WorldWideScience

Sample records for biocompatible nist nanoparticulate

  1. Synthesis of Biocompatible Nanoparticulate Coordination Polymers for Diagnostic and Therapeutic Applications

    Science.gov (United States)

    Kandanapitiye, Murthi S.

    -ray computed tomography is capable of delineating the 3-D images of soft tissues with superb quality. The variation of X-ray attenuation from one tissue to another is used to generate the well spatial resolved superb quality images. Exogenous radiopaque agents are necessary for the superb visualization of different types of soft tissues. Heavy metals with high atomic number are better suited for biomedical applications to enhance the image contrast due to their high mass attenuation coefficient. Bismuth (Z- 83) is the nonradioactive, heaviest, nontoxic element available among the other closest neighbors (Hg, Tl, Pb and Po) of the periodic table. We have set out to search for compounds that are hydrolytically stable, more efficient and more amenable in terms of biocompatibility. Moreover this new discovery can significantly reduce the average radiation dose in one CT scan. We have discovered a simple one-step aqueous solution route for preparing biocompatible and ultra-small bismuth oxyiodide BiOI nanoparticles and investigated their potential application as an efficient CT contrast agent. Our ultra-small monodisperse BiOI NPs have excellent water dispersability, thermodynamic stability, kinetic inertness, high biocompatibility and superior attenuation power, suggesting their potential as an organ-specific CT contrast agent that may fill the gap left by the other nanoparticulate and iodine-based CT contrasting agents. The chapter 6 of this dissertation discusses synthesis and characterization of novel nanoparticulate therapeutics and theranostics. D-penicillamine has the highest efficacy, and hence is currently the most widely used drug for WD across the world. We have prepared the D-PEN-conjugated Au NPs of the average size of 16 [special character omited] 2 nm with superb water dispersability, and examined the kinetics and selectivity of copper binding of such NPs in aqueous solution. We also studied the cellular uptake, cytotoxicity and intracellular copper removal of these

  2. NIST Gonio-spectroradiometer

    Data.gov (United States)

    Federal Laboratory Consortium — The NIST gonio-spectroradiometer is used to measure total spectral radiant flux (TSRF) of incandescent lamps. The instrument consists of a 3-axis scanning mechanism;...

  3. Biological effects of nanoparticulate materials

    International Nuclear Information System (INIS)

    Soto, K.F.; Carrasco, A.; Powell, T.G.; Murr, L.E.; Garza, K.M.

    2006-01-01

    A range of morphologically nanoparticulate materials including Ag, NiO, TiO 2 , multiwall carbon nanotubes, and chrysotile asbestos have been characterized by transmission electron microscopy. All but the TiO 2 (anatase and rutile) were observed to exhibit some cytotoxicity at concentrations of 5 μg/ml for a murine macrophage cell line as a respiratory response model. Silver exhibits interesting systemic differences for animal and human toxicity, especially in light of its nanoparticulate materials, and should be avoided even if there is no detectable in vitro cytotoxic response, as a prudent approach to their technological applications

  4. NIST display colorimeter calibration facility

    Science.gov (United States)

    Brown, Steven W.; Ohno, Yoshihiro

    2003-07-01

    A facility has been developed at the National Institute of Standards and Technology (NIST) to provide calibration services for color-measuring instruments to address the need for improving and certifying the measurement uncertainties of this type of instrument. While NIST has active programs in photometry, flat panel display metrology, and color and appearance measurements, these are the first services offered by NIST tailored to color-measuring instruments for displays. An overview of the facility, the calibration approach, and associated uncertainties are presented. Details of a new tunable colorimetric source and the development of new transfer standard instruments are discussed.

  5. The 2016 NIST Speaker Recognition Evaluation

    Science.gov (United States)

    2017-08-20

    impact on system performance. Index Terms: NIST evaluation, NIST SRE, speaker detection, speaker recognition, speaker verification 1. Introduction NIST... self -reported. Second, there were two training conditions in SRE16, namely fixed and open. In the fixed training condition, par- ticipants were only

  6. NIST biometric evaluations and developments

    Science.gov (United States)

    Garris, Michael D.; Wilson, Charles L.

    2005-05-01

    This paper presents an R&D framework used by the National Institute of Standards and Technology (NIST) for biometric technology testing and evaluation. The focus of this paper is on fingerprint-based verification and identification. Since 9-11 the NIST Image Group has been mandated by Congress to run a program for biometric technology assessment and biometric systems certification. Four essential areas of activity are discussed: 1) developing test datasets, 2) conducting performance assessment; 3) technology development; and 4) standards participation. A description of activities and accomplishments are provided for each of these areas. In the process, methods of performance testing are described and results from specific biometric technology evaluations are presented. This framework is anticipated to have broad applicability to other technology and application domains.

  7. Gel nano-particulates against radioactivity

    International Nuclear Information System (INIS)

    Deroin, Ph.

    2004-01-01

    The Argonne research center (USA) has developed a 'super-gel' compound, a polymer close to those used in baby's diapers, which can reach a 90% efficiency in the radioactive decontamination of porous materials, like bricks or concrete. The contaminated materials are sprayed with a mixture of polymer gel and wetting agent with nano-particulates in suspension. Under the action of the wetting agent, radioactivity migrates from the pores to the gel and is trapped by the nano-particulates. The drying and recycling of the gel allows to reduce the volume of radioactive wastes. Short paper. (J.S.)

  8. Nanoparticulation improves bioavailability of Erlotinib.

    Science.gov (United States)

    Yang, Kyung Mi; Shin, In Chul; Park, Joo Won; Kim, Kab-Sig; Kim, Dae Kyong; Park, Kyungmoon; Kim, Kunhong

    2017-09-01

    Nanoparticulation using fat and supercritical fluid (NUFS TM ) is a drug delivery platform technology enabling efficient and effective formulation of poorly soluble drugs. We performed experiments to examine whether NUFS™ could improve poor bioavailability and reduce fed-fasted bioavailability variances of erlotinib (Ert). NUFS-Ert was prepared using NUFS™ technology; its physical properties were characterized, and drug release was measured. Furthermore, in vitro and in vivo efficacy tests and pharmacokinetic analysis were performed. NUFS-Ert nanoparticles had an average size of 250 nm and were stable for 2 months at 40 °C, 4 °C, and room temperature. The dissolution rate of NUFS-Ert increased in bio-relevant dissolution media. NUFS-Ert was more potent in inhibiting EGF signaling and in suppressing the proliferation of A549, a human non-small cell lung cancer cell line. Furthermore, A549 xenografts in BALB/c nude mice treated with NUFS-Ert regressed more efficiently than those in the mice treated with vehicle or Tarceva ® . In addition, experimental lung metastasis was more efficiently inhibited by NUFS-Ert than by Tarceva ® . The relative bioavailability of NUFS-Ert compared with that of Tarceva ® was 550% and the ratio of the area under the concentration-time curve (AUC) of fed state to the AUC of fasted state was 1.8 for NUFS-Ert and 5.8 for Tarceva ® . NUFS-Ert could improve poor bioavailability and reduce fed-fasted bioavailability variances of Ert. NUFS-Ert was more efficacious than Tarceva ® .

  9. Development of Mucoadhesive Nanoparticulate System of Ebastine ...

    African Journals Online (AJOL)

    Purpose: To prepare and evaluate mucoadhesive nanoparticulate system of ebastine for nasal .... tripolyphosphate solution drop by drop to 3 ml of ... at an accelerating voltage of 20 KV before ..... i.e., around 1.0, then the size distribution of.

  10. Development of Mucoadhesive Nanoparticulate System of Ebastine ...

    African Journals Online (AJOL)

    Purpose: To prepare and evaluate mucoadhesive nanoparticulate system of ebastine for nasal drug delivery. Methods: The nanoparticles were prepared by ionic gelation method using drug-chitosan weight ratios 1:1, 1:2 and 1:3, and incorporating 0.5 or 0.7 % w/v sodium tripolyphosphate (STPP) and poloxamer 407.

  11. Nanoparticulate delivery systems for antiviral drugs.

    Science.gov (United States)

    Lembo, David; Cavalli, Roberta

    2010-01-01

    Nanomedicine opens new therapeutic avenues for attacking viral diseases and for improving treatment success rates. Nanoparticulate-based systems might change the release kinetics of antivirals, increase their bioavailability, improve their efficacy, restrict adverse drug side effects and reduce treatment costs. Moreover, they could permit the delivery of antiviral drugs to specific target sites and viral reservoirs in the body. These features are particularly relevant in viral diseases where high drug doses are needed, drugs are expensive and the success of a therapy is associated with a patient's adherence to the administration protocol. This review presents the current status in the emerging area of nanoparticulate delivery systems in antiviral therapy, providing their definition and description, and highlighting some peculiar features. The paper closes with a discussion on the future challenges that must be addressed before the potential of nanotechnology can be translated into safe and effective antiviral formulations for clinical use.

  12. Bioavailability of nanoparticulate hematite to Arabidopsis thaliana

    International Nuclear Information System (INIS)

    Marusenko, Yevgeniy; Shipp, Jessie; Hamilton, George A.; Morgan, Jennifer L.L.; Keebaugh, Michael; Hill, Hansina; Dutta, Arnab; Zhuo, Xiaoding; Upadhyay, Nabin; Hutchings, James; Herckes, Pierre; Anbar, Ariel D.; Shock, Everett; Hartnett, Hilairy E.

    2013-01-01

    The environmental effects and bioavailability of nanoparticulate iron (Fe) to plants are currently unknown. Here, plant bioavailability of synthesized hematite Fe nanoparticles was evaluated using Arabidopsis thaliana (A. thaliana) as a model. Over 56-days of growing wild-type A. thaliana, the nanoparticle-Fe and no-Fe treatments had lower plant biomass, lower chlorophyll concentrations, and lower internal Fe concentrations than the Fe-treatment. Results for the no-Fe and nanoparticle-Fe treatments were consistently similar throughout the experiment. These results suggest that nanoparticles (mean diameter 40.9 nm, range 22.3–67.0 nm) were not taken up and therefore not bioavailable to A. thaliana. Over 14-days growing wild-type and transgenic (Type I/II proton pump overexpression) A. thaliana, the Type I plant grew more than the wild-type in the nanoparticle-Fe treatment, suggesting Type I plants cope better with Fe limitation; however, the nanoparticle-Fe and no-Fe treatments had similar growth for all plant types. -- Highlights: ► Iron nanoparticles were synthesized and assessed for bioavailability to Arabidopsis. ► Arabidopsis grew better in the presence of EDTA-bound iron than nanoparticulate iron. ► Arabidopsis grew the same in the presence of nanoparticulate iron compared to no iron. -- Synthesized iron nanoparticles were not bioavailable to Arabidopsis thaliana in agar nutrient media

  13. Gel nano-particulates against radioactivity; Des nanoparticules en gel contre la radioactivite

    Energy Technology Data Exchange (ETDEWEB)

    Deroin, Ph

    2004-11-01

    The Argonne research center (USA) has developed a 'super-gel' compound, a polymer close to those used in baby's diapers, which can reach a 90% efficiency in the radioactive decontamination of porous materials, like bricks or concrete. The contaminated materials are sprayed with a mixture of polymer gel and wetting agent with nano-particulates in suspension. Under the action of the wetting agent, radioactivity migrates from the pores to the gel and is trapped by the nano-particulates. The drying and recycling of the gel allows to reduce the volume of radioactive wastes. Short paper. (J.S.)

  14. The new NIST atomic spectra database

    International Nuclear Information System (INIS)

    Kelleher, D.E.; Martin, W.C.; Wiese, W.L.; Sugar, J.; Fuhr, J.R.; Olsen, K.; Musgrove, A.; Mohr, P.J.; Reader, J.; Dalton, G.R.

    1999-01-01

    The new atomic spectra database (ASD), Version 2.0, of the National Institute of Standards and Technology (NIST) contains significantly more data and covers a wider range of atomic and ionic transitions and energy levels than earlier versions. All data are integrated. It also has a new user interface and search engine. ASD contains spectral reference data which have been critically evaluated and compiled by NIST. Version 2.0 contains data on 900 spectra, with about 70000 energy levels and 91000 lines ranging from about 1 Aangstroem to 200 micrometers, roughly half of which have transition probabilities with estimated uncertainties. References to the NIST compilations and original data sources are listed in the ASD bibliography. A detailed ''Help'' file serves as a user's manual, and full search and filter capabilities are provided. (orig.)

  15. NIST commitment to national MQA programs

    Energy Technology Data Exchange (ETDEWEB)

    Caswell, R.S. [National Institute of Standards and Technology, Gaithersburg, MD (United States)

    1993-12-31

    The program of the Ionizing Radiation Division, Physics Laboratory is discussed, especially relating to standards, calibrations, and measurement quality assurance (MQA). The NIST program is {open_quotes}vertically integrated,{close_quotes} meaning that activities extend from fundamental research to measurement research to supplying services and data. Typical methods NIST uses to assure the quality of the national standards are presented. Some of the programs in x-ray, gamma-ray, electron, neutron, and radioactivity research which support MQA are presented. Examples are given of MQA activities.

  16. NIST commitment to national MQA programs

    International Nuclear Information System (INIS)

    Caswell, R.S.

    1993-01-01

    The program of the Ionizing Radiation Division, Physics Laboratory is discussed, especially relating to standards, calibrations, and measurement quality assurance (MQA). The NIST program is open-quotes vertically integrated,close quotes meaning that activities extend from fundamental research to measurement research to supplying services and data. Typical methods NIST uses to assure the quality of the national standards are presented. Some of the programs in x-ray, gamma-ray, electron, neutron, and radioactivity research which support MQA are presented. Examples are given of MQA activities

  17. NIST Photoionization of CO2 (ARPES) Database

    Science.gov (United States)

    SRD 119 NIST Photoionization of CO2 (ARPES) Database (Web, free access)   CO2 is studied using dispersed synchrotron radiation in the 650 Å to 850 Å spectral region. The vibrationally resolved photoelectron spectra are analyzed to generate relative vibrational transition amplitudes and the angular asymmetry parameters describing the various transitions observed.

  18. NIST: Information Management in the AMRF

    Science.gov (United States)

    Callaghan, George (Editor)

    1991-01-01

    The information management strategies developed for the NIST Automated Manufacturing Research Facility (AMRF) - a prototype small batch manufacturing facility used for integration and measurement related standards research are outlined in this video. The five major manufacturing functions - design, process planning, off-line programming, shop floor control, and materials processing are explained and their applications demonstrated.

  19. 77 FR 18791 - Proposed Information Collection; Comment Request; NIST Associates Information System

    Science.gov (United States)

    2012-03-28

    ... DEPARTMENT OF COMMERCE National Institute of Standards and Technology Proposed Information Collection; Comment Request; NIST Associates Information System AGENCY: National Institute of Standards and... access to the NIST campuses or NIST resources. The NIST Associates Information System (NAIS) information...

  20. NIST high-dose calibration services

    International Nuclear Information System (INIS)

    Humphreys, J.C.

    1989-01-01

    There is a need for the standardization of high-dose measurements used in the radiation-processing industry in order to provide assured traceability to national standards. NIST provides dosimetry calibration services to this industry. One of these services involves administration of known absorbed doses of gamma rays to customer-supplied dosimeters. The dosimeters are packaged to provide electron equilibrium conditions and are irradiated in a standard 60 Co calibration facility; this provides a calibration of that batch of dosimeters. Another service consists of supplying to a customer calibrated transfer dosimeters for irradiation with the customer's radiation source. The irradiated transfer dosimeters are then returned to NIST for analysis; the results are reported to the customer, providing a calibration of the dose rate of the customer's source. (orig.)

  1. NIST/ASME Steam Properties Database

    Science.gov (United States)

    SRD 10 NIST/ASME Steam Properties Database (PC database for purchase)   Based upon the International Association for the Properties of Water and Steam (IAPWS) 1995 formulation for the thermodynamic properties of water and the most recent IAPWS formulations for transport and other properties, this updated version provides water properties over a wide range of conditions according to the accepted international standards.

  2. Recent Developments in the NIST Atomic Databases

    Science.gov (United States)

    Kramida, Alexander

    2011-05-01

    New versions of the NIST Atomic Spectra Database (ASD, v. 4.0) and three bibliographic databases (Atomic Energy Levels and Spectra, v. 2.0, Atomic Transition Probabilities, v. 9.0, and Atomic Line Broadening and Shapes, v. 3.0) have recently been released. In this contribution I will describe the main changes in the way users get the data through the Web. The contents of ASD have been significantly extended. In particular, the data on highly ionized tungsten (W III-LXXIV) have been added from a recently published NIST compilation. The tables for Fe I and Fe II have been replaced with newer, much more extensive lists (10000 lines for Fe I). The other updated or new spectra include H, D, T, He I-II, Li I-III, Be I-IV, B I-V, C I-II, N I-II, O I-II, Na I-X, K I-XIX, and Hg I. The new version of ASD now incorporates data on isotopes of several elements. I will describe some of the issues the NIST ASD Team faces when updating the data.

  3. Recent Developments in the NIST Atomic Databases

    International Nuclear Information System (INIS)

    Kramida, Alexander

    2011-01-01

    New versions of the NIST Atomic Spectra Database (ASD, v. 4.0) and three bibliographic databases (Atomic Energy Levels and Spectra, v. 2.0, Atomic Transition Probabilities, v. 9.0, and Atomic Line Broadening and Shapes, v. 3.0) have recently been released. In this contribution I will describe the main changes in the way users get the data through the Web. The contents of ASD have been significantly extended. In particular, the data on highly ionized tungsten (W III-LXXIV) have been added from a recently published NIST compilation. The tables for Fe I and Fe II have been replaced with newer, much more extensive lists (10000 lines for Fe I). The other updated or new spectra include H, D, T, He I-II, Li I-III, Be I-IV, B I-V, C I-II, N I-II, O I-II, Na I-X, K I-XIX, and Hg I. The new version of ASD now incorporates data on isotopes of several elements. I will describe some of the issues the NIST ASD Team faces when updating the data.

  4. Comparative cytotoxicity assessments of some manufactured and anthropogenic nanoparticulate materials

    Science.gov (United States)

    Soto, Karla Fabiola

    Due to increasing diversity of newly engineered nanoparticles, it is important to consider the hazards of these materials. Very little is known regarding the potential toxicity of relatively new nanomaterials. However, beginning with several historical accounts of nanomaterials applications---chrysotile asbestos and silver---it was assumed that these examples would provide some awareness and guidelines for future nanomaterial and nanotechnology applications, especially health effects. In this study in vitro assays were performed on a murine alveolar macrophage cell line (RAW 264.7), human alveolar macrophage cell line (THB-1), and human epithelial lung cell line (A549) to assess the comparative cytotoxicity of a wide range of manufactured (Ag, TiO2, Fe2O3, Al2O3, ZrO2, black carbon, two different types of multiwall structures and chrysotile asbestos as the toxicity standard) and anthropogenic nanoparticulates. There are several parameters of nanoparticulates that are considered to trigger an inflammatory response (particularly respiratory) or cause toxicity. These parameters include: particle size, shape, specific surface area, transition metals in particulates, and organic compounds. Therefore, a wide variety of manufactured and anthropogenic nanoparticulates having different morphologies, sizes, specific surface area and chemistries as noted were tested. To determine the nanoparticulates' size and morphology, they were characterized by transmission electron microscopy, where it was observed that the commercial multiwall carbon nanotube aggregate had an identical morphology to chrysotile asbestos and combustion-formed carbon nanotubes, i.e.; those that form from natural gas combustion. Light optical microscopy was used to determine cell morphology upon exposure to nanoparticulates as an indication of cell death. Also, the polycyclic aromatic hydrocarbon (PAH) content of the collected nanoparticulates was analyzed and correlated with cytotoxic responses. For

  5. Labilities of aqueous nanoparticulate metal complexes in environmental speciation analysis

    NARCIS (Netherlands)

    Town, R.M.; Leeuwen, van H.P.

    2014-01-01

    An inherent property of a dispersion of charged nanoparticles is that their charges and reactive sites are spatially confined to the particle body which is at a different potential from that in the bulk medium. This feature has important consequences for the reactivity of nanoparticulate

  6. Further Investigations of NIST Water Sphere Discrepancies

    International Nuclear Information System (INIS)

    Broadhead, B.L.

