WorldWideScience

Sample records for bioconjugated inp quantum

  1. Imaging Pancreatic Cancer Using Bioconjugated InP Quantum Dots

    OpenAIRE

    Yong, Ken-Tye; Ding, Hong; Roy, Indrajit; Law, Wing-Cheung; Bergey, Earl J.; Maitra, Anirban; Prasad, Paras N.

    2009-01-01

    In this paper, we report the successful use of non-cadmium based quantum dots (QDs) as highly efficient and non-toxic optical probes for imaging live pancreatic cancer cells. Indium phosphide (core)-zinc sulphide (shell), or InP/ZnS, QDs with high quality and bright luminescence were prepared by a hot colloidal synthesis method in non-aqueous media. The surfaces of these QDs were then functionalized with mercaptosuccinic acid to make them highly dispersible in aqueous media. Further bioconjug...

  2. Fluorescence plate reader for quantum dot-protein bioconjugation analysis.

    Science.gov (United States)

    Carvalho, Kilmara H G; Brasil, Aluizio G; Cabral Filho, Paulo E; Tenório, Denise P L A; de Siqueira, Ana C A; Leite, Elisa S; Fontes, Adriana; Santos, Beate S

    2014-05-01

    We present here a new and alternative method that uses a Fluorescence Plate Reader in a different approach, not to study protein-protein interactions, but to evaluate the efficiency of the protein bioconjugation to quantum dots (QDs). The method is based on the QDs' native fluorescence and was successfully tested by employing two different QDs-proteins conjugation methodologies, one by promoting covalent binding and other by inducing adsorption processes. For testing, we used bioconjugates between carboxyl coated CdTe QDs and bovine serum albumin, concanavalin A lectin and anti-A antibody. Flow cytometry and fluorescence spectroscopy studies corroborated the results found by the Fluorescence Plate Reader assay. This kind of analysis is important because poor bioconjugation efficiency leads to unsuccessful applications of the fluorescent bioconjugates. We believe that our method presents the possibility of performing semi-quantitative and simultaneous analysis of different samples with accuracy taking the advantage of the high sensitivity of optical based measurements. PMID:24734547

  3. Labeling of mesenchymal stem cells by bioconjugated quantum dots.

    Science.gov (United States)

    Shah, Bhranti S; Clark, Paul A; Moioli, Eduardo K; Stroscio, Michael A; Mao, Jeremy J

    2007-10-01

    Long-term labeling of stem cells during self-replication and differentiation benefits investigations of development and tissue regeneration. We report the labeling of human mesenchymal stem cells (hMSCs) with RGD-conjugated quantum dots (QDs) during self-replication, and multilineage differentiations into osteogenic, chondrogenic, and adipogenic cells. QD-labeled hMSCs remained viable as unlabeled hMSCs from the same subpopulation. These findings suggest the use of bioconjugated QDs as an effective probe for long-term labeling of stem cells.

  4. Peptide linkers for the assembly of semiconductor quantum dot bioconjugates

    Science.gov (United States)

    Boeneman, Kelly; Mei, Bing C.; Deschamps, Jeffrey R.; Delehanty, James B.; Mattoussi, Hedi; Medintz, Igor

    2009-02-01

    The use of semiconductor luminescent quantum dots for the labeling of biomolecules is rapidly expanding, however it still requires facile methods to attach functional globular proteins to biologically optimized quantum dots. Here we discuss the development of controlled variable length peptidyl linkers to attach biomolecules to poly(ethylene) glycol (PEG) coated quantum dots for both in vitro and in vivo applications. The peptides chosen, β-sheets and alpha helices are appended to polyhistidine sequences and this allows for control of the ratio of peptide bioconjugated to QD and the distance from QD to the biomolecule. Recombinant DNA engineering, bacterial peptide expression and Ni-NTA purification of histidine labeled peptides are utilized to create the linkers. Peptide length is confirmed by in vitro fluorescent resonance energy transfer (FRET).

  5. Quantum size effects in InP inner film fiber

    Institute of Scientific and Technical Information of China (English)

    WANG Ting-yun; WANG Ke-xin; LU Jun

    2005-01-01

    Based on the semiconductor amplifiing properties and the structure of optical fiber wave guide an InP inner fiber is developed.The InP inner film fiber can be employed as a small size,broadband,and ultra-short fiber amplifier.The quantum size effects of the fiber are emphatically investigated in the work.Using the experimental data,we compare the effective mass approximation (EMA) with effective parameterization within the tight binding (EPTB) models for the accurate description of the quantum size effects in InP.The results show that the EPTB model provides an excellent description of band gap variation over a wide range of sizes.The Bohr diameter and the effective Rydberg energy of InP are calculated.Finally,the amplifiing properties of the InP inner film fiber are discussed due to the quantum size effects.

  6. Multiphoton imaging of quantum dot bioconjugates in cultured cells following Nd:YLF laser excitation

    Science.gov (United States)

    Serrano, Elba E.; Knight, V. B.

    2005-04-01

    Quantum dot bioconjugates offer unprecedented opportunities for monitoring biological processes and molecular interactions in cells, tissues, and organs. We are interested in developing applications that permit investigation of physiological processes and cytoskeletal organization in live cells, and allow imaging of complex organs, such as the auditory and vestibular sensory structures of the inner ear. Multiphoton microscopy is a powerful technique for acquiring images from deep within a sample while reducing phototoxic effects of laser light exposure on cells. Previous studies have established that a solid-state Nd:YLF laser can be used to acquire two-photon and three-photon images from live cells while minimizing phototoxic side effects (Wokosin et al., 1996, Bioimaging, 4:208-214; Squirrell et al., 1999, Nature Biotechnology, 8:763-767). We present here the results of experiments using an all-solid-state Nd:YLF 1047 nm femtosecond laser (Microlase DPM1000) source to excite quantum dot bioconjugates. Cells were labeled with Qdot (Quantum Dot Corporation) bioconjugates or with Alexa Fluor (Molecular Probes) bioconjugates and then imaged with a BioRad 1024 confocal microscope configured for multiphoton imaging using internal or external (non-descanned) detectors. Results demonstrate that the Nd:YLF laser can be used to stimulate fluorescence emission of quantum dots and Alexa Fluor bioconjugates in cultured amphibian (Xenopus) and mammalian (rat, chinese hamster) cells. We conclude that the Nd:YLF laser is a viable excitation source that extends the applicability of quantum dots for investigation of biological processes using multiphoton microscopy.

  7. Band Structure Modifications in Deformed InP Quantum Wires

    Directory of Open Access Journals (Sweden)

    V.V. Kuryliuk

    2014-11-01

    Full Text Available The work describes the features of the band structure of deformed InP nanowires with different diameters. It is shown that the bending of quantum wires is capable of creating local minima in the conduction and valence bands which are separated from the surface of the cylindrical wire. This result opens up new possibilities for controlling both the lifetime of photoexcited carriers by keeping them at these minima and the magnitude of the photovoltage in solar energy conversion devices based on quantum wires. The work lies within a common goal aiming to develop new methods of functionalization of nanostructured surfaces using mechanical deformations.

  8. The influence of bio-conjugation on photoluminescence of CdSe/ZnS quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Torchynska, Tetyana V. [ESFM Instituto Politécnico Nacional, Av. Instituto Politécnico Nacional, México, D.F. 07738 (Mexico); Vorobiev, Yuri V. [Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV) Querétaro, Libramiento Norponiente 2000, Fracc. Real de Juriquilla, 76230 Querétaro (Mexico); Makhniy, Victor P. [Yuri Fedkovych Chernivtsi National University, 2 Kotsyubynsky Str., 58012 Chernivtsi (Ukraine); Horley, Paul P., E-mail: paul.horley@cimav.edu.mx [Centro de Investigación en Materiales Avanzados, S.C. (CIMAV), Chihuahua/Monterrey, 120 Avenida Miguel de Cervantes, 31109 Chihuahua (Mexico)

    2014-11-15

    We report a considerable blue shift in the luminescence spectra of CdSe/ZnS quantum dots conjugated to anti-interleukin-10 antibodies. This phenomenon can be explained theoretically by accounting for bio-conjugation as a process causing electrostatic interaction between a quantum dot and an antibody, which reduces effective volume of the dot core. To solve the Schrödinger equation for an exciton confined in the quantum dot, we use mirror boundary conditions that were successfully tested for different geometries of quantum wells.

  9. Surface processes during purification of InP quantum dots

    Directory of Open Access Journals (Sweden)

    Natalia Mordvinova

    2014-08-01

    Full Text Available Recently, a new simple and fast method for the synthesis of InP quantum dots by using phosphine as phosphorous precursor and myristic acid as surface stabilizer was reported. Purification after synthesis is necessary to obtain samples with good optical properties. Two methods of purification were compared and the surface processes which occur during purification were studied. Traditional precipitation with acetone is accompanied by a small increase in photoluminescence. It occurs that during the purification the hydrolysis of the indium precursor takes place, which leads to a better surface passivation. The electrophoretic purification technique does not increase luminescence efficiency but yields very pure quantum dots in only a few minutes. Additionally, the formation of In(OH3 during the low temperature synthesis was explained. Purification of quantum dots is a very significant part of postsynthetical treatment that determines the properties of the material. But this subject is not sufficiently discussed in the literature. The paper is devoted to the processes that occur at the surface of quantum dots during purification. A new method of purification, electrophoresis, is investigated and described in particular.

  10. Synthesis, modification, bioconjugation of silica coated fluorescent quantum dots and their application for mycotoxin detection.

    Science.gov (United States)

    Goftman, Valentina V; Aubert, Tangi; Ginste, Dries Vande; Van Deun, Rik; Beloglazova, Natalia V; Hens, Zeger; De Saeger, Sarah; Goryacheva, Irina Yu

    2016-05-15

    To create bright and stable fluorescent biolabels for immunoassay detection of mycotoxin deoxynivalenol in food and feed, CdSe/CdS/ZnS core-shell quantum dots (QDs) were encapsulated in silica nanoparticles through a water-in-oil reverse microemulsion process. The optical properties and stability of the obtained silica coated QDs (QD@SiO2), modified with amino, carboxyl and epoxy groups and stabilized with polyethylene glycol fragments, were characterized in order to assess their bioapplicability. The developed co-condensation techniques allowed maintaining 80% of the initial fluorescent properties and yielded stable fluorescent labels that could be easily activated and bioconjugated. Further, the modified QD@SiO2 were efficiently conjugated with antibodies and applied as a novel label in a microtiter plate based immunoassay and a quantitative column-based rapid immunotest for deoxynivalenol detection with IC50 of 473 and 20 ng/ml, respectively. PMID:26745794

  11. Quantum dot-DNA bioconjugates for fluorescence-resonance-energy-transfer-based biosensing

    Science.gov (United States)

    Medintz, Igor L.; Berti, Lorenzo; Pons, Thomas; Mattoussi, Hedi

    2007-02-01

    Semiconductor quantum dots (QDs) have unique photophysical properties which make them excellent fluorescence resonance energy transfer donors. However, lack of facile methods for conjugating biomolecules such as DNA, proteins and peptides to QDs have limited their applications. In this report, we describe a general procedure for the preparation of a synthetic peptide that can be covalently attached to DNA segments and used to facilitate the self-assembly of the modified DNA onto water soluble QDs. To characterize this conjugation strategy, dye-labeled DNA is first reacted with the synthetic peptide and the resulting peptide-DNA then self-assembled onto QDs. QD attachment is verified by monitoring resonance energy transfer efficiency from the QD donor to the dye-labeled DNA acceptor. QD-DNA bioconjugates assembled using this method may find applications as molecular beacons and hybridization probes.

  12. Interface states and bio-conjugation of CdSe/ZnS core-shell quantum dots

    Science.gov (United States)

    Torchynska, T. V.

    2009-03-01

    The paper presents the results of photoluminescence (PL) and Raman scattering studies of non-conjugated and bio-conjugated CdSe/ZnS core-shell quantum dots (QDs). The commercial CdSe/ZnS QDs used are characterized by color emission with maxima at 605-610 nm (2.03-2.05 eV). PL spectra of non-conjugated QDs are the superposition of PL bands related to exciton emission in the CdSe core (2.03-2.05 eV) and to hot electron-hole emission via defect states at the CdSe/ZnS interface (2.37 and 2.68 eV). QD conjugation was performed with biomolecules—the antihuman interleukin 10 antibody (antihuman IL10). The PL spectra of bio-conjugated QDs have been changed dramatically: only one PL band related to exciton emission in the CdSe core was detected in bio-conjugated QDs. To explain this effect a model has been proposed which assumes that the QD bio-conjugation process is accompanied by the recharging of acceptor-like interface states at the CdSe/ZnS interface. A comparative analysis of normalized PL spectra of non-conjugated CdSe/ZnS QDs with different intensities of interface state PL has confirmed the proposed electron-hole recombination model in QDs.

  13. Quantum confinement of excitons in wurtzite InP nanowires

    Science.gov (United States)

    Pemasiri, K.; Jackson, H. E.; Smith, L. M.; Wong, B. M.; Paiman, S.; Gao, Q.; Tan, H. H.; Jagadish, C.

    2015-05-01

    Exciton resonances are observed in photocurrent spectra of 80 nm wurtzite InP nanowire devices at low temperatures, which correspond to transitions between the A, B, and C valence bands and the lower conduction band. Photocurrent spectra for 30 nm WZ nanowires exhibit shifts of the exciton resonances to higher energy, which are consistent with finite element calculations of wavefunctions of the confined electrons and holes for the various bands.

  14. Synthesis and characterization of InP and InN colloidal quantum dots.

    Energy Technology Data Exchange (ETDEWEB)

    Boyle, Timothy J.; Osinski, Marek (University of New Mexico, Albuquerque, New Mexico); Greenberg, Melisa (University of New Mexico, Albuquerque, New Mexico); Bunge, Scott D.; Chen, Weiliang (University of New Mexico, Albuquerque, New Mexico); Smolyakov, G. A. (University of New Mexico, Albuquerque, New Mexico); Pulford, B. N. (University of New Mexico, Albuquerque, New Mexico); Jiang, Ying-Bing (University of New Mexico, Albuquerque, New Mexico)

    2005-04-01

    InP quantum dots (QDs) with zinc blende structure and InN QDs with hexagonal structure were synthesized from appropriate organometallic precursors in a noncoordinating solvent using myristic acid as a ligand. The QDs were characterized by TEM, the associated energy dispersive spectroscopy (EDS), electron diffraction, and steady state UV-VIS optical absorption and photoluminescence spectroscopy. To our best knowledge, this paper reports synthesis of InN colloidal quantum dots for the first time.

  15. Effect of nuclear spins on the electron spin dynamics in negatively charged InP quantum dots

    OpenAIRE

    Ignatiev, I. V.; Verbin, S. Yu.; Gerlovin, I. Ya.; Maruyama, W.; Pal, B.; Masumoto, Y.

    2005-01-01

    Kinetics of polarized photoluminescence of the negatively charged InP quantum dots in weak magnetic field is studied experimentally. Effect of both the nuclear spin fluctuations and the dynamical nuclear polarization on the electron spin orientation is observed.

  16. Quantum Size Effect of Inner Cladding Fibres with InP Nano Thin Films

    Institute of Scientific and Technical Information of China (English)

    WANG Jin; ZHANG Ru; GUAN Li-Ming

    2008-01-01

    Optical amplified characteristics of innet cladding fibres with InP thin films are tested.The results indicate that this kind of fibres exhibit better optical amplification,which is advantageous for short lengths of fibres.The amplification coeffients of per unit length are 1.40-5.12dB/m at the wave band from 906 to 1044nm.1.40-15.35dB/m from 1080 to 1491 nm.and 1.86-7.44dB/m from 1524 to 1596nm.Based on the hydrogen atomic model,we calculate the comparative size of the InP particle αB=8.313 nm.The result displays the quantum size effect.By calculating the change of the energy band of particles with different sizes,the experimental data are explained by quantum size effect.

  17. Formation of quantum wires and dots on InP(001) by As/P exchange

    International Nuclear Information System (INIS)

    We report on the use of in situ scanning tunneling microscopy to study As/P exchange on InP(001) surfaces by molecular beam epitaxy. Results demonstrate that the exchange process can be controlled to selectively produce either quantum wires or quantum dots. 15 nm wide self-assembled nanowires are observed, and they are elongated along the dimer row direction of the InP(001)-2x4 surface with a length of over 1 μm and flat top 2x4 surfaces. In addition, when the nanowires are annealed with no arsenic overpressure, the surface reconstruction transforms from 2x4 to 4x2 and the nanowires transform into dots with a rectangular base and flat top. [copyright] 2001 American Institute of Physics

  18. The detection of platelet derived growth factor using decoupling of quencher-oligonucleotide from aptamer/quantum dot bioconjugates

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Gang-Il; Sung, Yun-Mo [Department of Materials Science and Engineering, Korea University, Seoul 136-713 (Korea, Republic of); Kim, Kyung-Woo; Oh, Min-Kyu [Department of Chemical and Biological Engineering, Korea University, Seoul 136-713 (Korea, Republic of)], E-mail: mkoh@korea.ac.kr, E-mail: ymsung@korea.ac.kr

    2009-04-29

    High-sensitivity, high-specificity detection of platelet derived growth factor (PDGF)-BB was realized using the change in fluorescence resonance energy transfer (FRET) occurring between quantum dot (QD) donors and black hole quencher (BHQ) acceptors. CdSe/ZnS QD/mercaptoacetic acid (MAA)/PDGF aptamer bioconjugates were successfully synthesized using ligand exchange. Black hole quencher (BHQ)-bearing oligonucleotide molecules showing partial sequence matching to PDGF aptamer were attached to PDGF aptamers and photoluminescence (PL) quenching was obtained through FRET. By adding target PDGF-BB to the bioconjugates containing BHQs, PL recovery was detected due to detachment of BHQ-bearing oligonucleotide from the PDGF aptamer as a result of the difference in affinity to the PDGF aptamer. The detection limit of the sensor was {approx}0.4 nM and the linearity was maintained up to 1.6 nM in the PL intensity versus concentration curve. Measurement of PL recovery was suggested as a strong tool for high-sensitivity detection of PDGF-BB. Epidermal growth factor (EGF), the negative control molecule, did not contribute to PL recovery due to lack of binding affinity to the PDGF aptamers, which demonstrates the selectivity of the biosensor.

  19. Temperature Dependent Photoluminescence Measurements of Single InP Quantum Dots

    Science.gov (United States)

    Reischle, Matthias; Beirne, Gareth J.; Rossbach, Robert; Jetter, Michael; Michler, Peter

    2007-04-01

    In this work, we have investigated single InP quantum dots by way of photoluminescence measurements. The lower energy dots show emission from excited states at moderate excitation powers while those emitting at higher energies do not even at high power densities. Temperature dependent measurements were carried out with the objective of understanding this difference and to develop a better understanding of the carrier escape from the dots at elevated temperatures. We observed a strong correlation between the electronic level spacings and the activation energies obtained using an arrhenius model, which thereby indicates that the carriers escape via higher lying levels.

  20. Optical investigations of single pairs of vertically stacked asymmetric InP quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Reischle, Matthias; Beirne, Gareth; Rossbach, Robert; Jetter, Michael; Michler, Peter [Institut fuer Strahlenphysik, Allmandring 3, 70569 Stuttgart (Germany); Schweizer, Heinz [4. Physikalisches Institut, Pfaffenwaldring 57, 70569 Stuttgart (Germany)

    2007-07-01

    Coupled quantum dots (QD) are interesting candidates for future devices, such as, quantum gates for quantum computers. While most of the previous studies concentrated on double dot systems with similar dot sizes relatively few studies have concentrated on asymmetric quantum dot pairs. Nevertheless, this system is easier to realize, as QDs naturally exhibit size inhomogeneities. Single vertically stacked pairs of InP QDs that are separated by different barrier widths have been investigated. We could, on average, produce smaller upper dots that emit at higher energies than the bottom layer of dots. This arrangement allows for the tunneling of carriers from the small dots to the large dots. We have found that coupling is clearly present for a small barrier width, while for a large barrier width the dots are found to act independently. A transition from primarily electron tunneling to exciton tunneling with decreasing barrier width has also been found by comparing the photoluminescence spectra. In addition, from time-resolved measurements we could estimate the tunneling times which are in accordance with those presented previously in the literature. Finally we simulate our results using a simple rate equation model which supports the proposed tunneling mechanism.

  1. Nonresonant tunneling in single asymmetric pairs of vertically stacked InP quantum dots

    Science.gov (United States)

    Reischle, M.; Beirne, G. J.; Roßbach, R.; Jetter, M.; Schweizer, H.; Michler, P.

    2007-08-01

    Single pairs of vertically stacked asymmetric pairs of InP quantum dots embedded in GaInP barriers have been investigated as a function of interdot spacer thickness. Time integrated and time-resolved photoluminescence measurements have been performed, with the former showing a change in the intensity ratio between the two dots and the latter an increasing difference in the photoluminescence decay time of the two dots when reducing the spacer thickness. Hence, we suggest transitions from vanishing tunnel coupling to electron tunneling and, finally, to electron and hole tunneling for decreasing barrier widths. The different times are estimated from the measurement data, and the changes are described by a rate equation model. The results clearly show the nonresonant character of the tunneling process as a result of the different ground state energies (approximately 40meV ) of the unequally sized dots.

  2. Semiquantitative fluorescence method for bioconjugation analysis.

    Science.gov (United States)

    Brasil, Aluízio G; Carvalho, Kilmara H G; Leite, Elisa S; Fontes, Adriana; Santos, Beate Saegesser

    2014-01-01

    Quantum dots (QDs) have been used as fluorescent probes in biological and medical fields such as bioimaging, bioanalytical, and immunofluorescence assays. For these applications, it is important to characterize the QD-protein bioconjugates. This chapter provides details on a versatile method to confirm quantum dot-protein conjugation including the required materials and instrumentation in order to perform the step-by-step semiquantitative analysis of the bioconjugation efficiency by using fluorescence plate readings. Although the protocols to confirm the QD-protein attachment shown here were developed for CdTe QDs coated with specific ligands and proteins, the principles are the same for other QDs-protein bioconjugates. PMID:25103803

  3. Characteristics of highly stacked InAs quantum-dot laser grown on vicinal (001)InP substrate

    Science.gov (United States)

    Akahane, Kouichi; Umezawa, Toshimasa; Matsumoto, Atsushi; Yamamoto, Naokatsu; Kawanishi, Tetsuya

    2016-04-01

    We fabricate broad-area laser diodes consisting of 30-layer stacks of InAs quantum dots by using a strain-compensation technique on a vicinal (001)InP substrate. These laser diodes exhibit ground-state lasing at 1576 nm in the pulsed mode with a high characteristic temperature of 111 K at around room temperature (20-80 °C).

  4. Multiplexed molecular profiling of prostate cancer specimens using semiconductor quantum dot bioconjugates

    Science.gov (United States)

    Xing, Yun; Numora, Takeo; Chung, Leland; Zhau, Haiyen; Nie, Shuming

    2007-02-01

    Quantum dots (QDs) are light emitting semi-conductor nanocrystals with novel optical properties including superior photostability, narrow emission spectra with continuous excitation spectra. These properties make QDs especially suitable for multiplexed fluorescent labeling, live cell imaging, and in vivo animal imaging. The multiplexing potential has been recognized but real applications of biological/clinical significance are few. In this study, we used quantum dots to study epithelial mesenchymal transition (EMT), an important process involved in the bone metastasis of prostate cancer. Two prostate cancer cells lines with distinct molecular profiles, representing the two ends of the EMT process, were selected for this study. Four EMT-related biomarkers including E-cadherin, N-cadherin, Vimentin, and RANKL were stained with QD-antibody conjugates with elongation factor 1alpha as the internal control. Morphological information of the QD-stained cells was obtained by digital-color imaging and quantitative information obtained by spectra analysis using a spectrometer. Two types of analysis were performed: abundance of each biomarker in the same cell line relative to the internal control; and the relative abundance of these markers between the two cell lines. Our results demonstrate the feasibility of QDs for multiplexed profiling of FFPE cells/tissue of clinical significance; however, the standardization and quantification still awaits optimization.

  5. Bioconjugation of luminescent silicon quantum dots to gadolinium ions for bioimaging applications

    Science.gov (United States)

    Erogbogbo, Folarin; Chang, Ching-Wen; May, Jasmine L.; Liu, Liwei; Kumar, Rajiv; Law, Wing-Cheung; Ding, Hong; Yong, Ken Tye; Roy, Indrajit; Sheshadri, Mukund; Swihart, Mark T.; Prasad, Paras N.

    2012-08-01

    Luminescent imaging agents and MRI contrast agents are desirable components in the rational design of multifunctional nanoconstructs for biological imaging applications. Luminescent biocompatible silicon quantum dots (SiQDs) and gadolinium chelates can be applied for fluorescence microscopy and MRI, respectively. Here, we report the first synthesis of a nanocomplex incorporating SiQDs and gadolinium ions (Gd3+) for biological applications. The nanoconstruct is composed of a PEGylated micelle, with hydrophobic SiQDs in its core, covalently bound to DOTA-chelated Gd3+. Dynamic light scattering reveals a radius of 85 nm for these nanoconstructs, which is consistent with the electron microscopy results depicting radii ranging from 25 to 60 nm. Cellular uptake of the probes verified that they maintain their optical properties within the intracellular environment. The magnetic resonance relaxivity of the nanoconstruct was 2.4 mM-1 s-1 (in terms of Gd3+ concentration), calculated to be around 6000 mM-1 s-1 per nanoconstruct. These desirable optical and relaxivity properties of the newly developed probe open the door for use of SiQDs in future multimodal applications such as tumour imaging.Luminescent imaging agents and MRI contrast agents are desirable components in the rational design of multifunctional nanoconstructs for biological imaging applications. Luminescent biocompatible silicon quantum dots (SiQDs) and gadolinium chelates can be applied for fluorescence microscopy and MRI, respectively. Here, we report the first synthesis of a nanocomplex incorporating SiQDs and gadolinium ions (Gd3+) for biological applications. The nanoconstruct is composed of a PEGylated micelle, with hydrophobic SiQDs in its core, covalently bound to DOTA-chelated Gd3+. Dynamic light scattering reveals a radius of 85 nm for these nanoconstructs, which is consistent with the electron microscopy results depicting radii ranging from 25 to 60 nm. Cellular uptake of the probes verified that they

  6. Delivery and Tracking of Quantum Dot Peptide Bioconjugates in an Intact Developing Avian Brain

    Science.gov (United States)

    Agarwal, Rishabh; Domowicz, Miriam S.; Schwartz, Nancy B.; Henry, Judy; Medintz, Igor; Delehanty, James B.; Stewart, Michael H.; Susumu, Kimihiro; Huston, Alan L.; Deschamps, Jeffrey R.; Dawson, Philip E.; Palomo, Valle; Dawson, Glyn

    2016-01-01

    Luminescent semiconductor ~9.5 nm nanoparticles (quantum dots: QDs) have intrinsic physiochemical and optical properties which enable us to begin to understand the mechanisms of nanoparticle mediated chemical/drug delivery. Here, we demonstrate the ability of CdSe/ZnS core/shell QDs surface functionalized with a zwitterionic compact ligand to deliver a cell-penetrating lipopeptide to the developing chick embryo brain without any apparent toxicity. Functionalized QDs were conjugated to the palmitoylated peptide WGDap-(Palmitoyl)VKIKKP9GGH6, previously shown to uniquely facilitate endosomal escape, and microinjected into the embryonic chick spinal cord canal at embryo day 4 (E4). We were subsequently able to follow the labeling of spinal cord extension into the ventricles, migratory neuroblasts, maturing brain cells, and complex structures such as the choroid plexus. QD intensity extended throughout the brain, and peaked between E8 and E11 when fluorescence was concentrated in the choroid plexus before declining to hatching (E21/P0). We observed no abnormalities in embryonic patterning or embryo survival, and mRNA in situ hybridization confirmed that, at key developmental stages, the expression pattern of genes associated with different brain cell types (brain lipid binding protein, Sox-2, proteolipid protein and Class III-β-Tubulin) all showed a normal labeling pattern and intensity. Our findings suggest that we can use chemically modified QDs to identify and track neural stem cells as they migrate, that the choroid plexus clears these injected QDs/nanoparticles from the brain after E15, and that they can deliver drugs and peptides to the developing brain. PMID:25688887

  7. Growing InGaAs quasi-quantum wires inside semi-rhombic shaped planar InP nanowires on exact (001) silicon

    Science.gov (United States)

    Han, Yu; Li, Qiang; Chang, Shih-Pang; Hsu, Wen-Da; Lau, Kei May

    2016-06-01

    We report InGaAs quasi-quantum wires embedded in planar InP nanowires grown on (001) silicon emitting in the 1550 nm communication band. An array of highly ordered InP nanowire with semi-rhombic cross-section was obtained in pre-defined silicon V-grooves through selective-area hetero-epitaxy. The 8% lattice mismatch between InP and Si was accommodated by an ultra-thin stacking disordered InP/GaAs nucleation layer. X-ray diffraction and transmission electron microscope characterizations suggest excellent crystalline quality of the nanowires. By exploiting the morphological evolution of the InP and a self-limiting growth process in the V-grooves, we grew embedded InGaAs quantum-wells and quasi-quantum-wires with tunable shape and position. Room temperature analysis reveals substantially improved photoluminescence in the quasi-quantum wires as compared to the quantum-well reference, due to the reduced intrusion defects and enhanced quantum confinement. These results show great promise for integration of III-V based long wavelength nanowire lasers on the well-established (001) Si platform.

  8. Model of a realistic InP surface quantum dot extrapolated from atomic force microscopy results.

    Science.gov (United States)

    Barettin, Daniele; De Angelis, Roberta; Prosposito, Paolo; Auf der Maur, Matthias; Casalboni, Mauro; Pecchia, Alessandro

    2014-05-16

    We report on numerical simulations of a zincblende InP surface quantum dot (QD) on In₀.₄₈Ga₀.₅₂ buffer. Our model is strictly based on experimental structures, since we extrapolated a three-dimensional dot directly by atomic force microscopy results. Continuum electromechanical, [Formula: see text] bandstructure and optical calculations are presented for this realistic structure, together with benchmark calculations for a lens-shape QD with the same radius and height of the extrapolated dot. Interesting similarities and differences are shown by comparing the results obtained with the two different structures, leading to the conclusion that the use of a more realistic structure can provide significant improvements in the modeling of QDs fact, the remarkable splitting for the electron p-like levels of the extrapolated dot seems to prove that a realistic experimental structure can reproduce the right symmetry and a correct splitting usually given by atomistic calculations even within the multiband [Formula: see text] approach. Moreover, the energy levels and the symmetry of the holes are strongly dependent on the shape of the dot. In particular, as far as we know, their wave function symmetries do not seem to resemble to any results previously obtained with simulations of zincblende ideal structures, such as lenses or truncated pyramids. The magnitude of the oscillator strengths is also strongly dependent on the shape of the dot, showing a lower intensity for the extrapolated dot, especially for the transition between the electrons and holes ground state, as a result of a relevant reduction of the wave functions overlap. We also compare an experimental photoluminescence spectrum measured on an homogeneous sample containing about 60 dots with a numerical ensemble average derived from single dot calculations. The broader energy range of the numerical spectrum motivated us to perform further verifications, which have clarified some aspects of the experimental

  9. Model of a realistic InP surface quantum dot extrapolated from atomic force microscopy results

    International Nuclear Information System (INIS)

    We report on numerical simulations of a zincblende InP surface quantum dot (QD) on In0.48Ga0.52P buffer. Our model is strictly based on experimental structures, since we extrapolated a three-dimensional dot directly by atomic force microscopy results. Continuum electromechanical, k-vector ⋅ p-vector bandstructure and optical calculations are presented for this realistic structure, together with benchmark calculations for a lens-shape QD with the same radius and height of the extrapolated dot. Interesting similarities and differences are shown by comparing the results obtained with the two different structures, leading to the conclusion that the use of a more realistic structure can provide significant improvements in the modeling of QDs fact, the remarkable splitting for the electron p-like levels of the extrapolated dot seems to prove that a realistic experimental structure can reproduce the right symmetry and a correct splitting usually given by atomistic calculations even within the multiband k-vector ⋅ p-vector approach. Moreover, the energy levels and the symmetry of the holes are strongly dependent on the shape of the dot. In particular, as far as we know, their wave function symmetries do not seem to resemble to any results previously obtained with simulations of zincblende ideal structures, such as lenses or truncated pyramids. The magnitude of the oscillator strengths is also strongly dependent on the shape of the dot, showing a lower intensity for the extrapolated dot, especially for the transition between the electrons and holes ground state, as a result of a relevant reduction of the wave functions overlap. We also compare an experimental photoluminescence spectrum measured on an homogeneous sample containing about 60 dots with a numerical ensemble average derived from single dot calculations. The broader energy range of the numerical spectrum motivated us to perform further verifications, which have clarified some aspects of the experimental

  10. Thermal conductivity of InAs quantum dot stacks using AlAs strain compensating layers on InP substrate

    Energy Technology Data Exchange (ETDEWEB)

    Salman, S. [Universite Europeenne de Bretagne, CNRS, Laboratoire FOTON, INSA, 20 Avenue des buttes de Coeesmes, 35708 Rennes, Cedex 7 (France); Folliot, H., E-mail: herve.folliot@insa-rennes.fr [Universite Europeenne de Bretagne, CNRS, Laboratoire FOTON, INSA, 20 Avenue des buttes de Coeesmes, 35708 Rennes, Cedex 7 (France); Le Pouliquen, J.; Chevalier, N.; Rohel, T.; Paranthoeen, C.; Bertru, N. [Universite Europeenne de Bretagne, CNRS, Laboratoire FOTON, INSA, 20 Avenue des buttes de Coeesmes, 35708 Rennes, Cedex 7 (France); Labbe, C. [CIMAP, CEA/UMR CNRS 6252/ENSICAEN/Universite de Caen Basse Normandie, 6, Boulevard Marechal Juin, 14050 Caen Cedex 4 (France); Letoublon, A.; Le Corre, A. [Universite Europeenne de Bretagne, CNRS, Laboratoire FOTON, INSA, 20 Avenue des buttes de Coeesmes, 35708 Rennes, Cedex 7 (France)

    2012-06-25

    Highlights: Black-Right-Pointing-Pointer The thermal conductivity of InAs on InP (1 1 3)B quantum dots stacks is measured. Black-Right-Pointing-Pointer The growth of a close stack of 100 layers of InAs using AlAs strain compensating layers is presented. Black-Right-Pointing-Pointer New data on the thermal conductivity of InP n-doped susbtrate are given. - Abstract: The growth and thermal conductivity of InAs quantum dot (QD) stacks embedded in GaInAs matrix with AlAs compensating layers deposited on (1 1 3)B InP substrate are presented. The effect of the strain compensating AlAs layer is demonstrated through Atomic Force Microscopy (AFM) and X-ray diffraction structural analysis. The thermal conductivity (2.7 W/m K at 300 K) measured by the 3{omega} method reveals to be clearly reduced in comparison with a bulk InGaAs layer (5 W/m K). In addition, the thermal conductivity measurements of S doped InP substrates and the SiN insulating layer used in the 3{omega} method in the 20-200 Degree-Sign C range are also presented. An empirical law is proposed for the S doped InP substrate, which slightly differs from previously presented results.

  11. Inter-dot strain field effect on the optoelectronic properties of realistic InP lateral quantum-dot molecules

    International Nuclear Information System (INIS)

    We report on numerical simulations of InP surface lateral quantum-dot molecules on In0.48Ga0.52 P buffer, using a model strictly derived by experimental results by extrapolation of the molecules shape from atomic force microscopy images. Our study has been inspired by the comparison of a photoluminescence spectrum of a high-density InP surface quantum dot sample with a numerical ensemble average given by a weighted sum of simulated single quantum-dot spectra. A lack of experimental optical response from the smaller dots of the sample is found to be due to strong inter-dot strain fields, which influence the optoelectronic properties of lateral quantum-dot molecules. Continuum electromechanical, k→·p→ bandstructure, and optical calculations are presented for two different molecules, the first composed of two dots of nearly identical dimensions (homonuclear), the second of two dots with rather different sizes (heteronuclear). We show that in the homonuclear molecule the hydrostatic strain raises a potential barrier for the electrons in the connection zone between the dots, while conversely the holes do not experience any barrier, which considerably increases the coupling. Results for the heteronuclear molecule show instead that its dots do not appear as two separate and distinguishable structures, but as a single large dot, and no optical emission is observed in the range of higher energies where the smaller dot is supposed to emit. We believe that in samples of such a high density the smaller dots result as practically incorporated into bigger molecular structures, an effect strongly enforced by the inter-dot strain fields, and consequently it is not possible to experimentally obtain a separate optical emission from the smaller dots

  12. Inter-dot strain field effect on the optoelectronic properties of realistic InP lateral quantum-dot molecules

    Energy Technology Data Exchange (ETDEWEB)

    Barettin, Daniele, E-mail: Daniele.Barettin@uniroma2.it; Auf der Maur, Matthias [Department of Electronic Engineering, University of Rome “Tor Vergata,” Via del Politecnico 1, 00133, Rome (Italy); De Angelis, Roberta; Prosposito, Paolo; Casalboni, Mauro [Department of Industrial Engineering, University of Rome Tor Vergata, Via del Politecnico 1 00133 Rome, Italy and INSTM, Unitá di ricerca dell' Universitá di Roma “Tor Vergata,” Via della Ricerca Scientifica 1, 00133, Rome (Italy); Pecchia, Alessandro [CNR-ISMN, via Salaria Km. 29.300, 00017 Monterotondo, Rome (Italy)

    2015-03-07

    We report on numerical simulations of InP surface lateral quantum-dot molecules on In{sub 0.48}Ga{sub 0.52 }P buffer, using a model strictly derived by experimental results by extrapolation of the molecules shape from atomic force microscopy images. Our study has been inspired by the comparison of a photoluminescence spectrum of a high-density InP surface quantum dot sample with a numerical ensemble average given by a weighted sum of simulated single quantum-dot spectra. A lack of experimental optical response from the smaller dots of the sample is found to be due to strong inter-dot strain fields, which influence the optoelectronic properties of lateral quantum-dot molecules. Continuum electromechanical, k{sup →}·p{sup →} bandstructure, and optical calculations are presented for two different molecules, the first composed of two dots of nearly identical dimensions (homonuclear), the second of two dots with rather different sizes (heteronuclear). We show that in the homonuclear molecule the hydrostatic strain raises a potential barrier for the electrons in the connection zone between the dots, while conversely the holes do not experience any barrier, which considerably increases the coupling. Results for the heteronuclear molecule show instead that its dots do not appear as two separate and distinguishable structures, but as a single large dot, and no optical emission is observed in the range of higher energies where the smaller dot is supposed to emit. We believe that in samples of such a high density the smaller dots result as practically incorporated into bigger molecular structures, an effect strongly enforced by the inter-dot strain fields, and consequently it is not possible to experimentally obtain a separate optical emission from the smaller dots.

  13. Optical and structural properties of InP quantum dots embedded in (AlxGa1-x)0.51In0.49P

    Science.gov (United States)

    Schulz, W.-M.; Roßbach, R.; Reischle, M.; Beirne, G. J.; Bommer, M.; Jetter, M.; Michler, P.

    2009-01-01

    Within this work we present optical and structural properties of InP quantum dots embedded in (AlxGa1-x)0.51In0.49P barriers. Atomic force microscopy measurements show a mainly bimodal height distribution with aspect ratios (ratio of width to height) of about 10:1 and quantum dot heights of around 2 nm for the smaller quantum dot class (type A) and around 4 nm for the larger quantum dot class (type B). From ensemble-photoluminescence measurements we estimated thermal activation energies of up to 270 meV for the type-A quantum dots, resulting in a 300 times higher luminescence intensity at 200 K in comparison to our InP quantum dots in Ga0.51In0.49P at the same emission wavelength. Photon statistic measurements clearly display that InP quantum dots in (Al0.20Ga0.80)0.51In0.49P emit single photons up to 80 K, making them promising candidates for high-temperature single-photon emitters.

  14. InP-quantum dots in Al0.20Ga0.80InP with different barrier configurations

    Science.gov (United States)

    Schulz, Wolfgang-Michael; Roßbach, Robert; Reischle, Matthias; Beirne, Gareth J.; Jetter, Michael; Michler, Peter

    2009-04-01

    Systematic ensemble photoluminescence studies have been performed on type-I InP-quantum dots in Al0.20Ga0.80InP barriers, emitting at approximately 1.85 eV at 5 K. The influence of different barrier configurations as well as the incorporation of additional tunnel barriers on the optical properties has been investigated. The confinement energy between the dot barrier and the surrounding barrier layers, which is the sum of the band discontinuities for the valence and the conduction bands, was chosen to be approximately 190 meV by using Al0.50Ga0.50InP. In combination with 2 nm thick AlInP tunnel barriers, the internal quantum efficiency of these barrier configurations can be increased by up to a factor of 20 at elevated temperatures with respect to quantum dots without such layers.

  15. Investigating bioconjugation by atomic force microscopy

    Science.gov (United States)

    2013-01-01

    Nanotechnological applications increasingly exploit the selectivity and processivity of biological molecules. Integration of biomolecules such as proteins or DNA into nano-systems typically requires their conjugation to surfaces, for example of carbon-nanotubes or fluorescent quantum dots. The bioconjugated nanostructures exploit the unique strengths of both their biological and nanoparticle components and are used in diverse, future oriented research areas ranging from nanoelectronics to biosensing and nanomedicine. Atomic force microscopy imaging provides valuable, direct insight for the evaluation of different conjugation approaches at the level of the individual molecules. Recent technical advances have enabled high speed imaging by AFM supporting time resolutions sufficient to follow conformational changes of intricately assembled nanostructures in solution. In addition, integration of AFM with different spectroscopic and imaging approaches provides an enhanced level of information on the investigated sample. Furthermore, the AFM itself can serve as an active tool for the assembly of nanostructures based on bioconjugation. AFM is hence a major workhorse in nanotechnology; it is a powerful tool for the structural investigation of bioconjugation and bioconjugation-induced effects as well as the simultaneous active assembly and analysis of bioconjugation-based nanostructures. PMID:23855448

  16. Bioconjugation of CdTe quantum dot for the detection of 2,4-dichlorophenoxyacetic acid by competitive fluoroimmunoassay based biosensor.

    Science.gov (United States)

    Vinayaka, A C; Basheer, S; Thakur, M S

    2009-02-15

    Quantum dots (QD) are semiconductor fluorescent nanoparticles, which can be made use of for environmental monitoring with high sensitivity. In view of the alarming levels of pesticides and herbicides being used in agriculture practices, there is a need for their rapid, sensitive and specific detection in food and environmental samples, as pesticides and herbicides are harmful to living beings even at trace levels. Present study was carried out to develop a reliable and rapid method for analysis and detection of 2,4-D (herbicide) using cadmium telluride quantum dot nanoparticle (CdTe QD). Fluoroimmunoassay based on the fluorescent property of quantum dot was used along with immunoassay to detect 2,4-D. CdTe capped with mercaptopropionic acid, was conjugated using N-(3-dimethylaminopropyl)-N-ethylcarbodiimide hydrochloride (EDC) and a coupling reagent like N-hydroxysuccinimide (NHS) to alkaline phosphatase (ALP) which was in turn conjugated to 2,4-D molecule. Anti 2,4-D-IgG antibodies were immobilized in an immunoreactor column using Sepharose CL-4B as an inert matrix. The detection of 2,4-D was carried out by fluoroimmunoassay-based biosensor using competitive binding between conjugated 2,4-D-ALP-CdTe and free 2,4-D with immobilized anti 2,4-D antibodies in an immunoreactor column. It was possible to detect 2,4-D upto 250pgmL(-1). Present study also emphasizes on the resonance energy transfer between ALP and CdTe QD as a result of bioconjugation, which can be used for future biosensor development based on quantum dot-biomolecular interactions. PMID:18930650

  17. The role of strain-driven in migration in the growth of self-assembled InAs quantum dots on InP

    CERN Document Server

    Yoon, S H; Lee, T W; Hwang, H D; Yoon, E J; Kim, Y D

    1999-01-01

    Self-assembled InAs quantum dots (SAQDs) were grown on InP by metalorganic chemical vapor deposition. The amount of excess InAs and the aspect ratio of the SAQD increased with temperature and V/III ratio. It is explained that the As/P exchange reaction at the surface played an important role in the kinetics of SAQD formation. Insertion of a lattice-matched InGaAs buffer layer suppressed the excess InAs formation, and lowered the aspect ratio. Moreover, the dots formed on InGaAs buffer layers were faceted, whereas those on InP were hemispherical, confirming the effect of the As/P exchange reaction. The shape of InAs quantum dots on InGaAs buffer layers was a truncated pyramid with four [136] facets and base edges parallel to directions.

  18. The Effect of Fatty Amine Chain Length on Synthesis Process of Inp/Zns Quantum Dots

    Directory of Open Access Journals (Sweden)

    Zahra Ranjbar Navazi

    2016-08-01

    Full Text Available Obtaining narrow size distribution through conventional methods used for quantum dots of group II-VI semiconductors is impractical in the case of III-V semiconductors speciallyInP/ZnS quantum dots because of molecular precursors depletion and growth stage continuation through Ostwald ripening process. Using fatty amines as activator along with precursors can lead to more monodispersed quantum dots. In this work, the effect of fatty amine chain length on InP/ZnS quantum dots synthesis was investigated. Octylamine, dodecylamine and oleylamine were used as the activator of InP/ZnS quantum dots synthesis. Synthesis progress and color changes in reaction mixture with time lapse, indicative of formed quantum dots concentration, was intensified in presence of fatty amines with shorter chain length. Quantum dots with smaller mean size and broader size distribution were synthesized in presence of longer fatty amines as a result of higher capping capacity of them. Thereupon the optical properties of quantum dots were affected by chain length of fatty amine. Longer wavelength of photoluminescence emission was achieved by using octylamine with the shortest chain length among selected fatty amines.

  19. 基于元素磷源的InP量子点的制备%Synthesis of InP Quantum Dots with Elemental Phosphine Source

    Institute of Scientific and Technical Information of China (English)

    王彬彬; 王莉; 汪瑾; 蒋阳

    2012-01-01

    The InP quantum dots (QDs) were synthesized via a colloidal chemical method with white phosphorus (P4), indium acetate (In (Ac)3), stearic acid and 1-octadecene (ODE) as phosphorus source, indium source, surfactant and solvent, respectively. The structure, size and shape of the quantum dots were analyzed by XRD and TEM. The resulting InP QDs were also characterized by UV-Visible absorption and fluorescence spectroscopy. The title material exhibits well-resolved absorption and emission properties. Meanwhile, the InP QDs emit at 415~517 nm in the electromagnetic spectrum showing obvious quantum size effect.%以白磷作为磷源、醋酸铟为铟源、硬脂酸为表面包覆剂、十八烯为溶剂,采用胶体化学法合成了InP量子点.X射线衍射(XRD)和透射电子显微镜(TEM)分析测试显示InP量子点属于立方闪锌矿结构,并且是直径约为5 nm的球状纳米晶.紫外可见光谱和荧光光谱分析表明,InP量子点表现出明显的激子吸收和带边发射特征,荧光发射光谱在415~517 nm范围内连续可调,呈现明显的量子尺寸效应.

  20. Synthesis and enzymatic photo-activity of an O2 tolerant hydrogenase-CdSe@CdS quantum rod bioconjugate.

    Science.gov (United States)

    Hamon, C; Ciaccafava, A; Infossi, P; Puppo, R; Even-Hernandez, P; Lojou, E; Marchi, V

    2014-05-21

    This communication reports on the preparation of stable and photo-active nano-heterostructures composed of O2 tolerant [NiFe] hydrogenase extracted from the Aquifex aeolicus bacterium grafted onto hydrophilic CdSe/CdS quantum rods in view of the development of H2/O2 biofuel cells. The resulting complex is efficient towards H2 oxidation, displays good stability and new photosensitive properties. PMID:24468861

  1. InP-quantum dots in Al{sub 0.20}Ga{sub 0.80}InP with different barrier configurations

    Energy Technology Data Exchange (ETDEWEB)

    Schulz, Wolfgang-Michael; Rossbach, Robert; Reischle, Matthias; Beirne, Gareth J.; Jetter, Michael; Michler, Peter [Institut fuer Halbleiteroptik und Funktionelle Grenzflaechen, Stuttgart (Germany)

    2009-04-15

    Systematic ensemble photoluminescence studies have been performed on type-I InP-quantum dots in Al{sub 0.20}Ga{sub 0.80}InP barriers, emitting at approximately 1.85 eV at 5 K. The influence of different barrier configurations as well as the incorporation of additional tunnel barriers on the optical properties has been investigated. The confinement energy between the dot barrier and the surrounding barrier layers, which is the sum of the band discontinuities for the valence and the conduction bands, was chosen to be approximately 190 meV by using Al{sub 0.50}Ga{sub 0.50}InP. In combination with 2 nm thick AlInP tunnel barriers, the internal quantum efficiency of these barrier configurations can be increased by up to a factor of 20 at elevated temperatures with respect to quantum dots without such layers. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  2. Ultra-broadband Superradiant Pulses from Femtosecond Laser Pumped InP based Quantum Well Laser Diode

    Science.gov (United States)

    Liu, Jingjing

    Laser techniques, such as gain / Q switching, mode-locking, have successfully overcome the energy restriction of gain clamping in the stead-state operated lasers, and allowed the generation of giant pulses with short pulse durations. However, gain saturation further limits the amount of stored energy in a gain medium, and therefore limits the possible maximum pulse energy obtained by laser techniques. Here we circumvent both gain clamping and the capacity limitation of energy storage by operating the double-quantum-well laser diode chips on ultrafast gain-switching model using femtosecond (fs) laser pulses as the optical pump. The advantage of our pumping approach is that the fs pulse can instantly produce a very large number of carriers, and therefore enable the formation of non-equilibrium coherent e-h BCS-like condensate state in a large energy region from the lowest QW subband edges to the highest subband and then obtain the ultra-broadband superradiant pulses. Superradiance (SR) or the coherent spontaneous emission is not a new quantum optics phenomenon, which has been proposed in 1954 by R. Dicke, even earlier than the invention of laser. It is famous as by its ultrashort duration, high peak power, high coherence and high timing jitter. Recently, femtosecond SR pulses have been generated from semiconductors. This investigation has revived both theoretical and experimental studies of SR emission. In this thesis, we have demonstrated the generation of intense, delayed SR pulses from the InP based double quantum well laser diode at room temperature. The 1040 nm femtosecond laser was applied as the optical pumping source, and when the pump power is high enough, the cooperative recombination of e-h pairs from higher order quantum energy levels can occur to generate SR bursts earlier than the cooperative emission from the lower quantum energy levels. Then, ultra-broadband TM polarized SR pulses have been firstly generated at room temperature. Our experiments also

  3. A quantum entropy source on an InP photonic integrated circuit for random number generation

    CERN Document Server

    Abellan, Carlos; Domenech, David; Muñoz, Pascual; Capmany, Jose; Longhi, Stefano; Mitchell, Morgan W; Pruneri, Valerio

    2016-01-01

    Random number generators are essential to ensure performance in information technologies, including cryptography, stochastic simulations and massive data processing. The quality of random numbers ultimately determines the security and privacy that can be achieved, while the speed at which they can be generated poses limits to the utilisation of the available resources. In this work we propose and demonstrate a quantum entropy source for random number generation on an indium phosphide photonic integrated circuit made possible by a new design using two-laser interference and heterodyne detection. The resulting device offers high-speed operation with unprecedented security guarantees and reduced form factor. It is also compatible with complementary metal-oxide semiconductor technology, opening the path to its integration in computation and communication electronic cards, which is particularly relevant for the intensive migration of information processing and storage tasks from local premises to cloud data centre...

  4. Electronic shell structure and carrier dynamics of high aspect ratio InP single quantum dots

    Science.gov (United States)

    Beirne, Gareth J.; Reischle, Matthias; Roßbach, Robert; Schulz, Wolfgang-Michael; Jetter, Michael; Seebeck, Jan; Gartner, Paul; Gies, Christopher; Jahnke, Frank; Michler, Peter

    2007-05-01

    Systematic excitation-power-density dependent and time-resolved single-dot photoluminescence studies have been performed on type-I InP/Ga0.51In0.49P quantum dots. These dots are rather flat and therefore exhibit larger than normal single-dot ground-state transition energies ranging from 1.791 to 1.873eV . As a result of their low height, the dots have a very high aspect ratio (ratio of width to height) of approximately 27:1 . In general, even at high excitation power densities, the dots with ground-state transition energies above 1.82eV exhibit only s -shell emission, while the larger dots exhibiting ground-state emission below 1.82eV tend to exhibit emission from several (in some cases up to eight) shells. Calculations indicate that this change is due to the smaller dots having only one confined election level while the larger dots have two or more. Time-resolved investigations indicate the presence of fast carrier relaxation and recombination processes for both dot types, however, only the larger dots display clear interlevel relaxation effects as expected. The temporal behavior has been qualitatively simulated using a rate equation model. Also, in a more detailed analysis, the fast carrier relaxation is described on the basis of a quantum kinetic treatment of the carrier-phonon interaction. Finally, the dots display a clear single-photon emission signature in photon statistics measurements.

  5. Labeling and imaging of human mesenchymal stem cells with quantum dot bioconjugates during proliferation and osteogenic differentiation in long term.

    Science.gov (United States)

    Shah, B; Clark, P; Stroscio, M; Mao, J

    2006-01-01

    Quantum dots (QDs) are semiconductor nanocrystals that serve as promising alternatives to organic dyes for cell labeling. Because of their unique spectral, physical and chemical properties, QDs are useful for concurrently monitoring several intercellular and intracellular interactions in live normal cells and cancer cells over periods ranging from less than a second to over several days (several divisions of cells). Here, peptide CGGGRGD is immobilized on CdSe-ZnS QDs coated with carboxyl groups by cross linking with amine groups. These conjugates are directed by the peptide to bind with selected integrins on the membrane of human Mesenchymal stem cells. Upon overnight incubation with optimal concentration, QDs effectively labeled all the cells. Here, we report long-term labeling of human bone-marrow-derived mesenchymal stem cells (hMSCs) with RGD-conjugated QDs during self replication and differentiation into osteogenic cell lineages.

  6. Bio-conjugated luminescent quantum dots of doped ZnS: a cyto-friendly system for targeted cancer imaging

    Science.gov (United States)

    Manzoor, Koyakutty; Johny, Seby; Thomas, Deepa; Setua, Sonali; Menon, Deepthy; Nair, Shantikumar

    2009-02-01

    A heavy-metal-free luminescent quantum dot (QD) based on doped zinc sulfide (ZnS), conjugated with a cancer-targeting ligand, folic acid (FA), is presented as a promising bio-friendly system for targeted cancer imaging. Doped QDs were prepared by a simple aqueous method at room temperature. X-ray diffraction and transmission electron microscopy studies showed the formation of monodisperse QDs of average size ~4 nm with cubic (sphalerite) crystal structure. Doping of the QDs with metals (Al3+), transition metals (Cu+, Mn2+) and halides (F-) resulted in multi-color emission with dopant-specific color tunability ranging from blue (480 nm) to red (622 nm). Luminescent centers in doped QDs could be excited using bio-friendly visible light >400 nm by directly populating the dopant centers, leading to bright emission. The cytotoxicity of bare and FA conjugated QDs was tested in vitro using normal lung fibroblast cell line (L929), folate-receptor-positive (FR+) nasopharyngeal epidermoid carcinoma cell line (KB), and FR-negative (FR-) lung cancer cell line (A549). Both bare and FA-conjugated ZnS QDs elicited no apparent toxicity even at high concentrations of ~100 µM and 48 h of incubation. In contrast, CdS QDs prepared under identical conditions showed relatively high toxicity even at low concentrations of ~0.1 µM and 24 h of incubation. Interaction of FA-QDs with different cell lines showed highly specific attachment of QDs in the FR+ cancer cell line, leaving others unaffected. The bright and stable luminescence of the QDs could be used to image both single cancer cells and colonies of cancer cells without affecting their metabolic activity and morphology. Thus, this study presents, for the first time, the use of non-toxic, Cd-, Te-, Se-, Pb- and Hg-free luminescent QDs for targeted cancer imaging.

  7. Bio-conjugated luminescent quantum dots of doped ZnS: a cyto-friendly system for targeted cancer imaging

    International Nuclear Information System (INIS)

    A heavy-metal-free luminescent quantum dot (QD) based on doped zinc sulfide (ZnS), conjugated with a cancer-targeting ligand, folic acid (FA), is presented as a promising bio-friendly system for targeted cancer imaging. Doped QDs were prepared by a simple aqueous method at room temperature. X-ray diffraction and transmission electron microscopy studies showed the formation of monodisperse QDs of average size ∼4 nm with cubic (sphalerite) crystal structure. Doping of the QDs with metals (Al3+), transition metals (Cu+, Mn2+) and halides (F-) resulted in multi-color emission with dopant-specific color tunability ranging from blue (480 nm) to red (622 nm). Luminescent centers in doped QDs could be excited using bio-friendly visible light >400 nm by directly populating the dopant centers, leading to bright emission. The cytotoxicity of bare and FA conjugated QDs was tested in vitro using normal lung fibroblast cell line (L929), folate-receptor-positive (FR+) nasopharyngeal epidermoid carcinoma cell line (KB), and FR-negative (FR-) lung cancer cell line (A549). Both bare and FA-conjugated ZnS QDs elicited no apparent toxicity even at high concentrations of ∼100 μM and 48 h of incubation. In contrast, CdS QDs prepared under identical conditions showed relatively high toxicity even at low concentrations of ∼0.1 μM and 24 h of incubation. Interaction of FA-QDs with different cell lines showed highly specific attachment of QDs in the FR+ cancer cell line, leaving others unaffected. The bright and stable luminescence of the QDs could be used to image both single cancer cells and colonies of cancer cells without affecting their metabolic activity and morphology. Thus, this study presents, for the first time, the use of non-toxic, Cd-, Te-, Se-, Pb- and Hg-free luminescent QDs for targeted cancer imaging.

  8. Epitaxial growth of quantum dots on InP for device applications operating at the 1.55 μm wavelength range

    DEFF Research Database (Denmark)

    Semenova, Elizaveta; Kulkova, Irina; Kadkhodazadeh, Shima;

    2014-01-01

    The development of epitaxial technology for the fabrication of quantum dot (QD) gain material operating in the 1.55 μm wavelength range is a key requirement for the evolvement of telecommunication. High performance QD material demonstrated on GaAs only covers the wavelength region 1-1.35 μm....... In order to extract the QD benefits for the longer telecommunication wavelength range the technology of QD fabrication should be developed for InP based materials. In our work, we take advantage of both QD fabrication methods Stranski-Krastanow (SK) and selective area growth (SAG) employing block copolymer...... dependence, and low laser quantum efficiency. Here, we demonstrate that with tailored growth conditions, which suppress surface migration of adatoms during the SK QD formation, much smaller base diameter (13.6nm versus 23nm) and an improved aspect ratio are achieved. In order to gain advantage of non...

  9. Red single-photon emission from an InP /GaInP quantum dot embedded in a planar monolithic microcavity

    Science.gov (United States)

    Roßbach, Robert; Reischle, Matthias; Beirne, Gareth J.; Jetter, Michael; Michler, Peter

    2008-02-01

    Using micro-photoluminescence, we demonstrate single-photon emission in the visible (red) spectral range using self-assembled InP quantum dots embedded in a planar microcavity realized by monolithically grown high reflectivity AlGaAs distributed Bragg reflectors. A full width at half maximum of 130μeV at 5K was observed from a single quantum dot coupled to the fundamental cavity resonance. Photon correlation measurements performed under continuous wave excitation show a clear antibunching behavior [g(2)(0)=0.13] as expected for a single-photon emitter. Saturation count rates up to 1.5MHz (8.1MHz into the first lens, with an extraction efficiency of 4.1%) were observed.

  10. Spectral and carrier transfer characteristics of 1.55 -μ m InAs /InP coupled-quantum-dot lasers

    Science.gov (United States)

    Lin, Zhiyuan; Wang, Zhuoran; Yuan, Guohui

    2015-07-01

    To explore the spectral and carrier transfer characteristics of 1.55 -μ m InAs /InP coupled-quantum-dot lasers (CQDLs), we develop a probabilistically coupled multipopulation rate equation model (PCMPREM) involving intradot and interdot relaxation, inhomogeneous broadening, and homogeneous broadening. After solving the PCMPREM with the fourth-order Runge-Kutta method, a simultaneous quadruple lasing spectrum is observed and explained by both the carrier competition theory and coupled theory. An analysis of the results shows that the coupling strength between different subbands changes with different current injections, giving a systematic understanding of the operation of CQDLs systems. With a lower threshold, the CQDL has a much broader output range of more than 105.3 nm around 1.55 μ m , which is 7.8 times greater than the uncoupled QDL, indicating that CQDLs can be excellent light sources for not only long-haul ultrahigh capacity optical communications, but also on-chip photonics integrated circuits with low power consumption.

  11. Study of ethanolamine surface treatment on the metal-oxide electron transport layer in inverted InP quantum dot light-emitting diodes

    Science.gov (United States)

    Jang, Ilwan; Kim, Jiwan; Park, Chang Jun; Ippen, Christian; Greco, Tonino; Oh, Min Suk; Lee, Jeongno; Kim, Won Keun; Wedel, Armin; Han, Chul Jong; Park, Sung Kyu

    2015-11-01

    The present work shows the effect of ethanolamine surface treatment on inverted InP quantum dot light-emitting diodes (QD-LEDs) with inorganic metal oxide layers. In the inverted structure of ITO/ZnO/InP QDs/CBP/MoO3/Al, a sol-gel derived ZnO film was used as an electron transport layer (ETL) and MoO3 was used as a hole injection layer (HIL). First, ethanolamine was treated as a surface modifier on top of the ZnO electron transport layer. The optical performance of the QD-LED device was improved by the ethanolamine surface treatment. Second, low temperature annealing (<200°C) was performed on the ZnO sol-gel electron transport layer, followed by an investigation of the effect of the ZnO annealing temperature. The efficiency of the inverted QD-LEDs was significantly enhanced (more than 3-fold) by optimization of the ZnO annealing temperature. [Figure not available: see fulltext.

  12. Highly strained InAs quantum wells on InP substrates for mid-IR emission

    Science.gov (United States)

    Kim, Sangho; Kirch, Jeremy; Mawst, Luke

    2010-04-01

    Optical emission characteristics of indium arsenide (InAs) quantum wells were studied using organometallic vapor phase epitaxy (OMVPE). Low growth temperature (DQW) in a separate confinement hetero-structure (SCH) structure.

