WorldWideScience

Sample records for bioconversion products technology

  1. Bioconversion technologies of crude glycerol to value added industrial products

    Directory of Open Access Journals (Sweden)

    Vijay Kumar Garlapati

    2016-03-01

    Full Text Available Crude glycerol that is produced as the by-product from biodiesel, has to be effectively utilized to contribute to the viability of biodiesel. Crude glycerol in large amounts can pose a threat to the environment. Therefore, there is a need to convert this crude glycerol into valued added products using biotechnological processes, which brings new revenue to biodiesel producers. Crude glycerol can serve as a feedstock for biopolymers, poly unsaturated fatty acids, ethanol, hydrogen and n-butanol production and as a raw material for different value added industrial products. Hence, in this review we have presented different bioconversion technologies of glycerol to value added industrial products.

  2. Encapsulates for Food Bioconversions and Metabolite Production

    Science.gov (United States)

    Breguet, Véronique; Vojinovic, Vojislav; Marison, Ian W.

    The control of production costs in the food industry must be very strict as a result of the relatively low added value of food products. Since a wide variety of enzymes and/or cells are employed in the food industry for starch processing, cheese making, food preservation, lipid hydrolysis and other applications, immobilization of the cells and/or enzymes has been recognized as an attractive approach to improving food processes while minimizing costs. This is due to the fact that biocatalyst immobilization allows for easier separation/purification of the product and reutilization of the biocatalyst. The advantages of the use of immobilized systems are many, and they have a special relevance in the area of food technology, especially because industrial processes using immobilized biosystems are usually characterized by lower capital/energy costs and better logistics. The main applications of immobilization, related to the major processes of food bioconversions and metabolite production, will be described and discussed in this chapter.

  3. Microalgal carbohydrates: an overview of the factors influencing carbohydrates production, and of main bioconversion technologies for production of biofuels

    DEFF Research Database (Denmark)

    Markou, Giorgos; Angelidaki, Irini; Georgakakis, Dimitris

    2012-01-01

    research is the cultivation of microalgae for lipids production to generate biodiesel. However, there are several other biological or thermochemical conversion technologies, in which microalgal biomass could be used as substrate. However, the high protein content or the low carbohydrate content of the......Microalgal biomass seems to be a promising feedstock for biofuel generation. Microalgae have relative high photosynthetic efficiencies, high growth rates, and some species can thrive in brackish water or seawater and wastewater from the food- and agro-industrial sector. Today, the main interest in...... majority of the microalgal species might be a constraint for their possible use in these technologies. Moreover, in the majority of biomass conversion technologies, carbohydrates are the main substrate for production of biofuels. Nevertheless, microalgae biomass composition could be manipulated by several...

  4. Direct Bioconversion of Oil Palm Empty Fruit Bunches for Bioethanol Production By Solid State Bioconversion

    OpenAIRE

    Nassereldeen Ahmed Kabbashi; Md. Zahangir Alam; M. Fahrurrazi Tompang

    2010-01-01

    The bioethanol production was conducted by utilizing agriculture waste, palm oil empty fruit bunches (EFB) with the aid of T. harzianum and yeast, Saccharomyces cerevisiae using solid state bioconversion method. The compatibility of various fungal strains was done as to develop the direct bioconversion process of compatible mixed culture. Analyzes such ethanol estimation, reducing sugar and glucosamine as growth indicator were conducted in order to select the best experimented run for ...

  5. Microalgal carbohydrates. An overview of the factors influencing carbohydrates production, and of main bioconversion technologies for production of biofuels

    Energy Technology Data Exchange (ETDEWEB)

    Markou, Giorgos; Georgakakis, Dimitris [Agricultural Univ. of Athens (Greece). Dept. of Natural Resources Management and Agricultural Engineering; Angelidaki, Irini [Technical Univ. of Denmark, Lyngby (Denmark). Dept. of Environmental Engineering

    2012-11-15

    Microalgal biomass seems to be a promising feedstock for biofuel generation. Microalgae have relative high photosynthetic efficiencies, high growth rates, and some species can thrive in brackish water or seawater and wastewater from the food- and agro-industrial sector. Today, the main interest in research is the cultivation of microalgae for lipids production to generate biodiesel. However, there are several other biological or thermochemical conversion technologies, in which microalgal biomass could be used as substrate. However, the high protein content or the low carbohydrate content of the majority of the microalgal species might be a constraint for their possible use in these technologies. Moreover, in the majority of biomass conversion technologies, carbohydrates are the main substrate for production of biofuels. Nevertheless, microalgae biomass composition could be manipulated by several cultivation techniques, such as nutrient starvation or other stressed environmental conditions, which cause the microalgae to accumulate carbohydrates. This paper attempts to give a general overview of techniques that can be used for increasing the microalgal biomass carbohydrate content. In addition, biomass conversion technologies, related to the conversion of carbohydrates into biofuels are discussed. (orig.)

  6. Biomass production and bioconversion to both fuel and food employing solar energy technology - An alternative to conventional farming and the conversion of food to fuel

    Science.gov (United States)

    Wise, D. L.

    1981-01-01

    A process for the bioconversion of high-yield biomass to both fuel and food, judged more efficient than the conventional production of soybean meal and methanol, is described. Attention is given the diversion of farm land for the production of a conventional food/energy crop, such as corn, that will be subsequently converted to a liquid fuel. The technique presented involves growing biomass at optimum crop yield, then converting it to synthesis gas and finally, through bioconversion, to single-cell protein and methanol. Background for the various aspects of the system and its preliminary engineering economics are provided.

  7. Bioconversion potential of plant enzymes for the production of pharmaceuticals

    NARCIS (Netherlands)

    Pras, N; Woerdenbag, HJ; vanUden, W

    1995-01-01

    Plant enzymes are able to catalyze regio- and stereospecific reactions. Freely suspended and immobilized plant cells as well as enzyme preparations can therefore be applied for the production of pharmaceuticals by bioconversion, as such or in combination with chemical syntheses. This review paper de

  8. Direct Bioconversion of Oil Palm Empty Fruit Bunches for Bioethanol Production By Solid State Bioconversion

    Directory of Open Access Journals (Sweden)

    Nassereldeen Ahmed Kabbashi

    2010-09-01

    Full Text Available The bioethanol production was conducted by utilizing agriculture waste, palm oil empty fruit bunches (EFB with the aid of T. harzianum and yeast, Saccharomyces cerevisiae using solid state bioconversion method. The compatibility of various fungal strains was done as to develop the direct bioconversion process of compatible mixed culture. Analyzes such ethanol estimation, reducing sugar and glucosamine as growth indicator were conducted in order to select the best experimented run for optimization. The optimization of process conditions, by using central composite design (CCD was carried out. Optimization of process condition was done with varied level of moisture content, pH, inoculum size, concentration of co-substrate (wheat flour and mineral solutions. Statistical analysis showed that the optimum process condition for moisture content was 50% (v/w, pH of 4, inoculum size of 10% (v/v, concentration of wheat flour of 1% (v/v and mineral solutions 1%(v/v. In this study, the application levels of the methods of environmental management in regards to the maximum production were determined. The final optimization with the developed process conditions indicated that the maximum production was increased from 14.315 (v/v to 34.785(v/v.

  9. Copper sulfate improves pullulan production by bioconversion using whole cells of Aureobasidium pullulans as the catalyst.

    Science.gov (United States)

    Wang, Dahui; Ju, Xiaomin; Zhang, Gaochuan; Wang, Donghua; Wei, Gongyuan

    2016-10-01

    The effects of mineral salts on pullulan production by bioconversion using whole cells of Aureobasidium pullulans CCTCC M 2012259 as the catalyst were investigated. Copper sulfate (CuSO4) improved pullulan production by 36.2% and 42.3% when added at the optimum concentration of 0.2mg/L to the bioconversion broth or seed medium, respectively, as compared with controls without CuSO4 addition. Pullulan production was further enhanced when CuSO4 was added to both seed medium and bioconversion broth simultaneously. In order to probe the mechanism of CuSO4 improvement, cell viability, membrane integrity, intracellular adenosine triphosphate (ATP) levels and the activities of key enzymes involved in pullulan biosynthesis were determined. As a result, CuSO4 increased the activities of key biosynthetic enzymes, maintained intracellular ATP at a higher level, and accelerated the rate of pullulan secretion, all of which contributed to improved pullulan production by bioconversion.

  10. Bioconversion of heavy crude oils: A basis for new technology

    Energy Technology Data Exchange (ETDEWEB)

    Premuzic, E.T.; Lin, M.S.; Lian, H.

    1995-10-01

    Systematic studies of chemical mechanisms by which selected microorganisms react with crude oils have led to the identification of biochemical markers characteristic of the interactions of microbes with oils. These biomarkers belong to several groups of natural products ranging from saturate and polyaromatic hydrocarbons containing heterocyclics to organometallic compounds. The biochemical conversions of oils can be monitored by these chemical markers, which are particularly useful in the optimization of biochemical processing, cost efficiency, and engineering studies. Recent results from these studies will be discussed in terms of biochemical technology for the processing of crude oils.

  11. Bioconversion of biodegradable municipal solid waste (BMSW) to glucose for bio-ethanol production.

    OpenAIRE

    Li, A

    2008-01-01

    Municipal solid waste (MSW), as an emerging biomass source, presents a unique opportunity for large-scale second-generation bioethanol production. Feedstock supply is reliable and in sufficient quantity, making it a promising biomass source but the conversion yield is currently too low to make it financially attractive. This work presented in this thesis provides a better understanding of bioconversion systems, in particular of pre-treatment and hydrolysis processes which contribute to more t...

  12. Haloalkaline Bioconversions for Methane Production from Microalgae Grown on Sunlight.

    Science.gov (United States)

    Daelman, Matthijs R J; Sorokin, Dimitry; Kruse, Olaf; van Loosdrecht, Mark C M; Strous, Marc

    2016-06-01

    Microalgal biomass can be converted to biofuels to replace nonsustainable fossil fuels, but the widespread use of microalgal biofuels remains hampered by the high energetic and monetary costs related to carbon dioxide supply and downstream processing. Growing microalgae in mixed culture biofilms reduces energy demands for mixing, maintaining axenic conditions, and biomass concentration. Furthermore, maintaining a high pH improves carbon dioxide absorption rates and inorganic carbon solubility, thus overcoming the carbon limitation and increasing the volumetric productivity of the microalgal biomass. Digesting the microalgal biomass anaerobically at high pH results in biogas that is enriched in methane, while the dissolved carbon dioxide is recycled to the phototrophic reactor. All of the required haloalkaline conversions are known in nature. PMID:26968613

  13. Production of Cellulase from Oil Palm Biomass as Substrate by Solid State Bioconversion

    Directory of Open Access Journals (Sweden)

    Md. Z. Alam

    2005-01-01

    Full Text Available Solid state bioconversion (SSB of lignocellulosic material oil palm biomass (OPB generated from palm oil industries as waste was conducted by evaluating the enzyme production through filamentous fungus in lab-scale experiment. OPB in the form of empty fruit bunches (EFB was used as the solid substrate and treated with the fungus Trichoderma harzianum to produce cellulase. The results presented in this study revealed that the higher cellulase activity of 0.0413 unit was achieved at the day 3 of fermentation. While the optimum study indicated the enzyme production of 0.0433 unit with moisture content of 50%, 0.0413 unit with 5% v/w of inoculum size and 0.0413 unit with co-substrate concentration of 2% (w/w at days 9, 9 and 12 of fungal treatment, respectively. The parameters glucosamine and reducing sugar were observed to evaluate the growth and substrate utilization in the experiment.

  14. Research report of fiscal 1997. Survey on creation of high-efficiency renewable resources, and bioconversion technology; 1997 nendo chosa hokokusho. Kokoritsu saisei kano shigen no sosei narabi ni bioconversion gijutsu ni kansuru chosa

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    Survey was made on material production technology using creation technology of high-efficiency renewable resources (photosynthesis reaction of plants). Industrially usable plant resources in overseas countries and Japan were arranged, and plant resources unused for food were also surveyed. The present state of genetic engineering necessary for metabolic engineering of higher plants such as fit and high-expression technology of genes, plant cell cultivation, and control technology of plant cell multiplication is described, and elementary technologies required for future gene-recombined plants are predicted. Survey was also made on the trend of creation technology of industrial plants for fat and oil, biodegradable polyester, amino acid, cellulose, fiber (cotton) and forest wood. A patent list on plant biotechnology was prepared, and study on bioconversion of plant resources was also surveyed. Overseas R & D trends on conversion and effective use technologies of renewable bio- resources are reported, and process design and its profitability were evaluated through a case study. 414 refs., 87 figs., 55 tabs.

  15. Quantifying pretreatment degradation compounds in solution and accumulated by cells during solids and yeast recycling in the Rapid Bioconversion with Integrated recycling Technology process using AFEX™ corn stover.

    Science.gov (United States)

    Sarks, Cory; Higbee, Alan; Piotrowski, Jeff; Xue, Saisi; Coon, Joshua J; Sato, Trey K; Jin, Mingjie; Balan, Venkatesh; Dale, Bruce E

    2016-04-01

    Effects of degradation products (low molecular weight compounds produced during pretreatment) on the microbes used in the RaBIT (Rapid Bioconversion with Integrated recycling Technology) process that reduces enzyme usage up to 40% by efficient enzyme recycling were studied. Chemical genomic profiling was performed, showing no yeast response differences in hydrolysates produced during RaBIT enzymatic hydrolysis. Concentrations of degradation products in solution were quantified after different enzymatic hydrolysis cycles and fermentation cycles. Intracellular degradation product concentrations were also measured following fermentation. Degradation product concentrations in hydrolysate did not change between RaBIT enzymatic hydrolysis cycles; the cell population retained its ability to oxidize/reduce (detoxify) aldehydes over five RaBIT fermentation cycles; and degradation products accumulated within or on the cells as RaBIT fermentation cycles increased. Synthetic hydrolysate was used to confirm that pretreatment degradation products are the sole cause of decreased xylose consumption during RaBIT fermentations.

  16. Production of bioethanol by direct bioconversion of oil-palm industrial effluent in a stirred-tank bioreactor.

    Science.gov (United States)

    Alam, Md Zahangir; Kabbashi, Nassereldeen A; Hussin, S Nahdatul I S

    2009-06-01

    The purpose of this study was to evaluate the feasibility of producing bioethanol from palm-oil mill effluent generated by the oil-palm industries through direct bioconversion process. The bioethanol production was carried out through the treatment of compatible mixed cultures such as Thrichoderma harzianum, Phanerochaete chrysosporium, Mucor hiemalis, and yeast, Saccharomyces cerevisiae. Simultaneous inoculation of T. harzianum and S. cerevisiae was found to be the mixed culture that yielded the highest ethanol production (4% v/v or 31.6 g/l). Statistical optimization was carried out to determine the operating conditions of the stirred-tank bioreactor for maximum bioethanol production by a two-level fractional factorial design with a single central point. The factors involved were oxygen saturation level (pO(2)%), temperature, and pH. A polynomial regression model was developed using the experimental data including the linear, quadratic, and interaction effects. Statistical analysis showed that the maximum ethanol production of 4.6% (v/v) or 36.3 g/l was achieved at a temperature of 32 degrees C, pH of 6, and pO(2) of 30%. The results of the model validation test under the developed optimum process conditions indicated that the maximum production was increased from 4.6% (v/v) to 6.5% (v/v) or 51.3 g/l with 89.1% chemical-oxygen-demand removal.

  17. Improving Biomethane Production and Mass Bioconversion of Corn Stover Anaerobic Digestion by Adding NaOH Pretreatment and Trace Elements

    Directory of Open Access Journals (Sweden)

    ChunMei Liu

    2015-01-01

    Full Text Available This research applied sodium hydroxide (NaOH pretreatment and trace elements to improve biomethane production when using corn stover for anaerobic digestion. Full-factor experimental tests identified the best combination of trace elements with the NaOH pretreatment, indicating that the best combination was with 1.0, 0.4, and 0.4 mg·L−1·d−1 of elements Fe, Co, and Ni, respectively. The cumulative biomethane production adding NaOH pretreatment and trace elements was 11,367 mL; total solid bioconversion rate was 55.7%, which was 41.8%–62.2% higher than with NaOH-pretreatment alone and 22.2%–56.3% higher than with untreated corn stover. The best combination was obtained 5–9 days shorter than T90 and maintained good system operation stability. Only a fraction of the trace elements in the best combination was present in the resulting solution; more than 85% of the total amounts added were transferred into the solid fraction. Adding 0.897 g of Fe, 0.389 g of Co, and 0.349 g of Ni satisfied anaerobic digestion needs and enhanced biological activity at the beginning of the operation. The results showed that NaOH pretreatment and adding trace elements improve corn stover biodegradability and enhance biomethane production.

  18. Improving Biomethane Production and Mass Bioconversion of Corn Stover Anaerobic Digestion by Adding NaOH Pretreatment and Trace Elements.

    Science.gov (United States)

    Liu, ChunMei; Yuan, HaiRong; Zou, DeXun; Liu, YanPing; Zhu, BaoNing; Li, XiuJin

    2015-01-01

    This research applied sodium hydroxide (NaOH) pretreatment and trace elements to improve biomethane production when using corn stover for anaerobic digestion. Full-factor experimental tests identified the best combination of trace elements with the NaOH pretreatment, indicating that the best combination was with 1.0, 0.4, and 0.4 mg·L(-1)·d(-1) of elements Fe, Co, and Ni, respectively. The cumulative biomethane production adding NaOH pretreatment and trace elements was 11,367 mL; total solid bioconversion rate was 55.7%, which was 41.8%-62.2% higher than with NaOH-pretreatment alone and 22.2%-56.3% higher than with untreated corn stover. The best combination was obtained 5-9 days shorter than T90 and maintained good system operation stability. Only a fraction of the trace elements in the best combination was present in the resulting solution; more than 85% of the total amounts added were transferred into the solid fraction. Adding 0.897 g of Fe, 0.389 g of Co, and 0.349 g of Ni satisfied anaerobic digestion needs and enhanced biological activity at the beginning of the operation. The results showed that NaOH pretreatment and adding trace elements improve corn stover biodegradability and enhance biomethane production.

  19. Utilization of fruit peels as carbon source for white rot fungi biomass production under submerged state bioconversion

    Directory of Open Access Journals (Sweden)

    Olorunnisola Kola Saheed

    2016-04-01

    Full Text Available The present generation of nutrient rich waste streams within the food and hospitality industry is inevitable and remained a matter of concern to stakeholders. Three white rot fungal strains were cultivated under submerged state bioconversion (SmB. Fermentable sugar conversion efficiency, biomass production and substrate utilization constant were indicators used to measure the success of the process. The substrates – banana peel (Bp, pineapple peel (PAp and papaya peel (Pp were prepared in wet and dried forms as substrates. Phanerochaete chrysosporium (P. chrysosporium, Panus tigrinus M609RQY, and RO209RQY were cultivated on sole fruit wastes and their composites. All fungal strains produced profound biomass on dry sole wet substrates, but wet composite substrates gave improved results. P. tigrinus RO209RQY was the most efficient in sugar conversion (99.6% on sole substrates while P. tigrinus M609RQY was efficient on composite substrates. Elevated substrate utilization constant (Ku and biomass production heralded wet composite substrates. P. chrysosporium was the most performing fungal strain for biomass production, while PApBp was the best composite substrate.

  20. Improving Biomethane Production and Mass Bioconversion of Corn Stover Anaerobic Digestion by Adding NaOH Pretreatment and Trace Elements.

    Science.gov (United States)

    Liu, ChunMei; Yuan, HaiRong; Zou, DeXun; Liu, YanPing; Zhu, BaoNing; Li, XiuJin

    2015-01-01

    This research applied sodium hydroxide (NaOH) pretreatment and trace elements to improve biomethane production when using corn stover for anaerobic digestion. Full-factor experimental tests identified the best combination of trace elements with the NaOH pretreatment, indicating that the best combination was with 1.0, 0.4, and 0.4 mg·L(-1)·d(-1) of elements Fe, Co, and Ni, respectively. The cumulative biomethane production adding NaOH pretreatment and trace elements was 11,367 mL; total solid bioconversion rate was 55.7%, which was 41.8%-62.2% higher than with NaOH-pretreatment alone and 22.2%-56.3% higher than with untreated corn stover. The best combination was obtained 5-9 days shorter than T90 and maintained good system operation stability. Only a fraction of the trace elements in the best combination was present in the resulting solution; more than 85% of the total amounts added were transferred into the solid fraction. Adding 0.897 g of Fe, 0.389 g of Co, and 0.349 g of Ni satisfied anaerobic digestion needs and enhanced biological activity at the beginning of the operation. The results showed that NaOH pretreatment and adding trace elements improve corn stover biodegradability and enhance biomethane production. PMID:26137469

  1. Production of natural flavors and fragrances by bioconversion%生物转化合成天然香料香精

    Institute of Scientific and Technical Information of China (English)

    陈虹; 陈蔚青; 梅建凤

    2011-01-01

    A brief overview was given of understanding the production of natural flavors and fragrances by bioconversion, ln the paper,the advantages in, perspectives for and basic principle of production of nature flavors and fragrances by bioconversion were put forward.The production of vanillin and 2- phenylethanol by bioconversion were illustrated to give a better understanding this topic.It is hoped that the paper can stimulate people' s interests in research and development of this field.%分析了生物转化法合成天然香料香精的优势与发展前景,概述了生物转化法合成天然香料香精的基本原理,介绍了生物转化法合成天然香兰素和2-苯乙醉的方法,旨在推动对生物转化法合成天然香料香精的研究和开发.

  2. Fermentation products of solvent tolerant marine bacterium Moraxella spp. MB1 and its biotechnological applications in salicylic acid bioconversion.

    Science.gov (United States)

    Wahidullah, Solimabi; Naik, Deepak N; Devi, Prabha

    2013-01-01

    As part of a proactive approach to environmental protection, emerging issues with potential impact on the environment is the subject of ongoing investigation. One emerging area of environmental research concerns pharmaceuticals like salicylic acid, which is the main metabolite of various analgesics including aspirin. It is a common component of sewage effluent and also an intermediate in the degradation pathway of various aromatic compounds which are introduced in the marine environment as pollutants. In this study, biotransformation products of salicylic acid by seaweed, Bryopsis plumosa, associated marine bacterium, Moraxella spp. MB1, have been investigated. Phenol, conjugates of phenol and hydroxy cinnamic acid derivatives (coumaroyl, caffeoyl, feruloyl and trihydroxy cinnamyl) with salicylic acid (3-8) were identified as the bioconversion products by electrospray ionization mass spectrometry. These results show that the microorganism do not degrade phenolic acid but catalyses oxygen dependent transformations without ring cleavage. The degradation of salicylic acid is known to proceed either via gentisic acid pathway or catechol pathway but this is the first report of biotransformation of salicylic acid into cinnamates, without ring cleavage. Besides cinnamic acid derivatives (9-12), metabolites produced by the bacterium include antimicrobial indole (13) and β-carbolines, norharman (14), harman (15) and methyl derivative (16), which are beneficial to the host and the environment. PMID:24391802

  3. Fermentation products of solvent tolerant marine bacterium Moraxella spp. MB1 and its biotechnological applications in salicylic acid bioconversion.

    Science.gov (United States)

    Wahidullah, Solimabi; Naik, Deepak N; Devi, Prabha

    2013-01-01

    As part of a proactive approach to environmental protection, emerging issues with potential impact on the environment is the subject of ongoing investigation. One emerging area of environmental research concerns pharmaceuticals like salicylic acid, which is the main metabolite of various analgesics including aspirin. It is a common component of sewage effluent and also an intermediate in the degradation pathway of various aromatic compounds which are introduced in the marine environment as pollutants. In this study, biotransformation products of salicylic acid by seaweed, Bryopsis plumosa, associated marine bacterium, Moraxella spp. MB1, have been investigated. Phenol, conjugates of phenol and hydroxy cinnamic acid derivatives (coumaroyl, caffeoyl, feruloyl and trihydroxy cinnamyl) with salicylic acid (3-8) were identified as the bioconversion products by electrospray ionization mass spectrometry. These results show that the microorganism do not degrade phenolic acid but catalyses oxygen dependent transformations without ring cleavage. The degradation of salicylic acid is known to proceed either via gentisic acid pathway or catechol pathway but this is the first report of biotransformation of salicylic acid into cinnamates, without ring cleavage. Besides cinnamic acid derivatives (9-12), metabolites produced by the bacterium include antimicrobial indole (13) and β-carbolines, norharman (14), harman (15) and methyl derivative (16), which are beneficial to the host and the environment.

  4. Fermentation products of solvent tolerant marine bacterium Moraxella spp. MB1 and its biotechnological applications in salicylic acid bioconversion.

    Directory of Open Access Journals (Sweden)

    Solimabi Wahidullah

    Full Text Available As part of a proactive approach to environmental protection, emerging issues with potential impact on the environment is the subject of ongoing investigation. One emerging area of environmental research concerns pharmaceuticals like salicylic acid, which is the main metabolite of various analgesics including aspirin. It is a common component of sewage effluent and also an intermediate in the degradation pathway of various aromatic compounds which are introduced in the marine environment as pollutants. In this study, biotransformation products of salicylic acid by seaweed, Bryopsis plumosa, associated marine bacterium, Moraxella spp. MB1, have been investigated. Phenol, conjugates of phenol and hydroxy cinnamic acid derivatives (coumaroyl, caffeoyl, feruloyl and trihydroxy cinnamyl with salicylic acid (3-8 were identified as the bioconversion products by electrospray ionization mass spectrometry. These results show that the microorganism do not degrade phenolic acid but catalyses oxygen dependent transformations without ring cleavage. The degradation of salicylic acid is known to proceed either via gentisic acid pathway or catechol pathway but this is the first report of biotransformation of salicylic acid into cinnamates, without ring cleavage. Besides cinnamic acid derivatives (9-12, metabolites produced by the bacterium include antimicrobial indole (13 and β-carbolines, norharman (14, harman (15 and methyl derivative (16, which are beneficial to the host and the environment.

  5. Bioconversion of glycerol for bioethanol production using isolated Escherichia coli SS1

    Directory of Open Access Journals (Sweden)

    Sheril Norliana Suhaimi

    2012-06-01

    Full Text Available Bioconverting glycerol into various valuable products is one of glycerol's promising applications due to its high availability at low cost and the existence of many glycerol-utilizing microorganisms. Bioethanol and biohydrogen, which are types of renewable fuels, are two examples of bioconverted products. The objectives of this study were to evaluate ethanol production from different media by local microorganism isolates and compare the ethanol fermentation profile of the selected strains to use of glucose or glycerol as sole carbon sources. The ethanol fermentations by six isolates were evaluated after a preliminary screening process. Strain named SS1 produced the highest ethanol yield of 1.0 mol: 1.0 mol glycerol and was identified as Escherichia coli SS1 Also, this isolated strain showed a higher affinity to glycerol than glucose for bioethanol production.

  6. Process development studies of the bioconversion of cellulose and production of ethanol. Semi annual report

    Energy Technology Data Exchange (ETDEWEB)

    Wilke, C.R.; Blanch, H.W.

    1981-04-01

    Progress in the following process development studio is reported: economic evaluation of hydrolysis and ethanol fermentation schemes, economic evaluation of alternative fermentation processes, raw materials evaluation, and evaluation of pretreatment process. Microbiological and enzymatic studies reported are: production of cellulase enzyme from high yielding mutants, hydrolysis reactor development, xylose fermentation, and xylanese production. Fermentation and separation processes include: process development studies on vacuum fermentation and distillation, evaluation of low energy separations processes, large scale hollow fiber reactor development. (MHR)

  7. Bioconversion from crude glycerin by Xanthomonas campestris 2103: xanthan production and characterization

    Directory of Open Access Journals (Sweden)

    L. V. Brandão

    2013-12-01

    Full Text Available The production and rheological properties of xanthan gum from crude glycerin fermentation, a primary by-product of the biodiesel industry with environmental and health risks, were evaluated. Batch fermentations (28 °C/250 rpm /120 h were carried out using crude glycerin, 0.01% urea and 0.1% KH2PO4, (% w/v, and compared to a sucrose control under the same operational conditions, using Xanthomonas campestris strain 2103 isolate from Brazil. Its maximal production by crude glycerin fermentation was 7.23±0.1 g·L-1 at 120 h, with an apparent viscosity of 642.57 mPa·s, (2 % w/v, 25 °C, 25 s-1, 70% and 30% higher than from sucrose fermentation, respectively. Its molecular weight varied from 28.2 to 36.2×10(6 Da. The Ostwald-de-Waele model parameters (K and n indicated a pseudoplastic behavior at all concentrations (0.5 to 2.0 %, w/v and temperatures (25-85 °C, while its consistency index indicated promising rheological properties for drilling fluid applications. Therefore, crude glycerin has potential as a cost-effective and alternative substrate for non-food grade xanthan production.

  8. Process development studies on the bioconversion of cellulose and production of ethanol

    Energy Technology Data Exchange (ETDEWEB)

    Wilke, C.R.; Blanch, H.W.

    1979-12-01

    Preliminary studies show minimal conversion of wood by sulfur dioxide at pressures of 38 psi at room temperature. Evaluation studies of Rut-C-30 and Rut-L-5 Trichoderma viride strains were compared. Studies on the continuous production system by manipulating temperature, pH, Tween 80 level substrate concentration, and dilution rate were performed. The known major components of cellulases were characterized. Studies on the reduction of the cost of producing sugar from corn stover were performed. Development of medium for continuous ethanol fermentation is discussed. Experiments show that the growth limiting factors for continuous fermentation were in the yeast extract. Biotin, pantothenic acid, and pyridoxine appear to be growth limiting factors. Addition of other vitamins had no effect on cell yield but increased ethanol production. The flash ferm process is discussed. Utilization of hemicellulose sugars is described. (DC)

  9. Bioconversion of industrial solid waste--cassava bagasse for pullulan production in solid state fermentation.

    Science.gov (United States)

    Sugumaran, K R; Jothi, P; Ponnusami, V

    2014-01-01

    The purpose of the work was to produce commercially important pullulan using industrial solid waste namely cassava bagasse in solid state fermentation and minimize the solid waste disposal problem. First, influence of initial pH on cell morphology and pullulan yield was studied. Effect of various factors like fermentation time, moisture ratio, nitrogen sources and particle size on pullulan yield was investigated. Various supplementary carbon sources (3%, w/w) namely glucose, sucrose, fructose, maltose, mannose and xylose with cassava bagasse was also studied to improve the pullulan yield. After screening the suitable supplement, effect of supplement concentration on pullulan production was investigated. The pullulan from cassava bagasse was characterized by FTIR, (1)H-NMR and (13)C-NMR. Molecular weight of pullulan from cassava bagasse was determined by gel permeation chromatography. Thus, cassava bagasse emerged to be a cheap and novel substrate for pullulan production.

  10. An integrated bioconversion process for the production of L-lactic acid from starchy feedstocks

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, S.P.; Moon, S.H.

    1997-07-01

    The potential market for lactic acid as the feedstock for biodegradable polymers, oxygenated chemicals, and specialty chemicals is significant. L-lactic acid is often the desired enantiomer for such applications. However, stereospecific lactobacilli do not metabolize starch efficiently. In this work, Argonne researchers have developed a process to convert starchy feedstocks into L-lactic acid. The processing steps include starch recovery, continuous liquefaction, and simultaneous saccharification and fermentation. Over 100 g/L of lactic acid was produced in less than 48 h. The optical purity of the product was greater than 95%. This process has potential economical advantages over the conventional process.

  11. Pilot plant studies of the bioconversion of cellulose and production of ethanol

    Energy Technology Data Exchange (ETDEWEB)

    Wilke, C.R.

    1977-06-30

    Progress is reported in the following studies on analysis and evaluation of potential raw materials: preliminary pretreatment studies using wheat straw; extraction of wheat straw with alcohol and water at elevated temperatures; extraction of ground wood with alcohol and water at elevated temperatures; and, delignification of newsprint with ethylene glycol. Other research in progress includes studies on: utilization of hemicellulose sugars; process design and economics of hydrolysis processes and ethanol fermentation; and, pilot plant process development and design, including cell-recycle systems for cellulase production, continuous hydrolysis, countercurrent hydrolysis, and ethanol fermentation studies. (JGB)

  12. Microbial and Bioconversion Production of D-xylitol and Its Detection and Application

    Science.gov (United States)

    Chen, Xi; Jiang, Zi-Hua; Chen, Sanfeng; Qin, Wensheng

    2010-01-01

    D-Xylitol is found in low content as a natural constituent of many fruits and vegetables. It is a five-carbon sugar polyol and has been used as a food additive and sweetening agent to replace sucrose, especially for non-insulin dependent diabetics. It has multiple beneficial health effects, such as the prevention of dental caries, and acute otitis media. In industry, it has been produced by chemical reduction of D-xylose mainly from photosynthetic biomass hydrolysates. As an alternative method of chemical reduction, biosynthesis of D-xylitol has been focused on the metabolically engineered Saccharomyces cerevisiae and Candida strains. In order to detect D-xylitol in the production processes, several detection methods have been established, such as gas chromatography (GC)-based methods, high performance liquid chromatography (HPLC)-based methods, LC-MS methods, and capillary electrophoresis methods (CE). The advantages and disadvantages of these methods are compared in this review. PMID:21179590

  13. Microbial and Bioconversion Production of D-xylitol and Its Detection and Application

    Directory of Open Access Journals (Sweden)

    Xi Chen, Zi-Hua Jiang, Sanfeng Chen, Wensheng Qin

    2010-01-01

    Full Text Available D-Xylitol is found in low content as a natural constituent of many fruits and vegetables. It is a five-carbon sugar polyol and has been used as a food additive and sweetening agent to replace sucrose, especially for non-insulin dependent diabetics. It has multiple beneficial health effects, such as the prevention of dental caries, and acute otitis media. In industry, it has been produced by chemical reduction of D-xylose mainly from photosynthetic biomass hydrolysates. As an alternative method of chemical reduction, biosynthesis of D-xylitol has been focused on the metabolically engineered Saccharomyces cerevisiae and Candida strains. In order to detect D-xylitol in the production processes, several detection methods have been established, such as gas chromatography (GC-based methods, high performance liquid chromatography (HPLC-based methods, LC-MS methods, and capillary electrophoresis methods (CE. The advantages and disadvantages of these methods are compared in this review.

  14. Bioconversion of wastewater from sweet potato starch production to Paenibacillus polymyxa biofertilizer for tea plants.

    Science.gov (United States)

    Xu, Shengjun; Bai, Zhihui; Jin, Bo; Xiao, Runlin; Zhuang, Guoqiang

    2014-01-01

    Wastewater from the sweet potato starch industry is a large source of nutrient-rich substrates. We assessed whether this wastewater could be used to produce Paenibacillus polymyxa biofertilizer for foliar application to tea trees. Using the central composite design methods we experientially determined that the optimal culture conditions for P. polymyxa were pH, 6.5; temperature, 29.0 °C; and incubation time, 16 h. Under these conditions, a maximum biomass of 9.7 × 10(9) cfu/mL was achieved. We then conducted a yearlong field investigation to determine the effect of P. polymyxa biofertilizer on the growth of tea plants (Camellia sinensis). Tea yield, quantity of water extract, and tea polyphenol levels were significantly higher after foliar application of the biofertilizer compared to that in the controls by an average of 16.7%, 6.3%, and 10.4%, respectively. This approach appears to be technically feasible for organic tea production, and is an environmentally friendly way to utilize wastewater.

  15. Bioconversion of municipal solid waste to glucose for bio-ethanol production.

    Science.gov (United States)

    Li, Aiduan; Antizar-Ladislao, Blanca; Khraisheh, Majeda

    2007-05-01

    Selected biodegradable municipal solid waste fractions were subjected to fifteen different pre-hydrolysis treatments to obtain the highest glucose yield for bio-ethanol production. Pre-hydrolysis treatments consisted of dilute acid (H(2)SO(4), HNO(3) or HCl, 1 and 4%, 180 min, 60 degrees C), steam treatment (121 and 134 degrees C, 15 min), microwave treatment (700 W, 2 min) or a combination of two of them. Enzymatic hydrolysis was carried out with Trichoderma reesei and Trichoderma viride (10 and 60 FPU g(-1) substrate). Glucose yields were compared using a factorial experimental design. The highest glucose yield (72.80%) was obtained with a pre-hydrolysis treatment consisting of H(2)SO(4) at 1% concentration, followed by steam treatment at 121 degrees C, and enzymatic hydrolysis with Trichoderma viride at 60 FPU g(-1) substrate. The contribution of enzyme loading and acid concentration was significantly higher (49.39 and 47.70%, respectively), than the contribution of temperature during steam treatment (0.13%) to the glucose yield.

  16. Bioconversion of Cheese Waste (Whey)

    International Nuclear Information System (INIS)

    The US dairy industry produces 67 billion pounds of cheese whey annually. A waste by-product of cheese production, whey consists of water, milk sugar (lactose), casein (protein), and salts amounting to about 7% total solids. Ultrafiltration is used to concentrate cheese whey into a protein-rich foodstuff; however, it too produces a waste stream, known as ''whey permeate,'' (rejected water, lactose, and salts from the membrane). Whey permeate contains about 4.5% lactose and requires treatment to reduce the high BOD (biological oxygen demand) before disposal. Ab Initio, a small business with strong chemistry and dairy processing background, desired help in developing methods for bioconversion of whey permeate lactose into lactic acid. Lactic acid is an organic acid primarily used as an acidulant in the food industry. More recently it has been used to produce polylactic acid, a biodegradable polymer and as a new method to treat meat carcasses to combat E. coli bacteria. Conversion of whey permeate to lactic acid is environmentally sound because it produces a valued product from an otherwise waste stream. FM and T has expertise in bioconversion processes and analytical techniques necessary to characterize biomass functions. The necessary engineering and analytical services for pilot biomass monitoring, process development, and purification of crude lactic acid were available at this facility

  17. Bioconversion of Agricultural By-Products to Lysin by brevibacterium flavum and physico-chemical optimization for hyper-production

    International Nuclear Information System (INIS)

    Poultry and agriculture industry has a great role in the development of food sector in Pakistan. Whole of the Lysine required for poultry feed is imported to fulfil the desired dietary needs. Present study was designed to utilize different agricultural by-products like molasses, wheat bran, rice polishing and corn steep liquor. Different Physico-Chemical parameters were optimized to have hyper-production of Lysine through fermentation by using Brevibacterium flavum as a fermentative agent. From wheat bran, rice polishing and molasses (as best carbon source), significantly high concentrations of lysine (10.4 g/L) after 72h of incubation was observed with molasses (4 percentage) with 3 percentage (v/v) inoculum size at 30 degree C and pH 7. Among different nitrogen sources, 0.25 percentage (NH/sub 4/)2SO/sub 4/ showed significantly (P< 0.05) high yield of Lysine (16.89 g/L). Addition of different optimum levels of ionic salts; 4 percentage CaCO/sub 3/, 0.4 percentage MgSO/sub 4/.7H/sub 2/O, 0.1 percentage NaCl and 0.2 percentage KH/sub 2/PO/sub 4/ gave significantly (P< 0.05) higher quantity of Lysine 19.01 g/L. Inclusion of 0.6 percentage corn steep liquor and 0.4 mg/100mL biotin significantly (P< 0.05) raised the Lysine from 19.4 g/L - 19.45 g/L. The presence of Lysine in fermented broth was detected by TLC. Thus a cheap and practical bioprocess of Lysine production was concluded, that can be exploited commercially to save foreign exchange. (author)

  18. Integrated two-liquid phase bioconversion and product-recovery processes for the oxidation of alkanes: process design and economic evaluation

    Science.gov (United States)

    Mathys; Schmid; Witholt

    1999-08-20

    Pseudomonas oleovorans and recombinant strains containing the alkane oxidation genes can produce alkane oxidation products in two-liquid phase bioreactor systems. In these bioprocesses the cells, which grow in the aqueous phase, oxidize apolar, non-water soluble substrates. The apolar products typically accumulate in the emulsified apolar phase. We have studied both the bioconversion systems and several downstream processing systems to separate and purify alkanols from these two-liquid phase media. Based on the information generated in these studies, we have now designed bioconversion and downstream processing systems for the production of 1-alkanols from n-alkanes on a 10 kiloton/yr scale, taking the conversion of n-octane to 1-octanol as a model system. Here, we describe overall designs of fed-batch and continuous-fermentation processes for the oxidation of octane to 1-octanol by Pseudomonas oleovorans, and we discuss the economics of these processes. In both systems the two-liquid phase system consists of an apolar phase with hexadecene as the apolar carrier solvent into which n-octane is dissolved, while the cells are present in the aqueous phase. In one system, multiple-batch fermentations are followed by continuous processing of the product from the separated apolar phase. The second system is based on alkane oxidation by continuously growing cultures, again followed by continuous processing of the product. Fewer fermentors were required and a higher space-time-yield was possible for production of 1-octanol in a continuous process. The overall performance of each of these two systems has been modeled with Aspen software. Investment and operating costs were estimated with input from equipment manufacturers and bulk-material suppliers. Based on this study, the production cost of 1-octanol is about 7 US$kg-1 when produced in the fed-batch process, and 8 US$kg-1 when produced continuously. The comparison of upstream and downstream capital costs and production

  19. Advances in production technology

    CERN Document Server

    2015-01-01

    This edited volume contains the selected papers presented at the scientific board meeting of the German Cluster of Excellence on “Integrative Production Technology for High-Wage Countries”,  held in November 2014. The topical structure of the book is clustered in six sessions: Integrative Production Technology, Individualised Production, Virtual Production Systems, Integrated Technologies, Self-Optimising Production Systems and Human Factors in Production Technology. The Aachen perspective on a holistic theory of production is complemented by conference papers from external leading researchers in the fields of production, materials science and bordering disciplines. The target audience primarily comprises research experts and practitioners in the field but the book may also be beneficial for graduate students.

  20. Fungal bioconversion of lignocellulosic residues; opportunities & perspectives.

    Science.gov (United States)

    Dashtban, Mehdi; Schraft, Heidi; Qin, Wensheng

    2009-01-01

    The development of alternative energy technology is critically important because of the rising prices of crude oil, security issues regarding the oil supply, and environmental issues such as global warming and air pollution. Bioconversion of biomass has significant advantages over other alternative energy strategies because biomass is the most abundant and also the most renewable biomaterial on our planet. Bioconversion of lignocellulosic residues is initiated primarily by microorganisms such as fungi and bacteria which are capable of degrading lignocellulolytic materials. Fungi such as Trichoderma reesei and Aspergillus niger produce large amounts of extracellular cellulolytic enzymes, whereas bacterial and a few anaerobic fungal strains mostly produce cellulolytic enzymes in a complex called cellulosome, which is associated with the cell wall. In filamentous fungi, cellulolytic enzymes including endoglucanases, cellobiohydrolases (exoglucanases) and beta-glucosidases work efficiently on cellulolytic residues in a synergistic manner. In addition to cellulolytic/hemicellulolytic activities, higher fungi such as basidiomycetes (e.g. Phanerochaete chrysosporium) have unique oxidative systems which together with ligninolytic enzymes are responsible for lignocellulose degradation. This review gives an overview of different fungal lignocellulolytic enzymatic systems including extracellular and cellulosome-associated in aerobic and anaerobic fungi, respectively. In addition, oxidative lignocellulose-degradation mechanisms of higher fungi are discussed. Moreover, this paper reviews the current status of the technology for bioconversion of biomass by fungi, with focus on mutagenesis, co-culturing and heterologous gene expression attempts to improve fungal lignocellulolytic activities to create robust fungal strains. PMID:19774110

  1. Fungal Bioconversion of Lignocellulosic Residues; Opportunities & Perspectives

    Directory of Open Access Journals (Sweden)

    Mehdi Dashtban, Heidi Schraft, Wensheng Qin

    2009-01-01

    Full Text Available The development of alternative energy technology is critically important because of the rising prices of crude oil, security issues regarding the oil supply, and environmental issues such as global warming and air pollution. Bioconversion of biomass has significant advantages over other alternative energy strategies because biomass is the most abundant and also the most renewable biomaterial on our planet. Bioconversion of lignocellulosic residues is initiated primarily by microorganisms such as fungi and bacteria which are capable of degrading lignocellulolytic materials. Fungi such as Trichoderma reesei and Aspergillus niger produce large amounts of extracellular cellulolytic enzymes, whereas bacterial and a few anaerobic fungal strains mostly produce cellulolytic enzymes in a complex called cellulosome, which is associated with the cell wall. In filamentous fungi, cellulolytic enzymes including endoglucanases, cellobiohydrolases (exoglucanases and β-glucosidases work efficiently on cellulolytic residues in a synergistic manner. In addition to cellulolytic/hemicellulolytic activities, higher fungi such as basidiomycetes (e.g. Phanerochaete chrysosporium have unique oxidative systems which together with ligninolytic enzymes are responsible for lignocellulose degradation. This review gives an overview of different fungal lignocellulolytic enzymatic systems including extracellular and cellulosome-associated in aerobic and anaerobic fungi, respectively. In addition, oxidative lignocellulose-degradation mechanisms of higher fungi are discussed. Moreover, this paper reviews the current status of the technology for bioconversion of biomass by fungi, with focus on mutagenesis, co-culturing and heterologous gene expression attempts to improve fungal lignocellulolytic activities to create robust fungal strains.

  2. Bioconversion of barley straw and corn stover to butanol (a biofuel) in integrated fermentation and simultaneous product recovery bioreactors

    Science.gov (United States)

    In these studies concentrated sugar solutions of barley straw and corn stover hydrolysates were fermented with simultaneous product recovery and compared with the performance of a control glucose batch fermentation process. The control glucose batch fermentation resulted in the production of 23.25 g...

  3. Nanocellulose production technology

    OpenAIRE

    Tozluoğlu, Ayhan; ÇÖPÜR, Yalçın; Özyürek, Ömer; Çıtlak, Sema

    2015-01-01

    In recent years, technological developments in the area of nanotechnology have dramatically improved the technology. Some research have particularly been accomplished on medical and textile industries in Turkey. Even studies in forest industy on the subject have gained importance in the world, there is so limited research in Turkey. The aim of this review is to inform researches specifically studiying on wood science about nanocellulose production and uses. This review includes methods of nan...

  4. Simultaneous biocatalyst production and Baeyer-Villiger oxidation for bioconversion of cyclohexanone by recombinant Escherichia coli expressing cyclohexanone monooxygenase.

    Science.gov (United States)

    Lee, Won-Heong; Park, Yong-Cheol; Lee, Dae-Hee; Park, Kyungmoon; Seo, Jin-Ho

    2005-01-01

    Cyclohexanone monooxygenase (CHMO) catalyzing Baeyer-Villiger oxidation converts cyclic ketones into optically pure lactones, which have been used as building blocks in organic synthesis. A recombinant Escherichia coli BL21(DE3)/pMM4 expressing CHMO originated from Acinetobacter sp. NCIB 9871 was used to produce epsilon-caprolactone through a simultaneous biocatalyst production and Baeyer-Villiger oxidation (SPO) process. A fed-batch process was designed to obtain high cell density for improving production of epsilon-caprolactone. The fed-batch SPO process gave the best results, 10.2 g/L of epsilon-caprolactone and 0.34 g/(L.h) of productivity, corresponding to a 10.5- and 3.4-fold enhancement compared with those of the batch SPO, respectively.

  5. Improving Biomethane Production and Mass Bioconversion of Corn Stover Anaerobic Digestion by Adding NaOH Pretreatment and Trace Elements

    OpenAIRE

    ChunMei Liu; HaiRong Yuan; DeXun Zou; YanPing Liu; BaoNing Zhu; XiuJin Li

    2015-01-01

    This research applied sodium hydroxide (NaOH) pretreatment and trace elements to improve biomethane production when using corn stover for anaerobic digestion. Full-factor experimental tests identified the best combination of trace elements with the NaOH pretreatment, indicating that the best combination was with 1.0, 0.4, and 0.4 mg·L−1·d−1 of elements Fe, Co, and Ni, respectively. The cumulative biomethane production adding NaOH pretreatment and trace elements was 11,367 mL; total solid bioc...

  6. Bioconversion of garden waste, kitchen waste and cow dung into value-added products using earthworm Eisenia fetida

    OpenAIRE

    Wani, K.A.; Mamta; R.J. Rao

    2013-01-01

    Solid waste management is a worldwide problem and it is becoming more and more complicated day by day due to rise in population, industrialization and changes in our life style. Transformation of industrial sludges into vermicompost is of double interest: on the one hand, a waste is converted into value added product, and, on the other, it controls a pollutant that is a consequence of increasing industrialization. Garden waste, kitchen waste and cow dung were subjected to recycle through verm...

  7. Inhibitory effect of lignin during cellulose bioconversion: the effect of lignin chemistry on non-productive enzyme adsorption.

    Science.gov (United States)

    Rahikainen, Jenni L; Martin-Sampedro, Raquel; Heikkinen, Harri; Rovio, Stella; Marjamaa, Kaisa; Tamminen, Tarja; Rojas, Orlando J; Kruus, Kristiina

    2013-04-01

    The effect of lignin as an inhibitory biopolymer for the enzymatic hydrolysis of lignocellulosic biomass was studied; specially addressing the role of lignin in non-productive enzyme adsorption. Botanical origin and biomass pre-treatment give rise to differences in lignin structure and the effect of these differences on enzyme binding and inhibition were elucidated. Lignin was isolated from steam explosion (SE) pre-treated and non-treated spruce and wheat straw and used for the preparation of ultrathin films for enzyme binding studies. Binding of Trichoderma reesei Cel7A (CBHI) and the corresponding Cel7A-core, lacking the linker and the cellulose-binding domain, to the lignin films was monitored using a quartz crystal microbalance (QCM). SE pre-treatment altered the lignin structure, leading to increased enzyme adsorption. Thus, the positive effect of SE pre-treatment, opening the cell wall matrix to make polysaccharides more accessible, may be compromised by the structural changes of lignin that increase non-productive enzyme adsorption. PMID:23428824

  8. Bioconversion of anhydrosugars: Emerging concepts and strategies.

    Science.gov (United States)

    Bacik, John-Paul; Jarboe, Laura R

    2016-09-01

    As methods for the use of anhydrosugars in chemical and biofuel production continue to develop, our collective knowledge of anhydrosugar processing enzymes continues to improve, including their mechanistic details, structural dynamics and modes of substrate binding. Of particular interest, anhydrosugar kinases, such as levoglucosan kinase (LGK) and 1,6-anhydro-N-acetylmuramic acid kinase (AnmK), utilize an unusual mechanism whereby the sugar substrate is both cleaved and phosphorylated. The phosphorylated sugar can then be routed to other metabolic pathways, thereby allowing its further bioconversion. Advanced engineering efforts to improve the catalytic efficiency and stability of LGK have been steadily progressing. Other enzymes that cleave the glycosidic bond of disaccharide sugars containing an anhydrosugar component are also being identified and characterized. Accordingly, the potential future use of these enzymes in large-scale production strategies is becoming increasingly viable. Here, a mini-review of the observed characteristics of anhydrosugar processing enzymes is presented along with recent developments in the bioconversion of these sugars. © 2016 IUBMB Life 68(9):700-708, 2016. PMID:27416973

  9. Flood Resilient Technological Products

    Science.gov (United States)

    Diez Gonzalez, J. J.; Monnot, J. V.; Marquez Paniagua, P.; Pámpanas, P.; Paz Abuín, S.; Prendes, P.; Videra, O.; U. P. M. Smartest Team

    2012-04-01

    As a consequence of the paradigm shift of the EU water policy (Directive 2007/60/EC, EC 2003) from defense to living with flood, floods shall be faced in the future through resilient solutions, seeking to improve the permanence of flood protection, and getting thus beyond traditional temporary and human-relying solutions. But the fact is that nowadays "Flood Resilient (FRe) Building Technological Products" is an undefined concept, and concerned FRe solutions cannot be even easily identified. "FRe Building Technological materials" is a wide term involving a wide and heterogeneous range of solutions. There is an interest in offering an identification and classification of the referred products, since it will be useful for stakeholders and populations at flood risk for adopting the most adequate protections when facing floods. Thus, a previous schematic classification would enable us at least to identify most of them and to figure out autonomous FRe Technological Products categories subject all of them to intense industrial innovative processes. The flood resilience enhancement of a given element requires providing it enough water-repelling capacity, and different flood resilient solutions can be sorted out: barriers, waterproofing and anticorrosive. Barriers are palliative solutions that can be obtained either from traditional materials, or from technological ones, offering their very low weight and high maneuverability. Belonging barriers and waterproofing systems to industrial branches clearly different, from a conceptual point of view, waterproofing material may complement barriers, and even be considered as autonomous barriers in some cases. Actually, they do not only complement barriers by their application to barriers' singular weak points, like anchors, joints, but on the other hand, waterproofing systems can be applied to enhance the flood resilience of new building, as preventive measure. Anticorrosive systems do belong to a clearly different category

  10. 生物转化食用菌菌糠木质纤维素产燃料乙醇的研究进展%Research progresses on bioconversion of spent mushroom substrate lignocellulose for fuel ethanol production

    Institute of Scientific and Technical Information of China (English)

    虞志强; 余水静; 李昆太

    2015-01-01

    近年来,食用菌生产技术在世界各国得以广泛普及,全球食用菌菌糠(spent mushroom substrate,SMS)总产量也随之大幅增长.随着全球性能源危机的到来,利用可再生纤维素类物质生产燃料乙醇已引起世界各国的高度重视.食用菌菌糠是食用菌子实体采收后的固体废弃物,其含有纤维素、半纤维素、木质素、抗营养因子和胞外纤维素降解酶类等组分,具备了作为第二代生物乙醇转化基质的潜力,基于此,该文对当前利用食用菌菌糠生物转化生产乙醇的研究进展和应用前景进行了阐述.%In recent years,edible fungus production technology has been widely spread all over the world,and the total output of spent mushroom substrate (SMS) has been significantly increased.With the severe circumstances of the global energy crisis,more and more attention has been focused on how to use the renewable fiber material to produce bioethanol.As the solid waste of mushroom,SMS contains lots of nutritional ingredients,such as cellulose,hemicellulose,lignin,anti-nutrition factor and extracellular cellulose degradation enzymes,and possesses the potential of second-generation bioethanol conversion.The second-generation bioethanol made from lignocellulosic biomass is considered to be one of the most promising biofuels.Based on this fact,this paper mainly elaborated the research progresses and application prospect on the utilization of SMS for ethanol bioconversion.