    2001-01-01

    Measurements have been performed on a family of water spheres at the National Institute of Standards and Technology (NIST) facilities. These measurements are important for criticality safety studies in that, frequently, difficulties have arisen in predicting the reactivity of individually subcritical components assembled in a critical array. It has been postulated that errors in the neutron leakage from individual elements in the array could be responsible for these problems. In these NIST measurements, an accurate determination of the leakage from a fission spectrum, modified by water scattering, is available. Previously, results for 3-, 4-, and 5-in. diam. water-filled spheres, both with and without cadmium covers over the fission chambers, were presented for four fissionable materials: 235 U, 238 U, 237 Np, and 239 Pu. Results were also given for ''dry'' systems, in which the water spheres were drained of water, with the results corresponding to essentially measurements of unmoderated 252 Cf spontaneous-fission neutrons. The calculated-to-experimental (C/E) values ranged from 0.94 to 1.01 for the dry systems and 0.93 to 1.05 for the wet systems, with experimental uncertainties ranging from 1.5 to 1.9%. These results indicated discrepancies that were clearly outside of the experimental uncertainties, and further investigation was suggested. This work updates the previous calculations with a comparison of the predicted C/E values with ENDF/B-V and ENDF/B-VI transport cross sections. Variations in the predicted C/E values that arise from the use of ENDF/B-V, ENDF/B-VI, ENDL92, and LLLDOS for the response fission cross sections are also tabulated. The use of both a 45-group NIST fission spectrum and a continuous-energy fission spectrum for 252 Cf are evaluated. The use of the generalized-linear-least-squares (GLLSM) procedures to investigate the reported discrepancies in the water sphere results for 235 U, 238 U, 239 Pu, and 237 Np is reported herein. These studies

  7. Speciation and Health Risks of Atmospheric Nanoparticulates

    Science.gov (United States)

    Nguyen, Kennedy

    Exposure to air pollution causes several adverse health effects such as asthma, respiratory disease, cardiovascular disease, cancer, and premature death; and the San Joaquin Valley is one of the most heavily polluted regions in the US. The mountains that surround the valley allow air pollution, including particulate matter, to remain stagnant, prolonging the exposure of valley populations to it. The primary sources of particulate matter for this region are aluminosilicate dust from agricultural activities, and soot emissions from diesel trucks and vehicular traffic. A substantial fraction of emitted material is nanoparticulate matter (testing in cell culture studies, and correlation of particulate properties and sources with their negative health impacts. These results can help identify the sources of air pollution to prioritize for mitigation for the greatest health benefit. In addition, further chemical speciation can help monitor the results of such mitigation efforts. Here, natural particulate matter samples from Merced and Fresno, two cities in the San Joaquin Valley, were analyzed. Ultrafine particles present were 40 to 50 nm in diameter and mostly composed of aluminum, silicon, oxygen, and iron hydroxide. XAS data confirmed the presence of the aluminosilicate as smectite clay and the iron hydroxide as ferrihydrite. Furthermore, a chemical speciation study investigated industrial emissions of air particulate matter. Samples were analyzed using electron microscopy for elemental composition and size distribution, and found to contain fine metal particulates (lead and iron) that can lead to lung inflammation. From characterization data, in order to create a simplified proxy particle system for cell culture studies, amorphous silica particles were synthesized using a modified Stober Synthesis and coated with iron hydroxide. A range of iron hydroxide concentrations (0.06 to 1.63 mmol of iron per gram of silica) were used to test the effect of iron contamination on

  8. In-situ burning: NIST studies

    International Nuclear Information System (INIS)

    Evans, D.D.

    1992-01-01

    In-situ burning of spilled oil has distinct advantages over other countermeasures. It offers the potential to convert rapidly large quantities of oil into its primary combustion products, carbon dioxide and water, with a small percentage of other unburned and residue byproducts. Because the oil is converted to gaseous products of combustion by burning, the need for physical collection, storage, and transport of recovered fluids is reduced to the few percent of the original spill volume that remains as residue after burning. Burning oil spills produces a visible smoke plume containing smoke particulate and other products of combustion which may persist for many kilometers from the burn. This fact gives rise to public health concerns, related to the chemical content of the smoke plume and the downwind deposition of particulate, which need to be answered. In 1985, a joint Minerals Management Service (MMS) and Environment Canada (EC) in-situ burning research program was begun at the National Institute of Standards and Technology (NIST). This research program was designed to study the burning of large crude oil spills on water and how this burning would affect air quality by quantifying the products of combustion and developing methods to predict the downwind smoke particulate deposition. To understand the important features of in-situ burning, it is necessary to perform both laboratory and mesoscale experiments. Finally, actual burns of spilled oil at sea will be necessary to evaluate the method at the anticipated scale of actual response operations. In this research program there is a continuing interaction between findings from measurements on small fire experiments performed in the controlled laboratory environments of NIST and the Fire Research Institute (FRI) in Japan, and large fire experiments at facilities like the USCG Fire Safety and Test Detachment in Mobile, Alabama where outdoor liquid fuel burns in large pans are possible

  9. Lability of nanoparticulate metal complexes in electrochemical speciation analysis

    DEFF Research Database (Denmark)

    van Leeuwen, Herman P.; Town, Raewyn M.

    2016-01-01

    Lability concepts are elaborated for metal complexes with soft (3D) and hard (2D) aqueous nanoparticles. In the presence of a non-equilibrium sensor, e.g. a voltammetric electrode, the notion of lability for nanoparticulate metal complexes, M-NP, reflects the ability of the M-NP to maintain...... equilibrium with the reduced concentration of the electroactive free M2+ in its diffusion layer. Since the metal ion binding sites are confined to the NP body, the conventional reaction layer in the form of a layer adjacent to the electrode surface is immaterial. Instead an intraparticulate reaction zone may...... of the electrochemical technique is crucial in the lability towards the electrode surface. In contrast, for nanoparticulate complexes it is the dynamics of the exchange of the electroactive metal ion with the surrounding medium that governs the effective lability towards the electrode surface....

  10. Biocompatibility of polyaniline

    Czech Academy of Sciences Publication Activity Database

    Humpolíček, P.; Kašpárková, V.; Saha, P.; Stejskal, Jaroslav

    2012-01-01

    Roč. 162, 7/8 (2012), s. 722-727 ISSN 0379-6779 R&D Projects: GA ČR GA202/09/1626 Institutional research plan: CEZ:AV0Z40500505 Keywords : conducting polymer * polyaniline * biocompatibility Subject RIV: BK - Fluid Dynamics Impact factor: 2.109, year: 2012

  11. NIST--Los Alamos racetrack microtron status

    International Nuclear Information System (INIS)

    Wilson, M.A.; Ayres, R.L.; Cutler, R.I.; Debenham, P.H.; Lindstrom, E.R.; Mohr, D.L.; Penner, S.; Rose, J.E.; Young, L.M.

    1988-01-01

    The NIST-Los Alamos Racetrack Microtron (RTM) is designed to deliver a low-emittance electron beam of up to 0.5 mA cw over an energy range of 17 MeV to 185 MeV. Fed by a 5 MeV injector, the RTM contains two 180 degree end magnets that recirculate the beam up to 15 times through a 12 MeV RF linac. The linac, which operates in a standing-wave mode at 2380 MHz, has been tested to nearly full RF power. At present, the injector has undergone beam tests, and the beam transport system is complete through the 12 MeV linac. A temporary beam line has been installed at the exit of one end magnet to measure the beam energy, energy spread, and emittance after one pass through the accelerator. Preliminary results indicate that the accelerated beam energy spread and emittance are within design goals. 4 refs., 7 figs

  12. Measurement quality assurance for beta particle calibrations at NIST

    International Nuclear Information System (INIS)

    Soares, C.G.; Pruitt, J.S.

    1993-01-01

    Standardized beta-particle fields have been established in an international standard and have been adopted for use in several U.S. dosimeter and instrument testing standards. Calibration methods and measurement quality assurance procedures employed at the National Institute of Standards and Technology (NIST) for beta-particle calibrations in these reference fields are discussed. The calibration facility including the NIST-automated extrapolation ionization chamber is described, and some sample results of calibrations are shown. Methods for establishing and maintaining traceability to NIST of secondary laboratories are discussed. Currently, there are problems in finding a good method for routine testing of traceability to NIST. Some examples of past testing methods are given and solutions to this problem are proposed

  13. Measurement quality assurance for beta particle calibrations at NIST

    Energy Technology Data Exchange (ETDEWEB)

    Soares, C.G.; Pruitt, J.S. [National Institute of Standards and Technology, Gaithersburg, MD (United States)

    1993-12-31

    Standardized beta-particle fields have been established in an international standard and have been adopted for use in several U.S. dosimeter and instrument testing standards. Calibration methods and measurement quality assurance procedures employed at the National Institute of Standards and Technology (NIST) for beta-particle calibrations in these reference fields are discussed. The calibration facility including the NIST-automated extrapolation ionization chamber is described, and some sample results of calibrations are shown. Methods for establishing and maintaining traceability to NIST of secondary laboratories are discussed. Currently, there are problems in finding a good method for routine testing of traceability to NIST. Some examples of past testing methods are given and solutions to this problem are proposed.

  14. Analysis of Bone Meal (NIST 1486) and Bone Ash (NIST 1400) reference materials by neutron activation method; Analise de materiais de referencia Bone Meal (NIST 1486) e Bone Ash (NIST 1400) pelo metodo de ativacao com neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Takata, Marcelo K.; Saiki, Mitiko [Instituto de Pesquisas Energeticas e Nucleares (IPEN), Sao Paulo, SP (Brazil); Borelli, Aurelio [Sao Paulo Univ., SP (Brazil). Faculdade de Medicina

    1999-11-01

    In this work instrumental neutron activation analysis has been applied to determine Ba, ca, Cl, Cr, fe, Mg, Mn, Na, P, Sb, Sc, Sr and Zn in two biological reference materials NIST 1486 Bone Meal and NIST 1400 Bone Ash. The purpose of this work was to evaluate the precision and the accuracy of the results as well as to give a contribution to certificate these materials. Interferences found in the determination of some elements were also discussed. (author) 8 refs., 4 tabs.

  15. Dispersion of nanoparticulate suspensions using self-assembled surfactant aggregates

    Science.gov (United States)

    Singh, Pankaj Kumar

    The dispersion of particles is critical for several industrial applications such as paints, inks, coatings, and cosmetics. Several emerging applications such as abrasives for precision polishing, and drug delivery systems are increasingly relying on nanoparticulates to achieve the desired performance. In the case of nanoparticles, the dispersion becomes more challenging because of the lack of fundamental understanding of dispersant adsorption and interparticle force prediction. Additionally, many of these processes use severe processing environments such as high normal forces (>100 mN/m), high shear forces (>10,000 s -1), and high ionic strengths (>0.1 M). Under such processing conditions, traditionally used dispersants based on electrostatics, and steric force repulsion mechanism may not be adequate. Hence, the development of optimally performing dispersants requires a fundamental understanding of the dispersion mechanism at the atomic/molecular scale. This study explores the use of self-assembled surfactant aggregates at the solid-liquid interface for dispersing nanoparticles in severe processing environments. Surfactant molecules can provide a feasible alternative to polymeric or inorganic dispersants for stabilizing ultrafine particles. The barrier to aggregation in the presence of surfactant molecules was measured using atomic force microscopy. The barrier heights correlated to suspension stability. To understand the mechanism for nanoparticulate suspension stability in the presence of surfactant films, the interface was characterized using zeta potential, contact angle, adsorption, and FT-IR (adsorbed surfactant film structure measurements). The effect of solution conditions such as pH and ionic strength on the suspension stability, and the self-assembled surfactant films was also investigated. It was determined that a transition from a random to an ordered orientation of the surfactant molecules at the interface was responsible for stability of

  16. The distribution of absorptive power dissipation in irradiated nanoparticulate system

    International Nuclear Information System (INIS)

    Li, Jiayu; Yang, Jian; Gu, Xiaobing

    2016-01-01

    The knowledge of local radiant absorption is important to the nanostructure optimization, it is beneficial to the applications in energy harvesting, optical heating, photocatalysis, etc. In this paper, FDTD model is constructed for the distribution of absorptive power dissipation in irradiated nanoparticulate system. The theoretical model extended from Mie theory is used to examine the FDTD model, the parameters and conditions set for FDTD simulation are confirmed based on the comparison. Then, the influence of Ag nanoparticle on the absorptive properties of nearby TiO_2 nanoparticle is investigated by FDTD simulation at the wavelength of 0.25 μm. It is indicated that suitable distance between TiO_2 and Ag particles is beneficial to the spectral radiant absorption of TiO_2 particle. Considering the agglomeration of nanoparticles and the oxidation at the TiO_2–Ag interface, the Ag core coated with Al_2O_3 shell is suggested, and the simulated results indicated that the shell thickness and the Ag core size need to be optimized for enhancing the radiant absorption of TiO_2 particle. - Highlights: • The absorptive power distribution in nanoparticulate system is simulated by FDTD. • FDTD simulation is compared with theoretical model extended from Mie theory. • The parameters and conditions are confirmed based on the comparison. • The influence of Ag nanoparticle on nearby TiO_2 particle's absorption is analyzed.

  17. Biocompatibility of Niobium Coatings

    Directory of Open Access Journals (Sweden)

    René Olivares-Navarrete

    2011-09-01

    Full Text Available Niobium coatings deposited by magnetron sputtering were evaluated as a possible surface modification for stainless steel (SS substrates in biomedical implants. The Nb coatings were deposited on 15 mm diameter stainless steel substrates having an average surface roughness of 2 mm. To evaluate the biocompatibility of the coatings three different in vitro tests, using human alveolar bone derived cells, were performed: cellular adhesion, proliferation and viability. Stainless steel substrates and tissue culture plastic were also studied, in order to give comparative information. No toxic response was observed for any of the surfaces, indicating that the Nb coatings act as a biocompatible, bioinert material. Cell morphology was also studied by immune-fluorescence and the results confirmed the healthy state of the cells on the Nb surface. X-ray diffraction analysis of the coating shows that the film is polycrystalline with a body centered cubic structure. The surface composition and corrosion resistance of both the substrate and the Nb coating were also studied by X-ray photoelectron spectroscopy and potentiodynamic tests. Water contact angle measurements showed that the Nb surface is more hydrophobic than the SS substrate.

  18. The NIST Step Class Library (Step Into the Future)

    Science.gov (United States)

    1990-09-01

    Figure 6. Excerpt from a STEP exclange file based on the Geometry model 1be NIST STEP Class Libary Page 13 An issue of concern in this...Scheifler, R., Gettys, J., and Newman, P., X Window System: C Library and Protocol Reference. Digital Press, Bedford, Mass, 1988. [Schenck90] Schenck, D

  19. Consensus values for NIST biological and environmental Standard Reference Materials

    International Nuclear Information System (INIS)

    Roelandts, I.; Gladney, E.S.

    1998-01-01

    The National Institute of Standards and Technology (NIST, formerly the National Bureau of Standards or NBS) has produced numerous Standard Reference Materials (SRM) for use in biological and environmental analytical chemistry. The value listed on the ''NIST Certificate of Analysis'' is the present best estimate of the ''true'' concentration of that element and is not expected to deviate from that concentration by more than the stated uncertainty. However, NIST does not certify the elemental concentration of every constituent and the number of elements reported in the NIST programs tends to be limited.Numerous analysts have published concentration data on these reference materials. Major journals in analytical chemistry, books, proceedings and ''technical reports'' have been surveyed to collect these available literature values. A standard statistical approach has been employed to evaluate the compiled data. Our methodology has been developed in a series of previous papers. Some subjective criteria are first used to reject aberrant data. Following these eliminations, an initial arithmetic mean and standard deviation (S.D.) are computed from remaining data for each element. All data now outside two S.D. from the initial mean are dropped and a second mean and S.D. recalculated. These final means and associated S.D. are reported as ''consensus values'' in our tables. (orig.)

  20. HAPPY Team Entry to NIST OpenSAD Challenge

    DEFF Research Database (Denmark)

    Kinnunen, Tomi; Sholokhov, Alexey; Khoury, Elie

    2016-01-01

    Speech activity detection (SAD), the task of locating speech segments from a given recording, remains challenging under acoustically degraded conditions. In 2015, National Institute of Standards and Technology (NIST) coordinated OpenSAD bench-mark. We summarize “HAPPY” team effort to Open- SAD...

  1. National Institute of Standards and Technology (NIST) cybersecurity risk management framework applied to modern vehicles

    Science.gov (United States)

    2014-10-01

    The primary objective of the work described in this report is to review the National Institute of Science and Technology (NIST) guidelines and foundational publications from an automotive : cybersecurity risk management stand-point. The NIST approach...

  2. 77 FR 40586 - Draft NIST Interagency Report (NISTIR) 7823, Advanced Metering Infrastructure Smart Meter...

    Science.gov (United States)

    2012-07-10

    ...-01] Draft NIST Interagency Report (NISTIR) 7823, Advanced Metering Infrastructure Smart Meter... Technology (NIST) seeks comments on Draft NISTIR 7823, Advanced Metering Infrastructure Smart Meter... conformance test requirements for the firmware upgradeability process for the Advanced Metering Infrastructure...

  3. 76 FR 43264 - Proposed Information Collection; Comment Request; NIST MEP Client Impact Survey

    Science.gov (United States)

    2011-07-20

    ... DEPARTMENT OF COMMERCE National Institute of Standards and Technology Proposed Information Collection; Comment Request; NIST MEP Client Impact Survey AGENCY: National Institute of Standards and Technology (NIST), Commerce. ACTION: Notice. SUMMARY: The Department of Commerce, as part of its continuing...

  4. Characterization of sampling behavior for multielements in NIST SRM 2703

    International Nuclear Information System (INIS)

    Huang Donghui; Sun Hongchao; Ni Bangfa; Tian Weizhi; Wang Pingsheng; Liu CunXiong; Zhang Guiying; Xiao Caijin; Zhang Haiqing; Zhao Changjun; Zhang Yuanxun

    2011-01-01

    Sampling behavior of multielements for NIST SRM 2703, a marine sediment, was studied with sample sizes from 1 mg down to ng level by a combination of INAA, PIXE and SRXRF. On 1 mg sample size level, sampling behavior for multielements in NIST SRM 2703 and its parent SRM 2702 were comparatively characterized by using INAA combining with Ingamells model. Results showed that sampling uncertainties for 12 elements of both materials were found to be better than 1%, and those of four other elements in SRM 2703 better than in SRM 2702. At sample sizes not able to be accurately weighed (<1 mg), PIXE and SRXRF were used and the effective sample sizes estimated. Sampling uncertainties for nine elements were found to be better than 1% at sample sizes of tenth mg level, and those for six elements better than 10% on ng levels. (author)

  5. The reactor and cold neutron research facility at NIST

    Energy Technology Data Exchange (ETDEWEB)

    Prask, H J; Rowe, J M [Reactor Radiation Division, National Institute of Standards and Technology, Gaithersburg, MD (United States)

    1992-07-01

    The NIST Reactor (NBSR) is a 20 MW research reactor located at the Gaithersburg, MD site, and has been in operation since 1969. It services 26 thermal neutron facilities which are used for materials science, chemical analysis, nondestructive evaluation, neutron standards work, and irradiations. In 1987 the Department of Commerce and NIST began development of the CNRF - a $30M National Facility for cold neutron research -which will provide fifteen new experimental stations with capabilities currently unavailable in this country. As of May 1992, four of the planned seven guides and a cold port were installed, eight cold neutron experimental stations were operational, and the Call for Proposals for the second cycle of formally-reviewed guest-researcher experiments had been sent out. Some details of the performance of instrumentation are described, along with the proposed design of the new hydrogen cold source which will replace the present D{sub 2}O/H{sub 2}O ice cold source. (author)

  6. One cubic metre NIST traceable radon test chamber

    International Nuclear Information System (INIS)

    Kotrappa, P.; Stieff, F.

    2008-01-01

    With the availability of the National Inst. of Standards and Technology (NIST) Radon Emanation Standard with a content of ∼5000 Bq of 226 Ra, it is possible to build a flow through a practical radon test chamber. A standard glove box with four gloves and a transfer port is used. Air is pumped through a flow integrator, water jar for humidification and NIST source holder, and into the glove box through a manifold. A derived theoretical expression provides the calculated radon concentration inside the chamber. The calculation includes a derived decay correction due to the large volume and low flow rate of the system. Several calibrated continuous radon monitors and passive integrating electret ion chambers tested in the chamber agreed fairly well with the calculated radon concentrations. The chamber is suitable for handling the calibration of several detectors at the same time. (authors)

  7. The reactor and cold neutron research facility at NIST

    International Nuclear Information System (INIS)

    Prask, H.J.; Rowe, J.M.