  13. Towards a monolithically integrated III–V laser on silicon: optimization of multi-quantum well growth on InP on Si

    International Nuclear Information System (INIS)

    High-quality InGaAsP/InP multi-quantum wells (MQWs) on the isolated areas of indium phosphide on silicon necessary for realizing a monolithically integrated silicon laser is achieved. Indium phosphide layer on silicon, the pre-requisite for the growth of quantum wells is achieved via nano-epitaxial lateral overgrowth (NELOG) technique from a defective seed indium phosphide layer on silicon. This technique makes use of epitaxial lateral overgrowth (ELOG) from closely spaced (1 µm) e-beam lithography-patterned nano-sized openings (∼300 nm) by low-pressure hydride vapor phase epitaxy. A silicon dioxide mask with carefully designed opening patterns and thickness with respect to the opening width is used to block the defects propagating from the indium phosphide seed layer by the so-called necking effect. Growth conditions are optimized to obtain smooth surface morphology even after coalescence of laterally grown indium phosphide from adjacent openings. Surface morphology and optical properties of the NELOG indium phosphide layer are studied using atomic force microscopy, cathodoluminescence and room temperature µ-photoluminescence (µ-PL) measurements. Metal organic vapor phase epitaxial growth of InGaAsP/InP MQWs on the NELOG indium phosphide is conducted. The mask patterns to avoid loading effect that can cause excessive well/barrier thickness and composition change with respect to the targeted values is optimized. Cross-sectional transmission electron microscope studies show that the coalesced NELOG InP on Si is defect-free. PL measurement results indicate the good material quality of the grown MQWs. Microdisk (MD) cavities are fabricated from the MQWs on ELOG layer. PL spectra reveal the existence of resonant modes arising out of these MD cavities. A mode solver using finite difference method indicates the pertinent steps that should be adopted to realize lasing. (invited paper)

  14. When is an INP not an INP?

    Science.gov (United States)

    Simpson, Emma; Connolly, Paul; McFiggans, Gordon

    2016-04-01

    Processes such as precipitation and radiation depend on the concentration and size of different hydrometeors within clouds therefore it is important to accurately predict them in weather and climate models. A large fraction of clouds present in our atmosphere are mixed phase; contain both liquid and ice particles. The number of drops and ice crystals present in mixed phase clouds strongly depends on the size distribution of aerosols. Cloud condensation nuclei (CCN), a subset of atmospheric aerosol particles, are required for liquid drops to form in the atmosphere. These particles are ubiquitous in the atmosphere. To nucleate ice particles in mixed phase clouds ice nucleating particles (INP) are required. These particles are rarer than CCN. Here we investigate the case where CCN and INPs are in direct competition with each other for water vapour within a cloud. Focusing on the immersion and condensation modes of freezing (where an INP must be immersed within a liquid drop before it can freeze) we show that the presence of CCN can suppress the formation of ice. CCN are more hydrophilic than IN and as such are better able to compete for water vapour than, typically insoluble, INPs. Therefore water is more likely to condense onto a CCN than INP, leaving the INP without enough condensed water on it to be able to freeze in the immersion or condensation mode. The magnitude of this suppression effect strongly depends on a currently unconstrained quantity. Here we refer to this quantity as the critical mass of condensed water required for freezing, Mwc. Mwc is the threshold amount of water that must be condensed onto a INP before it can freeze in the immersion or condensation mode. Using the detailed cloud parcel model, Aerosol-Cloud-Precipiation-Interaction Model (ACPIM), developed at the University of Manchester we show that if only a small amount of water is required for freezing there is little suppression effect and if a large amount of water is required there is a

  15. Droplet epitaxial growth of highly symmetric quantum dots emitting at telecommunication wavelengths on InP(111)A

    International Nuclear Information System (INIS)

    We demonstrate the formation of InAs quantum dots (QDs) on InAlAs/InP(111)A by means of droplet epitaxy. The C3v symmetry of the (111)A substrate enabled us to realize highly symmetric QDs that are free from lateral elongations. The QDs exhibit a disk-like truncated shape with an atomically flat top surface. Photoluminescence signals show broad-band spectra at telecommunication wavelengths of 1.3 and 1.5 μm. Strong luminescence signals are retained up to room temperature. Thus, our QDs are potentially useful for realizing an entangled photon-pair source that is compatible with current telecommunication fiber networks

  16. Composition-dependent trap distributions in CdSe and InP quantum dots probed using photoluminescence blinking dynamics

    Science.gov (United States)

    Chung, Heejae; Cho, Kyung-Sang; Koh, Weon-Kyu; Kim, Dongho; Kim, Jiwon

    2016-07-01

    Although Group II-VI quantum dots (QDs) have attracted much attention due to their wide range of applications in QD-based devices, the presence of toxic ions in II-VI QDs raises environmental concerns. To fulfill the demands of nontoxic QDs, synthetic routes for III-V QDs have been developed. However, only a few comparative analyses on optical properties of III-V QDs have been performed. In this study, the composition-related energetic trap distributions have been explored by using three different types of core/multishell QDs: CdSe-CdS (CdSe/CdS/ZnS), InP-ZnSe (InP/ZnSe/ZnS), and InP-GaP (InP/GaP/ZnS). It was shown that CdSe-CdS QDs have much larger trap densities than InP-shell QDs at higher energy states (at least 1Eg (band gap energy) above the lowest conduction band edge) based on probability density plots and Auger ionization efficiencies which are determined by analyses of photoluminescence blinking dynamics. This result suggests that the composition of encapsulated QDs is closely associated with the charge trapping processes, and also provides an insight into the development of more environmentally friendly QD-based devices.Although Group II-VI quantum dots (QDs) have attracted much attention due to their wide range of applications in QD-based devices, the presence of toxic ions in II-VI QDs raises environmental concerns. To fulfill the demands of nontoxic QDs, synthetic routes for III-V QDs have been developed. However, only a few comparative analyses on optical properties of III-V QDs have been performed. In this study, the composition-related energetic trap distributions have been explored by using three different types of core/multishell QDs: CdSe-CdS (CdSe/CdS/ZnS), InP-ZnSe (InP/ZnSe/ZnS), and InP-GaP (InP/GaP/ZnS). It was shown that CdSe-CdS QDs have much larger trap densities than InP-shell QDs at higher energy states (at least 1Eg (band gap energy) above the lowest conduction band edge) based on probability density plots and Auger ionization

  17. Cytotoxicity assessment of functionalized CdSe, CdTe and InP quantum dots in two human cancer cell models

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jing [Institute of Gerontology and Geriatrics & Beijing Key Lab of Aging and Geriatrics, Chinese PLA General Hospital, Beijing 100853 (China); Hu, Rui [School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); Liu, Jianwei [Institute of Gerontology and Geriatrics & Beijing Key Lab of Aging and Geriatrics, Chinese PLA General Hospital, Beijing 100853 (China); Zhang, Butian; Wang, Yucheng [School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); Liu, Xin [Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Law, Wing-Cheung [Department of Industrial and System Engineering, The Hang Kong Polytechnic University, Hung Hom (Hong Kong); Liu, Liwei [School of Science, Changchun University of Science and Technology, Changchun 130022 (China); Ye, Ling, E-mail: lye_301@163.com [Institute of Gerontology and Geriatrics & Beijing Key Lab of Aging and Geriatrics, Chinese PLA General Hospital, Beijing 100853 (China); Yong, Ken-Tye, E-mail: ktyong@ntu.edu.sg [School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore)

    2015-12-01

    The toxicity of quantum dots (QDs) has been extensively studied over the past decade. Some common factors that originate the QD toxicity include releasing of heavy metal ions from degraded QDs and the generation of reactive oxygen species on the QD surface. In addition to these factors, we should also carefully examine other potential QD toxicity causes that will play crucial roles in impacting the overall biological system. In this contribution, we have performed cytotoxicity assessment of four types of QD formulations in two different human cancer cell models. The four types of QD formulations, namely, mercaptopropionic acid modified CdSe/CdS/ZnS QDs (CdSe-MPA), PEGylated phospholipid encapsulated CdSe/CdS/ZnS QDs (CdSe-Phos), PEGylated phospholipid encapsulated InP/ZnS QDs (InP-Phos) and Pluronic F127 encapsulated CdTe/ZnS QDs (CdTe-F127), are representatives for the commonly used QD formulations in biomedical applications. Both the core materials and the surface modifications have been taken into consideration as the key factors for the cytotoxicity assessment. Through side-by-side comparison and careful evaluations, we have found that the toxicity of QDs does not solely depend on a single factor in initiating the toxicity in biological system but rather it depends on a combination of elements from the particle formulations. More importantly, our toxicity assessment shows different cytotoxicity trend for all the prepared formulations tested on gastric adenocarcinoma (BGC-823) and neuroblastoma (SH-SY5Y) cell lines. We have further proposed that the cellular uptake of these nanocrystals plays an important role in determining the final faith of the toxicity impact of the formulation. The result here suggests that the toxicity of QDs is rather complex and it cannot be generalized under a few assumptions reported previously. We suggest that one have to evaluate the QD toxicity on a case to case basis and this indicates that standard procedures and comprehensive

  18. Photoabsorption and resonance energy transfer phenomenon in CdTe-protein bioconjugates: an insight into QD-biomolecular interactions.

    Science.gov (United States)

    Vinayaka, Aaydha C; Thakur, Munna S

    2011-05-18

    Luminescent quantum dots (QDs) possess unique photophysical properties, which are advantageous in the development of new generation robust fluorescent probes based on Forster resonance energy transfer (FRET) phenomena. Bioconjugation of these QDs with biomolecules create hybrid materials having unique photophysical properties along with biological activity. The present study is aimed at characterizing QD bioconjugates in terms of optical behavior. Colloidal CdTe QDs capped with 3-mercaptopropionic acid (MPA) were conjugated to different proteins by the carbodiimide protocol using N-(3-dimethylaminopropyl)-N-ethylcarbodiimide hydrochloride (EDC) and a coupling reagent like N-hydroxysuccinimide (NHS). The photoabsorption of these QD-protein bioconjugates demonstrated an effective coupling of electronic orbitals of constituents. A linear variation in absorbance of bioconjugates at 330 nm proportionate to conjugation suggests a covalent attachment as confirmed by gel electrophoresis. A red shift in the fluorescence of bovine serum albumin (BSA) due to conjugation inferred a decrease in Stokes shift and solvent polarization effects on protein. A proportionate quenching in BSA fluorescence followed by an enhancement of QD fluorescence point toward nonradiative dipolar interactions. Further, reduction in photobleaching of BSA suggests QD-biomolecular interactions. Bioconjugation has significantly influenced the photoabsorption spectrum of QD bioconjugates suggesting the formation of a possible protein shell on the surface of QD. The experimental result suggests that these bioconjugates can be considered nanoparticle (NP) superstructures for the development of a new generation of robust nanoprobes. PMID:21452896

  19. Thermal transfer and interaction mechanisms of localized excitons in families of InAs quantum dashes grown on InP(001) vicinal substrate emitting near 1.55 μm wavelength

    Science.gov (United States)

    Besahraoui, Fatiha; Bouslama, M.’Hamed; Bouzaiene, Lotfi; Saidi, Faouzi; Maaref, Hassen; Gendry, Michel

    2016-06-01

    With the help of photoluminescence Spectroscopy (PLS), we have investigated the optoelectronic properties of two different families of InAs quantum dashes (QDashes) grown on misoriented InP(001) substrate with 2∘off miscut angle toward the [110] direction (2∘F type). The lowest full width at half maximum (FWHM) of the PL spectrum measured at 12 K indicates the good self organization of InAs QDashes. The weak ratio of the integrated PL measured in 12-300 K temperature range denotes the good spatial confinement of the photogenerated carriers in InAs QDashes. The fast redshift of the PL peaks energy and the anomalous decrease of the FWHM with the increase of the temperature are attributed to an efficient thermal relaxation process of photogenerated carriers in the vicinal sample. This result is highlighted with the help of theoretical modeling of the PL peak energy as a function of the temperature, using three models (Varshni, “Vina, Logothetidis and Cardona” and Pässler). From experimental and theoretical results, we have evidenced the contribution of longitudinal acoustic-phonons (LA-phonons) in the PL of InAs/InP QDashes, via the deformation potential, especially in high temperatures range. We have attributed this behavior to the strained InAs/InP QDashes and/or to the topography of the vicinal InP(001) substrate which favors the presence of stepped phonons polarized along the steps. These vibrational modes can further interact with the excitons at high temperatures. The measured thermal activation energies of each family of InAs QDashes demonstrate that the InAs wetting layer act as a barrier for the thermoionic emission of photogenerated carriers. This result confirms the good spatial confinement of excitons in this sample.

  20. Bio-Conjugates for Nanoscale Applications

    DEFF Research Database (Denmark)

    Villadsen, Klaus

    Bio-conjugates for Nanoscale Applications is the title of this thesis, which covers three different projects in chemical bio-conjugation research, namely synthesis and applications of: Lipidated fluorescent peptides, carbohydrate oxime-azide linkers and N-aryl O-R2 oxyamine derivatives. Lipidated...... fluorescent peptides were designed and synthesized as part of two collaboration projects utilizing peptide conjugates in nanoscale applications to increase understanding of the role peptides and proteins plays in biological systems. Ras proteins are membrane bound molecular switches involved in many signaling...

  1. Organometallic palladium reagents for cysteine bioconjugation

    Science.gov (United States)

    Vinogradova, Ekaterina V.; Zhang, Chi; Spokoyny, Alexander M.; Pentelute, Bradley L.; Buchwald, Stephen L.

    2015-10-01

    Reactions based on transition metals have found wide use in organic synthesis, in particular for the functionalization of small molecules. However, there are very few reports of using transition-metal-based reactions to modify complex biomolecules, which is due to the need for stringent reaction conditions (for example, aqueous media, low temperature and mild pH) and the existence of multiple reactive functional groups found in biomolecules. Here we report that palladium(II) complexes can be used for efficient and highly selective cysteine conjugation (bioconjugation) reactions that are rapid and robust under a range of bio-compatible reaction conditions. The straightforward synthesis of the palladium reagents from diverse and easily accessible aryl halide and trifluoromethanesulfonate precursors makes the method highly practical, providing access to a large structural space for protein modification. The resulting aryl bioconjugates are stable towards acids, bases, oxidants and external thiol nucleophiles. The broad utility of the bioconjugation platform was further corroborated by the synthesis of new classes of stapled peptides and antibody-drug conjugates. These palladium complexes show potential as benchtop reagents for diverse bioconjugation applications.

  2. Bioconjugation and stabilisation of biomolecules in biosensors.

    Science.gov (United States)

    Liébana, Susana; Drago, Guido A

    2016-06-30

    Suitable bioconjugation strategies and stabilisation of biomolecules on electrodes is essential for the development of novel and commercially viable biosensors. In the present review, the functional groups that comprise the selectable targets for practical bioconjugation methods are discussed. We focus on describing the most common immobilisation techniques used in biosensor construction, which are classified into irreversible and reversible methods. Concerning the stability of proteins, the two main types of stability may be defined as (i) storage or shelf stability, and (ii) operational stability. Both types of stability are explained, as well as the introduction of an electrophoretic technique for predicting protein-polymer interactions. In addition, solution and dry stabilisation as well as stabilisation using the covalent immobilisation of proteins are discussed including possible factors that influence stability. Finally, the integration of nanomaterials, such as magnetic particles, with protein immobilisation is discussed in relation to protein stability studies. PMID:27365036

  3. Electronic structure, morphology and emission polarization of enhanced symmetry InAs quantum-dot-like structures grown on InP substrates by molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Maryński, A.; Sĕk, G.; Musiał, A.; Andrzejewski, J.; Misiewicz, J. [Institute of Physics, Wrocław University of Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław (Poland); Gilfert, C.; Reithmaier, J. P. [Technische Physik, Institute of Nanostructure Technology and Analytics, CINSaT, University of Kassel, Heinrich Plett-Str. 40, D-34132 Kassel (Germany); Capua, A.; Karni, O.; Gready, D.; Eisenstein, G. [Department of Electrical Engineering, Technion, Haifa 32000 (Israel); Atiya, G.; Kaplan, W. D. [Department of Materials Science and Engineering, Technion, Haifa 32000 (Israel); Kölling, S. [Fraunhofer Institute for Photonic Microsystems, Center for Nanoelectronic Technologies, Königsbrücker Straße 180, D-01099 Dresden (Germany)

    2013-09-07

    The optical and structural properties of a new kind of InAs/InGaAlAs/InP quantum dot (QD)-like objects grown by molecular beam epitaxy have been investigated. These nanostructures were found to have significantly more symmetrical shapes compared to the commonly obtained dash-like geometries typical of this material system. The enhanced symmetry has been achieved due to the use of an As{sub 2} source and the consequent shorter migration length of the indium atoms. Structural studies based on a combination of scanning transmission electron microscopy (STEM) and atom probe tomography (APT) provided detailed information on both the structure and composition distribution within an individual nanostructure. However, it was not possible to determine the lateral aspect ratio from STEM or APT. To verify the in-plane geometry, electronic structure calculations, including the energy levels and transition oscillator strength for the QDs have been performed using an eight-band k·p model and realistic system parameters. The results of calculations were compared to measured polarization-resolved photoluminescence data. On the basis of measured degree of linear polarization of the surface emission, the in-plane shape of the QDs has been assessed proving a substantial increase in lateral symmetry. This results in quantum-dot rather than quantum-dash like properties, consistent with expectations based on the growth conditions and the structural data.

  4. Fabrication and complete characterization of polarization insensitive 1310 nm InGaAsP InP quantum-well semiconductor optical amplifiers

    Science.gov (United States)

    Jin, Jinyan; Tian, Decheng; Shi, Jing; Li, Tongning

    2004-01-01

    Polarization insensitive 1310 nm InGaAsP-InP multi-quantum-well (MQW) semiconductor optical amplifiers (SOAs), with 7° tilted ridge waveguide and buried-window end facets, have been fabricated and fully characterized on chip and module level. SOAs chips with an optimized complex strained MQW active region exhibited less than 1 dB polarization dependence of amplified spontaneous power in the drive current range of 50-200 mA. The amplifier module, having a residual facet reflectivity of 2.8 × 10-5, achieved 25 dB fibre-to-fibre unsaturated gain, for both transverse electric and transverse magnetic polarization states, 11.2 dBm saturation output power, and 7.6 dB noise figure at 1310 nm. The polarization dependence of gain was less than 0.6 dB in the 3 dB gain bandwidth of 56 nm. Coupling efficiency played a significant role in the gain, saturation output power and noise figure of a SOA module. Spot-size-converter integrated SOAs with buried heterostructures are expected to exhibit further improved performances.

  5. 8-band and 14-band kp modeling of electronic band structure and material gain in Ga(In)AsBi quantum wells grown on GaAs and InP substrates

    Energy Technology Data Exchange (ETDEWEB)

    Gladysiewicz, M.; Wartak, M. S. [Faculty of Fundamental Problems of Technology, Wroclaw University of Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw (Poland); Department of Physics and Computer Science, Wilfrid Laurier University, Waterloo, Ontario N2L 3C5 (Canada); Kudrawiec, R. [Faculty of Fundamental Problems of Technology, Wroclaw University of Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw (Poland)

    2015-08-07

    The electronic band structure and material gain have been calculated for GaAsBi/GaAs quantum wells (QWs) with various bismuth concentrations (Bi ≤ 15%) within the 8-band and 14-band kp models. The 14-band kp model was obtained by extending the standard 8-band kp Hamiltonian by the valence band anticrossing (VBAC) Hamiltonian, which is widely used to describe Bi-related changes in the electronic band structure of dilute bismides. It has been shown that in the range of low carrier concentrations n < 5 × 10{sup 18 }cm{sup −3}, material gain spectra calculated within 8- and 14-band kp Hamiltonians are similar. It means that the 8-band kp model can be used to calculate material gain in dilute bismides QWs. Therefore, it can be applied to analyze QWs containing new dilute bismides for which the VBAC parameters are unknown. Thus, the energy gap and electron effective mass for Bi-containing materials are used instead of VBAC parameters. The electronic band structure and material gain have been calculated for 8 nm wide GaInAsBi QWs on GaAs and InP substrates with various compositions. In these QWs, Bi concentration was varied from 0% to 5% and indium concentration was tuned in order to keep the same compressive strain (ε = 2%) in QW region. For GaInAsBi/GaAs QW with 5% Bi, gain peak was determined to be at about 1.5 μm. It means that it can be possible to achieve emission at telecommunication windows (i.e., 1.3 μm and 1.55 μm) for GaAs-based lasers containing GaInAsBi/GaAs QWs. For GaInAsBi/Ga{sub 0.47}In{sub 0.53}As/InP QWs with 5% Bi, gain peak is predicted to be at about 4.0 μm, i.e., at the wavelengths that are not available in current InP-based lasers.

  6. Preparation and optical properties of composite thin films with embedded InP nanoparticles

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    InP nanoparticles embedded in SiO2 thin films were prepared by radio-frequency magnetron co-sputtering. We analyzed the structure and growth behavior of the composite films under different preparation conditions. X-ray diffraction and Raman spectroscopy analyses indicate that InP nanoparticles have a polycrystalline structure. The aver-age size of InP nanoparticles is in the range of 3-10 nm. The broadening and red shift of the Raman peaks were observed,which can be interpreted by the phonon confinement model. Optical transmission spectra indicate that the optical absorp-tion edges of the films can be modulated in the visible light range. The marked blue shift of the absorption edge with respect to that of bulk InP is explained by the quantum con-finement effect. The theoretical values of the blue shift pre-dicted by the effective mass approximation model are differ-ent from the experimental results for the InP-SiO2 system. Analyses indicate that the exciton effective mass of the InP nanoparticles is not constant and is inverse relative to the particles radius,which may be the main reason that results in the discrepancy between the theoretical and the experi-mental result. We discussed the possible transition of the direct band gap to the indirect band gap for InP nanoparti-cles embedded in SiO2 thin films.

  7. Staudinger ligation as a method for bioconjugation.

    Science.gov (United States)

    van Berkel, Sander S; van Eldijk, Mark B; van Hest, Jan C M

    2011-09-12

    In 1919 the German chemist Hermann Staudinger was the first to describe the reaction between an azide and a phosphine. It was not until recently, however, that Bertozzi and co-workers recognized the potential of this reaction as a method for bioconjugation and transformed it into the so-called Staudinger ligation. The bio-orthogonal character of both the azide and the phosphine functions has resulted in the Staudinger ligation finding numerous applications in various complex biological systems. For example, the Staudinger ligation has been utilized to label glycans, lipids, DNA, and proteins. Moreover, the Staudinger ligation has been used as a synthetic method to construct glycopeptides, microarrays, and functional biopolymers. In the emerging field of bio-orthogonal ligation strategies, the Staudinger ligation has set a high standard to which most of the new techniques are often compared. This Review summarizes recent developments and new applications of the Staudinger ligation. PMID:21887733

  8. Wurtzite-Phased InP Micropillars Grown on Silicon with Low Surface Recombination Velocity.

    Science.gov (United States)

    Li, Kun; Ng, Kar Wei; Tran, Thai-Truong D; Sun, Hao; Lu, Fanglu; Chang-Hasnain, Connie J

    2015-11-11

    The direct growth of III-V nanostructures on silicon has shown great promise in the integration of optoelectronics with silicon-based technologies. Our previous work showed that scaling up nanostructures to microsize while maintaining high quality heterogeneous integration opens a pathway toward a complete photonic integrated circuit and high-efficiency cost-effective solar cells. In this paper, we present a thorough material study of novel metastable InP micropillars monolithically grown on silicon, focusing on two enabling aspects of this technology-the stress relaxation mechanism at the heterogeneous interface and the microstructure surface quality. Aberration-corrected transmission electron microscopy studies show that InP grows directly on silicon without any amorphous layer in between. A set of periodic dislocations was found at the heterointerface, relaxing the 8% lattice mismatch between InP and Si. Single crystalline InP therefore can grow on top of the fully relaxed template, yielding high-quality micropillars with diameters expanding beyond 1 μm. An interesting power-dependence trend of carrier recombination lifetimes was captured for these InP micropillars at room temperature, for the first time for micro/nanostructures. By simply combining internal quantum efficiency with carrier lifetime, we revealed the recombination dynamics of nonradiative and radiative portions separately. A very low surface recombination velocity of 1.1 × 10(3) cm/sec was obtained. In addition, we experimentally estimated the radiative recombination B coefficient of 2.0 × 10(-10) cm(3)/sec for pure wurtzite-phased InP. These values are comparable with those obtained from InP bulk. Exceeding the limits of conventional nanowires, our InP micropillars combine the strengths of both nanostructures and bulk materials and will provide an avenue in heterogeneous integration of III-V semiconductor materials onto silicon platforms.

  9. Design and fabrication of InP micro-ring resonant detectors

    Institute of Scientific and Technical Information of China (English)

    辛海明; 黄永清; 陈海波; 黄辉; 任晓敏; 周星光

    2009-01-01

    The quantum efficiency and the transient response of the InP semiconductor micro-ring resonant detector are analyzed to get the optimum design parameters.Then the side coupling micro-ring resonant is fabricated using the InP semiconductor material based on the parameters.The micro-ring resonant cavity has the raius of 80 μm,waveguide width of 3 μm and the coupler gap of 1 μm.The test results show that the FSR is 0.75 nm,and the FWHM is 0.5 nm,which are consistent with the theoretical calculation results.

  10. Bioconjugation of oligonucleotides for treating liver fibrosis.

    Science.gov (United States)

    Ye, Zhaoyang; Houssein, Houssam S Hajj; Mahato, Ram I

    2007-01-01

    Liver fibrosis results from chronic liver injury due to hepatitis B and C, excessive alcohol ingestion, and metal ion overload. Fibrosis culminates in cirrhosis and results in liver failure. Therefore, a potent antifibrotic therapy is urgently needed to reverse scarring and eliminate progression to cirrhosis. Although activated hepatic stellate cells (HSCs) remain the principle cell type responsible for liver fibrosis, perivascular fibroblasts of portal and central veins as well as periductular fibroblasts are other sources of fibrogenic cells. This review will critically discuss various treatment strategies for liver fibrosis, including prevention of liver injury, reduction of inflammation, inhibition of HSC activation, degradation of scar matrix, and inhibition of aberrant collagen synthesis. Oligonucleotides (ODNs) are short, single-stranded nucleic acids, which disrupt expression of target protein by binding to complementary mRNA or forming triplex with genomic DNA. Triplex forming oligonucleotides (TFOs) provide an attractive strategy for treating liver fibrosis. A series of TFOs have been developed for inhibiting the transcription of alpha1(I) collagen gene, which opens a new area for antifibrotic drugs. There will be in-depth discussion on the use of TFOs and how different bioconjugation strategies can be utilized for their site-specific delivery to HSCs or hepatocytes for enhanced antifibrotic activities. Various insights developed in individual strategy and the need for multipronged approaches will also be discussed. PMID:18154454

  11. Synthesis of Protein Bioconjugates via Cysteine-maleimide Chemistry.

    Science.gov (United States)

    Mason, Alexander F; Thordarson, Pall

    2016-01-01

    The chemical linking or bioconjugation of proteins to fluorescent dyes, drugs, polymers and other proteins has a broad range of applications, such as the development of antibody drug conjugates (ADCs) and nanomedicine, fluorescent microscopy and systems chemistry. For many of these applications, specificity of the bioconjugation method used is of prime concern. The Michael addition of maleimides with cysteine(s) on the target proteins is highly selective and proceeds rapidly under mild conditions, making it one of the most popular methods for protein bioconjugation. We demonstrate here the modification of the only surface-accessible cysteine residue on yeast cytochrome c with a ruthenium(II) bisterpyridine maleimide. The protein bioconjugation is verified by gel electrophoresis and purified by aqueous-based fast protein liquid chromatography in 27% yield of isolated protein material. Structural characterization with MALDI-TOF MS and UV-Vis is then used to verify that the bioconjugation is successful. The protocol shown here is easily applicable to other cysteine - maleimide coupling of proteins to other proteins, dyes, drugs or polymers. PMID:27501061

  12. Recyclable thermoresponsive polymer-cellulase bioconjugates for biomass depolymerization.

    Science.gov (United States)

    Mackenzie, Katherine J; Francis, Matthew B

    2013-01-01

    Here we report the construction and characterization of a recoverable, thermoresponsive polymer-endoglucanase bioconjugate that matches the activity of unmodified enzymes on insoluble cellulose substrates. Two copolymers exhibiting a thermoresponsive lower critical solution temperature (LCST) were created through the copolymerization of an aminooxy-bearing methacrylamide with N-isopropylacrylamide (NIPAm) or N-isopropylmethacrylamide (NIPMa). The aminooxy group provided a handle through which the LCST was adjusted through small-molecule quenching. This allowed materials with LCSTs ranging from 20.9 to 60.5 °C to be readily obtained after polymerization. The thermostable endoglucanase EGPh from the hypothermophilic Pyrococcus horikoshii was transaminated with pyridoxal-5'-phosphate to produce a ketone-bearing protein, which was then site-selectively modified through oxime linkage with benzylalkoxyamine or 5 kDa-poly(ethylene glycol)-alkoxyamine. These modified proteins showed activity comparable to the controls when assayed on an insoluble cellulosic substrate. Two polymer bioconjugates were then constructed using transaminated EGPh and the aminooxy-bearing copolymers. After 12 h, both bioconjugates produced an equivalent amount of free reducing sugars as the unmodified control using insoluble cellulose as a substrate. The recycling ability of the NIPAm copolymer-EGPh conjugate was determined through three rounds of activity, maintaining over 60% activity after two cycles of reuse and affording significantly more soluble carbohydrates than unmodified enzyme alone. When assayed on acid-pretreated Miscanthus, this bioconjugate increased the amount of reducing sugars by 2.8-fold over three rounds of activity. The synthetic strategy of this bioconjugate allows the LCST of the material to be changed readily from a common stock of copolymer and the method of attachment is applicable to a variety of proteins, enabling the same approach to be amenable to thermophile

  13. Segregation of antimony in InP in MOVPE

    Energy Technology Data Exchange (ETDEWEB)

    Weeke, Stefan

    2008-07-01

    In this work the segregation of antimony in indium phosphide in metal organic vapour phase epitaxy (MOVPE)was systematically investigated. Therefore phosphine stabilized InP surfaces were treated with tri-methyl-antimony (TMSb) in MOVPE. An antimony rich Sb/InP surface was established, showing a typical spectra for the antimonides observed in reflectance anisotropy spectroscopy (RAS).Adsorption and desorption of antimony are investigated, as well as the incorporation of Sb during overgrowth of the Sb/InP surface with InP. Therefore the growth parameters temperature, TMSb partial pressure and treatment time are varied and their influence investigated. The experiments are monitored in-situ with RAS, the achieved data is correlated with ex-situ characterisation such as X-ray diffraction (XRD) and secondary ion mass spectroscopy (SIMS). It is shown that under treatment with TMSb a stable Sb/InP surface is formed within seconds, which does not change under further TMSb treatment. This process is rarely influenced by the TMSb partial pressure. On the contrary, the desorption of Sb is a very slow process. Two main processes can be distinguished: The desorption of excess Sb from the surface and the formation of the MOVPE prepared InP (2 x 1) surface. The reaction velocity of adsorption and desorption increases with temperature. Above a critical value the increase of TMSb partial pressure has no influence on the time for desorption. During overgrowth of the Sb/InP surface the opposite temperature dependence is observed: with increasing growth temperature the typical spectra for antimonides is observed longer. An analysis of the grown samples with XRD and SIMS showed the formation of an InPSb double quantum well. One layer is formed at the interface, the second one 50 nm-120 nm deep in the InP. The location of the 2nd InPSb layer can be correlated with the vanishing of the Sb signature in RAS. The distance between the quantum wells increases with growth temperature, until it

  14. HER-2 Targeted Nanoparticle-Affibody Bioconjugates for Cancer Therapy

    Science.gov (United States)

    Alexis, Frank; Basto, Pamela; Levy-Nissenbaum, Etgar; Radovic-Moreno, Aleksandar F.; Zhang, Liangfang; Pridgen, Eric; Wang, Adrew Z.; Marein, Shawn L.; Westerhof, Katrina; Molnar, Linda K.; Farokhzad, Omid C.

    2010-01-01

    Affibodies are a class of polypeptide ligands that are potential candidates for cell- or tissue-specific targeting of drug-encapsulated controlled release polymeric nanoparticles (NPs). Here we report the development of drug delivery vehicles comprised of polymeric NPs that are surface modified with Affibody ligands that bind to the extracellular domain of the trans-membrane human epidermal growth factor receptor 2 (HER-2) for targeted delivery to cells which over express the HER-2 antigen. NPs lacking the anti-HER-2 Affibody did not show significant uptake by these cells. Using paclitaxel encapsulated NP-Affibody (1 wt% drug loading), we demonstrated increased cytotoxicity of these bioconjugates in SK-BR-3 and SKOV-3 cell lines. These targeted, drug encapsulated NPAffibody bioconjugates may be efficacious in treating HER-2 expressing carcinoma. PMID:19012296

  15. Bio-Conjugated Polycaprolactone Membranes: A Novel Wound Dressing

    OpenAIRE

    Cai, Elijah Zhengyang; Teo, Erin Yiling; Jing, Lim; Koh, Yun Pei; Qian, Tan Si; Wen, Feng; Lee, James Wai Kit; Hing, Eileen Chor Hoong; Yap, Yan Lin; Lee, Hanjing; Lee, Chuen Neng; Teoh, Swee-Hin; Lim,Jane; Lim, Thiam Chye

    2014-01-01

    Background The combination of polycaprolactone and hyaluronic acid creates an ideal environment for wound healing. Hyaluronic acid maintains a moist wound environment and accelerates the in-growth of granulation tissue. Polycaprolactone has excellent mechanical strength, limits inflammation and is biocompatible. This study evaluates the safety and efficacy of bio-conjugated polycaprolactone membranes (BPM) as a wound dressing. Methods 16 New Zealand white rabbits were sedated and local anaest...

  16. Linkable thiocarbamoylbenzamidines as ligands for bioconjugation of Rhenium and Technetium; Kopplungsfaehige Thiocarbamoylbenzamidine als Liganden zur Biokonjugation von Rhenium und Technetium

    Energy Technology Data Exchange (ETDEWEB)

    Castillo Gomez, Juan Daniel

    2015-04-27

    Bioconjugation reactions with Rhenium and Technetium are of high importance for the development of novel radiopharmaceuticals for nuclear medicine. In this thesis the possibilities for bioconjugation using linkable Thiocarmbamoylbenzamidines as ligands for the complexation of Rhenium and Technetium were examined.

  17. Transition metal bioconjugates with an organometallic link between the metal and the biomolecular scaffold

    OpenAIRE

    Monney, Angèle; Albrecht, Martin

    2013-01-01

    This overview compiles recent advances in the synthesis and application of organometallic bioconjugates that comprise a metal–carbon linkage between the metal and the biomolecular scaffold. This specific area of bioorganometallic chemistry has been spurred by the discovery of naturally occurring bioorganometallic compounds and afforded organometallic bioconjugates from transition metals binding to amino acids, nucleic acids and other biomolecules. These artificial bioorganometallic compounds ...

  18. Unusual nanostructures of “lattice matched” InP on AlInAs

    International Nuclear Information System (INIS)

    We show that the morphology of the initial monolayers of InP on Al0.48In0.52As grown by metalorganic vapor-phase epitaxy does not follow the expected layer-by-layer growth mode of lattice-matched systems, but instead develops a number of low-dimensional structures, e.g., quantum dots and wires. We discuss how the macroscopically strain-free heteroepitaxy might be strongly affected by local phase separation/alloying-induced strain and that the preferred aggregation of adatom species on the substrate surface and reduced wettability of InP on AlInAs surfaces might be the cause of the unusual (step) organization and morphology

  19. Thermal diffusion in nanostructured porous InP

    Indian Academy of Sciences (India)

    R Srinivasan; K Ramachandran

    2008-11-01

    Nanostructured porous InP samples were prepared by electrochemical anodic dissolution of InP for various current densities and etching periods. The samples were characterized by SEM and photoluminescence (PL) where a blue shift was observed in PL. Thermal properties studied by photoacoustic (PA) spectroscopy revealed one order decrease in thermal conductivity of porous InP compared to the bulk. Further it is shown that the thermal conductivity of porous InP decreases with decrease in size of the particles.

  20. Application of Quantum-Dot Conjugates for Detection and Subspecies Differentiation of Vibrio cholerae by Optical Methods

    Science.gov (United States)

    Erohin, P. S.; Utkin, D. V.; Kouklev, V. E.; Ossina, N. A.; Miheeva, E. A.; Alenkina, T. V.

    2016-03-01

    The application of bioconjugates of specific antibodies and CdSe quantum dots to identify two serovariants of Vibrio cholerae using fluorescence microscopy and optical spectroscopy is considered. It is found that a mixture of different bioconjugates with different emission maxima can be used without affecting the specificity of the method. Different V. cholerae serovariants are colored differently in fl uorescence microscopy (bright green and bright yellow), thereby allowing subspecies differentiation. The absorption spectrum of the bacterial suspension changed with homologous antigens in the sample and did not change with heterologous antigens. It is shown that the quantum-dot bioconjugates can serve as an alternative to the traditional fluorescence and agglutination diagnostics.

  1. Bandgap Engineering of InP QDs Through Shell Thickness and Composition

    Energy Technology Data Exchange (ETDEWEB)

    Dennis, Allison M. [Los Alamos National Laboratory; Mangum, Benjamin D. [Los Alamos National Laboratory; Piryatinski, Andrei [Los Alamos National Laboratory; Park, Young-Shin [Los Alamos National Laboratory; Htoon, Han [Los Alamos National Laboratory; Hollingsworth, Jennifer A. [Los Alamos National Laboratory

    2012-06-21

    Fields as diverse as biological imaging and telecommunications utilize the unique photophysical and electronic properties of nanocrystal quantum dots (NQDs). The development of new NQD compositions promises material properties optimized for specific applications, while addressing material toxicity. Indium phosphide (InP) offers a 'green' alternative to the traditional cadmium-based NQDs, but suffers from extreme susceptibility to oxidation. Coating InP cores with more stable shell materials significantly improves nanocrystal resistance to oxidation and photostability. We have investigated several new InP-based core-shell compositions, correlating our results with theoretical predictions of their optical and electronic properties. Specifically, we can tailor the InP core-shell QDs to a type-I, quasi-type-II, or type-II bandgap structure with emission wavelengths ranging from 500-1300 nm depending on the shell material used (ZnS, ZnSe, CdS, or CdSe) and the thickness of the shell. Single molecule microscopy assessments of photobleaching and blinking are used to correlate NQD properties with shell thickness.

  2. Growth and anisotropic transport properties of self-assembled InAs nanostructures in InP

    Energy Technology Data Exchange (ETDEWEB)

    Bierwagen, O.

    2007-12-20

    Self-assembled InAs nanostructures in InP, comprising quantum wells, quantum wires, and quantum dots, are studied in terms of their formation and properties. In particular, the structural, optical, and anisotropic transport properties of the nanostructures are investigated. The focus is a comprehending exploration of the anisotropic in-plane transport in large ensembles of laterally coupled InAs nanostructures. The self-assembled Stranski-Krastanov growth of InAs nanostructures is studied by gas-source molecular beam epitaxy on both nominally oriented and vicinal InP(001). Optical polarization of the interband transitions arising from the nanostructure type is demonstrated by photoluminescence and transmission spectroscopy. The experimentally convenient four-contact van der Pauw Hall measurement of rectangularly shaped semiconductors, usually applied to isotropic systems, is extended to yield the anisotropic transport properties. Temperature dependent transport measurements are performed in large ensembles of laterally closely spaced nanostructures. The transport of quantum wire-, quantum dash- and quantum dot containing samples is highly anisotropic with the principal axes of conductivity aligned to the <110> directions. The direction of higher mobility is [ anti 110], which is parallel to the direction of the quantum wires. In extreme cases, the anisotropies exceed 30 for electrons, and 100 for holes. The extreme anisotropy for holes is due to diffusive transport through extended states in the [ anti 110], and hopping transport through laterally localized states in the [110] direction, within the same sample. A novel 5-terminal electronic switching device based on gate-controlled transport anisotropy is proposed. The gate-control of the transport anisotropy in modulation-doped, self-organized InAs quantum wires embedded in InP is demonstrated. (orig.)

  3. Growth and anisotropic transport properties of self-assembled InAs nanostructures in InP

    International Nuclear Information System (INIS)

    Self-assembled InAs nanostructures in InP, comprising quantum wells, quantum wires, and quantum dots, are studied in terms of their formation and properties. In particular, the structural, optical, and anisotropic transport properties of the nanostructures are investigated. The focus is a comprehending exploration of the anisotropic in-plane transport in large ensembles of laterally coupled InAs nanostructures. The self-assembled Stranski-Krastanov growth of InAs nanostructures is studied by gas-source molecular beam epitaxy on both nominally oriented and vicinal InP(001). Optical polarization of the interband transitions arising from the nanostructure type is demonstrated by photoluminescence and transmission spectroscopy. The experimentally convenient four-contact van der Pauw Hall measurement of rectangularly shaped semiconductors, usually applied to isotropic systems, is extended to yield the anisotropic transport properties. Temperature dependent transport measurements are performed in large ensembles of laterally closely spaced nanostructures. The transport of quantum wire-, quantum dash- and quantum dot containing samples is highly anisotropic with the principal axes of conductivity aligned to the directions. The direction of higher mobility is [ anti 110], which is parallel to the direction of the quantum wires. In extreme cases, the anisotropies exceed 30 for electrons, and 100 for holes. The extreme anisotropy for holes is due to diffusive transport through extended states in the [ anti 110], and hopping transport through laterally localized states in the [110] direction, within the same sample. A novel 5-terminal electronic switching device based on gate-controlled transport anisotropy is proposed. The gate-control of the transport anisotropy in modulation-doped, self-organized InAs quantum wires embedded in InP is demonstrated. (orig.)

  4. Photochemical Synthesis of the Bioconjugate Folic Acid-Gold Nanoparticles

    DEFF Research Database (Denmark)

    León, John Jairo Castillo; Bertel, Linda; Páez-Mozo, Edgar;

    2013-01-01

    In this paper we present a rapid and simple onepot method to obtain gold nanoparticles functionalized with folic acid using a photochemistry method. The bioconjugate folic acid-gold nanoparticle was generated in one step using a photo-reduction method, mixing hydrogen tetrachloroaurate with folic...... at 4°C prolongs the stability of folic acid-gold nanoparticle suspensions to up to 26 days. Ultraviolet visible and Fourier transform infrared spectroscopy showed a surface plasmon band of around 534nm and fluorescence spectroscopy exhibited a quenching effect on gold nanoparticles in the fluorescence...... emission of folic acid and thus confirmed the conjugation of folic acid to the surface of gold nanoparticles. In this study we demonstrate the use of a photochemistry method to obtain folic acid-gold nanoparticles in a simple and rapid way without the use of surfactants and long reaction times...

  5. Transition Metal-Free Tryptophan-Selective Bioconjugation of Proteins.

    Science.gov (United States)

    Seki, Yohei; Ishiyama, Takashi; Sasaki, Daisuke; Abe, Junpei; Sohma, Youhei; Oisaki, Kounosuke; Kanai, Motomu

    2016-08-31

    Chemical modifications of native proteins can facilitate production of supernatural protein functions that are not easily accessible by complementary methods relying on genetic manipulations. However, accomplishing precise control over selectivity while maintaining structural integrity and homogeneity still represents a formidable challenge. Herein, we report a transition metal-free method for tryptophan-selective bioconjugation of proteins that is based on an organoradical and operates under ambient conditions. This method exhibits low levels of cross-reactivity and leaves higher-order structures of the protein and various functional groups therein unaffected. The strategy to target less abundant amino acids contributes to the formation of structurally homogeneous conjugates, which may even be suitable for protein crystallography. The absence of toxic metals and biochemically incompatible conditions allows a rapid functional modulation of native proteins such as antibodies and pathogenic aggregative proteins, and this method may thus easily find therapeutic applications. PMID:27534812

  6. Biodistribution imaging of a paclitaxel-hyaluronan bioconjugate

    Energy Technology Data Exchange (ETDEWEB)

    Banzato, Alessandra; Rondina, Maria [Department of Oncology and Surgical Sciences, University of Padua, I-35128 Padova (Italy); Melendez-Alafort, Laura; Zangoni, Elena; Nadali, Anna [Department of Pharmaceutical Sciences, University of Padua, Padova (Italy); Renier, Davide [Fidia Farmaceutici, Abano Terme (Italy); Moschini, Giuliano [Department of Physics, University of Padua, Padova (Italy); Mazzi, Ulderico [Department of Pharmaceutical Sciences, University of Padua, Padova (Italy); Zanovello, Paola [Department of Oncology and Surgical Sciences, University of Padua, I-35128 Padova (Italy); Istituto Oncologico Veneto, IOV-IRCCS, Padova (Italy); Rosato, Antonio [Department of Oncology and Surgical Sciences, University of Padua, I-35128 Padova (Italy); Istituto Oncologico Veneto, IOV-IRCCS, Padova (Italy)], E-mail: antonio.rosato@unipd.it

    2009-07-15

    Introduction: Gamma-ray detectors represent sensitive and noninvasive instruments to evaluate in vivo the metabolic trapping of radiopharmaceuticals. This study aimed to assess the imaging biodistribution of a [{sup 99m}Tc]-radiolabelled new prototype bioconjugate composed of paclitaxel linked to hyaluronan (ONCOFID-P). Methods: A small gamma camera providing high-resolution images was employed. Imaging of biodistribution following intravenous, intraperitoneal, intravesical and oral administration was carried out for a 2-h period in anesthetized mice receiving [{sup 99m}Tc]ONCOFID-P. At the end of the observation time, radioactivity in organs was directly measured. As a control, groups of mice were treated with free [{sup 3}H]paclitaxel given according to the same administration routes, and organ biodistribution of the drug was assessed after 2 h. Results: Intravenous inoculation of [{sup 99m}Tc]ONCOFID-P was followed by a rapid and strong liver uptake. In fact, almost 80% of the imaging signal was detected in this organ 10 min after injection and such value remained constant thereafter, thus indicating that the bioconjugate given through the intravenous route could be well suited to targeting primary or metastatic liver neoplasias. Imaging of the bladder, abdomen and gastrointestinal tract after local administration disclosed that the radiolabelled compound remained confined to the cavities, suggesting a potential regional application for transitional bladder cell carcinomas, ovarian cancers and gastric tumors, respectively. Free [{sup 3}H]paclitaxel biodistribution profoundly differed from that of [{sup 99m}Tc]ONCOFID-P. Conclusions: Conjugation of drugs with polymers results in new chemical entities characterized by a modified biodistribution pattern. Therefore, preclinical studies based on imaging analysis of such new compounds can suggest novel therapeutic applications.

  7. Photovoltaic characteristics of n(+)pp(+) InP solar cells grown by OMVPE

    Science.gov (United States)

    Tyagi, S.; Singh, K.; Bhimnathwala, H.; Ghandhi, S. K.; Borrego, J. M.

    1990-01-01

    The photovoltaic characteristics of n(+)/p/p(+) homojunction InP solar cells fabricated by organometallic vapor-phase epitaxy (OMVPE) are described. The cells are characterized by I-V, C-V and quantum efficiency measurements, and simulations are used to obtain various device and material parameters. The I-V characteristics show a high recombination rate in the depletion region; this is shown to be independent of the impurity used. It is shown that cadmium is easier to use as an acceptor for the p base and p(+) buffer and is therefore beneficial. The high quantum efficiency of 98 percent at long wavelengths measured in these cells indicates a very good collection efficiency in the base. The short-wavelength quantum efficiency is poor, indicating a high surface recombination.

  8. Bioconjugates of PAMAM dendrimers with trans-retinal, pyridoxal, and pyridoxal phosphate

    Directory of Open Access Journals (Sweden)

    Filipowicz A

    2012-09-01

    Full Text Available A Filipowicz, S WołowiecDepartment of Cosmetology, University of Information Technology and Management in Rzeszów, Rzeszów, PolandBackground: Bioconjugates of a polyamidoamine (PAMAM G3 dendrimer and an aldehyde were synthesized as carriers for vitamins A and B6, and the bioavailability of these vitamins for skin nutrition was investigated.Methods: Nuclear magnetic resonance (NMR and ultraviolet-visible methods were used to characterize the structure of the bioconjugates and for monitoring release of pyridoxal (Pyr and pyridoxal phosphate (PLP from these bioconjugates in vitro. A skin model permeation of bioconjugates was also studied in a Franz chamber.Results: A transdermal G3 PAMAM dendrimer was used to synthesize bioconjugates with trans-retinal (Ret, pyridoxal (Pyr, or PLP. These nanomolecules, containing up to four covalently linked Ret, Pyr, or PLP (G34Ret, G34Pyr, and G34PLP, were able to permeate the skin, as demonstrated in vitro using a model skin membrane. PLP and Pyr bound to a macromolecular vehicle were active cofactors for glutamic pyruvic transaminase, as shown by 1H NMR spectral monitoring of the progress of the L-alanine + α-ketoglutarate → glutamic acid + pyruvic acid reaction.Conclusion: PAMAM-PLP, PAMAM-Pyr, and PAMAM-Ret bioconjugates are able to permeate the skin. PLP and Pyr are available as cofactors for glutamic pyruvic transaminase.Keywords: PAMAM, trans-retinal, pyridoxal phosphate, pyridoxal, transamination

  9. Optimal activation of carboxyl-superparamagnetic iron oxide nanoparticles bioconjugated with antibody using orthogonal array design.

    Science.gov (United States)

    Liu, Lin; Zhang, Xiaoqang; Zhang, Yu; Pu, Yuepu; Yin, Lihong; Tang, Meng; Liu, Hui

    2013-12-01

    This study aims to bioconjugate anti-EMMPRIN monoclonal antibody on the surface of carboxyl-SPIO nanoparticles and to optimize the activated conditions of bioconjugation. Anti-EMMPRIN monoclonal antibody bioconjugated carboxyl-SPIO nanoparticles were performed through a coupling strategy of EDC and sulfo-NHS. The procedure was comprised of two steps by activation of carboxyl-SPIO nanoparticles and conjugation with monoclonal antibody. The optimal activated parameters of bioconjugation were evaluated by single factor design and orthogonal array design. SDS-PAGE analysis and Bradford assay was used for testing and verifying the efficiency of activated conditions obtained from orthogonal array. The results show that pH value, temperature and reaction time were important factors that influence bioconjugated efficiency. The activated parameters with pH value 6.2, temperature 25 degrees C and reaction time 30 min were obviously optimal for activation of carboxyl-SPIO nanoparticles and conjugation with monoclonal EMMPEIN antibody. This coupling strategy for anti-EMMPRIN mAb bioconjugated on SPIO nanoparticles was efficient, and may be further applied in the fields of medical or biological practices. PMID:24266206

  10. High brightness InP micropillars grown on silicon with Fermi level splitting larger than 1 eV.

    Science.gov (United States)

    Tran, Thai-Truong D; Sun, Hao; Ng, Kar Wei; Ren, Fan; Li, Kun; Lu, Fanglu; Yablonovitch, Eli; Chang-Hasnain, Constance J

    2014-06-11

    The growth of III-V nanowires on silicon is a promising approach for low-cost, large-scale III-V photovoltaics. However, performances of III-V nanowire solar cells have not yet been as good as their bulk counterparts, as nanostructured light absorbers are fundamentally challenged by enhanced minority carriers surface recombination rates. The resulting nonradiative losses lead to significant reductions in the external spontaneous emission quantum yield, which, in turn, manifest as penalties in the open-circuit voltage. In this work, calibrated photoluminescence measurements are utilized to construct equivalent voltage-current characteristics relating illumination intensities to Fermi level splitting ΔF inside InP microillars. Under 1 sun, we show that splitting can exceed ΔF ∼ 0.90 eV in undoped pillars. This value can be increased to values of ΔF ∼ 0.95 eV by cleaning pillar surfaces in acidic etchants. Pillars with nanotextured surfaces can yield splitting of ΔF ∼ 0.90 eV, even though they exhibit high densities of stacking faults. Finally, by introducing n-dopants, ΔF of 1.07 eV can be achieved due to a wider bandgap energy in n-doped wurzite InP, the higher brightness of doped materials, and the extraordinarily low surface recombination velocity of InP. This is the highest reported value for InP materials grown on a silicon substrate. These results provide further evidence that InP micropillars on silicon could be a promising material for low-cost, large-scale solar cells with high efficiency. PMID:24841253

  11. Lightweight InP Solar Cells for Space Applications Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The innovation in this Phase I SBIR is the development of a technology which will enable the manufacture of a lightweight, low cost, InP based compound...

  12. Lightweight InP Solar Cells for Space Applications Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The innovation in this Phase II SBIR is the development of a technology which will enable the manufacture of a lightweight, low cost, high radiation resistance InP...

  13. Deep level defects in high temperature annealed InP

    Institute of Scientific and Technical Information of China (English)

    DONG; Zhiyuan; ZHAO; Youwen; ZENG; Yiping; DUAN; Manlong

    2004-01-01

    Deep level defects in high temperature annealed semi-conducting InP have been studied by deep level transient spectroscopy (DLTS). There is obvious difference in the deep defects between as-grown InP, InP annealed in phosphorus ambient and iron phosphide ambient, as far as their quantity and concentration are concerned. Only two defects at 0.24 and 0.64 eV can be detected in InP annealed iniron phosphide ambient,while defects at 0.24, 0.42, 0.54 and 0.64 eV have been detected in InP annealed in phosphorus ambient, in contrast to two defects at 0.49 and 0.64 eV or one defect at 0.13eV in as-grown InP. A defect suppression phenomenon related to iron diffusion process has been observed. The formation mechanism and the nature of the defects have been discussed.

  14. Long-Term INP Measurements within the BACCHUS project

    Science.gov (United States)

    Schrod, Jann; Bingemer, Heinz; Curtius, Joachim

    2016-04-01

    The European research project BACCHUS (Impact of Biogenic versus Anthropogenic emissions on Clouds and Climate: towards a Holistic UnderStanding) studies the interactions between aerosols, clouds and the climate system, and tries to reconstruct pre-industrial aerosol and cloud conditions from data collected in pristine environments. The number concentration of Ice Nucleating Particles (INP) is an important, yet scarcely known parameter. As a partner of Work package 1 of BACCHUS we began in September 2014 to operate a globally spanned network of four INP sampling stations, which is the first of its kind. The stations are located at the ATTO observatory in the Brazilian Rainforest, the Caribbean Sea (Martinique), the Zeppelin Observatory at Svalbard in the Arctic, and in central Europe (Germany). Samples are collected routinely every day or every few days by electrostatic precipitation of aerosol particles onto Si substrates. The samples are stored in petri-slides, and shipped to our laboratory in Frankfurt, Germany. The number of ice nucleating particles on the substrate is analyzed in the isothermal static diffusion chamber FRIDGE by growing ice on the INP and photographing and counting the crystals. The measurements in the temperature range from -20°C to -30°C and relative humidities of 100-135% (with respect to ice) address primarily the deposition/condensation nucleation modes. Here we present INP and supporting aerosol data from this novel INP network for the first time.

  15. Electron guns and collectors developed at INP for electron cooling devices

    Energy Technology Data Exchange (ETDEWEB)

    Sharapa, A.N.; Shemyakin, A.V. [Institute of Nuclear Physics, Novosibirsk (Russian Federation)

    1997-09-01

    Institute of Nuclear Physics (INP) has a rich experience in designing electron guns and collectors for electron cooling devices. This paper is a review of the experience of several INP research groups in this field. Some results obtained at INP for systems without a guiding magnetic field are also discussed.

  16. InP Bulk Crystals Grown from Various Stoichiometric Melt

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    InP crystal was grown from stoichiometric or non-stoichiometric melt, including P-rich and In-rich condition by the P-injection synthesis LEC method. Owing to the non-stoichiometric condition, there are many pores in the tail of the P-rich ingot. Samples were characterized by high speed photoluminescence mapping and E.P.D. mapping. The perfection (dislocation, stoichiometry and uniformity) of these samples were studied and compared. The PL peak intensity standard deviation of the 4-inch InP wafer is higher. The EPDs around the pores are higher than the other regions. Besides the stress releasing, the pores and the high concentration of dislocations around them are the leading factors causing the inhomogeneity of the wafer. By adjusting the thermal field and ensuring the chemical stoichiometry, InP crystals of larger diameters and better performance can be developed.

  17. InP concentrator solar cells for space applications

    Science.gov (United States)

    Ward, J. S.; Wanlass, M. W.; Coutts, T. J.; Emery, K. A.

    1991-01-01

    The design, fabrication, and characterization of high-performance, n(+)/p InP shallow-homojunction (SHJ) concentrator solar cells is described. The InP device structures were grown by atmospheric-pressure metalorganic vapor phase epitaxy (APMOVPE). A preliminary assessment of the effects of grid collection distance and emitter sheet resistance on cell performance is presented. At concentration ratios of over 100, cells with AM0 efficiencies in excess of 21 percent at 25 C and 19 percent at 80 C are reported. These results indicate that high-efficiency InP concentrator cells can be fabricated using existing technologies. The performance of these cells as a function of temperature is discussed, and areas for future improvement are outlined.

  18. Nanophotonic resonators for InP solar cells.

    Science.gov (United States)

    Goldman, Daniel A; Murray, Joseph; Munday, Jeremy N

    2016-05-16

    We describe high efficiency thin-film InP solar cells that utilize a periodic array of TiO2 nanocylinders. These nanophotonic resonators are found to reduce the solar-weighted average reflectivity of an InP solar cell to ~1.3%, outperforming the best double-layer antireflection coatings. The coupling between Mie scattering resonances and thin-film interference effects accurately describes the optical enhancement provided by the nanocylinders. The spectrally resolved reflectivity and J-V characteristics of the device under AM1.5G illumination are determined via coupled optical and electrical simulations, resulting in a predicted power conversion efficiency > 23%. We conclude that the nanostructured coating reduces reflection without negatively affecting the electronic properties of the InP solar cell by separating the nanostructured optical components from the active layer of the device. PMID:27409965

  19. Synthesis and antiproliferative activity of new bioconjugates of Salinomycin with amino acid esters.

    Science.gov (United States)

    Antoszczak, Michał; Sobusiak, Maria; Maj, Ewa; Wietrzyk, Joanna; Huczyński, Adam

    2015-09-01

    New Salinomycin (SAL) bioconjugates with amino acid methyl esters were obtained and their antiproliferative activity against cancer cell lines including drug-resistant ones was studied. New compounds exhibit antiproliferative activity towards leukemia and doxorubicin-resistant colon adenocarcinoma cell line and are more effective and less toxic than the commonly currently used anticancer drugs.

  20. Particle detectors based on semiconducting InP epitaxial layers

    OpenAIRE

    Yatskiv, R. (Roman); Grym, J.; Žďánský, K. (Karel)

    2011-01-01

    In this work, we present study of electrical properties and detection performance of two types of InP detector structures: (i) with p-n-junction and (ii) with Schottky contact prepared on high purity p-type InP. The p-n junction detectors were based on a high purity InP:Pr layers of both n- and p- type conductivity with carrier concentration on the order of 1014 cm-3 grown on Sn doped n-type substrate. Schottky barrier detectors were prepared by vacuum evaporation of Pd on high purity p-type ...

  1. Palladium nanoparticles on InP for hydrogen detection

    Directory of Open Access Journals (Sweden)

    Zdansky Karel

    2011-01-01

    Full Text Available Abstract Layers of palladium (Pd nanoparticles on indium phosphide (InP were prepared by electrophoretic deposition from the colloid solution of Pd nanoparticles. Layers prepared by an opposite polarity of deposition showed different physical and morphological properties. Particles in solution are separated and, after deposition onto the InP surface, they form small aggregates. The size of the aggregates is dependent on the time of deposition. If the aggregates are small, the layer has no lateral conductance. Forward and reverse I-V characteristics showed a high rectification ratio with a high Schottky barrier height. The response of the structure on the presence of hydrogen was monitored.

  2. The Invasion and Reproductive Toxicity of QDs-Transferrin Bioconjugates on Preantral Follicle in vitro

    Directory of Open Access Journals (Sweden)

    Gaixia Xu, Suxia Lin, Wing-Cheung Law, Indrajit Roy, Xiaotan Lin, Shujiang Mei, Hanwu Ma, Siping Chen, Hanben Niu, Xiaomei Wang

    2012-01-01

    Full Text Available The toxicity of QD has been extensively studied over the past decade. However, the potential toxicity of QDs impedes its use for clinical research. In this work, we established a preantral follicle in vitro culture system to investigate the effects of QD-Transferrin (QDs-Tf bioconjugates on follicle development and oocyte maturation. The preantral follicles were cultured and exposed to CdTe/ZnTe QDs-Tf bioconjugates with various concentrations and the reproductive toxicity was assessed at different time points post-treatment. The invasion of QDs-Tf for oocytes was verified by laser scanning confocal microscope. Steroid production was evaluated by immunoassay. C-band Giemsa staining was performed to observe the chromosome abnormality of oocytes. The results showed that the QDs-Tf bioconjugates could permeate into granulosa cells and theca cells, but not into oocyte. There are no obvious changes of oocyte diameter, the mucification of cumulus-oocyte-complexes and the occurrence of aneulpoidy as compared with the control group. However, delay in the antrum formation and decrease in the ratio of oocytes with first polar body were observed in QDs-Tf-treated groups. The matured oocytes with first polar body decreased significantly by ~16% (from 79.6±10 % to 63±2.9 % when the concentration of QDs-Tf bioconjugates exceeded 2.89 nmol·L-1 (P < 0.05. Our results implied that the CdTe/ZnTe QDs-Tf bioconjugates were reproductive toxic for follicle development, and thus also revealed that this in vitro culture system of preantral follicle is a highly sensitive tool for study on the reproductive toxicity of nanoparticles.

  3. 1990's annual report of INPE's Plasma Associated Laboratory

    International Nuclear Information System (INIS)

    This is the 1990's annual report of INPE's Plasma Associated Laboratory it contains information on current research developed at the laboratory including quiescent plasma, magnetized plasma, plasma centrifuge, plasma and radiation (gyrotron), ionic propulsion, and toroidal plasma. (A.C.A.S.)

  4. Growth and properties of InP single crystals

    Science.gov (United States)

    Dun-fu, Fang; Xiang-xi, Wang; Yong-quan, Xu; Li-tong, Tan

    1984-04-01

    InP single crystals with various dopants including S, Sn, Zn and Fe have been grown successfully by the Czochralski method under high pressure with liquid encapsulation. It is found that by carefully adjusting the thermal symmetry of the heating field and by further improving the quality of the polycrystals and by dehydrating B 2O 3, twin-free InP crystals can be obtained even with a shoulder angle of up to 54°, and defects caused by thermal decomposition appear on the surface of the crystals during pulling. Furthermore, a comparison of the crystal perfection and uniformity between S-doped and Sn-doped InP crystals shows that the quality of the former is better than that of the latter. Dislocation-free Zn-doped p-InP single crystals without precipitates have also been easily obtained when the carrier concentration is greater than 2×10 18 cm -3 and the diameter less than 30 mm. By controlling the iron content, semi-insulating thermally stable single crystals of InP doped with ⩽0.03 wt% of Fe without precipitates and with a homogeneous resistivity can be produced.

  5. 2D InP photonic crystal fabrication process development

    NARCIS (Netherlands)

    Rong, B.; Van der Drift, E.; Van der Heijden, R.W.; Salemink, H.W.M.

    2006-01-01

    We have developed a reliable process to fabricate high quality 2D air-hole and dielectric column InP photonic crystals with a high aspect ratio on a STS production tool using ICP N2+Cl2 plasma. The photonic crystals have a triangular lattice with lattice constant of 400 nm and air-hole and dielectri

  6. InP solar cell with window layer

    Science.gov (United States)

    Jain, Raj K. (Inventor); Landis, Geoffrey A. (Inventor)

    1994-01-01

    The invention features a thin light transmissive layer of the ternary semiconductor indium aluminum arsenide (InAlAs) as a front surface passivation or 'window' layer for p-on-n InP solar cells. The window layers of the invention effectively reduce front surface recombination of the object semiconductors thereby increasing the efficiency of the cells.

  7. c-Myc inhibits TP53INP1 expression via promoter methylation in esophageal carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Weng, Wenhao; Yang, Qinyuan [Department of Laboratory Medicine, Shanghai Tenth People' s Hospital, Tongji University School of Medicine, Shanghai 200072 (China); Huang, Miaolong [Department of Thoracic Surgery, Yuebei People' s Hospital, Shaoguan, Guangdong 512026 (China); Qiao, Yongxia [Department of Preventive Medicine, Tongji University, Shanghai City 200092 (China); Xie, Yuan; Yu, Yongchun [Department of Laboratory Medicine, Shanghai Tenth People' s Hospital, Tongji University School of Medicine, Shanghai 200072 (China); Jing, An, E-mail: Anjing77@gmail.com [Department of Thoracic Surgery, Yuebei People' s Hospital, Shaoguan, Guangdong 512026 (China); Institute of Cancer Research, Southern Medical University, Guangzhou 510515 (China); Li, Zhi, E-mail: lizhiweng2010@163.com [Department of Laboratory Medicine, Shanghai Tenth People' s Hospital, Tongji University School of Medicine, Shanghai 200072 (China)

    2011-02-11

    Research highlights: {yields} TP53INP1 expression is down-regulated in esophageal carcinoma and is associated with CGI-131 methylation. {yields} Inhibition of CGI-131 methylation upregulates TP53INP1 expression in ESCC cell lines. {yields} Ectopic expression of TP53INP1 inhibits growth of ESCC cells by inducing apoptosis and inhibiting cell cycle progression. {yields} c-Myc binds to the promoter of TP53INP1 in vivo and vitro and recruits DNMT3A to TP53INP1 promoter for CGI-131 methylation. -- Abstract: Tumor protein p53-induced nuclear protein 1 (TP53INP1) is a well known stress-induced protein that plays a role in both cell cycle arrest and p53-mediated apoptosis. Loss of TP53INP1 expression has been reported in human melanoma, breast carcinoma, and gastric cancer. However, TP53INP1 expression and its regulatory mechanism in esophageal squamous cell carcinoma (ESCC) remain unclear. Our findings are in agreement with previous reports in that the expression of TP53INP1 was downregulated in 28% (10/36 cases) of ESCC lesions, and this was accompanied by significant promoter methylation. Overexpression of TP53INP1 induced G1 cell cycle arrest and increased apoptosis in ESCC cell lines (EC-1, EC-109, EC-9706). Furthermore, our study showed that the oncoprotein c-Myc bound to the core promoter of TP53INP1 and recruited DNA methyltransferase 3A to methylate the local promoter region, leading to the inhibition of TP53INP1 expression. Our findings revealed that TP53INP1 is a tumor suppressor in ESCC and that c-Myc-mediated DNA methylation-associated silencing of TP53INP1 contributed to the pathogenesis of human ESCC.