  11. Aggregate productivity and aggregate technology

    OpenAIRE

    Susanto Basu; John G. Fernald

    1997-01-01

    Aggregate productivity and aggregate technology are meaningful but distinct concepts. We show that a slightly-modified Solow productivity residual measures changes in economic welfare, even when productivity and technology differ because of distortions such as imperfect competition. We then present a general accounting framework that identifies several new non-technological gaps between productivity and technology, gaps reflecting imperfections and frictions in output and factor markets. Empi...

  12. Nano Manufacturing - Products and Technologies

    DEFF Research Database (Denmark)

    Hansen, Hans Nørgaard; Alting, Leo

    2004-01-01

    The use of micro and nano technologies in components and products not only sets new demands to the manufacturing technologies. Product concepts have to be rethought and redefined in order to implement the micro and nano technologies into functional systems. Both a technology driven and a product...... driven approach can be used in this process. A framework for the product driven approach in nano manufacturing is presented and discussed. The general discussion will be supported by case studies covering polymers and metals....

  13. Bioconversion of natural gas to liquid fuel: opportunities and challenges.

    Science.gov (United States)

    Fei, Qiang; Guarnieri, Michael T; Tao, Ling; Laurens, Lieve M L; Dowe, Nancy; Pienkos, Philip T

    2014-01-01

    Natural gas is a mixture of low molecular weight hydrocarbon gases that can be generated from either fossil or anthropogenic resources. Although natural gas is used as a transportation fuel, constraints in storage, relatively low energy content (MJ/L), and delivery have limited widespread adoption. Advanced utilization of natural gas has been explored for biofuel production by microorganisms. In recent years, the aerobic bioconversion of natural gas (or primarily the methane content of natural gas) into liquid fuels (Bio-GTL) by biocatalysts (methanotrophs) has gained increasing attention as a promising alternative for drop-in biofuel production. Methanotrophic bacteria are capable of converting methane into microbial lipids, which can in turn be converted into renewable diesel via a hydrotreating process. In this paper, biodiversity, catalytic properties and key enzymes and pathways of these microbes are summarized. Bioprocess technologies are discussed based upon existing literature, including cultivation conditions, fermentation modes, bioreactor design, and lipid extraction and upgrading. This review also outlines the potential of Bio-GTL using methane as an alternative carbon source as well as the major challenges and future research needs of microbial lipid accumulation derived from methane, key performance index, and techno-economic analysis. An analysis of raw material costs suggests that methane-derived diesel fuel has the potential to be competitive with petroleum-derived diesel.

  14. Bioconversion of natural gas to liquid fuel: Opportunities and challenges

    Energy Technology Data Exchange (ETDEWEB)

    Fei, Q; Guarnieri, MT; Tao, L; Laurens, LML; Dowe, N; Pienkos, PT

    2014-05-01

    Natural gas is a mixture of low molecular weight hydrocarbon gases that can be generated from either fossil or anthropogenic resources. Although natural gas is used as a transportation fuel, constraints in storage, relatively low energy content (MJ/L), and delivery have limited widespread adoption. Advanced utilization of natural gas has been explored for biofuel production by microorganisms. In recent years, the aerobic bioconversion of natural gas (or primarily the methane content of natural gas) into liquid fuels (Bio-GTL) by biocatalysts (methanotrophs) has gained increasing attention as a promising alternative for drop-in biofuel production. Methanotrophic bacteria are capable of converting methane into microbial lipids, which can in turn be converted into renewable diesel via a hydrotreating process. In this paper, biodiversity, catalytic properties and key enzymes and pathways of these microbes are summarized. Bioprocess technologies are discussed based upon existing literature, including cultivation conditions, fermentation modes, bioreactor design, and lipid extraction and upgrading. This review also outlines the potential of Bio-GTL using methane as an alternative carbon source as well as the major challenges and future research needs of microbial lipid accumulation derived from methane, key performance index, and techno-economic analysis. An analysis of raw material costs suggests that methane-derived diesel fuel has the potential to be competitive with petroleum-derived diesel. (C) 2014 The Authors. Published by Elsevier Inc.

  15. Bioconversion of Natural Gas to Liquid Fuel. Opportunities and Challenges

    Energy Technology Data Exchange (ETDEWEB)

    Fei, Qiang [National Renewable Energy Lab. (NREL), Golden, CO (United States); Guarnieri, Michael T. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Tao, Ling [National Renewable Energy Lab. (NREL), Golden, CO (United States); Laurens, Lieve M. L. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Dowe, Nancy [National Renewable Energy Lab. (NREL), Golden, CO (United States); Pienkos, Philip T. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2014-05-01

    Natural gas is a mixture of low molecular weight hydrocarbon gases that can be generated from either fossil or anthropogenic resources. Although natural gas is used as a transportation fuel, constraints in storage, relatively low energy content (MJ/L), and delivery have limited widespread adoption. Advanced utilization of natural gas has been explored for biofuel production by microorganisms. In recent years, the aerobic bioconversion of natural gas (or primarily the methane content of natural gas) into liquid fuels (Bio-GTL) by biocatalysts (methanotrophs) has gained increasing attention as a promising alternative for drop-in biofuel production. Moreover, methanotrophic bacteria are capable of converting methane into microbial lipids, which can in turn be converted into renewable diesel via a hydrotreating process. In this paper, biodiversity, catalytic properties and key enzymes and pathways of these microbes are summarized. Bioprocess technologies are discussed based upon existing literature, including cultivation conditions, fermentation modes, bioreactor design, and lipid extraction and upgrading. Our review also outlines the potential of Bio-GTL using methane as an alternative carbon source as well as the major challenges and future research needs of microbial lipid accumulation derived from methane, key performance index, and techno-economic analysis. An analysis of raw material costs suggests that methane-derived diesel fuel has the potential to be competitive with petroleum-derived diesel.

  16. Microbial bioconversion of pollutants

    Energy Technology Data Exchange (ETDEWEB)

    Golovleva, L.A.; Aliyeva, R.M.; Naumova, R.P.; Gvozdyak, P.I. (Institute of Biochemistry and Physiology of Microorganisms, USSR Academy of Sciences, Moscow (USSR))

    1992-01-01

    Microorganisms totally detoxicate xenobiotics of various chemical structures, which are serious and, in some cases, very hazardous pollutants. At present, the efforts of a number of researchers promoted the establishment in this country of a collection of microorganisms able to degrade volatile toxic pollutants--toluene, isomeric xylenes, styrene, alpha-methylstyrene, crotonaldehyde; widely distributed xenobiotics chlorobenzoic acids; isomeric aryldicarboxylic acids; and ecologically hazardous pollutants such as aromatic nitrocompounds. The active strains-destructors are mainly representatives of the genera Pseudomonas and Rhodococcus. Research into their physiological characteristics, key enzymes, pathways of xenobiotics degradation, genetic mechanisms determining the degradation of these foreign compounds, and behaviour of the strains in a real environment made it possible to develop the theoretical principles of using these microbial cultures to purify real industrial wastes and remediate polluted areas of soil and water. Improvement of the methods of immobilizing the active xenobiotics-degrading strains on cheap and efficient carriers made it possible to significantly intensify the cleanup process of industrial wastes and eliminate a number of problems during the development of the biotechnologies for industrial waste cleanup. Successfully operated at present are the biotechnologies of the local cleanup of waste waters of terephthalate production, microbial purification of industrial waste waters in nylon-66 production from hexamethylenediamine, purification of coke production wastes from phenols, waste waters of polyisocyanate production from aromatic amines, local purification of waste waters in synthetic rubber production from alpha-methylstyrene, acetaldehyde production wastes from crotonaldehyde and mercury. 97 references.

  17. Bacterial biodegradation and bioconversion of industrial lignocellulosic streams.

    Science.gov (United States)

    Mathews, Stephanie L; Pawlak, Joel; Grunden, Amy M

    2015-04-01

    Lignocellulose is a term for plant materials that are composed of matrices of cellulose, hemicellulose, and lignin. Lignocellulose is a renewable feedstock for many industries. Lignocellulosic materials are used for the production of paper, fuels, and chemicals. Typically, industry focuses on transforming the polysaccharides present in lignocellulose into products resulting in the incomplete use of this resource. The materials that are not completely used make up the underutilized streams of materials that contain cellulose, hemicellulose, and lignin. These underutilized streams have potential for conversion into valuable products. Treatment of these lignocellulosic streams with bacteria, which specifically degrade lignocellulose through the action of enzymes, offers a low-energy and low-cost method for biodegradation and bioconversion. This review describes lignocellulosic streams and summarizes different aspects of biological treatments including the bacteria isolated from lignocellulose-containing environments and enzymes which may be used for bioconversion. The chemicals produced during bioconversion can be used for a variety of products including adhesives, plastics, resins, food additives, and petrochemical replacements.

  18. PDT (Product Data Technology), Production and Society

    DEFF Research Database (Denmark)

    Vesterager, Johan

    1997-01-01

    Information and communication technology (ICT) constitute a genuine technical revolution by enabling a dynamic and flexible support or automation of knowledge and information work. Bearing in mind that products are frozen knowledge, ICT as known will change the way we produce products dramatically....... The use of ICT in engineering of products constitutes product data technology (PDT).This paper presents a a basic platform for an understanding the ongoing revolution with focus on the PDT-area taking outset in the fundamental elements of knowledge and information work: creation, transformation...

  19. Effect of bioconversion conditions on vanillin production by Amycolatopsis sp. ATCC 39116 through an analysis of competing by-product formation.

    Science.gov (United States)

    Ma, Xiao-kui; Daugulis, Andrew J

    2014-05-01

    This study investigated the effects of transformation conditions such as initial pH, the initial concentration of glucose and yeast extract in the medium, and the separate addition of ferulic acid and vanillic acid, on the production of vanillin through an analysis of competing by-product formation by Amycolatopsis sp. ATCC 39116. The extent and nature of by-product formation and vanillin yield were affected by initial pH and different initial concentrations of glucose and yeast extract in the medium, with a high yield of vanillin and high cell density obtained at pH 8.0, 10 g/l glucose, and 8 g/l yeast extract. High concentrations of ferulic acid were found to negatively affect cell density. Additional supplementation of 100 mg/l vanillic acid, a metabolically linked by-product, was found to result in a high concentration of vanillin and guaiacol, an intermediate of vanillin. Via an analysis of the effect of these transformation conditions on competing by-product formation, high concentrations of ferulic acid were transformed with a molar yield to vanillin of 96.1 and 95.2 %, by Amycolatopsis sp. ATCC 39116 and Streptomyces V1, respectively, together with a minor accumulation of by-products. These are among the highest performance values reported in the literature to date for Streptomyces in batch cultures. PMID:24078147

  20. Effect of bioconversion conditions on vanillin production by Amycolatopsis sp. ATCC 39116 through an analysis of competing by-product formation.

    Science.gov (United States)

    Ma, Xiao-kui; Daugulis, Andrew J

    2014-05-01

    This study investigated the effects of transformation conditions such as initial pH, the initial concentration of glucose and yeast extract in the medium, and the separate addition of ferulic acid and vanillic acid, on the production of vanillin through an analysis of competing by-product formation by Amycolatopsis sp. ATCC 39116. The extent and nature of by-product formation and vanillin yield were affected by initial pH and different initial concentrations of glucose and yeast extract in the medium, with a high yield of vanillin and high cell density obtained at pH 8.0, 10 g/l glucose, and 8 g/l yeast extract. High concentrations of ferulic acid were found to negatively affect cell density. Additional supplementation of 100 mg/l vanillic acid, a metabolically linked by-product, was found to result in a high concentration of vanillin and guaiacol, an intermediate of vanillin. Via an analysis of the effect of these transformation conditions on competing by-product formation, high concentrations of ferulic acid were transformed with a molar yield to vanillin of 96.1 and 95.2 %, by Amycolatopsis sp. ATCC 39116 and Streptomyces V1, respectively, together with a minor accumulation of by-products. These are among the highest performance values reported in the literature to date for Streptomyces in batch cultures.

  1. An empirical model on extractive lactic acid bioconversion.

    Science.gov (United States)

    Srivastava, A; Yunus, R; Roychoudhury, P K

    1999-01-01

    The commercial production of lactic acid through fermentation process has always been in competition with its chemical synthesis process (Kirk Othmer, 1995). Lactic acid produced through the fermentation process has to cope with the problems of purification to meet the required quality standards. An attempt to improve the fermentative production is possible by proper design of an industrial process involving low capital cost for the plant. Also, the low energy costs both in its fermentation and purification, are required. In the commercial interest, the investment cost should be minimised, which is possible only when the cell density in fermenter is high. It means that the inhibitory effect of the product on process kinetics must be minimised. Based on these requirements, the extractive bioconversion technique is one of the approaches to achieve the commercially viable lactic acid production. Extractive lactic acid bioconversion using ion-exchange resin process has already been described in our earlier publications (Srivastava e al., 1992: Roychoudhury et al., 1995) It is always an advantage to develop a process model, thus opening an area of biotechnological improvements to the process. In the present paper, an empirical mathematical model has been described to explain this extractive bioconversion using ion-exchange resin process. It was based on generalised Monod's growth model and Leudeking and Piret equation. The system was defined with the assumption that the microbial growth can be represented as a single reaction; only a very little part of the substrate is utilised for the maintenance of the cells. The effect of end product inhibition on growth and product formation kinetics has also been considered in this model. A non-linear regression technique was used for evaluation of bioconversion kinetic parameters. The fourth order Runge Kutta method was used for solving the differential equations. The results of this process simulation are also discussed in the

  2. Production technologies in Ethiopian agriculture

    OpenAIRE

    Kidane, Asmerom; Abler, David G.

    1994-01-01

    This article examines the characteristics of and choice among two production technologies in Ethiopian agriculture, one with fertilizer and the other without, using 1989-90 farm-level data. For northwest and central Ethiopia, fertilizer usage determinants are estimated simultaneously with technology-specific production functions. For southern Ethiopia, where fertilizer is rarely used, a single production function is estimated. Three conclusions emerge. First, fertilizer use is not significant...

  3. Poultry meat products, technology of production, market

    OpenAIRE

    Kolář, Petr

    2013-01-01

    This thesis is focused on poultry meat and its products. A definition of meat, sources of meat, types of poultry production and own goal of the thesis are explained in the first chapter. Then there are described technological processes of poultry treatment in common with a veterinary and hygienic supervision which provides a check of the production and processing of poultry meat. In addition, there are mentioned some manufacturing companies which are engaged in poultry processing. The third a...

  4. Design of Agricultural Cleaner Production Technology System

    OpenAIRE

    Hu, Jun-mei; Wang, Xin-jie

    2009-01-01

    Based on the introduction of agricultural cleaner production, technology system design of planting cleaner production is discussed from five aspects of water-saving irrigation technology, fertilization technology, diseases and insects control technology, straw comprehensive utilization technology and plastic film pollution control technology. Cleaner production technology system of livestock and poultry raise is constructed from the aspects of source control technology, reduction technique in...

  5. Forest Products Industry Technology Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2010-04-01

    This document describes the forest products industry's research and development priorities. The original technology roadmap published by the industry in 1999 and was most recently updated in April 2010.

  6. Bioconversion of heavy oil : influence on reservoir recovery

    Energy Technology Data Exchange (ETDEWEB)

    Kotlar, H.K. [Statoil Research Centre, Trondheim (Norway); Markussen, S.; Winnberg, A.A. [SINTEF Materials and Chemistry, Trondheim (Norway). Dept. of Biotechnology

    2009-07-01

    Most of the world reserves of fossil hydrocarbons lie within heavy to extra heavy oil reservoirs. Enhancing the recovery rate by just a small percentage would provide significant economic incentive to develop these reservoirs. Moreover, if this could be done by a bio-process, it would have significant implications for environmental issues raised against heavy oil extraction. However, one of the major challenges, is the huge mobility ratio between the water phase and the oil phase. Different process technologies are available to extract these oils. These include steam assisted gravity drainage, vapour extraction and cold heavy oil extraction with sand. However, they are all expensive, energy-intensive, and high emission technologies and are also associated with other environmental concerns. This paper focused on the use of extremophile microorganisms as in situ biocatalysts for conversion of heavy oils. The paper outlined the experimental set-ups designed to mimic reservoir conditions, with particular emphasis on the biocatalytic processes involved in reducing the viscosity of the heavy oil components. However, another major challenge is the control and the regulation of these in situ bioprocesses in the oil reservoir. The paper also discussed the design of two different prototype reservoir models, introducing radial flow, including one with a central horizontal production well and one with a central vertical production well. The paper described the collection of enrichment cultures and injection of biocatalysts into the reservoir models. Testing of 5 different types of heavy oil was also described. The study results provide strong evidence of heavy oil bioconversion activities of several microbial consortia/ inoculums. 1 ref., 6 figs.

  7. Bioconversion of sugarcane biomass into ethanol: an overview about composition, pretreatment methods, detoxification of hydrolysates, enzymatic saccharification, and ethanol fermentation.

    Science.gov (United States)

    Canilha, Larissa; Kumar Chandel, Anuj; dos Santos Milessi, Thais Suzane; Fernandes Antunes, Felipe Antônio; da Costa Freitas, Wagner Luiz; das Graças Almeida Felipe, Maria; da Silva, Silvio Silvério

    2012-01-01

    Depleted supplies of fossil fuel, regular price hikes of gasoline, and environmental damage have necessitated the search for economic and eco-benign alternative of gasoline. Ethanol is produced from food/feed-based substrates (grains, sugars, and molasses), and its application as an energy source does not seem fit for long term due to the increasing fuel, food, feed, and other needs. These concerns have enforced to explore the alternative means of cost competitive and sustainable supply of biofuel. Sugarcane residues, sugarcane bagasse (SB), and straw (SS) could be the ideal feedstock for the second-generation (2G) ethanol production. These raw materials are rich in carbohydrates and renewable and do not compete with food/feed demands. However, the efficient bioconversion of SB/SS (efficient pretreatment technology, depolymerization of cellulose, and fermentation of released sugars) remains challenging to commercialize the cellulosic ethanol. Among the technological challenges, robust pretreatment and development of efficient bioconversion process (implicating suitable ethanol producing strains converting pentose and hexose sugars) have a key role to play. This paper aims to review the compositional profile of SB and SS, pretreatment methods of cane biomass, detoxification methods for the purification of hydrolysates, enzymatic hydrolysis, and the fermentation of released sugars for ethanol production.

  8. Bioconversion of sugarcane biomass into ethanol: an overview about composition, pretreatment methods, detoxification of hydrolysates, enzymatic saccharification, and ethanol fermentation.

    Science.gov (United States)

    Canilha, Larissa; Kumar Chandel, Anuj; dos Santos Milessi, Thais Suzane; Fernandes Antunes, Felipe Antônio; da Costa Freitas, Wagner Luiz; das Graças Almeida Felipe, Maria; da Silva, Silvio Silvério

    2012-01-01

    Depleted supplies of fossil fuel, regular price hikes of gasoline, and environmental damage have necessitated the search for economic and eco-benign alternative of gasoline. Ethanol is produced from food/feed-based substrates (grains, sugars, and molasses), and its application as an energy source does not seem fit for long term due to the increasing fuel, food, feed, and other needs. These concerns have enforced to explore the alternative means of cost competitive and sustainable supply of biofuel. Sugarcane residues, sugarcane bagasse (SB), and straw (SS) could be the ideal feedstock for the second-generation (2G) ethanol production. These raw materials are rich in carbohydrates and renewable and do not compete with food/feed demands. However, the efficient bioconversion of SB/SS (efficient pretreatment technology, depolymerization of cellulose, and fermentation of released sugars) remains challenging to commercialize the cellulosic ethanol. Among the technological challenges, robust pretreatment and development of efficient bioconversion process (implicating suitable ethanol producing strains converting pentose and hexose sugars) have a key role to play. This paper aims to review the compositional profile of SB and SS, pretreatment methods of cane biomass, detoxification methods for the purification of hydrolysates, enzymatic hydrolysis, and the fermentation of released sugars for ethanol production. PMID:23251086

  9. Challenges and pitfalls of P450-dependent (+)-valencene bioconversion by Saccharomyces cerevisiae.

    Science.gov (United States)

    Gavira, Carole; Höfer, René; Lesot, Agnès; Lambert, Fanny; Zucca, Joseph; Werck-Reichhart, Danièle

    2013-07-01

    Natural nootkatone is a high value ingredient for the flavor and fragrance industry because of its grapefruit flavor/odor, low sensorial threshold and low availability. Valencene conversion into nootkatol and nootkatone is known to be catalyzed by cytochrome P450 enzymes from both prokaryotic and eukaryotic organisms, but so far development of a viable bioconversion process using either native microorganisms or recombinant enzymes was not successful. Using an in silico gene-mining approach, we selected 4 potential candidate P450 enzymes from higher plants and identified two of them that selectively converted (+)-valencene into β-nootkatol with high efficiency when tested using recombinant yeast microsomes in vitro. Recombinant yeast expressing CYP71D51v2 from tobacco and a P450 reductase from arabidopsis was used for optimization of a bioconversion process. Bioconversion assays led to production of β-nootkatol and nootkatone, but with low yields that decreased upon increase of the substrate concentration. The reasons for this low bioconversion efficiency were further investigated and several factors potentially hampering industry-compatible valencene bioconversion were identified. One is the toxicity of the products for yeast at concentrations exceeding 100 mg L⁻¹. The second is the accumulation of β-nootkatol in yeast endomembranes. The third is the inhibition of the CYP71D51v2 hydroxylation reaction by the products. Furthermore, we observed that the formation of nootkatone from β-nootkatol is not P450-dependent but catalyzed by a yeast component. Based on these data, we propose new strategies for implementation of a viable P450-based bioconversion process. PMID:23518241

  10. Advanced modelling, monitoring, and process control of bioconversion systems

    Science.gov (United States)

    Schmitt, Elliott C.

    Production of fuels and chemicals from lignocellulosic biomass is an increasingly important area of research and industrialization throughout the world. In order to be competitive with fossil-based fuels and chemicals, maintaining cost-effectiveness is critical. Advanced process control (APC) and optimization methods could significantly reduce operating costs in the biorefining industry. Two reasons APC has previously proven challenging to implement for bioprocesses include: lack of suitable online sensor technology of key system components, and strongly nonlinear first principal models required to predict bioconversion behavior. To overcome these challenges batch fermentations with the acetogen Moorella thermoacetica were monitored with Raman spectroscopy for the conversion of real lignocellulosic hydrolysates and a kinetic model for the conversion of synthetic sugars was developed. Raman spectroscopy was shown to be effective in monitoring the fermentation of sugarcane bagasse and sugarcane straw hydrolysate, where univariate models predicted acetate concentrations with a root mean square error of prediction (RMSEP) of 1.9 and 1.0 g L-1 for bagasse and straw, respectively. Multivariate partial least squares (PLS) models were employed to predict acetate, xylose, glucose, and total sugar concentrations for both hydrolysate fermentations. The PLS models were more robust than univariate models, and yielded a percent error of approximately 5% for both sugarcane bagasse and sugarcane straw. In addition, a screening technique was discussed for improving Raman spectra of hydrolysate samples prior to collecting fermentation data. Furthermore, a mechanistic model was developed to predict batch fermentation of synthetic glucose, xylose, and a mixture of the two sugars to acetate. The models accurately described the bioconversion process with an RMSEP of approximately 1 g L-1 for each model and provided insights into how kinetic parameters changed during dual substrate

  11. Integrating Product and Technology Development

    DEFF Research Database (Denmark)

    Meijer, Ellen Brilhuis; Pigosso, Daniela Cristina Antelmi; McAloone, Tim C.

    2016-01-01

    Although dual innovation projects, defined in this article as the concurrent development of products and technologies, often occur in industry, these are only scarcely supported methodologically. Limited research has been done about dual innovation projects and their inherent challenges (e.......g. managing dependencies) and opportunities (e.g. streamlining development). This paper presents five existing reference models for technology development (TD), which were identified via a systematic literature review, where their possible integration with product development (PD) reference models...... was investigated. Based on the specific characteristics desired for dual innovation projects, such as integrated product development and coverage of multiple development stages, a set of selection criteria was employed to select suitable PD and TD reference models. The integration and adaptation of the selected...

  12. Bioconversion of Rebaudioside I from Rebaudioside A

    OpenAIRE

    Indra Prakash; Cynthia Bunders; Devkota, Krishna P.; Romila D. Charan; Catherine Ramirez; Snyder, Tara M.; Christopher Priedemann; Avetik Markosyan; Cyrille Jarrin; Robert Ter Halle

    2014-01-01

    To supply the increasing demand of natural high potency sweeteners to reduce the calories in food and beverages, we have looked to steviol glycosides. In this work we report the bioconversion of rebaudioside A to rebaudioside I using a glucosyltransferase enzyme. This bioconversion reaction adds one sugar unit with a 1→3 linkage. We utilized 1D and 2D NMR spectroscopy (1H, 13C, COSY, HSQC-DEPT, HMBC, 1D TOCSY and NOESY) and mass spectral data to fully characterize rebaudioside I.

  13. Bioconversion of Rebaudioside I from Rebaudioside A

    Directory of Open Access Journals (Sweden)

    Indra Prakash

    2014-10-01

    Full Text Available To supply the increasing demand of natural high potency sweeteners to reduce the calories in food and beverages, we have looked to steviol glycosides. In this work we report the bioconversion of rebaudioside A to rebaudioside I using a glucosyltransferase enzyme. This bioconversion reaction adds one sugar unit with a 1→3 linkage. We utilized 1D and 2D NMR spectroscopy (1H, 13C, COSY, HSQC-DEPT, HMBC, 1D TOCSY and NOESY and mass spectral data to fully characterize rebaudioside I.

  14. BIOCONVERSION OF NATURALLY-OCCURRING PRECURSORS AND RELATED SYNTHETIC COMPOUNDS USING PLANT-CELL CULTURES

    NARCIS (Netherlands)

    PRAS, N

    1992-01-01

    The nearly unlimited enzymatic potential of cultured plant cells can basically be employed for bioconversion purposes. Plant enzymes are able to catalyze regio- and stereospecific reactions and can therefore be applied to the production of compounds of pharmaceutical interest. Naturally occurring as

  15. Xanthobacter sp. C20 contains a novel bioconversion pathway for limonene

    NARCIS (Netherlands)

    Werf, M.J. van der; Keijzer, P.M.; Schaft, P.H. van der

    2000-01-01

    Xanthobacter sp. C20 was isolated from sediment of the river Rhine using cyclohexane as sole source of carbon and energy. Xanthobacter sp. C20 converted both enantiomers of limonene quantitatively into limonene-8,9-epoxide, a not previously described bioconversion product of limonene. With (4R)-limo

  16. Terpene bioconversion--how does its future look?

    Science.gov (United States)

    Krings, Ulrich; Berger, Ralf Guenter

    2010-09-01

    The usage of essential oils as such or of volatile fractions thereof is widespread in the flavor and fragrance industry to aromatize perfumery and cosmetic products, foodstuffs, and many household and pharmaceutical products. The increased market share of convenience food together with consumers' request for constant high quality and natural products have established a lasting increase in the demand for natural flavorings that cannot be satisfied by the traditional plant materials. This review summarizes selected work on terpene bioconversion/transformation and focuses on recently published papers dealing with novel strains and products, high product yields, intriguing genetic engineering approaches, and integrated bioprocesses. The future perspectives of an industrial realization of a biotechnological production of terpene-derived natural flavors are critically evaluated. PMID:20923013

  17. Bioconversion of Birch Wood Hemicellulose Hydrolyzate to Xylitol.

    Science.gov (United States)

    Miura, Masahiro; Shimotori, Yasutaka; Nakatani, Hisayuki; Harada, Akira; Aoyama, Masakazu

    2015-06-01

    A sugar solution containing 42.9 g l(-1) of xylose was prepared from the wood of Japanese white birch (Betula platyphylla var. japonica) by hydrolysis with 3 % sulfuric acid with a liquor-to-solid ratio of 4 (g g(-1)) at 120 °C for 1 h. During the acid hydrolysis, undesirable by-products were generated, such as acetic acid, furfural, and low-molecular-weight phenols, which inhibit bioconversion of xylose to xylitol. These inhibitors were successfully removed from the hydrolyzate by sorption onto a steam-activated charcoal followed by treatment with an anion exchange resin. Bioconversion of the detoxified hydrolyzate to xylitol by the yeast Candida magnoliae was investigated under the microaerobic conditions. The oxygen transfer rate (OTR) varied from 9.6 to 22.3 mmol O2 l(-1) h(-1). The best fermentative performance of C. magnoliae in the birch wood hydrolyzate (xylitol yield 0.74 g xylitol g xylose(-1); volumetric productivity 1.0 g l(-1) h(-1)) was obtained at the OTR of 12.6 mmol O2 l(-1) h(-1). PMID:25894947

  18. Reuse-based software production technology

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Software reuse is viewed as a key technology to improve software product quality and productivity. This paper discusses a series of technologies related with software reuse and software component technology: component model, which describes component's essential characteristics; component acquisition technology, of which domain engineering is the main approach; component management technology, of which component library is the kernel; application integration and composition technology, of which application engineering is the main approach; software evolution technology, of which software reengineering is the main approach, etc. This paper introduces the software development environment: JadeBird Software Production Line System, which effectively integrates the above-mentioned technologies.

  19. 半纤维素水解物生物转化生产木糖醇%Bioconversion of Hemicellulose Hydrolysates for Xylitol Production

    Institute of Scientific and Technical Information of China (English)

    张厚瑞; 何成新; 梁小燕; 曾健智; 唐峰

    2000-01-01

    木糖醇在食品、医药及化工行业中有着广泛的用途而深受关注。但是,传统的化学法生产木糖醇需要一系列复杂的分离纯化步骤,过高的生产成本限制了木糖醇的使用范围。发酵工艺生产木糖醇无需木糖的纯化步骤,是取代化学合成法的一条可行工艺路线。本文着重介绍产木糖醇的微生物,酵母对木糖的同化途径,半纤维素水解物的脱毒方法,影响木糖醇发酵的工艺条件等。%Xylitol has attracted much attention because of its many applications tn the food,medicine and chemical industries. However the use has been limited by its high price. This coast is a result of the extensive purification steps needed for the preparation of a pure xylose solution,which is essential for the chemical process. The fermentative process of xylitol is an interesting alternative to conventional chemical process,since it does not require initial xylose purification. The present review describes the advantage of xylitol production by fermentation, xylitol-producting microorganisms, metabolic pathway of xylose in yeasts, detoxification of hemicellulose hydrolysates and fermentative conditions affecting xylitol production.

  20. MATHEMATICAL MODELING, AUTOMATION AND CONTROL OF THE BIOCONVERSION OF SORBITOL TO SORBOSE IN THE VITAMIN C PRODUCTION PROCESS I. MATHEMATICAL MODELING

    Directory of Open Access Journals (Sweden)

    Bonomi A.

    1997-01-01

    Full Text Available In 1990, the Biotechnology and the Control Systems Groups of IPT started developing a system for the control and automation of fermentation processes, applied to the oxidation of sorbitol to sorbose by the bacteria Gluconobacter oxydans, the microbial step of the vitamin C production process, that was chosen as a case study. Initially, a thirteen-parameter model was fitted to represent the batch operation of the system utilizing a nonlinear regression analysis, the flexible polyhedron method. Based on these results, a model for the continuous process (with the same kinetic equations was constructed and its optimum operating point obtained

  1. Technology transfers, foreign investment and productivity spillovers

    DEFF Research Database (Denmark)

    Newman, Carol; Rand, John; Talbot, Theodore Purdendu;

    2015-01-01

    transfers of knowledge/technology between linked firms) from productivity effects through indirect FDI spillovers. In addition to identifying indirect vertical productivity spillovers from FDI, our results show that there are productivity gains associated with direct linkages between foreign...

  2. TECHNOLOGICAL MEASURES TO IMPROVE AUTOMOTIVE PRODUCT QUALITY

    OpenAIRE

    Gladkov, V.; Kruglov, S.

    2010-01-01

    The paper examines the basic technological measures aimed at improving product quality in automotive industry. While paying due attention to solving organizational and technological problems, including the development of certification systems for production processes, it is also necessary to improve the technical standards of specific technologies, equipment and materials as they largely determine product quality. Special emphasis is given to the importance of improving the production of auto...

  3. Mass spectrometric analysis of isotope effects in bioconversion of benzene to cyclohexanone

    Science.gov (United States)

    Nam, In-Hyun; Murugesan, Kumarasamy; Kim, Young-Mo; Yang, In-Hee; Chang, Yoon-Seok

    2006-06-01

    Pseudomonas veronii strain PH-03 has been shown to convert benzene to cyclohexanone through phenol. Mass spectrometry results revealed that unusual isotopic effects have been occurred in the transformation product, cyclohexanone. The isotopic composition was strongly depends on the compound specific hydrogen or oxygen source. The exchange of labile deuterium atoms has been investigated through electrospray ionization liquid chromatography mass spectrometry. The mass spectrometric analysis of biotransformation products enabled the proposal of a corresponding bioconversion pathway.

  4. IEA Energy Technology Essentials: Biofuel Production

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-01-15

    The IEA Energy Technology Essentials series offers concise four-page updates on the different technologies for producing, transporting and using energy. Biofuel Production is the topic covered in this edition.

  5. Removal of heteroatoms and metals from heavy oils by bioconversion processes

    Energy Technology Data Exchange (ETDEWEB)

    Kaufman, E.N.

    1996-06-01

    Biocatalysts, either appropriate microorganisms or isolated enzymes, will be used in an aqueous phase in contact with the heavy oil phase to extract heteroatoms such as sulfur from the oil phase by bioconversion processes. Somewhat similar work on coal processing will be adapted and extended for this application. Bacteria such as Desulfovibrio desulfuricans will be studied for the reductive removal of organically-bound sulfur and bacteria such as Rhodococcus rhodochrum will be investigated for the oxidative removal of sulfur. Isolated bacteria from either oil field co-produced sour water or from soil contaminated by oil spills will also be tested. At a later time, bacteria that interact with organic nitrogen may also be studied. This type of interaction will be carried out in advanced bioreactor systems where organic and aqueous phases are contacted. One new concept of emulsion-phase contacting, which will be investigated, disperses the aqueous phase in the organic phase and is then recoalesced for removal of the contaminants and recycled back to the reactor. This program is a cooperative research and development program with the following companies: Baker Performance Chemicals, Chevron, Energy BioSystems, Exxon, Texaco, and UNOCAL. After verification of the bioprocessing concepts on a laboratory-scale, the end-product will be a demonstration of the technology at an industrial site. This should result in rapid transfer of the technology to industry.

  6. Innovative production technology ethanol from sweet sorghum

    Science.gov (United States)

    Kashapov, N. F.; Nafikov, M. M.; Gazetdinov, M. X.; Nafikova, M. M.; Nigmatzyanov, A. R.

    2016-06-01

    The paper considers the technological aspects of production of ethanol from nontraditional for Russian Federation crops - sweet sorghum. Presents the technological scheme of alcohol production and fuel pellets from sweet sorghum. Special attention is paid to assessing the efficiency of alcohol production from sweet sorghum. The described advantage of sugar content in stem juice of sweet sorghum compared with other raw materials. Allegedly, the use of the technology for producing alcohol from sweet sorghum allows to save resources.

  7. Whey: technologies for coproducts production

    OpenAIRE

    Maura Pinheiro Alves; Renam de Oliveira Moreira; Paulo Henrique Rodrigues Júnior; Mayra Carla de Freitas Martins; Ítalo Tuler Perrone; Antônio Fernandes de Carvalho

    2014-01-01

    The aim of the present article was to present the principles of whey processability. In order to reach these objectives, the article presents the whey proteins, the membrane filtration process and the spray drying technology. The main technologies for use whey are presented: whey protein beverages, whey powder, whey protein concentrate powder, whey protein isolate powder and powders of whey protein fractions.

  8. Investigation of technologies for producing organic-mineral fertilizers and biogas from waste products

    Directory of Open Access Journals (Sweden)

    Anna V. Ivanchenko

    2015-12-01

    Full Text Available Modern agriculture requires special attention to a preservation of soil fertility; development of cultures fertilization; producing of new forms of organic-mineral fertilizers which nutrient absorption coefficient would be maximum. Application of artificial fertilizers has negative influence on soils. Aim: The aim of the study is to identify the scientific regularities of organic-mineral fertilizers and biogas technologies from waste products and cattle manure with the addition of fermentation additive. Materials and Methods: The affordable organic raw material for production of organic-mineral fertilizers is the cattle manure. Environmental technology of the decontamination and utilization of manure is its anaerobic bioconversion to fermented fertilizer and biogas. The waste decontamination and the degradation of complex polymers into simple renewable and plant-available compounds takes place during the conversion of manner to biogas. Experimental research carried out for the three types of loads to the model reactor of anaerobic fermentation with 1 dm3 volume for dry matter. The mesophilic fermentation mode used in the experiments (at 33 °C. Results: It has been shown that the addition of whey to the input raw materials in a ratio of 1:30 accelerates the process of anaerobic digestion and biogas generation in 1,3...2,1 times. An analysis of organic-mineral fertilizers from cattle manure were conducted. Technological schemes of organic-mineral fertilizers and biogas technologies from waste products were developed. Conclusions: Implementation of research results to farms and urban waste treatment facilities lead to increased energy potential of our country and expansion of high-quality organic-mineral fertilizers variety, which are well absorbed by plants.

  9. Advancing lignocellulose bioconversion through direct assessment of enzyme action on insoluble substrates

    DEFF Research Database (Denmark)

    Goacher, Robyn E.; Selig, Michael J.; Master, Emma R.

    2014-01-01

    Microbial utilization of lignocellulose from plant cell walls is integral to carbon cycling on Earth. Correspondingly, secreted enzymes that initiate lignocellulose depolymerization serve a crucial step in the bioconversion of lignocellulosic biomass to fuels and chemicals. Genome and metagenome ....... In this context, the development and application of imaging, physicochemical, and spectromicroscopic techniques that allow direct assessment of enzyme action on relevant lignocellulosic substrates is reviewed.......Microbial utilization of lignocellulose from plant cell walls is integral to carbon cycling on Earth. Correspondingly, secreted enzymes that initiate lignocellulose depolymerization serve a crucial step in the bioconversion of lignocellulosic biomass to fuels and chemicals. Genome and metagenome...... sequencing efforts that span the past decade reveal the diversity of enzymes that have evolved to transform lignocellulose from wood, herbaceous plants and grasses. Nevertheless, there are relatively few examples where ‘omic’ technologies have identified novel enzyme activities or combinations thereof...

  10. Multidisciplinary research program directed toward utilization of solar energy through bioconversion of renewable resources. Progress report

    Energy Technology Data Exchange (ETDEWEB)

    Finnerty, W. R.

    1976-07-01

    Progress is reported in four research areas of solar bioconversion. The first program deals with the genetic selection of superior trees, physiological basis of vigor, tissue culture, haploid cell lines, and somatic hybridization. The second deals with the physiology of paraquat-induced oleoresin biogenesis. Separate abstracts were prepared for the other two program areas: biochemical basis of paraquat-induced oleoresin production in pines and biochemistry of methanogenesis. (JSR)

  11. Technological Competition a Qualitative Product Life Cycle

    OpenAIRE

    Valente, Marco

    1998-01-01

    In this work, it is proposed to consider the evolution of markets for technological innovative products as a co-evolutionary process, where the product characteristics are the results of the interaction between producers technological advances and buyers’ preferences evolution. A methodological discussion identifies some necessary properties for a model to study this issue. A model of technological competition is developed, and its results discussed, to test a possible implemen...

  12. By-products from Fish Processing: Focus on French Industry

    OpenAIRE

    Penven, Anais; Perez-galvez, Raul; Berge, Jean-pascal

    2013-01-01

    Biotechnology advances for marine by-products conversion into products of interest are numerous. In order to give maximum elements of understanding, it is essential to define the framework of this research to understand why and how bioconversion technologies are applicable. It is essential to look beyond the technical and technological advances on the subject and so to take into account the economic, social, political and environmental parameters, which govern all forms of approaches for fish...

  13. Bioconversion of dilute-acid pretreated sorghum bagasse to ethanol by Neurospora crassa

    Energy Technology Data Exchange (ETDEWEB)

    Dogaris, Ioannis; Gkounta, Olga; Mamma, Diomi; Kekos, Dimitris [National Technical Univ. of Athens, Zografou (Greece). Biotechnology Lab.

    2012-07-15

    Bioethanol production from sweet sorghum bagasse (SB), the lignocellulosic solid residue obtained after extraction of sugars from sorghum stalks, can further improve the energy yield of the crop. The aim of the present work was to evaluate a cost-efficient bioconversion of SB to ethanol at high solids loadings (16 % at pretreatment and 8 % at fermentation), low cellulase activities (1-7 FPU/g SB) and co-fermentation of hexoses and pentoses. The fungus Neurospora crassa DSM 1129 was used, which exhibits both depolymerase and co-fermentative ability, as well as mixed cultures with Saccharomyces cerevisiae 2541. A dilute-acid pretreatment (sulfuric acid 2 g/100 g SB; 210 C; 10 min) was implemented, with high hemicellulose decomposition and low inhibitor formation. The bioconversion efficiency of N. crassa was superior to S. cerevisiae, while their mixed cultures had negative effect on ethanol production. Supplementing the in situ produced N. crassa cellulolytic system (1.0 FPU/g SB) with commercial cellulase and {beta}-glucosidase mixture at low activity (6.0 FPU/g SB) increased ethanol production to 27.6 g/l or 84.7 % of theoretical yield (based on SB cellulose and hemicellulose sugar content). The combined dilute-acid pretreatment and bioconversion led to maximum cellulose and hemicellulose hydrolysis 73.3 % and 89.6 %, respectively. (orig.)

  14. Does Information Technology Raise Japan's Productivity?

    OpenAIRE

    Takuji Fueki; Takuji Kawamoto

    2008-01-01

    A standard growth accounting exercise indicates that, after Japan's "lost decade," its overall total-factor-productivity (TFP) growth has increased notably since 2000. This productivity revival has been limited, however, to information technology (IT) production--has not been a broad-based productivity acceleration like that seen in the United States after the mid-1990s. This paper examines the relationship between IT and productivity gains by employing the "augmented" growth accounting frame...

  15. [Biodegradation of Cellulose-Containing Substrates by Micromycetes Followed by Bioconversion into Biogas].

    Science.gov (United States)

    Prokudina, L I; Osmolovskii, A A; Egorova, M A; Malakhova, D V; Netrusov, A I; Tsavkelova, E A

    2016-01-01

    The ability of micromycetes Trichoderma viride and Aspergillus terreus to decompose the cellulose-containing substrates was studied. Office paper and cardboard, as well as a paper mixture, were found to be the most hydrolyzable. The cellulolytic activity of T. viride was 2-3 times higher than that of A. terreus; the highest values of 0.80 and 0.73 U/mLwere obtained from office paper and the paper mixture, respectively. The micromycete cultivation conditions (composition of culture medium, sucrose cosubstrate addition, seeding method) and the conditions of the fungus biomass treatment for its subsequent bioconversion into biogas by anaerobic microbial communities were optimized. It was shown that pretreatment improves the efficiency of biogas production from lignocellulosic materials under seeding with microbial community of bovine animal manure. After pretreatment of the Jerusalem artichoke phytomass (stems and leaves) and its subsequent bioconversion into biogas by methanogenic community, the biogas yield was increased by 1.5 times.

  16. Value analysis for advanced technology products

    Science.gov (United States)

    Soulliere, Mark

    2011-03-01

    Technology by itself can be wondrous, but buyers of technology factor in the price they have to pay along with performance in their decisions. As a result, the ``best'' technology may not always win in the marketplace when ``good enough'' can be had at a lower price. Technology vendors often set pricing by ``cost plus margin,'' or by competitors' offerings. What if the product is new (or has yet to be invented)? Value pricing is a methodology to price products based on the value generated (e.g. money saved) by using one product vs. the next best technical alternative. Value analysis can often clarify what product attributes generate the most value. It can also assist in identifying market forces outside of the control of the technology vendor that also influence pricing. These principles are illustrated with examples.

  17. Wood Technology: Techniques, Processes, and Products

    Science.gov (United States)

    Oatman, Olan

    1975-01-01

    Seven areas of wood technology illustrates applicable techniques, processes, and products for an industrial arts woodworking curriculum. They are: wood lamination; PEG (polyethylene glycol) diffusion processes; wood flour and/or particle molding; production product of industry; WPC (wood-plastic-composition) process; residential construction; and…

  18. HTTR workshop (workshop on hydrogen production technology)

    International Nuclear Information System (INIS)

    Various research and development efforts have been performed to solve the global energy and environmental problems caused by large consumption of fossil fuels. Research activities on advanced hydrogen production technology by the use of nuclear heat from high temperature gas cooled reactors, for example, have been flourished in universities, research institutes and companies in many countries. The Department of HTTR Project and the Department of Advanced Nuclear Heat Technology of JAERI held the HTTR Workshop (Workshop on Hydrogen Production Technology) on July 5 and 6, 2004 to grasp the present status of R and D about the technology of HTGR and the nuclear hydrogen production in the world and to discuss about necessity of the nuclear hydrogen production and technical problems for the future development of the technology. More than 110 participants attended the Workshop including foreign participants from USA, France, Korea, Germany, Canada and United Kingdom. In the Workshop, the presentations were made on such topics as R and D programs for nuclear energy and hydrogen production technologies by thermo-chemical or other processes. Also, the possibility of the nuclear hydrogen production in the future society was discussed. The workshop showed that the R and D for the hydrogen production by the thermo-chemical process has been performed in many countries. The workshop affirmed that nuclear hydrogen production could be one of the competitive supplier of hydrogen in the future. The second HTTR Workshop will be held in the autumn next year. (author)

  19. Feature Technology in Product Modeling

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xu; NING Ruxin

    2006-01-01

    A unified feature definition is proposed. Feature is form-concentrated, and can be used to model product functionalities, assembly relations, and part geometries. The feature model is given and a feature classification is introduced including functional, assembly, structural, and manufacturing features. A prototype modeling system is developed in Pro/ENGINEER that can define the assembly and user-defined form features.

  20. Wood fuel production technologies in EU countries

    Energy Technology Data Exchange (ETDEWEB)

    Hakkila, P. [Finnish Forest Research Institute, Vantaa (Finland)

    1997-12-31

    The presentation reviews the major technologies used for the production of fuel chips for heating plants in Europe. Three primary options are considered: production of whole-tree chips from young trees for fuel; integrated harvesting of fiber and energy from thinning based on tree-section system; and production of fuel chips from logging residue in clear-cut areas after fully mechanized logging. The characteristics of the available biomass reserve and proven technology for its recovery are discussed. The employment effects of fuel chip production and the costs of wood fuels are also briefly discussed. (author) 3 refs., 3 figs.

  1. Reservoir enhancements and production technology sequencing

    Energy Technology Data Exchange (ETDEWEB)

    Dusseault, M.B. [Waterloo Univ., ON (Canada). Dept. of Earth Sciences, Porous Media Research Inst.

    2006-07-01

    Criteria used to select production technologies for reservoirs with high levels of sand production were discussed. The paper examined a range of thermal recovery methods including cyclic steam stimulation (CSS) and steam assisted gravity drainage (SAGD). VAPEX, hybrid steam, and in situ combustion processes were reviewed. The review indicated that reservoir processes that involve high levels of sand production, high pressures, and high temperatures can cause changes in porosity and breach or shear barriers and shale beds within reservoirs. The changes can be beneficial to technologies designed to reduce flow path lengths in gravity drainage processes. Reservoir scale changes associated with cold heavy oil production with sand (CHOPS) and steam injection technologies were also discussed. It was concluded that careful sequencing of technologies can have a significant impact on recovery rates. 12 refs., 13 figs.

  2. Informative technologies in the material products designing

    OpenAIRE

    L.A. Dobrzański; R. Honysz

    2012-01-01

    Purpose: The purpose of materials products designing is to optimize their functional properties in terms of technological, economic and ecological aspects.Design/methodology/approach: Materials science is an example of a field, in which informative technologies used to understand and anticipate the construction of materials and their properties has a significant success.Findings: Innovation and development of new informative technologies and the widespread use of modern materials will be esse...

  3. Integrated Micro Product and Technology Development

    DEFF Research Database (Denmark)

    Hansen, Hans Nørgaard

    2003-01-01

    The paper addresses the issues of integrated micro product and technology development. The implications of the decisions in the design phase on the subsequent manufacturing processes are considered vital. A coherent process chain is a necessary prerequisite for the realisation of the industrial...... potential of micro technology....

  4. Recommendation Technologies for Configurable Products

    OpenAIRE

    Falkner, Andreas; Siemens AG Austria; Felfernig, Alexander; Graz University of Technology; Haag, Albert; SAP AG

    2011-01-01

    State of the art recommender systems support users in the selection of items from a predefined assortment (for example, movies, books, and songs). In contrast to an explicit definition of each individual item, configurable products such as computers, financial service portfolios, and cars are repre¬sented in the form of a configuration knowledge base that describes the properties of allowed instances. Although the knowledge representation used is different compared to non-confi¬gurable produc...

  5. Bioconversion of R-(+-limonene to perillic acid by the yeast Yarrowia lipolytica

    Directory of Open Access Journals (Sweden)

    Maria Antonieta Ferrara

    2013-12-01

    Full Text Available Perillyl derivatives are increasingly important due to their flavouring and antimicrobial properties as well as their potential as anticancer agents. These terpenoid species, which are present in limited amounts in plants, may be obtained via bioconversion of selected monoterpene hydrocarbons. In this study, seventeen yeast strains were screened for their ability to oxidize the exocyclic methyl group in the p-menthene moiety of limonene into perillic acid. Of the yeast tested, the highest efficiency was observed for Yarrowia lipolytica ATCC 18942. The conversion of R (+-limonene by Y. lipolytica was evaluated by varying the pH (3 to 8 and the temperature (25 to 30 ºC in a reaction medium containing 0.5% v/v limonene and 10 gµL of stationary phase cells (dry weight. The best results, corresponding to 564 mgµL of perillic acid, were obtained in buffered medium at pH 7.1 that was incubated at 25 ºC for 48 h. The stepwise addition of limonene increased the perillic acid concentration by over 50%, reaching 855 mgµL, whereas the addition of glucose or surfactant to the reaction medium did not improve the bioconversion process. The use of Y. lipolytica showed promise for ease of further downstream processing, as perillic acid was the sole oxidised product of the bioconversion reaction. Moreover, bioprocesses using safe and easy to cultivate yeast cells have been favoured in industry.

  6. Industrial Technology and the Productivity Problem.

    Science.gov (United States)

    Sinn, John W.

    1982-01-01

    The role of industrial technology in addressing productivity encompasses work experience and attitude, quality assurance, research and development, time and motion studies, plant layout and flow diagramming, cost analysis, production process selection, maintenance, computer applications, materials and inventory requirements, safety programming,…

  7. Gantry technology in organic crop production

    OpenAIRE

    Schäfer, Dr. Winfried

    2002-01-01

    Gantry technology in organic crop production Winfried Schäfer Agrifood Research Finland, Agricultural Engineering Research, Objectives: Costs of agricultural machinery and farm buildings are substantial, comprising about 40% of production costs also in organic farming. What are the tasks of agricultural machinery and agricultural engineering research in organic farming? Which agricultural engineering results support the basic principles of organic farming? ...

  8. Technology's Impact on Production

    Energy Technology Data Exchange (ETDEWEB)

    Rachel Amann; Ellis Deweese; Deborah Shipman

    2009-06-30

    As part of a cooperative agreement with the United States Department of Energy (DOE) - entitled Technology's Impact on Production: Developing Environmental Solutions at the State and National Level - the Interstate Oil and Gas Compact Commission (IOGCC) has been tasked with assisting state governments in the effective, efficient, and environmentally sound regulation of the exploration and production of natural gas and crude oil, specifically in relation to orphaned and abandoned wells and wells nearing the end of productive life. Project goals include: (1) Developing (a) a model framework for prioritization and ranking of orphaned or abandoned well sites; (b) a model framework for disbursement of Energy Policy Act of 2005 funding; and (c) a research study regarding the current status of orphaned wells in the nation. (2) Researching the impact of new technologies on environmental protection from a regulatory perspective. Research will identify and document (a) state reactions to changing technology and knowledge; (b) how those reactions support state environmental conservation and public health; and (c) the impact of those reactions on oil and natural gas production. (3) Assessing emergent technology issues associated with wells nearing the end of productive life. Including: (a) location of orphaned and abandoned well sites; (b) well site remediation; (c) plugging materials; (d) plug placement; (e) the current regulatory environment; and (f) the identification of emergent technologies affecting end of life wells. New Energy Technologies - Regulating Change, is the result of research performed for Tasks 2 and 3.

