed a significant increase during the process. However, the gravimetric analysis was not sufficient to check the biodegradation. The results indicated that endocellular enzymes could be involved. It was observed that the presence of low concentrations of toxic substances released during degradation of the material may have inhibitory effects. Resoles were synthesized in Centro S. A. San Francisco Cordoba, Argentina. (author)

  3. Safe biodegradable fluorescent particles

    Science.gov (United States)

    Martin, Sue I [Berkeley, CA; Fergenson, David P [Alamo, CA; Srivastava, Abneesh [Santa Clara, CA; Bogan, Michael J [Dublin, CA; Riot, Vincent J [Oakland, CA; Frank, Matthias [Oakland, CA

    2010-08-24

    A human-safe fluorescence particle that can be used for fluorescence detection instruments or act as a safe simulant for mimicking the fluorescence properties of microorganisms. The particle comprises a non-biological carrier and natural fluorophores encapsulated in the non-biological carrier. By doping biodegradable-polymer drug delivery microspheres with natural or synthetic fluorophores, the desired fluorescence can be attained or biological organisms can be simulated without the associated risks and logistical difficulties of live microorganisms.

  4. Absorbable and biodegradable polymers

    CERN Document Server

    Shalaby, Shalaby W

    2003-01-01

    INTRODUCTION NOTES: Absorbable/Biodegradable Polymers: Technology Evolution. DEVELOPMENT AND APPLICATIONOF NEW SYSTEMS: Segmented Copolyesters with Prolonged Strength Retention Profiles. Polyaxial Crystalline Fiber-Forming Copolyester. Polyethylene Glycol-Based Copolyesters. Cyanoacrylate-Based Systems as Tissue Adhesives. Chitosan-Based Systems. Hyaluronic Acid-Based Systems. DEVELOPMENTS IN PREPARATIVE, PROCESSING, AND EVALUATION METHODS: New Approaches to the Synthesis of Crystalline. Fiber-Forming Aliphatic Copolyesters. Advances in Morphological Development to Tailor the Performance of Me

  5. Biodegradability of bacterial surfactants.

    Science.gov (United States)

    Lima, Tânia M S; Procópio, Lorena C; Brandão, Felipe D; Carvalho, André M X; Tótola, Marcos R; Borges, Arnaldo C

    2011-06-01

    This work aimed at evaluating the biodegradability of different bacterial surfactants in liquid medium and in soil microcosms. The biodegradability of biosurfactants by pure and mixed bacterial cultures was evaluated through CO(2) evolution. Three bacterial strains, Acinetobacter baumanni LBBMA ES11, Acinetobacter haemolyticus LBBMA 53 and Pseudomonas sp. LBBMA 101B, used the biosurfactants produced by Bacillus sp. LBBMA 111A (mixed lipopeptide), Bacillus subtilis LBBMA 155 (lipopeptide), Flavobacterium sp. LBBMA 168 (mixture of flavolipids), Dietzia Maris LBBMA 191(glycolipid) and Arthrobacter oxydans LBBMA 201(lipopeptide) as carbon sources in minimal medium. The synthetic surfactant sodium dodecyl sulfate (SDS) was also mineralized by these microorganisms, but at a lower rate. CO(2) emitted by a mixed bacterial culture in soil microcosms with biosurfactants was higher than in the microcosm containing SDS. Biosurfactant mineralization in soil was confirmed by the increase in surface tension of the soil aqueous extracts after incubation with the mixed bacterial culture. It can be concluded that, in terms of biodegradability and environmental security, these compounds are more suitable for applications in remediation technologies in comparison to synthetic surfactants. However, more information is needed on structure of biosurfactants, their interaction with soil and contaminants and scale up and cost for biosurfactant production.

  6. Biodegradation of Mexican Diesel for a bacteria consortium of an agricultural soil

    International Nuclear Information System (INIS)

    Cardona, Santiago; Iturbe, Rosario

    2003-01-01

    The biodegradation of diesel in water was done by means of the microorganisms present in an agriculture soil. The kinetics of biodegradation and adsorption of diesel were determined in order to applying the procedure in soil and water resources contaminated with diesel. The methodology and results of biodegradation and adsorption of diesel in synthetic water is presented with a soil characterization. Degradation takes place using the original microorganisms present in the soil but giving nitrogen as nutrient. As oxygen source the hydrogen peroxide was used. The kinetics of diesel volatility is presented too. Kinetics equations for degradation, adsorption and speed constant were determined with the obtained results biodegradation, diesel, agriculture soil, bacterium group

  7. Use and User Perception of Electronic Information Resources: A Case Study of Siva Institute of Frontier Technology, India

    Directory of Open Access Journals (Sweden)

    Velmurugan Chandran

    2013-12-01

    Full Text Available The present study aims to explore the use and user perception of electronic resources in Siva Institute of Frontier Technology, India. A total number of 123 users were taken into account for the study through a questionnaire-based survey method. A well-structured questionnaire was designed and distributed to the selected 200 students and staff members. 123 copies of the questionnaires were returned dully filled in and the overall response rate was 61.50 percent. The questionnaire contained both open- and close-ended questions. The collected data were classified, analyzed, and tabulated by using simple statistical methods. This study covers the impact of electronic resources on students and faculty in their academic pursuit.

  8. Challenges in the implementation of an electronic surveillance system in a resource-limited setting: Alerta, in Peru

    Directory of Open Access Journals (Sweden)

    Soto Giselle

    2008-11-01

    Full Text Available Abstract Background Infectious disease surveillance is a primary public health function in resource-limited settings. In 2003, an electronic disease surveillance system (Alerta was established in the Peruvian Navy with support from the U.S. Naval Medical Research Center Detachment (NMRCD. Many challenges arose during the implementation process, and a variety of solutions were applied. The purpose of this paper is to identify and discuss these issues. Methods This is a retrospective description of the Alerta implementation. After a thoughtful evaluation according to the Centers for Disease Control and Prevention (CDC guidelines, the main challenges to implementation were identified and solutions were devised in the context of a resource-limited setting, Peru. Results After four years of operation, we have identified a number of challenges in implementing and operating this electronic disease surveillance system. These can be divided into the following categories: (1 issues with personnel and stakeholders; (2 issues with resources in a developing setting; (3 issues with processes involved in the collection of data and operation of the system; and (4 issues with organization at the central hub. Some of the challenges are unique to resource-limited settings, but many are applicable for any surveillance system. For each of these challenges, we developed feasible solutions that are discussed. Conclusion There are many challenges to overcome when implementing an electronic disease surveillance system, not only related to technology issues. A comprehensive approach is required for success, including: technical support, personnel management, effective training, and cultural sensitivity in order to assure the effective deployment of an electronic disease surveillance system.

  9. RESEARCH OF INFLUENCE OF QUALITY OF ELECTRONIC EDUCATIONAL RESOURCES ON QUALITY OF TRAINING WITH USE OF DISTANCE TECHNOLOGIES

    Directory of Open Access Journals (Sweden)

    H. M. Kravtsov

    2013-03-01

    Full Text Available Communication improving of educational processes requires today new approaches to the management arrangements and forming of educational policy in the field of distance learning, which is based on the use of modern information and communication technologies. An important step in this process is the continuous monitoring of the development and implementation of information technology and, in particular, the distance learning systems in higher educational establishments. The main objective of the monitoring is the impact assessment on the development of distance learning following the state educational standards, curricula, methodical and technical equipment and other factors; factors revelation that influence the implementation and outcomes of distance learning; results comparison of educational institution functioning and distance education systems in order to determine the most efficient ways of its development. The paper presents the analysis results of the dependence of the quality of educational services on the electronic educational resources. Trends in educational services development was studied by comparing the quality influence of electronic educational resources on the quality of educational services of higher pedagogical educational institutions of Ukraine as of 2009-2010 and 2012-2013. Generally, the analysis of the survey results allows evaluating quality of the modern education services as satisfactory and it can be said that almost 70% of the success of their future development depends on the quality of the used electronic educational resources and distance learning systems in particular.

  10. Tracking the Flow of Resources in Electronic Waste - The Case of End-of-Life Computer Hard Disk Drives.

    Science.gov (United States)

    Habib, Komal; Parajuly, Keshav; Wenzel, Henrik

    2015-10-20

    Recovery of resources, in particular, metals, from waste flows is widely seen as a prioritized option to reduce their potential supply constraints in the future. The current waste electrical and electronic equipment (WEEE) treatment system is more focused on bulk metals, where the recycling rate of specialty metals, such as rare earths, is negligible compared to their increasing use in modern products, such as electronics. This study investigates the challenges in recovering these resources in the existing WEEE treatment system. It is illustrated by following the material flows of resources in a conventional WEEE treatment plant in Denmark. Computer hard disk drives (HDDs) containing neodymium-iron-boron (NdFeB) magnets were selected as the case product for this experiment. The resulting output fractions were tracked until their final treatment in order to estimate the recovery potential of rare earth elements (REEs) and other resources contained in HDDs. The results further show that out of the 244 kg of HDDs treated, 212 kg comprising mainly of aluminum and steel can be finally recovered from the metallurgic process. The results further demonstrate the complete loss of REEs in the existing shredding-based WEEE treatment processes. Dismantling and separate processing of NdFeB magnets from their end-use products can be a more preferred option over shredding. However, it remains a technological and logistic challenge for the existing system.

  11. HELP (INFORMATION ELECTRONIC RESOURCE "CHRONICLE OF ONU: DATES, FACTS, EVENTS": HISTORY OF UNIVERSITY IN INFORMATION SPACE

    Directory of Open Access Journals (Sweden)

    А. М. Гавриленко

    2016-03-01

    Object of research is the help information resource "The chronicle of the Odessa national university of I. I. Mechnikov: dates, facts, events". The main objective of our article – to state the main methodological bases of creation of information resource. One of advantages of information resource is possibility of continuous updating and replenishment by new information. Main objective of creation of this information resource is systematization of material on stories of the Odessa national university of I. I. Mechnikov from the date of his basis to the present, ensuring interactive access to information on the main dates, the most significant events in life of university. The base of research are sources on the history of university, chronology of historical development, formation of infrastructure, cadres and scientific researches. In information resource the main stages of development, functioning and transformation of the Odessa University are analyzed, information on its divisions is collected. For creation of this information resource in Scientific library the method of work was developed, the main selection criteria of data are allocated. This information resource have practical value for all who is interested in history of university, historians, scientists-researchers of history of science and the city of Odessa.

  12. Print and Electronic Resources: Usage Statistics at Guru Gobind Singh Indraprastha University Library

    Science.gov (United States)

    Kapoor, Kanta

    2010-01-01

    Purpose: The purpose of this paper is to quantify the use of electronic journals in comparison with the print collections in the Guru Gobind Singh Indraprastha University Library. Design/methodology/approach: A detailed analysis was made of the use of lending services, the Xerox facility and usage of electronic journals such as Science Direct,…

  13. Understanding intention to use electronic information resources: A theoretical extension of the technology acceptance model (TAM).

    Science.gov (United States)

    Tao, Donghua

    2008-11-06

    This study extended the Technology Acceptance Model (TAM) by examining the roles of two aspects of e-resource characteristics, namely, information quality and system quality, in predicting public health students' intention to use e-resources for completing research paper assignments. Both focus groups and a questionnaire were used to collect data. Descriptive analysis, data screening, and Structural Equation Modeling (SEM) techniques were used for data analysis. The study found that perceived usefulness played a major role in determining students' intention to use e-resources. Perceived usefulness and perceived ease of use fully mediated the impact that information quality and system quality had on behavior intention. The research model enriches the existing technology acceptance literature by extending TAM. Representing two aspects of e-resource characteristics provides greater explanatory information for diagnosing problems of system design, development, and implementation.

  14. Building and Managing Electronic Resources in Digital Era in India with Special Reference to IUCAA and NIV, Pune: A Comparative Case Study

    Science.gov (United States)

    Sahu, H. K.; Singh, S. N.

    2015-04-01

    This paper discusses and presents a comparative case study of two libraries in Pune, India, Inter-University Centre for Astronomy and Astrophysics and Information Centre and Library of National Institute of Virology (Indian Council of Medical Research). It compares how both libraries have managed their e-resource collections, including acquisitions, subscriptions, and consortia arrangements, while also developing a collection of their own resources, including pre-prints and publications, video lectures, and other materials in an institutional repository. This study illustrates how difficult it is to manage electronic resources in a developing country like India, even though electronic resources are used more than print resources. Electronic resource management can be daunting, but with a systematic approach, various problems can be solved, and use of the materials will be enhanced.

  15. The level of the usage of the human resource information system and electronic recruitment in Croatian companies

    Directory of Open Access Journals (Sweden)

    Snježana Pivac

    2014-12-01

    Full Text Available Performing business according to contemporary requirements influences companies for continuous usage of modern managerial tools, such as a human resource information system (HRIS and electronic recruitment (ER. Human resources have been recognised as curtail resources and the main source of a competitive advantage in creation of successful business performance. In order to attract and select the top employees, companies use quality information software for attracting internal ones, and electronic recruitment for attracting the best possible external candidates. The main aim of this paper is to research the level of the usage of HRIS and ER within medium-size and large Croatian companies. Moreover, the additional aim of this paper is to evaluate the relationship among the usage of these modern managerial tools and the overall success of human resource management within these companies. For the purpose of this paper, primary and secondary research has been conducted in order to reveal the level of the usage of HRIS and ER as well as the overall success of human resource management in Croatian companies. The companies’ classification (HRIS and ER is done by using the non-hierarchical k-means cluster method as well as the nonparametric Kruskal Wallis test. Further, the companies are ranked by the multicriteria PROMETHEE method. Relevant nonparametric tests are used for testing the overall companies’ HRM. Finally, binary logistic regression is estimated, relating binary variable HRM and HRIS development. After detailed research, it can be concluded that large Croatian companies apply HRIS in majority (with a positive relation to HRM performance, but still require certain degrees of its development.

  16. Biodegradability of biobased polymeric materials in natural environments: Structures and Chemistry

    CSIR Research Space (South Africa)

    Muniyasamy, S

    2017-03-01

    Full Text Available The development of biobased polymer materials from renewable resources meets the concept of sustainability, offering the potential of renewability, biodegradation, and a path away from the problems associated with plastic derived from nonrenewable...

  17. Titanate nanotube coatings on biodegradable photopolymer scaffolds

    Energy Technology Data Exchange (ETDEWEB)

    Beke, S., E-mail: szabolcs.beke@iit.it [Department of Nanophysics, Istituto Italiano di Tecnologia, via Morego 30, 16163 Genova (Italy); Kőrösi, L. [Department of Biotechnology, Nanophage Therapy Center, Enviroinvest Corporation, Kertváros u. 2, H-7632, Pécs (Hungary); Scarpellini, A. [Department of Nanochemistry, Istituto Italiano di Tecnologia, via Morego 30, 16163 Genova (Italy); Anjum, F.; Brandi, F. [Department of Nanophysics, Istituto Italiano di Tecnologia, via Morego 30, 16163 Genova (Italy)

    2013-05-01

    Rigid, biodegradable photopolymer scaffolds were coated with titanate nanotubes (TNTs) by using a spin-coating method. TNTs were synthesized by a hydrothermal process at 150 °C under 4.7 bar ambient pressure. The biodegradable photopolymer scaffolds were produced by mask-assisted excimer laser photocuring at 308 nm. For scaffold coating, a stable ethanolic TNT sol was prepared by a simple colloid chemical route without the use of any binding compounds or additives. Scanning electron microscopy along with elemental analysis revealed that the scaffolds were homogenously coated by TNTs. The developed TNT coating can further improve the surface geometry of fabricated scaffolds, and therefore it can further increase the cell adhesion. Highlights: ► Biodegradable scaffolds were produced by mask-assisted UV laser photocuring. ► Titanate nanotube deposition was carried out without binding compounds or additives. ► The titanate nanotube coating can further improve the surface geometry of scaffolds. ► These reproducible platforms will be of high importance for biological applications.

  18. Development of a biodegradable bone cement

    International Nuclear Information System (INIS)

    Yusof Abdullah; Nurhaslinda Ee Abdullah; Wee Pee Chai; Norita Mohd Zain

    2002-01-01

    Biodegradable bone cement is a newly developed bone repair material, which is able to give immediate support to the implant area, and does not obstruct the bone repairing and regeneration process through appropriate biodegradation rate, which is synchronized with the mechanical load it should bear. The purpose of this study is to locally produce biodegradable bone cement using HA as absorbable filler. The cement is composed of an absorbable filler and unsaturated polyester for 100% degradation. Cross-linking effect is achieved through the action of poly (vinyl pyrrol lidone) (PVP) and an initiator. On the other hand, PPF was synthesized using direct esterification method. Characteristics of the bone cement were studied; these included the curing time, cross-linking effect and curing temperature. The products were characterized using X-Ray diffraction (XRD) to perform phase analysis and Scanning Electrons Microscopes to determine the morphology. The physical and mechanical properties of the bone cement were also investigated. The biocompatibility of the bone cement was tested using simulated body physiological solution. (Author)

  19. MendelWeb: An Electronic Science/Math/History Resource for the WWW.

    Science.gov (United States)

    Blumberg, Roger B.

    This paper describes a hypermedia resource, called MendelWeb that integrates elementary biology, discrete mathematics, and the history of science. MendelWeb is constructed from Gregor Menders 1865 paper, "Experiments in Plant Hybridization". An English translation of Mendel's paper, which is considered to mark the birth of classical and…

  20. Helping Patrons Find Locally Held Electronic Resources: An Interlibrary Loan Perspective

    Science.gov (United States)

    Johnston, Pamela

    2016-01-01

    The University of North Texas Libraries provide extensive online access to academic journals through major vendor databases. As illustrated by interlibrary loan borrowing requests for items held in our databases, patrons often have difficulty navigating the available resources. In this study, the Interlibrary Loan staff used data gathered from the…

  1. QR Codes as Finding Aides: Linking Electronic and Print Library Resources

    Science.gov (United States)

    Kane, Danielle; Schneidewind, Jeff

    2011-01-01

    As part of a focused, methodical, and evaluative approach to emerging technologies, QR codes are one of many new technologies being used by the UC Irvine Libraries. QR codes provide simple connections between print and virtual resources. In summer 2010, a small task force began to investigate how QR codes could be used to provide information and…

  2. User’s Guide for Biodegradation Reactions in TMVOCBio

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Yoojin [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Battistelli, Alfredo [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2017-08-31

    TMVOCBio is an extended version of the TMVOC numerical reservoir simulator, with the capability of simulating multiple biodegradation reactions mediated by different microbial populations or based on different redox reactions, thus involving different electron acceptors. This modeling feature is implemented within the existing TMVOC module in iTOUGH2. TMVOCBio, originally developed by Battistelli (2003; 2004), uses a general modified form of the Monod kinetic rate equation to simulate biodegradation reactions, which effectively simulates the uptake of a substrate while accounting for various limiting factors (i.e., the limitation by substrate, electron acceptor, or nutrients). Two approaches are included: 1) a multiple Monod kinetic rate equation, which assumes all the limiting factors simultaneously affect the substrate uptake rate, and 2) a minimum Monod model, which assumes that the substrate uptake rate is controlled by the most limiting factor among those acting for the specific substrate. As the limiting factors, biomass growth inhibition, toxicity effects, as well as competitive and non-competitive inhibition effects are included. The temperature and moisture dependence of biodegradation reactions is also considered. This report provides mathematical formulations and assumptions used for modeling the biodegradation reactions, and describes additional modeling capabilities. Detailed description of input format for biodegradation reactions is presented along with sample problems.

  3. Syntrophic biodegradation of hydrocarbon contaminants.

    Science.gov (United States)

    Gieg, Lisa M; Fowler, S Jane; Berdugo-Clavijo, Carolina

    2014-06-01

    Anaerobic environments are crucial to global carbon cycling wherein the microbial metabolism of organic matter occurs under a variety of redox conditions. In many anaerobic ecosystems, syntrophy plays a key role wherein microbial species must cooperate, essentially as a single catalytic unit, to metabolize substrates in a mutually beneficial manner. Hydrocarbon-contaminated environments such as groundwater aquifers are typically anaerobic, and often methanogenic. Syntrophic processes are needed to biodegrade hydrocarbons to methane, and recent studies suggest that syntrophic hydrocarbon metabolism can also occur in the presence of electron acceptors. The elucidation of key features of syntrophic processes in defined co-cultures has benefited greatly from advances in 'omics' based tools. Such tools, along with approaches like stable isotope probing, are now being used to monitor carbon flow within an increasing number of hydrocarbon-degrading consortia to pinpoint the key microbial players involved in the degradative pathways. The metagenomic sequencing of hydrocarbon-utilizing consortia should help to further identify key syntrophic features and define microbial interactions in these complex communities. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Eavesdropping on Electronic Guidebooks: Observing Learning Resources in Shared Listening Environments.

    Science.gov (United States)

    Woodruff, Allison; Aoki, Paul M.; Grinter, Rebecca E.; Hurst, Amy; Szymanski, Margaret H.; Thornton, James D.

    This paper describes an electronic guidebook, "Sotto Voce," that enables visitors to share audio information by eavesdropping on each others guidebook activity. The first section discusses the design and implementation of the guidebook device, key aspects of its user interface, the design goals for the audio environment, the eavesdropping…

  5. Biodegradation of Polypropylene Nonwovens

    Science.gov (United States)

    Keene, Brandi Nechelle

    The primary aim of the current research is to document the biodegradation of polypropylene nonwovens and filament under composting environments. To accelerate the biodegradat ion, pre-treatments and additives were incorporated into polypropylene filaments and nonwovens. The initial phase (Chapter 2) of the project studied the biodegradation of untreated polypropylene with/without pro-oxidants in two types of composting systems. Normal composting, which involved incubation of samples in food waste, had little effect on the mechanical properties of additive-free spunbond nonwovens in to comparison prooxidant containing spunbond nonwovens which were affected significantly. Modified composting which includes the burial of samples with food and compressed air, the polypropylene spunbond nonwovens with/without pro-oxidants displayed an extreme loss in mechanical properties and cracking on the surface cracking. Because the untreated spunbond nonwovens did not completely decompose, the next phase of the project examined the pre-treatment of gamma-irradiation or thermal aging prior to composting. After exposure to gamma-irradiation and thermal aging, polypropylene is subjected to oxidative degradation in the presence of air and during storage after irradiat ion. Similar to photo-oxidation, the mechanism of gamma radiation and thermal oxidative degradation is fundamentally free radical in nature. In Chapter 3, the compostability of thermal aged spunbond polypropylene nonwovens with/without pro-oxidant additives. The FTIR spectrum confirmed oxidat ion of the polypropylene nonwovens with/without additives. Cracking on both the pro-oxidant and control spunbond nonwovens was showed by SEM imaging. Spunbond polypropylene nonwovens with/without pro-oxidants were also preirradiated by gamma rays followed by composting. Nonwovens with/without pro-oxidants were severely degraded by gamma-irradiation after up to 20 kGy exposure as explained in Chapter 4. Furthermore (Chapter 5), gamma

  6. Biodegradation of polyurethanes; Polyurethane no biseibutsu bunkai

    Energy Technology Data Exchange (ETDEWEB)

    Kinpara, N; Ando, M; Ohira, Z [Suzuki Motor Corp., Shizuoka (Japan); Nakajima, T; Nakahara, T [University of Tsukuba, Tsukuba (Japan)

    1997-10-01

    Different types of Polyurethane (PUR) are used for various industrial products and are used in increasing quantities every year. We experimented with biodegradation of PURs to dispose of industrial wastes. 2 strains of fungi and 1 strain of bacteria which were seemed to have the ability to degrade PURs well were isolated from various soils and waste water. These strains could degrade ester-type PUR and PUR made from a mixture of ester and ether. However, these strains could not degrade ether-type PUR. From Scanning Electron Microscopy observation, it is suggested that the microbial degradation proceeded in at least 2 patterns. 4 refs., 8 figs., 2 tabs.

  7. Nanofibers extraction from palm mesocarp fiber for biodegradable polymers incorporation

    International Nuclear Information System (INIS)

    Kuana, Vanessa A.; Rodrigues, Vanessa B.; Takahashi, Marcio C.; Campos, Adriana de; Sena Neto, Alfredo R.; Mattoso, Luiz H.C.; Marconcini, Jose M.

    2015-01-01

    The palm mesocarp fibers are residues produced by the palm oil industries. The objective of this paper is to determine an efficient treatment to extract crystal cellulose nanofibers from the palm mesocarp fibers to be incorporated in biodegradable polymeric composites. The fibers were saponified, bleached and analyzed with thermal gravimetric analysis, X-ray diffraction, Fourier transform infrared spectroscopy and scanning electron microscopy. (author)

  8. Biodegradation of low density polyethylene (LDPE) by a new ...

    African Journals Online (AJOL)

    aghomotsegin

    The microbial degradation of LDPE was also analyzed by the change in pH of the culture ... The generation of biodegradable polyethylene requires ...... Use of scanning electron microscope for the examination of actinomycetes. J. Gen. Microbiol. 48:171-177. Yamada-Onodera K, Mukumoto H, Katsuyaya Y, Saiganji A, Tani ...

  9. Biodegradation of biodiesel fuels

    International Nuclear Information System (INIS)

    Zhang, X.; Haws, R.; Wright, B.; Reese, D.; Moeller, G.; Peterson, C.

    1995-01-01

    Biodiesel fuel test substances Rape Ethyl Ester (REE), Rape Methyl Ester (RME), Neat Rape Oil (NR), Say Methyl Ester (SME), Soy Ethyl Ester (SEE), Neat Soy Oil (NS), and proportionate combinations of RME/diesel and REE/diesel were studied to test the biodegradability of the test substances in an aerobic aquatic environment using the EPA 560/6-82-003 Shake Flask Test Method. A concurrent analysis of Phillips D-2 Reference Diesel was also performed for comparison with a conventional fuel. The highest rates of percent CO 2 evolution were seen in the esterified fuels, although no significant difference was noted between them. Ranges of percent CO 2 evolution for esterified fuels were from 77% to 91%. The neat rape and neat soy oils exhibited 70% to 78% CO 2 evolution. These rates were all significantly higher than those of the Phillips D-2 reference fuel which evolved from 7% to 26% of the organic carbon to CO 2 . The test substances were examined for BOD 5 and COD values as a relative measure of biodegradability. Water Accommodated Fraction (WAF) was experimentally derived and BOD 5 and COD analyses were carried out with a diluted concentration at or below the WAF. The results of analysis at WAF were then converted to pure substance values. The pure substance BOD 5 and COD values for test substances were then compared to a control substance, Phillips D-2 Reference fuel. No significant difference was noted for COD values between test substances and the control fuel. (p > 0.20). The D-2 control substance was significantly lower than all test substances for BCD, values at p 5 value

  10. Development and evolution of The Knowledge Hub for Pathology and related electronic resources.

    Science.gov (United States)

    Hardwick, David F; Sinard, John; Silva, Fred

    2011-06-01

    The Knowledge Hub for Pathology was created to provide authenticated and validated knowledge for United States and Canadian Academy of Pathology members and pathologists worldwide with access to the Web. Using the material presented at the annual meeting of the United States and Canadian Academy of Pathology with existing selection and review procedures ensured that these criteria were met without added costly procedures. Further submissions for courses and research papers are provided in electronic format and funded by universities and hospitals for their creation; thus, the principal costs borne by the United States and Canadian Academy of Pathology are Web site-posting costs. Use has escalated rapidly from 2 million hits in 2002 to 51 million in 2009 with use by 35,000 pathologists from now a total of 180 countries. This true "freemium" model is a successful process as are more traditional continuing professional development course structures such as Anatomic Pathology Electronic Case Series, a "premium" model for learning electronically also sponsored by the United States and Canadian Academy of Pathology. Copyright © 2011 Elsevier Inc. All rights reserved.

  11. An Exploratory study on the use of LibAnswers to Resolve, Track and Monitor Electronic Resources Issues: The KAUST Library experience

    KAUST Repository

    Ramli, Rindra M.

    2017-01-01

    An Exploratory study on KAUST library use of LibAnswers in resolving electronic resources questions received in LibAnswers. It describes the findings of the questions received in LibAnswers. The author made suggestions based on the findings to improve the reference services in responding to e-resources questions.

  12. An Exploratory study on the use of LibAnswers to Resolve, Track and Monitor Electronic Resources Issues: The KAUST Library experience

    KAUST Repository

    Ramli, Rindra M.

    2017-05-03

    An Exploratory study on KAUST library use of LibAnswers in resolving electronic resources questions received in LibAnswers. It describes the findings of the questions received in LibAnswers. The author made suggestions based on the findings to improve the reference services in responding to e-resources questions.

  13. Designing a model of electronic human resource management’s implementation at the Ministry of Communications and Information Technology

    Directory of Open Access Journals (Sweden)

    Mirali Seyednaghavi

    2017-06-01

    Full Text Available : In the first phase of this study a model for electronic human resource management in government agencies based on new public services was explored by using software MAXQDA, then in the second phase, relationship between the elements of the theory were tested using software Smart PLS2. So the aim of this study is to design a model of electronic human resource management’s implementation at the Ministry of Communications and Information Technology. In this regard, according to Strauss and Corbin’s structured plan, five hypotheses were tested. Quantitative data analysis indicates that the pressures of the policies and global perspectives cause to move toward e-HRM. Among the contextual conditions macro structural mechanisms, considerations of actors, governance considerations have a significant impact on the strategy of new public services and therefore lead to the consequences of its implementation in public organizations. The findings suggest that e-HRM does not have a positive and meaningful impact on new public services, and in our country, although the recent political developments have somehow removed the gap between public policy makers, administrators, and the public, but there is still a long way to go.

  14. Preference and Use of Electronic Information and Resources by Blind/Visually Impaired in NCR Libraries in India

    Directory of Open Access Journals (Sweden)

    Shailendra Kumar

    2013-06-01

    Full Text Available This paper aims to determine the preference and use of electronic information and resources by blind/visually impaired users in the leading National Capital Region (NCR libraries of India. Survey methodology has been used as the basic research tool for data collection with the help of questionnaires. The 125 in total users surveyed in all the five libraries were selected randomly on the basis of willingness of the users with experience of working in digital environments to participate in the survey. The survey results were tabulated and analyzed with descriptive statistics methods using Excel software and 'Stata version 11'. The findings reveal that ICT have a positive impact in the lives of people with disabilities as it helps them to work independently and increases the level of confidence among them. The Internet is the most preferred medium of access to information among the majority of blind/visually impaired users. The 'Complexity of content available on the net' is found as the major challenge faced during Internet use by blind users of NCR libraries. 'Audio books on CDs/DVDs and DAISY books' are the most preferred electronic resources among the majority of blind/visually impaired users. This study will help the library professionals and organizations/institutions serving people with disabilities to develop effective library services for blind/visually impaired users in the digital environment on the basis of findings on information usage behavior in the study.

  15. Biodegradable composites based on L-polylactide and jute fibres

    DEFF Research Database (Denmark)

    Plackett, David; Løgstrup Andersen, T.; Batsberg Pedersen, W.

    2003-01-01

    Biodegradable polymers can potentially be combined with plant fibres to produce biodegradable composite materials. In our research, a commercial L-polylactide was converted to film and then used in combination with jute fibre mats to generate composites by a film stacking technique. Composite...... in the 180-220 degreesC range were significantly higher than those of polylactide alone. Composite samples failed in a brittle fashion under tensile load and showed little sign of fibre pull-out. Examination of composite fracture surfaces using electron microscopy showed voids occurring between the jute...

  16. Effect of cold drawing on mechanical properties of biodegradable fibers.

    Science.gov (United States)

    La Mantia, Francesco Paolo; Ceraulo, Manuela; Mistretta, Maria Chiara; Morreale, Marco

    2017-01-26

    Biodegradable polymers are currently gaining importance in several fields, because they allow mitigation of the impact on the environment related to disposal of traditional, nonbiodegradable polymers, as well as reducing the utilization of oil-based sources (when they also come from renewable resources). Fibers made of biodegradable polymers are of particular interest, though, it is not easy to obtain polymer fibers with suitable mechanical properties and to tailor these to the specific application. The main ways to tailor the mechanical properties of a given biodegradable polymer fiber are based on crystallinity and orientation control. However, crystallinity can only marginally be modified during processing, while orientation can be controlled, either during hot drawing or cold stretching. In this paper, a systematic investigation of the influence of cold stretching on the mechanical and thermomechanical properties of fibers prepared from different biodegradable polymer systems was carried out. Rheological and thermal characterization helped in interpreting the orientation mechanisms, also on the basis of the molecular structure of the polymer systems. It was found that cold drawing strongly improved the elastic modulus, tensile strength and thermomechanical resistance of the fibers, in comparison with hot-spun fibers. The elastic modulus showed higher increment rates in the biodegradable systems upon increasing the draw ratio.

  17. Internet and electronic resources for inflammatory bowel disease: a primer for providers and patients.

    Science.gov (United States)

    Fortinsky, Kyle J; Fournier, Marc R; Benchimol, Eric I

    2012-06-01

    Patients with inflammatory bowel disease (IBD) are increasingly turning to the Internet to research their condition and engage in discourse on their experiences. This has resulted in new dynamics in the relationship between providers and their patients, with misinformation and advertising potentially presenting barriers to the cooperative patient-provider partnership. This article addresses important issues of online IBD-related health information and social media activity, such as quality, reliability, objectivity, and privacy. We reviewed the medical literature on the quality of online information provided to IBD patients, and summarized the most commonly accessed Websites related to IBD. We also assessed the activity on popular social media sites (such as Facebook, Twitter, and YouTube), and evaluated currently available applications for use by IBD patients and providers on mobile phones and tablets. Through our review of the literature and currently available resources, we developed a list of recommended online resources to strengthen patient participation in their care by providing reliable, comprehensive educational material. Copyright © 2011 Crohn's & Colitis Foundation of America, Inc.

  18. Synthesis of biodegradable styrene copolymers

    OpenAIRE

    Gevers, Dries; Kobben, Stephan; Junkers, Tanja; Copinet, Alain; Buntinx, Mieke; Peeters, Roos

    2017-01-01

    Polystyrene (PS), a versatile polymer with many applications (e.g. packaging) representing about 10% of the total annual polymer consumption, shows practically no biodegradability. In this study a styrene (ST) based copolymer is synthesized and examined regarding its ability to degrade in a composting test. As second monomer, to introduce biodegradable ester groups, 5,6-benzo-2-metylene-dioxepane (BMDO) has been used in radical copolymerization reactions performed in inert and stirred 10 m...

  19. Electronic medical records in diabetes consultations: participants' gaze as an interactional resource.

    Science.gov (United States)

    Rhodes, Penny; Small, Neil; Rowley, Emma; Langdon, Mark; Ariss, Steven; Wright, John

    2008-09-01

    Two routine consultations in primary care diabetes clinics are compared using extracts from video recordings of interactions between nurses and patients. The consultations were chosen to present different styles of interaction, in which the nurse's gaze was either primarily toward the computer screen or directed more toward the patient. Using conversation analysis, the ways in which nurses shift both gaze and body orientation between the computer screen and patient to influence the style, pace, content, and structure of the consultation were investigated. By examining the effects of different levels of engagement between the electronic medical record and the embodied patient in the consultation room, we argue for the need to consider the contingent nature of the interface of technology and the person in the consultation. Policy initiatives designed to deliver what is considered best-evidenced practice are modified in the micro context of the interactions of the consultation.

  20. Granulometric composition study of mineral resources using opto-electronic devices and Elsieve software system

    Directory of Open Access Journals (Sweden)

    Kaminski Stanislaw

    2016-01-01

    Full Text Available The use of mechanical sieves has a great impact on measurement results because occurrence of anisometric particles causes undercounting the average size. Such errors can be avoided by using opto-electronic measuring devices that enable measurement of particles from 10 μm up to a few dozen millimetres in size. The results of measurement of each particle size fraction are summed up proportionally to its weight with the use of Elsieve software system and for every type of material particle-size distribution can be obtained. The software allows further statistical interpretation of the results. Beam of infrared radiation identifies size of particles and counts them precisely. Every particle is represented by an electronic impulse proportional to its size. Measurement of particles in aqueous suspension that replaces the hydrometer method can be carried out by using the IPS L analyser (range from 0.2 to 600 μm. The IPS UA analyser (range from 0.5 to 2000 μm is designed for measurement in the air. An ultrasonic adapter enables performing measurements of moist and aggregated particles from 0.5 to 1000 μm. The construction and software system allow to determine second dimension of the particle, its shape coefficient and specific surface area. The AWK 3D analyser (range from 0.2 to 31.5 mm is devoted to measurement of various powdery materials with subsequent determination of particle shape. The AWK B analyser (range from 1 to 130 mm measures materials of thick granulation and shape of the grains. The presented method of measurement repeatedly accelerates and facilitates study of granulometric composition.

  1. Progress of biodegradable metals

    Directory of Open Access Journals (Sweden)

    Huafang Li

    2014-10-01

    Full Text Available Biodegradable metals (BMs are metals and alloys expected to corrode gradually in vivo, with an appropriate host response elicited by released corrosion products, then dissolve completely upon fulfilling the mission to assist with tissue healing with no implant residues. In the present review article, three classes of BMs have been systematically reviewed, including Mg-based, Fe-based and Zn-based BMs. Among the three BM systems, Mg-based BMs, which now have several systems reported the successful of clinical trial results, are considered the vanguards and main force. Fe-based BMs, with pure iron and Fe–Mn based alloys as the most promising, are still on the animal test stage. Zn-based BMs, supposed to have the degradation rate between the fast Mg-based BMs and the slow Fe-based BMs, are a rising star with only several reports and need much further research. The future research and development direction for the BMs are proposed, based on the clinical requirements on controllable degradation rate, prolonged mechanical stability and excellent biocompatibility, by optimization of alloy composition design, regulation on microstructure and mechanical properties, and following surface modification.

  2. Treatment of biodegradable material

    Energy Technology Data Exchange (ETDEWEB)

    Pannell, S D; Greenshields, R N

    1981-05-13

    Biodegradable effluents, e.g. containing carbohydrates and/or proteins, were treated by passing up a tower fermenter tapered at the top and with an aspect ratio of greater than or equal to 3:1. A flocculant microorganism aerobically digested the effluent in the tower and the mixture of treated medium, gas, and surplus microorganism was discharged through an inverted-U-shaped outlet at the top. After separation of the biomass, which could be used as an animal feed, the purified effluent could be discharged. A milk-processing effluent (2.5 g solids/l, of which 65% was sucrose and 35% milk solids) was treated in a fermentation tower (aspect ratio 10:1). Aspergillus niger in the tower readily digested sucrose and at least some lactose as air and NH/sub 4/NO/sub 3/ were added. At least 90% of the casein was trapped by the microorganisms and discharged with them from the tower. The microrganisms were separated with a vibrating sieve giving a final discharged liquid containing 0.2 g solids/l.

  3. Biodegradation evaluation of bacterial cellulose, vegetable cellulose and poly (3-hydroxybutyrate in soil

    Directory of Open Access Journals (Sweden)

    Suellen Brasil Schröpfer

    2015-04-01

    Full Text Available In recent years, the inappropriate disposal of polymeric materials has increased due to industrial development and increase of population consumption. This problem may be minimized by using biodegradable polymers, such as bacterial cellulose and poly(hydroxybutyrate, from renewable resources. This work was aimed at monitoring and evaluating degradation of bacterial cellulose, vegetable cellulose and poly(3-hydroxybutyrate using Thermogravimetric Analysis and Scanning Electron Microscopy. Controlled mass polymer samples were buried in pots containing soil. Samples were removed in 30 day intervals up to 180 days. The results show that the mass of the polymer increased in the first month when in contact with the soil but then it was degraded as evidenced by mass loss and changes on the sample surface.

  4. Green Supply Chain Collaboration for Fashionable Consumer Electronics Products under Third-Party Power Intervention—A Resource Dependence Perspective

    Directory of Open Access Journals (Sweden)

    Jiuh-Biing Sheu

    2014-05-01

    Full Text Available Under third-party power intervention (TPPI, which increases uncertainty in task environments, complex channel power interplays and restructuring are indispensable among green supply chain members as they move toward sustainable collaborative relationships for increased viability and competitive advantage. From the resource dependence perspective, this work presents a novel conceptual model to investigate the influence of political and social power on channel power restructuring and induced green supply chain collaboration in brander-retailer bidirectional green supply chains of fashionable consumer electronics products (FCEPs. An FCEP refers to the consumer electronics product (e.g., personal computers, mobile phones, computer notebooks, and game consoles with the features of a well-known brand associated, a short product lifecycle, timely and fashionable design fit for market trends, and quick responsiveness to the variations of market demands. The proposed model is tested empirically using questionnaire data obtained from retailers in the FCEP brander-retailer distribution channels. Analytical results reveal that as an extension of political and social power, TPPI positively affects the reciprocal interdependence of dyadic members and reduces power asymmetry, thereby enhancing the collaborative relationship of dyadic members and leading to improved green supply chain performance. Therein, reciprocal interdependence underlying collaborative relationship is the key to reducing the external environmental uncertainties in the TPPI context.

  5. Production of biodegradable plastic from agricultural wastes

    Directory of Open Access Journals (Sweden)

    N.A. Mostafa

    2018-05-01

    Full Text Available Agricultural residues management is considered to be a vital strategy in order to accomplish resource conservation and to maintain the quality of the environment. In recent years, biofibers have attracted increasing interest due to their wide applications in food packaging and in the biomedical sciences. These eco-friendly polymers reduce rapidly and replace the usage of the petroleum-based synthetic polymers due to their safety, low production costs, and biodegradability. This paper reports an efficient method for the production of the cellulose acetate biofiber from flax fibers and cotton linters. The used process satisfied a yield of 81% and 54% for flax fibers and cotton linters respectively (based on the weight of the cellulosic residue used. The structure of the produced bioplastic was confirmed by X-ray diffraction, FT-IR and gel permeation chromatography. Moreover, this new biopolymer is biodegradable and is not affected by acid or salt treatment but is alkali labile. A comparison test showed that the produced cellulose acetate was affected by acids to a lesser extent than polypropylene and polystyrene. Therefore, this new cellulose acetate bioplastics can be applied in both the food industry and medicine. Keywords: Cotton linters, Flax fibers, Cellulose acetate, Preparation, Characterization

  6. The management of online resources and long-term saving of electronic documents by transfer into the digital space

    Directory of Open Access Journals (Sweden)

    Marius Daniel MAREŞ

    2011-12-01

    The electronic archive refers to the electronic storage system, along with the totality of electronic-type stored documents, while using as storage support any environment that can support storing and from which an electronic document can be presented.

  7. Polyester-Based (Bio)degradable Polymers as Environmentally Friendly Materials for Sustainable Development

    Science.gov (United States)

    Rydz, Joanna; Sikorska, Wanda; Kyulavska, Mariya; Christova, Darinka

    2014-01-01

    This review focuses on the polyesters such as polylactide and polyhydroxyalkonoates, as well as polyamides produced from renewable resources, which are currently among the most promising (bio)degradable polymers. Synthetic pathways, favourable properties and utilisation (most important applications) of these attractive polymer families are outlined. Environmental impact and in particular (bio)degradation of aliphatic polyesters, polyamides and related copolymer structures are described in view of the potential applications in various fields. PMID:25551604

  8. ANAEROBIC BIODEGRADATION OF A BIODEGRADABLE MATERIAL UNDER ANAEROBIC - THERMOPHILIC DIGESTION

    Directory of Open Access Journals (Sweden)

    RICARDO CAMACHO-MUÑOZ

    2014-12-01

    Full Text Available This paper dertermined the anaerobic biodegradation of a polymer obtained by extrusion process of native cassava starch, polylactic acid and polycaprolactone. Initially a thermophilic - methanogenic inoculum was prepared from urban solid waste. The gas final methane concentration and medium’s pH reached values of 59,6% and 7,89 respectively. The assay assembly was carried out according ASTM D5511 standard. The biodegradation percent of used materials after 15 day of digestion were: 77,49%, 61,27%, 0,31% for cellulose, sample and polyethylene respectively. Due cellulose showed biodegradation levels higher than 70% it’s deduced that the inoculum conditions were appropriate. A biodegradation level of 61,27%, 59,35% of methane concentration in sample’s evolved gas and a medium’s finale pH of 7,71 in sample’s vessels, reveal the extruded polymer´s capacity to be anaerobically degraded under thermophilic- high solid concentration conditions.

  9. Biodegradability of Poly(hydroxyalkanoate Materials

    Directory of Open Access Journals (Sweden)

    Keiji Numata

    2009-08-01

    Full Text Available Poly(hydroxyalkanoate (PHA, which is produced from renewable carbon resources by many microorganisms, is an environmentally compatible polymeric material and can be processed into films and fibers. Biodegradation of PHA material occurs due to the action of extracellular PHA depolymerase secreted from microorganisms in various natural environments. A key step in determining the overall enzymatic or environmental degradation rate of PHA material is the degradation of PHA lamellar crystals in materials; hence, the degradation mechanism of PHA lamellar crystals has been studied in detail over the last two decades. In this review, the relationship between crystal structure and enzymatic degradation behavior, in particular degradation rates, of films and fibers for PHA is described.

  10. Development of an Electronic Medical Record Based Alert for Risk of HIV Treatment Failure in a Low-Resource Setting

    Science.gov (United States)

    Puttkammer, Nancy; Zeliadt, Steven; Balan, Jean Gabriel; Baseman, Janet; Destiné, Rodney; Domerçant, Jean Wysler; France, Garilus; Hyppolite, Nathaelf; Pelletier, Valérie; Raphael, Nernst Atwood; Sherr, Kenneth; Yuhas, Krista; Barnhart, Scott

    2014-01-01

    Background The adoption of electronic medical record systems in resource-limited settings can help clinicians monitor patients' adherence to HIV antiretroviral therapy (ART) and identify patients at risk of future ART failure, allowing resources to be targeted to those most at risk. Methods Among adult patients enrolled on ART from 2005–2013 at two large, public-sector hospitals in Haiti, ART failure was assessed after 6–12 months on treatment, based on the World Health Organization's immunologic and clinical criteria. We identified models for predicting ART failure based on ART adherence measures and other patient characteristics. We assessed performance of candidate models using area under the receiver operating curve, and validated results using a randomly-split data sample. The selected prediction model was used to generate a risk score, and its ability to differentiate ART failure risk over a 42-month follow-up period was tested using stratified Kaplan Meier survival curves. Results Among 923 patients with CD4 results available during the period 6–12 months after ART initiation, 196 (21.2%) met ART failure criteria. The pharmacy-based proportion of days covered (PDC) measure performed best among five possible ART adherence measures at predicting ART failure. Average PDC during the first 6 months on ART was 79.0% among cases of ART failure and 88.6% among cases of non-failure (pART initiation were added to PDC, the risk score differentiated between those who did and did not meet failure criteria over 42 months following ART initiation. Conclusions Pharmacy data are most useful for new ART adherence alerts within iSanté. Such alerts offer potential to help clinicians identify patients at high risk of ART failure so that they can be targeted with adherence support interventions, before ART failure occurs. PMID:25390044

  11. Development of an electronic medical record based alert for risk of HIV treatment failure in a low-resource setting.

    Directory of Open Access Journals (Sweden)

    Nancy Puttkammer

    Full Text Available The adoption of electronic medical record systems in resource-limited settings can help clinicians monitor patients' adherence to HIV antiretroviral therapy (ART and identify patients at risk of future ART failure, allowing resources to be targeted to those most at risk.Among adult patients enrolled on ART from 2005-2013 at two large, public-sector hospitals in Haiti, ART failure was assessed after 6-12 months on treatment, based on the World Health Organization's immunologic and clinical criteria. We identified models for predicting ART failure based on ART adherence measures and other patient characteristics. We assessed performance of candidate models using area under the receiver operating curve, and validated results using a randomly-split data sample. The selected prediction model was used to generate a risk score, and its ability to differentiate ART failure risk over a 42-month follow-up period was tested using stratified Kaplan Meier survival curves.Among 923 patients with CD4 results available during the period 6-12 months after ART initiation, 196 (21.2% met ART failure criteria. The pharmacy-based proportion of days covered (PDC measure performed best among five possible ART adherence measures at predicting ART failure. Average PDC during the first 6 months on ART was 79.0% among cases of ART failure and 88.6% among cases of non-failure (p<0.01. When additional information including sex, baseline CD4, and duration of enrollment in HIV care prior to ART initiation were added to PDC, the risk score differentiated between those who did and did not meet failure criteria over 42 months following ART initiation.Pharmacy data are most useful for new ART adherence alerts within iSanté. Such alerts offer potential to help clinicians identify patients at high risk of ART failure so that they can be targeted with adherence support interventions, before ART failure occurs.