  8. Synthesis and Bioconjugation of Gold Nanoparticles as Potential Molecular Probes for Light-Based Imaging Techniques

    Directory of Open Access Journals (Sweden)

    Raja Gopal Rayavarapu

    2007-01-01

    Full Text Available We have synthesized and characterized gold nanoparticles (spheres and rods with optical extinction bands within the “optical imaging window.” The intense plasmon resonant driven absorption and scattering peaks of these nanoparticles make them suitable as contrast agents for optical imaging techniques. Further, we have conjugated these gold nanoparticles to a mouse monoclonal antibody specific to HER2 overexpressing SKBR3 breast carcinoma cells. The bioconjugation protocol uses noncovalent modes of binding based on a combination of electrostatic and hydrophobic interactions of the antibody and the gold surface. We discuss various aspects of the synthesis and bioconjugation protocols and the characterization results of the functionalized nanoparticles. Some proposed applications of these potential molecular probes in the field of biomedical imaging are also discussed.

  9. Detection of biomolecules and bioconjugates by monitoring rotated grating-coupled surface plasmon resonance

    CERN Document Server

    Szalai, Aniko; Somogyi, Aniko; Szenes, Andras; Banhelyi, Balazs; Csapo, Edit; Dekany, Imre; Csendes, Tibor; Csete, Maria

    2016-01-01

    Plasmonic biosensing chips were prepared by fabricating wavelength-scaled dielectric-metal interfacial gratings on thin polycarbonate films covered bimetal layers via two-beam interference laser lithography. Lysozyme (LYZ) biomolecules and gold nanoparticle (AuNP-LYZ) bioconjugates with 1:5 mass ratio were seeded onto the biochip surfaces. Surface plasmon resonance spectroscopy was performed before and after biomolecule seeding in a modified Kretschmann-arrangement by varying the azimuthal and polar angles to optimize the conditions for rotated grating-coupling. The shift of secondary and primary resonance peaks originating from rotated grating-coupling phenomenon was monitored to detect the biomolecule and bioconjugate adherence. Numerical calculations were performed to reproduce the measured reflectance spectra and the resonance peak shifts caused by different biocoverings. Comparison of measurements and calculations proved that monitoring the narrower secondary peaks under optimal rotated-grating coupling ...

  10. Potentiometric Urea Biosensor Based on an Immobilised Fullerene-Urease Bio-Conjugate

    OpenAIRE

    Kasra Saeedfar; Lee Yook Heng; Tan Ling Ling; Majid Rezayi

    2013-01-01

    A novel method for the rapid modification of fullerene for subsequent enzyme attachment to create a potentiometric biosensor is presented. Urease was immobilized onto the modified fullerene nanomaterial. The modified fullerene-immobilized urease (C60-urease) bioconjugate has been confirmed to catalyze the hydrolysis of urea in solution. The biomaterial was then deposited on a screen-printed electrode containing a non-plasticized poly(n-butyl acrylate) (PnBA) membrane entrapped with a hydrogen...

  11. Synthetic routes toward functional block copolymers and bioconjugates via RAFT polymerization

    OpenAIRE

    Wiss, Kerstin T.

    2010-01-01

    Synthetic Routes toward Functional Block Copolymers and Bioconjugates via RAFT PolymerizationrnSynthesewege für funktionelle Blockcopolymere und Biohybride über RAFT PolymerisationrnDissertation von Dipl.-Chem. Kerstin T. WissrnIm Rahmen dieser Arbeit wurden effiziente Methoden für die Funktionalisierung beider Polymerkettenenden für Polymer- und Bioanbindung von Polymeren entwickelt, die mittels „Reversible Addition-Fragmentation Chain Transfer“ (RAFT) Polymerisation hergestellt wurden. Zu d...

  12. Semiconductor nanocrystal-aptamer bioconjugate probes for specific prostate carcinoma cell targeting

    Science.gov (United States)

    Shieh, Felice; Lavery, Laura; Chu, Chitai T.; Richards-Kortum, Rebecca; Ellington, Andrew D.; Korgel, Brian A.

    2005-04-01

    Cancer of the prostate affects approximately 1 in 11 men. Current early screening for prostate cancer utilizes digital rectal examinations to detect anomalies in the prostate gland and blood test screenings for upregulated levels of prostate specific antigen (PSA). Many of these tests are invasive and can often be inconclusive as PSA levels may be heightened due to benign factors. Prostate specific membrane antigen (PSMA), a well-characterized integral membrane protein, is expressed in virtually all prostate cancers and often correlates with cancer aggressiveness. Therefore, it may be used as an indicator of cancer growth and metastases. PSMA-specific antibodies have been identified and conjugated to fluorescent markers for cancer cell targeting; however, both the antibodies and markers possess significant limitations in their pharmaceutical and diagnostic value. Here we report the use of semiconductor nanocrystals bioconjugated to PSMA-specific aptamer recognition molecules for prostate carcinoma cell targeting. The nanocrystal/aptamer bioconjugates are small biocompatible probes with the potential for color-tunability for multicolor imaging. Ongoing in vitro and in vivo research seeks to introduce these nanoparticle bioconjugates into medical diagnostics.

  13. Gelatin-nanogold bioconjugates as effective plasmonic platforms for SERS detection and tagging.

    Science.gov (United States)

    Suarasan, Sorina; Focsan, Monica; Maniu, Dana; Astilean, Simion

    2013-03-01

    It is well known that standard citrate-reduced gold nanoparticles (AuNPs) are unstable at high ionic strength solution, which limits their applications in the biomedical field. In this work we present an environmentally friendly approach for the stabilization of citrate-reduced AuNPs in aqueous solution. Specifically, the stability of the AuNPs against salt-induced aggregation was greatly improved in the presence of gelatin biopolymer and stabilization of individual or small assemblies of nanoparticles can be controlled by the amount of gelatin. Furthermore, the gelatin-nanogold bioconjugates were demonstrated to be operational as highly sensitive surface-enhanced Raman scattering (SERS) active substrate for the detection of Rose Bengal fluorophore in solution at very low concentration. The results suggest that such bioconjugates can be successfully employed not only for detection of analytes, but more interestingly for building SERS-active tags in view of imaging purpose. The stabilization of bioconjugates was analyzed by localized surface plasmon resonance spectroscopy (LSPR), transmission electron microscopy (TEM), dynamic light scattering (DLS) and zeta-potential, and the chemical interaction of gelatin with AuNPs was inferred from Fourier transform infrared spectroscopy (FT-IR). PMID:23261569

  14. Spontaneous emission control of single quantum dots in bottom-up nanowire waveguides

    NARCIS (Netherlands)

    Bulgarini, G.; Reimer, M.E.; Zehender, T.; Hocevar, M.; Bakkers, E.P.A.M.; Kouwenhoven, L.P.; Zwiller, V.

    2012-01-01

    Nanowire waveguides with controlled shape are promising for engineering the collection efficiency of quantum light sources. We investigate the exciton lifetime in individual InAsP quantum dots, perfectly positioned on-axis of InP nanowire waveguides. We demonstrate control over the quantum dot spont

  15. The X-ray response of InP

    Energy Technology Data Exchange (ETDEWEB)

    Owens, Alan E-mail: aowens@astro.estec.esa.nl; Bavdaz, M.; Gostilo, V.; Gryaznov, D.; Loupilov, A.; Peacock, A.; Sipila, H

    2002-07-21

    We present the results of X-ray measurements on a prototype InP detector. The device was fabricated from Fe-doped bulk material of size 3x3x0.18 mm{sup 3}. X-ray measurements have been carried out using a number of radioactive and fluorescent target sources. The detector energy response function was found to be linear over the energy range 5.9-88 keV with an average rms non-linearity of 0.7%, consistent with statistics. At a detector temperature of -60 deg. C, the FWHM energy resolution under full-area illumination was 2.5 at 5.9 keV rising to 12 at 88 keV. Analysis of the energy resolution function indicates that poor charge transport presently limits the performance of InP detectors.

  16. The X-ray response of InP

    International Nuclear Information System (INIS)

    We present the results of X-ray measurements on a prototype InP detector. The device was fabricated from Fe-doped bulk material of size 3x3x0.18 mm3. X-ray measurements have been carried out using a number of radioactive and fluorescent target sources. The detector energy response function was found to be linear over the energy range 5.9-88 keV with an average rms non-linearity of 0.7%, consistent with statistics. At a detector temperature of -60 deg. C, the FWHM energy resolution under full-area illumination was 2.5 at 5.9 keV rising to 12 at 88 keV. Analysis of the energy resolution function indicates that poor charge transport presently limits the performance of InP detectors

  17. Annealing effect on InP vertical porous arrays

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    InP vertical porous arrays were produced using electrochemical etching at room temperature.The as-etched InP samples were annealed in an ultra high vacuum camber.Cross-sectional analysis of the porous layer was conducted using scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX).Annealing in vacuum was found to meliorate the structural quality of the porous layer.EDX results showed the composition change of the porous InP.By controlling the annealing process parameters,the content ratio of phosphorus (P) to indium (In) is tuneable.Raman property of the samples was also investigated at room temperature.Compared with the sample without annealing treatment,Raman spectrum from the annealed sample showed red-shifted LO and TO peaks together with sharpened LO peak and shortened TO peak.

  18. Azimuthally polarized cathodoluminescence from InP nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Brenny, B. J. M.; Osorio, C. I.; Polman, A., E-mail: polman@amolf.nl [Center for Nanophotonics, FOM Institute AMOLF, Science Park 104, 1098 XG Amsterdam (Netherlands); Dam, D. van [COBRA Research Institute, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven (Netherlands); Gómez Rivas, J. [COBRA Research Institute, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven (Netherlands); FOM Institute DIFFER, P.O. Box 6336, 5600 HH Eindhoven (Netherlands)

    2015-11-16

    We determine the angle and polarization dependent emission from 1.75 µm and 2.50 µm long InP nanowires by using cathodoluminescence polarimetry. We excite the vertical wires using a 5 keV electron beam, and find that the 880 nm bandgap emission shows azimuthally polarized rings, with the number of rings depending on the wire height. The data agree well with a model in which spontaneous emission from the wire emitted into the far field interferes with emission reflected off the substrate. From the model, the depth range from which the emission is generated is found to be up to 400 nm below the top surface of the wires, well beyond the extent of the primary electron cloud. This enables a probe of the carrier diffusion length in the InP nanowires.

  19. A single crystalline InP nanowire photodetector

    Science.gov (United States)

    Yan, Xin; Li, Bang; Wu, Yao; Zhang, Xia; Ren, Xiaomin

    2016-08-01

    Single crystalline nanowires are critical for achieving high-responsivity, high-speed, and low-noise nanoscale photodetectors. Here, we report a metal-semiconductor-metal photodetector based on a single crystalline InP nanowire. The nanowires are grown by a self-catalyzed method and exhibit stacking-fault-free zinc blende crystal structure. The nanowire exhibits a typical n-type semiconductor property and shows a low room temperature dark current of several hundred pA at moderate biases. A photoresponsivity of 6.8 A/W is obtained at a laser power density of 0.2 mW/cm2. This work demonstrates that single crystalline InP nanowires are good candidates for future optoelectronic device applications.

  20. Simulation of INPE's printed circuit laboratory production line

    Science.gov (United States)

    Torgogomes, Arthur

    1988-05-01

    The development of a tool intended to improve, plan, monitor, and control INPE's Printed Circuit Laboratory Production Line is presented. A manipulatable computer model was developed. The model simulates the behavior of the production line elements, when established demand is given. A discrete simulation model of stochastic nature was created departing from study and comprehension of technical and operational characteristics. The system was modeled encompassing physical and chronological dimensions. The computer model utilizes the GASP 4 language simulation. The source program for this language was worked out to make possible such an application. The model was tested and proved operational in a 6800 Burroughs computer. The major significant results that the model provides information on necessary time between an order placed with the Laboratory and the final product ready for delivery to the client; also statistics of waiting time elapsed and starting time for production. Currently, this program is operational. It is being successfully utilized by INPE's Printed Laboratory Production Line.

  1. Defining capabilities of Si and InP photonics.

    Energy Technology Data Exchange (ETDEWEB)

    Vawter, Gregory Allen

    2010-05-01

    Monolithic photonic integrated circuits (PICs) have a long history reaching back more than 40 years. During that time, and particularly in the past 15 years, the technology has matured and the application space grown to span sophisticated tunable diode lasers, 40 Gb/s electrical-to-optical signal converters with complex data formats, wavelength multiplexors and routers, as well as chemical/biological sensors. Most of this activity has centered in recent years on optical circuits built on either Silicon or InP substrates. This talk will review the three classes of PIC and highlight the unique strengths, and weaknesses, of PICs based on Silicon and InP substrates. Examples will be provided from recent R&D activity.

  2. Indium and phosphorus vacancies and antisites in InP

    OpenAIRE

    Seitsonen, A. P.; Virkkunen, R.; Puska, Martti J.; Nieminen, Risto M.

    1994-01-01

    We present an extensive study of the structure and energetics of monovacancies and antisites in InP. Using a first-principles approach, the different charge states of indium and phosphorus vacancies and antisites are examined. The lattice distortions around the defects are derived fully self-consistently with respect to both electronic and ionic degrees of freedom. Jahn-Teller relaxations, defect-induced one-electron energy levels, and ionization potentials in the band gap are discussed. From...

  3. In vitro cytotoxicity of the ternary PAMAM G3–pyridoxal–biotin bioconjugate

    Directory of Open Access Journals (Sweden)

    Uram Ł

    2013-12-01

    Full Text Available Łukasz Uram, Magdalena Szuster, Krzysztof Gargasz, Aleksandra Filipowicz, Elżbieta Wałajtys-Rode, Stanisław Wołowiec Cosmetology Department, University of Information Technology and Management in Rzeszów, Rzeszów, Poland Abstract: A third-generation polyamidoamine dendrimer (PAMAM G3 was used as a macromolecular carrier for pyridoxal and biotin. The binary covalent bioconjugate of G3, with nine molecules of biotin per one molecule of G3 (G39B, and the ternary covalent bioconjugate of G3, with nine biotin and ten pyridoxal molecules (G39B10P, were synthesized. The biotin and pyridoxal residues of the bioconjugate were available for carboxylase and transaminase enzymes, as demonstrated in the conversion of pyruvate to oxaloacetate and alanine to pyruvate, respectively, by in vitro monitoring of the reactions, using 1H nuclear magnetic resonance spectroscopy. The toxicity of the ternary bioconjugate (BC-PAMAM was studied in vitro on BJ human normal skin fibroblasts and human squamous cell carcinoma (SCC-15 cell cultures in comparison with PAMAM G3, using three cytotoxicity assays (XTT, neutral red, and crystal violet and an estimation of apoptosis by confocal microscopy detection. The tests have shown that BC-PAMAM has significantly lower cytotoxicity compared with PAMAM. Nonconjugated PAMAM was not cytotoxic at concentrations up to 5 µM (NR and 10 µM (XTT, and BC-PAMAM was not cytotoxic up to 50 µM (both assays for both cell lines. It has been also found that normal fibroblasts were more sensitive than SCC to both PAMAM and BC-PAMAM. The effect of PAMAM and BC-PAMAM on the initiation of apoptosis (PAMAM in fibroblasts at 5 µM and BC-PAMAM at 10 µM in both cell lines corresponded with cytotoxicity assays for both cell lines. We concluded that normal fibroblasts are more sensitive to the cytotoxic effects of the PAMAM G3 dendrimer and that modification of its surface cationic groups by substitution with biologically active molecules

  4. [Characterizations of InP in terahertz region].

    Science.gov (United States)

    Zhang, Cai-Hong; Wang, Yuan-Yuan; Ma, Jin-Long; Jin, Biao-Bing; Xu, Wei-Wei; Kang, Lin; Chen, Jian; Wu, Pei-Heng

    2009-08-01

    Terahertz time-domain spectroscopy (THz-TDS), which directly measures the THz wave's temporal electric field, can give the amplitude and phase of the THz wave pulse simultaneously. THz-TDS is attracting more attention among scientists. InP with short carrier average collision time and low effective mass is growing up as one of the best photoconductive materials for emitting and detecting THz waves. An n-type InP of 0.35 omega x cm was characterized over the range from 0.2 to 4 THz at room temperature in the present paper with THz time-domain spectroscopy, which was placed in a closed box purged with dry nitrogen gas. Some THz optical properties, such as complex refractive index, dielectric constant, and conductivity, were extracted, based on more exact iterative method with new initial function. Drude model was also applied for simulation, which fitted well with the experimental results. Finally, the carrier average collision time, density and mobility of the InP were also characterized.

  5. TP53inp1 Gene Is Implicated in Early Radiation Response in Human Fibroblast Cells

    Directory of Open Access Journals (Sweden)

    Nikolett Sándor

    2015-10-01

    Full Text Available Tumor protein 53-induced nuclear protein-1 (TP53inp1 is expressed by activation via p53 and p73. The purpose of our study was to investigate the role of TP53inp1 in response of fibroblasts to ionizing radiation. γ-Ray radiation dose-dependently induces the expression of TP53inp1 in human immortalized fibroblast (F11hT cells. Stable silencing of TP53inp1 was done via lentiviral transfection of shRNA in F11hT cells. After irradiation the clonogenic survival of TP53inp1 knockdown (F11hT-shTP cells was compared to cells transfected with non-targeting (NT shRNA. Radiation-induced senescence was measured by SA-β-Gal staining and autophagy was detected by Acridine Orange dye and microtubule-associated protein-1 light chain 3 (LC3B immunostaining. The expression of TP53inp1, GDF-15, and CDKN1A and alterations in radiation induced mitochondrial DNA deletions were evaluated by qPCR. TP53inp1 was required for radiation (IR induced maximal elevation of CDKN1A and GDF-15 expressions. Mitochondrial DNA deletions were increased and autophagy was deregulated following irradiation in the absence of TP53inp1. Finally, we showed that silencing of TP53inp1 enhances the radiation sensitivity of fibroblast cells. These data suggest functional roles for TP53inp1 in radiation-induced autophagy and survival. Taken together, we suppose that silencing of TP53inp1 leads radiation induced autophagy impairment and induces accumulation of damaged mitochondria in primary human fibroblasts.

  6. High-Yield Growth and Characterization of ⟨100⟩ InP p-n Diode Nanowires.

    Science.gov (United States)

    Cavalli, Alessandro; Wang, Jia; Esmaeil Zadeh, Iman; Reimer, Michael E; Verheijen, Marcel A; Soini, Martin; Plissard, Sebastien R; Zwiller, Val; Haverkort, Jos E M; Bakkers, Erik P A M

    2016-05-11

    Semiconductor nanowires are nanoscale structures holding promise in many fields such as optoelectronics, quantum computing, and thermoelectrics. Nanowires are usually grown vertically on (111)-oriented substrates, while (100) is the standard in semiconductor technology. The ability to grow and to control impurity doping of ⟨100⟩ nanowires is crucial for integration. Here, we discuss doping of single-crystalline ⟨100⟩ nanowires, and the structural and optoelectronic properties of p-n junctions based on ⟨100⟩ InP nanowires. We describe a novel approach to achieve low resistance electrical contacts to nanowires via a gradual interface based on p-doped InAsP. As a first demonstration in optoelectronic devices, we realize a single nanowire light emitting diode in a ⟨100⟩-oriented InP nanowire p-n junction. To obtain high vertical yield, which is necessary for future applications, we investigate the effect of the introduction of dopants on the nanowire growth. PMID:27045232

  7. All-optical signal processing using InP photonic-crystal nanocavity switches

    DEFF Research Database (Denmark)

    Yu, Yi; Vukovic, Dragana; Heuck, Mikkel;

    2014-01-01

    In this paper, we present recent progress in experimental characterization of InP photonic-crystal nanocavity switches. Pump-probe measurements on an InP PhC H0 cavity show large-contrast ultrafast switching at low pulse energy. At large pulse energies, a large resonance shift passing across the ...

  8. Tumor protein 53-induced nuclear protein 1 (TP53INP1 enhances p53 function and represses tumorigenesis

    Directory of Open Access Journals (Sweden)

    Jeyran eShahbazi

    2013-05-01

    Full Text Available Tumor protein 53-induced nuclear protein 1 (TP53INP1 is a stress-induced p53 target gene whose expression is modulated by transcription factors such as p53, p73 and E2F1. TP53INP1 gene encodes two isoforms of TP53INP1 proteins, TP53INP1α and TP53INP1β, both of which appear to be key elements in p53 function. When associated with homeodomain-interacting protein kinase-2 (HIPK2, TP53INP1 phosphorylates p53 protein at Serine 46, enhances p53 protein stability and its transcriptional activity, leading to transcriptional activation of p53 target genes such as p21, PIG-3 and MDM2, cell growth arrest and apoptosis upon DNA damage stress. The anti-proliferative and pro-apoptotic activities of TP53INP1 indicate that TP53INP1 has an important role in cellular homeostasis and DNA damage response. Deficiency in TP53INP1 expression results in increased tumorigenesis; while TP53INP1 expression is repressed during early stages of cancer by factors such as miR-155. This review aims to summarize the roles of TP53INP1 in blocking tumor progression through p53-dependant and p53-independent pathways, as well as the elements which repress TP53INP1 expression, hence highlighting its potential as a therapeutic target in cancer treatment.

  9. Spectroscopic properties of colloidal indium phosphide quantum wires

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Lin-Wang; Wang, Fudong; Yu, Heng; Li, Jingbo; Hang, Qingling; Zemlyanov, Dmitry; Gibbons, Patrick C.; Wang, Lin-Wang; Janes, David B.; Buhro, William E.

    2008-07-11

    Colloidal InP quantum wires are grown by the solution-liquid-solid (SLS) method, and passivated with the traditional quantum dots surfactants 1-hexadecylamine and tri-n-octylphosphine oxide. The size dependence of the band gaps in the wires are determined from the absorption spectra, and compared to other experimental results for InP quantum dots and wires, and to the predictions of theory. The photoluminescence behavior of the wires is also investigated. Efforts to enhance photoluminescence efficiencies through photochemical etching in the presence of HF result only in photochemical thinning or photo-oxidation, without a significant influence on quantum-wire photoluminescence. However, photo-oxidation produces residual dot and rod domains within the wires, which are luminescent. The results establish that the quantum-wire band gaps are weakly influenced by the nature of the surface passivation, and that colloidal quantum wires have intrinsically low photoluminescence efficiencies.

  10. Nano-graphene oxide carboxylation for efficient bioconjugation applications: a quantitative optimization approach

    Energy Technology Data Exchange (ETDEWEB)

    Imani, Rana; Emami, Shahriar Hojjati, E-mail: semami@aut.ac.ir [Amirkabir University of Technology, Department of Biomedical Engineering (Iran, Islamic Republic of); Faghihi, Shahab, E-mail: shahabeddin.faghihi@mail.mcgill.ca, E-mail: sfaghihi@nigeb.ac.ir [National Institute of Genetic Engineering and Biotechnology, Tissue Engineering and Biomaterials Division (Iran, Islamic Republic of)

    2015-02-15

    A method for carboxylation of graphene oxide (GO) with chloroacetic acid that precisely optimizes and controls the efficacy of the process for bioconjugation applications is proposed. Quantification of COOH groups on nano-graphene oxide sheets (NGOS) is performed by novel colorimetric methylene blue (MB) assay. The GO is synthesized and carboxylated by chloroacetic acid treatment under strong basic condition. The size and morphology of the as-prepared NGOS are characterized by scanning electron microscopy, transmission electron microscopy (TEM), and atomic force microscopy (AFM). The effect of acid to base molar ratio on the physical, chemical, and morphological properties of NGOS is analyzed by Fourier-transformed infrared spectrometry (FTIR), UV–Vis spectroscopy, X-ray diffraction (XRD), AFM, and zeta potential. For evaluation of bioconjugation efficacy, the synthesized nano-carriers with different carboxylation ratios are functionalized by octaarginine peptide sequence (R8) as a biomolecule model containing amine groups. The quantification of attached R8 peptides to graphene nano-sheets’ surface is performed with a colorimetric-based assay which includes the application of 2,4,6-Trinitrobenzene sulfonic acid (TNBS). The results show that the thickness and lateral size of nano-sheets are dramatically decreased to 0.8 nm and 50–100 nm after carboxylation process, respectively. X-ray analysis shows the nano-sheets interlaying space is affected by the alteration of chloroacetic acid to base ratio. The MB assay reveals that the COOH groups on the surface of NGOS are maximized at the acid to base ratio of 2 which is confirmed by FTIR, XRD, and zeta potential. The TNBS assay also shows that bioconjugation of the optimized carboxylated NGOS sample with octaarginine peptide is 2.5 times more efficient compared to bare NGOS. The present work provides evidence that treatment of GO by chloroacetic acid under an optimized condition would create a functionalized high

  11. Particle detectors based on InP Schottky diodes

    International Nuclear Information System (INIS)

    A study of electrical properties and detection performance of Indium Phosphide detector structures with Schottky contacts prepared on high purity p-type InP was performed. Schottky barrier detectors were prepared by vacuum evaporation of Pd on p-type epitaxial layers grown on Zn-doped p-type substrates. The detection performance of the detectors was characterized by the measurement of pulse-height spectra with alpha particles emitted from 241Am source at room temperature. The influence of the quality of p-type epitaxial layers on the charge-collection efficiency and energy resolution in the full-width half-maximum is discussed.

  12. Radiation material science at the INP AS RUz

    International Nuclear Information System (INIS)

    Among the critical technologies, determining the national priority of USA and Russia the first place is taken by manufacturing new materials. It means synthesis and production of materials for electronics (micro- and nano-) and photonics, ceramics and nano-ceramics, composites, metals and alloys with particular properties, super-hard materials, bio-compatible materials, catalysts and membranes. Radiation solid state physics gave birth of many radiation technologies for obtaining unique new or modified materials. In the table lists the experimental results recently obtained at the INP AS RUz. The studies are supported by grants of STCU and Uzbekistan Center of Science and Technology

  13. Lasers in InP generic photonic integration technology platforms

    Science.gov (United States)

    Latkowski, Sylwester; Lenstra, Daan

    2015-04-01

    A review is given of a number of lasers in a form of photonic integrated circuits realized on InP substrate using a generic integration approach. The potential of these photonic circuits lies in their compactness, low power consumption, and significant reduction of fabrication cost by realization in generic foundry runs. Generic integration platforms offer the possibility of realizing functionally advanced photonic circuits using combinations of just a few standardized and parameterized building blocks. This vibrant field opens new doors to innovative product development for SMEs as well as curiosity-driven research.

  14. Phosphorus vacancy in InP: A negative- U center

    OpenAIRE

    Alatalo, M.; Nieminen, Risto M.; Puska, Martti J.; Seitsonen, A. P.; Virkkunen, R.

    1993-01-01

    Using first-principles simulations, we identify the phosphorous vacancy in InP as a negative-U center. The deep levels associated with this defect are in the upper half of the band gap, and the charge state changes directly from positive to negative as the Fermi level is raised: the vacancy captures two electrons rather than one. We also obtain the relaxed structures and formation energies for the In and P vacancies as a function of both electron and atomic chemical potentials. Peer reviewed

  15. Electron irradiation effects in epitaxial InP solar cells

    Science.gov (United States)

    Pearsall, N. M.; Robson, N.; Sambell, A. J.; Anspaugh, B.; Cross, T. A.

    1991-01-01

    Performance data for InP-based solar cells after irradiation with 1-MeV electrons up to a fluence of 1 x 1016 e/cm2 are presented. Three InP cell structures are considered. Two of these have epitaxially grown active regions, these being a homojunction design and in ITO/InP structure. These are compared with ITO/InP cells without the epitaxial base region. The cell parameter variations, the influence of illumination during irradiation, and the effect on cell spectral response and capacitance measurements are discussed. Substantial performance recovery after thermal annealing at 90 C is reported.

  16. Overview of the main methods used to combine proteins with nanosystems: absorption, bioconjugation, and encapsulation

    Directory of Open Access Journals (Sweden)

    Mariagrazia Di Marco

    2009-12-01

    Full Text Available Mariagrazia Di Marco1, Shaharum Shamsuddin2, Khairunisak Abdul Razak3, Azlan Abdul Aziz4, Corinne Devaux1, Elsa Borghi1, Laurent Levy1, Claudia Sadun51Nanobiotix, Paris, France; 2School of Health Sciences, Health Campus Universiti Sains Malaysia, Kelantan, Malaysia; 3School of Materials and Mineral Resources Engineering, Engineering Campus, 4School of Physics, Universiti Sains Malaysia, Penang, Malaysia; 5Department of Chemistry, Sapienza, University of Rome, Rome, ItalyAbstract: The latest development of protein engineering allows the production of proteins having desired properties and large potential markets, but the clinical advances of therapeutical proteins are still limited by their fragility. Nanotechnology could provide optimal vectors able to protect from degradation therapeutical biomolecules such as proteins, enzymes or specific polypeptides. On the other hand, some proteins can be also used as active ligands to help nanoparticles loaded with chemotherapeutic or other drugs to reach particular sites in the body. The aim of this review is to provide an overall picture of the general aspects of the most successful approaches used to combine proteins with nanosystems. This combination is mainly achieved by absorption, bioconjugation and encapsulation. Interactions of nanoparticles with biomolecules and caveats related to protein denaturation are also pointed out. A clear understanding of nanoparticle-protein interactions could make possible the design of precise and versatile hybrid nanosystems. This could further allow control of their pharmacokinetics as well as activity, and safety.Keywords: nanoparticles, drug delivery, proteins, polypeptides, absorption, bioconjugation, encapsulation

  17. Bioconjugated PLGA-4-arm-PEG branched polymeric nanoparticles as novel tumor targeting carriers

    Science.gov (United States)

    Ding, Hong; Yong, Ken-Tye; Roy, Indrajit; Hu, Rui; Wu, Fang; Zhao, Lingling; Law, Wing-Cheung; Zhao, Weiwei; Ji, Wei; Liu, Liwei; Bergey, Earl J.; Prasad, Paras N.

    2011-04-01

    In this study, we have developed a novel carrier, micelle-type bioconjugated PLGA-4-arm-PEG branched polymeric nanoparticles (NPs), for the detection and treatment of pancreatic cancer. These NPs contained 4-arm-PEG as corona, and PLGA as core, the particle surface was conjugated with cyclo(arginine-glycine-aspartate) (cRGD) as ligand for in vivo tumor targeting. The hydrodynamic size of the NPs was determined to be 150-180 nm and the critical micellar concentration (CMC) was estimated to be 10.5 mg l - 1. Our in vitro study shows that these NPs by themselves had negligible cytotoxicity to human pancreatic cancer (Panc-1) and human glioblastoma (U87) cell lines. Near infrared (NIR) microscopy and flow cytometry demonstrated that the cRGD conjugated PLGA-4-arm-PEG polymeric NPs were taken up more efficiently by U87MG glioma cells, over-expressing the αvβ3 integrin, when compared with the non-targeted NPs. Whole body imaging showed that the cRGD conjugated PLGA-4-arm-PEG branched polymeric NPs had the highest accumulation in the pancreatic tumor site of mice at 48 h post-injection. Physical, hematological, and pathological assays indicated low in vivo toxicity of this NP formulation. These studies on the ability of these bioconjugated PLGA-4-arm-PEG polymeric NPs suggest that the prepared polymeric NPs may serve as a promising platform for detection and targeted drug delivery for pancreatic cancer.

  18. Bioconjugated PLGA-4-arm-PEG branched polymeric nanoparticles as novel tumor targeting carriers

    International Nuclear Information System (INIS)

    In this study, we have developed a novel carrier, micelle-type bioconjugated PLGA-4-arm-PEG branched polymeric nanoparticles (NPs), for the detection and treatment of pancreatic cancer. These NPs contained 4-arm-PEG as corona, and PLGA as core, the particle surface was conjugated with cyclo(arginine-glycine-aspartate) (cRGD) as ligand for in vivo tumor targeting. The hydrodynamic size of the NPs was determined to be 150-180 nm and the critical micellar concentration (CMC) was estimated to be 10.5 mg l-1. Our in vitro study shows that these NPs by themselves had negligible cytotoxicity to human pancreatic cancer (Panc-1) and human glioblastoma (U87) cell lines. Near infrared (NIR) microscopy and flow cytometry demonstrated that the cRGD conjugated PLGA-4-arm-PEG polymeric NPs were taken up more efficiently by U87MG glioma cells, over-expressing the αvβ3 integrin, when compared with the non-targeted NPs. Whole body imaging showed that the cRGD conjugated PLGA-4-arm-PEG branched polymeric NPs had the highest accumulation in the pancreatic tumor site of mice at 48 h post-injection. Physical, hematological, and pathological assays indicated low in vivo toxicity of this NP formulation. These studies on the ability of these bioconjugated PLGA-4-arm-PEG polymeric NPs suggest that the prepared polymeric NPs may serve as a promising platform for detection and targeted drug delivery for pancreatic cancer.

  19. Growth of polycrystalline InP thin films by the pulsed laser deposition technique

    International Nuclear Information System (INIS)

    The growth of polycrystalline InP films on glass substrates by the pulsed laser deposition technique is reported. Optimal growth conditions as high vacuum and relatively low substrate temperature were necessary to obtain stoichiometric InP layers. Structural and morphological characterizations of the samples are shown. X-ray diffraction shows that the stoichiometric InP films were face-centered cubic with preferred orientation of the crystallites over the (111) plane and mean grain size of about 60 nm. We also discuss the consequences of adverse growth conditions as bad vacuum and high substrate temperature on the film stoichiometry

  20. Growth of polycrystalline InP thin films by the pulsed laser deposition technique

    Energy Technology Data Exchange (ETDEWEB)

    Iribarren, A. [Instituto de Materiales y Reactivos, Universidad de La Habana, Zapata y G, Vedado, Plaza, Havana 10400 (Cuba)]. E-mail: augusto@fisica.uh.cu; Castro-Rodriguez, R. [Applied Physics Department, CINVESTAV-IPN Merida, C.P. 97310, Merida Yucatan (Mexico); Ponce-Cabrera, L. [CICATA-IPN, Altamira, Km. 14.5 Carretera Tampico-Puerto Industrial, Altamira 89600, Tamps. (Mexico); Pena, J.L. [Applied Physics Department, CINVESTAV-IPN Merida, C.P. 97310, Merida Yucatan (Mexico)

    2006-07-03

    The growth of polycrystalline InP films on glass substrates by the pulsed laser deposition technique is reported. Optimal growth conditions as high vacuum and relatively low substrate temperature were necessary to obtain stoichiometric InP layers. Structural and morphological characterizations of the samples are shown. X-ray diffraction shows that the stoichiometric InP films were face-centered cubic with preferred orientation of the crystallites over the (111) plane and mean grain size of about 60 nm. We also discuss the consequences of adverse growth conditions as bad vacuum and high substrate temperature on the film stoichiometry.

  1. High performance 1689-nm quantum well diode lasers

    Institute of Scientific and Technical Information of China (English)

    Yupeng Duan; Tao Lin; Cuiluan Wang; Feng Chong; Xiaoyu Ma

    2007-01-01

    @@ 1689-nm diode lasers used in medical apparatus have been fabricated and characterized. The lasers had pnpn InP current confinement structure, and the active region consisted of 5 pairs of InGaAs quantum wells and InGaAsP barriers.

  2. Particle detectors based on semiconducting InP epitaxial layers

    Science.gov (United States)

    Yatskiv, R.; Grym, J.; Zdansky, K.

    2011-01-01

    A study of electrical properties and detection performance of two types of Indium Phosphide detector structures was performed: (i) with p-n-junction and (ii) with Schottky contact prepared on high purity p-type InP. The p-n junction detectors were based on a high purity InP:Pr layers of both n- and p- type conductivity with carrier concentration on the order of 1014 cm-3 grown on Sn doped n-type substrate. Schottky barrier detectors were prepared by vacuum evaporation of Pd on high purity p-type epitaxial layer grown on Mn doped p-type substrate. The detection performance of particle detectors was measured by pulse-height spectra with alpha particles emitted from 241Am source at room temperature.

  3. Particle detectors based on semiconducting InP epitaxial layers

    Energy Technology Data Exchange (ETDEWEB)

    Yatskiv, R; Grym, J; Zdansky, K, E-mail: yatskiv@ufe.cz [Institute of Photonics and Electronics, Academy of Sciences of the Czech Republic, Chaberska 57, 18251 Praha 8 (Czech Republic)

    2011-01-15

    A study of electrical properties and detection performance of two types of Indium Phosphide detector structures was performed: (i) with p-n-junction and (ii) with Schottky contact prepared on high purity p-type InP. The p-n junction detectors were based on a high purity InP:Pr layers of both n- and p- type conductivity with carrier concentration on the order of 10{sup 14} cm{sup -3} grown on Sn doped n-type substrate. Schottky barrier detectors were prepared by vacuum evaporation of Pd on high purity p-type epitaxial layer grown on Mn doped p-type substrate. The detection performance of particle detectors was measured by pulse-height spectra with alpha particles emitted from {sup 241}Am source at room temperature.

  4. Particle detectors based on semiconducting InP epitaxial layers

    International Nuclear Information System (INIS)

    A study of electrical properties and detection performance of two types of Indium Phosphide detector structures was performed: (i) with p-n-junction and (ii) with Schottky contact prepared on high purity p-type InP. The p-n junction detectors were based on a high purity InP:Pr layers of both n- and p- type conductivity with carrier concentration on the order of 1014 cm-3 grown on Sn doped n-type substrate. Schottky barrier detectors were prepared by vacuum evaporation of Pd on high purity p-type epitaxial layer grown on Mn doped p-type substrate. The detection performance of particle detectors was measured by pulse-height spectra with alpha particles emitted from 241Am source at room temperature.

  5. Study of discharge in the quiescent plasma machine of INPE

    International Nuclear Information System (INIS)

    Measurements of main plasma parameters produced in the quiescent plasma machine of INPE for several pressure and discharge potential values, and current of 500 m A are presented. The density varies form 108 cm-3 to 1010 cm-3 and the average electron energy is between 1 eV and 10 eV. The electron energy distribution is non-Maxwellian corresponding to one population of high energy primary electrons and two populations of electron with temperature below 10 eV. The plasma potential varies from 1 V to 3 V in relation to the anode, but decrease fastly to negative values when the pressures becomes near to 10-3 Pa. Qualitative interpretations are given and a simple model for plasma density is compared with experimental values. Conditions of cathode operation are also investigated. (M.C.K.)

  6. Preliminary design of the INPE's Solar Vector Magnetograph

    CERN Document Server

    Vieira, L E A; Lago, A Dal; Wrasse, C; Echer, E; Guarnieri, F L; Cardoso, F Reis; Guerrero, G; Costa, J Rezende; Palacios, J; Balmaceda, L; Alves, L Ribeiro; da Silva, L; Costa, L L; Sampaio, M; Soares, M C Rabello; Barbosa, M; Domingues, M; Rigozo, N; Mendes, O; Jauer, P; Dallaqua, R; Branco, R H; Stekel, T; Gonzalez, W; Kabata, W

    2016-01-01

    We describe the preliminary design of a magnetograph and visible-light imager instrument to study the solar dynamo processes through observations of the solar surface magnetic field distribution. The instrument will provide measurements of the vector magnetic field and of the line-of-sight velocity in the solar photosphere. As the magnetic field anchored at the solar surface produces most of the structures and energetic events in the upper solar atmosphere and significantly influences the heliosphere, the development of this instrument plays an important role in reaching the scientific goals of The Atmospheric and Space Science Coordination (CEA) at the Brazilian National Institute for Space Research (INPE). In particular, the CEA's space weather program will benefit most from the development of this technology. We expect that this project will be the starting point to establish a strong research program on Solar Physics in Brazil. Our main aim is acquiring progressively the know-how to build state-of-art sol...

  7. Temperature dependence of impact ionization coefficients in InP

    Science.gov (United States)

    Taguchi, Kenko; Torikai, Toshitaka; Sugimoto, Yoshimasa; Makita, Kikuo; Ishihara, Hisahiro

    1986-01-01

    Impact ionization coefficients for electrons and holes in InP were measured experimentally at 25-175 °C in the 400-600 kV/cm electric field range with planar avalanche photodiodes, in which the n-InP avalanche region was separated from the light absorbing InGaAs and/or InGaAsP layers. α and β monotonically decreased with elevated temperatures; β/α slightly decreased with increasing temperature. Comparison of the experimental results with Okuto-Crowell formula on the impact ionization coefficient gave the phonon energy ERO=46 meV and the phonon scattering mean free path λ0=41.7 Å for electron impact ionization and ERO=36 meV and λ0=41.3 Å for hole impact ionization, respectively. Curves calculated by using these parameters agree with the experimental results quite satisfactorily at each temperature.

  8. PRINT: A Protein Bioconjugation Method with Exquisite N-terminal Specificity

    Science.gov (United States)

    Sur, Surojit; Qiao, Yuan; Fries, Anja; O'Meally, Robert N.; Cole, Robert N.; Kinzler, Kenneth W.; Vogelstein, Bert; Zhou, Shibin

    2015-12-01

    Chemical conjugation is commonly used to enhance the pharmacokinetics, biodistribution, and potency of protein therapeutics, but often leads to non-specific modification or loss of bioactivity. Here, we present a simple, versatile and widely applicable method that allows exquisite N-terminal specific modification of proteins. Combining reversible side-chain blocking and protease mediated cleavage of a commonly used HIS tag appended to a protein, we generate with high yield and purity exquisitely site specific and selective bio-conjugates of TNF-α by using amine reactive NHS ester chemistry. We confirm the N terminal selectivity and specificity using mass spectral analyses and show near complete retention of the biological activity of our model protein both in vitro and in vivo murine models. We believe that this methodology would be applicable to a variety of potentially therapeutic proteins and the specificity afforded by this technique would allow for rapid generation of novel biologics.

  9. Design, Synthesis and Applications of Hyaluronic Acid-Paclitaxel Bioconjugatesâ€

    Directory of Open Access Journals (Sweden)

    Rinaldo Marini Bettolo

    2008-02-01

    Full Text Available Paclitaxel (1a, a well known antitumor agent adopted mainly for the treatmentof breast and ovarian cancer, suffers from significant disadvantages such as low solubility,certain toxicity and specific drug-resistance of some tumor cells. To overcome theseproblems extensive research has been carried out. Among the various proposed strategies,the conjugation of paclitaxel (1a to a biocompatible polymer, such as hyaluronic acid(HA, 2, has also been considered. Coupling a bioactive compound to a biocompatiblepolymer offers, in general, many advantages such as better drug solubilization, betterstabilization, specific localization and controlled release. Hereafter the design, synthesisand applications of hyaluronic acid-paclitaxel bioconjugates are reviewed. An overview ofHA-paclitaxel combinations is also given.

  10. Bio-conjugated silver nanoparticles: from Ocimum sanctum and role of cetyltrimethyl ammonium bromide.

    Science.gov (United States)

    Zaheer, Zoya; Rafiuddin

    2013-08-01

    In this paper we have reported the spectrophotometeric and transmission electron microscopic (TEM) data to the shape-directing role of cetyltrimethylammonium bromide (CTAB) on the green extra-cellular synthesis of bio-conjugated Ag-nanoparticles using Ocimum sanctum leaves extract. TEM images revealed that the nanoparticles are mostly spherical (average particle size ranged from 18 to 35nm) with some truncated triangular nanoplates, aggregated in a beautiful manner to yield locket-like silver and capped by a thin layer of biomolecules of O. sanctum, whereas nanoparticles are highly poly-dispersed in presence of CTAB. The shape and position of wavelength maxima strongly depends on the reaction time, [leaves extract] and [CTAB]. The visual observations also suggest that the prefect transparent silver sol becomes turbid in presence of CTAB after some time. PMID:23524081

  11. Extended Wavelength InP Based Avalanche Diodes for MWIR Response Project

    Data.gov (United States)

    National Aeronautics and Space Administration — For this NASA STTR program, we propose to develop a novel superlattice-based near infrared to midwave infrared avalanche photodetector (APD) grown on InP substrates...

  12. Ultra-Fast Low Energy Switching Using an InP Photonic Crystal H0 Nanocavity

    DEFF Research Database (Denmark)

    Yu, Yi; Palushani, Evarist; Heuck, Mikkel;

    2013-01-01

    Pump-probe measurements on InP photonic crystal H0 nanocavities show large-contrast ultrafast switching at low pulse energy. For large pulse energies, high-frequency carrier density oscillations are induced, leading to pulsesplitting....

  13. Bioconjugated PLGA-4-arm-PEG branched polymeric nanoparticles as novel tumor targeting carriers

    Energy Technology Data Exchange (ETDEWEB)

    Ding Hong; Yong, Ken-Tye; Roy, Indrajit; Hu Rui; Zhao Lingling; Law, Wing-Cheung; Ji Wei; Liu Liwei; Bergey, Earl J; Prasad, Paras N [Department of Chemistry, Institute for Lasers, Photonics and Biophotonics, University at Buffalo, State University of New York, Buffalo, NY 14260 (United States); Wu Fang [Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14260 (United States); Zhao Weiwei, E-mail: bergeye@buffalo.edu, E-mail: pnprasad@buffalo.edu [Department of Microbiology and Immunology, University at Buffalo, State University of New York, Buffalo, NY 14215 (United States)

    2011-04-22

    In this study, we have developed a novel carrier, micelle-type bioconjugated PLGA-4-arm-PEG branched polymeric nanoparticles (NPs), for the detection and treatment of pancreatic cancer. These NPs contained 4-arm-PEG as corona, and PLGA as core, the particle surface was conjugated with cyclo(arginine-glycine-aspartate) (cRGD) as ligand for in vivo tumor targeting. The hydrodynamic size of the NPs was determined to be 150-180 nm and the critical micellar concentration (CMC) was estimated to be 10.5 mg l{sup -1}. Our in vitro study shows that these NPs by themselves had negligible cytotoxicity to human pancreatic cancer (Panc-1) and human glioblastoma (U87) cell lines. Near infrared (NIR) microscopy and flow cytometry demonstrated that the cRGD conjugated PLGA-4-arm-PEG polymeric NPs were taken up more efficiently by U87MG glioma cells, over-expressing the {alpha}{sub v{beta}3} integrin, when compared with the non-targeted NPs. Whole body imaging showed that the cRGD conjugated PLGA-4-arm-PEG branched polymeric NPs had the highest accumulation in the pancreatic tumor site of mice at 48 h post-injection. Physical, hematological, and pathological assays indicated low in vivo toxicity of this NP formulation. These studies on the ability of these bioconjugated PLGA-4-arm-PEG polymeric NPs suggest that the prepared polymeric NPs may serve as a promising platform for detection and targeted drug delivery for pancreatic cancer.

  14. Bioconjugation of lipase and cholesterol oxidase with graphene or graphene oxide

    International Nuclear Information System (INIS)

    The catalytic behavior of lipase and cholesterol oxidase (ChOx) in the absence and in the presence of graphene (G) or graphene oxide (GO) was investigated at 24 ± 1 °C and pH 6.5. GO flat sheets (0.5–2 μm) were ∼2-nm thick, while G formed aggregates. The maximum reaction velocity (Vmax) values and turnover numbers (kcat) determined for reactions catalyzed by physical mixtures of lipase (at 0.01 g l−1) or ChOx (at 0.03 g l−1) and G (0.012 g l−1) increased six-fold or doubled, respectively, in comparison to neat enzymes. Circular dichroism (CD) and photoluminescence (PL) spectroscopic measurements revealed the preservation of native secondary structures of enzymes and bioconjugation driven by hydrophobic interaction and energy transfer (redshift) between lipase or ChOx and G, corroborating with the enhanced catalytic behavior. On the other hand, the interactions between GO, which has hydrophilic moieties on the basal plane, and ChOx caused enzyme deactivation, as evidenced by the absence of typical CD signal. At low GO concentration (<0.012 g l−1), bioconjugates of lipases with GO led to Vmax and kcat values four-fold lower than their counterparts with G, but the GO hydrophilic groups probably favored the affinity for the substrate, because the Michaelis constant (Km) values decreased in comparison to that of neat lipase. Upon increasing the GO concentration, lipases lost secondary structure and the typical lipase PL bands disappeared

  15. Potentiometric Urea Biosensor Based on an Immobilised Fullerene-Urease Bio-Conjugate

    Directory of Open Access Journals (Sweden)

    Kasra Saeedfar

    2013-12-01

    Full Text Available A novel method for the rapid modification of fullerene for subsequent enzyme attachment to create a potentiometric biosensor is presented. Urease was immobilized onto the modified fullerene nanomaterial. The modified fullerene-immobilized urease (C60-urease bioconjugate has been confirmed to catalyze the hydrolysis of urea in solution. The biomaterial was then deposited on a screen-printed electrode containing a non-plasticized poly(n-butyl acrylate (PnBA membrane entrapped with a hydrogen ionophore. This pH-selective membrane is intended to function as a potentiometric urea biosensor with the deposition of C60-urease on the PnBA membrane. Various parameters for fullerene modification and urease immobilization were investigated. The optimal pH and concentration of the phosphate buffer for the urea biosensor were 7.0 and 0.5 mM, respectively. The linear response range of the biosensor was from 2.31 × 10−3 M to 8.28 × 10−5 M. The biosensor’s sensitivity was 59.67 ± 0.91 mV/decade, which is close to the theoretical value. Common cations such as Na+, K+, Ca2+, Mg2+ and NH4+ showed no obvious interference with the urea biosensor’s response. The use of a fullerene-urease bio-conjugate and an acrylic membrane with good adhesion prevented the leaching of urease enzyme and thus increased the stability of the urea biosensor for up to 140 days.

  16. Bioconjugation of lipase and cholesterol oxidase with graphene or graphene oxide

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Rubens A.; Souza, Michele L.; Bloisi, Georgia D.; Corio, Paolo; Petri, Denise F. S., E-mail: dfsp@iq.usp.br [Universidade de São Paulo, Instituto de Química (Brazil)

    2015-04-15

    The catalytic behavior of lipase and cholesterol oxidase (ChOx) in the absence and in the presence of graphene (G) or graphene oxide (GO) was investigated at 24 ± 1 °C and pH 6.5. GO flat sheets (0.5–2 μm) were ∼2-nm thick, while G formed aggregates. The maximum reaction velocity (V{sub max}) values and turnover numbers (k{sub cat}) determined for reactions catalyzed by physical mixtures of lipase (at 0.01 g l{sup −1}) or ChOx (at 0.03 g l{sup −1}) and G (0.012 g l{sup −1}) increased six-fold or doubled, respectively, in comparison to neat enzymes. Circular dichroism (CD) and photoluminescence (PL) spectroscopic measurements revealed the preservation of native secondary structures of enzymes and bioconjugation driven by hydrophobic interaction and energy transfer (redshift) between lipase or ChOx and G, corroborating with the enhanced catalytic behavior. On the other hand, the interactions between GO, which has hydrophilic moieties on the basal plane, and ChOx caused enzyme deactivation, as evidenced by the absence of typical CD signal. At low GO concentration (<0.012 g l{sup −1}), bioconjugates of lipases with GO led to V{sub max} and k{sub cat} values four-fold lower than their counterparts with G, but the GO hydrophilic groups probably favored the affinity for the substrate, because the Michaelis constant (K{sub m}) values decreased in comparison to that of neat lipase. Upon increasing the GO concentration, lipases lost secondary structure and the typical lipase PL bands disappeared.

  17. Structural analysis of erbium {delta}-doped InP by OMVPE with RBS-channeling

    Energy Technology Data Exchange (ETDEWEB)

    Yuhara, Junji; Takeda, Hitoshi; Matsubara, Naoki; Tabuchi, Masao; Fujiwara, Yasufumi; Morita, Kenji; Takeda, Yoshikazu [Nagoya Univ. (Japan). School of Engineering

    1997-03-01

    We have determined the lattice location of Er in InP {delta}-doped by OMVPE with RBS-channeling. Er concentrations along the <001> and <011> directions are same as random yields, while a significant flux peaking effect is seen for the <111> direction. These data suggest that Er atoms occupy the site equivalent to the hexahedral site in InP lattice. (author)

  18. Wafer-scale self-organized InP nanopillars with controlled orientation for photovoltaic devices.

    Science.gov (United States)

    Sanatinia, Reza; Berrier, Audrey; Dhaka, Veer; Perros, Alexander P; Huhtio, Teppo; Lipsanen, Harri; Anand, Srinivasan

    2015-10-16

    A unique wafer-scale self-organization process for generation of InP nanopillars is demonstrated, which is based on maskless ion-beam etching (IBE) of InP developed to obtain the nanopillars, where the height, shape, and orientation of the nanopillars can be varied by controlling the processing parameters. The fabricated InP nanopillars exhibit broadband suppression of the reflectance, 'black InP,' a property useful for solar cells. The realization of a conformal p-n junction for carrier collection, in the fabricated solar cells, is achieved by a metalorganic vapor phase epitaxy (MOVPE) overgrowth step on the fabricated pillars. The conformal overgrowth retains the broadband anti-reflection property of the InP nanopillars, indicating the feasibility of this technology for solar cells. Surface passivation of the formed InP nanopillars using sulfur-oleylamine solution resulted in improved solar-cell characteristics. An open-circuit voltage of 0.71 V and an increase of 0.13 V compared to the unpassivated device were achieved. PMID:26403979

  19. Exciton dynamics in near-surface InGaN quantum wells coupled to colloidal nanocrystals

    DEFF Research Database (Denmark)

    Kopylov, Oleksii; Shirazi, Roza; Yvind, Kresten;

    2013-01-01

    We study non-radiative energy transfer between InGaN quantum wells and colloidal InP nanocrystals separated by sub-10nm distance. A significant non-radiative energy transfer between the two layers is accompanied by reduced surface recombination in InGaN.......We study non-radiative energy transfer between InGaN quantum wells and colloidal InP nanocrystals separated by sub-10nm distance. A significant non-radiative energy transfer between the two layers is accompanied by reduced surface recombination in InGaN....

  20. Spontaneous emission control of single quantum dots in bottom-up nanowire waveguides

    OpenAIRE

    Bulgarini, Gabriele; Reimer, Michael E.; Zehender, Tilman; Hocevar, Moïra; Bakkers, Erik P. A. M.; Kouwenhoven, Leo P.; Zwiller, Valery

    2012-01-01

    Nanowire waveguides with controlled shape are promising for engineering the collection efficiency of quantum light sources. We investigate the exciton lifetime in individual InAsP quantum dots, perfectly positioned on-axis of InP nanowire waveguides. We demonstrate control over the quantum dot spontaneous emission by varying the nanowire diameter in e-beam patterned arrays, which modifies the coupling efficiency of the emitter to the fundamental waveguide mode. The spontaneous emission rate i...

  1. Fluorescent cholesterol sensing using enzyme-modified CdSe/ZnS quantum dots

    International Nuclear Information System (INIS)

    CdSe/ZnS quantum dot nanocrystals with wurtzite structure were synthesized using trioctylphosphine oxide (TOPO) templates. For biological applications, the capping surfactants, TOPO were replaced with mercaptoacetic acid (MAA). The carboxylic groups in MAA were activated by esterification of n-hydroxysulfo-succinimide (sulfo-NHS) catalyzed by water-soluble 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC), namely through the EDC/NHS coupling reaction. MAA not only provided water solubility to CdSe/ZnS quantum dots but also acted as a linker between cholesterol oxidase (COx) and the quantum dots due to its carboxyl group. The CdSe/ZnS–COx bioconjugates showed sensitive and linear decrease in the photoluminescence (PL) peak intensity with cholesterol concentration up to 9 mM. The PL intensity variation was elucidated based upon collisional quenching by hydrogen peroxide generated from the enzymatic oxidation reaction between COx and cholesterol. This collisional quenching mechanism was confirmed by monitoring the response of bovine serum albumin-modified CdSe/ZnS bioconjugates to cholesterol molecules. Furthermore, the bioconjugates showed specificity to cholesterol molecules due to selective enzymatic oxidation reaction by COx. A simple quantum dot-based optical biosensor is proposed for precision cholesterol detection.

  2. Fluorescent cholesterol sensing using enzyme-modified CdSe/ZnS quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ki-Eun [Korea University, Department of Materials Science and Engineering (Korea, Republic of); Kim, Tae Geun [Korea University, Department of Electronic Engineering (Korea, Republic of); Sung, Yun-Mo, E-mail: ymsung@korea.ac.kr [Korea University, Department of Materials Science and Engineering (Korea, Republic of)

    2012-10-15

    CdSe/ZnS quantum dot nanocrystals with wurtzite structure were synthesized using trioctylphosphine oxide (TOPO) templates. For biological applications, the capping surfactants, TOPO were replaced with mercaptoacetic acid (MAA). The carboxylic groups in MAA were activated by esterification of n-hydroxysulfo-succinimide (sulfo-NHS) catalyzed by water-soluble 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC), namely through the EDC/NHS coupling reaction. MAA not only provided water solubility to CdSe/ZnS quantum dots but also acted as a linker between cholesterol oxidase (COx) and the quantum dots due to its carboxyl group. The CdSe/ZnS-COx bioconjugates showed sensitive and linear decrease in the photoluminescence (PL) peak intensity with cholesterol concentration up to 9 mM. The PL intensity variation was elucidated based upon collisional quenching by hydrogen peroxide generated from the enzymatic oxidation reaction between COx and cholesterol. This collisional quenching mechanism was confirmed by monitoring the response of bovine serum albumin-modified CdSe/ZnS bioconjugates to cholesterol molecules. Furthermore, the bioconjugates showed specificity to cholesterol molecules due to selective enzymatic oxidation reaction by COx. A simple quantum dot-based optical biosensor is proposed for precision cholesterol detection.

  3. Protease-activatable organometal-Peptide bioconjugates with enhanced cytotoxicity on cancer cells.

    Science.gov (United States)

    Splith, Katrin; Hu, Wanning; Schatzschneider, Ulrich; Gust, Ronald; Ott, Ingo; Onambele, Liliane A; Prokop, Aram; Neundorf, Ines

    2010-07-21

    Over the past years, numerous promising new metalorganic lead structures have been developed exhibiting highly active cytostatic properties. However, the efficiency of such chemotherapeutics in the treatment of tumors is often limited by their low therapeutic index due to their short half-life, lack of tumor selectivity, and associated side effects. Furthermore, the membrane barrier often restricts their cellular uptake by passive diffusion. In this contribution, we describe the synthesis, cellular uptake, and biologic activity of a series of cymantrene-peptide conjugates. Cymantrene CpMn(CO)(3) is a robust organometallic group, which is stable in air and water and easy to functionalize. In this work, some new cymantrene derivatives with different linkers between the half-sandwich complex and the carboxylate group were attached to the cell-penetrating peptide sC18 that should act as a transporter for the metal moiety. All conjugates were characterized for their cytotoxic activity on human breast adenocarcinoma cells (MCF-7) and human colon carcinoma cells (HT-29). We found that bioconjugates bearing two cymantrene groups were more active than the monofunctionalized ones. By the introduction of a cathepsin B cleavage site next to the organometallic group, the biologic activity could be in increased even further. Fluorescence microscopy studies and apoptosis assays gave preliminary hints on the mode of action of these systems. PMID:20586419

  4. Design of Novel Relaxase Substrates Based on Rolling Circle Replicases for Bioconjugation to DNA Nanostructures.

    Science.gov (United States)

    Sagredo, Sandra; de la Cruz, Fernando; Moncalián, Gabriel

    2016-01-01

    During bacterial conjugation and rolling circle replication, HUH endonucleases, respectively known as relaxases and replicases, form a covalent bond with ssDNA when they cleave their target sequence (nic site). Both protein families show structural similarity but limited amino acid identity. Moreover, the organization of the inverted repeat (IR) and the loop that shape the nic site differs in both proteins. Arguably, replicases cleave their target site more efficiently, while relaxases exert more biochemical control over the process. Here we show that engineering a relaxase target by mimicking the replicase target, results in enhanced formation of protein-DNA covalent complexes. Three widely different relaxases, which belong to MOBF, MOBQ and MOBP families, can properly cleave DNA sequences with permuted target sequences. Collaterally, the secondary structure that the permuted targets acquired within a supercoiled plasmid DNA resulted in poor conjugation frequencies underlying the importance of relaxase accessory proteins in conjugative DNA processing. Our results reveal that relaxase and replicase targets can be interchangeable in vitro. The new Rep substrates provide new bioconjugation tools for the design of sophisticated DNA-protein nanostructures.

  5. Preparation and immunogenicity-evaluation of typhoid O-specific polysaccharides bio-conjugate vaccines.

    Science.gov (United States)

    Zhehui, Peng; Chao, Pan; Peng, Sun; Erling, Feng; Jun, Wu; Li, Zhu; Qingzhong, Peng; Hengliang, Wang

    2015-05-01

    Typhoid fever caused by Salmonella Typhi is still a major public health problem in developing countries. In this study, we constructed a genetically modified Salmonella Typhi strain expressing O-specific polysaccharides (OPS) antigen conjugated to a carrier, recombinant Pseudomonas aeruginosa exotoxin A(rEPA N29). The conjugates (OPS-rEPA N29) were further purified and evaluated for their immunogenicity. The results of ELISA showed that the conjugates evoked higher titers of IgG than OPS, suggesting that rEPAN29 increased immunogenicity of OPS significantly as a carrier. Moreover, three injections with 3-week interval evoked slightly higher titers of IgG than three injections with 2-week interval. However, injection of excess conjugates could not evoke higher titers of IgG against lipid polysaccharide (LPS). In summary, our study provides a new strategy for preparing polysaccharides-protein conjugate vaccines as well as similar bio-conjugate vaccines of other Gram-negative pathogens.

  6. Bioconjugated fluorescent silica nanoparticles for the rapid detection of Entamoeba histolytica.

    Science.gov (United States)

    Hemadi, Ahmad; Ekrami, Alireza; Oormazdi, Hormozd; Meamar, Ahmad Reza; Akhlaghi, Lame; Samarbaf-Zadeh, Ali Reza; Razmjou, Elham

    2015-05-01

    Rapid detection of Entamoeba histolytica based on fluorescent silica nanoparticle (FSNP) indirect immunofluorescence microscopy was evaluated. Silica nanoparticles were synthesized using Stöber's method, with their surface activated to covalently bind to, and immobilize, protein A. For biolabeling, FSNP was added to conjugated E. histolytica trophozoites with monoclonal anti-E. histolytica IgG1 for microscopic observation of fluorescence. Fluorescent silica nanoparticle sensitivity was determined with axenically cultured E. histolytica serially diluted to seven concentrations. Specificity was evaluated using other intestinal protozoa. Fluorescent silica nanoparticles detected E. histolytica at the lowest tested concentration with no cross-reaction with Entamoeba dispar, Entamoeba moshkovskii, Blastocystis sp., or Giardia lamblia. Visualization of E. histolytica trophozoites with anti-E. histolytica antibody labeled with fluorescein isothiocyanate (FITC) was compared with that using anti-E. histolytica antibody bioconjugated FSNP. Although FITC and FSNP produced similar results, the amount of specific antibody required for FITC to induce fluorescence of similar intensity was fivefold that for FSNP. Fluorescent silica nanoparticles delivered a rapid, simple, cost-effective, and highly sensitive and specific method of detecting E. histolytica. Further study is needed before introducing FSNP for laboratory diagnosis of amoebiasis.