  9. Wood for energy production. Technology - environment - economy

    Energy Technology Data Exchange (ETDEWEB)

    Serup, H.; Falster, H.; Gamborg, C. [and others

    1999-10-01

    `Wood for Energy Production`, 2nd edition, is a readily understood guide to the application of wood in the Danish energy supply. The first edition was named `Wood Chips for Energy Production`. It describes the wood fuel from forest to consumer and provides a concise introduction to technological, environmental, and financial matters concerning heating systems for farms, institutions, district heating plants, and CHP plants. The individual sections deal with both conventional, well known technology, as well as the most recent technological advances in the field of CHP production. The purpose of this publication is to reach the largest possible audiance, and it is designed so that the layman may find its background information of special relevance. `Wood for Energy Production` is also available in German and Danish. (au)

  10. Wood for energy production. Technology - environment - economy

    International Nuclear Information System (INIS)

    'Wood for Energy Production', 2nd edition, is a readily understood guide to the application of wood in the Danish energy supply. The first edition was named 'Wood Chips for Energy Production'. It describes the wood fuel from forest to consumer and provides a concise introduction to technological, environmental, and financial matters concerning heating systems for farms, institutions, district heating plants, and CHP plants. The individual sections deal with both conventional, well known technology, as well as the most recent technological advances in the field of CHP production. The purpose of this publication is to reach the largest possible audiance, and it is designed so that the layman may find its background information of special relevance. 'Wood for Energy Production' is also available in German and Danish. (au)

  11. Reforming technology for syngas production

    International Nuclear Information System (INIS)

    Methane forming reactions using either steam or CO2 have been known to industry for a long time. These endothermic reactions require the investment of a relatively large amount of energy. German researchers, in the 1970's, conceived and developed the idea to use this reaction and the reverse methanation reaction in a closed loop for the transportation and distribution of nuclear heat. The idea was also adopted for use with solar energy as a heat source. Utilizing solar energy as the heat source, the Weismann Institute of Science has fabricated, installed and operated a complete loop capable of the conversion and transportation of over 400 kW of heat. This system can be operated with a wide range of CO2/H2O/CH4 feed mixtures. Steam reforming is the common reforming reaction in the ''open loop'' mode for the purpose of synthesis gas production. This is accomplished with a large excess of steam on a nickel catalyst. However, it has only recently been recognized that there is also a substantial market for CO2 reforming. The CO2/CH4 mixture in various proportions exists in many places and has, so far, not been used efficiently. The sources for this mixture are biogas produced in anaerobic digestion processes and gas resources such as the NATUNA gas field in Indonesia, and many others. Therefore, the system of CO2/CH4 deserves more attention. Commercial catalysts used for steam reforming based on nickel are not suitable for this system. Therefore, other catalysts based on Rhodium and Ruthenium have been developed and some performance data is presented in this paper. Also presented is a conceptual schematic layout of a CO2 reforming plant and matching methanator. A computer code for a detailed design of the entire loop in a commercial size system has been prepared where optimized operational conditions as well as equipment parameters can be determined. (author). 3 figs, 3 tabs

  12. Current biodiesel production technologies: A comparative review

    International Nuclear Information System (INIS)

    Highlights: ► In this paper we review the technologies related to biodiesel production. ► 4 Primary approaches reviewed are direct use and blending of oils, micro-emulsions, pyrolysis and transesterification method. ► Both advantages and disadvantages of the different biodiesel production methods are also discussed. ► The most common technology of biodiesel production is transesterification of oils. ► Selection of a transesterification method depends on the amount of FFA and water content of the feedstock. - Abstract: Despite the high energy demand in the industrialized world and the pollution problems caused by widespread use of fossil fuels, the need for developing renewable energy sources with less environmental impacts are increasing. Biodiesel production is undergoing rapid and extensive technological reforms in industries and academia. The major obstacle in production and biodiesel commercialization path is production cost. Thus, in previous years numerous studies on the use of technologies and different methods to evaluate optimal conditions of biodiesel production technically and economically have been carried out. In this paper, a comparative review of the current technological methods so far used to produce biodiesel has been investigated. Four primary approaches to make biodiesel are direct use and blending of vegetable oils, micro-emulsions, thermal cracking (pyrolysis) and transesterification. Transesterification reaction, the most common method in the production of biodiesel, is emphasized in this review. The two types of transestrification process; catalytic and non-catalytic are discussed at length in the paper. Both advantages and disadvantages of the different biodiesel production methods are also discussed.

  13. Marketing mix for consumer high technology products

    Directory of Open Access Journals (Sweden)

    Dovleac, L.

    2012-01-01

    Full Text Available This paper includes an analysis upon the variables of marketing mix for high technology products used for individual consumption. There are exposed the essential aspects related to marketing policies and strategies used by high technology companies for providing consumers the best solutions tailored to their needs. A special attention is given to the necessity for inclusion in the marketing mix of the fifth element – the assistance and informational support for customers.

  14. Software productivity improvement through software engineering technology

    Science.gov (United States)

    Mcgarry, F. E.

    1985-01-01

    It has been estimated that NASA expends anywhere from 6 to 10 percent of its annual budget on the acquisition, implementation and maintenance of computer software. Although researchers have produced numerous software engineering approaches over the past 5-10 years; each claiming to be more effective than the other, there is very limited quantitative information verifying the measurable impact htat any of these technologies may have in a production environment. At NASA/GSFC, an extended research effort aimed at identifying and measuring software techniques that favorably impact productivity of software development, has been active over the past 8 years. Specific, measurable, software development technologies have been applied and measured in a production environment. Resulting software development approaches have been shown to be effective in both improving quality as well as productivity in this one environment.

  15. Technological progresses in monoclonal antibody production systems

    OpenAIRE

    Rodrigues, E.; Costa, A R; Henriques, Mariana; Azeredo, Joana; Oliveira, Rosário

    2009-01-01

    Monoclonal antibodies (mAbs) have become vitally important to modern medicine and are currently one of the major biopharmaceutical products in development. However, the high clinical dose requirements of mAbs demand a greater biomanufacturing capacity, leading to the development of new technologies for their large-scale production, with mammalian cell culture dominating the scenario. Although some companies have tried to meet these demands by creating bioreactors of increased capacity, the op...

  16. Product with service, technology with business model

    DEFF Research Database (Denmark)

    Sakao, Tomohiko; McAloone, Tim C.

    2011-01-01

    Looking back over the last decade, the importance of an expanded understanding of engineering design has been shared within the engineering design community. Presented concepts and methods to support such expansion include Functional Product Development, Service Engineering, and Product/Service-S...... promising concept beyond PSS design; via an integrated development of technology and business model. This can be of particular interest for further research, especially due to its high freedom for designers....

  17. Technological progresses in monoclonal antibody production systems.

    Science.gov (United States)

    Rodrigues, Maria Elisa; Costa, Ana Rita; Henriques, Mariana; Azeredo, Joana; Oliveira, Rosário

    2010-01-01

    Monoclonal antibodies (mAbs) have become vitally important to modern medicine and are currently one of the major biopharmaceutical products in development. However, the high clinical dose requirements of mAbs demand a greater biomanufacturing capacity, leading to the development of new technologies for their large-scale production, with mammalian cell culture dominating the scenario. Although some companies have tried to meet these demands by creating bioreactors of increased capacity, the optimization of cell culture productivity in normal bioreactors appears as a better strategy. This review describes the main technological progresses made with this intent, presenting the advantages and limitations of each production system, as well as suggestions for improvements. New and upgraded bioreactors have emerged both for adherent and suspension cell culture, with disposable reactors attracting increased interest in the last years. Furthermore, the strategies and technologies used to control culture parameters are in constant evolution, aiming at the on-line multiparameter monitoring and considering now parameters not seen as relevant for process optimization in the past. All progresses being made have as primary goal the development of highly productive and economic mAb manufacturing processes that will allow the rapid introduction of the product in the biopharmaceutical market at more accessible prices. PMID:20043321

  18. Managing Input during Assistive Technology Product Design

    Science.gov (United States)

    Choi, Young Mi

    2011-01-01

    Many different sources of input are available to assistive technology innovators during the course of designing products. However, there is little information on which ones may be most effective or how they may be efficiently utilized within the design process. The aim of this project was to compare how three types of input--from simulation tools,…

  19. Development of RI Target Production Technology

    International Nuclear Information System (INIS)

    This project was accomplished with an aim of productive technical development on the 'enriched target' which is used essentially in radioisotope production. The research was advanced systematically with target production pilot system configuration and core technical development. We composed Yb-176 productive pilot system which equip the chemical purification technique of medical treatment level and proved its capability. Possibilities to separate Zn-67 by the method of using the polarizing light in principle and to separate Zn-70 by the method of using the double optical pumping in theory were also proved. RI target production technologies are recognized excessively with monopolistic techniques of part atomic energy advanced nations such as Russia and US and they are come, but we prepared the opportunity will be able to complete a full cycle of like (RI material production -> RI target production -> RI application) with this project accomplishment. When considering only the direct demand of stable isotope which is used in various industrial, we forecast with the fact that RI target markets will become larger with the approximately 5 billion dollars in 2020 and this technology will contribute in the domestic rising industry creation with high value added

  20. Systematic Discrimination of Advanced Hydrogen Production Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Charles V. Park; Michael W. Patterson

    2010-07-01

    The U.S. Department of Energy, in concert with industry, is developing a high-temperature gas-cooled reactor at the Idaho National Laboratory (INL) to demonstrate high temperature heat applications to produce hydrogen and electricity or to support other industrial applications. A key part of this program is the production of hydrogen from water that would significantly reduce carbon emissions compared to current production using natural gas. In 2009 the INL led the methodical evaluation of promising advanced hydrogen production technologies in order to focus future resources on the most viable processes. This paper describes how the evaluation process was systematically planned and executed. As a result, High-Temperature Steam Electrolysis was selected as the most viable near-term technology to deploy as a part of the Next Generation Nuclear Plant Project.

  1. The prospects of cellulase-producing bacteria for the bioconversion of lignocellulosic biomass

    Directory of Open Access Journals (Sweden)

    Miranda Maki, Kam Tin Leung, Wensheng Qin

    2009-01-01

    Full Text Available Lignocellulosic biomass is a renewable and abundant resource with great potential for bioconversion to value-added bioproducts. However, the biorefining process remains economically unfeasible due to a lack of biocatalysts that can overcome costly hurdles such as cooling from high temperature, pumping of oxygen/stirring, and, neutralization from acidic or basic pH. The extreme environmental resistance of bacteria permits screening and isolation of novel cellulases to help overcome these challenges. Rapid, efficient cellulase screening techniques, using cellulase assays and metagenomic libraries, are a must. Rare cellulases with activities on soluble and crystalline cellulose have been isolated from strains of Paenibacillus and Bacillus and shown to have high thermostability and/or activity over a wide pH spectrum. While novel cellulases from strains like Cellulomonas flavigena and Terendinibacter turnerae, produce multifunctional cellulases with broader substrate utilization. These enzymes offer a framework for enhancement of cellulases including: specific activity, thermalstability, or end-product inhibition. In addition, anaerobic bacteria like the clostridia offer potential due to species capable of producing compound multienzyme complexes called cellulosomes. Cellulosomes provide synergy and close proximity of enzymes to substrate, increasing activity towards crystalline cellulose. This has lead to the construction of designer cellulosomes enhanced for specific substrate activity. Furthermore, cellulosome-producing Clostridium thermocellum and its ability to ferment sugars to ethanol; its amenability to co-culture and, recent advances in genetic engineering, offer a promising future in biofuels. The exploitation of bacteria in the search for improved enzymes or strategies provides a means to upgrade feasibility for lignocellulosic biomass conversion, ultimately providing means to a 'greener' technology.

  2. Ethanol production in China: Potential and technologies

    International Nuclear Information System (INIS)

    Rising oil demand in China has resulted in surging oil imports and mounting environmental pollution. It is projected that by 2030 the demand for fossil fuel oil will be 250 million tons. Ethanol seems to be an attractive renewable alternative to fossil fuel. This study assesses China's ethanol supply potential by examining potential non-food crops as feedstock; emerging conversion technologies; and cost competitiveness. Results of this study show that sweet sorghum among all the non-food feedstocks has the greatest potential. It grows well on the available marginal lands and the ASSF technology when commercialized will shorten the fermentation time which will lower the costs. Other emerging technologies such as improved saccharification and fermentation; and cellulosic technologies will make China more competitive in ethanol production in the future. Based on the estimated available marginal lands for energy crop production and conversion yields of the potential feedstocks, the most likely and optimistic production levels are 19 and 50 million tons of ethanol by 2020. In order to achieve those levels, the roadmap for China is to: select the non-food feedstock most suitable to grow on the available marginal land; provide funding to support the high priority conversion technologies identified by the scientists; provide monetary incentives to new and poor farmers to grow the feedstocks to revitalize rural economy; less market regulation and gradual reduction of subsidies to producers for industry efficiency; and educate consumers on the impact of fossil fuel on the environment to reduce consumption. Since the share of ethanol in the overall fuel demand is small, the impact of ethanol on lowering pollution and enhancing fuel security will be minimal. (author)

  3. Cereal production and technology adoption in Ethiopia:

    OpenAIRE

    Yu, Bingxin; Nin-Pratt, Alejandro; Funes, José; Gemessa, Sinafikeh Asrat

    2011-01-01

    The Ethiopian government has been promoting a package-driven extension that combines credit, fertilizers, improved seeds, and better management practices. This approach has reached almost all farming communities, representing about 2 percent of agricultural gross domestic product in recent years. This paper is the first to look at the extent and determinants of the adoption of the fertilizer-seed technology package promoted in Ethiopia using nationally representative data from the Central Sta...

  4. Food product tracing technology capabilities and interoperability.

    Science.gov (United States)

    Bhatt, Tejas; Zhang, Jianrong Janet

    2013-12-01

    Despite the best efforts of food safety and food defense professionals, contaminated food continues to enter the food supply. It is imperative that contaminated food be removed from the supply chain as quickly as possible to protect public health and stabilize markets. To solve this problem, scores of technology companies purport to have the most effective, economical product tracing system. This study sought to compare and contrast the effectiveness of these systems at analyzing product tracing information to identify the contaminated ingredient and likely source, as well as distribution of the product. It also determined if these systems can work together to better secure the food supply (their interoperability). Institute of Food Technologists (IFT) hypothesized that when technology providers are given a full set of supply-chain data, even for a multi-ingredient product, their systems will generally be able to trace a contaminated product forward and backward through the supply chain. However, when provided with only a portion of supply-chain data, even for a product with a straightforward supply chain, it was expected that interoperability of the systems will be lacking and that there will be difficulty collaborating to identify sources and/or recipients of potentially contaminated product. IFT provided supply-chain data for one complex product to 9 product tracing technology providers, and then compared and contrasted their effectiveness at analyzing product tracing information to identify the contaminated ingredient and likely source, as well as distribution of the product. A vertically integrated foodservice restaurant agreed to work with IFT to secure data from its supply chain for both a multi-ingredient and a simpler product. Potential multi-ingredient products considered included canned tuna, supreme pizza, and beef tacos. IFT ensured that all supply-chain data collected did not include any proprietary information or information that would otherwise

  5. Biofilm reactors for industrial bioconversion processes: employing potential of enhanced reaction rates

    Directory of Open Access Journals (Sweden)

    Karcher Patrick

    2005-08-01

    Full Text Available Abstract This article describes the use of biofilm reactors for the production of various chemicals by fermentation and wastewater treatment. Biofilm formation is a natural process where microbial cells attach to the support (adsorbent or form flocs/aggregates (also called granules without use of chemicals and form thick layers of cells known as "biofilms." As a result of biofilm formation, cell densities in the reactor increase and cell concentrations as high as 74 gL-1 can be achieved. The reactor configurations can be as simple as a batch reactor, continuous stirred tank reactor (CSTR, packed bed reactor (PBR, fluidized bed reactor (FBR, airlift reactor (ALR, upflow anaerobic sludge blanket (UASB reactor, or any other suitable configuration. In UASB granular biofilm particles are used. This article demonstrates that reactor productivities in these reactors have been superior to any other reactor types. This article describes production of ethanol, butanol, lactic acid, acetic acid/vinegar, succinic acid, and fumaric acid in addition to wastewater treatment in the biofilm reactors. As the title suggests, biofilm reactors have high potential to be employed in biotechnology/bioconversion industry for viable economic reasons. In this article, various reactor types have been compared for the above bioconversion processes.

  6. A Comparison of Chinese, Japanese, and Korean shipyard production technology

    Institute of Scientific and Technical Information of China (English)

    BAI Xue-ping; NIE Wu; LIU Cheng-ming

    2007-01-01

    This paper compares Chinese, Korean, and Japanese shipyard production technology. Development in the world shipbuilding over recent years has influenced focus areas related to shipyard manufacturing technologies and product performance. Software systems, information technology,production technology, and local challenges of shipyards are compared with shipbuilding outputs among these three countries. Various technologies developments, shipyard production and the problems in Chinese, Japanese, and Korean shipyards are discussed respectively. Finally, future areas of research are pointed out.

  7. Straw for energy production. Technology - Environment - Economy

    Energy Technology Data Exchange (ETDEWEB)

    Nikolaisen, L.; Nielsen, C.; Larsen, M.G.; Nielsen, V.; Zielke, U.; Kristensen, J.K.; Holm-Christensen, B.

    1998-12-31

    `Straw for Energy Production`, second edition, provides a readily accessible background information of special relevance to the use of straw in the Danish energy supply. Technical, environmental, and economic aspects are described in respect of boiler plants for farms, district heating plants, and combined heat and power plants (CHP). The individual sections deal with both well-known, tested technology and the most recent advances in the field of CHP production. This publication is designed with the purpose of reaching the largest possible numbers of people and so adapted that it provides a valuable aid and gives the non-professional, general reader a thorough knowledge of the subject. `Straw for Energy Production` is also available in German and Danish. (au)

  8. Supercritical fluids technology for clean biofuel production

    Institute of Scientific and Technical Information of China (English)

    Dongsheng Wen; H.Jiang; Kai Zhang

    2009-01-01

    Biofuels are liquid or gaseous fuels that are predominantly produced from biomass for transport sector applications.As biofuels are renewable,sustainable,carbon neutral and environmentally benign,they have been proposed as promising alternative fuels for gasoline and diesel engines.This paper reviews state-of-the-art application of the supercritical fluid(SCF)technique in biofuels production that includes biodiesel from vegetable oils via the transesterification process,bio-hydrogen from the gasification and bio-oil from the lique-faction of biomass,with biodiesel production as the main focus. The global biofuel situation and biofuel economics are also reviewed.The SCF has been shown to be a promising technique for future large-scale biofuel production,especially for biodiesel production from waster oil and fat.Compared with conventional biofuel production methods,the SCF technology possesses a number of advantages that includes fast inetics,high fuel production rate,ease of continuous operation and elimination of the necessity of catalysts.The harsh operation environment,i.e. the high temperature and high pressure,and its request on the materials and associated cost are the main concerns for its wide application.

  9. Technical Integration of Nuclear Hydrogen Production Technology

    International Nuclear Information System (INIS)

    These works focus on the development of attainment indices for nuclear hydrogen key technologies, the analysis of the hydrogen production process and the performance estimation for hydrogen production systems, and the assessment of the nuclear hydrogen production cost. For assessing the degree of attainments in comparison with the final goals of VHTR technologies in progress of researches, subdivided are the prerequisite items confirmed to the NHDD concepts. We developed and applied R and D quality management methodology to meet 'Development of Key Technologies for Nuclear Hydrogen' project. And we also distributed R and D QAM and R and D QAP to each teams and are in operation. The preconceptual flow diagrams of SI, HTSE, and HyS processes are introduced and their material and energy balances have been proposed. The hydrogen production thermal efficiencies of not only the SI process as a reference process but also the HTSE and HyS processes were also estimated. Technical feasibility assessments of SI, HTSE, and HyS processes have been carried out by using the pair-wise comparison and analytic hierarchy process, and it is revealed that the experts are considering the SI process as the most feasible process. The secondary helium pathway across the SI process is introduced. Dynamic simulation codes for the H2S04vaporizer, sulfuric acid and sulfur trioxide decomposers, and HI decomposer on the secondary helium pathway and for the primary and secondary sulfuric acid distillation columns, HIx solution distillation column, and preheater for HI vapor have been developed and integrated

  10. Technologies for Production of Heat and Electricity

    Energy Technology Data Exchange (ETDEWEB)

    Jacob J. Jacobson; Kara G. Cafferty

    2014-04-01

    Biomass is a desirable source of energy because it is renewable, sustainable, widely available throughout the world, and amenable to conversion. Biomass is composed of cellulose, hemicellulose, and lignin components. Cellulose is generally the dominant fraction, representing about 40 to 50% of the material by weight, with hemicellulose representing 20 to 50% of the material, and lignin making up the remaining portion [4,5,6]. Although the outward appearance of the various forms of cellulosic biomass, such as wood, grass, municipal solid waste (MSW), or agricultural residues, is different, all of these materials have a similar cellulosic composition. Elementally, however, biomass varies considerably, thereby presenting technical challenges at virtually every phase of its conversion to useful energy forms and products. Despite the variances among cellulosic sources, there are a variety of technologies for converting biomass into energy. These technologies are generally divided into two groups: biochemical (biological-based) and thermochemical (heat-based) conversion processes. This chapter reviews the specific technologies that can be used to convert biomass to energy. Each technology review includes the description of the process, and the positive and negative aspects.

  11. Development of fission Mo-99 production technology

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jin Ho; Choung, W. M.; Lee, K. I. and others

    2001-05-01

    This R and D project is planed to supply domestic demands of Mo-99 through fission route, and consequently this project will be expected to rise up utilization of HANARO and KAERI's capability for marketing extension into domestic and oversea radiopharmaceutical market. HEU and LEU target types are decided and designed for fission Mo-99 production in domestic. Experimental study of target fabrication technology was performed and developed processing equipments. And conceptual design of target loading/unloading in/from HANARO device are performed. Tracer test of Mo-99 separation and purification process was performed, test results reach to Mo-99 recovery yield above 80% and decontamination factor above 1600. Combined Mo-99 separation and purification process was decided for hot test scheduled from next year, and performance test was performed. Conceptual design for modification of existing hot cell for fission Mo-99 production facility was performed and will be used for detail design. Assumption for the comparison of LEU and HEU target in fission Mo-99 production process were suggested and compared of merits and demerits in view of fabrication technology and economy feasibility.

  12. A Complete Set of Technologies for Green Food Pork Production

    Institute of Scientific and Technical Information of China (English)

    YANG Xing-wu; SHAN An-shan; JIANG Jiu-tian; ZHANG Tian-feng

    2003-01-01

    Key technologies for green food pork production were described in this article,as aspects of business standardization;production equipments and facilities,product quality control;and pork production site establishment.

  13. Production chain and innovative technologies for living

    Directory of Open Access Journals (Sweden)

    Eugenio Arbizzani

    2012-10-01

    Full Text Available The continued growth of residential demand, coupled with the significant decline of the housing market, is encouraging the development of many procedural and constructive experiments on the theme of affordable housing for a range of users increasingly unable to access home ownership. The spread of an approach to planning that is socially, economically and technologically sustainable, represents a culture of quality that is once more measurable, which makes it possible today to define innovative building models for the industrial and production chain. The use of innovative and integrated industrialised building systems may be one of the supporting factors in the achievement of the objectives of social housing.

  14. Projection display technology and product trends

    Science.gov (United States)

    Kahn, Frederic J.

    1999-05-01

    Major technology and market trends that could generate a 20 billion dollar electronic projector market by 2010 are reviewed in the perspective of recent product introductions. A log linear analysis shows that the light outputs of benchmark transportable data video projectors have increased at a rate of almost 90 percent per year since 1993. The list prices of these same projectors have decreased at a rate of over 40 percent per year. The tradeoffs of light output vs. resolution and weight are illustrated. Recent trends in projector efficacy vs. year are discussed. Lumen output per dollar of list price is shown to be a useful market metric. Continued technical advances and innovations including higher throughput light valve technologies with integrated drivers, brighter light source, field sequential color, integrated- and micro-optical components, and aerospace materials are likely to sustain these trends. The new technologies will enable projection displays for entertainment and computer applications with unprecedented levels of performance, compactness, and cost-effectiveness.

  15. Advanced technologies for power and fuel production

    Energy Technology Data Exchange (ETDEWEB)

    Watts, J.U.; Mann, A.N. [US Department of Energy/National Energy Technology Lab., Pittsburgh, PA (United States)

    2001-07-01

    The Clean Coal Technology Program (CCT) being conducted by the United States Department of Energy (DOE) is a government and industry co-funded effort. The program's purpose is to demonstrate new generation of innovative, environmentally friendly processes that enhance the utilization of coal to meet increasing demand for electric power and fuels. Program demonstration areas include environmental control, advanced power generation, fuels production, and industrial applications. The CCT Program has now grown to maturity, with over 50% of the projects selected having successfully completed their demonstration goals and objectives. Under the CCT Program, nine advanced electric power generation projects and five coal processing for clean fuels projects were selected for full scale commercial demonstration. This paper provides the status, accomplishments and results of the most widely accepted technologies currently being commercialized under these two categories. The projects are (1) Atmospheric Fluidized-Bed Combustion (AFBC) at Jacksonville Electric Authority; (2) Integrated Gasification Combined-cycle (IGCC) at Wabash River, Tampa Electric and Kentucky Pioneer; and (3) Eastman Chemical's production of methanol via coal gasification using the LPMEOH{trademark} process. 7 figs., 7 tabs.

  16. Bioconversion of pinoresinol into matairesinol by use of recombinant Escherichia coli.

    Science.gov (United States)

    Kuo, Han-Jung; Wei, Zhi-Yu; Lu, Pei-Chun; Huang, Pung-Ling; Lee, Kung-Ta

    2014-05-01

    Lignans, a class of dimeric phenylpropanoid derivative found in plants, such as whole grains and sesame and flax seeds, have anticancer activity and can act as phytoestrogens. The lignans secoisolariciresinol and matairesinol can be converted in the mammalian proximal colon into enterolactone and enterodiol, respectively, which reduce the risk of breast and colon cancer. To establish an efficient bioconversion system to generate matairesinol from pinoresinol, the genes encoding pinoresinol-lariciresinol reductase (PLR) and secoisolariciresinol dehydrogenase (SDH) were cloned from Podophyllum pleianthum Hance, an endangered herb in Taiwan, and the recombinant proteins, rPLR and rSDH, were expressed in Escherichia coli and purified. The two genes, termed plr-PpH and sdh-PpH, were also linked to form two bifunctional fusion genes, plr-sdh and sdh-plr, which were also expressed in E. coli and purified. Bioconversion in vitro at 22°C for 60 min showed that the conversion efficiency of fusion protein PLR-SDH was higher than that of the mixture of rPLR and rSDH. The percent conversion of (+)-pinoresinol to matairesinol was 49.8% using PLR-SDH and only 17.7% using a mixture of rPLR and rSDH. However, conversion of (+)-pinoresinol by fusion protein SDH-PLR stopped at the intermediate product, secoisolariciresinol. In vivo, (+)-pinoresinol was completely converted to matairesinol by living recombinant E. coli expressing PLR-SDH without addition of cofactors.

  17. Novel bioconversion of wheat straw to bio-organic fertilizer in a solid-state bioreactor.

    Science.gov (United States)

    Chen, Hongzhang; Sun, Fubao

    2007-03-01

    In order to increase the eco-efficiency and overall availability of naturally renewable resource, the novel bioconversion of steam-exploded wheat straw to bio-organic fertilizer containing N(2)-fixer, P and K solubilizers was investigated. The conversion was performed in solid-state fermentation (SSF) with periodic air-forced pressure oscillation (PAPO). The results showed that SSF-PAPO was competitive with the conventional solid-state fermentation (cSSF) in biomass accumulation and wheat straw digestion. With solid-liquid ratio 1:3, microbial biomass production at 72 h was high up to 2 x 10(11) cfu g(-1), nearly twice as that in cSSF. The degradation rate of cellulose, hemicellulose and lignin after fermentation in SSF-PAPO reached 48.57 +/- 10.66, 84.77 +/- 2.75 and 2.15 +/- 10.11, respectively, which was greater than that of 29.30 +/- 10.28%, 33.47 +/- 4.85% and 0.53 +/- 9.07% in cSSF, correspondingly. The SSF-PAPO system displayed unique advantage, by a novel gas phase control strategy on gas concentration and heat gradient, on the bioconversion of wheat straw to the bio-organic fertilizer.

  18. Choice of Flexible Production Technologies Under Strategic Delegation

    OpenAIRE

    Bárcena Ruiz, Juan Carlos; Olaizola Ortega, María Norma

    2004-01-01

    This work analyzes a managerial delegation model in which firms can choose between a flexible production technology which allows them to produce two different products and a dedicated production technology which limits production to only one product. We analyze whether the incentives to adopt the flexible technology are smaller or greater in a managerial delegation model than under strict profit maximization. We obtain that the asymmetric equilibrium in which only one firm adopts the flexible...

  19. Social software supported technology monitoring for custom built products

    OpenAIRE

    Schimpf, Sven

    2010-01-01

    Industries with a focus on custom-built products are facing constantly changing requirements for product and process specifications with regard to the development and production of each single product. These changing requirements influence the development, integration and application of technologies. Due to the growing level of technological complexity of custom-built products in particular, the importance of a structured method to help evaluate, store and communicate information on technolog...

  20. Modelling architectures in multi-product oriented technology development

    DEFF Research Database (Denmark)

    Guðlaugsson, Tómas Vignir

    This thesis investigates the use of architecture modelling in a technology development context.This context presents greater uncertainties than more mature new product development. Applications—the use of products based on the technology being developed—are not fully identified and the requirements...... to be fulfilled are not completely defined.The products to be based on the technology are yet to be developed as the foundation for their development will be developed during the technology development. Furthermore, the production of a new technology is not defined as both the technology and derivative products...... are not completely defined. Yet, decisions need to be made during technology development on the capabilities to be provided through the development to fulfil future application requirements,provide a foundation for future products, and development of a production system capable of producing future products...

  1. Development of fission Mo production technology

    International Nuclear Information System (INIS)

    The feasibility study is accomplished in this project for the development of fission moly production. The KAERI process proposed for development in KAERI is discussed together with those of the American Cintichem and Russian IPPE, each of which would be plausible for introduction whenever the indigenous development is not much feasible. For the conceptual design of the KAERI irradiation target, analysis method is set up and some preliminary analysis is performed accordingly for the candidate design. To establish chemical process concepts for the afore-mentioned three processes, characteristics, operation conditions, and the management of the generated wastes are investigated. Basic requirements of hotcell facilities for chemical processing and a possible way of utilizing the existing hotcells are discussed in parallel with the counter-measures for the construction of new hotcell facilities. Various conditions of target irradiation for fission moly production in Hanaro are analyzed. Plan for introduction of the relevant technology introduction and for procurement of highly enriched uranium are considered. On the basis of assuming some conditions, the economic feasibility study for fission moly production is also overviewed. (author). 22 refs., 28 tabs., 24 figs

  2. The Bioconversion of Red Ginseng Ethanol Extract into Compound K by Saccharomyces cerevisiae HJ-014.

    Science.gov (United States)

    Choi, Hak Joo; Kim, Eun A; Kim, Dong Hee; Shin, Kwang-Soo

    2014-09-01

    A β-glucosidase producing yeast strain was isolated from Korean traditional rice wine. Based on the sequence of the YCL008c gene and analysis of the fatty acid composition, the isolate was identified as Saccharomyces cerevisiae strain HJ-014. S. cerevisiae HJ-014 produced ginsenoside Rd, F2, and compound K from the ethanol extract of red ginseng. The production was increased by shaking culture, where the bioconversion efficiency was increased 2-fold compared to standing culture. The production of ginsenoside F2 and compound K was time-dependent and thought to proceed by the transformation pathway of: red ginseng extract→Rd→F2→compound K. The optimum incubation time and concentration of red ginseng extract for the production of compound K was 96 hr and 4.5% (w/v), respectively.

  3. Bioconversion of (+)-valencene in submerged cultures of the ascomycete Chaetomium globosum.

    Science.gov (United States)

    Kaspera, Rüdiger; Krings, Ulrich; Nanzad, Tsevegsuren; Berger, Ralf G

    2005-06-01

    Submerged cultures of the ascomycete Chaetomium globosum oxidised the exogenous sesquiterpene (+)-valencene to nootkatone via the stereoselective generation of alpha-nootkatol. Inhibition experiments suggested that the first introduction of oxygen, the rate-limiting step of the bioconversion, may have been catalysed by a cytochrome-P450-monooxygenase. However, nootkatone was not the final metabolite: further flavour-active and inactive, non-volatile oxidation products were identified. (+)-Valencene and the flavour-active mono-oxyfunctionalised transformation products, alpha-nootkatol, nootkatone, and valencene-11,12-epoxide accumulated preferably inside the fungal cells. Di- and poly-oxygenated products, such as nootkatone-11,12-epoxide, were found solely in the culture medium, indicating an active transport of these metabolites into the extracellular compartment during (+)-valencene detoxification. These metabolic properties may have contributed to the high tolerance of the fungus towards the exogenous hydrocarbon. PMID:15602686

  4. Product lifecycle-oriented virtual assembly technology

    Institute of Scientific and Technical Information of China (English)

    LIU Jian-hua; NING Ru-xin; YAO Jun; WAN Bi-le

    2006-01-01

    VA (virtual assembly) provides a more efficient,intuitive and convenient method for assembly process modeling,simulation and analysis.Previous researches about VA are almost isolated and dispersive,and have not established the understanding and definition of VA from a macroscopical and integrated view.Based on the analysis of the connotations of VA,a PLO-VATA (product lifecycle-oriented virtual assembly technology architecture) is proposed,in this architecture,VA is decomposed into four basic elements:principles and methodology of DFA (design for assembly),assembly analysis and evaluation,virtual assembly model and virtual assembly toolkits.Immersion,concurrence,integration and collaboration are the four main characteristics of VA being put forward.The key techniques of VA including virtual assembly model,virtual assembly analysis and evaluation,and virtual assembly process planning are discussed.Finally,a prototype system is built to validate the feasibility of the proposed method.

  5. Organisational change and the productivity effects of green technology adoption

    OpenAIRE

    Hottenrott, Hanna; Rexhäuser, Sascha; Veugelers, Reinhilde

    2016-01-01

    This study investigates induced productivity effects of firms introducing new environmental technologies. The literature on within-firm organisational change and productivity suggests that firms can achieve higher productivity gains from adopting new technologies if they adapt their organisational structures. Such complementarity effects may be of particular importance for the adoption of greenhouse gas (GHG) abatement technologies. The adoption of these technologies is often induced by publi...

  6. Reliability Analysis about Technology for Using Black Soldier Fly on Bioconversion from Food Waste to Entomic Protein%黑水虻生物处置餐厨废弃物的技术可行性分析

    Institute of Scientific and Technical Information of China (English)

    安新城

    2016-01-01

    黑水虻Hermetia illucens是为数不多的几种能够取食餐厨垃圾的动物之一,近几年日益受到国际国内研究者的关注,并在城市固体有机废弃物处置领域中被寄予厚望,本文从技术原理、市场需求、养殖模式、盈利能力、市场前景等角度对黑水虻处置餐厨垃圾的技术应用进行了全方位分析。研究认为黑水虻的生物转化技术可能是解决我国餐厨垃圾末端处置困境的最终方案,并可带动中国昆虫产业的快速发展。%Black soldier fly ( BSF) , Hermetia illucens, was regarded as one of few insect species who can digest food waste without much difficulty, which were particularly helpful on disposal of organic garbage for municipal administration, and thus BSF have been obtained more and more attention from academic, social even enterprise in the past 10 years�The analysis was done on technological reliability, market demand, profit ability and expansion model and so on, and results indicated that BSF possibly supply an important opportunity for progress of insectival protein industry, meanwhile also being last and best chance for Chinese food waste disposal on environmental protection side.

  7. Technology adoption and the impact on average productivity

    NARCIS (Netherlands)

    Hellegers, P.J.G.J.; Zeng, D.; Zilberman, D.

    2011-01-01

    In this paper, a framework is developed to analyze how the specifications of new technologies and the heterogeneity of micro-units of production affect the input use, the adoption pattern, and the productivity of inputs. It shows that asset-productivity-enhancing (APE) technologies tend to be adopte

  8. Agent Technology in Agile Multiparallel Manufacturing and Product Support

    NARCIS (Netherlands)

    van Moergestel, L.J.M.

    2014-01-01

    The thesis describes the application of agent technology in product manufacturing and product support. Important issues in the requirements of modern production are short time to market, requirement-driven production and low cost small quantity production. To meet these requirements special low cost

  9. Investigating Consumer Purchase Behavior in Related Technology Product Categories

    OpenAIRE

    S. Sriram; Chintagunta, Pradeep K.; Agarwal, Manoj K.

    2010-01-01

    We present a framework of durable goods purchasing behavior in related technology product categories that incorporates the following aspects unique to technology product purchases. First, it accounts for consumers' anticipation of declining prices (or increasing quality) over time. Second, the durable nature of technology products implies that even if two categories are related as complements, consumers may stagger their purchases over several periods. Third, the forward-looking consumer deci...

  10. Research on Digital Product Modeling Key Technologies of Digital Manufacturing

    Institute of Scientific and Technical Information of China (English)

    DING Guoping; ZHOU Zude; HU Yefa; ZHAO Liang

    2006-01-01

    With the globalization and diversification of the market and the rapid development of Information Technology (IT) and Artificial Intelligence (AI), the digital revolution of manufacturing is coming. One of the key technologies in digital manufacturing is product digital modeling. This paper firstly analyzes the information and features of the product digital model during each stage in the product whole lifecycle, then researches on the three critical technologies of digital modeling in digital manufacturing-product modeling, standard for the exchange of product model data and digital product data management. And the potential signification of the product digital model during the process of digital manufacturing is concluded-product digital model integrates primary features of each stage during the product whole lifecycle based on graphic features, applies STEP as data exchange mechanism, and establishes PDM system to manage the large amount, complicated and dynamic product data to implement the product digital model data exchange, sharing and integration.

  11. Technological challenges in thermal plasma production

    International Nuclear Information System (INIS)

    Thermal plasmas, generated by electric arc discharges, are used in a variety of industrial applications. The electric arc is a constricted electrical discharge with a high temperature in the range 6000-25,000 K. These characteristics are useful in plasma cutting, spraying, welding and specific areas of material processing. The thermal plasma technology is an enabling process technology and its status in the market depends upon its advantages over competing technologies. A few technological challenges to enhance the status of plasma technology are to improve the utilisation of the unique characteristics of the electric arc and to provide enhanced control of the process. In particular, new solutions are required for increasing the plasma-material interaction, controlling the electrode roots and controlling the thermal power generated by the arcing process. In this paper, the advantages of plasma technology, its constraints and future challenges for technology developments are highlighted. 36 refs., 14 figs

  12. Production Well Performance Enhancement using Sonication Technology

    Energy Technology Data Exchange (ETDEWEB)

    Adewumi, Michael A; Ityokumbul, M Thaddeus; Watson, Robert W; Eltohami, Eltohami; Farias, Mario; Heckman, Glenn; Houlihan, Brendan; Karoor, Samata Prakash; Miller, Bruce G; Mohammed, Nazia; Olanrewaju, Johnson; Ozdemir, Mine; Rejepov, Dautmamed; Sadegh, Abdallah A; Quammie, Kevin E; Zaghloul, Jose; Hughes, W Jack; Montgomery, Thomas C

    2005-12-31

    The objective of this project was to develop a sonic well performance enhancement technology that focused on near wellbore formation damage. In order to successfully achieve this objective, a three-year project was defined. The entire project was broken into four tasks. The overall objective of all this was to foster a better understanding of the mechanisms involved in sonic energy interactions with fluid flow in porous media and adapt such knowledge for field applications. The fours tasks are: • Laboratory studies • Mathematical modeling • Sonic tool design and development • Field demonstration The project was designed to be completed in three years; however, due to budget cuts, support was only provided for the first year, and hence the full objective of the project could not be accomplished. This report summarizes what was accomplished with the support provided by the US Department of Energy. Experiments performed focused on determining the inception of cavitation, studying thermal dissipation under cavitation conditions, investigating sonic energy interactions with glass beads and oil, and studying the effects of sonication on crude oil properties. Our findings show that the voltage threshold for onset of cavitation is independent of transducer-hydrophone separation distance. In addition, thermal dissipation under cavitation conditions contributed to the mobilization of deposited paraffins and waxes. Our preliminary laboratory experiments suggest that waxes are mobilized when the fluid temperature approaches 40°C. Experiments were conducted that provided insights into the interactions between sonic wave and the fluid contained in the porous media. Most of these studies were carried out in a slim-tube apparatus. A numerical model was developed for simulating the effect of sonication in the nearwellbore region. The numerical model developed was validated using a number of standard testbed problems. However, actual application of the model for scale

  13. Fibrous Agricultural Biomass as a Potential Source for Bioconversion to Vanillic Acid

    Directory of Open Access Journals (Sweden)

    Pei-Ling Tang

    2014-01-01

    Full Text Available This study was conducted to assess the potential of six fibrous agricultural residues, namely, oil palm empty fruit bunch fiber (OPEFBF, coconut coir fiber (CCF, pineapple peel (PP, pineapple crown leaves (PCL, kenaf bast fiber (KBF, and kenaf core fiber (KCF, as a source of ferulic acid and phenolic compounds for bioconversion into vanillic acid. The raw samples were pretreated with organosolv (NaOH-glycerol and alkaline treatment (NaOH, to produce phenol-rich black liquor. The finding showed that the highest amount of phenolic compounds and ferulic acid was produced from CCF and PP, respectively. This study also found that organosolv treatment was the superior method for phenolic compound extraction, whereas alkaline treatment was the selective method for lignin extraction. Vanillic acid production by Aspergillus niger I-1472 was only observed when the fermentation broth was fed with liquors from PP and PCL, possibly due to the higher levels of ferulic acid in those samples.

  14. Direct bioconversion of raw corn stalk to hydrogen by a new strain Clostridium sp. FS3.

    Science.gov (United States)

    Song, Zhao-Xia; Li, Xiao-Hu; Li, Wei-Wei; Bai, Yan-Xia; Fan, Yao-Ting; Hou, Hong-Wei

    2014-04-01

    A new strain FS3 which could achieve an efficient bioconversion of raw corn stalk to hydrogen had been isolated from anaerobic acclimated sludge, and identified as Clostridium butyricum on the basis of a series of physiological and biochemical experiments and 16S rDNA gene sequence. The strain could utilize various carbon sources to produce hydrogen. On the basis of single-factor experiments, the response surface methodology (RSM) was performed to optimize the media for hydrogen production. The maximum hydrogen yield of 92.9ml/g was observed under the optimal conditions: 20g/l raw corn stalk, 1.76g/l NH4HCO3, 0.91g/l KH2PO4 and 10.4ml/l nutrient solution. This finding opens a new avenue for direct conversion of raw cellulosic biomass to bio-hydrogen.

  15. Alcohol, biomass energy: technological and economical aspects of production

    International Nuclear Information System (INIS)

    This paper presents some technological and economical aspects of sugar cane and alcohol production in Brazil since 1975 until nowadays. The evolution of their production is analysed and the relationship between cost-benefit and ethanol consumption is discussed

  16. Production Situation and Technology Prospect of Medical Isotopes

    Directory of Open Access Journals (Sweden)

    GAO Feng;LIN Li;LIU Yu-hao;MA Xing-jun

    2016-10-01

    Full Text Available The isotope production technology was overviewed, including traditional and newest technology. The current situation of medical isotope production was introduced. The problems faced by isotope supply and demand were analyzed. The future development trend of medical isotopes and technology prospect were put forward. As the most populous country, nuclear medicine develops rapidly, however, domestic isotope mainly relies on imports. The highly productive and relatively safe MIPR is expected to be an effective way to breakthrough the bottleneck of the development of nuclear medicine. Traditional isotope production technologies with reactor can be improved. It's urgent to research and promote new isotope production technologies with reactor. Those technologies which do not depend on reactor will have a bright market prospects.

  17. Precision Agriculture Technology Adoption for Cotton Production

    OpenAIRE

    Paxton, Kenneth W.; Mishra, Ashok K.; Chintawar, Sachin; Larson, James A.; Roberts, Roland K.; English, Burton C.; Lambert, Dayton M.; Marra, Michele C.; Larkin, Sherry L.; Reeves, Jeanne M.; Martin, Steven W

    2010-01-01

    Many studies on the adoption of precision technologies have generally used logit models to explain the adoption behavior of individuals. This study investigates factors affecting the number of specific types of precision agriculture technologies adopted by cotton farmers. Particular attention is given to the influence of spatial yield variability on the number of precision farming technologies adopted, using a Count data estimation procedure and farm-level data. Results indicate that farmers ...

  18. High-yield enzymatic bioconversion of hydroquinone to α-arbutin, a powerful skin lightening agent, by amylosucrase.

    Science.gov (United States)

    Seo, Dong-Ho; Jung, Jong-Hyun; Ha, Suk-Jin; Cho, Hyun-Kug; Jung, Dong-Hyun; Kim, Tae-Jip; Baek, Nam-In; Yoo, Sang-Ho; Park, Cheon-Seok

    2012-06-01

    α-Arbutin (α-Ab) is a powerful skin whitening agent that blocks epidermal melanin biosynthesis by inhibiting the enzymatic oxidation of tyrosine and L-3,4-dihydroxyphenylalanine (L-DOPA). α-Ab was effectively synthesized from hydroquinone (HQ) by enzymatic biotransformation using amylosucrase (ASase). The ASase gene from Deinococcus geothermalis (DGAS) was expressed and efficiently purified from Escherichia coli using a constitutive expression system. The expressed DGAS was functional and performed a glycosyltransferase reaction using sucrose as a donor and HQ as an acceptor. The presence of a single HQ bioconversion product was confirmed by thin-layer chromatography (TLC) and high-performance liquid chromatography (HPLC). The HQ bioconversion product was isolated by silica gel open column chromatography and its chemical structure determined by 1H and 13C nuclear magnetic resonance (NMR). The product was determined to be hydroquinone-O-α-D-glucopyranoside with a glucose molecule linked to HQ through an α-glycosidic bond. However, the production yield of the transfer reaction was significantly low (1.3%) due to the instability of HQ in the reaction mixture. The instability of HQ was considerably improved by antioxidant agents, particularly ascorbic acid, implying that HQ is labile to oxidation. A maximum yield of HQ transfer product of 90% was obtained at a 10:1 molar ratio of donor (sucrose) and acceptor (HQ) molecules in the presence of 0.2 mM ascorbic acid.

  19. APPLICATION OF INJECTION TECHNOLOGIES IN METALLURGICAL PRODUCTION

    Directory of Open Access Journals (Sweden)

    S. V. Korneev

    2011-01-01

    Full Text Available Analysis of injection technologies shows that the largest prevalence they got d at application on powerful electric arc furnaces and at out-of-furnace processing of big volumes of metal. at the same time theoretical and experimental basis of using of injection technologies is constantly being replenished with new investigations.

  20. Technology of pastry products for healthy nutrition purposes

    Directory of Open Access Journals (Sweden)

    Zavadynska Olena

    2016-04-01

    Full Text Available The article considers the possibility of using the carrot puree and oil from pumpkin seeds in the preparation of pastry product. Production technology and regulatory documentation for pastry products were developed and nutritional value of products was investigated.

  1. Technology for Hybrid Pepper Seed Production in China

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    History of hybrid pepper seed production, the status of annually balanced production, and innovative techniques for the large-scale seed production in China are reviewed. Helped by the technological breakthroughs in these fields, China has been the largest base for hybrid pepper seed production in the world.

  2. Agent Technology in Agile Multiparallel Manufacturing and Product Support

    OpenAIRE

    van Moergestel, L.J.M.

    2014-01-01

    The thesis describes the application of agent technology in product manufacturing and product support. Important issues in the requirements of modern production are short time to market, requirement-driven production and low cost small quantity production. To meet these requirements special low cost production platforms have been developed in our research. These reconfigurable platforms are called equiplets. A grid of these equiplets connected by a fast network is capable of producing a varie...

  3. Pathways to Commercial Success. Technologies and Products Supported by the Fuel Cell Technologies Program

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2010-08-01

    This report identifies the commercial and near-commercial (emerging) hydrogen and fuel cell technologies and products that resulted from Department of Energy support through the Fuel Cell Technologies Program in the Office of Energy Efficiency and Renewable Energy.

  4. Production of Construction Materials Using Advanced Recycling Technologies

    OpenAIRE

    ECT Team, Purdue

    2007-01-01

    Waste reduction, material reuse, and use of recycle-content products can be focused on the management system somewhat. In contrast, material recycling is the technical issue how to create new materials using wastes. Thus, three advanced recycling technologies; 1) Synthetic Lightweight Aggregate technology (SLA), 2) Clean Coal Technology (CCT), and 3) RP-1 Polymer Identification System are introduced.

  5. Solar and Wind Technologies for Hydrogen Production Report to Congress

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2005-12-01

    DOE's Solar and Wind Technologies for Hydrogen Production Report to Congress summarizes the technology roadmaps for solar- and wind-based hydrogen production. Published in December 2005, it fulfills the requirement under section 812 of the Energy Policy Act of 2005.

  6. The Remote Product Check and Acceptance Technology Based on Web

    Institute of Scientific and Technical Information of China (English)

    YANG Musheng; ZHANG Yu

    2006-01-01

    This paper analyzes the feasibility of the remote check and acceptance of product and presents an architecture through which the remote product check and acceptance system can be realized. This paper also illuminates the work process of this system and discusses the technological details of the quality inspection as well as the key technologies.

  7. Digital Mock-up Technology in Product Development and Research

    Institute of Scientific and Technical Information of China (English)

    CHEN Xu; ZHANG Pandeng; YANG Cheng; XU Zhongming

    2006-01-01

    After introducing the present status of digital mock-up (DMU) technology in product development and research, the modeling and its key technologies in product design are described. The architecture of digital design platform system for main DMU model is developed. Based on the architecture, a method of skeleton design has been applied to the development of digital design system.

  8. Production of catechols: microbiology and technology

    OpenAIRE

    Krab-Hüsken, L.E.

    2002-01-01

    Catechols play an important role in the fine-chemical and flavour industry, as well as in photography, dyeing fur, rubber and plastic production. Many of these compounds cannot easily be synthesised chemically, but some micro-organisms are capable of producing catechols from an aromatic compound in only two steps. In this thesis, microbial 3-methylcatechol production from toluene was considered a model system for simulating the production of 3-substituted catechols in general.3-Methylcatechol...

  9. Technological innovations in sales of banking products

    OpenAIRE

    Semenyuta Оlga; Bychkova Irina

    2016-01-01

    The article discusses the features of the remote client service related to the behavior of consumers of retail banking products in terms of the use of remote service channels. Analyze the level of awareness of the remote service channels and barriers considered use of remote service channels on the acquisition of retail banking products based on the segmentation of consumer groups. Based on the findings developed proposals to promote remote service channels using banking products in the retai...

  10. Functional product development - discussing knowledge enabling technologies

    OpenAIRE

    Nergård, Henrik; Ericson, Åsa; Bergström, Mattias; Sandberg, Stefan; Larsson, Tobias; Törlind, Peter

    2006-01-01

    The purpose in this paper is to discuss new demands on computer tools to support decisions in functional product development. To do that, a tentative picture of changes in product development motivated by the concept of functional products has to be outlined to serve as a basis for the discussions. The concept of functional products affects the business as a whole. The hardware will be offered to customers as one part incorporated in a total offer. The offer as a whole compromise services rel...

  11. Technological Diversity and Future Product Diversity in the Drug Industry

    OpenAIRE

    Cantner, Uwe; Plotnikova, Tatiana

    2009-01-01

    This paper deals with the topic of related R&D and innovation strategies of large firms. We ask what determines the diversity of a firm's product portfolio. More specifically, we try to explain large firms' expansion into new product markets driven by the characteristics of their technological knowledge. Empirically, we study firms in the pharmaceutical and biotech industries, using relevant data on product development and technological knowledge. We find a positive relationship between the d...

  12. Developments in China's Onshore Oilfield Production Technology

    Institute of Scientific and Technical Information of China (English)

    Yue Dengtai; Rong Jiashu

    1997-01-01

    @@ As of the end of 1996, China had 330 onshore oilfields in production with a total annual output of 141 × 106 t. Water flooded reserves accounted for 85% of total development reserves, with annual oil output from water flooded reserves accounting for 88% of total annual oil production.

  13. Alternate feedstocks and technologies for biodiesel production

    Science.gov (United States)

    U.S. biodiesel production is presently estimated at 800 million gallons annually, and this fuel is no longer a research curiosity - it is entering the nation’s fuel infrastructure. Some estimates are that production will reach nearly twice that value in the next 10 to 12 years. This would stress a...

  14. Development of fission Mo-99 production technology

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jin Ho; Choung, W. M.; Lee, K. I. and others

    2000-05-01

    Fission Mo-99 is the only parent nuclide of Tc-99m, an extremely useful tool for mdeical diagnosis, with an estimated usage of greater than 80% of nuclear medicine applicatons. HEU and LEU targets to optimize in HANARO irradiation condition suggested and designed for domestic production of fission Mo-99. The optimum process conditions are established in each unit process to meet quality requirements of fission Mo-99 products, and the results of performance test in combined process show Mo separation and purification yield of the above 97%. The concept of Tc generator production process is established, and the result of performance test show Tc production yield of 98.4% in Tc generator procuction process. The drafts is prepared for cooperation of technical cooperation and business investment with foreign country. Evaluation on economic feasibility is accompanied for fission Mo-99 and Tc-99m generator production.