    1992-01-01

    The NIST Reactor (NBSR) is a 20 MW research reactor located at the Gaithersburg, MD site, and has been in operation since 1969. It services 26 thermal neutron facilities which are used for materials science, chemical analysis, nondestructive evaluation, neutron standards work, and irradiations. In 1987 the Department of Commerce and NIST began development of the CNRF - a $30M National Facility for cold neutron research -which will provide fifteen new experimental stations with capabilities currently unavailable in this country. As of May 1992, four of the planned seven guides and a cold port were installed, eight cold neutron experimental stations were operational, and the Call for Proposals for the second cycle of formally-reviewed guest-researcher experiments had been sent out. Some details of the performance of instrumentation are described, along with the proposed design of the new hydrogen cold source which will replace the present D 2 O/H 2 O ice cold source. (author)

  8. Corrections of the NIST Statistical Test Suite for Randomness

    OpenAIRE

    Kim, Song-Ju; Umeno, Ken; Hasegawa, Akio

    2004-01-01

    It is well known that the NIST statistical test suite was used for the evaluation of AES candidate algorithms. We have found that the test setting of Discrete Fourier Transform test and Lempel-Ziv test of this test suite are wrong. We give four corrections of mistakes in the test settings. This suggests that re-evaluation of the test results should be needed.

  9. The liquid hydrogen moderator at the NIST research reactor

    International Nuclear Information System (INIS)

    Williams, Robert E.; Rowe, J. Michael; Kopetka, Paul

    1997-09-01

    In 1995, the NIST research reactor was shut down for a number of modifications, including the replacement of the D 2 O cold neutron source with a liquid hydrogen moderator. When the liquid hydrogen source began operating, the flux of cold neutrons increased by a factor of six over the D 2 O source. The design and operation of the hydrogen source are described, and measurements of its performance are compared with the Monte Carlo simulations used in the design. (auth)

  10. Nanoparticulate fillers improve the mechanical strength of bone cement.

    Science.gov (United States)

    Gomoll, Andreas H; Fitz, Wolfgang; Scott, Richard D; Thornhill, Thomas S; Bellare, Anuj

    2008-06-01

    Polymethylmethacrylate (PMMA-) based bone cement contains micrometer-size barium sulfate or zirconium oxide particles to radiopacify the cement for radiographic monitoring during follow-up. Considerable effort has been expended to improve the mechanical qualities of cements, largely through substitution of PMMA with new chemical structures. The introduction of these materials into clinical practice has been complicated by concerns over the unknown long-term risk profile of these new structures in vivo. We investigated a new composite with the well characterized chemical composition of current cements, but with nanoparticles instead of the conventional, micrometer-size barium sulfate radiopacifier. In this study, we replaced the barium sulfate microparticles that are usually present in commercial PMMA cements with barium sulfate nanoparticles. The resultant "microcomposite" and "nanocomposite" cements were then characterized through morphological investigations such as ultra-small angle X-ray scattering (USAXS) and scanning electron microscopy (SEM). Mechanical characterization included compression, tensile, compact tension, and fatigue testing. SEM and USAXS showed excellent dispersion of nanoparticles. Substitution of nanoparticles for microparticles resulted in a 41% increase in tensile strain-to-failure (p = 0.002) and a 70% increase in tensile work-of-fracture (p = 0.005). The nanocomposite cement also showed a two-fold increase in fatigue life compared to the conventional, microcomposite cement. In summary, nanoparticulate substitution of radiopacifiers substantially improved the in vitro mechanical properties of PMMA bone cement without changing the known chemical composition.

  11. Electrocatalytic glucose oxidation at gold and gold-carbon nanoparticulate film prepared from oppositely charged nanoparticles

    International Nuclear Information System (INIS)

    Karczmarczyk, Aleksandra; Celebanska, Anna; Nogala, Wojciech; Sashuk, Volodymyr; Chernyaeva, Olga; Opallo, Marcin

    2014-01-01

    Graphical abstract: - Highlights: • Gold nanoparticulate film electrodes were prepared by layer-by-layer method from oppositely charged nanoparticles. • Positively charged nanoparticles play dominant role in glucose oxidation in alkaline solution. • Gold and gold-carbon nanoparticulate film electrodes exhibit similar glucose oxidation current and onset potential. - Abstract: Electrocatalytic oxidation of glucose was studied at nanoparticulate gold and gold-carbon film electrodes. These electrodes were prepared by a layer-by-layer method without application of any linker molecules. Gold nanoparticles were stabilized by undecane thiols functionalized by trimethyl ammonium or carboxylate groups, whereas the carbon nanoparticles were covered by phenylsulfonate functionalities. The gold nanoparticulate electrodes were characterized by UV-vis and XPS spectroscopy, atomic force microscopy and voltammetry, before and after heat-treatment. Heat-treatment facilitates the aggregation of the nanoparticles and affects the structure of the film. The comparison of the results obtained with film electrodes prepared from gold nanoparticles with the same charge and with gold-carbon nanoparticulate electrodes, proved that positively charged nanoparticles are responsible for the high electrocatalytic activity, whereas negatively charged ones act rather as a linker of the film

  12. Degradation Studies of Polyolefins Incorporating Transparent Nanoparticulate Zinc Oxide UV Stabilizers

    International Nuclear Information System (INIS)

    Ammala, A.; Hill, A.J.; Meakin, P.; Pas, S.J.; Turney, T.W.

    2002-01-01

    Coated and dispersed nanoparticulate zinc oxide is shown to improve ultra violet (UV) stability of polypropylene and high-density polyethylene without changing its characteristic absorption spectrum in the visible region (400-800-nm). The performance of these nanoparticulate UV stabilizers is compared to conventional hindered amine light stabilizers (HALS). QUV accelerated weathering is used to simulate long-term exposure. Positron annihilation lifetime spectroscopy (PALS) is used to provide an indication of physical and chemical changes due to accelerated weathering and is shown to have potential for detecting changes well before other techniques. Visual observation, optical microscopy, carbonyl index, yellowness index and PALS indicate that nanoparticulate zinc oxide gives superior resistance to UV degradation compared to organic HALS at appropriate loading levels

  13. Biocompatibility of Different Nerve Tubes

    Science.gov (United States)

    Stang, Felix; Keilhoff, Gerburg; Fansa, Hisham

    2009-01-01

    Bridging nerve gaps with suitable grafts is a major clinical problem. The autologous nerve graft is considered to be the gold standard, providing the best functional results; however, donor site morbidity is still a major disadvantage. Various attempts have been made to overcome the problems of autologous nerve grafts with artificial nerve tubes, which are “ready-to-use” in almost every situation. A wide range of materials have been used in animal models but only few have been applied to date clinically, where biocompatibility is an inevitable prerequisite. This review gives an idea about artificial nerve tubes with special focus on their biocompatibility in animals and humans.

  14. Conversion Preliminary Safety Analysis Report for the NIST Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Diamond, D. J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Baek, J. S. [Brookhaven National Lab. (BNL), Upton, NY (United States); Hanson, A. L. [Brookhaven National Lab. (BNL), Upton, NY (United States); Cheng, L-Y [Brookhaven National Lab. (BNL), Upton, NY (United States); Brown, N. [Brookhaven National Lab. (BNL), Upton, NY (United States); Cuadra, A. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-01-30

    The NIST Center for Neutron Research (NCNR) is a reactor-laboratory complex providing the National Institute of Standards and Technology (NIST) and the nation with a world-class facility for the performance of neutron-based research. The heart of this facility is the NIST research reactor (aka NBSR); a heavy water moderated and cooled reactor operating at 20 MW. It is fueled with high-enriched uranium (HEU) fuel elements. A Global Threat Reduction Initiative (GTRI) program is underway to convert the reactor to low-enriched uranium (LEU) fuel. This program includes the qualification of the proposed fuel, uranium and molybdenum alloy foil clad in an aluminum alloy, and the development of the fabrication techniques. This report is a preliminary version of the Safety Analysis Report (SAR) that would be submitted to the U.S. Nuclear Regulatory Commission (NRC) for approval prior to conversion. The report follows the recommended format and content from the NRC codified in NUREG-1537, “Guidelines for Preparing and Reviewing Applications for the Licensing of Non-power Reactors,” Chapter 18, “Highly Enriched to Low-Enriched Uranium Conversions.” The emphasis in any conversion SAR is to explain the differences between the LEU and HEU cores and to show the acceptability of the new design; there is no need to repeat information regarding the current reactor that will not change upon conversion. Hence, as seen in the report, the bulk of the SAR is devoted to Chapter 4, Reactor Description, and Chapter 13, Safety Analysis.

  15. Biocompatibility of plasma nanostructured biopolymers

    Czech Academy of Sciences Publication Activity Database

    Kasálková-Slepičková, N.; Slepička, P.; Bačáková, Lucie; Sajdl, P.; Švorčík, V.

    2013-01-01

    Roč. 307, Jul 15 (2013), s. 642-646 ISSN 0168-583X R&D Projects: GA ČR(CZ) GBP108/12/G108 Institutional support: RVO:67985823 Keywords : biopolymer * plasma treatment * biocompatibility Subject RIV: JJ - Other Materials Impact factor: 1.186, year: 2013

  16. Quantum Information Experiments with Trapped Ions at NIST

    Science.gov (United States)

    Wilson, Andrew

    2015-03-01

    We present an overview of recent trapped-ion quantum information experiments at NIST. Advancing beyond few-qubit ``proof-of-principle'' experiments to the many-qubit systems needed for practical quantum simulation and information processing, without compromising on the performance demonstrated with small systems, remains a major challenge. One approach to scalable hardware development is surface-electrode traps. Micro-fabricated planar traps can have a number of useful features, including flexible electrode geometries, integrated microwave delivery, and spatio-temporal tuning of potentials for ion transport and spin-spin interactions. In this talk we report on a number of on-going investigations with surface traps. Experiments feature a multi-zone trap with closely spaced ions in a triangular arrangement (a first step towards 2D arrays of ions with tunable spin-spin interactions), a scheme for smooth transport through a junction in a 2D structure based on switchable RF potentials, and a micro-fabricated photo-detector integrated into a trap. We also give a progress report on our latest efforts to improve the fidelity of both optical and microwave 2-qubit gates. This work was supported by IARPA, ONR and the NIST Quantum Information Program. The 3-ion and switchable-RF-junction traps were developed in collaboration with Sandia National Laboratory.

  17. Chemical components, pharmacological properties, and nanoparticulate delivery systems of Brucea javanica

    Directory of Open Access Journals (Sweden)

    Peng X

    2013-01-01

    Full Text Available Meiwan Chen,1,‡ Ruie Chen,1,‡ Shengpeng Wang,1 Wen Tan,1 Yangyang Hu,1 Xinsheng Peng,2 Yitao Wang11State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China; 2School of Pharmaceutical Sciences, Guangdong Medical College, Dongguan, China‡These authors contributed equally to this workAbstract: Brucea javanica has demonstrated a variety of antitumoral, antimalarial, and anti-inflammatory properties. As a Chinese herbal medicine, Brucea javanica is mainly used in the treatment of lung and gastrointestinal cancers. Pharmacological research has identified the main antitumor components are tetracyclic triterpene quassinoids. However, most of these active components have poor water solubility and low bioavailability, which greatly limit their clinical application. Nanoparticulate delivery systems are urgently needed to improve the bioavailability of Brucea javanica. This paper mainly focuses on the chemical components in Brucea javanica and its pharmacological properties and nanoparticulate formulations, in an attempt to encourage further research on its active components and nanoparticulate drug delivery systems to expand its clinical applications. It is expected to improve the level of pharmaceutical research and provide a strong scientific foundation for further study on the medicinal properties of this plant.Keywords: Brucea javanica, chemical components, pharmacology, nanoparticulate delivery systems

  18. On the mechanism of nanoparticulate CeO{sub 2} toxicity to freshwater algae

    Energy Technology Data Exchange (ETDEWEB)

    Angel, Brad M., E-mail: Brad.Angel@csiro.au [Centre for Environmental Contaminants Research, CSIRO Land and Water Flagship, Locked Bag 2007, Kirrawee, NSW 2232 (Australia); Vallotton, Pascal [Digital Productivity Flagship, CSIRO, North Ryde, NSW 1670 (Australia); Apte, Simon C. [Centre for Environmental Contaminants Research, CSIRO Land and Water Flagship, Locked Bag 2007, Kirrawee, NSW 2232 (Australia)

    2015-11-15

    Highlights: • Nanoparticulate CeO{sub 2} less toxic than micron-sized CeO{sub 2}. • UV light filters prevented ROS generation by CeO{sub 2}. • ROS not toxic mechanism: CeO{sub 2} toxicity was similar in presence and absence of ROS. • Strong sorption of nanoparticulate CeO{sub 2} to Pseudokirchneriella subcapitata in synthetic fresh water. • CeO{sub 2} sorption to cells was prevented and toxicity mitigated in the presence of DOC. - Abstract: The factors affecting the chronic (72-h) toxicity of three nanoparticulate (10–34 nm) and one micron-sized form of CeO{sub 2} to the green alga, Pseudokirchneriella subcapitata were investigated. To characterise transformations in solution, hydrodynamic diameters (HDD) were measured by dynamic light scatter, zeta potential values by electrophoretic mobility, and dissolution by equilibrium dialysis. The protective effects of humic and fulvic dissolved organic carbon (DOC) on toxicity were also assessed. To investigate the mechanisms of algal toxicity, the CytoViva hyperspectral imaging system was used to visualise algal–CeO{sub 2} interactions in the presence and absence of DOC, and the role of reactive oxygen species (ROS) was investigated by ‘switching off’ ROS production using UV-filtered lighting conditions. The nanoparticulate CeO{sub 2} immediately aggregated in solution to HDDs measured in the range 113–193 nm, whereas the HDD and zeta potential values were significantly lower in the presence of DOC. Negligible CeO{sub 2} dissolution over the time course of the bioassay ruled out potential toxicity from dissolved cerium. The nanoparticulate CeO{sub 2} concentration that caused 50% inhibition of algal growth rate (IC50) was in the range 7.6–28 mg/L compared with 59 mg/L for micron-sized ceria, indicating that smaller particles were more toxic. The presence of DOC mitigated toxicity, with IC50s increasing to greater than 100 mg/L. Significant ROS were generated in the nanoparticulate CeO{sub 2

  19. Biocompatible polysaccharide-based cryogels

    Energy Technology Data Exchange (ETDEWEB)

    Reichelt, Senta, E-mail: senta.reichelt@iom-leipzig.de [Leibniz Institute of Surface Modification, Permoserstr. 15, 04318 Leipzig (Germany); Becher, Jana; Weisser, Jürgen [Innovent e.V., Pruessingstr. 27B, 07745 Jena (Germany); Prager, Andrea; Decker, Ulrich [Leibniz Institute of Surface Modification, Permoserstr. 15, 04318 Leipzig (Germany); Möller, Stephanie; Berg, Albrecht; Schnabelrauch, Matthias [Innovent e.V., Pruessingstr. 27B, 07745 Jena (Germany)

    2014-02-01

    This study focuses on the development of novel biocompatible macroporous cryogels by electron-beam assisted free-radical crosslinking reaction of polymerizable dextran and hyaluronan derivatives. As a main advantage this straightforward approach provides highly pure materials of high porosity without using additional crosslinkers or initiators. The cryogels were characterized with regard to their morphology and their basic properties including thermal and mechanical characteristics, and swellability. It was found that the applied irradiation dose and the chemical composition strongly influence the material properties of the resulting cryogels. Preliminary cytotoxicity tests illustrate the excellent in vitro-cytocompatibility of the fabricated cryogels making them especially attractive as matrices in tissue regeneration procedures. - Graphical abstract: Electron-beam initiated synthesis of biocompatible cryogels based on natural polymers. - Highlights: • Successful electron-beam induced synthesis of dextran and hyaluronan cryogels. • Mechanical and thermal stable cryogels were obtained. • Excellent cytocompatibility of the materials was proven. • Promising materials for tissue engineering were developed.

  20. 77 FR 52692 - NIST Federal Information Processing Standard (FIPS) 140-3 (Second Draft), Security Requirements...

    Science.gov (United States)

    2012-08-30

    ...-03] NIST Federal Information Processing Standard (FIPS) 140-3 (Second Draft), Security Requirements....'' Authority: Federal Information Processing Standards (FIPS) are issued by the National Institute of Standards... Standards and Technology (NIST) seeks additional comments on specific sections of Federal Information...

  1. 76 FR 58248 - Proposed Information Collection; Comment Request; NIST Three-Year Generic Request for Customer...

    Science.gov (United States)

    2011-09-20

    ... Collection; Comment Request; NIST Three-Year Generic Request for Customer Service-Related Data Collections... customers want and expect, as well as their satisfaction with and awareness of existing products, services, and information. In addition, NIST proposes other customer service satisfaction data collections that...

  2. 75 FR 18819 - Second DRAFT NIST Interagency Report (NISTIR) 7628, Smart Grid Cyber Security Strategy and...

    Science.gov (United States)

    2010-04-13

    ... a cyber attack. 2. It is essential that those parts or equipment of the Smart Grid that optimize the...-0143-01] Second DRAFT NIST Interagency Report (NISTIR) 7628, Smart Grid Cyber Security Strategy and... (NIST) seeks comments on the second draft of NISTIR 7628, Smart Grid Cyber Security Strategy and...

  3. Recent advances in chitosan-based nanoparticulate pulmonary drug delivery

    Science.gov (United States)

    Islam, Nazrul; Ferro, Vito

    2016-07-01

    The advent of biodegradable polymer-encapsulated drug nanoparticles has made the pulmonary route of administration an exciting area of drug delivery research. Chitosan, a natural biodegradable and biocompatible polysaccharide has received enormous attention as a carrier for drug delivery. Recently, nanoparticles of chitosan (CS) and its synthetic derivatives have been investigated for the encapsulation and delivery of many drugs with improved targeting and controlled release. Herein, recent advances in the preparation and use of micro-/nanoparticles of chitosan and its derivatives for pulmonary delivery of various therapeutic agents (drugs, genes, vaccines) are reviewed. Although chitosan has wide applications in terms of formulations and routes of drug delivery, this review is focused on pulmonary delivery of drug-encapsulated nanoparticles of chitosan and its derivatives. In addition, the controversial toxicological effects of chitosan nanoparticles for lung delivery will also be discussed.

  4. Arsenic sorption to nanoparticulate mackinawite (FeS): An examination of phosphate competition.

    Science.gov (United States)

    Niazi, Nabeel Khan; Burton, Edward D

    2016-11-01

    Nanoparticulate mackinawite (FeS) can be an important host-phase for arsenic (As) in sulfidic, subsurface environments. Although not previously investigated, phosphate (PO 4 3- ) may compete with As for available sorption sites on FeS, thereby enhancing As mobility in FeS-bearing soils, sediments and groundwater systems. In this study, we examine the effect of PO 4 3- on sorption of arsenate (As(V)) and arsenite (As(III)) to nanoparticulate FeS at pH 6, 7 and 9. Results show that PO 4 3- (at 0.01-1.0 mM P) did not significantly affect sorption of either As(V) or As(III) to nanoparticulate FeS at initial aqueous As concentrations ranging from 0.01 to 1.0 mM. At pH 9 and 7, sorption of both As(III) and As(V) to nanoparticulate FeS was similar, with distribution coefficient (K d ) values spanning 0.76-15 L g -1 (which corresponds to removal of 87-98% of initial aqueous As(III) and As(V) concentrations). Conversely, at pH 6, the sorption of As(III) was characterized by substantially higher K d values (6.3-93.4 L g -1 ) than those for As(V) (K d  = 0.21-0.96 L g -1 ). Arsenic K-edge X-ray absorption near edge structure (XANES) spectroscopy indicated that up to 52% of the added As(V) was reduced to As(III) in As(V) sorption experiments, as well as the formation of minor amounts of an As 2 S 3 -like species. In As(III) sorption experiments, XANES spectroscopy also demonstrated the formation of an As 2 S 3 -like species and the partial oxidation of As(III) to As(V) (despite the strictly O 2 -free experimental conditions). Overall, the XANES data indicate that As sorption to nanoparticulate FeS involves several redox transformations and various sorbed species, which display a complex dependency on pH and As loading but that are not influenced by the co-occurrence of PO 4 3- . This study shows that nanoparticulate FeS can help to immobilize As(III) and As(V) in sulfidic subsurface environments where As co-exists with PO 4 3- . Copyright © 2016 Elsevier Ltd. All

  5. Novel Effects of Nanoparticulate Delivery of Zinc on Growth, Productivity, and Zinc Biofortification in Maize (Zea mays L.).