  7. Quantitative strain mapping of InAs/InP quantum dots with 1 nm spatial resolution using dark field electron holography

    DEFF Research Database (Denmark)

    Cooper, David; Rouviere, Jean-Luc; Béché, Armand;

    2011-01-01

    The optical properties of semiconductor quantum dots are greatly influenced by their strain state. Dark field electron holography has been used to measure the strain in InAs quantum dots grown in InP with a spatial resolution of 1 nm. A strain value of 5.4%60.1% has been determined which is consi...

  8. Differential InP HEMT MMIC Amplifiers Embedded in Waveguides

    Science.gov (United States)

    Kangaslahti, Pekka; Schlecht, Erich; Samoska, Lorene

    2009-01-01

    Monolithic microwave integrated-circuit (MMIC) amplifiers of a type now being developed for operation at frequencies of hundreds of gigahertz contain InP high-electron-mobility transistors (HEMTs) in a differential configuration. The differential configuration makes it possible to obtain gains greater than those of amplifiers having the single-ended configuration. To reduce losses associated with packaging, the MMIC chips are designed integrally with, and embedded in, waveguide packages, with the additional benefit that the packages are compact enough to fit into phased transmitting and/or receiving antenna arrays. Differential configurations (which are inherently balanced) have been used to extend the upper limits of operating frequencies of complementary metal oxide/semiconductor (CMOS) amplifiers to the microwave range but, until now, have not been applied in millimeter- wave amplifier circuits. Baluns have traditionally been used to transform from single-ended to balanced configurations, but baluns tend to be lossy. Instead of baluns, finlines are used to effect this transformation in the present line of development. Finlines have been used extensively to drive millimeter- wave mixers in balanced configurations. In the present extension of the finline balancing concept, finline transitions are integrated onto the affected MMICs (see figure). The differential configuration creates a virtual ground within each pair of InP HEMT gate fingers, eliminating the need for inductive vias to ground. Elimination of these vias greatly reduces parasitic components of current and the associated losses within an amplifier, thereby enabling more nearly complete utilization of the full performance of each transistor. The differential configuration offers the additional benefit of multiplying (relative to the single-ended configuration) the input and output impedances of each transistor by a factor of four, so that it is possible to use large transistors that would otherwise have

  9. Correlation of electron and proton irradiation-induced damage in InP solar cells

    Science.gov (United States)

    Walters, Robert J.; Summers, Geoffrey P.; Messenger, Scott R.; Burke, Edward A.

    1996-01-01

    The measured degradation of epitaxial shallow homojunction n(+)/p InP solar cells under 1 MeV electron irradiation is correlated with that measured under 3 MeV proton irradiation based on 'displacement damage dose'. The measured data is analyzed as a function of displacement damage dose from which an electron to proton dose equivalency ratio is determined which enables the electron and proton degradation data to be described by a single degradation curve. It is discussed how this single curve can be used to predict the cell degradation under irradiation by any particle energy. The degradation curve is used to compare the radiation response of InP and GaAs/Ge cells on an absolute damage energy scale. The comparison shows InP to be inherently more resistant to displacement damage deposition than the GaAs/Ge.

  10. Determination of the rod-wire transition length in colloidal indium phosphide quantum rods.

    Science.gov (United States)

    Wang, Fudong; Buhro, William E

    2007-11-21

    Colloidal InP quantum rods (QRs) having controlled diameters and lengths are grown by the solution-liquid-solid method, from Bi nanoparticles in the presence of hexadecylamine and other conventional quantum dot surfactants. These quantum rods show band-edge photoluminescence after HF photochemical etching. Photoluminescence efficiency is further enhanced after the Bi tips are selectively removed from the QRs by oleic acid etching. The QRs are anisotropically 3D confined, the nature of which is compared to the corresponding isotropic 3D confinement in quantum dots and 2D confinement in quantum wires. The 3D-2D rod-wire transition length is experimentally determined to be 25 nm, which is about 2 times the bulk InP exciton Bohr radius (of approximately 11 nm).

  11. Design procedure for millimeter-wave InP DHBT stacked power amplifiers

    DEFF Research Database (Denmark)

    Squartecchia, Michele; Johansen, Tom Keinicke; Midili, Virginio

    2015-01-01

    The stacked-transistor concept for power amplifiers (PA) has been investigated in this work. Specifically, this architecture has been applied in the design of millimeter-wave monolithic microwave integrated circuits (MMICs) using indium phosphide (InP) double heterojunction bipolar transistors...... gives 13.1 dBm of output power, 10.1 dB of gain and 13 % of PAE. To the best of the authors' knowledge, this is the first investigation of multi-level stacked PAs based on InP HBT technology....

  12. Beyond G-band : a 235 GHz InP MMIC amplifier

    Science.gov (United States)

    Dawson, Douglas; Samoska, Lorene; Fung, A. K.; Lee, Karen; Lai, Richard; Grundbacher, Ronald; Liu, Po-Hsin; Raja, Rohit

    2005-01-01

    We present results on an InP monolithic millimeter- wave integrated circuit (MMIC) amplifier having 10-dB gain at 235 GHz. We designed this circuit and fabricated the chip in Northrop Grumman Space Technology's (NGST) 0.07- m InP high electron mobility transistor (HEMT) process. Using a WR3 (220-325 GHz) waveguide vector network analyzer system interfaced to waveguide wafer probes, we measured this chip on-wafer for -parameters. To our knowledge, this is the first time a WR3 waveguide on-wafer measurement system has been used to measure gain in a MMIC amplifier above 230 GHz.

  13. Design of mm-wave InP DHBT power amplifiers

    DEFF Research Database (Denmark)

    Johansen, Tom Keinicke; Yan, Lei

    2011-01-01

    power, gain, and efficiency. The design issues associated with cascode based power amplifiers at mm-wave frequencies is described. The experimental results on a two-way combined single-stage cascode based InP DHBT power amplifier demonstrate 13.4dB linear power gain and 12.5dBm saturated output power......In this paper suitable topologies for mm-wave integrated power amplifiers using InP DHBT technology is investigated. Among the standard topologies for mm-wave power cells: common-emitter, common-base, and cascode configuration, the cascode configuration proves the most promising in terms of output...

  14. Saturation broadening effect in an InP photonic-crystal nanocavity switch

    DEFF Research Database (Denmark)

    Yu, Yi; Palushani, Evarist; Heuck, Mikkel;

    2014-01-01

    Pump-probe measurements on InP photonic-crystal nanocavities show large-contrast fast switching at low pulse energy. For large pulse energies, large resonance shifts passing across the probe lead to switching contrast saturation and switching time-window broadening. © 2014 OSA.......Pump-probe measurements on InP photonic-crystal nanocavities show large-contrast fast switching at low pulse energy. For large pulse energies, large resonance shifts passing across the probe lead to switching contrast saturation and switching time-window broadening. © 2014 OSA....

  15. Synthesis and characterization of InP and Ga203 nanowires

    Science.gov (United States)

    Han, Zhanghua; Wang, Fei; Forsberg, Erik; Cao, Xia

    2005-01-01

    We report on the synthesis and characterization of crystalline InP and Ga2O3 nanowires. The nanowires are synthesized using a simple method based on vapor-liquid-solid (VLS) growth; a method we believe could form the basis of cheap and simple fabrication of crystalline nanowires of a broad range of semiconductor materials, including III-V compounds and semiconductor oxides. The reported InP nanowires have an average diameter of 30nm and the Ga2O3 nanowires diameters down to 100nm. Characterization data including SEM, XRD, TEM and PL are presented.

  16. Self-assembly structure formation on patterned InP surfaces

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Self-assembly of polystyrene spheres guided by patterned n-type InP substrates has been investigated. InP surfaces were patterned using a variety of methods including wet chemical etching,sputter coating,thermal evaporation,and photo lithography. The self-assembly of polystyrene spheres depended on the appearance of patterns and was affected by the deposition techniques (sputter coating and thermal evaporation) of Au micro-squares. SEM and AFM were used to characterize the surface morphologies.

  17. Label swapper device for spectral amplitude coded optical packet networks monolithically integrated on InP.

    Science.gov (United States)

    Muñoz, P; García-Olcina, R; Habib, C; Chen, L R; Leijtens, X J M; de Vries, T; Robbins, D; Capmany, J

    2011-07-01

    In this paper the design, fabrication and experimental characterization of an spectral amplitude coded (SAC) optical label swapper monolithically integrated on Indium Phosphide (InP) is presented. The device has a footprint of 4.8x1.5 mm2 and is able to perform label swapping operations required in SAC at a speed of 155 Mbps. The device was manufactured in InP using a multiple purpose generic integration scheme. Compared to previous SAC label swapper demonstrations, using discrete component assembly, this label swapper chip operates two order of magnitudes faster. PMID:21747509

  18. A symbolically defined InP double heterojunction bipolar transistor large-signal model

    Institute of Scientific and Technical Information of China (English)

    Cao Yuxiong; Jin Zhi; Ge Ji; Su Yongbo; Liu Xinyu

    2009-01-01

    A self-built accurate and flexible large-signal model based on an analysis of the characteristics of InP double heterojunction bipolar transistors (DHBTs) is implemented as a seven-port symbolically defined device (SDD)in Agilent ADS. The model accounts for most physical phenomena incluaing the self-heating effect, Kirk effect, soft knee effect, base collector capacitance and collector transit time. The validity and the accuracy of the large-signal model are assessed by comparing the simulation with the measurement of DC, multi-bias small signal S parameters for InP DHBTs.

  19. Extracellular biosynthesis of gadolinium oxide (Gd2O3 nanoparticles, their biodistribution and bioconjugation with the chemically modified anticancer drug taxol

    Directory of Open Access Journals (Sweden)

    Shadab Ali Khan

    2014-03-01

    Full Text Available As a part of our programme to develop nanobioconjugates for the treatment of cancer, we first synthesized extracellular, protein-capped, highly stable and well-dispersed gadolinium oxide (Gd2O3 nanoparticles by using thermophilic fungus Humicola sp. The biodistribution of the nanoparticles in rats was checked by radiolabelling with Tc-99m. Finally, these nanoparticles were bioconjugated with the chemically modified anticancer drug taxol with the aim of characterizing the role of this bioconjugate in the treatment of cancer. The biosynthesized Gd2O3 nanoparticles were characterized by UV–vis spectroscopy, transmission electron microscopy (TEM, X-ray diffraction (XRD and X-ray photoemission spectroscopy (XPS. The Gd2O3–taxol bioconjugate was confirmed by UV–vis spectroscopy and fluorescence microscopy and was purified by using high performance liquid chromatography (HPLC.

  20. Structural and electrical properties of metamorphic nanoheterostructures with a high InAs content (37–100%) grown on GaAs and InP substrates

    International Nuclear Information System (INIS)

    A complex study of the structural and electrical properties of nanoheterostructures containing a metamorphic barrier with a high InAs content (37–100%) in the active region have been performed by the Van der Pauw and X-ray diffraction methods. All peaks observed in the rocking curves for the samples studied (throughout the entire structure) have been revealed and identified. It is shown that, having properly chosen the design of the metamorphic buffer and the compositional gradient in it, one can obtain mobilities and concentrations of the 2D electron gas in the InxGa1−xAs quantum well in the heterostructures formed on GaAs substrates that are comparable with the corresponding values for the nanoheterostructures grown on InP substrates. It is established that the mobility and concentration of 2D electron gas depend both on the metamorphic barrier design and on the structural quality of heterostructure as a whole.

  1. High quality-factor Si/SiO(2)-InP hybrid micropillar cavities with submicrometer diameter for 1.55-μm telecommunication band.

    Science.gov (United States)

    Song, Hai-Zhi; Takemoto, Kazuya; Miyazawa, Toshiyuki; Takatsu, Motomu; Iwamoto, Satoshi; Ekawa, Mitsuru; Yamamoto, Tsuyoshi; Arakawa, Yasuhiko

    2015-06-15

    We theoretically demonstrate high quality(Q)-factor micropillar cavities at 1.55-μm wavelength based on Si/SiO(2)-InP hybrid structure. An adiabatic design in distributed Bragg reflectors (DBRs) improves Q-factor for upto 3 orders of magnitude, while reducing the diameter to sub-micrometer. A moderate Q-factor of ~3000 and a Purcell factor of ~200 are realized by only 2 taper segments and fewer conventional DBR pairs, enabling single photon generation at GHz rate. As the taper segment number is increased, Q-factor can be boosted to ~10(5)-10(6), enabling coherent exchange between the emitter and the optical mode at 1.55 μm, which is applicable in quantum information networks.

  2. AFM observation of OMVPE-grown ErP on InP substrates using a new organometal tris(ethylcyclopentadienyl)erbium (Er(EtCp)3)

    International Nuclear Information System (INIS)

    ErP has been grown on InP(0 0 1) substrates by organometallic vapor phase epitaxy (OMVPE) using a new liquid organic Er source: tris(ethylcyclopentadienyl)erbium (Er(EtCp)3). Morphological change of an ErP layer on InP(0 0 1) is investigated together with that of an overgrown capping InP layer. Optimum growth condition of InP causes islanding on over-monolayer-ErP. A relatively low overgrowth temperature of InP is a key factor for attaining complete capping coverage on ErP

  3. Absence of tumor suppressor tumor protein 53-induced nuclear protein 1 (TP53INP1) sensitizes mouse thymocytes and embryonic fibroblasts to redox-driven apoptosis.

    Science.gov (United States)

    N'guessan, Prudence; Pouyet, Laurent; Gosset, Gaëlle; Hamlaoui, Sonia; Seillier, Marion; Cano, Carla E; Seux, Mylène; Stocker, Pierre; Culcasi, Marcel; Iovanna, Juan L; Dusetti, Nelson J; Pietri, Sylvia; Carrier, Alice

    2011-09-15

    The p53-transcriptional target TP53INP1 is a potent stress-response protein promoting p53 activity. We previously showed that ectopic overexpression of TP53INP1 facilitates cell cycle arrest as well as cell death. Here we report a study investigating cell death in mice deficient for TP53INP1. Surprisingly, we found enhanced stress-induced apoptosis in TP53INP1-deficient cells. This observation is underpinned in different cell types in vivo (thymocytes) and in vitro (thymocytes and MEFs), following different types of injury inducing either p53-dependent or -independent cell death. Nevertheless, absence of TP53INP1 is unable to overcome impaired cell death of p53-deficient thymocytes. Stress-induced ROS production is enhanced in the absence of TP53INP1, and antioxidant NAC complementation abolishes increased sensitivity to apoptosis of TP53INP1-deficient cells. Furthermore, antioxidant defenses are defective in TP53INP1-deficient mice in correlation with ROS dysregulation. Finally, we show that autophagy is reduced in TP53INP1-deficient cells both at the basal level and upon stress. Altogether, these data show that impaired ROS regulation in TP53INP1-deficient cells is responsible for their sensitivity to induced apoptosis. In addition, they suggest that this sensitivity could rely on a defect of autophagy. Therefore, these data emphasize the role of TP53INP1 in protection against cell injury.

  4. Embossed Bragg Gratings Based on Organically Modified Silane Waveguides in InP.

    Science.gov (United States)

    Liu, J; Lam, Y L; Chan, Y C; Zhou, Y; Ooi, B S; Tan, G; Yao, J

    2000-09-20

    Considering the large variety of applications for optical glass waveguide gratings, the effective production method of embossing for micropatterning, and the unique advantages of InP-based materials, we expect that hybridization of embossed optical glass waveguide gratings and InP substrates will inevitably lead to new applications in integrated optics. We present our preliminary results of research toward the development of solgel-derived glass waveguide gratings made by embossing on InP. Theoretically, the dependence of the stop-band FWHM and transmission contrast of the grating filter on the grating length, and the relationship between the Bragg grating's reflective wavelength and the dopant concentration in the solgel waveguide, are obtained. Experimentally, using organically modified silane, we solve the problem of mismatching of SiO(2) and InP, and successfully fabricate an embossed glass grating with a second-order Bragg reflection wavelength of 1580 nm and a FWHM of 0.7 nm fabricated upon a solgel waveguide on an InP substrate. PMID:18350088

  5. Modeling of InP HBTs in Transferred-Substrate Technology for Millimeter-Wave Applications

    DEFF Research Database (Denmark)

    Johansen, Tom Keinicke; Rudolph, Matthias; Jensen, Thomas;

    2013-01-01

    In this paper, the modeling of InP heterojunction bipolar transistors (HBTs) in transferred substrate (TS) technology is investigated. At first, a direct parameter extraction methodology dedicated to III-V based HBTs is employed to determine the small-signal equivalent circuit parameters from...

  6. Small- and large-signal modeling of InP HBTs in transferred-substrate technology

    DEFF Research Database (Denmark)

    Johansen, Tom Keinicke; Rudolph, Matthias; Jensen, Thomas;

    2014-01-01

    In this paper, the small- and large-signal modeling of InP heterojunction bipolar transistors (HBTs) in transferred substrate (TS) technology is investigated. The small-signal equivalent circuit parameters for TS-HBTs in two-terminal and three-terminal configurations are determined by employing...

  7. Status and future directions of InP solar cell research

    Science.gov (United States)

    Jain, R. K.; Weinberg, I.

    1992-01-01

    An overview of the current status and future directions of InP space solar cell research is provided. The scope of the paper does not allow us to discuss other recent major developments in InP cell modeling, contacts, and characterization, or developments in other solar cell materials. Solar cells made from InP and related materials are not expected to be used in the near future for terrestrial applications, but significant Air-Mass1.5 (AM1.5) cell efficiencies are given for comparison. This paper deals with the developments in single-junction cells, multijunction tandem cells, and space flight testing, including radiation effects. Concentrator InP solar cells are also discussed, since they offer the possibility of simultaneous thermal and current injection annealing. These cells also promise cost effectiveness and the concentrator elements may provide cells with extra protection from space radiation. The concluding section addresses the steps to be taken in the future and provides guidelines for further research and development.

  8. An InP HBT sub-harmonic mixer for E-band wireless communication

    DEFF Research Database (Denmark)

    Johansen, Tom Keinicke; Krozer, Viktor

    2010-01-01

    This paper reports on a novel balanced HBT subharmonic mixer (SHM) for E-band wireless communication. An LO spiral type Marchand balun is integrated with the SHM. The SHM has been fabricated in a InP double heterojunction bipolar transistor (DHBT) circuit-oriented technology with fT /fmax = 180GHz...

  9. InP DHBT MMICs for millimeter-wave front-ends

    DEFF Research Database (Denmark)

    Johansen, Tom Keinicke; Hadziabdic, Dzenan; Krozer, Viktor

    2009-01-01

    In this paper, we show advanced MMIC's using InP DHBT technology. In particular, we demonstrate front-end circuits covering a broad frequency range from Q-band to E-band. Realizations of power amplifiers, quadrature VCOs, and sub-harmonic mixers, are presented and experimental results are discussed....

  10. Stability investigation for InP DHBT mm‐wave power amplifier

    DEFF Research Database (Denmark)

    Yan, Lei; Johansen, Tom Keinicke; Kammersgaard, Jacob

    2013-01-01

    In this article, we discuss stability issues for mm‐wave monolithic integrated power amplifiers using InP double heterojunction bipolar transistor (DHBT) technology targeting E‐band applications at 71–76 GHz and 81–86 GHz. Different stability detection methods based on the classical two‐port K...

  11. Room temperature continuous wave operation of quantum cascade lasers with 12.5% wall plug efficiency

    International Nuclear Information System (INIS)

    An InP based quantum cascade laser heterostructure emitting at 4.6 μm was grown with gas-source molecular beam epitaxy. The wafer was processed into a conventional double-channel ridge waveguide geometry with ridge widths of 19.7 and 10.6 μm without semi-insulating InP regrowth. An uncoated, narrow ridge device with a 4.8 mm cavity length was epilayer down bonded to a diamond submount and exhibits 2.5 W maximum output power with a wall plug efficiency of 12.5% at room temperature in continuous wave operation

  12. Potential of polarization lidar to provide profiles of CCN- and INP-relevant aerosol parameters

    Directory of Open Access Journals (Sweden)

    R. E. Mamouri

    2015-12-01

    Full Text Available We investigate the potential of polarization lidar to provide vertical profiles of aerosol parameters from which cloud condensation nucleus (CCN and ice nucleating particle (INP number concentrations can be estimated. We show that height profiles of number concentrations of aerosol particles with radius > 50 nm (APC50, reservoir of favorable CCN and with radius > 250 nm (APC250, reservoir of favorable INP, as well as profiles of the aerosol particle surface area concentration (ASC, used in INP parameterization can be retrieved from lidar-derived aerosol extinction coefficients (AEC with relative uncertainties of a factor of around 2 (APC50, and of about 25–50 % (APC250, ASC. Of key importance is the potential of polarization lidar to identify mineral dust particles and to distinguish and separate the aerosol properties of basic aerosol types such as mineral dust and continental pollution (haze, smoke. We investigate the relationship between AEC and APC50, APC250, and ASC for the main lidar wavelengths of 355, 532 and 1064 nm and main aerosol types (dust, pollution, marine. Our study is based on multiyear Aerosol Robotic Network (AERONET photometer observations of aerosol optical thickness and column-integrated particle size distribution at Leipzig, Germany, and Limassol, Cyprus, which cover all realistic aerosol mixtures of continental pollution, mineral dust, and marine aerosol. We further include AERONET data from field campaigns in Morocco, Cabo Verde, and Barbados, which provide pure dust and pure marine aerosol scenarios. By means of a simple relationship between APC50 and the CCN-reservoir particles (APCCCN and published INP parameterization schemes (with APC250 and ASC as input we finally compute APCCCN and INP concentration profiles. We apply the full methodology to a lidar observation of a heavy dust outbreak crossing Cyprus with dust up to 8 km height and to a case during which anthropogenic pollution dominated.

  13. 19.2% Efficient InP Heterojunction Solar Cell with Electron-Selective TiO2 Contact

    OpenAIRE

    Yin, Xingtian; Battaglia, Corsin; Lin, Yongjing; Chen, Kevin; Hettick, Mark; Zheng, Maxwell; Chen, Cheng-Ying; Kiriya, Daisuke; Javey, Ali

    2014-01-01

    We demonstrate an InP heterojunction solar cell employing an ultrathin layer (∼10 nm) of amorphous TiO2 deposited at 120 °C by atomic layer deposition as the transparent electron-selective contact. The TiO2 film selectively extracts minority electrons from the conduction band of p-type InP while blocking the majority holes due to the large valence band offset, enabling a high maximum open-circuit voltage of 785 mV. A hydrogen plasma treatment of the InP surface drastically improves the long-w...

  14. Mode Competition in Dual-Mode Quantum Dots Semiconductor Microlaser

    CERN Document Server

    Chusseau, Laurent; Viktorovitch, P; Letartre, Xavier

    2013-01-01

    This paper describes the modeling of quantum dots lasers with the aim of assessing the conditions for stable cw dual-mode operation when the mode separation lies in the THz range. Several possible models suited for InAs quantum dots in InP barriers are analytically evaluated, in particular quantum dots electrically coupled through a direct exchange of excitation by the wetting layer or quantum dots optically coupled through the homogeneous broadening of their optical gain. A stable dual-mode regime is shown possible in all cases when quantum dots are used as active layer whereas a gain medium of quantum well or bulk type inevitably leads to bistable behavior. The choice of a quantum dots gain medium perfectly matched the production of dual-mode lasers devoted to THz generation by photomixing.

  15. Tuning the Lattice Parameter of InxZnyP for Highly Luminescent Lattice-Matched Core/Shell Quantum Dots.

    Science.gov (United States)

    Pietra, Francesca; De Trizio, Luca; Hoekstra, Anne W; Renaud, Nicolas; Prato, Mirko; Grozema, Ferdinand C; Baesjou, Patrick J; Koole, Rolf; Manna, Liberato; Houtepen, Arjan J

    2016-04-26

    Colloidal quantum dots (QDs) show great promise as LED phosphors due to their tunable narrow-band emission and ability to produce high-quality white light. Currently, the most suitable QDs for lighting applications are based on cadmium, which presents a toxicity problem for consumer applications. The most promising cadmium-free candidate QDs are based on InP, but their quality lags much behind that of cadmium based QDs. This is not only because the synthesis of InP QDs is more challenging than that of Cd-based QDs, but also because the large lattice parameter of InP makes it difficult to grow an epitaxial, defect-free shell on top of such material. Here, we propose a viable approach to overcome this problem by alloying InP nanocrystals with Zn(2+) ions, which enables the synthesis of InxZnyP alloy QDs having lattice constant that can be tuned from 5.93 Å (pure InP QDs) down to 5.39 Å by simply varying the concentration of the Zn precursor. This lattice engineering allows for subsequent strain-free, epitaxial growth of a ZnSezS1-z shell with lattice parameters matching that of the core. We demonstrate, for a wide range of core and shell compositions (i.e., varying x, y, and z), that the photoluminescence quantum yield is maximal (up to 60%) when lattice mismatch is minimal. PMID:27065247

  16. Bioconjugated lanthanide luminescent helicates as multilabels for lab-on-a-chip detection of cancer biomarkers.

    Science.gov (United States)

    Fernández-Moreira, Vanesa; Song, Bo; Sivagnanam, Venkataragavalu; Chauvin, Anne-Sophie; Vandevyver, Caroline D B; Gijs, Martin; Hemmilä, Ilkka; Lehr, Hans-Anton; Bünzli, Jean-Claude G

    2010-01-01

    The lanthanide binuclear helicate [Eu(2)(L(C2(CO(2)H)))(3)] is coupled to avidin to yield a luminescent bioconjugate EuB1 (Q = 9.3%, tau((5)D(0)) = 2.17 ms). MALDI/TOF mass spectrometry confirms the covalent binding of the Eu chelate and UV-visible spectroscopy allows one to determine a luminophore/protein ratio equal to 3.2. Bio-affinity assays involving the recognition of a mucin-like protein expressed on human breast cancer MCF-7 cells by a biotinylated monoclonal antibody 5D10 to which EuB1 is attached via avidin-biotin coupling demonstrate that (i) avidin activity is little affected by the coupling reaction and (ii) detection limits obtained by time-resolved (TR) luminescence with EuB1 and a commercial Eu-avidin conjugate are one order of magnitude lower than those of an organic conjugate (FITC-streptavidin). In the second part of the paper, conditions for growing MCF-7 cells in 100-200 microm wide microchannels engraved in PDMS are established; we demonstrate that EuB1 can be applied as effectively on this lab-on-a-chip device for the detection of tumour-associated antigens as on MCF-7 cells grown in normal culture vials. In order to exploit the versatility of the ligand used for self-assembling [Ln(2)(L(C2(CO(2)H)))(3)] helicates, which sensitizes the luminescence of both Eu(III) and Tb(III) ions, a dual on-chip assay is proposed in which estrogen receptors (ERs) and human epidermal growth factor receptors (Her2/neu) can be simultaneously detected on human breast cancer tissue sections. The Ln helicates are coupled to two secondary antibodies: ERs are visualized by red-emitting EuB4 using goat anti-mouse IgG and Her2/neu receptors by green-emitting TbB5 using goat anti-rabbit IgG. The fact that the assay is more than 6 times faster and requires 5 times less reactants than conventional immunohistochemical assays provides essential advantages over conventional immunohistochemistry for future clinical biomarker detection. PMID:20024180

  17. Protein expression profile of HT-29 human colon cancer cells after treatment with a cytotoxic daunorubicin-GnRH-III derivative bioconjugate.

    Directory of Open Access Journals (Sweden)

    Verena Natalie Schreier

    Full Text Available Targeted delivery of chemotherapeutic agents is a new approach for the treatment of cancer, which provides increased selectivity and decreased systemic toxicity. We have recently developed a promising drug delivery system, in which the anticancer drug daunorubicin (Dau was attached via oxime bond to a gonadotropin-releasing hormone-III (GnRH-III derivative used as a targeting moiety (Glp-His-Trp-Lys(Ac-His-Asp-Trp-Lys(Da  = Aoa-Pro-Gly-NH2; Glp = pyroglutamic acid, Ac = acetyl; Aoa = aminooxyacetyl. This bioconjugate exerted in vitro cytostatic/cytotoxic effect on human breast, prostate and colon cancer cells, as well as significant in vivo tumor growth inhibitory effect on colon carcinoma bearing mice. In our previous studies, H-Lys(Dau = Aoa-OH was identified as the smallest metabolite produced in the presence of rat liver lysosomal homogenate, which was able to bind to DNA in vitro. To get a deeper insight into the mechanism of action of the bioconjugate, changes in the protein expression profile of HT-29 human colon cancer cells after treatment with the bioconjugate or free daunorubicin were investigated by mass spectrometry-based proteomics. Our results indicate that several metabolism-related proteins, molecular chaperons and proteins involved in signaling are differently expressed after targeted chemotherapeutic treatment, leading to the conclusion that the bioconjugate exerts its cytotoxic action by interfering with multiple intracellular processes.

  18. Controlled ultraviolet resonance energy transfer between bovine serum albumin donors and cadmium sulfide quantum dots acceptors

    Science.gov (United States)

    Ghali, Mohsen; El-Kemary, Maged; Ramadan, Mahmoud

    2015-08-01

    We report on Förester resonance nergy transfer (FRET) within a bioconjugated system composed of cadmium sulfide (CdS) quantum dots (QDs) and transport protein bovine serum albumin (BSA). The optical properties of these two elements of the bioconjugate were exploited to produce FRET in the ultraviolet (UV) region with a maximum efficiency of 22% from BSA donors to QD acceptors. In contrast to previous studies, which were limited to FRET in the visible light, we used 2.6 nm CdS QDs because they emit light with a shorter wavelength (∼370 nm) that facilitates the UV-FRET process. UV-FRET was controlled by tuning the spectral overlap between BSA and CdS QDs.

  19. Voltammetric Study and Determination of Phenylephrine Hydrochloride at INP-Nafion-Modified CPE Sensor Employing Differential Pulse Voltammetry

    Directory of Open Access Journals (Sweden)

    Zeinab Pourghobadi

    2014-03-01

    Full Text Available In this study, describes the voltammetric oxidation and determination of phenylephrine (PHE hydrochloride at a new chemically modified electrode. Iron nanoparticle (INPs was dispersed in Nafion solution to obtain a INP-Nafion-modified CPE for the voltammetric analysis of PHE .The electrochemical behaviour of PHE on INP-Nafion-modified CPE was studied, using cyclic voltammetry as a diagnostic technique. The effects of amount of INPs-Nafion dispersion, pH, and scan rate on the response of modified electrode for the oxidation of PHE were investigated. Using differential pulse voltammetry (DPV, the modified electrode indicated a dynamic linear range for quantitative determination of PHE in the range of 5 μM−130 μM, and the detection limit was estimated to be 0.76 μM. The method was developed for the determination of PHE in pharmaceutical samples with satisfactory results.

  20. Potential of polarization lidar to provide profiles of CCN- and INP-relevant aerosol parameters

    Science.gov (United States)

    Mamouri, Rodanthi-Elisavet; Ansmann, Albert

    2016-05-01

    We investigate the potential of polarization lidar to provide vertical profiles of aerosol parameters from which cloud condensation nucleus (CCN) and ice nucleating particle (INP) number concentrations can be estimated. We show that height profiles of particle number concentrations n50, dry considering dry aerosol particles with radius > 50 nm (reservoir of CCN in the case of marine and continental non-desert aerosols), n100, dry (particles with dry radius > 100 nm, reservoir of desert dust CCN), and of n250, dry (particles with dry radius > 250 nm, reservoir of favorable INP), as well as profiles of the particle surface area concentration sdry (used in INP parameterizations) can be retrieved from lidar-derived aerosol extinction coefficients σ with relative uncertainties of a factor of 1.5-2 in the case of n50, dry and n100, dry and of about 25-50 % in the case of n250, dry and sdry. Of key importance is the potential of polarization lidar to distinguish and separate the optical properties of desert aerosols from non-desert aerosol such as continental and marine particles. We investigate the relationship between σ, measured at ambient atmospheric conditions, and n50, dry for marine and continental aerosols, n100, dry for desert dust particles, and n250, dry and sdry for three aerosol types (desert, non-desert continental, marine) and for the main lidar wavelengths of 355, 532, and 1064 nm. Our study is based on multiyear Aerosol Robotic Network (AERONET) photometer observations of aerosol optical thickness and column-integrated particle size distribution at Leipzig, Germany, and Limassol, Cyprus, which cover all realistic aerosol mixtures. We further include AERONET data from field campaigns in Morocco, Cabo Verde, and Barbados, which provide pure dust and pure marine aerosol scenarios. By means of a simple CCN parameterization (with n50, dry or n100, dry as input) and available INP parameterization schemes (with n250, dry and sdry as input) we finally compute

  1. Model of defect formation in annealed undoped and Fe-doped liquid encapsulated Czochralski InP

    OpenAIRE

    S Fung; Beling, CD; Youwen, Zhao; Xiaoliang, Xu; Min, Gong; Niefeng, Sun; Tongnian, Sun; Xudong, Chen; Ronggui, Zhang; Silin, Liu

    1998-01-01

    Infrared absorption spectroscopy measurements indicate high concentration of hydrogen indium vacancy complex VInH4 in undoped and Fe-doped liquid encapsulated Czochralski (LEC) InP. Annealed undoped and Fe-doped semi-insulating (SI) InP are studied by room temperature Hall effect measurement and photocurrent spectroscopy. The results show that a mid gap donor defect and some shallow intrinsic defects are formed by high temperature annealing. This mid gap defect is shown to be phosphorus antis...

  2. Performance, defect behavior and carrier enhancement in low energy, proton irradiated p+nn+ InP solar cells

    Science.gov (United States)

    Weinberg, I.; Rybicki, G. C.; Vargas-Aburto, C.; Jain, R. K.; Scheiman, D.

    1994-01-01

    The highest AMO efficiency (19.1 percent) InP solar cell consisted of an n+pp+ structure epitaxially grown on a p+ InP substrate. However, the high cost and relative fragility of InP served as motivation for research efforts directed at heteroepitaxial growth of InP on more viable substrates. The highest AMO efficiency (13.7 percent) for this type of cell was achieved using a GaAs substrate. Considering only cost and fracture toughness, Si would be the preferred substrate. The fact that Si is a donor in InP introduces complexities which are necessary in order to avoid the formation of an efficiency limiting counterdiode. One method used to overcome this problem lies in employing an n+p+ tunnel junction in contact with the cell's p region. A simpler method consists of using an n+ substrate and processing the cell in the p+ nn+ configuration. This eliminates the need for a tunnel junction. Unfortunately, the p/n configuration has received relatively little attention the best cell with this geometry having achieved an efficiency of 17 percent. Irradiation of these homoepitaxial cells, with 1 Mev electrons, showed that they were slightly more radiation resistant than diffused junction n/p cells. Additional p/n InP cells have been processed by some activity aimed at diffusion. Currently, there has been some activity aimed at producing heteroepitaxial p+nn+ InP cells using n+ Ge substrates. Since, like Si, Ge is an n-dopant in InP, use of this configuration obviates the need for a tunnel junction. Obviously, before attempting to process heteroepitaxial cells, one must produce a reasonably good homoepitaxial cell. In the present case we focus our attention on homoepitaxially on an n+ Ge substrate.

  3. Patterning poly(maleic anhydride-co-3,9-divinyl-2,4,8,10-tetraoxaspiro (5.5) undecane) copolymer bioconjugates for controlled release of drugs.

    Science.gov (United States)

    Nita, Loredana E; Chiriac, Aurica P; Mititelu-Tartau, Liliana; Stoleru, Elena; Doroftei, Florica; Diaconu, Alina

    2015-09-30

    Owing to the special characteristics and abilities polymeric networks have received special interest for a range of biomedical applications especially for drug delivery systems. This study was devoted to preparation of new polymeric compounds based on maleic anhydride and 3,9-divinyl-2,4,8,10-tetraoxaspiro (5.5) undecane copolymer (poly maleic anhydride-co-3,9-divinyl-2,4,8,10-tetraoxaspiro (5.5) undecane) (PMAU) patterned as a network for bioconjugation and tested as drug carrier systems. The PMAU copolymer was improved in its functionality by opening the maleic anhydride ring with different amounts of erythritol, which is free of side effects in regular use and a multifunctional compound, and also confers antioxidant character for the new compounds. The new polymeric matrices were loaded with acetaminophen, codeine and their fixed dose combinations. The investigation demonstrated the capability of the new structures to be used as polymer networks for linking bioactive compounds and to perform controlled delivery. The physico-chemical investigations--Fourier transform infrared spectroscopy (FTIR) spectra, contact angle, zeta potential (ZP - z, PMAU and its derivatives samples loaded with medicines present decreased values of zeta potential attesting the bioconjugate formation and as well their stability), and hydrodynamic radius, near infrared chemical imaging evaluation (new specific bands being registered for bio-conjugate with acetaminophen around of 1150-1200 nm and 1700 nm, and also between 1150 and 1200 nm in case of the codeine bio-conjugate), scanning electron microscopy (SEM) studies, X-ray diffraction analysis--evidenced the formation of the bioconjugates in relation to the chemical composition of the polymer matrices, while in vitro release study and in vivo tests confirm the capacity for drug delivery of the prepared bioactive systems. PMID:26220652

  4. On the usage of classical nucleation theory in quantification of the impact of bacterial INP on weather and climate

    Science.gov (United States)

    Sahyoun, Maher; Wex, Heike; Gosewinkel, Ulrich; Šantl-Temkiv, Tina; Nielsen, Niels W.; Finster, Kai; Sørensen, Jens H.; Stratmann, Frank; Korsholm, Ulrik S.

    2016-08-01

    Bacterial ice-nucleating particles (INP) are present in the atmosphere and efficient in heterogeneous ice-nucleation at temperatures up to -2 °C in mixed-phase clouds. However, due to their low emission rates, their climatic impact was considered insignificant in previous modeling studies. In view of uncertainties about the actual atmospheric emission rates and concentrations of bacterial INP, it is important to re-investigate the threshold fraction of cloud droplets containing bacterial INP for a pronounced effect on ice-nucleation, by using a suitable parameterization that describes the ice-nucleation process by bacterial INP properly. Therefore, we compared two heterogeneous ice-nucleation rate parameterizations, denoted CH08 and HOO10 herein, both of which are based on classical-nucleation-theory and measurements, and use similar equations, but different parameters, to an empirical parameterization, denoted HAR13 herein, which considers implicitly the number of bacterial INP. All parameterizations were used to calculate the ice-nucleation probability offline. HAR13 and HOO10 were implemented and tested in a one-dimensional version of a weather-forecast-model in two meteorological cases. Ice-nucleation-probabilities based on HAR13 and CH08 were similar, in spite of their different derivation, and were higher than those based on HOO10. This study shows the importance of the method of parameterization and of the input variable, number of bacterial INP, for accurately assessing their role in meteorological and climatic processes.

  5. Fabrication and optical characterization of large scale membrane containing InP/AlGaInP quantum dots

    Science.gov (United States)

    Niederbracht, H.; Hargart, F.; Schwartz, M.; Koroknay, E.; Kessler, C. A.; Jetter, M.; Michler, P.

    2015-06-01

    Single-photon sources with a high extraction efficiency are a prerequisite for applications in quantum communication and quantum computation schemes. One promising approach is the fabrication of a quantum dot containing membrane structure in combination with a solid immersion lens and a metal mirror. We have fabricated an 80 nm thin semiconductor membrane with incorporated InP quantum dots in an AlGaInP double hetero barrier via complete substrate removal. In addition, a gold layer was deposited on one side of the membrane acting as a mirror. The optical characterization shows in detail that the unique properties of the quantum dots are preserved in the membrane structure.

  6. Epitaxial InGaAsP/InP photodiode for registration of InP scintillation

    Science.gov (United States)

    Luryi, S.; Kastalsky, A.; Gouzman, M.; Lifshitz, N.; Semyonov, O.; Stanacevic, M.; Subashiev, A.; Kuzminsky, V.; Cheng, W.; Smagin, V.; Chen, Z.; Abeles, J. H.; Chan, W. K.; Shellenbarger, Z. A.

    2010-10-01

    Operation of semiconductor scintillators requires optically tight integration of the photoreceiver system on the surface of the scintillator slab. We have implemented an efficient and fast quaternary InGaAsP pin photodiode, epitaxially grown on the surface of an InP scintillator wafer and sensitive to InP luminescence. The diode is characterized by an extremely low room-temperature dark current, about 1 nA/cm2 at the reverse bias of 2 V. The low leakage makes possible a sensitive readout circuitry even though the diode has a large area (1×1 mm2) and therefore large capacitance (50 pF). Results of electrical, optical and radiation testing of the diodes are presented. Detection of individual α-particles and γ-photons is demonstrated.

  7. Growth of semiconductor alloy InGaPBi on InP by molecular beam epitaxy

    International Nuclear Information System (INIS)

    We report the first successful growth of InGaPBi single crystals on InP substrate with Bi concentration far beyond the doping level by gas source molecular beam epitaxy. The InGaPBi thin films reveal excellent surface and structural qualities, making it a promising new III–V compound family member for heterostructures. The strain can be tuned between tensile and compressive by adjusting Ga and Bi compositions. The maximum achieved Bi concentration is 2.2 ± 0.4% confirmed by Rutherford backscattering spectroscopy. Room temperature photoluminescence shows strong and broad light emission at energy levels much smaller than the InP bandgap. (paper)

  8. X-ray diffraction analysis of multilayer porous InP(001) structure

    International Nuclear Information System (INIS)

    Multilayer structures composed of four porous bilayers have been studied by high-resolution X-ray diffraction using synchrotron radiation, and the photoluminescence of these structures has been investigated at 4 K. The porous structures were formed by anodic oxidation of InP(001) substrates in aqueous HCl solution. The structural parameters of the sublayers were varied by changing the electrochemical etching mode (potentiostatic/galvanostatic). The X-ray scattering intensity maps near the InP 004 reflection are obtained. A model for scattering from such systems is proposed based on the statistical dynamical diffraction theory. Theoretical scattering maps have been fitted to the experimental ones. It is shown that a mathematical analysis of the scattering intensity maps makes it possible to determine the structural parameters of sublayers. The reconstructed parameters (thickness, strain, and porosity of sublayers and the shape and arrangement of pores) are in satisfactory agreement with the scanning electron microscopy data.

  9. Evolution of InP surfaces under low fluence pulsed UV irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Musaev, O.R. [Department of Physics, University of Missouri Kansas City, Rockhill Road 5100, Kansas City, MO 64110 (United States)], E-mail: musaevo@umkc.edu; Kwon, O.S.; Wrobel, J.M.; Zhu, D.-M.; Kruger, M.B. [Department of Physics, University of Missouri Kansas City, Rockhill Road 5100, Kansas City, MO 64110 (United States)

    2008-07-15

    An InP wafer was irradiated in air by a series of UV pulses from a nitrogen laser with fluences of 120 mJ/cm{sup 2} and 80 mJ/cm{sup 2}. These fluences are below the single-pulse ablation threshold of InP. Over the studied region the distribution of the radiation intensity was uniform. The number of pulses varied from 50 to 6000. The evolution of the surface morphology and structure was characterized by atomic force microscopy, optical microscopy and Raman spectroscopy. The relationship between mound size and the number of pulses starts out following a power law, but saturates for a sufficiently high number of pulses. The crossover point is a function of fluence. A similar relation exists for the surface roughness. Raman spectroscopic investigations showed little change in local crystalline structure of the processed surface layer.

  10. Low-Threshold Conjugated Polymer Distributed Feedback Lasers on InP Substrate

    Institute of Scientific and Technical Information of China (English)

    ZHANG Su-Mei; ZHANG Ding-Ke; MA Dong-Ge

    2008-01-01

    We demonstrate a low threshold polymer sofid state thin-film distributed feedback (DFB) laser on an InP substrate with the DFB structure.The used gain medium is conjugated polymer poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene](MEH-PPV) doped polystyrene (PS) and formed by drop-coating method.The second order Bragg scattering region on the InP substrate gave rise to strong feedback,thus a lazing emission at 638.9nm with a line width of 1.2nm is realized when pumped by a 532nm frequency-doubled Nd:YAG pulsed laser.The devices show a laser threshold as low as 7n J/pulse.

  11. Emission channeling studies of implanted $^{167m}$Er in InP

    CERN Document Server

    Wahl, U; Langouche, G; Araújo, J P

    2001-01-01

    We have used conversion electron emission channeling to determine the lattice location of $^{167m}$Er ($t_{1/2}$=2.28 s) in InP after 60 keV room temperature implantation of $^{167}$Tm ($t_{1/2}$=9.25 d) at a dose of 6.8 $\\times 10^{12}$ cm$^{-2}$. Following annealing at temperatures above the major recovery step of the implantation damage at 100-150°C, we observe around 75% of Er on substitutional In sites. A smaller fraction of Er (7%) is found on substitutional P sites, the remainder on random sites. Annealing the unprotected InP crystal at temperatures above 250°C in vacuum causes a decrease in the channeling effects.

  12. High-efficiency ultrasmall polarization converter in InP membrane.

    Science.gov (United States)

    Pello, Josselin; van der Tol, Jos; Keyvaninia, Shahram; van Veldhoven, René; Ambrosius, Huub; Roelkens, Gunther; Smit, Meint

    2012-09-01

    An ultrasmall (polarization converter in InP membrane is fabricated and characterized. The device relies on the beating between the two eigenmodes of chemically etched triangular waveguides. Measurements show a very high polarization conversion efficiency of >99% with insertion losses of <-1.2  dB at a wavelength of 1.53 μm. Furthermore, our design is found to be broadband and tolerant to dimension variations. PMID:22940999

  13. Hydrogen sensors based on electrophoretically deposited Pd nanoparticles onto InP

    OpenAIRE

    Piksová Kateřina; Grym Jan; Procházková Olga; Yatskiv Roman

    2011-01-01

    Abstract Electrophoretic deposition of palladium nanoparticles prepared by the reverse micelle technique onto InP substrates is addressed. We demonstrate that the substrate pre-deposition treatment and the deposition conditions can extensively influence the morphology of the deposited palladium nanoparticle films. Schottky diodes based on these films show notably high values of the barrier height and of the rectification ratio giving evidence of a small degree of the Fermi level pinning. More...

  14. Overcoming doping limits in MOVPE grown n-doped InP for plasmonic applications

    DEFF Research Database (Denmark)

    Panah, Mohammad Esmail Aryaee; Xiao, Sanshui; Lavrinenko, Andrei;

    2015-01-01

    Effect of the growth parameters on carrier concentration in MOVPE grown silicon-doped InP is studied. The dopant flow, V/III ratio and substrate temperature are optimized by considering the origin of the doping limits. In addition, two different group V precursors, namely PH3 and TBP, are compare......×1019cm-3 is achieved. Optical properties of the samples are investigated by Fourier transform infrared reflection (FTIR) spectroscopy and are fitted by a Drude-Lorentz function....

  15. Design and fabrication of an InP arrayed waveguide grating for monolithic PICs

    Institute of Scientific and Technical Information of China (English)

    Pan Pan; An Junming; Wang Liangliang; Wu Yuanda; Wang Yue; Hu Xiongwei

    2012-01-01

    A 10-channel,200 GHz channel spacing InP arrayed waveguide grating was designed,and the deep ridge waveguide design makes it polarization independent.Under the technologies of molecular beam epitaxy,lithography,and induced coupler plasma etching,the chip was fabricated in our laboratory.The test results show that the insertion loss is about 8 dB,and the crosstalk is less than-17 dB.

  16. Schottky Barriers Based on Nanoporous InP with Gold Nanoparticles.

    Science.gov (United States)

    Barlas, Tetyana; Dmitruk, Mykola; Kotova, Nataliya; Mamykin, Sergii

    2016-12-01

    Schottky barrier structures based on nanoporous InP with inclusion of Au nanoparticles and evaporated semitransparent Au film have been made. The spectra of short-circuit photocurrent in the visible range and current-voltage characteristics have been measured. Prepared structures are characterized by increased photocurrent due to the microrelief interface and surface plasmon excitation in gold nanoparticles as well as increased surface recombination especially in the short wavelength region. PMID:27075341

  17. Surface characterization of InP trenches embedded in oxide using scanning probe microscopy

    Science.gov (United States)

    Mannarino, Manuel; Chintala, Ravi; Moussa, Alain; Merckling, Clement; Eyben, Pierre; Paredis, Kristof; Vandervorst, Wilfried

    2015-12-01

    Metrology for structural and electrical analyses at device level has been identified as one of the major challenges to be resolved for the sub-14 nm technology nodes. In these advanced nodes, new high mobility semiconductors, such as III-V compounds, are grown in narrow trenches on a Si substrate. Probing the nature of the defects, the defect density, and the role of processing steps on the surface of such structures are prime metrology requirements. In order to enable defect analysis on a (III-V) surface, a proper sample preparation for oxide removal is of primary importance. In this work, the effectiveness of different chemical cleanings and thermal annealing procedures is investigated on both blanket InP and oxide embedded InP trenches by means of scanning probe microscopy techniques. It is found that the most effective approach is a combination of an HCl-based chemical cleaning combined with a low-temperature thermal annealing leading to an oxide free surface with atomically flat areas. Scanning tunneling microscopy (STM) has been the preferred method for such investigations on blanket films due to its intrinsic sub-nm spatial resolution. However, its application on oxide embedded structures is non-trivial. To perform STM on the trenches of interest (generally <20 nm wide), we propose a combination of non-contact atomic force microscopy and STM using the same conductive atomic force microscopy tip Our results prove that with these procedures, it is possible to perform STM in narrow InP trenches showing stacking faults and surface reconstruction. Significant differences in terms of roughness and terrace formation are also observed between the blanket and the oxide embedded InP.

  18. Design of brain imaging agents for positron emission tomography: do large bioconjugates provide an opportunity for in vivo brain imaging?

    Science.gov (United States)

    Schirrmacher, Ralf; Bernard-Gauthier, Vadim; Reader, Andrew; Soucy, Jean-Paul; Schirrmacher, Esther; Wängler, Björn; Wängler, Carmen

    2013-09-01

    The development of brain imaging agents for positron emission tomography and other in vivo imaging modalities mostly relies on small compounds of low MW as a result of the restricted transport of larger molecules, such as peptides and proteins, across the blood-brain barrier. Besides passive transport, only a few active carrier mechanisms, such as glucose transporters and amino acid transporters, have so far been exploited to mediate the accumulation of imaging probes in the brain. An important question for the future is whether some of the abundant active carrier systems located at the blood-brain barrier can be used to shuttle potential, but non-crossing, imaging agents into the brain. What are the biological and chemical constrictions toward such bioconjugates and is it worthwhile to persue such a delivery strategy?

  19. Click-generated triazole based ferrocene-carbohydrate bioconjugates: A highly selective multisignalling probe for Cu(II) ions

    Indian Academy of Sciences (India)

    Arunabha Thakur; Sinjinee Sardar; Sundargopal Ghosh

    2012-11-01

    Two Cu2+-specific colorimetric sensors, based on ferrocene-carbohydrate bioconjugates, 2, C46H56O20N6Fe and 3, C28H33O10N3Fe were designed and synthesized in good yields. Both the compounds, 2 and 3, behave as very selective and sensitive chromogenic and electrochemical chemosensor for Cu2+ ion in aqueous environment (CH3CN/H2O (2:8, /). The analytical detection limit (ADL) for receptor 2 was 7.5 × 10−7 M. The considerable changes in their absorption spectra of 2 and 3 are accompanied by the appearance of a new low energy (LE) peak at 630 nm (2: = 1600 M-1 cm-1 and 3: 822 M-1 cm-1). This is further accompanied by a strong colour change from yellow to dark green that allows the prospective for `naked eye’ detection of Cu2+ ion.

  20. Structure of InP single crystals irradiated with reactor neutrons

    International Nuclear Information System (INIS)

    The structural characteristics of InP single crystals have been investigated depending on the radiation effects produced by fast neutrons and the full spectrum of the reactor neutrons and subsequent heat treatment procedures. The lattice parameter of InP single crystals decreases under neutron irradiation as opposed to other III-V semiconductor compounds. Fast neutrons make the main contribution to the change of the lattice parameter. A thermal neutron component initiates the formation of Sn atoms in the material, but does not influence the change of the lattice parameter significantly. Heat treatment of the irradiated samples up to 600 deg. C causes annealing of the radiation defects and recovery of the lattice parameter. With increasing neutron fluences, the lattice parameter becomes even higher than before irradiation. The data analysis proves the following assumption: anti-site defects PIn mainly contribute to the lattice parameter decrease during neutron irradiation of InP. In this case, anti-site imperfections produce an effect similar to that of vacancy defects

  1. Design and modeling of InP DHBT power amplifiers at millimeter-wave frequencies

    DEFF Research Database (Denmark)

    Yan, Lei; Johansen, Tom K.

    2012-01-01

    In this paper, the design and modeling of InP DHBT based millimeter-wave(mm-wave) power amplifiers is described. This includes the modeling of InP DHBT devices and layout parasitics. An EM-circuit co-simulation approach is described to allow all parasitics to be modeled for accurate circuit...... performance evaluation. A single-branch cascode based PA using single-finger InP DHBT devices shows a measured power gain of 9.2dB and a saturated output power of 12.3dBm at 67.2GHz. The output power at 1dB compression is 9.0dBm. A similar two-way combined cascode based PA using three-finger devices...... demonstrates a power gain of 4.5dB with a saturated output power of 14.2dBm at 69.2GHz. © 2012 European Microwave Assoc....

  2. The electrochemical capacitance-voltage characterization of InP based p-i-n structures

    Science.gov (United States)

    Wang, Li-wei; Lu, Yi-dan; Xu, Jin-tong; Li, Xiang-yang

    2013-09-01

    Electrochemical Capacitance-Voltage (EC-V) profiling is currently one of the most often used methods for majority carrier concentration depth profiling of semiconductors. The experiments of EC-V profiling on InP based structures were conducted by Wafer Profiler CVP21, and there are two problems in the experiments of InP based p-i-n structures : a)the experimental results of EC-V profiling of i layer were not in line with the theoretically data after the EC-V profiling of p layer, which can be measured within the error range; b) The measurements of etching depth were not very accurate. In this paper, we made comparative experiments on InP based n-i-n structures, and find out a method to deal with the first problem: firstly etch p layer before EC-V profiling, so we can gain a relatively accurate result of EC-V profiling of i layer. Besides, use back contacts instead of front contacts to do the EC-V profiling according to the instruction book of the Wafer Profiler CVP21. Then the author tried to infer the reason that results in the first problem theoretically. Meanwhile we can calibrate the etching depth through Profile-system and Scanning Probe Microscope (SPM). And there are two possible reasons which result in the second problem: the defects of the semiconductors and the electrolyte we used to etch the semiconductors.

  3. Preparation of p-type InP layers for detection of radiation

    Science.gov (United States)

    Procházková, O.; Grym, J.; Zavadil, J.; Zdánský, K.

    2005-02-01

    We have focused on the investigation of the impact of Ce, Tm, Tm 2O 3, and Lu addition in the liquid-phase epitaxial growth process on the structural and electro-optical properties of InP layers in the context of their possible application in detector structures, where detection will be mediated via the depletion layer of high quality Schottky contact. The effect of Tm 2O 3 and Lu is reported for the first time. The grown layers were examined via scanning electron microscopy, low-temperature photoluminescence spectroscopy, capacitance-voltage measurements using the mercury probe and by the temperature-dependent Hall effect. Availing Tm addition with concentration 5.4×10 -2 at%, we have prepared thick (>10 μm) p-type conductivity InP layers with the structural defect density reduced by a half-order of magnitude and reduced electrically active impurity concentration up to ˜7×10 14 cm -3. We point out that Tm appears as a promising candidate for the preparation of very pure p-type InP layers. The mechanism of purification efficiency of different rare earths from donors and acceptors leading to the n→p conductivity type crossover has been discussed.

  4. Aqueous bromine etching of InP: a specific surface chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Causier, A.; Bouttemy, M.; Gerard, I.; Aureau, D.; Vigneron, J.; Etcheberry, A. [Institut Lavoisier de Versailles, Versailles-Saint-Quentin University, UMR CNRS 8180, 45 Av. des Etats-Unis, 78035 Versailles (France)

    2012-06-15

    The n -InP behaviour in HBr (0.1-1.0 M)/Br{sub 2} (1.25 x 10{sup -2}M) aqueous solutions is studied by AAS, XPS and SEM-FEG. Indium AAS-titrations of the HBr/Br{sub 2} solutions demonstrate that InP undergoes an etching mechanism whatever the HBr/Br{sub 2} formulation. The etching process is always linear with time but its rate depends on the HBr concentration. XPS analyses permit to link the apparent slow-down of the dissolution process when decreasing the HBr molarity from 1.0 M to 0.1 M to the presence of a mixed (In,P){sub ox} oxide layer on the surface. Therefore, the dissolution process of InP in HBr/Br{sub 2} solution appears to be ruled by the surface chemical state (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  5. Thin films of InP for photovoltaic energy conversion. Final report, July 5, 1979-July 4, 1980

    Energy Technology Data Exchange (ETDEWEB)

    Manasevit, H. M.; Ruth, R. P.; Moudy, L. A.; Yang, J. J.J.; Johnson, R. E.

    1980-08-01

    Research to develop a low-cost high-efficiency thin-film InP heterojunction solar cell, using the metalorganic chemical vapor deposition (MO-CVD) technique for InP film growth on suitable substrates is reported. Heterostructure devices of CdS/InP, using InP films prepared by CO-CVD, were prepared and characterized. The research effort involved three major technical tasks: (1) materials growth; (2) materials characterization; and (3) device fabrication and characterization. The principal results achieved in the investigations are as follows: (1) temperature-activated orientation-dependent background donor doping was observed in undoped epitaxial InP films; (2) p-type epitaxial InP films were prepared by Zn and by Cd doping during growth; (3) the efficacy of Cd doping was found to vary exponentially with the reciprocal of the deposition temperature in the range 650 to 730/sup 0/C; (4) Cd doping appeared to offer no clear advantages over Zn doping for preparation of p-type InP by the MO-CVD process; (5) GaP grown by MO-CVD was investigated as a possible intermediate-layer material for growth of InP films on low-cost substrates; (6) p/sup +/GaAs polycrystalline layers (p > /sup 19/ cm/sup -3/) were successfully prepared by Zn doping during MO-CVD growth on various low-cost substrates and used as surfaces for growth of p-type polycrystalline InP:Zn layers; (7) nCdS/pInP heterojunction solar cells were prepared by vacuum deposition of CdS onto p-type InP films grown by MO-CVD as well as on InP single-crystal wafers; (8) the best polycrystalline CdS/InP cells were obtained in structures on P/sup +/GaAs:Zn layers on both Mo sheet and Corning Code 0317 Glass; and (9) structure analyses of the Cds films used in the heterojunction cells indicated the presence of polycrystalline hexagonal CdS even in films grown on single-crystal InP films or bulk-wafer substrates. (WHK)

  6. The Brazilian INPE-UFSM NANOSATC-BR CubeSat Development Capacity Building Program

    Science.gov (United States)

    Schuch, Nelson Jorge; Cupertino Durao, Otavio S.

    The Brazilian INPE-UFSM NANOSATC-BR CubeSat Development Capacity Building Program (CBP) and the results of the NANOSATC-BR1, the first Brazilian CubeSat launching, expected for 2014's first semester, are presented. The CBP consists of two CubeSats, NANOSATC-BR 1 (1U) & 2 (2U) and is expected operate in orbit for at least 12 months each, with capacity building in space science, engineering and computer sciences for the development of space technologies using CubeSats satellites. The INPE-UFSM’s CBP Cooperation is basically among: (i) the Southern Regional Space Research Center (CRS), from the Brazilian INPE/MCTI, where acts the Program's General Coordinator and Projects NANOSATC-BR 1 & 2 Manager, having technical collaboration and management of the Mission’s General Coordinator for Engineering and Space Technology at INPE’s Headquarter (HQ), in São José dos Campos, São Paulo; (ii) the Santa Maria Space Science Laboratory (LACESM/CT) from the Federal University of Santa Maria - (UFSM); (iii) the Santa Maria Design House (SMDH); (iv) the Graduate Program in Microelectronics from the Federal University of Rio Grande do Sul (MG/II/UFRGS); and (v) the Aeronautic Institute of Technology (ITA/DCTA/CA-MD). The INPE-UFSM’s CBP has the involvement of UFSM' undergraduate students and graduate students from: INPE/MCTI, MG/II/UFRGS and ITA/DCTA/CA-MD. The NANOSATC-BR 1 & 2 Projects Ground Stations (GS) capacity building operation with VHF/UHF band and S-band antennas, are described in two specific papers at this COSPAR-2014. This paper focuses on the development of NANOSATC-BR 1 & 2 and on the launching of NANOSATC-BR1. The Projects' concepts were developed to: i) monitor, in real time, the Geospace, the Ionosphere, the energetic particle precipitation and the disturbances at the Earth's Magnetosphere over the Brazilian Territory, and ii) the determination of their effects on regions such as the South American Magnetic Anomaly (SAMA) and the Brazilian sector of the

  7. InP based QCL in MBE production machine

    Science.gov (United States)

    Garcia, Michel; Vermersch, Francois Julien; Marcadet, Xavier; Bansropun, Shailendra; Carras, Mathieu; Wilk, Arnaud; Chaix, Christine; Sirtori, Carlo

    2006-02-01

    Quantum Cascade Lasers (QCL), emitting between 5 and 9 μm, have been realised with a view to achieving QCLs fabrication on a production scale. The growth of the structures was carried out in a multi-wafer RIBER 49 system (13 x 2" platen), and the processing sequence involved an Inductively Coupled Plasma (ICP) step for homogeneity and reproducibility purposes. To validate the approach used, a first batch of lasers, emitting around 9μm, based on a design already published [1], has been realised. State of the art performance on these devices (J th = 4.2 kA cm -2, η = 304 mW A -1, P max = 690 mW) has been achieved. A second set of strained balanced structures, emitting around 5.4μm, has been demonstrated, working in pulsed operation at room temperature(J th = 3.9 kA cm -2, η = 362 mW A -1, P max = 420 mW).

  8. Emission variation in infrared (CdSeTe)/ZnS quantum dots conjugated to antibodies

    Energy Technology Data Exchange (ETDEWEB)

    Jaramillo Gómez, J.A. [UPIITA – Instituto Politécnico Nacional, México D. F. 07320, México (Mexico); Casas Espinola, J.L., E-mail: jlcasas@esfm.ipn.mx [ESFM – Instituto Politécnico Nacional, México D. F. 07738, México (Mexico); Douda, J. [UPIITA – Instituto Politécnico Nacional, México D. F. 07320, México (Mexico)

    2014-11-15

    The paper presents the photoluminescence (PL) and Raman scattering investigations of infrared CdSeTe/ZnS quantum dots (QDs) with emission at 800 nm (1.60 eV) in nonconjugated states and after the conjugation to the anti-papilloma virus antibodies (Ab). The Raman scattering study has shown that the CdSeTe core includes two layers with different material compositions such as: CdSe{sub 0.5}Te{sub 0.5} and CdSe{sub 0.7}Te{sub 0.3}. PL spectra of nonconjugated CdSeTe/ZnS QDs are characterized by two Gaussian shape PL bands related to exciton emission in the CdSeTe core and in intermediate layer at the core/shell interface. PL spectra of bioconjugated QDs have changed essentially: the main PL band related to the core emission shifts into high energy and become asymmetric. The energy diagram of double core/shell CdSeTe/ZnS QDs has been analyzed to explain the PL spectrum of nonconjugated QDs and its transformation at the bioconjugation to the papiloma virus antibodies. It is shown that the PL spectrum transformation in bioconjugated QDs can be a powerful technique for biology and medicine.

  9. Site-specific bioconjugation of a murine dihydrofolate reductase enzyme by copper(I-catalyzed azide-alkyne cycloaddition with retained activity.

    Directory of Open Access Journals (Sweden)

    Sung In Lim

    Full Text Available Cu(I-catalyzed azide-alkyne cycloaddition (CuAAC is an efficient reaction linking an azido and an alkynyl group in the presence of copper catalyst. Incorporation of a non-natural amino acid (NAA containing either an azido or an alkynyl group into a protein allows site-specific bioconjugation in mild conditions via CuAAC. Despite its great potential, bioconjugation of an enzyme has been hampered by several issues including low yield, poor solubility of a ligand, and protein structural/functional perturbation by CuAAC components. In the present study, we incorporated an alkyne-bearing NAA into an enzyme, murine dihydrofolate reductase (mDHFR, in high cell density cultivation of Escherichia coli, and performed CuAAC conjugation with fluorescent azide dyes to evaluate enzyme compatibility of various CuAAC conditions comprising combination of commercially available Cu(I-chelating ligands and reductants. The condensed culture improves the protein yield 19-fold based on the same amount of non-natural amino acid, and the enzyme incubation under the optimized reaction condition did not lead to any activity loss but allowed a fast and high-yield bioconjugation. Using the established conditions, a biotin-azide spacer was efficiently conjugated to mDHFR with retained activity leading to the site-specific immobilization of the biotin-conjugated mDHFR on a streptavidin-coated plate. These results demonstrate that the combination of reactive non-natural amino acid incorporation and the optimized CuAAC can be used to bioconjugate enzymes with retained enzymatic activity.