  15. Development of fission Mo-99 production technology

    International Nuclear Information System (INIS)

    Fission Mo-99 is the only parent nuclide of Tc-99m, an extremely useful tool for mdeical diagnosis, with an estimated usage of greater than 80% of nuclear medicine applicatons. HEU and LEU targets to optimize in HANARO irradiation condition suggested and designed for domestic production of fission Mo-99. The optimum process conditions are established in each unit process to meet quality requirements of fission Mo-99 products, and the results of performance test in combined process show Mo separation and purification yield of the above 97%. The concept of Tc generator production process is established, and the result of performance test show Tc production yield of 98.4% in Tc generator procuction process. The drafts is prepared for cooperation of technical cooperation and business investment with foreign country. Evaluation on economic feasibility is accompanied for fission Mo-99 and Tc-99m generator production

  16. Evaluation of the efficiency of alternative enzyme production technologies

    DEFF Research Database (Denmark)

    Albæk, Mads Orla

    production of cellulases and hemi-cellulases. The aim of the thesiswas to use modeling tools to identify alternative technologies that have higher energy or raw material efficiency than the current technology. The enzyme production by T. reesei was conducted as an aerobic fed-batch fermentation. The process...... of the uncertainty and sensitivity of the model indicated the biological parameters to be responsible for most of the model uncertainty. A number of alternative fermentation technologies for enzyme production were identified in the open literature. Their mass transfer capabilities and their energy efficiencies were...... complexity of the fermentation vessel. The airlift reactor was identified as a potential high energy efficiency technology for enzyme production with excellent chances for success. Two different pilot plant configurations of the airlift reactor technology were tested in nine fermentations. The headspace...

  17. Bioconversion of Carotenoids in Five Fruits and Vegetables to Vitamin A Measured by Retinol Accumulation in Rat Livers

    Directory of Open Access Journals (Sweden)

    Armando Carrillo-Lopez

    2010-01-01

    Full Text Available Problem statement: Vitamin A deficiency is one of the most prevalent and major nutritional problems in developing countries, especially in young children. In many countries, a substantial proportion of dietary vitamin A is commonly derived from pro-vitamin A carotenoids obtained from colored fruits and orange or green vegetables. However, the bioavailability of retinol derived from carotenoids from these plant sources is not well known. Approach: The present study analyzed β-Carotene and Total Carotenoids (TC composition of carrots (Daucus carota, parsley (Petroselinum crispum, Spinach (Spinacea oleracea, mangoes (Mangifera indica and papayas (Carica papaya and determined the bioconversion of their carotenoids to vitamin A by monitoring the levels of retinol accumulated in liver and plasma of Wistar rats (Rattus norvegicus. Products were freeze-dried, β-Carotene content analyzed by HPLC and TC by Spectrophotometry. Results: Carrots presented the highest content of β-carotene followed by parsley with 32.8 and 19.6 mg 100 g-1, respectively. Spinach had the highest content of TC followed by parsley with 60.7 and 56.7 mg 100 g-1, respectively. Four-week-old male Wistar rats received a standard diet as an adaptation period, a diet free of Carotenoids and Vitamin A (CVA-diet as depletion period and finally a Fruit or Vegetable (FoV based diet as repletion period. The highest β-carotene bioconversion was for mango and the lowest for parsley, whereas the highest TC bioconversion was for carrots and the lowest for parsley. There were no significant differences in plasma retinol between treatments. Conclusion/Recommendations: There was no relation between carotenoids content in FoV-based diet and retinol status in plasma. Furthermore, the employment of a general retinol conversion factor is regarded as not appropriate. So, it is recommended to consider specific conversion factors for groups of horticultural crops, for example, a factor for green leafy

  18. Evaluation of fungal potentiality for bioconversion of domestic wastewater sludge

    Institute of Scientific and Technical Information of China (English)

    Md. Zahangir Alam; A. Fakhru'l-Razi; Abul H. Molla

    2004-01-01

    This study was undertaken to screen the filamentous fungi isolated from its relevant habitats(wastewater, sewage sludge and sludge cake) for the bioconversion of domestic wastewater sludge. A total of 35 fungal strains were tested against wastewater sludge (total suspended solids, TSS 1%-5% w/w) to evaluate its potentiality for enhancing the biodegradability and dewaterability using liquid state bioconversion(LSB) process. The strains were divided into five groups i. e. Penicillium, Aspergillus, Trichoderma, Basidiomycete and Miscellaneous, respectively. The strains WWZP1003, SCahmA103, SCahmT105 and PC-9 among their respective groups of Penicillium,Aspergillus, Trichoderma and Basidiomycete played potential roles in terms of separation (formation of pellets/flocs/filaments ),biodegradation(removal of COD) and filtration(filterability) of treated domestic wastewater sludge. The Miscellaneous group was not considered due to its unsatisfactory results as compared to the other groups. The pH value was also influenced by the microbial treatment during fermentation process. The filterability of treated sludge was improved by fungal treatment, and lowest filtration time was recorded for the strain WWZP1003 and SCahmA103 of Penicillium and Aspergillus groups respectively compared with other strains.

  19. Technological innovations in sales of banking products

    Directory of Open Access Journals (Sweden)

    Semenyuta Оlga

    2016-03-01

    Full Text Available The article discusses the features of the remote client service related to the behavior of consumers of retail banking products in terms of the use of remote service channels. Analyze the level of awareness of the remote service channels and barriers considered use of remote service channels on the acquisition of retail banking products based on the segmentation of consumer groups. Based on the findings developed proposals to promote remote service channels using banking products in the retail segment of consumers.

  20. Modern technologies of waste utilization from industrial tire production

    Science.gov (United States)

    Azimov, Yusuf; Gilmanshin, Iskander; Gilmanshina, Suriya

    2016-06-01

    The innovative technology of waste tire production recovery from JSC "Nizhnekamskshina", which determines the possibility of obtaining a new type of composite material in the form fiber filled rubber compound (FFRC) as the raw material, production of rubber products with high technical and operational characteristics.

  1. [Engineering of the xylose metabolic pathway for microbial production of bio-based chemicals].

    Science.gov (United States)

    Liu, Weixi; Fu, Jing; Zhang, Bo; Chen, Tao

    2013-08-01

    As the rapid development of economy necessitates a large number of oil, the contradiction between energy supply and demand is further exacerbated by the dwindling reserves of petroleum resource. Therefore, the research of the renewable cellulosic biomass resources is gaining unprecedented momentum. Because xylose is the second most abundant monosaccharide after glucose in lignocellulose hydrolyzes, high-efficiency bioconversion of xylose becomes one of the vital factors that affect the industrial prospects of lignocellulose application. According to the research progresses in recent years, this review summarized the advances in bioconversion of xylose, which included identification and redesign of the xylose metabolic pathway, engineering the xylose transport pathway and bio-based chemicals production. In order to solve the energy crisis and environmental pollution issues, the development of advanced bio-fuel technology, especially engineering the microbe able to metabolize xylose and produce ethanol by synthetic biology, is environmentally benign and sustainable. PMID:24364352

  2. Production technology of high strength reinforcement rod

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    @@ At present JSC "ZSMK" is the largest producer of building reinforcement steel in Russia. One of the most essential conditions for holding our positions on this products market is the increase of assortment and quality of rolled metal.

  3. Immobilization Technologies in Probiotic Food Production

    OpenAIRE

    Gregoria Mitropoulou; Viktor Nedovic; Arun Goyal; Yiannis Kourkoutas

    2013-01-01

    Various supports and immobilization/encapsulation techniques have been proposed and tested for application in functional food production. In the present review, the use of probiotic microorganisms for the production of novel foods is discussed, while the benefits and criteria of using probiotic cultures are analyzed. Subsequently, immobilization/encapsulation applications in the food industry aiming at the prolongation of cell viability are described together with an evaluation of their poten...

  4. Immobilization Technologies in Probiotic Food Production

    Directory of Open Access Journals (Sweden)

    Gregoria Mitropoulou

    2013-01-01

    Full Text Available Various supports and immobilization/encapsulation techniques have been proposed and tested for application in functional food production. In the present review, the use of probiotic microorganisms for the production of novel foods is discussed, while the benefits and criteria of using probiotic cultures are analyzed. Subsequently, immobilization/encapsulation applications in the food industry aiming at the prolongation of cell viability are described together with an evaluation of their potential future impact, which is also highlighted and assessed.

  5. The power of design product innovation in sustainable energy technologies

    CERN Document Server

    Reinders, Angele H; Brezet, Han

    2012-01-01

    The Power of Design offers an introduction and a practical guide to product innovation, integrating the key topics that are necessary for the design of sustainable and energy-efficient products using sustainable energy technologies. Product innovation in sustainable energy technologies is an interdisciplinary field. In response to its growing importance and the need for an integrated view on the development of solutions, this text addresses the functional principles of various energy technologies next to the latest design processes and innovation methods. From the perspec

  6. Production chain and innovative technologies for living

    OpenAIRE

    Eugenio Arbizzani

    2012-01-01

    The continued growth of residential demand, coupled with the significant decline of the housing market, is encouraging the development of many procedural and constructive experiments on the theme of affordable housing for a range of users increasingly unable to access home ownership. The spread of an approach to planning that is socially, economically and technologically sustainable, represents a culture of quality that is once more measurable, which makes it possible today to define innovati...

  7. Technological Advance for Alginate Production in Mexico

    Directory of Open Access Journals (Sweden)

    Hernández-Carmona G.

    2012-04-01

    Full Text Available Alginates are polysaccharides extracted from brown seaweeds. They are used in food industry, pharmaceutical, textile, among other, because of their properties to give high viscous solution and gel forming. This review describes the optimized process at pilot plant level for alginate production. The process includes washing the algae with HCl at pH 4, extraction of the alginate in Na2CO3 solution at pH 10 and heating to 80oC, dilution of the paste and filtrate with a vacuum rotary filter. Alginate precipitation is carried out by adding CaCl2 filtration. The fibers obtained are treated with HCl to obtain alginic acid. The product is neutralized with Na2CO3 to obtain sodium alginate. The product is dried with hot air, milled, and screened at different mesh sizes. We described the different products obtained and their physical and chemical properties. Finally, costs and barriers found that limit the alginate production at commercial level in Mexico are discussed, including the lack of the industrial design, the international cost of the alginates, the policy to give the seaweeds beds concessions, and the role of the investors.

  8. Snake antivenoms: adverse reactions and production technology

    Directory of Open Access Journals (Sweden)

    VM Morais

    2009-01-01

    Full Text Available Antivenoms have been widely used for more than a century for treating snakebites and other accidents with poisonous animals. Despite their efficacy, the use of heterologous antivenoms involves the possibility of adverse reactions due to activation of the immune system. In this paper, alternatives for antivenom production already in use were evaluated in light of their ability to minimize the occurrence of adverse reactions. These effects were classified according to their molecular mechanism as: anaphylactic reactions mediated by IgE, anaphylactoid reactions caused by complement system activation, and pyrogenic reactions produced mainly by the presence of endotoxins in the final product. In the future, antivenoms may be replaced by humanized antibodies, specific neutralizing compounds or vaccination. Meanwhile, improvements in antivenom quality will be focused on the obtainment of a more purified and specific product in compliance with good manufacturing practices and at an affordable cost.

  9. Innovative Canadian Process Technology For Biodiesel Production

    Energy Technology Data Exchange (ETDEWEB)

    Johar, Sangat; Norton, Kevin

    2010-09-15

    The need for increasing renewable and alternative energy in the global energy mix has been well recognized by Governments and major scientific forums to reduce climate change impact for this living planet. Biodiesel has very high potential for GHG emission reduction. An innovative process developed in Canada provides solution to mitigate the feedstock, yield and quality issues impacting the industry. The Biox process uses a continuous process which reduces reaction times, provides > 99% yield of high quality biodiesel product. The process is feedstock flexible and can use cheaper higher FFA feedstock providing a sustainable approach for biodiesel production.

  10. Recent advances in membrane technologies for biorefining and bioenergy production.

    Science.gov (United States)

    He, Yi; Bagley, David M; Leung, Kam Tin; Liss, Steven N; Liao, Bao-Qiang

    2012-01-01

    The bioeconomy, and in particular, biorefining and bioenergy production, have received considerable attention in recent years as a shift to renewable bioresources to produce similar energy and chemicals derived from fossil energy sources, represents a more sustainable path. Membrane technologies have been shown to play a key role in process intensification and products recovery and purification in biorefining and bioenergy production processes. Among the various separation technologies used, membrane technologies provide excellent fractionation and separation capabilities, low chemical consumption, and reduced energy requirements. This article presents a state-of-the-art review on membrane technologies related to various processes of biorefining and bioenergy production, including: (i) separation and purification of individual molecules from biomass, (ii) removal of fermentation inhibitors, (iii) enzyme recovery from hydrolysis processes, (iv) membrane bioreactors for bioenergy and chemical production, such as bioethanol, biogas and acetic acid, (v) bioethanol dehydration, (vi) bio-oil and biodiesel production, and (vii) algae harvesting. The advantages and limitations of membrane technologies for these applications are discussed and new membrane-based integrated processes are proposed. Finally, challenges and opportunities of membrane technologies for biorefining and bioenergy production in the coming years are addressed. PMID:22306168

  11. Henkel Technologies and Products for China Aerospace

    Institute of Scientific and Technical Information of China (English)

    Michael Cichon; Helen Wei Li; Alex Wong; Stan Lehmann; Raymond Wong

    2006-01-01

    Epoxy structural adhesives and composites have been in use for many years for the construction of aerospace vehicles. Henkel provides many epoxy products. Many other resin systems have been evaluated and several, such as imide,phenolic and cyanate ester, have also achieved significant use. Henkel's newly developed "Epsilon" chemistry demonstrates unique features that benefit application in aerospace structure that use adhesives and composites.

  12. Production of catechols: microbiology and technology

    NARCIS (Netherlands)

    Krab-Hüsken, L.E.

    2002-01-01

    Catechols play an important role in the fine-chemical and flavour industry, as well as in photography, dyeing fur, rubber and plastic production. Many of these compounds cannot easily be synthesised chemically, but some micro-organisms are capable of producing catechols fro

  13. Production technology of high strength reinforcement rod

    Institute of Scientific and Technical Information of China (English)

    Yurev; A.; B.; Chinokalov; V.; Y.; Efimov; O.; Y.; Zezikov; M.; V.; Myskova; N.; V.

    2005-01-01

    At present JSC "ZSMK" is the largest producer of building reinforcement steel in Russia. One of the most essential conditions for holding our positions on this products market is the increase of assortment and quality of rolled metal.……

  14. GROUP TECHNOLOGY IN CONTEXT OF THE PRODUCT CLASSIFICATION

    Directory of Open Access Journals (Sweden)

    Lenka Debnárová

    2014-03-01

    Full Text Available In the intensive competitive environment of the global economy, the survival of even the most well-established the world manufacturers depends on the ability to improve continuously quality while reducing costs. The resulting higher productivity is the key to market leadership and gaining sustainable competitive advantage. This paper outlines a group technology and classification of products which improve productivity, quality, inventory management of a company and reduce production times.

  15. Leveraging Technology for Productivity and Best Outcomes.

    Science.gov (United States)

    Rosen, Arnold

    2015-04-01

    The case described herein, illustrates the comfortable interplay that can be achieved between traditional techniques and new technologies. At the patient's first visit in the dental office, traditional tools can be used to gather records, and an old-fashioned dialogue was employed to determine the patient's goals for treatment. Creation of a digital treatment simulation by TransLab gives the dentist, dental laboratory team, and the patient a tangible picture to review and discuss. This collaboration helps to ensure that all parties have the same expectations, before proceeding any further with the actual treatment procedures. PMID:26470565

  16. Micro-production using Bits-out technologies

    DEFF Research Database (Denmark)

    Hansen, Hans Nørgaard

    Micro products can be characterised as having at least one critical dimension or functional feature in the sub-mm range. The production of such micro components requires the use of processes usually combined into complex process chains. The choice of processes depends largely on the material...... involved and on the complexity and characteristics of the components. For micro products in metals, polymers or ceramics down-scaling of macro-scale production technologies is a suitable way forward. This however poses challenges in terms of the so-called size effects and also the supporting technologies...

  17. [Technology transfer to the facility for production of medicines].

    Science.gov (United States)

    Beregovykh, V V; Spitskiĭ, O P

    2013-01-01

    Innovation development of pharmaceutical industry is close connected to knowledge transfer going to each subsequent life cycle phase of medicinal product. Formal regulation of technology and knowledge transfer is essential for achievement high quality during production of medicines designed during development phase. Conceptual tools, approaches and requirements are considered that are necessary for knowledge and technology transfer across all the life cycle phases of medicines. They are based on scientific knowledge of medicinal products and take into account both international and Russian regulations in the area of development, production and distribution of medicines. Importance of taking into consideration all aspects related to quality of medicines in all steps of technology transfer is shown. An approach is described for technology transfer organization for Russian pharmaceutical manufacturers based on international guides in this area.

  18. Technology for production of shelf stable fruit cubes

    International Nuclear Information System (INIS)

    A technology has been developed for the production of intermediate moisture fruit cubes using a combination of osmotic dehydration and infrared drying. Fruits like pineapple, papaya, mango, banana and apple can be successfully converted into intermediate moisture products in the form of fruit cubes using this technology. The fruit cubes can blend very well as natural nutritious supplements with breakfast cereals and in certain food preparations like ice creams, milk shakes, jellies and custards. The product is microbiologically safe for consumption and can be stored at ambient storage condition for more than six months. This technology is an effective alternative for post harvest processing and preservation of ripened fruits. Fruit jam is an additional by-product generated by the process. This technology has been transferred to TT and CD, BARC

  19. Buildings R&D Breakthroughs. Technologies and Products Supported by the Building Technologies Program

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2012-04-01

    This report identifies and characterizes commercially available products and emerging (near-commercial) technologies that benefited from the support of the Building Technologies Program (BTP) within the U.S. Department of Energy’s Office of Energy Efficiency and Renewable Energy. The investigation specifically focused on technology-oriented research and development (R&D) projects sponsored by BTP’s Emerging Technologies subprogram from 2005-2009.

  20. Buildings R&D Breakthroughs: Technologies and Products Supported by the Building Technologies Program

    Energy Technology Data Exchange (ETDEWEB)

    Weakley, Steven A.

    2012-04-15

    The purpose of the project described in this report is to identify and characterize commercially available products and emerging (near-commercial) technologies that benefited from the support of the Building Technologies Program (BTP) within the U.S. Department of Energy’s Office of Energy Efficiency and Renewable Energy. The investigation specifically focused on technology-oriented research and development (R&D) projects funded by BTP’s Emerging Technologies subprogram from 2005-2011.

  1. Nano-enabled environmental products and technologies - opportunities and drawbacks

    DEFF Research Database (Denmark)

    Møller Christensen, Frans; Brinch, Anna; Kjølholt, Jesper;

    on the (Danish) market, as well as products and technologies, which are still in R&D and it will provide a qualitative overview of health and environmental pros and cons of these technologies. The project has focused on technologies applied in: 1) purification of water and wastewater, 2) remediation of soil...... and groundwater, 3) cleaning of air, 4) reduction of energy consumption and 5) for improving hygiene in the health care sector by utilizing the antibacterial properties of certain nanomaterials....

  2. Technological Progress and Worker Productivity at Different Ages

    OpenAIRE

    John Laitner; Dmitriy Stolyarov

    2005-01-01

    Economists have long thought of technological progress as a primary determinant of rising living standards over time. One might think of technological progress as increasing the “effectiveness” of labor, thereby raising the amount of output that each unit of labor can produce. The purpose of this paper is to ask whether, as an empirical matter, technological progress increases the productivity of workers evenly, or whether it augments the effectiveness of young workers the most. As low birthr...

  3. Technologies for the next generation of production systems

    OpenAIRE

    Bertran Subirana, Blanca

    2013-01-01

    The development and implementation of the last technological progresses is driving an evolution in different areas, making many of our daily tasks easier. In the production field the progress of new technological systems such as Cyber-­Physical Systems or Internet of Things is helping to create the so-called ‘factories of the future’, also known as Smart Factories. Some governmental initiatives developed in several countries are encouraging the implementation of these technologies in industry...

  4. INFLUENCE OF STARTING CULTURES IN HAM PRODUCTION TECHNOLOGY

    Directory of Open Access Journals (Sweden)

    Nesterenko A. A.

    2014-09-01

    Full Text Available For today, creation of the technologies, allowing lowering the cost price of manufacture of meat products, thus guaranteeing the consumer the same set of quality standards is very important. Due to biotechnology development, working out and introduction of the new technologies focused on an intensification of a complex of difficult biochemical transformations which proceed in meat raw materials by manufacture of sausage products became possible

  5. Technology transfers, foreign investment and productivity spillovers: evidence from Vietnam

    DEFF Research Database (Denmark)

    Newman, Carol; Rand, John; Talbot, Theodore Purdendu;

    . Productivity externalities from upstream sectors are associated with joint venture foreign investors while downstream sectors experience direct technology transfers from upstream wholly foreign owned investors. Spillovers from FDI through backward linkages are also detected but only when competition from...... imported intermediates is controlled for and are associated with innovations and technology investments made by firms....

  6. Production of nanomaterials: physical and chemical technologies

    International Nuclear Information System (INIS)

    Are define nanomaterials those materials which have at least one dimension in the range between 1 and 100 nm. By the term nanotechnology refers, instead, to the study of phenomena and manipulation of materials at the atomic and molecular level. The materials brought to the nanometric dimensions take particular chemical-physical properties different from the corresponding conventional macro materials. Speaking about the structure of nanoscale, you can check some basic properties materials (eg. Melting temperature, magnetic and electrical properties) without changing its chemical composition. In this perspective are crucial knowledge and control of production processes in order to design and get the nanomaterial more suitable for a specific application. For this purpose, it describes a series of processes of production of nanomaterials with application examples.

  7. Snake antivenoms: adverse reactions and production technology

    OpenAIRE

    VM Morais; H Massaldi

    2009-01-01

    Antivenoms have been widely used for more than a century for treating snakebites and other accidents with poisonous animals. Despite their efficacy, the use of heterologous antivenoms involves the possibility of adverse reactions due to activation of the immune system. In this paper, alternatives for antivenom production already in use were evaluated in light of their ability to minimize the occurrence of adverse reactions. These effects were classified according to their molecular mechanism ...

  8. Innovative mechanical technologies for agricultural and forest quality productions

    Directory of Open Access Journals (Sweden)

    Raffaele Cavalli

    2011-02-01

    Full Text Available The quality of agricultural and forest products are related to the productive process in which innovative mechanical technologies are used. The innovation should be considered at product, process and enterprise level, the last one being considered as changes into enterprise organization, included services diversification. In the field of machinery used for agricultural products, from soil tillage to harvesting and post-harvesting processes the innovation dealing with products, but also with energy use, environmental protection, work safety has been important due to the mechanical technology output. In the forest sector working systems in which operations are carried out in totally mechanized way, with small turn to semi-mechanized operations, are growing. They are innovations that should change the relationship with young generation which could consider the mechanical technologies attractive for a working activity until now evaluated not much desiderable.

  9. Physiological and Chemical Studies on the Bioconversion of Glycyrrhizin by Aspergillus niger NRRL595

    Directory of Open Access Journals (Sweden)

    El-Refai, A. M. H.

    2012-06-01

    Full Text Available Glycyrrhizin (GL, the well-known sweet saponin of licorice, has been used as a food-additive and as a medicine. Its aglycone, glycyrrhetic acid (GA showed antiinflamatory, antiulcer and antiviral properties. GA is now produced form GL by acid hydrolysis. However, it is difficult to obtain GA in a good yield by using this method, because many by-productsare also produced. Screening of different microorganisms (13 bacteria, 2 yeasts and 23 fungi for production of GA from GL revealed that Aspergillus niger NRRL 595 produced the highest yield of GA. The bioconversion of GL by A. niger NRRL 595 for 96 h, followed by isolation and purification of the transformation products led to the separation of two conversion products, namely: GA and 3-oxo-GA. Confirmation of the identity of these products was established by determination of their Rf values, m.p., and IR, UV, MS and NMR spectra. The conditions for cultivation of this fungus with the maximum hydrolytic activity for the maximum yield of GA were investigated. Based on the results, A. niger NRRL 595 was cultivated with a medium composed of 1.75 % GL, 0.5 % glucose, 0.8 % corn steep liquor at pH 6.5 at 32 °C for 96 h. The cultivation of fungal cells under the latter conditions afforded GA and 3-oxo-GA in a yield of 65 % and 22 %, respectively.

  10. Technological Advance for Alginate Production in Mexico

    OpenAIRE

    Hernández-Carmona G.; Rodríguez-Montesinos Y.E.; Arvizu-Higuera D.L.; Reyes-Tisnado R.; Murillo-Álvarez J.I.; Muñoz-Ochoa M.

    2012-01-01

    Alginates are polysaccharides extracted from brown seaweeds. They are used in food industry, pharmaceutical, textile, among other, because of their properties to give high viscous solution and gel forming. This review describes the optimized process at pilot plant level for alginate production. The process includes washing the algae with HCl at pH 4, extraction of the alginate in Na2CO3 solution at pH 10 and heating to 80oC, dilution of the paste and filtrate with a vacuum rotary filter. Algi...

  11. Technology Diffusion and Productivity Growth in Health Care

    Science.gov (United States)

    Skinner, Jonathan; Staiger, Douglas

    2015-01-01

    We draw on macroeconomic models of diffusion and productivity to explain empirical patterns of survival gains in heart attacks. Using Medicare data for 2.8 million patients during 1986–2004, we find that hospitals rapidly adopting cost-effective innovations such as beta blockers, aspirin, and reperfusion, had substantially better outcomes for their patients. Holding technology adoption constant, the marginal returns to spending were relatively modest. Hospitals increasing the pace of technology diffusion (“tigers”) experienced triple the survival gains compared to those with diminished rates (“tortoises”). In sum, small differences in the propensity to adopt effective technology lead to wide productivity differences across hospitals. PMID:26989267

  12. CITRIC ACID PRODUCTION USING FERMENTATION TECHNOLOGY

    Directory of Open Access Journals (Sweden)

    ANKIT KUMAR

    2007-01-01

    Full Text Available Citric acid, C3H4OH(COOH3, (Scheele and Wehmer 1897 can be generally manufactured by chemical synthesis which is not much preferred now-a-days because of high costs involved in it and also by fermentation of sugar containing sources in the presence of fungus Aspergillus niger. Citric acid is used in confections and soft drinks ( as a flavouring agent, in metal-cleaning compositions, and in improving the stability of foods and other organic substances by suppressing the deleterious action of dissolved metal salts. Fermentation results in the breakdown of complex organic substances into simpler ones through the action of catalysis. This project involves the production of citric acid from fungal strain of Aspergillus niger ATCC 9142, using various sources like cane molasses, beet molasses, sweet potato and grape sugar by employing submerged and surface fermentation. The fermentation process has been carried out at ph 4.5 and temperature 28 0C. The recovery of citric acid from fermented broth is generally performed through three procedures-precipitation, extraction and adsorption(mainly using ion-exchange resins. The main aim of the project is to achieve a cost reduction in citric acid production by using less expensive substrates.

  13. PRODUCTION OF PROTOTYPE PARTS USING DIRECT METAL LASER SINTERING TECHNOLOGY

    Directory of Open Access Journals (Sweden)

    Josef Sedlak

    2015-08-01

    Full Text Available Unconventional methods of modern materials preparation include additive technologies which involve the sintering of powders of different chemical composition, granularity, physical, chemical and other utility properties. The technology called Rapid Prototyping, which uses different technological principles of producing components, belongs to this type of material preparation. The Rapid Prototyping technology facilities use photopolymers, thermoplastics, specially treated paper or metal powders. The advantage is the direct production of metal parts from input data and the fact that there is no need for the production of special tools (moulds, press tools, etc.. Unused powder from sintering technologies is re-used for production 98% of the time, which means that the process is economical, as well as ecological.The present paper discusses the technology of Direct Metal Laser Sintering (DMLS, which falls into the group of additive technologies of Rapid Prototyping (RP. The major objective is a detailed description of DMLS, pointing out the benefits it offers and its application in practice. The practical part describes the production and provides an economic comparison of several prototype parts that were designed for testing in the automotive industry.

  14. Technology for Salt Production in the Mixteca Alta

    Directory of Open Access Journals (Sweden)

    Ricardo Antonio León Hernández

    2015-01-01

    Full Text Available Salt production in the Mixteca Alta is a traditional means of production from prehispanic period, which, despite the economic transformation processes in the colonial period, remained significant features of the traditional process, based on the documented similar models from other productive regions in Mexico. The salt in the novohispanic period was considered a major consumption economic asset due to its use in production processes for the production of new economic products that supported the economy of preindustrial societies (Terán, 2011, p. 71; Williams, 2008. Technology refers to the knowledges for solving human needs arising lifestyle of the cultural groups that develop them. The resources of the natural environment underpin the means of labor that man requires to perform its activities, including economic. The means of production and production processes are technological developments, which involve elements of tangible and intangible order. The study of work processes for salt extraction, are significantly related to the processes of technological evolution that man has developed for the use of natural resources. The economic activities of the primary sector are examples of how humans culturally and economically were inserted in the natural environment (Malpica, 2008, p. 59. This analysis presents a historiographical approach to the study of the processes and the technology required for the extraction of salt in the Mixteca Alta.

  15. Identifying and Researching Market Opportunities for New High Technology Products.

    Science.gov (United States)

    Dunstan, Peter

    Using a product called the synchro-pulse welder as a case study example, this paper discusses the activities of CSIRO (Commonwealth Scientific and Industrial Research Organisation) in identifying and marketing new high-technology products. A general discussion of CSIRO's market research plans includes two goals to be attained within the next 5…

  16. A User Centered Approach to Developing Emergent Technology Products

    DEFF Research Database (Denmark)

    Restrepo-Giraldo, John Dairo; McAloone, Timothy Charles; Schlegel, Tanja;

    2008-01-01

    Current participatory design methods do not allow designers to gain the insight required to develop products with emerging technologies, that is, products that do not have any precedents in the users’ knowledge base and experience. This poses challenges to the designers, as input from users canno...

  17. Co-Simulation Technology for Complex Product Design

    Institute of Scientific and Technical Information of China (English)

    熊光楞; 陈小波; 郭滨; 蹇佳; 王成龙

    2002-01-01

    First analyze the simulation requirements in complex product design, then propose the approach to full applying simulation to complex product design, and present the key enable technology with respect to modeling, simulation running, VV&A,evaluation and decision making and supporting platform.

  18. Traditional technologies of fuels production for air-jet engines

    Directory of Open Access Journals (Sweden)

    Бойченко С. В.

    2013-07-01

    Full Text Available Available energy resources for various fuels, mainly for gas-turbine engines are presented in the given article. Traditional technologies for jet fuels production from nonrenewable raw materials, such as crude oil, coal, natural gas, oil-shales and others are analyzed in details. Cause and effect relationship between production and use of such fuels and their impact on natural environment is defined. The timeliness and necessity for development of alternative technologies of aviation biofuels production are determined in the given article.

  19. Wood for energy production. Technology - environment - economy[Denmark

    Energy Technology Data Exchange (ETDEWEB)

    Serup, H.; Falster, H.; Gamborg, C. [and others

    1999-07-01

    'Wood for Energy Production', 2nd edition, is a readily understood guide to the application of wood in the Danish energy supply. The first edition was named 'Wood Chips for Energy Production'. It describes the wood fuel from forest to consumer and provides a concise introduction to technological, environmental, and financial matters concerning heating systems for farms, institutions, district heating plants, and CHP plants. The individual sections deal with both conventional, well known technology, as well as the most recent technological advances in the field of CHP production. The purpose of this publication is to reach the largest possible audiance, and it is designed so that the layman may find its background information of special relevance. 'Wood for Energy Production' is also available in German and Danish. (au)

  20. DIRECTION OF DEVELOPMENT FOR NATION'S PETROCHEMICAL PRODUCTS AND TECHNOLOGY

    Institute of Scientific and Technical Information of China (English)

    Qi Baohai

    2001-01-01

    @@ As a result of remarkable advance over the past several dozen years with continuous development of technology, rapid increase of new products, and steady expansion in production scope, China's petrochemical industry has grown into a well-established industrial system composed of more than 20 trades,providing over 40,000 kinds of product which are complete in range and generally serialized in variety.

  1. Where's the productivity growth (from the information technology revolution)?

    OpenAIRE

    Donald S. Allen

    1997-01-01

    Information technology has advanced rapidly in the last two or three decades, and an equivalent rapid gain in economy-wide productivity has been anticipated. Productivity statistics, however, do not support this expectation. Although productivity growth has risen since the slowdown witnessed in the 1970s, it can hardly be described as phenomenal. Donald S. Allen discusses some of the current explanations for this apparent disparity and suggests that, as the workforce catches up to the technol...

  2. Bioconversion of coal-derived synthesis gas to liquid fuels. [Butyribacterium methylotrophicum

    Energy Technology Data Exchange (ETDEWEB)

    Jain, M.K.

    1991-01-01

    The use of coal-derived synthesis gas as an industrial feedstock for production of fuels and chemicals has become an increasingly attractive alternative to present petroleum-based chemicals production. However, one of the major limitations in developing such a process is the required removal of catalyst poisons such as hydrogen sulfide (H{sub 2}S), carbonyl sulfide (COS), and other trace contaminants from the synthesis gas. Purification steps necessary to remove these are energy intensive and add significantly to the production cost, particularly for coals having a high sulfur content such as Illinois coal. A two-stage, anaerobic bioconversion process requiring little or no sulfur removal is proposed, where in the first stage the carbon monoxide (CO) gas is converted to butyric and acetic acids by the CO strain of Butyribacterium methylotrophicum. In the second stage, these acids along with the hydrogen (H{sub 2}) gas are converted to butanol, ethanol, and acetone by an acid utilizing mutant of Clostridium acetobutylicum. 18 figs., 18 tabs.

  3. Information Technology Model for Product Lifecycle Engineering

    Directory of Open Access Journals (Sweden)

    Bhanumathi KS

    2013-02-01

    Full Text Available An aircraft is a complex, multi-disciplinary, system-engineered product that requires real-time global technical collaboration through its life-cycle. Engineering data and processes which form the backbone of the aircraft should be under strict Configuration Control (CC. It should be model-based and allow for 3D visualization and manipulation. This requires accurate, realtime collaboration and concurrent engineering-based business processes operating in an Integrated Digital Environment (IDE. The IDE uses lightweight, neutral Computer Aided Design (CAD Digital Mock-Up (DMU. The DMU deals with complex structural assemblies and systems of more than a hundred thousand parts created by engineers across the globe, each using diverse CAD, Computer Aided Engineering (CAE, Computer Aided Manufacturing (CAM, Computer Integrated Manufacturing (CIM, Enterprise Resource Planning (ERP, Supply Chain Management(SCM,Customer Relationship Management(CRM and Computer Aided Maintenance Management System (CAMMS systems. In this paper, a comprehensive approach to making such an environment a reality is presented.

  4. Bioethanol from biomass containing lignocellulose - potential and technologies; Bioethanol aus lignocellulosehaltiger Biomasse - Potenziale und Technologien

    Energy Technology Data Exchange (ETDEWEB)

    Faulstich, M.; Schieder, D.; Wagner, U.; Staudenbauer, W.; Igelspacher, R.; Schwarz, W.H.; Meyer-Pittroff, R.; Antoni, D. [Technische Univ. Muenchen (Germany); Prechtl, S. [ATZ Entwicklungszentrum, Sulzbach-Rosenberg (Germany); Bauer, W.P.; Kroner, T. [ia GmbH, Wissensmanagement und Ingenieurleistungen, Muenchen (Germany)

    2004-07-01

    The EU biofuels directive and the tax exemption of biogenic fuels have established a new market for bioethanol in the transport sector. Low-cost lignocellulose biomass (LCB) may be an option for broadening the raw materials base for bioethanol production and to meet the increasing demand for biogenic fuels. Appropriate conversion technologies have been the subject of much research worldwide during the past few years. Against this background, the Bavarian State Minister of Agriculture and Forestry initiated a feasibility study on ethanol production by bioconversion in Bavaria. (orig.)

  5. Study of the production of alkaline keratinases in submerged cultures as an alternative for solid waste treatment generated in leather technology.

    Science.gov (United States)

    Cavello, Ivana A; Chesini, Mariana; Hours, Roque A; Cavalitto, Sebastián F

    2013-01-01

    Six nonpathogenic fungal strains isolated from alkaline soils of Buenos Aires Province, Argentina (Acremonium murorum, Aspergillus sidowii, Cladosporium cladosporoides, Neurospora tetrasperma, Purpureocillium lilacinum (formerly Paecilomyces lilacinus), and Westerdikella dispersa) were tested for their ability to produce keratinolytic enzymes. Strains were grown on feather meal agar as well as in solid-state and submerged cultures, using a basal mineral medium and "hair waste" as sole sources of carbon and nitrogen. All the tested fungi grew on feather meal agar, but only three of them were capable of hydrolyzing keratin, producing clear zones. Among these strains, P. lilacinum produced the highest proteolytic and keratinolytic activities, both in solid-state and submerged fermentations. The medium composition and culture conditions for the keratinases production by P. lilacinum were optimized. Addition of glucose (5 g/l) and yeast extract (2.23 g/l) to the basal hair medium increased keratinases production. The optimum temperature and initial pH for the enzyme production were 28℃ and 6.0, respectively. A beneficial effect was observed when the original concentration of four metal ions, present in the basal mineral medium, was reduced up to 1:10. The maximum yield of the enzyme was 15.96 Uc/ml in the optimal hair medium; this value was about 6.5-fold higher than the yield in the basal hair medium. These results suggest that keratinases from P. lilacinum can be useful for biotechnological purposes such as biodegradation (or bioconversion) of hair waste, leading to a reduction of the environmental pollution caused by leather technology with the concomitant production of proteolytic enzymes and protein hydrolyzates. PMID:23711525

  6. Technology diffusion of energy-related products in residential markets

    Energy Technology Data Exchange (ETDEWEB)

    Davis, L.J.; Bruneau, C.L.

    1987-05-01

    Acceptance of energy-related technologies by end residential consumers, manufacturers of energy-related products, and other influential intermediate markets such as builders will influence the potential for market penetration of innovative energy-related technologies developed by the Department of Energy, Office of Building and Community Systems (OBCS). In this report, Pacific Northwest Laboratory reviewed the available information on technology adoption, diffusion, and decision-making processes to provide OBCS with a background and understanding of the type of research that has previously been conducted on this topic. Insight was gained as to the potential decision-making criteria and motivating factors that influence the decision-maker(s) selection of new technologies, and some of the barriers to technology adoption faced by potential markets for OBCS technologies.

  7. Technological products to support the Venezuelan heavy oil development

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, J.; Negrin, Z.; Duran, M.; Vilera, M.; Santamaria, F. [PDVSA INTEVEP (Venezuela)

    2011-07-01

    In Venezuela, important reserves of heavy oil crude are located at the Orinoco oil belt and the challenge is to develop these fields in a safe and environmentally friendly way. To address this challenge, PDVSA Intevep has been developing cutting edge technologies for more than 30 years. The aim of this paper is to present the principal inventions of PDVSA Intevep and their application in the Venezuelan traditional areas. PDVSA Intevep is the technological development and research center of the Venezuelan national oil industry; they own 773 patents, 103 trademarks, 48 copyrights, 13 trade secrets and 35 products used in different technological areas. The technologies presented will be used in the Orinoco oil belt in support of Venezuelan technological sovereignty. PDVSA Intevep has developed and adapted many technologies aimed at putting oil resources at the service of the whole population and ending social inequalities.

  8. Thal and technologies for fodder production

    International Nuclear Information System (INIS)

    The climate of the study area is arid and semi-arid subtropical, characterized by high summer- temperature (1200 F) with hot dry winds, frequent dust-storms and torrential and erratic rains. Winter is mild, with cold nights having temperature 320 F. The fodder tree species in arid and semi-arid regions are a valuable resource of feeding livestock in these regions during the lean periods of both winter and summer seasons. Fodder trees are properly looked after, not only for their usefulness for fuel and furniture, etc., but good environment would improve the quality of life, along with manifold higher fodder- production for animals. Fodder trees should be lopped only when they are about two to three meters in height and branches more than 7.5 cm thick should not be lopped. Lopping of the whole tree, as usually practiced, is injurious to trees and affects their vigor. Lopping cycle should be such that we get new leaves at the desired time of the year. It is recommended that; (i) proven grass-species, like Cenchrus ciliaris, Lasiurus sindicus, Pennisetum orientale and Panicum antidotale, be introduced in Thai, (ii) the improved varieties of some fodder-crops like oats, berseem, lucerne, sorghum sudan grass hybrid and mott grass being multicut (would cover the scarcity periods) can be introduced in the irrigated areas and (iii) the trees and shrub-species, such as Acacia tortilis, Zizyphus nummularia, Acacia anura, Prosopis cineraria, Acacia nilotica, Tacomella undulate, Zizyphus mauritiana, Calligonum polygonoides, Tamarax aphylla and Albizia lebbeck, can be propagated and promoted in Thai desert. (author)

  9. Review of technologies of processing of technogenic products of copper production

    Directory of Open Access Journals (Sweden)

    A. K. Serikbayeva

    2015-10-01

    Full Text Available Extraction of rare metals from a production wastes is actually as they small quantities accompany non-ferrous metals and generally collect in products of processing of the main raw materials. In article offered technological schemes of processing of such materials were considered.In article the technological schemes of processing of waste of copper production containing rare metals are considered. The offered ways can will be applied in metallurgy to extraction of osmium and rhenium from waste.

  10. Innovative technologies of waste recycling with production of high performance products

    Science.gov (United States)

    Gilmanshin, R.; Ferenets, A. V.; Azimov, Yu I.; Galeeva, A. I.; Gilmanshina, S. I.

    2015-06-01

    The innovative ways of recycling wastes as a tool for sustainable development are presented in the article. The technology of the production of a composite material based on the rubber fiber composite waste tire industry is presented. The results of experimental use of the products in the real conditions. The comparative characteristics of the composite material rubber fiber composite are given. The production technology of construction and repairing materials on the basis of foamed glass is presented.

  11. Mobile Technology and CAD Technology Integration in Teaching Architectural Design Process for Producing Creative Product

    Science.gov (United States)

    Bin Hassan, Isham Shah; Ismail, Mohd Arif; Mustafa, Ramlee

    2011-01-01

    The purpose of this research is to examine the effect of integrating the mobile and CAD technology on teaching architectural design process for Malaysian polytechnic architectural students in producing a creative product. The website is set up based on Caroll's minimal theory, while mobile and CAD technology integration is based on Brown and…

  12. Pathways to Commercial Success: Technologies and Products Supported by the Fuel Cell Technologies Office - 2015

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2016-01-08

    This FY 2015 report updates the results of an effort to identify and document the commercial and emerging (projected to be commercialized within the next 3 to 5 years) hydrogen and fuel cell technologies and products that resulted from U.S. Department of Energy support through the Fuel Cell Technologies Office in the Office of Energy Efficiency and Renewable Energy.

  13. Pathways to Commercial Success. Technologies and Products Supported by the Fuel Cell Technologies Program

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2011-09-01

    This FY 2011 report updates the results of an effort to identify and characterize commercial and near-commercial (emerging) technologies and products that benefited from the support of the Fuel Cell Technologies Program and its predecessor programs within DOE's Office of Energy Efficiency and Renewable Energy.

  14. Pathways to Commercial Success. Technologies and Products Supported by the Fuel Cell Technologies Program - 2012

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2012-09-01

    This FY 2012 report updates the results of an effort to identify and characterize commercial and near-commercial (emerging) technologies and products that benefited from the support of the Fuel Cell Technologies Program and its predecessor programs within DOE's Office of Energy Efficiency and Renewable Energy.

  15. Pathways to Commercial Success: Technologies and Products Supported by the Fuel Cell Technologies Office - 2014

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2015-02-01

    This FY 2014 report updates the results of an effort to identify and characterize commercial and near-commercial (emerging) technologies and products that benefited from the support of the Fuel Cell Technologies Office and its predecessor programs within DOE's Office of Energy Efficiency and Renewable Energy.

  16. Pathways to Commercial Success: Technologies and Products Supported by the Fuel Cell Technologies Office - 2013

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2014-04-30

    This FY 2013 report updates the results of an effort to identify and characterize commercial and near-commercial (emerging) technologies and products that benefited from the support of the Fuel Cell Technologies Office and its predecessor programs within DOE's Office of Energy Efficiency and Renewable Energy.

  17. Sensoric assessment of the durable meat product depending on the production technology.

    OpenAIRE

    TÁBOR, Rudolf

    2011-01-01

    This diploma thesis deals with sensoric analysis of the selected types of durable meat products depending on the production technology. By sensoric assessment and subsequent statistic analysis, this diploma thesis pursues to compare fermented durable meat products, made without added starting cultures, with fermented durable meat products, made with added starting cultures, and to determine which of these kinds of products are preferred by the evaluators as well as the consumers. The theoreti...

  18. University of Maine Integrated Forest Product Refinery (IFPR) Technology Research

    Energy Technology Data Exchange (ETDEWEB)

    Pendse, Hemant P.

    2010-11-23

    This project supported research on science and technology that forms a basis for integrated forest product refinery for co-production of chemicals, fuels and materials using existing forest products industry infrastructure. Clear systems view of an Integrated Forest Product Refinery (IFPR) allowed development of a compelling business case for a small scale technology demonstration in Old Town ME for co-production of biofuels using cellulosic sugars along with pulp for the new owners of the facility resulting in an active project on Integrated Bio-Refinery (IBR) at the Old Town Fuel & Fiber. Work on production of advanced materials from woody biomass has led to active projects in bioplastics and carbon nanofibers. A lease for 40,000 sq. ft. high-bay space has been obtained to establish a Technology Research Center for IFPR technology validation on industrially relevant scale. UMaine forest bioproducts research initiative that began in April 2006 has led to establishment of a formal research institute beginning in March 2010.

  19. The Preparation of Bioimprinted Whole-cell Biocatalyst and Its Application in Bioconversion of Biodiesel

    Directory of Open Access Journals (Sweden)

    Meiling Chen

    2015-08-01

    Full Text Available Biodiesel has attracted considerable attention as an environmentally friendly alternative fuel. Lipase is the most popular enzyme for biodiesel production and immobilization has been deployed to improve enzyme stability and reusability. Exploitation of high activity lipase is the key point for biodiesel production. Whole-cell biocatalysts have been applied in the biosynthesis of biodiesel and bioimprinting is a promising approach for enzyme performances improvement. In this study, based on the S. cerevisiae cell-surface display system with &alpha-agglutinin as anchor, a whole-cell biocatalyst of codon-optimized Rhizopus oryzae lipase was constructed and bioimprinted with oleic acid, gaining 5-fold increase on enzymatic activity in the alcoholysis of soybean oil to biodiesel. Moreover, the conversion of FAME was up to 95.45±2.73% after a 27-h reaction at 60°C. Our results indicated that combining bioimprinting with yeast display technique to prepare whole-cell biocatalyst could result in potential enzymes for bioconversion of biodiesel in organic solvents.

  20. Competing with New Product Technologies: A Process Model of Strategy

    OpenAIRE

    Das, Shobha S.; Andrew H. Van de Ven

    2000-01-01

    This paper draws upon research in the economics of technical change and in the social construction of technology to develop and test a process model of strategy. We conducted a longitudinal study of leading firms that were sponsoring new and competing product technologies in two industries: the videoplayer industry and the medical diagnostic imaging industry. We built original datasets on the actions of these firms, and then empirically examined the strategy process. Our findings indicate tha...

  1. Technological progress and productivity in the Quinoa sector

    OpenAIRE

    Birbuet, Juan Cristóbal; Machicado, Carlos Gustavo

    2009-01-01

    The main objective of this case study is to analyze the effect that a significant technological innovation in quinoa processing has had on the productivity of companies devoted to this activity and the impact of such an innovation on the growth and organization of the quinoa cluster in Bolivia, and its possible effects on the future. The study will explain how the boost engendered by technological innovation in quinoa processing has triggered a series of events that have allowed the establish...

  2. Evaluating Banking Productivity and Information Technology Using the Translog Production Function

    Directory of Open Access Journals (Sweden)

    Madueme Ifeoma Stella

    2010-04-01

    Full Text Available This empirical study tried to assess the impact of Information Communication Technology (ICT on the productivity of the Nigerian banking sector. Impact on Productivity was conceptualized as ability to make positive contributions to output after deductions for depreciation and labour expenses has been made. The Trancendental Logarithimic Production function and the CAMEL rating were used for the study. Results showed that bank output such as loans and other assets increased significantly to changes in expenditure on information communication technology. Information communication technology labour expenses impacted more on bank output more than capital expenditure on ICT gadgets. The recommendation centered on the need to increase investments in information technology in order to increase productivity of banks. This is based on the purview that increased productivity in many instances leads to improved operational efficiency and profitability which are the laudable goals of any banking establishment.

  3. Microbial electrolysis cells as innovative technology for hydrogen production

    International Nuclear Information System (INIS)

    Hydrogen production is becoming increasingly important in view of using hydrogen in fuel cells. However, most of the production of hydrogen so far comes from the combustion of fossil fuels and water electrolysis. Microbial Electrolysis Cell (MEC), also known as Bioelectrochemically Assisted Microbial Reactor, is an ecologically clean, renewable and innovative technology for hydrogen production. Microbial electrolysis cells produce hydrogen mainly from waste biomass assisted by various bacteria strains. The principle of MECs and their constructional elements are reviewed and discussed. Keywords: microbial Electrolysis Cells, hydrogen production, waste biomass purification

  4. Technology and economic assessment of lactic acid production and uses

    Energy Technology Data Exchange (ETDEWEB)

    Datta, R.; Tsai, S.P.

    1996-03-01

    Lactic acid has been an intermediate-volume specialty chemical (world production {approximately}50,000 tons/yr) used in a wide range of food-processing and industrial applications. Potentially, it can become a very large-volume, commodity-chemical intermediate produced from carbohydrates for feedstocks of biodegradable polymers, oxygenated chemicals, environmentally friendly ``green`` solvents, and other intermediates. In the past, efficient and economical technologies for the recovery and purification of lactic acid from fermentation broths and its conversion to the chemical or polymer intermediates had been the key technology impediments and main process cost centers. Development and deployment of novel separations technologies, such as electrodialysis with bipolar membranes, extractive and catalytic distillations, and chemical conversion, can enable low-cost production with continuous processes in large-scale operations. The emerging technologies can use environmentally sound lactic acid processes to produce environmentally useful products, with attractive process economics. These technology advances and recent product and process commercialization strategies are reviewed and assessed.

  5. Biohydrogen Production from Lignocellulosic Biomass: Technology and Sustainability

    Directory of Open Access Journals (Sweden)

    Anoop Singh

    2015-11-01

    Full Text Available Among the various renewable energy sources, biohydrogen is gaining a lot of traction as it has very high efficiency of conversion to usable power with less pollutant generation. The various technologies available for the production of biohydrogen from lignocellulosic biomass such as direct biophotolysis, indirect biophotolysis, photo, and dark fermentations have some drawbacks (e.g., low yield and slower production rate, etc., which limits their practical application. Among these, metabolic engineering is presently the most promising for the production of biohydrogen as it overcomes most of the limitations in other technologies. Microbial electrolysis is another recent technology that is progressing very rapidly. However, it is the dark fermentation approach, followed by photo fermentation, which seem closer to commercialization. Biohydrogen production from lignocellulosic biomass is particularly suitable for relatively small and decentralized systems and it can be considered as an important sustainable and renewable energy source. The comprehensive life cycle assessment (LCA of biohydrogen production from lignocellulosic biomass and its comparison with other biofuels can be a tool for policy decisions. In this paper, we discuss the various possible approaches for producing biohydrogen from lignocellulosic biomass which is an globally available abundant resource. The main technological challenges are discussed in detail, followed by potential solutions.

  6. Integrative Production Technology for High-Wage Countries

    CERN Document Server

    2012-01-01

    Industrial production in high-wage countries like Germany is still at risk. Yet, there are many counter-examples in which producing companies dominate their competitors by not only compensating for their specific disadvantages in terms of factor costs (e.g. wages, energy, duties and taxes) but rather by minimising waste using synchronising integrativity as well as by obtaining superior adaptivity on alternating conditions. In order to respond to the issue of economic sustainability of industrial production in high-wage countries, the leading production engineering and material research scientists of RWTH Aachen University together with renowned companies have established the Cluster of Excellence “Integrative Production Technology for High-Wage Countries”. This compendium comprises the cluster’s scientific results as well as a selection of business and technology cases, in which these results have been successfully implemented into industrial practice in close cooperation with more than 30 companies of ...

  7. Technology Licensing Strategy for Network Product in a Service Industry

    Directory of Open Access Journals (Sweden)

    Xianpei Hong

    2015-01-01

    Full Text Available Technology licensing has gained significant attention in literature and practice as a rapid and effective way to improve firm’s capability of technology innovation. In this paper, we investigate a duopolistic service provider competition market, where service providers develop and sell a kind of network product. In this setting, we analyze the innovating service provider’s four licensing strategies: no licensing, fixed fee licensing, royalty licensing, and two-part tariff licensing. The literature suggests that when the network products can be completely substituted, two-part tariff licensing is the optimal strategy of the innovating service provider. We find that when the network products cannot be completely substituted, two-part tariff licensing is not always optimal. The degree of the product differentiation, the intensity of the network effects, and the R&D cost of the potential licensee play a key role in determining the innovating service provider’s optimal licensing strategies.

  8. TECHNOLOGICAL REFINEMENT OF GRAIN CROP PRODUCTION INVOLVING MACHINERY APPLICATION

    Directory of Open Access Journals (Sweden)

    Maslov G. G.