    Science.gov (United States)

    Subbaiah, Layam Venkata; Prasad, Tollamadugu Naga Venkata Krishna Vara; Krishna, Thimmavajjula Giridhara; Sudhakar, Palagiri; Reddy, Balam Ravindra; Pradeep, Thalappil

    2016-05-18

    In the present investigation, nanoscale zinc oxide particulates (ZnO-nanoparticulates) were prepared using a modified oxalate decomposition method. Prepared ZnO-nanoparticulates (mean size = 25 nm) were characterized using techniques such as transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR), and zeta potential analyzer. Different concentrations (50, 100, 200, 400, 600, 800, 1000, 1500, and 2000 ppm) of ZnO-nanoparticulates were examined to reveal their effects on maize crop on overall growth and translocation of zinc along with bulk ZnSO4 and control. Highest germination percentage (80%) and seedling vigor index (1923.20) were observed at 1500 ppm of ZnO-nanoparticulates. The yield was 42% more compared to control and 15% higher compared to 2000 ppm of ZnSO4. Higher accumulation of zinc (35.96 ppm) in grains was recorded with application of 100 ppm followed by 400 ppm (31.05 ppm) of ZnO-nanoparticulates. These results indicate that ZnO-nanoparticulates have significant effects on growth, yield, and zinc content of maize grains, which is an important feature in terms of human health.

  6. Bioglass: A novel biocompatible innovation.

    Science.gov (United States)

    Krishnan, Vidya; Lakshmi, T

    2013-04-01

    Advancement of materials technology has been immense, especially in the past 30 years. Ceramics has not been new to dentistry. Porcelain crowns, silica fillers in composite resins, and glass ionomer cements have already been proved to be successful. Materials used in the replacement of tissues have come a long way from being inert, to compatible, and now regenerative. When hydroxyapatite was believed to be the best biocompatible replacement material, Larry Hench developed a material using silica (glass) as the host material, incorporated with calcium and phosphorous to fuse broken bones. This material mimics bone material and stimulates the regrowth of new bone material. Thus, due to its biocompatibility and osteogenic capacity it came to be known as "bioactive glass-bioglass." It is now encompassed, along with synthetic hydroxyapatite, in the field of biomaterials science known as "bioactive ceramics." The aim of this article is to give a bird's-eye view, of the various uses in dentistry, of this novel, miracle material which can bond, induce osteogenesis, and also regenerate bone.

  7. Bioglass: A novel biocompatible innovation

    Directory of Open Access Journals (Sweden)

    Vidya Krishnan

    2013-01-01

    Full Text Available Advancement of materials technology has been immense, especially in the past 30 years. Ceramics has not been new to dentistry. Porcelain crowns, silica fillers in composite resins, and glass ionomer cements have already been proved to be successful. Materials used in the replacement of tissues have come a long way from being inert, to compatible, and now regenerative. When hydroxyapatite was believed to be the best biocompatible replacement material, Larry Hench developed a material using silica (glass as the host material, incorporated with calcium and phosphorous to fuse broken bones. This material mimics bone material and stimulates the regrowth of new bone material. Thus, due to its biocompatibility and osteogenic capacity it came to be known as "bioactive glass-bioglass." It is now encompassed, along with synthetic hydroxyapatite, in the field of biomaterials science known as "bioactive ceramics." The aim of this article is to give a bird′s-eye view, of the various uses in dentistry, of this novel, miracle material which can bond, induce osteogenesis, and also regenerate bone.

  8. The use of high accuracy NAA for the certification of NIST botanical standard reference materials

    International Nuclear Information System (INIS)

    Becker, D.A.; Greenberg, R.R.; Stone, S.F.

    1992-01-01

    Neutron activation analysis is one of many analytical techniques used at the National Institute of Standards and Technology (NIST) for the certification of NIST Standard Reference Materials (SRMs). NAA competes favorably with all other techniques because of it's unique capabilities for high accuracy even at very low concentrations for many elements. In this paper, instrumental and radiochemical NAA results are described for 25 elements in two new NIST SRMs, SRM 1515 (Apple Leaves) and SRM 1547 (Peach Leaves), and are compared to the certified values for 19 elements in these two new botanical reference materials. (author) 7 refs.; 4 tabs

  9. Photocatalytic degradation of paraoxon-ethyl in aqueous solution using titania nanoparticulate film

    International Nuclear Information System (INIS)

    Prasad, G.K.; Ramacharyulu, P.V.R.K.; Kumar, J. Praveen; Srivastava, A.R.; Singh, Beer

    2012-01-01

    Photocatalytic degradation of paraoxon-ethyl (o,o-diethyl o-(4-nitrophenyl) phosphate), a well known surrogate of chemical warfare agents, in aqueous solution was studied by using titania nanoparticulate film. Reaction followed pseudo first order behaviour. Photolytic degradation reaction of paraoxon-ethyl demonstrated relatively low rate with a value of rate constant of 2.5 × 10 −3 min −1 . Whereas, degradation reaction in the presence of titania nanoparticulate film and UV light displayed enhanced rate with a value of rate constant of 6.9 × 10 −3 min −1 due to photocatalysis. Gas chromatography–mass spectrometry analysis showed the formation of p-nitrophenol, o,o-diethyl phosphonic acid, o-ethyl, diphosphonic acid, phosphoric acid, dimerized product of o,o-diethyl phosphonic acid, acetaldehyde, and carbon dioxide due to photocatalytic degradation of paraoxon-ethyl. It indicates that, photocatalytic degradation reaction begins with destruction of P–O–C bonds. Subsequently, P, C atoms were found to be oxidized gradually, and contributed to its photocatalytic degradation. - Highlights: ► Synthesis of titania nanoparticles by sol–gel method. ► Fabrication of titania nanoparticulate film by dip coating. ► Paraoxon ethyl degradation reactions followed pseudo first order behaviour. ► Paraoxon-ethyl degraded to non toxic compounds like CO 2 , acetaldehyde, and nitrophenol.

  10. On the compressibility of TiC in microcrystalline and nanoparticulate form

    International Nuclear Information System (INIS)

    Gu, Q F; Krauss, G; Steurer, W; Gramm, F

    2008-01-01

    The compressibility of TiC in microcrystalline and nanoparticulate (30-50 nm) form was studied by in situ high-pressure synchrotron radiation x-ray diffraction measurements up to 53.7 GPa using a diamond anvil cell. Both materials are structurally stable within the framework of the experiments applying quasihydrostatic pressure conditions. Under nonhydrostatic pressure conditions, the lattice of microcrystalline TiC is rhombohedrally distorted. Comparable values for the bulk modulus were found for both materials, i.e. K 0 = 254(7) GPa, K' = 4.8(4) for microcrystalline TiC and K 0 = 276(14) GPa, K' = 3.5(8) for nanoparticulate TiC, respectively. High-resolution transmission electron microscopy investigations revealed a nearly single-domain microstructure of the nanoparticles. The microstructure and size of the nanoparticles, making a size-induced effect on the mechanical properties negligible, explain well the observed similarity of the mechanical properties of microcrystalline and nanoparticulate TiC.

  11. Photocatalytic degradation of paraoxon-ethyl in aqueous solution using titania nanoparticulate film

    Energy Technology Data Exchange (ETDEWEB)

    Prasad, G.K., E-mail: gkprasad2001@yahoo.com; Ramacharyulu, P.V.R.K.; Kumar, J. Praveen; Srivastava, A.R.; Singh, Beer

    2012-06-30

    Photocatalytic degradation of paraoxon-ethyl (o,o-diethyl o-(4-nitrophenyl) phosphate), a well known surrogate of chemical warfare agents, in aqueous solution was studied by using titania nanoparticulate film. Reaction followed pseudo first order behaviour. Photolytic degradation reaction of paraoxon-ethyl demonstrated relatively low rate with a value of rate constant of 2.5 Multiplication-Sign 10{sup -3} min{sup -1}. Whereas, degradation reaction in the presence of titania nanoparticulate film and UV light displayed enhanced rate with a value of rate constant of 6.9 Multiplication-Sign 10{sup -3} min{sup -1} due to photocatalysis. Gas chromatography-mass spectrometry analysis showed the formation of p-nitrophenol, o,o-diethyl phosphonic acid, o-ethyl, diphosphonic acid, phosphoric acid, dimerized product of o,o-diethyl phosphonic acid, acetaldehyde, and carbon dioxide due to photocatalytic degradation of paraoxon-ethyl. It indicates that, photocatalytic degradation reaction begins with destruction of P-O-C bonds. Subsequently, P, C atoms were found to be oxidized gradually, and contributed to its photocatalytic degradation. - Highlights: Black-Right-Pointing-Pointer Synthesis of titania nanoparticles by sol-gel method. Black-Right-Pointing-Pointer Fabrication of titania nanoparticulate film by dip coating. Black-Right-Pointing-Pointer Paraoxon ethyl degradation reactions followed pseudo first order behaviour. Black-Right-Pointing-Pointer Paraoxon-ethyl degraded to non toxic compounds like CO{sub 2}, acetaldehyde, and nitrophenol.

  12. Study of an ultrasound-based process analytical tool for homogenization of nanoparticulate pharmaceutical vehicles.

    Science.gov (United States)

    Cavegn, Martin; Douglas, Ryan; Akkermans, Guy; Kuentz, Martin

    2011-08-01

    There are currently no adequate process analyzers for nanoparticulate viscosity enhancers. This article aims to evaluate ultrasonic resonator technology as a monitoring tool for homogenization of nanoparticulate gels. Aqueous dispersions of colloidal microcrystalline cellulose (MCC) and a mixture of clay particles with xanthan gum were compared with colloidal silicon dioxide in oil. The processing was conducted using a laboratory-scale homogenizing vessel. The study investigated first the homogenization kinetics of the different systems to focus then on process factors in the case of colloidal MCC. Moreover, rheological properties were analyzed offline to assess the structure of the resulting gels. Results showed the suitability of ultrasound velocimetry to monitor the homogenization process. The obtained data were fitted using a novel heuristic model. It was possible to identify characteristic homogenization times for each formulation. The subsequent study of the process factors demonstrated that ultrasonic process analysis was equally sensitive as offline rheological measurements in detecting subtle manufacturing changes. It can be concluded that the ultrasonic method was able to successfully assess homogenization of nanoparticulate viscosity enhancers. This novel technique can become a vital tool for development and production of pharmaceutical suspensions in the future. Copyright © 2011 Wiley-Liss, Inc.

  13. Surface roughness of microparticulated and nanoparticulated composites after finishing and polishing procedures

    Directory of Open Access Journals (Sweden)

    Rosemary Arai Sadami Shinkai

    Full Text Available Objective: To evaluated the surface roughness of one microparticulate resin composite Durafill (Heraeus Kulzer Weihrheim, Germany andfour nanoparticulate resins 4 Seasons (Ivoclar Vivadent, Schaan, Liechtenstein Esthet x (Dentsply, Milford, DE, USA, Point 4 and Supreme (3M-ESPE, Dental Products,St. Paul, MN, USA. Methods: After finishing with a diamond bur point (F, and polishing with silicone points of gray, green and pink color Politipit (Ivoclar Vivadent,Schaan, Liechtenstein, four stages of completion were performed, simulating one of finishing and three of polishing a resin restoration. Ten samples of each composite resin were measured for surface roughness with surface profilometer (Mitutoyo Corporation, Tokyo, Japan after each of finishing and polishing sequence.Results: The results showed that nanoparticulate and microparticulate resins presented a significant difference in the surface roughness values, in all finishing and polishing steps. Conclusion: Of the the nanoparticulate resins 4 Seasons (Ivoclar Vivadent, Schaan, Liechtenstein, Point 4 (Kerr CO, Orange, CA, USA, and also microparticulate Durafill (Heraeus Kulzer Weihrheim, Germany presented significantly lower surface roughness values after completing all the finishing and polishing stages.

  14. 41Ca standardization by the CIEMAT/NIST LSC method

    International Nuclear Information System (INIS)

    Rodriguez Barquero, L.; Los Arcos, J.M.

    1996-01-01

    A procedure for the liquid scintillation counting standardization of the electron-capture nuclide 41 Ca has been successfully developed and applied with 41 CaCl 2 and 41 Ca-(HDEHP) n samples synthesized in the laboratory from 41 CaCO 3 supplied by Oak Ridge National Laboratory. Six scintillators were tested: the organic samples were stable in toluene-alcohol, Ultima-Gold TM and HiSafe III TM for 30 d, whereas the inorganic samples were only stable in toluene-alcohol and HiSafe III TM for the same period of time. Despite of the low counting efficiencies (1%-13%) due to the very low-energy of less than 3.6 keV of the X-rays and Auger electrons of 41 Ca, the stable samples were standardized by the CIEMAT/NIST method to a combined uncertainty of 2.4% over a range of figures of merit of 1.75 to 7.25 ( 3 H equivalent efficiency of 40% to 7%). (orig.)

  15. Supervised and Unsupervised Speaker Adaptation in the NIST 2005 Speaker Recognition Evaluation

    National Research Council Canada - National Science Library

    Hansen, Eric G; Slyh, Raymond E; Anderson, Timothy R

    2006-01-01

    Starting in 2004, the annual NIST Speaker Recognition Evaluation (SRE) has added an optional unsupervised speaker adaptation track where test files are processed sequentially and one may update the target model...

  16. Synthesis and characterization of biocompatible hydroxyapatite ...

    Indian Academy of Sciences (India)

    https://www.ias.ac.in/article/fulltext/boms/026/07/0655-0660. Keywords. Bioceramics; hyperthermia; ferrite; biocompatible coating. Abstract. Ferrite particles coated with biocompatible phases can be used for hyperthermia treatment of cancer. We have synthesized substituted calcium hexaferrite, which is not stable on its own ...

  17. Polycrystalline Silicon: a Biocompatibility Assay

    International Nuclear Information System (INIS)

    Pecheva, E.; Fingarova, D.; Pramatarova, L.; Hikov, T.; Laquerriere, P.; Bouthors, Sylvie; Dimova-Malinovska, D.; Montgomery, P.

    2010-01-01

    Polycrystalline silicon (poly-Si) layers were functionalized through the growth of biomimetic hydroxyapatite (HA) on their surface. HA is the mineral component of bones and teeth and thus possesses excellent bioactivity and biocompatibility. MG-63 osteoblast-like cells were cultured on both HA-coated and un-coated poly-Si surfaces for 1, 3, 5 and 7 days and toxicity, proliferation and cell morphology were investigated. The results revealed that the poly-Si layers were bioactive and compatible with the osteoblast-like cells. Nevertheless, the HA coating improved the cell interactions with the poly-Si surfaces based on the cell affinity to the specific chemical composition of the bone-like HA and/or to the higher HA roughness.

  18. A response to: "NIST experts urge caution in use of courtroom evidence presentation method"

    OpenAIRE

    Morrison, Geoffrey Stewart

    2017-01-01

    A press release from the National Institute of Standards and Technology (NIST)could potentially impede progress toward improving the analysis of forensic evidence and the presentation of forensic analysis results in courts in the United States and around the world. "NIST experts urge caution in use of courtroom evidence presentation method" was released on October 12, 2017, and was picked up by the phys.org news service. It argues that, except in exceptional cases, the results of forensic ana...

  19. Reference metrology in a research fab: the NIST clean calibrations thrust

    Science.gov (United States)

    Dixson, Ronald; Fu, Joe; Orji, Ndubuisi; Renegar, Thomas; Zheng, Alan; Vorburger, Theodore; Hilton, Al; Cangemi, Marc; Chen, Lei; Hernandez, Mike; Hajdaj, Russell; Bishop, Michael; Cordes, Aaron

    2009-03-01

    In 2004, the National Institute of Standards and Technology (NIST) commissioned the Advanced Measurement Laboratory (AML) - a state-of-the-art, five-wing laboratory complex for leading edge NIST research. The NIST NanoFab - a 1765 m2 (19,000 ft2) clean room with 743 m2 (8000 ft2) of class 100 space - is the anchor of this facility and an integral component of the new Center for Nanoscale Science and Technology (CNST) at NIST. Although the CNST/NanoFab is a nanotechnology research facility with a different strategic focus than a current high volume semiconductor fab, metrology tools still play an important role in the nanofabrication research conducted here. Some of the metrology tools available to users of the NanoFab include stylus profiling, scanning electron microscopy (SEM), and atomic force microscopy (AFM). Since 2001, NIST has collaborated with SEMATECH to implement a reference measurement system (RMS) using critical dimension atomic force microscopy (CD-AFM). NIST brought metrology expertise to the table and SEMATECH provided access to leading edge metrology tools in their clean room facility in Austin. Now, in the newly launched "clean calibrations" thrust at NIST, we are implementing the reference metrology paradigm on several tools in the CNST/NanoFab. Initially, we have focused on calibration, monitoring, and uncertainty analysis for a three-tool set consisting of a stylus profiler, an SEM, and an AFM. Our larger goal is the development of new and supplemental calibrations and standards that will benefit from the Class 100 environment available in the NanoFab and offering our customers calibration options that do not require exposing their samples to less clean environments. Toward this end, we have completed a preliminary evaluation of the performance of these instruments. The results of these evaluations suggest that the achievable uncertainties are generally consistent with our measurement goals.

  20. Biocompatibility of crystalline opal nanoparticles.

    Science.gov (United States)

    Hernández-Ortiz, Marlen; Acosta-Torres, Laura S; Hernández-Padrón, Genoveva; Mendieta, Alicia I; Bernal, Rodolfo; Cruz-Vázquez, Catalina; Castaño, Victor M

    2012-10-22

    Silica nanoparticles are being developed as a host of biomedical and biotechnological applications. For this reason, there are more studies about biocompatibility of silica with amorphous and crystalline structure. Except hydrated silica (opal), despite is presents directly and indirectly in humans. Two sizes of crystalline opal nanoparticles were investigated in this work under criteria of toxicology. In particular, cytotoxic and genotoxic effects caused by opal nanoparticles (80 and 120 nm) were evaluated in cultured mouse cells via a set of bioassays, methylthiazolyldiphenyl-tetrazolium-bromide (MTT) and 5-bromo-2'-deoxyuridine (BrdU). 3T3-NIH cells were incubated for 24 and 72 h in contact with nanocrystalline opal particles, not presented significant statistically difference in the results of cytotoxicity. Genotoxicity tests of crystalline opal nanoparticles were performed by the BrdU assay on the same cultured cells for 24 h incubation. The reduction of BrdU-incorporated cells indicates that nanocrystalline opal exposure did not caused unrepairable damage DNA. There is no relationship between that particles size and MTT reduction, as well as BrdU incorporation, such that the opal particles did not induce cytotoxic effect and genotoxicity in cultured mouse cells.

  1. Effect of a calcium cathode on water-based nanoparticulate solar cells

    Science.gov (United States)

    Vaughan, Ben; Stapleton, Andrew; Xue, Bofei; Sesa, Elisa; Zhou, Xiaojing; Bryant, Glenn; Belcher, Warwick; Dastoor, Paul

    2012-07-01

    Water-based nanoparticulate (NP) and bulk heterojunction (BHJ) organic photovoltaic (OPV) devices based on blends of poly(9,9-dioctylfluorene-co-N,N-bis(4-butylphenyl)-N,Ndiphenyl-1,4-phenylenediamine) (PFB) and poly(9,9-dioctylfluorene-co-benzothiadiazole (F8BT) have been fabricated with aluminium and calcium/aluminium cathodes. The NP devices exhibit power conversion efficiencies (PCEs) that are double that of the corresponding BHJ device. Moreover, the addition of calcium into the cathode structure results in a dramatic increase in open circuit voltage and PCEs approaching 1% for water-based polyfluorene OPV devices.

  2. Nanoparticulate cerium dioxide and cerium dioxide-titanium dioxide composite thin films on glass by aerosol assisted chemical vapour deposition

    International Nuclear Information System (INIS)

    Qureshi, Uzma; Dunnill, Charles W.; Parkin, Ivan P.

    2009-01-01

    Two series of composite thin films were deposited on glass by aerosol assisted chemical vapour deposition (AACVD)-nanoparticulate cerium dioxide and nanoparticulate cerium dioxide embedded in a titanium dioxide matrix. The films were analysed by a range of techniques including UV-visible absorption spectroscopy, X-ray diffraction, scanning electron microscopy and energy dispersive analysis by X-rays. The AACVD prepared films showed the functional properties of photocatalysis and super-hydrophilicity. The CeO 2 nanoparticle thin films displaying photocatalysis and photo-induced hydrophilicity almost comparable to that of anatase titania.

  3. Synthesis and characterization of biocompatible hydroxyapatite ...

    Indian Academy of Sciences (India)

    Unknown

    Indian Institute of Technology, Mumbai 400 076, India. MS received 25 March 2003 ... being given the advantage of a biocompatible coating. The purpose of this work is ..... Financial support from CSIR, New Delhi, is gratefully acknowledged.

  4. The use of high accuracy NAA for the certification of NIST Standard Reference Materials

    International Nuclear Information System (INIS)

    Becker, D.A.; Greenberg, R.R.; Stone, S.