  10. CdSe/ZnS quantum dots with interface states as biosensors

    Science.gov (United States)

    Torchynska, T. V.

    2011-10-01

    The paper presents the brief review of published results as well as the original study of photoluminescence (PL) and Raman scattering of core-shell CdSe/ZnS quantum dots (QDs) with radiative interface states. First commercially available CdSe/ZnS QDs with emission at 525 nm (2.36 eV), 565 nm (2.20 eV), 605 nm (2.05 eV) and 640 nm (1.96 eV) covered by PEG polymer have been compared in nonconjugated states. PL spectra of nonconjugated QDs are characterized by a superposition of PL bands related to exciton emission in CdSe cores and to hot electron-hole emission via high energy states (2.00, 2.20, 2.37, 2.75 and 3.04 eV). The high energy states were studded using QDs of different sizes and at different temperatures. It is shown that these PL bands related to interface states. Then the CdSe/ZnS QDs with the color emission 525nm and 605 nm have been conjugated with bio-molecules - ovarian cancer (OC 125) and anti Interleukin 10 (IL-10) antibodies, respectively. It is revealed that the PL spectrum of bioconjugated QDs has changed dramatically with essential decreasing the hot electron-hole recombination flow via interface states. The variation of PL spectra at the bioconjugation is explained on the base of electrostatic interaction and re-charging of QD interface states. The Raman scattering study of nonconjugated and bioconjugated QDs has shown that mentioned antibodies are characterized by the dipole moment that provokes the surface enhance Raman scattering effect in bioconjugated QD samples as well.

  11. Synthesis and characterization of antigenic influenza A M2e protein peptide-poly(acrylic) acid bioconjugate and determination of toxicity in vitro.

    Science.gov (United States)

    Kilinc, Yasemin Budama; Akdeste, Zeynep Mustafaeva; Koc, Rabia Cakir; Bagirova, Melahat; Allahverdiyev, Adil

    2014-01-01

    The influenza A virus is a critical public health problem that causes epidemics and pandemics, and occurs widely all over the world. Various vaccines against the virus have not provided a solution to the problem. Different approaches, particularly M2e peptide-based vaccines, are available for developing universal vaccines against influenza A. However, it is important to select a suitable carrier to obtain an effective vaccine. Accordingly, studies on the usage of various carriers are ongoing. Particularly, polymer-based carriers have gained importance due to both drug delivery and adjuvant effects. Therefore, bioconjugate of the M2e protein peptide from the influenza A virus covalent bonded with poly(acrylic) acid was synthesized in our study for the first time. The characterization was performed using size-exclusion chromatography and fluorescence spectroscopy; subsequently, it was found that the bioconjugate of the examined lower doses (0.05 and 0.5 mg/ml) have no toxic effects on human cell lines. These results suggest that, in the future, the poly(acrylic) acid bioconjugate of the M2e peptide should be studied in vivo for universal vaccine development against the influenza A virus. PMID:25482080

  12. Studies on semiconductors based on InP with sub-ps response times; Untersuchungen an auf InP basierenden Halbleitern mit sub-ps Responsezeiten

    Energy Technology Data Exchange (ETDEWEB)

    Biermann, K.

    2007-06-28

    The present work describes investigation of new material concepts accomplished using molecular-beam-epitaxy (MBE) growth for application in ultra-fast photonic components. Nominally undoped and Be doped GaInAs/AlInAs multiple-quantumwell structures (MQW) were grown by MBE at growth temperatures down to 100 C (LT-MBE) on semi-insulating InP substrates. Crystalline, electric and optical properties of as-grown and annealed structures were investigated. Energy states near the conduction band of GaInAs determine the electrical and optical properties of LT-MQWs. The dynamics of charge carrier relaxation was studied by means of pump and probe experiments. Measurements of the differential transmission when excited by an additional cw laser and measurements utilizing two closely sequenced pump pulses support the capability of Be doped as-grown (annealed) LT GaInAs/AlInAs MQW structures for use in optical switches at switching frequencies in the 1 Tbit/s (250 Gbit/s) range. The voltage-induced change of interband transmission of InP based quantumcascade-lasers (QCL) during pulsed mode operation was analyzed by means of 8 band k.p calculations. The impacts of varying charge carrier distributions and of electrically heated samples can be neglected compared to the dominating effect of the electrical field on the interband transmission. The impact of MBE growth parameters on the interface quality of AlAsSb/ GaInAs heterostructures were determined by means of Hall measurements, temperature- and intensity-dependent PL measurements and spectral measurements of the interband- and intersubband-absorption. The impact of In segregation and Sb diffusion on the intersubband absorption was analyzed on the basis of bandstructure calculations. Intersubband transitions at wavelengths of about 1.8 {mu}m (1.55 {mu}m) were successfully achieved in MQW (coupled QW) structures. (orig.)

  13. Kirk effect mechanism in type-II InP /GaAsSb double heterojunction bipolar transistors

    Science.gov (United States)

    Tao, N. G.; Bolognesi, C. R.

    2007-09-01

    The Kirk effect mechanism is studied in type-II InP /GaAsSb/InP NpN double heterojunction bipolar transistors (DHBTs) both experimentally and through two-dimensional hydrodynamic numerical simulations. We show that the large valence band discontinuity ΔEV at the GaAsSb-InP base/collector heterojunction does not allow hole injection into the InP collector as is the case in homojunction collectors. Instead, a blocking barrier is electrostatically induced in the base layer at high collector current densities: this barrier increases base recombination and decreases the current gain. We show that tunneling transport must be considered at the base/collector heterojunction and that the induced barrier depends on the base layer doping level—effectively, InP /GaAsSb DHBTs display high-current limitations that are also controlled to some extent by the base doping level.

  14. Studies of zinc-blende type MnAs thin films grown on InP(001) substrates by XRD

    Science.gov (United States)

    Oomae, H.; Irizawa, S.; Jinbo, Y.; Toyota, H.; Kambayashi, T.; Uchitomi, N.

    2013-09-01

    The detailed crystalline structure of molecular beam epitaxially grown MnAs thin films on InP(001) substrate has been investigated using high resolution X-ray diffraction techniques. Reciprocal space mapping of the MnAs/InP(001) samples indicates that the MnAs has a cubic zinc-blende (zb) structure with the epitaxial relationship zb-MnAs[110]|InP[110]. The lattice constant of zb-MnAs is ˜6.06 Å. The MnAs lattice is relaxed and is mosaic-like likely due to large lattice mismatch between the film and InP substrate. The isotropic nature of the magnetic properties supported our conjecture that the MnAs epitaxial film under study has indeed a cubic structure.

  15. Hydrogen sensors based on electrophoretically deposited Pd nanoparticles onto InP

    Science.gov (United States)

    Grym, Jan; Procházková, Olga; Yatskiv, Roman; Piksová, Kateřina

    2011-05-01

    Electrophoretic deposition of palladium nanoparticles prepared by the reverse micelle technique onto InP substrates is addressed. We demonstrate that the substrate pre-deposition treatment and the deposition conditions can extensively influence the morphology of the deposited palladium nanoparticle films. Schottky diodes based on these films show notably high values of the barrier height and of the rectification ratio giving evidence of a small degree of the Fermi level pinning. Moreover, electrical characteristics of these diodes are exceptionally sensitive to the exposure to gas mixtures with small hydrogen content.

  16. Hydrogen sensors based on electrophoretically deposited Pd nanoparticles onto InP

    Directory of Open Access Journals (Sweden)

    Piksová Kateřina

    2011-01-01

    Full Text Available Abstract Electrophoretic deposition of palladium nanoparticles prepared by the reverse micelle technique onto InP substrates is addressed. We demonstrate that the substrate pre-deposition treatment and the deposition conditions can extensively influence the morphology of the deposited palladium nanoparticle films. Schottky diodes based on these films show notably high values of the barrier height and of the rectification ratio giving evidence of a small degree of the Fermi level pinning. Moreover, electrical characteristics of these diodes are exceptionally sensitive to the exposure to gas mixtures with small hydrogen content.

  17. Schottky barriers based on metal nanoparticles deposited on InP epitaxial layers

    International Nuclear Information System (INIS)

    Fabrication of high-quality Schottky barriers on InP epitaxial layers prepared by liquid-phase epitaxy from rare-earth treated melts is reported. The Schottky structures are based on metal nanoparticles and a graphite layer deposited from colloidal solutions onto epitaxial layers with varying carrier concentration. The structures have notably high values of the barrier height and of the rectification ratio giving evidence of a small degree of the Fermi-level pinning. Electrical characteristics of these diodes are shown to be extremely sensitive to the exposure of gas mixtures with small hydrogen content. (paper)

  18. Schottky barriers based on metal nanoparticles deposited on InP epitaxial layers

    Science.gov (United States)

    Grym, Jan; Yatskiv, Roman

    2013-04-01

    Fabrication of high-quality Schottky barriers on InP epitaxial layers prepared by liquid-phase epitaxy from rare-earth treated melts is reported. The Schottky structures are based on metal nanoparticles and a graphite layer deposited from colloidal solutions onto epitaxial layers with varying carrier concentration. The structures have notably high values of the barrier height and of the rectification ratio giving evidence of a small degree of the Fermi-level pinning. Electrical characteristics of these diodes are shown to be extremely sensitive to the exposure of gas mixtures with small hydrogen content.

  19. Nuclear geophysics in space and atmospheric reserch at INPE/BRAZIl

    International Nuclear Information System (INIS)

    During the last years, INPE's research in Nuclear Geophysics has developed in fields of interest to the Institute, the scientific community and the society in general. In the space research field it may be considered as a contribution to the history of meteorite falls in our planet or possible collision with big meteorites which may have been the cause of important effects such as biological extinction and extraterrestrial matter gathering. In the atmospheric research field, spatial and temporal variations of radon measurements in the lower atmosphere allow correlations from micrometeorology to worlwide scale through mesoscale, in the interpretation of phenomena which deal with the dynamics of air masses. (Author)

  20. Nuclear geophysics in space and atmospheric research at INPE/BRAZIl

    Science.gov (United States)

    Nordemann, D. J. R.; Pereira, E. B.; Marinho, E. V. A.; Sircillineto, F.

    1986-05-01

    In recent years, INPE's research in Nuclear Geophysics has developed in fields of interest to the Institute, the scientific community and the society in general. In the space research field a contribution has been made to the history of meteorite falls on our planet and its possible collision with large meteorites, which may have been the cause of important effects such as biological extinction and extraterrestrial matter gathering. In atmospheric research, spatial and temporal variations of radon measurements in the lower atmosphere permit correlations from micrometeorology to mesoscale phenomena, related to the dynamics of air masses.

  1. Influence of Grain Size on Electrical and Optical Properties of InP Films

    Institute of Scientific and Technical Information of China (English)

    Mustafa (O)ztas

    2008-01-01

    InP film samples were prepared by spray pyrolysis technique using aqueous solutions of lnCl3 and Na2HPO4,which were atomized with compressed air as carrier gas onto glass substrates at 500℃ with different thicknesses of the films. It is found that the resistivity of the polycrystalline films strongly depends on the grain size. It is observed that the grain size of the films increase with the decrease of the energy band gap and strain of the film.The changes observed in the energy band gap and strain related to the film grain size of the films are discussed in detail.

  2. Quantum Permanents and Quantum Hafnians

    OpenAIRE

    Jing, Naihuan; Jian ZHANG

    2015-01-01

    Analogous to the quantum general linear group, a quantum group is investigated on which the quantum determinant is shown to be equal to the quantum permanent. The quantum Hafnian is then computed by a closely related quantum permanent. Similarly the quantum Pfaffian is proved to be identical to the quantum Hafnian on the quantum algebra.

  3. InP/(Al,Ga)InP quantum dots on GaAs- and Si-substrates for single-photon generation at elevated temperatures

    OpenAIRE

    Bommer, Moritz

    2013-01-01

    This work concentrates on optical investigation on single-photon generation for applications in communications, quantum cryptography, and quantum computing. Single-photon sources for commercial devices require robustness in their working conditions, e.g. temperature, pressure, etc. as well as high output rates and emission directionality. From the many possibilities of generating single-photons like single-atoms, parametric down-conversion, nitrogen vacancy centers in diamond etc., InP quantu...

  4. Growth and characterization of InP/In0.48Ga0.52P quantum dots optimized for single-photon emission

    International Nuclear Information System (INIS)

    In this work the growth of self-assembled InP/InGaP quantum dots, as well as their optical and structural properties are presented and discussed. The QDs were grown on In0.48Ga0.52P, lattice matched to GaAs. Self-assembled InP quantum dots are grown using gas-source molecular beam epitaxy over a wide range of InP deposition rates, using an ultra-low growth rate of about 0.01 atomic monolayers/s, a quantum-dot density of 1 dot/μm2 is realized. The resulting isolated InP quantum dots are individually characterized without the need for lithographical patterning and masks on the substrate. Both excitonic and biexcitonic emissions are observed from single dots, appearing as doublets with a fine-structure splitting of 320 μeV. Hanbury Brown-Twiss correlation measurements for the excitonic emission under cw excitation show anti-bunching behavior with an autocorrelation value of g(2)(0)=0.2. This system is applicable as a single-photon source for applications such as quantum cryptography. The formation of well-ordered chains of InP quantum dots on GaAs (001) substrates by using self-organized In0.48Ga0.52P surface undulations as a template is also demonstrated. The ordering requires neither stacked layers of quantum dots nor substrate misorientation. The structures are investigated by polarization-dependent photoluminescence together with transmission electron microscopy. Luminescence from the In0.48Ga0.52P matrix is polarized in one crystallographic direction due to anisotropic strain arising from a lateral compositional modulation. The photoluminescence measurements show enhanced linear polarization in the alignment direction of quantum dots. A polarization degree of 66% is observed. The optical anisotropy is achieved with a straightforward heterostructure, requiring only a single layer of QDs.

  5. Controlled Release of Damascone from Poly(styrene-co-maleic anhydride-based Bioconjugates in Functional Perfumery

    Directory of Open Access Journals (Sweden)

    Andreas Herrmann

    2013-02-01

    Full Text Available Poly(styrene-co-maleic anhydrides were modified with poly(propylene oxide (PO-co-ethylene oxide (EO side chains (Jeffamine® with different EO/PO molar ratios, varying between 0.11 and 3.60. These copolymers were then further functionalized with a β-mercapto ketone of δ-damascone. The obtained poly(maleic acid monoamide-based β-mercapto ketones were then studied as delivery systems for the controlled release of δ-damascone by retro 1,4-addition. The release of δ-damascone, a volatile, bioactive molecule of the family of rose ketones, was studied by dynamic headspace analysis above a cotton surface after deposition of a cationic surfactant containing fabric softening formulation, as a function of the ethylene oxide (EO/propylene oxide (PO molar ratio of the grafted copolymer side chains. The polarity of the EO/PO side chain influenced the release efficiency of the damascone in a typical fabric softening application. PO-rich copolymers and the corresponding poly(styrene-co-maleic anhydride without Jeffamine® side chains were found to be less efficient for the desired fragrance release than the corresponding bioconjugate with a EO/PO ratio of 3.60 in the side chain. This copolymer conjugate seemed to represent a suitable balance between hydrophilicity and hydrophobicity to favor the release of the δ-damascone and to improve the deposition of the conjugate from an aqueous environment onto a cotton surface.

  6. Enhanced Biosensor Platforms for Detecting the Atherosclerotic Biomarker VCAM1 Based on Bioconjugation with Uniformly Oriented VCAM1-Targeting Nanobodies.

    Science.gov (United States)

    Ta, Duy Tien; Guedens, Wanda; Vranken, Tom; Vanschoenbeek, Katrijn; Steen Redeker, Erik; Michiels, Luc; Adriaensens, Peter

    2016-01-01

    Surface bioconjugation of biomolecules has gained enormous attention for developing advanced biomaterials including biosensors. While conventional immobilization (by physisorption or covalent couplings using the functional groups of the endogenous amino acids) usually results in surfaces with low activity, reproducibility and reusability, the application of methods that allow for a covalent and uniformly oriented coupling can circumvent these limitations. In this study, the nanobody targeting Vascular Cell Adhesion Molecule-1 (NbVCAM1), an atherosclerotic biomarker, is engineered with a C-terminal alkyne function via Expressed Protein Ligation (EPL). Conjugation of this nanobody to azidified silicon wafers and Biacore™ C1 sensor chips is achieved via Copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC) "click" chemistry to detect VCAM1 binding via ellipsometry and surface plasmon resonance (SPR), respectively. The resulting surfaces, covered with uniformly oriented nanobodies, clearly show an increased antigen binding affinity, sensitivity, detection limit, quantitation limit and reusability as compared to surfaces prepared by random conjugation. These findings demonstrate the added value of a combined EPL and CuAAC approach as it results in strong control over the surface orientation of the nanobodies and an improved detecting power of their targets-a must for the development of advanced miniaturized, multi-biomarker biosensor platforms. PMID:27399790

  7. Enhanced Biosensor Platforms for Detecting the Atherosclerotic Biomarker VCAM1 Based on Bioconjugation with Uniformly Oriented VCAM1-Targeting Nanobodies

    Science.gov (United States)

    Ta, Duy Tien; Guedens, Wanda; Vranken, Tom; Vanschoenbeek, Katrijn; Steen Redeker, Erik; Michiels, Luc; Adriaensens, Peter

    2016-01-01

    Surface bioconjugation of biomolecules has gained enormous attention for developing advanced biomaterials including biosensors. While conventional immobilization (by physisorption or covalent couplings using the functional groups of the endogenous amino acids) usually results in surfaces with low activity, reproducibility and reusability, the application of methods that allow for a covalent and uniformly oriented coupling can circumvent these limitations. In this study, the nanobody targeting Vascular Cell Adhesion Molecule-1 (NbVCAM1), an atherosclerotic biomarker, is engineered with a C-terminal alkyne function via Expressed Protein Ligation (EPL). Conjugation of this nanobody to azidified silicon wafers and Biacore™ C1 sensor chips is achieved via Copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC) “click” chemistry to detect VCAM1 binding via ellipsometry and surface plasmon resonance (SPR), respectively. The resulting surfaces, covered with uniformly oriented nanobodies, clearly show an increased antigen binding affinity, sensitivity, detection limit, quantitation limit and reusability as compared to surfaces prepared by random conjugation. These findings demonstrate the added value of a combined EPL and CuAAC approach as it results in strong control over the surface orientation of the nanobodies and an improved detecting power of their targets—a must for the development of advanced miniaturized, multi-biomarker biosensor platforms. PMID:27399790

  8. Enhanced Biosensor Platforms for Detecting the Atherosclerotic Biomarker VCAM1 Based on Bioconjugation with Uniformly Oriented VCAM1-Targeting Nanobodies

    Directory of Open Access Journals (Sweden)

    Duy Tien Ta

    2016-07-01

    Full Text Available Surface bioconjugation of biomolecules has gained enormous attention for developing advanced biomaterials including biosensors. While conventional immobilization (by physisorption or covalent couplings using the functional groups of the endogenous amino acids usually results in surfaces with low activity, reproducibility and reusability, the application of methods that allow for a covalent and uniformly oriented coupling can circumvent these limitations. In this study, the nanobody targeting Vascular Cell Adhesion Molecule-1 (NbVCAM1, an atherosclerotic biomarker, is engineered with a C-terminal alkyne function via Expressed Protein Ligation (EPL. Conjugation of this nanobody to azidified silicon wafers and Biacore™ C1 sensor chips is achieved via Copper(I-catalyzed azide-alkyne cycloaddition (CuAAC “click” chemistry to detect VCAM1 binding via ellipsometry and surface plasmon resonance (SPR, respectively. The resulting surfaces, covered with uniformly oriented nanobodies, clearly show an increased antigen binding affinity, sensitivity, detection limit, quantitation limit and reusability as compared to surfaces prepared by random conjugation. These findings demonstrate the added value of a combined EPL and CuAAC approach as it results in strong control over the surface orientation of the nanobodies and an improved detecting power of their targets—a must for the development of advanced miniaturized, multi-biomarker biosensor platforms.

  9. Raman investigations on nitrogen ion implantation effects on semi-insulating InP

    CERN Document Server

    Santhakumar, K; Kesavamoorthy, R; Magudapathy, P; Nair, K G M; Ravichandran, V

    2002-01-01

    Raman scattering measurements on liquid-encapsulated Czochralski-grown Fe-doped semi-insulating InP(1 0 0) single crystal substrates have been carried out before and after 120 keV N sup + implantation for various doses from 10 sup 1 sup 3 to 10 sup 1 sup 5 cm sup - sup 2 and also after post-implantation rapid thermal annealing of these samples. It is observed that LO phonon mode frequency decreases and full width at half maximum (FWHM) increases with fluence due to implantation-induced lattice damage. Forbidden Raman TO mode in (1 0 0) cut InP is observed at the doses of 5x10 sup 1 sup 3 and 5x10 sup 1 sup 4 cm sup - sup 2. This might have appeared due to the polycrystalline and/or misoriented regions created during implantation. TO mode is not observed for high doses in as-implanted samples due to excessive lattice damage induced by the implantation. On rapid thermal annealing at 573 K for 30 s, the implanted samples show a partial recovery of LO phonon mode frequency and FWHM due to partial annealing of the...

  10. Growth of SiO2 on InP substrate by liquid phase deposition

    International Nuclear Information System (INIS)

    We have grown silicon dioxide (SiO2) on indium phosphorous (InP) substrate by liquid phase deposition (LPD) method. With inserting InP wafer in the treatment solution composed of SiO2 saturated hydrofluorosilicic acid (H2SiF6), 0.1 M boric acid (H3BO3) and 1.74 M diluted hydrochloric acid (HCl), the maximum deposition rate and refractive index for the as-grown LPD-SiO2 film were about 187.5 A/h and 1.495 under the constant growth temperature of 40 deg. C. The secondary ion mass spectroscope (SIMS) and energy dispersive X-ray (EDX) confirmed that the elements of silicon, oxygen, and chloride were found in the as-grown LPD-SiO2 film. On the other hand, the effects of treatment solution incorporated with the hydrogen peroxide (H2O2) that can regulate the concentration of OH- ion were also shown in this article. The experimental results represented that the deposition rate decreases with increasing the concentration of hydrogen peroxide due to the reduced concentration of SiO2 saturated H2SiF6 in treatment solution.

  11. Annealing of irradiated n+p InP buried homojunctions

    Science.gov (United States)

    Walters, Robert J.; Summers, Geoffrey P.; Timmons, M. L.; Venkatasubramanian, R.; Hancock, J. A.; Hills, J. S.

    1994-01-01

    At the last SPRAT conference, the Naval Research Laboratory (NRL) presented results from two experiments. One studied n+p diffused junction (DJ) InP solar cells, and the other studied n+p shallow homojunction (SHJ) InP mesa diodes grown by metalorganic chemical vapor deposition (MOCVD). The former work showed that a DJ solar cell in which the maximum power P(sub max) had been degraded by nearly 80 percent under irradiation recovered completely under short circuit illumination at 450K. The recovery was accompanied by the removal of all but one of the radiation-induced defect levels. The latter work, on the other hand, showed that the radiation-induced defects in the SHJ diodes did not anneal until the temperature reached 650K. These results suggest that an irradiated DJ solar cell, under illumination, will anneal at a temperature 200K lower than an irradiated SHJ cell. This is an unexpected result considering the similarity of the devices. The goal of the present research is to explain this different behavior. This paper investigates two points which arose from the previous studies. The first point is that the DJ cells were annealed under illumination while the SHJ diodes were annealed without bias. The second point investigated here is that the emitters of the DJ and SHJ devices were significantly different.

  12. The effect of nitrogen implantation on structural changes in semi-insulating InP

    Energy Technology Data Exchange (ETDEWEB)

    Santhakumar, K.; Jayavel, P.; Reddy, G.L.N.; Sastry, V.S.; Nair, K.G.M.; Ravichandran, V. E-mail: vravichandran@vsnl.com

    2003-12-01

    110 keV nitrogen ions (N{sup +}) of fluences 1 x 10{sup 14}-1 x 10{sup 17} cm{sup -2} have been implanted in liquid encapsulated Czochralski grown Fe-doped semi-insulating indium phosphide (InP) single crystal substrates. Grazing incidence X-ray diffraction measurements on as-grown and implanted samples have been carried out and analyzed. At all above fluences, a broad hump in the region of InP(1 1 1) peaks is observed. It might have resulted from implantation-induced misoriented grains along certain preferred orientations. The peak observed at a d-value of 1.77 A for all the fluences becomes more pronounced as the implantation fluence increases up to 1 x 10{sup 16} cm{sup -2}. This could indicate formation of an Indium phosphide nitride alloy. Post-implantation annealing reduces the structural defects and assists in the growth of the nitride phase.

  13. Comparison of Steady-State and Transient Electron Transport in InAs, InP and GaAs

    Science.gov (United States)

    Arabshahi, H.; Khalvati, M. R.; Rokn-Abadi, M. Rezaee

    An ensemble Monte Carlo simulation is used to compare high field electron transport in bulk InAs, InP and GaAs. In particular, velocity overshoot and electron transit times are examined. For all materials, we find that electron velocity overshoot only occurs when the electric field is increased to a value above a certain critical field, unique to each material. This critical field is strongly dependent on the material, about 400 kVm-1 for the case of GaAs, 300 kVm-1 for InAs and 700 kVm-1 for InP. We find that InAs exhibits the highest peak overshoot velocity and that this velocity overshoot lasts over the longest distances when compared with GaAs and InP. Finally, we estimate the minimum transit time across a 1 μm GaAs sample to be a bout 3 ps. Similar calculations for InAs and InP yield 2.2 and 5 ps, respectively. The steady-state and transient velocity overshoot characteristics are in fair agreement with other recent calculations.

  14. A high conversion-gain Q-band InP DHBT subharmonic mixer using LO frequency doubler

    DEFF Research Database (Denmark)

    Johansen, Tom Keinicke; Vidkjær, Jens; Krozer, Viktor;

    2008-01-01

    The paper presents analysis and design of a Q-band subharmonic mixer (SHM) with high conversion gain. The SHM consists of a local oscillator (LO) frequency doubler, RF pre-amplifier, and single-ended mixer. The SHM has been fabricated in a high-speed InP double heterojunction bipolar transistor...

  15. Crystallinity, Surface Morphology, and Photoelectrochemical Effects in Conical InP and InN Nanowires Grown on Silicon.

    Science.gov (United States)

    Parameshwaran, Vijay; Xu, Xiaoqing; Clemens, Bruce

    2016-08-24

    The growth conditions of two types of indium-based III-V nanowires, InP and InN, are tailored such that instead of yielding conventional wire-type morphologies, single-crystal conical structures are formed with an enlarged diameter either near the base or near the tip. By using indium droplets as a growth catalyst, combined with an excess indium supply during growth, "ice cream cone" type structures are formed with a nanowire "cone" and an indium-based "ice cream" droplet on top for both InP and InN. Surface polycrystallinity and annihilation of the catalyst tip of the conical InP nanowires are observed when the indium supply is turned off during the growth process. This growth design technique is extended to create single-crystal InN nanowires with the same morphology. Conical InN nanowires with an enlarged base are obtained through the use of an excess combined Au-In growth catalyst. Electrochemical studies of the InP nanowires on silicon demonstrate a reduction photocurrent as a proof of photovolatic behavior and provide insight as to how the observed surface polycrystallinity and the resulting interface affect these device-level properties. Additionally, a photovoltage is induced in both types of conical InN nanowires on silicon, which is not replicated in epitaxial InN thin films. PMID:27455379

  16. 1.12 Tb/s superchannel coherent PM-QPSK InP transmitter photonic integrated circuit (PIC).

    Science.gov (United States)

    Evans, P; Fisher, M; Malendevich, R; James, A; Goldfarb, G; Vallaitis, T; Kato, M; Samra, P; Corzine, S; Strzelecka, E; Studenkov, P; Salvatore, R; Sedgwick, F; Kuntz, M; Lal, V; Lambert, D; Dentai, A; Pavinski, D; Zhang, J; Cornelius, J; Tsai, T; Behnia, B; Bostak, J; Dominic, V; Nilsson, A; Taylor, B; Rahn, J; Sanders, S; Sun, H; Wu, K-T; Pleumeekers, J; Muthiah, R; Missey, M; Schneider, R; Stewart, J; Reffle, M; Butrie, T; Nagarajan, R; Ziari, M; Kish, F; Welch, D

    2011-12-12

    In this work, a 10-wavelength, polarization-multiplexed, monolithically integrated InP coherent QPSK transmitter PIC is demonstrated to operate at 112 Gb/sec per wavelength and total chip superchannel bandwidth of 1.12 Tb/s. This demonstration suggests that increasing data capacity to multi-Tb/s per chip is possible and likely in the future.

  17. Quantum Erasure: Quantum Interference Revisited

    OpenAIRE

    Walborn, Stephen P.; Cunha, Marcelo O Terra; Pádua, Sebastião; Monken, Carlos H.

    2005-01-01

    Recent experiments in quantum optics have shed light on the foundations of quantum physics. Quantum erasers - modified quantum interference experiments - show that quantum entanglement is responsible for the complementarity principle.

  18. Preparation of bioconjugates of CdTe nanocrystals for cancer marker detection

    Energy Technology Data Exchange (ETDEWEB)

    Hu Fengqin [Key Laboratory of Colloid, Interface Science and Chemical Thermodynamics, Molecular Science Center, Institute of Chemistry, Chinese Academy of Sciences, Zhong Guan Cun, Bei Yi Jie 2, Beijing 100080 (China); Ran Yuliang [Department of Cell and Molecular Biology, Cancer Institute, Chinese Academy of Medical Sciences and Peking Union Medical College, Pan Jia Yuan, Chao Yang Qu, Beijing 100021 (China); Zhou Zhuan [Department of Cell and Molecular Biology, Cancer Institute, Chinese Academy of Medical Sciences and Peking Union Medical College, Pan Jia Yuan, Chao Yang Qu, Beijing 100021 (China); Gao Mingyuan [Key Laboratory of Colloid, Interface Science and Chemical Thermodynamics, Molecular Science Center, Institute of Chemistry, Chinese Academy of Sciences, Zhong Guan Cun, Bei Yi Jie 2, Beijing 100080 (China)

    2006-06-28

    Highly fluorescent CdTe quantum dots (Q-dots) stabilized by 3-mercaptopropionic acid (MPA) were prepared by an aqueous solution approach and used as fluorescent labels in detecting a cancer marker, carcinoembryonic antigen (CEA), expressed on human colon carcinoma cell line LS 180. Nonspecific adsorptions of CdTe Q-dots on carcinoma cells were observed and effectively eliminated by replacing MPA with a thiolated PEG (poly(ethylene glycol), Mn = 750) synthesized according to literature. It was unexpectedly found out that the PEG-coated CdTe Q-dots exhibited very strong and specific affinity to anti-CEA monoclonal antibody rch 24 (rch 24 mAb). The resultant CdTe-(rch 24 mAb) conjugates were successfully used in detections of CEA expressed on the surface of cell line LS 180. Further experiments demonstrated that the fluorescent CdTe Q-dots exhibited much better photostability and a brighter fluorescence than FITC, which consequently led to a higher efficiency in the cancer marker detection.

  19. AES, EELS and TRIM simulation method study of InP(100 subjected to Ar+, He+ and H+ ions bombardment.

    Directory of Open Access Journals (Sweden)

    Abidri B.

    2012-06-01

    Full Text Available Auger Electron Spectroscopy (AES and Electron Energy Loss Spectroscopy (EELS have been performed in order to investigate the InP(100 surface subjected to ions bombardment. The InP(100 surface is always contaminated by carbon and oxygen revealed by C-KLL and O-KLL AES spectra recorded just after introduction of the sample in the UHV spectrometer chamber. The usually cleaning process of the surface is the bombardment by argon ions. However, even at low energy of ions beam (300 eV indium clusters and phosphorus vacancies are usually formed on the surface. The aim of our study is to compare the behaviour of the surface when submitted to He+ or H+ ions bombardment. The helium ions accelerated at 500V voltage and for 45 mn allow removing contaminants but induces damaged and no stoichiometric surface. The proton ions were accelerated at low energy of 500 eV to bombard the InP surface at room temperature. The proton ions broke the In-P chemical bonds to induce the formation of In metal islands. Such a chemical reactivity between hydrogen and phosphorus led to form chemical species such as PH and PH3, which desorbed from the surface. The chemical susceptibly and the small size of H+ advantaged their diffusion into bulk. Since the experimental methods alone were not able to give us with accuracy the disturbed depth of the target by these ions. We associate to the AES and EELS spectroscopies, the TRIM (Transport and Range of Ions in Matter simulation method in order to show the mechanism of interaction between Ar+, He+ or H+ ions and InP and determine the disturbed depth of the target by argon, helium or proton ions.

  20. Quantum dots in biomedical applications: advances and challenges

    Science.gov (United States)

    Cinteza, Ludmila Otilia

    2010-09-01

    In the past two decades, nanotechnology has made great progress in generating novel materials with superior properties. Quantum dots (QDs) are an example of such materials. With unique optical properties, they have proven to be useful in a wide range of applications in life sciences, especially as a better alternative to overcome the shortcomings of conventional fluorophores. Current progress in the synthesis of biocompatible QDs allows for the possibility of producing a large variety of semiconductor nanocrystals in terms of size, surface functionality, bioconjugation, and targeting facilities. Strategies to enhance the water-dispersibility and biocompatibility of these nanoparticles have been developed, involving various encapsulation techniques and surface functionalization. The major obstacle in the clinical use of QDs remains their toxicity, and the systematic investigation on harmful effects of QDs both to humans and to the environment has become critical. Many examples of the experimental use of QDs prove their far-reaching potential for the study of intracellular processes at the molecular level, high resolution cellular imaging, and in vivo observation of cell trafficking. Biosensing methods based on QD bioconjugates proved to be successful in rapid detection of pathogens, and significant improvements are expected in early cancer diagnostic, non-conventional therapy of cancer and neurodegenerative diseases.

  1. Bioconjugated gold nanoparticles enhance cellular uptake: A proof of concept study for siRNA delivery in prostate cancer cells.

    Science.gov (United States)

    Guo, Jianfeng; O'Driscoll, Caitriona M; Holmes, Justin D; Rahme, Kamil

    2016-07-25

    The chemistry of gold nanoparticles (AuNPs) facilitates surface modifications and thus these bioengineered NPs have been investigated as a means of delivering a variety of therapeutic cargos to treat cancer. In this study we have developed AuNPs conjugated with targeting ligands to enhance cell-specific uptake in prostate cancer cells, with a purpose of providing efficient non-viral gene delivery systems in the treatment of prostate cancer. As a consequence, two novel AuNPs were synthesised namely AuNPs-PEG-Tf (negatively charged AuNPs with the transferrin targeting ligands) and AuNPs-PEI-FA (positively charged AuNPs with the folate-receptor targeting ligands). Both bioconjugated AuNPs demonstrated low cytotoxicity in prostate cancer cells. The attachment of the targeting ligand Tf to AuNPs successfully achieved receptor-mediated cellular uptake in PC-3 cells, a prostate cancer cell line highly expressing Tf receptors. The AuNPs-PEI-FA effectively complexed small interfering RNA (siRNA) through electrostatic interaction. At the cellular level the AuNPs-PEI-FA specifically delivered siRNA into LNCaP cells, a prostate cancer cell line overexpressing prostate specific membrane antigen (PSMA, exhibits a hydrolase enzymic activity with a folate substrate). Following endolysosomal escape the AuNPs-PEI-FA.siRNA formulation produced enhanced endogenous gene silencing compared to the non-targeted formulation. Our results suggest both formulations have potential as non-viral gene delivery vectors in the treatment of prostate cancer. PMID:27188645

  2. Fabrication and optical properties of type-II InP/InAs nanowire/quantum-dot heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Xin; Zhang, Xia; Li, Junshuai; Wu, Yao; Li, Bang; Ren, Xiaomin [State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing, 100876 (China)

    2016-02-15

    The growth and optical properties of InAs quantum dots on a pure zinc blende InP nanowire are investigated. The quantum dots are formed in Stranski-Krastanov mode and exhibit pure zinc blende crystal structure. A substantial blueshift of the dots peak with a cube-root dependence on the excitation power is observed, suggesting a type-II band alignment. The peak position of dots initially red-shifts and then blue-shifts with increasing temperature, which is attributed to the carrier redistribution among the quantum dots. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  3. Fabrication and optical properties of type-II InP/InAs nanowire/quantum-dot heterostructures

    International Nuclear Information System (INIS)

    The growth and optical properties of InAs quantum dots on a pure zinc blende InP nanowire are investigated. The quantum dots are formed in Stranski-Krastanov mode and exhibit pure zinc blende crystal structure. A substantial blueshift of the dots peak with a cube-root dependence on the excitation power is observed, suggesting a type-II band alignment. The peak position of dots initially red-shifts and then blue-shifts with increasing temperature, which is attributed to the carrier redistribution among the quantum dots. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  4. Hole Rashba effect and g-factor in InP nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, X W [Institute of Semiconductors, Chinese Academy of Sciences, PO Box 912, Beijing 100083 (China); Xia, J B [Institute of Semiconductors, Chinese Academy of Sciences, PO Box 912, Beijing 100083 (China)

    2007-01-21

    The hole Rashba effect and g-factor in InP nanowires in the presence of electric and magnetic fields which bring spin splitting are investigated theoretically in the framework of eight-band effective-mass envelop function theory, by expanding the lateral wave function in Bessel functions. It is well known that the electron Rashba coefficient increases nearly linearly with the electric field. As the Rashba spin splitting is zero at zero k{sub z} (the wave vector along the wire direction), the electron g-factor at k{sub z} = 0 changes little with the electric field. While we find that as the electric field increases, the hole Rashba coefficient increases at first, then decreases. It is noticed that the hole Rashba coefficient is zero at a critical electric field. The hole g-factor at k{sub z} = 0 changes obviously with the electric field.

  5. A 20-GHz ultra-high-speed InP DHBT comparator

    International Nuclear Information System (INIS)

    An ultra-high-speed, master-slave voltage comparator circuit is designed and fabricated using InP/GaInAs double heterojunction bipolar transistor technology with a current gain cutoff frequency of 170 GHz. The complete chip die, including bondpads, is 0.75 × 1.04 mm2. It consumes 440 mW from a single −4 V power supply, excluding the clock part. 77 DHBTs have been used in the monolithic comparator. A full Nyquist test has been performed up to 20 GHz, with the input sensitivity varying from 6 mV at 10 GHz to 16 mV at 20 GHz. To our knowledge, this is the first InP based integrated circuit including more than 70 DHBTs, and it achieves the highest sampling rate found on the mainland of China. (semiconductor integrated circuits)

  6. Millimeter‐wave INP DHBT power amplifier based on power‐optimized cascode configuration

    DEFF Research Database (Denmark)

    Johansen, Tom K.; Yan, Lei; Dupuy, Jean‐Yves;

    2013-01-01

    This letter describes the use of a power‐optimized cascode configuration for obtaining maximum output power at millimeter‐wave (mm‐wave) frequencies for a two‐way combined power amplifier (PA). The PA has been fabricated in a high‐speed InP double heterojunction bipolar transistor technology...... and has a total active emitter area of 68.4 μm2. The experimental results demonstrate a small signal gain of 9.8 dB and saturated output power of more than 18.6 dBm at 72 GHz with a peak power‐added efficiency of 12%. The benefits of the power optimized cascode configuration over the standard cascode...... configuration at mm‐wave frequencies are confirmed by both simulations and experimental results. © 2013 Wiley Periodicals, Inc. Microwave Opt Technol Lett 55:1178–1182, 2013; View this article online at wileyonlinelibrary.com. DOI 10.1002/mop.27477...

  7. Identification of vacancy type defects in low and high energy nitrogen ion implanted InP

    Energy Technology Data Exchange (ETDEWEB)

    Santhakumar, K [Department of Nuclear Physics, University of Madras, Chennai - 600025 (India); Rao, G Venugopal [Materials Science Division, Indira Gandhi Centre for Atomic Research, Kalpakkam - 603102 (India); Amarendra, G [Materials Science Division, Indira Gandhi Centre for Atomic Research, Kalpakkam - 603102 (India); Abhaya, S [Materials Science Division, Indira Gandhi Centre for Atomic Research, Kalpakkam - 603102 (India); Sastry, V Sankara [Materials Science Division, Indira Gandhi Centre for Atomic Research, Kalpakkam - 603102 (India); Nair, K G M [Materials Science Division, Indira Gandhi Centre for Atomic Research, Kalpakkam - 603102 (India); Ravichandran, V [Department of Nuclear Physics, University of Madras, Chennai - 600025 (India)

    2005-12-21

    Depth resolved positron annihilation measurements were carried out on 85 keV and 1 MeV nitrogen ion implanted InP samples. The defect sensitive S-parameter and R-parameter values for the low energy implantations confirm the presence of monovacancies up to a dose of 10{sup 15} cm{sup -2} and coexistence of monovacancies and divacancies for 10{sup 16} cm{sup -2} dose sample. Corroborative glancing incidence x-ray diffraction measurements on the highest dose sample revealed that the sample is amorphized. For high energy implantation, it is found that vacancy-defects are present right from the near-surface region and these defects are identified to be monovancancies, based on the observed S- and R-parameters. A comparison of the results for the low and high energy implantations is made.

  8. Radiation hardening of InP solar cells for space applications

    International Nuclear Information System (INIS)

    The aim of this work is to develop a radiation resistant thin InP-based solar cells for space applications on more mechanically resistant, lighter, and cheaper substrates. In this paper, we present the development of a p+/nn+ InP-based solar cell structures with very thin emitter and base layers. A thin emitter helps to increase the collection of carriers generated by high energy incident photons from the solar spectrum. The use of a thin n base structure should improve the radiation resistance of this already radiation resistant technology. A remarkable improvement of high energy photons response is shown for InP solar cells with emitters 400 A thick

  9. InP nanowire p-type doping via Zinc indiffusion

    Science.gov (United States)

    Haggren, Tuomas; Otnes, Gaute; Mourão, Renato; Dagyte, Vilgaile; Hultin, Olof; Lindelöw, Fredrik; Borgström, Magnus; Samuelson, Lars

    2016-10-01

    We report an alternative pathway for p-type InP nanowire (NW) doping by diffusion of Zn species from the gas phase. The diffusion of Zn was performed in a MOVPE reactor at 350-500 °C for 5-20 min with either H2 environment or additional phosphorus in the atmosphere. In addition, Zn3P2 shells were studied as protective caps during post-diffusion annealing. This post-diffusion annealing was performed to outdiffuse and activate Zn in interstitial locations. The characterization methods included photoluminescence and single NW conductivity and carrier concentration measurements. The acquired carrier concentrations were in the order of >1017 cm-3 for NWs without post-annealing, and up to 1018 cm-3 for NWs annealed with the Zn3P2 shells. The diffused Zn caused redshift to the photoluminescence signal, and the degree of redshift depended on the diffusion process.

  10. Si Incorporation in InP Nanowires Grown by Au-Assisted Molecular Beam Epitaxy

    Directory of Open Access Journals (Sweden)

    Lorenzo Rigutti

    2009-01-01

    Full Text Available We report on the growth, structural characterization, and conductivity studies of Si-doped InP nanowires grown by Au-assisted molecular beam epitaxy. It is shown that Si doping reduces the mean diffusion length of adatoms on the lateral nanowire surface and consequently reduces the nanowire growth rate and promotes lateral growth. A resistivity as low as 5.1±0.3×10−5 Ω⋅cm is measured for highly doped nanowires. Two dopant incorporation mechanisms are discussed: incorporation via catalyst particle and direct incorporation on the nanowire sidewalls. The first mechanism is shown to be less efficient than the second one, resulting in inhomogeneous radial dopant distribution.

  11. Experimentally estimated dead space for GaAs and InP based planar Gunn diodes

    Science.gov (United States)

    Ismaeel Maricar, Mohamed; Khalid, A.; Dunn, G.; Cumming, D.; Oxley, C. H.

    2015-01-01

    An experimental method has been used to estimate the dead space of planar Gunn diodes which were fabricated using GaAs and InP based materials, respectively. The experimental results indicate that the dead space was approximately 0.23 μm and the saturation domain velocity 0.96 × 105 m s-1 for an Al0.23Ga0.77As based device, while for an In0.53Ga0.47As based device, the dead space was approximately 0.21 μm and the saturation domain velocity 1.93 × 105 m s-1. Further, the results suggest that the saturation domain velocity is reduced or there is an increase in the dead-space due to local field distortions when the active channel length of the planar Gunn diode is less than 1 micron.

  12. Locally measuring the adhesion of InP directly bonded on sub-100 nm patterned Si

    Science.gov (United States)

    Pantzas, K.; Le Bourhis, E.; Patriarche, G.; Troadec, D.; Beaudoin, G.; Itawi, A.; Sagnes, I.; Talneau, A.

    2016-03-01

    A nano-scale analogue to the double cantilever experiment that combines instrumented nano-indentation and atomic force microscopy is used to precisely and locally measure the adhesion of InP bonded on sub-100 nm patterned Si using oxide-free or oxide-mediated bonding. Surface-bonding energies of 0.548 and 0.628 J m-2, respectively, are reported. These energies correspond in turn to 51% and 57% of the surface bonding energy measured in unpatterned regions on the same samples, i.e. the proportion of unetched Si surface in the patterned areas. The results show that bonding on patterned surfaces can be as robust as on unpatterned surfaces, provided care is taken with the post-patterning surface preparation process and, therefore, open the path towards innovative designs that include patterns embedded in the Si guiding layer of hybrid III-V/Si photonic integrated circuits.

  13. Identification of vacancy type defects in low and high energy nitrogen ion implanted InP

    International Nuclear Information System (INIS)

    Depth resolved positron annihilation measurements were carried out on 85 keV and 1 MeV nitrogen ion implanted InP samples. The defect sensitive S-parameter and R-parameter values for the low energy implantations confirm the presence of monovacancies up to a dose of 1015 cm-2 and coexistence of monovacancies and divacancies for 1016 cm-2 dose sample. Corroborative glancing incidence x-ray diffraction measurements on the highest dose sample revealed that the sample is amorphized. For high energy implantation, it is found that vacancy-defects are present right from the near-surface region and these defects are identified to be monovancancies, based on the observed S- and R-parameters. A comparison of the results for the low and high energy implantations is made

  14. Effects of pressure on deep levels in semiconductors: The MFe center in InP

    International Nuclear Information System (INIS)

    This work investigated the effects of hydrostatic pressure on the properties and bistability of the scientifically challenging and technologically important deep MFe center in iron (Fe)-doped, n-type indium phosphide (InP). When occupied by electrons, the center can be reversibly placed in either of two configurations, termed A and B, by the proper choice of electric biasing conditions and temperature. Pressure has a very large influence on the balance between these two configurations, favoring A over B. Above 8 kbar essentially only the A configuration is observed. This result, along with detailed studies of the effects of pressure on the energetics of the two configurations and on the kinetics of the B→A transformation, provide important new insights about the nature of the two configurations and their associated deep levels. (copyright 2004 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  15. Electric field control of magnetoresistance in InP nanowires with ferromagnetic contacts.

    Science.gov (United States)

    Zwanenburg, F A; van der Mast, D W; Heersche, H B; Kouwenhoven, L P; Bakkers, E P A M

    2009-07-01

    We demonstrate electric field control of sign and magnitude of the magnetoresistance in InP nanowires with ferromagnetic contacts. The sign change in the magnetoresistance is directly correlated with a sign change in the transconductance. Additionally, the magnetoresistance is shown to persist at such a high bias that Coulomb blockade has been lifted. We also observe the magnetoresistance when one of the ferromagnets is replaced by a nonmagnetic metal. We conclude that it must be induced by a single ferromagnetic contact, and that spin transport can be ruled out as the origin. Our results emphasize the importance of a systematic investigation of spin-valve devices in order to discriminate between ambiguous interpretations. PMID:19537736

  16. Radiation-hard, high efficiency InP solar cell and panel development

    International Nuclear Information System (INIS)

    Indium phosphide solar cells with efficiencies over 19% (Air mass zero, 25 degrees C) and area of 4 cm2 have been made and incorporated into prototype panels. The panels will be tested in space to confirm the high radiation resistance expected from InP solar cells, which makes the material attractive for space use, particularly in high-radiation orbits. Laboratory testing indicated an end-of-life efficiency of 15.5% after 1015 1 MeV electrons, and 12% after 1016. These cells are made by metalorganic chemical vapor deposition, and have a shallow homojunction structure. The manufacturing process is amendable to scale-up to larger volumes; more than 200 cells were produced in the laboratory operation. Cell performance, radiation degradation, annealing behavior, and results of deep level transient spectroscopy studies are presented in this paper

  17. Channeling investigations of MeV Zn implanted InP

    Science.gov (United States)

    Kling, A.; Krause, H.; Flagmeyer, R.-H.; Vogt, J.; Butz, T.

    1995-03-01

    The high-energy Zn + ion implantation of InP is a promising method for the formation of buried p-type conducting layers. Defect properties and inclusion mechanism of zinc implanted samples with energies of 1.2 and 2.5 MeV to doses of 5 × 10 14-5 × 10 15 cm -2 at a temperature of 200°C were investigated with ion beam methods, XTEM and SNMS to some extent. Also the influence of rapid thermal annealing on the structural properties was studied. After implantation we found no evidence for amorphization or extended defects but point-like defects. During annealing the surface region recovered nearly completely while in depth the point-like defects agglomerated in dislocation loops. Further we observed a remarkable redistribution of the Zn atoms due to annealing.

  18. A 20-GHz ultra-high-speed InP DHBT comparator

    Institute of Scientific and Technical Information of China (English)

    Huang Zhenxing; Zhou Lei; Su Yongbo; Jin Zhi

    2012-01-01

    An ultra-high-speed,master-slave voltage comparator circuit is designed and fabricated using InP/GaInAs double heterojunction bipolar transistor technology with a current gain cutoff frcquency of 170 GHz,The complete chip die,including bondpads,is 0.75 × 1.04 mm2.It consumes 440 mW from a single -4 V power supply,excluding the clock part.77 DHBTs have been used in the monolithic comparator.A full Nyquist test has been performed up to 20 GHz,with the input sensitivity varying from 6 mV at 10 GHz to 16 mV at 20 GHz.To our knowledge,this is the first InP based integrated circuit including more than 70 DHBTs,and it achieves the highest sampling rate found on the mainland of China.

  19. Determining the base resistance of InP HBTs: An evaluation of methods and structures

    Science.gov (United States)

    Nardmann, Tobias; Krause, Julia; Pawlak, Andreas; Schroter, Michael

    2016-09-01

    Many different methods can be found in the literature for determining both the internal and external base series resistance based on single transistor terminal characteristics. Those methods are not equally reliable or applicable for all technologies, device sizes and speeds. In this review, the most common methods are evaluated regarding their suitability for InP heterojunction bipolar transistors (HBTs) based on both measured and simulated data. Using data generated by a sophisticated physics-based compact model allows an evaluation of the extraction method precision by comparing the extracted parameter value to its known value. Based on these simulations, this study provides insight into the limitations of the applied methods, causes for errors and possible error mitigation. In addition to extraction methods based on just transistor terminal characteristics, test structures for separately determining the components of the base resistance from sheet and specific contact resistances are discussed and applied to serve as reference for the experimental evaluation.

  20. 国外InP HEMT和InP HBT的发展现状及应用%Development and Application of InP HEMT and InP HBT

    Institute of Scientific and Technical Information of China (English)

    姚立华

    2009-01-01

    InP device is the first selection in millimeter wave bands because for its high frequency, high power, low noise figure and radiation hardened. InP HEMT and InP HBT behave excellent performance in military applications, such as satellite and radar. Current development, excellent performances and the main manufacturers of InP HEMT/InP HBT devices and circuits are presented. InP HEMT according to low noise and power is described. Their applications in military are introduced, for instance in T/R module of satellite phase array radar system, receivers in spacecraft and ground based station and communication systems. The development trends are summarized according to the development of InP device and circuits abroad.%在毫米波段,InP基器件由于其具有高频、高功率、低噪声及抗辐射等特点,成为人们的首选,尤其适用于空间应用.InP HEMT和InP HBT已在卫星、雷达等军事应用中表现出了优异的性能.分别介绍了InP HEMT和InP HBT器件及电路的发展现状,现在能达到的最高性能及主要生产公司等,其中InP HEMT又分别按低噪声和功率进行了详细介绍.介绍了它们在军事上的主要应用,以具体的应用实例介绍了在卫星相控阵雷达系统天线中的T/R模块中、航天器和地面站的接收机中、以及雷达和通信系统中的应用情况、达到的性能及可靠性等.并根据国外InP器件和电路的发展现状总结了其未来发展趋势.

  1. Studies on semiconductors based on InP with sub-ps response times

    International Nuclear Information System (INIS)

    The present work describes investigation of new material concepts accomplished using molecular-beam-epitaxy (MBE) growth for application in ultra-fast photonic components. Nominally undoped and Be doped GaInAs/AlInAs multiple-quantumwell structures (MQW) were grown by MBE at growth temperatures down to 100 C (LT-MBE) on semi-insulating InP substrates. Crystalline, electric and optical properties of as-grown and annealed structures were investigated. Energy states near the conduction band of GaInAs determine the electrical and optical properties of LT-MQWs. The dynamics of charge carrier relaxation was studied by means of pump and probe experiments. Measurements of the differential transmission when excited by an additional cw laser and measurements utilizing two closely sequenced pump pulses support the capability of Be doped as-grown (annealed) LT GaInAs/AlInAs MQW structures for use in optical switches at switching frequencies in the 1 Tbit/s (250 Gbit/s) range. The voltage-induced change of interband transmission of InP based quantumcascade-lasers (QCL) during pulsed mode operation was analyzed by means of 8 band k.p calculations. The impacts of varying charge carrier distributions and of electrically heated samples can be neglected compared to the dominating effect of the electrical field on the interband transmission. The impact of MBE growth parameters on the interface quality of AlAsSb/ GaInAs heterostructures were determined by means of Hall measurements, temperature- and intensity-dependent PL measurements and spectral measurements of the interband- and intersubband-absorption. The impact of In segregation and Sb diffusion on the intersubband absorption was analyzed on the basis of bandstructure calculations. Intersubband transitions at wavelengths of about 1.8 μm (1.55 μm) were successfully achieved in MQW (coupled QW) structures. (orig.)

  2. Quantum correlation via quantum coherence

    OpenAIRE

    Yu, Chang-shui; Zhang, Yang; Zhao, Haiqing

    2014-01-01

    Quantum correlation includes quantum entanglement and quantum discord. Both entanglement and discord have a common necessary condition--------quantum coherence or quantum superposition. In this paper, we attempt to give an alternative understanding of how quantum correlation is related to quantum coherence. We divide the coherence of a quantum state into several classes and find the complete coincidence between geometric (symmetric and asymmetric) quantum discords and some particular classes ...

  3. Transforming quantum operations: quantum supermaps

    OpenAIRE

    Chiribella, G.; D'Ariano, G. M.; Perinotti, P.

    2008-01-01

    We introduce the concept of quantum supermap, describing the most general transformation that maps an input quantum operation into an output quantum operation. Since quantum operations include as special cases quantum states, effects, and measurements, quantum supermaps describe all possible transformations between elementary quantum objects (quantum systems as well as quantum devices). After giving the axiomatic definition of supermap, we prove a realization theorem, which shows that any sup...

  4. Anomalous Temperature Dependence of Photoluminescence in InAs/InAlGaAs/InP Quantum Wire and Dot Hybrid Nanostructures

    Institute of Scientific and Technical Information of China (English)

    YANG Xin-Rong; XU Bo; WANG Hai-Fei; ZHAO Guo-Qing; SHI Shu-Hui; SHEN Xiao-Zhi; LI Jun-Feng; WANG Zhan-Guo

    2011-01-01

    Self-assembled InAs quantum wires (QWRs) are fabricated on an InP substrate by solid-source molecular beam epitaxy (SSMBE). Photoluminescence (PL) spectra are investigated in these nanostructures as a function of temperature. An anomalous enhancement of PL intensity and a temperature insensitive PL emission are observed from lnAs nanostructures grown on InP substrates using lnAIGaAs as the matrix layer and the origin of this phenomenon is discussed. We attribute the anomalous temperature dependence of photoluminescence to the formation of Al-rich and In-rich region in the InAlGaAs buffer layer and the cap layer.%@@ Self-assembled InAs quantum wires (QWRs) are fabricated on an InP substrate by solid-source molecular beam epitaxy (SSMBE).Photoluminescence (PL) spectra are investigated in these nanostructures as a function of temperature.An anomalous enhancement of PL intensity and a temperature insensitive PL emission are observed from InAs nanostructures grown on InP substrates using InAlGaAs as the matrix layer and the origin of this phenomenon is discussed.We attribute the anomalous temperature dependence of photoluminescence to the formation of Al-rich and In-rich region in the InAlGaAs buffer layer and the cap layer.

  5. Polydopamine-Based Surface Modification of Novel Nanoparticle-Aptamer Bioconjugates for In Vivo Breast Cancer Targeting and Enhanced Therapeutic Effects.

    Science.gov (United States)

    Tao, Wei; Zeng, Xiaowei; Wu, Jun; Zhu, Xi; Yu, Xinghua; Zhang, Xudong; Zhang, Jinxie; Liu, Gan; Mei, Lin

    2016-01-01

    In this study, we reported a simple polydopamine (pD)-based surface modification method to prepare novel nanoparticle-aptamer bioconjugates (Apt-pD-DTX/NPs) for in vivo tumor targeting and enhanced therapeutic effects of breast cancer. With simple preparation procedures, the new functionalized Apt-pD-DTX/NPs could maximumly increase the local effective drug concentration on tumor sites, achieving enhanced treatment effectiveness and minimizing side effects. The dopamine polymerization and aptamer conjugation barely changed the characters of NPs. Both in vitro cell experiments (i.e. endocytosis of fluorescent NPs, in vitro cellular targeting and cytotoxicity assays) and in vivo animal studies (i.e. in vivo imaging, biodistribution and antitumor effects of NPs) demonstrated that the Apt-pD-DTX/NPs could achieve significantly high targeting efficiency and enhanced therapeutic effects compared with clinical Taxotere(®) and NPs without functional modification. Above all, the Apt-pD-DTX/NPs showed great potential as a promising nanoformulation for in vivo breast cancer therapy and the construction of pD-modified NP-aptamer bioconjugates could be of great value in medical use.

  6. Quantum Instantons and Quantum Chaos

    OpenAIRE

    Jirari, H.; Kröger, H.; Luo, X. Q.; Moriarty, K. J. M.; Rubin, S. G.

    1999-01-01

    Based on a closed form expression for the path integral of quantum transition amplitudes, we suggest rigorous definitions of both, quantum instantons and quantum chaos. As an example we compute the quantum instanton of the double well potential.

  7. Quantum Computation and Quantum Information

    OpenAIRE

    Wang, Yazhen

    2012-01-01

    Quantum computation and quantum information are of great current interest in computer science, mathematics, physical sciences and engineering. They will likely lead to a new wave of technological innovations in communication, computation and cryptography. As the theory of quantum physics is fundamentally stochastic, randomness and uncertainty are deeply rooted in quantum computation, quantum simulation and quantum information. Consequently quantum algorithms are random in nature, and quantum ...

  8. Deep InP Gratings for Opto-Electronic Devices Etched by Cl2/CH4/Ar Inductively Coupled Plasma

    Institute of Scientific and Technical Information of China (English)

    WANG Jian; TIAN Jian-Bai; XIONG Bing; SUN Chang-Zheng; HAO Zhi-Biao; LUO Yi

    2006-01-01

    @@ Deep InP gratings are etched by Cl2/CH4/Ar inductively coupled plasma (ICP) at room temperature. A comparison is made between SiNx mask patterns formed by wet and dry etching. SF6 reactive ion etching is adopted for smooth and vertical sidewall. The etching conditions of Cl2/CH4/Ar ICP are optimized for high anisotropy,and a 1.7-μm-deep InP grating with an aspect ratio of 10:1 is demonstrated. The technique is then used for the fabrication of 1.55-μm laterally coupled distributed feedback AlGaInAs-InP laser.

  9. Self-catalyzed growth of pure zinc blende 〈110〉 InP nanowires

    International Nuclear Information System (INIS)

    We demonstrate the self-catalyzed vapor-liquid-solid growth of 〈110〉 InP nanowires (NWs) by metal organic chemical vapor deposition. The 〈110〉 InP nanowire is formed via a spontaneous kinking from the original 〈111〉 growth direction, which is attributed to instabilities at the liquid/solid interface caused by a fast In incorporation into the droplet. The NW length before kinking has a nearly linear relationship with the diameter, offering a way to control the NW morphology for different applications. The 〈110〉 nanowire exhibits pure zinc blende crystal structure and a narrower emission linewidth in comparison with a typical 〈111〉 nanowire, demonstrating its potential applications in high-performance electronic and photonic devices

  10. Collinear phase-matching study of terahertz-wave generation via difference frequency mixed in GaAs and Inp

    Institute of Scientific and Technical Information of China (English)

    HUANG Lei; SUN Bo; YAO Jian-quan; WANG Peng

    2008-01-01

    The collinearly phase-matching condition of terahertz-wave generation via difference frequency mixed in GaAs and InP is theoretically studied.In collinear phase-matching,the optimum phase-matching wave bands of these two crystals are calculated.The optimum phase-matching wave bands in GaAs and InP are 0.95~1.38 μm and 0.7~0.96 μm respectively.The influence of the wavelength choice of the pump wave on the coherent length in THz-wave tuning is also discussed.The influence of the temperature alteration on the phase-matching and the temperature tuning properties in GaAs crystal are calculated and analyzed.It can serve for the following experiments as a theoretical evidence and a reference aswell.

  11. InAs nanostructures on InP (001) substrate with the insertion of a superthin AlAs layer

    Institute of Scientific and Technical Information of China (English)

    L(U) Xiao-jing; WU Ju; XU Bo; ZENG Yi-ping; WANG Biao-qiang; WANG Zhan-guo

    2007-01-01

    An AlAs layer of two or three monolayers was inserted beneath the strained InAs layer in the fabrication of InAs nanostructure on the In0.53Ga0.47As and In0.52Al0.48As buffer layer lattice-matched to InP(001) substrate using mo-lecular beam epitaxy. The effects of AlAs insertion on the InAs nanostructures were investigated and discussed.

  12. Surface Dipole Formation and Lowering of the Work Function by Cs Adsorption on InP(100) Surface

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Y.; Liu, Z.; Pianetta, P.

    2007-06-08

    The Cs adsorption on InP(100) surface is studied with Synchrotron Radiation Photoelectron Spectroscopy. The charge transfer from Cs to the InP substrate is observed from the Cs induced In4d and P2p components, and this charge transfer results in surface dipole formation and lowering of the work function. The Cs4d intensity saturates at coverage of one monolayer (ML). However, a break point is observed at 0.5 ML, which coincides with the achievement of the minimum work function. This break point is due to the different vertical placement of the first and the second half monolayer of Cs atoms. Based on this information, a simple bi-layer structure for the Cs layer is presented. This bi-layer structure is consistent with the behavior of the charge transfer from the Cs to the InP substrate at different Cs coverages. This, in turn, explains why the work function decreases to a minimum at 0.5 ML of Cs and remains almost constant beyond this coverage. The depolarization of the surface dipoles is attributed to the saturation of charge transfer to the surface In atoms and the polarization of the Cs atoms in the second half monolayer induced by the positively charged Cs atoms in the first half monolayer.