  12. Biodegradable congress 2012; Bioschmierstoff-Kongress 2012

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-11-01

    Within the Guelzower expert discussions at 5th and 6th June, 2012 in Oberhausen (Federal Republic of Germany) the following lectures were held: (1) Promotion of biodegradable lubricants by means of research and development as well as public relations (Steffen Daebeler); (2) Biodegradable lubricants - An overview of the advantages and disadvantages of the engaged product groups (Hubertus Murrenhoff); (3) Standardization of biodegradable lubricants - CEN/DIN standard committees - state of the art (Rolf Luther); (4) Market research for the utilization of biodegradable lubricants and means of proof of sustainability (Norbert Schmitz); (5) Fields of application for high performance lubricants and requirements upon the products (Gunther Kraft); (6) Investigations of biodegradable lubricants in rolling bearings and gears (Christoph Hentschke); (7) Biodegradable lubricants in central lubrication systems Development of gears and bearings of offshore wind power installations (Reiner Wagner); (8) Investigations towards environmental compatibility of biodegradable lubricants used in offshore wind power installations (Tolf Schneider); (9) Development of glycerine based lubricants for the industrial metalworking (Harald Draeger); (10) Investigations and utilization of biodegradable oils as electroinsulation oils in transformers (Stefan Tenbohlen); (11) Operational behaviour of lubricant oils in vegetable oil operation and Biodiesel operation (Horst Hamdorf); (12) Lubrication effect of lubricating oil of the third generation (Stefan Heitzig); (13) Actual market development from the view of a producer of biodegradable lubricants (Frank Lewen); (14) Utilization of biodegradable lubricants in forestry harvesters (Guenther Weise); (15) New biodegradable lubricants based on high oleic sunflower oil (Otto Botz); (16) Integrated fluid concept - optimized technology and service package for users of biodegradable lubricants (Juergen Baer); (17) Utilization of a bio oil sensor to control

  13. Innovative direct energy conversion systems using electronic adiabatic processes of electron fluid in solid conductors: new plants of electrical power and hydrogen gas resources without environmental pollutions

    International Nuclear Information System (INIS)

    Kondoh, Y.; Kondo, M.; Shimoda, K.; Takahashi, T.

    2001-07-01

    It is shown that using a novel recycling process of the environmental thermal energy, innovative permanent auto-working direct energy converter systems (PA-DEC systems) from the environmental thermal to electrical and/or chemical potential (TE/CP) energies, abbreviated as PA-TE/CP-DEC systems, can be used for new auto-working electrical power plants and the plants of the compressible and conveyable hydrogen gas resources at various regions in the whole world, with contributions to the world peace and the economical development in the south part of the world. It is shown that the same physical mechanism by free electrons and electrical potential determined by temperature in conductors, which include semiconductors, leads to the Peltier effect and the Seebeck one. It is experimentally clarified that the long distance separation between two π type elements of the heat absorption (HAS) and the production one (HPS) of the Peltier effect circuit system or between the higher temperature side (HTS) and the lower one (LTS) of the Seebeck effect circuit one does not change in the whole for the both effects. By using present systems, we do not need to use petrified fuels such as coals, oils, and natural gases in order to decrease the greenhouse effect by the CO 2 surrounding the earth. Furthermore, we do not need plats of nuclear fissions that left radiating wastes, i.e., with no environmental pollutions. The PA-TE/CP-DEC systems can be applicable for several km scale systems to the micro ones, such as the plants of the electrical power, the compact transportable hydrogen gas resources, a large heat energy container, which can be settled at far place from thermal energy absorbing area, the refrigerators, the air conditioners, home electrical apparatuses, and further the computer elements. It is shown that the simplest PA-TE/CP-DEC system can be established by using only the Seebeck effect components and the resolving water ones. It is clarified that the externally applied

  14. Biodegradable poly(lactic acid)

    Indian Academy of Sciences (India)

    The fabrication of biodegradable poly(lactic acid) (PLA) microspheres containing total alkaloids of Caulis sinomenii was investigated. The formation, diameter, morphology and properties of the microspheres were characterized using Fourier transform infrared spectroscopy (FT–IR), laser particle size analyser and scanning ...

  15. Nanocomposites Based on Biodegradable Polymers

    Directory of Open Access Journals (Sweden)

    Ilaria Armentano

    2018-05-01

    Full Text Available In the present review paper, our main results on nanocomposites based on biodegradable polymers (on a time scale from 2010 to 2018 are reported. We mainly focused our attention on commercial biodegradable polymers, which we mixed with different nanofillers and/or additives with the final aim of developing new materials with tunable specific properties. A wide list of nanofillers have been considered according to their shape, properties, and functionalization routes, and the results have been discussed looking at their roles on the basis of different adopted processing routes (solvent-based or melt-mixing processes. Two main application fields of nanocomposite based on biodegradable polymers have been considered: the specific interaction with stem cells in the regenerative medicine applications or as antimicrobial materials and the active role of selected nanofillers in food packaging applications have been critically revised, with the main aim of providing an overview of the authors’ contribution to the state of the art in the field of biodegradable polymeric nanocomposites.

  16. Biodegradable polymeric prodrugs of naltrexone

    NARCIS (Netherlands)

    Bennet, D.B.; Li, X.; Adams, N.W.; Kim, S.W.; Hoes, C.J.T.; Hoes, C.J.T.; Feijen, Jan

    1991-01-01

    The development of a biodegradable polymeric drug delivery system for the narcotic antagonist naltrexone may improve patient compliance in the treatment of opiate addiction. Random copolymers consisting of the ¿-amino acids N5-(3-hydroxypropyl--glutamine and -leucine were synthesized with equimolar

  17. Consumer reports [electronic resource

    National Research Council Canada - National Science Library

    1942-01-01

    ... only. A limited number of selected reports, advice on product selection and safety alerts are freely available, as are a five year listing of product recalls, a listing of major consumer product...

  18. Physical, mechanical, and biodegradable properties of meranti wood polymer composites

    International Nuclear Information System (INIS)

    Enamul Hoque, M.; Aminudin, M.A.M.; Jawaid, M.; Islam, M.S.; Saba, N.; Paridah, M.T.

    2014-01-01

    Highlights: • In-situ polymerization and solution casting method used to manufacture WPC. • In-situ WPC exhibited better properties compared to pure wood, 5% WPC and 20% WPC. • Lowest water absorption and least biodegradability shown by In-situ wood. - Abstract: In-situ polymerization and solution casting techniques are two effective methods to manufacture wood polymer composites (WPCs). In this study, wood polymer composites (WPCs) were manufactured from meranti sapwood by solution casting and in-situ polymerization process using methyl methacrylate (MMA) and epoxy matrix respectively. Physical, mechanical, and morphological characterizations of fabricated WPCs were then carried out to analyse their properties. Morphological properties of composites samples were analyzed through scanning electron microscopy (SEM). The result reveals that in-situ wood composite exhibited better properties compared to pure wood, 5% WPC and 20% WPC. Moreover, in-situ WPC had lowest water absorption and least biodegraded. Conversely, pure wood shown moderate mechanical strength, high biodegradation and water absorption rate. In term of biodegradation, earth-medium brought more severe effect than water in deteriorating the properties of the specimens

  19. Challenges and opportunities of biodegradable plastics: A mini review.

    Science.gov (United States)

    Rujnić-Sokele, Maja; Pilipović, Ana

    2017-02-01

    The concept of materials coming from nature with environmental advantages of being biodegradable and/or biobased (often referred to as bioplastics) is very attractive to the industry and to the consumers. Bioplastics already play an important role in the fields of packaging, agriculture, gastronomy, consumer electronics and automotive, but still they have a very low share in the total production of plastics (currently about 1% of the about 300 million tonnes of plastic produced annually). Biodegradable plastics are often perceived as the possible solution for the waste problem, but biodegradability is just an additional feature of the material to be exploited at the end of its life in specific terms, in the specific disposal environment and in a specific time, which is often forgotten. They should be used as a favoured choice for the applications that demand a cheap way to dispose of the item after it has fulfilled its job (e.g. for food packaging, agriculture or medical products). The mini-review presents the opportunities and future challenges of biodegradable plastics, regarding processing, properties and waste management options.

  20. The electronic Rothamsted Archive (e-RA), an online resource for data from the Rothamsted long-term experiments.

    Science.gov (United States)

    Perryman, Sarah A M; Castells-Brooke, Nathalie I D; Glendining, Margaret J; Goulding, Keith W T; Hawkesford, Malcolm J; Macdonald, Andy J; Ostler, Richard J; Poulton, Paul R; Rawlings, Christopher J; Scott, Tony; Verrier, Paul J

    2018-05-15

    The electronic Rothamsted Archive, e-RA (www.era.rothamsted.ac.uk) provides a permanent managed database to both securely store and disseminate data from Rothamsted Research's long-term field experiments (since 1843) and meteorological stations (since 1853). Both historical and contemporary data are made available via this online database which provides the scientific community with access to a unique continuous record of agricultural experiments and weather measured since the mid-19 th century. Qualitative information, such as treatment and management practices, plans and soil information, accompanies the data and are made available on the e-RA website. e-RA was released externally to the wider scientific community in 2013 and this paper describes its development, content, curation and the access process for data users. Case studies illustrate the diverse applications of the data, including its original intended purposes and recent unforeseen applications. Usage monitoring demonstrates the data are of increasing interest. Future developments, including adopting FAIR data principles, are proposed as the resource is increasingly recognised as a unique archive of data relevant to sustainable agriculture, agroecology and the environment.

  1. Preparation and performance of Ecobras/bentonite biodegrading films

    International Nuclear Information System (INIS)

    Costa, Ana Nery M.; Melo, Nadja M.C.; Canedo, Eduardo L.; Carvalho, Laura H.; Araujo, Arthur R.A.

    2011-01-01

    Compounds based on the biodegradable polymer Ecobras and bentonite clay in its pristine, sonicated, and organically modified with a quaternary ammonium salt forms were prepared as flat films. Clays and compounds were characterized by x-ray diffraction and scanning electron microscopy. Mechanical properties of the films were determined according to pertinent ASTM standards. Reasonable properties, higher than those of the matrix, were obtained with compounds prepared with purified clays and organoclays, particularly for low clay loading. (author)

  2. Additional Equipment for Soil Biodegradation

    Science.gov (United States)

    Vondráčková, Terezie; Kraus, Michal; Šál, Jiří

    2017-12-01

    Intensification of industrial production, increasing citizens’ living standards, expanding the consumer assortment mean in the production - consumption cycle a constantly increasing occurrence of waste material, which by its very nature must be considered as a source of useful raw materials in all branches of human activity. In addition to strict legislative requirements, a number of circumstances characterize waste management. It is mainly extensive transport associated with the handling and storage of large volumes of substances with a large assortment of materials (substances of all possible physical and chemical properties) and high demands on reliability and time coordination of follow-up processes. Considerable differences in transport distances, a large number of sources, processors and customers, and not least seasonal fluctuations in waste and strong price pressures cannot be overlooked. This highlights the importance of logistics in waste management. Soils that are contaminated with oil and petroleum products are hazardous industrial waste. Methods of industrial waste disposal are landfilling, biological processes, thermal processes and physical and chemical methods. The paper focuses on the possibilities of degradation of oil pollution, in particular biodegradation by bacteria, which is relatively low-cost among technologies. It is necessary to win the fight with time so that no ground water is contaminated. We have developed two additional devices to help reduce oil accident of smaller ranges. In the case of such an oil accident, it is necessary to carry out the permeability test of contaminated soil in time and, on this basis, to choose the technology appropriate to the accident - either in-sit biodegradation - at the site of the accident, or on-sit - to remove the soil and biodegrade it on the designated deposits. A special injection drill was developed for in-sit biodegradation, tossing and aeration equipment of the extracted soil was developed for

  3. Principles of formation of the content of an educational electronic resource on the basis of general and didactic patterns of learning

    Directory of Open Access Journals (Sweden)

    Ольга Юрьевна Заславская

    2018-12-01

    Full Text Available The article considers the influence of the development of technical means of teaching on the effectiveness of educational and methodical resources. Modern opportunities of information and communication technologies allow creating electronic educational resources that represent educational information that automates the learning process, provide information assistance, if necessary, collect and process statistical information on the degree of development of the content of the school material by schoolchildren, set an individual trajectory of learning, and so on. The main principle of data organization is the division of the training course into separate sections on the thematic elements and components of the learning process. General regularities include laws that encompass the entire didactic system, and in specific (particular cases, those whose actions extend to a separate component (aspect of the system. From the standpoint of the existence of three types of electronic training modules in the aggregate content of the electronic learning resource - information, control and module of practical classes - the principles of the formation of the electronic learning resource, in our opinion, should regulate all these components. Each of the certain principles is considered in the groups: scientific orientation, methodological orientation, systemic nature, accounting of interdisciplinary connections, fundamentalization, systematic and dosage sequence, rational use of study time, accessibility, minimization, operationalization of goals, unified identification diagnosis.

  4. The module of methodical support in system of electronic educational resources as the innovative element of the modern maintenance of formation

    Directory of Open Access Journals (Sweden)

    Ольга Николаевна Крылова

    2009-06-01

    Full Text Available The article introduces some results of research, which were devoted to evaluation of tearches' mobility to introduce innovations in the contents of education. The author considers innovative potential of modules of the methodical support for system of electronic educational resources.

  5. Charting a Course through CORAL: Texas A&M University Libraries' Experience Implementing an Open-Source Electronic Resources Management System

    Science.gov (United States)

    Hartnett, Eric; Beh, Eugenia; Resnick, Taryn; Ugaz, Ana; Tabacaru, Simona

    2013-01-01

    In 2010, after two previous unsuccessful attempts at electronic resources management system (ERMS) implementation, Texas A&M University (TAMU) Libraries set out once again to find an ERMS that would fit its needs. After surveying the field, TAMU Libraries selected the University of Notre Dame Hesburgh Libraries-developed, open-source ERMS,…

  6. Chloroethene Biodegradation Potential, ADOT/PF Peger Road Maintenance Facility, Fairbanks, Alaska

    Science.gov (United States)

    Bradley, Paul M.; Chapelle, Frances H.

    2004-01-01

    A series of 14C-radiotracer-based microcosm experiments were conducted to assess: 1) the extent, rate and products of microbial dechlorination of trichloroethene (TCE), cis-dichloroethene (cis-DCE) and vinyl chloride (VC) in sediments at the Peger Road site; 2) the effect of three electron donor amendments (molasses, shrimp and crab chitin, and 'Hydrogen Release Compound' (HRC)) on microbial degradation of TCE in three Peger Road sediments; and 3) the potential significance at the site of chloroethene biodegradation processes other than reductive dechlorination. In these experiments, TCE biodegradation yielded the reduced products, DCE and VC, and the oxidation product CO 2. Biodegradation of DCE and VC involved stoichiometric oxidation to CO 2. Both laboratory microcosm study and field redox assessment results indicated that the predominant terminal electron accepting process in Peger Road plume sediments under anoxic conditions was Mn/Fe-reduction. The rates of chloroethene biodegradation observed in Peger Road sediment microcosms under low temperature conditions (4?C) were within the range of those observed in sediments from temperate (20?C) aquifer systems. This result confirmed that biodegradation can be a significant mechanism for in situ contaminant remediation even in cold temperature aquifers. The fact that CO2 was the sole product of cis-DCE and VC biodegradation detected in Peger Road sediments indicated that a natural attenuation assessment based on reduced daughter product accumulation may significantly underestimate the potential for DCE and VC biodegradation at the Peger Road. Neither HRC nor molasses addition stimulated TCE reductive dechlorination. The fact that molasses and HRC amendment did stimulate Mn/Fe-reduction suggests that addition of these electron donors favored microbial Mn/Fe-reduction to the detriment of microbial TCE dechlorinating activity. In contrast, amendment of sediment microcosms with shrimp and crab chitin resulted in the

  7. Enhanced dimethyl phthalate biodegradation by accelerating phthalic acid di-oxygenation.

    Science.gov (United States)

    Tang, Yingxia; Zhang, Yongming; Jiang, Ling; Yang, Chao; Rittmann, Bruce E

    2017-12-01

    The aerobic biodegradation of dimethyl phthalate (DMP) is initiated with two hydrolysis reactions that generate an intermediate, phthalic acid (PA), that is further biodegraded through a two-step di-oxygenation reaction. DMP biodegradation is inhibited when PA accumulates, but DMP's biodegradation can be enhanced by adding an exogenous electron donor. We evaluated the effect of adding succinate, acetate, or formate as an exogenous electron donor. PA removal rates were increased by 15 and 30% for initial PA concentrations of 0.3 and 0.6 mM when 0.15 and 0.30 mM succinate, respectively, were added as exogenous electron donor. The same electron-equivalent additions of acetate and formate had the same acceleration impacts on PA removal. Consequently, the DMP-removal rate, even PA coexisting with DMP simultaneously, was accelerated by 37% by simultaneous addition of 0.3 mM succinate. Thus, lowering the accumulation of PA by addition of an electron increased the rate of DMP biodegradation.

  8. The second green revolution? Production of plant-based biodegradable plastics.

    Science.gov (United States)

    Mooney, Brian P

    2009-03-01

    Biodegradable plastics are those that can be completely degraded in landfills, composters or sewage treatment plants by the action of naturally occurring micro-organisms. Truly biodegradable plastics leave no toxic, visible or distinguishable residues following degradation. Their biodegradability contrasts sharply with most petroleum-based plastics, which are essentially indestructible in a biological context. Because of the ubiquitous use of petroleum-based plastics, their persistence in the environment and their fossil-fuel derivation, alternatives to these traditional plastics are being explored. Issues surrounding waste management of traditional and biodegradable polymers are discussed in the context of reducing environmental pressures and carbon footprints. The main thrust of the present review addresses the development of plant-based biodegradable polymers. Plants naturally produce numerous polymers, including rubber, starch, cellulose and storage proteins, all of which have been exploited for biodegradable plastic production. Bacterial bioreactors fed with renewable resources from plants--so-called 'white biotechnology'--have also been successful in producing biodegradable polymers. In addition to these methods of exploiting plant materials for biodegradable polymer production, the present review also addresses the advances in synthesizing novel polymers within transgenic plants, especially those in the polyhydroxyalkanoate class. Although there is a stigma associated with transgenic plants, especially food crops, plant-based biodegradable polymers, produced as value-added co-products, or, from marginal land (non-food), crops such as switchgrass (Panicum virgatum L.), have the potential to become viable alternatives to petroleum-based plastics and an environmentally benign and carbon-neutral source of polymers.

  9. Biodegradation at Dynamic Plume Fringes: Mixing Versus Reaction Control

    Science.gov (United States)

    Cirpka, O. A.; Eckert, D.; Griebler, C.; Haberer, C.; Kürzinger, P.; Bauer, R.; Mellage, A.

    2014-12-01

    Biodegradation of continuously emitted plumes is known to be most pronounced at the plume fringe, where mixing of contaminated water and ambient groundwater, containing dissolved electron acceptors, stimulates microbial activity. Under steady-state conditions, physical mixing of contaminant and electron acceptor by transverse dispersion was shown to be the major bottleneck for biodegradation, with plume lengths scaling inversely with the bulk transverse dispersivity in quasi two-dimensional settings. Under these conditions, the presence of suitable microbes is essential but the biokinetic parameters do not play an important role. When the location of the plume shifts (caused, e.g., by a fluctuating groundwater table), however, the bacteria are no more situated at the plume fringe and biomass growth, decay, activation and deactivation determine the time lag until the fringe-controlled steady state is approached again. During this time lag, degradation is incomplete. The objective of the presented study was to analyze to which extent flow and transport dynamics diminish effectiveness of fringe-controlled biodegradation and which microbial processes and related biokinetic parameters determine the system response in overall degradation to hydraulic fluctuations. We performed experiments in quasi-two-dimensional flow through microcosms on aerobic toluene degradation by Pseudomonas putida F1. Plume dynamics were simulated by vertical alteration of the toluene plume position and experimental results were analyzed by reactive-transport modeling. We found that, even after disappearance of the toluene plume for two weeks, the majority of microorganisms stayed attached to the sediment and regained their full biodegradation potential within two days after reappearance of the toluene plume. Our results underline that besides microbial growth and maintenance (often subsumed as "biomass decay") microbial dormancy (that is, change into a metabolically inactive state) and

  10. Aerobic biodegradation of a nonylphenol polyethoxylate and toxicity of the biodegradation metabolites.

    Science.gov (United States)

    Jurado, Encarnación; Fernández-Serrano, Mercedes; Núñez-Olea, Josefa; Lechuga, Manuela

    2009-09-01

    In this paper a study was made of the biodegradation of a non-ionic surfactant, a nonylphenol polyethoxylate, in biodegradability tests by monitoring the residual surfactant matter. The influence of the concentration on the extent of primary biodegradation, the toxicity of biodegradation metabolites, and the kinetics of degradation were also determined. The primary biodegradation was studied at different initial concentrations: 5, 25 and 50 mg/L, (at sub-and supra-critical micelle concentration). The NPEO used in this study can be considered biodegradable since the primary biodegradation had already taken place (a biodegradation greater than 80% was found for the different initial concentration tested). The initial concentration affected the shape of the resulting curve, the mean biodegradation rate and the percentage of biodegradation reached (99% in less than 8 days at 5 mg/L, 98% in less than 13 days at 25 mg/L and 95% in 14 days at 50 mg/L). The kinetic model of Quiroga and Sales (1991) was applied to predict the biodegradation of the NPEO. The toxicity value was measured as EC(20) and EC(50). In addition, during the biodegradation process of the surfactant a toxicity analysis was made of the evolution of metabolites generated, confirming that the subproducts of the biodegradation process were more toxic than the original.

  11. Study on Biodegradation of Palm Oil-based UV-Curable Films in Soil

    International Nuclear Information System (INIS)

    Rida Tajau; Siti Farhana Fathy; Mohamad Norahiman Abdurahman; Anis Asmi Azman; Nur Amira Hamidi; Mek Zah Salleh; Nik Ghazali Nik Salleh

    2014-01-01

    The palm oil-based ultraviolet (UV)-curable films were subjected to an outdoor soil burial test to investigate the biodegradation under natural environment. The films were burial in the soil experiment plot at the Nuclear Malaysia's Dengkil complex which is near the BTS building at block 42. Biodegradation tests are more specific to burial film in soil experiments for 12 months under natural conditions. The biodegradability of palm oil resin based UV-curable films were investigated and compared with the petrochemical resin based film. The films properties were compared with respect to properties of the film morphology and the film weight loss which are analyzed using the scanning electron microscope (SEM), an optical microscope and the weight loss of film calculation. These findings suggested that the palm oil-based UV-curable films show quite satisfactory biodegradation levels. (author)

  12. Radiation effects on biodegradable polyesters

    International Nuclear Information System (INIS)

    Hiroshi Mitomo; Darmawan Darwis; Fumio Yoshii; Keizo Makuuchi

    1999-01-01

    Poly(3-hydroxybutyrate) [P(3HB)] and its copolymer poly(3-hydroxybutyrate-co-3hydroxyvalerate) [P(3HB-co-3HV)] are microbial biodegradable polyesters produced by many types of bacteria. Poly(butylene succinate) (PBS) and poly(E-caprolactone) (PCL) are also biodegradable synthetic polyesters which have been commercialized. These thermoplastics are expected for wide usage in environmental protection and blocompatible applications. Radiation grafting of hydrophilic monomers onto many polymers, e.g., polyethylene and polypropylene has been studied mainly for biomedical applications. In the present study, radiation-induced graft polymerization of vinyl monomers onto PHB and P(3HB-co-3HV) was carried out and improvement of their properties was studied. Changes in the properties and biodegradability were compared with the degree of grafting. Radiation-induced crosslinking of PBS and PCL which relatively show thermal and irradiation stability was also carried out to improve their thermal stability or processability. Irradiation to PBS and PCL mainly resulted in crosslinking and characterization of these crosslinked polyesters was investigated

  13. Electronics

    Science.gov (United States)

    2001-01-01

    International Acer Incorporated, Hsin Chu, Taiwan Aerospace Industrial Development Corporation, Taichung, Taiwan American Institute of Taiwan, Taipei, Taiwan...Singapore and Malaysia .5 - 4 - The largest market for semiconductor products is the high technology consumer electronics industry that consumes up...Singapore, and Malaysia . A new semiconductor facility costs around $3 billion to build and takes about two years to become operational

  14. Biodegradable Implants in Orthopaedics and Traumatology

    OpenAIRE

    YETKIN, Haluk

    2014-01-01

    Biodegradable implants are an alternative to metallic implants and have the advantage of not being necessary to remove once the fracture has healed. Twenty-two patients with fractures were treated with biodegradable implants. There were osteolysis in eleven patients; however, no serious complication was encountered. Although biodegradable implants are expensive, a second surgical procedure to remove the implants is not necessary, relieving the patient of the related costs and risks.

  15. A review of plastic waste biodegradation.

    Science.gov (United States)

    Zheng, Ying; Yanful, Ernest K; Bassi, Amarjeet S

    2005-01-01

    With more and more plastics being employed in human lives and increasing pressure being placed on capacities available for plastic waste disposal, the need for biodegradable plastics and biodegradation of plastic wastes has assumed increasing importance in the last few years. This review looks at the technological advancement made in the development of more easily biodegradable plastics and the biodegradation of conventional plastics by microorganisms. Additives, such as pro-oxidants and starch, are applied in synthetic materials to modify and make plastics biodegradable. Recent research has shown that thermoplastics derived from polyolefins, traditionally considered resistant to biodegradation in ambient environment, are biodegraded following photo-degradation and chemical degradation. Thermoset plastics, such as aliphatic polyester and polyester polyurethane, are easily attacked by microorganisms directly because of the potential hydrolytic cleavage of ester or urethane bonds in their structures. Some microorganisms have been isolated to utilize polyurethane as a sole source of carbon and nitrogen source. Aliphatic-aromatic copolyesters have active commercial applications because of their good mechanical properties and biodegradability. Reviewing published and ongoing studies on plastic biodegradation, this paper attempts to make conclusions on potentially viable methods to reduce impacts of plastic waste on the environment.

  16. External validation of EPIWIN biodegradation models.

    Science.gov (United States)

    Posthumus, R; Traas, T P; Peijnenburg, W J G M; Hulzebos, E M

    2005-01-01

    The BIOWIN biodegradation models were evaluated for their suitability for regulatory purposes. BIOWIN includes the linear and non-linear BIODEG and MITI models for estimating the probability of rapid aerobic biodegradation and an expert survey model for primary and ultimate biodegradation estimation. Experimental biodegradation data for 110 newly notified substances were compared with the estimations of the different models. The models were applied separately and in combinations to determine which model(s) showed the best performance. The results of this study were compared with the results of other validation studies and other biodegradation models. The BIOWIN models predict not-readily biodegradable substances with high accuracy in contrast to ready biodegradability. In view of the high environmental concern of persistent chemicals and in view of the large number of not-readily biodegradable chemicals compared to the readily ones, a model is preferred that gives a minimum of false positives without a corresponding high percentage false negatives. A combination of the BIOWIN models (BIOWIN2 or BIOWIN6) showed the highest predictive value for not-readily biodegradability. However, the highest score for overall predictivity with lowest percentage false predictions was achieved by applying BIOWIN3 (pass level 2.75) and BIOWIN6.

  17. TBA biodegradation in surface-water sediments under aerobic and anaerobic conditions.

    Science.gov (United States)

    Bradley, Paul M; Landmeyer, James E; Chapelle, Francis H

    2002-10-01

    The potential for [U-14C] TBA biodegradation was examined in laboratory microcosms under a range of terminal electron accepting conditions. TBA mineralization to CO2 was substantial in surface-water sediments under oxic, denitrifying, or Mn(IV)-reducing conditions and statistically significant but low under SO4-reducing conditions. Thus, anaerobic TBA biodegradation may be a significant natural attenuation mechanism for TBA in the environment, and stimulation of in situ TBA bioremediation by addition of suitable terminal electron acceptors may be feasible. No degradation of [U-14C] TBA was observed under methanogenic or Fe(III)-reducing conditions.

  18. Evaluation of three electronic report processing systems for preparing hydrologic reports of the U.S Geological Survey, Water Resources Division

    Science.gov (United States)

    Stiltner, G.J.

    1990-01-01

    In 1987, the Water Resources Division of the U.S. Geological Survey undertook three pilot projects to evaluate electronic report processing systems as a means to improve the quality and timeliness of reports pertaining to water resources investigations. The three projects selected for study included the use of the following configuration of software and hardware: Ventura Publisher software on an IBM model AT personal computer, PageMaker software on a Macintosh computer, and FrameMaker software on a Sun Microsystems workstation. The following assessment criteria were to be addressed in the pilot studies: The combined use of text, tables, and graphics; analysis of time; ease of learning; compatibility with the existing minicomputer system; and technical limitations. It was considered essential that the camera-ready copy produced be in a format suitable for publication. Visual improvement alone was not a consideration. This report consolidates and summarizes the findings of the electronic report processing pilot projects. Text and table files originating on the existing minicomputer system were successfully transformed to the electronic report processing systems in American Standard Code for Information Interchange (ASCII) format. Graphics prepared using a proprietary graphics software package were transferred to all the electronic report processing software through the use of Computer Graphic Metafiles. Graphics from other sources were entered into the systems by scanning paper images. Comparative analysis of time needed to process text and tables by the electronic report processing systems and by conventional methods indicated that, although more time is invested in creating the original page composition for an electronically processed report , substantial time is saved in producing subsequent reports because the format can be stored and re-used by electronic means as a template. Because of the more compact page layouts, costs of printing the reports were 15% to 25

  19. Biodegradation of Chlorinated Solvents: Reactions near DNAPL and Enzyme Function

    Energy Technology Data Exchange (ETDEWEB)

    McCarty, P. L.; Spormann, Alfred M.; Criddle, Craig, S.

    2003-12-11

    Chlorinated solvents are among the most widespread groundwater contaminants in the country, contamination which is also among the most difficult and expensive for remediation. These solvents are biodegradable in the absence of oxygen, but this biodegradation requires both a food source for the organisms (electron donor) and the presence of chlorinated solvent biodegrading organisms. These two requirements are present naturally at some contamination sites, leading to natural attenuation of the solvents. If one or both requirements are absent, then engineered bioremediation either through addition of an external electron donor or through bioaugmentation with appropriate microorganisms, or both, may be used for site remediation. The most difficult case for cleanup is when a large residual of undissolved chlorinated solvents are present, residing as dense -non-aqueous-phase- liquid ( DNAPL). A major focus of this study was on the potential for biodegradation of the solvents when pre sent as DNAPL where concentrations are very high and potential for toxicity to microorganisms exist. Another focus was on a better understanding of the biological mechanisms involved in chlorinated solvent biodegradation . These studies were directed towards the chlorinated solvents, trichloroethene (TCE), tetrachloroethene or perchloroethene (PCE), and carbon tetrachloride (CT). The potential for biodegradation of TCE and PCE DNAPL was clearly demonstrated in this research. From column soil studies and batch studies we found there to be a clear advantage in focusing efforts at bioremediation near the DNAPL. Here, chlorinated solvent concentrations are the highest, both because of more favorable reaction kinetics and because such high solvent concentrations are toxic to microorganisms, such as methanogens, which compete with dehalogenators for the electron donor. Additionally, biodegradation near a PCE DNAPL results in an enhanced dissolution rate for the chlorinated solvent, by factors of

  20. Biodegradation of Chlorinated Solvents: Reactions near DNAPL and Enzyme Function

    International Nuclear Information System (INIS)

    McCarty, P. L.; Spormann, Alfred M.; Criddle, Craig S.

    2003-01-01

    Chlorinated solvents are among the most widespread groundwater contaminants in the country, contamination which is also among the most difficult and expensive for remediation. These solvents are biodegradable in the absence of oxygen, but this biodegradation requires both a food source for the organisms (electron donor) and the presence of chlorinated solvent biodegrading organisms. These two requirements are present naturally at some contamination sites, leading to natural attenuation of the solvents. If one or both requirements are absent, then engineered bioremediation either through addition of an external electron donor or through bioaugmentation with appropriate microorganisms, or both, may be used for site remediation. The most difficult case for cleanup is when a large residual of undissolved chlorinated solvents are present, residing as dense -non-aqueous-phase- liquid ( DNAPL). A major focus of this study was on the potential for biodegradation of the solvents when pre sent as DNAPL where concentrations are very high and potential for toxicity to microorganisms exist. Another focus was on a better understanding of the biological mechanisms involved in chlorinated solvent biodegradation . These studies were directed towards the chlorinated solvents, trichloroethene (TCE), tetrachloroethene or perchloroethene (PCE), and carbon tetrachloride (CT). The potential for biodegradation of TCE and PCE DNAPL was clearly demonstrated in this research. From column soil studies and batch studies we found there to be a clear advantage in focusing efforts at bioremediation near the DNAPL. Here, chlorinated solvent concentrations are the highest, both because of more favorable reaction kinetics and because such high solvent concentrations are toxic to microorganisms, such as methanogens, which compete with dehalogenators for the electron donor. Additionally, biodegradation near a PCE DNAPL results in an enhanced dissolution rate for the chlorinated solvent, by factors of

  1. Mathematical modeling of the effects of aerobic and anaerobic chelate biodegradation on actinide speciation

    International Nuclear Information System (INIS)

    Banaszak, J.E.; VanBriesen, J.; Rittmann, B.E.; Reed, D.T.

    1998-01-01

    Biodegradation of natural and anthropogenic chelating agents directly and indirectly affects the speciation, and, hence, the mobility of actinides in subsurface environments. We combined mathematical modeling with laboratory experimentation to investigate the effects of aerobic and anaerobic chelate biodegradation on actinide [Np(IV/V), Pu(IV)] speciation. Under aerobic conditions, nitrilotriacetic acid (NTA) biodegradation rates were strongly influenced by the actinide concentration. Actinide-chelate complexation reduced the relative abundance of available growth substrate in solution and actinide species present or released during chelate degradation were toxic to the organisms. Aerobic bio-utilization of the chelates as electron-donor substrates directly affected actinide speciation by releasing the radionuclides from complexed form into solution, where their fate was controlled by inorganic ligands in the system. Actinide speciation was also indirectly affected by pH changes caused by organic biodegradation. The two concurrent processes of organic biodegradation and actinide aqueous chemistry were accurately linked and described using CCBATCH, a computer model developed at Northwestern University to investigate the dynamics of coupled biological and chemical reactions in mixed waste subsurface environments. CCBATCH was then used to simulate the fate of Np during anaerobic citrate biodegradation. The modeling studies suggested that, under some conditions, chelate degradation can increase Np(IV) solubility due to carbonate complexation in closed aqueous systems

  2. Mathematical modelling of the effects of aerobic and anaerobic chelate biodegradation on actinide speciation

    International Nuclear Information System (INIS)

    Banaszak, J.E.; VanBriesen, J.M.; Rittmann, B.E.; Reed, D.T.

    1998-01-01

    Biodegradation of natural and anthropogenic chelating agents directly and indirectly affects the speciation, and hence, the mobility of actinides in subsurface environments. We combined mathematical modelling with laboratory experimentation to investigate the effects of aerobic and anaerobic chelate biodegradation on actinide [Np(IV/V), Pu(IV)] speciation. Under aerobic conditions, nitrilotriacetic acid (NTA) biodegradation rates were strongly influenced by the actinide concentration. Actinide-chelate complexation reduced the relative abundance of available growth substrate in solution and actinide species present or released during chelate degradation were toxic to the organisms. Aerobic bioutilization of the chelates as electron-donor substrates directly affected actinide speciation by releasing the radionuclides from complexed form into solution, where their fate was controlled by inorganic ligands in the system. Actinide speciation was also indirectly affected by pH changes caused by organic biodegradation. The two concurrent processes of organic biodegradation and actinide aqueous chemistry were accurately linked and described using CCBATCH, a computer model developed at Northwestern University to investigate the dynamics of coupled biological and chemical reactions in mixed waste subsurface environments. CCBATCH was then used to simulate the fate of Np during anaerobic citrate biodegradation. The modelling studies suggested that, under some conditions, chelate degradation can increase Np(IV) solubility due to carbonate complexation in closed aqueous systems. (orig.)

  3. Electronic resources of the rare books and valuable editions department of the Central Scientific Library of the V.N. Karazin Kharkiv National University: open access for research

    Directory of Open Access Journals (Sweden)

    І. К. Журавльова

    2014-12-01

    Full Text Available The article describes tasks that electronic collections of rare books fulfill: broad access for readers to rare and valuable editions providing, preservation of ensuring of the original. On the example of the electronic collection of the Central Scientific Library of the V.N. Karazin Kharkiv National University – «eScriptorium: electronic archive of rare books and manuscripts for research and education» the possibility of the full-text resources of the valuable editions using is shown. The principles of creation, structure, chronological frameworks, directions of adding the documents to the archive are represented. The perspectives of the project development are outlined as well as examples of the digital libraries of the European countries and Ukraine are provided, the actual task of preserving the originals of the rare books of the country is raised, the innovative approaches to serving users with electronic resources are considered. The evidences of cooperation of the Central Scientific Library of the V.N. Karazin Kharkiv National University with the largest world digital libraries: World Digital Library and Europeana are provided.

  4. The use of quality benchmarking in assessing web resources for the dermatology virtual branch library of the National electronic Library for Health (NeLH).

    Science.gov (United States)

    Kamel Boulos, M N; Roudsari, A V; Gordon, C; Muir Gray, J A

    2001-01-01

    In 1998, the U.K. National Health Service Information for Health Strategy proposed the implementation of a National electronic Library for Health to provide clinicians, healthcare managers and planners, patients and the public with easy, round the clock access to high quality, up-to-date electronic information on health and healthcare. The Virtual Branch Libraries are among the most important components of the National electronic Library for Health. They aim at creating online knowledge based communities, each concerned with some specific clinical and other health-related topics. This study is about the envisaged Dermatology Virtual Branch Libraries of the National electronic Library for Health. It aims at selecting suitable dermatology Web resources for inclusion in the forthcoming Virtual Branch Libraries after establishing preliminary quality benchmarking rules for this task. Psoriasis, being a common dermatological condition, has been chosen as a starting point. Because quality is a principal concern of the National electronic Library for Health, the study includes a review of the major quality benchmarking systems available today for assessing health-related Web sites. The methodology of developing a quality benchmarking system has been also reviewed. Aided by metasearch Web tools, candidate resources were hand-selected in light of the reviewed benchmarking systems and specific criteria set by the authors. Over 90 professional and patient-oriented Web resources on psoriasis and dermatology in general are suggested for inclusion in the forthcoming Dermatology Virtual Branch Libraries. The idea of an all-in knowledge-hallmarking instrument for the National electronic Library for Health is also proposed based on the reviewed quality benchmarking systems. Skilled, methodical, organized human reviewing, selection and filtering based on well-defined quality appraisal criteria seems likely to be the key ingredient in the envisaged National electronic Library for

  5. Barriers to electronic access and delivery of educational information in resource constrained public schools: a case of Greater Tubatse Municipality

    CSIR Research Space (South Africa)

    Pholotho, T

    2016-05-01

    Full Text Available Information and Communication Technologies (ICTs) are capable of expanding access to quality education, educational resources and provide teachers with new skills. Nevertheless, a majority of rural public schools have limited ICTs, mainly due...

  6. A novel biodegradable nicotinic acid/calcium phosphate composite coating on Mg-3Zn alloy

    Energy Technology Data Exchange (ETDEWEB)

    Song, Yingwei, E-mail: ywsong@imr.ac.cn; Shan, Dayong; Han, En-Hou

    2013-01-01

    A novel biodegradable composite coating is prepared to reduce the biodegradation rate of Mg-3Zn alloy. The Mg-3Zn substrate is first immersed into 0.02 mol L{sup -1} nicotinic acid (NA) solution, named as vitamin B{sub 3}, to obtain a pretreatment film, and then the electrodeposition of calcium phosphate coating with ultrasonic agitation is carried out on the NA pretreatment film to obtain a NA/calcium phosphate composite coating. Surface morphology is observed by scanning electron microscopy (SEM). Chemical composition is determined by X-ray diffraction (XRD) and EDX. Protection property of the coatings is evaluated by electrochemical tests. The biodegradable behavior is investigated by immersion tests. The results indicate that a thin but compact bottom layer can be obtained by NA pretreatment. The electrodeposition calcium phosphate coating consists of many flake particles and ultrasonic agitation can greatly improve the compactness of the coating. The composite coating is biodegradable and can reduce the biodegradation rate of Mg alloys in stimulated body fluid (SBF) for twenty times. The biodegradation process of the composite coating can be attributed to the gradual dissolution of the flake particles into chippings. - Highlights: Black-Right-Pointing-Pointer NA/calcium phosphate composite coating is prepared to protect Mg-3Zn alloy implant. Black-Right-Pointing-Pointer Nicotinic acid (vitamin B{sub 3}) is available to obtain a protective bottom film. Black-Right-Pointing-Pointer Ultrasonic agitation greatly improves the compactness of calcium phosphate coating. Black-Right-Pointing-Pointer The composite coating can reduce the biodegradation rate of Mg-3Zn twenty times. Black-Right-Pointing-Pointer The composite coating is biodegraded by the dissolution of flakes into chippings.

  7. Here today, gone tomorrow: biodegradable soft robots

    Science.gov (United States)

    Rossiter, Jonathan; Winfield, Jonathan; Ieropoulos, Ioannis

    2016-04-01

    One of the greatest challenges to modern technologies is what to do with them when they go irreparably wrong or come to the end of their productive lives. The convention, since the development of modern civilisation, is to discard a broken item and then procure a new one. In the 20th century enlightened environmentalists campaigned for recycling and reuse (R and R). R and R has continued to be an important part of new technology development, but there is still a huge problem of non-recyclable materials being dumped into landfill and being discarded in the environment. The challenge is even greater for robotics, a field which will impact on all aspects of our lives, where discards include motors, rigid elements and toxic power supplies and batteries. One novel solution is the biodegradable robot, an active physical machine that is composed of biodegradable materials and which degrades to nothing when released into the environment. In this paper we examine the potential and realities of biodegradable robotics, consider novel solutions to core components such as sensors, actuators and energy scavenging, and give examples of biodegradable robotics fabricated from everyday, and not so common, biodegradable electroactive materials. The realisation of truly biodegradable robots also brings entirely new deployment, exploration and bio-remediation capabilities: why track and recover a few large non-biodegradable robots when you could speculatively release millions of biodegradable robots instead? We will consider some of these exciting developments and explore the future of this new field.

  8. Primary biodegradation of petroleum hydrocarbons in seawater

    Energy Technology Data Exchange (ETDEWEB)

    Comber, M.I.H.; Den Haan, K.H.; Djemel, N.; Eadsforth, C.V.; King, D.; Paumen, M.L.; Parkerton, T.; Dmytrasz, B.

    2012-12-15

    This report describes primary biodegradation experiments performed to determine the persistence of higher molecular weight petroleum hydrocarbons in seawater. Results from the biodegradation experiments show that the majority of tested petroleum hydrocarbons have half-lives in seawater less than 60 days.

  9. Simultaneous adsorption and biodegradation of synthetic melanoidin

    African Journals Online (AJOL)

    Being an antioxidant, melanoidin removal through purely biodegradation has been inadequate. Consequently, in the current study, simultaneous adsorption and biodegradation (SAB) was employed in a stirred tank system to remove melanoidin from synthetic wastewater. Mixed microbial consortium was immobilized onto ...

  10. Electronic Grey Literature in Accelerator Science and Its Allied Subjects : Selected Web Resources for Scientists and Engineers

    CERN Document Server

    Rajendiran, P

    2006-01-01

    Grey literature Web resources in the field of accelerator science and its allied subjects are collected for the scientists and engineers of RRCAT (Raja Ramanna Centre for Advanced Technology). For definition purposes the different types of grey literature are described. The Web resources collected and compiled in this article (with an overview and link for each) specifically focus on technical reports, preprints or e-prints, which meet the main information needs of RRCAT users.

  11. Transformation and biodegradation of 1,2,3-trichloropropane (TCP).

    Science.gov (United States)

    Samin, Ghufrana; Janssen, Dick B

    2012-09-01

    1,2,3-Trichloropropane (TCP) is a persistent groundwater pollutant and a suspected human carcinogen. It is also is an industrial chemical waste that has been formed in large amounts during epichlorohydrin manufacture. In view of the spread of TCP via groundwater and its toxicity, there is a need for cheap and efficient technologies for the cleanup of TCP-contaminated sites. In situ or on-site bioremediation of TCP is an option if biodegradation can be achieved and stimulated. This paper presents an overview of methods for the remediation of TCP-contaminated water with an emphasis on the possibilities of biodegradation. Although TCP is a xenobiotic chlorinated compound of high chemical stability, a number of abiotic and biotic conversions have been demonstrated, including abiotic oxidative conversion in the presence of a strong oxidant and reductive conversion by zero-valent zinc. Biotransformations that have been observed include reductive dechlorination, monooxygenase-mediated cometabolism, and enzymatic hydrolysis. No natural organisms are known that can use TCP as a carbon source for growth under aerobic conditions, but anaerobically TCP may serve as electron acceptor. The application of biodegradation is hindered by low degradation rates and incomplete mineralization. Protein engineering and genetic modification can be used to obtain microorganisms with enhanced TCP degradation potential.

  12. Surface characterization and cytotoxicity response of biodegradable magnesium alloys

    International Nuclear Information System (INIS)

    Pompa, Luis; Rahman, Zia Ur; Munoz, Edgar; Haider, Waseem

    2015-01-01

    Magnesium alloys have raised an immense amount of interest to many researchers because of their evolution as a new kind of third generation materials. Due to their biocompatibility, density, and mechanical properties, magnesium alloys are frequently reported as prospective biodegradable implant materials. Moreover, magnesium alloys experience a natural phenomenon to biodegrade in aqueous solutions due to its corrosion activity, which is excellent for orthopedic and cardiovascular applications. However, a major concern with such alloys is fast and non-uniform corrosion degradation. Controlling the degradation rate in the physiological environment determines the success of biodegradable implants. In this investigation, three different grades of magnesium alloys: AZ31B, AZ91E and ZK60A were studied for their corrosion resistance and biocompatibility. Scanning electron microscopy, energy dispersive spectroscopy, atomic force microscopy and contact angle meter are used to study surface morphology, chemistry, roughness and wettability, respectively. Additionally, the cytotoxicity of the leached metal ions was evaluated by using a tetrazolium based bio-assay, MTS. - Highlights: • Micro-textured features formed after the anodization of magnesium alloys. • Contact angle increased and surface free energy decreased by anodization. • Corrosion rate increased for anodized surfaces compared to untreated samples. • Cell viability was greater than 75% implying the cytocompatibility of Mg alloys

  13. Surface characterization and cytotoxicity response of biodegradable magnesium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Pompa, Luis; Rahman, Zia Ur; Munoz, Edgar; Haider, Waseem, E-mail: haiderw@utpa.edu

    2015-04-01

    Magnesium alloys have raised an immense amount of interest to many researchers because of their evolution as a new kind of third generation materials. Due to their biocompatibility, density, and mechanical properties, magnesium alloys are frequently reported as prospective biodegradable implant materials. Moreover, magnesium alloys experience a natural phenomenon to biodegrade in aqueous solutions due to its corrosion activity, which is excellent for orthopedic and cardiovascular applications. However, a major concern with such alloys is fast and non-uniform corrosion degradation. Controlling the degradation rate in the physiological environment determines the success of biodegradable implants. In this investigation, three different grades of magnesium alloys: AZ31B, AZ91E and ZK60A were studied for their corrosion resistance and biocompatibility. Scanning electron microscopy, energy dispersive spectroscopy, atomic force microscopy and contact angle meter are used to study surface morphology, chemistry, roughness and wettability, respectively. Additionally, the cytotoxicity of the leached metal ions was evaluated by using a tetrazolium based bio-assay, MTS. - Highlights: • Micro-textured features formed after the anodization of magnesium alloys. • Contact angle increased and surface free energy decreased by anodization. • Corrosion rate increased for anodized surfaces compared to untreated samples. • Cell viability was greater than 75% implying the cytocompatibility of Mg alloys.