    1991-01-01

    Neutron activation analysis (NAA) is only one of many analytical techniques used at the National Institute of Standards and Technology (NIST) for the certification of NIST Standard Reference Materials (SRMs). We compete daily against all of the other available analytical techniques in terms of accuracy, precision, and the cost required to obtain that requisite accuracy and precision. Over the years, the authors have found that NAA can and does compete favorably with these other techniques because of its' unique capabilities for redundancy and quality assurance. Good examples are the two new NIST leaf SRMs, Apple Leaves (SRM 1515) and Peach Leaves (SRM 1547). INAA was used to measure the homogeneity of 12 elements in 15 samples of each material at the 100 mg sample size. In addition, instrumental and radiochemical NAA combined for 27 elemental determinations, out of a total of 54 elemental determinations made on each material with all NIST techniques combined. This paper describes the NIST NAA procedures used in these analyses, the quality assurance techniques employed, and the analytical results for the 24 elements determined by NAA in these new botanical SRMs. The NAA results are also compared to the final certified values for these SRMs

  5. Carbon Fiber Biocompatibility for Implants

    Directory of Open Access Journals (Sweden)

    Richard Petersen

    2016-01-01

    Full Text Available Carbon fibers have multiple potential advantages in developing high-strength biomaterials with a density close to bone for better stress transfer and electrical properties that enhance tissue formation. As a breakthrough example in biomaterials, a 1.5 mm diameter bisphenol-epoxy/carbon-fiber-reinforced composite rod was compared for two weeks in a rat tibia model with a similar 1.5 mm diameter titanium-6-4 alloy screw manufactured to retain bone implants. Results showed that carbon-fiber-reinforced composite stimulated osseointegration inside the tibia bone marrow measured as percent bone area (PBA to a great extent when compared to the titanium-6-4 alloy at statistically significant levels. PBA increased significantly with the carbon-fiber composite over the titanium-6-4 alloy for distances from the implant surfaces of 0.1 mm at 77.7% vs. 19.3% (p < 10−8 and 0.8 mm at 41.6% vs. 19.5% (p < 10−4, respectively. The review focuses on carbon fiber properties that increased PBA for enhanced implant osseointegration. Carbon fibers acting as polymer coated electrically conducting micro-biocircuits appear to provide a biocompatible semi-antioxidant property to remove damaging electron free radicals from the surrounding implant surface. Further, carbon fibers by removing excess electrons produced from the cellular mitochondrial electron transport chain during periods of hypoxia perhaps stimulate bone cell recruitment by free-radical chemotactic influences. In addition, well-studied bioorganic cell actin carbon fiber growth would appear to interface in close contact with the carbon-fiber-reinforced composite implant. Resulting subsequent actin carbon fiber/implant carbon fiber contacts then could help in discharging the electron biological overloads through electrochemical gradients to lower negative charges and lower concentration.

  6. PHYSICS AND SAFETY ANALYSIS FOR THE NIST RESEARCH REACTOR

    International Nuclear Information System (INIS)

    CHENG, L.; HANSON, A.; DIAMOND, D.; XU, J.; CAREW, J.; RORER, D.

    2004-01-01

    Detailed reactor physics and safety analyses have been performed for the 20 MW D 2 O moderated research reactor (NBSR) at the National Institute of Standards and Technology (NIST). The analyses provide an update to the Final Safety Analysis Report (FSAR) and employ state-of-the-art calculational methods. Three-dimensional Monte Carlo neutron and photon transport calculations were performed with the MCNP code to determine the safety parameters for the NBSR. The core depletion and determination of the fuel compositions were performed with MONTEBURNS. MCNP calculations were performed to determine the beginning, middle, and end-of-cycle power distributions, moderator temperature coefficient, and shim safety arm, beam tube and void reactivity worths. The calculational model included a plate-by-plate description of each fuel assembly, axial mid-plane water gap, beam tubes and the tubular geometry of the shim safety arms. The time-dependent analysis of the primary loop was determined with a RELAP5 transient analysis model that includes the pump, heat exchanger, fuel element geometry, and flow channels for both the six inner and twenty-four outer fuel elements. The statistical analysis used to assure protection from critical heat flux (CHF) was performed using a Monte Carlo simulation of the uncertainties contributing to the CHF calculation. The power distributions used to determine the local fuel conditions and margin to CHF were determined with MCNP. Evaluations were performed for the following accidents: (1) the control rod withdrawal startup accident, (2) the maximum reactivity insertion accident, (3) loss-of-flow resulting from loss of electrical power, (4) loss-of-flow resulting from a primary pump seizure, (5) loss-of-flow resulting from inadvertent throttling of a flow control valve, (6) loss-of-flow resulting from failure of both shutdown cooling pumps and (7) misloading of a fuel element. In both the startup and maximum reactivity insertion accidents, the core

  7. Ellipsometric analysis and optical absorption characterization of gallium phosphide nanoparticulate thin film

    International Nuclear Information System (INIS)

    Zhang Qi-Xian; Ruan Fang-Ping; Wei Wen-Sheng

    2011-01-01

    Gallium phosphide (GaP) nanoparticulate thin films were easily fabricated by colloidal suspension deposition via GaP nanoparticles dispersed in N,N-dimethylformamide. The microstructure of the film was performed by x-ray diffraction, high resolution transmission electron microscopy and field emission scanning electron microscopy. The film was further investigated by spectroscopic ellipsometry. After the model GaP+void|SiO 2 was built and an effective medium approximation was adopted, the values of the refractive index n and the extinction coefficient k were calculated for the energy range of 0.75 eV–4.0 eV using the dispersion formula in DeltaPsi2 software. The absorption coefficient of the film was calculated from its k and its energy gaps were further estimated according to the Tauc equation, which were further verified by its fluorescence spectrum measurement. The structure and optical absorption properties of the nanoparticulate films are promising for their potential applications in hybrid solar cells. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  8. Ellipsometric analysis and optical absorption characterization of gallium phosphide nanoparticulate thin film

    Science.gov (United States)

    Zhang, Qi-Xian; Wei, Wen-Sheng; Ruan, Fang-Ping

    2011-04-01

    Gallium phosphide (GaP) nanoparticulate thin films were easily fabricated by colloidal suspension deposition via GaP nanoparticles dispersed in N,N-dimethylformamide. The microstructure of the film was performed by x-ray diffraction, high resolution transmission electron microscopy and field emission scanning electron microscopy. The film was further investigated by spectroscopic ellipsometry. After the model GaP+void|SiO2 was built and an effective medium approximation was adopted, the values of the refractive index n and the extinction coefficient k were calculated for the energy range of 0.75 eV-4.0 eV using the dispersion formula in DeltaPsi2 software. The absorption coefficient of the film was calculated from its k and its energy gaps were further estimated according to the Tauc equation, which were further verified by its fluorescence spectrum measurement. The structure and optical absorption properties of the nanoparticulate films are promising for their potential applications in hybrid solar cells.

  9. Neuropathic Pain and Lung Delivery of Nanoparticulate Drugs: An Emerging Novel Therapeutic Strategy.

    Science.gov (United States)

    Islam, Nazrul; Abbas, Muzaffar; Rahman, Shafiqur

    2017-01-01

    Neuropathic pain is a chronic neurological disorder affecting millions of people around the world. The currently available pharmacologic agents for the treatment of neuropathic pain have limited efficacy and are associated with dose related unwanted adverse effects. Due to the limited access of drug molecules across blood-brain barrier, a small percentage of drug that is administered systematically, reaches the central nervous system in active form. These therapeutic agents also require daily treatment regimen that is inconvenient and potentially impact patient compliance. Application of nanoparticulate drugs for enhanced delivery system has been explored extensively in the last decades. Pulmonary delivery of nanomedicines for the management of various diseases has become an emerging treatment strategy that ensures the targeted delivery of drugs both for systemic and local effects with low dose and limited adverse effects. To the best of our knowledge, there are no inhaled drug products available on market for the treatment of neuropathic pain. The advantages of delivering therapeutics into deep lungs include non-invasive drug delivery, higher bioavailability with low dose, lower systemic toxicity, and potentially greater blood-brain barrier penetration. This review discusses and highlights the important issues on the application of emerging nanoparticulate lung delivery of drugs for the effective treatment of neuropathic pain. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  10. Rapid detection of cancer related DNA nanoparticulate biomarkers and nanoparticles in whole blood

    Science.gov (United States)

    Heller, Michael J.; Krishnan, Raj; Sonnenberg, Avery

    2010-08-01

    The ability to rapidly detect cell free circulating (cfc) DNA, cfc-RNA, exosomes and other nanoparticulate disease biomarkers as well as drug delivery nanoparticles directly in blood is a major challenge for nanomedicine. We now show that microarray and new high voltage dielectrophoretic (DEP) devices can be used to rapidly isolate and detect cfc-DNA nanoparticulates and nanoparticles directly from whole blood and other high conductance samples (plasma, serum, urine, etc.). At DEP frequencies of 5kHz-10kHz both fluorescent-stained high molecular weight (hmw) DNA, cfc-DNA and fluorescent nanoparticles separate from the blood and become highly concentrated at specific DEP highfield regions over the microelectrodes, while blood cells move to the DEP low field-regions. The blood cells can then be removed by a simple fluidic wash while the DNA and nanoparticles remain highly concentrated. The hmw-DNA could be detected at a level of <260ng/ml and the nanoparticles at <9.5 x 109 particles/ml, detection levels that are well within the range for viable clinical diagnostics and drug nanoparticle monitoring. Disease specific cfc-DNA materials could also be detected directly in blood from patients with Chronic Lymphocytic Leukemia (CLL) and confirmed by PCR genotyping analysis.

  11. Enhanced oral bioavailability of fenofibrate using polymeric nanoparticulated systems: physicochemical characterization and in vivo investigation

    Directory of Open Access Journals (Sweden)

    Yousaf AM

    2015-03-01

    Full Text Available Abid Mehmood Yousaf,1 Dong Wuk Kim,1 Yu-Kyoung Oh,2 Chul Soon Yong,3 Jong Oh Kim,3 Han-Gon Choi11College of Pharmacy and Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, 2College of Pharmacy, Seoul National University, Seoul, 3College of Pharmacy, Yeungnam University, Gyongsan, South KoreaBackground: The intention of this research was to prepare and compare various solubility-enhancing nanoparticulated systems in order to select a nanoparticulated formulation with the most improved oral bioavailability of poorly water-soluble fenofibrate.Methods: The most appropriate excipients for different nanoparticulated preparations were selected by determining the drug solubility in 1% (w/v aqueous solutions of each carrier. The polyvinylpyrrolidone (PVP nanospheres, hydroxypropyl-β-cyclodextrin (HP-β-CD nanocorpuscles, and gelatin nanocapsules were formulated as fenofibrate/PVP/sodium lauryl sulfate (SLS, fenofibrate/HP-β-CD, and fenofibrate/gelatin at the optimized weight ratios of 2.5:4.5:1, 1:4, and 1:8, respectively. The three solid-state products were achieved using the solvent-evaporation method through the spray-drying technique. The physicochemical characterization of these nanoparticles was accomplished by powder X-ray diffraction, differential scanning calorimetry, scanning electron microscopy, and Fourier-transform infrared spectroscopy. Their physicochemical properties, aqueous solubility, dissolution rate, and pharmacokinetics in rats were investigated in comparison with the drug powder.Results: Among the tested carriers, PVP, HP-β-CD, gelatin, and SLS showed better solubility and were selected as the most appropriate constituents for various nanoparticulated systems. All of the formulations significantly improved the aqueous solubility, dissolution rate, and oral bioavailability of fenofibrate compared to the drug powder. The drug was present in the amorphous form in HP-β-CD nanocorpuscles; however, in

  12. USCEA/NIST measurement assurance programs for the radiopharmaceutical and nuclear power industries

    Energy Technology Data Exchange (ETDEWEB)

    Golas, D.B. [Council for Energy Awareness, Washington, DC (United States)

    1993-12-31

    In cooperation with the U.S. Council for Energy Awareness (USCEA), the National Institute of Standards and Technology (NIST) supervises and administers two measurement assurance programs for radioactivity measurement traceability. One, in existence since the mid 1970s, provides traceability to suppliers of radiochemicals and radiopharmaceuticals, dose calibrators, and nuclear pharmacy services. The second program, begun in 1987, provides traceability to the nuclear power industry for utilities, source suppliers, and service laboratories. Each program is described, and the results of measurements of samples of known, but undisclosed activity, prepared at NIST and measured by the participants are presented.

  13. USCEA/NIST measurement assurance programs for the radiopharmaceutical and nuclear power industries

    International Nuclear Information System (INIS)

    Golas, D.B.

    1993-01-01

    In cooperation with the U.S. Council for Energy Awareness (USCEA), the National Institute of Standards and Technology (NIST) supervises and administers two measurement assurance programs for radioactivity measurement traceability. One, in existence since the mid 1970s, provides traceability to suppliers of radiochemicals and radiopharmaceuticals, dose calibrators, and nuclear pharmacy services. The second program, begun in 1987, provides traceability to the nuclear power industry for utilities, source suppliers, and service laboratories. Each program is described, and the results of measurements of samples of known, but undisclosed activity, prepared at NIST and measured by the participants are presented

  14. Nano-particulate Aluminium Nitride/Al: An Efficient and Versatile Heterogeneous Catalyst for the Synthesis of Biginelli Scaffolds

    Science.gov (United States)

    Tekale, S. U.; Tekale, A. B.; Kanhe, N. S.; Bhoraskar, S. V.; Pawar, R. P.

    2011-12-01

    Nano-particulate aluminium nitride/Al (7:1) is reported as a new heterogeneous solid acid catalyst for the synthesis of 3, 4-dihydroxypyrimidi-2-(1H)-ones and their sulphur analogues using the Biginelli reaction. This method involves short reaction time, easy separation, high yields and purity of products.

  15. 76 FR 66040 - NIST Framework and Roadmap for Smart Grid Interoperability Standards, Release 2.0 (Draft...

    Science.gov (United States)

    2011-10-25

    ...-01] NIST Framework and Roadmap for Smart Grid Interoperability Standards, Release 2.0 (Draft... draft version of the NIST Framework and Roadmap for Smart Grid Interoperability Standards, Release 2.0... Roadmap for Smart Grid Interoperability Standards, Release 2.0 (Release 2.0) (Draft) for public review and...

  16. Limitation of biocompatibility of hydrated nanocrystalline hydroxyapatite

    Science.gov (United States)

    Minaychev, V. V.; Teleshev, A. T.; Gorshenev, V. N.; Yakovleva, M. A.; Fomichev, V. A.; Pankratov, A. S.; Menshikh, K. A.; Fadeev, R. S.; Fadeeva, I. S.; Senotov, A. S.; Kobyakova, M. I.; Yurasova, Yu B.; Akatov, V. S.

    2018-04-01

    Nanostructured hydroxyapatite (HA) in the form of hydrated paste is considered to be a promising material for a minor-invasive surgical curing of bone tissue injure. However questions about adhesion of cells on this material and its biocompatibility still remain. In this study biocompatibility of paste-formed nanosized HA (nano-HA) by in vitro methods is investigated. Nano-HA (particles sized about 20 nm) was synthesized under conditions of mechano-acoustic activation of an aqueous reaction mixture of ammonium hydrophosphate and calcium nitrate. It was ascertained that nanocrystalline paste was not cytotoxic although limitation of adhesion, spreading and growth of the cells on its surface was revealed. The results obtained point on the need of modification of hydrated nano-HA in the aims of increasing its biocompatibility and osteoplastic potential.

  17. Improving iodine homogeneity in NIST SRM 1548a Typical Diet by cryogenic grinding

    Czech Academy of Sciences Publication Activity Database

    Kučera, Jan; Kameník, Jan

    2015-01-01

    Roč. 20, č. 3 (2015), s. 189-194 ISSN 0949-1775 R&D Projects: GA ČR(CZ) GBP108/12/G108; GA MŠk LM2011019 Institutional support: RVO:61389005 Keywords : Iodine * reference material * NIST SRM 1548a * cryogenic grinding * homogeneity Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 1.010, year: 2015

  18. Calculation of radioactivity of β-nuclides by CIEMAT/NIST method

    International Nuclear Information System (INIS)

    Shu Fujun; Zhang Shengdong; Ding Youqian; Sun Hongqing; Tang Peijia

    2010-01-01

    CIEMAT/NIST method for calculating radioactivity of β-nuclides was introduced in this paper. The influences of KB value and quenching parameter on the radioactivity computation of 241 Pu, 106 Ru/ 106 Rh, 63 Ni, 151 Sm and 14 C were studied by CIEMAT/NIST method with 3 H tracing. It is shown that the effect of KB value can be ignored if it varies in a proper range; Except for 106 Ru/ 106 Rh, the discrepancy between prediction and actual activity is lower than 2% in low quenching extent. However, it increases with quenching extent, and the largest discrepancy soars to nearly 13%. In addition, the reason for bad agreement of 106 Ru/ 106 Rh between prediction and actual activity was discussed. Efficiency calibration curves of 79 Se, 93 Zr and 107 Pd were also computed by CIEMAT/NIST method, compared with approximate replacement method or fitting and interpolation method. It is shown that CIEMAT/NIST method is no more accurate and suitable than the other two techniques. (authors)

  19. Assessing Customer Satisfaction at the NIST Research Library: Essential Tool for Future Planning

    Science.gov (United States)

    Liu, Rosa; Allmang, Nancy

    2008-01-01

    This article describes a campus-wide customer satisfaction survey undertaken by the National Institute of Standards and Technology (NIST) Research Library in 2007. The methodology, survey instrument, data analysis, results, and actions taken in response to the survey are described. The outcome and recommendations will guide the library both…

  20. Eulerian–Lagrangian RANS Model Simulations of the NIST Turbulent Methanol Spray Flame

    NARCIS (Netherlands)

    Zhu, Shanglong; Roekaerts, Dirk; Pozarlik, Artur Krzysztof; van der Meer, Theodorus H.

    2015-01-01

    A methanol spray flame in a combustion chamber of the NIST was simulated using an Eulerian–Lagrangian RANS model. Experimental data and previous numerical investigations by other researchers on this flame were analyzed to develop methods for more comprehensive model validation. The inlet boundary

  1. Hg0 and HgCl2 Reference Gas Standards: ?NIST Traceability ...

    Science.gov (United States)

    EPA and NIST have collaborated to establish the necessary procedures for establishing the required NIST traceability of commercially-provided Hg0 and HgCl2 reference generators. This presentation will discuss the approach of a joint EPA/NIST study to accurately quantify the true concentrations of Hg0 and HgCl2 reference gases produced from high quality, NIST-traceable, commercial Hg0 and HgCl2 generators. This presentation will also discuss the availability of HCl and Hg0 compressed reference gas standards as a result of EPA's recently approved Alternative Methods 114 and 118. Gaseous elemental mercury (Hg0) and oxidized mercury (HgCl2) reference standards are integral to the use of mercury continuous emissions monitoring systems (Hg CEMS) for regulatory compliance emissions monitoring. However, a quantitative disparity of approximately 7-10% has been observed between commercial Hg0 and HgCl2 reference gases which currently limits the use of (HgCl2) reference gas standards. Resolving this disparity would enable the expanded use of (HgCl2) reference gas standards for regulatory compliance purposes.

  2. DELAMINATION AND XRF ANALYSIS OF NIST LEAD IN PAINT FILM STANDARDS

    Science.gov (United States)

    The objectives of this protocol were to remove the laminate coating from lead paint film standards acquired from NIST by means of surface heating. The average XRF value did not change after removal of the polymer coating suggesting that this protocol is satisfactory for renderin...

  3. Analysis of the NIST database towards the composition of vulnerabilities in attack scenarios

    NARCIS (Netherlands)

    Nunes Leal Franqueira, V.; van Keulen, Maurice

    The composition of vulnerabilities in attack scenarios has been traditionally performed based on detailed pre- and post-conditions. Although very precise, this approach is dependent on human analysis, is time consuming, and not at all scalable. We investigate the NIST National Vulnerability Database

  4. The (TNO) Speaker Diarization System for NIST Rich Transcription Evaluation 2005 for meeting data

    NARCIS (Netherlands)

    Leeuwen, D.A. van

    2005-01-01

    Abstract. The TNO speaker speaker diarization system is based on a standard BIC segmentation and clustering algorithm. Since for the NIST Rich Transcription speaker dizarization evaluation measure correct speech detection appears to be essential, we have developed a speech activity detector (SAD) as

  5. The TNO speaker diarization system for NIST RT05s meeting data

    NARCIS (Netherlands)

    Leeuwen, D.A. van

    2006-01-01

    The TNO speaker speaker diarization system is based on a standard BIC segmentation and clustering algorithm. Since for the NIST Rich Transcription speaker dizarization evaluation measure correct speech detection appears to be essential, we have developed a speech activity detector (SAD) as well.