    2016-01-01

    Full Text Available There have been suggested the courses of the machine technologies refinement in the process of spiked cereals production. The course of their technical update was studied in our previous article. There were analyzed the drawbacks of the modern machine production of crops and we presented the course of their elimination due to the technology optimization, resource and energy preservation, machine technologies of soil improvement and new innovative technological solutions. The suggested technology optimization was designed taking into account rigorous alternation of crops in the rotation, optimizing of breeds and crossbreeds, application of intermediate crops simultaneously with harvesting the previous crop, introducing progressive methods of chemical treatment and synchronous tillage. The resource and energy preservation is based on the combination of technological operations coinciding with the tasks in agricultural terms during a single machinery pass across the field, application of the mobile power unit (UPU-450, low- and ultralow capacity spraying, optimization of choice of certain agrimethods in the process of crop production and the resource calculation of estimated crop yield. In the set of soil improvement courses we have studied the mechanization of the restoration processes of natural soil formation, defecate introduction, the use of stubbly remains, compulsory presence of permanent grasses in crop rotation. New innovative solutions in the crop production technologies include the refinement of the mechanization facilities in tillage, spraying, new methods of crop harvesting (unwinnowed bread, root tow, cleaning of thrashed heap after the harvesting, etc. We have analyzed the ways of mechanization of “organic farming” and seed treatment with biologic mixtures

  9. Production Technologies And Exchange Relations In International Industrial Markets

    OpenAIRE

    Hallén, L; Johanson, J.; Seyed Mohamed, N

    1986-01-01

    Based on interviews with marketers in British, German, and Swedish industrial firms, 237 relationships to customers are investigated with regard to the latent factors adaptation and contact intensity. A Lisrel model is developed, which shows that these factors are present in the total material as well as in two of the three specified technological categories, i.e. in relationships to customers with unit and mass production but not in relationships to customers with process production. Further...

  10. Technology Diffusion and Productivity Growth in Health Care

    OpenAIRE

    Jonathan Skinner; Douglas Staiger

    2009-01-01

    Inefficiency in the U.S. health care system has often been characterized as "flat of the curve" spending providing little or no incremental value. In this paper, we draw on macroeconomic models of diffusion and productivity to better explain the empirical patterns of outcome improvements in heart attacks (acute myocardial infarction). In these models, small differences in the propensity to adopt technology can lead to wide and persistent productivity differences across countries -- or in our ...

  11. Biohydrogen Production from Lignocellulosic Biomass: Technology and Sustainability

    OpenAIRE

    Anoop Singh; Surajbhan Sevda; Ibrahim M. Abu Reesh; Karolien Vanbroekhoven; Dheeraj Rathore; Deepak Pant

    2015-01-01

    Among the various renewable energy sources, biohydrogen is gaining a lot of traction as it has very high efficiency of conversion to usable power with less pollutant generation. The various technologies available for the production of biohydrogen from lignocellulosic biomass such as direct biophotolysis, indirect biophotolysis, photo, and dark fermentations have some drawbacks (e.g., low yield and slower production rate, etc.), which limits their practical application. Among these, metabolic ...

  12. Process intensification technologies for biodiesel production reactive separation processes

    CERN Document Server

    Kiss, A A

    2014-01-01

    This book is among the first to address the novel process intensification technologies for biodiesel production, in particular the integrated reactive separations. It provides a comprehensive overview illustrated with many industrially relevant examples of novel reactive separation processes used in the production of biodiesel (e.g. fatty acid alkyl esters): reactive distillation, reactive absorption, reactive extraction, membrane reactors, and centrifugal contact separators. Readers will also learn about the working principles, design and control of integrated processes, while also getting a

  13. Petroleum pitch production from heavy crude residues using VPP technology

    Energy Technology Data Exchange (ETDEWEB)

    Marval, A.; Lira, A.; Rosas, M.; Muller, Y. [PDVSA Petroleos de Venezuela SA, Los Teques Miranda (Venezuela, Bolivarian Republic of). INTEVEP

    2009-07-01

    Venezuelan petroleum pitch (VPP) is a technology for petroleum pitch (PP) production from highly aromatic heavy cuts. The technology developed by Petroleos de Venezuela SA (PDVSA) INTEVEP enables the production of petroleum pitch with the necessary quality needed for anode binders in the aluminium industry as an alternative to coal tar. The petroleum pitch can be obtained under well designed conditions. The process scheme is similar to conventional thermal cracking and visbreaking units equipped with soakers, filtration systems and vacuum distillation tower. Research and development is underway at PDVSA to improve the process and use alternative feedstock. This paper described the methodology used for the technology development and demonstrated the present status of the research and development studies related to this work. The basic industrial process scheme for Venezuelan petroleum pitch production proposed for this technology was illustrated. Pilot and commercial scale tests were performed during the development of this technology. The performance of representative anodes batches made of petroleum pitch base and coal tar pitch base was evaluated on pilot scale and on electrolytic cells, measuring the properties of wasted anodes and poly-aromatics hydrocarbons emissions. 3 refs., 3 figs.

  14. Identification of an educational production function for diverse technologies

    Science.gov (United States)

    Mcclung, R. L.

    1977-01-01

    Production function analysis used to estimate the cost effectiveness of three alternative technologies in higher education: traditional instruction, instructional television, and computer-assisted instruction is presented. Criteria and selection of a functional form are outlined and a general discussion of variable selection and measurement is presented.

  15. Peer production & peer support at the Free Technology Academy

    NARCIS (Netherlands)

    Potters, Hanneke; Berlanga, Adriana; Bijlsma, Lex

    2012-01-01

    Potters, H., Berlanga, A. J., & Lex, B. (2011). Peer Production & Peer Support at the Free Technology Academy. In G. van de Veer, P. B. Sloep, & M. van Eekelen (Eds.), Proceedings Computer Science Education Research Conference (CSERC '11) (pp. 49-58). April, 7-8, 2011, Heerlen, The Netherlands: ACM.

  16. PRODUCTIVE EDUCATIONAL TECHNOLOGIES IN TEACHING FOREGN LANGUAGE AND CULTURE

    OpenAIRE

    Svetlana Vladimirovna Sannikova

    2013-01-01

    This article is devoted to looking for productive educational technologies in learning a foreign language and culture with the use of ICT-based on the student-centered strategy that implements the method of projects.DOI: http://dx.doi.org/10.12731/2218-7405-2013-7-47

  17. Wood products biomass gasification: technological and economic assessment

    Energy Technology Data Exchange (ETDEWEB)

    Bonino, G.; Scarzella, L.

    In this paper, a design lay-out is presented for the gasification of wood products biomass. Regarding this alternative energy form, the paper discusses historical aspects and recent technological developments made by Italian industry. The design, construction, performance, efficiency, present and future applications of a twin-feeding system are described.

  18. Membrane technology in production of biofuels : tried-and-tested technology improves new biofuel processes

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2010-07-15

    Membrane filtration technology, long used in many industrial process streams, is now being adopted in biofuels production and integrated biorefineries, particularly in second generation cellulosic ethanol processes. Second-generation bio-ethanol processes seek to optimize fuel recovery and secondary products from the feedstock and obtain a better value fuel. Membranes are being used to improve bioprocesses, lower energy costs, and increase product recovery. Membranes are engineered physical barriers used in processes for liquid/liquid and liquid/solid separation, permitting the passage of materials only up to a certain size, shape, or character. In biodiesel processes, membranes are being increasingly used to facilitate water reuse. The technology is being explored for use in the production of organic acids, which can form the base for biodegradable plastics. Integrated biorefineries are using microfiltration, ultrafiltration, nanofiltration, and reverse osmosis. Membranes are being used in fermentation with mesophilic and thermophilic organisms to produce biofuels and organic and amino acids. Membrane technology is low cost relative to using evaporators for recovering or removing water, and it is promising for continuous fermentation, as it helps retain microbial biomass in the fermenter while allowing liquid to be drawn out continuously. Membrane technology developed for use at wastewater treatment plants is being applied in biodiesel production, which produces wash water that is high in contaminants. Membrane technology is part of a wave of biofuel research and demonstration plants.

  19. A system for accurate on-line measurement of total gas consumption or production rates in microbioreactors

    NARCIS (Netherlands)

    Leeuwen, van Michiel; Heijnen, Joseph J.; Gardeniers, Han; Oudshoorn, Arthur; Noorman, Henk; Visser, Jan; Wielen, van der Luuk A.M.; Gulik, van Walter M.

    2009-01-01

    A system has been developed, based on pressure controlled gas pumping, for accurate measurement of total gas consumption or production rates in the nmol/min range, applicable for on-line monitoring of bioconversions in microbioreactors. The system was validated by carrying out a bioconversion with k

  20. New Products and Technologies, Based on Calculations Developed Areas

    Directory of Open Access Journals (Sweden)

    Gheorghe Vertan

    2013-09-01

    Full Text Available Following statistics, currently prosperous and have high GDP / capita, only countries that have and fructify intensively large natural resources and/or produce and export products massive based on patented inventions accordingly. Without great natural wealth and the lowest GDP / capita in the EU, Romania will prosper only with such products. Starting from the top experience in the country, some patented, can develop new and competitive technologies and patentable and exportable products, based on exact calculations of developed areas, such as that double shells welded assemblies and plating of ships' propellers and blade pump and hydraulic turbines.

  1. A Critical Review on Superchilling Preservation Technology in Aquatic Product

    Institute of Scientific and Technical Information of China (English)

    WU Chun-hua; YUan Chun-hong; YE Xing-qian; HU Ya-qin; CHEn Shi-guo; and LiU Dong-hong

    2014-01-01

    aquatic product, known as one of the good resources for white meat, has been widely accepted by the consumers due to its high protein, low fat, especially low cholesterol. With the fast development of living standards around the world, the consumer demands for high quality, nutrition, safety and freshness of ifshery food are increasing. Thus, high efifcient preservation technologies for aquatic products become particularly important. Superchilling is one of the controlled-temperature preservation technologies for seafood. Aquatic products can be kept in better quality under superchilling conditions. This review introduced the principle and development of superchilling process, mainly focusing on research progresses and technical dififculties of superchilling. The growth mechanism of ice crystals and the feasibility of application of computational lfuid dynamics in analyzing the temperatures variation and ice crystals during superchilling progress were also discussed, which will provide theoretical foundation for its improvement and application.

  2. Supply chain production model with preservation technology under fuzzy environment

    Directory of Open Access Journals (Sweden)

    S.R. Singh

    2014-06-01

    Full Text Available In this paper, an attempt is made to characterize the preservation technology for deteriorating items to reduce the deterioration rate. This model assumes a single producer and single supplier and formulates a production model with a time varying rate of deterioration rate. Here production and demand are treated as a fuzzy variables and total cost is minimized for both the crisp and fuzzy model. Shortage is allowed on the supplier’s part, which is partially backlogged. A solution procedure is presented to determine an optimal replenishment cycle and total cost per unit time, which is a convex function of preservation technology cost. Results have been validated with relevant example. In a way, the proposed model provides a unique theory to reduce the deterioration rate for the production model.

  3. Bioconversion of petroleum hydrocarbons in soil using apple filter cake

    Science.gov (United States)

    Medaura, M. Cecilia; Ércoli, Eduardo C.

    2008-01-01

    The aim of this study was to investigate the feasibility of using apple filter cake, a fruit-processing waste to enhance the bioremediation of petroleum contaminated soil. A rotating barrel system was used to study the bioconversion of the xenobiotic compound by natural occurring microbial population. The soil had been accidentally polluted with a total petroleum hydrocarbon concentration of 41,000 ppm. Although this global value was maintained during the process, microbial intervention was evidenced through transformation of the petroleum fractions. Thus, fractions that represent a risk for the environment (GRO, Gasoline Range Organics i.e., C6 to C10–12; DRO, Diesel Range Organics i.e., C8–12 to C24–26 and RRO, Residual Range Organics i.e., C25 to C35) were significantly reduced, from 2.95% to 1.39%. On the contrary, heavier weight fraction from C35 plus other organics increased in value from 1.15% to 3.00%. The noticeable diminution of low molecular weight hydrocarbons content and hence environmental risk by the process plus the improvement of the physical characteristics of the soil, are promising results with regard to future application at large scale. PMID:24031241

  4. The specification and estimation of technological change in electricity production

    Energy Technology Data Exchange (ETDEWEB)

    Kavanaugh, D.C.; Ashton, W.B.

    1995-01-01

    This study focuses on the rate of technological change in electricity production. The dominant role of fossil fuel-fired electricity production in the industry, coupled with the direct association with the emission of greenhouse gases, makes technology parameters particularly significant for several reasons. First, very long-run simulations of energy-economic paths at a global level require that technical progress occupy a place in the methodology for sound formulations that are vital in global emissions/energy policy analysis. Second, given the outlook for electricity generation being predominately coal-based, especially in developing economies around the world, the specification and measurement of technical change is essential for developing realistic long-run technology forecasts. Finally, industry or sector growth in productivity hinges partly on technical progress, and updated analysis will always be necessary to stay abreast of developments on this front, as well as for economic growth considerations in general. This study is based on empirical economic research on production functions in the electric utility industry. However, it advances a seldom used approach, called the {open_quotes}engineering-production function{close_quotes}, in contrast to the more common neoclassical approach used by economists. Combined with this approach is a major departure from the type of data used to conduct econometric estimations of production parameters. This research draws upon a consistent set of ex ante or {open_quotes}blueprint{close_quotes} data that better reflects planned, technical performance and cost data elements, in contrast to the more customary, expect type of data from actual firm/plant operations. The results from the examination of coal-fired technologies indicate the presence of technical change. Using data for the period from 1979 to 1989, we find technical change to be capital-augmenting at the rate of 1.8 percent per year.

  5. Wood chip production technology and costs for fuel in Namibia

    Energy Technology Data Exchange (ETDEWEB)

    Leinonen, A.

    2007-12-15

    This work has been done in the project where the main target is to evaluate the technology and economy to use bush biomass for power production in Namibia. The project has been financed by the Ministry for Foreign Affairs of Finland and the Ministry of Agriculture, Water and Forestry of the Republic of Namibia. The target of this study is to calculate the production costs of bush chips at the power plant using the current production technology and to look possibilities to develop production technology in order to mechanize production technology and to decrease the production costs. The wood production costs are used in feasibility studies, in which the technology and economy of utilization of wood chips for power generation in 5, 10 and 20 MW electric power plants and for power generation in Van Eck coal fired power plant in Windhoek are evaluated. Field tests were made at Cheetah Conservation Farm (CCF) in Otjiwarongo region. CCF is producing wood chips for briquette factory in Otjiwarongo. In the field tests it has been gathered information about this CCF semi-mechanized wood chip production technology. Also new machines for bush biomass chip production have been tested. A new mechanized production chain has been designed on the basis of this information. The production costs for the CCF semi-mechanized and the new production chain have been calculated. The target in the moisture content to produce wood chips for energy is 20 w-%. In the semi-mechanized wood chip production chain the work is done partly manually, and the supply chain is organized into crews of 4.8 men. The production chain consists of manual felling and compiling, drying, chipping with mobile chipper and manual feeding and road transport by a tractor with two trailers. The CCF production chain works well. The chipping and road transport productivity in the semimechanized production chain is low. New production machines, such as chainsaw, brush cutter, lawn mover type cutter, rotator saw in skid

  6. Digital Linear Tape (DLT) technology and product family overview

    Science.gov (United States)

    Lignos, Demetrios

    1994-01-01

    The demand that began a couple of years ago for increased data storage capacity continues. Peripheral Strategies (a Santa Barbara, California, Storage Market Research Firm) projects the amount of data stored on the average enterprise network will grow by 50 percent to 100 percent per year. Furthermore, Peripheral Strategies says that a typical mid-range workstation system containing 30GB to 50GB of storage today will grow at the rate of 50 percent per year. Dan Friedlander, a Boulder, Colorado-based consultant specializing in PC-LAN backup, says, 'The average NetWare LAN is about 8GB, but there are many that have 30GB to 300GB.....' The substantial growth of storage requirements has created various tape technologies that seek to satisfy the needs of today's and, especially, the next generations's systems and applications. There are five leading tape technologies in the market today: QIC (Quarter Inch Cartridge), IBM 3480/90, 8mm, DAT (Digital Audio Tape) and DLT (Digital Linear Tape). Product performance specifications and user needs have combined to classify these technologies into low-end, mid-range, and high-end systems applications. Although the manufacturers may try to position their products differently, product specifications and market requirements have determined that QIC and DAT are primarily low-end systems products while 8mm and DLT are competing for mid-range systems applications and the high-end systems space, where IBM compatibility is not required. The 3480/90 products seem to be used primarily in the IBM market, for interchangeability purposes. There are advantages and disadvantages for each of the tape technologies in the market today. We believe that DLT technology offers a significant number of very important features and specifications that make it extremely attractive for most current as well as emerging new applications, such as Hierarchical Storage Management (HSM). This paper will demonstrate why we think that the DLT technology and family

  7. Assessment of the magnesium primary production technology. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Flemings, M.C.; Kenney, G.B.; Sadoway, D.R.; Clark, J.P.; Szekely, J.

    1981-02-01

    At current production levels, direct energy savings achievable in primary magnesium production are 1.2 milliquads of energy per annum. Were magnesium to penetrate the automotive market to an average level of 50 pounds per vehicle, the resultant energy savings at the production stage would be somewhat larger, but the resulting savings in gasoline would conserve an estimated 325 milliquads of energy per year. The principal barrier to more widespread use of magnesium in the immediate future is its price. A price reduction of magnesium of 10% would lead to widespread conversion of aluminum die and permanent mold castings to magnesium. This report addresses the technology of electrolytic and thermic magnesium production and the economics of expanded magnesium production and use.

  8. Learning about materials science and technology by deconstructing modern products

    DEFF Research Database (Denmark)

    Horsewell, Andy

    Get the attention of young engineering students, interest and inspire them. Encourage them to think about materials science and technology by looking at the consumer products and gadgets that interest them. Analyse what modern products are constructed of, and how and why the materials...... teaching encourages and demands constant modernisation of the course and the materials being presented. A consideration of material and process selection for components in a modern product can be a dynamic starting point for a course on materials science and engineering; providing inspiration and showing...... and the processes have been chosen in their manufacture i.e. deconstruct modern products. Suitable items can easily be found in personal communication and entertainment, including all manner of sports goods. Further, the current pace of materials product development ensures that using these objects to focus...

  9. Development of bioenergy technology for rural micro mills production of milk, ice and bio fertilizer; Desenvolvimento de tecnologia de bioenergia rural para micro usinas de producao de leite, gelo e bio fertilizante

    Energy Technology Data Exchange (ETDEWEB)

    Selvam, Pagandai V. Pannir; Almeida, Louizy Minora C.A. de; Israel, S.B.S. [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil). Dept. de Engenharia Quimica], e-mail: pannirbr@gmail.com

    2008-07-01

    The generation of thermal energy is the great importance for the agribusiness of dairy industry to conservation the quality of milk, taking into account that the electricity is the main source currently used for the thermal energy input. The small agribusiness dairy industry currently practiced in Brazil faces several problems related to the cost of electricity and the distance of rural properties of networks of power. In the current scenario of Brazilian dairy production, there is need for the generation of cold for the milk cooling, and also the heat for the production of hot water around 50 deg C to 60 deg C and also for cleaning of equipment used for milk production and processing. The main objective of this study is the modeling and simulation of integrated recovery process of solid waste, effluents and bioconversion. The specific project objectives are: comparison study of options and technological routes of low cost material for power generation using conventional and innovative digester; study of new technologies in the use of organic waste for anaerobic digestion for biogas and fertilizer production; enabling the use of low cost digesters with appropriate technology and alternative materials (composites); minimize problems such as environmental pollution and shortage of electricity in rural agroindustry related to milk. A system was developed for energy generating based on the work of UNICAMP (Universidade Estadual de Campinas) using the water-water heat pump for simultaneous production of ice for cooling of milk and hot water for cleaning and disinfecting facilities and equipment. The results obtained in this project were done using process simulation software Superpro design. (author)

  10. Bioelectricity production from various wastewaters through microbial fuel cell technology

    Directory of Open Access Journals (Sweden)

    Abhilasha S Mathuriya

    2009-12-01

    Full Text Available Microbial fuel cell technology is a new type of renewable and sustainable technology for electricity generation since it recovers energy from renewable materials that can be difficult to dispose of, such as organic wastes and wastewaters. In the present contribution we demonstrated electricity production by beer brewery wastewater, sugar industry wastewater, dairy wastewater, municipal wastewater and paper industry wastewater. Up to 14.92 mA current and 90.23% COD removal was achieved in 10 days of operation. Keywords: Bioelectricity, COD, Microbial Fuel Cells, Wastewater Received: 12 November 2009 / Received in revised form: 30 November 2009, Accepted: 30 November 2009, Published online: 10 March 2010

  11. Advanced Decontamination Technologies: High Hydrostatic Pressure on Meat Products

    Science.gov (United States)

    Garriga, Margarita; Aymerich, Teresa

    The increasing demand for “natural” foodstuffs, free from chemical additives, and preservatives has triggered novel approaches in food technology developments. In the last decade, practical use of high-pressure processing (HPP) made this emerging non-thermal technology very attractive from a commercial point of view. Despite the fact that the investment is still high, the resulting value-added products, with an extended and safe shelf-life, will fulfil the wishes of consumers who prefer preservative-free minimally processed foods, retaining sensorial characteristics of freshness. Moreover, unlike thermal treatment, pressure treatment is not time/mass dependant, thus reducing the time of processing.

  12. New technology for the production of magnesium strips and sheets

    Directory of Open Access Journals (Sweden)

    R. Kawalla

    2008-07-01

    Full Text Available A new production technology for magnesium strip, based on twin-roll-casting and strip rolling was developed in Freiberg Germany. By means of this economic method it is possible to produce strips in deep drawing quality with good forming properties in order to satisfy the request for low cost Mg sheets in the automotive and electronic industry. Both, coils as single sheets, were manufactured and rolled to a thickness of 1mm(0,5 mm. The technology of the new process and the properties of the twin-roll-casted material and the final sheets are presented.

  13. Electrolytic hydrogen fuel production with solid polymer electrolyte technology.

    Science.gov (United States)

    Titterington, W. A.; Fickett, A. P.

    1973-01-01

    A water electrolysis technology based on a solid polymer electrolyte (SPE) concept is presented for applicability to large-scale hydrogen production in a future energy system. High cell current density operation is selected for the application, and supporting cell test performance data are presented. Demonstrated cell life data are included to support the adaptability of the SPE system to large-size hydrogen generation utility plants as needed for bulk energy storage or transmission. The inherent system advantages of the acid SPE electrolysis technology are explained. System performance predictions are made through the year 2000, along with plant capital and operating cost projections.

  14. Innovative technologies for greenhouse gas emission reduction in steel production

    Directory of Open Access Journals (Sweden)

    D. Burchart-Korol

    2016-01-01

    Full Text Available The main goal of the study was to present the most significant technological innovations aiming at reduction of greenhouse gas emission in steel production. Reduction of greenhouse gas and dust pollution is a very important aspect in the iron and steel industry. New solutions are constantly being searched for to reduce greenhouse gases (GHG. The article presents the most recent innovative technologies which may be applied in the steel industry in order to limit the emission of GHG. The significance of CCS (CO2 Capture and Storage and CCU (CO2 Capture and Utilization in the steel industry are also discussed.

  15. A review on the process technology for Mo-99 production

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jin Hoh; Yoo, Jae Hyung; Jung, Won Myung; Lee, Kyoo Il; Woo, Moon Sik; Hwang, Doo Sung; Kim, Yun Koo [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1994-07-01

    Tc-99m is most frequently used in nuclear medical diagnostics because of its favourable nuclear properties and reasonable prices, and the demand of Tc-99m, is on the increase recently. Mo-99, the parent radionuclide of Tc-99m, is the only source of Tc-99m. This review described overall aspects of process technologies for Mo-99 production. Firstly, the chemical, physical and radioactive properties of Tc-99m, Mo-99 were examined to understand Mo-99 separation process. Also, the technology for Mo-99 production with both the neutron capture and nuclear fission method were examined. But the neutron capture method was scarcely used for large production of Mo-99 because of its low specific activity and high production cost. This review also described mainly process technologies in the nuclear fission method, fabrication and condition for irradiation of targets, transport and dissolution of targets irradiated, separation and purification of Mo-99, etc. Especially, for Mo-99 separation and purification process, the characteristics, merits and demerits of various processes, which have been developed in a few countries, were examined and analyzed. 30 figs., 16 tabs., 60 refs. (Author).

  16. Life cycle assessment of products and technologies. LCA Symposium

    Energy Technology Data Exchange (ETDEWEB)

    Koukkari, H.; Nors, M. (eds.)

    2009-12-15

    VTT Technical Research Centre of Finland organised a Symposium 'Life Cycle Assessment of Products and Technologies' on the 6th of October, 2009. The Symposium gave a good overview of methods, tools and applications of Life Cycle Assessment developed and utilised in several technology fields of VTT. The 12 Symposium papers deal with recent LCA studies on products and technologies. The scope ranges from beverage cups to urban planning, from inventory databases to rating systems. Topical issues relating to climate change concern biorefineries and the overall impacts of the utilisation of biomass. The calculation of carbon footprints is also introduced through paper products and magazines. One example of LCA tools developed at VTT addresses cement manufacturing. VTT's transport emission database, LIPASTO, was introduced in detail. The use of LCA methods and life cycle thinking is described in various contexts: product development in relation to precision instruments; selection of materials and work processes in relation to sediment remediation project; and procedures of sustainability rating through VTT's office building Digitalo. The Climate Bonus project presented a demonstrated ICT support that informs about the greenhouse gas emissions and carbon footprints of households. (orig.)

  17. Pretreatment methods for bioethanol production.

    Science.gov (United States)

    Xu, Zhaoyang; Huang, Fang

    2014-09-01

    Lignocellulosic biomass, such as wood, grass, agricultural, and forest residues, are potential resources for the production of bioethanol. The current biochemical process of converting biomass to bioethanol typically consists of three main steps: pretreatment, enzymatic hydrolysis, and fermentation. For this process, pretreatment is probably the most crucial step since it has a large impact on the efficiency of the overall bioconversion. The aim of pretreatment is to disrupt recalcitrant structures of cellulosic biomass to make cellulose more accessible to the enzymes that convert carbohydrate polymers into fermentable sugars. This paper reviews several leading acidic, neutral, and alkaline pretreatments technologies. Different pretreatment methods, including dilute acid pretreatment (DAP), steam explosion pretreatment (SEP), organosolv, liquid hot water (LHW), ammonia fiber expansion (AFEX), soaking in aqueous ammonia (SAA), sodium hydroxide/lime pretreatments, and ozonolysis are intensively introduced and discussed. In this minireview, the key points are focused on the structural changes primarily in cellulose, hemicellulose, and lignin during the above leading pretreatment technologies.

  18. 76 FR 72215 - Certain Products Containing Interactive Program Guide and Parental Controls Technology; Receipt...

    Science.gov (United States)

    2011-11-22

    ... COMMISSION Certain Products Containing Interactive Program Guide and Parental Controls Technology; Receipt of... received a complaint entitled In Re Certain Products Containing Interactive Program Guide and Parental... certain products containing interactive program guide and parental controls technology. The...

  19. Cost Effective Technologies and Renewable Substrates for Biosurfactants’ Production

    Directory of Open Access Journals (Sweden)

    Ibrahim M Banat

    2014-12-01

    Full Text Available Diverse types of microbial surface-active amphiphilic molecules are produced by a range of microbial communities. The extraordinary properties of biosurfactant / bioemulsifier (BS/BE as surface active products allows them to have key roles in various field of applications such as bioremediation, biodegradation, enhanced oil recovery, pharmaceutics, food processing among many others. This leads to a vast number of potential applications of these BS/BE in different industrial sectors. Despite the huge number of reports and patents describing BS and BE applications and advantages, commercialization of these compounds remain difficult, costly and to a large extent irregular. This is mainly due to the usage of chemically synthesized media for growing producing microorganism and in turn the production of preferred quality products. It is important to note that although a number of developments have taken place in the field of biosurfactant industries, large scale production remains economically challenging for many types of these products. This is mainly due to the huge monetary difference between the investment and achievable productivity from the commercial point of view. This review discusses low cost, renewable raw substrates and fermentation technology in BS/BE production processes and their role in reducing the production cost.

  20. State-of-art of modern technologies for metals production

    Energy Technology Data Exchange (ETDEWEB)

    Holappa, L. [Helsinki Univ. of Technology, Otaniemi (Finland). Lab. of Metallurgy

    1995-12-31

    The future raw materials are becoming lower in metal content and more complex, multimetal concentrates will be utilized. This will give challenges for metallurgists to develop new, efficient and energy saving processes. The main impacts for current and future production technologies come from energy need and environmental issues of the production processes themselves as well as the inevitable energy production for the metal making. Metals production consumes huge amount of energy, roughly 10 pct of the global energy consumption is caused by metallurgists. That is the necessity but it also means energy saving is one of the metallurgical industry have been enormous when looking back to the history. Since the 1960`s the efforts of the industry together with the strict legislation in the industrialized countries have conducted to greatly decreased emissions and improved pollution control. Breakthrough of new processes like copper flash smelting has aided this positive progress

  1. Trapping technology for gaseous fission products from voloxidation process

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Jin Myeong; Park, J. J.; Park, G. I.; Jung, I. H.; Lee, H. H.; Kim, G. H.; Yang, M. S

    2005-05-15

    The objective of this report is to review the different technologies for trapping the gaseous wastes containing Cs, Ru, Tc, {sup 14}C, Kr, Xe, I and {sup 3}H from a voloxidation process. Based on literature reviews and KAERI's experimental results on the gaseous fission products trapping, appropriate trapping method for each fission product has been selected considering process reliability, simplicity, decontamination factor, availability, and disposal. Specifically, the most promising trapping method for each fission product has been proposed for the development of the INL off-gas trapping system. A fly ash filter is proposed as a trapping media for a cesium trapping unit. In addition, a calcium filter is proposed as a trapping media for ruthenium, technetium, and {sup 14}C trapping unit. In case of I trapping unit, AgX is proposed. For Kr and Xe, adsorption on solid is proposed. SDBC (Styrene Divinyl Benzene Copolymer) is also proposed as a conversion media to HTO for {sup 3}H. This report will be used as a useful means for analyzing the known trapping technologies and help selecting the appropriate trapping methods for trapping volatile and semi-volatile fission products, long-lived fission products, and major heat sources generated from a voloxidation process. It can also be used to design an off-gas treatment system.

  2. Trapping technology for gaseous fission products from voloxidation process

    International Nuclear Information System (INIS)

    The objective of this report is to review the different technologies for trapping the gaseous wastes containing Cs, Ru, Tc, 14C, Kr, Xe, I and 3H from a voloxidation process. Based on literature reviews and KAERI's experimental results on the gaseous fission products trapping, appropriate trapping method for each fission product has been selected considering process reliability, simplicity, decontamination factor, availability, and disposal. Specifically, the most promising trapping method for each fission product has been proposed for the development of the INL off-gas trapping system. A fly ash filter is proposed as a trapping media for a cesium trapping unit. In addition, a calcium filter is proposed as a trapping media for ruthenium, technetium, and 14C trapping unit. In case of I trapping unit, AgX is proposed. For Kr and Xe, adsorption on solid is proposed. SDBC (Styrene Divinyl Benzene Copolymer) is also proposed as a conversion media to HTO for 3H. This report will be used as a useful means for analyzing the known trapping technologies and help selecting the appropriate trapping methods for trapping volatile and semi-volatile fission products, long-lived fission products, and major heat sources generated from a voloxidation process. It can also be used to design an off-gas treatment system

  3. Estimation of technical efficiency in production technologies of Czech sawmills

    Directory of Open Access Journals (Sweden)

    Sedivka Premysl

    2009-12-01

    Full Text Available The main aim of this paper is to determine the influence of the type of adopted production technology on the technical efficiency of Czech sawmills, using one-year data of sawmills and applying a stochastic frontier production function model. Individual technical efficiencies have been obtained for small, medium and large sawmills, and their determinants have been estimated using a procedure proposed by Battese and Coelli (1995. The results support the hypothesis that sawmills in the sample failed to achieve full technical efficiency.

  4. Recent development of ductile cast iron production technology in China

    Institute of Scientific and Technical Information of China (English)

    Cai Qizhou; Wei Bokang

    2008-01-01

    Recent progress in the production and technology of ductile cast iron castings in China is reviewed.The manufacture and process control of as-cast ductile iron are discussed.The microstructure.properties and application of partial austenitization normalizing ductile iron and austempered duclile iron(ADI)are briefly depicted.The new development of duclile iron production techniques,such as cored-wire injection(wire-feeding nodularization)process,tundish cover ladle nodularizing process,horizontal continuous casting,and EPC process (lost foam)for ductile iron castings,etc.,are summarized.

  5. Product Drawing Management System Based on Group Technology

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    With the development and widely used of the compute r technology, the CAD has been more and more used in the process of designing prod uct. The number of the engineering drawings will greatly increase because of the continually appearance of the new products. As a result, it has become a badly needed to be solved problem for us that how to rapidly and efficiently search an d appropriately preserve and manage the drawings. In this paper, a method of bui lding the product drawing management system for extr...

  6. Biogas and BioFertilizer Production Using Green Technology

    International Nuclear Information System (INIS)

    Basically, it is technology which created and used in a way that conserves natural resources and the environment. This technology also can be environmental friendly because the use of this technology is supposed to reduce the amount of waste and pollution that is created during production and consumption. These food wastes will come from animal bone, crab skeleton, fish skeleton, rice, noodle, vegetable and others. We collect all of these wastes and then keep it in plants, and then we make sure that this waste will turn into biogas via anaerobic digestion. All of these involved hydrolysis, fermentation, aceto genesis and methano genesis process. Methane that produced will be used in biomass plant to generate electricity. Meanwhile bio fertilizer that produced will be applied on agriculture sectors as fertilizer for plants.

  7. Elusive prize: enormous coal gas potential awaits production technology breakthrough

    Energy Technology Data Exchange (ETDEWEB)

    Collison, M.

    2002-01-07

    The expanded gas pipeline grid has excess capacity, and gas resources are declining. There is increasing interest in development of Canada's resources of coalbed methane (CBM). The chairman of the Canadian Coalbed Methane Forum estimates that Canada has more than 3,000 trillion ft{sup 3} of gas awaiting suitable technology. PanCanadian and MGV Energy conducted a CBM exploration and pilot study on the Palliser spread in southern Alberta. Results from 23 of 75 wells are encouraging. The study is being accelerated and expanded to include an additional 50 wells elsewhere in Alberta. Some scientists anticipate commercial CBM production within two years. Problems facing developers include the large land holdings necessary for economic CBM production and the disposal of coal formation water. It is anticipated that U.S. technology will be modified and used. The potential for CBM development at Pictou in Nova Scotia and in British Columbia in the foothills is considered. 3 figs.

  8. Western oil-shale development: a technology assessment. Volume 2: technology characterization and production scenarios

    Energy Technology Data Exchange (ETDEWEB)

    1982-01-01

    A technology characterization of processes that may be used in the oil shale industry is presented. The six processes investigated are TOSCO II, Paraho Direct, Union B, Superior, Occidental MIS, and Lurgi-Ruhrgas. A scanario of shale oil production to the 300,000 BPD level by 1990 is developed. (ACR)

  9. Timing of Technology Adoption and Product Market Competition

    OpenAIRE

    Milliou, Chrysovalantou; Petrakis, Emmanuel

    2009-01-01

    This paper examines how product market competition affects firms' timing of adopting a new technology as well as whether the market provides sufficient adoption incentives. It shows that adoption dates differ not only among symmetric firms but also among markets with Cournot and Bertrand competition. More specifically, Cournot competition can lead to earlier adoption than Bertrand competition. It shows also that competition toughness does not always reinforce adoption incentives. When goods a...

  10. [Promising technologies of packed red blood cells production and storage].

    Science.gov (United States)

    Maksimov, A G; Golota, A S; Krassiĭ, A B

    2013-10-01

    The current article is dedicated to promising technologies of packed red blood cells production and storage. The following new technical approaches are presented: (1) erythrocytes storage in strict anaerobic argon-hydrogen environment, (2) lyophilization of erythrocyte suspension by its atomization in nitrogen gas, (3) lyophilization of erythrocytes by directional freezing under the influence of radio frequency radiation, (4) automated pharming of antigen free packed red blood cells from progenitor cell directly at the battlefield. PMID:24611298

  11. Group technology. [Increasing batch-lot production efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Rome, C.P.

    1976-01-01

    Group Technology has been conceptually applied to the manufacture of batch-lots of 554 machined electromechanical parts which now require 79 different types of metal-removal tools. The products have been grouped into 7 distinct families which require from 8 to 22 machines in each machine-cell. Throughput time can be significantly reduced and savings can be realized from tooling, direct-labor, and indirect-labor costs.

  12. [Promising technologies of packed red blood cells production and storage].

    Science.gov (United States)

    Maksimov, A G; Golota, A S; Krassiĭ, A B

    2013-10-01

    The current article is dedicated to promising technologies of packed red blood cells production and storage. The following new technical approaches are presented: (1) erythrocytes storage in strict anaerobic argon-hydrogen environment, (2) lyophilization of erythrocyte suspension by its atomization in nitrogen gas, (3) lyophilization of erythrocytes by directional freezing under the influence of radio frequency radiation, (4) automated pharming of antigen free packed red blood cells from progenitor cell directly at the battlefield.

  13. Development of Laser Application Technology for Stable Isotope Production

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Do Young; Ko, Kwang Hoon; Kwon, Duck Hee [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)] (and others)

    2007-04-15

    Tl-203 is used as a source material to produce Tl-201 radioisotope which is produced in a cyclotron by irradiating the enriched Tl-203 target. Tl-201 is a radiopharmaceutical for SPECT (single photon emission computerized tomography) to diagnose heart diseases and tumors. This Project aim to develop laser application technology to product stable isotopes such as Tl-203, Yb-168, and Yb-176. For this, photoion extraction device, atomic beam generator, dye lasers, and high power IR lasers are developed.

  14. Development of Laser Application Technology for Stable Isotope Production

    International Nuclear Information System (INIS)

    Tl-203 is used as a source material to produce Tl-201 radioisotope which is produced in a cyclotron by irradiating the enriched Tl-203 target. Tl-201 is a radiopharmaceutical for SPECT (single photon emission computerized tomography) to diagnose heart diseases and tumors. This Project aim to develop laser application technology to product stable isotopes such as Tl-203, Yb-168, and Yb-176. For this, photoion extraction device, atomic beam generator, dye lasers, and high power IR lasers are developed

  15. Energy Address Delivery Technologies and Thermal Transformations in Food Production

    Directory of Open Access Journals (Sweden)

    Burdo O.G.

    2016-08-01

    Full Text Available In this article, energetic and technical paradoxes in food nanotechnologies and traditional approaches to evaluation of energy recourses using are considered. Hypotheses of improvement of food production energy technologies are formulated. Classification of principles of address delivery of energy to food raw materials elements is given. We had substantiated the perspective objectives for heat-pumps installations and biphasic heat-transfer systems. The energy efficiency of new technolo-gies is compared on base of the number of energy impact. Principles of mass transfer modeling in ex-traction, dehydration and pasteurization combined processes are considered by food production exam-ple. The objectives of mathematical modeling of combined hydrodynamic and heat and mass transfer processes in modern energy technologies are set. The fuel energy conversion diagrams for drying, in-novative installations on the base of thermal siphons, heat pumps and electromagnetic energy genera-tors are represented. In this article, we illustrate how electromagnetic field, biphasic heat-transfer sys-tems and heat pumps can be effective tools for energy efficiency technologies.

  16. Applying Network Technology to Improve TV News Production Mode

    Institute of Scientific and Technical Information of China (English)

    冷劲松; 林成栋

    2003-01-01

    With the development of database and computer network technology, traditional TV news production mode (TVNPM) faces great challenge. Up to now, evolution of TVNPM has experienced two stages: In the beginning, TV news is produced completely by hand, named as pipelining TVNPM in this paper. This production mode is limited to space and time, so its production cycle is very time-consuming, and it requires a lot of harmony in different departments; Subsequently, thanks to applications of database technology, a new TVNPM appears, which is named as pooled information resource TVNPM. Compared with pipelining TVNPM, this mode promotes information sharing. However, with the development of network technology, especially the Intranet and the Internet, the pooled information resource TVNPM receives strong impact, and it is referred to contrive a new TVNPM. This new TVNPM must support information sharing, remote collaboration, and interaction in communications so as to improve group work efficiency. In this paper, we present such a new TVNPM, namely, Network TVNPM, give a suit of system solution to support the new TVNPM, introduce the new workflow, and in the end analyze the advantages of Network TVNPM.

  17. Practical application of amorphous solar cells. High quality production technology

    Energy Technology Data Exchange (ETDEWEB)

    1984-08-01

    The targets of the project are to develop production technology of amorphous solar cells for electric power generation which will possess good reproducibility and be highly sensitive to solar light, and to elucidate their technological and economical applicability. During the years of from 1980 to 1982, studies on research and development of amorphous solar cells with multi-layer structure were made, and the conversion efficiency of the amorphous sollar cell was improved to 82.5% (10 cm square cell). (1) Amorphous growth equipment for continuous formation of tandem structure was designed and constructed. Boron concentration when grown in independent separate reaction chambers was found to be less than 1/10 of that grown in the single chanber. Film formation rate of 7/sup 0/ A/sec was achieved using Si/sub 2/H/sub 6/ for the growth of a-Si:H(i). (2) In the technology for stainless steel substrate modules, modules of the sizes specified by NEDO were assembled with the super strail structure employing tempered glass, achieving 4.7% conversion rate. (3) For materials and formation technology of the transparent conductive film grid electrode, light transmittance and resistance of the film made by sputtering evaporation of ITO film were studied. (4) As regards reliability technology, it was found that the tandem structure will greatly decreace the deterioration rate as compared with the single layer structure. The modules with super strait structre proved to be weatherproof. (4 figs)

  18. Bioconversion of Gibberellin Fermentation Residue into Feed Supplement and Organic Fertilizer Employing Housefly (Musca domestica L. Assisted by Corynebacterium variabile.

    Directory of Open Access Journals (Sweden)

    Sen Yang

    Full Text Available The accumulation of a considerable quantity of gibberellin fermentation residue (GFR during gibberellic acid A3 (GA3 production not only results in the waste of many resources, but also poses a potential hazard to the environment, indicating that the safe treatment of GFR has become an urgent issue for GA3 industry. The key to recycle GFR is converting it into an available resource and removing the GA3 residue. To this end, we established a co-bioconversion process in this study using house fly larvae (HFL and microbes (Corynebacterium variabile to convert GFR into insect biomass and organic fertilizer. About 85.5% GA3 in the GFR was removed under the following optimized solid-state fermentation conditions: 60% GFR, 40% rice straw powder, pH 8.5 and 6 days at 26 °C. A total of 371 g housefly larvae meal and 2,064 g digested residue were bio-converted from 3,500 g raw GFR mixture contaning1, 400 g rice straw in the unit of (calculated dry matter. HFL meal derived from GFR contained 56.4% protein, 21.6% fat, and several essential amino acids, suggesting that it is a potential alternative animal feed protein source. Additionally, the digested GFR could be utilized as an organic fertilizer with a content of 3.2% total nitrogen, 2.0% inorganic phosphorus, 1.3% potassium and 91.5% organic matter. This novel GFR bio-conversion method can mitigate potential environmental pollution and recycle the waste resources.

  19. Bioconversion of Gibberellin Fermentation Residue into Feed Supplement and Organic Fertilizer Employing Housefly (Musca domestica L.) Assisted by Corynebacterium variabile.

    Science.gov (United States)

    Yang, Sen; Xie, Jiufeng; Hu, Nan; Liu, Yixiong; Zhang, Jiner; Ye, Xiaobin; Liu, Ziduo

    2015-01-01

    The accumulation of a considerable quantity of gibberellin fermentation residue (GFR) during gibberellic acid A3 (GA3) production not only results in the waste of many resources, but also poses a potential hazard to the environment, indicating that the safe treatment of GFR has become an urgent issue for GA3 industry. The key to recycle GFR is converting it into an available resource and removing the GA3 residue. To this end, we established a co-bioconversion process in this study using house fly larvae (HFL) and microbes (Corynebacterium variabile) to convert GFR into insect biomass and organic fertilizer. About 85.5% GA3 in the GFR was removed under the following optimized solid-state fermentation conditions: 60% GFR, 40% rice straw powder, pH 8.5 and 6 days at 26 °C. A total of 371 g housefly larvae meal and 2,064 g digested residue were bio-converted from 3,500 g raw GFR mixture contaning1, 400 g rice straw in the unit of (calculated) dry matter. HFL meal derived from GFR contained 56.4% protein, 21.6% fat, and several essential amino acids, suggesting that it is a potential alternative animal feed protein source. Additionally, the digested GFR could be utilized as an organic fertilizer with a content of 3.2% total nitrogen, 2.0% inorganic phosphorus, 1.3% potassium and 91.5% organic matter. This novel GFR bio-conversion method can mitigate potential environmental pollution and recycle the waste resources.

  20. Evaluation of the efficiency of alternative enzyme production technologies

    Energy Technology Data Exchange (ETDEWEB)

    Albaek, M.O.

    2012-03-15

    Enzymes are used in an increasing number of industries. The application of enzymes is extending into the production of lignocellulosic ethanol in processes that economically can compete with fossil fuels. Since lignocellulosic ethanol is based on renewable resources it will have a positive impact on for example the emission of green house gasses. Cellulases and hemi-cellulases are used for enzymatic hydrolysis of pretreated lignocellulosic biomass, and fermentable sugars are released upon the enzymatic process. Even though many years of research has decreased the amount of enzyme needed in the process, the cost of enzymes is still considered a bottleneck in the economic feasibility of lignocellulose utilization. The purpose of this project was to investigate and compare different technologies for production of these enzymes. The filamentous fungus Trichoderma reesei is currently used for industrial production of cellulases and hemi-cellulases. The aim of the thesis was to use modeling tools to identify alternative technologies that have higher energy or raw material efficiency than the current technology. The enzyme production by T. reesei was conducted as an aerobic fed-batch fermentation. The process was carried out in pilot scale stirred tank reactors and based on a range of different process conditions, a process model was constructed which satisfactory described the course of fermentation. The process was governed by the rate limiting mass transfer of oxygen from the gas to the liquid phase. During fermentation, filamentous growth of the fungus lead to increased viscosity which hindered mass transfer. These mechanisms were described by a viscosity model based on the biomass concentration of the fermentation broth and a mass transfer correlation that incorporated a viscosity term. An analysis of the uncertainty and sensitivity of the model indicated the biological parameters to be responsible for most of the model uncertainty. A number of alternative

  1. Production technologies for molybdenum-99 and technetium-99m

    International Nuclear Information System (INIS)

    Technetium-99m (6.02 h) is the most widely used radioisotope in nuclear medicine, accounting for more than 80% of all diagnostic nuclear medicine procedures. It is almost exclusively produced from the decay of its parent 99Mo. The present sources of 99Mo are research reactors by using the (n,γ) nuclear reaction with natural Mo (98Mo, ∼24%), resulting in inexpensive but low-specific activity 99Mo, or by neutron-induced fission of 235U, which results in expensive but high specific activity 99Mo. This publication covers several aspects related to the production of 99Mo and 99mTc. The contributed papers reflect the current status of the technology and discuss potential alternative methodologies for the production of 99Mo and 99mTc for medical use. The first four papers address the technologies using nuclear reactors, including the description of a new method using an aqueous homogenous reactor core for production of fission 99Mo and the latest development efforts to fabricate 235U low enriched targets (LEU, 235U). The next five papers discuss the potential of utilizing particle accelerators and assess the current status of the available nuclear data for the production of both, 99Mo and 99mTc with proton and deuteron beams. The last paper discusses a new technology based on gel system for the preparation of 99Mo/99mTc generators using low specific activity 99Mo produced in research reactors by the neutron activation of natural and inexpensive molybdenum oxide targets. Each individual paper was indexed and abstracted

  2. Novel multispecies microbial consortia involved in lignocellulose and 5-hydroxymethylfurfural bioconversion

    NARCIS (Netherlands)

    Jiménez Avella, Diego; Korenblum, Elisa; van Elsas, Jan Dirk

    2014-01-01

    To develop a targeted metagenomics approach for the analysis of novel multispecies microbial consortia involved in the bioconversion of lignocellulose and furanic compounds, we applied replicated sequential batch aerobic enrichment cultures with either pretreated or untreated wheat straw as the sour

  3. CYCLODEXTRINS AS A USEFUL TOOL FOR BIOCONVERSIONS IN PLANT-CELL BIOTECHNOLOGY

    NARCIS (Netherlands)

    VANUDEN, W; WOERDENBAG, HJ; PRAS, N

    1994-01-01

    The application of cyclodextrins as precursor solubilizers in biotechnological processes, in which plant cells are involved, is new. In this paper the possibilities for cyclodextrin facilitated bioconversions by freely suspended and/or immobilized plant cells or plant enzymes are demonstrated. After

  4. Electron beam technology for production of preparations of immobilized enzymes

    International Nuclear Information System (INIS)

    Possibility of electron beam usage for proteases immobilization on 1,4-polyalkylene oxide (1,4-PAO) was studied to obtain biologically active complex for multi-purpose usage. It is shown that immobilization of Bacillus Subtilis protease is done due to free-radical linking of enzyme and carrier with formation of mycelium-like structures. Immobilization improves heat resistance of enzyme up to 60 centigrade without substrate and up to 80 centigrade in presence of substrate, widens range pH activity in comparison with non-immobilized forms. Immobilized proteases does not contain peroxides and long-live radicals. Our results permitted to create technologies for production of medical and veterinary preparations, active components for wool washing agents and leather fabrication technology

  5. Link between Product Innovation and Non-Technological: Organization Performance

    Directory of Open Access Journals (Sweden)

    Adil Sohail

    2011-11-01

    Full Text Available This study aims to provide a link between Product Innovation (PI and Non-Technological Innovation (NTI in innovation process. It also give the effect of PI and NTI on organization performance. The paper gives empirical evidence of theoretical hypothesis on a sample size of 40 firms from the manufacturing sector of Pakistan. Data was analyzed through different statistical tools. The study concluded that there is a link between PI and NTI in the organization. Findings also indicates that PI and NTI has also effect on organization performance. These findings are only guaranteed only to the small and medium size of organizations. Pakistan is also a developing country. Use of modern technology in PI and NTI will also effects the results in developed countries. Findings of this study are help full to the manufacturing industry of Pakistan and other developing countries. This paper also shows the practical implication of innovation and its sub categories on the performance of the organization.

  6. SMS Demag technology for zero-waste steel production

    Energy Technology Data Exchange (ETDEWEB)

    Fontana, P.; Degel, R.

    2004-06-01

    Increased landfill costs for steel mill waste residues, stricter environmental regulations and decreasing public acceptance of waste dumping is driving the iron and steel industry to apply environmentally balanced solutions on site. The rotary hearth furnace based technologies fulfill the requirements of zero-waste steelmaking. Basically they allow the treatment of all accumulated steel mill waste under the avoidance of negative side effects on the steel quality and plant productivity with minimized overall steel plant emissions. This paper reflects possible waste recycling principles: Rotary Hearth Furnace (RHF), RedSmelt and cold briquetting technology. In addition SMS Demag is currently commissioning a pilot facility applying a combination of a rotary hearth furnace with a coal-oxygen based smelter (RedSmelt NST) at Lucchini in Piombino/Italy. If results meet the expectations, this process too could become an attractive solution for steel mill waste recycling.

  7. Scientific production and technological production: transforming a scientific paper into patent applications

    Science.gov (United States)

    Dias, Cleber Gustavo; de Almeida, Roberto Barbosa

    2013-01-01

    ABSTRACT Brazil has been presenting in the last years a scientific production well-recognized in the international scenario, in several areas of knowledge, according to the impact of their publications in important events and especially in indexed journals of wide circulation. On the other hand, the country does not seem to be in the same direction regarding to the technological production and wealth creation from the established scientific development, and particularly from the applied research. The present paper covers such issue and discloses the main similarities and differences between a scientific paper and a patent application, in order to contribute to a better understanding of both types of documents and help the researchers to chose and select the results with technological potential, decide what is appropriated for industrial protection, as well as foster new business opportunities for each technology which has been created. PMID:23579737

  8. Technical-technological aspects of using machines and tools for new technologies in plant production

    Directory of Open Access Journals (Sweden)

    Ercegović Đuro

    2009-01-01

    Full Text Available Agricultural production is complex process and it depends of various factors which can be controlled. Many of them can be improved by using of various means which are not friendly for environment and health of people. It is necessary to apply only those measures which can maintain and improve physical - mechanical, technological and microbiological properties of soil and also the nutritive potential of soil but will not be harmful for environment. The other part of this story demands decrease of energy necessary in the process of soil preparation. The machinery and tools for new technologies in plant production in Serbia is consisted of: vibrating subsoiler VR-5(7, universal self propelled machine for soil arrangement USM-5, draining plough DP-4 and universal Scraper land leveler, and it is developed to apply changed new technologies of soil preparation. This study gives description of machines, tools and technologies necessary for soil preparation in Serbia; this means preparation of soil surface and depth, special note is given to preservation of environment and improvement of soil potential, but also and how to decrease the energy necessary for the process of soil preparation.

  9. Pathways to Commercial Success: Technologies and Products Supported by the Fuel Cell Technologies Program

    Energy Technology Data Exchange (ETDEWEB)

    Weakley, Steven A.; Brown, Scott A.

    2011-09-29

    The purpose of the project described in this report is to identify and document the commercial and emerging (projected to be commercialized within the next 3 years) hydrogen and fuel cell technologies and products that resulted from Department of Energy support through the Fuel Cell Technologies (FCT) Program in the Office of Energy Efficiency and Renewable Energy (EERE). To do this, Pacific Northwest National Laboratory (PNNL) undertook two efforts simultaneously to accomplish this project. The first effort was a patent search and analysis to identify hydrogen- and fuel-cell-related patents that are associated with FCT-funded projects (or projects conducted by DOE-EERE predecessor programs) and to ascertain the patents current status, as well as any commercial products that may have used the technology documented in the patent. The second effort was a series of interviews with current and past FCT personnel, a review of relevant program annual reports, and an examination of hydrogen- and fuel-cell-related grants made under the Small Business Innovation Research and Small Business Technology Transfer Programs, and within the FCT portfolio.