  13. Photoluminescence properties of ZnO films grown on InP by thermally oxidizing metallic Zn films

    CERN Document Server

    Chen, S J; Zhang, J Y; Lu, Y M; Shen, D Z; Fan, X W

    2003-01-01

    Photoluminescence (PL) properties of ZnO films grown on (001) InP substrates by thermal oxidization of metallic Zn films, in which oxygen vacancies and interstitial Zn ions are compensated by P ions diffusing from (001) InP substrates, are investigated. X-ray diffraction spectra indicate that P ions have diffused into the Zn films and chemically combined with Zn ions to form Zn sub 3 P sub 2. Intense free exciton emission dominates the PL spectra of ZnO films with very weak deep-level emission. Low-temperature PL spectra at 79 K are dominated by neutral-donor bound exciton emission at 3.299 eV (I sub 4) with a linewidth of 17.3 meV and neutral-acceptor bound exciton emission at 3.264 eV. The free exciton emission increases with increasing temperature and eventually dominates the emission spectrum for temperature higher than 170 K. Furthermore, the visible emission around 2.3 eV correlated with oxygen deficiencies and interstitial Zn defects was quenched to a remarkable degree by P diffusing from InP substrate...

  14. Synthesis and Evaluation of Nanogold Bioconjugated with Trastuzumab as a Drug for Human Breast Cancer Cell Line

    International Nuclear Information System (INIS)

    carboxyl group by adding 1-ethyl-3-(3-dimethyl aminopropyl) Carbodiimide hydrochloride (EDC) and N-Hydroxysuccinimide (NHS) using cross-linking reaction. 2- Bioconjugation i.e.,binding the modified GNPs with the anti-Her2/neu antibody (Trastuzumab). All the above productswere characterized by using UV-Vis spectroscopy, FTIR, and zeta nanosizertechniques. Part III: Application of the abovenovel products (three types GNPs, biofunctionalized GNPs and bioconjugated GNPs, as well astrastuzumab alone) on human breast cancer cell line (SK-BR-3) and on an isolated fraction of whole blood, peripheral blood mononuclear cells (PBMCs) in vitro. The evaluation was done by cytotoxicity assay, viability assay using inverted and light microscopy, and ELISA-reader. Part IV: In clinical characterization of the disease two tumor marker [cancer antigen (CA15-3) and carcinoembryonic antigen (CEA)] were investigated as well as, sex steroid hormones (estradiol, progesterone, and testosterone ), lipid profile and total proteins in sera of (100) Iraqi women with breast cancer classified to two groups depending on their Her2/neuimmunohistochemistry status (group I (positive) and group II (negative)) patients were recruited Al-Amal Hospital in Baghdad city during the period from the beginning of June -2013 to end of Dec.-2013. Their ages ranged from (27-70) years with irregular of menstrual cycle because taking of hormonal therapy. The results were compared with (40) blood samples from apparently healthy women as control group. Results revealed a highly significant increase (p<0.001) in the levels of CA15-3 and decrease in CEA. The three sex steroid hormonesrevealed significant increase (p<0.001) in the patients group compared to the control group. Lipid profile and total proteins were significantly decreased (p<0.05) in negative Her2/neu group and increased in positive Her2/neu, except triglyceride. It was concluded that there was a positive associations between CA15-3 and CEA as well as between CA

  15. Fluorescence of quantum dots on e-beam patterned and DNA origami substrates

    Science.gov (United States)

    Corrigan, Timothy D.; Kessinger, Matthew; Kidd, Jesse; Neff, David; Rahman, Masudur; Norton, Michael L.

    2015-05-01

    Attachment of quantum dots or fluorescent molecules to gold nanoparticles has a variety of optical labeling and sensory applications. In this study, we use both e-beam lithography and DNA origami to examine the fluorescence enhancement of fluorescent molecules and quantum dots with a systematic approach to understanding the contribution of gold nanoparticle size and interparticle spacing. The unique design of our patterns allows us to study the effects of size and spacing of the gold nanoparticles on the enhancement of fluorescence in one quick study with constant conditions - removing undesirable effects such as differences in concentration of quantum dots or other chemistry differences that plague multiple experiments. We also discuss the fluorescence and bonding of CdSe/ZnS quantum dots to both gold as well as DNA for use in self assembled DNA constructs. Specifically, bioconjugated CdSe/ZnS core/shell quantum dots were synthesized and functionalized with MPA using both traditional ligand exchange as well as newly developed in situ functionalization techniques used to increase the quantum yield of the quantum dots. We will present fluorescent images showing results of optimal size and spacing for fluorescence as well as demonstrating attachment chemistry of the quantum dots.

  16. Quantum Simulation

    OpenAIRE

    Georgescu, I. M.; Ashhab, S.; Nori, Franco

    2013-01-01

    Simulating quantum mechanics is known to be a difficult computational problem, especially when dealing with large systems. However, this difficulty may be overcome by using some controllable quantum system to study another less controllable or accessible quantum system, i.e., quantum simulation. Quantum simulation promises to have applications in the study of many problems in, e.g., condensed-matter physics, high-energy physics, atomic physics, quantum chemistry and cosmology. Quantum simulat...

  17. Quantum Coins

    CERN Document Server

    Mosca, Michele

    2009-01-01

    One of the earliest cryptographic applications of quantum information was to create quantum digital cash that could not be counterfeited. In this paper, we describe a new type of quantum money: quantum coins, where all coins of the same denomination are represented by identical quantum states. We state desirable security properties such as anonymity and unforgeability and propose two candidate quantum coin schemes: one using black box operations, and another using blind quantum computation.

  18. A 311-GHz Fundamental Oscillator Using InP HBT Technology

    Science.gov (United States)

    Gaier, Todd; Fung, King Man; Samoska, Lorene; Radisic, Vesna; Sawdai, Donald; Scott, Dennis; Deal, W.R.

    2010-01-01

    This oscillator uses a single-emitter 0.3- m InP heterojunction bipolar transistor (HBT) device with maximum frequency of oscillation (fmax) greater than 500 GHz. Due to high conductor and substrate losses at submillimeterwave frequencies, a primary challenge is to efficiently use the intrinsic device gain. This was done by using a suitable transmission-line media and circuit topology. The passive components of the oscillator are realized in a twometal process with benzocyclobutene (BCB) used as the primary transmission line dielectric. The circuit was designed using microstrip transmission lines. The oscillator is implemented in a common-base topology due to its inherent instability, and the design includes an on-chip resonator, outputmatching circuitry, and an injection-locking port, the port being used to demonstrate the injection-locking prin ciple. A free-running frequency of 311.6 GHz has been measured by down-converting the signal. Ad di tionally, injection locking has been successfully demonstrated with up to 17.8 dB of injection-locking gain. The injection-locking reference signal is generated using a 2 20 GHz frequency synthesizer, followed by a doubler, active tripler, a W-band amplifier, and then a passive tripler. Therefore, the source frequency is multiplied 18 times to obtain a signal above 300 GHz that can be used to injection lock the oscillator. Measurement shows that injection locking has improved the phase noise of the oscillator and can be also used for synchronizing a series of oscillators. A signal conductor is implemented near the BCP -InP interface and the topside of the BCB layer is fully metallized as a signal ground. Because the fields are primarily constrained in the lower permittivity BCB region, this type of transmission line is referred to as an inverted microstrip. In addition, both common-emitter and commonbase circuits were investigated to determine optimum topology for oscillator design. The common -base topology required smaller

  19. Aerosol measurements during COPE: composition, size, and sources of CCN and INPs at the interface between marine and terrestrial influences

    Science.gov (United States)

    Taylor, Jonathan W.; Choularton, Thomas W.; Blyth, Alan M.; Flynn, Michael J.; Williams, Paul I.; Young, Gillian; Bower, Keith N.; Crosier, Jonathan; Gallagher, Martin W.; Dorsey, James R.; Liu, Zixia; Rosenberg, Philip D.

    2016-09-01

    Heavy rainfall from convective clouds can lead to devastating flash flooding, and observations of aerosols and clouds are required to improve cloud parameterisations used in precipitation forecasts. We present measurements of boundary layer aerosol concentration, size, and composition from a series of research flights performed over the southwest peninsula of the UK during the COnvective Precipitation Experiment (COPE) of summer 2013. We place emphasis on periods of southwesterly winds, which locally are most conducive to convective cloud formation, when marine air from the Atlantic reached the peninsula. Accumulation-mode aerosol mass loadings were typically 2-3 µg m-3 (corrected to standard cubic metres at 1013.25 hPa and 273.15 K), the majority of which was sulfuric acid over the sea, or ammonium sulfate inland, as terrestrial ammonia sources neutralised the aerosol. The cloud condensation nuclei (CCN) concentrations in these conditions were ˜ 150-280 cm-3 at 0.1 % and 400-500 cm-3 at 0.9 % supersaturation (SST), which are in good agreement with previous Atlantic measurements, and the cloud drop concentrations at cloud base ranged from 100 to 500 cm-3. The concentration of CCN at 0.1 % SST was well correlated with non-sea-salt sulfate, meaning marine sulfate formation was likely the main source of CCN. Marine organic aerosol (OA) had a similar mass spectrum to previous measurements of sea spray OA and was poorly correlated with CCN. In one case study that was significantly different to the rest, polluted anthropogenic emissions from the southern and central UK advected to the peninsula, with significant enhancements of OA, ammonium nitrate and sulfate, and black carbon. The CCN concentrations here were around 6 times higher than in the clean cases, and the cloud drop number concentrations were 3-4 times higher. Sources of ice-nucleating particles (INPs) were assessed by comparing different parameterisations used to predict INP concentrations, using measured

  20. Characterization of the S. cerevisiae inp51 mutant links phosphatidylinositol 4,5-bisphosphate levels with lipid content, membrane fluidity and cold growth.

    Science.gov (United States)

    Córcoles-Sáez, Isaac; Hernández, Maria Luisa; Martínez-Rivas, Jose Manuel; Prieto, Jose A; Randez-Gil, Francisca

    2016-03-01

    Phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] and its derivatives diphosphoinositol phosphates (DPIPs) play key signaling and regulatory roles. However, a direct function of these molecules in lipid and membrane homeostasis remains obscure. Here, we have studied the cold tolerance phenotype of yeast cells lacking the Inp51-mediated phosphoinositide-5-phosphatase. Genetic and biochemical approaches showed that increased metabolism of PI(4,5)P2 reduces the activity of the Pho85 kinase by increasing the levels of the DPIP isomer 1-IP7. This effect was key in the cold tolerance phenotype. Indeed, pho85 mutant cells grew better than the wild-type at 15 °C, and lack of this kinase abolished the inp51-mediated cold phenotype. Remarkably, reduced Pho85 function by loss of Inp51 affected the activity of the Pho85-regulated target Pah1, the yeast phosphatidate phosphatase. Cells lacking Inp51 showed reduced Pah1 abundance, derepression of an INO1-lacZ reporter, decreased content of triacylglycerides and elevated levels of phosphatidate, hallmarks of the pah1 mutant. However, the inp51 phenotype was not associated to low Pah1 activity since deletion of PAH1 caused cold sensitivity. In addition, the inp51 mutant exhibited features not shared by pah1, including a 40%-reduction in total lipid content and decreased membrane fluidity. These changes may influence the activity of membrane-anchored and/or associated proteins since deletion of INP51 slows down the transit to the vacuole of the fluorescent dye FM4-64. In conclusion, our work supports a model in which changes in the PI(4,5)P2 pool affect the 1-IP7 levels modulating the activity of Pho85, Pah1 and likely additional Pho85-controlled targets, and regulate lipid composition and membrane properties. PMID:26724696

  1. TiO{sub 2} as gate oxide on enhancement-mode N-channel sulfur-treated InP MOSFET

    Energy Technology Data Exchange (ETDEWEB)

    Lee, M.K.; Yen, C.F. [National Sun Yat-sen Univ., Taiwan (China). Dept. of Electrical Engineering

    2010-07-01

    This presentation discussed the use of titanium dioxide (TiO{sub 2}) in fuel cells as cathodes and catalysts, with particular reference to the feasibility of using TiO{sub 2} as the gate oxide in a MOSFET to make the integration more compact. An experiment was conducted aimed at fabricating an enhancement-mode n-channel sulfur-treated indium phosphide (InP) MOSFET with liquid phase deposition (LPD)-TiO{sub 2} as gate oxide. The TiO-2 film prepared by LPD on ammonium sulfide treated InP showed good electrical characteristics. The leakage currents can reach 2.1 x 10{sup -7} and 7.4 x 10{sup -7} A/cm{sup 2} at {+-}0.5 MV/cm. The fabricated enhancement-mode n-channel InP MOSFET exhibited the transconductance of 43 mS/mm and the electron field mobility of 348 cm{sup 2}/V s. The transconductance of MOSFET was higher with higher dielectric constant TiO{sub 2} as the gate oxide. Treatment of (NH{sub 4})2Sx prevented InP from oxidizing after cleaning and improved the interface properties of the MOS structure. Amorphous TiO{sub 2} film prepared by LPD can be deposited on InP substrate at near room temperature and can prevent the leakage current from the grain boundaries of polycrystalline structure. In this study, Zn doped p-type InP was used as the substrate. After cleaning and sulfidation, the InP was ready for MOSFET process. An aqueous solution of H{sub 2}TiF{sub 6} was used as the TiO{sub 2} deposition solution. It was concluded that the LPD-TiO2/S-InP capacitor had lower leakage current, higher k value, and lower Dit. 4 refs., 6 figs.

  2. Quantum memory Quantum memory

    Science.gov (United States)

    Le Gouët, Jean-Louis; Moiseev, Sergey

    2012-06-01

    Interaction of quantum radiation with multi-particle ensembles has sparked off intense research efforts during the past decade. Emblematic of this field is the quantum memory scheme, where a quantum state of light is mapped onto an ensemble of atoms and then recovered in its original shape. While opening new access to the basics of light-atom interaction, quantum memory also appears as a key element for information processing applications, such as linear optics quantum computation and long-distance quantum communication via quantum repeaters. Not surprisingly, it is far from trivial to practically recover a stored quantum state of light and, although impressive progress has already been accomplished, researchers are still struggling to reach this ambitious objective. This special issue provides an account of the state-of-the-art in a fast-moving research area that makes physicists, engineers and chemists work together at the forefront of their discipline, involving quantum fields and atoms in different media, magnetic resonance techniques and material science. Various strategies have been considered to store and retrieve quantum light. The explored designs belong to three main—while still overlapping—classes. In architectures derived from photon echo, information is mapped over the spectral components of inhomogeneously broadened absorption bands, such as those encountered in rare earth ion doped crystals and atomic gases in external gradient magnetic field. Protocols based on electromagnetic induced transparency also rely on resonant excitation and are ideally suited to the homogeneous absorption lines offered by laser cooled atomic clouds or ion Coulomb crystals. Finally off-resonance approaches are illustrated by Faraday and Raman processes. Coupling with an optical cavity may enhance the storage process, even for negligibly small atom number. Multiple scattering is also proposed as a way to enlarge the quantum interaction distance of light with matter. The

  3. Phosphazene like film formation on InP in liquid ammonia (223 K)

    International Nuclear Information System (INIS)

    An anodic photo-galvanostatic treatment at low current density (1 μA·cm−2) is carried out on n-InP semiconductor in liquid ammonia (223 K). The gradual chemical evolution of the surface is studied as a function of the anodic charge. Proof and reproducibility of the chemical transformation of the surface are clearly evidenced by X-ray photoelectron spectroscopy (XPS) analyses. Like by cyclic voltammetry, the perfect coverage of the InP surface by a thin phosphazene like film is also revealed by XPS data. However, a low anodic charge (≈ 0.5 mC·cm−2) is required by photo-galvanostatic treatment while a higher anodic charge (≈ 7 mC·cm−2) is involved by cyclic voltammetry. The excess of charge could be related to ammonia oxidation during the formation of the passivating film. This result proves the electrochemical oxidation of the solvent as a determinant step of the mechanism film formation. - Highlights: ► Cyclic voltammetry and galvanostatic modes on n-InP in liquid ammonia (223 K). ► A thin film growth is reached by photo-anodic polarization. ► The same phosphazene like film is evidenced by X-ray photoelectron spectroscopy. ► An excess of charge is observed by cyclic voltammetry. ► An electrochemical oxidation step of the solvent is assumed

  4. Improved Power Conversion Efficiency of InP Solar Cells Using Organic Window Layers

    Energy Technology Data Exchange (ETDEWEB)

    Li, N; Lee, K.; Renshaw, C. K.; Xiao, X.; Forrest, Stephen R.

    2011-01-01

    We employ the organic semiconductor 3,4,9,10-perylene-tetracarboxylic-dianhydride (PTCDA) as a nanometer thick window layer for p-InP/indium tin oxide (ITO) Schottky barrierdiodesolar cells. The power conversion efficiency is enhanced compared to ITO/InP cells lacking the PTCDA window layer, primarily due to neutralizing InP surface state charges via hole injection from the PTCDA. This leads to an increased ITO/p-InP Schottky barrier height, and hence to an increased open circuit voltage. The power conversion efficiency of the cells increases from 13.2±0.5% for the ITO/InP cell to 15.4±0.4% for the ITO/4 nm PTCDA/p-InP cell under 1 sun, AM1.5G simulated solar illumination. The PTCDA window layer is also shown to contribute to the photocurrent by light absorption followed by exciton dissociation at the organic/inorganic semiconductor interface.

  5. Passive and electro-optic polymer photonics and InP electronics integration

    Science.gov (United States)

    Zhang, Z.; Katopodis, V.; Groumas, P.; Konczykowska, A.; Dupuy, J.-.; Beretta, A.; Dede, A.; Miller, E.; Choi, J. H.; Harati, P.; Jorge, F.; Nodjiadjim, V.; Dinu, R.; Cangini, G.; Vannucci, A.; Felipe, D.; Maese-Novo, A.; Keil, N.; Bach, H.-.; Schell, Martin; Avramopoulos, H.; Kouloumentas, Ch.

    2015-05-01

    Hybrid photonic integration allows individual components to be developed at their best-suited material platforms without sacrificing the overall performance. In the past few years a polymer-enabled hybrid integration platform has been established, comprising 1) EO polymers for constructing low-complexity and low-cost Mach-Zehnder modulators (MZMs) with extremely high modulation bandwidth; 2) InP components for light sources, detectors, and high-speed electronics including MUX drivers and DEMUX circuits; 3) Ceramic (AIN) RF board that links the electronic signals within the package. On this platform, advanced optoelectronic modules have been demonstrated, including serial 100 Gb/s [1] and 2x100 Gb/s [2] optical transmitters, but also 400 Gb/s optoelectronic interfaces for intra-data center networks [3]. To expand the device functionalities to an unprecedented level and at the same time improve the integration compatibility with diversified active / passive photonic components, we have added a passive polymer-based photonic board (polyboard) as the 4th material system. This passive polyboard allows for low-cost fabrication of single-mode waveguide networks, enables fast and convenient integration of various thin-film elements (TFEs) to control the light polarization, and provides efficient thermo-optic elements (TOEs) for wavelength tuning, light amplitude regulation and light-path switching.

  6. Doping evaluation of InP nanowires for tandem junction solar cells

    Science.gov (United States)

    Lindelöw, F.; Heurlin, M.; Otnes, G.; Dagytė, V.; Lindgren, D.; Hultin, O.; Storm, K.; Samuelson, L.; Borgström, M.

    2016-02-01

    In order to push the development of nanowire-based solar cells further using optimized nanowire diameter and pitch, a doping evaluation of the nanowire geometry is necessary. We report on a doping evaluation of n-type InP nanowires with diameters optimized for light absorption, grown by the use of metal-organic vapor phase epitaxy in particle-assisted growth mode using tetraethyltin (TESn) as the dopant precursor. The charge carrier concentration was evaluated using four-probe resistivity measurements and spatially resolved Hall measurements. In order to reach the highest possible nanowire doping level, we set the TESn molar fraction at a high constant value throughout growth and varied the trimethylindium (TMIn) molar fraction for different runs. Analysis shows that the charge carrier concentration in nanowires grown with the highest TMIn molar fraction (not leading to kinking nanowires) results in a low carrier concentration of approximately 1016 cm-3. By decreasing the molar fraction of TMIn, effectively increasing the IV/III ratio, the carrier concentration increases up to a level of about 1019 cm-3, where it seems to saturate. Axial carrier concentration gradients along the nanowires are found, which can be correlated to a combination of changes in the nanowire growth rate, measured in situ by optical reflectometry, and polytypism of the nanowires observed in transmission electron microscopy.

  7. Low-temperature damage formation in ion implanted InP

    Energy Technology Data Exchange (ETDEWEB)

    Wendler, E., E-mail: elke.wendler@uni-jena.de [Friedrich-Schiller-Universität Jena, Institut für Festkörperphysik, Max-Wien-Platz 1, 07743 Jena (Germany); Stonert, A. [National Center of Nuclear Research, 05-400 Swierk/Otwock (Poland); Turos, A. [National Center of Nuclear Research, 05-400 Swierk/Otwock (Poland); Institute of Electronic Materials Technology, Wolczynska 133, 01-919 Warsaw (Poland); Wesch, W. [Friedrich-Schiller-Universität Jena, Institut für Festkörperphysik, Max-Wien-Platz 1, 07743 Jena (Germany)

    2013-07-15

    Damage formation in ion implanted InP is studied by quasi–in situ Rutherford backscattering spectrometry (RBS) in channelling configuration. Subsequent implantation steps are performed at 15 K each followed by immediate RBS analysis without changing the environment or the temperature of the sample. 30 keV He, 150 keV N and 350 keV Ca ions were applied. The depth distribution of damage is in good agreement with that calculated with the SRIM code. The evolution of damage at the maximum of the distribution as a function of the ion fluence is described assuming damage formation within single ion impacts and stimulated growth of damage when the collision cascades start to overlap with cross sections σ{sub d} and σ{sub g}, respectively. These cross sections are found to depend on the primary energies deposited in the displacement of lattice atoms and in electronic interactions calculated with the SRIM code. The obtained empirical formulas are capable to represent the experimental results for different III–V compounds implanted at 15 K with various ion species.

  8. Ordered 1-D and 2-D InAs/InP quantum dot arrays at telecom wavelength

    International Nuclear Information System (INIS)

    Lateral one-dimensional (1-D) and two-dimensional (2-D) InAs/InP quantum dot (QD) arrangements are created by the concept of self-organized anisotropic strain engineering of InAs/InGaAsP superlattice (SL) templates on InP (100) and (311)B substrates by chemical-beam epitaxy (CBE). The SL templates comprise several-periods of an InAs QD layer plus a thin cap layer, post-growth annealing, and a separation layer. QDs order on top of the templates due to local strain recognition. Distinct preferential In adatom surface migration during annealing and substrate miscut lead to linear QD arrays along [001] for InP (100) substrates and a periodic square lattice aligned ±450 off [-233] for InP (311)B substrates. Optimization of the growth parameters balances In desorption and leads to well-separated and highly uniform QD arrays. Importantly, strong photoluminescence (PL) of defect-free InAs QD arrays is observed with the wavelength tuned into the 1.55-μim telecom region at room temperature through the insertion of GaAs interlayer beneath the QDs. Finally, the concept of self-organized anisotropic strain engineering for QD ordering is extended for formation of more complex architectures by combining it with step-engineering on shallow- and deep-patterned substrates. On the sidewall areas, the steps generated by the artificial patterns play the major role in determination of the In adatom surface migration during annealing, altering the QD arrays direction away from [001] on stripe-patterned InP (100) substrates. On the contrary, the sidewalls on patterned InP (311)B are faceted, not affecting the orientation of the 2-D InAs QD arrays.

  9. Characterization of uniaxial stiffness of extracellular matrix embedded with magnetic beads via bio-conjugation and under the influence of an external magnetic field.

    Science.gov (United States)

    Herath, Sahan C B; Du, Yue; Wang, Dong-an; Liao, Kin; Wang, Qingguo; Asada, Harry; Chen, Peter C Y

    2014-02-01

    In this paper, we study the deformation, and experimentally quantify the change in stiffness, of an extracellular matrix (ECM) embedded with magnetic beads that are bio-conjugated with the collagen fibers and under the influence of an external magnetic field. We develop an analytical model of the viscoelastic behavior of this modified ECM, and design and implement a stretch test to quantify (based on statistically meaningful experiment data) the resulting changes in its stiffness induced by the external magnetic field. The analytical results are in close agreement with that obtained from the experiments. We discuss the implication of these results that point to the possibility of creating desired stiffness gradients in an ECM in vitro to influence cell behavior.

  10. Quantum Computing

    CERN Document Server

    Steane, A M

    1998-01-01

    The subject of quantum computing brings together ideas from classical information theory, computer science, and quantum physics. This review aims to summarise not just quantum computing, but the whole subject of quantum information theory. It turns out that information theory and quantum mechanics fit together very well. In order to explain their relationship, the review begins with an introduction to classical information theory and computer science, including Shannon's theorem, error correcting codes, Turing machines and computational complexity. The principles of quantum mechanics are then outlined, and the EPR experiment described. The EPR-Bell correlations, and quantum entanglement in general, form the essential new ingredient which distinguishes quantum from classical information theory, and, arguably, quantum from classical physics. Basic quantum information ideas are described, including key distribution, teleportation, data compression, quantum error correction, the universal quantum computer and qua...

  11. Quantum stochastics

    CERN Document Server

    Chang, Mou-Hsiung

    2015-01-01

    The classical probability theory initiated by Kolmogorov and its quantum counterpart, pioneered by von Neumann, were created at about the same time in the 1930s, but development of the quantum theory has trailed far behind. Although highly appealing, the quantum theory has a steep learning curve, requiring tools from both probability and analysis and a facility for combining the two viewpoints. This book is a systematic, self-contained account of the core of quantum probability and quantum stochastic processes for graduate students and researchers. The only assumed background is knowledge of the basic theory of Hilbert spaces, bounded linear operators, and classical Markov processes. From there, the book introduces additional tools from analysis, and then builds the quantum probability framework needed to support applications to quantum control and quantum information and communication. These include quantum noise, quantum stochastic calculus, stochastic quantum differential equations, quantum Markov semigrou...

  12. Validity of bioconjugated silica nanoparticles in comparison with direct smear, culture, and polymerase chain reaction for detection of Mycobacterium tuberculosis in sputum specimens

    Directory of Open Access Journals (Sweden)

    Ekrami A

    2011-11-01

    Full Text Available Alireza Ekrami1, Ali Reza Samarbaf-Zadeh2, Azar Khosravi1, Behrooz Zargar3, Mohamad Alavi1, Mansor Amin2, Alireza Kiasat3 1Infectious and Tropical Diseases Research Center, Ahvaz Jundishapur University of Medical Sciences, 2Department of Microbiology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, 3Department of Chemistry, School of Science, Shahid Chamran University, Ahvaz, Iran Background: Tuberculosis is a public health problem worldwide, and new easy to perform diagnostic methods with high accuracy are necessary for optimal control of the disease. Recently, fluorescent silica nanoparticles (FSNP has attracted immense interest for the detection of pathogenic microorganisms. The aim of this study was to detect Mycobacterium tuberculosis in clinical samples using bioconjugated FSNP compared with microscopic examination, polymerase chain reaction (PCR, nested PCR, and culture as the gold standard. Methods: In total, 152 sputum specimens were obtained from patients who were suspected to have pulmonary tuberculosis. All samples were examined by the four techniques described. Results: The assay showed 97.1% sensitivity (95% confidence interval [CI] 91–99.2 and 91.35% specificity (CI 78.3–97.1. Furthermore, assays using variable bacterial concentrations indicated that 100 colony forming units/mL of M. tuberculosis could be detected. There were no differences between the results obtained from two types of mouse monoclonal antibody against Hsp-65 and 16 KDa antigens. Conclusion: We performed this assay in a large number of clinical samples to confirm the diagnostic specificity and sensitivity of the test and can recommend its application for diagnosis of M. tuberculosis. We believe that this method is more convenient for routine diagnosis of M. tuberculosis in sputum and will be more easily applicable in the field, and with sufficient sensitivity. Keywords: Mycobacterium tuberculosis, fluorescent silica nanoparticles

  13. Self-Catalyzed Growth and Characterization of In(As)P Nanowires on InP(111)B Using Metal-Organic Chemical Vapor Deposition

    Science.gov (United States)

    Park, Jeung Hun; Pozuelo, Marta; Setiawan, Bunga P. D.; Chung, Choong-Heui

    2016-04-01

    We report the growth of vertical -oriented InAs x P1- x (0.11 ≤ x ≤ 0.27) nanowires via metal-organic chemical vapor deposition in the presence of indium droplets as catalysts on InP(111)B substrates at 375 °C. Trimethylindium, tertiarybutylphosphine, and tertiarybutylarsine are used as the precursors, corresponding to P/In and As/In molar ratios of 29 and 0.01, respectively. The as-grown nanowire growth morphologies, crystallinity, composition, and optical characteristics are determined using a combination of scanning and transmission electron microscopies, electron diffraction, and X-ray photoelectron, energy dispersive X-ray, and Raman spectroscopies. We find that the InAs x P1- x nanowires are tapered with narrow tops, wider bases, and In-rich In-As alloy tips, characteristic of vapor-liquid-solid process. The wires exhibit a mixture of zinc blende and wurtzite crystal structures and a high density of structural defects such as stacking faults and twins. Our results suggest that the incorporation of As into InP wires decreases with increasing substrate temperature. The Raman spectra obtained from the In(As)P nanowires reveal a red-shift and lower intensity of longitudinal optical mode relative to both InP nanowires and InP(111)B bulk, due to the incorporation of As into the InP matrix.

  14. SEM and XPS studies of nanohole arrays on InP(1 0 0) surfaces created by coupling AAO templates and low energy Ar + ion sputtering

    Science.gov (United States)

    Robert-Goumet, C.; Monier, G.; Zefack, B.; Chelda, S.; Bideux, L.; Gruzza, B.; Awitor, O. K.

    2009-10-01

    The aim of the present study is to demonstrate the feasibility to form well-ordered nanoholes on InP(1 0 0) surfaces by low Ar + ion sputtering process in UHV conditions from anodized aluminum oxide (AAO) templates. This process is a promising approach in creating ordered arrays of surface nanostructures with controllable size and morphology. To follow the Ar + ion sputtering effects on the AAO/InP surfaces, X-ray photoelectron spectroscopy (XPS) was used to determine the different surface species. In 4d and P 2p core level spectra were recorded on different InP(1 0 0) surfaces after ions bombardment. XPS results showed the presence of metallic indium on both smooth InP(1 0 0) and AAO/InP(1 0 0) surfaces. Finally, we showed that this experiment led to the formation of metallic In dropplets about 10 nm in diameter on nanoholes patterned InP surface while the as-received InP(1 0 0) surface generated metallic In about 60 nm in diameter.

  15. Self-Catalyzed Growth and Characterization of In(As)P Nanowires on InP(111)B Using Metal-Organic Chemical Vapor Deposition.

    Science.gov (United States)

    Park, Jeung Hun; Pozuelo, Marta; Setiawan, Bunga P D; Chung, Choong-Heui

    2016-12-01

    We report the growth of vertical -oriented InAs x P1-x (0.11 ≤ x ≤ 0.27) nanowires via metal-organic chemical vapor deposition in the presence of indium droplets as catalysts on InP(111)B substrates at 375 °C. Trimethylindium, tertiarybutylphosphine, and tertiarybutylarsine are used as the precursors, corresponding to P/In and As/In molar ratios of 29 and 0.01, respectively. The as-grown nanowire growth morphologies, crystallinity, composition, and optical characteristics are determined using a combination of scanning and transmission electron microscopies, electron diffraction, and X-ray photoelectron, energy dispersive X-ray, and Raman spectroscopies. We find that the InAs x P1-x nanowires are tapered with narrow tops, wider bases, and In-rich In-As alloy tips, characteristic of vapor-liquid-solid process. The wires exhibit a mixture of zinc blende and wurtzite crystal structures and a high density of structural defects such as stacking faults and twins. Our results suggest that the incorporation of As into InP wires decreases with increasing substrate temperature. The Raman spectra obtained from the In(As)P nanowires reveal a red-shift and lower intensity of longitudinal optical mode relative to both InP nanowires and InP(111)B bulk, due to the incorporation of As into the InP matrix. PMID:27094822

  16. Beyond quantum

    CERN Document Server

    Khrennikov, Andrei

    2014-01-01

    The present wave of interest in quantum foundations is caused by the tremendous development of quantum information science and its applications to quantum computing and quantum communication. It has become clear that some of the difficulties encountered in realizations of quantum information processing have roots at the very fundamental level. To solve such problems, quantum theory has to be reconsidered. This book is devoted to the analysis of the probabilistic structure of quantum theory, probing the limits of classical probabilistic representation of quantum phenomena.

  17. Addition of Zn during the phosphine-based synthesis of indium phospide quantum dots: doping and surface passivation

    OpenAIRE

    Natalia E. Mordvinova; Vinokurov, Alexander A; Lebedev, Oleg I.; Kuznetsova, Tatiana A.; Dorofeev, Sergey G.

    2015-01-01

    Zinc-doped InP(Zn) colloidal quantum dots (QDs) with narrow size distribution and low defect concentration were grown for the first time via a novel phosphine synthetic route and over a wide range of Zn doping. We report the influence of Zn on the optical properties of the obtained quantum dots. We propose a mechanism for the introduction of Zn in the QDs and show that the incorporation of Zn atoms into the InP lattice leads to the formation of Zn acceptor levels and a luminescence tail in th...

  18. Nonlinear Dynamics In Quantum Physics -- Quantum Chaos and Quantum Instantons

    OpenAIRE

    Kröger, H.

    2003-01-01

    We discuss the recently proposed quantum action - its interpretation, its motivation, its mathematical properties and its use in physics: quantum mechanical tunneling, quantum instantons and quantum chaos.

  19. Laser field induced optical gain in a group III-V quantum wire

    Science.gov (United States)

    Saravanan, Subramanian; Peter, Amalorpavam John; Lee, Chang Woo

    2016-08-01

    Effect of intense high frequency laser field on the electronic and optical properties of heavy hole exciton in an InAsP/InP quantum well wire is investigated taking into consideration of the spatial confinement. Laser field induced exciton binding energies, optical band gap, oscillator strength and the optical gain in the InAs0.8P0.2/InP quantum well wire are studied. The variational formulism is applied to find the respective energies. The laser field induced optical properties are studied. The optical gain as a function of photon energy, in the InAs0.8P0.2/InP quantum wire, is obtained in the presence of intense laser field. The compact density matrix method is employed to obtain the optical gain. The results show that the 1.55 μm wavelength for the fibre optic telecommunication applications is achieved for 45 Å wire radius in the absence of laser field intensity whereas the 1.55 μm wavelength is obtained for 40 Å if the amplitude of the laser field amplitude parameter is 50 Å. The characterizing wavelength for telecommunication network is optimized when the intense laser field is applied for the system. It is hoped that the obtained optical gain in the group III-V narrow quantum wire can be applied for fabricating laser sources for achieving the preferred telecommunication wavelength.

  20. Overcoming power broadening of the quantum dot emission in a pure wurtzite nanowire

    Science.gov (United States)

    Reimer, M. E.; Bulgarini, G.; Fognini, A.; Heeres, R. W.; Witek, B. J.; Versteegh, M. A. M.; Rubino, A.; Braun, T.; Kamp, M.; Höfling, S.; Dalacu, D.; Lapointe, J.; Poole, P. J.; Zwiller, V.

    2016-05-01

    One of the key challenges in developing quantum networks is to generate single photons with high brightness, purity, and long temporal coherence. Semiconductor quantum dots potentially satisfy these requirements; however, due to imperfections in the surrounding material, the coherence generally degrades with increasing excitation power yielding a broader emission spectrum. Here we overcome this power-broadening regime and demonstrate an enhanced coherence at exciton saturation where the detected count rates are highest. We detect single-photon count rates of 460 000 counts per second under pulsed laser excitation while maintaining a single-photon purity greater than 99%. Importantly, the enhanced coherence is attained with quantum dots in ultraclean wurtzite InP nanowires, where the surrounding charge traps are filled by exciting above the wurtzite InP nanowire band gap. By raising the excitation intensity, the number of possible charge configurations in the quantum dot environment is reduced, resulting in a narrower emission spectrum. Via Monte Carlo simulations we explain the observed narrowing of the emission spectrum with increasing power. Cooling down the sample to 300 mK, we further enhance the single-photon coherence twofold as compared to operation at 4.5 K, resulting in a homogeneous coherence time, T2, of 1.2 ns, and two-photon interference visibility as high as 83% under strong temporal postselection (˜5 % without temporal postselection).

  1. Quantum Optics with Quantum Gases

    OpenAIRE

    Mekhov, Igor B.; Ritsch, Helmut

    2009-01-01

    Quantum optics with quantum gases represents a new field, where the quantum nature of both light and ultracold matter plays equally important role. Only very recently this ultimate quantum limit of light-matter interaction became feasible experimentally. In traditional quantum optics, the cold atoms are considered classically, whereas, in quantum atom optics, the light is used as an essentially classical axillary tool. On the one hand, the quantization of optical trapping potentials can signi...

  2. Performance, Defect Behavior and Carrier Enhancement in Low Energy, Proton Irradiated p(+)nn(+) InP Solar Cells

    Science.gov (United States)

    Weinberg, I.; Rybicki, G. C.; Vargas-Aburto, C.; Jain, R. K.; Scheiman, D.

    1994-01-01

    InP p(+)nn(+) cells, processed by MOCVD, were irradiated by 0.2 MeV protons and their performance and defect behavior observed to a maximum fluence of 10(exp 13)/sq cm. Their radiation induced degradation, over this fluence range, was considerably+less than observed for similarly irradiated, diffused junction n p InP cells. Significant degradation occurred in both the cell's emitter and base regions the least degradation occurring in the depletion region. A significant increase in series resistance occurs at the highest fluenc.e. Two majority carrier defect levels, E7 and E10, are observed by DLTS with activation energies at (E(sub C) - 0.39)eV and (E(sub C) - 0.74)eV respectively. The relative concentration of these defects differs considerably from that observed after 1 MeV electron irradiation. An increased carrier concentration in the cell's n-region was observed at the highest proton fluence, the change in carrier concentration being insignificant at the lower fluences. In agreement with previous results, for 1 and 1.5 MeV electron irradiated InP p(+)n junctions, the defect level E10 is attributed to a complex between zinc, diffused into the n-region from the zinc doped emitter, and a radiation induced defect. The latter is assumed to be either a phosphorus vacancy or interstitial. The increased, or enhanced carrier concentration is attributed to this complex acting as a donor.

  3. Thin-Film Solar Cells with InP Absorber Layers Directly Grown on Nonepitaxial Metal Substrates

    KAUST Repository

    Zheng, Maxwell

    2015-08-25

    The design and performance of solar cells based on InP grown by the nonepitaxial thin-film vapor-liquid-solid (TF-VLS) growth technique is investigated. The cell structure consists of a Mo back contact, p-InP absorber layer, n-TiO2 electron selective contact, and indium tin oxide transparent top electrode. An ex situ p-doping process for TF-VLS grown InP is introduced. Properties of the cells such as optoelectronic uniformity and electrical behavior of grain boundaries are examined. The power conversion efficiency of first generation cells reaches 12.1% under simulated 1 sun illumination with open-circuit voltage (VOC) of 692 mV, short-circuit current (JSC) of 26.9 mA cm-2, and fill factor (FF) of 65%. The FF of the cell is limited by the series resistances in the device, including the top contact, which can be mitigated in the future through device optimization. The highest measured VOC under 1 sun is 692 mV, which approaches the optically implied VOC of ≈795 mV extracted from the luminescence yield of p-InP. The design and performance of solar cells based on indium phosphide (InP) grown by the nonepitaxial thin-film vapor-liquid-solid growth technique is investigated. The cell structure consists of a Mo back contact, p-InP absorber layer, n-TiO2 electron selective contact, and an indium tin oxide transparent top electrode. The highest measured open circuit voltage (VOC) under 1 sun is 692 mV, which approaches the optically implied VOC of ≈795 mV extracted from the luminescence yield of p-InP.

  4. Intraband relaxation time in wurtzite InGaN quantum-well lasers and comparison with experiment

    CERN Document Server

    Park, S H

    1999-01-01

    The intraband relaxation time for wurtzite (WZ) 3.5-nm In sub 0 sub . sub 1 sub 5 Ga sub 0 sub . sub 8 sub 5 N/In sub 0 sub . sub 0 sub 2 Ga sub 0 sub . sub 9 sub 8 N quantum well (QW) lasers is investigated theoretically. The results are also compared with those obtained from fitting the experimental data with a non-Markovian gain model with many-body effects. An intraband relaxation time of 25 fs is obtained from the comparison with experiment, which is in reasonably good agreement with the calculated value of 20 fs at the subband edge. These values are significantly shorter than those (40 - 100 sf) reported for zinc-blende crystals, such as InP and GaAs. This is because the hole effective masses of GaN are larger than those of GaAs and InP.

  5. Quantum Chaos and Quantum Computers

    CERN Document Server

    Shepelyansky, D L

    2001-01-01

    The standard generic quantum computer model is studied analytically and numerically and the border for emergence of quantum chaos, induced by imperfections and residual inter-qubit couplings, is determined. This phenomenon appears in an isolated quantum computer without any external decoherence. The onset of quantum chaos leads to quantum computer hardware melting, strong quantum entropy growth and destruction of computer operability. The time scales for development of quantum chaos and ergodicity are determined. In spite the fact that this phenomenon is rather dangerous for quantum computing it is shown that the quantum chaos border for inter-qubit coupling is exponentially larger than the energy level spacing between quantum computer eigenstates and drops only linearly with the number of qubits n. As a result the ideal multi-qubit structure of the computer remains rather robust against imperfections. This opens a broad parameter region for a possible realization of quantum computer. The obtained results are...

  6. Determination of the complex linear electro-optic coefficient of GaAs and InP

    Energy Technology Data Exchange (ETDEWEB)

    Pristovsek, Markus [Technische Universitaet Berlin, Institut fuer Festkoerperphysik, Hardenbergstrasse 36, 10623 Berlin (Germany)

    2010-08-15

    The complex linear electro-optic coefficient d{sub 41} was determined for the first time above the fundamental band gap of GaAs and InP by measuring the doping induced band bending of several oxidized samples in reflectance anisotropy spectroscopy. From the real and imaginary part of the change of the spectra for different carrier concentrations the spectral change of d{sub 41} was calculated. This is the first determination of the imaginary part Im(d{sub 41}). (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  7. 110-GHz High-gain Flip-chip InP HEMT Amplifier with Resin Encapsulation on an Organic Substrate

    OpenAIRE

    Masuda, Satoshi; Kira, Hidehiko; Hirose, Tatsuya

    2004-01-01

    A high-gain amplifier monolithic microwave integrated circuit (MMIC) was developed using InP HEMT technology with inverted microstrip lines. The six-stage amplifier demonstrated a gain of 30 dB at 110 GHz. We also fabricated a resin-sealed flip-chip MMIC on a highly isolated cost-effective glass-epoxy substrate, achieving a gain of 28 dB at 110 GHz. To the best of our knowledge, this is the highest gain in the W-band for a flip-chip MMIC sealed with resin.

  8. Quantum matter

    International Nuclear Information System (INIS)

    The following topics are dealt with: Artificial atoms and molecules, tailored from solids, fractional flux quanta, molecular magnets, controlled interaction in quantum gases, the theory of quantum correlations in mott matter, cold gases, and mesoscopic systems, Bose-Einstein condensates on the chip, on the route to the quantum computer, a quantum computer in diamond. (HSI)

  9. Quantum radar

    CERN Document Server

    Lanzagorta, Marco

    2011-01-01

    This book offers a concise review of quantum radar theory. Our approach is pedagogical, making emphasis on the physics behind the operation of a hypothetical quantum radar. We concentrate our discussion on the two major models proposed to date: interferometric quantum radar and quantum illumination. In addition, this book offers some new results, including an analytical study of quantum interferometry in the X-band radar region with a variety of atmospheric conditions, a derivation of a quantum radar equation, and a discussion of quantum radar jamming.This book assumes the reader is familiar w

  10. Analysis of the surface photoabsorption signal during self-limited submonolayer growth of InP in metalorganic chemical vapor deposition

    CERN Document Server

    Lee, T W; Moon, Y B; Yoon, E J; Kim, Y D

    1999-01-01

    In situ, real-time monitoring of InP atomic layer epitaxy (ALE) was performed in low-pressure metalorganic chemical vapor deposition (LP-MOCVD) by surface photoabsorption (SPA). A self-limiting adsorption condition was obtained from the trimethylindium (TMIn) decomposition experiment at various conditions. It was found that the growth rate was less than 1 monolayer (ML)/cycle. From the in situ, real-time SPA measurement during InP ALE, the incomplete PH sub 3 decomposition on the methyl-terminated In surface was attributed to the self-limiting submonolayer growth per cycle.

  11. Morphology, luminescence, and electrical resistance response to H2 and CO gas exposure of porous InP membranes prepared by electrochemistry in a neutral electrolyte

    International Nuclear Information System (INIS)

    Porous InP membranes have been prepared by anodization of InP wafers with electron concentration of 1 x 1017 cm-3 and 1 x 1018 cm-3 in a neutral NaCl electrolyte. The internal surfaces of pores in some membranes were modified by electrochemical deposition of gold in a pulsed voltage regime. Photoluminescence and photosensitivity measurements indicate efficient light trapping and porous surface passivation. The photoluminescence and electrical resistivity of the membranes are sensitive to the adsorption of H2 and CO gas molecules. These properties are also influenced by the deposition of Au nanoparticles inside the pores.

  12. Biofunctional quantum dots as fluorescence probe for cell-specific targeting.

    Science.gov (United States)

    Ag, Didem; Bongartz, Rebecca; Dogan, Leyla Eral; Seleci, Muharrem; Walter, Johanna-G; Demirkol, Dilek Odaci; Stahl, Frank; Ozcelik, Serdar; Timur, Suna; Scheper, Thomas

    2014-02-01

    We describe here the synthesis, characterization, bioconjugation, and application of water-soluble thioglycolic acid TGA-capped CdTe/CdS quantum dots (TGA-QDs) for targeted cellular imaging. Anti-human epidermal growth factor receptor 2 (HER2) antibodies were conjugated to TGA-QDs to target HER2-overexpressing cancer cells. TGA-QDs and TGA-QDs/anti-HER2 bioconjugates were characterized by fluorescence and UV-Vis spectroscopy, X-ray diffraction (XRD), hydrodynamic sizing, electron microscopy, and gel electrophoresis. TGA-QDs and TGA-QDs/anti-HER2 were incubated with cells to examine cytotoxicity, targeting efficiency, and cellular localization. The cytotoxicity of particles was measured using an MTT assay and the no observable adverse effect concentration (NOAEC), 50% inhibitory concentration (IC50), and total lethal concentration (TLC) were calculated. To evaluate localization and targeting efficiency of TGA-QDs with or without antibodies, fluorescence microscopy and flow cytometry were performed. Our results indicate that antibody-conjugated TGA-QDs are well-suited for targeted cellular imaging studies. PMID:24176888

  13. Near-infrared quantum dots for HER2 localization and imaging of cancer cells

    Directory of Open Access Journals (Sweden)

    Rizvi SB

    2014-03-01

    Full Text Available Sarwat B Rizvi,1 Sepideh Rouhi,1 Shohei Taniguchi,2 Shi Yu Yang,1 Mark Green,2 Mo Keshtgar,1,3 Alexander M Seifalian1,3 1UCL Centre for Nanotechnology and Regenerative Medicine, University College London, 2Department of Physics, King's College London, 3Royal Free London NHS Foundation Trust Hospital, London, UK Background: Quantum dots are fluorescent nanoparticles with unique photophysical properties that allow them to be used as diagnostic, therapeutic, and theranostic agents, particularly in medical and surgical oncology. Near-infrared-emitting quantum dots can be visualized in deep tissues because the biological window is transparent to these wavelengths. Their small sizes and free surface reactive groups that can be conjugated to biomolecules make them ideal probes for in vivo cancer localization, targeted chemotherapy, and image-guided cancer surgery. The human epidermal growth factor receptor 2 gene (HER2/neu is overexpressed in 25%–30% of breast cancers. The current methods of detection for HER2 status, including immunohistochemistry and fluorescence in situ hybridization, are used ex vivo and cannot be used in vivo. In this paper, we demonstrate the application of near-infrared-emitting quantum dots for HER2 localization in fixed and live cancer cells as a first step prior to their in vivo application. Methods: Near-infrared-emitting quantum dots were characterized and their in vitro toxicity was established using three cancer cell lines, ie, HepG2, SK-BR-3 (HER2-overexpressing, and MCF7 (HER2-underexpressing. Mouse antihuman anti-HER2 monoclonal antibody was conjugated to the near-infrared-emitting quantum dots. Results: In vitro toxicity studies showed biocompatibility of SK-BR-3 and MCF7 cell lines with near-infrared-emitting quantum dots at a concentration of 60 µg/mL after one hour and 24 hours of exposure. Near-infrared-emitting quantum dot antiHER2-antibody bioconjugates successfully localized HER2 receptors on SK-BR-3 cells

  14. Quantum annealing

    OpenAIRE

    Ruiz, Alfonso de la Fuente

    2014-01-01

    Brief description on the state of the art of some local optimization methods: Quantum annealing Quantum annealing (also known as alloy, crystallization or tempering) is analogous to simulated annealing but in substitution of thermal activation by quantum tunneling. The class of algorithmic methods for quantum annealing (dubbed: 'QA'), sometimes referred by the italian school as Quantum Stochastic Optimization ('QSO'), is a promising metaheuristic tool for solving local search problems in mult...

  15. Quantum Magnetohydrodynamics

    OpenAIRE

    Haas, Fernando

    2005-01-01

    The quantum hydrodynamic model for charged particle systems is extended to the cases of non zero magnetic fields. In this way, quantum corrections to magnetohydrodynamics are obtained starting from the quantum hydrodynamical model with magnetic fields. The quantum magnetohydrodynamics model is analyzed in the infinite conductivity limit. The conditions for equilibrium in ideal quantum magnetohydrodynamics are established. Translationally invariant exact equilibrium solutions are obtained in t...

  16. Quantum ontologies

    International Nuclear Information System (INIS)

    Quantum ontologies are conceptions of the constitution of the universe that are compatible with quantum theory. The ontological orientation is contrasted to the pragmatic orientation of science, and reasons are given for considering quantum ontologies both within science, and in broader contexts. The principal quantum ontologies are described and evaluated. Invited paper at conference: Bell's Theorem, Quantum Theory, and Conceptions of the Universe, George Mason University, October 20-21, 1988. 16 refs

  17. Quantum correlations; quantum probability approach

    OpenAIRE

    Majewski, W A

    2014-01-01

    This survey gives a comprehensive account of quantum correlations understood as a phenomenon stemming from the rules of quantization. Centered on quantum probability it describes the physical concepts related to correlations (both classical and quantum), mathematical structures, and their consequences. These include the canonical form of classical correlation functionals, general definitions of separable (entangled) states, definition and analysis of quantumness of correlations, description o...

  18. Quantum CPU and Quantum Simulating

    OpenAIRE

    Wang, An Min

    1999-01-01

    Making use of an universal quantum network or QCPU proposed by me [6], some special quantum networks for simulating some quantum systems are given out. Specially, it is obtained that the quantum network for the time evolution operator which can simulate, in general, Schr\\"odinger equation.

  19. Quantum CPU and Quantum Algorithm

    OpenAIRE

    Wang, An Min

    1999-01-01

    Making use of an universal quantum network -- QCPU proposed by me\\upcite{My1}, it is obtained that the whole quantum network which can implement some the known quantum algorithms including Deutsch algorithm, quantum Fourier transformation, Shor's algorithm and Grover's algorithm.

  20. Quantum Computer Games: Quantum Minesweeper

    Science.gov (United States)

    Gordon, Michal; Gordon, Goren

    2010-01-01

    The computer game of quantum minesweeper is introduced as a quantum extension of the well-known classical minesweeper. Its main objective is to teach the unique concepts of quantum mechanics in a fun way. Quantum minesweeper demonstrates the effects of superposition, entanglement and their non-local characteristics. While in the classical…

  1. Quantum teleportation and quantum information

    International Nuclear Information System (INIS)

    The scheme of quantum teleportation is described in a mathematically rigorous way, including analysis of the role and importance of quantum entanglement. The experiments with quantum teleportation performed in Innsbruck and in Rome are described in detail, and some differences between the two approaches are discussed. The elements of quantum information theory are introduced and compared with Shannon's classical information theory. The phenomenon of quantum teleportation is placed into a wider context of the developing quantum information theory, which enables quantum teleportation to be described by using the particle physics language. (Z.J.)

  2. Ultra-broadband Nonlinear Microwave Monolithic Integrated Circuits in SiGe, GaAs and InP

    DEFF Research Database (Denmark)

    Krozer, Viktor; Johansen, Tom Keinicke; Djurhuus, Torsten;

    2006-01-01

    Analog MMIC circuits with ultra-wideband operation are discussed in view of their frequency limitation and different circuit topologies. Results for designed and fabricated frequency converters in SiGe, GaAs, and InP technologies are presented in the paper. RF type circuit topologies exhibit a fl....... Analysis techniques and novel feedback schemes show improvement to the traditional circuit design. Subharmonic mixer measurements at 50 GHz RF signal agree very well with simulations, which manifests the broadband operating properties of these circuits.......Analog MMIC circuits with ultra-wideband operation are discussed in view of their frequency limitation and different circuit topologies. Results for designed and fabricated frequency converters in SiGe, GaAs, and InP technologies are presented in the paper. RF type circuit topologies exhibit a flat...... conversion gain with a 3 dB bandwidth of 10 GHz for SiGe and in excess of 20 GHz for GaAs processes. The concurrent LO-IF isolation is better than -25 dB, without including the improvement due to the combiner circuit. The converter circuits exhibit similar instantaneous bandwidth at IF and RF ports of ≫ 7...

  3. Modulation of electrical properties in Cu/n-type InP Schottky junctions using oxygen plasma treatment

    International Nuclear Information System (INIS)

    Using current–voltage (I–V) measurements, we investigated the effect of oxygen plasma treatment on the temperature-dependent electrical properties of Cu/n-type indium phosphide (InP) Schottky contacts at temperatures in the range 100–300 K. Changes in the electrical parameters were evident below 180 K for the low-plasma-power sample (100 W), which is indicative of the presence of a wider distribution of regions of low barrier height. Modified Richardson plots were used to obtain Richardson constants, which were similar to the theoretical value of 9.4 A cm−2 K−2 for n-type InP. This suggests that, for all the samples, a thermionic emission model including a spatially inhomogeneous Schottky barrier can be used to describe the charge transport phenomena at the metal/semiconductor interface. The voltage dependence of the reverse-bias current revealed that Schottky emission was dominant for the untreated and high-plasma-power (250 W) samples. For the low-plasma-power sample, Poole–Frenkel emission was dominant at low voltages, whereas Schottky emission dominated at higher voltages. Defect states and nonuniformity of the interfacial layer appear to be significant in the reverse-bias charge transport properties of the low-plasma-power sample. (paper)

  4. Vertical and Smooth, etching of InP by Cl2/CH4/Ar Inductively Coupled Plasma at Room Temperature

    Institute of Scientific and Technical Information of China (English)

    孙长征; 周进波; 熊兵; 王健; 罗毅

    2003-01-01

    We study the room-temperature dry, etching of InP by inductively coupled plasma (ICP) using Cl2/CH4/Ar mixtures. Etches were characterized in terms of anisotropy and surface roughness by scanning electron microscopy and atomic force microscopy, respectively. It is found that the flow ratio between Cl2 and CH4, ICP power, rf chuck power, and table temperature can greatly influence the, etching results. By adjusting, etching parameters,vertical sidewall and smooth surface can be obtained simultaneously, together with a moderate, etch rate and a good select ratio. The root-mean-square surface roughness is measured to be as low as 0.27nm. To the best of our knowledge, this is the best result for InP to date. The, etch rate is 855 nm/min, and the selectivity ratio over SiO2 is estimated to be higher than 15:1. The stoichiometry of the, etched surface has also been investigated by Auger electron spectroscopy. The, etched surface is found to manifest a slight P deficiency, and the ratio between P and In reaches the stoichiometric value within about 0.75nm depth into the surface.

  5. Quantum memristors

    Science.gov (United States)

    Pfeiffer, P.; Egusquiza, I. L.; Di Ventra, M.; Sanz, M.; Solano, E.

    2016-01-01

    Technology based on memristors, resistors with memory whose resistance depends on the history of the crossing charges, has lately enhanced the classical paradigm of computation with neuromorphic architectures. However, in contrast to the known quantized models of passive circuit elements, such as inductors, capacitors or resistors, the design and realization of a quantum memristor is still missing. Here, we introduce the concept of a quantum memristor as a quantum dissipative device, whose decoherence mechanism is controlled by a continuous-measurement feedback scheme, which accounts for the memory. Indeed, we provide numerical simulations showing that memory effects actually persist in the quantum regime. Our quantization method, specifically designed for superconducting circuits, may be extended to other quantum platforms, allowing for memristor-type constructions in different quantum technologies. The proposed quantum memristor is then a building block for neuromorphic quantum computation and quantum simulations of non-Markovian systems. PMID:27381511

  6. Quantum memristors.

    Science.gov (United States)

    Pfeiffer, P; Egusquiza, I L; Di Ventra, M; Sanz, M; Solano, E

    2016-01-01

    Technology based on memristors, resistors with memory whose resistance depends on the history of the crossing charges, has lately enhanced the classical paradigm of computation with neuromorphic architectures. However, in contrast to the known quantized models of passive circuit elements, such as inductors, capacitors or resistors, the design and realization of a quantum memristor is still missing. Here, we introduce the concept of a quantum memristor as a quantum dissipative device, whose decoherence mechanism is controlled by a continuous-measurement feedback scheme, which accounts for the memory. Indeed, we provide numerical simulations showing that memory effects actually persist in the quantum regime. Our quantization method, specifically designed for superconducting circuits, may be extended to other quantum platforms, allowing for memristor-type constructions in different quantum technologies. The proposed quantum memristor is then a building block for neuromorphic quantum computation and quantum simulations of non-Markovian systems. PMID:27381511

  7. Quantum memristors

    Science.gov (United States)

    Pfeiffer, P.; Egusquiza, I. L.; di Ventra, M.; Sanz, M.; Solano, E.

    2016-07-01

    Technology based on memristors, resistors with memory whose resistance depends on the history of the crossing charges, has lately enhanced the classical paradigm of computation with neuromorphic architectures. However, in contrast to the known quantized models of passive circuit elements, such as inductors, capacitors or resistors, the design and realization of a quantum memristor is still missing. Here, we introduce the concept of a quantum memristor as a quantum dissipative device, whose decoherence mechanism is controlled by a continuous-measurement feedback scheme, which accounts for the memory. Indeed, we provide numerical simulations showing that memory effects actually persist in the quantum regime. Our quantization method, specifically designed for superconducting circuits, may be extended to other quantum platforms, allowing for memristor-type constructions in different quantum technologies. The proposed quantum memristor is then a building block for neuromorphic quantum computation and quantum simulations of non-Markovian systems.

  8. Quantumness witnesses

    Energy Technology Data Exchange (ETDEWEB)

    Alicki, Robert [Institute of Theoretical Physics and Astrophysics, University of Gdansk, Wita Stwosza 57, PL 80-952 Gdansk (Poland); Piani, Marco [Institute for Quantum Computing and Department of Physics and Astronomy, University of Waterloo, 200 University Ave. W., N2 L 3G1 Waterloo ON (Canada); Van Ryn, Nicholas [School Of Physics, Quantum Research Group, University of KwaZulu-Natal, Westville Campus, Private Bag x54001, Durban (South Africa)], E-mail: fizra@univ.gda.pl

    2008-12-12

    A recently proposed test of quantumness Alicki and Van Ryn (2008 J. Phys. A: Math. Theor. 41 062001) is put into a broader mathematical and physical perspective. The notion of quantumness witnesses is introduced, in analogy to entanglement witnesses, and is illustrated by examples of single qubit and many-body systems with additive observables. We also compare our proposal with the quantumness test based on quantum correlations (entanglement) and Bell inequalities, and go on to discuss a class of quantumness witnesses associated with the phase-space representation of quantum mechanics.

  9. Quantum trajectories

    CERN Document Server

    Chattaraj, Pratim Kumar

    2010-01-01

    The application of quantum mechanics to many-particle systems has been an active area of research in recent years as researchers have looked for ways to tackle difficult problems in this area. The quantum trajectory method provides an efficient computational technique for solving both stationary and time-evolving states, encompassing a large area of quantum mechanics. Quantum Trajectories brings the expertise of an international panel of experts who focus on the epistemological significance of quantum mechanics through the quantum theory of motion.Emphasizing a classical interpretation of quan

  10. High Temperature Operation of 5.5μm Strain-Compensated Quantum Cascaded Lasers

    Institute of Scientific and Technical Information of China (English)

    LU Xiu-Zhen; LIU Feng-Qi; LIU Jun-Qi; JIN Peng; WANG Zhan-Guo

    2005-01-01

    @@ We develop 5.5-μm Inx Ga1-xAs/InyAl1-yAs strain-compensated quantum cascade lasers with InP and InGaAs cladding layers by using solid-source molecular-beam epitaxy. Pulse operation has been achieved up to 323K (50℃) for uncoated 20-μm-wide and 2-mm-long devices. These devices display an output power of 36mW with a duty cycle of 1% at room temperature. In continuous wave operation a record peak optical power of 10mW per facet has been measured at 83 K.

  11. Exploring the effective photon management by InP nanoparticles: Broadband light absorption enhancement of InP/In{sub 0.53}Ga{sub 0.47}As/InP thin-film photodetectors

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Dong; Zhu, Xi; Li, Jian; Xu, Yun; Song, Guofeng; Wei, Xin, E-mail: weix@red.semi.ac.cn [Nano-optoelectronics Laboratory, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083 (China); Liu, Jietao [School of Physics and Optoelectronic Engineering, Xidian University, Xi' an, Shannxi 710071 (China)

    2015-05-28

    High-index dielectric and semiconductor nanoparticles with the characteristics of low absorption loss and strong scattering have attracted more and more attention for improving performance of thin-film photovoltaic devices. In this paper, we focus our attention on InP nanoparticles and study the influence of the substrate and the geometrical configurations on their scattering properties. We demonstrate that, compared with the InP sphere, the InP cylinder has higher coupling efficiency due to the stronger interactions between the optical mode in the nanoparticle and its induced mirror image in the substrate. Moreover, we propose novel thin-film InGaAs photodetectors integrated with the periodically arranged InP nanoparticles on the substrate. Broadband light absorption enhancement is achieved over the wavelength range between 1.0 μm and 1.7 μm. The highest average absorption enhancement of 59.7% is realized for the photodetector with the optimized cylinder InP nanoparticles. These outstanding characteristics attribute to the preferentially forward scattering of single InP nanoparticle along with the effective coupling of incident light into the guided modes through the collective diffraction effect of InP nanoparticles array.

  12. A Ploidy-Sensitive Mechanism Regulates Aperture Formation on the Arabidopsis Pollen Surface and Guides Localization of the Aperture Factor INP1.

    Directory of Open Access Journals (Sweden)

    Sarah H Reeder

    2016-05-01

    Full Text Available Pollen presents a powerful model for studying mechanisms of precise formation and deposition of extracellular structures. Deposition of the pollen wall exine leads to the generation of species-specific patterns on pollen surface. In most species, exine does not develop uniformly across the pollen surface, resulting in the formation of apertures-openings in the exine that are species-specific in number, morphology and location. A long time ago, it was proposed that number and positions of apertures might be determined by the geometry of tetrads of microspores-the precursors of pollen grains arising via meiotic cytokinesis, and by the number of last-contact points between sister microspores. We have tested this model by characterizing Arabidopsis mutants with ectopic apertures and/or abnormal geometry of meiotic products. Here we demonstrate that contact points per se do not act as aperture number determinants and that a correct geometric conformation of a tetrad is neither necessary nor sufficient to generate a correct number of apertures. A mechanism sensitive to pollen ploidy, however, is very important for aperture number and positions and for guiding the aperture factor INP1 to future aperture sites. In the mutants with ectopic apertures, the number and positions of INP1 localization sites change depending on ploidy or ploidy-related cell size and not on INP1 levels, suggesting that sites for aperture formation are specified before INP1 is brought to them.