  6. The AMI speaker diarization system for NIST RT06s meeting data

    NARCIS (Netherlands)

    Leeuwen, D.A. van; Huijbregts, Marijn

    2006-01-01

    We describe the systems submitted to the NIST RT06s evaluation for the Speech Activity Detection (SAD) and Speaker Diarization (SPKR) tasks. For speech activity detection, a new analysis methodology is presented that generalizes the Detection Erorr Tradeoff analysis commonly used in speaker

  7. The AMI speaker diarization system for NIST RT06s meeting data

    NARCIS (Netherlands)

    van Leeuwen, David A.; Huijbregts, M.A.H.

    2007-01-01

    We describe the systems submitted to the NIST RT06s evaluation for the Speech Activity Detection (SAD) and Speaker Diarization (SPKR) tasks. For speech activity detection, a new analysis methodology is presented that generalizes the Detection Erorr Tradeoff analysis commonly used in speaker detection

  8. 76 FR 27305 - Proposed Information Collection; Comment Request; the NIST Summer Institute for Middle School...

    Science.gov (United States)

    2011-05-11

    ...) programs designed to support middle school science teachers to participate in hands-on workshops, lectures... Gaithersburg, Maryland. The workshops provide teachers with instructional information and ideas to use in their teaching, and emphasize the measurement science done at NIST. The Program provides a world-class...

  9. Resorting the NIST undulator using simulated annealing for field error reduction

    International Nuclear Information System (INIS)

    Denbeaux, Greg; Johnson, Lewis E.; Madey, John M.J.

    2000-01-01

    We have used a simulated annealing algorithm to sort the samarium cobalt blocks and vanadium permendur poles in the hybrid NIST undulator to optimize the spectrum of the emitted light. While simulated annealing has proven highly effective in sorting of the SmCo blocks in pure REC undulators, the reliance on magnetically 'soft' poles operating near saturation to concentrate the flux in hybrid undulators introduces a pair of additional variables - the permeability and saturation induction of the poles - which limit the utility of the assumption of superposition on which most simulated annealing codes rely. Detailed magnetic measurements clearly demonstrated the failure of the superposition principle due to random variations in the permeability in the 'unsorted' NIST undulator. To deal with the issue, we measured both the magnetization of the REC blocks and the permeability of the NIST's integrated vanadium permendur poles, and implemented a sorting criteria which minimized the pole-to-pole variations in permeability to satisfy the criteria for realization of superposition on a nearest-neighbor basis. Though still imperfect, the computed spectrum of the radiation from the re-sorted and annealed NIST undulator is significantly superior to that of the original, unsorted device

  10. Ice sheets as a significant source of highly reactive nanoparticulate iron to the oceans.

    Science.gov (United States)

    Hawkings, Jon R; Wadham, Jemma L; Tranter, Martyn; Raiswell, Rob; Benning, Liane G; Statham, Peter J; Tedstone, Andrew; Nienow, Peter; Lee, Katherine; Telling, Jon

    2014-05-21

    The Greenland and Antarctic Ice Sheets cover ~ 10% of global land surface, but are rarely considered as active components of the global iron cycle. The ocean waters around both ice sheets harbour highly productive coastal ecosystems, many of which are iron limited. Measurements of iron concentrations in subglacial runoff from a large Greenland Ice Sheet catchment reveal the potential for globally significant export of labile iron fractions to the near-coastal euphotic zone. We estimate that the flux of bioavailable iron associated with glacial runoff is 0.40-2.54 Tg per year in Greenland and 0.06-0.17 Tg per year in Antarctica. Iron fluxes are dominated by a highly reactive and potentially bioavailable nanoparticulate suspended sediment fraction, similar to that identified in Antarctic icebergs. Estimates of labile iron fluxes in meltwater are comparable with aeolian dust fluxes to the oceans surrounding Greenland and Antarctica, and are similarly expected to increase in a warming climate with enhanced melting.

  11. Development and characterization of nanoparticulate formulation of a water soluble prodrug of dexamethasone by HIP complexation.

    Science.gov (United States)

    Gaudana, Ripal; Parenky, Ashwin; Vaishya, Ravi; Samanta, Swapan K; Mitra, Ashim K

    2011-01-01

    The objective of this study was to develop and characterize a nanoparticulate-based sustained release formulation of a water soluble dipeptide prodrug of dexamethasone, valine-valine-dexamethasone (VVD). Being hydrophilic in nature, it readily leaches out in the external aqueous medium and hence partitions poorly into the polymeric matrix resulting in minimal entrapment in nanoparticles. Hence, hydrophobic ion pairing (HIP) complexation of the prodrug was employed with dextran sulphate as a complexing polymer. A novel, solid in oil in water emulsion method was employed to encapsulate the prodrug in HIP complex form in poly(lactic-co-glycolic acid) matrix. Nanoparticles were characterized with respect to size, zeta potential, crystallinity of entrapped drug and surface morphology. A significant enhancement in the entrapment of the prodrug in nanoparticles was achieved. Finally, a simple yet novel method was developed which can also be applicable to encapsulate other charged hydrophilic molecules, such as peptides and proteins.

  12. Tungsten carbide-cobalt as a nanoparticulate reference positive control in in vitro genotoxicity assays.

    Science.gov (United States)

    Moche, Hélène; Chevalier, Dany; Barois, Nicolas; Lorge, Elisabeth; Claude, Nancy; Nesslany, Fabrice

    2014-01-01

    With the increasing human exposure to nanoparticles (NP), the evaluation of their genotoxic potential is of significant importance. However, relevance for NP of the routinely used in vitro genotoxicity assays is often questioned, and a nanoparticulate reference positive control would therefore constitute an important step to a better testing of NP, ensuring that test systems are really appropriate. In this study, we investigated the possibility of using tungsten carbide-cobalt (WC-Co) NP as reference positive control in in vitro genotoxicity assays, including 2 regulatory assays, the mouse lymphoma assay and the micronucleus assay, and in the Comet assay, recommended for the toxicological evaluation of nanomedicines by the French Agency of Human Health Products (Afssaps). Through these assays, we were able to study different genetic endpoints in 2 cell types commonly used in regulatory genotoxicity assays: the L5178Y mouse lymphoma cell line and primary cultures of human lymphocytes. Our results showed that the use of WC-Co NP as positive control in in vitro genotoxicity assays was conceivable, but that different parameters have to be considered, such as cell type and treatment schedule. L5178Y mouse lymphoma cells did not provide satisfactory results in the 3 performed tests. However, human lymphocytes were more sensitive to genotoxic effects induced by WC-Co NP, particularly after a 24-h treatment in the in vitro micronucleus assay and after a 4-h treatment in the in vitro Comet assay. Under such conditions, WC-Co could be used as a nanoparticulate reference positive control in these assays.

  13. Study of biocompatible and biological materials

    CERN Document Server

    Pecheva, Emilia

    2017-01-01

    The book gives an overview on biomineralization, biological, biocompatible and biomimetic materials. It reveals the use of biomaterials alone or in composites, how their performance can be improved by tailoring their surface properties by external factors and how standard surface modification techniques can be applied in the area of biomaterials to beneficially influence their growth on surfaces.

  14. The Lectin Pathway of Complement and Biocompatibility

    DEFF Research Database (Denmark)

    Hein, Estrid; Garred, Peter

    2015-01-01

    In modern health technologies the use of biomaterials in the form of stents, haemodialysis tubes, artificial implants, bypass circuits etc. is rapidly expanding. The exposure of synthetic, foreign surfaces to the blood and tissue of the host, calls for strict biocompatibility in respect to contac...

  15. Hg0 and HgCl2 Reference Gas Standards: NIST Traceability and Comparability (And EPA ALT Methods for Hg and HCl )

    Science.gov (United States)

    EPA and NIST have collaborated to establish the necessary procedures for establishing the required NIST traceability of commercially-provided Hg0 and HgCl2 reference generators. This presentation will discuss the approach of a joint EPA/NIST study to accurately quantify the tru...

  16. Assessment of stability of trace elements in two natural matrix environmental standard reference materials. NIST-SRM 1547 Peach leaves and NIST-SRM 1566a Oyster Tissue

    International Nuclear Information System (INIS)

    Mackey, E.A.; Spatz, R.O.

    2009-01-01

    The NIST program for environmental Standard Reference Materials (SRM) includes materials covering a range of matrices, mass fraction values and analytes. For many SRMs, mass fraction data are accumulated, incidentally, over time, as these are used routinely for quality assurance purposes. Although these are not formal stability studies, data generated may be useful in assessing stability. To evaluate the potential for assessing material stability from incidental use of SRMs, results of neutron activation analysis performed from 1992 through 2008 were compiled for SRM 1547 Peach Leaves and SRM 1566a Oyster Tissue. Results indicate that incidental use of SRMs yields useful information on SRM stability. (author)

  17. Calibrating NIST SRM 683 as A New International Reference Standard for Zn Isotopes

    Science.gov (United States)

    Yang, Y.; Zhang, X.; Yu, H.; Huang, F.

    2017-12-01

    Zinc isotopes have been widely applied in the cosmochemical, geochemical, and environmental studies (Moynier et al. 2017). Obtaining precise Zn isotopic data for inter-laboratory comparison is a prerequisite to these applications. Currently, the JMC3-0749L is the primary reference standard for Zn isotopes (Albarède 2004), but it is not commercially available now. Thus, it is necessary to calibrate a new international primary reference standard for Zn isotopic analysis. Chen et al. (2016) showed that NIST SRM 683 (a pure Zn metal nugget of 140 grams) has a δ66ZnJMC of 0.12‰, which is falling within the range of natural Zn isotopic compositions, and it may a good candidate for the next generation of international reference standard (Chen et al. 2016). In order to further examine whether NIST SRM 683 has a homogeneous Zn isotopic composition, we measured more NIST SRM 683 by double-spike methods using MC-ICPMS (Conway et al. 2013). The metal nuggets of NIST SRM 683 were intensively sampled by micro-drilling. Zinc isotope analyses for two nuggets show that they have δ66Zn of 0.14 ± 0.02‰ (2SD, N = 32) and 0.13 ± 0.02‰ (2SD, N = 33), respectively. These values are similar to those of two Zn metal nuggets (0.11 ± 0.02‰ vs. 0.12 ± 0.02‰) reported previously by Chen et al. (2016). We fully dissolved one nugget, producing pure Zn solution with identical Zn isotopic composition with the drilling samples. All results strongly support that NIST SRM 683 is homogeneous in Zn isotopic compositions which could be an ideal candidate for the next reference for Zn isotopes. Tests on more metal nuggets will be performed in a few months for further confirming the Zn isotope compositions and homogeneity. Reference: Albarède et al., 2004. 'The stable isotope geochemistry of copper and zinc', Reviews in Mineralogy and Geochemistry, 55: 409-27. Chen et al., 2016. 'Zinc Isotopic Compositions of NIST SRM 683 and Whole-Rock Reference Materials', Geostandards and

  18. The NIST natural-matrix radionuclide standard reference material program for ocean studies

    International Nuclear Information System (INIS)

    Inn, K.G.W.; Zhichao Lin; Zhongyu Wu; MacMahon, C.; Filliben, J.J.; Krey, P.; Feiner, M.; Harvey, J.

    2001-01-01

    In 1997, the Low-level Working Group of the International Committee on Radionuclide Metrology met in Boston, MA (USA) to define the characteristics of a new set of environmental radioactivity reference materials. These reference materials were to provide the radiochemist with the same analytical challenges faced when assaying environmental samples. It was decided that radionuclide bearing natural materials should be collected from sites where there had been sufficient time for natural processes to redistribute the various chemically different species of the radionuclides. Over the succeeding years, the National Institute of Standards and Technology (NIST), in cooperation with other highly experienced laboratories, certified and issued a number of these as low-level radioactivity Standard Reference Materials (SRMs) for fission and activation product and actinide concentrations. The experience of certifying these SRMs has given NIST the opportunity to compare radioanalytical methods and learn of their limitations. NIST convened an international workshop in 1994 to define the natural-matrix radionuclide SRM needs for ocean studies. The highest priorities proposed at the workshop were for sediment, shellfish, seaweed, fish flesh and water matrix SRMs certified for mBq per sample concentrations of 90 Sr, 137 Cs and 239 Pu + 240 Pu. The most recent low-level environmental radionuclide SRM issued by NIST, Ocean Sediment (SRM 4357) has certified and uncertified values for the following 22 radionuclides: 40 K, 90 Sr, 129 I, 137 Cs, 155 Eu, 210 Pb, 210 Po, 212 Pb, 214 Bi, 226 Ra, 228 Ra, 228 Th, 230 Th, 232 Th, 234 U, 235 U, 237 Np, 238 U, 238 Pu, 239 Pu + 240 Pu, and 241 Am. The uncertainties for a number of the certified radionuclides are non-symmetrical and relatively large because of the non-normal distribution of reported values. NIST is continuing its efforts to provide the ocean studies community with additional natural matrix radionuclide SRMs. The freeze

  19. Submicron and Nanoparticulate Matter Removal by HEPA-Rated Media Filters and Packed Beds of Granular Materials

    Science.gov (United States)

    Perry, J. L.; Agui, J. H.; Vijayakimar, R

    2016-01-01

    Contaminants generated aboard crewed spacecraft by diverse sources consist of both gaseous chemical contaminants and particulate matter. Both HEPA media filters and packed beds of granular material, such as activated carbon, which are both commonly employed for cabin atmosphere purification purposes have efficacy for removing nanoparticulate contaminants from the cabin atmosphere. The phenomena associated with particulate matter removal by HEPA media filters and packed beds of granular material are reviewed relative to their efficacy for removing fine (less than 2.5 micrometers) and ultrafine (less than 0.01 micrometers) sized particulate matter. Considerations are discussed for using these methods in an appropriate configuration to provide the most effective performance for a broad range of particle sizes including nanoparticulates.

  20. Room temperature ferromagnetism in Eu-doped ZnO nanoparticulate powders prepared by combustion reaction method

    International Nuclear Information System (INIS)

    Franco, A.; Pessoni, H.V.S.; Soares, M.P.

    2014-01-01

    Nanoparticulate powders of Eu-doped ZnO with 1.0, 1.5, 2.0 and 3.0 at% Eu were synthesized by combustion reaction method using zinc nitrate, europium nitrate and urea as fuel without subsequent heat treatments. X-ray diffraction patterns (XRD) of all samples showed broad peaks consistent with the ZnO wurtzite structure. The absence of extra reflections in the diffraction patterns ensures the phase purity, except for x=0.03 that exhibits small reflection corresponding to Eu 2 O 3 phase. The average crystallite size determined from the most prominent (1 0 1) peak of the diffraction using Scherrer's equation was in good agreement with those determined by transmission electron microscopy (TEM); being ∼26 nm. The magnetic properties measurements were performed using a vibrating sample magnetometer (VSM) in magnetic fields up to 2.0 kOe at room temperature. The hysteresis loops, typical of magnetic behaviors, indicating that the presence of an ordered magnetic structure can exist in the Eu-doped ZnO wurtzite structure at room temperature. The room temperature ferromagnetism behavior increases with the Eu 3+ doping concentration. All samples exhibited the same Curie temperature (T C ) around ∼726 K, except for x=0.01; T C ∼643 K. High resolution transmission electron microscopy (HRTEM) images revealed defects/strain in the lattice and grain boundaries of Eu-doped ZnO nanoparticulate powders. The origin of room temperature ferromagnetism in Eu-doped ZnO nanoparticulate powders was discussed in terms of these defects, which increase with the Eu 3+ doping concentration. - Highlights: • Room-temperature ferromagnetism. • Structural and magnetic properties of nanoparticulate powders of Zn 1−x Eu x O. • Combustion reaction method

  1. Toxoplasmose : une nouvelle approche vaccinale à base de nanoparticules d’amidon donne des résultats prometteurs

    OpenAIRE

    Le Rouzic, Jacques

    2015-01-01

    Pour lutter contre la toxoplasmose chez les ovins, des chercheurs de l’INRA, de l’Université de Tours et de la Faculté de Médecine de Lille ont développé une nouvelle approche vaccinale, utilisant des nanoparticules d’amidon et une administration par voie muqueuse. Cette approche ouvre de nouvelles perspectives vers des vaccins plus sûrs et plus efficaces.

  2. Update of NIST half-life results corrected for ionization chamber source-holder instability

    International Nuclear Information System (INIS)

    Unterweger, M.P.; Fitzgerald, R.

    2014-01-01

    As reported at the ICRM 2011, it was discovered that the source holder used for calibrations in the NIST 4πγ ionization chamber (IC) was not stable. This has affected a large number of half-life measurement results previously reported and used in compilations of nuclear data. Corrections have been made on all of the half-life data based on the assumption that the changes to the ionization chamber response were gradual. The corrections are energy dependent and therefore radionuclide specific. This presentation will review our results and present the recommended changes in half-life values and/or uncertainties. - Highlights: • The NIST half-life data is corrected for sample positioning variations and refitted. • These results are reported and increased errors in the reported values are given. • Longer lived radionuclides are discussed

  3. Experimental efforts at NIST towards one-electron ions in circular Rydberg states

    International Nuclear Information System (INIS)

    Tan, Joseph N; Guise, Nicholas D; Brewer, Samuel M

    2011-01-01

    Experimental effort is underway at NIST to enable tests of theory with one-electron ions synthesized in circular Rydberg states from captured bare nuclei. Problematic effects that limit the accuracy of predicted energy levels for low-lying states are vanishingly small for high-angular-momentum (high-L) states; in particular, the nuclear size correction for high-L states is completely negligible for any foreseeable improvement of measurement precision. As an initial step towards realizing such states, highly charged ions are extracted from the NIST electron beam ion trap (EBIT) and steered through the electrodes of a Penning trap. The goal is to capture bare nuclei in the Penning trap for experiments to make one-electron atoms in circular Rydberg states with dipole (E1) transitions in the optical domain accessible to a frequency comb.

  4. NIST ThermoData Engine: Extension to Solvent Design and Propagation of Uncertainties for Process Simulation

    DEFF Research Database (Denmark)

    Diky, Vladimir; Chirico, Robert D.; Muzny, Chris

    ThermoData Engine (TDE, NIST Standard Reference Databases 103a and 103b) is the first product that implements the concept of Dynamic Data Evaluation in the fields of thermophysics and thermochemistry, which includes maintaining the comprehensive and up-to-date database of experimentally measured ...... uncertainties, curve deviations, and inadequacies of the models. Uncertainty analysis shows relative contributions to the total uncertainty from each component and pair of components....

  5. Test of sup 3 He-based neutron polarizers at NIST

    CERN Document Server

    Jones, G L; Thompson, A K; Chowdhuri, Z; Dewey, M S; Snow, W M; Wietfeldt, F E

    2000-01-01

    Neutron spin filters based on polarized sup 3 He are useful over a wide neutron energy range and have a large angular acceptance among other advantages. Two optical pumping methods, spin-exchange and metastability-exchange, can produce the volume of highly polarized sup 3 He gas required for such neutron spin filters. We report a test of polarizers based on each of these two methods on a new cold, monochromatic neutron beam line at the NIST Center for Neutron Research.

  6. Liquid Scintillation counting Standardization of 22 NaCl by the CIEMAT/NIST method

    International Nuclear Information System (INIS)

    Rodriguez Barquero, L.; Grau Carles, A.; Grau Malonda, A.

    1995-09-01

    We describe a procedure for preparing a stable solution of ''22 NaCl for liquid scintillation counting and its counting stability and spectral evolution in Insta-Gel''R is studied. The solution has been standardised in terms of activity concentration by the CIEMAT/NIST method with discrepancies between experimental and computed efficiencies lower than 0.4/% and an overall uncertainty of 0.35%

  7. Liquid Scintillation Counting Standardization of 22NaCl by te CIEMAT/NIST method

    International Nuclear Information System (INIS)

    Rodriguez Barquero, L.; Grau Carles, A.; Grau Malonda, A.