  14. Biodegradable products by lipase biocatalysis.

    Science.gov (United States)

    Linko, Y Y; Lämsä, M; Wu, X; Uosukainen, E; Seppälä, J; Linko, P

    1998-11-18

    The interest in the applications of biocatalysis in organic syntheses has rapidly increased. In this context, lipases have recently become one of the most studied groups of enzymes. We have demonstrated that lipases can be used as biocatalyst in the production of useful biodegradable compounds. A number of examples are given. 1-Butyl oleate was produced by direct esterification of butanol and oleic acid to decrease the viscosity of biodiesel in winter use. Enzymic alcoholysis of vegetable oils without additional organic solvent has been little investigated. We have shown that a mixture of 2-ethyl-1-hexyl esters can be obtained in a good yield by enzymic transesterification from rapeseed oil fatty acids for use as a solvent. Trimethylolpropane esters were also similarly synthesized as lubricants. Finally, the discovery that lipases can also catalyze ester syntheses and transesterification reactions in organic solvent systems has opened up the possibility of enzyme catalyzed production of biodegradable polyesters. In direct polyesterification of 1,4-butanediol and sebacic acid, polyesters with a mass average molar mass of the order of 56,000 g mol-1 or higher, and a maximum molar mass of about 130,000 g mol-1 were also obtained by using lipase as biocatalyst. Finally, we have demonstrated that also aromatic polyesters can be synthesized by lipase biocatalysis, a higher than 50,000 g mol-1 mass average molar mass of poly(1,6-hexanediyl isophthalate) as an example.

  15. Intimately coupling of photolysis accelerates nitrobenzene biodegradation, but sequential coupling slows biodegradation

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Lihui [Department of Environmental Science and Engineering, College of Life and Environmental Science, Shanghai Normal University, Shanghai 200234 (China); Zhang, Yongming, E-mail: zhym@shnu.edu.cn [Department of Environmental Science and Engineering, College of Life and Environmental Science, Shanghai Normal University, Shanghai 200234 (China); Bai, Qi; Yan, Ning; Xu, Hua [Department of Environmental Science and Engineering, College of Life and Environmental Science, Shanghai Normal University, Shanghai 200234 (China); Rittmann, Bruce E. [Swette Center for Environmental Biotechnology, Biodesign Institute, Arizona State University, Tempe, AZ 85287-5701 (United States)

    2015-04-28

    Highlights: • Intimately coupled UV photolysis accelerated nitrobenzene biodegradation. • NB biodegradation was slowed by accumulation of nitrophenol. • Oxalic acid was a key product of UV photolysis. • Oxalic acid accelerated biodegradation of nitrobenzene and nitrophenol by a co-substrate effect. • Intimate coupling of UV and biodegradation accentuated the benefits of oxalic acid. - Abstract: Photo(cata)lysis coupled with biodegradation is superior to photo(cata)lysis or biodegradation alone for removal of recalcitrant organic compounds. The two steps can be carried out sequentially or simultaneously via intimate coupling. We studied nitrobenzene (NB) removal and mineralization to evaluate why intimate coupling of photolysis with biodegradation was superior to sequential coupling. Employing an internal circulation baffled biofilm reactor, we compared direct biodegradation (B), biodegradation after photolysis (P + B), simultaneous photolysis and biodegradation (P&B), and biodegradation with nitrophenol (NP) and oxalic acid (OA) added individually and simultaneously (B + NP, B + OA, and B + NP + OA); NP and OA were NB’s main UV-photolysis products. Compared with B, the biodegradation rate P + B was lower by 13–29%, but intimately coupling (P&B) had a removal rate that was 10–13% higher; mineralization showed similar trends. B + OA gave results similar to P&B, B + NP gave results similar to P + B, and B + OA + NP gave results between P + B and P&B, depending on the amount of OA and NP added. The photolysis product OA accelerated NB biodegradation through a co-substrate effect, but NP was inhibitory. Although decreasing the UV photolysis time could minimize the inhibition impact of NP in P + B, P&B gave the fastest removal of NB by accentuating the co-substrate effect of OA.

  16. Intimately coupling of photolysis accelerates nitrobenzene biodegradation, but sequential coupling slows biodegradation

    International Nuclear Information System (INIS)

    Yang, Lihui; Zhang, Yongming; Bai, Qi; Yan, Ning; Xu, Hua; Rittmann, Bruce E.

    2015-01-01

    Highlights: • Intimately coupled UV photolysis accelerated nitrobenzene biodegradation. • NB biodegradation was slowed by accumulation of nitrophenol. • Oxalic acid was a key product of UV photolysis. • Oxalic acid accelerated biodegradation of nitrobenzene and nitrophenol by a co-substrate effect. • Intimate coupling of UV and biodegradation accentuated the benefits of oxalic acid. - Abstract: Photo(cata)lysis coupled with biodegradation is superior to photo(cata)lysis or biodegradation alone for removal of recalcitrant organic compounds. The two steps can be carried out sequentially or simultaneously via intimate coupling. We studied nitrobenzene (NB) removal and mineralization to evaluate why intimate coupling of photolysis with biodegradation was superior to sequential coupling. Employing an internal circulation baffled biofilm reactor, we compared direct biodegradation (B), biodegradation after photolysis (P + B), simultaneous photolysis and biodegradation (P&B), and biodegradation with nitrophenol (NP) and oxalic acid (OA) added individually and simultaneously (B + NP, B + OA, and B + NP + OA); NP and OA were NB’s main UV-photolysis products. Compared with B, the biodegradation rate P + B was lower by 13–29%, but intimately coupling (P&B) had a removal rate that was 10–13% higher; mineralization showed similar trends. B + OA gave results similar to P&B, B + NP gave results similar to P + B, and B + OA + NP gave results between P + B and P&B, depending on the amount of OA and NP added. The photolysis product OA accelerated NB biodegradation through a co-substrate effect, but NP was inhibitory. Although decreasing the UV photolysis time could minimize the inhibition impact of NP in P + B, P&B gave the fastest removal of NB by accentuating the co-substrate effect of OA

  17. Microbial Enzymatic Degradation of Biodegradable Plastics.

    Science.gov (United States)

    Roohi; Bano, Kulsoom; Kuddus, Mohammed; Zaheer, Mohammed R; Zia, Qamar; Khan, Mohammed F; Ashraf, Ghulam Md; Gupta, Anamika; Aliev, Gjumrakch

    2017-01-01

    The renewable feedstock derived biodegradable plastics are important in various industries such as packaging, agricultural, paper coating, garbage bags and biomedical implants. The increasing water and waste pollution due to the available decomposition methods of plastic degradation have led to the emergence of biodegradable plastics and biological degradation with microbial (bacteria and fungi) extracellular enzymes. The microbes utilize biodegradable polymers as the substrate under starvation and in unavailability of microbial nutrients. Microbial enzymatic degradation is suitable from bioremediation point of view as no waste accumulation occurs. It is important to understand the microbial interaction and mechanism involved in the enzymatic degradation of biodegradable plastics under the influence of several environmental factors such as applied pH, thermo-stability, substrate molecular weight and/or complexity. To study the surface erosion of polymer film is another approach for hydrolytic degradation characteristion. The degradation of biopolymer is associated with the production of low molecular weight monomer and generation of carbon dioxide, methane and water molecule. This review reported the degradation study of various existing biodegradable plastics along with the potent degrading microbes (bacteria and fungi). Patents available on plastic biodegradation with biotechnological significance is also summarized in this paper. This paper assesses that new disposal technique should be adopted for the degradation of polymers and further research is required for the economical production of biodegradable plastics along with their enzymatic degradation. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  18. Long term studies on the anaerobic biodegradability of MTBE and other gasoline ethers

    DEFF Research Database (Denmark)

    Waul, Christopher Kevin; Arvin, Erik; Schmidt, Jens Ejbye

    2009-01-01

    to investigate the anaerobic biodegradability of MTBE and other gasoline ethers. Inoculums collected from various environments were used, along with different electron acceptors. Only one set of the batch experiments showed a 30-60% conversion of MTBE to tert-butyl alcohol under Fe(III)-reducing conditions...

  19. Characterizations of biodegradable epoxy-coated cellulose nanofibrils (CNF) thin film for flexible microwave applications

    Science.gov (United States)

    Hongyi Mi; Chien-Hao Liu; Tzu-Husan Chang; Jung-Hun Seo; Huilong Zhang; Sang June Cho; Nader Behdad; Zhenqiang Ma; Chunhua Yao; Zhiyong Cai; Shaoqin Gong

    2016-01-01

    Wood pulp cellulose nanofibrils (CNF) thin film is a novel recyclable and biodegradable material. We investigated the microwave dielectric properties of the epoxy coated-CNF thin film for potential broad applications in flexible high speed electronics. The characterizations of dielectric properties were carried out in a frequency range of 1–10 GHz. The dielectric...

  20. Monitoring biodegradation of hydrocarbons by stable isotope fractionation

    Science.gov (United States)

    Dorer, Conrad; Fischer, Anko; Herrmann, Steffi; Richnow, Hans-Hermann; Vogt, Carsten

    2010-05-01

    nitrate, sulfate or ferric iron as electron acceptor or using light as energy source [3,4,5]. Significantly different lambda values were also observed for the anaerobic degradation of xylenes initiated by the BSS [5]. The different lambda values obtained for the anaerobic degradation of toluene and xylenes might be caused by slightly different reaction mechanisms of BSS isoenzymes. In comparison, lambda and/or ɛbulk values for the methyl monohydroxylation of toluene with oxygen as co-substrate were significantly different for two tested strains each containing a different toluene attacking enzyme, indicating that specific enzymes for aerobic methyl group oxidation reactions can be detected by CSIA and 2D-CSIA. Our results show that the combined carbon and hydrogen isotope fractionation approach has great potential to elucidate biodegradation pathways of monoaromatic hydrocarbons in microcosm and field studies. Current work focus on (i) 2D-CSIA of aromatic and aliphatic hydrocarbons in degradation experiments using whole cells, and (ii) 2D-CSIA of aromatic hydrocarbons in in vitro experiments using cell extracts. [1] Fischer et al. (2008) Environ. Sci. Technol. 42, 4356-4363 [2] Mancini et al. (2008) Environ. Sci. Technol. 42, 8290-8296 [3] Vogt et al. (2008) Environ. Sci. Technol. 42, 7793-7800 [4] Tobler et al. (2008) Environ. Sci. Technol. 42, 7786-7792 [5] Herrmann et al. (2009) Environ. Microbiol. Reports 1, 535-544

  1. Biodegradable Metals From Concept to Applications

    CERN Document Server

    Hermawan, Hendra

    2012-01-01

    This book in the emerging research field of biomaterials covers biodegradable metals for biomedical applications. The book contains two main parts where each of them consists of three chapters. The first part introduces the readers to the field of metallic biomaterials, exposes the state of the art of biodegradable metals, and reveals its application for cardiovascular implants. It includes some fundamental aspects to give basic understanding on metals for further review on the degradable ones is covered in chapter one. The second chapter introduces the concept of biodegradable metals, it's st

  2. Current trends in biodegradable polyhydroxyalkanoates.

    Science.gov (United States)

    Chanprateep, Suchada

    2010-12-01

    The microbial polyesters known as polyhydroxyalkanoates (PHAs) positively impact global climate change scenarios by reducing the amount of non-degradable plastic used. A wide variety of different monomer compositions of PHAs has been described, as well as their future prospects for applications where high biodegradability or biocompatibility is required. PHAs can be produced from renewable raw materials and are degraded naturally by microorganisms that enable carbon dioxide and organic compound recycling in the ecosystem, providing a buffer to climate change. This review summarizes recent research on PHAs and addresses the opportunities as well as challenges for their place in the global market. Copyright © 2010 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  3. New perspectives in plastic biodegradation.

    Science.gov (United States)

    Sivan, Alex

    2011-06-01

    During the past 50 years new plastic materials, in various applications, have gradually replaced the traditional metal, wood, leather materials. Ironically, the most preferred property of plastics--durability--exerts also the major environmental threat. Recycling has practically failed to provide a safe solution for disposal of plastic waste (only 5% out of 1 trillion plastic bags, annually produced in the US alone, are being recycled). Since the most utilized plastic is polyethylene (PE; ca. 140 million tons/year), any reduction in the accumulation of PE waste alone would have a major impact on the overall reduction of the plastic waste in the environment. Since PE is considered to be practically inert, efforts were made to isolate unique microorganisms capable of utilizing synthetic polymers. Recent data showed that biodegradation of plastic waste with selected microbial strains became a viable solution. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Engineered biosynthesis of biodegradable polymers.

    Science.gov (United States)

    Jambunathan, Pooja; Zhang, Kechun

    2016-08-01

    Advances in science and technology have resulted in the rapid development of biobased plastics and the major drivers for this expansion are rising environmental concerns of plastic pollution and the depletion of fossil-fuels. This paper presents a broad view on the recent developments of three promising biobased plastics, polylactic acid (PLA), polyhydroxyalkanoate (PHA) and polybutylene succinate (PBS), well known for their biodegradability. The article discusses the natural and recombinant host organisms used for fermentative production of monomers, alternative carbon feedstocks that have been used to lower production cost, different metabolic engineering strategies used to improve product titers, various fermentation technologies employed to increase productivities and finally, the different downstream processes used for recovery and purification of the monomers and polymers.

  5. Biodegradation of surfactant bearing wastes

    International Nuclear Information System (INIS)

    Chitra, S.; Chandran, S.; Sasidhar, P.; Lal, K.B.; Amalraj, R.V.

    1991-01-01

    In nuclear industry, during decontamination of protective wears and contaminated materials, detergents are employed to bring down the level of radioactive contamination within safe limits. However, the surfactant present in these wastes interferes in the chemical treatment process, reducing the decontamination factor. Biodegradation is an efficient and ecologically safe method for surfactant removal. A surfactant degrading culture was isolated and inoculated separately into simulated effluents containing 1% yeast extract and 5-100 ppm sodium lauryl sulphate (SLS) and 1% yeast extract and 5-100 ppm of commercial detergent respectively. The growth of the bacterial culture and the degradation characteristics of the surfactant in the above effluents were monitored under both dynamic and static conditions. (author). 6 refs., 6 figs., 1 tab

  6. Biodegradation of starch–graft–polystyrene and starch–graft–poly(methacrylic acid copolymers in model river water

    Directory of Open Access Journals (Sweden)

    Nikolić Vladimir

    2013-01-01

    Full Text Available In this paper the biodegradation study of grafted copolymers of polystyrene (PS and corn starch and poly(methacrylic acid and corn starch in model river water is described. These copolymers were obtained in the presence of different amine activators. The synthesized copolymers and products of degradation were characterized by Fourier Transform Infrared Spectroscopy (FTIR and Scanning Electron Microscopy (SEM. Biodegradation was monitored by mass decrease and number of microorganisms by Koch’s method. Biodegradation of both copolymers advanced with time, poly(methacrylic acid-graft-starch copolymers completely degraded after 21 day, and polystyrene-graft-starch partially degraded (45.78-93.09 % of total mass after 27 days. Differences in the degree of biodegradation are consequences of different structure of the samples, and there is a significant negative correlation between the share of polystyrene in copolymer and degree of biodegradation. The grafting degree of PS necessary to prevent biodegradation was 54 %. Based on experimental evidence, mechanisms of both biodegradation processes are proposed, and influence of degree of starch and synthetic component of copolymers on degradation were established. [Projekat Ministarstva nauke Republike Srbije, br. 172001 i br. 172062

  7. Clinician‐selected Electronic Information Resources do not Guarantee Accuracy in Answering Primary Care Physicians’ Information Needs. A review of: McKibbon, K. Ann, and Douglas B. Fridsma. “Effectiveness of Clinician‐selected Electronic Information Resources for Answering Primary Care Physicians’ Information Needs.” Journal of the American Medical Informatics Association 13.6 (2006: 653‐9.

    Directory of Open Access Journals (Sweden)

    Martha Ingrid Preddie

    2008-03-01

    Full Text Available Objective – To determine if electronic information resources selected by primary care physicians improve their ability to answer simulated clinical questions.Design – An observational study utilizing hour‐long interviews and think‐aloud protocols.Setting – The offices and clinics of primary care physicians in Canada and the United States.Subjects – Twenty‐five primary care physicians of whom 4 were women, 17 were from Canada, 22 were family physicians,and 24 were board certified.Methods – Participants provided responses to 23 multiple‐choice questions. Each physician then chose two questions and looked for the answers utilizing information resources of their own choice. The search processes, chosen resources and search times were noted. These were analyzed along with data on the accuracy of the answers and certainties related to the answer to each clinical question prior to the search.Main results – Twenty‐three physicians sought answers to 46 simulated clinical questions. Utilizing only electronic information resources, physicians spent a mean of 13.0 (SD 5.5 minutes searching for answers to the questions, an average of 7.3(SD 4.0 minutes for the first question and 5.8 (SD 2.2 minutes to answer the second question. On average, 1.8 resources were utilized per question. Resources that summarized information, such as the Cochrane Database of Systematic Reviews, UpToDate and Clinical Evidence, were favored 39.2% of the time, MEDLINE (Ovid and PubMed 35.7%, and Internet resources including Google 22.6%. Almost 50% of the search and retrieval strategies were keyword‐based, while MeSH, subheadings and limiting were used less frequently. On average, before searching physicians answered 10 of 23 (43.5% questions accurately. For questions that were searched using clinician‐selected electronic resources, 18 (39.1% of the 46 answers were accurate before searching, while 19 (42.1% were accurate after searching. The difference of

  8. Self-Paced Interactive Multimedia Courseware: A Learning Support Resource for Enhancing Electronic Theses and Dissertations Development

    Science.gov (United States)

    Essel, Harry Barton; Osei-Poku, Patrick; Tachie-Menson, Akosua; Opoku-Asare, Nana Afia

    2016-01-01

    Submission of Electronic Theses and Dissertations (ETDs) by postgraduate students has become a common phenomenon in learning environments globally. The purpose of ETDs is to train postgraduate students as knowledge workers in online publishing and also extend their skills beyond word processing. The challenge however, is that many postgraduate…

  9. Web Accessibility Issues for Higher & Further Education. EDNER (Formative Evaluation of the Distributed National Electronic Resource) Project. Issues Paper.

    Science.gov (United States)

    Manchester Metropolitan Univ. (England).

    This issues paper, sixth in a series of eight, is intended to distill formative evaluation questions on topics that are central to the development of the higher and further education information environment in the United Kingdom. In undertaking formative evaluation studies, the Formative Evaluation of the Distributed National Electronic Resource…

  10. Analyzing the Academic Research Trends by Using University Digital Resources: A Bibliometric Study of Electronic Commerce in China

    Science.gov (United States)

    Fatima, Anam; Abbas, Asad; Ming, Wan; Zaheer, Ahmad Nawaz; Akhtar, Masood-ul-Hassan

    2017-01-01

    Technology plays a vital role in every field of life especially in business and education. Electronic commerce (EC) begins in the year of 1991 right after internet was introduced for commercial use. It is known to be the 12th five years' plan (2011 to 2015) of Chinese Ministry of Industry and Information Technology. The main "objective"…

  11. Biodegradable polymeric foam with food waste; Shokumotsu zansa wo mochiita seibunkai kobunshi hahhotai

    Energy Technology Data Exchange (ETDEWEB)

    Mishima, Kenji; Matsuyama, Kiyoshi; Yamauchi, Satoru; Takarabe, Shin' ichi

    1999-09-01

    A huge amount of food waste such as tea and beer dregs becomes a serious problem because of the lack of industrial waste space in Japan. On the other hand, the new polymeric foam is expected to be developed since the dangerous pollution of endorphin disrupters from industrial polymer foam is pointed out. In this work, we try to develop the biodegradable polymeric foam using the tea and beer dregs as secondary resources. And we examined the degradability of biodegradable polymer in the hydrothermal water for fundamental knowledge of polymeric foam production. We used an extruder equipped with a high pressure device to make the polymeric foam. And we examined the effect of the component ratio on the foam properties, foaming rate, strength, shrinkage rate, water-resistant. As a result, it was found that the amount of polymer is effective of quality of form and the biodegradability can be controlled by the amount of water and temperature. (author)

  12. Green Supply Chain Collaboration for Fashionable Consumer Electronics Products under Third-Party Power Intervention—A Resource Dependence Perspective

    OpenAIRE

    Jiuh-Biing Sheu

    2014-01-01

    Under third-party power intervention (TPPI), which increases uncertainty in task environments, complex channel power interplays and restructuring are indispensable among green supply chain members as they move toward sustainable collaborative relationships for increased viability and competitive advantage. From the resource dependence perspective, this work presents a novel conceptual model to investigate the influence of political and social power on channel power restructuring and induced ...

  13. Control of colloidal CaCO3 suspension by using biodegradable polymers during fabrication

    Directory of Open Access Journals (Sweden)

    Nemany Abdelhamid Nemany Hanafy

    2015-03-01

    The aim of this work was to investigate the synthesis process of CaCO3 particles in different experimental conditions: calcium carbonate was produced in presence and in absence of water and with addition of appropriate polymers. In particular, chitosan (CHI and poly acrylic acid (PAA were chosen as biodegradable polymers whereas PSS and PAH were chosen as non-biodegradable polymers. Shape and diameter of particles were investigated by using transmission and scanning electron microscopy, elemental composition was inferred by energy dispersive X-ray analyses whereas their charges were explored by using zeta potential.

  14. Microbial ecology of methanogenic crude oil biodegradation; from microbial consortia to heavy oil

    Energy Technology Data Exchange (ETDEWEB)

    Head, Ian M.; Maguire, Michael J.; Sherry, Angela; Grant, Russell; Gray, Neil D.; Aitken, Carolyn M.; Martin Jones, D.; Oldenburg, Thomas B.P.; Larter, Stephen R. [Petroleum Research Group, Geosciences, University of Calgary (Canada)

    2011-07-01

    This paper presents the microbial ecology of methanogenic crude oil biodegradation. Biodegraded petroleum reservoirs are one of the most dramatic indications of the deep biosphere. It is estimated that heavy oil and oil sands will account for a considerable amount of energy production in the future. Carbon, a major resource for deep subsurface microorganisms, and energy are contained in large quantities in petroleum reservoirs. The aerobic to anaerobic paradigm shift is explained. A key process for in-situ oil biodegradation in petroleum reservoirs is methanogenesis. New paradigms for in-reservoir crude oil biodegradation are discussed. Variations in anaerobic degradation of crude oil hydrocarbons are also discussed. A graph shows the different patterns of crude oil biodegradation under sulfate-reducing and methanogenic conditions. Alternative anaerobic alkane activation mechanisms are also shown. From the study, it can be concluded that methanogenic crude oil degradation is of global importance and led to the establishment of the world's enormous heavy oil deposits.

  15. Measuring the Biodegradability of Plastic Polymers in Olive-Mill Waste Compost with an Experimental Apparatus

    Directory of Open Access Journals (Sweden)

    Francesco Castellani

    2016-01-01

    Full Text Available The use of biodegradable polymers is spreading in agriculture to replace those materials derived from petroleum, thus reducing the environmental concerns. However, to issue a significant assessment, biodegradation rate must be measured in case-specific standardized conditions. In accordance with ISO 14855-1, we designed and used an experimental apparatus to evaluate the biodegradation rate of three biopolymers based on renewable resources, two poly(ε-caprolactone (PCL composites, and a compatibilized polylactic acid and polybutyrate (PLA/PBAT blend. Biodegradation tests were carried out under composting condition using mature olive-mill waste (OMW compost as inoculum. Carbon dioxide emissions were automatically recorded by infrared gas detectors and also trapped in saturated Ba(OH2 solution and evaluated via a standard titration method to check the results. Some of the samples reached more than 80% biodegradation in less than 20 days. Both the experimental apparatus and the OMW compost showed to be suitable for the cases studied.

  16. Exploration of biodegradation mechanisms of black carbon-bound nonylphenol in black carbon-amended sediment

    International Nuclear Information System (INIS)

    Cheng, Guanghuan; Sun, Mingyang; Ge, Xinlei; Xu, Xinhua; Lin, Qi; Lou, Liping

    2017-01-01

    The present study aimed to investigate biodegradation mechanisms of black carbon (BC)-bound contaminants in BC-amended sediment when BC was applied to control organic pollution. The single-point Tenax desorption technique was applied to track the species changes of nonylphenol (NP) during biodegradation process in the rice straw carbon (RC)-amended sediment. And the correlation between the biodegradation and desorption of NP was analyzed. Results showed that microorganisms firstly degraded the rapid-desorbing NP (6 h Tenax desorption) in RC-amended sediment. The biodegradation facilitated the desorption of slow-desorbing NP, which was subsequently degraded as well (192 h Tenax desorption). Notably, the final amount of NP degradation was greater than that of NP desorption, indicating that absorbed NP by RC amendment can be degraded by microorganisms. Finally, the residual NP amount in RC-amended sediment was decided by RC content and its physicochemical property. Moreover, the presence of the biofilm was observed by the confocal laser scanning microscope (CLSM) and scanning electron microscope (SEM) so that microorganisms were able to overcome the mass transfer resistance and directly utilized the absorbed NP. Therefore, single-point Tenax desorption alone may not be an adequate basis for the prediction of the bioaccessibility of contaminants to microorganisms or bioremediation potential in BC-amended sediment. - Highlights: • Biodegradation mechanism of RC-bound NP in sediment was examined. • The microbe prioritized the degradation of NP in desorption fraction. • The microbe formed the biofilm to directly degrade part of non-desorbable NP. • Residual NP amount was decided by RC content and physicochemical property. • Quantifying biodegradation by bioavailability will underestimate the actual outcomes. - The microbes directly degrade the non-desorbable NP bound to amended RC, so quantifying the biodegradation only by desorption will underestimate the

  17. Phyllosphere yeasts rapidly break down biodegradable plastics.

    Science.gov (United States)

    Kitamoto, Hiroko K; Shinozaki, Yukiko; Cao, Xiao-Hong; Morita, Tomotake; Konishi, Masaaki; Tago, Kanako; Kajiwara, Hideyuki; Koitabashi, Motoo; Yoshida, Shigenobu; Watanabe, Takashi; Sameshima-Yamashita, Yuka; Nakajima-Kambe, Toshiaki; Tsushima, Seiya

    2011-11-29

    The use of biodegradable plastics can reduce the accumulation of environmentally persistent plastic wastes. The rate of degradation of biodegradable plastics depends on environmental conditions and is highly variable. Techniques for achieving more consistent degradation are needed. However, only a few microorganisms involved in the degradation process have been isolated so far from the environment. Here, we show that Pseudozyma spp. yeasts, which are common in the phyllosphere and are easily isolated from plant surfaces, displayed strong degradation activity on films made from poly-butylene succinate or poly-butylene succinate-co-adipate. Strains of P. antarctica isolated from leaves and husks of paddy rice displayed strong degradation activity on these films at 30°C. The type strain, P. antarctica JCM 10317, and Pseudozyma spp. strains from phyllosphere secreted a biodegradable plastic-degrading enzyme with a molecular mass of about 22 kDa. Reliable source of biodegradable plastic-degrading microorganisms are now in our hands.

  18. Biodegradable lubricants - ''the solution for future?''

    International Nuclear Information System (INIS)

    Jahan, A.

    1997-01-01

    The environmental impact of lubricants use concern the direct effects from spills but also the indirect effects such as their lifetime and the emissions from thermal engines. The biodegradable performances and the toxicity are the environmental criteria that must be taken into account in the development and application of lubricants together with their technical performances. This paper recalls first the definition of biodegradable properties of hydrocarbons and the standardized tests, in particular the CEC and AFNOR tests. Then, the biodegradable performances of basic oils (mineral, vegetal, synthetic esters, synthetic hydrocarbons etc..), finite lubricants (hydraulic fluids..) and engine oils is analyzed according to these tests. Finally, the definition of future standards would take into account all the environmental characteristics of the lubricant: biodegradable performances, energy balance (CO 2 , NOx and Hx emissions and fuel savings), eco-toxicity and technical performances (wearing and cleanliness). (J.S.)

  19. Formulation and Characterization of Biodegradable Medicated ...

    African Journals Online (AJOL)

    PEG)-600, tributyl citrate, PEG-200, PEG-300, PEG-400, PEG-4000, triethyl citrate and castor oil. The gum formulations were characterized for the following parameters: texture profile analysis (TPA), biodegradation, in vitro drug release using a ...

  20. Exocellular electron transfer in anaerobic microbial communities

    NARCIS (Netherlands)

    Stams, A.J.M.; Bok, de F.A.M.; Plugge, C.M.; Eekert, van M.H.A.; Dolfing, J.; Schraa, G.

    2006-01-01

    Exocellular electron transfer plays an important role in anaerobic microbial communities that degrade organic matter. Interspecies hydrogen transfer between microorganisms is the driving force for complete biodegradation in methanogenic environments. Many organic compounds are degraded by obligatory

  1. Share and share alike: encouraging the reuse of academic resources through the Scottish electronic Staff Development Library

    Directory of Open Access Journals (Sweden)

    Lorna M. Campbell

    2001-12-01

    Full Text Available The Scottish electronic Staff Development Library (http://www.sesdl.scotcit.acuk is an ongoing collaborative project involving the Universities of Edinburgh, Paisley and Strathclyde which has been funded by SHEFC as part of their current ScotCIT Programme (http:llwww.scotcit.ac.uk. This project is being developed in response to the increasing demand for flexible, high-quality staff development materials.

  2. Phyllosphere yeasts rapidly break down biodegradable plastics

    OpenAIRE

    Kitamoto, Hiroko K; Shinozaki, Yukiko; Cao, Xiao-hong; Morita, Tomotake; Konishi, Masaaki; Tago, Kanako; Kajiwara, Hideyuki; Koitabashi, Motoo; Yoshida, Shigenobu; Watanabe, Takashi; Sameshima-Yamashita, Yuka; Nakajima-Kambe, Toshiaki; Tsushima, Seiya

    2011-01-01

    The use of biodegradable plastics can reduce the accumulation of environmentally persistent plastic wastes. The rate of degradation of biodegradable plastics depends on environmental conditions and is highly variable. Techniques for achieving more consistent degradation are needed. However, only a few microorganisms involved in the degradation process have been isolated so far from the environment. Here, we show that Pseudozyma spp. yeasts, which are common in the phyllosphere and are easily ...

  3. Biodegradable behaviors of AZ31 magnesium alloy in simulated body fluid

    International Nuclear Information System (INIS)

    Song Yingwei; Shan Dayong; Chen Rongshi; Zhang Fan; Han Enhou

    2009-01-01

    Magnesium alloys have unique advantages to act as biodegradable implants for clinical application. The biodegradable behaviors of AZ31 in simulated body fluid (SBF) for various immersion time intervals were investigated by electrochemical impedance spectroscopy (EIS) tests and scanning electron microscope (SEM) observation, and then the biodegradable mechanisms were discussed. It was found that a protective film layer was formed on the surface of AZ31 in SBF. With increasing of immersion time, the film layer became more compact. If the immersion time was more than 24 h, the film layer began to degenerate and emerge corrosion pits. In the meantime, there was hydroxyapatite particles deposited on the film layer. The hydroxyapatite is the essential component of human bone, which indicates the perfect biocompatibility of AZ31 magnesium alloy.

  4. Development and characterization of biodegradable polymer blends - PHBV/PCL irradiated with gamma rays

    International Nuclear Information System (INIS)

    Rosario, F.; Casarin, S.A.; Agnelli, J.A.M.; Souza Junior, O.F. de

    2010-01-01

    This paper presents the results of a study that aimed to develop PHBV biodegradable polymer blends, in a major concentration with PCL, irradiate the pure polymers and blends in two doses of gamma radiation and to analyze the changes in chemical and mechanical properties. The blends used in this study were from natural biodegradable copolymer poly (hydroxybutyrate-valerate) (PHBV) and synthetic biodegradable polymer poly (caprolactone) (PCL 2201) with low molar mass (2,000 g/mol). Several samples were prepared in a co-rotating twin-screw extruder and afterwards, the tensile specimens were injected for the irradiation treatment with 50 kGy to 100 kGy doses and for the mechanical tests. The characterization of the samples before and after the irradiation treatments was performed through scanning electron microscopy (SEM), dynamic mechanical thermal analysis (DMTA), differential scanning calorimetry (DSC) and mechanical tensile tests. (author)

  5. Gelatin capsule waste: new source of protein to develop a biodegradable film

    Directory of Open Access Journals (Sweden)

    Camila de Campo

    Full Text Available Abstract This work aimed to develop biodegradable films utilizing a new source of gelatin derived from the nutraceutical capsule manufacture waste of coconut with safflower oil, coconut oil and safflower oil. The mechanical, physicochemical, barrier, optical, biodegradation, thermal and morphological properties were evaluated. All films showed low water vapor permeability, intermediate water solubility and high elongation at break. In addition, the films exhibited excellent barrier ability to ultraviolet light. After 15 days of soil burial degradation, the films lost over 68% of initial weight. Scanning electron microscopy showed an appearance free of pores, cracks or bubbles. Furthermore the films showed similar characteristics independent of the waste utilized. The results demonstrated that all the biodegradable films prepared presented appropriate characteristics to be used as substitute to synthetic packaging.

  6. Biodegradation behaviors of cellulose nanocrystals -PVA nanocomposites

    Directory of Open Access Journals (Sweden)

    Mahdi Rohani

    2014-11-01

    Full Text Available In this research, biodegradation behaviors of cellulose nanocrystals-poly vinyl alcohol nanocomposites were investigated. Nanocomposite films with different filler loading levels (3, 6, 9 and 12% by wt were developed by solvent casting method. The effect of cellulose nanocrystals on the biodegradation behaviors of nanocomposite films was studied. Water absorption and water solubility tests were performed by immersing specimens into distilled water. The characteristic parameter of diffusion coefficient and maximum moisture content were determined from the obtained water absorption curves. The water absorption behavior of the nanocomposites was found to follow a Fickian behavior. The maximum water absorption and diffusion coefficients were decreased by increasing the cellulose nanocrystals contents, however the water solubility decrease. The biodegradability of the films was investigated by immersing specimens into cellulase enzymatic solution as well as by burial in soil. The results showed that adding cellulose nanocrystals increase the weight loss of specimens in enzymatic solution but decrease it in soil media. The limited biodegradability of specimens in soil media attributed to development of strong interactions with solid substrates that inhibit the accessibility of functional groups. Specimens with the low degree of hydrolysis underwent extensive biodegradation in both enzymatic and soil media, whilst specimens with the high degree of hydrolysis showed recalcitrance to biodegradation under those conditions.

  7. Natural attenuation of petroleum hydrocarbons-a study of biodegradation effects in groundwater (Vitanovac, Serbia).

    Science.gov (United States)

    Marić, Nenad; Matić, Ivan; Papić, Petar; Beškoski, Vladimir P; Ilić, Mila; Gojgić-Cvijović, Gordana; Miletić, Srđan; Nikić, Zoran; Vrvić, Miroslav M

    2018-01-20

    The role of natural attenuation processes in groundwater contamination by petroleum hydrocarbons is of intense scientific and practical interest. This study provides insight into the biodegradation effects in groundwater at a site contaminated by kerosene (jet fuel) in 1993 (Vitanovac, Serbia). Total petroleum hydrocarbons (TPH), hydrochemical indicators (O 2 , NO 3 - , Mn, Fe, SO 4 2- , HCO 3 - ), δ 13 C of dissolved inorganic carbon (DIC), and other parameters were measured to demonstrate biodegradation effects in groundwater at the contaminated site. Due to different biodegradation mechanisms, the zone of the lowest concentrations of electron acceptors and the zone of the highest concentrations of metabolic products of biodegradation overlap. Based on the analysis of redox-sensitive compounds in groundwater samples, redox processes ranged from strictly anoxic (methanogenesis) to oxic (oxygen reduction) within a short distance. The dependence of groundwater redox conditions on the distance from the source of contamination was observed. δ 13 C values of DIC ranged from - 15.83 to - 2.75‰, and the most positive values correspond to the zone under anaerobic and methanogenic conditions. Overall, results obtained provide clear evidence on the effects of natural attenuation processes-the activity of biodegradation mechanisms in field conditions.

  8. Success factors for implementing and sustaining a mature electronic medical record in a low-resource setting: a case study of iSanté in Haiti.

    Science.gov (United States)

    deRiel, E; Puttkammer, N; Hyppolite, N; Diallo, J; Wagner, S; Honoré, J G; Balan, J G; Celestin, N; Vallès, J S; Duval, N; Thimothé, G; Boncy, J; Coq, N R L; Barnhart, S

    2018-03-01

    Electronic health information systems, including electronic medical records (EMRs), have the potential to improve access to information and quality of care, among other things. Success factors and challenges for novel EMR implementations in low-resource settings have increasingly been studied, although less is known about maturing systems and sustainability. One systematic review identified seven categories of implementation success factors: ethical, financial, functionality, organizational, political, technical and training. This case study applies this framework to iSanté, Haiti's national EMR in use in more than 100 sites and housing records for more than 750 000 patients. The author group, consisting of representatives of different agencies within the Haitian Ministry of Health (MSPP), funding partner the Centers for Disease Control and Prevention (CDC) Haiti, and implementing partner the International Training and Education Center for Health (I-TECH), identify successes and lessons learned according to the seven identified categories, and propose an additional cross-cutting category, sustainability. Factors important for long-term implementation success of complex information systems are balancing investments in hardware and software infrastructure upkeep, user capacity and data quality control; designing and building a system within the context of the greater eHealth ecosystem with a plan for interoperability and data exchange; establishing system governance and strong leadership to support local system ownership and planning for system financing to ensure sustainability. Lessons learned from 10 years of implementation of the iSanté EMR system are relevant to sustainability of a full range of increasingly interrelated information systems (e.g. for laboratory, supply chain, pharmacy and human resources) in the health sector in low-resource settings. © The Author 2017. Published by Oxford University Press in association with The London School of Hygiene

  9. Enhanced biodegradation of naphthalene in MGP aquifer microcosms

    International Nuclear Information System (INIS)

    Durant, N.D.; Jonkers, C.A.A.; Wilson, L.P.; Bouwer, E.J.

    1995-01-01

    Subsurface sediments collected from a former manufactured-gas-plant (MGP) site contain bacteria capable of mineralizing significant amounts of 14 C-naphthalene in aerobic (8.5 mg/L O 2 ) sediment-water microcosms incubated at 10 C. The extent to which electron-acceptor (O 2 and NO 3 - ) and nutrient (NO 3 - and PO 4 3- ) amendments enhanced naphthalene mineralization in these sediments varied considerably. Oxygen-amended conditions (21 mg/L O 2 ) resulted in the greatest rate and extent of biodegradation for most sediments. Data suggested, however, that some MGP-site sediments prefer mixed NO 3 - /O 2 electron-acceptor conditions for naphthalene biodegradation. Significant denitrification was observed in the nitrate-amended sediments exhibiting naphthalene mineralization. In most cases, PO 4 3- complexed with the sediments either had no effect or inhibited naphthalene mineralization. Sediments unable to mineralize naphthalene over the 6-week incubation period were characterized by low pH ( 4 2- (>500 mg/L) conditions

  10. Biodegradability and biodegradation rate of poly(caprolactone)-starch blend and poly(butylene succinate) biodegradable polymer under aerobic and anaerobic environment.

    Science.gov (United States)

    Cho, H S; Moon, H S; Kim, M; Nam, K; Kim, J Y

    2011-03-01

    The biodegradability and the biodegradation rate of two kinds biodegradable polymers; poly(caprolactone) (PCL)-starch blend and poly(butylene succinate) (PBS), were investigated under both aerobic and anaerobic conditions. PCL-starch blend was easily degraded, with 88% biodegradability in 44 days under aerobic conditions, and showed a biodegradation rate of 0.07 day(-1), whereas the biodegradability of PBS was only 31% in 80 days under the same conditions, with a biodegradation rate of 0.01 day(-1). Anaerobic bacteria degraded well PCL-starch blend (i.e., 83% biodegradability for 139 days); however, its biodegradation rate was relatively slow (6.1 mL CH(4)/g-VS day) compared to that of cellulose (13.5 mL CH(4)/g-VS day), which was used as a reference material. The PBS was barely degraded under anaerobic conditions, with only 2% biodegradability in 100 days. These results were consistent with the visual changes and FE-SEM images of the two biodegradable polymers after the landfill burial test, showing that only PCL-starch blend had various sized pinholes on the surface due to attack by microorganisms. This result may be use in deciding suitable final disposal approaches of different types of biodegradable polymers in the future. Copyright © 2010 Elsevier Ltd. All rights reserved.

  11. External validation of structure-biodegradation relationship (SBR) models for predicting the biodegradability of xenobiotics.

    Science.gov (United States)

    Devillers, J; Pandard, P; Richard, B

    2013-01-01

    Biodegradation is an important mechanism for eliminating xenobiotics by biotransforming them into simple organic and inorganic products. Faced with the ever growing number of chemicals available on the market, structure-biodegradation relationship (SBR) and quantitative structure-biodegradation relationship (QSBR) models are increasingly used as surrogates of the biodegradation tests. Such models have great potential for a quick and cheap estimation of the biodegradation potential of chemicals. The Estimation Programs Interface (EPI) Suite™ includes different models for predicting the potential aerobic biodegradability of organic substances. They are based on different endpoints, methodologies and/or statistical approaches. Among them, Biowin 5 and 6 appeared the most robust, being derived from the largest biodegradation database with results obtained only from the Ministry of International Trade and Industry (MITI) test. The aim of this study was to assess the predictive performances of these two models from a set of 356 chemicals extracted from notification dossiers including compatible biodegradation data. Another set of molecules with no more than four carbon atoms and substituted by various heteroatoms and/or functional groups was also embodied in the validation exercise. Comparisons were made with the predictions obtained with START (Structural Alerts for Reactivity in Toxtree). Biowin 5 and Biowin 6 gave satisfactorily prediction results except for the prediction of readily degradable chemicals. A consensus model built with Biowin 1 allowed the diminution of this tendency.

  12. Use Of Biodegradation Ratios In Monitoring Trend Of Biostimulated Biodegradation In Crude Oil Polluted Soils

    Directory of Open Access Journals (Sweden)

    Okorondu

    2017-03-01

    Full Text Available This study deals with biodegradation experiment on soil contaminated with crude oil. The soil sample sets A BC D E F G were amended with inorganic fertilizer to enhance microbial growth and hydrocarbon degradation moisture content of some of the sets were as well varied. Biodegradation ratios nC17Pr nC18Ph and nC17nC18PrPh were used to monitor biodegradation of soil sets A BC D E F G for a period of 180. The soil samples were each contaminated with the same amount of crude oil and exposed to specific substrate treatment regarding the amount of nutrients and water content over the same period of time. The trend in biodegradation of the different soil sample sets shows that biodegradation ratio nC17nC18PrPh was more reflective of and explains the biodegradation trend in all the sample sets throughout the period of the experiment hence a better parameter ratio for monitoring trend of biostimulated biodegradation. The order of preference of the biodegradation ratios is expressed as nC18Ph nC17Pr nC17nC18 PrPh. This can be a relevant support tool when designing bioremediation plan on field.

  13. Recent advances in glyphosate biodegradation.

    Science.gov (United States)

    Zhan, Hui; Feng, Yanmei; Fan, Xinghui; Chen, Shaohua

    2018-06-01

    Glyphosate has emerged as the most widespread herbicide to control annual and perennial weeds. Massive use of glyphosate for decades has resulted in its ubiquitous presence in the environment, and poses a threat to humans and ecosystem. Different approaches such as adsorption, photocatalytic degradation, and microbial degradation have been studied to break down glyphosate in the environment. Among these, microbial degradation is the most effective and eco-friendly method. During its degradation, various microorganisms can use glyphosate as a sole source of phosphorus, carbon, and nitrogen. Major glyphosate degradation pathways and its metabolites have been frequently investigated, but the related enzymes and genes have been rarely studied. There are many reviews about the toxicity and fate of glyphosate and its major metabolite, aminomethylphosphonic acid. However, there is lack of reviews on biodegradation and bioremediation of glyphosate. The aims of this review are to summarize the microbial degradation of glyphosate and discuss the potential of glyphosate-degrading microorganisms to bioremediate glyphosate-contaminated environments. This review will provide an instructive direction to apply glyphosate-degrading microorganisms in the environment for bioremediation.

  14. A biodegradable vascularizing membrane: a feasibility study.

    Science.gov (United States)

    Kaushiva, Anchal; Turzhitsky, Vladimir M; Darmoc, Marissa; Backman, Vadim; Ameer, Guillermo A

    2007-09-01

    Regenerative medicine and in vivo biosensor applications require the formation of mature vascular networks for long-term success. This study investigated whether biodegradable porous membranes could induce the formation of a vascularized fibrous capsule and, if so, the effect of degradation kinetics on neovascularization. Poly(l-lactic acid) (PLLA) and poly(dl-lactic-co-glycolic) acid (PLGA) membranes were created by a solvent casting/salt leaching method. Specifically, PLLA, PLGA 75:25 and PLGA 50:50 polymers were used to vary degradation kinetics. The membranes were designed to have an average 60mum pore diameter, as this pore size has been shown to be optimal for inducing blood vessel formation around nondegradable polymer materials. Membrane samples were imaged by scanning electron microscopy at several time points during in vitro degradation to assess any changes in pore structure. The in vivo performance of the membranes was assessed in Sprague-Dawley rats by measuring vascularization within the fibrous capsule that forms adjacent to implants. The vascular density within 100microm of the membranes was compared with that seen in normal tissue, and to that surrounding the commercially available vascularizing membrane TheraCyte. The hemoglobin content of tissue containing the membranes was measured by four-dimensional elastic light scattering as a novel method to assess tissue perfusion. Results from this study show that slow-degrading membranes induce greater amounts of neovascularization and a thinner fibrous capsule relative to fast degrading membranes. These results may be due both to an initially increased number of macrophages surrounding the slower degrading membranes and to the maintenance of their initial pore structure.

  15. Selection and Evaluation of Electronic Resources Elektronik Kaynakların Seçimi ve Değerlendirilmesi

    Directory of Open Access Journals (Sweden)

    Doğan Atılgan

    2009-12-01

    Full Text Available Publication boom and issues related to controlling and accession of printed sources have created some problems after World War II. Consequently, publishing industry has encountered the problem of finding possible solution for emerged situation. Industry of electronic publishing has started to improve with the rapid increase of the price of printed sources as well as the problem of publication boom. The first effects of electronic publishing were appeared on the academic and scholarly publications then electronic publishing became a crucial part of all types of publications. As a result of these developments, collection developments and service policies of information centers were also significantly changed. In this article, after a general introduction about selection and evaluation processes of electronic publications, the subscribed databases by a state and a privately owned university in Turkey and their usage were examined. İkinci dünya savaşından sonra görülen yayın patlaması, basılı kaynakların denetim ve erişiminde sorunlar yaşanmasına neden olmuştur. Bu da yayıncılık sektöründe yeni arayışlara yol açmıştır. 1980’li yıllardan sonra basılı yayın fiyatlarındaki hızlı artış da bu etmenlere eklenince elektronik yayıncılık sektörü gelişmeye başlamıştır. Öncelikle bilimsel ve akademik yayınlarla başlayan elektronik yayın günümüzde tüm yayın türlerini kapsamaktadır. Yayıncılıktaki bu gelişim bilgi merkezlerinin derme geliştirme ve hizmet politikalarını da önemli ölçüde değiştirmiştir. Bu çalışmada elektronik yayınların seçim, değerlendirme ve sağlama konularında genel bir girişten sonra bir devlet üniversitesinin bir de özel üniversitenin abone olduğu veritabanları ve bu veri tabanlarının kullanımının değerlendirilmesi yapılmaktadır.