  10. Pathways to Commercial Success: Technologies and Products Supported by the Fuel Cell Technologies Program

    Energy Technology Data Exchange (ETDEWEB)

    Weakley, Steven A.

    2012-09-28

    The purpose of the project described in this report is to identify and document the commercial and emerging (projected to be commercialized within the next 3 years) hydrogen and fuel cell technologies and products that resulted from Department of Energy support through the Fuel Cell Technologies (FCT) Program in the Office of Energy Efficiency and Renewable Energy (EERE). Pacific Northwest National Laboratory (PNNL) undertook two efforts simultaneously to accomplish this project. The first effort was a patent search and analysis to identify patents related to hydrogen and fuel cells that are associated with FCT-funded projects (or projects conducted by DOE-EERE predecessor programs) and to ascertain the patents’ current status, as well as any commercial products that may have used the technology documented in the patent. The second effort was a series of interviews with current and past FCT personnel, a review of relevant program annual reports, and an examination of grants made under the Small Business Innovation Research and Small Business Technology Transfer Programs that are related to hydrogen and fuel cells.

  11. DEVELOPMENT OF TECHNOLOGY OF PRODUCTION OF CHITIN FROM CRUSTACEANS WASTES

    OpenAIRE

    ALLAM AYMAN YOUNES FATHY; DOLGANOVA NATALIA VADIMOVNA

    2016-01-01

    The major sources of chitin production are sea crustaceans shrimps and crabs. In Egypt, the most economically justified source of chitin is green shrimp Penaeus semisulcatus, despite the fact that it can cause a significant pollution of the sea aquatorium. The aim of the study is to analyse the chemical composition of the crude shell of green shrimp and to develop the technology of producing chitin from this raw material. It has been found that the green shrimp shell contains 44.96% of alkali...

  12. Engineering analysis of biomass gasifier product gas cleaning technology

    Energy Technology Data Exchange (ETDEWEB)

    Baker, E.G.; Brown, M.D.; Moore, R.H.; Mudge, L.K.; Elliott, D.C.

    1986-08-01

    For biomass gasification to make a significant contribution to the energy picture in the next decade, emphasis must be placed on the generation of clean, pollutant-free gas products. This reports attempts to quantify levels of particulated, tars, oils, and various other pollutants generated by biomass gasifiers of all types. End uses for biomass gases and appropriate gas cleaning technologies are examined. Complete systems analysis is used to predit the performance of various gasifier/gas cleanup/end use combinations. Further research needs are identified. 128 refs., 20 figs., 19 tabs.

  13. Product and technology innovation: what can biomimicry inspire?

    Science.gov (United States)

    Lurie-Luke, Elena

    2014-12-01

    Biomimicry (bio- meaning life in Greek, and -mimesis, meaning to copy) is a growing field that seeks to interpolate natural biological mechanisms and structures into a wide range of applications. The rise of interest in biomimicry in recent years has provided a fertile ground for innovation. This review provides an eco-system based analysis of biomimicry inspired technology and product innovation. A multi-disciplinary framework has been developed to accomplish this analysis and the findings focus on the areas that have been most strikingly affected by the application of biomimicry and also highlight the emerging trends and opportunity areas. PMID:25316672

  14. Adoption of technology, management practices, and production systems in US milk production.

    Science.gov (United States)

    Khanal, A R; Gillespie, J; MacDonald, J

    2010-12-01

    The introduction of new technology, management practices, and alternative production systems has resulted in rapid structural change in the US dairy industry. This paper examines adoption rates and adopter characteristics for the following dairy technologies, practices, and systems: holding pen with an udder washer, milking units with automatic take-offs, genetic selection technologies, recombinant bovine somatotropin, membership in the Dairy Herd Improvement Association, computerized feed delivery systems, computerized milking systems, use of a nutritionist to design feed rations, grazing, milking cows 3 times daily, and milking parlors. Four of these were used on a greater percentage of farms in 2005 than in 2000, but increased farm sizes and the interaction of farm size with adoption suggest a greater percentage of milk being produced under each, with the exception of grazing. Except for grazing, technologies were generally complementary.

  15. Adoption of technology, management practices, and production systems in US milk production.

    Science.gov (United States)

    Khanal, A R; Gillespie, J; MacDonald, J

    2010-12-01

    The introduction of new technology, management practices, and alternative production systems has resulted in rapid structural change in the US dairy industry. This paper examines adoption rates and adopter characteristics for the following dairy technologies, practices, and systems: holding pen with an udder washer, milking units with automatic take-offs, genetic selection technologies, recombinant bovine somatotropin, membership in the Dairy Herd Improvement Association, computerized feed delivery systems, computerized milking systems, use of a nutritionist to design feed rations, grazing, milking cows 3 times daily, and milking parlors. Four of these were used on a greater percentage of farms in 2005 than in 2000, but increased farm sizes and the interaction of farm size with adoption suggest a greater percentage of milk being produced under each, with the exception of grazing. Except for grazing, technologies were generally complementary. PMID:21094776

  16. Chemistry and technology of Cured and Smoked Meat Products

    Directory of Open Access Journals (Sweden)

    V. K. Mathur

    1967-05-01

    Full Text Available Recent developments in the chemistry and technology of cured and smoked meat products are reviewed. Various factors physical, chemical and microbiological affecting water holding capacity of cured meats and cured colour formation and its stability during storage are discussed. Methods of preparation of various types of cured and smoked meat products have been briefly described. Developments in the use of synthetic casings and skinless sausages have been mentioned. Smoke constituents, their role and physico-chemical aspects of mechanism and functions of smoking are discussed. Advancements in the methods of smoke generation, conventional smoking and some kilns, electrostatic smoking and smoking by use of liquid smokes have been described. Some of the methods of preparation of liquid smokes are also given.

  17. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT: DUST SUPPRESSANT PRODUCTS: NORTH AMERICAN SALT COMPANY'S DUSTGARD

    Science.gov (United States)

    Dust suppressant products used to control particulate emissions from unpaved roads are among the technologies evaluated by the Air Pollution Control Technology (APCT) Verification Center, part of the U.S. Environmental Protection Agency's Environmental Technology Verification (ET...

  18. From coal gas to liquid product. The Topsoe TIGAS technology

    Energy Technology Data Exchange (ETDEWEB)

    P.E. Hoejlund Nielsen; Finn Joensen; John Boegild Hansen [Haldor Topsoee A/S, Lyngby (Denmark)

    2009-07-01

    Conversion of coal gas into liquid products is a multistep process which involves numerous unit processes. Compared with similar processes using natural gas as feedstock, there are challenges, particularly with the gas purification. There are, however, also advantages when using a carbon-monoxide-rich gas which ultimately may result in a greatly simplified process. This paper discusses the challenges when converting a gas from an entrained coal gasifier into a liquid product and the paper presents the various options available. The following issues will be touched upon: sour gas shift and adjustment of the H{sub 2}/CO ratio; acid Gas Removal (AGR) - when and how; syngas purification; methanol and combined methanol/DME synthesis; gasoline synthesis; future integrated processes. Here, various options are available depending on the gasifier; not only dry or slurry feed but also the question of quench as well as the selected scrubbing temperature are relevant. The WGS reaction is carried out along with the COS hydrolysis. The choice of AGR technology is rather complex. Various technologies are available such as Rectisol, Selexol and MDEA. The pros and cons will be discussed especially with respect to the choice of syngas purification technology. Syngas purification usually happens when cleaning masses are placed between the AGR and the synthesis reactors. The selection of cleaning masses required for obtaining the desired syngas quality will be discussed. The methanol and DME synthesis and the respective advantages will be discussed and results from the combined synthesis will be given. It will be shown that very high conversions are possible even at moderate conditions. Results from our previous demonstration in Houston in the eighties along with recent results will be discussed. The possibilities of cost savings using further process integration will be discussed. 5 figs., 1 tab.

  19. Productivity growth and technological progress in the Brazilian agricultural sector

    Directory of Open Access Journals (Sweden)

    Marcelo Farid Pereira

    2002-12-01

    Full Text Available Starting in the 1970's, the Brazilian agricultural sector has experienced an important process of modernization, whose principal effects include advances in technological progress and gains in productivity. The primary objective of this paper is to analyze technological progress and total productivity growth in the Brazilian agricultural sector during the period from 1970 to 1996. The methodology used here is based on the Malmquist productivity index and techniques in mathematical programming called Data Envelopment Analysis. The results show that significant progress was made in this sector of the economy but concentrated in only some regions of the country.O setor agropecuário brasileiro passou por um processo de modernização a partir dos anos 70, conseqüentemente, espera-se que exista uma contrapartida de progresso tecnológico e de ganhos de produtividade para o setor. Diante de tal fato tem-se como objetivo, neste estudo, avaliar o progresso tecnológico e o crescimento da produtividade total dos fatores (PTF do setor agropecuário brasileiro ao longo do período de 1970 a 1996. A metodologia utilizada foi baseada no índice Malmquist de produtividade e nas técnicas de programação matemática denominadas de Análise de Envoltória de Dados (DEA. Os resultados alcançados foram condizentes com estudos prévios e apontam para progresso técnico e ganhos de produtividade para o setor, porém concentrados em algumas regiões.

  20. Distribution of natural radioisotopes in industrial products of titanium production technological cycle

    International Nuclear Information System (INIS)

    Distribution of source and decay product nuclides in industrial products of industrial technology is studied to evaluate the radiation factor and examine the possibility of natural uranium and possibility of natural uranium and thorium group radionuclide concentration in separate products and wastes of processes related to ilmenite reprocessing and titanium tetrafluoride production. Determination of gamma-radiating radionuclides is performed by precision gamma spectrometry method, determination of thorium and polonium-210 isotopes - by alpha-spectrometry method using isotope dilution with the participation of polonium-210 and polonium-208. It is ascertained that during ilmenite melting the source radionuclides as well as radium isotopes transfer to a slag fraction, and lead-210 and polonium-210 isotopes get to a dust fraction. 5 refs., 4 tabs

  1. Analysis on Pollution Factors in Asparagus Production and Research on Safety Production Technology

    Institute of Scientific and Technical Information of China (English)

    Liping; MA; Bianqing; HAO; Xiongwu; QIAO

    2013-01-01

    Based on the analysis on the infection degree,infection law and influencing factors of the main diseases on asparagus and the analysis on the pollution factors in asparagus production such as blind pesticide use,atmospheric pollution and acid rain,the pollution of soil and fertilizer,this article proposes asparagus safety production technologies which include the selection of disease-resistant variety and suitable planting field,scientific and reasonable disease control,balanced fertilization,rational irrigation,making a good job of field management, etc.,to reduce pathogenic factors.

  2. Continued SOFC cell and stack technology and improved production methods

    Energy Technology Data Exchange (ETDEWEB)

    Wandel, M.; Brodersen, K.; Phair, J. (and others)

    2009-05-15

    Within this project significant results are obtained on a number of very diverse areas ranging from development of cell production, metallic creep in interconnect to assembling and test of stacks with foot print larger than 500 cm2. Out of 38 milestones 28 have been fulfilled and 10 have been partly fulfilled. This project has focused on three main areas: 1) The continued cell development and optimization of manufacturing processes aiming at production of large foot-print cells, improving cell performance and development environmentally more benign production methods. 2) Stack technology - especially stacks with large foot print and improving the stack design with respect to flow geometry and gas leakages. 3) Development of stack components with emphasis on sealing (for 2G as well as 3G), interconnect (coat, architecture and creep) and test development. Production of cells with a foot print larger than 500 cm2 is very difficult due to the brittleness of the cells and great effort has been put into this topic. Eight cells were successfully produced making it possible to assemble and test a real stack thereby giving valuable results on the prospects of stacks with large foot print. However, the yield rate is very low and a significant development to increase this yield lies ahead. Several lessons were learned on the stack level regarding 'large foot print' stacks. Modelling studies showed that the width of the cell primarily is limited by production and handling of the cell whereas the length (in the flow direction) is limited by e.g. pressure drop and necessary manifolding. The optimal cell size in the flow direction was calculated to be between approx20 cm and < 30 cm. From an economical point of view the production yield is crucial and stacks with large foot print cell area are only feasible if the cell production yield is significantly enhanced. Co-casting has been pursued as a production technique due to the possibilities in large scale production

  3. POTENTIAL PRODUCTIVITY OF MODERN RICE TECHNOLOGY AND REASONS FOR LOW PRODUCTIVITY ON ASIAN RICE FARMS

    OpenAIRE

    Herdt, Robert W.

    1981-01-01

    Results of a collaborative project involving over 28 agronomists and economists are reported. Over 800 agronomic experiments conducted in ten locations in six Asian countries comparing farmers' production with maximum yield levels of modern rice technology are analysed. Under wet season conditions, yields were raised by an average of 0.9 tonnes per hectare, but the cost of obtaining the increased yields exceeded their value in six out of ten locations. Under dry season conditions, yields were...

  4. The provision of assistive technology products and services for people with dementia in the United Kingdom.

    Science.gov (United States)

    Gibson, Grant; Newton, Lisa; Pritchard, Gary; Finch, Tracy; Brittain, Katie; Robinson, Louise

    2016-07-01

    In this review we explore the provision of assistive technology products and services currently available for people with dementia within the United Kingdom. A scoping review of assistive technology products and services currently available highlighted 171 products or product types and 331 services. In addition, we assimilated data on the amount and quality of information provided by assistive technology services alongside assistive technology costs. We identify a range of products available across three areas: assistive technology used 'by', 'with' and 'on' people with dementia. Assistive technology provision is dominated by 'telecare' provided by local authorities, with services being subject to major variations in pricing and information provision; few currently used available resources for assistive technology in dementia. We argue that greater attention should be paid to information provision about assistive technology services across an increasingly mixed economy of dementia care providers, including primary care, local authorities, private companies and local/national assistive technology resources.

  5. GEOSPATIAL TECHNOLOGY: A MODERN APPROACH TO SUSTAINABLE DAIRY PRODUCTION SYSTEM

    Directory of Open Access Journals (Sweden)

    D. DUNEA

    2013-12-01

    Full Text Available This paper briefly presents several applications of the geospatial technology as a method to maximize the efficiency of the dairy farm management. The experiment was carried out at Negraşi dairy farm in Târgovişte Plain. A functional farm production and mapping program for detailed farm management information system with several modules: mapping, forage stock, feed forecaster, individual cattle database, fuel consume for field operations and farm inputs database was developed for handheld computers with GPS navigation. Such portable information tools might help the decision making process, the development of ideo-types or in the exploration of land use options to support the policy makers at eco-regional level, the management staff at farm level and various other applications in dairy farms.

  6. Application Specific Performance Technology for Productive Parallel Computing

    Energy Technology Data Exchange (ETDEWEB)

    Malony, Allen D. [Univ. of Oregon, Eugene, OR (United States); Shende, Sameer [Univ. of Oregon, Eugene, OR (United States)

    2008-09-30

    Our accomplishments over the last three years of the DOE project Application- Specific Performance Technology for Productive Parallel Computing (DOE Agreement: DE-FG02-05ER25680) are described below. The project will have met all of its objectives by the time of its completion at the end of September, 2008. Two extensive yearly progress reports were produced in in March 2006 and 2007 and were previously submitted to the DOE Office of Advanced Scientific Computing Research (OASCR). Following an overview of the objectives of the project, we summarize for each of the project areas the achievements in the first two years, and then describe in some more detail the project accomplishments this past year. At the end, we discuss the relationship of the proposed renewal application to the work done on the current project.

  7. The crystallization processes in the aluminum particles production technology

    Directory of Open Access Journals (Sweden)

    Arkhipov Vladimir

    2015-01-01

    Full Text Available The physical and mathematical model of the crystallization process of liquid aluminum particles in the spray-jet of the ejection-type atomizer was proposed. The results of mathematical modeling of two-phase flow in the spray-jet and the crystallization process of fluid particles are given. The influence of the particle size, of the flow rate and the stagnation temperature gas in the ranges of industrial technology implemented for the production of powders aluminum of brands ASD, on the crystallization characteristics were investigated. The approximations of the characteristics of the crystallization process depending on the size of the aluminum particles on the basis of two approaches to the mathematical description of the process of crystallization of aluminum particles were obtained. The results allow to optimize the process parameters of ejection-type atomizer to produce aluminum particles with given morphology.

  8. Confectionery products (halva type obtained from sunflower: production technology and quality alterations. A review

    Directory of Open Access Journals (Sweden)

    Mureşan, V.

    2013-01-01

    Full Text Available Sunflower "halva" is a popular and widely enjoyed confectionery product specific to the countries of Eastern Europe. Conventional halva has historically been produced from sesame seeds in the Middle East and Northern Africa. However, in the production of halva in Eastern Europe, sesame seeds have been largely replaced by sunflower seeds, due to the high availability of sunflower in this region and the comparable taste of the final product. Due to the importance of the cost of raw materials in the food industry, utilization of sunflower seeds in halva production may be of great interest worldwide because it offers the possibility of significantly lowering production costs. Nevertheless, oil separation and storage techniques must be perfected if sunflower halva is to fulfill its promise of becoming a cost effective alternative to sesame seed halva on a worldwide scale. The aims of this review are firstly, to describe the current state of sunflower halva technology, secondly, to isolate the main problems affecting the quality of the final product, and thirdly, to suggest areas of further research necessary to move sunflower halva production closer to reaching its full potential on the world market.

  9. Bioconversion of coal-derived synthesis gas to liquid fuels. Final technical report, September 1, 1990--August 31, 1991

    Energy Technology Data Exchange (ETDEWEB)

    Jain, M.K.

    1991-12-31

    The use of coal-derived synthesis gas as an industrial feedstock for production of fuels and chemicals has become an increasingly attractive alternative to present petroleum-based chemicals production. However, one of the major limitations in developing such a process is the required removal of catalyst poisons such as hydrogen sulfide (H{sub 2}S), carbonyl sulfide (COS), and other trace contaminants from the synthesis gas. Purification steps necessary to remove these are energy intensive and add significantly to the production cost, particularly for coals having a high sulfur content such as Illinois coal. A two-stage, anaerobic bioconversion process requiring little or no sulfur removal is proposed, where in the first stage the carbon monoxide (CO) gas is converted to butyric and acetic acids by the CO strain of Butyribacterium methylotrophicum. In the second stage, these acids along with the hydrogen (H{sub 2}) gas are converted to butanol, ethanol, and acetone by an acid utilizing mutant of Clostridium acetobutylicum. 18 figs., 18 tabs.

  10. Effect of processing technologies on the allergenicity of food products.

    Science.gov (United States)

    Jiménez-Saiz, Rodrigo; Benedé, Sara; Molina, Elena; López-Expósito, Iván

    2015-01-01

    Heat treatment has been used since ancient times for food processing, first to ensure the safety of food and its storage, but also to transform its characteristics (in its raw form) and obtain new textures, flavors, or novel foods. However, the transformation experienced by food components when heated, or processed, can dramatically affect the allergenicity of food, either reducing or increasing it. To date, most of the articles published dealing with the changes in the potential allergenicity of food are focused on heat treatment and the Maillard reaction. However, it is also important to give prominence to other group of new technologies developed nowadays, such as high-pressure processing, microwaves and food irradiation. These techniques are not likely to replace traditional processing methods, but they are becoming attractive for the food industry due to different reasons, and it is expected in the near future to have different products on the market processed with these new technologies at an affordable cost. Moreover, other biochemical modifications, particularly enzymatic cross-linking of proteins, have attracted wide-spread attention and will be considered as well in this review, because of its great opportunities to induce protein modification and thus affect food allergenicity. Together with the effect of processing of food allergens, this review will place special attention on gastroduodenal digestion of processed allergens, which directly affects their allergenicity.

  11. Technological challenges for boosting coal production with environmental sustainability.

    Science.gov (United States)

    Ghose, Mrinal K

    2009-07-01

    The global energy requirement has grown at a phenomenon rate and the consumption of primary energy sources has been a very high positive growth. This paper focuses on the consumption of different primary energy sources and it identifies that coal will continue to remain as the prime energy source in foreseeable future. It examines the energy requirement perspective for India and demand of coal as the prime energy source. Economic development and poverty alleviation depend on securing affordable energy sources and Indian coal mining industry offers a bright future for the country's energy security, provided the industry is allowed to develop by supportive government policies and adopts latest technologies for mining. It is an irony that in-spite of having a plentiful reserves, India is not able to jack up coal production to meet its current and future demand. It discusses the strategies to be adopted for growth and meeting the coal demand. But such energy are very much concerned with environmental degradation and must be driven by contemporary managerial acumen addressing environmental and social challenges effectively The paper highlights the emissions of greenhouse gases due to burning of fossil fuels and environmental consequences of global warming and sea-level rise. Technological solutions for environment friendly coal mining and environmental laws for the abatement of environmental degradation are discussed in this paper. PMID:18604635

  12. Innovative production technology in aircraft construction: CIAM Forming 'made by MBB' - A highly productive example

    Science.gov (United States)

    A novel production technology in aircraft construction was developed for manufacturing parts of shapes and dimensions that involve only small quantities for one machine. The process, called computerized integrated and automated manufacturing (CIAM), makes it possible to make ready-to-install sheet-metal parts for all types of aircraft. All of the system's job sequences, which include milling the flat sheet-metal parts in stacks, deburring, heat treatment, and forming under the high-pressure rubber-pad press, are automated. The CIAM production center, called SIAM Forming, fulfills the prerequisites for the cost-effective production of sheet-metal parts made of aluminum alloys, titanium, or steel. The SIAM procedure results in negligible material loss through computerizing both component-contour nesting of the sheet-metal parts and contour milling.

  13. Advanced Electrochemical Technologies for Hydrogen Production by Alternative Thermochemical Cycles

    Energy Technology Data Exchange (ETDEWEB)

    Lvov, Serguei; Chung, Mike; Fedkin, Mark; Lewis, Michele; Balashov, Victor; Chalkova, Elena; Akinfiev, Nikolay; Stork, Carol; Davis, Thomas; Gadala-Maria, Francis; Stanford, Thomas; Weidner, John; Law, Victor; Prindle, John

    2011-01-06

    Hydrogen fuel is a potentially major solution to the problem of climate change, as well as addressing urban air pollution issues. But a key future challenge for hydrogen as a clean energy carrier is a sustainable, low-cost method of producing it in large capacities. Most of the world's hydrogen is currently derived from fossil fuels through some type of reforming processes. Nuclear hydrogen production is an emerging and promising alternative to the reforming processes for carbon-free hydrogen production in the future. This report presents the main results of a research program carried out by a NERI Consortium, which consisted of Penn State University (PSU) (lead), University of South Carolina (USC), Tulane University (TU), and Argonne National Laboratory (ANL). Thermochemical water decomposition is an emerging technology for large-scale production of hydrogen. Typically using two or more intermediate compounds, a sequence of chemical and physical processes split water into hydrogen and oxygen, without releasing any pollutants externally to the atmosphere. These intermediate compounds are recycled internally within a closed loop. While previous studies have identified over 200 possible thermochemical cycles, only a few have progressed beyond theoretical calculations to working experimental demonstrations that establish scientific and practical feasibility of the thermochemical processes. The Cu-Cl cycle has a significant advantage over other cycles due to lower temperature requirements – around 530 °C and below. As a result, it can be eventually linked with the Generation IV thermal power stations. Advantages of the Cu-Cl cycle over others include lower operating temperatures, ability to utilize low-grade waste heat to improve energy efficiency, and potentially lower cost materials. Another significant advantage is a relatively low voltage required for the electrochemical step (thus low electricity input). Other advantages include common chemical agents and

  14. Tracer technology in nutrient management strategies for sustainable crop production

    International Nuclear Information System (INIS)

    The use of tracers in soil-plant studies has been found to provide quantitative and accurate data, which are essential for understanding the dynamics of soil nutrients and for evaluating the efficiency of fertilizer sources and other management practices. Although there is fairly good understanding of the management of inorganic fertilizers for crop production in acid soils, much less information is available on the management of organic forms of these nutrients, while data on interactions of the two forms is very much limited. Understanding the underlying processes in these strategies using conventional methods is most often difficult, but isotope tracers (both radioactive and stable isotopes) have been found to be useful in unraveling the mechanisms associated with nutrient availability, fertilizer use efficiency, losses and residual effects, as well as the role. of legumes in farming systems, and in identifying varietal differences in nutrient use efficiency. The first extensive use of isotope as tracers in plant nutrition was made in the 1940s. The radioactive isotope of P (32P) was used to study the utilization of P fertilizers by various crops in a series of greenhouse experiments (1) and field trials (2). In Malaysian, the use of isotopes to study nutrient management for crop production started in 1969 when the Rubber Research Institute was involved in study the root activity of rubber trees (3). The next attempt in using isotopes to study nutrient management problems only started in 1980s with the assistance of the International Atomic Energy Agency (IAEA) and the Malaysian Institute for Nuclear Technology Research (MINT). Some of the relevant findings and their links to the development and implementation of sustainable land, management strategies for crop production are highlighted. (Author)

  15. Optimising the anaerobic co-digestion of urban organic waste using dynamic bioconversion mathematical modelling

    DEFF Research Database (Denmark)

    Fitamo, Temesgen Mathewos; Boldrin, Alessio; Dorini, G.;

    2016-01-01

    strategies for controlling and optimising the co-digestion process. The model parameters were maintained in the same way as the original dynamic bioconversion model, albeit with minor adjustments, to simulate the co-digestion of food and garden waste with mixed sludge from a wastewater treatment plant......Mathematical anaerobic bioconversion models are often used as a convenient way to simulate the conversion of organic materials to biogas. The aim of the study was to apply a mathematical model for simulating the anaerobic co-digestion of various types of urban organic waste, in order to develop...... in a continuously stirred tank reactor. The model's outputs were validated with experimental results obtained in thermophilic conditions, with mixed sludge as a single substrate and urban organic waste as a co-substrate at hydraulic retention times of 30, 20, 15 and 10 days. The predicted performance parameter...

  16. Improving the bioconversion yield of carbohydrates and ethanol from lignocellulosic biomass

    Science.gov (United States)

    Ewanick, Shannon M.

    Improving the efficiency of lignocellulosic ethanol production is of the utmost importance if cellulosic bioethanol is to be competitive with fossil fuels and first generation bioethanol from starch and sucrose. Improvements in individual processes (pretreatment, saccharification, fermentation) have been ongoing, but few researchers have considered the effect that the incoming raw biomass can have on the process. It is important to understand how biomass can be altered to provide the maximum yield of hydrolysable and fermentable sugars from whatever is available. Since the moisture content is highly variable and easily altered, the effect of drying and rewetting on bioconversion was studied on switchgrass, sugarcane bagasse and hybrid poplar. For switchgrass and sugarcane bagasse, the ethanol yield after simultaneous saccharification and fermentation was improved 18-24% by increasing the moisture content by soaking prior to pretreatment. It was also found that soaking had no effect when the samples were not catalyzed with SO2 confirming that the effect of moisture content is directly related to SO2 uptake and diffusion into the biomass. In hybrid poplar, the results were similar to herbaceous biomass for chips with less than 2% absorbed SO2. However, when the SO2 uptake was increased to 3% even the air dried chips exhibited high digestibility, indicating that increased SO2 uptake can overcome the poor diffusion in dried biomass. Alongside controlling the biomass moisture content, improving knowledge and control of the processes can also increase efficiency and product yields. By monitoring reactions continuously with accurate, robust, on-line sensors, operators can detect when reactions deviate from the norm, and when they are complete. Avoiding process upsets and contamination could be the difference between an economically viable biorefinery and one that struggles to compete. Real time, continuous Raman spectroscopy was used to continuously monitor both a

  17. Bioconversion of α-linolenic acid into n-3 long-chain polyunsaturated fatty acid in hepatocytes and ad hoc cell culture optimisation.

    Directory of Open Access Journals (Sweden)

    Ramez Alhazzaa

    Full Text Available This study aimed to establish optimal conditions for a cell culture system that would allow the measurement of 18:3n-3 (ALA bioconversion into n-3 long-chain polyunsaturated fatty acid (n-3 LC-PUFA, and to determine the overall pathway kinetics. Using rat hepatocytes (FaO as model cells, it was established that a maximum 20:5n-3 (EPA production from 50 µM ALA initial concentration was achieved after 3 days of incubation. Next, it was established that a gradual increase in the ALA concentration from 0 up to 125 µM lead to a proportional increase in EPA, without concomitant increase in further elongated or desaturated products, such as 22:5n-3 (DPA and 22:6n-3 (DHA in 3 day incubations. Of interest, ALA bioconversion products were observed in the culture medium. Therefore, in vitro experiments disregarding the medium fatty acid content are underestimating the metabolism efficiency. The novel application of the fatty acid mass balance (FAMB method on cell culture system (cells with medium enabled quantifying the apparent enzymatic activities for the biosynthesis of n-3 LC-PUFA. The activity of the key enzymes was estimated and showed that, under these conditions, 50% (Km of the theoretical maximal (V max = 3654 µmol.g(-1 of cell protein.hour(-1 Fads2 activity on ALA can be achieved with 81 µM initial ALA. Interestingly, the apparent activity of Elovl2 (20:5n-3 elongation was the slowest amongst other biosynthesis steps. Therefore, the possible improvement of Elovl2 activity is suggested toward a more efficient DHA production from ALA. The present study proposed and described an ad hoc optimised cell culture conditions and methodology towards achieving a reliable experimental platform, using FAMB, to assist in studying the efficiency of ALA bioconversion into n-3 LC-PUFA in vitro. The FAMB proved to be a powerful and inexpensive method to generate a detailed description of the kinetics of n-3 LC-PUFA biosynthesis enzymes activities in vitro.

  18. Metabolic pathway reconstruction of eugenol to vanillin bioconversion in Aspergillus niger

    OpenAIRE

    Srivastava, Suchita; Luqman, Suaib; Khan, Feroz; Chanotiya, Chandan S; Darokar, Mahendra P

    2010-01-01

    Identification of missing genes or proteins participating in the metabolic pathways as enzymes are of great interest. One such class of pathway is involved in the eugenol to vanillin bioconversion. Our goal is to develop an integral approach for identifying the topology of a reference or known pathway in other organism. We successfully identify the missing enzymes and then reconstruct the vanillin biosynthetic pathway in Aspergillus niger. The procedure combines enzyme sequence similarity sea...

  19. Whole-cell bioconversion of vanillin to vanillic acid by Streptomyces viridosporus.

    OpenAIRE

    Pometto, A L; Crawford, D L

    1983-01-01

    A two-step batch fermentation-bioconversion of vanillin (4-hydroxy-3-methoxybenzaldehyde) to vanillic acid (4-hydroxy-3-methoxybenzoic acid) was developed, utilizing whole cells of Streptomyces viridosporus T7A. In the first step, cells were grown in a yeast extract-vanillin medium under conditions where cells produced an aromatic aldehyde oxidase. In the second step, vanillin was incubated with the active cells and was quantitatively oxidized to vanillic acid which accumulated in the growth ...

  20. Fibrous Agricultural Biomass as a Potential Source for Bioconversion to Vanillic Acid

    OpenAIRE

    Pei-Ling Tang; Osman Hassan; Jamaliah Md-Jahim; Wan Aida Wan Mustapha; Mohamad Yusof Maskat

    2014-01-01

    This study was conducted to assess the potential of six fibrous agricultural residues, namely, oil palm empty fruit bunch fiber (OPEFBF), coconut coir fiber (CCF), pineapple peel (PP), pineapple crown leaves (PCL), kenaf bast fiber (KBF), and kenaf core fiber (KCF), as a source of ferulic acid and phenolic compounds for bioconversion into vanillic acid. The raw samples were pretreated with organosolv (NaOH-glycerol) and alkaline treatment (NaOH), to produce phenol-rich black liquor. The findi...

  1. Synergistic effects of mixing hybrid poplar and wheat straw biomass for bioconversion processes

    OpenAIRE

    Vera, Rodrigo Morales; Bura, Renata; Gustafson, Rick

    2015-01-01

    Background Low cost of raw materials and good process yields are necessary for future lignocellulosic biomass biorefineries to be sustainable and profitable. A low cost feedstock will be diverse, changing as a function of seasonality and price and will most likely be available from multiple sources to the biorefinery. The efficacy of the bioconversion process using mixed biomass, however, has not been thoroughly investigated. Considering the seasonal availability of wheat straw and the year r...

  2. ICT Adoption and Heterogeneity in Production Technologies : Evidence for Chilean Retailers

    NARCIS (Netherlands)

    De Vries, Gaaitzen J.; Koetter, Michael

    2011-01-01

    The adoption of information and communication technology (ICT) can have far-reaching effects on the nature of production technologies. Because ICT adoption is incomplete, especially in developing countries, different groups of firms will have different production technologies. We estimate a latent c

  3. The productivity impact of international technology transfer in China: Empirical investigation on Chinese regions

    OpenAIRE

    BEN YOUSSEF, Adel; Wei, Zhou

    2011-01-01

    ABSTACT This paper investigates the impact of international technology transfer through FDI and technology import on Chinese productivity by analyzing 28 Chinese province-level regions over the period 2001 to 2008. The findings show that technology import has significantly positive impact on Chinese regional productivity, while FDI has significantly negative impact.

  4. Proteolysis and bioconversion of cereal proteins to glutamate and γ-Aminobutyrate (GABA) in Rye malt sourdoughs.

    Science.gov (United States)

    Stromeck, Achim; Hu, Ying; Chen, Lingyun; Gänzle, Michael G

    2011-02-23

    This study aimed to achieve the conversion of cereal proteins to the alternative end products glutamate or γ-aminobutyrate (GABA). Rye malt, fungal proteases, and lactobacilli were employed to convert wheat gluten or barley proteins. Glutamate and GABA formations were strain-dependent. Lactobacillus reuteri TMW1.106 and Lactobacillus rossiae 34J accumulated glutamate; L. reuteri LTH5448 and LTH5795 accumulated GABA. Glutamate and GABA accumulation by L. reuteri TMW1.106 and LTH5448 increased throughout fermentation time over 96 h, respectively. Peptides rather than amino acids were the main products of proteolysis in all doughs, and barley proteins were more resistant to degradation by rye malt proteases than wheat gluten. However, addition of fungal protease resulted in comparable degradation of both substrates. Glutamate and GABA accumulated to concentrations up to 63 and 90 mmol kg(-1) DM, respectively. Glutamate levels obtained through bioconversion of cereal proteins enable the use of hydrolyzed cereal protein as condiment. PMID:21271723

  5. Antibacterial potency of housefly larvae extract from sewage sludge through bioconversion

    Institute of Scientific and Technical Information of China (English)

    Chaocheng Zheng; Lixiang Zhou

    2013-01-01

    Use of the fly to convert sewage sludge into nutrient-rich soil conditioner and amendment is an attractive approach for sludge bioconversion.During this process,fecal coliforms,an indicating pathogen,in sludge were reduced to 5.3 × 102 most probable number /g dry solid from initial 3.32 × 106 MPN/g dry solid.It was also found that the extract of larvae grown in sludge during bioconversion have an observable inhibitory effect against bacteria compared to larvae grown in wheat bran as measured by minimum bacterial concentration tests.In vitro antimicrobial assay tests over time also showed that the extract had strong inhibitory efficiencies of ca.99% against Bacillus cereus,Staphylococcus aureus,Escherichia coli,Pseudomonas aeruginosa,and Serratia marcescens,while the efficiency was 69% and 57% against Bacillus subtilis and Klebsiella pneumoniae,respectively.The observed pathogenic bacterial cell membrane damage was found to be responsible for the phenomenon mentioned above,with nuclear acids leaching out quickly and alkaline phosphatase increasing in the outer membrane,followed by an increase of β-galactosidase in the inner membrane.Clearly,housefly larvae extract from sewage sludge through bioconversion possesses antibacterial potency against pathogenic bacteria.

  6. THE OVERALL APPROACH TO THE OPTIMIZATION OF THE PRODUCTION TECHNOLOGY OF SHEET BLANKS

    Directory of Open Access Journals (Sweden)

    M. M. Moroz

    2009-06-01

    Full Text Available The technological process of cutting the sheet metal as a set of technological processes divided on subsets is considered. The classification of technological processes of preparation production and the criterion of optimality with the search purpose of optimum technological process of producing the sheet bars are offered.

  7. [Application of risk-based approach for determination of critical factors in technology transfer of production of medicinal products].

    Science.gov (United States)

    Beregovykh, V V; Spitskiy, O R

    2014-01-01

    Risk-based approach is used for examination of impact of different factors on quality of medicinal products in technology transfer. A general diagram is offered for risk analysis execution in technology transfer from pharmaceutical development to production. When transferring technology to full- scale commercial production it is necessary to investigate and simulate production process application beforehand in new real conditions. The manufacturing process is the core factorfor risk analysis having the most impact on quality attributes of a medicinal product. Further importantfactors are linked to materials and products to be handled and manufacturing environmental conditions such as premises, equipment and personnel. Usage of risk-based approach in designing of multipurpose production facility of medicinal products is shown where quantitative risk analysis tool RAMM (Risk Analysis and Mitigation Matrix) was applied.

  8. Development of New Materials and Technologies for Welding and Surfacing at Research and Production Center "Welding Processes and Technologies"

    Science.gov (United States)

    Kozyrev, N. A.; Kryukov, R. E.; Galevsky, G. V.; Titov, D. A.; Shurupov, V. M.

    2015-09-01

    The paper provides description of research into the influence of new materials and technologies on quality parameters of welds and added metal carried out at research and production center «Welding processes and technologies». New welding technologies of tanks for northern conditions are considered, as well as technologies of submerged arc welding involving fluxing agents AN - 348, AN - 60, AN - 67, OK. 10.71 and carbon-fluorine containing additives, new flux cored wires and surfacing technologies, teaching programs and a trainer for welders are designed.

  9. The technologies of zirconium production for nuclear fuel components in Ukraine

    International Nuclear Information System (INIS)

    Perspectives of development zirconium alloys and WWER-1000 assemble components production in Ukraine are considered. Basic technological production processes of zirconium alloys in conditions of Ukrainian enterprises and modern requirements are analyzed. The critical processes on technical and economic criteria are defined. The main directions of activity and steps on technological processes improvement for production quality providing are offered. (author)

  10. Microsoft Business Solutions-Axapta as a basis for automated monitoring of high technology products competitiveness

    Science.gov (United States)

    Tashchiyan, G. O.; Sushko, A. V.; Grichin, S. V.

    2015-09-01

    One of the conditions of normal performance of the Russian economy is the problem of high technology products competitiveness. Different tools of these products estimation are used nowadays, one of them is automated monitoring of the high technology products in mechanical engineering. This system is developed on the basis of “Innovator" software integrated in Microsoft Business Solutions-Axapta.

  11. Factors driving and restraining adoption of Automation technologies in Swedish wood product industry.

    OpenAIRE

    Mapulanga, Mwanza; Saladi, Praveen

    2016-01-01

    Swedish wood product industry contributes significantly to the economy of the country. This industry adds more value to the sawn timber produced in order to manufacture different wooden products. Companies in Swedish wood product industry are presently seen as underdeveloped in terms of investments and developments in automation technologies. Automation technologies are seen by companies as a solution for improving productivity, product quality, manufacturing cost reduction and ultimately imp...

  12. Proceedings of the Malaysian Science and Technology Congress '94: Vol. II - new products and processes

    International Nuclear Information System (INIS)

    New processes and products in the field of the Malaysian technology research were presented at the Science and Technology congress '94. Composite materials, semiconductors fabrication, optical fibers, zeolite properties etc. were discussed in 35 contributions

  13. Green technology foresight of products and materials - some reflections and results from an ongoing Danish project

    DEFF Research Database (Denmark)

    Jørgensen, Michael Søgaard; Pedersen, Thomas Thoning; Falch, Morten;

    2005-01-01

    The article presents some methodological and theoretical reflections and some preliminary results from a Danish Green Technology Foresight project about environmental friendly products and materials, where the environmental potentials and risks from three technology areas are analysed: nano- bio...

  14. The membrane technology of refining the water against from the oil products

    OpenAIRE

    Буртная, Инесса Анатольевна; Гачечиладзе, Отар Отарович; Литвиненко, Дария Виталиевна; Шафаренко, Николай Васильевич

    2012-01-01

    Implementation of nanotechnology has opened the brackets for created principal new technological solutions. The authors have presented the membrane technology of refining the water against from the oil products with following theirs fractional separating

  15. Convenient meat and meat products. Societal and technological issues.

    Science.gov (United States)

    Leroy, Frédéric; Degreef, Filip

    2015-11-01

    In past and contemporary foodscapes, meat and meat products have not only been following convenience trends, they have been at the heart of them. Historically, the first substantial demands for meat convenience must have been for the outsourcing of hunting or domestication, as well as slaughtering activities. In its turn, this prompted concerns for shelf-life stabilisation and the development of preservation strategies, such as meat fermentation. Demands for ease of preparation and consumption can be traced back to Antiquity but have gained in importance over the centuries, especially with the emergence of novel socio-cultural expectations and (perceived) time scarcity. Amongst other trends, this has led to the creation of ready meals and meat snacks and the expansion of urban fast food cultures. Additionally, contemporary requirements focus on the reduction of mental investments, via the "convenient" concealment of slaughtering, the optimisation of nutritional qualities, and the instant incorporation of more intangible matters, such as variety, hedonistic qualities, reassurance, and identity. An overview is given of the technological issues related to the creation of meat convenience, in its broadest sense, along with their societal implications. PMID:25656303

  16. A Diffusion Theory Model of Adoption and Substitution for Successive Generations of High-Technology Products

    OpenAIRE

    John A. Norton; Frank M. Bass

    1987-01-01

    This study deals with the dynamic sales behavior of successive generations of high-technology products. New technologies diffuse through a population of potential buyers over time. Therefore, diffusion theory models are related to this demand growth. Furthermore, successive generations of a technology compete with earlier ones, and that behavior is the subject of models of technological substitution. Building upon the Bass (Bass, F. M. 1969. A new-product growth model for consumer durables. M...

  17. 油气藏埋存二氧化碳生物转化甲烷的机理和应用研究进展%Research Progress on the Mechanism and Potential Application of CH4 Bioconversion from CO2 in Oil and Gas Reservoirs

    Institute of Scientific and Technical Information of China (English)

    魏小芳; 罗一菁; 刘可禹; 帅燕华

    2011-01-01

    The bioconversion of CH4 from the stored CO2 is a biotechnological solution that the injected CO2 is metabolized by indigenous microbes in depleted oil or gas reservoirs to produce CH4 by CO2 bioreduction pathway. It is potential applied and promising technology due to its environmental friendship for CO2 storage and sequestration, renewable energy of biogas CH4, extended oil and gas reservoirs development period, and the potential profit for enhanced gas or oil recovery. The CO2 Capture & Storage project and microbial diversity of reservoirs offer the solution feasibility. Hydrogenotrophic mesophilic or thermophilic methanogens are known to be common inhabitants in slightly saline formation water in oil and gas reservoirs. The distribution of CO2/H2 methanongens of biogas reservoirs changes with diagenetic stages. It has been shown that CO2can be potentially bioconverted to CH4 in reservoirs under certain conditions. However, oil and gas reservoirs are complicated systems and the bioconversion is constrained by the relationships among the methanogens, fermentative bacteria and hydrogen-producing bacteria. The methanogen community structure and the co-metabolization and competition between the two communities of Sulfate Reduction Bacteria ( SRB) and methanogens may also impact the CO2 reduction. Compared to the discovered knowledge that CO2 bioreduction pathway is permissible, the process may be quite complicated to be realized in reservoirs. It is difficult to realize the CO2 bioreduction pathway without synthetic H2 supply. It is still a big challenge for both microbiologists and petroleum engineers to realize CH4 bioconversion from CO2 by parameters control in reservoirs. At present, the CO2 reduction research is at experimental stage in the laboratory, the breakthrough is to activate the suited reservoirs microorganism consortium to realize the CH4 bioconversion in right way, to probe the profitable CH4 bioconversion rate and production velocity. Though the

  18. Pathways to Commercial Success: Technologies and Products Supported by the Hydrogen, Fuel Cells and Infrastructure Technologies Program

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2009-08-01

    This report documents the results of an effort to identify and characterize commercial and near-commercial (emerging) technologies and products that benefited from the support of the Hydrogen, Fuel Cells and Infrastructure Technologies Program and its predecessor programs within DOE's Office of Energy Efficiency and Renewable Energy.

  19. Bioconversion of renewable resources into lactic acid: an industrial view.

    Science.gov (United States)

    Yadav, A K; Chaudhari, A B; Kothari, R M

    2011-03-01

    Lactic acid, an anaerobic product of glycolysis, can be theoretically produced by synthetic route; however, it is commercially produced by homo-fermentative batch mode of operations. Factors affecting its production and strategies improving it are considered while devising an optimized protocol. Although a hetero-fermentative mode of production exists, it is rarely used for commercial production. Attempts to use Rhizopus sp. for lactic acid production through either hetero-fermentative or thermophilic conditions were not economical. Since almost 70% of the cost of its production is accounted by raw materials, R & D efforts are still focused to find economically attractive agri-products to serve as sources of carbon and complex nitrogen inputs to meet fastidious nutrient needs for microbial growth and lactic acid production. Therefore, need exists for using multi-pronged strategies for higher productivity. Its present production and consumption scenario is examined. Its optically active isomers and chemical structure permit its use for the production of several industrially important chemicals, health products (probiotics), food preservatives, and bio-plastics. In addition, its salts and esters appear to have a variety of applications. PMID:20476870

  20. Some issues of information technologies application in logistics of pharmaceutical industry product distribution

    Directory of Open Access Journals (Sweden)

    Andrushkiv, Bohdan

    2014-05-01

    Full Text Available The article deals with the ways of solving the problem of rapid, immediate and available mode of pharmaceutical product distribution with the help of contemporary information technologies application. The use of bar coding and RFID technologies (Radio Frequency Identification Tag in the process of pharmaceutical product transfer from supplier to consumer have been analyzed. The impact of contemporary information technologies on the product management optimization in pharmaceutical logistical supply chain have been demonstrated.

  1. Some issues of information technologies application in logistics of pharmaceutical industry product distribution

    OpenAIRE

    Andrushkiv, Bohdan; Palasiuk, Bohdan

    2014-01-01

    The article deals with the ways of solving the problem of rapid, immediate and available mode of pharmaceutical product distribution with the help of contemporary information technologies application. The use of bar coding and RFID technologies (Radio Frequency Identification Tag) in the process of pharmaceutical product transfer from supplier to consumer have been analyzed. The impact of contemporary information technologies on the product management optimization in pharmaceutical logistical...

  2. Computer-Aided Analysis of Patents for Product Technology Maturity Forecasting

    Science.gov (United States)

    Liang, Yanhong; Gan, Dequan; Guo, Yingchun; Zhang, Peng

    Product technology maturity foresting is vital for any enterprises to hold the chance for innovation and keep competitive for a long term. The Theory of Invention Problem Solving (TRIZ) is acknowledged both as a systematic methodology for innovation and a powerful tool for technology forecasting. Based on TRIZ, the state -of-the-art on the technology maturity of product and the limits of application are discussed. With the application of text mining and patent analysis technologies, this paper proposes a computer-aided approach for product technology maturity forecasting. It can overcome the shortcomings of the current methods.

  3. Lean Production and information technology : Connection or contradiction?

    NARCIS (Netherlands)

    Riezebos, Jan; Klingenberg, Warse; Hicks, Christian

    2009-01-01

    The principles of Lean Production have enabled organisations in the manufacturing and service sectors to significantly improve their competitiveness. The application of Lean principles, derived from the Toyota Production System has enabled many organisations to Simultaneously improve productivity, q

  4. Information technology in schools: Should the product be marked hazardous?

    Directory of Open Access Journals (Sweden)

    John Olson

    2005-10-01

    Full Text Available The power and the hazard go together. By means of ICT we can do more quickly and comprehensively what we could only do more slowly before. And if aspects of what we were doing before were problematic, they will be even more so thanks to the amplification provided by ICT. The amplifying power of ICT is one of the central themes of this paper. If instruction is routine and boring, computers can make it much more so. If products for schools were driven by commercial considerations before, they can be much more so with ICT - the investments are much higher. If schools had ways of monitoring teachers and children before, computers enhance that many times. If technologies were thought to drive what happens in schools before, ICT magnifies that potential many times. In short, computers allow us to do what we did before only more so - so if we did not do well before IT, we may well do worse with it. Or we may do better. We need to keep these questions open. The biggest danger is that in the rush to conform to visions of ICT we may stop asking them. We need a dialogue. The desire for dialogue has, however, frustrated many ICT advocates who see it as a form of resistance to change (Ameral, 1983; Papert, 2001; Yelland, 2002. From a philosophical point of view, we need a dialogue that considers the techniques of practices and the goods that such practices seek, as Macintyre (1981 and Strike (nd point out. Practices involve skills and techniques - which do not once and for all define the practice and which over time change the practice as the goals of practice - in this case teaching - change over time.In the first part of this paper I look at how ICT has come to play such a dominant role in schooling. Over the last 20 years we see a continuous press to adopt this technology. What we do not see is a debate about the plusses and minuses of computers in schools based on experience. This is a cause for concern. In the second part of the paper I look at what

  5. Managing a Single-Product Assemble-to-Order System with Technology Innovations

    OpenAIRE

    Susan H. Xu; Zhaolin Li

    2007-01-01

    We consider a multicomponent, single-product assemble-to-order (ATO) system that faces frequent, component-based technology innovations. For each component, there are two technologies with overlapping life cycles coexisting in the market. All cost parameters associated with each technology (procurement cost, salvage value, etc.) evolve dynamically. We investigate two technology-inventory coordination schemes, one is at the strategic level, where technology and inventory decisions are sequenti...

  6. Environmental benefits of advanced oil and gas exploration and production technology

    Energy Technology Data Exchange (ETDEWEB)

    None

    1999-10-01

    THROUGHOUT THE OIL AND GAS LIFE CYCLE, THE INDUSTRY HAS APPLIED AN ARRAY OF ADVANCED TECHNOLOGIES TO IMPROVE EFFICIENCY, PRODUCTIVITY, AND ENVIRONMENTAL PERFORMANCE. THIS REPORT FOCUSES SPECIFICALLY ON ADVANCES IN EXPLORATION AND PRODUCTION (E&P) OPERATIONS.

  7. Comparative evaluation by lifecycle and risk assessment of agrobiological and technological routes of production

    NARCIS (Netherlands)

    Moll, H.C.; Schoot Uiterkamp, A.J.M.

    1997-01-01

    The application of lifecycle and risk assessment methodologies for environmental assessment of agricultural products is growing and produces interesting results. This allows comparisons between agricultural and technological routes of production. An evaluation of such assessments provides increased

  8. The impact of information technology on productivity using structural equations technique in Iran Behnoush Company

    Directory of Open Access Journals (Sweden)

    Mina Beig

    2012-08-01

    Full Text Available Information technology plays an important role on increasing productivity in many organizations. The primary objective of the present survey is to study the impact of information technology on productivity and find a positive and significant relationship between these two factors. Structural equations technique and LISREL software are used for analysis of the questionnaires distributed among managers and some employees of Iran Behnoush Company. Organizations try to improve their performance by investment in information technology. However, many of the previous studies indicate insignificance of the impact of information technology on productivity of the organizations. The present survey studies the impact of information technology on organizations' productivity through the collected data from the above company. Results confirm existence of a positive relationship between information technology and productivity.

  9. Bioconversion of crude glycerol feedstocks into ethanol by Pachysolen tannophilus

    DEFF Research Database (Denmark)

    Liu, Xiaoying; Jensen, Peter Ruhdal; Workman, Mhairi

    2012-01-01

    Glycerol, the by-product of biodiesel production, is considered as a waste by biodiesel producers. This study demonstrated the potential of utilising the glycerol surplus through conversion to ethanol by the yeast Pachysolen tannophilus (CBS4044). This study demonstrates a robust bioprocess which...... was not sensitive to the batch variability in crude glycerol dependent on raw materials used for biodiesel production. The oxygen transfer rate (OTR) was a key factor for ethanol production, with lower OTR having a positive effect on ethanol production. The highest ethanol production was 17.5 g/L on 5% (v/v) crude...... glycerol, corresponding to 56% of the theoretical yield. A staged batch process achieved 28.1 g/L ethanol, the maximum achieved so far for conversion of glycerol to ethanol in a microbial bioprocess. The fermentation physiology has been investigated as a means to designing a competitive bioethanol...

  10. Development of a yeast strain for xylitol production without hydrolysate detoxification as part of the integration of co-product generation within the lignocellulosic ethanol process.

    Science.gov (United States)

    Huang, Chiung-Fang; Jiang, Yi-Feng; Guo, Gia-Luen; Hwang, Wen-Song

    2011-02-01

    The present study verified an applicable technology of xylitol bioconversion as part of the integration of co-product generation within second-generation bioethanol processes. A newly isolated yeast strain, Candida tropicalis JH030, was shown to have a capacity for xylitol production from hemicellulosic hydrolysate without detoxification. The yeast gives a promising xylitol yield of 0.71 g(p) g(s)(-1) from non-detoxified rice straw hydrolysate that had been prepared by the dilute acid pretreatment under severe conditions. The yeast's capacity was also found to be practicable with various other raw materials, such as sugarcane bagasse, silvergrass, napiergrass and pineapple peel. The lack of a need to hydrolysate detoxification enhances the potential of this newly isolated yeast for xylitol production and this, in turn, has the capacity to improve economics of lignocellulosic ethanol production. PMID:21095119

  11. A review of the technology and process on integrated circuits failure analysis applied in communications products

    Science.gov (United States)

    Ming, Zhimao; Ling, Xiaodong; Bai, Xiaoshu; Zong, Bo

    2016-02-01

    The failure analysis of integrated circuits plays a very important role in the improvement of the reliability in communications products. This paper intends to mainly introduce the failure analysis technology and process of integrated circuits applied in the communication products. There are many technologies for failure analysis, include optical microscopic analysis, infrared microscopic analysis, acoustic microscopy analysis, liquid crystal hot spot detection technology, optical microscopic analysis technology, micro analysis technology, electrical measurement, microprobe technology, chemical etching technology and ion etching technology. The integrated circuit failure analysis depends on the accurate confirmation and analysis of chip failure mode, the search of the root failure cause, the summary of failure mechanism and the implement of the improvement measures. Through the failure analysis, the reliability of integrated circuit and rate of good products can improve.