    1995-01-01

    We describe a procedure for preparing a stable solution of ''22NaCl for liquid scintillation counting and its counting stability and spectral evolution in Insta-Gel''R is studied. The solution has been standardised in terms of activity concentration by the CIEMAT/NIST method with discrepancies between experimental and computed efficiencies lower than 0.4 % and an overall uncertainty of 0.35 %. (Author) 4 refs

  8. Mediatorless bioelectrocatalysis of dioxygen reduction at indium-doped tin oxide (ITO) and ITO nanoparticulate film electrodes

    International Nuclear Information System (INIS)

    Rozniecka, Ewa; Jonsson-Niedziolka, Martin; Sobczak, Janusz W.; Opallo, Marcin

    2011-01-01

    Highlights: → We introduced ITO nanoparticulate films for enzyme immobilization. → The material promotes mediatorless bioelectrocatalysis towards dioxygen reduction. → The electrocatalytical current increase with the thickness of nanoparticulate film. → There is no difference in electrocatalytic current in the presence or absence of mediator. → The stability of the electrode can be improved by crosslinking of the enzyme with bovine serum albumin and glutaraldehyde. - Abstract: Bilirubin oxidase was immobilised on ITO electrodes: bare or covered by ITO nanoparticulate film. The latter material was obtained by immersion and withdrawal of the substrate into ITO nanoparticles suspension. Formation of a protein deposit was confirmed by scanning electron microscopy, atomic force microscopy and X-ray photoelectron spectroscopy. The electrode surface is covered by a protein film in the form of globular aggregates and it exhibits mediatorless electrocatalytic activity towards dioxygen reduction to water at pH 4.8. Modification of the electrode with ITO particles increases its catalytic activity about ten times up to 110 μA cm -2 seen for electrodes prepared by twelve immersion and withdrawal steps into ITO nanoparticle suspension. The catalytic activity is almost unaffected by addition of mediator to solution. The stability of the electrodes is increased by cross-linking of the enzyme with bovine serum albumin and glutaraldehyde. This electrode was applied as biocathode in a zinc-dioxygen battery operating in 0.1 mol dm -3 McIlvaine buffer (pH 4.8).

  9. Mediatorless bioelectrocatalysis of dioxygen reduction at indium-doped tin oxide (ITO) and ITO nanoparticulate film electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Rozniecka, Ewa; Jonsson-Niedziolka, Martin; Sobczak, Janusz W. [Institute of Physical Chemistry, Polish Academy of Sciences, ul. Kasprzaka 44/52, 01-224 Warszawa (Poland); Opallo, Marcin, E-mail: mopallo@ichf.edu.pl [Institute of Physical Chemistry, Polish Academy of Sciences, ul. Kasprzaka 44/52, 01-224 Warszawa (Poland)

    2011-10-01

    Highlights: > We introduced ITO nanoparticulate films for enzyme immobilization. > The material promotes mediatorless bioelectrocatalysis towards dioxygen reduction. > The electrocatalytical current increase with the thickness of nanoparticulate film. > There is no difference in electrocatalytic current in the presence or absence of mediator. > The stability of the electrode can be improved by crosslinking of the enzyme with bovine serum albumin and glutaraldehyde. - Abstract: Bilirubin oxidase was immobilised on ITO electrodes: bare or covered by ITO nanoparticulate film. The latter material was obtained by immersion and withdrawal of the substrate into ITO nanoparticles suspension. Formation of a protein deposit was confirmed by scanning electron microscopy, atomic force microscopy and X-ray photoelectron spectroscopy. The electrode surface is covered by a protein film in the form of globular aggregates and it exhibits mediatorless electrocatalytic activity towards dioxygen reduction to water at pH 4.8. Modification of the electrode with ITO particles increases its catalytic activity about ten times up to 110 {mu}A cm{sup -2} seen for electrodes prepared by twelve immersion and withdrawal steps into ITO nanoparticle suspension. The catalytic activity is almost unaffected by addition of mediator to solution. The stability of the electrodes is increased by cross-linking of the enzyme with bovine serum albumin and glutaraldehyde. This electrode was applied as biocathode in a zinc-dioxygen battery operating in 0.1 mol dm{sup -3} McIlvaine buffer (pH 4.8).

  10. Biocompatibility of photopolymers for additive manufacturing

    Directory of Open Access Journals (Sweden)

    Leonhardt Stefan

    2016-09-01

    Full Text Available To establish photopolymers for the production of class II or class III medical products by additive manufacturing it is essential to know which components of photopolymeric systems, consisting of monomers, photoinitiators and additives, are the determining factors on their biocompatible properties. In this study the leachable substances of a cured photopolymeric system were eluted and identified by HPLC-MS detection. In addition the cured photopolymer was testes for cytotoxicity and genotoxicity according to DIN EN ISO 10993 for long time applications. The results showed that uncured residual monomers are the determining factor on the biocompatible properties of the photopolymeric system. Strategies to reduce these residual monomers in the cured photopolymer are presented.

  11. Ion implantation and bio-compatibility

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Yoshiaki; Kusakabe, Masahiro [Sony Corp., Tokyo (Japan). Corporate Research Labs.; Iwaki, Masaya

    1992-07-01

    Surface modification of polymers by ion implantation has been carried out to control surface properties such as conductivity, wettability, blood and tissue compatibility. Ion implantation into silicone rubber, polystyrene and segmented polyurethane was performed at 150 keV with doses ranging from 1 x 10[sup 15] to 3 x 10[sup 17] ions/cm[sup 2] to improve bio-compatibility. The platelet accumulation on ion implanted silicone rubber decreased and non-thrombogenicity of ion implanted specimens were improved. The ion implanted polystyrene and segmented polyurethane have been found to exhibit remarkably higher adhesion and spreading of endothelial cells compared to the non-implanted case. It is concluded that ion implantation into polymers is effective in controlling their bio-compatibility. (author).

  12. Electroactive biocompatible materials for nerve cell stimulation

    International Nuclear Information System (INIS)

    Yang, Mei; Liang, Youlong; Gui, Qingyuan; Liu, Yong; Chen, Jun

    2015-01-01

    In the past decades, great efforts have been developed for neurobiologists and neurologists to restore nervous system functions. Recently much attention has been paid to electrical stimulation (ES) of the nervous system as a potential way to repair it. Various conductive biocompatible materials with good electrical conductivity, biocompatibility, and long-term ES or electrical stability have been developed as the substrates for ES. In this review, we summarized different types of materials developed in the purpose for ES of nervous system, including conducting polymers, carbon nanomaterials and composites from conducting polymer/carbon nanomaterials. The present review will give our perspective on the future research directions for further investigation on development of ES particularly on the nerve system. (topical review)

  13. Covariance methodology applied to 35S disintegration rate measurements by the CIEMAT/NIST method

    International Nuclear Information System (INIS)

    Koskinas, M.F.; Nascimento, T.S.; Yamazaki, I.M.; Dias, M.S.

    2014-01-01

    The Nuclear Metrology Laboratory (LMN) at IPEN is carrying out measurements in a LSC (Liquid Scintillation Counting system), applying the CIEMAT/NIST method. In this context 35 S is an important radionuclide for medical applications and it is difficult to be standardized by other primary methods due to low beta ray energy. The CIEMAT/NIST is a standard technique used by most metrology laboratories in order to improve accuracy and speed up beta emitter standardization. The focus of the present work was to apply the covariance methodology for determining the overall uncertainty in the 35 S disintegration rate. All partial uncertainties involved in the measurements were considered, taking into account all possible correlations between each pair of them. - Highlights: ► 35 S disintegration rate measured in Liquid Scintillator system using CIEMAT/NIST method. ► Covariance methodology applied to the overall uncertainty in the 35 S disintegration rate. ► Monte Carlo simulation was applied to determine 35 S activity in the 4πβ(PC)-γ coincidence system

  14. NIST Accelerator Facilities And Programs In Support Of Industrial Radiation Research

    International Nuclear Information System (INIS)

    Bateman, F.B.; Desrosiers, M.F.; Hudson, L.T.; Coursey, B.M.; Bergstrom, P.M. Jr.; Seltzer, S.M.

    2003-01-01

    NIST's Ionizing Radiation Division maintains and operates three electron accelerators used in a number of applications including waste treatment and sterilization, radiation hardness testing, detector calibrations and materials modification studies. These facilities serve a large number of governmental, academic and industrial users as well as an active intramural research program. They include a 500 kV cascaded-rectifier accelerator, a 2.5 MV electron Van de Graaff accelerator and a 7 to 32 MeV electron linac, supplying beams ranging in energy from a few keV up to 32 MeV. In response to the recent anthrax incident, NIST along with the US Postal Service and the Armed Forces Radiobiology Research Institute (AFRRI) are working to develop protocols and testing procedures for the USPS mail sanitization program. NIST facilities and personnel are being employed in a series of quality-assurance measurements for both electron- and photon-beam sanitization. These include computational modeling, dose verification and VOC (volatile organic compounds) testing using megavoltage electron and photon sources

  15. Characterization of LANDSAT Panels Using the NIST BRDF Scale from 1100 nm to 2500 nm

    Science.gov (United States)

    Markham, Brian; Tsai, Benjamin K.; Allen, David W.; Cooksey, Catherine; Yoon, Howard; Hanssen, Leonard; Zeng, Jinan; Fulton, Linda; Biggar, Stuart; Markham, Brian

    2010-01-01

    Many earth observing sensors depend on white diffuse reflectance standards to derive scales of radiance traceable to the St Despite the large number of Earth observing sensors that operate in the reflective solar region of the spectrum, there has been no direct method to provide NIST traceable BRDF measurements out to 2500 rim. Recent developments in detector technology have allowed the NIST reflectance measurement facility to expand the operating range to cover the 250 nm to 2500 nm range. The facility has been modified with and additional detector using a cooled extended range indium gallium arsenide (Extended InGaAs) detector. Measurements were made for two PTFE white diffuse reflectance standards over the 1100 nm to 2500 nm region at a 0' incident and 45' observation angle. These two panels will be used to support the OLI calibration activities. An independent means of verification was established using a NIST radiance transfer facility based on spectral irradiance, radiance standards and a diffuse reflectance plaque. An analysis on the results and associated uncertainties will be discussed.

  16. Chemically resistant, biocompatible and microstructured surface protection

    International Nuclear Information System (INIS)

    Hoffmann, W.; Pham, M.T.; Hueller, J.

    1984-01-01

    Subject of the invention are chemicallly resistant, biocompatible, and microstructured surface protective coatings of electronic elements and sensors including chemical sensors. Such coatings consist of a radiation-modified organic substance made of a microlithographic material. Modification can be achieved by irradiation with ions, atoms or molecules having an energy between 1 KeV and 1 MeV and a flux between 10 13 and 10 18 particles per cm 2

  17. Biocompatibility of photopolymers for additive manufacturing

    OpenAIRE

    Leonhardt Stefan; Klare Martin; Scheer Maurice; Fischer Theresa; Cordes Burghard; Eblenkamp Markus

    2016-01-01

    To establish photopolymers for the production of class II or class III medical products by additive manufacturing it is essential to know which components of photopolymeric systems, consisting of monomers, photoinitiators and additives, are the determining factors on their biocompatible properties. In this study the leachable substances of a cured photopolymeric system were eluted and identified by HPLC-MS detection. In addition the cured photopolymer was testes for cytotoxicity and genotoxic...

  18. Biocompatible 3D printed magnetic micro needles

    KAUST Repository

    Kavaldzhiev, Mincho

    2017-01-30

    Biocompatible functional materials play a significant role in drug delivery, tissue engineering and single cell analysis. We utilized 3D printing to produce high aspect ratio polymer resist microneedles on a silicon substrate and functionalized them by iron coating. Two-photon polymerization lithography has been used for printing cylindrical, pyramidal, and conical needles from a drop cast IP-DIP resist. Experiments with cells were conducted with cylindrical microneedles with 630 ± 15 nm in diameter with an aspect ratio of 1:10 and pitch of 12 μm. The needles have been arranged in square shaped arrays with various dimensions. The iron coating of the needles was 120 ± 15 nm thick and has isotropic magnetic behavior. The chemical composition and oxidation state were determined using energy electron loss spectroscopy, revealing a mixture of iron and Fe3O4 clusters. A biocompatibility assessment was performed through fluorescence microscopy using calcein/EthD-1 live/dead assay. The results show a very high biocompatibility of the iron coated needle arrays. This study provides a strategy to obtain electromagnetically functional microneedles that benefit from the flexibility in terms of geometry and shape of 3D printing. Potential applications are in areas like tissue engineering, single cell analysis or drug delivery.

  19. Biocompatible 3D printed magnetic micro needles

    KAUST Repository

    Kavaldzhiev, Mincho; Perez, Jose E.; Ivanov, Yurii; Bertoncini, Andrea; Liberale, Carlo; Kosel, Jü rgen

    2017-01-01

    Biocompatible functional materials play a significant role in drug delivery, tissue engineering and single cell analysis. We utilized 3D printing to produce high aspect ratio polymer resist microneedles on a silicon substrate and functionalized them by iron coating. Two-photon polymerization lithography has been used for printing cylindrical, pyramidal, and conical needles from a drop cast IP-DIP resist. Experiments with cells were conducted with cylindrical microneedles with 630 ± 15 nm in diameter with an aspect ratio of 1:10 and pitch of 12 μm. The needles have been arranged in square shaped arrays with various dimensions. The iron coating of the needles was 120 ± 15 nm thick and has isotropic magnetic behavior. The chemical composition and oxidation state were determined using energy electron loss spectroscopy, revealing a mixture of iron and Fe3O4 clusters. A biocompatibility assessment was performed through fluorescence microscopy using calcein/EthD-1 live/dead assay. The results show a very high biocompatibility of the iron coated needle arrays. This study provides a strategy to obtain electromagnetically functional microneedles that benefit from the flexibility in terms of geometry and shape of 3D printing. Potential applications are in areas like tissue engineering, single cell analysis or drug delivery.

  20. CPTC and NIST-sponsored Yeast Reference Material Now Publicly Available | Office of Cancer Clinical Proteomics Research

    Science.gov (United States)

    The yeast protein extract (RM8323) developed by National Institute of Standards and Technology (NIST) under the auspices of NCI's CPTC initiative is currently available to the public at https://www-s.nist.gov/srmors/view_detail.cfm?srm=8323. The yeast proteome offers researchers a unique biological reference material. RM8323 is the most extensively characterized complex biological proteome and the only one associated with several large-scale studies to estimate protein abundance across a wide concentration range.

  1. Dynamique de nanobulles et nanoplasmas generes autour de nanoparticules plasmoniques irradiees par des impulsions ultracourtes

    Science.gov (United States)

    Dagallier, Adrien

    L'emergence des lasers a impulsion ultrabreves et des nanotechnologies a revolutionne notre perception et notre maniere d'interagir avec l'infiniment petit. Les gigantesques intensites generees par ces impulsions plus courtes que les temps de relaxation ou de diffusion du milieu irradie induisent de nombreux phenomenes non-lineaires, du doublement de frequence a l'ablation, dans des volumes de dimension caracteristique de l'ordre de la longueur d'onde du laser. En biologie et en medecine, ces phenomenes sont utilises a des fins d'imagerie multiphotonique ou pour detruire des tissus vivants. L'introduction de nanoparticules plasmoniques, qui concentrent le champ electromagnetique incident dans des regions de dimensions nanometriques, jusqu'a une fraction de la longueur d'onde, amplifie les phenomenes non-lineaires tout en offrant un controle beaucoup plus precis de la deposition d'energie, ouvrant la voie a la detection de molecules individuelles en solution et a la nanochirurgie. La nanochirurgie repose principalement sur la formation d'une bulle de vapeur a proximite d'une membrane cellulaire. Cette bulle de vapeur perce la membrane de maniere irreversible,entrainant la cellule a sa mort, ou la perturbe temporairement, ce qui permet d'envisager de faire penetrer dans la cellule des medicaments ou des brins d'ADN pour de la therapie genique. C'est principalement la taille de la bulle qui va decider de l'issue de l'irradiation laser. Il est donc necessaire de controler finement les parametres du laser et la geometrie de la nanoparticule afin d'atteindre l'objectif fixe. Le moyen le plus direct a l'heure actuelle de valider un ensemble de conditions experimentales est de realiser l'experience en laboratoire,ce qui est long et couteux. Les modeles de dynamique de bulle existants ne prennent pas en compte les parametres de l'irradiation et ajustent souvent leurs conditions initiales a partir de leurs mesures experimentales, ce qui limite la portee du modele au cas pour

  2. Surface modification of indium tin oxide for direct writing of silver nanoparticulate ink micropatterns

    International Nuclear Information System (INIS)

    Vunnam, Swathi; Ankireddy, Krishnamraju; Kellar, Jon; Cross, William

    2013-01-01

    Surface treatment techniques were deployed to alter the surface of indium tin oxide (ITO) samples to attain a favorable interface between printed nano-inks and ITO surface. Surface free energy components of treated ITO substrates were calculated for each treatment using the van Oss–Chaudhury–Good method. The surface treatments of ITO changed the Lifshitz–van der Waals and Lewis acid–base components, and contact angle hysteresis significantly. Among all the surface treatments, air plasma treated samples showed high polar in nature, whereas dodecyltrichlorosilane self-assembled monolayer treated sample showed the lowest. In addition to the polarity and homogeneity, the surface roughness of the ITO was studied with respect to the surface treatment. Silver nanoparticulate ink was printed on treated ITO surfaces using aerosol jet printing system. Printed silver nano-ink line width and morphology strongly depended on the surface treatment of the ITO, ink properties and printing parameters. - Highlights: ► Surface treatments on indium tin oxide (ITO) altered its surface free energy. ► Surface free energies were studied in terms of acid–base components. ► ITO surface morphology and roughness were changed with the surface treatment. ► Silver ink was printed on treated ITO samples using aerosol jet printing system. ► Line widths of printed patterns clearly depended on the surface free energy of ITO

  3. The role of nanoparticulate agglomerates in TiO{sub 2} photocatalysis: degradation of oxalic acid

    Energy Technology Data Exchange (ETDEWEB)

    Ivanova, Irina [Leibniz Universitaet Hannover, Institut fuer Technische Chemie (Germany); Mendive, Cecilia B., E-mail: cbmendive@mdp.edu.ar [Universidad Nacional de Mar del Plata, Facultad de Ciencias Exactas y Naturales, Departamento de Química (Argentina); Bahnemann, Detlef [Leibniz Universitaet Hannover, Institut fuer Technische Chemie (Germany)

    2016-07-15

    The simultaneous bimodal study of the photocatalytic oxalic acid degradation by aqueous TiO{sub 2} suspensions revealed that particular systems possess the capacity to protect a certain amount of oxalic acid from oxidation, thus hindering, to some extent, the photocatalytic reaction. While measurements of the oxalic acid concentration in the bulk liquid phase indicated full photocatalytic degradation; in situ pH-stat measurements allowed the quantification of the amount of oxalic acid remaining in the part of the nanoparticulate agglomerates where light could apparently not access. An explanation for this phenomenon takes into account the possibility of the formation of TiO{sub 2} agglomerates in which these molecules are hidden from the effect of the light, thus being protected from photocatalytic degradation. Studies of different TiO{sub 2} materials with different particle sizes allowed a deeper exploration of this phenomenon. In addition, because this property of encapsulating pollutant molecules by photocatalytic systems is found to be a reversible phenomenon, P25 appears to be more convenient and advantageous as compared to the use of large surface area photocatalysts.Graphical AbstractFig.: Deaggregation of TiO{sub 2} particle agglomerates upon UV illumination.

  4. Development of α - Al_2O_3:C films nanoparticulate for application in digital radiology

    International Nuclear Information System (INIS)

    Silva, Edna C.; Fontainha, Crissia C.; Ferraz, Wilmar B.; Faria, Luiz O.

    2011-01-01

    Phosphorescent ceramics are widely used in Ionizing radiation sensors. In nuclear applications, alpha-alumina doped with carbon (α-Al_2O_3: C) is most commonly used because of its excellent properties photoluminescent (OSL) and thermoluminescent (TL) in ionizing radiation detections. Another application of OSL and TL materials is the use in digital radiography. Recently, Computerized Radiography (CR) equipment, which use OSL materials, have been replacing the old X-ray devices. In this work we investigated the thermoluminescence of α-Al_2O_3 doped with different percentages of carbon, sintered in reducing atmospheres, in temperatures from 1300 to 1750 ° C. The results indicate that micro alumina doped with 0.5% of carbon and nano-alumina doped with 2% of carbon present TL signal of the order of 30 to 100 times the signal of the TLD-100, the most widely used TL dosimeter in the world. The results indicate that α-Al_2O_3: C nano-particulate has great potential for application in digital thermoluminescent radiography, because of its high TL response to radiation Ionization and the possibility of forming TL digital images with resolution increased by about 1000 times, depending on the size of the nanoparticles

  5. Effect of Electric Discharge on Properties of Nano-Particulate Catalyst for Plasma-Catalysis.

    Science.gov (United States)

    Lee, Chung Jun; Kim, Jip; Kim, Taegyu

    2016-02-01

    Heterogeneous catalytic processes have been used to produce hydrogen from hydrocarbons. However, high reforming temperature caused serious catalyst deteriorations and low energy efficiency. Recently, a plasma-catalyst hybrid process was used to reduce the reforming temperature and to improve the stability and durability of reforming catalysts. Effect of electric discharges on properties of nanoparticulate catalysts for plasma-catalysis was investigated in the present study. Catalyst-bed porosity was varied by packing catalyst beads with the different size in a reactor. Discharge power and onset voltage of the plasma were measured as the catalyst-bed porosity was varied. The effect of discharge voltage, frequency and voltage waveforms such as the sine, pulse and square was investigated. We found that the optimal porosity of the catalyst-bed exists to maximize the electric discharge. At a low porosity, the electric discharge was unstable to be sustained because the space between catalysts got narrow nearly close to the sheath region. On the other hand, at a high porosity, the electric discharge became weak because the plasma was not sufficient to interact with the surface of catalysts. The discharge power increased as the discharge voltage and frequency increased. The square waveform was more efficient than the sine and pulse one. At a high porosity, however, the effect of the voltage waveform was not considerable because the space between catalysts was too large for plasma to interact with the surface of catalysts.