  16. Microbial enhanced heavy crude oil recovery through biodegradation using bacterial isolates from an Omani oil field.

    Science.gov (United States)

    Al-Sayegh, Abdullah; Al-Wahaibi, Yahya; Al-Bahry, Saif; Elshafie, Abdulkadir; Al-Bemani, Ali; Joshi, Sanket

    2015-09-16

    Biodegradation is a cheap and environmentally friendly process that could breakdown and utilizes heavy crude oil (HCO) resources. Numerous bacteria are able to grow using hydrocarbons as a carbon source; however, bacteria that are able to grow using HCO hydrocarbons are limited. In this study, HCO degrading bacteria were isolated from an Omani heavy crude oil field. They were then identified and assessed for their biodegradation and biotransformation abilities under aerobic and anaerobic conditions. Bacteria were grown in five different minimum salts media. The isolates were identified by MALDI biotyper and 16S rRNA sequencing. The nucleotide sequences were submitted to GenBank (NCBI) database. The bacteria were identified as Bacillus subtilis and B. licheniformis. To assess microbial growth and biodegradation of HCO by well-assay on agar plates, samples were collected at different intervals. The HCO biodegradation and biotransformation were determined using GC-FID, which showed direct correlation of microbial growth with an increased biotransformation of light hydrocarbons (C12 and C14). Among the isolates, B. licheniformis AS5 was the most efficient isolate in biodegradation and biotransformation of the HCO. Therefore, isolate AS5 was used for heavy crude oil recovery experiments, in core flooding experiments using Berea core plugs, where an additional 16 % of oil initially in place was recovered. This is the first report from Oman for bacteria isolated from an oil field that were able to degrade and transform HCO to lighter components, illustrating the potential use in HCO recovery. The data suggested that biodegradation and biotransformation processes may lead to additional oil recovery from heavy oil fields, if bacteria are grown in suitable medium under optimum growth conditions.

  17. Biodegradation of oils in uranium deposits

    International Nuclear Information System (INIS)

    Landais, P.

    1989-01-01

    The biodegradation of free hydrocarbons that have migrated in reservoir facies has often been observed in the field of petroleum exploration. This alteration is characterized by the progressive removal by bacteria of the different types of hydrocarbons: n-alkanes, branched alkanes, aromatics, cycloalkanes, etc. One of the most important consequences of biodegradation is the biogenic reduction of sulphate, which has been noticed in several Pb-Zn deposits. Biodegradation of oils spatially associated with uranium mineralizations has been observed in Temple Mountain, Utah, and the Grand Canyon, Arizona, in the United States of America, and in Lodeve in France. It leads to the transformation of fluid oils into solid bitumens. Emphasis is placed on the relationships between the effects of biodegradation on organic matter (oxidation of aromatization) and the nature of aqueous fluids analysed in fluid inclusions trapped in authigenic minerals. Different mechanisms are proposed to explain the transformations of organic matter during biodegradation and their possible links with the ore forming process. (author). 40 refs, 13 figs, 1 tab

  18. Utility of the electronic information resource UpToDate for clinical decision-making at bedside rounds.

    Science.gov (United States)

    Phua, J; See, K C; Khalizah, H J; Low, S P; Lim, T K

    2012-02-01

    Clinical questions often arise at daily hospital bedside rounds. Yet, little information exists on how the search for answers may be facilitated. The aim of this prospective study was, therefore, to evaluate the overall utility, including the feasibility and usefulness of incorporating searches of UpToDate, a popular online information resource, into rounds. Doctors searched UpToDate for any unresolved clinical questions during rounds for patients in general medicine and respiratory wards, and in the medical intensive care unit of a tertiary teaching hospital. The nature of the questions and the results of the searches were recorded. Searches were deemed feasible if they were completed during the rounds and useful if they provided a satisfactory answer. A total of 157 UpToDate searches were performed during the study period. Questions were raised by all ranks of clinicians from junior doctors to consultants. The searches were feasible and performed immediately during rounds 44% of the time. Each search took a median of three minutes (first quartile: two minutes, third quartile: five minutes). UpToDate provided a useful and satisfactory answer 75% of the time, a partial answer 17% of the time and no answer 9% of the time. It led to a change in investigations, diagnosis or management 37% of the time, confirmed what was originally known or planned 38% of the time and had no effect 25% of the time. Incorporating UpToDate searches into daily bedside rounds was feasible and useful in clinical decision-making.

  19. Biodegradability of poly(butylene succinate-co-butylene adipate) (PBSA) controlled by temperature during the dried-gel process

    Science.gov (United States)

    Yamazaki, Hana; Maeda, Tomoki; Hotta, Atsushi

    Currently there is a growing interest in biodegradable plastics that can be readily degraded into H2O and CO2. Among them, poly(butylene succinate-co-butylene adipate)(PBSA) is one of the mechanically attractive materials that can be biodegraded by surrounding water molecules and microorganisms after the disposal of the plastics. In order to expand the use of PBSA, the proper and effective control of the biodegradability of PBSA should be realized. In this work, the dried-gel process of the PBSA was carefully studied considering the temperature of the process. Three different types of dried PBSA gels were prepared at three different gel-process temperatures. From the biodegradability testing by immersing the PBSA samples in NaOH aq., it was found that the percentage of the weight loss of the PBSA was increased, indicating that the biodegradability was enhanced as the gel preparation temperature became lower. In fact, smaller spherocrystals were observed in PBSA dried at cooler temperature, studied by the scanning electron microscopy (SEM). It was therefore concluded that the microstructures of PBSA could be well controlled by changing the gel preparation temperatures for the precise control of the biodegradability of PBSA. This work was supported by a Grant-in-Aid for Scientific Research (A) (No. 15H02298 to A.H.) and a Grant-in-Aid for Research Activity Start-up (No.15H06586 to T.M.) from JSPS: KAKENHI\\x9D.

  20. Biodegradation of resorcinol byPseudomonas sp.

    Institute of Scientific and Technical Information of China (English)

    Nader Hajizadeh; Najibeh Shirzad; Ali Farzi; Mojtaba Salouti; Azra Momeni

    2016-01-01

    ABSTRACT Objective:To investigate the ability ofPseudomonas sp. isolated from East Azarbaijan, Iran in bioremediation of resorcinol. Methods: Resorcinol biodegradation was evaluated using spectrophotometry and confirmed by gas chromatography-mass spectroscopy. Results:This isolate was able to remove up to 37.12% of resorcinol from contaminated water. Reusability experiments had confirmed the biodegradation process which produced seven intermediate compounds. These intermediates were characterized by gas chromatography-mass spectroscopy technique. The products of resorcinol biodegradation were apparently 1, 4-cyclohexadiene, nonadecene, 2-heptadecanone, 1-isopropyl-2-methoxy-4-methylbenzene, hexadecanoic acid, 9-octadecenoic acid, phenol and 5-methyl-2-(1-methylethyl). Conclusions: The findings revealed thatPseudomonas sp. is able to degrade resorcinol. Because of being an indigenous organism, this isolate is more compatible with the climate of the northwest region of Iran and possibly will be used for degradation of other similar aromatic compounds.

  1. Petroleum biodegradation and oil spill bioremediation

    International Nuclear Information System (INIS)

    Atlas, R.M.

    1995-01-01

    Hydrocarbon-utilizing microorganisms are ubiquitously distributed in the marine environment following oil spills. These microorganisms naturally biodegrade numerous contaminating petroleum hydrocarbons, thereby cleansing the oceans of oil pullutants. Bioremediation, which is accomplished by adding exogenous microbial populations or stimulating indigenous ones, attempts to raise the rates of degradation found naturally to significantly higher rates. Seeding with oil degraders has not been demonstrated to be effective, but addition of nitrogenous fertilizers has been shown to increase rates of petroleum biodegradation. In the case of the Exxon Valdez spill, the largest and most thoroughly studied application of bioremediation, the application of fertilizer (slow release or oleophilic) increased rates of biodegradation 3-5 times. Because of the patchiness of oil, an internally conserved compound, hopane, was critical for demonstrating the efficacy of bioremediation. Multiple regression models showed that the effectiveness of bioremediation depended upon the amount of nitrogen delivered, the concentration of oil, and time. (author)

  2. Biodegradable nanoparticles for gene therapy technology

    International Nuclear Information System (INIS)

    Hosseinkhani, Hossein; He, Wen-Jie; Chiang, Chiao-Hsi; Hong, Po-Da; Yu, Dah-Shyong; Domb, Abraham J.; Ou, Keng-Liang

    2013-01-01

    Rapid propagations in materials technology together with biology have initiated great hopes in the possibility of treating many diseases by gene therapy technology. Viral and non-viral gene carriers are currently applied for gene delivery. Non-viral technology is safe and effective for the delivery of genetic materials to cells and tissues. Non-viral systems are based on plasmid expression containing a gene encoding a therapeutic protein and synthetic biodegradable nanoparticles as a safe carrier of gene. Biodegradable nanoparticles have shown great interest in drug and gene delivery systems as they are easy to be synthesized and have no side effect in cells and tissues. This review provides a critical view of applications of biodegradable nanoparticles on gene therapy technology to enhance the localization of in vitro and in vivo and improve the function of administered genes

  3. Lignin biodegradation by the ascomycete Chrysonilia sitophila.

    Science.gov (United States)

    Rodríguez, J; Ferraz, A; Nogueira, R F; Ferrer, I; Esposito, E; Durán, N

    1997-01-01

    The lignin biodegradation process has an important role in the carbon cycle of the biosphere. The study of this natural process has developed mainly with the use of basidiomycetes in laboratory investigations. This has been a logical approach since most of the microorganisms involved in lignocellulosic degradation belong to this class of fungi. However, other microorganisms such as ascomycetes and also some bacteria, are involved in the lignin decaying process. This work focuses on lignin biodegradation by a microorganism belonging to the ascomycete class, Chrysonilia sitophila. Lignin peroxidase production and characterization, mechanisms of lignin degradation (lignin model compounds and lignin in wood matrix) and biosynthesis of veratryl alcohol are outstanding. Applications of C. sitophila for effluent treatment, wood biodegradation and single-cell protein production are also discussed.

  4. Biodegradable Polymers and Stem Cells for Bioprinting

    Directory of Open Access Journals (Sweden)

    Meijuan Lei

    2016-04-01

    Full Text Available It is imperative to develop organ manufacturing technologies based on the high organ failure mortality and serious donor shortage problems. As an emerging and promising technology, bioprinting has attracted more and more attention with its super precision, easy reproduction, fast manipulation and advantages in many hot research areas, such as tissue engineering, organ manufacturing, and drug screening. Basically, bioprinting technology consists of inkjet bioprinting, laser-based bioprinting and extrusion-based bioprinting techniques. Biodegradable polymers and stem cells are common printing inks. In the printed constructs, biodegradable polymers are usually used as support scaffolds, while stem cells can be engaged to differentiate into different cell/tissue types. The integration of biodegradable polymers and stem cells with the bioprinting techniques has provided huge opportunities for modern science and technologies, including tissue repair, organ transplantation and energy metabolism.

  5. Biodegradable Polymers and Stem Cells for Bioprinting.

    Science.gov (United States)

    Lei, Meijuan; Wang, Xiaohong

    2016-04-29

    It is imperative to develop organ manufacturing technologies based on the high organ failure mortality and serious donor shortage problems. As an emerging and promising technology, bioprinting has attracted more and more attention with its super precision, easy reproduction, fast manipulation and advantages in many hot research areas, such as tissue engineering, organ manufacturing, and drug screening. Basically, bioprinting technology consists of inkjet bioprinting, laser-based bioprinting and extrusion-based bioprinting techniques. Biodegradable polymers and stem cells are common printing inks. In the printed constructs, biodegradable polymers are usually used as support scaffolds, while stem cells can be engaged to differentiate into different cell/tissue types. The integration of biodegradable polymers and stem cells with the bioprinting techniques has provided huge opportunities for modern science and technologies, including tissue repair, organ transplantation and energy metabolism.

  6. Biodegradability of wheat gluten based bioplastics.

    Science.gov (United States)

    Domenek, Sandra; Feuilloley, Pierre; Gratraud, Jean; Morel, Marie-Hélène; Guilbert, Stéphane

    2004-01-01

    A large variety of wheat gluten based bioplastics, which were plasticized with glycerol, were subjected to biodegradation. The materials covered the total range available for the biochemical control parameter Fi, which expresses the percentage of aggregated proteins. This quantity can be related to the density of covalent crosslinks in the wheat gluten network, which are induced by technological treatments. The biodegradability tests were performed in liquid medium (modified Sturm test) and in farmland soil. All gluten materials were fully degraded after 36 days in aerobic fermentation and within 50 days in farmland soil. No significant differences were observed between the samples. The mineralization half-life time of 3.8 days in the modified Sturm test situated gluten materials among fast degrading polymers. The tests of microbial inhibition experiments revealed no toxic effects of the modified gluten or of its metabolites. Thus, the protein bulk of wheat gluten materials is non-toxic and fully biodegradable, whatever the technological process applied.

  7. Biodegrader metabolic expansion during polyaromatic hydrocarbons rhizoremediation

    Energy Technology Data Exchange (ETDEWEB)

    Rugh, C.L.; Susilawati, E.; Kravchenko, A.N. [Dept. of Crop and Soil Sciences, Michigan State Univ., East Lansing, MI (United States); Thomas, J.C. [Dept. of Natural Sciences, Univ. of Michigan-Dearborn, Dearborn, MI (United States)

    2005-04-01

    Root-microbe interactions are considered to be the primary process of polyaromatic hydrocarbon (PAH) phytoremediation, since bacterial degradation has been shown to be the dominant pathway for environmental PAH dissipation. However, the precise mechanisms driving PAH rhizostimulation symbiosis remain largely unresolved. In this study, we assessed PAH degrading bacterial abundance in contaminated soils planted with 18 different native Michigan plant species. Phenanthrene metabolism assays suggested that each plant species differentially influenced the relative abundance of PAH biodegraders, though they generally were observed to increase heterotrophic and biodegradative cell numbers relative to unplanted soils. Further study of > 1800 phenanthrene degrading isolates indicated that most of the tested plant species stimulated biodegradation of a broader range of PAH compounds relative to the unplanted soil bacterial consortia. These observations suggest that a principal contribution of planted systems for PAH bioremediation may be via expanded metabolic range of the rhizosphere bacterial community. (orig.)

  8. Biodegradable packaging materials conception based on starch and polylactic acid (PLA) reinforced with cellulose.

    Science.gov (United States)

    Masmoudi, Fatma; Bessadok, Atef; Dammak, Mohamed; Jaziri, Mohamed; Ammar, Emna

    2016-10-01

    The plastic materials used for packaging are increasing leading to a considerable amount of undegradable solid wastes. This work deals with the reduction of conventional plastics waste and the natural resources preservation by using cellulosic polymers from renewable resources (alfa and luffa). Plasticized starch films syntheses were achieved at a laboratory scale. These natural films showed some very attractive mechanical properties at relatively low plasticizers levels (12 to 17 % by weight). Furthermore, mixtures including polylactic acid polymer (PLA) and cellulose fibers extracted from alfa and luffa were investigated by melt extrusion technique. When used at a rate of 10 %, these fibers improved the mixture mechanical properties. Both developed materials were biodegradable, but the plasticized starch exhibited a faster biodegradation kinetic compared to the PLA/cellulose fibers. These new materials would contribute to a sustainable development and a waste reduction.

  9. Kinetics of monomer biodegradation in soil.

    Science.gov (United States)

    Siotto, Michela; Sezenna, Elena; Saponaro, Sabrina; Innocenti, Francesco Degli; Tosin, Maurizio; Bonomo, Luca; Mezzanotte, Valeria

    2012-01-01

    In modern intensive agriculture, plastics are used in several applications (i.e. mulch films, drip irrigation tubes, string, clips, pots, etc.). Interest towards applying biodegradable plastics to replace the conventional plastics is promising. Ten monomers, which can be applied in the synthesis of potentially biodegradable polyesters, were tested according to ASTM 5988-96 (standard respirometric test to evaluate aerobic biodegradation in soil by measuring the carbon dioxide evolution): adipic acid, azelaic acid, 1,4-butanediol, 1,2-ethanediol, 1,6-hexanediol, lactic acid, glucose, sebacic acid, succinic acid and terephthalic acid. Eight replicates were carried out for each monomer for 27-45 days. The numerical code AQUASIM was applied to process the CO₂ experimental data in order to estimate values for the parameters describing the different mechanisms occurring to the monomers in soil: i) the first order solubilization kinetic constant, K(sol) (d⁻¹); ii) the first order biodegradation kinetic constant, K(b) (d⁻¹); iii) the lag time in biodegradation, t(lag) (d); and iv) the carbon fraction biodegraded but not transformed into CO₂, Y (-). The following range of values were obtained: [0.006 d⁻¹, 6.9 d⁻¹] for K(sol), [0.1 d⁻¹, 1.2 d⁻¹] for K(b), and [0.32-0.58] for Y; t(lag) was observed for azelaic acid, 1,2-ethanediol, and terephthalic acid, with estimated values between 3.0 e 4.9 d. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Imaging the intracellular degradation of biodegradable polymer nanoparticles

    Directory of Open Access Journals (Sweden)

    Anne-Kathrin Barthel

    2014-10-01

    Full Text Available In recent years, the development of smart drug delivery systems based on biodegradable polymeric nanoparticles has become of great interest. Drug-loaded nanoparticles can be introduced into the cell interior via endocytotic processes followed by the slow release of the drug due to degradation of the nanoparticle. In this work, poly(L-lactic acid (PLLA was chosen as the biodegradable polymer. Although common degradation of PLLA has been studied in various biological environments, intracellular degradation processes have been examined only to a very limited extent. PLLA nanoparticles with an average diameter of approximately 120 nm were decorated with magnetite nanocrystals and introduced into mesenchymal stem cells (MSCs. The release of the magnetite particles from the surface of the PLLA nanoparticles during the intracellular residence was monitored by transmission electron microscopy (TEM over a period of 14 days. It was demonstrated by the release of the magnetite nanocrystals from the PLLA surface that the PLLA nanoparticles do in fact undergo degradation within the cell. Furthermore, even after 14 days of residence, the PLLA nanoparticles were found in the MSCs. Additionally, the ultrastructural TEM examinations yield insight into the long term intercellular fate of these nanoparticles. From the statistical analysis of ultrastructural details (e.g., number of detached magnetite crystals, and the number of nanoparticles in one endosome, we demonstrate the importance of TEM studies for such applications in addition to fluorescence studies (flow cytometry and confocal laser scanning microscopy.

  11. A review: Biodegradation of resin–dentin bonds

    Directory of Open Access Journals (Sweden)

    Masanori Hashimoto

    2011-02-01

    Full Text Available Resin–dentin bonding was first achieved through mechanical hybridization between resin and collagen fibrils using a functional monomer containing resin system. In the last decade, new adhesive resin systems were frequently released onto the market within a short-period of time. Before and after commercialization, the bond integrity has been tested by bond tests, and leakage evaluation by researchers, but it is very difficult for clinicians to obtain a comprehensive, up-to-date understanding of their nature and degradation. Although newly developed adhesive resins have attempted to improve the bond strength at least in the first 24 h after bonding, the long-term durability of the bonds has not yet been established analytically. However, numerous recent studies have shown micromorphological evidence of biodegradation of resin–dentin bonds, due to hydrolysis of the resin and collagen fibrils within the bonds. This review mainly summarizes the most recent work in biodegradation of resin–dentin bonds based on micromorphological analyses of data obtained by scanning and transmission electron microscopy.

  12. Biodegradable 3D printed polymer microneedles for transdermal drug delivery.

    Science.gov (United States)

    Luzuriaga, Michael A; Berry, Danielle R; Reagan, John C; Smaldone, Ronald A; Gassensmith, Jeremiah J

    2018-04-17

    Biodegradable polymer microneedle (MN) arrays are an emerging class of transdermal drug delivery devices that promise a painless and sanitary alternative to syringes; however, prototyping bespoke needle architectures is expensive and requires production of new master templates. Here, we present a new microfabrication technique for MNs using fused deposition modeling (FDM) 3D printing using polylactic acid, an FDA approved, renewable, biodegradable, thermoplastic material. We show how this natural degradability can be exploited to overcome a key challenge of FDM 3D printing, in particular the low resolution of these printers. We improved the feature size of the printed parts significantly by developing a post fabrication chemical etching protocol, which allowed us to access tip sizes as small as 1 μm. With 3D modeling software, various MN shapes were designed and printed rapidly with custom needle density, length, and shape. Scanning electron microscopy confirmed that our method resulted in needle tip sizes in the range of 1-55 μm, which could successfully penetrate and break off into porcine skin. We have also shown that these MNs have comparable mechanical strengths to currently fabricated MNs and we further demonstrated how the swellability of PLA can be exploited to load small molecule drugs and how its degradability in skin can release those small molecules over time.

  13. Biodegradation of tetrabromobisphenol A in the sewage sludge process.

    Science.gov (United States)

    Peng, Xingxing; Wang, Zhangna; Wei, Dongyang; Huang, Qiyuan; Jia, Xiaoshan

    2017-11-01

    Anaerobic sewage sludge capable of rapidly degrading tetrabromobisphenol A (TBBPA) was successfully acclimated in an anaerobic reactor over 280days. During the period from 0 to 280days, the TBBPA degradation rate (DR), utilization of glucose, and VSS were monitored continuously. After 280days of acclimation, the TBBPA DR of active sludge reached 96.0% after 20days of treatment in batch experiments. Based on scanning electron microscopy (SEM) observations and denaturing gradient gel electrophoresis (DGGE) determinations, the diversity of the microorganisms after 0 and 280days in the acclimated anaerobic sewage sludge was compared. Furthermore, eleven metabolites, including 2-bromophenol, 3-bromophenol, 2,4-dibromophenol, 2,6-dibromophenol, tribromophenol and bisphenol A, were identified by gas chromatography-mass spectrometry (GC-MS). Moreover, the six primary intermediary metabolites were also well-degraded by the acclimated anaerobic sewage sludge to varying degrees. Among the six target metabolites, tribromophenol was the most preferred substrate for biodegradation via debromination. These metabolites degraded more rapidly than monobromide and bisphenol A. The biodegradation data of the intermediary metabolites exhibited a good fit to a pseudo-first-order model. Finally, based on the metabolites, metabolic pathways were proposed. In conclusion, the acclimated microbial consortia degraded TBBPA and its metabolites well under anaerobic conditions. Copyright © 2017. Published by Elsevier B.V.

  14. Histological evaluation of different biodegradable and non-biodegradable membranes implanted subcutaneously in rats

    DEFF Research Database (Denmark)

    Zhao, S; Pinholt, E M; Madsen, J E

    2000-01-01

    Different types of biodegradable membranes have become available for guided tissue regeneration. The purpose of this study was to evaluate histologically three different biodegradable membranes (Bio-Gide, Resolut and Vicryl) and one non-biodegradable membrane (expanded polytetrafluoroethylene/e-PTFE...... that e-PTFE was well tolerated and encapsulated by a fibrous connective tissue capsule. There was capsule formation around Resolut and Vicryl and around Bio-Gide in the early phase there was a wide inflammatory zone already. e-PTFE and Vicryl were stable materials while Resolut and Bio-Gide fragmented...

  15. Biodegradation of Crystal Violet by Agrobacterium radiobacter

    DEFF Research Database (Denmark)

    Parshetti, G.K.; Parshetti, S.G.; Telke, A.A.

    2011-01-01

    Violet (100 mg/L) was studied, maximum decolorization was observed with 15% inoculum concentration. A significant increase in the activities of laccase (184%) and aminopyrine Af-demethylase (300%) in cells obtained after decolorization indicated the involvement of these enzymes in decolorization process...... and phenol. We proposed the hypothetical metabolic pathway of Crystal Violet biodegradation by A. radiobacter. Phytotoxicity and microbial toxicity study showed that Crystal Violet biodegradation metabolites were less toxic to bacteria (A. radiobacter, P. aurugenosa and A. vinelandii) contributing to soil...

  16. Biodegradation mechanism of linear alkylbenzenesulfonate-14C

    International Nuclear Information System (INIS)

    Kubodera, Tadayoshi; Muto, Toshio; Yamamoto, Tatsuo

    1978-01-01

    The biodegradation of linear alkylbenzenesulfonate- 14 C (LAS- 14 C) tagged with 14 C at the linear side chain was studied on activated sludge by tracer method in addition to the methylene blue method which is widely employed in the biodegradation of LAS. It was found that there were three periods of rapid adsorption period, acclimation period, and degradation process. The radiolysis of dodecylbenzenesulfonate was studied on irradiating by 5000 Ci 60 Co source. The decomposition products were identified by GLC and GC-MS spectrometry after desulfonation. 1-Tetralone, 1-indanone, 4-methyl-1-tetralone, naphthalene et al. were found in them. (author)

  17. Biodegradable multifunctional oil production chemicals: Thermal polyaspartates

    International Nuclear Information System (INIS)

    Ross, R.J.; Ravenscroft, P.D.

    1996-01-01

    The paper deals with biodegradable oil production chemicals. Control of both mineral scale and corrosion with a single, environmentally acceptable material is an ambitious goal. Polyaspartate polymers represent a significant milestone in the attainment of this goal. Thermal polyaspartates (TPA) are polycarboxylate polymers derived via thermal condensation of the naturally occurring amino acid aspartic acid. These protein-like polymers are highly biodegradable and non-toxic, and are produced by an environmentally benign manufacturing process. TPAs exhibit excellent mineral scale inhibition activity and CO 2 corrosion control. Laboratory data on scale inhibition and corrosion control in the North Sea oil field production applications is presented. 8 refs., 2 figs., 6 tabs

  18. Development of Biomarkers for Assessing In Situ RDX Biodegradation Potential

    Science.gov (United States)

    2016-06-10

    the RDX degrading communities in four different soil slurries. The third task examined the microorganisms involved in RDX biodegradation from...RDX biodegradation at two Navy sites. Several key microorganisms were associated with RDX removal in these mixed communities. These phylogenetic and...manuscripts. 1 ABSTRACT Objective The objective was to identify the microorganisms and genes responsible for the biodegradation of RDX (hexahydro

  19. Mass transfer analysis for terephthalic acid biodegradation by ...

    African Journals Online (AJOL)

    Biodegradation of terephthalic acid (TA) by polyvinyl alcohol (PVA)-alginate immobilized Pseudomonas sp. was carried out in a packed-bed reactor. The effect of inlet TA concentration on biodegradation was investigated at 30°C, pH 7 and flow rate of 20 ml/min. The effects of flow rate on mass transfer and biodegradation ...

  20. Synthetic biodegradable functional polymers for tissue engineering: a brief review

    OpenAIRE

    BaoLin, GUO; MA, Peter X.

    2014-01-01

    Scaffolds play a crucial role in tissue engineering. Biodegradable polymers with great processing flexibility are the predominant scaffolding materials. Synthetic biodegradable polymers with well-defined structure and without immunological concerns associated with naturally derived polymers are widely used in tissue engineering. The synthetic biodegradable polymers that are widely used in tissue engineering, including polyesters, polyanhydrides, polyphosphazenes, polyurethane, and poly (glyce...

  1. Anaerobic biodegradability and treatment of Egyption domestic sewage

    NARCIS (Netherlands)

    Elmitwally, T.A.; Al-Sarawey, A.; El-Sherbiny, M.F.; Zeeman, G.; Lettinga, G.

    2003-01-01

    The anaerobic biodegradability of domestic sewage for four Egyptian villages and four Egyptian cities was determined in batch experiments. The results showed that the biodegradability of the Egyptian-villages sewage (73%) was higher than that of the cities (66%). The higher biodegradability of the

  2. Comprehensive evaluation of electronic medical record system use and user satisfaction at five low-resource setting hospitals in ethiopia.

    Science.gov (United States)

    Tilahun, Binyam; Fritz, Fleur

    2015-05-25

    Electronic medical record (EMR) systems are increasingly being implemented in hospitals of developing countries to improve patient care and clinical service. However, only limited evaluation studies are available concerning the level of adoption and determinant factors of success in those settings. The objective of this study was to assess the usage pattern, user satisfaction level, and determinants of health professional's satisfaction towards a comprehensive EMR system implemented in Ethiopia where parallel documentation using the EMR and the paper-based medical records is in practice. A quantitative, cross-sectional study design was used to assess the usage pattern, user satisfaction level, and determinant factors of an EMR system implemented in Ethiopia based on the DeLone and McLean model of information system success. Descriptive statistical methods were applied to analyze the data and a binary logistic regression model was used to identify determinant factors. Health professionals (N=422) from five hospitals were approached and 406 responded to the survey (96.2% response rate). Out of the respondents, 76.1% (309/406) started to use the system immediately after implementation and user training, but only 31.7% (98/309) of the professionals reported using the EMR during the study (after 3 years of implementation). Of the 12 core EMR functions, 3 were never used by most respondents, and they were also unaware of 4 of the core EMR functions. It was found that 61.4% (190/309) of the health professionals reported over all dissatisfaction with the EMR (median=4, interquartile range (IQR)=1) on a 5-level Likert scale. Physicians were more dissatisfied (median=5, IQR=1) when compared to nurses (median=4, IQR=1) and the health management information system (HMIS) staff (median=2, IQR=1). Of all the participants, 64.4% (199/309) believed that the EMR had no positive impact on the quality of care. The participants indicated an agreement with the system and information

  3. Biodegradable and bio-based polymers: future prospects of eco-friendly plastics.

    Science.gov (United States)

    Iwata, Tadahisa

    2015-03-09

    Currently used plastics are mostly produced from petrochemical products, but there is a growing demand for eco-friendly plastics. The use of bio-based plastics, which are produced from renewable resources, and biodegradable plastics, which are degraded in the environment, will lead to a more sustainable society and help us solve global environmental and waste management problems. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Comparative study on the biodegradation and biocompatibility of silicate bioceramic coatings on biodegradable magnesium alloy as biodegradable biomaterial

    Science.gov (United States)

    Razavi, M.; Fathi, M. H.; Savabi, O.; Razavi, S. M.; Hashemibeni, B.; Yazdimamaghani, M.; Vashaee, D.; Tayebi, L.

    2014-03-01

    Many clinical cases as well as in vivo and in vitro assessments have demonstrated that magnesium alloys possess good biocompatibility. Unfortunately, magnesium and its alloys degrade too quickly in physiological media. In order to improve the biodegradation resistance and biocompatibility of a biodegradable magnesium alloy, we have prepared three types of coating include diopside (CaMgSi2O6), akermanite (Ca2MgSi2O6) and bredigite (Ca7MgSi4O16) coating on AZ91 magnesium alloy through a micro-arc oxidation (MAO) and electrophoretic deposition (EPD) method. In this research, the biodegradation and biocompatibility behavior of samples were evaluated in vitro and in vivo. The in vitro analysis was performed by cytocompatibility and MTT-assay and the in vivo test was conducted on the implantation of samples in the greater trochanter of adult rabbits. The results showed that diopside coating has the best bone regeneration and bredigite has the best biodegradation resistance compared to others.

  5. Biodegradable surfactant stabilized nanoscale zero-valent iron for in situ treatment of vinyl chloride and 1,2-dichloroethane

    International Nuclear Information System (INIS)

    Wei, Yu-Ting; Wu, Shian-chee; Yang, Shi-Wei; Che, Choi-Hong; Lien, Hsing-Lung; Huang, De-Huang

    2012-01-01

    Highlights: ► Biodegradable surfactant stabilized nanoscale zero-valent iron (NZVI) is tested. ► Vinyl chloride and 1,2-dichloroethane are remediated by NZVI in the field. ► Multiple functions of biodegradable surfactants are confirmed. ► Biodegradable surfactants stabilize NZVI and facilitate the bioremediation. ► NZVI creates reducing conditions beneficial to an anaerobic bioremediation. - Abstract: Nanoscale zero-valent iron (NZVI) stabilized with dispersants is a promising technology for the remediation of contaminated groundwater. In this study, we demonstrated the use of biodegradable surfactant stabilized NZVI slurry for successful treatment of vinyl chloride (VC) and 1,2-dichloroethane (1,2-DCA) in a contaminated site in Taiwan. The biodegradable surfactant stabilized NZVI was coated with palladium and synthesized on-site. From monitoring the iron concentration breakthrough and distribution, it was found that the stabilized NZVI is capable of transporting in the aquifer at the test plot (200 m 2 ). VC was effectively degraded by NZVI while the 1,2-DCA degradation was relatively sluggish during the 3-month field test. Nevertheless, as 1,2-DCA is known to resist abiotic reduction by NZVI, the observation of 1,2-DCA degradation and hydrocarbon production suggested a bioremediation took place. ORP and pH results revealed that a reducing condition was achieved at the testing area facilitating the biodegradation of chlorinated organic hydrocarbons. The bioremediation may be attributed to the production of hydrogen gas as electron donor from the corrosion of NZVI in the presence of water or the added biodegradable surfactant serving as the carbon source as well as electron donor to stimulate microbial growth.

  6. [Biodegradation of methyl tert-butyl ether by stabilized immobilized Methylibium petroleiphilum PM1 cells and its biodegradation kinetics analysis].

    Science.gov (United States)

    Cheng, Zhuo-wei; Fu, Ling-xiao; Jiang, Yi-feng; Chen, Jian-meng; Zhang, Rong

    2011-05-01

    Methylibium petroleiphilum PM1, which is capable of degrading methyl tert-butyl ether (MTBE) , was immobilized in calcium alginate gel beads. Several methods were explored to increase the strength of these gel beads. The central composite design analysis indicated that the introduction of 0.2 mol x L(-1) Ca2+ into the crosslinking solution, 1.38 mmol x L(-1) Ca2+ into the growth medium and 0.1% polyethyleneimine (PEI) as the chemical crosslinking agent could increase the stability of the Ca-alginate gel beads with no loss of biodegradation activity. The stabilized immobilized cells could be used 400 h continuously with no breakage and no bioactivity loss. Examination of scanning electron microscope demonstrated that a membrane surrounding the gel beads was formed and the cells could grow and breed well in the stabilized calcium alginate gel beads. Kinetic analysis of the gel bead-degradation indicated that the rate-limiting step was biochemical process instead of intraparticle diffusion process. The diameter of 3 mm affected the biodegradability less while high concentration of PEI induced much more serious mass transfer restraint.

  7. Fringe-controlled biodegradation under dynamic conditions: Quasi 2-D flow-through experiments and reactive-transport modeling

    Science.gov (United States)

    Eckert, Dominik; Kürzinger, Petra; Bauer, Robert; Griebler, Christian; Cirpka, Olaf A.

    2015-01-01

    Biodegradation in contaminated aquifers has been shown to be most pronounced at the fringe of contaminant plumes, where mixing of contaminated water and ambient groundwater, containing dissolved electron acceptors, stimulates microbial activity. While physical mixing of contaminant and electron acceptor by transverse dispersion has been shown to be the major bottleneck for biodegradation in steady-state plumes, so far little is known on the effect of flow and transport dynamics (caused, e.g., by a seasonally fluctuating groundwater table) on biodegradation in these systems. Towards this end we performed experiments in quasi-two-dimensional flow-through microcosms on aerobic toluene degradation by Pseudomonas putida F1. Plume dynamics were simulated by vertical alteration of the toluene plume position and experimental results were analyzed by reactive-transport modeling. We found that, even after disappearance of the toluene plume for two weeks, the majority of microorganisms stayed attached to the sediment and regained their full biodegradation potential within two days after reappearance of the toluene plume. Our results underline that besides microbial growth, also maintenance and dormancy are important processes that affect biodegradation performance under transient environmental conditions and therefore deserve increased consideration in future reactive-transport modeling.

  8. Fringe-controlled biodegradation under dynamic conditions: quasi 2-D flow-through experiments and reactive-transport modeling.

    Science.gov (United States)

    Eckert, Dominik; Kürzinger, Petra; Bauer, Robert; Griebler, Christian; Cirpka, Olaf A

    2015-01-01

    Biodegradation in contaminated aquifers has been shown to be most pronounced at the fringe of contaminant plumes, where mixing of contaminated water and ambient groundwater, containing dissolved electron acceptors, stimulates microbial activity. While physical mixing of contaminant and electron acceptor by transverse dispersion has been shown to be the major bottleneck for biodegradation in steady-state plumes, so far little is known on the effect of flow and transport dynamics (caused, e.g., by a seasonally fluctuating groundwater table) on biodegradation in these systems. Towards this end we performed experiments in quasi-two-dimensional flow-through microcosms on aerobic toluene degradation by Pseudomonas putida F1. Plume dynamics were simulated by vertical alteration of the toluene plume position and experimental results were analyzed by reactive-transport modeling. We found that, even after disappearance of the toluene plume for two weeks, the majority of microorganisms stayed attached to the sediment and regained their full biodegradation potential within two days after reappearance of the toluene plume. Our results underline that besides microbial growth, also maintenance and dormancy are important processes that affect biodegradation performance under transient environmental conditions and therefore deserve increased consideration in future reactive-transport modeling. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Randomized Controlled Trial of Electronic Care Plan Alerts and Resource Utilization by High Frequency Emergency Department Users with Opioid Use Disorder

    Directory of Open Access Journals (Sweden)

    Niels Rathlev, MD

    2016-01-01

    Full Text Available Introduction: There is a paucity of literature supporting the use of electronic alerts for patients with high frequency emergency department (ED use. We sought to measure changes in opioid prescribing and administration practices, total charges and other resource utilization using electronic alerts to notify providers of an opioid-use care plan for high frequency ED patients. Methods: This was a randomized, non-blinded, two-group parallel design study of patients who had 1 opioid use disorder and 2 high frequency ED use. Three affiliated hospitals with identical electronic health records participated. Patients were randomized into “Care Plan” versus “Usual Care groups”. Between the years before and after randomization, we compared as primary outcomes the following: 1 opioids (morphine mg equivalents prescribed to patients upon discharge and administered to ED and inpatients; 2 total medical charges, and the numbers of; 3 ED visits, 4 ED visits with advanced radiologic imaging (computed tomography [CT] or magnetic resonance imaging [MRI] studies, and 5 inpatient admissions. Results: A total of 40 patients were enrolled. For ED and inpatients in the “Usual Care” group, the proportion of morphine mg equivalents received in the post-period compared with the pre-period was 15.7%, while in the “Care Plan” group the proportion received in the post-period compared with the pre-period was 4.5% (ratio=0.29, 95% CI [0.07-1.12]; p=0.07. For discharged patients in the “Usual Care” group, the proportion of morphine mg equivalents prescribed in the post-period compared with the pre-period was 25.7% while in the “Care Plan” group, the proportion prescribed in the post-period compared to the pre-period was 2.9%. The “Care Plan” group showed an 89% greater proportional change over the periods compared with the “Usual Care” group (ratio=0.11, 95% CI [0.01-0.092]; p=0.04. Care plans did not change the total charges, or, the numbers

  10. Oxidant reduction and biodegradability improvement of paper mill effluent by irradiation

    International Nuclear Information System (INIS)

    Tiezheng Wang; Waite, T.D.; Kurucz, C.

    1994-01-01

    Paper mill bleach processing wastewaters represent a large input of hazardous compounds to the environment and these compounds are usually non-biodegradable. A preliminary study using a 5000 Ci 60 Co gamma radiation source as a surrogate for electron beam irradiation, potentially an emerging technology for wastewater treatment, to treat a paper mill bleach effluent showed that for an absorbed dose of 800 krads, chemical oxygen demand (COD) was reduced by 13.5% and 5 day biochemical oxygen demand (BOD 5 ) was increased 58.6%. These changes altered the value of COD/BOD 5 from 14 to 5. For the same dose, the absorbable organic halogen (AOX) was reduced 76.2%. These results suggested the possibility of using the electron beam process to detoxify paper mill effluent thereby generating a more biodegradable wastewater. (author)

  11. Biodegradation of norfloxacin by Penicillium frequentans isolated ...

    African Journals Online (AJOL)

    One norfloxacin-degrading fungi was isolated from soil contaminated by norfloxacin and preliminary identified as Penicillium frequentans. Indoor simulative degradation experiments were carried out to investigate the biodegradation kinetics of norfloxacin with or without NFX3 in soil. The results indicate that the ...

  12. Fabrication of Environmentally Biodegradable Lignin Nanoparticles

    NARCIS (Netherlands)

    Frangville, C.; Rutkevicius, M.; Richter, A.P.; Velev, O.D.; Stoyanov, S.D.; Paunov, V.N.

    2012-01-01

    We developed a method for the fabrication of novel biodegradable nanoparticles (NPs) from lignin which are apparently non-toxic for microalgae and yeast. We compare two alternative methods for the synthesis of lignin NPs which result in particles of very different stability upon change of pH. The

  13. Cyclodextrin-enhanced biodegradation of phenanthrene

    Energy Technology Data Exchange (ETDEWEB)

    Wang, J.-M.; Marlowe, E.M.; Miller-Maier, R.M.; Brusseau, M.L. [University of Arizona, Tuscon, AZ (United States). Dept. of Soil, Water and Environmental Science

    1998-07-01

    The effectiveness of in situ bioremediation in many systems may be constrained by low contaminant bioavailability due to limited aqueous solubility or a large magnitude of sorption. The objective of this research was to evaluate the effect of hydroxypropyl-{beta}-cyclodextrin (HPCD) on phenanthrene solubilization and biodegradation. Results showed that analytical-grade HPCD can significantly increase the apparent solubility of phenanthrene. The increase in apparent solubility had a major impact on the biodegradation rate of phenanthrene. For example, in the presence of 10{sup 5} mg L{sup -1} HPCD, the substrate utilization rate increased from 0.17 mg h{sup -1} to 0.93 mg h{sup -1} while the apparent solubility was increased from 1.3 mg L{sup -1} to 161.3 mg L{sup -1}. As a result, only 0.3% of the phenanthrene remained at the end of a 48 h incubation for the highest concentration of HPCD tested (10{sup 5} mg L{sup -1}). In contrast, 45.2% of the phenanthrene remained in the absence of HPCD. Technical-grade HPCD, which contains the biodegradable impurity propylene glycol, also increased the substrate utilization rate, although to a lesser extent than the analytical-grade HPCD. On the basis of these results, it appears that HPCD can significantly increase the bioavailability, and thereby enhance the biodegradation of phenanthrene. 26 refs., 5 figs.

  14. Formulation and characterization of caffeine biodegradable chewing ...

    African Journals Online (AJOL)

    chewing gum delivery system for alertness using ... texture profile analysis (TPA), and also evaluated for biodegradation, microstructure`, in vitro .... human chewing. .... Data are presented as mean ± standard error mean (n=6) .... No conflict of interest associated with this work. ... d), which permit unrestricted use, distribution,.

  15. Biodegradation of chlorobenzoic acids by ligninolytic fungi

    Czech Academy of Sciences Publication Activity Database

    Muzikář, Milan; Křesinová, Zdena; Svobodová, Kateřina; Filipová, Alena; Čvančarová, Monika; Cajthamlová, Kamila; Cajthaml, Tomáš

    2011-01-01

    Roč. 196, - (2011), s. 386-394 ISSN 0304-3894 R&D Projects: GA MŠk 2B06156; GA ČR GA525/09/1058 Institutional research plan: CEZ:AV0Z50200510 Keywords : Chlorobenzoic acid * Polychlorinated biphenyls * Biodegradation Subject RIV: EE - Microbiology, Virology Impact factor: 4.173, year: 2011

  16. Phyllosphere yeasts rapidly break down biodegradable plastics

    Science.gov (United States)

    2011-01-01

    The use of biodegradable plastics can reduce the accumulation of environmentally persistent plastic wastes. The rate of degradation of biodegradable plastics depends on environmental conditions and is highly variable. Techniques for achieving more consistent degradation are needed. However, only a few microorganisms involved in the degradation process have been isolated so far from the environment. Here, we show that Pseudozyma spp. yeasts, which are common in the phyllosphere and are easily isolated from plant surfaces, displayed strong degradation activity on films made from poly-butylene succinate or poly-butylene succinate-co-adipate. Strains of P. antarctica isolated from leaves and husks of paddy rice displayed strong degradation activity on these films at 30°C. The type strain, P. antarctica JCM 10317, and Pseudozyma spp. strains from phyllosphere secreted a biodegradable plastic-degrading enzyme with a molecular mass of about 22 kDa. Reliable source of biodegradable plastic-degrading microorganisms are now in our hands. PMID:22126328

  17. Preparation of Natural and Synthetic Porous Biodegradable ...

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. Preparation of Natural and Synthetic Porous Biodegradable Scaffolds for Infected Wounds. Characterised for their physical properties, pore size and release kinetics. Release kinetics of bioactive molecules (antibiotics) in a controlled fashion. Release pattern of the ...

  18. Biodegradable Shape Memory Polymers in Medicine.

    Science.gov (United States)

    Peterson, Gregory I; Dobrynin, Andrey V; Becker, Matthew L

    2017-11-01

    Shape memory materials have emerged as an important class of materials in medicine due to their ability to change shape in response to a specific stimulus, enabling the simplification of medical procedures, use of minimally invasive techniques, and access to new treatment modalities. Shape memory polymers, in particular, are well suited for such applications given their excellent shape memory performance, tunable materials properties, minimal toxicity, and potential for biodegradation and resorption. This review provides an overview of biodegradable shape memory polymers that have been used in medical applications. The majority of biodegradable shape memory polymers are based on thermally responsive polyesters or polymers that contain hydrolyzable ester linkages. These materials have been targeted for use in applications pertaining to embolization, drug delivery, stents, tissue engineering, and wound closure. The development of biodegradable shape memory polymers with unique properties or responsiveness to novel stimuli has the potential to facilitate the optimization and development of new medical applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Evaluation of biodegradation and biocompatibility of collagen ...

    Indian Academy of Sciences (India)

    ever, its fast biodegradation and low mechanical strength are the foremost issues .... containing 250 ml of simulated body fluids (SBFs) with ion concentrations ( ..... [6] Kong M, Chen X G, Xing K and Park H J 2010 Int. J. Food. Microbiol. 144 51.

  20. Biodegradation of synthetic detergents in wastewater

    African Journals Online (AJOL)

    STORAGESEVER

    2009-03-20

    Mar 20, 2009 ... carrier gas at 37 psi. Hydrogen and air flow rates were 9 and 13 psi ... 24 h, by filtering the content of each set of test tubes using sterile filter paper while ..... environment-friendly, since it is biodegradable and it would enhance ...

  1. Biodegradable polymersomes for targeted ultrasound imaging

    NARCIS (Netherlands)

    Zhou, W.; Hennink, W.E.; Feijen, J.; Meng, Fenghua; Sam, T; Engbers, G.H.M.; Feijen, Jan

    2006-01-01

    Biodegradable polymersomes with a sub-micron size were prepared by using poly(ethylene glycol)–polylactide (PEG–PDLLA) block-copolymers in aqueous media. Air-encapsulated polymersomes could be obtained by a lyophilization/rehydration procedure. Preliminary results showed that these polymersomes were

  2. Polyvinyl alcohol biodegradation under denitrifying conditions

    Czech Academy of Sciences Publication Activity Database

    Marušincová, H.; Husárová, L.; Růžička, J.; Ingr, M.; Navrátil, Václav; Buňková, L.; Koutný, M.