  12. Systems Engineering: When Knowledge and Technology are the Product

    Science.gov (United States)

    Young, Larry A.

    2008-01-01

    The interdependence of technology development, conceptual design, and system analysis is examined in the context of an overall systems engineering set of processes. In particular, the role of technology portfolio management - from initial investment decision-making all the way through technology maturation and transfer to industry - is emphasized. Additionally, the role of state of the art assessments is considered in terms of planning and tracking progress towards the development of enhanced predictive capabilities.

  13. Use of conservation technologies in meat proccesins and produktion of meat products

    OpenAIRE

    KUBECOVÁ, Dagmar

    2015-01-01

    This thesis deals with the use of conservation technologies in meat processing and production of meat products. The aim is to gather available information on methods to extend the life of the issue of meat and meat products. In her first retrieval character are generally mentioned meanings conservation technologies and described the principles of conservation, protection and legal requirements associated with it. It further describes the various methods of preserving meat and meat products an...

  14. Lifecycle Assessment of Biofuel Production from Wood Pyrolysis Technology

    Science.gov (United States)

    Manyele, S. V.

    2007-01-01

    Due to a stronger dependency on biomass for energy, there is a need for improved technologies in biomass-to-energy conversion in Tanzania. This paper presents a life cycle assessment (LCA) of pyrolysis technology used for conversion of wood and wood waste to liquid biofuel. In particular, a survey of environmental impacts of the process is…

  15. TECHNOLOGY OF PRODUCTION OF METAL-CONTAINING SLAGS

    Directory of Open Access Journals (Sweden)

    O. M. Djakonov

    2015-11-01

    Full Text Available Technological operations of mechanical squeezing of water-based final tailings from lubricoolants, washing of metal-abrasive final tailings on oil lubricoolants and their magnetic separation are offered and investigated. Advantages of technology washing and magnetic separation of final tailings are ecological cleanliness of the process, high degree of clearing of metal powder and qualitative division of mixture component.

  16. Rotating cross-arm technology for blackberry production

    Science.gov (United States)

    The rotating cross-arm (RCA) technology combines a unique trellis design and cane training protocol. Developed over the last two decades, this technology is beginning to have an impact on the blackberry (Genus Rubus, subgenus Rubus) industry in the United States (US). It has been successfully tran...

  17. Augmented Reality as a Technology Bringing Interactivity to Print Products

    DEFF Research Database (Denmark)

    Seisto, Anu; Aikala, Maiju; Vatrapu, Ravi;

    2012-01-01

    Augmented Reality (AR) is the technique of superimposing virtual objects in the user's view of the real world, providing a novel visualization technology for a wide range of applications. Hence, it is a user interface technology that combines the perception of real environments with digital...

  18. Research on Key Technology of New Concept Tyre Building Production Line

    Directory of Open Access Journals (Sweden)

    Menglong Cao

    2012-07-01

    Full Text Available Tyre building production line gradually transits from stand-alone production to combined production mode. The transformation of work mode from traditional serial intermittent to the parallel continuous has been the key technology research of tire production enterprise. And intelligent robots and other automated equipment have been the first choice of the tyre enterprise’s production line. Considering the combination of the equipment between upper and lower processes in tyre production line, the manual operations in some processes replaced by intelligent robots will improve production efficiency of tyre production enterprise, and will make outstanding contribution in reduce process losses and reduce production costs. This article studies on the key technology of combined application in production line, and makes simulation comparison for the same technical process that using different scheme, to prove the priorities and superiorities of combined production line relatives to the traditional production mode.

  19. Consumer Value perceptions of food products from emerging processing technologies

    DEFF Research Database (Denmark)

    Perrea, Toula; Grunert, Klaus G; Krystallis Krontalis, Athanasios

    2015-01-01

    -technology counterparts, who ‘allow’ more room for cultural discrepancies to impact on their CV perceptions. Overall, findings support the view that CV perceptions in the context of food produced by means of emerging processing technologies can be successfully analyzed using a multidimensional conceptualization, where CV......Through a qualitative research approach, the present paper aims to explore the range and type of ‘values’ and ‘costs’ in formulating overall Consumer Value (CV) perceptions, in association with two emerging processing technologies that at the outset are neither distinctly positive nor negative...... in the eyes of consumers, in two culturally variant contexts, namely a Western society where technology is often met with skepticism (i.e., the UK); and a non-Western society where technology plays a reassuring role regarding concerns about food safety and quality (i.e., China). Results reveal that the most...

  20. PARTIAL PURIFICATION OF THE ENZYME INVOLVED IN BIOCONVERSION OF ARTEANNUIN B TO ARTEMISNIN FROM A STREPTOMYCES SP.

    Directory of Open Access Journals (Sweden)

    PARCH SREENIVASA RAO

    2006-01-01

    Full Text Available Artemisinin and its derivatives are the most rapidly acting antimalarial drugs effective against falciparum malaria including multidrug resistant infection. An enzyme catalyzing the bioconversion of arteannin-B, a biogenetic precursor of artemisinin to the later is partiallt purified from a soil isolate, Streptomyces sp. Crude cell free extract of a 72 h old culture of Streptomyces sp. on incubation with the precursor arteannuin B had shown bioconversion of 17.64% to artemisinin on molor basis with a specific activity of 0.11 units/mg. Partial pruification of the enzyme by ammonium sulfate precipitation and ion exchange chromatography has resulted in .5.60 fold increase of specific activity with 64.71% of bioconversion

  1. COST-BENEFIT ANALYSIS OF BIOCONVERSION NEUFCHATEL WHEY INTO RECTIFIED ETHANOL AND ORGANIC LIQUID FERTILIZER IN SEMI PILOT SCALE

    Directory of Open Access Journals (Sweden)

    Gemilang Lara UTAMA

    2015-10-01

    Full Text Available Aims of the study was to determine the cost-benefit analysis in neufchatel whey bioconversion into rectified ethanol and organic liquid fertilizer. Bioconversion whey into rectified ethanol and organic liquid fertilizer has shown great potential as a way to reduce the pollution resulting from cheese-making process. Semi pilot scale experiment was done to ferment 5 L neufchatel whey using 5% K. lactis at 33°C for 24 h in semi anaerobic plastic container without agitation and then distilled into 96.2% purity. Data collected and analyzed descriptively related to benefit cost ratio/BCR, net present value/NPV and internal rate returns/IRR. The result showed that semi pilot scale bioconversion of neufchatel whey resulting in 106.42 ml rectified ethanol and 4404.22 ml distillery residue. Economic benefit could achieved by the support of distillery residue sales as organic liquid fertilizer.

  2. Sustainable Production of Cannabinoids with Supercritical Carbon Dioxide Technologies

    NARCIS (Netherlands)

    Perrotin-Brunel, H.

    2011-01-01

    This thesis concerns the production of natural compounds from plant material for pharmaceutical and food applications. It describes the production (extraction and isolation) of cannabinoids, the active components present in cannabis. Many cannabinoids have medicinal properties but not all cannabinoi

  3. Technology, labor characteristics and wage-productivity gaps

    OpenAIRE

    Ilmakunnas, Pekka; Maliranta, Mika

    2003-01-01

    We use plant-level linked employer-employee data from Finland to estimate production functions where also employee characteristics (average age and education, and sex composition) are included. We also estimate similar models for wages to examine whether wages are based on productivity. Our aim is to explain productivity besides manufacturing, also in services. For the service sector plants, no data on capital input, working hours, or value added is available, and productivity has to be measu...

  4. Isolation and Characterization of a Novel Rebaudioside M Isomer from a Bioconversion Reaction of Rebaudioside A and NMR Comparison Studies of Rebaudioside M Isolated from Stevia rebaudiana Bertoni and Stevia rebaudiana Morita

    OpenAIRE

    Prakash, Indra; Bunders, Cynthia; Devkota, Krishna; Charan, Romila; Ramirez, Catherine; Priedemann, Christopher; Markosyan, Avetik

    2014-01-01

    A minor product, rebaudioside M2 (2), from the bioconversion reaction of rebaudioside A (4) to rebaudioside D (3), was isolated and the complete structure of the novel steviol glycoside was determined. Rebaudioside M2 (2) is considered an isomer of rebaudioside M (1) and contains a relatively rare 1→6 sugar linkage. It was isolated and characterized with NMR (1H, 13C, COSY, HSQC-DEPT, HMBC, 1D-TOCSY, and NOESY) and mass spectral data. Additionally, we emphasize the importance of 1D and 2D NMR...

  5. Investigation of the available technologies and their feasibility for the conversion of food waste into fish feed in Hong Kong.

    Science.gov (United States)

    Cheng, Jack Y K; Lo, Irene M C

    2016-04-01

    Food waste is the largest constituent of municipal solid waste in Hong Kong, but food waste recycling is still in its infancy. With the imminent saturation of all landfill sites by 2020, multiple technologies are needed to boost up the food waste recycling rate in Hong Kong. Conversion of food waste into animal feeds is prevalent in Japan, South Korea, and Taiwan, treating over 40 % of their recycled food waste. This direction is worth exploring in Hong Kong once concerns over food safety are resolved. Fortunately, while feeding food waste to pigs and chickens poses threats to public health, feeding it to fish is considered low risk. In order to examine the feasibility of converting food waste into fish feed in Hong Kong, this paper investigates the market demand, technical viability, feed quality, regulatory hurdles, and potential contribution. The results show that a significant amount of food waste can be recycled by converting it into fish feed due to the enormous demand from feed factories in mainland China. Two conversion technologies, heat drying and black soldier fly bioconversion, are studied extensively. Black soldier fly bioconversion is preferable because the end-product, insect powder, is anticipated to gain import approval from mainland China. The authors suggest further research efforts to speed up its application for food waste recycling in urban cities. PMID:25982983

  6. Coupling the Alkaline-Surfactant-Polymer Technology and The Gelation Technology to Maximize Oil Production

    Energy Technology Data Exchange (ETDEWEB)

    Malcolm Pitts; Jie Qi; Dan Wilson; Phil Dowling; David Stewart; Bill Jones

    2005-12-01

    Performance and produced polymer evaluation of four alkaline-surfactant-polymer projects concluded that only one of the projects could have benefited from combining the alkaline-surfactant-polymer and gelation technologies. Cambridge, the 1993 Daqing, Mellott Ranch, and the Wardlaw alkaline-surfacant-polymer floods were studied. An initial gel treatment followed by an alkaline-surfactant-polymer flood in the Wardlaw field would have been a benefit due to reduction of fracture flow. Numerical simulation demonstrated that reducing the permeability of a high permeability zone of a reservoir with gel improved both waterflood and alkaline-surfactant-polymer flood oil recovery. A Minnelusa reservoir with both A and B sand production was simulated. A and B sands are separated by a shale layer. A sand and B sand waterflood oil recovery was improved by 196,000 bbls or 3.3% OOIP when a gel was placed in the B sand. Alkaline-surfactant-polymer flood oil recovery improvement over a waterflood was 392,000 bbls or 6.5% OOIP. Placing a gel into the B sand prior to an alkaline-surfactant-polymer flood resulted in 989,000 bbl or 16.4% OOIP more oil than only water injection. A sand and B sand alkaline-surfactant-polymer flood oil recovery was improved by 596,000 bbls or 9.9% OOIP when a gel was placed in the B sand.

  7. The role of technological innovation in creating radically new product meanings

    DEFF Research Database (Denmark)

    Krabbe, Anders Dahl

    2015-01-01

    This paper explores the concept of technological epiphanies from the literature on design driven innovation. A technological epiphany is defined as a product innovation that can be considered radical, both in terms of technology as well as the meaning and experiences it creates through its design...

  8. The develop of technology production in Spain; El impulso de la produccion tecnologica en Espana

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez Labastida, J. M.

    2007-07-01

    Spanish Science and Technology system has been very effective in scientific production but not in technology transfer to economic activities. A cultural change is needed to improve the knowledge transfer mechanisms. Some specific actions are proposed in order to develop useful instruments to achieve a better technology transfer system. (Author)

  9. 76 FR 4641 - Children's Products Containing Lead; Technological Feasibility of 100 ppm for Lead Content...

    Science.gov (United States)

    2011-01-26

    ... the Federal Register (75 FR 43942) requesting comments and information regarding the technological... COMMISSION Children's Products Containing Lead; Technological Feasibility of 100 ppm for Lead Content; Notice... of meeting the 100 ppm lead content limit for children's products and associated public...

  10. Saccharomyces pastorianus as cell factory to improve production of fructose 1,6-diphosphate using novel fermentation strategies

    Directory of Open Access Journals (Sweden)

    Chiara Schiraldi

    2015-08-01

    Full Text Available Enzymatic phosphorylation of glucose with inorganic phosphate, mediated by permeabilized yeast cells, is one of the methods commonly used to manufacture fructose 1,6-diphosphate, a compound of pharmaceutical interest. This process requires high concentrations of yeast active biomass, that is the catalyst of bioconversion of glucose and inorganic phosphate into fructose 1,6-diphosphate. In this study we firstly describe the high cell density production of a brewer's Saccharomyces strain (Saccharomyces pastorianus DSM 6581, focusing on the optimization of medium composition and exploiting fed-batch strategies and novel technologies based on membrane bioreactors. In fed-batch fermentation an appropriate exponential feed profile was set up to maintain the glucose concentration in the bioreactor below 0.9 g·L-1, thus yielding reproducibly 58 g dry weight biomass per liter in 80 h fermentation, improving eight-fold batch processes output. In addition a higher final biomass density was reached when implementing a microfiltration strategy (70 g dry weight biomass, that led to a productivity of 2.1 gcdw·L-1·h-1, 2.4-fold the fed-batch one. Successively, this biomass was opportunely permeabilized and proved capable of catalyzing the bioconversion of glucose into fructose 1,6-diphosphate. Acting on critical parameters of the bioconversion (substrates molar ratio, catalyst concentration and permeabilization agent, fructose 1,6-diphosphate was produced, after 3 h of process, at 56.3 ± 1 g·L-1 with a yield of 80% of the theoretical value.

  11. Technology Exploitation Paths: Combining Technological and Complementary Resources in New Product Development and Licensing

    NARCIS (Netherlands)

    Bianchi, Mattia; Frattini, Frederico; Lejarraga, Jose; Di Minin, Alberto

    2014-01-01

    Technological resources in the form of patents, trade secrets, and know-how have become key assets for modern enterprises. This paper addresses a critical issue in technology and innovation management, namely, the commercial exploitation of technological resources resulting from research and develop

  12. Tartronate semialdehyde reductase defines a novel rate-limiting step in assimilation and bioconversion of glycerol in Ustilago maydis.

    Directory of Open Access Journals (Sweden)

    Yanbin Liu

    Full Text Available BACKGROUND: Glycerol is a by-product of biodiesel production. Currently, it has limited applications with low bioconversion efficiency to most metabolites reported. This is partly attributed to the poor knowledge on the glycerol metabolic pathway in bacteria and fungi. METHODOLOGY/PRINCIPAL FINDINGS: We have established a fast screening method for identification of genes that improve glycerol utilization in Ustilago maydis. This was done by comparing the growth rates of T-DNA tagged mutant colonies on solid medium using glycerol as the sole carbon source. We present a detailed characterization of one of the mutants, GUM1, which contains a T-DNA element inserted into the promoter region of UM02592 locus (MIPS Ustilago maydis database, MUMDB, leading to enhanced and constitutive expression of its mRNA. We have demonstrated that um02592 encodes a functional tartronate semialdehyde reductase (Tsr1, which showed dual specificity to cofactors NAD(+ and NADP(+ and strong substrate specificity and enantioselectivity for D-glycerate. Improved glycerol assimilation in GUM1 was associated with elevated expression of tsr1 mRNA and this could be phenocopied by over-expression of the gene. Glycolipid accumulation was reduced by 45.2% in the knockout mutant whereas introduction of an extra copy of tsr1 driven by the glyceraldehyde phosphate dehydrogenase promoter increased it by 40.4%. CONCLUSIONS/SIGNIFICANCE: Our results demonstrate that tartronate semialdehyde reductase (TSR plays an important role in glycerol assimilation in U. maydis and defines a novel target in genetic engineering for improved conversion of glycerol to higher value products. Our results add significant depth to the understanding of the glycerol metabolic pathway in fungi. We have demonstrated, for the first time, a biological role of a eukaryotic TSR.

  13. HAWAII PUBLIC OPINION ON AGRICULTURAL PRODUCTS DERIVED FROM GENETICALLY MODIFIED ORGANISM (GMO) TECHNOLOGY

    OpenAIRE

    Ferguson, Carol; Chan-Halbrendt, Catherine; Wen, Na

    2002-01-01

    This article studied Hawaii public opinion on agricultural products and processes using GMO technology. We used telephone to interview the people in each island of Hawaii. We found out that the favorability rating toward the attributes of GMO technological application differ based on the nature of GMO benefits. And sociodemographic variables played a significant difference in the preference of using GMO technology on producing agricultural products and process. Most significant associations w...

  14. Overview on Technology of Degrading and Eliminating Mycotoxins in Agro-products and its Application

    Institute of Scientific and Technical Information of China (English)

    Yun; LI; Xiulan; SUN

    2013-01-01

    Based on the perspective of risk control,this article introduces related technology of eliminating mycotoxins in agricultural products and the current situation of application,including traditional physical,chemical and biological methods as well as the contemporary situation of relatively advanced technology at home and abroad,which provides reference for the policy-making and technology application of mycotoxin control in agro-products in China.

  15. Progress of Production Technology of Clean Steel in Baosteel

    Institute of Scientific and Technical Information of China (English)

    CuiJian

    2005-01-01

    The progress in control technology of carbon, nitrogen, total oxygen, phosphorus, and stdphur as well as inclusions in steel is discussed at Baosteel. The purity obtained in IF steel and pipeline steel is introduced.

  16. Natural Gas Based Electricity Production and Low Carbon Technology Options

    Science.gov (United States)

    Concerns regarding air quality, global climate change, and the national energy security impacts of the intensive use of fossil fuels and their environmental impacts in the power generation sector have raised interest in alternative low carbon electricity generation technology and...

  17. TECHNOLOGICAL REGIMES OF PLANT RAW MATERIAL PROCESSING FOR PACKAGE PRODUCTION

    Directory of Open Access Journals (Sweden)

    I. I. Karpunin

    2011-01-01

    Full Text Available The executed investigations have made it possible to determine hemicellulose content in cellulose  and substantiate a perspective technology of package while using the obtained cellulose.

  18. Information Technology Outsourcing and The Impact to End User Productivity

    OpenAIRE

    Wah, Tuck Fui

    2005-01-01

    Information Technology outsourcing have been growing at a phenomenal rate for the past few years. Companies have started focusing on core competencies and outsource the less critical activities of their value chains to outside vendors or suppliers. The often cited benefits of outsourcing are cost savings, operational expertise, staffing issues, flexibility to increase or decrease IT capacity. This study looks at the impact of Information Technology outsourcing at the people that actually uses...

  19. Hybrid microcircuit technology handbook materials, processes, design, testing and production

    CERN Document Server

    Licari, James J

    1998-01-01

    The Hybrid Microcircuit Technology Handbook integrates the many diverse technologies used in the design, fabrication, assembly, and testing of hybrid segments crucial to the success of producing reliable circuits in high yields. Among these are: resistor trimming, wire bonding, die attachment, cleaning, hermetic sealing, and moisture analysis. In addition to thin films, thick films, and assembly processes, important chapters on substrate selections, handling (including electrostatic discharge), failure analysis, and documentation are included. A comprehensive chapter of design guidelines will

  20. Printing versus coating - What will be the future production technology for printed electronics?

    Energy Technology Data Exchange (ETDEWEB)

    Glawe, Andrea; Eggerath, Daniel; Schäfer, Frank [KROENERT GmbH and Co KG, Schuetzenstrasse 105, 22761 Hamburg (Germany)

    2015-02-17

    The market of Large Area Organic Printed Electronics is developing rapidly to increase efficiency and quality as well as to lower costs further. Applications for OPV, OLED, RFID and compact Printed Electronic systems are increasing. In order to make the final products more affordable, but at the same time highly accurate, Roll to Roll (R2R) production on flexible transparent polymer substrates is the way forward. There are numerous printing and coating technologies suitable depending on the design, the product application and the chemical process technology. Mainly the product design (size, pattern, repeatability) defines the application technology.

  1. Printing versus coating - What will be the future production technology for printed electronics?

    Science.gov (United States)

    Glawe, Andrea; Eggerath, Daniel; Schäfer, Frank

    2015-02-01

    The market of Large Area Organic Printed Electronics is developing rapidly to increase efficiency and quality as well as to lower costs further. Applications for OPV, OLED, RFID and compact Printed Electronic systems are increasing. In order to make the final products more affordable, but at the same time highly accurate, Roll to Roll (R2R) production on flexible transparent polymer substrates is the way forward. There are numerous printing and coating technologies suitable depending on the design, the product application and the chemical process technology. Mainly the product design (size, pattern, repeatability) defines the application technology.

  2. Bioconversion of corncob to hydrogen using anaerobic mixed microflora

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Chunmei [Department of Chemistry, Zhengzhou University, Daxue Road, Zhengzhou 450052 (China); Biotechnology Department, Zhengzhou College of Animal Husbandry Engineering, Zhengzhou 450011 (China); Zhang, Shufang; Fan, Yaoting; Hou, Hongwei [Department of Chemistry, Zhengzhou University, Daxue Road, Zhengzhou 450052 (China)

    2010-04-15

    Biohydrogen production from corncob using natural anaerobic microflora was reported for the first time. The optimum pretreatment condition for the corncob was determined to be 100 C, 30 min, and 1% HCl (w/w). The maximum hydrogen yield of 107.9 ml/g-TVS and hydrogen production rate of 4.20 ml/g-TVS h{sup -1} was obtained under the condition of 10 g/l substrate concentration and initial pH 8.0. Butyrate and acetate were the dominant metabolic by-products of hydrogen fermentation. Chemical composition analysis, Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) were used to study the mechanism of degrading corncob for hydrogen production. The amorphous domains of cellulose and hemicellulose were hydrolyzed into fermentable saccharides through acid pretreatment and the microorganisms had a devastating effect on the crystallinity of the cellulose. The hydrogen yield from pretreated corncob was much higher than from raw corncob. Therefore, the acid pretreatment played a crucial role on hydrogen production from corncob. (author)

  3. Comparison of different cellulolytic fungi for bioconversion of apple distillery waste

    Energy Technology Data Exchange (ETDEWEB)

    Friedrich, J.; Cimerman, A.; Perdih, A.

    1986-08-01

    The suitability of three ascomycetous fungi, Aspergillus niger, A. awamori and Trichoderma reesei, as well as two basidiomycetes, Pleurotus ostreatus and Phanerochaete chrysosporium, for bioconversion of apple distillery slop was compared. Trichoderma and Phanerochaete degraded raw fibres by 20%, producing filter cakes with 17% to 22% raw protein contents. Aspergillus spp. were superior in filtration time and COD reduction and were of the same efficiency in protein synthesis as Trichoderma and Phanerochaete, but did not degrade fibres. Pleurotus ostreatus did not degrade lignin under fermentation conditions used and could not compete with other fungi due to its slower growth.

  4. Enhancing Food Safety and Productivity: Technology Use in the Canadian Food Processing Industry

    OpenAIRE

    Sabourin, David; Baldwin, John R.

    2002-01-01

    This paper examines the factors contributing to the adoption of advanced technologies in the Canadian food-processing sector. The numbers of technologies used by a plant is found to be highly correlated with expected gains in firm performance. The benefits of enhanced food safety and quality, as well as productivity improvements, are closely associated with technology use. Impediments that negatively affect technology use include software costs, problems with external financing, lack of cash ...

  5. SCENARIO ANALYSIS OF TECHNOLOGY PRODUCTS WITH AN AGENT-BASED SIMULATION AND DATA MINING FRAMEWORK

    OpenAIRE

    AMIT SHINDE; MOEED HAGHNEVIS; Janssen, Marco A.; GEORGE C. RUNGER; MANI JANAKIRAM

    2013-01-01

    A framework is presented to simulate and analyze the effect of multiple business scenarios on the adoption behavior of a group of technology products. Diffusion is viewed as an emergent phenomenon that results from the interaction of consumers. An agent-based model is used in which potential adopters of technology product are allowed to be influenced by their local interactions within the social network. Along with social influence, the effect of product features is important and we ascribe f...

  6. Technology obtaining of nitrogen fertilizer from the calcium is containing waste of production of calcium saltpetre

    OpenAIRE

    Власян, Світлана Варужанівна; Шестозуб, Анатолій Борисович; Волошин, Микола Дмитрович

    2013-01-01

    The new technology of obtaining nitrogen fertilizer from calcium-containing sludge of calcium saltpeter production is considered in the paper. The main objective of the research is the development of processing technology of sludge of calcium saltpeter production into alkaline nitrogen fertilizer, analysis of the composition of initial material and finished product, testing of fertilizer by means of vegeta­tive studies and determination of expenditure of drying agent that is exhaust gases of ...

  7. The environmentally friendly technology for bio fuel production

    International Nuclear Information System (INIS)

    Full text: Bio fuel production and use have been discussed this time in EC and in Latvia as alternative energy sources. The national resources allow producing liquid fuels - bio diesel and bi oethanol from rape seeds and grain correspondingly. Liquid bio fuels can be recommended especially for auto transport in big towns to reduce the pollution of air. A system for environmentally friendly production of bio fuel from agricultural raw materials has been developed, which permit a complex utilization of byproducts an wastes for obtaining of valuable food-stuffs and industrial products, providing the agricultural production requirements and supporting with local mineral fertilizers. Such a bio fuel production includes the agricultural and industrial productions in a united biotechnological system. Production objects of system interact: the products, by-products and wastes from one object are used as raw materials, auxiliary materials or heat carriers in other system's objects. This integrated agro-industrial production system would allow the production of feeds and chemical products, along with bio fuels. In this work, a model of a system for a conventional administrative rural region is presented, exemplified with the case of Latvia. The model is developed for three forms of bio fuel production, i.e. ethanol, bio diesel and biogas as local energy source. Bio diesel is produced using ethanol as transesterifying agent of rape-seed oil fatty acids. This bio diesel is a blend of rape-seed oil fatty acid ethyl esters (REE) and consists solely from renewable raw materials. The capacity of distillery of system is 40 million litters per year and bio diesel 35000 ton. Important for agriculture is protein reach press cakes the byproduct from bio diesel production (66000 t/y). This byproduct can be exported as well. Biogas reactors of system can be used for utilization of wastes from town if necessary. Recommended bio system occupates up to 150.000 ha of agriculture lands

  8. New Product Development: Can Technique Substitute for Technology?

    Science.gov (United States)

    Meyers, Barbara E.

    1984-01-01

    Overview of research techniques involved in gathering information on current products that can provide input into new product development highlights consumer purchase and use patterns. Comparison of mail questionnaires, telephone surveys, focus group sessions, and in-person interviews notes type of data, timing, relative costs, and advantages and…

  9. Innovation Capabilities: Technology Use, Productivity Growth and Business Performance: Evidence from Canadian Technology Surveys

    OpenAIRE

    Gellatly, Guy; Baldwin, John R.

    2007-01-01

    This paper summarizes the results of several research studies conducted by the Micro-economic Analysis Division of Statistics Canada that investigate the impact of advanced technology use on business performance. These studies combine establishment-level survey data on advanced technology practices with longitudinal data that measure changes in relative performance. Together, these studies provide strong evidence that technology strategies have considerable bearing on competitive outcomes aft...

  10. Lab-scale Technology for Biogas Production from Lignocellulose Wastes

    Directory of Open Access Journals (Sweden)

    Lukáš Krátký

    2012-01-01

    Full Text Available Currently-operating biogas plants are based on the treatment of lignocellulose biomass, which is included in materials such as agriculture and forestry wastes, municipal solid wastes, waste paper, wood and herbaceous energy crops. Lab-scale biogas technology was specially developed for evaluating the anaerobic biodegrability and the specific methane yields of solid organic substrates. This technology falls into two main categories – pretreatment equipments, and fermentation equipments. Pretreatment units use physical principles based on mechanical comminution (ball mills, macerator orhydrothermal treatment (liquid hot water pretreatment technology. The biochemical methane potential test is used to evaluate the specific methane yields of treated or non-treated organic substrates. This test can be performed both by lab testing units and by lab fermenter.

  11. Development of stable isotope separation technology for radioisotope production

    International Nuclear Information System (INIS)

    The ultimate goal of this project is to construct the domestic production system of stable isotopes O-18 and Tl-203 used as target materials in accelerator for the production of medical radioisotopes F-18 and Tl-201, respectively. In order to achieve this goal, diode laser spectroscopic analytical system was constructed and automatic measurement computer software for the direct analysis of H216O/H218O ratio were developed. Distillation process, laser process, and membrane diffusion process were analyzed for the evaluation of O-18 production. And electromagnetic process, plasma process, and laser process were analyzed for the evaluation of Tl-203 production. UV laser system, IR laser system, and detailed system Tl-203 production were designed. Finally, current and future worldwide demand/supply of stable isotopes O-18 and Tl-203 were estimated

  12. Resource sharing in libraries concepts, products, technologies, and trends

    CERN Document Server

    Breeding, Marshall

    2014-01-01

    Supplementing your local collection through resource sharing is a smart way to ensure your library has the resources to satisfy the needs of your users. Marshall Breeding's new Library Technology Report explores technologies and strategies for sharing resources, helping you streamline workflows and improve resource-sharing services by covering key strategies like interlibrary loan, consortial borrowing, document delivery, and shared collections. You'll also learn about such trends and services as:OCLC WorldCat Resource Sharing, and other systems that facilitate cooperative, reciprocal lendingS

  13. Bioconversion of coal-derived synthesis gas to liquid fuels. Final report, September 29, 1992--December 27, 1994

    Energy Technology Data Exchange (ETDEWEB)

    Jain, M.K.; Worden, R.M.; Grethlein, H.E.

    1995-01-15

    The proposed research project consists of an integrated, two-stage fermentation and a highly energy-efficient product separation scheme. In the first fermentation, Butyribacterium methylotrophicum converts carbon monoxide (CO) into butyric acid and acetic acids which are then converted into butanol, ethanol, and a small amount of acetone in the second stage fermentation by Clostridium acetobutylicum. An advanced separation system process, based on pervaporation, removes the alcohols from the fermentation broth as they are formed, along with some of the hydrogen sulfide (H{sub 2}S), to minimize possible inhibition of the fermentations. This bioconversion process offers a critical advantage over conventional, catalytic processes for synthesis gas conversion: the microorganisms are several orders of magnitude more sulfur tolerant than metallic catalysts. The catalysts require sulfur removal to the parts per million level, while the microorganisms are unaffected by H{sub 2}S and carbonyl sulfide (COS) at one part per hundred--roughly the composition of sulfur in raw synthesis gas. During the two-year course of this project, the following major objectives have been accomplished: demonstrated long-term cell recycle of continuous fermentation of synthesis gas; demonstrated cell immobilization of Butyribacterium methylotrophicum; identified trickle-bed reactor as a viable alternative fermentation method; modulated metabolic pathways to increase C4 formation during synthesis gas fermentation; recovered carbon and electrons from H{sub 2} and CO{sub 2} with pathway modulation for increased C4 production; developed bacterial strains with improved selectivity for butyrate fermentation; demonstrated two-stage CO to alcohol fermentation; and concentrated alcohol from solventogenic fermentation by pervaporation.

  14. Bioconversion of methane to lactate by an obligate methanotrophic bacterium

    OpenAIRE

    Henard, Calvin A.; Holly Smith; Nancy Dowe; Marina G. Kalyuzhnaya; Philip T. Pienkos; Guarnieri, Michael T.

    2016-01-01

    Methane is the second most abundant greenhouse gas (GHG), with nearly 60% of emissions derived from anthropogenic sources. Microbial conversion of methane to fuels and value-added chemicals offers a means to reduce GHG emissions, while also valorizing this otherwise squandered high-volume, high-energy gas. However, to date, advances in methane biocatalysis have been constrained by the low-productivity and limited genetic tractability of natural methane-consuming microbes. Here, leveraging rec...

  15. Bioconversion of methane to lactate by an obligate methanotrophic bacterium

    Science.gov (United States)

    Henard, Calvin A.; Smith, Holly; Dowe, Nancy; Kalyuzhnaya, Marina G.; Pienkos, Philip T.; Guarnieri, Michael T.

    2016-01-01

    Methane is the second most abundant greenhouse gas (GHG), with nearly 60% of emissions derived from anthropogenic sources. Microbial conversion of methane to fuels and value-added chemicals offers a means to reduce GHG emissions, while also valorizing this otherwise squandered high-volume, high-energy gas. However, to date, advances in methane biocatalysis have been constrained by the low-productivity and limited genetic tractability of natural methane-consuming microbes. Here, leveraging recent identification of a novel, tractable methanotrophic bacterium, Methylomicrobium buryatense, we demonstrate microbial biocatalysis of methane to lactate, an industrial platform chemical. Heterologous overexpression of a Lactobacillus helveticus L-lactate dehydrogenase in M. buryatense resulted in an initial titer of 0.06 g lactate/L from methane. Cultivation in a 5 L continuously stirred tank bioreactor enabled production of 0.8 g lactate/L, representing a 13-fold improvement compared to the initial titer. The yields (0.05 g lactate/g methane) and productivity (0.008 g lactate/L/h) indicate the need and opportunity for future strain improvement. Additionally, real-time analysis of methane utilization implicated gas-to-liquid transfer and/or microbial methane consumption as process limitations. This work opens the door to develop an array of methanotrophic bacterial strain-engineering strategies currently employed for biocatalytic sugar upgrading to “green” chemicals and fuels. PMID:26902345

  16. Bioconversion of coal derived synthesis gas to liquid fuels

    Science.gov (United States)

    Jain, M. K.; Worden, R. M.; Grethlein, A.

    1994-07-01

    The overall objective of the project is to develop an integrated two-stage fermentation process for conversion of coal-derived synthesis gas to a mixture of alcohols. This is achieved in two steps. In the first step, Butyribacterium methylotrophicum converts carbon monoxide (CO) to butyric and acetic acids. Subsequent fermentation of the acids by Clostridium acetobutylicum leads to the production of butanol and ethanol. The tasks for this quarter were: development/isolation of superior strains for fermentation of syngas; evaluation of bioreactor configuration for improved mass transfer of syngas; recovery of carbon and electrons from H2-CO2; initiation of pervaporation for recovery of solvents; and selection of solid support material for trickle-bed fermentation. Technical progress included the following: butyrate production was enhanced during H2/CO2 (50/50) batch fermentation; isolation of CO-utilizing anaerobic strains is in progress; pressure (15 psig) fermentation was evaluated as a means of increasing CO availability; polyurethane foam packing material was selected for trickle bed solid support; cell recycle fermentation on syngas operated for 3 months. Acetate was the primary product at pH 6.8; trickle bed and gas lift fermentor designs were modified after initial water testing; and pervaporation system was constructed (No alcohol selectivity was shown with the existing membranes during initial start-up).

  17. Bioconversion of methane to lactate by an obligate methanotrophic bacterium.

    Science.gov (United States)

    Henard, Calvin A; Smith, Holly; Dowe, Nancy; Kalyuzhnaya, Marina G; Pienkos, Philip T; Guarnieri, Michael T

    2016-01-01

    Methane is the second most abundant greenhouse gas (GHG), with nearly 60% of emissions derived from anthropogenic sources. Microbial conversion of methane to fuels and value-added chemicals offers a means to reduce GHG emissions, while also valorizing this otherwise squandered high-volume, high-energy gas. However, to date, advances in methane biocatalysis have been constrained by the low-productivity and limited genetic tractability of natural methane-consuming microbes. Here, leveraging recent identification of a novel, tractable methanotrophic bacterium, Methylomicrobium buryatense, we demonstrate microbial biocatalysis of methane to lactate, an industrial platform chemical. Heterologous overexpression of a Lactobacillus helveticus L-lactate dehydrogenase in M. buryatense resulted in an initial titer of 0.06 g lactate/L from methane. Cultivation in a 5 L continuously stirred tank bioreactor enabled production of 0.8 g lactate/L, representing a 13-fold improvement compared to the initial titer. The yields (0.05 g lactate/g methane) and productivity (0.008 g lactate/L/h) indicate the need and opportunity for future strain improvement. Additionally, real-time analysis of methane utilization implicated gas-to-liquid transfer and/or microbial methane consumption as process limitations. This work opens the door to develop an array of methanotrophic bacterial strain-engineering strategies currently employed for biocatalytic sugar upgrading to "green" chemicals and fuels. PMID:26902345

  18. TECHNOLOGY FOR PRODUCTION OF PROTEIN-CONTAINING RAW MATERIALS FROM THE PRODUCTS OF SUNFLOWER SEEDS

    Directory of Open Access Journals (Sweden)

    Shchekoldina T. V.

    2015-05-01

    Full Text Available Currently, secondary resources of vegetable raw materials are widely used in solving the food, environmental and energy issues, as well as an additional source of substances of natural origin. A significant amount of secondary resources is produced during the processing of sunflower seeds - the main oilseed Kuban. Fats industry, while processing seeds, mainly extracts only one component - vegetable oil and is having a huge amount of meal, which is mainly used for agricultural purposes. Valuable property of sunflower meal is that it is high in protein, low cost and lack of toxic and anti-nutrients. Favorable amino acid composition determines the viability of recovering proteins from sunflower meal. Proteins were extracted from sunflower meal with a dispersing agent which may be water, sodium salts, alkalis, acids, or any organic solvent, followed by precipitation of the protein at the isoelectric point with hydrochloric acid. However, this protein has a high content of phenolic compounds, which gives it a dark color. The high concentration of chlorogenic acid in sunflower meal and its ability to form a dark colored complex with proteins limits the use of sunflower proteins in the food industry. All known methods of protein purification products from phenolic compounds, in particular chlorogenic acids, are mainly aimed at reducing the use of solvents and washing using membrane technology. However, in most cases, their use is either inadequate due to removal of phenolic compounds or decreasing the nutritional and biological value of the obtained product due to the toxicity of the solvent used, and an inability to completely remove it from the protein

  19. A Firm Level Study of Information Technology Productivity in Europe Using Financial and Market Based Measures

    Directory of Open Access Journals (Sweden)

    Alan Peslak

    2004-05-01

    Full Text Available For many years, business has invested significant resources in information technology, hardware, software, and manpower. The Productivity Paradox is the seeming lack of productivity gains despite the increased investment in IT. For many years the existence of a Productivity Paradox has been the subject of research interest. Conflicting results have been obtained from a variety of data sets. Until this time however there has been no study that has investigated European companies’ use of information technology and its impact on productivity. The objective of this study was to investigate information technology productivity with a new data set from a European published source, and measuring productivity using both market and financial based measures. Results of the study indicated that information technology did have a consistent positive impact on firm level productivity in Europe for the years 1996, 1997, and 1998. Both market and financial based productivity measures provided consistent positive significant returns with regard to IT productivity. The major contribution of the study is that it provides an analysis of the impact of European information technology on firm and economic productivity.

  20. Analysing Production Technology and Risk in Organic and Conventional Dutch Arable Farming using Panel Data

    NARCIS (Netherlands)

    Gardebroek, C.; Chavez Clemente, M.D.; Oude Lansink, A.G.J.M.

    2010-01-01

    Abstract This paper compares the production technology and production risk of organic and conventional arable farms in the Netherlands. Just–Pope production functions that explicitly account for output variability are estimated using panel data of Dutch organic and conventional farms. Prior investig

  1. Technology versus Agro-Ecology in Designing Vegetable Production Systems in the Netherlands

    NARCIS (Netherlands)

    Haan, de J.J.; Sukkel, W.; Stilma, E.S.C.

    2010-01-01

    Current open field vegetable production systems in the Netherlands do not meet market and societal demands. These demands could not be fulfilled by adapting current production systems. Other kinds of production systems are needed and therefore two types of systems are designed by 1) a technological

  2. Context and semantics for knowledge management technologies for personal productivity

    CERN Document Server

    Davies, John

    2011-01-01

    Information overload, constant task switching, and failure to share knowledge within organisations impedes individual and organisational effectiveness. This book describes research to provide better information tools for improved user productivity.

  3. Coupling the Alkaline-Surfactant-Polymer Technology and The Gelation Technology to Maximize Oil Production

    Energy Technology Data Exchange (ETDEWEB)

    Malcolm Pitts; Jie Qi; Dan Wilson; David Stewart; Bill Jones

    2005-10-01

    Gelation technologies have been developed to provide more efficient vertical sweep efficiencies for flooding naturally fractured oil reservoirs or more efficient areal sweep efficiency for those with high permeability contrast ''thief zones''. The field proven alkaline-surfactant-polymer technology economically recovers 15% to 25% OOIP more oil than waterflooding from swept pore space of an oil reservoir. However, alkaline-surfactant-polymer technology is not amenable to naturally fractured reservoirs or those with thief zones because much of injected solution bypasses target pore space containing oil. This work investigates whether combining these two technologies could broaden applicability of alkaline-surfactant-polymer flooding into these reservoirs. A prior fluid-fluid report discussed interaction of different gel chemical compositions and alkaline-surfactant-polymer solutions. Gel solutions under dynamic conditions of linear corefloods showed similar stability to alkaline-surfactant-polymer solutions as in the fluid-fluid analyses. Aluminum-polyacrylamide, flowing gels are not stable to alkaline-surfactant-polymer solutions of either pH 10.5 or 12.9. Chromium acetate-polyacrylamide flowing and rigid flowing gels are stable to subsequent alkaline-surfactant-polymer solution injection. Rigid flowing chromium acetate-polyacrylamide gels maintained permeability reduction better than flowing chromium acetate-polyacrylamide gels. Silicate-polyacrylamide gels are not stable with subsequent injection of either a pH 10.5 or a 12.9 alkaline-surfactant-polymer solution. Chromium acetate-xanthan gum rigid gels are not stable to subsequent alkaline-surfactant-polymer solution injection. Resorcinol-formaldehyde gels were stable to subsequent alkaline-surfactant-polymer solution injection. When evaluated in a dual core configuration, injected fluid flows into the core with the greatest effective permeability to the injected fluid. The same gel stability

  4. The role of technological innovation in creating radically new product meanings

    DEFF Research Database (Denmark)

    Krabbe, Anders Dahl

    2015-01-01

    This paper explores the concept of technological epiphanies from the literature on design driven innovation. A technological epiphany is defined as a product innovation that can be considered radical, both in terms of technology as well as the meaning and experiences it creates through its design....... Three different ways in which technology can function as an enabler for the innovation of product meanings are explored and a fourth is found is found during the analysis. The paper concludes by suggesting directions for future research....

  5. Technology of production of beef of special quality

    OpenAIRE

    Pavlovski Zlatica; Aleksić Stevica; Cmiljanić Ratimir; Škrbić Zdenka; Lukić Miloš; Stojanović Ljiljana

    2004-01-01

    By applying the method of industrial crossing of Domestic spotted cattle of lower production performances with French fattening/meat breeds (Charolais and Limousine) young cattle is obtained with better fattening traits as well as traits of carcass and meat quality. Application of the method of industrial crossing of Domestic spotted cattle of lower production performances, beside significant increase of the quantity of high quality beef meat, would also have positive effect on the economical...

  6. Innovation in Feed Technology for Self Sufficiency in Poultry Production

    OpenAIRE

    Budi Tangendjaja

    2007-01-01

    Indonesia is self sufficient in poultry production to meet the local demand for broiler and egg, mainly derived from modern poultry rather than the local village chicken. Feed may contribute up to 70% of total cost of poultry production. Poultry feed is formulated using least cost feed formulation technique to meet the bird requirement and composed by several ingredients both locally available and imported materials. Feed ingredients are classified based on energy sources, protein sources, ag...

  7. Hurdle technology to ensure the safety of seafood products

    OpenAIRE

    Leroi, Francoise; Amarita, Felix; Arboleya, Juan Carlos; Bjørkevoll, Ingebright; Cruz, Ziortza; Dousset, Xavier; Izurieta, E; Joffraud, Jean-Jacques; Lasagabaster, Amaïa; Lauzon, Hélène-liette; Lorentzen, G.; Martínez De Marañón, Iñigo; Matamoros, Sébastien; Miranda, I.; Nuin, Maider

    2008-01-01

    The microbial safety and stability of most food, are based on an application of preservative factors called hurdles. Each hurdle implies putting microorganisms in a hostile environment, which inhibits their growth or causes their death (Leistner, 2000). Some of those hurdles have been empirically used for years to stabilize meat, fish, milk and vegetables. This sometimes leads to completely different product with its own new taste characteristics. Examples of hurdles in marine products are sa...

  8. The production technology of shale fly ash fired brick

    Institute of Scientific and Technical Information of China (English)

    JiaoYuhua

    2005-01-01

    When we construct the shale fly-ash fired brick production line, the first of all is that we must explored mineral raw material in detailed, and prove up the exploitable storage,so that the storage of raw material can supply the production line adequately when the factory has been set up.The second is that we must analyze the raw material completely. According to the raw material basic properties,we can decide process of the brick making.

  9. Incorporation of genetic technologies associated with applied reproductive technologies to enhance world food production

    Science.gov (United States)

    Animal breeding and reproductive physiology have been closely related throughout the history of animal production science. Artificial insemination provides the best method of increasing the influence of sires with superior genetics to improve production traits. Multiple ovulation embryo transfer (MO...

  10. Elaboration of the technology of forming a conical product of sheet metal

    Directory of Open Access Journals (Sweden)

    W. Matysiak

    2010-01-01

    Full Text Available The work presents a general knowledge about spinning draw pieces of sheets, one of multi-operational processes of spinning a sheet metal conical product without machining. The objective of the work was to elaborate both the technology of forming conical products of sheet metal and execution of technological tests as well as to determine the technological parameters for the process of spinning a conical insert. As a result of the investigations, the products with improved mechanical properties, stricter execution tolerance and low roughness have been obtained. The series of 200 prototype conical inserts for the shipbuilding industry have been made.

  11. Prospects of Applying Feed Processing Technologies Based on Industrial Plantation

    Directory of Open Access Journals (Sweden)

    Simon Petrus Ginting

    2012-06-01

    Full Text Available The potency of plantation sectors (palm oil, sugar cane and cacao as alternative feed resources for ruminants has been acknowledged since 20 – 25 years ago. However, the level of utilization of these feeds in small ruminant production system has been very low and sporadic. The typical chemical and physical characteristics of most of those feedstuffs required some steps of processing in order to improve their nutritional quality and to ease their handling. Small ruminants, like sheep and goats have relatively higher metabolic energy requirement per kg BW and anatomically have lower gut capacity to process lignocelluose materials compared to large ruminants. It is, therefore, these animals nutritionally face more constraints in handling lignocellulose and bulky materials mostly found in industrial by products or crop-residues from plantations. Physical processes (chopping, phyiscal separation, hydrothermal, chemical processes (ammoniation, hydrolyses and oxidative treatments and bio-conversions (fermentation, ensiling have been recommended as alternative technologies in maximizing the utilization of those feedstuffs for small ruminant animals. The principal mechanisms of those treatments are: (i breaking the linkages between structural carbohydrate and lignin so that it could be easily digested by the animal enzyme systems and (ii preserving the material from being spoilage due to its high moisture content or for feed stocking purposes. Priorities for choosing the most effective processing technology for implementation or adoption is depent largely on the scale of feed production. Ammoniation, chopping, physical separation, ensiling or bio-conversion are several technologies mostly recommended for small scale operation in situ. These alternative technologies should be able to be adopted by small-holders living around the plantation area. The commercial or large scale feed production could be implemented by the plantation industry by giving high

  12. Dark fermentative bioconversion of glycerol to hydrogen by Bacillus thuringiensis.

    Science.gov (United States)

    Kumar, Prasun; Sharma, Rishi; Ray, Subhasree; Mehariya, Sanjeet; Patel, Sanjay K S; Lee, Jung-Kul; Kalia, Vipin C

    2015-04-01

    Biodiesel manufacturing units discharge effluents rich in glycerol. The need is to convert crude glycerol (CG) into useful products such as hydrogen (H2). Under batch culture, Bacillusthuringiensis EGU45 adapted on pure glycerol (PG, 2% v/v) resulted in an H2 yield of 0.646 mol/mol glycerol consumed on minimal media (250 mL) supplemented with 1% ammonium nitrate at 37°C over 4 days. Here, H2 constituted 67% of the total biogas. Under continuous culture, at 2 days of hydraulic retention time, B. thuringiensis immobilized on ligno-cellulosic materials (banana leaves - BL, 10% v/v) resulted in a H2 yield of 0.386 mol/mol PG consumed. On CG, the maximal H2 yield of 0.393 mol/mol feed consumed was recorded. In brief, B. thuringiensis could transform CG, on limited resources - minimal medium with sodium nitrate, by immobilizing them on cheap and easily available biowaste, which makes it a suitable candidate for H2 production on a large scale. PMID:25686722

  13. Bioconversion of lignin model compounds with oleaginous Rhodococci

    Energy Technology Data Exchange (ETDEWEB)

    Kosa, Matyas; Ragauskas, Arthur J. [Georgia Institute of Technology, Atlanta, GA (United States). Dept. of Chemistry and Biochemistry

    2012-01-15

    Although economically efficient biomass conversion depends on the utilization of the complete cell wall (biorefinery concept), including polysaccharides and lignin, current biofuels research concentrate mostly on cellulose conversion, while lignin is viewed as a side-product that is used primarily as a thermal resource. Microbiological conversion of lignin is almost exclusive to fungi, usually resulting in increased cell mass and lignolytic enzymes. Some bacteria can also degrade lignin-related compounds using the {beta}-ketoadipate pathway; for example, Rhodococcus opacus DSM 1069 can degrade coniferyl alcohol and grow on it as sole carbon source. Moreover, this strain belongs to the actinomycetes group that is also known for oleaginous species with lipid accumulation over 20%. Present work shows that R. opacus DSM 1069 and PD630 strains under nitrogen limiting conditions can convert lignin model compounds into triacylglycerols, also known as neutral lipids. 4-Hydroxybenzoic and vanillic acid lignin model compounds were used as sole carbon sources, and after brief adaptation periods, the cells not only began growing but accumulated lipids to the level of oleaginicity. These lipids were extracted for transesterification and analysis of fatty acid methyl esters showed good composition for biodiesel applications with no aromatics. Furthermore, the two strains showed distinct substrate metabolism and product profiles. (orig.)

  14. MARKETING TECHNOLOGICAL INNOVATIONS IN BANKING PRODUCTS AND SERVICES

    Directory of Open Access Journals (Sweden)

    VALERIA ARINA BALACEANU

    2011-04-01

    Full Text Available Success depends on the ability of financial institutions to assess the opportunities of new markets, attracting customers from competitors and improve the effectiveness of marketing strategies. Marketers have to understand that the most effective approach is based on an analysis of needs of different market segments, designing the marketing mix and implementation of marketing programs targeted to selected segments. The allocation of financial and banking institutions of important resources for new technology to replace expensive labor, led to technical progress in the field that accelerates business processes and keep control of large databases on client operations, working in worldwide. The emphasis of the competition fund, the European single market is a challenge both in banking and for organizations involved in harmonization of standards and legislation, which is why banking institutions adapt to new technologies is very important to customers.

  15. Development of Production Technologies for Universal Hydraulic Cement (UHC)

    OpenAIRE

    Syal, Dr. S K

    2013-01-01

    It is based on our recent approaches of Modern construction materials utilizing existing wastes such as fly ashes slags and to save energies by technological developments.The article is essential in the direction of new materials called Durable Integral polymer-pigmented cement concretes. UHC is calcium aluminate cements with natural properties of durable earth materials. It is a step towards Research for Innovation in Indian Industries

  16. Use of PolyJet technology in manufacture of new product

    Directory of Open Access Journals (Sweden)

    B. Vaupotič

    2006-08-01

    Full Text Available Purpose: The paper presents an approach to rapid manufacture of new product by PolyJet technology.Design/methodology/approach: Resolution, accuracy, speed and materials are basic factors of rapidprototyping, which mutually exclude themselves on most devices. PolyJet procedure is a technology, whichsuccessfully simultaneously solves some of these problems.Findings: The manufacture of product by PolyJet technology has proved to be a good approach. All advantagesoffered by that technology have been applied and all requirements of the new product have been satisfied. Bytesting on the first prototype the adequacy of the product shape has been established and the prototype has beensuitably adapted. As the data on the product shape are in the computerized form, the changes on the productare made simply.Research limitations/implications: Regrettably, the models from rapid prototyping do not allow majorloadings and exposure to exacting conditions, since the materials used are in the development stage and aregradually gaining strength and toughness. Our product is not exposed to major mechanical loadings; thereforethe process as such is adequate.Practical implications: By this technology very sophisticated and complicated products can be made. It assuresthe manufacture of nested structures and mechanisms already assembled. The price is influenced only by theproduct size. The shape complexity is not important at all.Originality/value: : In case of a small quantity of products, not exposed to major mechanical loadings, themodels made by PolyJet process are usable also as final products.