  13. A Ploidy-Sensitive Mechanism Regulates Aperture Formation on the Arabidopsis Pollen Surface and Guides Localization of the Aperture Factor INP1.

    Science.gov (United States)

    Reeder, Sarah H; Lee, Byung Ha; Fox, Ronald; Dobritsa, Anna A

    2016-05-01

    Pollen presents a powerful model for studying mechanisms of precise formation and deposition of extracellular structures. Deposition of the pollen wall exine leads to the generation of species-specific patterns on pollen surface. In most species, exine does not develop uniformly across the pollen surface, resulting in the formation of apertures-openings in the exine that are species-specific in number, morphology and location. A long time ago, it was proposed that number and positions of apertures might be determined by the geometry of tetrads of microspores-the precursors of pollen grains arising via meiotic cytokinesis, and by the number of last-contact points between sister microspores. We have tested this model by characterizing Arabidopsis mutants with ectopic apertures and/or abnormal geometry of meiotic products. Here we demonstrate that contact points per se do not act as aperture number determinants and that a correct geometric conformation of a tetrad is neither necessary nor sufficient to generate a correct number of apertures. A mechanism sensitive to pollen ploidy, however, is very important for aperture number and positions and for guiding the aperture factor INP1 to future aperture sites. In the mutants with ectopic apertures, the number and positions of INP1 localization sites change depending on ploidy or ploidy-related cell size and not on INP1 levels, suggesting that sites for aperture formation are specified before INP1 is brought to them. PMID:27177036

  14. Passive and electro-optic polymer photonics and InP electronics integration for multi-flow terabit transceivers at edge SDN switches and data-center gateways

    DEFF Research Database (Denmark)

    Avramopoulos, Hercules; Katopodis, V.; Groumas, P.;

    2014-01-01

    electro-optic with passive polymers and we develop a novel photonic integration platform with unprecedented potential for high-speed modulation and optical functionality on-chip. We also rely on the combination of polymers with InP elements and the use of InP-DHBT electronics for driving circuits based...

  15. Fe-contacts on InAs(100) and InP(100) characterised by conversion electron Mössbauer spectroscopy

    DEFF Research Database (Denmark)

    Damsgaard, Christian Danvad; Gunnlaugsson, H.P; Weyer, G.;

    2005-01-01

    We have grown 4 nm thin films of Fe-57 on InAs(100) and InP(100) surfaces by use of MBE and studied the samples by Fe-57 conversion electron Mossbauer spectroscopy. In the case of InAs, the Mossbauer spectrum showed a sextet due to alpha-Fe and a further magnetically split component with slightly...

  16. Wavelength Conversion of a 9.35-Gb/s RZ OOK Signal in an InP Photonic Crystal Nanocavity

    DEFF Research Database (Denmark)

    Vukovic, Dragana; Yu, Yi; Heuck, Mikkel;

    2014-01-01

    Wavelength conversion of a 10-Gb/s (9.35 Gb/s net rate) return-to-zero ON-OFF keying signal is demonstrated using a simple InP photonic crystal H0 nanocavity with Lorentzian line shape. The shifting of the resonance induced by the generation of free-carriers enables the pump intensity modulation...

  17. Beam emittance forming line of the cw race-track microtron of the Institute of Nuclear Physics of Moscow State University (INP MSU)

    Energy Technology Data Exchange (ETDEWEB)

    Alimov, A.S.; Gevorkyan, V.G.; Gorbatov, Yu.I.; Gribov, I.V.; Ibadov, A.Kh.; Ishkhanov, B.S.; Korneenkov, V.A.; Lazutin, E.V.; Makulbekov, E.A.; Piskarev, I.M.

    1989-06-01

    The transverse and longitudinal emittance forming line (EFL) of the race-track microtron of INP MSU is described. The work presents the principles of operation, parameters of EFL elements, description of rf power supply system and automated control system. The method of EFL tuning and experimental results are discussed.

  18. Growth and characterization of InP/In{sub 0.48}Ga{sub 0.52}P quantum dots optimized for single-photon emission

    Energy Technology Data Exchange (ETDEWEB)

    Ugur, Asli

    2012-08-28

    In this work the growth of self-assembled InP/InGaP quantum dots, as well as their optical and structural properties are presented and discussed. The QDs were grown on In{sub 0.48}Ga{sub 0.52}P, lattice matched to GaAs. Self-assembled InP quantum dots are grown using gas-source molecular beam epitaxy over a wide range of InP deposition rates, using an ultra-low growth rate of about 0.01 atomic monolayers/s, a quantum-dot density of 1 dot/μm{sup 2} is realized. The resulting isolated InP quantum dots are individually characterized without the need for lithographical patterning and masks on the substrate. Both excitonic and biexcitonic emissions are observed from single dots, appearing as doublets with a fine-structure splitting of 320 μeV. Hanbury Brown-Twiss correlation measurements for the excitonic emission under cw excitation show anti-bunching behavior with an autocorrelation value of g{sup (2)}(0)=0.2. This system is applicable as a single-photon source for applications such as quantum cryptography. The formation of well-ordered chains of InP quantum dots on GaAs (001) substrates by using self-organized In{sub 0.48}Ga{sub 0.52}P surface undulations as a template is also demonstrated. The ordering requires neither stacked layers of quantum dots nor substrate misorientation. The structures are investigated by polarization-dependent photoluminescence together with transmission electron microscopy. Luminescence from the In{sub 0.48}Ga{sub 0.52}P matrix is polarized in one crystallographic direction due to anisotropic strain arising from a lateral compositional modulation. The photoluminescence measurements show enhanced linear polarization in the alignment direction of quantum dots. A polarization degree of 66% is observed. The optical anisotropy is achieved with a straightforward heterostructure, requiring only a single layer of QDs.

  19. Optical reading of field-effect transistors by phase-space absorption quenching in a single InGaAs quantum well conducting channel

    Science.gov (United States)

    Chemla, D. S.; Bar-Joseph, I.; Klingshirn, C.; Miller, D. A. B.; Kuo, J. M.

    1987-03-01

    Absorption switching in a semiconductor quantum well by electrically varying the charge density in the quantum well conducting channel of a selectively doped heterostructure transistor is reported for the first time. The phase-space absorption quenching (PAQ) is observed at room temperature in an InGaAs/InAlAs grown on InP FET, and it shows large absorption coefficient changes with relatively broad spectral bandwidth. This PAQ is large enough to be used for direct optical determination of the logic state of the FET.

  20. Quantum robots and quantum computers

    Energy Technology Data Exchange (ETDEWEB)

    Benioff, P.

    1998-07-01

    Validation of a presumably universal theory, such as quantum mechanics, requires a quantum mechanical description of systems that carry out theoretical calculations and systems that carry out experiments. The description of quantum computers is under active development. No description of systems to carry out experiments has been given. A small step in this direction is taken here by giving a description of quantum robots as mobile systems with on board quantum computers that interact with different environments. Some properties of these systems are discussed. A specific model based on the literature descriptions of quantum Turing machines is presented.

  1. Quantum music

    OpenAIRE

    Putz, Volkmar; Svozil, Karl

    2015-01-01

    We consider ways of conceptualizing, rendering and perceiving quantum music, and quantum art in general. Thereby, we give particular emphasis to its non-classical aspects, such as coherent superposition and entanglement.

  2. Quantum Darwinism

    Energy Technology Data Exchange (ETDEWEB)

    Zurek, Wojciech H [Los Alamos National Laboratory

    2008-01-01

    Quantum Darwinism - proliferation, in the environment, of multiple records of selected states of the system (its information-theoretic progeny) - explains how quantum fragility of individual state can lead to classical robustness of their multitude.

  3. Quantum music

    CERN Document Server

    Putz, Volkmar

    2015-01-01

    We consider ways of conceptualizing, rendering and perceiving quantum music, and quantum art in general. Thereby we give particular emphasis to its non-classical aspects, such as coherent superposition and entanglement.

  4. Red to orange electroluminescence from InP/AlGaInP quantum dots at room temperature

    Science.gov (United States)

    Roßbach, R.; Schulz, W.-M.; Eichfelder, M.; Reischle, M.; Beirne, G. J.; Jetter, M.; Michler, P.

    2008-11-01

    We demonstrate the growth of electrically driven InP/AlGaInP quantum dots embedded in a p-i-n diode structure emitting in the red to orange spectral region at room temperature. We observed an increase in emission wavelength by decreasing the quantum dot growth temperature from 710 down to 670 °C. Due to the decreased diffusion length the incorporation of Al from the AlGaInP barrier into the InP quantum dots is reduced and results in a strong red shift of the electroluminescence of up to 95 nm (620-715 nm). Electrically driven photon correlation measurements (5 K) performed on a single quantum dot under continuous current show a clear antibunching behavior ( g(0)=0.41) as expected for a single-photon emitter.

  5. Quantum Relativity

    OpenAIRE

    Ionescu, Lucian M

    2010-01-01

    Quantum Relativity is supposed to be a new theory, which locally is a deformation of Special Relativity, and globally it is a background independent theory including the main ideas of General Relativity, with hindsight from Quantum Theory. The qubit viewed as a Hopf monopole bundle is considered as a unifying gauge "group". Breaking its chiral symmetry is conjectured to yield gravity as a deformation of electromagnetism. It is already a quantum theory in the context of Quantum Information Dyn...

  6. Quantum Abacus

    CERN Document Server

    Cheon, T

    2004-01-01

    We show that the U(2) family of point interactions on a line can be utilized to provide the U(2) family of qubit operations for quantum information processing. Qubits are realized as localized states in either side of the point interaction which represents a controllable gate. The manipulation of qubits proceeds in a manner analogous to the operation of an abacus. Keywords: quantum computation, quantum contact interaction, quantum wire

  7. Quantum criticality

    OpenAIRE

    Coleman, P.; Schofield, A.J.

    2005-01-01

    As we mark the centenary of Albert Einstein's seminal contribution to both quantum mechanics and special relativity, we approach another anniversary--that of Einstein's foundation of the quantum theory of solids. But 100 years on, the same experimental measurement that puzzled Einstein and his contemporaries is forcing us to question our understanding of how quantum matter transforms at ultra-low temperatures.

  8. Quantum Teleportation

    OpenAIRE

    Slavnov, D. A.

    2009-01-01

    In the framework of an algebraic approach, we consider a quantum teleportation procedure. It turns out that using the quantum measurement nonlocality hypothesis is unnecessary for describing this procedure. We study the question of what material objects are information carriers for quantum teleportation.

  9. I, Quantum Robot: Quantum Mind control on a Quantum Computer

    OpenAIRE

    Zizzi, Paola

    2008-01-01

    The logic which describes quantum robots is not orthodox quantum logic, but a deductive calculus which reproduces the quantum tasks (computational processes, and actions) taking into account quantum superposition and quantum entanglement. A way toward the realization of intelligent quantum robots is to adopt a quantum metalanguage to control quantum robots. A physical implementation of a quantum metalanguage might be the use of coherent states in brain signals.

  10. Development of novel n{sup +}-in-p Silicon Planar Pixel Sensors for HL-LHC

    Energy Technology Data Exchange (ETDEWEB)

    Unno, Y., E-mail: yoshinobu.unno@kek.jp [Institute of Particle and Nuclear Study, High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba-shi, Ibaraki-ken 305-0801 (Japan); Gallrapp, C. [European Organization for Nuclear Research (CERN), CH-1211, Geneve 23 (Switzerland); Hori, R. [Institute of Particle and Nuclear Study, High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba-shi, Ibaraki-ken 305-0801 (Japan); Idarraga, J. [Institut Universitaire de Technologie d' Orsay, Universite de Paris Sud, plateau de Moulon, 91400 Orsay (France); Mitsui, S. [The Graduate University for Advanced Studies (SOKENDAI), 1-1 Oho, Tsukuba-shi, Ibaraki-ken 305-0801 (Japan); Nagai, R.; Kishida, T. [Department of Physics, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550 (Japan); Ishida, A.; Ishihara, M.; Kamada, S.; Inuzuka, T.; Yamamura, K. [Solid-State Division, Hamamatsu Photonics K.K., 1126-1 Ichino-cho, Higashi-ku, Hamamatsu-shi, Shizuoka 435-8558 (Japan); Hara, K. [Institute of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba-shi, Ibaraki 305-8571 (Japan); Ikegami, Y. [Institute of Particle and Nuclear Study, High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba-shi, Ibaraki-ken 305-0801 (Japan); Jinnouchi, O. [Department of Physics, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550 (Japan); Lounis, A. [Institut Universitaire de Technologie d' Orsay, Universite de Paris Sud, plateau de Moulon, 91400 Orsay (France); Takahashi, Y. [Institute of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba-shi, Ibaraki 305-8571 (Japan); Takubo, Y.; Terada, S. [Institute of Particle and Nuclear Study, High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba-shi, Ibaraki-ken 305-0801 (Japan); Hanagaki, K. [Department of Physics, Osaka University, Machikaneyama-cho, Toyonaka-shi, Osaka 560-0043 (Japan); and others

    2013-01-21

    We have been developing highly radiation-tolerant n{sup +}-in-p planar pixel sensors for use in the high-luminosity LHC. Novel n{sup +}-in-p structures were made using various combinations of the bias structures (punch-through or polysilicon resistor), isolation structures (p-stop or p-spray), and thicknesses (320μm or 150μm). The 1-chip pixel modules with thin FE-I4 pixel sensors were evaluated using test beams, before and after 2×10{sup 15}n{sub eq}/cm{sup 2} irradiation. The full depletion voltages were estimated to be 44±10 V and 380±70 V, in the non-irradiated and the irradiated modules, respectively. A reduction of efficiency was observed in the vicinity of the four pixel corners and underneath the bias rail after the irradiation. The global efficiencies were >99% and >95% in the non-irradiated and the irradiated modules, respectively. The collected charges were uniform in the depth direction at bias voltages well above the full depletion voltages. The encapsulation of vulnerable edges with adhesive or parylene prevented HV sparking. Bump bonding with the SnAg solder bumps was performed at HPK with 150μm- and 320μm-thick sensors and chips. No disconnection of bumps was observed after 10 thermal cycles between −40 and +50 °C, with a temperature slew rate of >70K/min. -- Highlights: ► Novel n{sup +}-in-p pixel sensors were made of punch-through/poly-Si biasing, p-stop/p-spray isolation, and 320/150μm thickness. ► The thin pixel modules were evaluated in testbeams, before and after 2×10{sup 15}n{sub eq}/cm{sup 2} irradiation. ► A reduction of efficiency was observed in the vicinity of four-corners of pixels and underneath the bias rail after irradiation. ► Encapsulating the vulnerable edges with adhesive or parylene achieved prevention of HV sparking up to 1000 V. ► No disconnection of SnAg bump-bonds was observed in dummy modules after 10 thermal cycles with a slew rate of >70K/min.

  11. Quantum memory in quantum cryptography

    CERN Document Server

    Mor, T

    1999-01-01

    [Shortened abstract:] This thesis investigates the importance of quantum memory in quantum cryptography, concentrating on quantum key distribution schemes. In the hands of an eavesdropper -- a quantum memory is a powerful tool, putting in question the security of quantum cryptography; Classical privacy amplification techniques, used to prove security against less powerful eavesdroppers, might not be effective when the eavesdropper can keep quantum states for a long time. In this work we suggest a possible direction for approaching this problem. We define strong attacks of this type, and show security against them, suggesting that quantum cryptography is secure. We start with a complete analysis regarding the information about a parity bit (since parity bits are used for privacy amplification). We use the results regarding the information on parity bits to prove security against very strong eavesdropping attacks, which uses quantum memories and all classical data (including error correction codes) to attack th...

  12. Quantum cheques

    Science.gov (United States)

    Moulick, Subhayan Roy; Panigrahi, Prasanta K.

    2016-06-01

    We propose the idea of a quantum cheque scheme, a cryptographic protocol in which any legitimate client of a trusted bank can issue a cheque, that cannot be counterfeited or altered in anyway, and can be verified by a bank or any of its branches. We formally define a quantum cheque and present the first unconditionally secure quantum cheque scheme and show it to be secure against any no-signalling adversary. The proposed quantum cheque scheme can been perceived as the quantum analog of Electronic Data Interchange, as an alternate for current e-Payment Gateways.

  13. Quantum Darwinism

    Science.gov (United States)

    Zurek, Wojciech Hubert

    2009-03-01

    Quantum Darwinism describes the proliferation, in the environment, of multiple records of selected states of a quantum system. It explains how the quantum fragility of a state of a single quantum system can lead to the classical robustness of states in their correlated multitude; shows how effective `wave-packet collapse' arises as a result of the proliferation throughout the environment of imprints of the state of the system; and provides a framework for the derivation of Born's rule, which relates the probabilities of detecting states to their amplitudes. Taken together, these three advances mark considerable progress towards settling the quantum measurement problem.

  14. First step to Si photonics: synthesis of quantum dot light-emitters on GaP substrate by MBE

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Weiming; Bondi, Alexandre; Cornet, Charles; Folliot, Herve; Letoublon, Antoine; Boyer-Richard, Soline; Chevalier, Nicolas; Gicquel, Maud; Alsahwa, Bassem; Corre, Alain Le; Even, Jacky; Durand, Olivier; Loualiche, Slimane [CNRS UMR 6082 FOTON, INSA-Rennes, Rennes (France)

    2009-10-15

    We have grown InAs and InP quantum dots (QDs) on GaP substrate by Molecular Beam Epitaxy (MBE) and analysed them by Atomic Force Microscopy (AFM) and photoluminescence (PL). AFM images confirm the formation of InAs and InP QDs. Largest InAs QDs density is obtained at a growth temperature of 450 C and under an AsH{sub 3} flux of 0.3 SCCM. The evolution of QDs shape and absence of photoluminescence indicate a likely plastic relaxation of the strain between InAs and GaP. Concerning InP/GaP QDs, their lateral size, height and density indicate good quality QDs. Photoluminescence signal has been detected for capped InP/GaP QDs until 180 K. The unchanged peak position with respect to InP coverage is attributed to the nearly constant height of the QDs. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  15. Quantum-Hall quantum bits

    OpenAIRE

    Yang, S. -R. Eric; Schliemann, John; MacDonald, A. H.

    2002-01-01

    Bilayer quantum Hall systems can form collective states in which electrons exhibit spontaneous interlayer phase coherence. We discuss the possibility of using bilayer quantum dot many-electron states with this property to create two-level systems that have potential advantages as quantum bits.

  16. Quantum entanglement and quantum operation

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    It is a simple introduction to quantum entanglement and quantum operations. The authors focus on some applications of quantum entanglement and relations between two-qubit entangled states and unitary operations. It includes remote state preparation by using any pure entangled states, nonlocal operation implementation using entangled states, entanglement capacity of two-qubit gates and two-qubit gates construction.

  17. Growth of anodic films on compound semiconductor electrodes: InP in aqueous (NH sub 4) sub 2 S

    CERN Document Server

    Buckley, D N

    2002-01-01

    Film formation on compound semiconductors under anodic conditions is discussed. The surface properties of InP electrodes were examined following anodization in a (NH sub 4) sub 2 S electrolyte. The observation of a current peak in the cyclic voltammetric curve was attributed to selective etching of the substrate and a film formation process. AFM images of samples anodized in the sulfide solution revealed surface pitting. Thicker films formed at higher potentials exhibited extensive cracking as observed by optical and electron microscopy, and this was explicitly demonstrated to occur ex situ rather than during the electrochemical treatment. The composition of the thick film was identified as In sub 2 S sub 3 by EDX and XPS. The measured film thickness varies linearly with the charge passed, and comparison between experimental thickness measurements and theoretical estimates for the thickness indicate a porosity of over 70 %. Cracking is attributed to shrinkage during drying of the highly porous film and does n...

  18. Fullerene-assisted electron-beam lithography for pattern improvement and loss reduction in InP membrane waveguide devices.

    Science.gov (United States)

    Jiao, Yuqing; Pello, Josselin; Mejia, Alonso Millan; Shen, Longfei; Smalbrugge, Barry; Geluk, Erik Jan; Smit, Meint; van der Tol, Jos

    2014-03-15

    In this Letter, we present a method to prepare a mixed electron-beam resist composed of a positive resist (ZEP520A) and C60 fullerene. The addition of C60 to the ZEP resist changes the material properties under electron beam exposure significantly. An improvement in the thermal resistance of the mixed material has been demonstrated by fabricating multimode interference couplers and coupling regions of microring resonators. The fabrication of distributed Bragg reflector structures has shown improvement in terms of pattern definition accuracy with respect to the same structures fabricated with normal ZEP resist. Straight InP membrane waveguides with different lengths have been fabricated using this mixed resist. A decrease of the propagation loss from 6.6 to 3.3  dB/cm has been demonstrated.

  19. A Physics-Based Charge-Control Model for InP DHBT Including Current-Blocking Effect

    Institute of Scientific and Technical Information of China (English)

    GE Ji; JIN Zhi; SU Yong-Bo; CHENG Wei; WANG Xian-Wai; CHEN Gao-Peng; LIU Xin-Yu

    2009-01-01

    We develop a physics-based charge-control InP double heterojunction bipolar transistor model including three important effects: current blocking, mobile-charge modulation of the base-collector capacitance and velocity-field modulation in the transit time. The bias-dependent base-collector depletion charge is obtained analytically, which takes into account the mobile-charge modulation. Then, a measurement based voltage-dependent transit time formulation is implemented. As a result, over a wide range of biases, the developed model shows good agreement between the modeled and measured S-parameters and cutoff frequency. Also, the model considering current blocking effect demonstrates more accurate prediction of the output characteristics than conventional vertical bipolar inter company results.

  20. Monolithic InP strictly non-blocking 8×8 switch for high-speed WDM optical interconnection.

    Science.gov (United States)

    Kwack, Myung-Joon; Tanemura, Takuo; Higo, Akio; Nakano, Yoshiaki

    2012-12-17

    A strictly non-blocking 8 × 8 switch for high-speed WDM optical interconnection is realized on InP by using the phased-array scheme for the first time. The matrix switch architecture consists of over 200 functional devices such as star couplers, phase-shifters and so on without any waveguide cross-section. We demonstrate ultra-broad optical bandwidth covering the entire C-band through several Input/Output ports combination with extinction ratio performance of more than 20dB. Also, nanoseconds reconfiguration time was successfully achieved by dynamic switching experiment. Error-free transmission was verified for 40-Gbps (10-Gbps × 4ch) WDM signal.

  1. Quantum information. Teleporation - cryptography - quantum computer

    International Nuclear Information System (INIS)

    The following topics are dealt with: Reality in the test house, quantum teleportation, 100 years of quantum theory, the reality of quanta, interactionless quantum measurement, rules for quantum computers, quantum computers with ions, spintronics with diamond, the limits of the quantum computers, a view into the future of quantum optics. (HSI)

  2. Au - Be/Ru/Au multilayer metallization as a stable ohmic contact scheme to p-type InP

    Science.gov (United States)

    Malina, V.; Moro, L.; Micheli, V.; Mojzes, I.

    1996-07-01

    An attempt has been made to improve the electrical and metallurgical stability of Au - Be alloyed contacts to moderately doped p-type InP by minimizing the thickness of the Au - Be contact layer and using an Ru layer as a new, more effective diffusion barrier between the Au - Be and a thick Au top layer. It was found that the Au - Be contact layer only 40 - 50 nm thick is sufficient to give excellent ohmic contacts with specific contact resistance values as low as 0268-1242/11/7/025/img6 and 0268-1242/11/7/025/img7 (for 0268-1242/11/7/025/img8 and 0268-1242/11/7/025/img9 respectively). When subjected to an aging test at 0268-1242/11/7/025/img10 for 50 h in 0268-1242/11/7/025/img11 gas, the 50 nm Au - Be/50 nm Ru/300 nm Au contacts alloyed at an optimum temperature of about 0268-1242/11/7/025/img12 exhibit good thermal stability and no substantial increase in the specific contact resistance. The remarkable metallurgical stability of such contacts was confirmed by secondary neutral mass spectroscopy (SNMS) in-depth profile measurements. A comparison with the previously investigated diffusion barrier metals (such as Cr, Ti, Pt, etc) shows that the Ru layer is a much better barrier against the migration of Au into the InP substrate and, at the same time, it suppresses the out-diffusion of In and P from the semiconductor.

  3. Quantum Games and Quantum Discord

    CERN Document Server

    Nawaz, Ahmad

    2010-01-01

    We quantize prisoners dilemma and chicken game by our generalized quantization scheme to explore the role of quantum discord in quantum games. In order to establish this connection we use Werner-like state as an initial state of the game. In this quantization scheme measurement can be performed in entangled as well as in product basis. For the measurement in entangled basis the dilemma in both the games can be resolved by separable states with non-zero quantum discord. Similarly for product basis measurement the payoffs are quantum mechanical only for nonzero values of quantum discord.

  4. Quantum cryptography

    CERN Document Server

    Gilbert, Gerald; Hamrick, Michael

    2013-01-01

    This book provides a detailed account of the theory and practice of quantum cryptography. Suitable as the basis for a course in the subject at the graduate level, it crosses the disciplines of physics, mathematics, computer science and engineering. The theoretical and experimental aspects of the subject are derived from first principles, and attention is devoted to the practical development of realistic quantum communications systems. The book also includes a comprehensive analysis of practical quantum cryptography systems implemented in actual physical environments via either free-space or fiber-optic cable quantum channels. This book will be a valuable resource for graduate students, as well as professional scientists and engineers, who desire an introduction to the field that will enable them to undertake research in quantum cryptography. It will also be a useful reference for researchers who are already active in the field, and for academic faculty members who are teaching courses in quantum information s...

  5. Quantum measurement

    CERN Document Server

    Busch, Paul; Pellonpää, Juha-Pekka; Ylinen, Kari

    2016-01-01

    This is a book about the Hilbert space formulation of quantum mechanics and its measurement theory. It contains a synopsis of what became of the Mathematical Foundations of Quantum Mechanics since von Neumann’s classic treatise with this title. Fundamental non-classical features of quantum mechanics—indeterminacy and incompatibility of observables, unavoidable measurement disturbance, entanglement, nonlocality—are explicated and analysed using the tools of operational quantum theory. The book is divided into four parts: 1. Mathematics provides a systematic exposition of the Hilbert space and operator theoretic tools and relevant measure and integration theory leading to the Naimark and Stinespring dilation theorems; 2. Elements develops the basic concepts of quantum mechanics and measurement theory with a focus on the notion of approximate joint measurability; 3. Realisations offers in-depth studies of the fundamental observables of quantum mechanics and some of their measurement implementations; and 4....

  6. Quantum physics

    CERN Document Server

    Scheck, Florian

    2013-01-01

    Scheck’s Quantum Physics presents a comprehensive introductory treatment, ideally suited for a two-semester course. Part One covers the basic principles and prime applications of quantum mechanics, from the uncertainty relations to many-body systems. Part Two introduces to relativistic quantum field theory and ranges from symmetries in quantum physics to electroweak interactions. Numerous worked-out examples as well as exercises, with solutions or hints, enables the book’s use as an accompanying text for courses, and also for independent study. For both parts, the necessary mathematical framework is treated in adequate form and detail. The book ends with appendices covering mathematical fundamentals and enrichment topics, plus selected biographical notes on pioneers of quantum mechanics and quantum field theory. The new edition was thoroughly revised and now includes new sections on quantization using the path integral method and on deriving generalized path integrals for bosonic and fermionic fields.

  7. Different patterns of nuclear and mitochondrial penetration by the G3 PAMAM dendrimer and its biotin–pyridoxal bioconjugate BC-PAMAM in normal and cancer cells in vitro

    Science.gov (United States)

    Uram, Łukasz; Szuster, Magdalena; Filipowicz, Aleksandra; Gargasz, Krzysztof; Wołowiec, Stanisław; Wałajtys-Rode, Elżbieta

    2015-01-01

    The intracellular localization and colocalization of a fluorescently labeled G3 amine-terminated cationic polyamidoamine (PAMAM) dendrimer and its biotin–pyridoxal (BC-PAMAM) bioconjugate were investigated in a concentration-dependent manner in normal human fibroblast (BJ) and squamous epithelial carcinoma (SCC-15) cell lines. After 24 hours treatment, both cell lines revealed different patterns of intracellular dendrimer accumulation depending on their cytotoxic effects. Cancer cells exhibited much higher (20-fold) tolerance for native PAMAM treatment than fibroblasts, whereas BC-PAMAM was significantly toxic only for fibroblasts at 50 µM concentration. Fibroblasts accumulated the native and bioconjugated dendrimers in a concentration-dependent manner at nontoxic range of concentration, with significantly lower bioconjugate loading. After reaching the cytotoxicity level, fluorescein isothiocyanate-PAMAM accumulation remains at high, comparable level. In cancer cells, native PAMAM loading at higher, but not cytotoxic concentrations, was kept at constant level with a sharp increase at toxic concentration. Mander’s coefficient calculated for fibroblasts and cancer cells confirmed more efficient native PAMAM penetration as compared to BC-PAMAM. Significant differences in nuclear dendrimer penetration were observed for both cell lines. In cancer cells, PAMAM signals amounted to ~25%–35% of the total nuclei area at all investigated concentrations, with lower level (15%–25%) observed for BC-PAMAM. In fibroblasts, the dendrimer nuclear signal amounted to 15% at nontoxic and up to 70% at toxic concentrations, whereas BC-PAMAM remained at a lower concentration-dependent level (0.3%–20%). Mitochondrial localization of PAMAM and BC-PAMAM revealed similar patterns in both cell lines, depending on the extracellular dendrimer concentration, and presented significantly lower signals from BC-PAMAM, which correlated well with the cytotoxicity. PMID:26379435

  8. Effect of bismuth surfactant on InP-based highly strained InAs/InGaAs triangular quantum wells

    Energy Technology Data Exchange (ETDEWEB)

    Gu, Y.; Zhang, Y. G., E-mail: ygzhang@mail.sim.ac.cn; Chen, X. Y.; Xi, S. P.; Du, B.; Ma, Y. J. [State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050 (China)

    2015-11-23

    We report the effect of Bi surfactant on the properties of highly strained InAs/InGaAs triangular quantum wells grown on InP substrates. Reduced surface roughness, improved heterostructure interfaces and enhanced photoluminescence intensity at 2.2 μm are observed by moderate Bi-mediated growth. The nonradiative processes are analysed based on temperature-dependent photoluminescence. It is confirmed that Bi incorporation is insignificant in the samples, whereas excessive Bi flux during the growth results in deteriorated performance. The surfactant effect of Bi is promising to improve InP-based highly strained structures while the excess of Bi flux needs to be avoided.

  9. Quantum information and computation

    OpenAIRE

    Bub, Jeffrey

    2005-01-01

    This article deals with theoretical developments in the subject of quantum information and quantum computation, and includes an overview of classical information and some relevant quantum mechanics. The discussion covers topics in quantum communication, quantum cryptography, and quantum computation, and concludes by considering whether a perspective in terms of quantum information sheds new light on the conceptual problems of quantum mechanics.

  10. Quantum Networks for Generating Arbitrary Quantum States

    OpenAIRE

    Kaye, Phillip; Mosca, Michele

    2004-01-01

    Quantum protocols often require the generation of specific quantum states. We describe a quantum algorithm for generating any prescribed quantum state. For an important subclass of states, including pure symmetric states, this algorithm is efficient.

  11. Addition of Zn during the phosphine-based synthesis of indium phospide quantum dots: doping and surface passivation

    Directory of Open Access Journals (Sweden)

    Natalia E. Mordvinova

    2015-06-01

    Full Text Available Zinc-doped InP(Zn colloidal quantum dots (QDs with narrow size distribution and low defect concentration were grown for the first time via a novel phosphine synthetic route and over a wide range of Zn doping. We report the influence of Zn on the optical properties of the obtained quantum dots. We propose a mechanism for the introduction of Zn in the QDs and show that the incorporation of Zn atoms into the InP lattice leads to the formation of Zn acceptor levels and a luminescence tail in the red region of the spectra. Using photochemical etching with HF, we confirmed that the Zn dopant atoms are situated inside the InP nanoparticles. Moreover, doping with Zn is accompanied with the coverage of the QDs by a zinc shell. During the synthesis Zn myristate covers the QD nucleus and inhibits the particle growth. At the same time the zinc shell leads to an increase of the luminescence quantum yield through the reduction of phosphorous dangling bonds. A scenario for the growth of the colloidal InP(Zn QDs was proposed and discussed.

  12. Quantum physics without quantum philosophy

    Energy Technology Data Exchange (ETDEWEB)

    Duerr, Detlef [Muenchen Univ. (Germany). Mathematisches Inst.; Goldstein, Sheldon [Rutgers State Univ., Piscataway, NJ (United States). Dept. of Mathematics; Zanghi, Nino [Genova Univ. (Italy); Istituto Nazionale Fisica Nucleare, Genova (Italy)

    2013-02-01

    Integrates and comments on the authors' seminal papers in the field. Emphasizes the natural way in which quantum phenomena emerge from the Bohmian picture. Helps to answer many of the objections raised to Bohmian quantum mechanics. Useful overview and summary for newcomers and students. It has often been claimed that without drastic conceptual innovations a genuine explanation of quantum interference effects and quantum randomness is impossible. This book concerns Bohmian mechanics, a simple particle theory that is a counterexample to such claims. The gentle introduction and other contributions collected here show how the phenomena of non-relativistic quantum mechanics, from Heisenberg's uncertainty principle to non-commuting observables, emerge from the Bohmian motion of particles, the natural particle motion associated with Schroedinger's equation. This book will be of value to all students and researchers in physics with an interest in the meaning of quantum theory as well as to philosophers of science.

  13. Ab initio calculations of polarization, piezoelectric constants, and elastic constants of InAs and InP in the wurtzite phase

    Energy Technology Data Exchange (ETDEWEB)

    Hajlaoui, C., E-mail: hajlaouic@yahoo.fr; Pedesseau, L. [Université Européenne de Bretagne (France); Raouafi, F.; Ben Cheikh Larbi, F. [Université de Carthage, Laboratoire de Physico-Chimie, des Microstructures et des Microsystémes, Institut Préparatoire aux Études Scientifiques et Techniques (Tunisia); Even, J.; Jancu, J.-M. [Université Européenne de Bretagne (France)

    2015-08-15

    We report first-principle density functional calculations of the spontaneous polarization, piezoelectric stress constants, and elastic constants for the III–V wurtzite structure semiconductors InAs and InP. Using the density functional theory implemented in the VASP code, we obtain polarization values–0.011 and–0.013 C/m{sup 2}, and piezoelectric constants e{sub 33} (e{sub 31}) equal to 0.091 (–0.026) and 0.012 (–0.081) C/m{sup 2} for structurally relaxed InP and InAs respectively. These values are consistently smaller than those of nitrides. Therefore, we predict a smaller built-in electric field in such structures.

  14. Calculated performance of p(+)n InP solar cells with In(0.52)Al(0.48)As window layers

    Science.gov (United States)

    Jain, R. K.; Landis, G. A.

    1991-01-01

    The performance of indium phosphide solar cells with lattice matched wide band-gap In(0.52)Al(0.48)As window layers was calculated using the PC-1D computer code. The conversion efficiency of p(+)n InP solar cells is improved significantly by the window layer. No improvement is seen for n(+)p structures. The improvement in InP cell efficiency was studied as a function of In(0.52)Al(0.48)As layer thickness. The use of the window layer improves both the open circuit voltage and short circuit current.For a typical In(0.52)Al(0.48)As window layer thickness of 20 nm, the cell efficiency improves in excess of 27 percent to a value of 18.74 percent.

  15. Multiple-Scattering of Near-Edge x-ray Absorption Fine Structure of Sulphur-Passivated InP(100) Surface

    Institute of Scientific and Technical Information of China (English)

    曹松; 唐景昌; 沈少来; 陈更生; 马丹

    2003-01-01

    We use the multiple-scattering cluster method to calculate the sulphur 1s near-edge x-ray absorption fine structure (NEXAFS) of S-passivated InP(100) surface. The physical origins of the resonances in the NEXAFS have been unveiled. It is shown that the most important resonance is attributed to the photoelectron scattering between the central sulphur and the nearest indium atoms. The studies show that two S-S dimers with the bond lengths of 2.05 A and 3.05 A coexist in the surface, meanwhile the bridge and antibridge site adsorption of single S could not be ruled out. We support the scanning tunnelling microscopy result that the S-passivated InP(100) surface exhibits significant disorder.

  16. FFT-impedance spectroscopy analysis of the growth of magnetic metal nanowires in ultra-high aspect ratio InP membranes

    Science.gov (United States)

    Gerngross, M.-D.; Carstensen, J.; Föll, H.; Adelung, R.

    2016-01-01

    This paper reports on the characterization of the electrochemical growth process of magnetic nanowires in ultra-high-aspect ratio InP membranes via in situ fast Fourier transform impedance spectroscopy in a typical frequency range from 75 Hz to 18.5 kHz. The measured impedance data from the Ni, Co, and FeCo can be very well fitted using the same electric equivalent circuit consisting of a series resistance in serial connection to an RC-element and a Maxwell element. The impedance data clearly indicate the similarities in the growth behavior of Ni, Co and FeCo nanowires in ultra-high aspect ratio InP membranes—the beneficial impact of boric acid on the metal deposition in ultra-high aspect ratio membranes and the diffusion limitation of boric acid, as well as differences such as passivation or side reactions.

  17. Quantum Schubert polynomials and quantum Schur functions

    OpenAIRE

    Kirillov, Anatol N.

    1997-01-01

    We introduce the quantum multi-Schur functions, quantum factorial Schur functions and quantum Macdonald polynomials. We prove that for restricted vexillary permutations the quantum double Schubert polynomial coincides with some quantum multi-Schur function and prove a quantum analog of the Nagelsbach-Kostka and Jacobi-Trudi formulae for the quantum double Schubert polynomials in the case of Grassmannian permutations. We prove, also, an analog of the Billey-Jockusch-Stanley formula for quantum...

  18. Quantum entanglement and quantum operation

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    It is a simple introduction to quantum entanglement and quantum operations.The authors focus on some applications of quantum entanglement and relations between two-qubit entangled states and unitary operations.It includes remote state preparation by using any pure entangled states,nonlocal operation implementation using entangled states,entanglement capacity of two-qubit gates and two-qubit gates construction.

  19. Dependence of current-voltage characteristics of pseudomorphic AlAs/In0.53Ga0.47As/InAs resonant tunnelling diodes on quantum well widths

    Institute of Scientific and Technical Information of China (English)

    Zhang Yang; Zhang Yu; Zeng Yi-Ping

    2008-01-01

    This paper studies the dependence of Ⅰ - Ⅴ characteristics on quantum well widths in AlAs/In0.53Ga0.47As and AlAs/In0.53Ga0.47As/InAs resonant tunnelling structures grown on InP substrates. It shows that the peak and the valley current density in the negative differential resistance region are closely related with quantum well width. The measured peak current density, valley current densities and peak-to-valley current ratio of resonant tunnelling diodes are continually decreasing with increasing well width.

  20. Dependence of current–voltage characteristics of pseudomorphic AlAs/In0.53Ga0.47As/InAs resonant tunnelling diodes on quantum well widths

    International Nuclear Information System (INIS)

    This paper studies the dependence of I – V characteristics on quantum well widths in AlAs/In0.50.47As and AlAs/In0.53Ga0.47As/InAs resonant tunnelling structures grown on InP substrates. It shows that the peak and the valley current density in the negative differential resistance region are closely related with quantum well width. The measured peak current density, valley current densities and peak-to-valley current ratio of resonant tunnelling diodes are continually decreasing with increasing well width. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  1. Quantum Physics Without Quantum Philosophy

    CERN Document Server

    Dürr, Detlef; Zanghì, Nino

    2013-01-01

    It has often been claimed that without drastic conceptual innovations a genuine explanation of quantum interference effects and quantum randomness is impossible. This book concerns Bohmian mechanics, a simple particle theory that is a counterexample to such claims. The gentle introduction and other contributions collected here show how the phenomena of non-relativistic quantum mechanics, from Heisenberg's uncertainty principle to non-commuting observables, emerge from the Bohmian motion of particles, the natural particle motion associated with Schrödinger's equation. This book will be of value to all students and researchers in physics with an interest in the meaning of quantum theory as well as to philosophers of science.

  2. The infuence of different interfaces on electrical and optical characteristics of Te doped ALGaAsSB/ALAsSB Bragg Mirrors on InP

    Directory of Open Access Journals (Sweden)

    Jean C Harmand

    2008-08-01

    Full Text Available The electrical and optical properties of non-doped and Te doped 6.5 periods AlGaAsSb/AlAsSb Bragg mirrors on InP grown by MBE with different types of interfaces between ternary and quaternary layers are reported. The techniques employed were photoluminescence, refectivity and IxV measurements. The digital alloy gradient interface seems to be the best alternative to optimize conduction without significant refectivity losses.

  3. Quantum information. Teleportation - cryptography - quantum computer

    International Nuclear Information System (INIS)

    The following topics are dealt with: Reality in the test facility, quantum teleportation, the reality of quanta, interaction-free quantum measurement, rules for quantum computers, quantum computers with ions, spintronics with diamond, the limits of the quantum computers, a view in the future of quantum optics. (HSI)

  4. Quantum Homogeneous Spaces as Quantum Quotient Spaces

    OpenAIRE

    Brzezinski, Tomasz

    1995-01-01

    We show that certain embeddable homogeneous spaces of a quantum group that do not correspond to a quantum subgroup still have the structure of quantum quotient spaces. We propose a construction of quantum fibre bundles on such spaces. The quantum plane and the general quantum two-spheres are discussed in detail.

  5. Growth of red InP/GaInP quantum dots on a low density InAs/GaAs island seed layer by MOVPE

    Science.gov (United States)

    Roßbach, R.; Schulz, W.-M.; Reischle, M.; Beirne, G. J.; Hermannstädter, C.; Jetter, M.; Michler, P.

    2008-11-01

    We demonstrate the growth of InP/GaInP quantum dots on a low density InAs/GaAs island seed layer ( 107 cm-2) by metal-organic vapor phase epitaxy. The strain produced by the underlying InAs islands results in a distinct bimodal size distribution of the InP/GaInP quantum dot layer where large dome shaped structures and small quantum dots could be observed using atomic force microscopy. Using μ-photoluminescence only luminescence from the small high energetic InP-QDs could be recorded with emission linewidths of around 140 μeV. Autocorrelation measurements confirmed the zero dimensionality of the InP quantum dots.

  6. Quantum Theory

    CERN Document Server

    Manning, Phillip

    2011-01-01

    The study of quantum theory allowed twentieth-century scientists to examine the world in a new way, one that was filled with uncertainties and probabilities. Further study also led to the development of lasers, the atomic bomb, and the computer. This exciting new book clearly explains quantum theory and its everyday uses in our world.

  7. Quantum Gravitodynamics

    CERN Document Server

    Sastry, R R

    1999-01-01

    The infinite dimensional generalization of the quantum mechanics of extended objects, namely, the quantum field theory of extended objects is employed to address the hitherto nonrenormalizable gravitational interaction following which the cosmological constant problem is addressed. The response of an electron to a weak gravitational field (linear approximation) is studied and the order $\\alpha$ correction to the magnetic gravitational moment is computed.

  8. InP MOS capacitor and E-mode n-channel FET with ALD Al2O3-based high- k dielectric

    Science.gov (United States)

    Yen, Chih-Feng; Yeh, Min-Yen; Chong, Kwok-Keung; Hsu, Chun-Fa; Lee, Ming-Kwei

    2016-07-01

    The electrical characteristics of atomic-layer-deposited Al2O3/TiO2/Al2O3 on (NH4)2S-treated InP MOS capacitor and related MOSFET were studied. The electrical characteristics were improved from the reduction of native oxides and sulfur passivation on InP by (NH4)2S treatment. The high bandgap Al2O3 on TiO2 can reduce the thermionic emission, and the Al2O3 under TiO2 improves the interface-state density by self-cleaning. The high dielectric constant TiO2 is used to lower the equivalent oxide thickness. The leakage currents can reach 2.3 × 10-8 and 2.2 × 10-7 A/cm2 at ±2 MV/cm, respectively. The lowest interface-state density is 4.6 × 1011 cm-2 eV-1 with a low-frequency dispersion of 15 %. The fabricated enhancement-mode n-channel sulfur-treated InP MOSFET exhibits good electrical characteristics with a maximum transconductance of 146 mS/mm and effective mobility of 1760 cm2/V s. The subthreshold swing and threshold voltage are 117 mV/decade and 0.44 V, respectively.

  9. Effect of irradiation with reactor neutrons and the temperature of subsequent heat treatment on the structure of InP single crystals

    International Nuclear Information System (INIS)

    The results of studying the features of the effect of irradiation with fast and full-spectrum reactor neutrons and subsequent heat treatments on the structural characteristics of InP single crystals are reported. It is shown that, in contrast to other III-V semiconductor compounds, the lattice constant decreases in InP as a result of irradiation with neutrons. Fast neutrons make the major contribution to the variation in the lattice constant. The presence of the component of thermal neutrons that give rise to Sn atoms in the material does not bring about any appreciable variation in the lattice constant. Heat treatment of irradiated samples at temperatures as high as 600 deg. C leads to annealing of radiation defects and recovery of the lattice constant; in the samples irradiated with high neutron fluences, the lattice constant becomes even larger than that before irradiation. An analysis of the obtained experimental data made it possible to assume that the decrease in the InP lattice constant as a result of irradiation with neutrons is mainly caused by the introduction of the PIn antisite defects that give rise to an effect similar to that of vacancy-related defects

  10. Development of InP solid state detector and liquid scintillator containing metal complex for measurement of pp/7Be solar neutrinos and neutrinoless double beta decay

    Science.gov (United States)

    Fukuda, Yoshiyuki; Moriyama, Shigetaka

    2012-07-01

    A large volume solid state detector using a semi-insulating Indium Phosphide (InP) wafer have been developed for measurement of pp/7Be solar neutrinos. Basic performance such as the charge collection efficiency and the energy resolution were measured by 60% and 20%, respectively. In order to detect two gammas (115keV and 497keV) from neutrino capture, we have designed hybrid detector which consist InP detector and liquid xenon scintillator for IPNOS experiment. New InP detector with thin electrode (Cr 50Å- Au 50Å). For another possibility, an organic liquid scintillator containing indium complex and zirconium complex were studied for a measurement of low energy solar neutrinos and neutrinosless double beta decay, respectively. Benzonitrile was chosen as a solvent because of good solubility for the quinolinolato complexes (2 wt%) and of good light yield for the scintillation induced by gamma-ray irradiation. The photo-luminescence emission spectra of InQ3 and ZrQ4 in benzonitrile was measured and liquid scintillator cocktail using InQ3 and ZrQ4 (50mg) in benzonitrile solutions (20 mL) with secondary scintillators with PPO (100mg) and POPOP (10mg) was made. The energy spectra of incident gammas were measured, and they are first results of the gamma-ray energy spectra using luminescent of metal complexes.

  11. Electrochemical growth of Co nanowires in ultra-high aspect ratio InP membranes: FFT-impedance spectroscopy of the growth process and magnetic properties

    Science.gov (United States)

    2014-01-01

    The electrochemical growth of Co nanowires in ultra-high aspect ratio InP membranes has been investigated by fast Fourier transform-impedance spectroscopy (FFT-IS) in the frequency range from 75 Hz to 18.5 kHz. The impedance data could be fitted very well using an electric circuit equivalent model with a series resistance connected in series to a simple resistor-capacitor (RC) element and a Maxwell element. Based on the impedance data, the Co deposition in ultra-high aspect ratio InP membranes can be divided into two different Co deposition processes. The corresponding share of each process on the overall Co deposition can be determined directly from the transfer resistances of the two processes. The impedance data clearly show the beneficial impact of boric acid on the Co deposition and also indicate a diffusion limitation of boric acid in ultra-high aspect ratio InP membranes. The grown Co nanowires are polycrystalline with a very small grain size. They show a narrow hysteresis loop with a preferential orientation of the easy magnetization direction along the long nanowire axis due to the arising shape anisotropy of the Co nanowires. PMID:25050088

  12. Electrochemical growth of Co nanowires in ultra-high aspect ratio InP membranes: FFT-impedance spectroscopy of the growth process and magnetic properties

    Science.gov (United States)

    Gerngross, Mark-Daniel; Carstensen, Jürgen; Föll, Helmut

    2014-06-01

    The electrochemical growth of Co nanowires in ultra-high aspect ratio InP membranes has been investigated by fast Fourier transform-impedance spectroscopy (FFT-IS) in the frequency range from 75 Hz to 18.5 kHz. The impedance data could be fitted very well using an electric circuit equivalent model with a series resistance connected in series to a simple resistor-capacitor ( RC) element and a Maxwell element. Based on the impedance data, the Co deposition in ultra-high aspect ratio InP membranes can be divided into two different Co deposition processes. The corresponding share of each process on the overall Co deposition can be determined directly from the transfer resistances of the two processes. The impedance data clearly show the beneficial impact of boric acid on the Co deposition and also indicate a diffusion limitation of boric acid in ultra-high aspect ratio InP membranes. The grown Co nanowires are polycrystalline with a very small grain size. They show a narrow hysteresis loop with a preferential orientation of the easy magnetization direction along the long nanowire axis due to the arising shape anisotropy of the Co nanowires.

  13. Quantum mechanics

    CERN Document Server

    Rae, Alastair I M

    2016-01-01

    A Thorough Update of One of the Most Highly Regarded Textbooks on Quantum Mechanics Continuing to offer an exceptionally clear, up-to-date treatment of the subject, Quantum Mechanics, Sixth Edition explains the concepts of quantum mechanics for undergraduate students in physics and related disciplines and provides the foundation necessary for other specialized courses. This sixth edition builds on its highly praised predecessors to make the text even more accessible to a wider audience. It is now divided into five parts that separately cover broad topics suitable for any general course on quantum mechanics. New to the Sixth Edition * Three chapters that review prerequisite physics and mathematics, laying out the notation, formalism, and physical basis necessary for the rest of the book * Short descriptions of numerous applications relevant to the physics discussed, giving students a brief look at what quantum mechanics has made possible industrially and scientifically * Additional end-of-chapter problems with...

  14. Quantum entanglement

    CERN Document Server

    Hadjiivanov, Ludmil

    2015-01-01

    Expository paper providing a historical survey of the gradual transformation of the "philosophical discussions" between Bohr, Einstein and Schr\\"odinger on foundational issues in quantum mechanics into a quantitative prediction of a new quantum effect, its experimental verification and its proposed (and loudly advertised) applications. The basic idea of the 1935 paper of Einstein-Podolsky-Rosen (EPR) was reformulated by David Bohm for a finite dimensional spin system. This allowed John Bell to derive his inequalities that separate the prediction of quantum entanglement from its possible classical interpretation. We reproduce here their later (1971) version, reviewing on the way the generalization (and mathematical derivation) of Heisenberg's uncertainty relations (due to Weyl and Schr\\"odinger) needed for the passage from EPR to Bell. We also provide an improved derivation of the quantum theoretic violation of Bell's inequalities. Soon after the experimental confirmation of the quantum entanglement (culminati...

  15. Quantum magnetism

    CERN Document Server

    Richter, Johannes; Farnell, Damian; Bishop, Raymod

    2004-01-01

    The investigation of magnetic systems where quantum effects play a dominant role has become a very active branch of solid-state-physics research in its own right. The first three chapters of the "Quantum Magnetism" survey conceptual problems and provide insights into the classes of systems considered, namely one-dimensional, two-dimensional and molecular magnets. The following chapters introduce the methods used in the field of quantum magnetism, including spin wave analysis, exact diagonalization, quantum field theory, coupled cluster methods and the Bethe ansatz. The book closes with a chapter on quantum phase transitions and a contribution that puts the wealth of phenomena into the context of experimental solid-state physics. Closing a gap in the literature, this volume is intended both as an introductory text at postgraduate level and as a modern, comprehensive reference for researchers in the field.

  16. Terahertz Generation Using Implanted InGaAs Photomixers and Multi-wavelength Quantum Dot Lasers

    Institute of Scientific and Technical Information of China (English)

    Y Hou; J R Liu; M Buchanan; A J Spring Thorpe; P J Poole; H C Liu; Ke Wu; Sjoerd Roorda; X P Zhang

    2012-01-01

    We report on a study of terahertz (THz) generation using implanted InGaAs photomixers and multi-wavelength quantum dot lasers. We carry out InGaAs materials growth, optical characterization, device design and fabrication, and photomixing experiments. This approach is capable of generating a comb of electromagnetic radiation from microwave to terahertz. For shortening photomixer carrier lifetime, we employ proton implantation into an epitaxial layer of lattice matched InGaAs grown on InP. Under a 1.55 µm multi-mode InGaAs/InGaAsP quantum dot laser excitation, a frequency comb with a constant frequency spacing of 50 GHz generated on the photomixer is measured, which corresponds to the beats of the laser longitudinal modes. The measurement is performed with a Fourier transform infrared spectrometer. This approach affords a convenient method to achieve a broadband multi-peak coherent THz source.

  17. Quantum Chaos

    Science.gov (United States)

    Casati, Giulio; Chirikov, Boris

    2006-11-01

    Preface; Acknowledgments; Introduction: 1. The legacy of chaos in quantum mechanics G. Casati and B. V. Chirikov; Part I. Classical Chaos and Quantum Localization: 2. Stochastic behaviour of a quantum pendulum under a periodic perturbation G. Casati, B. V. Chirikov, F. M. Izrailev and J. Ford; 3. Quantum dynamics of a nonintegrable system D. R. Grempel, R. E. Prange and S. E. Fishman; 4. Excitation of molecular rotation by periodic microwave pulses. A testing ground for Anderson localization R. Blümel, S. Fishman and U. Smilansky; 5. Localization of diffusive excitation in multi-level systems D. K. Shepelyansky; 6. Classical and quantum chaos for a kicked top F. Haake, M. Kus and R. Scharf; 7. Self-similarity in quantum dynamics L. E. Reichl and L. Haoming; 8. Time irreversibility of classically chaotic quantum dynamics K. Ikeda; 9. Effect of noise on time-dependent quantum chaos E. Ott, T. M. Antonsen Jr and J. D. Hanson; 10. Dynamical localization, dissipation and noise R. F. Graham; 11. Maximum entropy models and quantum transmission in disordered systems J.-L. Pichard and M. Sanquer; 12. Solid state 'atoms' in intense oscillating fields M. S. Sherwin; Part II. Atoms in Strong Fields: 13. Localization of classically chaotic diffusion for hydrogen atoms in microwave fields J. E. Bayfield, G. Casati, I. Guarneri and D. W. Sokol; 14. Inhibition of quantum transport due to 'scars' of unstable periodic orbits R. V. Jensen, M. M. Sanders, M. Saraceno and B. Sundaram; 15. Rubidium Rydberg atoms in strong fields G. Benson, G. Raithel and H. Walther; 16. Diamagnetic Rydberg atom: confrontation of calculated and observed spectra C.-H. Iu, G. R. Welch, M. M. Kash, D. Kleppner, D. Delande and J. C. Gay; 17. Semiclassical approximation for the quantum states of a hydrogen atom in a magnetic field near the ionization limit M. Y. Kuchiev and O. P. Sushkov; 18. The semiclassical helium atom D. Wintgen, K. Richter and G. Tanner; 19. Stretched helium: a model for quantum chaos

  18. Ultrafast Carrier Dynamics Measured by the Transient Change in the Reflectance of InP and GaAs Film

    Energy Technology Data Exchange (ETDEWEB)

    John Klopf

    2005-10-31

    Advancements in microfabrication techniques and thin film growth have led to complex integrated photonic devices, also known as optoelectronics. The performance of these devices relies upon precise control of the band gap and optical characteristics of the thin film structures, as well as a fundamental understanding of the photoexcited carrier thermalization, relaxation, and recombination processes. An optical pump-probe technique has been developed to measure the transient behavior of these processes on a sub-picosecond timescale. This method relies upon the generation of hot carriers by theabsorption of an intense ultrashort laser pulse (~ 135 fs). The transient changes in reflectance due to the pump pulse excitation are monitored using a weaker probe pulse. Control of the relative time delay between the pump and probe pulses allows for temporal measurements with resolution limited only by the pulse width. The transient change in reflectance is the result of a transient change in the carrier distribution. Observation of the reflectance response of indium phosphide (InP) and gallium arsenide (GaAs) films on a sub-picosecond timescale allows for detailed examination of thermalization and relaxation processes of the excited carriers. Longer timescales (> 100 ps) are useful for correlating the transient reflectance response to slower processes such as the diffusion and recombination of the photoexcited carriers. This research investigates the transient hot carrier processes in several InP and GaAs based films similar to those commonly used in optoelectronics. This technique is especially important as it provides a non-destructive means of evaluating these materials; whereas much of the research performed in this field has relied upon the measurement of transient changes in the transmission of transparent films. The process of preparing films that are transparent renders them unusable in functioning devices. This research should not only extend the understanding of

  19. Contribuição de diversos sistemas de observação na previsão de tempo no CPTEC/INPE Contribution of the several observation systems in the forecast skill at CPTEC/INPE

    Directory of Open Access Journals (Sweden)

    Rita V. Andreoli

    2008-06-01

    Full Text Available Experimentos utilizando sistemas de observação global, foram realizados excluindo um ou mais tipos de observação do esquema global de assimilação de dados/previsão de tempo do Centro de Previsão de Tempo e Estudos Climáticos do Instituto Nacional de Pesquisas Espaciais - CPTEC/INPE (Global Physical-space Statistical Analysis System - GPSAS. Estes experimentos indicam como efetivamente as observações são usadas no GPSAS. Os sistemas de observação testados foram o conjunto de dados convencionais, que incluem informações de superfície (estações em superfície, bóias, navios e plataformas oceânicas e de ar superior (radiossondagem, aeronaves e balões piloto, os sistemas de sondagem Advanced TIROS-N/NOAA Operational Vertical Sounder (ATOVS e AQUA, composto pelos sensores Atmospheric Infrared Sounder e Advanced Microwave Sounding Unit (AIRS/AMSU, dados de vento de satélite, estimados a partir do deslocamento de nuvens (Cloud Track Wind, dados de vento em superfície sobre o oceano (QuikScat e água precipitável (Total Precipitation water - TPW. Todos os sistemas testados mostram um impacto positivo na qualidade da previsão. Os dados convencionais têm um maior impacto na região do Hemisfério Norte devido à maior disponibilidade dessas informações sobre esta região. Por outro lado, as sondagens AIRS/AMSU são fundamentais para uma boa previsão sobre o Hemisfério Sul. Sobre a América do Sul, os perfis inferidos pelo sistema de sondagem AQUA contribuem com a mesma ordem de grandeza dos dados convencionais e apresentam um impacto positivo para todos os períodos de previsões analisados. Dados de vento e água precipitável estimados por satélites têm maior impacto nas regiões tropical e da América do Sul, nas primeiras horas de previsão (1-3 dias. Todavia, a utilização de um conjunto completo de observações é crucial para se obter, operacionalmente, uma boa condição inicial do estado atmosférico para ser

  20. 退火处理后非掺磷化铟的电传输特性%Electrical Transport Properties of Annealed Undoped InP

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The electrical properties of annealed undoped n-type InP are studied by temperature dependent Hall effect (TDH) and current-voltage(I-V)measurements for semiconducting and semi-insulating samples,respectively.Defect band conduction in annealed semiconducting InP can be observed from TDH measurement,which is similar to those of as-grown unintentionally doped InP with low carrier concentration and moderate compensation.The I-V curves of annealed undoped SI InP exhibit ohmic property in the applied field region up to the onset of breakdown.Such a result is different from that of as-grown Fe-doped SI InP which has a nonlinear region in I-V curve explained by the theory of space charge limited current.%利用变温霍尔和电流-电压特性(I-V)两种方法分别对半导体和半绝缘的退火非掺磷化铟材料进行了测量.在非掺退火后的半导体磷化铟样品中可以测到缺陷带电导,这与自由电子浓度较低、有一定补偿度的原生非掺磷化铟的情况类似.非掺SI-InP表现出不同于原生掺铁的SI-InP的I-V特性,在一直到击穿为止的外加电场范围内呈欧姆特性,而掺铁SI-InP的I-V具有与陷阱填充有关非线性特征.根据空间电荷限制电流的理论,这种现象可以解释为非掺SI-InP中没有未被电子占据的空的深能级缺陷.

  1. Quantum communications

    CERN Document Server

    Cariolaro, Gianfranco

    2015-01-01

    This book demonstrates that a quantum communication system using the coherent light of a laser can achieve performance orders of magnitude superior to classical optical communications Quantum Communications provides the Masters and PhD signals or communications student with a complete basics-to-applications course in using the principles of quantum mechanics to provide cutting-edge telecommunications. Assuming only knowledge of elementary probability, complex analysis and optics, the book guides its reader through the fundamentals of vector and Hilbert spaces and the necessary quantum-mechanical ideas, simply formulated in four postulates. A turn to practical matters begins with and is then developed by: ·         development of the concept of quantum decision, emphasizing the optimization of measurements to extract useful information from a quantum system; ·         general formulation of a transmitter–receiver system ·         particular treatment of the most popular quantum co...

  2. Quantum Portfolios

    CERN Document Server

    Maurer, S M; Huberman, B; Maurer, Sebastian; Hogg, Tad; Huberman, Bernardo

    2001-01-01

    Quantum computation holds promise for the solution of many intractable problems. However, since many quantum algorithms are stochastic in nature they can only find the solution of hard problems probabilistically. Thus the efficiency of the algorithms has to be characterized both by the expected time to completion {\\it and} the associated variance. In order to minimize both the running time and its uncertainty, we show that portfolios of quantum algorithms analogous to those of finance can outperform single algorithms when applied to the NP-complete problems such as 3-SAT.

  3. Quantum probability

    CERN Document Server

    Gudder, Stanley P

    2014-01-01

    Quantum probability is a subtle blend of quantum mechanics and classical probability theory. Its important ideas can be traced to the pioneering work of Richard Feynman in his path integral formalism.Only recently have the concept and ideas of quantum probability been presented in a rigorous axiomatic framework, and this book provides a coherent and comprehensive exposition of this approach. It gives a unified treatment of operational statistics, generalized measure theory and the path integral formalism that can only be found in scattered research articles.The first two chapters survey the ne

  4. Quantum mechanics

    CERN Document Server

    Powell, John L

    2015-01-01

    Suitable for advanced undergraduates, this thorough text focuses on the role of symmetry operations and the essentially algebraic structure of quantum-mechanical theory. Based on courses in quantum mechanics taught by the authors, the treatment provides numerous problems that require applications of theory and serve to supplement the textual material.Starting with a historical introduction to the origins of quantum theory, the book advances to discussions of the foundations of wave mechanics, wave packets and the uncertainty principle, and an examination of the Schrödinger equation that includ

  5. Quantum chemistry

    CERN Document Server

    Lowe, John P

    1993-01-01

    Praised for its appealing writing style and clear pedagogy, Lowe's Quantum Chemistry is now available in its Second Edition as a text for senior undergraduate- and graduate-level chemistry students. The book assumes little mathematical or physical sophistication and emphasizes an understanding of the techniques and results of quantum chemistry, thus enabling students to comprehend much of the current chemical literature in which quantum chemical methods or concepts are used as tools. The book begins with a six-chapter introduction of standard one-dimensional systems, the hydrogen atom,

  6. Quantum flights

    CERN Document Server

    Fateev, Evgeny G

    2013-01-01

    The principles of quantum motors based on Casimir platforms (thin-film nanostructures are at issue) are discussed in plain language. The generation of quantum propulsion is caused by the noncompensated integral action of virtual photon momenta upon a configuration unit cell in the platform. The cells in a Casimir platform should be situated in a certain order with optimal geometric parameters. The evaluation of the quantum propulsion shows that, for example, ten square meters of ideal Casimir platforms (it is a complex single-layer structure) could make Cheops pyramid move!

  7. Quantum mechanics

    International Nuclear Information System (INIS)

    This book, based on a thirty lecture course given to students at the beginning of their second year, covers the quantum mechanics required by physics undergraduates. Early chapters deal with wave mechanics, including a discussion of the energy states of the hydrogen atom. These are followed by a more formal development of the theory, leading to a discussion of some advanced applications and an introduction to the conceptual problems associated with quantum measurement theory. Emphasis is placed on the fundamentals of quantum mechanics. Problems are included at the end of each chapter. (U.K.)

  8. Quantum friction

    OpenAIRE

    Tsekov, R.