    2013-01-01

    Roč. 84, October (2013), s. 21-28 ISSN 0964-8305 Grant - others:GA ČR(CZ) GAP108/10/0200 Institutional support: RVO:61388963 Keywords : polyvinyl alcohol * biodegradation * denitrification * waste-water treatment * anaerobic * Steroidobacter Subject RIV: EI - Biotechnology ; Bionics Impact factor: 2.235, year: 2013

  3. Biodegradable elastomeric scaffolds for soft tissue engineering

    NARCIS (Netherlands)

    Pêgo, A.P.; Poot, Andreas A.; Grijpma, Dirk W.; Feijen, Jan

    2003-01-01

    Elastomeric copolymers of 1,3-trimethylene carbonate (TMC) and ε-caprolactone (CL) and copolymers of TMC and D,L-lactide (DLLA) have been evaluated as candidate materials for the preparation of biodegradable scaffolds for soft tissue engineering. TMC-DLLA copolymers are amorphous and degrade more

  4. Biodegradable electroactive materials for tissue engineering applications

    Science.gov (United States)

    Guimard, Nathalie Kathryn

    This dissertation focuses on the development of biomaterials that could be used to enhance the regeneration of severed peripheral nerves. These materials were designed to be electroactive, biodegradable, and biocompatible. To render the materials electroactive the author chose to incorporate conducting polymer (CP) units into the materials. Because CPs are inherently non-degradable, the key challenge was to create a CP-based material that was also biodegradable. Two strategies were explored to generate a biodegradable CP-based material. The first strategy centered around the incorporation of both electroactive and biodegradable subunits into a copolymer system. In the context of this approach, two bis(methoxyquaterthiophene)-co-adipic acid polyester (QAPE) analogues were successfully synthesized, one through polycondensation (giving undoped QAPE) and the second through oxidative polymerization (giving doped QAPE-2). QAPE was found to be electroactive by cyclic voltammetry, bioerodible, and cytocompatible with Schwann cells. QAPE was doped with ferric perchlorate, although only a low doping percentage was realized (˜8%). Oxidative polymerization of a bis(bithiophene) adipate permitted the direct synthesis of doped QAPE-2, which was found to have a higher doping level (˜24%). The second strategy pursued with the goal of generating an electroactive biodegradable material involved covalently immobilizing low molecular weight polythiophene chains onto the surface of crosslinked hyaluronic acid (HA) films. HA films are not only biodegradable and biocompatible, but they also provide mechanical integrity to bilayer systems. Dicyclocarbodiimide coupling of carboxylic acids to HA alcohol groups was used to functionalize HA films. The HA-polythiophene composite is still in the early stages of development. However, to date, thiophene has been successfully immobilized at the surface of HA films with a high degree of substitution. The author has also shown that thiophene

  5. There is a Relationship between Resource Expenditures and Reference Transactions in Academic Libraries. A Review of: Dubnjakovic, A. (2012. Electronic resource expenditure and the decline in reference transaction statistics in academic libraries. Journal of Academic Librarianship, 38(2, 94-100. doi:10.1016/j.acalib.2012.01.001

    Directory of Open Access Journals (Sweden)

    Annie M. Hughes

    2013-03-01

    Full Text Available Objective – To provide an analysis of the impact of expenditures on electronic resourcesand gate counts on the increase or decrease in reference transactions.Design – Analysis of results of existing survey data from the National Center for Educational Statistics (NCES 2006 Academic Library Survey(ALS.Setting – Academic libraries in the United States.Subjects – 3925 academic library respondents.Methods – The author chose to use survey data collected from the 2006 ALS conducted bythe NCES. The survey included data on various topics related to academic libraries, but in the case of this study, the author chose to analyze three of the 193 variables included. The three variables: electronic books expenditure, computer hardware and software, and expenditures on bibliographic utilities, were combined into one variable called electronic resource expenditure. Gate counts were also considered as a variable. Electronic resource expenditure was also split as a variable into three groups: low, medium, and high. Multiple regression analysis and general linear modeling, along with tests of reliability, were employed. Main Results – The author determined that low, medium, and high spenders with regard to electronic resources exhibited differences in gate counts, and gate counts have an effect on reference transactions in any given week. Gate counts tend to not have much of an effect on reference transactions for the higher spenders, and higher spenders tend to have a higher number of reference transactions overall. Low spenders have lower gate counts and also a lower amount of reference transactions.Conclusion – The findings from this study show that academic libraries spending more on electronic resources also tend to have an increase with regard to reference transactions. The author also concludes that library spaces are no longer the determining factor with regard to number of reference transactions. Spending more on electronic resources is

  6. Column studies on BTEX biodegradation under microaerophilic and denitrifying conditions

    International Nuclear Information System (INIS)

    Hutchins, S.R.; Moolenaar, S.W.; Rhodes, D.E.

    1992-01-01

    Two column tests were conducted using aquifer material to simulate the nitrate field demonstration project carried out earlier at Traverse City, Michigan. The objectives were to better define the effect nitrate addition had on biodegradation of benzene, toluene, ethylbenzene, xylenes, and trimethylbenzenes (BTEX) in the field study, and to determine whether BTEX removal can be enhanced by supplying a limited amount of oxygen as a supplemental electron acceptor. Columns were operated using limited oxygen, limited oxygen plus nitrate, and nitrate alone. In the first column study, benzene was generally recalcitrant compared to the alkylbenzenes (TEX), although some removal did occur. In the second column study, nitrate was deleted from the feed to the column originally receiving nitrate alone and added to the feed of the column originally receiving limited oxygen alone. Although the requirement for nitrate for optimum TEX removal was clearly demonstrated in these columns, there were significant contributions by biotic and abiotic processes other than denitrification which could not be quantified

  7. Global application of disorders of sex development-related electronic resources: e-learning, e-consultation and e-information sharing.

    Science.gov (United States)

    Muscarella, Miriam; Kranenburg-van Koppen, Laura; Grijpink-van den Biggelaar, Kalinka; Drop, Stenvert L S

    2014-01-01

    The past 20 years have seen proliferation of electronic (e) resources that promote improved understanding of disorders of sex development (DSD): e-learning for physicians and trainees, e-consultation between clinicians, and e-information for families and affected individuals. Recent e-learning advances have emerged from the European Society for Pediatric Endocrinology's online learning portal for current physicians and trainees. Developed with attention to developing clinical competencies incorporating learning theory, and presenting material that represents international best practice, this e-learning portal offers advances in training, making information more accessible for clinicians and trainees. Multiple levels of instruction, authentic case examples, collaborative forums for physicians and trainees, individualized feedback and user-friendly tools represent advances in trainee and physician learning that can take place in any location. e-consultation is an emerging tool that aims to connect physicians with specialists experienced in DSD care. Although it faces logistical challenges, e-consultation carries the potential to improve DSD care, especially in remote areas with limited access to DSD specialists. e-information for families and patients of all ages is widely accessible online, often with focus on DSD biology, medical care, and psychological and social support. e-information tools aid self-management and support of those affected by DSD. Efforts to improve these resources should aim to map information to individual users, incorporate optimally clear nomenclature, and continue as a 'shared enterprise' of clinicians, affected individuals, families and researchers. Improving the quality of DSD-related e-learning and e-information and developing e-consultation carries the potential to transform DSD care and support for patients, families and physicians worldwide. © 2014 S. Karger AG, Basel.

  8. Nanocomposites of Polyacrylic Acid Nanogels and Biodegradable Polyhydroxybutyrate for Bone Regeneration and Drug Delivery

    Directory of Open Access Journals (Sweden)

    Mikael Larsson

    2014-01-01

    Full Text Available Biodegradable cell scaffolds and local drug delivery to stimulate cell response are currently receiving much scientific attention. Here we present a nanocomposite that combines biodegradation with controlled release of lithium, which is known to enhance bone growth. Nanogels of lithium neutralized polyacrylic acid were synthesized by microemulsion-templated polymerization and were incorporated into a biodegradable polyhydroxybutyrate (PHB matrix. Nanogel size was characterized using dynamic light scattering, and the nanocomposites were characterized with regard to structure using scanning electron microscopy, mechanical properties using tensile testing, permeability using tritiated water, and lithium release in PBS using a lithium specific electrode. The nanogels were well dispersed in the composites and the mechanical properties were good, with a decrease in elastic modulus being compensated by increased tolerance to strain in the wet state. Approximately half of the lithium was released over about three hours, with the remaining fraction being trapped in the PHB for subsequent slow release during biodegradation. The prepared nanocomposites seem promising for use as dual functional scaffolds for bone regeneration. Here lithium ions were chosen as model drug, but the nanogels could potentially act as carriers for larger and more complex drugs, possibly while still carrying lithium.

  9. Biodegradable starch/poly (vinyl alcohol) film reinforced with titanium dioxide nanoparticles

    Science.gov (United States)

    Hejri, Zahra; Seifkordi, Ali Akbar; Ahmadpour, Ali; Zebarjad, Seyed Mojtaba; Maskooki, Abdolmajid

    2013-10-01

    Biodegradable starch/poly (vinyl alcohol)/nano-titanium dioxide (ST/PVA/nano-TiO2) nanocomposite films were prepared via a solution casting method. Their biodegradability, mechanical properties, and thermal properties were also studied in this paper. A general full factorial experimental approach was used to determine effective parameters on the mechanical properties of the prepared films. ST/PVA/TiO2 nanocomposites were characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD). The results of mechanical analysis show that ST/PVA films with higher contents of PVA have much better mechanical properties. In thermal analysis, it is found that the addition of TiO2 nanoparticles improves the thermal stability of the films. SEM micrographs, taken from the fracture surface of samples, illustrate that the addition of PVA makes the film softer and more flexible. The results of soil burial biodegradation indicate that the biodegradability of ST/PVA/TiO2 films strongly depends on the starch proportion in the film matrix. The degradation rate is increased by the addition of starch in the films.

  10. Soil burial biodegradation studies of palm oil-based UV-curable films

    International Nuclear Information System (INIS)

    Tajau, Rida; Salleh, Mek Zah; Salleh, Nik Ghazali Nik; Abdurahman, Mohamad Norahiman; Salih, Ashraf Mohammed; Fathy, Siti Farhana; Azman, Anis Asmi; Hamidi, Nur Amira

    2016-01-01

    The palm oil-based ultraviolet (uv)-curable films were subjected to an outdoor soil burial test to investigate the biodegradation under natural environment. The films were burial in the soil experiment plot at the Nuclear Malaysia’s Dengkil complex. The uv-curable films were synthesized from the epoxidized palm oil acrylated (EPOLA) resin and the polyurethane palm oil (POBUA) resin, respectively. Biodegradation tests are more specific to burial film in soil experiments for 12 months under natural conditions. The biodegradability of palm oil resin based uv-curable films were investigated and compared with the petrochemical resin based film. The films properties were compared with respect to properties of the thermal characteristic, the crystallinity, the morphology and the weight loss which are analyzed using the thermogravimetric analysis (TGA), the differential scanning calorimetry (DSC), the scanning electron microscope (SEM), an optical microscope and the weight loss of film calculation. These findings suggested that the palm oil-based uv-curable films show quite satisfactory biodegradation levels

  11. Soil burial biodegradation studies of palm oil-based UV-curable films

    Science.gov (United States)

    Tajau, Rida; Salleh, Mek Zah; Salleh, Nik Ghazali Nik; Abdurahman, Mohamad Norahiman; Salih, Ashraf Mohammed; Fathy, Siti Farhana; Azman, Anis Asmi; Hamidi, Nur Amira

    2016-01-01

    The palm oil-based ultraviolet (uv)-curable films were subjected to an outdoor soil burial test to investigate the biodegradation under natural environment. The films were burial in the soil experiment plot at the Nuclear Malaysia's Dengkil complex. The uv-curable films were synthesized from the epoxidized palm oil acrylated (EPOLA) resin and the polyurethane palm oil (POBUA) resin, respectively. Biodegradation tests are more specific to burial film in soil experiments for 12 months under natural conditions. The biodegradability of palm oil resin based uv-curable films were investigated and compared with the petrochemical resin based film. The films properties were compared with respect to properties of the thermal characteristic, the crystallinity, the morphology and the weight loss which are analyzed using the thermogravimetric analysis (TGA), the differential scanning calorimetry (DSC), the scanning electron microscope (SEM), an optical microscope and the weight loss of film calculation. These findings suggested that the palm oil-based uv-curable films show quite satisfactory biodegradation levels.

  12. Soil burial biodegradation studies of palm oil-based UV-curable films

    Energy Technology Data Exchange (ETDEWEB)

    Tajau, Rida, E-mail: rida@nuclearmalaysia.gov.my; Salleh, Mek Zah, E-mail: mekzah@nuclearmalaysia.gov.my; Salleh, Nik Ghazali Nik, E-mail: nik-ghazali@nuclearmalaysia.gov.my; Abdurahman, Mohamad Norahiman, E-mail: iman5031@yahoo.com [Division of Radiation Processing Technology, Malaysia Nuclear Agency, Bangi, 43000 Kajang, Selangor (Malaysia); Salih, Ashraf Mohammed, E-mail: ashraf.msalih@gmail.com [Department of Radiation Processing, Sudan Atomic Energy Commission, Khartoum, 1111 Sudan (Sudan); Fathy, Siti Farhana, E-mail: farhana811@hotmail.com [Laboratory of Molecular Biomedicine, Institute of Bioscience (IBS), Universiti Putra Malaysia (UPM), 43400 UPM, Serdang, Selangor (Malaysia); Azman, Anis Asmi, E-mail: anisasmi18@gmail.com; Hamidi, Nur Amira, E-mail: amirahamidi93@yahoo.com [School of Chemical Sciences, Universiti Sains Malaysia (USM), 11800 USM, Pulau Pinang (Malaysia)

    2016-01-22

    The palm oil-based ultraviolet (uv)-curable films were subjected to an outdoor soil burial test to investigate the biodegradation under natural environment. The films were burial in the soil experiment plot at the Nuclear Malaysia’s Dengkil complex. The uv-curable films were synthesized from the epoxidized palm oil acrylated (EPOLA) resin and the polyurethane palm oil (POBUA) resin, respectively. Biodegradation tests are more specific to burial film in soil experiments for 12 months under natural conditions. The biodegradability of palm oil resin based uv-curable films were investigated and compared with the petrochemical resin based film. The films properties were compared with respect to properties of the thermal characteristic, the crystallinity, the morphology and the weight loss which are analyzed using the thermogravimetric analysis (TGA), the differential scanning calorimetry (DSC), the scanning electron microscope (SEM), an optical microscope and the weight loss of film calculation. These findings suggested that the palm oil-based uv-curable films show quite satisfactory biodegradation levels.

  13. Biodegradation of acetanilide herbicides acetochlor and butachlor in soil.

    Science.gov (United States)

    Ye, Chang-ming; Wang, Xing-jun; Zheng, He-hui

    2002-10-01

    The biodegradation of two acetanilide herbicides, acetochlor and butachlor in soil after other environmental organic matter addition were measured during 35 days laboratory incubations. The herbicides were applied to soil alone, soil-SDBS (sodium dodecylbenzene sulfonate) mixtures and soil-HA (humic acid) mixtures. Herbicide biodegradation kinetics were compared in the different treatment. Biodegradation products of herbicides in soil alone samples were identified by GC/MS at the end of incubation. Addition of SDBS and HA to soil decreased acetochlor biodegradation, but increased butachlor biodegradation. The biodegradation half-life of acetochlor and butachlor in soil alone, soil-SDBS mixtures and soil-HA mixtures were 4.6 d, 6.1 d and 5.4 d and 5.3 d, 4.9 d and 5.3 d respectively. The biodegradation products were hydroxyacetochlor and 2-methyl-6-ethylaniline for acetochlor, and hydroxybutachlor and 2,6-diethylaniline for butachlor.

  14. Preparation and Biodegradation of Nanocellulose Reinforced Polyvinyl Alcohol Blend Films in Bioenvironmental Media

    OpenAIRE

    Nusaiba Islam; Sharmin Jahan Proma; Ashiqur Rahman; Ashok Kumar Chakraborty

    2017-01-01

    Solution casting method was used to prepare nanocellulose reinforced polyvinyl alcohol (PVOH) from Oil palm empty fruit bunches. Different environmental test were used to investigate the biodegradability of the composite in soil and compost as well as in water and acidic solution. The morphology of the composite was investigated by scanning electron microscopy. The composite film with nanocellulose and without nanocellulose were compared, nanocellulose modified PVOH film showed more highly de...

  15. Improving the biodegradative capacity of subsurface bacteria

    International Nuclear Information System (INIS)

    Romine, M.F.; Brockman, F.J.

    1993-04-01

    The continual release of large volumes of synthetic materials into the environment by agricultural and industrial sources over the last few decades has resulted in pollution of the subsurface environment. Cleanup has been difficult because of the relative inaccessibility of the contaminants caused by their wide dispersal in the deep subsurface, often at low concentrations and in large volumes. As a possible solution for these problems, interest in the introduction of biodegradative bacteria for in situ remediation of these sites has increased greatly in recent years (Timmis et al. 1988). Selection of biodegradative microbes to apply in such cleanup is limited to those strains that can survive among the native bacterial and predator community members at the particular pH, temperature, and moisture status of the site (Alexander, 1984). The use of microorganisms isolated from subsurface environments would be advantageous because the organisms are already adapted to the subsurface conditions. The options are further narrowed to strains that are able to degrade the contaminant rapidly, even in the presence of highly recalcitrant anthropogenic waste mixtures, and in conditions that do not require addition of further toxic compounds for the expression of the biodegradative capacity (Sayler et al. 1990). These obstacles can be overcome by placing the genes of well-characterized biodegradative enzymes under the control of promoters that can be regulated by inexpensive and nontoxic external factors and then moving the new genetic constructs into diverse groups of subsurface microbes. ne objective of this research is to test this hypothesis by comparing expression of two different toluene biodegradative enzymatic pathways from two different regulatable promoters in a variety of subsurface isolates

  16. Biodegradation of uranium-contaminated waste oil

    International Nuclear Information System (INIS)

    Hary, L.F.

    1983-01-01

    The Portsmouth Gaseous Diffusion Plant routinely generates quantities of uranium-contaminated waste oil. The current generation rate of waste oil is approximately 2000 gallons per year. The waste is presently biodegraded by landfarming on open field soil plots. However, due to the environmental concerns associated with this treatment process, studies were conducted to determine the optimum biodegradation conditions required for the destruction of this waste. Tests using respirometric flasks were conducted to determine the biodegradation rate for various types of Portsmouth waste oil. These tests were performed at three different loading rates, and on unfertilized and fertilized soil. Additional studies were conducted to evaluate the effectiveness of open field landfarming versus treatment at a greenhouse-like enclosure for the purpose of maintaining soil temperatures above ambient conditions. The respirometric tests concluded that the optimum waste oil loading rate is 10% weight of oil-carbon/weight of soil (30,600 gallons of uranium-contaminated waste oil/acre) on soils with adjusted carbon:nitrogen and carbon:phosphorus ratios of 60:1 and 800:1, respectively. Also, calculational results indicated that greenhouse technology does not provide a significant increase in biodegradation efficiency. Based on these study results, a 6300 ft. 2 abandoned anaerobic digester sludge drying bed is being modified into a permanent waste oil biodegradation facility. The advantage of using this area is that uranium contamination will be contained by the bed's existing leachate collection system. This modified facility will be capable of handling approximately 4500 gallons of waste oil per year; accordingly current waste generation quantities will be satisfactorily treated. 15 refs., 14 figs., 4 tabs

  17. Predicting ready biodegradability of premanufacture notice chemicals.

    Science.gov (United States)

    Boethling, Robert S; Lynch, David G; Thom, Gary C

    2003-04-01

    Chemical substances other than pesticides, drugs, and food additives are regulated by the U.S. Environmental Protection Agency (U.S. EPA) under the Toxic Substances Control Act (TSCA), but the United States does not require that new substances be tested automatically for such critical properties as biodegradability. The resulting lack of submitted data has fostered the development of estimation methods, and the BioWIN models for predicting biodegradability from chemical structure have played a prominent role in premanufacture notice (PMN) review. Until now, validation efforts have used only the Japanese Ministry of International Trade and Industry (MITI) test data and have not included all models. To assess BioWIN performance with PMN substances, we assembled a database of PMNs for which ready biodegradation data had been submitted over the period 1995 through 2001. The 305 PMN structures are highly varied and pose major challenges to chemical property estimation. Despite the variability of ready biodegradation tests, the use of at least six different test methods, and widely varying quality of submitted data, accuracy of four of six BioWIN models (MITI linear, MITI nonlinear, survey ultimate, survey primary) was in the 80+% range for predicting ready biodegradability. Greater accuracy (>90%) can be achieved by using model estimates only when the four models agree (true for 3/4 of the PMNs). The BioWIN linear and nonlinear probability models did not perform as well even when classification criteria were optimized. The results suggest that the MITI and survey BioWIN models are suitable for use in screening-level applications.

  18. Hydrocarbons biodegradation in unsaturated porous medium

    International Nuclear Information System (INIS)

    Gautier, C.

    2007-12-01

    Biological processes are expected to play an important role in the degradation of petroleum hydrocarbons in contaminated soils. However, factors influencing the kinetics of biodegradation are still not well known, especially in the unsaturated zone. To address these biodegradation questions in the unsaturated zone an innovative experimental set up based on a physical column model was developed. This experimental set up appeared to be an excellent tool for elaboration of a structured porous medium, with well defined porous network and adjusted water/oil saturations. Homogeneous repartition of both liquid phases (i.e., aqueous and non aqueous) in the soil pores, which also contain air, was achieved using ceramic membranes placed at the bottom of the soil column. Reproducible interfaces (and connectivity) are developed between gas, and both non mobile water and NAPL phases, depending on the above-defined characteristics of the porous media and on the partial saturations of these three phases (NAPL, water and gas). A respirometric apparatus was coupled to the column. Such experimental set up have been validated with hexadecane in dilution in an HMN phase. This approach allowed detailed information concerning n-hexadecane biodegradation, in aerobic condition, through the profile of the oxygen consumption rate. We have taken benefit of this technique, varying experimental conditions, to determine the main parameters influencing the biodegradation kinetics and compositional evolution of hydrocarbons, under steady state unsaturated conditions and with respect to aerobic metabolism. Impacts of the nitrogen quantity and of three different grain sizes have been examined. Biodegradation of petroleum cut, as diesel cut and middle distillate without aromatic fraction, were, also studied. (author)

  19. Ranking Medical Terms to Support Expansion of Lay Language Resources for Patient Comprehension of Electronic Health Record Notes: Adapted Distant Supervision Approach.

    Science.gov (United States)

    Chen, Jinying; Jagannatha, Abhyuday N; Fodeh, Samah J; Yu, Hong

    2017-10-31

    Medical terms are a major obstacle for patients to comprehend their electronic health record (EHR) notes. Clinical natural language processing (NLP) systems that link EHR terms to lay terms or definitions allow patients to easily access helpful information when reading through their EHR notes, and have shown to improve patient EHR comprehension. However, high-quality lay language resources for EHR terms are very limited in the public domain. Because expanding and curating such a resource is a costly process, it is beneficial and even necessary to identify terms important for patient EHR comprehension first. We aimed to develop an NLP system, called adapted distant supervision (ADS), to rank candidate terms mined from EHR corpora. We will give EHR terms ranked as high by ADS a higher priority for lay language annotation-that is, creating lay definitions for these terms. Adapted distant supervision uses distant supervision from consumer health vocabulary and transfer learning to adapt itself to solve the problem of ranking EHR terms in the target domain. We investigated 2 state-of-the-art transfer learning algorithms (ie, feature space augmentation and supervised distant supervision) and designed 5 types of learning features, including distributed word representations learned from large EHR data for ADS. For evaluating ADS, we asked domain experts to annotate 6038 candidate terms as important or nonimportant for EHR comprehension. We then randomly divided these data into the target-domain training data (1000 examples) and the evaluation data (5038 examples). We compared ADS with 2 strong baselines, including standard supervised learning, on the evaluation data. The ADS system using feature space augmentation achieved the best average precision, 0.850, on the evaluation set when using 1000 target-domain training examples. The ADS system using supervised distant supervision achieved the best average precision, 0.819, on the evaluation set when using only 100 target

  20. BTEX biodegradation by bacteria from effluents of petroleum refinery.

    Science.gov (United States)

    Mazzeo, Dânia Elisa Christofoletti; Levy, Carlos Emílio; de Angelis, Dejanira de Franceschi; Marin-Morales, Maria Aparecida

    2010-09-15

    Groundwater contamination with benzene, toluene, ethylbenzene and xylene (BTEX) has been increasing, thus requiring an urgent development of methodologies that are able to remove or minimize the damages these compounds can cause to the environment. The biodegradation process using microorganisms has been regarded as an efficient technology to treat places contaminated with hydrocarbons, since they are able to biotransform and/or biodegrade target pollutants. To prove the efficiency of this process, besides chemical analysis, the use of biological assessments has been indicated. This work identified and selected BTEX-biodegrading microorganisms present in effluents from petroleum refinery, and evaluated the efficiency of microorganism biodegradation process for reducing genotoxic and mutagenic BTEX damage through two test-systems: Allium cepa and hepatoma tissue culture (HTC) cells. Five different non-biodegraded BTEX concentrations were evaluated in relation to biodegraded concentrations. The biodegradation process was performed in a BOD Trak Apparatus (HACH) for 20 days, using microorganisms pre-selected through enrichment. Although the biodegradation usually occurs by a consortium of different microorganisms, the consortium in this study was composed exclusively of five bacteria species and the bacteria Pseudomonas putida was held responsible for the BTEX biodegradation. The chemical analyses showed that BTEX was reduced in the biodegraded concentrations. The results obtained with genotoxicity assays, carried out with both A. cepa and HTC cells, showed that the biodegradation process was able to decrease the genotoxic damages of BTEX. By mutagenic tests, we observed a decrease in damage only to the A. cepa organism. Although no decrease in mutagenicity was observed for HTC cells, no increase of this effect after the biodegradation process was observed either. The application of pre-selected bacteria in biodegradation processes can represent a reliable and

  1. Optical and mechanical properties of UV-weathered biodegradable PHBV/PBAT nanocomposite films containing halloysite nanotubes

    Science.gov (United States)

    Scarfato, P.; Avallone, E.; Acierno, D.; Russo, P.

    2014-05-01

    Recently, the increasing use of plastics, stringent environmental issues and the awareness of the progressive reduction of available petrochemical resources have ever more guided the research interest towards the investigation and development of innovative materials intrinsically biodegradable or derived from renewable sources, and generally known as bio-based polymers. Amongst the biobased and biodegradable polymers, many investigations were reported in literature about a family of polyesters known as poly(hydroxyalkanoate)s (PHAs), one of whose most prevalent is poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV). In this context, here we report the results of a photo-degradation study performed on biodegradable blown film samples based on a commercial grade PHBV/PBAT formulation. The films, subjected to photo-oxidative weathering in a climatic chamber under UV exposure, were systematically analysed in order to check the chemico-physical changes induced by the aging protocol, taking the as-produced films as the reference materials.

  2. Impact of two interventions on timeliness and data quality of an electronic disease surveillance system in a resource limited setting (Peru: a prospective evaluation

    Directory of Open Access Journals (Sweden)

    Quispe Jose A

    2009-03-01

    Full Text Available Abstract Background A timely detection of outbreaks through surveillance is needed in order to prevent future pandemics. However, current surveillance systems may not be prepared to accomplish this goal, especially in resource limited settings. As data quality and timeliness are attributes that improve outbreak detection capacity, we assessed the effect of two interventions on such attributes in Alerta, an electronic disease surveillance system in the Peruvian Navy. Methods 40 Alerta reporting units (18 clinics and 22 ships were included in a 12-week prospective evaluation project. After a short refresher course on the notification process, units were randomly assigned to either a phone, visit or control group. Phone group sites were called three hours before the biweekly reporting deadline if they had not sent their report. Visit group sites received supervision visits on weeks 4 & 8, but no phone calls. The control group sites were not contacted by phone or visited. Timeliness and data quality were assessed by calculating the percentage of reports sent on time and percentage of errors per total number of reports, respectively. Results Timeliness improved in the phone group from 64.6% to 84% in clinics (+19.4 [95% CI, +10.3 to +28.6]; p Conclusion Regular phone reminders significantly improved timeliness of reports in clinics and ships, whereas supervision visits led to improved data quality only among clinics. Further investigations are needed to establish the cost-effectiveness and optimal use of each of these strategies.

  3. Enhancement of in situ biodegradation of organic compounds in groundwater by targeted pump and treat intervention

    International Nuclear Information System (INIS)

    Thornton, S.F.; Baker, K.M.; Bottrell, S.H.; Rolfe, S.A.; McNamee, P.; Forrest, F.; Duffield, P.; Wilson, R.D.; Fairburn, A.W.; Cieslak, L.A.

    2014-01-01

    -PDB . This indicates an increase in the relative importance of respiration processes (including denitrification and anaerobic methane oxidation, AMO) that yield 13 C-depleted TDIC over fermentation and acetoclastic methanogenesis that yield 13 C-enriched TDIC in the plume, leading to higher contaminant turnover. The plume fringe was found to be a zone of enhanced biodegradation by SO 4 -reduction and methanogenesis. Isotopically heavy methane compositions (up to −47.8‰ V-PDB ) and trends between δ 13 C-TDIC and δ 13 C-CH 4 suggest that AMO occurs at the plume fringe where the contaminant concentrations have been reduced by the PAT system. Mass and isotope balances for inorganic carbon in the plume confirm the shift in spatial dominance of different biodegradation processes and significant increase in contribution of anaerobic respiration for contaminant biodegradation in zones targeted by the PAT system. The enhanced in situ biodegradation results from a reduction in organic contaminant concentrations in the plume to levels below those that formerly suppressed microbial activity, combined with increased supply of soluble electron acceptors (e.g. nitrate) into the plume by dispersion. An interruption of the PAT system and recovery of the dissolved organic contaminant concentrations towards former values highlights the dynamic nature of this enhancement on restoration and relatively rapid response of the aquifer microorganisms to changing conditions induced by the PAT system. In situ restoration using this combined engineered and passive approach has the potential to manage plumes of biodegradable contaminants over shorter timescales than would be possible using these methods independently. The application of PAT in this way strongly depends on the ability to ensure an adequate flux of dissolved electron acceptors into the plume by advection and dispersion, particularly in heterogeneous aquifers

  4. The effect of gamma-radiation on biodegradability of natural FIBER/PP-HMSPP foams: A study of thermal stability and biodegradability

    International Nuclear Information System (INIS)

    Cardoso, Elizabeth C.L.; Scagliusi, Sandra R.; Lugao, Ademar B.

    2015-01-01

    This research was carried out to evaluate how gamma-radiation affected PP/HMSPP structural foams reinforced with sugarcane bagasse, in terms of thermal properties, biodegradability and infrared spectrum. Polymers are used in various applications and in different industrial areas providing enormous quantities of wastes in environment, contributing with 20 to 30% of total volume of solid residues. Besides, shortage of plastics resins obtained from oil and natural gas is addressing research and development toward alternative materials; environmental concerning in litter reduction is being directed to renewable polymers for manufacturing of polymeric foams. Biodegradable polymers, a new generation of polymers produced from various natural resources, environmentally safe and friendly, can contribute for pollution reduction, at a low cost. High density structural foams are specially used in civil construction, in replacement of metals, woods and concrete, but contribute for environmental pollution, due to components nature. In this study, it was incorporated sugarcane bagasse in PP/HMSPP polymeric matrix blends. Gamma radiation applied at 50, 100, 150, 200 and 500 kGy doses showed effective for biodegradability induction. TGA analyses pointed toward stability around 205 deg C; decomposition of both cellulose and hemicellulose took place at 310 deg C and above, whereas the degradation of reinforced fibers composites took place above 430 deg C. Infrared spectrum of foams were studied using FTIR, showing no sensitivity to the presence of C = C and C =O functional groups. (author)

  5. The effect of gamma-radiation on biodegradability of natural FIBER/PP-HMSPP foams: A study of thermal stability and biodegradability

    Energy Technology Data Exchange (ETDEWEB)

    Cardoso, Elizabeth C.L.; Scagliusi, Sandra R.; Lugao, Ademar B., E-mail: eclcardo@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2015-07-01

    This research was carried out to evaluate how gamma-radiation affected PP/HMSPP structural foams reinforced with sugarcane bagasse, in terms of thermal properties, biodegradability and infrared spectrum. Polymers are used in various applications and in different industrial areas providing enormous quantities of wastes in environment, contributing with 20 to 30% of total volume of solid residues. Besides, shortage of plastics resins obtained from oil and natural gas is addressing research and development toward alternative materials; environmental concerning in litter reduction is being directed to renewable polymers for manufacturing of polymeric foams. Biodegradable polymers, a new generation of polymers produced from various natural resources, environmentally safe and friendly, can contribute for pollution reduction, at a low cost. High density structural foams are specially used in civil construction, in replacement of metals, woods and concrete, but contribute for environmental pollution, due to components nature. In this study, it was incorporated sugarcane bagasse in PP/HMSPP polymeric matrix blends. Gamma radiation applied at 50, 100, 150, 200 and 500 kGy doses showed effective for biodegradability induction. TGA analyses pointed toward stability around 205 deg C; decomposition of both cellulose and hemicellulose took place at 310 deg C and above, whereas the degradation of reinforced fibers composites took place above 430 deg C. Infrared spectrum of foams were studied using FTIR, showing no sensitivity to the presence of C = C and C =O functional groups. (author)

  6. Current knowledge on biodegradable microspheres in drug delivery.

    Science.gov (United States)

    Prajapati, Vipul D; Jani, Girish K; Kapadia, Jinita R

    2015-08-01

    Biodegradable microspheres have gained popularity for delivering a wide variety of molecules via various routes. These types of products have been prepared using various natural and synthetic biodegradable polymers through suitable techniques for desired delivery of various challenging molecules. Selection of biodegradable polymers and technique play a key role in desired drug delivery. This review describes an overview of the fundamental knowledge and status of biodegradable microspheres in effective delivery of various molecules via desired routes with consideration of outlines of various compendial and non-compendial biodegradable polymers, formulation techniques and release mechanism of microspheres, patents and commercial biodegradable microspheres. There are various advantages of using biodegradable polymers including promise of development with different types of molecules. Biocompatibility, low dosage and reduced side effects are some reasons why usage biodegradable microspheres have gained in popularity. Selection of biodegradable polymers and formulation techniques to create microspheres is the biggest challenge in research. In the near future, biodegradable microspheres will become the eco-friendly product for drug delivery of various genes, hormones, proteins and peptides at specific site of body for desired periods of time.

  7. Biodegradation of polycyclic aromatic hydrocarbons: Using microbial bioelectrochemical systems to overcome an impasse.

    Science.gov (United States)

    Kronenberg, Maria; Trably, Eric; Bernet, Nicolas; Patureau, Dominique

    2017-12-01

    Polycyclic aromatic hydrocarbons (PAHs) are hardly biodegradable carcinogenic organic compounds. Bioremediation is a commonly used method for treating PAH contaminated environments such as soils, sediment, water bodies and wastewater. However, bioremediation has various drawbacks including the low abundance, diversity and activity of indigenous hydrocarbon degrading bacteria, their slow growth rates and especially a limited bioavailability of PAHs in the aqueous phase. Addition of nutrients, electron acceptors or co-substrates to enhance indigenous microbial activity is costly and added chemicals often diffuse away from the target compound, thus pointing out an impasse for the bioremediation of PAHs. A promising solution is the adoption of bioelectrochemical systems. They guarantee a permanent electron supply and withdrawal for microorganisms, thereby circumventing the traditional shortcomings of bioremediation. These systems combine biological treatment with electrochemical oxidation/reduction by supplying an anode and a cathode that serve as an electron exchange facility for the biocatalyst. Here, recent achievements in polycyclic aromatic hydrocarbon removal using bioelectrochemical systems have been reviewed. This also concerns PAH precursors: total petroleum hydrocarbons and diesel. Removal performances of PAH biodegradation in bioelectrochemical systems are discussed, focussing on configurational parameters such as anode and cathode designs as well as environmental parameters like porosity, salinity, adsorption and conductivity of soil and sediment that affect PAH biodegradation in BESs. The still scarcely available information on microbiological aspects of bioelectrochemical PAH removal is summarised here. This comprehensive review offers a better understanding of the parameters that affect the removal of PAHs within bioelectrochemical systems. In addition, future experimental setups are proposed in order to study syntrophic relationships between PAH

  8. Impact of Nanoclays on the Biodegradation of Poly(Lactic Acid Nanocomposites

    Directory of Open Access Journals (Sweden)

    Edgar Castro-Aguirre

    2018-02-01

    Full Text Available Poly(lactic acid (PLA, a well-known biodegradable and compostable polymer, was used in this study as a model system to determine if the addition of nanoclays affects its biodegradation in simulated composting conditions and whether the nanoclays impact the microbial population in a compost environment. Three different nanoclays were studied due to their different surface characteristics but similar chemistry: organo-modified montmorillonite (OMMT, Halloysite nanotubes (HNT, and Laponite® RD (LRD. Additionally, the organo-modifier of MMT, methyl, tallow, bis-2-hydroxyethyl, quaternary ammonium (QAC, was studied. PLA and PLA bio-nanocomposite (BNC films were produced, characterized, and used for biodegradation evaluation with an in-house built direct measurement respirometer (DMR following the analysis of evolved CO2 approach. A biofilm formation essay and scanning electron microscopy were used to evaluate microbial attachment on the surface of PLA and BNCs. The results obtained from four different biodegradation tests with PLA and its BNCs showed a significantly higher mineralization of the films containing nanoclay in comparison to the pristine PLA during the first three to four weeks of testing, mainly attributed to the reduction in the PLA lag time. The effect of the nanoclays on the initial molecular weight during processing played a crucial role in the evolution of CO2. PLA-LRD5 had the greatest microbial attachment on the surface as confirmed by the biofilm test and the SEM micrographs, while PLA-QAC0.4 had the lowest biofilm formation that may be attributed to the inhibitory effect also found during the biodegradation test when the QAC was tested by itself.

  9. Effects of triethyl phosphate and nitrate on electrokinetically enhanced biodegradation of diesel in low permeability soils.

    Science.gov (United States)

    Lee, G T; Ro, H M; Lee, S M

    2007-08-01

    Bench-scale experiments for electrokinetically enhanced bioremediation of diesel in low permeability soils were conducted. An electrokinetic reactor (ER) was filled with kaolin that was artificially contaminated with diesel at a level of 2500 mg kg(-1). A constant voltage gradient of 1.0 V cm(-1) was applied. In phosphorus transport experiments, KH2PO4 was not distributed homogeneously along the ER, and most of the transported phosphorus was converted to water-insoluble aluminum phosphate after 12 days of electrokinetic (EK) operation. However, the advancing P front of triethyl phosphate (TEP) progressed with time and resulted in uniform P distribution. The treatments employed in the electrokinetically enhanced bioremediation of diesel were control (no addition of nitrogen and phosphorus), NP (KNO3+ KH2PO4), NT (KNO3+ TEP), UP (urea+ KH2PO4), and UT (urea+TEP). Analysis of effluent collected during the first 12 days of EK operation showed that diesel was not removed from the kaolin. After nutrient delivery, using the EK operation, the ER was transferred into an incubator for the biodegradation process. After 60 days of biodegradation, the concentrations of diesel in the kaolin for the NP, NT, UP, UT, and control treatments were 1356, 1002, 1658, 1612, and 2003 mg kg(-1), respectively. The ratio of biodegraded diesel concentration to initial concentration (2465 mg kg(-1)) in NP, NT, UP, UT, and control were 45.0%, 59.4%, 32.7%, 34.6%, and 18.7%, respectively. This result showed that TEP, treated along with NO3-, was most effective for the biodegradation of diesel. TEP was delivered more efficiently to the target zones and with less phosphorus loss than KH2PO4. However, this facilitated phosphorus delivery was effective in biodegrading diesel under anaerobic conditions only when electron acceptors, such as NO3-, were present.

  10. Biodegradation of phenol, salicylic acid, benzenesulfonic acid, and iomeprol by Pseudomonas fluorescens in the capillary fringe.

    Science.gov (United States)

    Hack, Norman; Reinwand, Christian; Abbt-Braun, Gudrun; Horn, Harald; Frimmel, Fritz H

    2015-12-01

    Mass transfer and biological transformation phenomena in the capillary fringe were studied using phenol, salicylic acid, benzenesulfonic acid, and the iodinated X-ray contrast agent iomeprol as model organic compounds and the microorganism strain Pseudomonas fluorescens. Three experimental approaches were used: Batch experiments (uniform water saturation and transport by diffusion), in static columns (with a gradient of water saturation and advective transport in the capillaries) and in a flow-through cell (with a gradient of water saturation and transport by horizontal and vertical flow: 2-dimension flow-through microcosm). The reactors employed for the experiments were filled with quartz sand of defined particle size distribution (dp=200...600 μm, porosity ε=0.42). Batch experiments showed that phenol and salicylic acid have a high, whereas benzenesulfonic acid and iomeprol have a quite low potential for biodegradation under aerobic conditions and in a matrix nearly close to water saturation. Batch experiments under anoxic conditions with nitrate as electron acceptor revealed that the biodegradation of the model compounds was lower than under aerobic conditions. Nevertheless, the experiments showed that the moisture content was also responsible for an optimized transport in the liquid phase of a porous medium. Biodegradation in the capillary fringe was found to be influenced by both the moisture content and availability of the dissolved substrate, as seen in static column experiments. The gas-liquid mass transfer of oxygen also played an important role for the biological activity. In static column experiments under aerobic conditions, the highest biodegradation was found in the capillary fringe (e.g. βt/β0 (phenol)=0 after t=6 d) relative to the zone below the water table and unsaturated zone. The highest biodegradation occurred in the flow-through cell experiment where the height of the capillary fringe was largest. Copyright © 2015 Elsevier B.V. All rights

  11. Radiation processing of indigenous natural polymers. Properties of radiation modified blends from sago-starch for biodegradable composite

    International Nuclear Information System (INIS)

    Ghazali, Z.; Dahlan, K.Z.; Wongsuban, B.; Idris, S.; Muhammad, K.

    2001-01-01

    Research and development on biodegradable polymer blends and composites have gained wider interest to offer alternative eco-friendly products. Natural polysaccharide such as sago-starch offers the most promising raw material for the production of biodegradable composites. The potential of sago, which is so abundant in Malaysia, to produce blends for subsequent applications in composite material, was evaluated and explored. Blends with various formulations of sago starch and polyvinyl alcohol (PVA), and polyvinyl pyrrolidone (PVP) polymers were prepared and subjected to radiation modification using electron beam irradiation. The effect of irradiation on the sago and its blends was evaluated and their properties were characterized. The potential of producing composite from sago blends was explored. Foams from these blends were produced using microwave oven while films were produced through casting method. The properties such as mechanical, water absorption, expansion ratio, and biodegradability were characterized and reported in this paper. (author)

  12. Biodegradation of blend films PVA/PVC, PVA/PCL in soil and soil with landfill leachate

    Directory of Open Access Journals (Sweden)

    Adriana de Campos

    2011-12-01

    Full Text Available This study investigated the biodegradation of blends films of poly(vinyl alcohol/poly(vinyl chloride (PVA/PVC and poly(vinyl alcohol/poly(caprolactone (PVA/PCL blends films prepared with dimethylformamide under a variety of conditions by respirometry, spectrophotometry (FTIR, scanning electron microscopy (SEM, and contact angle. The films were buried in the garden soil and in the soil mixed with the landfill leachate for 120 days at 28ºC. Significant levels of biodegradation were achieved in fairly short incubation times in the soil. The results indicated that PVA was the most biodegradable film in the soil and in the soil with the leachate.

  13. Radiation processing of indigenous natural polymers. Properties of radiation modified blends from sago-starch for biodegradable composite

    Energy Technology Data Exchange (ETDEWEB)

    Ghazali, Z.; Dahlan, K.Z. [Malaysian Institute for Nuclear and Technology Research (MINT), Bangi, Kajang (Malaysia); Wongsuban, B.; Idris, S.; Muhammad, K. [Universiti Putra Malaysia, Faculty of Food Science and Biotechnology, Department of Food Science, Serdang (Malaysia)

    2001-03-01

    Research and development on biodegradable polymer blends and composites have gained wider interest to offer alternative eco-friendly products. Natural polysaccharide such as sago-starch offers the most promising raw material for the production of biodegradable composites. The potential of sago, which is so abundant in Malaysia, to produce blends for subsequent applications in composite material, was evaluated and explored. Blends with various formulations of sago starch and polyvinyl alcohol (PVA), and polyvinyl pyrrolidone (PVP) polymers were prepared and subjected to radiation modification using electron beam irradiation. The effect of irradiation on the sago and its blends was evaluated and their properties were characterized. The potential of producing composite from sago blends was explored. Foams from these blends were produced using microwave oven while films were produced through casting method. The properties such as mechanical, water absorption, expansion ratio, and biodegradability were characterized and reported in this paper. (author)

  14. Biodegradation of Volatile Organic Compounds and Their Effects on Biodegradability under Co-Existing Conditions.

    Science.gov (United States)

    Yoshikawa, Miho; Zhang, Ming; Toyota, Koki

    2017-09-27

    Volatile organic compounds (VOCs) are major pollutants that are found in contaminated sites, particularly in developed countries such as Japan. Various microorganisms that degrade individual VOCs have been reported, and genomic information related to their phylogenetic classification and VOC-degrading enzymes is available. However, the biodegradation of multiple VOCs remains a challenging issue. Practical sites, such as chemical factories, research facilities, and illegal dumping sites, are often contaminated with multiple VOCs. In order to investigate the potential of biodegrading multiple VOCs, we initially reviewed the biodegradation of individual VOCs. VOCs include chlorinated ethenes (tetrachloroethene, trichloroethene, dichloroethene, and vinyl chloride), BTEX (benzene, toluene, ethylbenzene, and xylene), and chlorinated methanes (carbon tetrachloride, chloroform, and dichloromethane). We also summarized essential information on the biodegradation of each kind of VOC under aerobic and anaerobic conditions, together with the microorganisms that are involved in VOC-degrading pathways. Interactions among multiple VOCs were then discussed based on concrete examples. Under conditions in which multiple VOCs co-exist, the biodegradation of a VOC may be constrained, enhanced, and/or unaffected by other compounds. Co-metabolism may enhance the degradation of other VOCs. In contrast, constraints are imposed by the toxicity of co-existing VOCs and their by-products, catabolite repression, or competition between VOC-degrading enzymes. This review provides fundamental, but systematic information for designing strategies for the bioremediation of multiple VOCs, as well as information on the role of key microorganisms that degrade VOCs.