  17. Biofuels Fuels Technology Pathway Options for Advanced Drop-in Biofuels Production

    Energy Technology Data Exchange (ETDEWEB)

    Kevin L Kenney

    2011-09-01

    Advanced drop-in hydrocarbon biofuels require biofuel alternatives for refinery products other than gasoline. Candidate biofuels must have performance characteristics equivalent to conventional petroleum-based fuels. The technology pathways for biofuel alternatives also must be plausible, sustainable (e.g., positive energy balance, environmentally benign, etc.), and demonstrate a reasonable pathway to economic viability and end-user affordability. Viable biofuels technology pathways must address feedstock production and environmental issues through to the fuel or chemical end products. Potential end products include compatible replacement fuel products (e.g., gasoline, diesel, and JP8 and JP5 jet fuel) and other petroleum products or chemicals typically produced from a barrel of crude. Considering the complexity and technology diversity of a complete biofuels supply chain, no single entity or technology provider is capable of addressing in depth all aspects of any given pathway; however, all the necessary expert entities exist. As such, we propose the assembly of a team capable of conducting an in-depth technology pathway options analysis (including sustainability indicators and complete LCA) to identify and define the domestic biofuel pathways for a Green Fleet. This team is not only capable of conducting in-depth analyses on technology pathways, but collectively they are able to trouble shoot and/or engineer solutions that would give industrial technology providers the highest potential for success. Such a team would provide the greatest possible down-side protection for high-risk advanced drop-in biofuels procurement(s).

  18. Bioconversion of methyl ricinoleate to 4-hydroxy-decanoic acid and to gamma-decalactone by yeasts of the genus Candida.

    Science.gov (United States)

    Endrizzi, A; Belin, J M

    1995-01-01

    The capacity of several strains of yeasts to do the bioconversion of methyl ricinoleate into gamma-decalactone, was studied in a medium containing this methylic ester of fatty acid as sole carbon source. Amongst the strains which are able to do this bioconversion, two types of behaviour are observed: some of the strains produce gamma-decalactone during all the incubation in bioconversion medium while others produce this aroma compound very quickly and then consume it fast too. The tested strains produce at the same time gamma-decalactone and the corresponding acid form (4-hydroxy-decanoic acid), and this, in variable proportions. PMID:8568639

  19. Bioconversion of lignocellulosic biomass to xylitol: An overview.

    Science.gov (United States)

    Venkateswar Rao, Linga; Goli, Jyosthna Khanna; Gentela, Jahnavi; Koti, Sravanthi

    2016-08-01

    Lignocellulosic wastes include agricultural and forest residues which are most promising alternative energy sources and serve as potential low cost raw materials that can be exploited to produce xylitol. The strong physical and chemical construction of lignocelluloses is a major constraint for the recovery of xylose. The large scale production of xylitol is attained by nickel catalyzed chemical process that is based on xylose hydrogenation, that requires purified xylose as raw substrate and the process requires high temperature and pressure that remains to be cost intensive and energy consuming. Therefore, there is a necessity to develop an integrated process for biotechnological conversion of lignocelluloses to xylitol and make the process economical. The present review confers about the pretreatment strategies that facilitate cellulose and hemicellulose acquiescent for hydrolysis. There is also an emphasis on various detoxification and fermentation methodologies including genetic engineering strategies for the efficient conversion of xylose to xylitol. PMID:27142629

  20. Key technology of ship product data exchange based on STEP

    Institute of Scientific and Technical Information of China (English)

    SHI Dong-yan; YANG Jing-tong; QIU Chang-hua; XUE Kai

    2005-01-01

    In this paper, in order to implement the share and exchange of the ship product data, a new kind of global function model is established. By researching on the development and trend of the application of ship STEP (standard for the exchange of product model data) standards, the AIM (application interpreted model) of AP216 is developed and improved as an example, aiming at the characteristics and practical engineering of ship industry in our country. The data exchange interfaces are formed based on STEP in the CAD/CAM for the ship by all function modules and shared databases under the global function model. The share and exchange of all information and data are solved in the design, manufacture and all life-cycle of ship products among different computer application systems. The research work makes foundation for the ship industry informatization.

  1. Data Interpretation Technology for Continuous Measurement Production Profile Logging

    Directory of Open Access Journals (Sweden)

    Junfeng Liu

    2014-05-01

    Full Text Available Up till now, there is no production logging data interpretation module in CIFLog, which is the 3rd generation well-logging software platform in China. So the situation has a strong impact on its promotion and utilization. In this paper, firstly, the authors introduce the characteristics of the existing and mature logging interpretation software, and design the data interpretation module functions for continuous measurement production profile logging based on JAVA-NetBeans. Secondly, the calculation methods of apparent fluid velocity, holdup, superficial velocity and flow rate of each phase are presented. Thirdly, eight module functions including wellbore message, curve value, physical parameters, and parameter settings are described. Finally, the authors has analyzed three-phase flow production profile logging data of X well using this module, which includes seven parameters of continuous measurement, and provided the result chart and table. In a word, the practice has proved that the module application effect is good.

  2. Natural radionuclide distribution in phosphate fertilizer and superphosphate production technology

    International Nuclear Information System (INIS)

    The obtained data on the natural radionuclide distribution by phosphate fertilizer and superphosphate production process stages testify to phosphate fertilizer enrichment 2-4 times in relation to initial ore, depending in the raw material used. In this case uranium and thorium series element concentration value (in equilibrium with their decomposition products), proposed as a regulating one in phosphorus-containing fertilizers, is not achieved. However, the fact of lurichment as it is and the enrichment factor, stated in the course of the work, should be taken into account for evaluation of phosphorite new deposit raw material with higher concentrations of natural radionuclides. Natural radionuclide separation in the enrichment process and superphosphate production is not revealed

  3. Development of Continuous Electrical Steel and Casting Technology of New Products

    Institute of Scientific and Technical Information of China (English)

    WANG Li-tao; DENG Chen-hong; DONG Mei; SHI Li-fa; ZHANG Jian-ping

    2012-01-01

    The development of continuous casting technology of electrical steel was analyzed. The technologies and products characteristics of conventional continuous casting, thin slab continuous casting and rolling, middle thin slab continuous casting and rolling and twin-roll thin strip were compared. Conventional continuous casting technology was widely adopted in producing electrical steel, thin slab continuous casting and rolling and middle thin slab contin- uous casting and roiling technology industrialized electrical steel~ and study of twin-roll thin strip casting technology was focused on fundamental experiments.

  4. Development of technology for production of reduced fat processed cheese

    Directory of Open Access Journals (Sweden)

    Adriana Torres Silva e Alves

    2015-09-01

    Full Text Available An increasing share of foods with reduced fat has been observed in the diet of the Brazilian population, a trend also seen in many other countries. In this context, our-aim was to study the manufacturing parameters and to develop a process to produce a spreadable processed cheese (requeijão cremoso with reduced fat content. In the first stage of this study, modifications were performed in the traditional manufacturing process of requeijão cremoso with regular fat content to produce a reduced fat product. During the second stage of this study, two reduced fat cheeses, with and withoutthe addition of whey protein concentrate (WPC were developed, both using JOHA S9 and JOHA PZ as emulsifying salts, resulting in four different formulations. The amounts of cream and water used in both products were calculated in order to obtain a final product with 10% fat and 33% total solids. The product which presented the best results was produced with curd obtained by direct acidification of skimmed milk heated at 68-70 ºC, using 1,3% emulsifying salt JOHA S9 in the melting process and 2% WPC 34% as a partial fat substitute, both calculated as a percentage of the amountof curd used as raw material. It was also important to add WPC 34% to the product at the first cooking step of the process (70 ºC, in order to obtain a final product withthe typical spreadable texture of the traditional requeijão cremoso.

  5. Solder technology in the manufacturing of electronic products

    Energy Technology Data Exchange (ETDEWEB)

    Vianco, P.T.

    1993-08-01

    The electronics industry has relied heavily upon the use of soldering for both package construction and circuit assembly. The solder attachment of devices onto printed circuit boards and ceramic microcircuits has supported the high volume manufacturing processes responsible for low cost, high quality consumer products and military hardware. Defects incurred during the manufacturing process are minimized by the proper selection of solder alloys, substrate materials and process parameters. Prototyping efforts are then used to evaluate the manufacturability of the chosen material systems. Once manufacturing feasibility has been established, service reliability of the final product is evaluated through accelerated testing procedures.

  6. Microfluidics: A Groundbreaking Technology for PET Tracer Production?

    Directory of Open Access Journals (Sweden)

    Björn Wängler

    2013-07-01

    Full Text Available Application of microfluidics to Positron Emission Tomography (PET tracer synthesis has attracted increasing interest within the last decade. The technical advantages of microfluidics, in particular the high surface to volume ratio and resulting fast thermal heating and cooling rates of reagents can lead to reduced reaction times, increased synthesis yields and reduced by-products. In addition automated reaction optimization, reduced consumption of expensive reagents and a path towards a reduced system footprint have been successfully demonstrated. The processing of radioactivity levels required for routine production, use of microfluidic-produced PET tracer doses in preclinical and clinical imaging as well as feasibility studies on autoradiolytic decomposition have all given promising results. However, the number of microfluidic synthesizers utilized for commercial routine production of PET tracers is very limited. This study reviews the state of the art in microfluidic PET tracer synthesis, highlighting critical design aspects, strengths, weaknesses and presenting several characteristics of the diverse PET market space which are thought to have a significant impact on research, development and engineering of microfluidic devices in this field. Furthermore, the topics of batch- and single-dose production, cyclotron to quality control integration as well as centralized versus de-centralized market distribution models are addressed.

  7. A Technical and Economic Review of Solar Hydrogen Production Technologies

    Science.gov (United States)

    Wilhelm, Erik; Fowler, Michael

    2006-01-01

    Hydrogen energy systems are being developed to replace fossil fuels-based systems for transportation and stationary application. One of the challenges facing the widespread adoption of hydrogen as an energy vector is the lack of an efficient, economical, and sustainable method of hydrogen production. In the short term, hydrogen produced from…

  8. Disrupting Faculty Service: Using Technology to Increase Academic Service Productivity

    Science.gov (United States)

    Burnett, Perry; Shemroske, Kenneth; Khayum, Mohammed

    2014-01-01

    Scholarly attention regarding faculty involvement has primarily focused on faculty opinions of shared governance and faculty influence on institutional decision-making. There has been limited attention given to academic service productivity and the effectiveness of traditional approaches toward the accomplishment of faculty service requirements.…

  9. Endogeneous price leadership in a duopoly: equal products, unequal technology

    NARCIS (Netherlands)

    K.G. Dastidar; D. Furth

    2005-01-01

    In the present paper we study endogenous price leadership in the context of a homogeneous product Bertrand duopoly model in which the firms have different, strictly convex cost functions. In such a framework it is well known that a simultaneous move price choice game does not have an equilibrium in

  10. Micropropagation technology in early phases of commercial seed potato production

    NARCIS (Netherlands)

    Pruski, K.

    2001-01-01

    Key words:Solanum tuberosum L., in vitro plantlet, in vitro tuberization, microtubers, minitubers, tuber bulking, photoperiod, in vitro storage, jasmonates, micropropagation, seed production. Micropropagation ( in vitro propagation) has been introduced to seed potato productio

  11. Oil and hydrocarbon spill bioremediation product and application technologies

    OpenAIRE

    Deibert, Mark Richard

    1993-01-01

    This thesis document was issued under the authority of another institution, not NPS. At the time it was written, a copy was added to the NPS Library collection for reasons not now known. It has been included in the digital archive for its historical value to NPS. Not believed to be a CIVINS (Civilian Institutions) title. This manuscript was prepared for use by U.S. Navy personnel to increase the awareness of the use of microbes and related technology associated in the remediation of ...

  12. Technology and manufacturing process selection the product life cycle perspective

    CERN Document Server

    Pecas, Paulo; Silva, Arlindo

    2014-01-01

    This book provides specific topics intending to contribute to an improved knowledge on Technology Evaluation and Selection in a Life Cycle Perspectives. Although each chapter will present possible approaches and solutions, there are no recipes for success. Each reader will find his/her balance in applying the different topics to his/her own specific situation. Case studies presented throughout will help in deciding what fits best to each situation, but most of all any ultimate success will come out of the interplay between the available solutions and the specific problem or opportunity the reader is faced with.

  13. Blending technology and teamwork for successful management of product recalls.

    Science.gov (United States)

    Frush, Karen; Pleasants, Jane; Shulby, Gail; Hendrix, Barbara; Berson, Brooke; Gordon, Cynthia; Cuffe, Michael S

    2009-12-01

    Patient safety programs have been developed in many hospitals to reduce the risk of harm to patients. Proactive, real-time, and retrospective risk-reduction strategies should be implemented in hospitals, but patient safety leaders should also be cognizant of the risks associated with thousands of products that enter the hospital through the supply chain. A growing number of recalls and alerts related to these products are received by health care facilities each year, through a recall process that is fraught with challenges. Despite the best efforts of health care providers, weaknesses and gaps in the process lead to delays, fragmentation, and disruptions, thus extending the number of days patients may be at risk from potentially faulty or misused products. To address these concerns, Duke Medicine, which comprises an academic medical center, two community hospitals, outlying clinics, physicians' offices, and home health and hospice, implemented a Web-based recall management system. Within three months, the time required to receive, deliver, and close alerts decreased from 43 days to 2.74 days. To maximize the effectiveness of the recall management process, a team of senior Duke Medicine leaders was established to evaluate the impact of product recalls and alerts on patient safety, to evaluate response action plans, and to provide oversight of patient and provider communication strategies. Alerts are now communicated more effectively and responded to in a more consistent and global manner. This comprehensive approach to product recalls is a critical component of a broader Duke Medicine strategy to improve patient safety. PMID:19940578

  14. Productive Love Promotion Via Affective Technology: An Approach Based On Social Psychology And Philosophy

    Directory of Open Access Journals (Sweden)

    Ramon Solves Pujol

    2010-01-01

    Full Text Available This paper proposes the use of social psychological and philosophical foundations for designing affective technology that promotes the experience of love. The adopted theoretical basis is the concept of productive love, which is heavily based on Enrich Fromm but also includes theories and scientific findings of numerous psychoanalysts, social psychologists, and philosophers. We conducted a review of the theory about the nature of love and found that social psychological and philosophical approaches differ regarding peoples' understandings. The findings were used to elaborate eight principles of productive love. Based on these principles, we derived criteria for designing affective technology when the objective is to promote productive love. We reviewed the existent studies on affective technologies and implemented the criteria into a system design, the Pictures' Call. A prototype of the system was pretested to illustrate how productive love technology could be based on established criteria.

  15. DEVELOPING OF A TECHNOLOGY OF CHILDREN'S SAUSAGE PRODUCTS TO PREVENT THE LACK OF IRON CONDITIONS

    Directory of Open Access Journals (Sweden)

    Timoshenko N. V.

    2014-10-01

    Full Text Available In the article the results of working out the technology of children's sausage products are presented. The results of organoleptic, physical and chemical structure of ready-to-use goods and periods of storage are discussed

  16. Technological aspects of teacher training in culture of information products criation in further education system

    OpenAIRE

    Кондратьева, И. П.

    2013-01-01

    Submission is devoted to urgent educational problem of teacher training in culture of information products criation. Theses include the concept of the culture, describe the educational technology stages of teacher training in further education system.

  17. 78 FR 37570 - Certain Products Containing Interactive Program Guide and Parental Control Technology; Notice of...

    Science.gov (United States)

    2013-06-21

    ... From the Federal Register Online via the Government Publishing Office INTERNATIONAL TRADE COMMISSION Certain Products Containing Interactive Program Guide and Parental Control Technology; Notice of Request for Statements on the Public Interest AGENCY: U.S. International Trade Commission. ACTION:...

  18. Compounds inhibiting the bioconversion of hydrothermally pretreated lignocellulose.

    Science.gov (United States)

    Ko, Ja Kyong; Um, Youngsoon; Park, Yong-Cheol; Seo, Jin-Ho; Kim, Kyoung Heon

    2015-05-01

    Hydrothermal pretreatment using liquid hot water, steam explosion, or dilute acids enhances the enzymatic digestibility of cellulose by altering the chemical and/or physical structures of lignocellulosic biomass. However, compounds that inhibit both enzymes and microbial activity, including lignin-derived phenolics, soluble sugars, furan aldehydes, and weak acids, are also generated during pretreatment. Insoluble lignin, which predominantly remains within the pretreated solids, also acts as a significant inhibitor of cellulases during hydrolysis of cellulose. Exposed lignin, which is modified to be more recalcitrant to enzymes during pretreatment, adsorbs cellulase nonproductively and reduces the availability of active cellulase for hydrolysis of cellulose. Similarly, lignin-derived phenolics inhibit or deactivate cellulase and β-glucosidase via irreversible binding or precipitation. Meanwhile, the performance of fermenting microorganisms is negatively affected by phenolics, sugar degradation products, and weak acids. This review describes the current knowledge regarding the contributions of inhibitors present in whole pretreatment slurries to the enzymatic hydrolysis of cellulose and fermentation. Furthermore, we discuss various biological strategies to mitigate the effects of these inhibitors on enzymatic and microbial activity to improve the lignocellulose-to-biofuel process robustness. While the inhibitory effect of lignin on enzymes can be relieved through the use of lignin blockers and by genetically engineering the structure of lignin or of cellulase itself, soluble inhibitors, including phenolics, furan aldehydes, and weak acids, can be detoxified by microorganisms or laccase.

  19. Implementation of new technologies in wood industry and their effect in wood products quality

    Directory of Open Access Journals (Sweden)

    ELVA ÇAUSHI

    2014-06-01

    Full Text Available There are about 300 companies producing furniture and about 250 small and medium enterprises (SME producing sawn timber, which operate in the field of wood industry in Albania. This wood industry production is being challenged by the increasing demand in the domestic market, ranging from kitchen furniture to office and schools furniture, bedroom furniture, doors, windows, and saw timber in different dimensions. The production from the wood industry can fulfill about 80% of the domestic market demand. The remaining 20% of domestic market needs in wood furniture are afforded by import. Small entities do not make serious investment in technology. Big enterprises such as Ardeno in Tirana, Biçaku in Durres, Shaga in Tirana, Ital-wood in Elbasan, Dafinori in Shkoder, etc., have made remarkable investments in their technology. They have installed several mechanized lines of production. So, Ital-wood has invested in a mechanized saw timber production line; Bicaku in wood panels coated with PVC lines; Dafinori in a wood handrail production technologic line; Ardeno in wooden chairs production technologic lines, and Shaga in the production of furniture with particle panels. These enterprises are using modern numerical command machines, vacuum presses for gluing PVC, cutting equipment for panels with laser ray, finishing lines with electrostatic field, modern lines of pneumatic transport for wood dust etc. These investments in new technologies have increased the quantity and quality of native wood products.

  20. Integrated Production of Xylonic Acid and Bioethanol from Acid-Catalyzed Steam-Exploded Corn Stover.

    Science.gov (United States)

    Zhu, Junjun; Rong, Yayun; Yang, Jinlong; Zhou, Xin; Xu, Yong; Zhang, Lingling; Chen, Jiahui; Yong, Qiang; Yu, Shiyuan

    2015-07-01

    High-efficiency xylose utilization is one of the restrictive factors of bioethanol industrialization. However, xylonic acid (XA) as a new bio-based platform chemical can be produced by oxidation of xylose with microbial. So, an applicable technology of XA bioconversion was integrated into the process of bioethanol production. After corn stover was pretreated with acid-catalyzed steam-explosion, solid and liquid fractions were obtained. The liquid fraction, also named as acid-catalyzed steam-exploded corn stover (ASC) prehydrolyzate (mainly containing xylose), was catalyzed with Gluconobacter oxydans NL71 to prepare XA. After 72 h of bioconversion of concentrated ASC prehydrolyzate (containing 55.0 g/L of xylose), the XA concentration reached a peak value of 54.97 g/L, the sugar utilization ratio and XA yield were 94.08 and 95.45 %, respectively. The solid fraction was hydrolyzed to produce glucose with cellulase and then fermented with Saccharomyces cerevisiae NL22 to produce ethanol. After 18 h of fermentation of concentrated enzymatic hydrolyzate (containing 86.22 g/L of glucose), the ethanol concentration reached its highest value of 41.48 g/L, the sugar utilization ratio and ethanol yield were 98.72 and 95.25 %, respectively. The mass balance showed that 1 t ethanol and 1.3 t XA were produced from 7.8 t oven dry corn stover.

  1. Bioconversion of Pinoresinol Diglucoside and Pinoresinol from Substrates in the Phenylpropanoid Pathway by Resting Cells of Phomopsis sp.XP-8.

    Directory of Open Access Journals (Sweden)

    Yan Zhang

    Full Text Available Pinoresinol diglucoside (PDG and pinoresinol (Pin are normally produced by plant cells via the phenylpropanoid pathway. This study reveals the existence of a related pathway in Phomopsis sp. XP-8, a PDG-producing fungal strain isolated from the bark of the Tu-chung tree (Eucommiaulmoides Oliv.. After addition of 0.15 g/L glucose to Phomopsis sp. XP-8, PDG and Pin formed when phenylalanine, tyrosine, leucine, cinnamic acid, and p-coumaric acid were used as the substrates respectively. No PDG formed in the absence of glucose, but Pin was detected after addition of all these substrates except leucine. In all systems in the presence of glucose, production of PDG and/or Pin and the accumulation of phenylalanine, cinnamic acid, or p-coumaric acid correlated directly with added substrate in a time- and substrate concentration- dependent manner. After analysis of products produced after addition of each substrate, the mass flow sequence for PDG and Pin biosynthesis was defined as: glucose to phenylalanine, phenylalanine to cinnamic acid, then to p-coumaric acid, and finally to Pin or PDG. During the bioconversion, the activities of four key enzymes in the phenylpropanoid pathway were also determined and correlated with accumulation of their corresponding products. PDG production by Phomopsis sp. exhibits greater efficiency and cost effectiveness than the currently-used plant-based system and will pave the way for large scale production of PDG and/or Pin for medical applications.

  2. Bioconversion of Pinoresinol Diglucoside and Pinoresinol from Substrates in the Phenylpropanoid Pathway by Resting Cells of Phomopsis sp.XP-8.

    Science.gov (United States)

    Zhang, Yan; Shi, Junling; Liu, Laping; Gao, Zhenhong; Che, Jinxin; Shao, Dongyan; Liu, Yanlin

    2015-01-01

    Pinoresinol diglucoside (PDG) and pinoresinol (Pin) are normally produced by plant cells via the phenylpropanoid pathway. This study reveals the existence of a related pathway in Phomopsis sp. XP-8, a PDG-producing fungal strain isolated from the bark of the Tu-chung tree (Eucommiaulmoides Oliv.). After addition of 0.15 g/L glucose to Phomopsis sp. XP-8, PDG and Pin formed when phenylalanine, tyrosine, leucine, cinnamic acid, and p-coumaric acid were used as the substrates respectively. No PDG formed in the absence of glucose, but Pin was detected after addition of all these substrates except leucine. In all systems in the presence of glucose, production of PDG and/or Pin and the accumulation of phenylalanine, cinnamic acid, or p-coumaric acid correlated directly with added substrate in a time- and substrate concentration- dependent manner. After analysis of products produced after addition of each substrate, the mass flow sequence for PDG and Pin biosynthesis was defined as: glucose to phenylalanine, phenylalanine to cinnamic acid, then to p-coumaric acid, and finally to Pin or PDG. During the bioconversion, the activities of four key enzymes in the phenylpropanoid pathway were also determined and correlated with accumulation of their corresponding products. PDG production by Phomopsis sp. exhibits greater efficiency and cost effectiveness than the currently-used plant-based system and will pave the way for large scale production of PDG and/or Pin for medical applications.

  3. The technological capital as production factor in Spanish regions, 1980-2000

    OpenAIRE

    Escribá, Francisco Javier; Murgui , M.ª José

    2007-01-01

    In this work we construct a database of regional technological capital, with the maximun disaggregation compatible with Official Regional Accounts of Spain. In addition, we analyze the goodness of these series and their performance in the estimation of regional aggregate production functions. In the estimations both own technological capital and external capital are included. The results show reasonable estimated values of the output elasticities, which imply rates of return to technological ...

  4. Enterprise technology in support for accounting information systems. an innovation and productivity approach

    OpenAIRE

    Jose Melchor Medina-Quintero; Alberto Mora; Demian Abrego

    2015-01-01

    Technology and the accounting information systems are implemented in an organization with the aim of improving their efficiency. Companies spend large amounts of money on these tools every year in order to improve their organizational performance. The aim of this research is to determine the influence of SMEs’ technological alignment, information management and technological infrastructure on the performance of an institution (innovation and productivity) in which accounting information syste...

  5. Research and development spending and export performance by the technological intensity of the products

    OpenAIRE

    Fertő, Imre; Bojnec, Štefan

    2015-01-01

    This article examines the effects of research and development (R&D) spend-ing on merchandise export by low, medium-low, medium-high, and high technological intensity of the products between OECD countries by panel data econometric approaches using a gravity model. R&D spending is positively associated with merchandise exports, particularly for high technological intensity products in exporting countries. R&D spending can contribute to offsets the effect of distance on merchandise export, exce...

  6. ASPECTS OF THE TECHNOLOGICAL PROCESS OF MANUFACTURING – SEWING A FOOTWEAR PRODUCT FOR WOMEN, TYPE SHOE

    OpenAIRE

    Cristina Secan; Florentina Harnagea

    2013-01-01

    This paper presents the technological process for manufacturing a low-cut footwear product (type shoe) for women, for casual use, in an IL system.The paper begins with a general presentation of the technological process of manufacturing the product, and follows with a case study which details the characteristic operations, as well as the common ones, which take place during the process.Depending on the structure of the model and the characteristics of the raw and auxiliary materials, the tech...

  7. Bioconversion of cellulose into electrical energy in microbial fuel cells

    Science.gov (United States)

    Rismani-Yazdi, Hamid

    In microbial fuel cells (MFCs), bacteria generate electricity by mediating the oxidation of organic compounds and transferring the resulting electrons to an anode electrode. The first objective of this study was to test the possibility of generating electricity with rumen microorganisms as biocatalysts and cellulose as the electron donor in two-compartment MFCs. Maximum power density reached 55 mW/m2 (1.5 mA, 313 mV) with cellulose as the electron donor. Cellulose hydrolysis and electrode reduction were shown to support the production of current. The electrical current was sustained for over two months with periodic cellulose addition. Clarified rumen fluid and a soluble carbohydrate mixture, serving as the electron donors, could also sustain power output. The second objective was to analyze the composition of the bacterial communities enriched in the cellulose-fed MFCs. Denaturing gradient gel electrophoresis of PCR amplified 16S rRNA genes revealed that the microbial communities differed when different substrates were used in the MFCs. The anode-attached and the suspended consortia were shown to be different within the same MFC. Cloning and analysis of 16S rRNA gene sequences indicated that the most predominant bacteria in the anode-attached consortia were related to Clostridium spp., while Comamonas spp. was abundant in the suspended consortia. The external resistance affects the characteristic outputs of MFCs by controlling the flow of electrons from the anode to the cathode. The third objective of this study was to determine the effect of various external resistances on power output and coulombic efficiency of cellulose-fed MFCs. Four external resistances (20, 249, 480, and 1000 ohms) were tested with a systematic approach of operating parallel MFCs independently at constant circuit loads for three months. A maximum power density of 66 mWm-2 was achieved by MFCs with 20 ohms circuit load, while MFCs with 249, 480 and1000 ohms external resistances produced 57

  8. Varying Interpretations of Technology as a Problem in Markets for Customised High-Tech Products

    DEFF Research Database (Denmark)

    Vendelø, Morten Thanning; Constantiou, Ioanna

    2012-01-01

    Firms involved in contracting and implementation of customised high-tech products face a number of challenges in their relationships with customers because of the underlying variability of complex technologies. Existing research proposes the use of rational decision models and represents technology...

  9. Advanced manufacturing technologies and strategically flexible production. A review and outlook

    DEFF Research Database (Denmark)

    Boer, Harry

    2016-01-01

    During the 1980s, Western manufacturers were attracted by the potential of computer technology to increase productivity through the improvement of quality and the reduction of costs and lead times. However, most investments aimed at exploiting the benefits of Computer Integrated Manufacturing (CI...... of Advanced Manufacturing Technologies (AMT) and the adoption of new managerial and organizational principles....

  10. A multi-layered approach to product architecture modeling: Applied to technology prototypes

    DEFF Research Database (Denmark)

    Martin Ravn, Poul; Guðlaugsson, Tómas Vignir; Mortensen, Niels Henrik

    2016-01-01

    , added functions, or material savings, the prototype development can be hard to manage. In this article, two contributions are made. The first adds to the vocabulary of prototyping, defining technology prototype, a prototype used for testing a novel technology in the context of an existing product...

  11. Styrene Production Technology%苯乙烯生产技术[1~6

    Institute of Scientific and Technical Information of China (English)

    蔡丽娟

    2001-01-01

    In this paper,the world-wide production technology of styrene is analyzed,and its domestic technologic development is proposed.%本文分析了苯乙烯技术的发展前景,提出我国苯乙烯技术发展的意义和建议。

  12. Nitrogen phosphoric fertilizer production technology on the base of Central Kyzylkum phosphorites and ammonium nitrate melt

    OpenAIRE

    Shavkat Namazov; Akhmed Reymov; Nazarkul Pirmanov; Rashid Kurbaniyazov

    2012-01-01

    The process of obtaining nitrogen phosphoric fertilizer by introduction Central Kyzylkum phosphates and ammonium nitrate melt is studied. On the base of these results production technology diagram for nitrogen phosphoric fertilizer is offered. The given technology was approved and developed at the functioning devices of OJSC “NAVOIAZOT” ammonium nitrate shop.

  13. Design A Model That Encourages Innovation And Productivity In Soft Technologies

    Directory of Open Access Journals (Sweden)

    Nuricumbo-Castro Héctor Roberto

    2016-06-01

    Full Text Available The paper presents a model that encourages innovation as a mediator between productivity and soft technologies. The proposed methodology starts from the analysis and synthesis of the abstract to the concrete by using the inductive-deductive method and holistic approach. This model integrates as strategic to soft in organizations through collaborative networks that allow the sharing of information technologies proposed.

  14. Nitrogen phosphoric fertilizer production technology on the base of Central Kyzylkum phosphorites and ammonium nitrate melt

    Directory of Open Access Journals (Sweden)

    Shavkat Namazov

    2012-11-01

    Full Text Available The process of obtaining nitrogen phosphoric fertilizer by introduction Central Kyzylkum phosphates and ammonium nitrate melt is studied. On the base of these results production technology diagram for nitrogen phosphoric fertilizer is offered. The given technology was approved and developed at the functioning devices of OJSC “NAVOIAZOT” ammonium nitrate shop.

  15. Modern trends in industrial technology of production of optical polymeric components for night vision devices

    Science.gov (United States)

    Goev, A. I.; Knyazeva, N. A.; Potelov, V. V.; Senik, B. N.

    2005-06-01

    The present paper represents in detail the complex approach to creating industrial technology of production of polymeric optical components: information has been given on optical polymeric materials, automatic machines for injection moulding, the possibilities of the Moldflow system (the AB "Universal" company) used for mathematical simulation of the technological process of injection moulding and making the moulds.

  16. Effects of Product-Based Technology Professional Development Model on P-8 Teachers

    Science.gov (United States)

    Ireh, Maduakolam

    2006-01-01

    A product-based professional development model has significantly improved the ability and willingness of P-8 teachers to use and integrate technology into instruction. This paper discusses the impacts this staff professional development model. The model was used to train 18 teachers to effectively use and integrate technology in their ESL…

  17. Enhanced Passive Cooling for Waterless-Power Production Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, Salvador B. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-06-14

    Recent advances in the literature and at SNL indicate the strong potential for passive, specialized surfaces to significantly enhance power production output. Our exploratory computational and experimental research indicates that fractal and swirl surfaces can help enable waterless-power production by increasing the amount of heat transfer and turbulence, when compared with conventional surfaces. Small modular reactors, advanced reactors, and non-nuclear plants (e.g., solar and coal) are ideally suited for sCO2 coolant loops [Rochau, 2014; Rodriguez and Ames, 2015]. The sCO2 loop converts the thermal heat into electricity, while the specialized surfaces passively and securely reject the waste process heat in an environmentally benign manner. The resultant, integrated energy systems are highly suitable for small grids, rural areas, and arid regions.

  18. Digital video technology and production 101: lights, camera, action.

    Science.gov (United States)

    Elliot, Diane L; Goldberg, Linn; Goldberg, Michael J

    2014-01-01

    Videos are powerful tools for enhancing the reach and effectiveness of health promotion programs. They can be used for program promotion and recruitment, for training program implementation staff/volunteers, and as elements of an intervention. Although certain brief videos may be produced without technical assistance, others often require collaboration and contracting with professional videographers. To get practitioners started and to facilitate interactions with professional videographers, this Tool includes a guide to the jargon of video production and suggestions for how to integrate videos into health education and promotion work. For each type of video, production principles and issues to consider when working with a professional videographer are provided. The Tool also includes links to examples in each category of video applications to health promotion.

  19. Enhanced Passive Cooling for Waterless-Power Production Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, Salvador B. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-06-14

    Recent advances in the literature and at SNL indicate the strong potential for passive, specialized surfaces to significantly enhance power production output. Our exploratory computational and experimental research indicates that fractal and swirl surfaces can help enable waterless-power production by increasing the amount of heat transfer and turbulence, when compared with conventional surfaces. Small modular reactors, advanced reactors, and non-nuclear plants (e.g., solar and coal) are ideally suited for sCO2 coolant loops. The sCO2 loop converts the thermal heat into electricity, while the specialized surfaces passively and securely reject the waste process heat in an environmentally benign manner. The resultant, integrated energy systems are highly suitable for small grids, rural areas, and arid regions.

  20. Biomass for bioethanol production and technological process in Georgia

    Energy Technology Data Exchange (ETDEWEB)

    Nadiradze, K.; Phirosmanashvili, N. [Association for Farmers Rights Defence, Tbilisi (Georgia)

    2010-07-01

    This study discussed the use of biomass for bioethanol production in Georgia and its potential impacts on the country's rural economy. Eighty-five per cent of the country's lands are forested or used for agricultural purposes, and more than 56 per cent of the adult population is involved in the agricultural sector. The privatization of land in post-Soviet Georgia has resulted in the creation of a new social class of land-owners. The use of biofuel in petroleum fuel has significantly lowered greenhouse gases (GHGs) in the country. The biofuel is produced using local agricultural and forest wastes. Use of the biofuel has lowered the country's reliance on imported oil and has increased its energy security. The production of ethanol in Georgia has resulted in significant socio-economic benefits in the country.

  1. Production Technology and Physicochemical Properties of Composition Containing Surfactant Proteins

    Directory of Open Access Journals (Sweden)

    Valery V. Novochadov

    2016-06-01

    Full Text Available The article describes a production method of substance containing great amount of phospolipids (up to 36 % and surfactant proteins (up to 2 % in terms of lyophilisate composition. Basic physical and chemical characteristics of the substance (density, viscosity, surface tension and the coefficient of sliding friction indicate a high lubricant capacity of the derived product. These properties are kept when mixed with native human synovial fluid in the ratio of 1 to 9 inclusive. The obtained data allows to consider the derived composition, containing surfactant proteins and phospholipids, a variety of bionic lubricant suitable for testing as a potential equivalent of synovial fluid which can be used in traumatology and orthopedics, a cosmetic component or agent which increases the stability of the cell suspension during culturing in bioreactors.

  2. Nanotechnology for the Forest Products Industry Vision and Technology Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    Atalla, Rajai [USDA Forest Service, Washington, DC (United States); Beecher, James [USDA Forest Service, Washington, DC (United States); Caron, Robert [Technical Association of the Pulp and Paper Industry, Peachtree Corners, GA (United States); Catchmark, Jeffrey [Pennsylvania State Univ., State College, PA (United States); Deng, Yulin [Georgia Inst. of Technology, Atlanta, GA (United States); Glasser, Wolfgang [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Gray, Derek [McGill Univ., Montreal, QC (Canada); Haigler, Candace [North Carolina State Univ., Raleigh, NC (United States); Jones, Philip [Imerys, Paris (France); Joyce, Margaret [Western Michigan Univ., Kalamazoo MI (United States); Kohlman, Jane [USDA Forest Service, Washington, DC (United States); Koukoulas, Alexander [Technical Association of the Pulp and Paper Industry, Peachtree Corners, GA (United States); Lancaster, Peter [Weyerhaeuser Company, Longview, WA (United States); Perine, Lori [American Forest and Paper Association, Washington, DC (United States); Rodriguez, Augusto [Georgia-Pacific Corporation, Atlanta, GA (United States); Ragauskas, Arthur [Georgia Inst. of Technology, Atlanta, GA (United States); Wegner, Theodore [USDA Forest Service, Washington, DC (United States); Zhu, Junyong [USDA Forest Service, Washington, DC (United States)

    2005-03-01

    A roadmap for Nanotechnology in the Forest Products Industries has been developed under the umbrella of the Agenda 2020 program overseen by the CTO committee. It is expected that the use of new analytical techniques and methodologies will allow us to understand the complex nature of wood based materials and allow the dramatically enhanced use of the major strategic asset the US has in renewable, recyclable resources based on its well managed Forests.

  3. Production technologies and analysis of use of rubberised asphalt

    OpenAIRE

    Pevec, Rok

    2013-01-01

    Used tires present a major enviormental problem worldwide since most of them are burned as fuel in the cement industry, but most of them lie illegally in landfills in nature. It is identified and confirmed in practice that the properties of bituminous binder, to which rubber particles, which are the product of recycling waste automobile and truck tires, are added, and consequently also the properties of asphalt mixtures are significantly improved. Research in this area and the ...

  4. Service productivity, technology and organization - Converting theory to praxis

    OpenAIRE

    Viitamo, Esa

    2014-01-01

    The growth of services - leveraged by the servitization of manufacturing - stresses the urgency of novel approaches and metrics in assessing the performance of services. Building on the statistical and socio-economic paradigms, this paper outlines the microeconomic frame for the integrative analysis of service productivity. The integrative frame is further refined with the complementary premises of the organization theory. Organizations enable link descriptive theorizing of services to the re...

  5. Analysis of technological strategies on the example of the production of the tramway wheels

    Directory of Open Access Journals (Sweden)

    M. Konstanciak

    2012-10-01

    Full Text Available Purpose: The main purpose of this paper is to analyse the technological strategies owned by selected metallurgical company. This will allow to evaluate the existing technology and compare it with similar technologies on the market. It will also help to make changes in these strategies because of their comparison with similar on the market.Design/methodology/approach: Within the framework of the research different types of methods were used: STO matrix allows to compare existing technologies in the selected company with technologies in other similar companies. SWOT method and 3x3 matrix allow to determine the technological position of the test company. While with the use of the ABC technology method chosen machines used during the production process of the tramway wheels are evaluated.Findings: As a result of carried out methods the technological position of the research company was found. The chosen machines used during production process were evaluated. The technological strategies were acquired. Presentation of the analytical methods which, according to author, can be very useful to evaluate and identify the technological strategy in the company.Research limitations/implications: The research pursued represents part of a larger project carried out within the framework of Institute of Production Engineering, Faculty of Management, Czestochowa University of Technology.Practical implications: It was important to show that the analytical methods used in the paper can be also used by most of the companies, as well metallurgical companies. Most of these methods are used for other purposes (SWOT or ABC method, therefore it was shown how to use them to evaluation of the technology held by the company.Originality/value: The value of this paper is represented by an original contribution consisting of methodology ready to used by any company, and including metallurgical company. It can be very helpful in identifying by these companies of their

  6. Application of Ion Beam Processing Technology in Production of Catalysts

    Directory of Open Access Journals (Sweden)

    Mykola G. Bannikov, Javed A. Chattha

    2012-08-01

    Full Text Available In this paper, the applicability of Ion Beam Processing Technology for making catalysts has been inves-tigated. Ceramic substrates of different shapes and metal fibre tablets were implanted by platinum ions and tested in nitrogen oxides (NOx and carbon monoxide (CO conversion reactions. Effectiveness of the implanted catalysts was compared to that of the commercially produced platinum catalysts made by impregnation. Platinum-implanted catalyst having fifteen times less platinum content showed the same CO conversion efficiency as the commercially pro-duced catalyst. It was revealed that the effectiveness of the platinum-implanted catalyst has complex dependence on the process parameters and the optimum can be achieved by varying the ions energy and the duration of implantation. Investigation of the pore structure showed that ion implantation did not decrease the specific surface area of the catalyst.Key Words: Catalyst, Ion Implantation, Noble metals.

  7. PRETREATMENT TECHNOLOGIES IN BIOETHANOL PRODUCTION FROM LIGNOCELLULOSIC BIOMASS

    Directory of Open Access Journals (Sweden)

    Vanja Janušić

    2008-07-01

    Full Text Available Bioethanol is today most commonly produced from corn grain and sugar cane. It is expected that there will be limits to the supply of these raw materials in the near future. Therefore, lignocellulosic biomass, namely agricultural and forest waste, is seen as an attractive feedstock for future supplies of ethanol. Lignocellulosic biomass consists of lignin, hemicellulose and cellulose. Indeed, complexicity of the lignocellulosic biomass structure causes a pretreatment to be applied prior to cellulose and hemicellulose hydrolysis into fermentable sugars. Pretreatment technologies can be physical (mechanical comminution, pyrolysis, physico-chemical (steam explosion, ammonia fiber explosion, CO2 explosion, chemical (ozonolysis, acid hydrolysis, alkaline hydrolysis, oxidative delignification, organosolvent process and biological ones.

  8. Study on methenamine detection in starch products through SERS technology

    Science.gov (United States)

    Cui, Yu; Qu, Zhou

    2016-01-01

    Using silver sol as a strengthened base, this paper concludes that l0ppb-0.1ppb methenamine aqueous solution has a better signal in 1052cm-1 Raman feature. And the lower limit of the aqueous solution is about 0.1ppb. Adding corresponding amount methenamine in vermicelli sample, the lower limit is about 10ppm. This is a safest and pollution-free detection process. Furthermore, the pretreatment process is simple, which will be finished in 20 minutes. Hence, it is better than other detection methods. SERS technology provides a simple, rapid and efficient detection method for field measurement and real time detection modulating disk of component, laser zooming system. Through the use of laser diode, Laser-beam riding guided system is likely to have smaller shape and very light.

  9. Production of nanocrystalline cellulose from lignocellulosic biomass: technology and applications.

    Science.gov (United States)

    Brinchi, L; Cotana, F; Fortunati, E; Kenny, J M

    2013-04-15

    The use of renewables materials for industrial applications is becoming impellent due to the increasing demand of alternatives to scarce and unrenewable petroleum supplies. In this regard, nanocrystalline cellulose, NCC, derived from cellulose, the most abundant biopolymer, is one of the most promising materials. NCC has unique features, interesting for the development of new materials: the abundance of the source cellulose, its renewability and environmentally benign nature, its mechanical properties and its nano-scaled dimensions open a wide range of possible properties to be discovered. One of the most promising uses of NCC is in polymer matrix nanocomposites, because it can provide a significant reinforcement. This review provides an overview on this emerging nanomaterial, focusing on extraction procedures, especially from lignocellulosic biomass, and on technological developments and applications of NCC-based materials. Challenges and future opportunities of NCC-based materials will be are discussed as well as obstacles remaining for their large use.

  10. 15 CFR 742.14 - Significant items: hot section technology for the development, production or overhaul of...

    Science.gov (United States)

    2010-01-01

    ... technology for the development, production or overhaul of commercial aircraft engines, components, and... “Reason for Control” paragraph. These items include hot section technology for the development, production... amended, foreign policy controls apply to technology required for the development, production or...

  11. Fluidized-bed technology for the production of iron products for steelmaking

    Energy Technology Data Exchange (ETDEWEB)

    Plaul, E.J.; Bohm, C.; Schenk, J.L. [Siemens VAI Met Technol GmbH & Co, Linz (Austria)

    2009-02-15

    The family of ironmaking technologies includes three process routes: blast furnace, smelting reduction and direct reduction. Driven by steadily increasing costs of raw materials in the last two decades, the sector has seen a number of new developments in ironmaking technologies, developments based on fluidized-bed technology. The main advantage of a fluidized-bed technology is that fine iron ore can be directly charged to the process without prior treatment; it does away with agglomeration and its concomitant cost, a step practised in blast-furnace, COREX{sup R} and MIDREX{sup R} processes. With Posco of South Korea, Siemens VAI Metals Technologies has successfully developed the FINEX{sup R} process, a smelting reduction based on the direct use of iron ore fines to produce hot metal. The key technology is the four-stage, bubbling fluidized-bed-reactor system, in which fine iron ore is reduced to DRI fines in a countercurrent flow with a reducing gas generated by coal gasification. Beside surveying the current state of the art, this paper discusses the technological principles of smelting-reduction and direct-reduction processes. The status of FINEX{sup R} and the outlook for further developments are described. Crucial to the successful development of the new ironmaking technologies for the direct use of fine ore was the scaling up of the fluidized-bed reactor system, which demonstrated new design features.

  12. Microreactor Technology for On-Site Production of Methyl Chloride

    OpenAIRE

    Schmidt, S A.; Vajglová, Z. (Zuzana); Eränen, K.; Murzin, D.Y.; Salmi, T

    2014-01-01

    A reactor setup consisting of two stainless steel microreactors [gas-phase microreactor (GPMR)-mix from the Institut für Mikrotechnik Mainz (IMM)] coupled in series was used for production of methyl chloride by hydrochlorination of methanol. The catalyst was γ-alumina on microreactor platelets. The influence of temperature on the methanol conversion and methyl chloride selectivity was investigated. A maximum conversion of 97.6% and a selectivity of 98.8% were reached at 340°C, which is c...

  13. Arsenic in industrial waste water from copper production technological process

    Directory of Open Access Journals (Sweden)

    Biljana Jovanović

    2013-12-01

    Full Text Available Investigation of arsenic in industrial waste water is of a great importance for environment. Discharge of untreated waste water from a copper production process results in serious pollution of surface water, which directly affects flora and fauna, as well as humans. There is a need for efficient and environmentally acceptable treament of waste waters containing heavy metals and arsenic. The paper presents an analyisis of the waste water from The Copper Smelter which is discharged into the Bor river. The expected arsenic content in treated waste water after using HDS procedure is also presented.

  14. Strategic alliances and product development in high technology new firms: The moderating effect of technological capabilities

    NARCIS (Netherlands)

    Haeussler, C.; Patzelt, H.; Zahra, S.A.

    2012-01-01

    High technology new firms have extensively used strategic alliances to gain access to knowledge, resources and capabilities. However, given their inexperience and limited resources, these firms are vulnerable to their more established partners' potential opportunism. This raises the question: How ca

  15. Ultrasound assisted chrome tanning: Towards a clean leather production technology.

    Science.gov (United States)

    Mengistie, Embialle; Smets, Ilse; Van Gerven, Tom

    2016-09-01

    Nowadays, there is a growing demand for a cleaner, but still effective alternative for production processes like in the leather industry. Ultrasound (US) assisted processing of leather might be promising in this sense. In the present paper, the use of US in the conventional chrome tanning process has been studied at different pH, temperature, tanning time, chrome dose and US exposure time by exposing the skin before tanning and during tanning operation. Both prior exposure of the skin to US and US during tanning improves the chrome uptake and reduces the shrinkage significantly. Prior exposure of the skin to US increase the chrome uptake by 13.8% or reduces the chrome dose from 8% to 5% (% based on skin weight) and shorten the process time by half while US during tanning increases the chrome uptake by 28.5% or reduces the chrome dose from 8% to 4% (half) and the tanning time to one third compared to the control without US. Concomitantly, the resulting leather quality (measured as skin shrinkage) improved from 5.2% to 3.2% shrinkage in the skin exposed to US prior tanning and to 1.3% in the skin exposed to US during the tanning experiment. This study confirms that US chrome tanning is an effective and eco-friendly tanning process which can produce a better quality leather product in a shorter process time with a lower chromium dose. PMID:27150762

  16. Ultrasound assisted chrome tanning: Towards a clean leather production technology.

    Science.gov (United States)

    Mengistie, Embialle; Smets, Ilse; Van Gerven, Tom

    2016-09-01

    Nowadays, there is a growing demand for a cleaner, but still effective alternative for production processes like in the leather industry. Ultrasound (US) assisted processing of leather might be promising in this sense. In the present paper, the use of US in the conventional chrome tanning process has been studied at different pH, temperature, tanning time, chrome dose and US exposure time by exposing the skin before tanning and during tanning operation. Both prior exposure of the skin to US and US during tanning improves the chrome uptake and reduces the shrinkage significantly. Prior exposure of the skin to US increase the chrome uptake by 13.8% or reduces the chrome dose from 8% to 5% (% based on skin weight) and shorten the process time by half while US during tanning increases the chrome uptake by 28.5% or reduces the chrome dose from 8% to 4% (half) and the tanning time to one third compared to the control without US. Concomitantly, the resulting leather quality (measured as skin shrinkage) improved from 5.2% to 3.2% shrinkage in the skin exposed to US prior tanning and to 1.3% in the skin exposed to US during the tanning experiment. This study confirms that US chrome tanning is an effective and eco-friendly tanning process which can produce a better quality leather product in a shorter process time with a lower chromium dose.

  17. 田口设计优化保加利亚乳杆菌静息细胞转化合成共轭亚油酸%Optimization of bioconversion conditions for the production of conjugated linoleic acids with resting cells of Lactobacillus bulgaricus by Taguchi design

    Institute of Scientific and Technical Information of China (English)

    游庆红; 尹秀莲

    2012-01-01

    The production of conjugated linoleic acids by resting cells of Lactobacillus bulgaricus was optimized using Taguchi design. On the basis of single factor test, the Ls(24) of orthogonal experiment was designed using Minitab software, and the results were analyzed using Taguchi design. The results indicated that the effects of the concentration of resting cells, pH value, temperature and the concentration of linoleic acids on the production of conjugated linoleic acids were insignificant. Minitab software predicted the optimal production of conjugated linoleic acids were as follows: the concentration of resting cells 7%, pH value 5.7, temperature 32℃ and the concentration of linoleic acids 1.7g/L. Under these conditions, the yield of conjugated linoleic acids reached 142.3mg/L, which corresponded to the predicted value (140.63mg/L). This indicated that optimum program is good.%应用田口设计对保加利亚乳杆菌静息细胞转化合成共轭亚油酸进行优化.在单因素试验基础上,应用Minitab设计2水平4因素正交试验,采用田口设计方法分析正交试验结果.结果表明,静息细胞浓度、pH值、温度、亚油酸浓度对共轭亚油酸产量影响均不显著.软件预测产共轭亚油酸的最佳工艺为静息细胞浓度7%、pH值为5.7、温度32℃、亚油酸浓度1.7g/L,此时共轭亚油酸产量为142.3mg/L,与软件预测值140.63mg/L相吻合,表明优化方案达到了预期效果,且具有良好的稳定性.

  18. The development of innovative technologies and products for organic fruit production. An integrated project.

    OpenAIRE

    Malusa, Eligio; Sas, Lidia

    2009-01-01

    Organic production in Poland is rapidly developing due to the increased demand of domestic market and from other EU countries. However, these increases in organic production are mainly occurring in annual crops and pastures, while fruit and vegetable production has encountered more difficulties in widening their market share due to limited availability of technical means of production. The higher level of technical knowledge necessary to conduct an organic orchard is also a constraint for the...

  19. Active Shop Scheduling Of Production Process Based On RFID Technology

    Directory of Open Access Journals (Sweden)

    Cuihua Chao

    2016-01-01

    Full Text Available In industry 4.0 environment, intelligent technology is almost applied to all parts of the manufacturing process, such as process design, job shop scheduling, etc.. This paper presents an efficient approach to job shop scheduling actively by using RFID to collect real-time manufacturing data. Identified the workpiece by RFID which needs to be machined, it can “ask for” the resource actively for the following process. With these active asking-for strategy, a double genetically encoded improved genetic algorithm is proposed for achieving active job shop scheduling solution during the actual manufacturing process. A case was used to evaluate its effectiveness. Meanwhile, , it can effectively and actively carry out job shop scheduling and has much better convergence effect comparing with basic genetic algorithm. And the job shop scheduler in management center can use the proposed algorithm to get the satisfied scheduling result timely by reducing waiting time and making begin time earlier during transmission between manufacturing process, which makes the scheduling result feasible and accurate.

  20. Technological process for production of persimmon and strawberry vinegars

    Directory of Open Access Journals (Sweden)

    Claudio Hidalgo

    2010-08-01

    Full Text Available Claudio Hidalgo1, Estibaliz Mateo1, Ana Belen Cerezo2, Maria-Jesús Torija1, Albert Mas11Biotecnologia Enològica, Departament de Bioquimica i Biotecnologia, Facultat d’Enologia, Universitat Rovira i Virgili, Marcel-li Domingo, Tarragona; 2Área de Nutrición y Bromatología, Facultad de Farmacia, Universidad de Sevilla, Sevilla, SpainAbstract: Fruit surplus is common in intensive agriculture in many countries. This ecologic and economic problem requires alternative uses to be found for fruit. The aim of this study was to use surplus fruit to produce vinegar by traditional methods (alcoholic fermentation and acetification from persimmon and strawberry. The process was performed with naturally occurring microorganisms and compared with inoculated commercial wine yeast for alcoholic fermentation. Alcoholic fermentation proceeded faster when inoculated due to the length of the lag phases observed in spontaneous fermentations. The alcoholic fermentations of strawberry mash were faster than those of persimmon mash. In contrast, acetifications were much faster in persimmon (30 days than in strawberry (70 days, in the latter some acetifications were not finished. From the technologic point of view, to produce persimmon and strawberry wine and vinegar, it is better to avoid fruit pressing and perform the process with fruit mash. Inoculation is recommended for persimmon and is necessary for strawberry.Keywords: wine, vinegar, fruit seasonings, acetic acid bacteria