    2012-01-01

    The Brownian motion of a light quantum particle in a heavy classical gas is theoretically described and a new expression for the friction coefficient is obtained for arbitrary temperature. At zero temperature it equals to the de Broglie momentum of the mean free path divided by the mean free path. Alternatively, the corresponding mobility of the quantum particle in the classical gas is equal to the square of the mean free path divided by the Planck constant. The Brownian motion of a quantum p...

  9. Cascade quantum teleportation

    Institute of Scientific and Technical Information of China (English)

    ZHOU Nan-run; GONG Li-hua; LIU Ye

    2006-01-01

    In this letter a cascade quantum teleportation scheme is proposed. The proposed scheme needs less local quantum operations than those of quantum multi-teleportation. A quantum teleportation scheme based on entanglement swapping is presented and compared with the cascade quantum teleportation scheme. Those two schemes can effectively teleport quantum information and extend the distance of quantum communication.

  10. Quantum Computers and Quantum Computer Languages: Quantum Assembly Language and Quantum C

    OpenAIRE

    Blaha, Stephen

    2002-01-01

    We show a representation of Quantum Computers defines Quantum Turing Machines with associated Quantum Grammars. We then create examples of Quantum Grammars. Lastly we develop an algebraic approach to high level Quantum Languages using Quantum Assembly language and Quantum C language as examples.

  11. Quantum Computers and Quantum Computer Languages: Quantum Assembly Language and Quantum C Language

    OpenAIRE

    Blaha, Stephen

    2002-01-01

    We show a representation of Quantum Computers defines Quantum Turing Machines with associated Quantum Grammars. We then create examples of Quantum Grammars. Lastly we develop an algebraic approach to high level Quantum Languages using Quantum Assembly language and Quantum C language as examples.

  12. Quantum group gauge theory on quantum spaces

    OpenAIRE

    Brzezinski, Tomasz; Majid, Shahn

    1992-01-01

    We construct quantum group-valued canonical connections on quantum homogeneous spaces, including a q-deformed Dirac monopole on the quantum sphere of Podles quantum differential coming from the 3-D calculus of Woronowicz on $SU_q(2)$ . The construction is presented within the setting of a general theory of quantum principal bundles with quantum group (Hopf algebra) fiber, associated quantum vector bundles and connection one-forms. Both the base space (spacetime) and the total space are non-co...

  13. Quantum dot mode locked lasers for coherent frequency comb generation

    Science.gov (United States)

    Martinez, A.; Calò, C.; Rosales, R.; Watts, R. T.; Merghem, K.; Accard, A.; Lelarge, F.; Barry, L. P.; Ramdane, A.

    2013-12-01

    Monolithic semiconductor passively mode locked lasers (MLL) are very attractive components for many applications including high bit rate telecommunications, microwave photonics and instrumentation. Owing to the three dimensional confinement of the charge carriers, quantum dot based mode-locked lasers have been the subject of intense investigations because of their improved performance compared to conventional material systems. Indeed, the inhomogeneous gain broadening and the ultrafast absorption recovery dynamics are an asset for short pulse generation. Moreover, the weak coupling of amplified spontaneous emission with the guided modes plus low loss waveguide leads to low timing jitter. Our work concentrates on InAs quantum dash nanostructures grown on InP substrate, intended for applications in the 1.55 μm telecom window. InAs/InP quantum dash based lasers, in particular, have demonstrated efficient mode locking in single section Fabry-Perot configurations. The flat optical spectrum of about 12 nm, combined with the narrow RF beat note linewidth of about 10 kHz make them a promising technology for optical frequency comb generation. Coherence between spectral modes was assessed by means of spectral phase measurements. The parabolic spectral phase profile indicates that short pulses can be obtained provided the intracavity dispersion can be compensated by inserting a single mode fiber.

  14. Quantum algorithmic information theory

    OpenAIRE

    Svozil, Karl

    1995-01-01

    The agenda of quantum algorithmic information theory, ordered `top-down,' is the quantum halting amplitude, followed by the quantum algorithmic information content, which in turn requires the theory of quantum computation. The fundamental atoms processed by quantum computation are the quantum bits which are dealt with in quantum information theory. The theory of quantum computation will be based upon a model of universal quantum computer whose elementary unit is a two-port interferometer capa...

  15. Quantum Computational Complexity

    OpenAIRE

    Watrous, John

    2008-01-01

    This article surveys quantum computational complexity, with a focus on three fundamental notions: polynomial-time quantum computations, the efficient verification of quantum proofs, and quantum interactive proof systems. Properties of quantum complexity classes based on these notions, such as BQP, QMA, and QIP, are presented. Other topics in quantum complexity, including quantum advice, space-bounded quantum computation, and bounded-depth quantum circuits, are also discussed.

  16. Classical and quantum information

    CERN Document Server

    Marinescu, Dan C

    2011-01-01

    A new discipline, Quantum Information Science, has emerged in the last two decades of the twentieth century at the intersection of Physics, Mathematics, and Computer Science. Quantum Information Processing is an application of Quantum Information Science which covers the transformation, storage, and transmission of quantum information; it represents a revolutionary approach to information processing. This book covers topics in quantum computing, quantum information theory, and quantum error correction, three important areas of quantum information processing. Quantum information theory an

  17. Impact of Pr on the properties of InP based layers for light sources and detectors

    Energy Technology Data Exchange (ETDEWEB)

    Prochazkova, Olga; Grym, Jan; Zavadil, Jiri; Zdansky, Karel; Yatskiv, Roman [Institute of Photonics and Electronics, Academy of Sciences of the Czech Republic, Chaberska 57, 18251 Prague (Czech Republic)

    2009-12-15

    We report the optimization of LPE growth technique for the preparation of InP and GaInAsP high quality and high purity layers by using Pr purification effect. We have found that Pr addition into the growth melt leads to the reduction of the layer defect density by a half order of magnitude and carrier concentrations diminished to 10{sup 14} cm{sup -3}. Three types of p-n junction based radiation detection structures were prepared and their detection performance was assessed by using {alpha}-particles emitted from the {sup 241}Am radioactive source. The type III structure, utilizing the p-n junction with both components grown with Pr addition, exhibits the highest charge collection efficiency. Pr admixture was also exploited in the preparation of quaternary GaInAsP(Pr) active region in the double heterostructure GaInAsP/InP emitting at 1200 nm. Purification effect of Pr addition is demonstrated by measuring impurity concentrations deduced from C-V curves and by low temperature PL spectra. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  18. Readout circuitry for continuous high-rate photon detection with arrays of InP Geiger-mode avalanche photodiodes

    Science.gov (United States)

    Frechette, Jonathan; Grossmann, Peter J.; Busacker, David E.; Jordy, George J.; Duerr, Erik K.; McIntosh, K. Alexander; Oakley, Douglas C.; Bailey, Robert J.; Ruff, Albert C.; Brattain, Michael A.; Funk, Joseph E.; MacDonald, Jason G.; Verghese, Simon

    2012-06-01

    An asynchronous readout integrated circuit (ROIC) has been developed for hybridization to a 32x32 array of single-photon sensitive avalanche photodiodes (APDs). The asynchronous ROIC is capable of simultaneous detection and readout of photon times of arrival, with no array blind time. Each pixel in the array is independently operated by a finite state machine that actively quenches an APD upon a photon detection event, and re-biases the device into Geiger mode after a programmable hold-off time. While an individual APD is in hold-off mode, other elements in the array are biased and available to detect photons. This approach enables high pixel refresh frequency (PRF), making the device suitable for applications including optical communications and frequency-agile ladar. A built-in electronic shutter that de-biases the whole array allows the detector to operate in a gated mode or allows for detection to be temporarily disabled. On-chip data reduction reduces the high bandwidth requirements of simultaneous detection and readout. Additional features include programmable single-pixel disable, region of interest processing, and programmable output data rates. State-based on-chip clock gating reduces overall power draw. ROIC operation has been demonstrated with hybridized InP APDs sensitive to 1.06-μm and 1.55-μm wavelength, and fully packaged focal plane arrays (FPAs) have been assembled and characterized.

  19. Surface chemistry of InP ridge structures etched in Cl{sub 2}-based plasma analyzed with angular XPS

    Energy Technology Data Exchange (ETDEWEB)

    Bouchoule, Sophie, E-mail: sophie.bouchoule@lpn.cnrs.fr; Cambril, Edmond; Guilet, Stephane [Laboratoire de Photonique et Nanostructure (LPN)—UPR20, CNRS, Route de Nozay, 91460 Marcoussis (France); Chanson, Romain; Pageau, Arnaud; Rhallabi, Ahmed; Cardinaud, Christophe, E-mail: christophe.cardinaud@cnrs-imn.fr [Institut des matériaux Jean Rouxel (IMN), UMR6502, Université de Nantes, CNRS, 44322 Nantes (France)

    2015-09-15

    Two x-ray photoelectron spectroscopy configurations are proposed to analyze the surface chemistry of micron-scale InP ridge structures etched in chlorine-based inductively coupled plasma (ICP). Either a classical or a grazing configuration allows to retrieve information about the surface chemistry of the bottom surface and sidewalls of the etched features. The procedure is used to study the stoichiometry of the etched surface as a function of ridge aspect ratio for Cl{sub 2}/Ar and Cl{sub 2}/H{sub 2} plasma chemistries. The results show that the bottom surface and the etched sidewalls are P-rich, and indicate that the P-enrichment mechanism is rather chemically driven. Results also evidence that adding H{sub 2} to Cl{sub 2} does not necessarily leads to a more balanced surface stoichiometry. This is in contrast with recent experimental results obtained with the HBr ICP chemistry for which fairly stoichiometric surfaces have been obtained.

  20. Investigation of chlorine-based etchants in wet and dry etching technology for an InP planar Gunn diode

    Institute of Scientific and Technical Information of China (English)

    Bai Yang; Jia Rui; Wu De-Qi; Jin Zhi; Liu Xin-Yu; Lin Mei-Yu

    2013-01-01

    Mesa etching technology is considerably important in the Gunn diode fabrication process.In this paper we fabricate InP Gunn diodes with two different kinds of chlorine-based etchants for the mesa etching for comparative study.We use two chlorine-based etchants,one is HCl-based solution (HCl/H3PO4),and the other is Cl2-based gas mixture by utilizing inductively coupled plasma system (ICP).The results show that the wet etching (HCl-based) offers low cost and approximately vertical sidewall,whilst ICP system (Cl2-based) offers an excellent and uniform vertical sidewall,and the over-etching is tiny on the top and the bottom of mesa.And the fabricated mesas of Gunn diodes have average etching rates of ~ 0.6 μm/min and ~ 1.2 μm/min,respectively.The measured data show that the current of Gunn diode by wet etching is lower than that by ICP,and the former has a higher threshold voltage.It provides a low-cost and reliable method which is potentially applied to the fabrication of chip terahertz sources.

  1. 225-255-GHz InP DHBT Frequency Tripler MMIC Using Complementary Split-Ring Resonator

    Science.gov (United States)

    Li, Xiao; Zhang, Yong; Li, Oupeng; Sun, Yan; Lu, Haiyan; Cheng, Wei; Xu, Ruimin

    2016-10-01

    In this paper, a novel design of frequency tripler monolithic microwave integrated circuit (MMIC) using complementary split-ring resonator (CSRR) is proposed based on 0.5-μm InP DHBT process. The CSRR-loaded microstrip structure is integrated in the tripler as a part of impedance matching network to suppress the fundamental harmonic, and another frequency tripler based on conventional band-pass filter is presented for comparison. The frequency tripler based on CSRR-loaded microstrip generates an output power between -8 and -4 dBm from 228 to 255 GHz when the input power is 6 dBm. The suppression of fundamental harmonic is better than 20 dBc at 77-82 GHz input frequency within only 0.15 × 0.15 mm2 chip area of the CSRR structure on the ground layer. Compared with the frequency tripler based on band-pass filter, the tripler using CSRR-loaded microstrip obtains a similar suppression level of unwanted harmonics and higher conversion gain within a much smaller chip area. To our best knowledge, it is the first time that CSRR is used for harmonic suppression of frequency multiplier at such high frequency band.

  2. Design of InP DHBT power amplifiers at millimeter-wave frequencies using interstage matched cascode technique

    DEFF Research Database (Denmark)

    Yan, Lei; Johansen, Tom Keinicke

    2013-01-01

    In this paper, the design of InP DHBT based millimeter-wave(mm-wave) power amplifiers(PAs) using an interstage matched cascode technique is presented. The output power of a traditional cascode is limited by the early saturation of the common-base(CB) device. The interstage matched cascode can...... be employed to improve the power handling ability through optimizing the input impedance of the CB device. The minimized power mismatch between the CB and the common-emitter(CE) devices results in an improved saturated output power. To demonstrate the technique for power amplifier designs at mm-wave...... frequencies, a single-branch cascode based PA using single-finger devices and a two-way combined based PA using three-finger devices are fabricated. The single-branch design shows a measured power gain of 9.2dB and a saturated output power of 12.3dBm at 67.2GHz and the two-way combined design shows a power...

  3. Atomic geometry, electronic states and possible hydrogen passivation of the InP(1 1 1)A surface

    Science.gov (United States)

    Chuasiripattana, K.; Srivastava, G. P.

    2006-08-01

    We present a first-principles theoretical study of the atomic geometry and electronics states of the InP(1 1 1)A surface under In- and P-rich conditions. The In-rich surface, characterised by an In vacancy per unit ( 2×2) cell, obeys the electron counting rule (ECR) and is semiconducting. Under P-rich conditions we have considered two surface reconstructions: ( 2×2) with 3/4 monolayer (ML) P coverage and ( √{3}×√{3}) with 1 ML coverage. In complete agreement with a recent experimental work by Li et al., it is found that the ( √{3}×√{3}) reconstruction is more stable than the ( 2×2) reconstruction. However, the ( √{3}×√{3}) reconstruction has a metallic band structure and thus does not satisfy the ECR. The stability of this reconstruction is explained to arise from a competition between the ECR and a significant elastic deformation in the surface region. We confirm the suggestion by Li et al. that this surface can be passivated both chemically as well as electronically with 1/4 ML coverage of hydrogen.

  4. P-H bonds in the reconstruction of P-rich InP(100) measured with FTIR

    Science.gov (United States)

    Letzig, T.; Willig, F.

    2006-08-01

    The reconstruction of P-rich InP(100) requires at least a (2x4) surface unit cell to stay semiconducting and uncharged (electron counting rule). Recently it has been shown that the much smaller (2x2) unit cell obtained from MOCVD (metalorganic vapor deposition) growth contains P-H bonds. Orientation and polarization dependent Fourier Transform Infrared Spectroscopy (FTIR) of the P-H bonds in the Attenuated Total Reflection (ATR) mode have confirmed the specific form of the (2x2) surface unit cell (T. Letzig et al., Phys. Rev. B 71 (2005) 033308) earlier proposed by W.G. Schmidt and coworkers (W.G. Schmidt et al., Phys. Rev. Lett. 90 (2003) 126101). Surface unit cells with a higher concentration of P-H bonds also obey the electron counting rule. A c(2x2) LEED image and two matching FTIR peaks were observed when the (2x2) reconstructed surface was exposed to atomic hydrogen. The corresponding c(2x2)-2P-3H surface unit cell can be shown to form a stable surface phase (T. Letzig et al., Phys. Rev. B, submitted). The complete transformation of the (2x2) surface to this new phase is not observed since the surface deteriorates when exposed to a higher dose of atomic hydrogen.

  5. Quantum Computing

    CERN Document Server

    Ladd, Thaddeus D; Laflamme, Raymond; Nakamura, Yasunobu; Monroe, Christopher; O'Brien, Jeremy L; 10.1038/nature08812

    2010-01-01

    Quantum mechanics---the theory describing the fundamental workings of nature---is famously counterintuitive: it predicts that a particle can be in two places at the same time, and that two remote particles can be inextricably and instantaneously linked. These predictions have been the topic of intense metaphysical debate ever since the theory's inception early last century. However, supreme predictive power combined with direct experimental observation of some of these unusual phenomena leave little doubt as to its fundamental correctness. In fact, without quantum mechanics we could not explain the workings of a laser, nor indeed how a fridge magnet operates. Over the last several decades quantum information science has emerged to seek answers to the question: can we gain some advantage by storing, transmitting and processing information encoded in systems that exhibit these unique quantum properties? Today it is understood that the answer is yes. Many research groups around the world are working towards one ...

  6. Quantum Baseball.

    Science.gov (United States)

    Peterson, Ivars

    1989-01-01

    An analogy from the game of baseball can be used to examine the philosophy involved in statistics surrounding quantum mechanical events. The "Strong Baseball Principle" is proposed and discussed. (CW)

  7. Quantum fingerprinting

    CERN Document Server

    Buhrman, H; Watrous, J; De Wolf, R; Buhrman, Harry; Cleve, Richard; Watrous, John; Wolf, Ronald de

    2001-01-01

    Classical fingerprinting associates with each string a shorter string (its fingerprint), such that, with high probability, any two distinct strings can be distinguished by comparing their fingerprints alone. The fingerprints can be exponentially smaller than the original strings if the parties preparing the fingerprints share a random key, but not if they only have access to uncorrelated random sources. In this paper we show that fingerprints consisting of quantum information can be made exponentially smaller than the original strings without any correlations or entanglement between the parties: we give a scheme where the quantum fingerprints are exponentially shorter than the original strings and we give a test that distinguishes any two unknown quantum fingerprints with high probability. Our scheme implies an exponential quantum/classical gap for the equality problem in the simultaneous message passing model of communication complexity. We optimize several aspects of our scheme.

  8. Quantum Brain?

    CERN Document Server

    Mershin, A; Skoulakis, E M C

    2000-01-01

    In order to create a novel model of memory and brain function, we focus our approach on the sub-molecular (electron), molecular (tubulin) and macromolecular (microtubule) components of the neural cytoskeleton. Due to their size and geometry, these systems may be approached using the principles of quantum physics. We identify quantum-physics derived mechanisms conceivably underlying the integrated yet differentiated aspects of memory encoding/recall as well as the molecular basis of the engram. We treat the tubulin molecule as the fundamental computation unit (qubit) in a quantum-computational network that consists of microtubules (MTs), networks of MTs and ultimately entire neurons and neural networks. We derive experimentally testable predictions of our quantum brain hypothesis and perform experiments on these.

  9. Quantum telescopes

    CERN Document Server

    Kellerer, Aglae

    2014-01-01

    In the 20th century, quantum mechanics connected the particle and wave concepts of light and thereby made mechanisms accessible that had never been imagined before. Processes such as stimulated emission and quantum entanglement have revolutionized modern technology. But even though astronomical observations rely on novel technologies, the optical layout of telescopes has fundamentally remained unchanged. While there is no doubt that Huyghens and Newton would be astounded by the size of our modern telescopes, they would nevertheless understand their optical design. The time may now have come to consider quantum telescopes, that make use of the fundamental scientific changes brought along by quantum mechanics. While one aim is to entertain our reader, our main purpose is to explore the possible future evolution of telescopes.

  10. Quantum Biology

    CERN Document Server

    Sergi, Alessandro

    2009-01-01

    A critical assessment of the recent developments of molecular biology is presented. The thesis that they do not lead to a conceptual understanding of life and biological systems is defended. Maturana and Varela's concept of autopoiesis is briefly sketched and its logical circularity avoided by postulating the existence of underlying {\\it living processes}, entailing amplification from the microscopic to the macroscopic scale, with increasing complexity in the passage from one scale to the other. Following such a line of thought, the currently accepted model of condensed matter, which is based on electrostatics and short-ranged forces, is criticized. It is suggested that the correct interpretation of quantum dispersion forces (van der Waals, hydrogen bonding, and so on) as quantum coherence effects hints at the necessity of including long-ranged forces (or mechanisms for them) in condensed matter theories of biological processes. Some quantum effects in biology are reviewed and quantum mechanics is acknowledge...

  11. Light-trapping for room temperature Bose-Einstein condensation in InGaAs quantum wells.

    Science.gov (United States)

    Vasudev, Pranai; Jiang, Jian-Hua; John, Sajeev

    2016-06-27

    We demonstrate the possibility of room-temperature, thermal equilibrium Bose-Einstein condensation (BEC) of exciton-polaritons in a multiple quantum well (QW) system composed of InGaAs quantum wells surrounded by InP barriers, allowing for the emission of light near telecommunication wavelengths. The QWs are embedded in a cavity consisting of double slanted pore (SP2) photonic crystals composed of InP. We consider exciton-polaritons that result from the strong coupling between the multiple quantum well excitons and photons in the lowest planar guided mode within the photonic band gap (PBG) of the photonic crystal cavity. The collective coupling of three QWs results in a vacuum Rabi splitting of 3% of the bare exciton recombination energy. Due to the full three-dimensional PBG exhibited by the SP2 photonic crystal (16% gap to mid-gap frequency ratio), the radiative decay of polaritons is eliminated in all directions. Due to the short exciton-phonon scattering time in InGaAs quantum wells of 0.5 ps and the exciton non-radiative decay time of 200 ps at room temperature, polaritons can achieve thermal equilibrium with the host lattice to form an equilibrium BEC. Using a SP2 photonic crystal with a lattice constant of a = 516 nm, a unit cell height of 2a=730nm and a pore radius of 0.305a = 157 nm, light in the lowest planar guided mode is strongly localized in the central slab layer. The central slab layer consists of 3 nm InGaAs quantum wells with 7 nm InP barriers, in which excitons have a recombination energy of 0.944 eV, a binding energy of 7 meV and a Bohr radius of aB = 10 nm. We take the exciton recombination energy to be detuned 35 meV above the lowest guided photonic mode so that an exciton-polariton has a photonic fraction of approximately 97% per QW. This increases the energy range of small-effective-mass photonlike states and increases the critical temperature for the onset of a Bose-Einstein condensate. With three quantum wells in the central slab layer

  12. Light-trapping for room temperature Bose-Einstein condensation in InGaAs quantum wells.

    Science.gov (United States)

    Vasudev, Pranai; Jiang, Jian-Hua; John, Sajeev

    2016-06-27

    We demonstrate the possibility of room-temperature, thermal equilibrium Bose-Einstein condensation (BEC) of exciton-polaritons in a multiple quantum well (QW) system composed of InGaAs quantum wells surrounded by InP barriers, allowing for the emission of light near telecommunication wavelengths. The QWs are embedded in a cavity consisting of double slanted pore (SP2) photonic crystals composed of InP. We consider exciton-polaritons that result from the strong coupling between the multiple quantum well excitons and photons in the lowest planar guided mode within the photonic band gap (PBG) of the photonic crystal cavity. The collective coupling of three QWs results in a vacuum Rabi splitting of 3% of the bare exciton recombination energy. Due to the full three-dimensional PBG exhibited by the SP2 photonic crystal (16% gap to mid-gap frequency ratio), the radiative decay of polaritons is eliminated in all directions. Due to the short exciton-phonon scattering time in InGaAs quantum wells of 0.5 ps and the exciton non-radiative decay time of 200 ps at room temperature, polaritons can achieve thermal equilibrium with the host lattice to form an equilibrium BEC. Using a SP2 photonic crystal with a lattice constant of a = 516 nm, a unit cell height of 2a=730nm and a pore radius of 0.305a = 157 nm, light in the lowest planar guided mode is strongly localized in the central slab layer. The central slab layer consists of 3 nm InGaAs quantum wells with 7 nm InP barriers, in which excitons have a recombination energy of 0.944 eV, a binding energy of 7 meV and a Bohr radius of aB = 10 nm. We take the exciton recombination energy to be detuned 35 meV above the lowest guided photonic mode so that an exciton-polariton has a photonic fraction of approximately 97% per QW. This increases the energy range of small-effective-mass photonlike states and increases the critical temperature for the onset of a Bose-Einstein condensate. With three quantum wells in the central slab layer

  13. Quantum lottery

    CERN Multimedia

    CERN Bulletin

    2013-01-01

    On April Fools' Day, CERN Quantum Diaries blogger Pauline Gagnon held a giveaway of microscopic proportion. Up for grabs? Ten Higgs bosons, courtesy of CERN. Pauline announced the winners last week; let's see what they'll really be getting in the mail...   Custom-made Particle Zoo Higgs bosons were sent out to the winners. Read more about the prize in the Quantum Diaries post "Higgs boson lottery: when CERN plays April Fools' jokes".

  14. Quantum conversion

    CERN Document Server

    Mazilu, Michael

    2015-01-01

    The electromagnetic momentum transferred transfered to scattering particles is proportional to the intensity of the incident fields, however, the momentum of single photons ($\\hbar k$) does not naturally appear in these classical expressions. Here, we discuss an alternative to Maxwell's stress tensor that renders the classical electromagnetic field momentum compatible to the quantum mechanical one. This is achieved through the introduction of the quantum conversion which allows the transformation, including units, of the classical fields to wave-function equivalent fields.

  15. Quantum optics

    DEFF Research Database (Denmark)

    Andersen, Ulrik Lund

    2013-01-01

    Further sensitivity improvements are required before advanced optical interferometers will be able to measure gravitational waves. A team has now shown that introducing quantum squeezing of light may help to detect these elusive waves.......Further sensitivity improvements are required before advanced optical interferometers will be able to measure gravitational waves. A team has now shown that introducing quantum squeezing of light may help to detect these elusive waves....

  16. Enzyme-Polymers Conjugated to Quantum-Dots for Sensing Applications

    Directory of Open Access Journals (Sweden)

    Alexandra Mansur

    2011-10-01

    Full Text Available In the present research, the concept of developing a novel system based on polymer-enzyme macromolecules was tested by coupling carboxylic acid functionalized poly(vinyl alcohol (PVA-COOH to glucose oxidase (GOx followed by the bioconjugation with CdS quantum-dots (QD. The resulting organic-inorganic nanohybrids were characterized by UV-visible spectroscopy, infrared spectroscopy, Photoluminescence spectroscopy (PL and transmission electron microscopy (TEM. The spectroscopy results have clearly shown that the polymer-enzyme macromolecules (PVA-COOH/GOx were synthesized by the proposed zero-length linker route. Moreover, they have performed as successful capping agents for the nucleation and constrained growth of CdS quantum-dots via aqueous colloidal chemistry. The TEM images associated with the optical absorption results have indicated the formation of CdS nanocrystals with estimated diameters of about 3.0 nm. The “blue-shift” in the visible absorption spectra and the PL values have provided strong evidence that the fluorescent CdS nanoparticles were produced in the quantum-size confinement regime. Finally, the hybrid system was biochemically assayed by injecting the glucose substrate and detecting the formation of peroxide with the enzyme horseradish peroxidase (HRP. Thus, the polymer-enzyme-QD hybrid has behaved as a nanostructured sensor for glucose detecting.

  17. Delirium Quantum

    CERN Document Server

    Fuchs, Christopher A

    2009-01-01

    This pseudo-paper consists of excerpts drawn from two of my quantum-email samizdats. Section 1 draws a picture of a physical world whose essence is ``Darwinism all the way down.'' Section 2 outlines how quantum theory should be viewed in light of this, i.e., as being an expression of probabilism (in Bruno de Finetti or Richard Jeffrey's sense) all the way back up. Section 3 describes how the idea of ``identical'' quantum measurement outcomes, though sounding atomistic in character, nonetheless meshes well with a Jamesian style ``radical pluralism.'' Sections 4 and 5 further detail how quantum theory should not be viewed so much as a ``theory of the world,'' but rather as a theory of decision-making for agents immersed within a world of a particular character--the quantum world. Finally, Sections 6 and 7 attempt to sketch the very positive sense in which quantum theory is incomplete, but still just as complete is it can be. In total, I hope these heady speculations convey some of the excitement and potential I...

  18. Quantum Computation and Quantum Spin Dynamics

    NARCIS (Netherlands)

    Raedt, Hans De; Michielsen, Kristel; Hams, Anthony; Miyashita, Seiji; Saito, Keiji

    2001-01-01

    We analyze the stability of quantum computations on physically realizable quantum computers by simulating quantum spin models representing quantum computer hardware. Examples of logically identical implementations of the controlled-NOT operation are used to demonstrate that the results of a quantum

  19. Quantum Central Processing Unit and Quantum Algorithm

    Institute of Scientific and Technical Information of China (English)

    王安民

    2002-01-01

    Based on a scalable and universal quantum network, quantum central processing unit, proposed in our previous paper [Chin. Phys. Left. 18 (2001)166], the whole quantum network for the known quantum algorithms,including quantum Fourier transformation, Shor's algorithm and Grover's algorithm, is obtained in a unitied way.

  20. Blood group antigen studies using CdTe quantum dots and flow cytometry.

    Science.gov (United States)

    Cabral Filho, Paulo E; Pereira, Maria I A; Fernandes, Heloise P; de Thomaz, Andre A; Cesar, Carlos L; Santos, Beate S; Barjas-Castro, Maria L; Fontes, Adriana

    2015-01-01

    New methods of analysis involving semiconductor nanocrystals (quantum dots [QDs]) as fluorescent probes have been highlighted in life science. QDs present some advantages when compared to organic dyes, such as size-tunable emission spectra, broad absorption bands, and principally exceptional resistance to photobleaching. Methods applying QDs can be simple, not laborious, and can present high sensibility, allowing biomolecule identification and quantification with high specificity. In this context, the aim of this work was to apply dual-color CdTe QDs to quantify red blood cell (RBC) antigen expression on cell surface by flow cytometric analysis. QDs were conjugated to anti-A or anti-B monoclonal antibodies, as well as to the anti-H (Ulex europaeus I) lectin, to investigate RBCs of A1, B, A1B, O, A2, and Aweak donors. Bioconjugates were capable of distinguishing the different expressions of RBC antigens, both by labeling efficiency and by flow cytometry histogram profile. Furthermore, results showed that RBCs from Aweak donors present fewer amounts of A antigens and higher amounts of H, when compared to A1 RBCs. In the A group, the amount of A antigens decreased as A1 > A3 > AX = Ael, while H antigens were AX = Ael > A1. Bioconjugates presented stability and remained active for at least 6 months. In conclusion, this methodology with high sensibility and specificity can be applied to study a variety of RBC antigens, and, as a quantitative tool, can help in achieving a better comprehension of the antigen expression patterns on RBC membranes. PMID:26185442

  1. Development of a Quantum Dot, 0.6 eV InGaAs Thermophotovoltaic (TPV) Converter

    Science.gov (United States)

    Forbes, David; Sinharoy, Samar; Raffalle, Ryne; Weizer, Victor; Homann, Natalie; Valko, Thomas; Bartos,Nichole; Scheiman, David; Bailey, Sheila

    2007-01-01

    Thermophotovoltaic (TPV) power conversion has to date demonstrated conversion efficiencies exceeding 20% when coupled to a heat source. Current III-V semiconductor TPV technology makes use of planar devices with bandgaps tailored to the heat source. The efficiency can be improved further by increasing the collection efficiency through the incorporation of InAs quantum dots. The use of these dots can provide sub-gap absorption and thus improve the cell short circuit current without the normal increase in dark current associated with lowering the bandgap. We have developed self-assembled InAs quantum dots using the Stranski-Krastanov growth mode on 0.74 eV In0.53GaAs lattice-matched to InP and also on lattice-mismatched 0.6 eV In0.69GaAs grown on InP through the use of a compositionally graded InPAsx buffer structure, by metalorganic vapor phase epitaxy (MOVPE). Atomic force microscopy (AFM) measurements showed that the most reproducible dot pattern was obtained with 5 monolayers of InAs grown at 450 C. The lattice mismatch between InAs and In0.69GaAs is only 2.1%, compared to 3.2% between InAs and In0.53GaAs. The smaller mismatch results in lower strain, making dot formation somewhat more complicated, resulting in quantum dashes, rather than well defined quantum dots in the lattice-mismatched case. We have fabricated 0.6 eV InGaAs planer TPV cells with and without the quantum dashes

  2. Quantum Geometry and Quantum Gravity

    OpenAIRE

    Barbero González, Jesús Fernando

    2008-01-01

    The purpose of this contribution is to give an introduction to quantum geometry and loop quantum gravity for a wide audience of both physicists and mathematicians. From a physical point of view the emphasis will be on conceptual issues concerning the relationship of the formalism with other more traditional approaches inspired in the treatment of the fundamental interactions in the standard model. Mathematically I will pay special attention to functional analytic issues, the construction of t...

  3. Quantum dot as probe for disease diagnosis and monitoring.

    Science.gov (United States)

    Mukherjee, Abhishek; Shim, Yumi; Myong Song, Joon

    2016-01-01

    Semiconductor quantum dots (QD) possess unique optical and electric properties like size-tunable light emission, narrow emission range, high brightness and photostability. Recent research advances have minimized the toxicity of QDs and they are successfully used in in vitro and in vivo imaging. Encapsulation of QDs into polymeric nanoparticles and linking them with targeting ligands enabled the detection of tumors and cancer cells in vivo. QD-antibody conjugates were successfully used in monitoring and diagnosis of HIV and myocardial infarction. Application of near infrared (NIR) QDs was found to minimize the absorption and scattering of light by native tissues thus rendering them suitable in deep tissue analysis. Aggregation and endosomal sequestration of QDs pose major challenges for the effective delivery of QDs to the cell cytosol. Toxicity minimization and effective delivery strategies may further increase their suitability for utilization in disease diagnosis. New synthesis of QDs may provide new types of bioconjugates of QDs to biomolecules, which leads to a variety of applications to many challenged research areas. QDs with narrow emission wavelength ranges are very suitable for monitoring multiple cellular targets simultaneously, and still remain the best known probes for imaging as an alternative to traditional fluorophores in disease diagnosis. PMID:26709963

  4. Quantum Physics for Beginners.

    Science.gov (United States)

    Strand, J.

    1981-01-01

    Suggests a new approach for teaching secondary school quantum physics. Reviews traditional approaches and presents some characteristics of the three-part "Quantum Physics for Beginners" project, including: quantum physics, quantum mechanics, and a short historical survey. (SK)

  5. Quantum Statistical Mechanics

    Science.gov (United States)

    Schieve, William C.; Horwitz, Lawrence P.

    2009-04-01

    1. Foundations of quantum statistical mechanics; 2. Elementary examples; 3. Quantum statistical master equation; 4. Quantum kinetic equations; 5. Quantum irreversibility; 6. Entropy and dissipation: the microscopic theory; 7. Global equilibrium: thermostatics and the microcanonical ensemble; 8. Bose-Einstein ideal gas condensation; 9. Scaling, renormalization and the Ising model; 10. Relativistic covariant statistical mechanics of many particles; 11. Quantum optics and damping; 12. Entanglements; 13. Quantum measurement and irreversibility; 14. Quantum Langevin equation: quantum Brownian motion; 15. Linear response: fluctuation and dissipation theorems; 16. Time dependent quantum Green's functions; 17. Decay scattering; 18. Quantum statistical mechanics, extended; 19. Quantum transport with tunneling and reservoir ballistic transport; 20. Black hole thermodynamics; Appendix; Index.

  6. Quantum Technology: The Second Quantum Revolution

    OpenAIRE

    Dowling, Jonathan P.; Milburn, Gerard J.

    2002-01-01

    We are currently in the midst of a second quantum revolution. The first quantum revolution gave us new rules that govern physical reality. The second quantum revolution will take these rules and use them to develop new technologies. In this review we discuss the principles upon which quantum technology is based and the tools required to develop it. We discuss a number of examples of research programs that could deliver quantum technologies in coming decades including; quantum information tech...

  7. Quantum Dot Platform for Single-Cell Molecular Profiling

    Science.gov (United States)

    Zrazhevskiy, Pavel S.

    In-depth understanding of the nature of cell physiology and ability to diagnose and control the progression of pathological processes heavily rely on untangling the complexity of intracellular molecular mechanisms and pathways. Therefore, comprehensive molecular profiling of individual cells within the context of their natural tissue or cell culture microenvironment is essential. In principle, this goal can be achieved by tagging each molecular target with a unique reporter probe and detecting its localization with high sensitivity at sub-cellular resolution, primarily via microscopy-based imaging. Yet, neither widely used conventional methods nor more advanced nanoparticle-based techniques have been able to address this task up to date. High multiplexing potential of fluorescent probes is heavily restrained by the inability to uniquely match probes with corresponding molecular targets. This issue is especially relevant for quantum dot probes---while simultaneous spectral imaging of up to 10 different probes is possible, only few can be used concurrently for staining with existing methods. To fully utilize multiplexing potential of quantum dots, it is necessary to design a new staining platform featuring unique assignment of each target to a corresponding quantum dot probe. This dissertation presents two complementary versatile approaches towards achieving comprehensive single-cell molecular profiling and describes engineering of quantum dot probes specifically tailored for each staining method. Analysis of expanded molecular profiles is achieved through augmenting parallel multiplexing capacity with performing several staining cycles on the same specimen in sequential manner. In contrast to other methods utilizing quantum dots or other nanoparticles, which often involve sophisticated probe synthesis, the platform technology presented here takes advantage of simple covalent bioconjugation and non-covalent self-assembly mechanisms for straightforward probe

  8. Quantum cloning

    International Nuclear Information System (INIS)

    It is impossible to make perfect copies or 'clones' of unknown quantum states, but approximate copies could still have many uses in quantum computing. A computer is a physical device that consists of components that are all subject to the laws of physics. Since computers deal exclusively in information, there is a close connection between information and physical systems. But what happens if the components inside the computer become so small that they must be described by quantum mechanics rather than classical physics? The seemingly unstoppable decrease in the size of transistors and other components will force the computer industry to confront this question in the near future. However, a small band of far-sighted physicists has been thinking about these problems for almost two decades. Starting with the work of Paul Benioff, Richard Feynman, David Deutsch and Charles Bennett in the mid-1980s, the field of 'quantum information' has grown to become one of the most exciting areas of modern physics. These early pioneers realized that the representation of information by quantum systems, such as single electrons or photons, was an opportunity rather than a problem. (U.K.)

  9. Quantum minigolf

    Energy Technology Data Exchange (ETDEWEB)

    Reinhard, Friedemann [Universitaet Stuttgart (Germany). 3. Physikalisches Institut

    2010-07-01

    Quantum minigolf is a virtual-reality computer game visualizing quantum mechanics. The rules are the same as for the classical game minigolf, the goal being to kick a ball such that it crosses an obstacle course and runs into a hole. The ball, however, follows the laws of quantum mechanics: It can be at several places at once or tunnel through obstacles. To know whether the ball has reached the goal, the player has to perform a position measurement, which converts the ball into a classical object and fixes its position. But quantum mechanics is indeterministic: There is always a chance to lose, even for Tiger Woods. Technically, the obstacle course and the ball are projected onto the floor by a video projector. The position of the club is tracked by an infrared marker, similar as in Nintendo's Wii console. The whole setup is portable and the software has been published under the GPL license on www.quantum-minigolf.org.

  10. Quantum group gauge theory on quantum spaces

    International Nuclear Information System (INIS)

    We construct quantum group-valued canonical connections on quantum homogeneous spaces, including a q-deformed Dirac monopole on the quantum sphere of Podles quantum differential coming from the 3-D calculus of Woronowicz on SUq(2). The construction is presented within the setting of a general theory of quantum principal bundles with quantum group (Hopf algebra) fiber, associated quantum vector bundles and connection one-forms. Both the base space (spacetime) and the total space are non-commutative algebras (quantum spaces). (orig.)

  11. Characterisation of vertical gradient freeze semi-insulating InP for use as a nuclear radiation detector

    International Nuclear Information System (INIS)

    The performance of a nuclear radiation detector fabricated from Vertical Gradient Freeze (VGF) semi-insulating Fe-doped InP was investigated. Pulse height spectra were acquired when the detector was irradiated with alpha particles from 241Am, as a function of temperature and detector bias voltage. The spectroscopic performance of the detector was limited at room temperature due to the presence of a high leakage current. At a bias of -150 V, a room temperature leakage current density of 2.4x10-6 A/mm2 was observed which reduced to 7.1x10-8 A/mm2 at a temperature of -21 degree sign C. By biasing the irradiated detector contact at either a negative or positive potential, the charge collection efficiency (CCE) was measured separately for pulses produced predominantly by electron transport and for pulses produced predominantly by hole transport, respectively. At -21 degree sign C a maximum CCE of 72% was obtained for the electron signal and 44% for the hole signal. As a function of bias the CCE of the electrons remained constant in the temperature range -21 degree sign C to +19 degree sign C, whilst that of the holes exhibited a significant variation. By comparison with the Hecht relationship estimates of the carrier mobility-lifetime (μτ) products are deduced, which are similar for both holes and electrons and in the range 5x10-7-8x10-7 cm2/V. A reduction in μτ is observed at lower temperature for holes, whereas the value for electrons remains constant over the temperature range studied

  12. InP-based type-I quantum well lasers up to 2.9 μm at 230 K in pulsed mode on a metamorphic buffer

    Energy Technology Data Exchange (ETDEWEB)

    Gu, Y.; Zhang, Y. G., E-mail: ygzhang@mail.sim.ac.cn; Ma, Y. J.; Zhou, L.; Chen, X. Y.; Xi, S. P.; Du, B. [State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050 (China)

    2015-03-23

    This work reports on up to 2.9 μm lasing at 230 K of InP-based type-I quantum well lasers. This record long wavelength lasing is achieved by applying InP-based Sb-free structures with eight periods of strain-compensated InAs quantum wells grown on metamorphic In{sub 0.8}Al{sub 0.2}As template layers. The continuous-wave threshold current density is 797 A/cm{sup 2} and the idealized extrapolated threshold current density for infinite cavity length is as low as 58 A/cm{sup 2} per quantum well at 120 K. This scheme is a promising pathway for extending the wavelength range of type-I quantum well lasers on InP substrates.

  13. Quantum waveguides

    CERN Document Server

    Exner, Pavel

    2015-01-01

    This monograph explains the theory of quantum waveguides, that is, dynamics of quantum particles confined to regions in the form of tubes, layers, networks, etc. The focus is on relations between the confinement geometry on the one hand and the spectral and scattering properties of the corresponding quantum Hamiltonians on the other. Perturbations of such operators, in particular, by external fields are also considered. The volume provides a unique summary of twenty five years of research activity in this area and indicates ways in which the theory can develop further. The book is fairly self-contained. While it requires some broader mathematical physics background, all the basic concepts are properly explained and proofs of most theorems are given in detail, so there is no need for additional sources. Without a parallel in the literature, the monograph by Exner and Kovarik guides the reader through this new and exciting field.

  14. Quantum spirals

    CERN Document Server

    Yoshida, Z

    2016-01-01

    Quantum systems often exhibit fundamental incapability to entertain vortex. The Meissner effect, a complete expulsion of the magnetic field (the electromagnetic vorticity), for instance, is taken to be the defining attribute of the superconducting state. Superfluidity is another, close-parallel example; fluid vorticity can reside only on topological defects with a limited (quantized) amount. Recent developments in the Bose-Einstein condensates produced by particle traps further emphasize this characteristic. We show that the challenge of imparting vorticity to a quantum fluid can be met through a nonlinear mechanism operating in a hot fluid corresponding to a thermally modified Pauli-Schroedinger spinor field. In a simple field-free model, we show that the thermal effect, represented by a nonlinear, non-Hermitian Hamiltonian, in conjunction with spin vorticity, leads to new interesting quantum states; a spiral solution is explicitly worked out.

  15. Quantum Go

    CERN Document Server

    Ranchin, André

    2016-01-01

    We introduce a new board game based on the ancient Chinese game of Go (Weiqi, Igo, Baduk). The key difference from the original game is that players no longer alternatively play single stones on the board but instead they take turns placing pairs of entangled go stones. A phenomenon of quantum-like collapse occurs when a stone is placed in an intersection directly adjacent to one or more other stones. For each neighboring stone in an entangled pair, each player then chooses which stone of the pair is kept on the board and which stone is removed. The aim of the game is still to surround more territory than the opponent and as the number of stones increases, all the entangled pairs of stones eventually reduce to single stones. Quantum Go provides an interesting and tangible illustration of quantum concepts such as superposition, entanglement and collapse.

  16. Quantum Magnetism

    CERN Document Server

    Barbara, Bernard; Sawatzky, G; Stamp, P. C. E

    2008-01-01

    This book is based on some of the lectures during the Pacific Institute of Theoretical Physics (PITP) summer school on "Quantum Magnetism", held during June 2006 in Les Houches, in the French Alps. The school was funded jointly by NATO, the CNRS, and PITP, and entirely organized by PITP. Magnetism is a somewhat peculiar research field. It clearly has a quantum-mechanical basis – the microsopic exchange interactions arise entirely from the exclusion principle, in conjunction with respulsive interactions between electrons. And yet until recently the vast majority of magnetism researchers and users of magnetic phenomena around the world paid no attention to these quantum-mechanical roots. Thus, eg., the huge ($400 billion per annum) industry which manufactures hard discs, and other components in the information technology sector, depends entirely on room-temperature properties of magnets - yet at the macroscopic or mesoscopic scales of interest to this industry, room-temperature magnets behave entirely classic...

  17. Spontaneous emission inhibition of telecom-band quantum disks inside single nanowire on different substrates

    CERN Document Server

    Birowosuto, M D; Yokoo, A; Takiguchi, M; Notomi, M

    2014-01-01

    We investigate the inhibited spontaneous emission of telecom-band InAs quantum disks (Qdisks) in InP nanowires (NWs). We have evaluated how the inhibition is affected by different disk diameter and thickness. We also compared the inhibition in standing InP NWs and those NWs laying on silica (SiO2), and silicon (Si) substrates. We found that the inhibition is altered when we put the NW on the high-refractive index materials of Si. Experimentally, the inhibition factor $\\zeta$ of the Qdisk emission at 1,500 nm decreases from 4.6 to 2.5 for NW on SiO2 and Si substrates, respectively. Those inhibitions are even much smaller than that of 6.4 of the standing NW. The inhibition factors well agree with those calculated from the coupling of the Qdisk to the fundamental guided mode and the continuum of radiative modes. Our observation can be useful for the integration of the NW as light sources in the photonic nanodevices.

  18. EDITORIAL: Progress in quantum technology: one photon at a time Progress in quantum technology: one photon at a time

    Science.gov (United States)

    Demming, Anna

    2012-07-01

    dissociate an optically excited exciton and spatially separate the electron and hole, thereby increasing the radiative lifetime by orders of magnitude. The interesting behaviour of SAWs has led to studies towards a number of other applications including sensing [5-7], synthesis and nanoassembly [8]. For applications in single-photon sources, the electron-hole pairs are transported by the SAW to a quantum dot where they recombine emitting a single photon. However, so far various limiting factors in the system, such as the low quality of the quantum dots used leading to multiple-exciton recombinations, have hindered potential applications of the system as a single-photon source. Control over high-quality quantum-dot self-assembly is constantly improving. Researchers at the University of California at Berkeley and Harvard University in the US report the ability to successfully position a small number of colloidal quantum dots to within less than 100 nm accuracy on metallic surfaces [9]. They use single-stranded DNA both to act as an anchor to the gold or silver substrates and to selectively bind to the quantum dots, allowing programmed assembly of quantum dots on plasmonic structures. More recently still, researchers in Germany have reported how they can controllably reduce the density of self-assembled InP quantum dots by cyclic deposition with growth interruptions [10]. The impressive control has great potential for quantum emitter use. In this issue, Völk, Krenner and colleagues use an alternative approach to demonstrate how they can improve the performance of single-photon sources using SAWs. They use an optimized system of isolated self-assembled quantum posts in a quantum-well structure and inject the carriers at a distance from the posts where recombination and emission take place [3]. The SAW dissociates the electron-hole pairs and transports them to the quantum posts, so the two carrier types arrive at the quantum post with a set time delay. Other approaches, such as

  19. Native oxides formation and surface wettability of epitaxial III-V materials: The case of InP and GaAs

    Science.gov (United States)

    Gocalinska, A.; Rubini, S.; Pelucchi, E.

    2016-10-01

    The time dependent transition from hydrophobic to hydrophilic states of the metalorganic vapour phase epitaxy (MOVPE) grown InP, GaAs and InAs is systematically documented by contact angle measurements. Natural oxides forming on the surfaces of air-exposed materials, as well as the results of some typical wet chemical process to remove those oxides, were studied by X-ray photoemission spectroscopy (XPS), revealing, surprisingly, a fundamental lack of strong correlations between the surface oxide composition and the reported systematic changes in hydrophobicity.

  20. Room-Temperature Inductively Coupled Plasma Etching of InP Using Cl2/N2 and Cl2/CH4/H2

    Institute of Scientific and Technical Information of China (English)

    LEE Chee-Wei; CHIN Mee-Koy

    2006-01-01

    @@ We optimize the room-temperature etching of InP using Cl2/CH4/H2 and Cl2/N2 inductively coupled plasma reactive ions. A design of experiment is used in the optimization. The results, in terms of etch rate, surface roughness and etched profile, are presented. These Cl2-based recipes do not require substrate heating and thus can be more cost effectively and widely applied. The Cl2/CH4/H2 process is able to give a higher etch rate (about 850nm/min) and cleaner surface with less polymer formation compared to the conventional CH4/H2 process.

  1. Electrodeposition of epitaxial ZnSe films on InP and GaAs from an aqueous zinc sulfate-selenosulfate solution

    Energy Technology Data Exchange (ETDEWEB)

    Riveros, G.; Guillemoles, J.F.; Lincot, D. [Laboratoire d' Electrochimie et de Chimie Analytique (UMR CNRS 7575), Ecole Nationale Superieure de Chimie de Paris, 11 rue Pierre et Marie Curie, F-75231 Paris Cedex 05 (France); Gomez Meier, H. [Instituto de Chimica, Faculdad de Ciencas Basicas y Matematicas, Universidad Catolica de Valparaiso, Avda. Brasil 2950, Casila, Valparaiso (Chile); Froment, M.; Bernard, M.C.; Cortes, R. [Laboratoire de Physique des Liquides et Electrochimie (UPR CNRS 15), Universite Pierre et Marie Curie, 4 place Jussieu, F-75232 Paris Cedex 05 (France)

    2002-09-16

    Epitaxial growth of ZnSe thin films on InP(111) and GaAs(100) substrates has been achieved by electrodeposition from a zinc sulfate/selenosulfate solution. The deposition was observed over a wide range of applied potentials (-1.6-1.9 V vs. mercury/mercury sulfate). The epitaxy was characterized by reflective high energy electron diffraction (see Figure for a ZnSe epitaxial layer) and grazing angle X-ray diffraction. (Abstract Copyright [2002], Wiley Periodicals, Inc.)

  2. Quantum mechanics

    CERN Document Server

    Rae, Alastair I M

    2007-01-01

    PREFACESINTRODUCTION The Photoelectric Effect The Compton Effect Line Spectra and Atomic Structure De Broglie Waves Wave-Particle Duality The Rest of This Book THE ONE-DIMENSIONAL SCHRÖDINGER EQUATIONS The Time-Dependent Schrödinger Equation The Time-Independent Schrödinger Equation Boundary ConditionsThe Infinite Square Well The Finite Square Well Quantum Mechanical Tunneling The Harmonic Oscillator THE THREE-DIMENSIONAL SCHRÖDINGER EQUATIONS The Wave Equations Separation in Cartesian Coordinates Separation in Spherical Polar Coordinates The Hydrogenic Atom THE BASIC POSTULATES OF QUANTUM MEC

  3. Quantum theory

    CERN Document Server

    Bohm, David

    1951-01-01

    This superb text by David Bohm, formerly Princeton University and Emeritus Professor of Theoretical Physics at Birkbeck College, University of London, provides a formulation of the quantum theory in terms of qualitative and imaginative concepts that have evolved outside and beyond classical theory. Although it presents the main ideas of quantum theory essentially in nonmathematical terms, it follows these with a broad range of specific applications that are worked out in considerable mathematical detail. Addressed primarily to advanced undergraduate students, the text begins with a study of t

  4. Quantum mechanics

    CERN Document Server

    Zagoskin, Alexandre

    2015-01-01

    Written by Dr Alexandre Zagoskin, who is a Reader at Loughborough University, Quantum Mechanics: A Complete Introduction is designed to give you everything you need to succeed, all in one place. It covers the key areas that students are expected to be confident in, outlining the basics in clear jargon-free English, and then providing added-value features like summaries of key ideas, and even lists of questions you might be asked in your exam. The book uses a structure that is designed to make quantum physics as accessible as possible - by starting with its similarities to Newtonian physics, ra

  5. Quantum Cavitation

    CERN Document Server

    Zizzi, Paola; Cardone, Fabio

    2010-01-01

    We consider the theoretical setting of a superfluid like 3He in a rotating container, which is set between the two layers of a type-II superconductor. We describe the superfluid vortices as a 2-dimensional Ising-like model on a triangular lattice in presence of local magnetic fields. The interaction term of the superfluid vortices with the Abrikosov vortices of the superconductor appears then as a symmetry breaking term in the free energy. Such a term gives a higher probability of quantum tunnelling across the potential barrier for bubbles nucleation, thus favouring quantum cavitation.

  6. Quantum chemistry

    CERN Document Server

    Lowe, John P

    2006-01-01

    Lowe's new edition assumes little mathematical or physical sophistication and emphasizes an understanding of the techniques and results of quantum chemistry. It can serve as a primary text in quantum chemistry courses, and enables students and researchers to comprehend the current literature. This third edition has been thoroughly updated and includes numerous new exercises to facilitate self-study and solutions to selected exercises.* Assumes little initial mathematical or physical sophistication, developing insights and abilities in the context of actual problems* Provides thorough treatment

  7. Schottky bariers on InP and GaN made by deposition of colloidal graphite and Pd, Pt or bimetal Pd/Pt nanoparticles for H2-gas detection

    OpenAIRE

    Žďánský, K. (Karel); Yatskiv, R. (Roman)

    2012-01-01

    Schottky barriers on III-V compound semiconductors are still not well explored up to now. There were already reported Pd and Pt Schottky diode gas sensors using InP or GaN materials. However, reported sensing performances are surprisingly different. Thus, proper understanding of sensing mechanism is indispensable. We report on InP and GaN Schottky diode hydrogen sensors with low-leakage currents and high sensitivity, made by deposition of colloidal graphite and electrophoresis of Pd, Pt nebo ...

  8. EFFECT OF THE MILD METHOD OF FORMATION V XO Y/INP STRUCTURES USING V 2O 5GEL ON THE PROCESS OF THEIR OXIDATION AND COMPOSITION OF NANOSIZED OXIDE FILMS

    OpenAIRE

    MITTOVA I. YA.; Tomina, E. V.; SLADKOPEVTCEV B.V.

    2014-01-01

    A V xO y/InP structure was formed by the deposition of a V 2O 5 gel aerosol on an InP surface, followed by thermal annealing. This approach avoids chemostimulator interactions with the substrate prior to thermal oxidation, which is characteristic of ‘hard’ methods of chemostimulator deposition. The oxidation process of such structures occurs in the transit mechanism with a slight increase growth rate of films by 20-40 % in comparison with the oxidation of InP. The transit action of chemostimu...

  9. Effects of GaAs on Photoluminescence Properties of Self-Assembled InAs Quantum Dots

    Institute of Scientific and Technical Information of China (English)

    WANG Xin-Qiang; ZHANG Ye-Jin; DU Guo-Tong; LI Xian-Jie; YIN Jing-Zhi; CHEN Wei-You; YANG Shu-Ren

    2001-01-01

    Room temperature photoluminescence (PL) spectra of InAs self-assembled quantum dots (QDs) deposited on aGaAs/InP and InP substrate are investigated. From the PL spectra, we find that the peak position of InAs Qdsappears redshift from 0.795 to 0.785eV after we insert a thin tensile GaAs layer between InAs QD layer and InPbuffer layer. In order to explain this phenomenon in theory, we examine the strain tensor in InAs quantum dotsby using a valence force field model and use a five-band k · p formalism to obtain the electronic structure. Thecalculated results show that the ground transition energy decreases from 0.789 to 0.780eV when the thin GaAslayer is inserted. Therefore, the PL peak position should appear redshift as shown in the experiment.

  10. Radiation hard multi-quantum well InP/InAsP. Solar cells for space applications

    Energy Technology Data Exchange (ETDEWEB)

    Walters, R.J.; Summers, G.P. [SFA Inc., Largo, MD (United States); Messenger, S.R.; Freundlich, A.; Monier, C.; Newman, F. [University of Houston, TX (United States)

    2000-06-01

    The effect of proton irradiation on the photovoltaic response of p-i-n InP solar cells that include an InP/InAsP multi-quantum well (MQW) layer in the intrinsic region is studied. Data from cells with three different quantum well structures are presented along with data from a control cell grown without MQW layer. The results show how the addition of the MQW's improves the solar energy conversion efficiency thereby allowing the base to be as thin a 1 {mu}sm while still maintaining a good photocurrent. In addition, the radiation response of the MQW cells is shown to be equal to or better than the lnP control cell. (author)

  11. Quantum gravity and quantum cosmology

    CERN Document Server

    Papantonopoulos, Lefteris; Siopsis, George; Tsamis, Nikos

    2013-01-01

    Quantum gravity has developed into a fast-growing subject in physics and it is expected that probing the high-energy and high-curvature regimes of gravitating systems will shed some light on how to eventually achieve an ultraviolet complete quantum theory of gravity. Such a theory would provide the much needed information about fundamental problems of classical gravity, such as the initial big-bang singularity, the cosmological constant problem, Planck scale physics and the early-time inflationary evolution of our Universe.   While in the first part of this book concepts of quantum gravity are introduced and approached from different angles, the second part discusses these theories in connection with cosmological models and observations, thereby exploring which types of signatures of modern and mathematically rigorous frameworks can be detected by experiments. The third and final part briefly reviews the observational status of dark matter and dark energy, and introduces alternative cosmological models.   ...

  12. Quantum Time

    CERN Document Server

    Ashmead, John

    2010-01-01

    Normally we quantize along the space dimensions but treat time classically. But from relativity we expect a high level of symmetry between time and space. What happens if we quantize time using the same rules we use to quantize space? To do this, we generalize the paths in the Feynman path integral to include paths that vary in time as well as in space. We use Morlet wavelet decomposition to ensure convergence and normalization of the path integrals. We derive the Schr\\"odinger equation in four dimensions from the short time limit of the path integral expression. We verify that we recover standard quantum theory in the non-relativistic, semi-classical, and long time limits. Quantum time is an experiment factory: most foundational experiments in quantum mechanics can be modified in a way that makes them tests of quantum time. We look at single and double slits in time, scattering by time-varying electric and magnetic fields, and the Aharonov-Bohm effect in time.

  13. Quantum wormholes

    International Nuclear Information System (INIS)

    This paper presents an application of quantum-mechanical principles to a microscopic variant of the traversable wormholes recently introduced by Morris and Thorne. The analysis, based on the surgical grafting of two Reissner-Nordstroem spacetimes, proceeds by using a minisuperspace model to approximate the geometry of these wormholes. The ''thin shell'' formalism is applied to this minisuperspace model to extract the effective Lagrangian appropriate to this one-degree-of-freedom system. This effective Lagrangian is then quantized and the wave function for the wormhole is explicitly exhibited. A slightly more general class of wormholes---corresponding to the addition of some ''dust'' to the wormhole throat---is analyzed by recourse to WKB techniques. In all cases discussed in this paper, the expectation value of the wormhole radius is calculated to be of the order of the Planck length. Accordingly, though these quantum wormholes are of considerable theoretical interest they do not appear to be useful as a means for interstellar travel. The results of this paper may also have a bearing on the question of topological fluctuations in quantum gravity. These calculations serve to suggest that topology-changing effects might in fact be suppressed by quantum-gravity effects

  14. Quantum Criticality

    OpenAIRE

    Keimer, Bernhard; Sachdev, Subir(Department of Physics, Harvard University, Cambridge, MA, 02138, USA)

    2011-01-01

    This is a review of the basic theoretical ideas of quantum criticality, and of their connection to numerous experiments on correlated electron compounds. A shortened, modified, and edited version appeared in Physics Today. This arxiv version has additional citations to the literature.

  15. Quantum abacus

    Science.gov (United States)

    Cheon, Taksu; Tsutsui, Izumi; Fülöp, Tamás

    2004-09-01

    We show that the point interactions on a line can be utilized to provide U(2) family of qubit operations for quantum information processing. Qubits are realized as states localized in either side of the point interaction which represents a controllable gate. The qubit manipulation proceeds in a manner analogous to the operation of an abacus.

  16. Quantum Biology

    Directory of Open Access Journals (Sweden)

    Alessandro Sergi

    2009-06-01

    Full Text Available A critical assessment of the recent developmentsof molecular biology is presented.The thesis that they do not lead to a conceptualunderstanding of life and biological systems is defended.Maturana and Varela's concept of autopoiesis is briefly sketchedand its logical circularity avoided by postulatingthe existence of underlying living processes,entailing amplification from the microscopic to the macroscopic scale,with increasing complexity in the passage from one scale to the other.Following such a line of thought, the currently accepted model of condensed matter, which is based on electrostatics and short-ranged forces,is criticized. It is suggested that the correct interpretationof quantum dispersion forces (van der Waals, hydrogen bonding, and so onas quantum coherence effects hints at the necessity of includinglong-ranged forces (or mechanisms for them incondensed matter theories of biological processes.Some quantum effects in biology are reviewedand quantum mechanics is acknowledged as conceptually important to biology since withoutit most (if not all of the biological structuresand signalling processes would not even exist. Moreover, it is suggested that long-rangequantum coherent dynamics, including electron polarization,may be invoked to explain signal amplificationprocess in biological systems in general.

  17. Quantum dice

    Energy Technology Data Exchange (ETDEWEB)

    Sassoli de Bianchi, Massimiliano, E-mail: autoricerca@gmail.com

    2013-09-15

    In a letter to Born, Einstein wrote [42]: “Quantum mechanics is certainly imposing. But an inner voice tells me that it is not yet the real thing. The theory says a lot, but does not really bring us any closer to the secret of the ‘old one.’ I, at any rate, am convinced that He does not throw dice.” In this paper we take seriously Einstein’s famous metaphor, and show that we can gain considerable insight into quantum mechanics by doing something as simple as rolling dice. More precisely, we show how to perform measurements on a single die, to create typical quantum interference effects, and how to connect (entangle) two identical dice, to maximally violate Bell’s inequality. -- Highlights: •Rolling a die is a quantum process admitting a Hilbert space representation. •Rolling experiments with a single die can produce interference effects. •Two connected dice can violate Bell’s inequality. •Correlations need to be created by the measurement, to violate Bell’s inequality.

  18. Quantum chromodynamics

    International Nuclear Information System (INIS)

    The symposium included lectures covering both the elements and the experimental tests of the theory of quantum chromdynamics. A three day topical conference was included which included the first results from PETRA as well as the latest reports from CERN, Fermilab, and SPEAR experiments. Twenty-one items from the symposium were prepared separately for the data base

  19. Quantum dice

    International Nuclear Information System (INIS)

    In a letter to Born, Einstein wrote [42]: “Quantum mechanics is certainly imposing. But an inner voice tells me that it is not yet the real thing. The theory says a lot, but does not really bring us any closer to the secret of the ‘old one.’ I, at any rate, am convinced that He does not throw dice.” In this paper we take seriously Einstein’s famous metaphor, and show that we can gain considerable insight into quantum mechanics by doing something as simple as rolling dice. More precisely, we show how to perform measurements on a single die, to create typical quantum interference effects, and how to connect (entangle) two identical dice, to maximally violate Bell’s inequality. -- Highlights: •Rolling a die is a quantum process admitting a Hilbert space representation. •Rolling experiments with a single die can produce interference effects. •Two connected dice can violate Bell’s inequality. •Correlations need to be created by the measurement, to violate Bell’s inequality

  20. Quantum biological information theory

    CERN Document Server

    Djordjevic, Ivan B

    2016-01-01

    This book is a self-contained, tutorial-based introduction to quantum information theory and quantum biology. It serves as a single-source reference to the topic for researchers in bioengineering, communications engineering, electrical engineering, applied mathematics, biology, computer science, and physics. The book provides all the essential principles of the quantum biological information theory required to describe the quantum information transfer from DNA to proteins, the sources of genetic noise and genetic errors as well as their effects. Integrates quantum information and quantum biology concepts; Assumes only knowledge of basic concepts of vector algebra at undergraduate level; Provides a thorough introduction to basic concepts of quantum information processing, quantum information theory, and quantum biology; Includes in-depth discussion of the quantum biological channel modelling, quantum biological channel capacity calculation, quantum models of aging, quantum models of evolution, quantum models o...