  15. Biodegradation of Volatile Organic Compounds and Their Effects on Biodegradability under Co-Existing Conditions

    Science.gov (United States)

    Yoshikawa, Miho; Zhang, Ming; Toyota, Koki

    2017-01-01

    Volatile organic compounds (VOCs) are major pollutants that are found in contaminated sites, particularly in developed countries such as Japan. Various microorganisms that degrade individual VOCs have been reported, and genomic information related to their phylogenetic classification and VOC-degrading enzymes is available. However, the biodegradation of multiple VOCs remains a challenging issue. Practical sites, such as chemical factories, research facilities, and illegal dumping sites, are often contaminated with multiple VOCs. In order to investigate the potential of biodegrading multiple VOCs, we initially reviewed the biodegradation of individual VOCs. VOCs include chlorinated ethenes (tetrachloroethene, trichloroethene, dichloroethene, and vinyl chloride), BTEX (benzene, toluene, ethylbenzene, and xylene), and chlorinated methanes (carbon tetrachloride, chloroform, and dichloromethane). We also summarized essential information on the biodegradation of each kind of VOC under aerobic and anaerobic conditions, together with the microorganisms that are involved in VOC-degrading pathways. Interactions among multiple VOCs were then discussed based on concrete examples. Under conditions in which multiple VOCs co-exist, the biodegradation of a VOC may be constrained, enhanced, and/or unaffected by other compounds. Co-metabolism may enhance the degradation of other VOCs. In contrast, constraints are imposed by the toxicity of co-existing VOCs and their by-products, catabolite repression, or competition between VOC-degrading enzymes. This review provides fundamental, but systematic information for designing strategies for the bioremediation of multiple VOCs, as well as information on the role of key microorganisms that degrade VOCs. PMID:28904262

  16. Research of the biodegradability of degradable/biodegradable plastic material in various types of environments

    Directory of Open Access Journals (Sweden)

    Dana Adamcová

    2017-04-01

    Full Text Available Research was carried out in order to assess biodegradability of degradable/biodegradable materials made of HDPE and mixed with totally degradable plastic additive (TDPA additive or made of polyethylene (PE with the addition of pro-oxidant additive (d2w additive, advertised as 100% degradable or certifi ed as compostable within various types of environments. Research conditions were: (i controlled composting environment – laboratory-scale, (ii real composting conditions – domestic compost bin, (iii real composting conditions – industrial composting plant and (iv landfill conditions. The results demonstrate that the materials made of HDPE and mixed with totally degradable plastic additive (TDPA additive or made of polyethylene (PE with the addition of pro-oxidant additive (d2w additive or advertised as 100% degradable did not biodegrade in any of the above-described conditions and remained completely intact at the end of the tests. Biodegradation of the certified compostable plastic bags proceeded very well in laboratory-scale conditions and in real composting conditions – industrial composting plant, however, these materials did not biodegrade in real composting conditions – domestic compost bin and landfill conditions.

  17. Modeling ready biodegradability of fragrance materials.

    Science.gov (United States)

    Ceriani, Lidia; Papa, Ester; Kovarich, Simona; Boethling, Robert; Gramatica, Paola

    2015-06-01

    In the present study, quantitative structure activity relationships were developed for predicting ready biodegradability of approximately 200 heterogeneous fragrance materials. Two classification methods, classification and regression tree (CART) and k-nearest neighbors (kNN), were applied to perform the modeling. The models were validated with multiple external prediction sets, and the structural applicability domain was verified by the leverage approach. The best models had good sensitivity (internal ≥80%; external ≥68%), specificity (internal ≥80%; external 73%), and overall accuracy (≥75%). Results from the comparison with BIOWIN global models, based on group contribution method, show that specific models developed in the present study perform better in prediction than BIOWIN6, in particular for the correct classification of not readily biodegradable fragrance materials. © 2015 SETAC.

  18. Nanoparticles from Degradation of Biodegradable Plastic Mulch

    Science.gov (United States)

    Flury, Markus; Sintim, Henry; Bary, Andy; English, Marie; Schaefer, Sean

    2017-04-01

    Plastic mulch films are commonly used in crop production. They provide multiple benefits, including control of weeds and insects, increase of soil and air temperature, reduction of evaporation, and prevention of soil erosion. The use of plastic mulch film in agriculture has great potential to increase food production and security. Plastic mulch films must be retrieved and disposed after usage. Biodegradable plastic mulch films, who can be tilled into the soil after usage offer great benefits as alternative to conventional polyethylene plastic. However, it has to be shown that the degradation of these mulches is complete and no micro- and nanoparticles are released during degradation. We conducted a field experiment with biodegradable mulches and tested mulch degradation. Mulch was removed from the field after the growing season and composted to facilitate degradation. We found that micro- and nanoparticles were released during degradation of the mulch films in compost. This raises concerns about degradation in soils as well.

  19. Biodegradation of polyurethane derived from castor oil

    Directory of Open Access Journals (Sweden)

    José M. Cangemi

    2008-09-01

    Full Text Available The aim of this research was to study the biodegradation of a polymer derived from castor oil, which is a renewable, natural material that is a practical alternative for the replacement of traditional polyurethane foams. Due to its molecular structure, which contains polyester segments derived from vegetable oil, the polymeric surface is susceptible to microorganism attack. This study tested the biological degrading agent that was in contact with the microorganisms resulting from microbiological grease degrading agents, when foam was inoculated. Solid-media agar-plate tests were conducted for their potential to evaluate the biodegradation of polymeric particles by specific strains of microorganisms during 216 hours. The growth rate was defined. This technique provides a way of distinguishing the degradation abilities of microorganisms from the degradability of materials.

  20. Biodegradable multifunctional oil production chemicals: Thermal polyaspartates

    Energy Technology Data Exchange (ETDEWEB)

    Ross, R J [Donlar Corporation (United States); Ravenscroft, P D [BP Exploration Operating Company, (United Kingdom)

    1997-12-31

    The paper deals with biodegradable oil production chemicals. Control of both mineral scale and corrosion with a single, environmentally acceptable material is an ambitious goal. Polyaspartate polymers represent a significant milestone in the attainment of this goal. Thermal polyaspartates (TPA) are polycarboxylate polymers derived via thermal condensation of the naturally occurring amino acid aspartic acid. These protein-like polymers are highly biodegradable and non-toxic, and are produced by an environmentally benign manufacturing process. TPAs exhibit excellent mineral scale inhibition activity and CO{sub 2} corrosion control. Laboratory data on scale inhibition and corrosion control in the North Sea oil field production applications is presented. 8 refs., 2 figs., 6 tabs.

  1. Preparation and properties of biodegradable films from Sterculia urens short fiber/cellulose green composites.

    Science.gov (United States)

    Jayaramudu, J; Reddy, G Siva Mohan; Varaprasad, K; Sadiku, E R; Sinha Ray, S; Varada Rajulu, A

    2013-04-02

    The development of commercially viable "green products", based on natural resources for the matrices and reinforcements, in a wide range of applications, is on the rise. The present paper focuses on Sterculia urens short fiber reinforced pure cellulose matrix composite films. The morphologies of the untreated and 5% NaOH (alkali) treated S. urens fibers were observed by SEM. The effect of 5% NaOH treated S. urens fiber (5, 10, 15 and 20% loading) on the mechanical properties and thermal stability of the composites films is discussed. This paper presents the developments made in the area of biodegradable S. urens short fiber/cellulose (SUSF/cellulose) composite films, buried in the soil and later investigated by the (POM), before and after biodegradation has taken place. SUSF/cellulose composite films have great potential in food packaging and for medical applications. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Biodegradation of partially hydrolyzed polyacrylamide by bacteria isolated from production water after polymer flooding in an oil field

    International Nuclear Information System (INIS)

    Bao Mutai; Chen Qingguo; Li Yiming; Jiang Guancheng

    2010-01-01

    Partially hydrolyzed polyacrylamide (HPAM) in production water after polymer flooding in oil filed causes environmental problems, such as increases the difficulty in oil-water separation, degrades naturally to produce toxic acrylamide and endanger local ecosystem. Biodegradation of HPAM may be an efficient way to solve these problems. The biodegradability of HPAM in an aerobic environment was studied. Two HPAM-degrading bacterial strains, named PM-2 and PM-3, were isolated from the produced water of polymer flooding. They were subsequently identified as Bacillus cereus and Bacillus sp., respectively. The utilization of HPAM by the two strains was explored. The amide group of HPAM could serve as a nitrogen source for the two microorganisms, the carbon backbone of these polymers could be partly utilized by microorganisms. The HPAM samples before and after bacterial biodegradation were analyzed by the infrared spectrum, high performance liquid chromatography and scanning electronic microscope. The results indicated that the amide group of HPAM in the biodegradation products had been converted to a carboxyl group, and no acrylamide monomer was found. The HPAM carbon backbone was metabolized by the bacteria during the course of its growth. Further more, the hypothesis about the biodegradation of HPAM in aerobic bacterial culture is proposed.

  3. Anaerobic biodegradation of nonylphenol in river sediment under nitrate- or sulfate-reducing conditions and associated bacterial community

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhao; Yang, Yuyin; Dai, Yu; Xie, Shuguang, E-mail: xiesg@pku.edu.cn

    2015-04-09

    Highlights: • NP biodegradation can occur under both nitrate- and sulfate-reducing conditions. • Anaerobic condition affects sediment bacterial diversity during NP biodegradation. • NP-degrading bacterial community structure varies under different anaerobic conditions. - Abstract: Nonylphenol (NP) is a commonly detected pollutant in aquatic ecosystem and can be harmful to aquatic organisms. Anaerobic degradation is of great importance for the clean-up of NP in sediment. However, information on anaerobic NP biodegradation in the environment is still very limited. The present study investigated the shift in bacterial community structure associated with NP degradation in river sediment microcosms under nitrate- or sulfate-reducing conditions. Nearly 80% of NP (100 mg kg{sup −1}) could be removed under these two anaerobic conditions after 90 or 110 days’ incubation. Illumina MiSeq sequencing analysis indicated that Proteobacteria, Firmicutes, Bacteroidetes and Chloroflexi became the dominant phylum groups with NP biodegradation. The proportion of Gammaproteobacteria, Deltaproteobacteria and Choloroflexi showed a marked increase in nitrate-reducing microcosm, while Gammaproteobacteria and Firmicutes in sulfate-reducing microcosm. Moreover, sediment bacterial diversity changed with NP biodegradation, which was dependent on type of electron acceptor.

  4. Coatings and Biodegradable and Bioasorbable Films

    Science.gov (United States)

    2006-12-28

    Dielectric Spectroscopy ," Polymers for Biomedical Applications Symposium, ACS Fall 2006 Meeting, San Francisco, CA. 25 Novel Biodegradable Films Based on...groups upon cross-linking with HDI. The Figl2. Positron annihilation assessment hydroxyl groups are known to form fairly strong of free volume behavior of...1.26 e volume is accumulated upon cooling. Probing free- "A volume with positron life time spectroscopy 1.25 (PALS) showed that indeed, cross-linked

  5. Biodegradation of hexachlorocyclohexane (HCH) by microorganisms.

    Science.gov (United States)

    Phillips, Theresa M; Seech, Alan G; Lee, Hung; Trevors, Jack T

    2005-08-01

    The organochlorine pesticide Lindane is the gamma-isomer of hexachlorocyclohexane (HCH). Technical grade Lindane contains a mixture of HCH isomers which include not only gamma-HCH, but also large amounts of predominantly alpha-, beta- and delta-HCH. The physical properties and persistence of each isomer differ because of the different chlorine atom orientations on each molecule (axial or equatorial). However, all four isomers are considered toxic and recalcitrant worldwide pollutants. Biodegradation of HCH has been studied in soil, slurry and culture media but very little information exists on in situ bioremediation of the different isomers including Lindane itself, at full scale. Several soil microorganisms capable of degrading, and utilizing HCH as a carbon source, have been reported. In selected bacterial strains, the genes encoding the enzymes involved in the initial degradation of Lindane have been cloned, sequenced, expressed and the gene products characterized. HCH is biodegradable under both oxic and anoxic conditions, although mineralization is generally observed only in oxic systems. As is found for most organic compounds, HCH degradation in soil occurs at moderate temperatures and at near neutral pH. HCH biodegradation in soil has been reported at both low and high (saturated) moisture contents. Soil texture and organic matter appear to influence degradation presumably by sorption mechanisms and impact on moisture retention, bacterial growth and pH. Most studies report on the biodegradation of relatively low (< 500 mg/kg) concentrations of HCH in soil. Information on the effects of inorganic nutrients, organic carbon sources or other soil amendments is scattered and inconclusive. More in-depth assessments of amendment effects and evaluation of bioremediation protocols, on a large scale, using soil with high HCH concentrations, are needed.

  6. Enzymes of Candida tropicalis yeast biodegrading phenol

    OpenAIRE

    Koubková, Zuzana

    2011-01-01

    Effluents of industrial wastewaters from oil refineries, paper mills, dyes, ceramic factories, resins, textiles and plastic contain high concentrations of aromatic compounds, which are toxic to organisms. Degradation of these compounds to tolerant limits before releasing them into the environment is an urgent requirement. Candida tropicalis yeast is an important representative of eucaryotic microorganisms that are able to utilize phenol. During the first phase of phenol biodegradation, cytopl...

  7. Bacterial production of the biodegradable plastics polyhydroxyalkanoates.

    Science.gov (United States)

    Urtuvia, Viviana; Villegas, Pamela; González, Myriam; Seeger, Michael

    2014-09-01

    Petroleum-based plastics constitute a major environmental problem due to their low biodegradability and accumulation in various environments. Therefore, searching for novel biodegradable plastics is of increasing interest. Microbial polyesters known as polyhydroxyalkanoates (PHAs) are biodegradable plastics. Life cycle assessment indicates that PHB is more beneficial than petroleum-based plastics. In this report, bacterial production of PHAs and their industrial applications are reviewed and the synthesis of PHAs in Burkholderia xenovorans LB400 is described. PHAs are synthesized by a large number of microorganisms during unbalanced nutritional conditions. These polymers are accumulated as carbon and energy reserve in discrete granules in the bacterial cytoplasm. 3-hydroxybutyrate and 3-hydroxyvalerate are two main PHA units among 150 monomers that have been reported. B. xenovorans LB400 is a model bacterium for the degradation of polychlorobiphenyls and a wide range of aromatic compounds. A bioinformatic analysis of LB400 genome indicated the presence of pha genes encoding enzymes of pathways for PHA synthesis. This study showed that B. xenovorans LB400 synthesize PHAs under nutrient limitation. Staining with Sudan Black B indicated the production of PHAs by B. xenovorans LB400 colonies. The PHAs produced were characterized by GC-MS. Diverse substrates for the production of PHAs in strain LB400 were analyzed. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Biodegradation of tert-butylphenyl diphenyl phosphate

    International Nuclear Information System (INIS)

    Heitkamp, M.A.; Freeman, J.P.; Cerniglia, C.E.

    1986-01-01

    The biodegradation of tert-butylphenyl diphenyl phosphate (BPDP) was examined in microcosms containing sediment and water from five different ecosystems as part of studies to elucidate the environmental fate of phosphate ester flame retardants. Biodegradation of [ 14 C]BPDP was monitored in the environmental microcosms by measuring the evolution of 14 CO 2 . Over 37% of BPDP was mineralized after 8 weeks in microcosms from an ecosystem which had chronic exposure to agricultural chemicals. In contrast, only 1.7% of BPDP was degraded to 14 CO 2 in samples collected from a noncontaminated site. The exposure concentration of BPDP affected the percentage which was degraded to 14 CO 2 in microcosms from the two most active ecosystems. Mineralization was highest at a concentration of 0.1 mg of BPDP and was inhibited with 10- and 100-fold higher concentrations of BPDP. The authors observed adaptive increases in both microbial populations and phosphoesterase enzymes in some sediments acclimated to BPDP. Chemical analyses of the residues in the microcosms indicated undegraded BPDP and minor amounts of phenol, tert-butylphenol, diphenyl phosphate, and triphenyl phosphate as biodegradation products. These data suggest that the microbial degradation of BPDP results from at least three catabolic processes and is highest when low concentrations of BPDP are exposed to sediment microorganisms of eutrophic ecosystems which have high phosphotri- and diesterase activities and previous exposure to anthropogenic chemicals

  9. Corexit 9500 Enhances Oil Biodegradation and Changes ...

    Science.gov (United States)

    While COREXIT 9500 is widely applied after oil spills for its reported dispersing activity, there is still a debate on the effectiveness on enhancing oil biodegradation and its potential toxic effect on microbial communities. To better understand the impact of COREXIT 9500 on the structure and activity levels of hydrocarbon degrading microbial communities, we analyzed next-generation 16S rRNA gene sequencing libraries of hydrocarbon enrichments grown at cryophilic and mesophilic conditions and using both DNA and RNA extracts as sequencing templates. Oil biodegradation patterns in both cryophilic and mesophilic enrichments were consistent with those reported in the literature (i.e., aliphatics were degraded faster than aromatics). A slight increase in biodegradation was observed in the presence of COREXIT at both 25°C and 5°C experiments. Differences in community structure were observed between treatment conditions in the DNA-based libraries. The 25°C consortia was dominated by unclassified members of the Vibrio, Pseudoidiomarina, Marinobacter, Alcanivorax, and Thallassospira species, while the 5°C consortia were dominated by several genera of Flavobacteria, Alcanivorax and Oleispira. With the exception of Vibrio-like species, members of these genera have been linked to hydrocarbon degradation and have been observed after oil spills. Colwellia and Cycloclasticus, known aromatic degraders, was also found in these enrichments. RNA-based sequencing of 25°C

  10. Nanomembranes and Nanofibers from Biodegradable Conducting Polymers

    Directory of Open Access Journals (Sweden)

    Jordi Puiggalí

    2013-09-01

    Full Text Available This review provides a current status report of the field concerning preparation of fibrous mats based on biodegradable (e.g., aliphatic polyesters such as polylactide or polycaprolactone and conducting polymers (e.g., polyaniline, polypirrole or polythiophenes. These materials have potential biomedical applications (e.g., tissue engineering or drug delivery systems and can be combined to get free-standing nanomembranes and nanofibers that retain the better properties of their corresponding individual components. Systems based on biodegradable and conducting polymers constitute nowadays one of the most promising solutions to develop advanced materials enable to cover aspects like local stimulation of desired tissue, time controlled drug release and stimulation of either the proliferation or differentiation of various cell types. The first sections of the review are focused on a general overview of conducting and biodegradable polymers most usually employed and the explanation of the most suitable techniques for preparing nanofibers and nanomembranes (i.e., electrospinning and spin coating. Following sections are organized according to the base conducting polymer (e.g., Sections 4–6 describe hybrid systems having aniline, pyrrole and thiophene units, respectively. Each one of these sections includes specific subsections dealing with applications in a nanofiber or nanomembrane form. Finally, miscellaneous systems and concluding remarks are given in the two last sections.

  11. Biodegradation of ion-exchange media

    International Nuclear Information System (INIS)

    Bowerman, B.S.; Clinton, J.H.; Cowdery, S.R.

    1988-08-01

    Ion-exchange media, both bead resins and powdered filter media, are used in nuclear power plants to remove radioactivity from process water prior to reuse or environmental discharge. Since the ion- exchange media are made from synthetic hydrocarbon-based polymers, they may be susceptible to damage from biological activity. The purpose of this study was to investigate some of the more basic aspects of biodegradation of ion-exchange media, specifically to evaluate the ability of microorganisms to utilize the ion-exchange media or materials sorbed on them as a food source. The ASTM-G22 test, alone and combined with the Bartha Pramer respirometric method, failed to indicate the biodegradability of the ion-exchange media. The limitation of these methods was that they used a single test organism. In later phases of this study, a mixed microbial culture was grown from resin waste samples obtained from the BNL High Flux Beam Reactor. These microorganisms were used to evaluate the susceptibility of different types of ion-exchange media to biological attack. Qualitative assessments of biodegradability were based on visual observations of culture growths. Greater susceptibility was associated with increased turbidity in solution indicative of bacterial growth, and more luxuriant fungal mycelial growth in solution or directly on the ion-exchange resin beads. 21 refs., 9 figs., 18 tabs

  12. Biodegradation of petroleum hydrocarbons at low temperatures

    International Nuclear Information System (INIS)

    Whyte, L. G.; Greer, C W.

    1999-01-01

    Bioremediation of contaminated Arctic sites has been proposed as the logistically and economically most favorable solution despite the known technical difficulties. The difficulties involve the inhibition of pollutants removal by biodegradation below freezing temperatures and the relative slowness of the process to remove enough hydrocarbon pollutants during the above-freezing summer months. Despite these formidable drawbacks, biodegradation of hydrocarbon contaminants is possible even in below-zero temperatures, especially if indigenous psychrophilic and psychrotropic micro-organism are used. This paper reports results of a study involving several hydrocarbon-degrading psychrotropic bacteria and suggests bioaugmentation with specific cold-adapted organisms and/or biostimulation with commercial fertilizers for enhancing degradation of specific contaminants in soils from northern Canada. An evaluation of the biodegradation potential of hydrocarbon contaminated soils in the high Arctic suggested that the contaminated soils contained sufficient numbers of cold-adapted hydrocarbon-degrading bacteria and that the addition of fertilizer was sufficient to enhance the level of hydrocarbon degradation at low ambient summer temperatures. 9 refs., 2 tabs., 3 figs

  13. Online Resources

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Genetics; Online Resources. Journal of Genetics. Online Resources. Volume 97. 2018 | Online resources. Volume 96. 2017 | Online resources. Volume 95. 2016 | Online resources. Volume 94. 2015 | Online resources. Volume 93. 2014 | Online resources. Volume 92. 2013 | Online resources ...

  14. Interactive Electronic Decision Trees for the Integrated Primary Care Management of Febrile Children in Low Resource Settings - Review of existing tools.

    Science.gov (United States)

    Keitel, Kristina; D'Acremont, Valérie

    2018-04-20

    The lack of effective, integrated diagnostic tools pose a major challenge to the primary care management of febrile childhood illnesses. These limitations are especially evident in low-resource settings and are often inappropriately compensated by antimicrobial over-prescription. Interactive electronic decision trees (IEDTs) have the potential to close these gaps: guiding antibiotic use and better identifying serious disease. This narrative review summarizes existing IEDTs, to provide an overview of their degree of validation, as well as to identify gaps in current knowledge and prospects for future innovation. Structured literature review in PubMed and Embase complemented by google search and contact with developers. Six integrated IEDTs were identified: three (eIMCI, REC, and Bangladesh digital IMCI) based on Integrated Management of Childhood Illnesses (IMCI); four (SL eCCM, MEDSINC, e-iCCM, and D-Tree eCCM) on Integrated Community Case Management (iCCM); two (ALMANACH, MSFeCARE) with a modified IMCI content; and one (ePOCT) that integrates novel content with biomarker testing. The types of publications and evaluation studies varied greatly: the content and evidence-base was published for two (ALMANACH and ePOCT), ALMANACH and ePOCT were validated in efficacy studies. Other types of evaluations, such as compliance, acceptability were available for D-Tree eCCM, eIMCI, ALMANACH. Several evaluations are still ongoing. Future prospects include conducting effectiveness and impact studies using data gathered through larger studies to adapt the medical content to local epidemiology, improving the software and sensors, and Assessing factors that influence compliance and scale-up. IEDTs are valuable tools that have the potential to improve management of febrile children in primary care and increase the rational use of diagnostics and antimicrobials. Next steps in the evidence pathway should be larger effectiveness and impact studies (including cost analysis) and

  15. Influence of organophilic ammonium-free nano clay incorporation on the mechanical properties and biodegradability of the Ecoflex; Influencia da adicao de nanoargila organofilica livre de sal de amonio nas propriedades mecanicas e na biodegradacao do Ecoflex

    Energy Technology Data Exchange (ETDEWEB)

    Morita, Reinaldo Y.; Barbosa, Ronilson V. [Empresa IOTO International - Divisao Masterbatches, Campo Magro, PR (Brazil)], e-mail: juliana.kloss@gmail.com; Richart, Fabio S.; Kloss, Juliana R. [Universidade Federal do Parana, Departamento de Quimica - UFPR, Curitiba, PR (Brazil)

    2011-07-01

    The disposable of polymeric materials, petroleum derived, represents a growing global environmental problem, causing environmental pollution to assume alarming proportions. In this context, the interest in the use and production of biodegradable materials that have character and policy has raged in various sectors of society. Besides biodegradation, is also significant investment in research and development in the nanotechnology area. Given these factors, the objective of this work was the incorporation of organophilic nanoclay ammonium-free salt (Novaclay) in the Ecoflex, mechanical properties evaluation and influences this material of the biodegradation, according to ASTM G 160. The products were characterized before and after biodegradation by analysis: visual, weight loss, differential scanning calorimetry, mechanical testing and scanning electron microscopy. The results showed that the pure Ecoflex and Ecoflex/Novaclay nanocomposite were partially biodegraded in the method used and showed morphological and mechanical properties changes. (author)

  16. Biodegradable materials as binders for IVth generation moulding sands

    OpenAIRE

    K. Major-Gabry

    2015-01-01

    This paper focuses on the possibility of using the biodegradable materials as binders (or parts of binders?compositions) for foundry moulding and core sands. Results showed that there is a great possibility of using available biodegradable materials as foundry moulding sand binders. Using biodegradable materials as partial content of new binders, or additives to moulding sands may not only decrease the toxicity and increase reclamation ability of tested moulding sands, but also accelerate the...

  17. "Rational" management of dichlorophenols biodegradation by the microalga Scenedesmus obliquus.

    Science.gov (United States)

    Papazi, Aikaterini; Kotzabasis, Kiriakos

    2013-01-01

    The microalga Scenedesmus obliquus exhibited the ability to biodegrade dichlorophenols (dcps) under specific autotrophic and mixotrophic conditions. According to their biodegradability, the dichlorophenols used can be separated into three distinct groups. Group I (2,4-dcp and 2,6 dcp - no meta-substitution) consisted of quite easily degraded dichlorophenols, since both chloride substituents are in less energetically demanding positions. Group II (2,3-dcp, 2,5-dcp and 3,4-dcp - one meta-chloride) was less susceptible to biodegradation, since one of the two substituents, the meta one, required higher energy for C-Cl-bond cleavage. Group III (3,5-dcp - two meta-chlorides) could not be biodegraded, since both chlorides possessed the most energy demanding positions. In general, when the dcp-toxicity exceeded a certain threshold, the microalga increased the energy offered for biodegradation and decreased the energy invested for biomass production. As a result, the biodegradation per cell volume of group II (higher toxicity) was higher, than group I (lower toxicity) and the biodegradation of dichlorophenols (higher toxicity) was higher than the corresponding monochlorophenols (lower toxicity). The participation of the photosynthetic apparatus and the respiratory mechanism of microalga to biodegrade the group I and the group II, highlighted different bioenergetic strategies for optimal management of the balance between dcp-toxicity, dcp-biodegradability and culture growth. Additionally, we took into consideration the possibility that the intermediates of each dcp-biodegradation pathway could influence differently the whole biodegradation procedures. For this reason, we tested all possible combinations of phenolic intermediates to check cometabolic interactions. The present contribution bring out the possibility of microalgae to operate as "smart" bioenergetic "machines", that have the ability to continuously "calculate" the energy reserves and "use" the most energetically

  18. Biodegradable magnesium-alloy stent:current situation in research

    International Nuclear Information System (INIS)

    Chen Hua; Zhao Xianxian

    2011-01-01

    In recent years, permanent metal stents are employed in the majority of interventional therapies; nevertheless, such kind of stents carries the problems of thrombosis and restenosis. Therefore, the biodegradable magnesium alloy stent has become the focus of attention. Theoretically, it has overcome the problems caused by permanent metal stents, so it is the development direction to use the biodegradable magnesium alloy in future. The authors believe that biodegradable magnesium alloy stents will be widely used in interventional procedures for many diseases. (authors)

  19. Biodegradation of NR Latex-based Materials via a Carbon Dioxide Evolution Method

    Directory of Open Access Journals (Sweden)

    F. M. S. Shabinah

    2017-12-01

    Full Text Available NR as a natural polymer has biodegradable characteristics and their existence was examined using CO2 evolution methods. The CO2 molecule produced by micro-organism metabolisms in the degradation system was quantified using a conventional acidimetric method. An aerobic system was determined as most suitable condition to be examined under this method. The presence of O2 in the system would help micro-organisms to destabilize the natural polymer. The material of LATZ, HA film and NR gloves showed significant weight loss and were able to produce CO2 evolution curves after 45 days in the biodegradation system compared to synthetic polyisoprene films. Gel permeation chromatography, fourier transform infrared spectroscopy and scanning electron micrograph were used to characterize the degraded sample at molecular and physical levels.

  20. Corrosion assessment and enhanced biocompatibility analysis of biodegradable magnesium-based alloys

    Science.gov (United States)

    Pompa, Luis Enrique

    Magnesium alloys have raised immense interest to many researchers because of its evolution as a new third generation material. Due to their biocompatibility, density, and mechanical properties, magnesium alloys are frequently reported as prospective biodegradable implant materials. Moreover, magnesium based alloys experience a natural phenomena to biodegrade in aqueous solutions due to its corrosive activity, which is excellent for orthopedic and cardiovascular applications. However, major concerns with such alloys are fast and non-uniform corrosion degradation. Controlling the degradation rate in the physiological environment determines the success of an implant. In this investigation, three grades of magnesium alloys: AZ31B, AZ91E and ZK60A were studied for their corrosion resistance and biocompatibility. Scanning electron microscopy, energy dispersive spectroscopy, atomic force microscopy and contact angle meter are used to study surface morphology, chemistry, roughness and wettability, respectively. Additionally, the cytotoxicity of the leached metal ions was evaluated by a tetrazolium based bio-assay, MTS.

  1. Graphene reinforced biodegradable poly(3-hydroxybutyrate-co-4-hydroxybutyrate nano-composites

    Directory of Open Access Journals (Sweden)

    V. Sridhar

    2013-04-01

    Full Text Available Novel biodegradable poly(3-hydroxybutyrate-co-4-hydroxybutyrate [PHBV]/graphene nanocomposites were prepared by solution casting. The thermal properties, crystallization behavior, microstructure, and fracture morphology of the composites were investigated. Scanning electron microscope (SEM results show that graphene layers are homogeneously dispersed in the polymer matrix. X-ray diffraction (XRD and dynamic scanning calorimetry (DSC studies show that the well dispersed graphene sheets act as nucleating agent for crystallization. Consequently, the mechanical properties of the composites have been substantially improved as evident from dynamic mechanical and static tensile tests. Differential thermal analysis (DTA showed an increase in temperature of maximum degradation. Soil degradation tests of PHBV/graphene nanocomposites showed that presence of graphene doesn’t interfere in its biodegradability.

  2. Biodegradation of endosulfan by mixed bacteria culture strains of ...

    African Journals Online (AJOL)

    Biodegradation of endosulfan by mixed bacteria culture strains of Pseudomonas aeruginosa and Staphylococcus aureus. Nsidibeabasi Calvin Nwokem, Calvin Onyedika Nwokem, Casmir Emmanuel Gimba, Beatrice Nkiruka Iwuala ...

  3. Critical evaluation of biodegradable polymers used in nanodrugs

    Science.gov (United States)

    Marin, Edgar; Briceño, Maria Isabel; Caballero-George, Catherina

    2013-01-01

    Use of biodegradable polymers for biomedical applications has increased in recent decades due to their biocompatibility, biodegradability, flexibility, and minimal side effects. Applications of these materials include creation of skin, blood vessels, cartilage scaffolds, and nanosystems for drug delivery. These biodegradable polymeric nanoparticles enhance properties such as bioavailability and stability, and provide controlled release of bioactive compounds. This review evaluates the classification, synthesis, degradation mechanisms, and biological applications of the biodegradable polymers currently being studied as drug delivery carriers. In addition, the use of nanosystems to solve current drug delivery problems are reviewed. PMID:23990720

  4. Library resources on the Internet

    Science.gov (United States)

    Buchanan, Nancy L.

    1995-07-01

    Library resources are prevalent on the Internet. Library catalogs, electronic books, electronic periodicals, periodical indexes, reference sources, and U.S. Government documents are available by telnet, Gopher, World Wide Web, and FTP. Comparatively few copyrighted library resources are available freely on the Internet. Internet implementations of library resources can add useful features, such as full-text searching. There are discussion lists, Gophers, and World Wide Web pages to help users keep up with new resources and changes to existing ones. The future will bring more library resources, more types of library resources, and more integrated implementations of such resources to the Internet.

  5. New aspects on atrazine biodegradation

    Directory of Open Access Journals (Sweden)

    Luciane Sene

    2010-04-01

    Full Text Available The world practice of using agrochemicals for long periods, in an indiscriminated and abusive way, has been a concern of the authorities involved in public health and sustainability of the natural resources, as a consequence of environmental contamination. Agrochemicals refer to a broad range of insecticides, fungicides and herbicides, and among them stands out atrazine, a herbicide intensively used in sugarcane, corn and sorghum cultures, among others. Researches have demonstrated that atrazine has toxic effects in algae, aquatic plants, aquatic insects, fishes and mammals. Due to the toxicity and persistence of atrazine in the environment, the search of microbial strains capable of degrading it is fundamental to the development of bioremediation processes, as corrective tools to solve the current problems of the irrational use of agrochemicals. This review relates the main microbial aspects and research on atrazine degradation by isolated microbial species and microbial consortia, as well as approaches on the development of techniques for microbial removal of atrazine in natural environments.A prática mundial do uso de agroquímicos por períodos extensos, de maneira indiscriminada e abusiva, tem mobilizado as autoridades envolvidas em saúde pública e sustentabilidade de fontes naturais, como uma conseqüência da contaminação ambiental. Agroquímicos referem-se a uma ampla variedade de inseticidas, fungicidas e herbicidas, entre estes a atrazina, um herbicida intensivamente usado em culturas de cana-de-açúcar, milho, sorgo, entre outros. Pesquisadores têm demonstrado que a atrazina tem efeitos tóxicos em algas, plantas aquáticas, insetos aquáticos, peixes e mamíferos. Devido à toxicidade e à persistência da atrazina no ambiente, a busca de linhagens microbianas capazes de degradá-la é fundamental para o desenvolvimento de processos de biorremediação, com uma ferramenta corretiva para solucionar problemas decorridos do uso

  6. Biodegradable materials for surgical management of infective endocarditis: new solution or a dead end street?

    Science.gov (United States)

    2014-01-01

    Background One third of patients with infective endocarditis will require operative intervention. Given the superiority of valve repair over valve replacement in many indications other than endocarditis, there has been increasing interest and an increasing number of reports of excellent results of valve repair in acute infective endocarditis. The theoretically ideal material for valve repair in this setting is non-permanent, “vanishing” material, not at risk of seeding or colonization. The goal of this contribution is to review currently available data on biodegradable materials for valve repair in infective endocarditis. Discussion Rigorous electronic and manual literature searches were conducted to identify reports of biodegradable materials for valve repair in infective endocarditis. Articles were identified in electronic database searches of Medline, Embase and the Cochrane Library, using a predetermined search strategy. 49 manuscripts were included in the review. Prosthetic materials needed for valve repair can be summarized into annuloplasty rings to remodel the mitral or tricuspid annulus, and patch materials to replace resected valvar tissue. The commercially available biodegradable annuloplasty ring has shown interesting clinical results in a single-center experience; however further data is required for validation and longer follow-up. Unmodified extra-cellular matrix patches, such as small intestinal submucosa, have had promising initial experimental and clinical results in non-infected valve repair, although in valve repair for endocarditis has been reported in only one patient, and concerns have been raised regarding their mechanical stability in an infected field. Summary These evolving biodegradable devices offer the potential for valve repair with degradable materials replaced with autologous tissue, which could further improve the results of valve repair for infective endocarditis. This is an evolving field with promising experimental or

  7. Biodegradable materials for surgical management of infective endocarditis: new solution or a dead end street?

    Science.gov (United States)

    Myers, Patrick O; Cikirikcioglu, Mustafa; Kalangos, Afksendiyos

    2014-08-03

    One third of patients with infective endocarditis will require operative intervention. Given the superiority of valve repair over valve replacement in many indications other than endocarditis, there has been increasing interest and an increasing number of reports of excellent results of valve repair in acute infective endocarditis. The theoretically ideal material for valve repair in this setting is non-permanent, "vanishing" material, not at risk of seeding or colonization. The goal of this contribution is to review currently available data on biodegradable materials for valve repair in infective endocarditis. Rigorous electronic and manual literature searches were conducted to identify reports of biodegradable materials for valve repair in infective endocarditis. Articles were identified in electronic database searches of Medline, Embase and the Cochrane Library, using a predetermined search strategy. 49 manuscripts were included in the review. Prosthetic materials needed for valve repair can be summarized into annuloplasty rings to remodel the mitral or tricuspid annulus, and patch materials to replace resected valvar tissue. The commercially available biodegradable annuloplasty ring has shown interesting clinical results in a single-center experience; however further data is required for validation and longer follow-up. Unmodified extra-cellular matrix patches, such as small intestinal submucosa, have had promising initial experimental and clinical results in non-infected valve repair, although in valve repair for endocarditis has been reported in only one patient, and concerns have been raised regarding their mechanical stability in an infected field. These evolving biodegradable devices offer the potential for valve repair with degradable materials replaced with autologous tissue, which could further improve the results of valve repair for infective endocarditis. This is an evolving field with promising experimental or initial clinical results, however long

  8. Herpes - resources

    Science.gov (United States)

    Genital herpes - resources; Resources - genital herpes ... following organizations are good resources for information on genital herpes : March of Dimes -- www.marchofdimes.org/complications/sexually- ...

  9. Preparation of new biodegradable materials by grafting of polycarprolactone onto starch and their biodegradability studies

    International Nuclear Information System (INIS)

    Najemi, L.; Zerroukhi, A.; Jeanmaire, T.; Raihane, M.; Chamkh, F.; Qatibi, A.; Bennisse, R.

    2009-01-01

    The starch is a natural polymer which has the advantage of being biodegradable, renewable in quantity unlimited at very accessible prices. However its poor mechanical properties, depending on its hydrophobic character, and also its absorption of water restrict is applicability considerable especially for packing. (Author)

  10. Biodegradation kinetics for pesticide exposure assessment.

    Science.gov (United States)

    Wolt, J D; Nelson, H P; Cleveland, C B; van Wesenbeeck, I J

    2001-01-01

    Understanding pesticide risks requires characterizing pesticide exposure within the environment in a manner that can be broadly generalized across widely varied conditions of use. The coupled processes of sorption and soil degradation are especially important for understanding the potential environmental exposure of pesticides. The data obtained from degradation studies are inherently variable and, when limited in extent, lend uncertainty to exposure characterization and risk assessment. Pesticide decline in soils reflects dynamically coupled processes of sorption and degradation that add complexity to the treatment of soil biodegradation data from a kinetic perspective. Additional complexity arises from study design limitations that may not fully account for the decline in microbial activity of test systems, or that may be inadequate for considerations of all potential dissipation routes for a given pesticide. Accordingly, kinetic treatment of data must accommodate a variety of differing approaches starting with very simple assumptions as to reaction dynamics and extending to more involved treatments if warranted by the available experimental data. Selection of the appropriate kinetic model to describe pesticide degradation should rely on statistical evaluation of the data fit to ensure that the models used are not overparameterized. Recognizing the effects of experimental conditions and methods for kinetic treatment of degradation data is critical for making appropriate comparisons among pesticide biodegradation data sets. Assessment of variability in soil half-life among soils is uncertain because for many pesticides the data on soil degradation rate are limited to one or two soils. Reasonable upper-bound estimates of soil half-life are necessary in risk assessment so that estimated environmental concentrations can be developed from exposure models. Thus, an understanding of the variable and uncertain distribution of soil half-lives in the environment is

  11. Biodegradation of bacterial polysaccharides adsorbed on montmorillonite

    International Nuclear Information System (INIS)

    Guckert, A.; Tok, H.H.; Jacquin, F.

    1977-01-01

    In this research, by means of a model, a study was made of the biodegradation of microbial organic compounds adsorbed on clays, with a parallel experiment on Fontainebleau sand serving as the control. During incubation the three classes of organic matter ( 14 C-labelled glucose, 14 C-labelled polysaccharides and 14 C-labelled microbial cells) mineralize more actively in the presence of sand than in the presence of clay, since the latter provides protection against biodegradation. Mineralization of the adsorbed organic compounds, however, is marked by clear-cut differences after three weeks - glucose (55%)>polysaccharides (43%)>microbial organisms (7.3%). After incubation, chemical extraction of the organo-mineral complexes by alkaline solvents shows only water-soluble and alkali-soluble products in the case of sand; conversely, in that of montmorillonite the bulk of the 14 C was found in the non-extractable fraction or humin (18.1% of the initial 14 C for glucose, 27.3% for the polysaccharides, and 67.6% for the microbial organisms). A second incubation carried out after a phase in which there was drying and remoistening of the organo-mineral complexes, brings to light the important part played by climatic alternations during the biodegradation process. A new mineralization phase is observed, affecting more the bacterial organisms (14.1%) than the polysaccharides (6.3%), with the glucose-base complexes occupying an intermediate position (11.2%). The chemical fractioning of the organo-mineral complexes following re-incubation shows the stability of 14 C in humin very clearly, especially in the case of polysaccharides, where the mineralization phase relates primarily to the products extractable with alkalis. (author)

  12. Biodegradation and detoxification of chlorimuron-ethyl by Enterobacter ludwigii sp. CE-1.

    Science.gov (United States)

    Pan, Xiong; Wang, Saige; Shi, Nan; Fang, Hua; Yu, Yunlong

    2018-04-15

    The application of the herbicide chlorimuron-ethyl has a lasting toxic effect on some succession crops. Here, a bacterium capable of utilizing chlorimuron-ethyl as the sole source of nitrogen was isolated from the contaminated soil and was identified as Enterobacter ludwigii sp. CE-1, and its detoxification and degradation of the herbicide were then examined. The biodegradation of chlorimuron-ethyl by the isolate CE-1 was significantly accelerated with increasing concentration (1-10mg/l) and temperature (20-40°C). The optimal pH for the degradation of chlorimuron-ethyl by the isolate CE-1 was pH 7.0. A pathway for the biodegradation of chlorimuron-ethyl by the isolate CE-1 was proposed, in which it could be first converted into 2-amino-4-chloro-6-methoxypyrimidine and an intermediate product by the cleavage of the sulfonylurea bridge and then transformed into saccharin via hydrolysis and amidation. The plant height and fresh weight of corn that had been incubated in nutrient solution containing 0.2mg/l of chlorimuron-ethyl significantly recovered to 83.9% and 83.1% compared with those in the uninoculated control, although the root growth inhibition of chlorimuron-ethyl could not be alleviated after inoculation for 14 d. The results indicate that the isolate CE-1 is a promising bacterial resource for the biodegradation and detoxification of chlorimuron-ethyl. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Toxicological evaluation of vegetable oils and biodiesel in soil during the biodegradation process

    Directory of Open Access Journals (Sweden)

    Ivo S. Tamada

    2012-12-01

    Full Text Available Vegetable oils and their derivatives, like biodiesel, are used extensively throughout the world, thus posing an environmental risk when disposed. Toxicity testing using test organisms shows how these residues affect ecosystems. Toxicity tests using earthworms (Eisenia foetida. are widespread because they are a practical resource for analyzing terrestrial organisms. For phytotoxicological analysis, we used seeds of arugula (Eruca sativa and lettuce (Lactuca sativa. to analyze the germination of seeds in contaminated soil samples. The toxicological experiment was conducted with four different periods of biodegradation in soil: zero days, 60 days, 120 days and 180 days. The studied contaminants were soybean oil (new and used and biodiesel (B100. An evaluation of the germination of both seeds showed an increased toxicity for all contaminants as the biodegradation occurred, biodiesel being the most toxic among the contaminants. On the other hand, for the tests using earthworms, the biodiesel was the only contaminant that proved to be toxic. Therefore, the higher toxicity of the sample containing these hydrocarbons over time can be attributed to the secondary compounds formed by microbial action. Thus, we conclude that the biodegradation in soil of the studied compounds requires longer periods for the sample toxicity to be decreased with the action of microorganisms.

  14. Geochemical indicators of anaerobic biodegradation of BTEX

    International Nuclear Information System (INIS)

    Wilson, J.T.; Kampbell, D.; Hutchins, S.; Wilson, B.; Kennedy, L.G.

    1992-01-01

    In the late 1970s, a leaking underground pipeline released petroleum hydrocarbons to a shallow, water-table aquifer in Kansas. Approximately six acres surrounding the release contain hydrocarbons at residual saturation. Parts of the release have acclimated and are carrying out anaerobic biodegradation of benzene, toluene, and the xylenes, Analysis of ground water from monitoring wells in areas that have acclimated reveal high concentrations of methane, less than -.1/liter oxygen, millimolar concentrations of acetate, and strongly reducing redox potentials. There is also a marked shift in the radio of the concentration of individual compounds to the total concentration of petroleum hydrocarbons

  15. Molecular basis of biodegradation of chloroaromatic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Sangodkar, U M.X.; Aldrich, T L; Haugland, R A; Johnson, J; Rothmel, R K; Chakrabarty, A M [Illinois Univ., Chicago (USA). Coll. of Medicine; Chapman, P J [Environmental Protection Agency, Gulf Breeze, FL (USA). Microbial Ecology and Biotechnology

    1989-01-01

    Chlorinated aromatic hydrocarbons are widely used in industry and agriculture, and comprise the bulk of environmental pollutants. Although simple aromatic compounds are biodegradable by a variety of degradative pathways, their halogenated counterparts are more resistant to bacterial attack and often necessitate evolution of novel pathways. An understanding of such evolutionary processes is essential for developing genetically improved strains capable of mineralizing highly chlorinated compounds. This article provides an overview of the genetic aspects of dissimilation of chloroaromatic compounds and discusses the potential of gene manipulation to promote enhanced evolution of the degradation pathways. (orig.).

  16. Development of biodegradable fungicide by radiation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Young Keun; Kim, Dong Sub [KAERI, Daejeon (Korea, Republic of)

    2011-01-15

    To develop the fungicide which is biodegradable and alternative to chemical pesticide that has an side effect of environmental pollution, Mutant induction of the enhanced antifungal activity was studied by using radiation. Characteristics and structure of antifungal biomaterials derived from these mutants were analysed. Two biomaterials related to the antifungal activity from the above mutant were isolated and purified. Microbial pesticide were manufactured in combination of various additives. Antiphytopathogenic effects were proven by pot experiment and It was promising to prevent pepper, Chinese cabbage and radish from anthrax, phytophthora and root rot

  17. Development of biodegradable fungicide by radiation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Youngkeun; Kim, Dongsub

    2012-03-15

    To develop the fungicide which is biodegradable and alternative to chemical pesticide that has an side effect of environmental pollution, Mutant induction of the enhanced antifungal activity was studied by using radiation. Characteristics and structure of antifungal biomaterials derived from these mutants were analysed. Two biomaterials related to the antifungal activity from the above mutant were isolated and purified. Microbial pesticide were manufactured in combination of various additives. Antiphytopathogenic effects were proven by field test and it was promising to prevent Chinese cabbage and radish from phytophthora and root rot.

  18. Biodegradation of petroleum hydrocarbons in hypersaline environments

    Directory of Open Access Journals (Sweden)

    Luiz Fernando Martins

    2012-09-01

    Full Text Available Literature on hydrocarbon degradation in extreme hypersaline media presents studies that point to a negative effect of salinity increase on hydrocarbonoclastic activity, while several others report an opposite tendency. Based on information available in the literature, we present a discussion on the reasons that justify these contrary results. Despite the fact that microbial ability to metabolize hydrocarbons is found in extreme hypersaline media, indeed some factors are critical for the occurrence of hydrocarbon degradation in such environments. How these factors affect hydrocarbon degradation and their implications for the assessment of hydrocarbon biodegradation in hypersaline environments are presented in this review.

  19. Development of biodegradable fungicide by radiation

    International Nuclear Information System (INIS)

    Lee, Young Keun; Kim, Dong Sub

    2011-01-01

    To develop the fungicide which is biodegradable and alternative to chemical pesticide that has an side effect of environmental pollution, Mutant induction of the enhanced antifungal activity was studied by using radiation. Characteristics and structure of antifungal biomaterials derived from these mutants were analysed. Two biomaterials related to the antifungal activity from the above mutant were isolated and purified. Microbial pesticide were manufactured in combination of various additives. Antiphytopathogenic effects were proven by pot experiment and It was promising to prevent pepper, Chinese cabbage and radish from anthrax, phytophthora and root rot

  20. Biodegradation of the Nitramine Explosive CL-20

    OpenAIRE

    Trott, Sandra; Nishino, Shirley F.; Hawari, Jalal; Spain, Jim C.

    2003-01-01

    The cyclic nitramine explosive CL-20 (2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane) was examined in soil microcosms to determine whether it is biodegradable. CL-20 was incubated with a variety of soils. The explosive disappeared in all microcosms except the controls in which microbial activity had been inhibited. CL-20 was degraded most rapidly in garden soil. After 2 days of incubation, about 80% of the initial CL-20 had disappeared. A CL-20-degrading bacterial strain, Agrobact...

  1. Lipase biocatalysis for useful biodegradable products

    Energy Technology Data Exchange (ETDEWEB)

    Linko, Y.Y.; Wang, Zhuo Lin; Uosukainen, E.; Seppaelae, J. [Helsinki Univ. of Technology, Espoo (Finland); Laemsae, M. [Raisio Group Oil Milling Industry, Raisio (Finland)

    1996-12-31

    It was shown that lipases can be used as biocatalysts in the production of useful biodegradable compounds such as 1-butyl oleate by direct esterification of butanol and oleic acid to decrease viscosity of biodiesel in winter use. By enzymic transesterification, a mixture of 2-ethyl-1-hexyl esters from rapeseed oil fatty acids can be obtained in good yields for use as a solvent, and of trimethylolpropane esters for use as a lubricant. Finally, it was demonstrated that polyesters with a mass average molar mass in excess of 75,000 g mol{sup -}1 can be obtained by esterification or transesterification by using lipase as biocatalyst. (author) (3 refs.)

  2. Lipase biocatalysis for useful biodegradable products

    Energy Technology Data Exchange (ETDEWEB)

    Linko, Y Y; Wang, Zhuo Lin; Uosukainen, E; Seppaelae, J [Helsinki Univ. of Technology, Espoo (Finland); Laemsae, M [Raisio Group Oil Milling Industry, Raisio (Finland)

    1997-12-31

    It was shown that lipases can be used as biocatalysts in the production of useful biodegradable compounds such as 1-butyl oleate by direct esterification of butanol and oleic acid to decrease viscosity of biodiesel in winter use. By enzymic transesterification, a mixture of 2-ethyl-1-hexyl esters from rapeseed oil fatty acids can be obtained in good yields for use as a solvent, and of trimethylolpropane esters for use as a lubricant. Finally, it was demonstrated that polyesters with a mass average molar mass in excess of 75,000 g mol{sup -}1 can be obtained by esterification or transesterification by using lipase as biocatalyst. (author) (3 refs.)

  3. Development of biodegradable fungicide by radiation

    International Nuclear Information System (INIS)

    Lee, Young Jeun; Kim, Dong Sub

    2010-01-01

    To develop the fungicide which is biodegradable and alternative to chemical pesticide that has an side effect of environmental pollution, Mutant induction of the enhanced antifungal activity was studied by using radiation. Characteristics and structure of antifungal biomaterials derived from these mutants were analysed. Sixteen antifungal microbes were isolated and 4 antifungal activity enhanced mutants were induced by using radiation. P. lentimorbus WJ5a17 had 41% higher antifungal activity than the wild type. Two biomaterials related to the antifungal activity from the above mutant were isolated and purified

  4. Development of biodegradable fungicide by radiation

    International Nuclear Information System (INIS)

    Lee, Youngkeun; Kim, Dongsub

    2012-03-01

    To develop the fungicide which is biodegradable and alternative to chemical pesticide that has an side effect of environmental pollution, Mutant induction of the enhanced antifungal activity was studied by using radiation. Characteristics and structure of antifungal biomaterials derived from these mutants were analysed. Two biomaterials related to the antifungal activity from the above mutant were isolated and purified. Microbial pesticide were manufactured in combination of various additives. Antiphytopathogenic effects were proven by field test and it was promising to prevent Chinese cabbage and radish from phytophthora and root rot

  5. WWTP respirometric application. Toxicity and biodegradability studies

    International Nuclear Information System (INIS)

    Aguilar Sanchis, M. I.; Llorens Pascual del Riquelme, M.; Meseguer Zapata, V. F.; Ortuno Sandoval, J.; Perez martin, A. B.; Saez Mercader, J.

    2009-01-01

    Respirometry is the measurements of the oxygen consumption of microorganisms present in activated sludge, which can be related to both biomass growth and substrate consumption to obtain energy. Yh parameter (biomass/substrate yield), denominated heterotrophic biomass yield coefficient, express the portion of substrate transformed to biomass. eight municipal wastewater treatment plants (WWTP) with different activated sludge biological treatment were selected to study wastewater biodegradability by measuring respiration rate in dynamic mode. The selection of the WWTP was based on the aeration system operating in the biological reactor. Besides, the effect of heavy metals and some organic compounds on biological process has been studied. (Author) 12 refs.

  6. Biodegradation of Low-Density Polyethylene (LDPE) by Mixed Culture of Lysinibacillus xylanilyticus and Aspergillus niger in Soil

    Science.gov (United States)

    Esmaeili, Atefeh; Pourbabaee, Ahmad Ali; Alikhani, Hossein Ali; Shabani, Farzin; Esmaeili, Ensieh

    2013-01-01

    In this study, two strains of Aspergillus sp. and Lysinibacillus sp. with remarkable abilities to degrade low-density polyethylene (LDPE) were isolated from landfill soils in Tehran using enrichment culture and screening procedures. The biodegradation process was performed for 126 days in soil using UV- and non-UV-irradiated pure LDPE films without pro-oxidant additives in the presence and absence of mixed cultures of selected microorganisms. The process was monitored by measuring the microbial population, the biomass carbon, pH and respiration in the soil, and the mechanical properties of the films. The carbon dioxide measurements in the soil showed that the biodegradation in the un-inoculated treatments were slow and were about 7.6% and 8.6% of the mineralisation measured for the non-UV-irradiated and UV-irradiated LDPE, respectively, after 126 days. In contrast, in the presence of the selected microorganisms, biodegradation was much more efficient and the percentages of biodegradation were 29.5% and 15.8% for the UV-irradiated and non-UV-irradiated films, respectively. The percentage decrease in the carbonyl index was higher for the UV-irradiated LDPE when the biodegradation was performed in soil inoculated with the selected microorganisms. The percentage elongation of the films decreased during the biodegradation process. The Fourier transform infra-red (FT-IR), x-ray diffraction (XRD) and scanning electron microscopy (SEM) were used to determine structural, morphological and surface changes on polyethylene. These analyses showed that the selected microorganisms could modify and colonise both types of polyethylene. This study also confirmed the ability of these isolates to utilise virgin polyethylene without pro-oxidant additives and oxidation pretreatment, as the carbon source. PMID:24086254

  7. Biodegradation of low-density polyethylene (LDPE by mixed culture of Lysinibacillus xylanilyticus and Aspergillus niger in soil.

    Directory of Open Access Journals (Sweden)

    Atefeh Esmaeili

    Full Text Available In this study, two strains of Aspergillus sp. and Lysinibacillus sp. with remarkable abilities to degrade low-density polyethylene (LDPE were isolated from landfill soils in Tehran using enrichment culture and screening procedures. The biodegradation process was performed for 126 days in soil using UV- and non-UV-irradiated pure LDPE films without pro-oxidant additives in the presence and absence of mixed cultures of selected microorganisms. The process was monitored by measuring the microbial population, the biomass carbon, pH and respiration in the soil, and the mechanical properties of the films. The carbon dioxide measurements in the soil showed that the biodegradation in the un-inoculated treatments were slow and were about 7.6% and 8.6% of the mineralisation measured for the non-UV-irradiated and UV-irradiated LDPE, respectively, after 126 days. In contrast, in the presence of the selected microorganisms, biodegradation was much more efficient and the percentages of biodegradation were 29.5% and 15.8% for the UV-irradiated and non-UV-irradiated films, respectively. The percentage decrease in the carbonyl index was higher for the UV-irradiated LDPE when the biodegradation was performed in soil inoculated with the selected microorganisms. The percentage elongation of the films decreased during the biodegradation process. The Fourier transform infra-red (FT-IR, x-ray diffraction (XRD and scanning electron microscopy (SEM were used to determine structural, morphological and surface changes on polyethylene. These analyses showed that the selected microorganisms could modify and colonise both types of polyethylene. This study also confirmed the ability of these isolates to utilise virgin polyethylene without pro-oxidant additives and oxidation pretreatment, as the carbon source.

  8. Anaerobic biodegradation of dissolved ethanol in a pilot-scale sand aquifer: Variability in plume (redox) biogeochemistry

    Science.gov (United States)

    McLeod, Heather C.; Roy, James W.; Slater, Gregory F.; Smith, James E.

    2018-01-01

    The use of ethanol in alternative fuels has led to contamination of groundwater with high concentrations of this easily biodegradable organic compound. Previous laboratory and field studies have shown vigorous biodegradation of ethanol plumes, with prevalence of reducing conditions and methanogenesis. The objective of this study was to further our understanding of the dynamic biogeochemistry processes, especially dissolved gas production, that may occur in developing and aging plume cores at sites with ethanol or other organic contamination of groundwater. The experiment performed involved highly-detailed spatial and temporal monitoring of ethanol biodegradation in a 2-dimensional (175 cm high × 525 cm long) sand aquifer tank for 330 days, with a vertical shift in plume position and increased nutrient inputs occurring at Day 100. Rapid onset of fermentation, denitrification, sulphate-reduction and iron(III)-reduction occurred following dissolved ethanol addition, with the eventual widespread development of methanogenesis. The detailed observations also demonstrate a redox zonation that supports the plume fringe concept, secondary reactions resulting from a changing/moving plume, and time lags for the various biodegradation processes. Additional highlights include: i) the highest dissolved H2 concentrations yet reported for groundwater, possibly linked to vigorous fermentation in the absence of common terminal electron-acceptors (i.e., dissolved oxygen, nitrate, and sulphate, and iron(III)-minerals) and methanogenesis; ii) evidence of phosphorus nutrient limitation, which stalled ethanol biodegradation and perhaps delayed the onset of methanogenesis; and iii) the occurrence of dissimilatory nitrate reduction to ammonium, which has not been reported for ethanol biodegradation to date.

  9. Hydrocarbons biodegradation in unsaturated porous medium; Biodegradation des hydrocarbures en milieu poreux insature

    Energy Technology Data Exchange (ETDEWEB)

    Gautier, C

    2007-12-15

    Biological processes are expected to play an important role in the degradation of petroleum hydrocarbons in contaminated soils. However, factors influencing the kinetics of biodegradation are still not well known, especially in the unsaturated zone. To address these biodegradation questions in the unsaturated zone an innovative experimental set up based on a physical column model was developed. This experimental set up appeared to be an excellent tool for elaboration of a structured porous medium, with well defined porous network and adjusted water/oil saturations. Homogeneous repartition of both liquid phases (i.e., aqueous and non aqueous) in the soil pores, which also contain air, was achieved using ceramic membranes placed at the bottom of the soil column. Reproducible interfaces (and connectivity) are developed between gas, and both non mobile water and NAPL phases, depending on the above-defined characteristics of the porous media and on the partial saturations of these three phases (NAPL, water and gas). A respirometric apparatus was coupled to the column. Such experimental set up have been validated with hexadecane in dilution in an HMN phase. This approach allowed detailed information concerning n-hexadecane biodegradation, in aerobic condition, through the profile of the oxygen consumption rate. We have taken benefit of this technique, varying experimental conditions, to determine the main parameters influencing the biodegradation kinetics and compositional evolution of hydrocarbons, under steady state unsaturated conditions and with respect to aerobic metabolism. Impacts of the nitrogen quantity and of three different grain sizes have been examined. Biodegradation of petroleum cut, as diesel cut and middle distillate without aromatic fraction, were, also studied. (author)

  10. Advances in Biodegradation of Multiple Volatile Organic Compounds

    Science.gov (United States)

    Zhang, M.; Yoshikawa, M.

    2017-12-01

    Bioremediation of soil and groundwater containing multiple contaminants remains a challenge in environmental science and engineering because complete biodegradation of all components is necessary but very difficult to accomplish in practice. This presentation provides a brief overview on advances in biodegradation of multiple volatile organic compounds (VOCs) including chlorinated ethylenes, benzene, toluene and dichloromethane (DCM). Case studies on aerobic biodegradation of benzene, toluene and DCM, and integrated anaerobic-aerobic biodegradation of 7 contaminants, specifically, tetrachloroethylene (PCE), trichloroethylene (TCE), cis-dichloroethylene (cis-DCE), vinyl chloride (VC), DCM, benzene and toluene will be provided. Recent findings based on systematic laboratory experiments indicated that aerobic toluene degradation can be enhanced by co-existence of benzene. Propioniferax, not a known benzene, toluene and DCM degrader can be a key microorganism that involves in biodegradation when the three contaminants co-exist. Integrated anaerobic-aerobic biodegradation is capable of completely degrading the seven VOCs with initial concentrations less than 30 mg/L. Dehalococcoides sp., generally considered sensitive to oxygen, can survive aerobic conditions for at least 28 days, and can be activated during the subsequent anaerobic biodegradation. This presentation may provide a systematic information about biodegradation of multiple VOCs, and a scientific basis for the complete bioremediation of multiple contaminants in situ.

  11. Methods for Evaluating the Biodegradability of Environmentally Degradable Polymers

    NARCIS (Netherlands)

    Zee, van der M.

    2014-01-01

    This chapter presents an overview of the current knowledge on experimental methods for monitoring the biodegradability of polymeric materials. The focus is, in particular, on the biodegradation of materials under environmental conditions. Examples of in vivo degradation of polymers used in

  12. Biodegradability of unused lubricating brake fluids in fresh and ...

    African Journals Online (AJOL)

    The biodegradability of four unused lubricating brake fluids (Total brake fluid, Allied brake fluid, Oando brake fluid and Ate brake fluid) was carried out in fresh and marine water obtained from Isiokpo stream and Bonny river of the Niger Delta, South South Nigeria. Biodegradability, of the brake fluids were obtained after a 56 ...

  13. Biodegradation of clofibric acid and identification of its metabolites

    Energy Technology Data Exchange (ETDEWEB)

    Salgado, R. [REQUIMTE/CQFB, Chemistry Department, FCT, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal); ESTS-IPS, Escola Superior de Tecnologia de Setubal do Instituto Politecnico de Setubal, Rua Vale de Chaves, Campus do IPS, Estefanilha, 2910-761 Setubal (Portugal); Oehmen, A. [REQUIMTE/CQFB, Chemistry Department, FCT, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal); Carvalho, G. [REQUIMTE/CQFB, Chemistry Department, FCT, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal); Instituto de Biologia Experimental e Tecnologica (IBET), Av. da Republica (EAN), 2784-505 Oeiras (Portugal); Noronha, J.P. [REQUIMTE/CQFB, Chemistry Department, FCT, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal); Reis, M.A.M., E-mail: amr@fct.unl.pt [REQUIMTE/CQFB, Chemistry Department, FCT, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal)

    2012-11-30

    Graphical abstract: Metabolites produced during clofibric acid biodegradation. Highlights: Black-Right-Pointing-Pointer Clofibric acid is biodegradable. Black-Right-Pointing-Pointer Mainly heterotrophic bacteria degraded the clofibric acid. Black-Right-Pointing-Pointer Metabolites of clofibric acid biodegradation were identified. Black-Right-Pointing-Pointer The metabolic pathway of clofibric acid biodegradation is proposed. - Abstract: Clofibric acid (CLF) is the pharmaceutically active metabolite of lipid regulators clofibrate, etofibrate and etofyllinclofibrate, and it is considered both environmentally persistent and refractory. This work studied the biotransformation of CLF in aerobic sequencing batch reactors (SBRs) with mixed microbial cultures, monitoring the efficiency of biotransformation of CLF and the production of metabolites. The maximum removal achieved was 51% biodegradation (initial CLF concentration = 2 mg L{sup -1}), where adsorption and abiotic removal mechanisms were shown to be negligible, showing that CLF is indeed biodegradable. Tests showed that the observed CLF biodegradation was mainly carried out by heterotrophic bacteria. Three main metabolites were identified, including {alpha}-hydroxyisobutyric acid, lactic acid and 4-chlorophenol. The latter is known to exhibit higher toxicity than the parent compound, but it did not accumulate in the SBRs. {alpha}-Hydroxyisobutyric acid and lactic acid accumulated for a period, where nitrite accumulation may have been responsible for inhibiting their degradation. A metabolic pathway for the biodegradation of CLF is proposed in this study.

  14. Biodegradation of clofibric acid and identification of its metabolites

    International Nuclear Information System (INIS)

    Salgado, R.; Oehmen, A.; Carvalho, G.; Noronha, J.P.; Reis, M.A.M.

    2012-01-01

    Graphical abstract: Metabolites produced during clofibric acid biodegradation. Highlights: ► Clofibric acid is biodegradable. ► Mainly heterotrophic bacteria degraded the clofibric acid. ► Metabolites of clofibric acid biodegradation were identified. ► The metabolic pathway of clofibric acid biodegradation is proposed. - Abstract: Clofibric acid (CLF) is the pharmaceutically active metabolite of lipid regulators clofibrate, etofibrate and etofyllinclofibrate, and it is considered both environmentally persistent and refractory. This work studied the biotransformation of CLF in aerobic sequencing batch reactors (SBRs) with mixed microbial cultures, monitoring the efficiency of biotransformation of CLF and the production of metabolites. The maximum removal achieved was 51% biodegradation (initial CLF concentration = 2 mg L −1 ), where adsorption and abiotic removal mechanisms were shown to be negligible, showing that CLF is indeed biodegradable. Tests showed that the observed CLF biodegradation was mainly carried out by heterotrophic bacteria. Three main metabolites were identified, including α-hydroxyisobutyric acid, lactic acid and 4-chlorophenol. The latter is known to exhibit higher toxicity than the parent compound, but it did not accumulate in the SBRs. α-Hydroxyisobutyric acid and lactic acid accumulated for a period, where nitrite accumulation may have been responsible for inhibiting their degradation. A metabolic pathway for the biodegradation of CLF is proposed in this study.

  15. Biodegradation performance of environmentally-friendly insulating oil

    Science.gov (United States)

    Yang, Jun; He, Yan; Cai, Shengwei; Chen, Cheng; Wen, Gang; Wang, Feipeng; Fan, Fan; Wan, Chunxiang; Wu, Liya; Liu, Ruitong

    2018-02-01

    In this paper, biodegradation performance of rapeseed insulating oil (RDB) and FR3 insulating oil (FR3) was studied by means of ready biodegradation method which was performed with Organization for Economic Co-operation and Development (OECD) 301B. For comparison, the biodegradation behaviour of 25# mineral insulating oil was also characterized with the same method. The testing results shown that the biodegradation degree of rapeseed insulating oil, FR3 insulating oil and 25# mineral insulating oil was 95.8%, 98.9% and 38.4% respectively. Following the “new chemical risk assessment guidelines” (HJ/T 154 - 2004), which illustrates the methods used to identify and assess the process safety hazards inherent. The guidelines can draw that the two vegetable insulating oils, i.e. rapeseed insulating oil and FR3 insulating oil are easily biodegradable. Therefore, the both can be classified as environmentally-friendly insulating oil. As expected, 25# mineral insulating oil is hardly biodegradable. The main reason is that 25# mineral insulating oil consists of isoalkanes, cyclanes and a few arenes, which has few unsaturated bonds. Biodegradation of rapeseed insulating oil and FR3 insulating oil also remain some difference. Biodegradation mechanism of vegetable insulating oil was revealed from the perspective of hydrolysis kinetics.

  16. Biodegradable elastomers for biomedical applications and regenerative medicine

    NARCIS (Netherlands)

    Bat, Erhan; Zhang, Zheng; Feijen, Jan; Grijpma, Dirk W.; Poot, Andre A.

    Synthetic biodegradable polymers are of great value for the preparation of implants that are required to reside only temporarily in the body. The use of biodegradable polymers obviates the need for a second surgery to remove the implant, which is the case when a nondegradable implant is used. After

  17. Fungal biodegradation of plantain peel for broiler finisher feeding: In ...

    African Journals Online (AJOL)

    ... protein, cholesterol and glucose were significantly (P<0.05) affected by the treatments. Fungal biodegradation of PPL using A.niger has the potential of enhancing feed intake, nutrient digestibility and the body weight gain of broiler finisher. Keywords: Aspergillus niger, biodegradation, nutrient enhancement and broilers.

  18. Biodegradable hollow fibres for the controlled release of drugs

    NARCIS (Netherlands)

    Schakenraad, J.M.; Oosterbaan, J.A.; Nieuwenhuis, P.; Molenaar, I.; Olijslager, J.; Potman, W.; Eenink, M.J.D.; Feijen, Jan

    1988-01-01

    Biodegradable hollow fibres of poly-l-lactic acid (PLLA) filled with a suspension of the contraceptive hormone levonorgestrel in castor oil were implanted subcutaneously in rats to study the rate of drug release, rate of biodegradation and tissue reaction caused by the implant. The in vivo drug

  19. Biodegradation of penicillin-G wastewater using Phanerochate ...

    African Journals Online (AJOL)

    SERVER

    2007-06-18

    Jun 18, 2007 ... emission of toxic substances and formation of sludge. In recent years, a white rot fungus, ... sporium as a potential microorganism for the biodegrade- tion of polychlorinated ... 1990), paper mill bleach plant effluent (Fukui, 1992) and spentwash (Fahy et al., ..... Studies on biodegradation of toxic compounds.

  20. The Use of Quality Benchmarking in Assessing Web Resources for the Dermatology Virtual Branch Library of the National electronic Library for Health (NeLH)

    OpenAIRE

    Boulos, MN Kamel; Roudsari, AV; Gordon, C; Gray, JA Muir

    2001-01-01

    Background In 1998, the U.K. National Health Service Information for Health Strategy proposed the implementation of a National electronic Library for Health to provide clinicians, healthcare managers and planners, patients and the public with easy, round the clock access to high quality, up-to-date electronic information on health and healthcare. The Virtual Branch Libraries are among the most important components of the National electronic Library for Health . They aim at creating online kno...

  1. Characterization of selected municipal solid waste components to estimate their biodegradability.

    Science.gov (United States)

    Bayard, R; Benbelkacem, H; Gourdon, R; Buffière, P

    2018-06-15

    Biological treatments of Residual Municipal Solid Waste (RMSW) allow to divert biodegradable materials from landfilling and recover valuable alternative resources. The biodegradability of the waste components needs however to be assessed in order to design the bioprocesses properly. The present study investigated complementary approaches to aerobic and anaerobic biotests for a more rapid evaluation. A representative sample of residual MSW was collected from a Mechanical Biological Treatment (MBT) plant and sorted out into 13 fractions according to the French standard procedure MODECOM™. The different fractions were analyzed for organic matter content, leaching behavior, contents in biochemical constituents (determined by Van Soest's acid detergent fiber method), Biochemical Oxygen Demand (BOD) and Bio-Methane Potential (BMP). Experimental data were statistically treated by Principal Components Analysis (PCA). Cumulative oxygen consumption from BOD tests and cumulative methane production from BMP tests were found to be positively correlated in all waste fractions. No correlation was observed between the results from BOD or BMP bioassays and the contents in cellulose-like, hemicelluloses-like or labile organic compounds. No correlation was observed either with the results from leaching tests (Soluble COD). The contents in lignin-like compounds, evaluated as the non-extracted RES fraction in Van Soest's method, was found however to impact negatively the biodegradability assessed by BOD or BMP tests. Since cellulose, hemicelluloses and lignin are the polymers responsible for the structuration of lignocellulosic complexes, it was concluded that the structural organization of the organic matter in the different waste fractions was more determinant on biodegradability than the respective contents in individual biopolymers. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Experimental studies of biodegradation of asphalt by microorganisms

    International Nuclear Information System (INIS)

    Mine, Tatsuya; Mihara, Morihiro; Ooi, Takao; Lin, Kong-hua; Kawakami, Yasushi

    2000-04-01

    On the geological disposal system of the radioactive wastes, the activities of the microorganisms that could degrade the asphalt might be significant for the assessment of the system performance. As the main effects of the biodegradation of the asphalt, the fluctuation of leaching behavior of the nuclides included in asphalt waste has been indicated. In this study, the asphalt biodegradation test was carried out. The microorganism of which asphalt degradation ability was comparatively higher under aerobic condition and anaerobic condition was used. The asphalt biodegradation rate was calculated and it was evaluated whether the asphalt biodegradation in this system could occur. The results show that the asphalt biodegradation rate under anaerobic and high alkali condition will be 300 times lower than under aerobic and neutral pH. (author)

  3. Biodegradation of creosote compounds: Comparison of experiments at different scales

    DEFF Research Database (Denmark)

    Broholm, K.; Arvin, Erik

    2001-01-01

    of the pyrroles on the biodegradation of benzene, and the biodegradation of benzothiophene occurs only in the presence of a primary substrate. The experiments show that some biodegradation processes of organic compounds may be common to different microorganisms.......This paper compares the results of biodegradation experiments with creosote compounds performed at different scales. The experiments include field observations, field experiments, large-scale intact laboratory column experiments, model fracture experiments, and batch experiments. Most...... of the experiments were conducted with till or ground water from the field site at Ringe on the island of Funen. Although the experiments were conducted on different scales, they revealed that some phenomena-e.g., an extensive biodegradation potential of several of the creosote compounds, the inhibitory influence...

  4. Best conditions for biodegradation of diesel oil by chemometric tools

    Directory of Open Access Journals (Sweden)

    Ewa Kaczorek

    2014-01-01

    Full Text Available Diesel oil biodegradation by different bacteria-yeast-rhamnolipids consortia was tested. Chromatographic analysis of post-biodegradation residue was completed with chemometric tools (ANOVA, and a novel ranking procedure based on the sum of ranking differences. These tools were used in the selection of the most effective systems. The best results of aliphatic fractions of diesel oil biodegradation were observed for a yeast consortia with Aeromonas hydrophila KR4. For these systems the positive effect of rhamnolipids on hydrocarbon biodegradation was observed. However, rhamnolipids addition did not always have a positive influence on the biodegradation process (e.g. in case of yeast consortia with Stenotrophomonas maltophila KR7. Moreover, particular differences in the degradation pattern were observed for lower and higher alkanes than in the case with C22. Normally, the best conditions for "lower" alkanes are Aeromonas hydrophila KR4 + emulsifier independently from yeasts and e.g. Pseudomonas stutzeri KR7 for C24 alkane.

  5. Best conditions for biodegradation of diesel oil by chemometric tools

    Science.gov (United States)

    Kaczorek, Ewa; Bielicka-Daszkiewicz, Katarzyna; Héberger, Károly; Kemény, Sándor; Olszanowski, Andrzej; Voelkel, Adam

    2014-01-01

    Diesel oil biodegradation by different bacteria-yeast-rhamnolipids consortia was tested. Chromatographic analysis of post-biodegradation residue was completed with chemometric tools (ANOVA, and a novel ranking procedure based on the sum of ranking differences). These tools were used in the selection of the most effective systems. The best results of aliphatic fractions of diesel oil biodegradation were observed for a yeast consortia with Aeromonas hydrophila KR4. For these systems the positive effect of rhamnolipids on hydrocarbon biodegradation was observed. However, rhamnolipids addition did not always have a positive influence on the biodegradation process (e.g. in case of yeast consortia with Stenotrophomonas maltophila KR7). Moreover, particular differences in the degradation pattern were observed for lower and higher alkanes than in the case with C22. Normally, the best conditions for “lower” alkanes are Aeromonas hydrophila KR4 + emulsifier independently from yeasts and e.g. Pseudomonas stutzeri KR7 for C24 alkane. PMID:24948922

  6. Biodegradation of PuEDTA and Impacts on Pu Mobility

    International Nuclear Information System (INIS)

    Xun, Luying; Bolton, Jr. Harvey

    2001-01-01

    Ethylenediaminetetraacetate (EDTA) and nitrilotriacetate (NTA) are synthetic chelating agents, which can form strong water-soluble complexes with radionuclides and metals and has been used to decontaminate and process nuclear materials. Synthetic chelating agents were co-disposed with radionuclides (e.g., 60Co, Pu) and heavy metals enhancing their transport in the subsurface. An understanding of EDTA biodegradation is essential to help mitigate enhanced radionuclide transport by EDTA. The objective of this research is to develop fundamental data on factors that govern the biodegradation of radionuclide-EDTA. These factors include the dominant EDTA aqueous species, the biodegradation of various metal-EDTA complexes, the uptake of various metal-EDTA complexes into the cell, the distribution and mobility of the radionuclide during and after EDTA biodegradation, and the enzymology and genetics of EDTA biodegradation

  7. Evaluation of Artificial Intelligence Based Models for Chemical Biodegradability Prediction

    Directory of Open Access Journals (Sweden)

    Aleksandar Sabljic

    2004-12-01

    Full Text Available This study presents a review of biodegradability modeling efforts including a detailed assessment of two models developed using an artificial intelligence based methodology. Validation results for these models using an independent, quality reviewed database, demonstrate that the models perform well when compared to another commonly used biodegradability model, against the same data. The ability of models induced by an artificial intelligence methodology to accommodate complex interactions in detailed systems, and the demonstrated reliability of the approach evaluated by this study, indicate that the methodology may have application in broadening the scope of biodegradability models. Given adequate data for biodegradability of chemicals under environmental conditions, this may allow for the development of future models that include such things as surface interface impacts on biodegradability for example.

  8. Study of biodegradation of partially hydrolyzed polyacrylamide in an oil reservoir after polymer flooding

    International Nuclear Information System (INIS)

    Bao, M.; Chen, Q.; Li, Y.; Jiang, G.

    2009-01-01

    Studies have demonstrated that the amide group of polyacrylamides can provide a nitrogen source for microorganisms. However, the carbon backbone of the polymers cannot be cleaved by microbial activity. This study examined the biodegradability of partially hydrolyzed polyacrylamide (HPAM) in an aerobic environment both before and after bacterial biodegradation. Results of the infrared spectrum study indicated that the amide group of HPAM in the products was converted to a carboxyl group. High performance liquid chromatography analyses did not demonstrate the presence of acrylamide monomers. A scanning electron microscopy (SEM) study showed that the surfaces of HPAM particles had been altered by the biodegradation process. Results of the study indicated that the HPAM carbon backbone was metabolized by the bacteria during the course of its growth. It was hypothesized that the HPAM was initially utilized by the bacteria as a nitrogen source by the hydrolysis of the HPAM amide groups using an amidase enzyme. Oxidation of the carbon backbone chain then occurred by monooxygenase catalysis. It was concluded that the HPAM carbon backbone then served as a source for further bacterial growth and metabolism. 13 refs., 5 figs

  9. Biodegradation test of SPS-LS blends as polymer electrolyte membrane fuel cells

    International Nuclear Information System (INIS)

    Putri, Zufira; Arcana, I Made

    2014-01-01

    Sulfonated polystyrene (SPS) can be applied as a proton exchange membrane fuel cell due to its fairly good chemical stability. In order to be applied as polymer electrolyte membrane fuel cells (PEMFCs), membrane polymer should have a good ionic conductivity, high proton conductivity, and high mechanical strength. Lignosulfonate (LS) is a complex biopolymer which has crosslinks and sulfonate groups. SPS-LS blends with addition of SiO 2 are used to increase the proton conductivity and to improve the mechanical properties and thermal stability. However, the biodegradation test of SPS-LS blends is required to determine whether the application of these membranes to be applied as an environmentally friendly membrane. In this study, had been done the synthesis of SPS, biodegradability test of SPS-LS blends with variations of LS and SiO 2 compositions. The biodegradation test was carried out in solid medium of Luria Bertani (LB) with an activated sludge used as a source of microorganism at incubation temperature of 37°C. Based on the results obtained indicated that SPS-LS-SiO 2 blends are more decomposed by microorganism than SPS-LS blends. This result is supported by analysis of weight reduction percentage, functional groups with Fourier Transform Infrared (FTIR) Spectroscopy, and morphological surface with Scanning Electron Microscopy (SEM)

  10. Effect of additional carbon source on naphthalene biodegradation by Pseudomonas putida G7

    International Nuclear Information System (INIS)

    Lee, Kangtaek; Park, Jin-Won; Ahn, Ik-Sung

    2003-01-01

    Addition of a carbon source as a nutrient into soil is believed to enhance in situ bioremediation by stimulating the growth of microorganisms that are indigenous to the subsurface and are capable of degrading contaminants. However, it may inhibit the biodegradation of organic contaminants and result in diauxic growth. The objective of this work is to study the effect of pyruvate as another carbon source on the biodegradation of polynuclear aromatic hydrocarbons (PAHs). In this study, naphthalene was used as a model PAH, ammonium sulfate as a nitrogen source, and oxygen as an electron acceptor. Pseudomonas putida G7 was used as a model naphthalene-degrading microorganism. From a chemostat culture, the growth kinetics of P. putida G7 on pyruvate was determined. At concentrations of naphthalene and pyruvate giving similar growth rates of P. putida G7, diauxic growth of P. putida G7 was not observed. It is suggested that pyruvate does not inhibit naphthalene biodegradation and can be used as an additional carbon source to stimulate the growth of P. putida G7 that can degrade polynuclear aromatic hydrocarbons

  11. Electrically conductive biodegradable polymer composite for nerve regeneration: electricity-stimulated neurite outgrowth and axon regeneration.

    Science.gov (United States)

    Zhang, Ze; Rouabhia, Mahmoud; Wang, Zhaoxu; Roberge, Christophe; Shi, Guixin; Roche, Phillippe; Li, Jiangming; Dao, Lê H

    2007-01-01

    Normal and electrically stimulated PC12 cell cultures and the implantation of nerve guidance channels were performed to evaluate newly developed electrically conductive biodegradable polymer composites. Polypyrrole (PPy) doped by butane sulfonic acid showed a significantly higher number of viable cells compared with PPy doped by polystyrenesulfonate after a 6-day culture. The PC12 cells were left to proliferate for 6 days, and the PPy-coated membranes, showing less initial cell adherence, recorded the same proliferation rate as did the noncoated membranes. Direct current electricity at various intensities was applied to the PC12 cell-cultured conductive membranes. After 7 days, the greatest number of neurites appeared on the membranes with a current intensity approximating 1.7-8.4 microA/cm. Nerve guidance channels made of conductive biodegradable composite were implanted into rats to replace 8 mm of sciatic nerve. The implants were harvested after 2 months and analyzed with immunohistochemistry and transmission electron microscopy. The regenerated nerve tissue displayed myelinated axons and Schwann cells that were similar to those in the native nerve. Electrical stimulation applied through the electrically conductive biodegradable polymers therefore enhanced neurite outgrowth in a current-dependent fashion. The conductive polymers also supported sciatic nerve regeneration in rats.

  12. Effects of different culture media on biodegradation of triclosan by Rhodotorula mucilaginosa and Penicillium sp.

    Science.gov (United States)

    Ertit Taştan, Burcu; Özdemir, Caner; Tekinay, Turgay

    Triclosan is an antimicrobial agent and a persistent pollutant. The biodegradation of triclosan is dependent on many variables including the biodegradation organism and the environmental conditions. Here, we evaluated the triclosan degradation potential of two fungi strains, Rhodotorula mucilaginosa and Penicillium sp., and the rate of its turnover to 2,4-dichlorophenol (2,4-DCP). Both of these strains showed less susceptibility to triclosan when grown in minimal salt medium. In order to further evaluate the effects of environmental conditions on triclosan degradation, three different culture conditions including original thermal power plant wastewater, T6 nutrimedia and ammonium mineral salts medium were used. The maximum triclosan degradation yield was 48% for R. mucilaginosa and 82% for Penicillium sp. at 2.7 mg/L triclosan concentration. Biodegradation experiments revealed that Penicillium sp. was more tolerant to triclosan. Scanning electron microscopy micrographs also showed the morphological changes of fungus when cells were treated with triclosan. Overall, these fungi strains could be used as effective microorganisms in active uptake (degradation) and passive uptake (sorption) of triclosan and their efficiency can be increased by optimizing the culture conditions.

  13. Biodegradable, elastomeric coatings with controlled anti-proliferative agent release for magnesium-based cardiovascular stents.

    Science.gov (United States)

    Gu, Xinzhu; Mao, Zhongwei; Ye, Sang-Ho; Koo, Youngmi; Yun, Yeoheung; Tiasha, Tarannum R; Shanov, Vesselin; Wagner, William R

    2016-08-01

    Vascular stent design continues to evolve to further improve the efficacy and minimize the risks associated with these devices. Drug-eluting coatings have been widely adopted and, more recently, biodegradable stents have been the focus of extensive evaluation. In this report, biodegradable elastomeric polyurethanes were synthesized and applied as drug-eluting coatings for a relatively new class of degradable vascular stents based on Mg. The dynamic degradation behavior, hemocompatibility and drug release were investigated for poly(carbonate urethane) urea (PCUU) and poly(ester urethane) urea (PEUU) coated magnesium alloy (AZ31) stents. Poly(lactic-co-glycolic acid) (PLGA) coated and bare stents were employed as control groups. The PCUU coating effectively slowed the Mg alloy corrosion in dynamic degradation testing compared to PEUU-coated, PLGA-coated and bare Mg alloy stents. This was confirmed by electron microscopy, energy-dispersive x-ray spectroscopy and magnesium ion release experiments. PCUU-coating of AZ31 was also associated with significantly reduced platelet adhesion in acute blood contact testing. Rat vascular smooth muscle cell (rSMC) proliferation was successfully inhibited when paclitaxel was released from pre-loaded PCUU coatings. The corrosion retardation, low thrombogenicity, drug loading capacity, and high elasticity make PCUU an attractive option for drug eluting coating on biodegradable metallic cardiovascular stents. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. ANALYSIS OF BIODEGRABILITY OF DEGRADABLE/BIODEGRADABLE PLASTIC MATERIAL IN CONTROLLED COMPOSTING ENVIRONMENT

    Directory of Open Access Journals (Sweden)

    Dana Adamcová

    2016-09-01

    Full Text Available We have obtained eight degradable/biodegradable materials based on starch (certified compostable, sample 4–7, HDPE mixed with totally degradable plastic additive (TDPA, sample 2 and polyethylene with the addition of pro-oxidant additive (d2w, sample 1. Composition of sample 3 has not been reported. The materials have been tested as to the rate and character of their degradability/biodegradability in controlled composting conditions. Experiment explored also the effect of degradation/biodegradation of plastic bags on compost quality. The material of the original samples was subjected to assessment using the Nicolet 6700 FT-IR spectrometer, the outcome thereof was obtaining infrared spectra of the samples. For further specification the original samples were tested using the thermogravimetrical analysis. The texture of the foils at different stages of degradation is presented in the Scanning Electron Microscope (SEM photographs. Plastic bags certified as compostable have degraded in laboratory conditions and their degradation had no impact on the quality and features of compost. Selected samples (4, 6 showed significant erosion on surface when subjected to the SEM analysis. Samples labeled (by their producers as 100% degradable (samples 1, 2, 3 did not show any visual signs of degradation and the process of degradation had no impact on the quality and features of compost. Only one of the samples (sample 1 showed certain erosion of surface when submitted for the SEM analysis.

  15. Biodegradation test of SPS-LS blends as polymer electrolyte membrane fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Putri, Zufira, E-mail: zufira.putri@gmail.com, E-mail: arcana@chem.itb.ac.id; Arcana, I Made, E-mail: zufira.putri@gmail.com, E-mail: arcana@chem.itb.ac.id [Inorganic and Physical Chemistry Research Groups, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Bandung (Indonesia)

    2014-03-24

    Sulfonated polystyrene (SPS) can be applied as a proton exchange membrane fuel cell due to its fairly good chemical stability. In order to be applied as polymer electrolyte membrane fuel cells (PEMFCs), membrane polymer should have a good ionic conductivity, high proton conductivity, and high mechanical strength. Lignosulfonate (LS) is a complex biopolymer which has crosslinks and sulfonate groups. SPS-LS blends with addition of SiO{sub 2} are used to increase the proton conductivity and to improve the mechanical properties and thermal stability. However, the biodegradation test of SPS-LS blends is required to determine whether the application of these membranes to be applied as an environmentally friendly membrane. In this study, had been done the synthesis of SPS, biodegradability test of SPS-LS blends with variations of LS and SiO{sub 2} compositions. The biodegradation test was carried out in solid medium of Luria Bertani (LB) with an activated sludge used as a source of microorganism at incubation temperature of 37°C. Based on the results obtained indicated that SPS-LS-SiO{sub 2} blends are more decomposed by microorganism than SPS-LS blends. This result is supported by analysis of weight reduction percentage, functional groups with Fourier Transform Infrared (FTIR) Spectroscopy, and morphological surface with Scanning Electron Microscopy (SEM)

  16. Sago Starch-Mixed Low-Density Polyethylene Biodegradable Polymer: Synthesis and Characterization

    Directory of Open Access Journals (Sweden)

    Md Enamul Hoque

    2013-01-01

    Full Text Available This research focuses on synthesis and characterization of sago starch-mixed LDPE biodegradable polymer. Firstly, the effect of variation of starch content on mechanical property (elongation at break and Young’s modulus and biodegradability of the polymer was studied. The LDPE was combined with 10%, 30%, 50%, and 70% of sago for this study. Then how the cross-linking with trimethylolpropane triacrylate (TMPTA and electron beam (EB irradiation influence the mechanical and thermal properties of the polymer was investigated. In the 2nd study, to avoid overwhelming of data LDPE polymer was incorporated with only 50% of starch. The starch content had direct influence on mechanical property and biodegradability of the polymer. The elongation at break decreased with increase of starch content, while Young’s modulus and mass loss (i.e., degradation were found to increase with increase of starch content. Increase of cross-linker (TMPTA and EB doses also resulted in increased Young’s modulus of the polymer. However, both cross-linking and EB irradiation processes rendered lowering of polymer’s melting temperature. In conclusion, starch content and modification processes play significant roles in controlling mechanical, thermal, and degradation properties of the starch-mixed LDPE synthetic polymer, thus providing the opportunity to modulate the polymer properties for tailored applications.

  17. Biodegradation of nonylphenol in river sediment

    International Nuclear Information System (INIS)

    Yuan, S.Y.; Yu, C.H.; Chang, B.V.

    2004-01-01

    We investigated the biodegradation of nonylphenol monoethoxylate (NP1EO) and nonylphenol (NP) by aerobic microbes in sediment samples collected at four sites along the Erren River in southern Taiwan. Aerobic degradation rate constants (k 1 ) and half-lives (t 1/2 ) for NP (2 μg g -1 ) ranged from 0.007 to 0.051 day -1 and 13.6 to 99.0 days, respectively; for NP1EO (2 μg g -1 ) the ranges were 0.006 to 0.010 day -1 and 69.3 to 115.5 days. Aerobic degradation rates for NP and NP1EO were enhanced by shaking and increased temperature, and delayed by the addition of Pb, Cd, Cu, Zn, phthalic acid esters (PAEs), and NaCl, as well as by reduced levels of ammonium, phosphate, and sulfate. Of the microorganism strains isolated from the sediment samples, we found that strain JC1 (identified as Pseudomonas sp.) expressed the best biodegrading ability. Also noted was the presence of 4'-amino-acetophenone, an intermediate product resulting from the aerobic degradation of NP by Pseudomonas sp. - The effects of manipulating several factors on nonylphenol and nonylphenol monoethoxylate degradation in river sediment were analysed

  18. Fabrication of environmentally biodegradable lignin nanoparticles.

    Science.gov (United States)

    Frangville, Camille; Rutkevičius, Marius; Richter, Alexander P; Velev, Orlin D; Stoyanov, Simeon D; Paunov, Vesselin N

    2012-12-21

    We developed a method for the fabrication of novel biodegradable nanoparticles (NPs) from lignin which are apparently non-toxic for microalgae and yeast. We compare two alternative methods for the synthesis of lignin NPs which result in particles of very different stability upon change of pH. The first method is based on precipitation of low-sulfonated lignin from an ethylene glycol solution by using diluted acidic aqueous solutions, which yields lignin NPs that are stable over a wide range of pH. The second approach is based on the acidic precipitation of lignin from a high-pH aqueous solution which produces NPs stable only at low pH. Our study reveals that lignin NPs from the ethylene glycol-based precipitation contain densely packed lignin domains which explain the stability of the NPs even at high pH. We characterised the properties of the produced lignin NPs and determined their loading capacities with hydrophilic actives. The results suggest that these NPs are highly porous and consist of smaller lignin domains. Tests with microalgae like Chlamydomonas reinhardtii and yeast incubated in lignin NP dispersions indicated that these NPs lack measurable effect on the viability of these microorganisms. Such biodegradable and environmentally compatible NPs can find applications as drug delivery vehicles, stabilisers of cosmetic and pharmaceutical formulations, or in other areas where they may replace more expensive and potentially toxic nanomaterials. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Immunological Response to Biodegradable Magnesium Implants

    Science.gov (United States)

    Pichler, Karin; Fischerauer, Stefan; Ferlic, Peter; Martinelli, Elisabeth; Brezinsek, Hans-Peter; Uggowitzer, Peter J.; Löffler, Jörg F.; Weinberg, Annelie-Martina

    2014-04-01

    The use of biodegradable magnesium implants in pediatric trauma surgery would render surgical interventions for implant removal after tissue healing unnecessary, thereby preventing stress to the children and reducing therapy costs. In this study, we report on the immunological response to biodegradable magnesium implants—as an important aspect in evaluating biocompatibility—tested in a growing rat model. The focus of this study was to investigate the response of the innate immune system to either fast or slow degrading magnesium pins, which were implanted into the femoral bones of 5-week-old rats. The main alloying element of the fast-degrading alloy (ZX50) was Zn, while it was Y in the slow-degrading implant (WZ21). Our results demonstrate that degrading magnesium implants beneficially influence the immune system, especially in the first postoperative weeks but also during tissue healing and early bone remodeling. However, rodents with WZ21 pins showed a slightly decreased phagocytic ability during bone remodeling when the degradation rate reached its maximum. This may be due to the high release rate of the rare earth-element yttrium, which is potentially toxic. From our results we conclude that magnesium implants have a beneficial effect on the innate immune system but that there are some concerns regarding the use of yttrium-alloyed magnesium implants, especially in pediatric patients.

  20. Polymeric Biodegradable Stent Insertion in the Esophagus

    Directory of Open Access Journals (Sweden)

    Kai Yang

    2016-04-01

    Full Text Available Esophageal stent insertion has been used as a well-accepted and effective alternative to manage and improve the quality of life for patients diagnosed with esophageal diseases and disorders. Current stents are either permanent or temporary and are fabricated from either metal or plastic. The partially covered self-expanding metal stent (SEMS has a firm anchoring effect and prevent stent migration, however, the hyperplastic tissue reaction cause stent restenosis and make it difficult to remove. A fully covered SEMS and self-expanding plastic stent (SEPS reduced reactive hyperplasia but has a high migration rate. The main advantage that polymeric biodegradable stents (BDSs have over metal or plastic stents is that removal is not require and reduce the need for repeated stent insertion. But the slightly lower radial force of BDS may be its main shortcoming and a post-implant problem. Thus, strengthening support of BDS is a content of the research in the future. BDSs are often temporarily effective in esophageal stricture to relieve dysphagia. In the future, it can be expect that biodegradable drug-eluting stents (DES will be available to treat benign esophageal stricture, perforations or leaks with additional use as palliative modalities for treating malignant esophageal stricture, as the bridge to surgery or to maintain luminal patency during neoadjuvant chemoradiation.

  1. A REVIEW ON BIODEGRADABLE STARCH BASED FILM

    Directory of Open Access Journals (Sweden)

    Hooman Molavi

    2015-04-01

    Full Text Available In recent years, biodegradable edible films have become very important in research related to food, due to their compatibility with the environment and their use in the food packaging industry. Various sources can be used in the production of biopolymers as biodegradable films that include polysaccharides, proteins and lipids. Among the various polysaccharides, starch due to its low price and its abundance in nature is of significant importance. Several factors affect the properties of starch films; such as the source which starch is obtained from, as well as the ratio of constituents of the starch. Starch films have advantages such as low thickness, flexibility and transparency though; there are some downsides to mention, such as the poor mechanical properties and water vapor permeability. Thus, using starch alone to produce the film will led to restrictions on its use. To improve the mechanical properties of starch films and also increases resistance against humidity, several methods can be used; including the starch modifying techniques such as cross linking of starch and combining starch with other natural polymers. Other methods such as the use of lipid in formulations of films to increase the resistance to moisture are possible, but lipids are susceptible to oxidation. Therefore, new approaches are based on the integration of different biopolymers in food packaging.

  2. Design Considerations for Developing Biodegradable Magnesium Implants

    Science.gov (United States)

    Brar, Harpreet S.; Keselowsky, Benjamin G.; Sarntinoranont, Malisa; Manuel, Michele V.

    The integration of biodegradable and bioabsorbable magnesium implants into the human body is a complex undertaking that faces major challenges. The complexity arises from the fact that biomaterials must meet both engineering and physiological requirements to ensure the desired properties. Historically, efforts have been focused on the behavior of commercial magnesium alloys in biological environments and their resultant effect on cell-mediated processes. Developing causal relationships between alloy chemistry and micro structure, and its effect on cellular behavior can be a difficult and time intensive process. A systems design approach driven by thermodynamics has the power to provide significant contributions in developing the next generation of magnesium alloy implants with controlled degradability, biocompatibility, and optimized mechanical properties, at reduced time and cost. This approach couples experimental research with theory and mechanistic modeling for the accelerated development of materials. The aim of this article is to enumerate this strategy, design considerations and hurdles for developing new magnesium alloys for use as biodegradable implant materials [1].

  3. Hydrocarbon biodegradation in intertidal wetland sediments.

    Science.gov (United States)

    McGenity, Terry J

    2014-06-01

    Intertidal wetlands, primarily salt marsh, mangrove and mudflats, which provide many essential ecosystem services, are under threat on numerous fronts; a situation that is made worse by crude-oil pollution. Microbes are the main vehicle for remediation of such sediments, and new discoveries, such as novel biodegradation pathways, means of accessing oil, multi-species interactions, and community-level responses to oil addition, are helping us to understand, predict and monitor the fate of oil. Despite this, there are many challenges, not least because of the heterogeneity of these ecosystems and the complexity of crude oil. For example, there is growing awareness about the toxicity of the oxygenated products that result from crude-oil weathering, which are difficult to degrade. This review highlights how developments in areas as diverse as systems biology, microbiology, ecology, biogeochemistry and analytical chemistry are enhancing our understanding of hydrocarbon biodegradation and thus bioremediation of oil-polluted intertidal wetlands. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Analysis on Current Situation and Countermeasure of Domestic Electronic Commerce Logistics in the Internet Age——Based on Resource Dependence Theory

    Directory of Open Access Journals (Sweden)

    Zhang Jiapeng

    2017-01-01

    Full Text Available This paper analyzes the status of electric business logistics in the current Internet era in China, and combines the SWOT analysis with AHP to do the empirical analysis, then puts forward the countermeasure that the electric business logistics resource should be shared based on the resource dependence theory. Through the empirical analysis, it is found that the disadvantages and opportunities of the logistics status are important in the Internet era.The resource sharing strategy based on the resource dependence theory is more scientific. The rational use of Internet technology in electric business logistics industry can achieve “sharing”. It is of great significance for its balanced development, intelligent development and optimization and development.

  5. The efficacy of biodegradable liquid scintillation counting cocktails

    International Nuclear Information System (INIS)

    Klein, R.C.; Gershey, E.L.

    1990-01-01

    Liquid scintillation counting (LSC) waste once accounted for ∼50% of the low-level radioactive wastes generated by academic and biomedial research. Strict regulations banning the land burial of organic liquids led the U.S. Nuclear Regulatory Commission to deregulate very low level LSC waste (10CFR20.306 of the Code of Federal Regulations) in 1981. Today, LSC waste containing ≤0.05 μCi/ml of 3 H or 14 C is generally incinerated as flammable liquid. Several manufacturers are now offering cocktails that contain long-chain and multiringed aromatic compounds that have not been identified as hazardous by the Environmental Protection Agency (EPA) under the Resource Conservation and Recovery Act (40CFR261) or the Clean Water Act (40CFR122). In addition to lower toxicity and higher flash points than their predecessors, these new cocktails are being advertised as biodegradable. Simple exclusion from the relatively short EPA lists of hazardous chemicals, however, may only reflect insufficient study. Five cocktail solvent families were identified by gas chromatography (GC) and GC/mass spectrometry: meta- and ortho-xylenes, trimethylbenzene isomers, linear alkylbenzenes, 1-phenyl-1-(3,4-xylyl)-ethane, and diisopropylnaphthalene. Cocktail efficiencies were determined for tritiated samples commonly found in biomedical research by the internal standard method

  6. Utilization of Triton X-100 and polyethylene glycols during surfactant-mediated biodegradation of diesel fuel

    International Nuclear Information System (INIS)

    Wyrwas, Bogdan; Chrzanowski, Łukasz; Ławniczak, Łukasz; Szulc, Alicja; Cyplik, Paweł; Białas, Wojciech; Szymański, Andrzej; Hołderna-Odachowska, Aleksandra

    2011-01-01

    Highlights: ► Efficient degradation of Triton X-100 under both aerobic and aerobic conditions. ► Triton X-100 was most likely degraded via the ‘central fission’ mechanism. ► Preferential degradation of Triton X-100 over diesel oil. ► The presence of surfactants decreased diesel oil biodegradation efficiency. - Abstract: The hypothesis regarding preferential biodegradation of surfactants applied for enhancement of microbial hydrocarbons degradation was studied. At first the microbial degradation of sole Triton X-100 by soil isolated hydrocarbon degrading bacterial consortium was confirmed under both full and limited aeration with nitrate as an electron acceptor. Triton X-100 (600 mg/l) was utilized twice as fast for aerobic conditions (t 1/2 = 10.3 h), compared to anaerobic conditions (t 1/2 = 21.8 h). HPLC/ESI-MS analysis revealed the preferential biodegradation trends in both components classes of commercial Triton X-100 (alkylphenol ethoxylates) as well as polyethylene glycols. The obtained results suggest that the observed changes in the degree of ethoxylation for polyethylene glycol homologues occurred as a consequence of the ‘central fission’ mechanism during Triton X-100 biodegradation. Subsequent experiments with Triton X-100 at approx. CMC concentration (150 mg/l) and diesel oil supported our initial hypothesis that the surfactant would become the preferred carbon source even for hydrocarbon degrading bacteria. Regardless of aeration regimes Triton X-100 was utilized within 48–72 h. Efficiency of diesel oil degradation was decreased in the presence of surfactant for aerobic conditions by approx. 25% reaching 60 instead of 80% noted for experiments without surfactant. No surfactant influence was observed for anaerobic conditions.

  7. Experimental Study of Poly-l-Lactic Acid Biodegradable Stents in Normal Canine Bile Ducts

    International Nuclear Information System (INIS)

    Yamamoto, Kiyosei; Yoshioka, Tetsuya; Furuichi, Kinya; Sakaguchi, Hiroshi; Anai, Hiroshi; Tanaka, Toshihiro; Morimoto, Kengo; Uchida, Hideo; Kichikawa, Kimihiko

    2011-01-01

    Purpose: This study was designed to clarify the advantages of biodegradable stents in terms of mucosal reaction and biodegradation after placement. We designed a biodegradable stent and assessed stent degradation and changes in the normal bile ducts of dogs. Methods: The biodegradable stent is a balloon-expandable Z stent consisting of poly-l-lactic acid (PLLA) with a diameter of 6 mm and a length of 15 mm. We assessed four groups of three beagle dogs each at 1, 3, 6, and 9 months of follow-up. After evaluating stent migration by radiography and stent and bile duct patency by cholangiography, the dogs were sacrificed to remove the bile duct together with the stent. The bile duct lumen was examined macroscopically and histologically, and the stent degradation was examined macroscopically and by scanning electron microscopy (SEM). Results: Bile duct obstruction was absent and none of the stents migrated. Macroscopic evaluation showed moderate endothelial proliferation in the bile ducts at the implant sites at 3 and 6 months and a slight change at 9 months. Slight mononuclear cell infiltration was histologically identified at all time points and epithelial hyperplasia that was moderate at 3 months was reduced to slight at 6 and 9 months. Stent degradation was macroscopically evident in all animals at 9 months and was proven by SEM in two dogs at 6 months and in all of them at 9 months. Conclusions: Our results suggest that PLLA bioabsorbable stents seems to be useful for implantation in the biliary system with further investigation.

  8. Linear and nonlinear relationships between biodegradation potential and molecular descriptors/fragments for organic pollutants and a theoretical interpretation

    International Nuclear Information System (INIS)

    He, Jia; Qin, Weichao; Zhang, Xujia; Wen, Yang; Su, Limin; Zhao, Yuanhui

    2013-01-01

    Prediction of the biodegradability of organic pollutants is an ecologically desirable and economically feasible tool for estimating the environmental fate of chemicals. In this paper, linear and nonlinear relationships between biological oxygen demand (BOD) and molecular descriptors/fragments have been investigated for 1130 organic chemicals. Significant relationships have been observed between the simple molecular descriptors and %BOD for some homologous compounds, but not for the whole set of compounds. Electronic parameters, such as E HOMO and E LUMO , are the dominant factors affecting the biodegradability for some homologous chemicals. However, other descriptors, such as molecular weight, acid dissociation constant and polarity still have a significant impact on the biodegradation. The best global model for %BOD prediction is that developed from a chain-based fragmentation scheme. At the same time, the theoretical relationship between %BOD and molecular descriptors/fragments has been investigated, based on a first-order kinetic process. The %BOD is nonlinearly, rather than linearly, related to the descriptors. The coefficients of determination can be significantly improved by using nonlinear models for the homologous compounds and the whole data set. After analysing 1130 ready and not ready biodegradable compounds using 23 simple descriptors and various fragmentation schemes, it was revealed that biodegradation could be well predicted from a chain-based fragmentation scheme, a decision tree and a %BOD model. The models were capable of separating NRB and RB with an overall accuracy of 87.2%, 83.0% and 82.5%, respectively. The best classification model developed was a chain-based model but it used 155 fragments. The simplest model was a decision tree which only used 10 structural fragments. The effect of structures on the biodegradation has been analysed and the biodegradation pathway and mechanisms have been discussed based on activating and inactivating

  9. Gamma-sterilization-induced radicals in biodegradable drug delivery systems

    International Nuclear Information System (INIS)

    Maeder, K.; Swartz, H.M.; Domb, A.

    1996-01-01

    Electron paramagnetic resonance (EPR) spectroscopy (1.2 and 9.25 GHz, 25 o C) was used to characterize free radicals in gamma-ray sterilized biodegradable polymers of the type which are in clinical use. Free radicals were detected in all irradiated polymer samples. The temperature of irradiation (25 o vs dry ice temperature) had only a minor influence on the yield of radicals and the shape of the EPR spectra. In contrast, the composition of the polymers and the drugs incorporated in them did strongly influence the amount of radiation-induced free radicals and their reactivity. In general, polymers with high melting points and crystallinity had the highest yields of radicals observable at room temperature. We were able to use the free radicals induced by the usual sterilization procedures to follow the penetration of water and the degradation of the polymers in vitro and in vivo. The ability of in vivo EPR to follow drug delivery noninvasively and continuously in vivo, using the free radicals induced in the usual sterilization process indicates that this approach could be applied immediately for the characterization of these drug delivery systems in experimental animals and in the near future should be able to be used in human subjects. (author)

  10. Anaerobic BTEX biodegradation linked to nitrate and sulfate reduction

    International Nuclear Information System (INIS)

    Dou Junfeng; Liu Xiang; Hu Zhifeng; Deng Dong

    2008-01-01

    Effective anaerobic BTEX biodegradation was obtained under nitrate and sulfate reducing conditions by the mixed bacterial consortium that were enriched from gasoline contaminated soil. Under the conditions of using nitrate or sulfate as reducing acceptor, the degradation rates of the six tested substrates decreased with toluene > ethylbenzene > m-xylene > o-xylene > benzene > p-xylene. The higher concentrations of BTEX were toxic to the mixed cultures and led to reduce the degradation rates of BTEX. Benzene and p-xylene were more toxic than toluene and ethylbenzene. Nitrate was a more favorable electron acceptor compared to sulfate. The measured ratios between the amount of nitrate consumed and the amount of benzene, toluene, ethylbenzene, o-xylene, m-xylene, p-xylene degraded were 9.47, 9.26, 11.14, 12.46, 13.36 and 13.02, respectively. The measured ratios between sulfate reduction and BTEX degradation were 3.51, 4.33, 4.89, 4.81, 4.86 and 4.76, respectively, which were nearly the same to theoretical ones, and the relative error between the measured and calculated ratios was less than 10%

  11. Compost biodegradation of recalcitrant hoof keratin by bacteria and fungi.

    Science.gov (United States)

    Reuter, T; Gilroyed, B H; Xu, W; McAllister, T A; Stanford, K

    2015-08-01

    Compost activities efficiently break down a wide range of organic substances over time. In this study, bovine hoof was used as recalcitrant protein model to gain so far cryptic information on biodegradation during livestock mortalities composting. Bovine hooves (black and white), containing different amounts of melanin, placed into nylon bags were monitored during composting of cattle mortalities for up to 230 days. Besides physiochemical analysis, bacterial 16S and fungal 18S DNA fragments were amplified by PCR and profiles were separated by DGGE. Sequence analysis of separated fragments revealed various bacterial and fungal identities during composting. The microbial diversity was affected by a time-temperature interaction and by the hoof colour. Our molecular data, supported by electron microscopy, suggest hoof colonization by shifting bacteria and fungi communities. During composting, microbial communities work collaboratively in the degradation of recalcitrant organic matter such as keratin over time. A number of biomolecules including recalcitrant proteins may persist in environmental reservoirs, but breakdown can occur during composting. A combination of bioactivity and physiochemical conditions appear to be decisive for the fate of persistent biomolecules. © 2015 The Society for Applied Microbiology.

  12. Biodegradable polycaprolactone (PCL) nanosphere encapsulating superoxide dismutase and catalase enzymes.

    Science.gov (United States)

    Singh, Sushant; Singh, Abhay Narayan; Verma, Anil; Dubey, Vikash Kumar

    2013-12-01

    Biodegradable polycaprolactone (PCL) nanosphere encapsulating superoxide dismutase (SOD) and catalase (CAT) were successfully synthesized using double emulsion (w/o/w) solvent evaporation technique. Characterization of the nanosphere using dynamic light scattering, field emission scanning electron microscope, and Fourier transform infrared spectroscopy revealed a spherical-shaped nanosphere in a size range of 812 ± 64 nm with moderate protein encapsulation efficiency of 55.42 ± 3.7 % and high in vitro protein release. Human skin HaCat cells were used for analyzing antioxidative properties of SOD- and CAT-encapsulated PCL nanospheres. Oxidative stress condition in HaCat cells was optimized with exposure to hydrogen peroxide (H2O2; 1 mM) as external stress factor and verified through reactive oxygen species (ROS) analysis using H2DCFDA dye. PCL nanosphere encapsulating SOD and CAT together indicated better antioxidative defense against H2O2-induced oxidative stress in human skin HaCat cells in comparison to PCL encapsulating either SOD or CAT alone as well as against direct supplement of SOD and CAT protein solution. Increase in HaCat cells SOD and CAT activities after treatment hints toward uptake of PCL nanosphere into the human skin HaCat cells. The result signifies the role of PCL-encapsulating SOD and CAT nanosphere in alleviating oxidative stress.

  13. Biodegradation studies of diesel-contaminated soils and sediments

    International Nuclear Information System (INIS)

    Schlauch, M.; Clark, D.

    1992-01-01

    Radian Corporation is currently remediating the Atchison, Topeka and Sante Fe Railway Superfund site in Clovis, New Mexico. Biodegradation of the petroleum hydrocarbon-contaminated soils and sediments was chosen as the remedial alternative. In order to evaluate the optimum conditions for full-scale bioremediation at this site, Radian designed and implemented various laboratory and field studies. The initial laboratory treatability study was conducted to determine if hydrocarbons in both soils and sediments could be biodegraded using indigenous microorganisms, and determine that the soil were biodegradable, while the sediments were not due to inhibitory factors. To further evaluate the biodegradability6 of the sediments, a laboratory study was initiated which introduced chloride-resistant microbes. The study showed that the sediment bioremediation was possibly by utilizing these microbes; however, the cost was not favorable. Finally, a field plot study was initiated to determine how soil biodegradation would proceed in field conditions, to optimize influencing factors such as moisture and nutrient levels and bioseed addition, and to investigate alternate methods of bioremediating the sediments. Results showed that hydrocarbons in the soils biodegraded much faster in the field than in the lab, and that hydrocarbons in sediments applied to biotreated soils containing acclimated microorganisms were successfully biodegraded

  14. Degradation of oxo-biodegradable plastic by Pleurotus ostreatus.

    Science.gov (United States)

    da Luz, José Maria Rodrigues; Paes, Sirlaine Albino; Nunes, Mateus Dias; da Silva, Marliane de Cássia Soares; Kasuya, Maria Catarina Megumi

    2013-01-01

    Growing concerns regarding the impact of the accumulation of plastic waste over several decades on the environmental have led to the development of biodegradable plastic. These plastics can be degraded by microorganisms and absorbed by the environment and are therefore gaining public support as a possible alternative to petroleum-derived plastics. Among the developed biodegradable plastics, oxo-biodegradable polymers have been used to produce plastic bags. Exposure of this waste plastic to ultraviolet light (UV) or heat can lead to breakage of the polymer chains in the plastic, and the resulting compounds are easily degraded by microorganisms. However, few studies have characterized the microbial degradation of oxo-biodegradable plastics. In this study, we tested the capability of Pleurotus ostreatus to degrade oxo-biodegradable (D2W) plastic without prior physical treatment, such as exposure to UV or thermal heating. After 45 d of incubation in substrate-containing plastic bags, the oxo-biodegradable plastic, which is commonly used in supermarkets, developed cracks and small holes in the plastic surface as a result of the formation of hydroxyl groups and carbon-oxygen bonds. These alterations may be due to laccase activity. Furthermore, we observed the degradation of the dye found in these bags as well as mushroom formation. Thus, P. ostreatus degrades oxo-biodegradable plastics and produces mushrooms using this plastic as substrate.

  15. Degradation of oxo-biodegradable plastic by Pleurotus ostreatus.

    Directory of Open Access Journals (Sweden)

    José Maria Rodrigues da Luz

    Full Text Available Growing concerns regarding the impact of the accumulation of plastic waste over several decades on the environmental have led to the development of biodegradable plastic. These plastics can be degraded by microorganisms and absorbed by the environment and are therefore gaining public support as a possible alternative to petroleum-derived plastics. Among the developed biodegradable plastics, oxo-biodegradable polymers have been used to produce plastic bags. Exposure of this waste plastic to ultraviolet light (UV or heat can lead to breakage of the polymer chains in the plastic, and the resulting compounds are easily degraded by microorganisms. However, few studies have characterized the microbial degradation of oxo-biodegradable plastics. In this study, we tested the capability of Pleurotus ostreatus to degrade oxo-biodegradable (D2W plastic without prior physical treatment, such as exposure to UV or thermal heating. After 45 d of incubation in substrate-containing plastic bags, the oxo-biodegradable plastic, which is commonly used in supermarkets, developed cracks and small holes in the plastic surface as a result of the formation of hydroxyl groups and carbon-oxygen bonds. These alterations may be due to laccase activity. Furthermore, we observed the degradation of the dye found in these bags as well as mushroom formation. Thus, P. ostreatus degrades oxo-biodegradable plastics and produces mushrooms using this plastic as substrate.

  16. Improvement of biodegradability of industrial wastewaters by radiation treatment

    International Nuclear Information System (INIS)

    Jo, H.J.; Kim, H.J.; Kim, J.G.; Jung, J.; Choi, J.S.; Park, Y.K.

    2006-01-01

    In order to evaluate the use of gamma-ray treatment as a pretreatment to conventional biological methods, the effects of gamma-irradiation on biodegradability (BOD 5 /COD) of textile and pulp wastewaters were investigated. For all wastewaters studied in this work, the efficiency of treatment based on TOC removal was insignificant even at an absorbed dose of 20 kGy. However, the change of biodegradability was noticeable and largely dependent on the chemical property of wastewaters and the absorbed dose of gamma-rays. For textile wastewaters, gamma-ray treatment increased the biodegradability of desizing effluent due to degradation of polymeric sizing agents such as polyvinyl alcohol. Interestingly, the weight-loss showed the highest value of 0.97 at a relatively low dose of 1 kGy. This may be caused by the degradation of less biodegradable ethylene glycol prior to terephthalic acid decomposition. For pulp wastewater, the gamma-ray treatment did not improve the biodegradability of cooking and bleaching of C/D effluents. However, the biodegradability of bleaching E1 and final effluents was abruptly increased up to 5 kGy then slowly decreased as the absorbed dose was increased. The initial increase of biodegradability may be induced by the decomposition of refractory organic compounds such as chlorophenols, which are known to be the main components of bleaching C/D and final effluents. (author)

  17. Degradation of Oxo-Biodegradable Plastic by Pleurotus ostreatus

    Science.gov (United States)

    da Luz, José Maria Rodrigues; Paes, Sirlaine Albino; Nunes, Mateus Dias; da Silva, Marliane de Cássia Soares; Kasuya, Maria Catarina Megumi

    2013-01-01

    Growing concerns regarding the impact of the accumulation of plastic waste over several decades on the environmental have led to the development of biodegradable plastic. These plastics can be degraded by microorganisms and absorbed by the environment and are therefore gaining public support as a possible alternative to petroleum-derived plastics. Among the developed biodegradable plastics, oxo-biodegradable polymers have been used to produce plastic bags. Exposure of this waste plastic to ultraviolet light (UV) or heat can lead to breakage of the polymer chains in the plastic, and the resulting compounds are easily degraded by microorganisms. However, few studies have characterized the microbial degradation of oxo-biodegradable plastics. In this study, we tested the capability of Pleurotus ostreatus to degrade oxo-biodegradable (D2W) plastic without prior physical treatment, such as exposure to UV or thermal heating. After 45 d of incubation in substrate-containing plastic bags, the oxo-biodegradable plastic, which is commonly used in supermarkets, developed cracks and small holes in the plastic surface as a result of the formation of hydroxyl groups and carbon-oxygen bonds. These alterations may be due to laccase activity. Furthermore, we observed the degradation of the dye found in these bags as well as mushroom formation. Thus, P. ostreatus degrades oxo-biodegradable plastics and produces mushrooms using this plastic as substrate. PMID:23967057

  18. Morphology and transport in biodegradable polymer compositions based on poly(3-hydroxybutyrate) and polyamide 54C

    Energy Technology Data Exchange (ETDEWEB)

    Zhul' kina, A. L.; Ivantsova, E. L.; Filatova, A. G.; Kosenko, R. Yu.; Gumargalieva, K. Z.; Iordanskii, A. L., E-mail: iordan@chph.ras.ru [Russian Academy of Sciences, Semenov Institute of Chemical Physics (Russian Federation)

    2009-05-15

    Complex investigation of the equilibrium sorption of water, diffusive transport of antiseptic, and morphology of mixed compositions based on polyoxybutirate and polyamide resin 54C has been performed to develop and analyze new biodegradable polymer compositions for controlled release of medicinal substances. Samples of mixtures were prepared by two methods: pressing under pressure and solvent evaporation from a polymer solution. The samples were compared and their morphology was analyzed by scanning electron microscopy. It is shown that the component ratio in the obtained mixtures affects their morphological, transport, and sorption characteristics.

  19. Morphology and transport in biodegradable polymer compositions based on poly(3-hydroxybutyrate) and polyamide 54C

    International Nuclear Information System (INIS)

    Zhul'kina, A. L.; Ivantsova, E. L.; Filatova, A. G.; Kosenko, R. Yu.; Gumargalieva, K. Z.; Iordanskii, A. L.

    2009-01-01

    Complex investigation of the equilibrium sorption of water, diffusive transport of antiseptic, and morphology of mixed compositions based on polyoxybutirate and polyamide resin 54C has been performed to develop and analyze new biodegradable polymer compositions for controlled release of medicinal substances. Samples of mixtures were prepared by two methods: pressing under pressure and solvent evaporation from a polymer solution. The samples were compared and their morphology was analyzed by scanning electron microscopy. It is shown that the component ratio in the obtained mixtures affects their morphological, transport, and sorption characteristics.

  20. Biodegradable Starch/Copolyesters Film Reinforced with Silica Nanoparticles: Preparation and Characterization

    Science.gov (United States)

    Lima, Roberta A.; Oliveira, Rene R.; Wataya, Célio H.; Moura, Esperidiana A. B.

    Biodegradable starch/copolyesters/silica nanocomposite films were prepared by melt extrusion, using a twin screw extruder machine and blown extrusion process. The influence of the silica nanoparticle addition on mechanical and thermal properties of nanocomposite films was investigated by tensile tests; X-rays diffraction (XRD), differential scanning calorimetry (DSC) and Scanning electron microscopy (SEM) analysis and the correlation between properties was discussed. The results showed that incorporation of 2 % (wt %) of SiO2 nanoparticle in the blend matrix of PBAT/Starch, resulted in a gain of mechanical properties of blend.

  1. Mercury determination in non- and biodegradable materials by cold vapor capacitively coupled plasma microtorch atomic emission spectrometry

    International Nuclear Information System (INIS)

    Frentiu, Tiberiu; Mihaltan, Alin I.; Ponta, Michaela; Darvasi, Eugen; Frentiu, Maria; Cordos, Emil

    2011-01-01

    Highlights: → Use of a miniaturized analytical system with microtorch plasma for Hg determination. → Determination of Hg in non- and biodegradable materials using cold vapor generation. → Figures of merit and advantages of the miniaturized system for Hg determination. - Abstract: A new analytical system consisting of a low power capacitively coupled plasma microtorch (20 W, 13.56 MHz, 150 ml min -1 Ar) and a microspectrometer was investigated for the Hg determination in non- and biodegradable materials by cold-vapor generation, using SnCl 2 reductant, and atomic emission spectrometry. The investigated miniaturized system was used for Hg determination in recyclable plastics from electronic equipments and biodegradable materials (shopping bags of 98% biodegradable polyethylene and corn starch) with the advantages of easy operation and low analysis costs. Samples were mineralized in HNO 3 -H 2 SO 4 mixture in a high-pressure microwave system. The detection limits of 0.05 ng ml -1 or 0.08 μg g -1 in solid sample were compared with those reported for other analytical systems. The method precision was 1.5-9.4% for Hg levels of 1.37-13.9 mg kg -1 , while recovery in two polyethylene certified reference materials in the range 98.7 ± 4.5% (95% confidence level).

  2. Mercury determination in non- and biodegradable materials by cold vapor capacitively coupled plasma microtorch atomic emission spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Frentiu, Tiberiu, E-mail: ftibi@chem.ubbcluj.ro [Faculty of Chemistry and Chemical Engineering, Babes-Bolyai University, Arany Janos 11, 400028 Cluj-Napoca (Romania); Mihaltan, Alin I., E-mail: alinblaj2005@yahoo.com [National Institute for Research and Development of Optoelectronics Bucharest - Research Institute for Analytical Instrumentation, Donath 67, 400293 Cluj-Napoca (Romania); Ponta, Michaela, E-mail: mponta@chem.ubbcluj.ro [Faculty of Chemistry and Chemical Engineering, Babes-Bolyai University, Arany Janos 11, 400028 Cluj-Napoca (Romania); Darvasi, Eugen, E-mail: edarvasi@chem.ubbcluj.ro [Faculty of Chemistry and Chemical Engineering, Babes-Bolyai University, Arany Janos 11, 400028 Cluj-Napoca (Romania); Frentiu, Maria, E-mail: frentiu.maria@yahoo.com [National Institute for Research and Development of Optoelectronics Bucharest - Research Institute for Analytical Instrumentation, Donath 67, 400293 Cluj-Napoca (Romania); Cordos, Emil, E-mail: emilcordos@gmail.com [National Institute for Research and Development of Optoelectronics Bucharest - Research Institute for Analytical Instrumentation, Donath 67, 400293 Cluj-Napoca (Romania)

    2011-10-15

    Highlights: {yields} Use of a miniaturized analytical system with microtorch plasma for Hg determination. {yields} Determination of Hg in non- and biodegradable materials using cold vapor generation. {yields} Figures of merit and advantages of the miniaturized system for Hg determination. - Abstract: A new analytical system consisting of a low power capacitively coupled plasma microtorch (20 W, 13.56 MHz, 150 ml min{sup -1} Ar) and a microspectrometer was investigated for the Hg determination in non- and biodegradable materials by cold-vapor generation, using SnCl{sub 2} reductant, and atomic emission spectrometry. The investigated miniaturized system was used for Hg determination in recyclable plastics from electronic equipments and biodegradable materials (shopping bags of 98% biodegradable polyethylene and corn starch) with the advantages of easy operation and low analysis costs. Samples were mineralized in HNO{sub 3}-H{sub 2}SO{sub 4} mixture in a high-pressure microwave system. The detection limits of 0.05 ng ml{sup -1} or 0.08 {mu}g g{sup -1} in solid sample were compared with those reported for other analytical systems. The method precision was 1.5-9.4% for Hg levels of 1.37-13.9 mg kg{sup -1}, while recovery in two polyethylene certified reference materials in the range 98.7 {+-} 4.5% (95% confidence level).

  3. Disposal Options of Bamboo Fabric-Reinforced Poly(Lactic Acid Composites for Sustainable Packaging: Biodegradability and Recyclability

    Directory of Open Access Journals (Sweden)

    M.R. Nurul Fazita

    2015-08-01

    Full Text Available The present study was conducted to determine the recyclability and biodegradability of bamboo fabric-reinforced poly(lactic acid (BF-PLA composites for sustainable packaging. BF-PLA composite was recycled through the granulation, extrusion, pelletization and injection processes. Subsequently, mechanical properties (tensile, flexural and impact strength, thermal stability and the morphological appearance of recycled BF-PLA composites were determined and compared to BF-PLA composite (initial materials and virgin PLA. It was observed that the BF-PLA composites had the adequate mechanical rigidity and thermal stability to be recycled and reused. Moreover, the biodegradability of BF-PLA composite was evaluated in controlled and real composting conditions, and the rate of biodegradability of BF-PLA composites was compared to the virgin PLA. Morphological and thermal characteristics of the biodegradable BF-PLA and virgin PLA were obtained by using environment scanning electron microscopy (ESEM and differential scanning calorimetry (DSC, respectively. The first order decay rate was found to be 0.0278 and 0.0151 day−1 in a controlled composting condition and 0.0008 and 0.0009 day−1 in real composting conditions for virgin PLA and BF-PLA composite, respectively. Results indicate that the reinforcement of bamboo fabric in PLA matrix minimizes the degradation rate of BF-PLA composite. Thus, BF-PLA composite has the potential to be used in product packaging for providing sustainable packaging.

  4. Nanofibers extraction from palm mesocarp fiber for biodegradable polymers incorporation; Extracao de nanofibras a partir do mesocarpo do dende para incorporacao em polimeros biodegradsveis

    Energy Technology Data Exchange (ETDEWEB)

    Kuana, Vanessa A.; Rodrigues, Vanessa B.; Takahashi, Marcio C., E-mail: ayu.kuana@gmail.com [Universidade Federal de Sao Carlos (UFSCar), Sao Carlos, SP (Brazil); Campos, Adriana de; Sena Neto, Alfredo R.; Mattoso, Luiz H.C.; Marconcini, Jose M. [Embrapa Instrumentacao (EMBRAPA/CNPDIA), Sao Carlos, SP (Brazil)

    2015-07-01

    The palm mesocarp fibers are residues produced by the palm oil industries. The objective of this paper is to determine an efficient treatment to extract crystal cellulose nanofibers from the palm mesocarp fibers to be incorporated in biodegradable polymeric composites. The fibers were saponified, bleached and analyzed with thermal gravimetric analysis, X-ray diffraction, Fourier transform infrared spectroscopy and scanning electron microscopy. (author)

  5. Cellulose nanoparticles: photoacoustic contrast agents that biodegrade to simple sugars

    Science.gov (United States)

    Jokerst, Jesse V.; Bohndiek, Sarah E.; Gambhir, Sanjiv S.

    2014-03-01

    treated cohort were observed with electron microscopy. There are few photoacoustic contrast agents that offer both high signal intensity and obvious clearance/biodegradation profiles. To the best of our knowledge, this is the first example of a sugar-based photoacoustic contrast agent with important implications for clinical translation of this emerging molecular imaging modality.

  6. Processing biodegradable waste by applying aerobic digester EWA

    Directory of Open Access Journals (Sweden)

    Đokić Dragoslav

    2014-01-01

    Full Text Available The paper presents research results obtained in the process of processing biodegradable wastes, resulting from agricultural production as well as municipal waste. Aerobic fermenter EWA (stationed within the Institute for Forage Crops Globoder- Kruševac was using for this purpose, during the one month testing. Biodegradable material with different ratios of components was used for filling aerobic digester. EWA fermenter is certified device that is used to stabilize and hygienic disposal of biodegradable waste, including sewage sludge and animal products produced in accordance with European Union regulations. Fermenter is intended to be used for combustion in boilers for solid fuels with humidity of biomaterials below 30%.

  7. Lignin Biodegradation with Laccase-Mediator Systems

    International Nuclear Information System (INIS)

    Christopher, Lew Paul; Yao, Bin; Ji, Yun

    2014-01-01

    Lignin has a significant and largely unrealized potential as a source for the sustainable production of fuels and bulk high-value chemicals. It can replace fossil-based oil as a renewable feedstock that would bring about socio-economic and environmental benefits in our transition to a biobased economy. The efficient utilization of lignin however requires its depolymerization to low-molecular weight phenolics and aromatics that can then serve as the building blocks for chemical syntheses of high-value products. The ability of laccase to attack and degrade lignin in conjunction with laccase mediators is currently viewed as one of the potential “breakthrough” applications for lignin valorization. Here, we review the recent progress in lignin biodegradation with laccase-mediator systems, and research needs that need to be addressed in this field.

  8. Corrosion mechanism applicable to biodegradable magnesium implants

    Energy Technology Data Exchange (ETDEWEB)

    Atrens, Andrej, E-mail: Andrejs.Atrens@uq.edu.au [University of Queensland, Division of Materials, Brisbane, Qld 4072 (Australia); Liu Ming; Zainal Abidin, Nor Ishida [University of Queensland, Division of Materials, Brisbane, Qld 4072 (Australia)

    2011-12-15

    Much of our understanding of the Mg corrosion mechanism is based on research using aggressive chloride based solutions like 3% NaCl, which are appropriate for understand the corrosion for applications such as auto construction. The chloride ions tend to cause break down of the partly protective surface film on the Mg alloy surface. The corrosion rate increases with exposure time until steady state is reached, which may take several weeks. An overview is provided of the aspects which determine the corrosion of Mg alloys: (i) measurement details; (ii) impurity elements Fe, Ni, Cu and Co; (iii) second phases; (iv) surface films and surface condition and (v) stress corrosion cracking (SCC). This understanding is used to help understand Mg corrosion for Mg as a biodegradable implant for medical applications. Solutions that elucidate these applications tend to form surface films and the corrosion rate tends to decrease with immersion time.

  9. Biodegradation of polyester. Polyester no bunkai sei

    Energy Technology Data Exchange (ETDEWEB)

    Tokiwa, Y. (Agency of Industrial Science and Technology, Tokyo (Japan). Fermentation Research Inst.)

    1991-09-10

    Penicillium sp. 14-3 and penicillium sp. 26-1 can degrade various kinds of polyester. The results of studies made on hydrolysis of polyester by enzyme, hydrolysis of polyester by various kinds of lipase, and degradation of ester type polyurethane by microbes and lipase are introduced. For the improvement of physical properties of aliphatic polyester, aromatic-aliphatic polyester copolymers (CPE) have been synthesized to study the biodegradability. Copolymer in which a number of polyamide (nylon) are alternately introduced (CPAE) to aliphatic polyester has been developed. The result of studies made on the degradability of a blended body of PCL and natural high polymer, and on the collapsibility by lipase of high polymer materials including aliphatic polyamide are introduced. 26 refs., 5 figs., 1 tab.

  10. Lignin Biodegradation with Laccase-Mediator Systems

    Energy Technology Data Exchange (ETDEWEB)

    Christopher, Lew Paul, E-mail: lew.christopher@sdsmt.edu [Center for Bioprocessing Research and Development, South Dakota School of Mines & Technology, Rapid City, SD (United States); Department of Civil and Environmental Engineering, South Dakota School of Mines & Technology, Rapid City, SD (United States); Yao, Bin [Center for Bioprocessing Research and Development, South Dakota School of Mines & Technology, Rapid City, SD (United States); Ji, Yun [Department of Chemical Engineering, University of North Dakota, Grand Forks, ND (United States)

    2014-03-31

    Lignin has a significant and largely unrealized potential as a source for the sustainable production of fuels and bulk high-value chemicals. It can replace fossil-based oil as a renewable feedstock that would bring about socio-economic and environmental benefits in our transition to a biobased economy. The efficient utilization of lignin however requires its depolymerization to low-molecular weight phenolics and aromatics that can then serve as the building blocks for chemical syntheses of high-value products. The ability of laccase to attack and degrade lignin in conjunction with laccase mediators is currently viewed as one of the potential “breakthrough” applications for lignin valorization. Here, we review the recent progress in lignin biodegradation with laccase-mediator systems, and research needs that need to be addressed in this field.

  11. Biodegradable polymeric nanocarriers for pulmonary drug delivery.

    Science.gov (United States)

    Rytting, Erik; Nguyen, Juliane; Wang, Xiaoying; Kissel, Thomas

    2008-06-01

    Pulmonary drug delivery is attractive for both local and systemic drug delivery as a non-invasive route that provides a large surface area, thin epithelial barrier, high blood flow and the avoidance of first-pass metabolism. Nanoparticles can be designed to have several advantages for controlled and targeted drug delivery, including controlled deposition, sustained release, reduced dosing frequency, as well as an appropriate size for avoiding alveolar macrophage clearance or promoting transepithelial transport. This review focuses on the development and application of biodegradable polymers to nanocarrier-based strategies for the delivery of drugs, peptides, proteins, genes, siRNA and vaccines by the pulmonary route. The selection of natural or synthetic materials is important in designing particles or nanoparticle clusters with the desired characteristics, such as biocompatibility, size, charge, drug release and polymer degradation rate.

  12. Biodegradation of concrete intended for their decontamination

    International Nuclear Information System (INIS)

    Jestin, A.

    2005-05-01

    The decontamination of sub-structural materials represents a stake of high importance because of the high volume generated. It is agreed then to propose efficient and effective processes. The process of bio-decontamination of the hydraulic binders leans on the mechanisms of biodegradation of concretes, phenomenon characterized in the 40's by an indirect attack of the material by acids stem from the microbial metabolism: sulphuric acid (produced by Thiobacillus), nitric acid (produced by Nitrosomonas and Nitrobacter) and organic acids (produced by fungi). The principle of the bio-decontamination process is to apply those microorganisms on the surface of the contaminated material, in order to damage its surface and to retrieve the radionuclides. One of the multiple approaches of the process is the use of a bio-gel that makes possible the micro-organisms application. (author)

  13. Optimizing BTEX biodegradation under denitrifying conditions

    International Nuclear Information System (INIS)

    Hutchins, S.R.

    1991-01-01

    Leaking underground storage tanks are a major source of ground water contamination by petroleum hydrocarbons. Gasoline and other fuels contain benzene, toluene, ethylbenzene, and xylenes (collectively known as BTEX), which are hazardous compounds, regulated by the U.S. Environmental Protection Agency (EPA). Laboratory tests were conducted to determine optimum conditions for benzene, toluene, ethylbenzene, and xylene (collectively known as BTEX) biodegradation by aquifer microorganisms under denitrifying conditions. Microcosms, constructed with aquifer samples from Traverse City, Michigan, were amended with selected concentrations of nutrients and one or more hydrocarbons. Toluene, ethylbenzene, m-xylene, and p-xylene, were degraded to below 5 micrograms/L when present as sole source substrates; stoichiometric calculations indicated that nitrate removal was sufficient to account for 70 to 80% of the compounds being mineralized. o-Xylene was recalcitrant when present as a sole source substrate, but was slowly degraded in the presence of the other hydrocarbons. Benzene was not degraded within one year, regardless of whether it was available as a sole source substrate or in combination with toluene, phenol, or catechol. Pre-exposure to low levels of BTEX and nutrients had variable effects, as did the addition of different concentrations of ammonia and phosphate. Nitrate concentrations as high as 500 mg/L NO3-N were slightly inhibitory. These data indicate that nitrate-mediated biodegradation of BTEX at Traverse City can occur under a variety of environmental conditions with rates relatively independent of nutrient concentrations. However, the data reaffirm that benzene is recalcitrant under strictly anaerobic conditions in these samples

  14. Antibacterial biodegradable Mg-Ag alloys

    Directory of Open Access Journals (Sweden)

    D Tie

    2013-06-01

    Full Text Available The use of magnesium alloys as degradable metals for biomedical applications is a topic of ongoing research and the demand for multifunctional materials is increasing. Hence, binary Mg-Ag alloys were designed as implant materials to combine the favourable properties of magnesium with the well-known antibacterial property of silver. In this study, three Mg-Ag alloys, Mg2Ag, Mg4Ag and Mg6Ag that contain 1.87 %, 3.82 % and 6.00 % silver by weight, respectively, were cast and processed with solution (T4 and aging (T6 heat treatment.The metallurgical analysis and phase identification showed that all alloys contained Mg4Ag as the dominant β phase. After heat treatment, the mechanical properties of all Mg-Ag alloys were significantly improved and the corrosion rate was also significantly reduced, due to presence of silver. Mg(OH2 and MgO present the main magnesium corrosion products, while AgCl was found as the corresponding primary silver corrosion product. Immersion tests, under cell culture conditions, demonstrated that the silver content did not significantly shift the pH and magnesium ion release. In vitro tests, with both primary osteoblasts and cell lines (MG63, RAW 264.7, revealed that Mg-Ag alloys show negligible cytotoxicity and sound cytocompatibility. Antibacterial assays, performed in a dynamic bioreactor system, proved that the alloys reduce the viability of two common pathogenic bacteria, Staphylococcus aureus (DSMZ 20231 and Staphylococcus epidermidis (DSMZ 3269, and the results showed that the killing rate of the alloys against tested bacteria exceeded 90%. In summary, biodegradable Mg-Ag alloys are cytocompatible materials with adjustable mechanical and corrosion properties and show promising antibacterial activity, which indicates their potential as antibacterial biodegradable implant materials.

  15. How Students Learn: Ways of Thinking about "Good Learning" in HE. EDNER (Formative Evaluation of the Distributed National Electronic Resource) Project. Issues Paper.

    Science.gov (United States)

    Manchester Metropolitan Univ. (England).

    This issues paper, one of a series of eight, is intended to distill formative evaluation questions on topics that are central to the development of the higher and further education information environment in the United Kingdom. The topic of this first issues paper is a conceptual framework that can help members of a project (information resource)…

  16. Research of the Indicators the efficiency of the biodegradable waste on the Landfills

    Directory of Open Access Journals (Sweden)

    Jana Kotovicová

    2006-01-01

    Full Text Available The orientation of the research work for the exploitation of the preventive tools for the decrease of biodegradable waste comes out from the requirements, which are reposed on Czech Republic as a valid member of European Union. The Czech Republic have to follow the legislative requirements, which are defined for the waste treatment, in this case it deals with the EC Landfill Directive (1999/31/ES. The directive undertakes for the EU members to limit the volume of the biodegradable waste on the landfills. The main sense of this restriction is to reduce the volume of the emitted gas, mainly methane, into atmosphere. Therefore, it was assigned the Waste Management Plan of the Czech republic, which states in the interest of the strategic goals (the decrease of the specific waste production independently on the level of the economic growth, the maximal waste exploitation as a reserve of the primary natural resources and the minimalization of negative impacts on human health and environment by the waste treatment the goal achievement in its binding part, what´s the decrease of maximal volume of the biodegradable municipal waste deposited in landfills, thus the rate of this element will be the most 75% weighted in 2010, the most 50% weighted in 2013 and the most 35% weighted from the total volume rised in 1995. One of the ways, how to achieve the required reduction of the waste volume deposited in the landfills, is consistent exercitation of the preventive methods and the sound agricultural and sound operating practice methods. The main goal of the work consists in creation of methodics for the make prognosis of the region development charging by the biodegradable waste in the preventive tool exploitation. I identified the typical sources of biodegradable waste and the key areas of their uprise after the evaluation of environmental gains of the selected preventive projects by the creation of methodics. After this manner of data acquirement, I proposed

  17. 大學圖書館電子資源之需求分析與行銷策略之研究 A Study of Demands Analysis and Marketing Strategy of Electronic Resources in University Library

    Directory of Open Access Journals (Sweden)

    Huang-Yu Liu

    2008-03-01

    Full Text Available 電子資源的出現,使得知識載體有了新的突破,提高了使用者的便利性與即時性。對於圖書館而言,如何使電子資源的使用效益達到最高,必須思考一套有效的行銷策略。電子資源行銷概念應以讀者為導向,尊重讀者的資訊需求,並利用各種宣傳技巧,行銷電子資源,使圖書館能提供更完善的服務。本研究之目的旨在探討讀者的使用需求及電子資源的推廣策略,以獲致最有效益的行銷方式。研究對象以開南大學日間部四學院(商學院、運輸觀光學院、資訊學院、人文社會學院)學生為樣本,佐以缺口分析模型為分析架構,藉以找出個案中讀者/學生對於電子資源使用的真實需求,並進而歸納出提供服務的大學圖書館在其推廣或行銷服務上可有的因應策略。The emergence of electronic resources has made new breakthrough in knowledge carriers because of their ease of use, instant availability, and the characteristic of no time and space constraints. For public libraries to achieve maximum efficiency in its electronic resources, it is necessary to seek the most effective marketing strategies. Therefore, the marketing concept of the electronic resources should be reader oriented, such as respecting and understanding library user’s information needs. Libraries also need to utilize various media and techniques to market the electronic resources, so that more comprehensive services and experiences can be provided to readers. The purpose of this study is to investigate library user’s needs and promotion strategies of electronic resources in order to identify the most effective ways of marketing. This study focuses on the students of the four colleges (College of Business, College of Tourism, College of Information, and College of Humanities and Social Science in Kainan University as subjects in the survey questionnaire. It uses the Gap Analysis

  18. Enzymatic cellulose oxidation is linked to lignin by long-range electron transfer

    DEFF Research Database (Denmark)

    Westereng, Bjorge; Cannella, David; Wittrup Agger, Jane

    2015-01-01

    cell walls. Electron transfer was confirmed by electron paramagnetic resonance spectroscopy showing that LPMO activity on cellulose changes the level of unpaired electrons in the lignin. The discovery of a long-range electron transfer mechanism links the biodegradation of cellulose and lignin and sheds...

  19. Vectorization of copper complexes via biocompatible and biodegradable PLGA nanoparticles.

    Science.gov (United States)

    Courant, T; Roullin, V G; Cadiou, C; Delavoie, F; Molinari, M; Andry, M C; Gafa, V; Chuburu, F

    2010-04-23

    A double emulsion-solvent diffusion approach with fully biocompatible materials was used to encapsulate copper complexes within biodegradable nanoparticles, for which the release kinetics profiles have highlighted their potential use for a prolonged circulating administration.

  20. Compounds interaction on biodegradation of toluene and methyl ...

    African Journals Online (AJOL)

    MEK) mixtures in a composite bead biofilter was investigated. The biodegradation rate of two compounds in the exponential growth phase and stationary phase for the single compound and two compounds mixing systems was determined.