  6. Surface modification of indium tin oxide for direct writing of silver nanoparticulate ink micropatterns

    Energy Technology Data Exchange (ETDEWEB)

    Vunnam, Swathi, E-mail: swathi.vunnam@mines.sdsmt.edu [Nanoscience and Nanoengineering Department, South Dakota School of Mines and Technology, Rapid City, SD-57701 (United States); Ankireddy, Krishnamraju; Kellar, Jon; Cross, William [Department of Materials and Metallurgical Engineering, South Dakota School of Mines and Technology, Rapid City, SD-57701 (United States)

    2013-03-01

    Surface treatment techniques were deployed to alter the surface of indium tin oxide (ITO) samples to attain a favorable interface between printed nano-inks and ITO surface. Surface free energy components of treated ITO substrates were calculated for each treatment using the van Oss–Chaudhury–Good method. The surface treatments of ITO changed the Lifshitz–van der Waals and Lewis acid–base components, and contact angle hysteresis significantly. Among all the surface treatments, air plasma treated samples showed high polar in nature, whereas dodecyltrichlorosilane self-assembled monolayer treated sample showed the lowest. In addition to the polarity and homogeneity, the surface roughness of the ITO was studied with respect to the surface treatment. Silver nanoparticulate ink was printed on treated ITO surfaces using aerosol jet printing system. Printed silver nano-ink line width and morphology strongly depended on the surface treatment of the ITO, ink properties and printing parameters. - Highlights: ► Surface treatments on indium tin oxide (ITO) altered its surface free energy. ► Surface free energies were studied in terms of acid–base components. ► ITO surface morphology and roughness were changed with the surface treatment. ► Silver ink was printed on treated ITO samples using aerosol jet printing system. ► Line widths of printed patterns clearly depended on the surface free energy of ITO.

  7. Single-Nanoparticle Photoelectrochemistry at a Nanoparticulate TiO2 -Filmed Ultramicroelectrode.

    Science.gov (United States)

    Peng, Yue-Yi; Ma, Hui; Ma, Wei; Long, Yi-Tao; Tian, He

    2018-03-26

    An ultrasensitive photoelectrochemical method for achieving real-time detection of single nanoparticle collision events is presented. Using a micrometer-thick nanoparticulate TiO 2 -filmed Au ultra-microelectrode (TiO 2 @Au UME), a sub-millisecond photocurrent transient was observed for an individual N719-tagged TiO 2 (N719@TiO 2 ) nanoparticle and is due to the instantaneous collision process. Owing to a trap-limited electron diffusion process as the rate-limiting step, a random three-dimensional diffusion model was developed to simulate electron transport dynamics in TiO 2 film. The combination of theoretical simulation and high-resolution photocurrent measurement allow electron-transfer information of a single N719@TiO 2 nanoparticle to be quantified at single-molecule accuracy and the electron diffusivity and the electron-collection efficiency of TiO 2 @Au UME to be estimated. This method provides a test for studies of photoinduced electron transfer at the single-nanoparticle level. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Subacute oral toxicity investigation of nanoparticulate and ionic silver in rats

    DEFF Research Database (Denmark)

    Hadrup, Niels; Löschner, Katrin; Bergström, Anders

    2012-01-01

    Subacute toxicity of 14 nm nanoparticulate silver (Ag-NP) stabilised with polyvinylpyrrolidone and ionic silver in the form of silver acetate (Ag-acetate) was investigated in four-week-old Wistar rats. Animals received orally by gavage the following: vehicle control (10 $, 6 #); Ag-NP at doses: 2.......25 (8 $), 4.5 (8 $) or 9 mg/kg bw/day (10 $, 6 #); or Ag-acetate 9 mg silver/kg bw/day (8 $) for 28 days. Clinical, haematolological and biochemical parameters, organ weights, macro- and microscopic pathological changes were investigated. Caecal bacterial phyla and their silver resistance genes were...... quantified. For the Ag-NP groups, no toxicological effects were recorded. For Ag-acetate, lower body weight gain (day 4–7, 11–14, 14–16, P\\0.05; overall, day 1–28, P\\0.01), increased plasma alkaline phosphatase (P\\0.05), decreased plasma urea (P\\0.05) and lower absolute (P\\0.01) and relative (P\\0.05) thymus...

  9. Nanoparticulate Tubular Immunostimulating Complexes: Novel Formulation of Effective Adjuvants and Antigen Delivery Systems

    Directory of Open Access Journals (Sweden)

    Nina Sanina

    2017-01-01

    Full Text Available New generation vaccines, based on isolated antigens, are safer than traditional ones, comprising the whole pathogen. However, major part of purified antigens has weak immunogenicity. Therefore, elaboration of new adjuvants, more effective and safe, is an urgent problem of vaccinology. Tubular immunostimulating complexes (TI-complexes are a new type of nanoparticulate antigen delivery systems with adjuvant activity. TI-complexes consist of cholesterol and compounds isolated from marine hydrobionts: cucumarioside A2-2 (CDA from Cucumaria japonica and monogalactosyldiacylglycerol (MGDG from marine algae or seagrass. These components were selected due to immunomodulatory and other biological activities. Glycolipid MGDG from marine macrophytes comprises a high level of polyunsaturated fatty acids (PUFAs, which demonstrate immunomodulatory properties. CDA is a well-characterized individual compound capable of forming stable complex with cholesterol. Such complexes do not possess hemolytic activity. Ultralow doses of cucumariosides stimulate cell as well as humoral immunity. Therefore, TI-complexes comprising biologically active components turned out to be more effective than the strongest adjuvants: immunostimulating complexes (ISCOMs and complete Freund’s adjuvant. In the present review, we discuss results published in series of our articles on elaboration, qualitative and quantitative composition, ultrastructure, and immunostimulating activity of TI-complexes. The review allows immersion in the history of creating TI-complexes.

  10. Selective electrochemical detection of dopamine in a microfluidic channel on carbon nanoparticulate electrodes.

    Science.gov (United States)

    Rozniecka, Ewa; Jonsson-Niedziolka, Martin; Celebanska, Anna; Niedziolka-Jonsson, Joanna; Opallo, Marcin

    2014-06-07

    There is a continuous need for the construction of detection systems in microfluidic devices. In particular, electrochemical detection allows the separation of signals from the analyte and interfering substances in the potential domain. Here, a simple microfluidic device for the sensitive and selective determination of dopamine in the presence of interfering substances was constructed and tested. It employs a carbon nanoparticulate electrode allowing the separation of voltammetric signals of dopamine and common interfering substances (ascorbic acid and acetaminophen) both in quiescent conditions and in flow due to the electrocatalytic effect. These voltammograms were also successfully simulated. The limit of detection of dopamine detected by square wave voltammetry in 1 mM solutions of interfering substances in phosphate buffered saline is about 100 nM. In human serum a clear voltammetric signal could be seen for a 200 nM solution, sufficient to detect dopamine in the cerebral fluid. Flow injection analysis allows a decrease in the limit of detection down to 3.5 nM.

  11. Process and Formulation Strategies to Improve Adhesion of Nanoparticulate Coatings on Stainless Steel

    Directory of Open Access Journals (Sweden)

    Jutta Hesselbach

    2018-04-01

    Full Text Available The use of ceramic nanoparticles in coatings can significantly improve their mechanical properties such as hardness, adhesion to substrate, and scratch and abrasion resistance. A successful enhancement of these properties depends strongly on the coating formulation used, and the subsequent structure formed during coating. The aim of the present work was to enhance the adhesion between nanoparticulate coatings and stainless-steel substrates. A covalent particle structure was formed and better mechanical properties were achieved by modifying alumina nanoparticles, as well as substrates, with 3-aminopropyltriethoxysilane and by using a formulation consisting of solvent, modified particles, and bisphenol-A-diglycidylether as cross-linking additive. In addition to the adhesion force needed to remove the coating from the substrate, the type of failure (adhesive or cohesive was characterized to gain a deeper understanding of the structure formation and to identify interdependencies between process, formulation, and coating structure properties. The modification process and the formulation composition were varied to achieve a detailed conception of the relevant correlations. By relating the results to other structural properties, such as the theoretical porosity and thickness, it was possible to understand the formation of the coating structure in more detail.

  12. A novel nanoparticulate system for sustained delivery of acid-labile lansoprazole.

    Science.gov (United States)

    Alai, Milind Sadashiv; Lin, Wen Jen

    2013-11-01

    In the present study, an effort was made to develop the Eudragit RS100 based nanoparticulate system for sustained delivery of an acid-labile drug, lansoprazole (LPZ). LPZ-loaded Eudragit RS100 nanoparticles (ERSNPs) were prepared by oil-in-water emulsion-solvent evaporation method. The effects of various formulation variables such as polymer concentration, drug amount and solvent composition on physicochemical performance of nanoparticles and in vitro drug release were investigated. All nanoparticles were spherical with particle size 198.9 ± 8.6-376.9 ± 5.6 nm and zeta potential +35.1 ± 1.7 to +40.2 ± 0.8 mV. The yield of nanoparticles was unaffected by change of these three variables. However, the drug loading and encapsulation efficiency were affected by polymer concentration and drug amount. On the other hand, the particle size of nanoparticles was significantly affected by polymer concentration and internal phase composition due to influence of droplet size during emulsification process. All nanoparticles prolonged drug release for 24h which was dominated by a combination of drug diffusion and polymer chain relaxation. The fastest and the slowest release rates were observed in C2-1002-10/0 and C8-4001-10/0, respectively, based on the release rate constant (k). Thus, the developed nanoparticles possessed a potential as a nano-carrier to sustain drug delivery for treatment of acid related disorders. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Synthesis and characterization of nanoparticulate MnS within the pores of mesoporous silica

    International Nuclear Information System (INIS)

    Barry, Louse; Copley, Mark; Holmes, Justin D.; Otway, David J.; Kazakova, Olga; Morris, Michael A.

    2007-01-01

    Mesoporous silica was loaded with nanoparticulate MnS via a simple post-synthesis treatment. The mesoporous material that still contained surfactant was passivated to prevent MnS formation at the surface. The surfactant was extracted and a novel manganese ethylxanthate was used to impregnate the pore network. This precursor thermally decomposes to yield MnS particles that are smaller or equal to the pore size. The particles exhibit all three common polymorphs. The passivation treatment is most effective at lower loadings because at the highest loadings (SiO 2 :MnS molar ratio of 6:1) large particles (>50 nm) form at the exterior of the mesoporous particles. The integrity of the mesoporous network is maintained through the preparation and high order is maintained. The MnS particles exhibit unexpected ferromagnetism at low temperatures. Strong luminescence of these samples is observed and this suggests that they may have a range of important application areas. - Graphical abstract: A novel manganese ethylxanthate precursor was used to impregnate the pore network of mesoporous silica and was decomposed to yield MnS particles smaller or equal to the pore size. The particles exhibit all three common polymorphs, demonstrate unexpected ferromagnetism at low temperatures and display a strong luminescence

  14. Nanoparticulate materials and regulatory policy in Europe: An analysis of stakeholder perspectives

    International Nuclear Information System (INIS)

    Helland, Aasgeir; Kastenholz, Hans; Thidell, Aake; Arnfalk, Peter; Deppert, Knut

    2006-01-01

    The novel properties of nanoparticulate materials (NPM) and the rapid development of NPM based products have raised many unanswered questions and concerns by different stakeholders over its consequences for the environment and human health. These concerns have led to an increasing discussion in both the US and Europe about possible regulatory policies for NPM. In this article a comparative study of stakeholders' perceptions on regulatory policy issues with NPM in Europe is presented. It was found that industry wants to regulate this area if the scientific evidence demonstrates that NPM are harmful, but also that the regulatory bodies do not find it necessary at this point of time to regulate until scientific evidence demonstrates that NPM are harmful. This research therefore shows that there will most likely not be any regulatory interventions until there is an established and convincing scientific knowledge base demonstrating that NPM can be hazardous. It is furthermore discussed in this article the different roles and responsibilities of the stakeholders in financing the research required to establish the necessary level of fundamental scientific evidence. It was also found that the activity of the regulatory bodies on this issue differ between the European countries

  15. Biocompatibility of poly allylamine synthesized by plasma

    International Nuclear Information System (INIS)

    Colin, E.; Enriquez, M.A.; Olayo, M.G.; Cruz, G.J.; Morales, J.; Olayo, R.

    2007-01-01

    A study of the electric and hydrophilic properties of poly allylamine (PAI) synthesized by plasma whose structure contains N-H, C-H, C-O and O-H bonds is presented, that promote the biocompatibility with the human body. To study the PAI hydrolytic affinity, solutions of salt concentration similar to those of the human body were used. The results indicate that the solutions modify the charge balance in the surfaces reducing the hydrophobicity in the poly allylamine whose contact angle oscillates among 10 and 16 degrees and the liquid-solid surface tension between 4 and 8 dina/cm. (Author)

  16. Synthesis of biocompatible surfaces by nanotechnology methods

    OpenAIRE

    Alekhin , A. ,; Boleiko , G. ,; Gudkova , S. ,; Markeev , A. ,; Sigarev , A. ,; Toknova , V. ,; Kirilenko , A. ,; Lapshin , R. ,; Kozlov , E. ,; Tetyukhin , D. ,

    2010-01-01

    International audience; The modification of the surface of low-density polyethylene (LDPE) and polyurethane (PU) by means of the pulsed ion-plasma deposition of nanostructural carbon coatings at 20–60°C has been studied. The effect of this low-temperature treatment on the biocompatibility of the LDPE and PU has been assessed. Optimum technological parameters for the formation of mosaic carbon nanostructures with a thickness of 0.3–15 nm and a cluster lateral size of 10–500 nm are determined. ...

  17. Update of NIST half-life results corrected for ionization chamber source-holder instability.

    Science.gov (United States)

    Unterweger, M P; Fitzgerald, R

    2014-05-01

    As reported at the ICRM 2011, it was discovered that the source holder used for calibrations in the NIST 4πγ ionization chamber (IC) was not stable. This has affected a large number of half-life measurement results previously reported and used in compilations of nuclear data. Corrections have been made on all of the half-life data based on the assumption that the changes to the ionization chamber response were gradual. The corrections are energy dependent and therefore radionuclide specific. This presentation will review our results and present the recommended changes in half-life values and/or uncertainties. © 2013 Published by Elsevier Ltd.

  18. Advancing Smart Grid Interoperability and Implementing NIST's Interoperability Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    Basso,T.; DeBlasio, R.

    2010-04-01

    The IEEE American National Standards project P2030TM addressing smart grid interoperability and the IEEE 1547 series of standards addressing distributed resources interconnection with the grid have been identified in priority action plans in the Report to NIST on the Smart Grid Interoperability Standards Roadmap. This paper presents the status of the IEEE P2030 development, the IEEE 1547 series of standards publications and drafts, and provides insight on systems integration and grid infrastructure. The P2030 and 1547 series of standards are sponsored by IEEE Standards Coordinating Committee 21.

  19. Concurso NIST. Análisis del concurso (2007-2012)

    OpenAIRE

    Martín Sierra, Marían

    2014-01-01

    El objetivo de este proyecto es dar a conocer el concurso SHA-3, concurso que ha transcurrido durante los últimos años y que ha promovido el Instituto Nacional de Estándares y Tecnología, también conocido como NIST, con el objetivo de encontrar el nuevo algoritmo criptográfico de función resumen SHA-3 que se utilizará de estándar de aquí en adelante. Con este fin se ha realizado un estudio sobre criptografía en general y sobre algunos de los algoritmos criptográficos de func...

  20. Reflective Optical Chopper Used in NIST High-Power Laser Measurements

    Directory of Open Access Journals (Sweden)

    Cromer, Chris

    2008-11-01

    Full Text Available For the past ten years, NIST has used high-reflectivity, optical choppers as beamsplitters and attenuators when calibrating the absolute responsivity and response linearity of detectors used with high-power CW lasers. The chopper-based technique has several advantages over the use of wedge-shaped transparent materials (usually crystals often used as beam splitters in this type of measurement system. We describe the design, operation and calibration of these choppers. A comparison between choppers and transparent wedge beampslitters is also discussed.

  1. Antimicrobial and biocompatible properties of nanomaterials.

    Science.gov (United States)

    Ul-Islam, M; Shehzad, A; Khan, S; Khattak, W A; Ullah, M W; Park, J K

    2014-01-01

    The rapid development of drug-resistant characteristics in pathogenic viral, bacterial, and fungal species and the consequent spread of infectious diseases are currently receiving serious attention. Indeed, there is a pressing demand to explore novel materials and develop new strategies that can address these issues of serious concern. Nanomaterials are currently proving to be the most capable therapeutic agents to cope with such hazards. The exceptional physiochemical properties and impressive antimicrobial capabilities of nanoparticles have provoked their utilization in biomedical fields. Nanomaterials of both organic and inorganic nature have shown the capabilities of disrupting microbial cells through different mechanisms. Along with the direct influence on the microbial cell membrane, DNA and proteins, these nanomaterials produce reactive oxygen species (ROS) that damage cell components and viruses. Currently, a serious hazard associated with these antimicrobial nanomaterials is their toxicity to human and animal cells. Extensive studies have reported the dose, time, and cell-dependent toxicology of various nanomaterials, and some have shown excellent biocompatible properties. Nevertheless, there is still debate regarding the use of nanomaterials for medical applications. Therefore, in this review, the antimicrobial activities of various nanomaterials with details of their acting mechanisms were compiled. The relative toxic and biocompatible behavior of nanomaterials emphasized in this study provides information pertaining to their practical applicability in medical fields.

  2. Biocompatible electrospun polymer blends for biomedical applications.

    Science.gov (United States)

    Munj, Hrishikesh Ramesh; Nelson, M Tyler; Karandikar, Prathamesh Sadanand; Lannutti, John Joseph; Tomasko, David Lane

    2014-10-01

    Blends of natural and synthetic polymers have received considerable attention as biomaterials due to the potential to optimize both mechanical and bioactive properties. Electrospinning of biocompatible polymers is an efficient method producing biomimetic topographies suited to various applications. In the ultimate application, electrospun scaffolds must also incorporate drug/protein delivery for effective cell growth and tissue repair. This study explored the suitability of a ternary Polymethylmethacrylate-Polycaprolactone-gelatin blend in the preparation of electrospun scaffolds for biomedical applications. Tuning the blend composition allows control over scaffold mechanical properties and degradation rate. Significant improvements were observed in the mechanical properties of the blend compared with the individual components. In order to study drug delivery potential, triblends were impregnated with the model compound Rhodamine-B using sub/supercritical CO₂ infusion under benign conditions. Results show significantly distinct release profiles of the impregnated dye from the triblends. Specific factors such as porosity, degradation rate, stress relaxation, dye-polymer interactions, play key roles in impregnation and release. Each polymer component of the triblends shows distinct behavior during impregnation and release process. This affects the aforementioned factors and the release profiles of the dye. Careful control over blend composition and infusion conditions creates the flexibility needed to produce biocompatible electrospun scaffolds for a variety of biomedical applications. © 2014 Wiley Periodicals, Inc.

  3. Biocompatibility of Soft-Templated Mesoporous Carbons

    Energy Technology Data Exchange (ETDEWEB)

    Gencoglu, Maria F. [Michigan Technological Univ., Houghton, MI (United States). Dept. of Chemical Engineering; Spurri, Amanda [Widener Univ., Chester, PA (United States). Dept. of Chemical Engineering; Franko, Mitchell [Widener Univ., Chester, PA (United States). Dept. of Chemical Engineering; Chen, Jihua [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Science (CNMS); Hensley, Dale K. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Science (CNMS); Heldt, Caryn L. [Michigan Technological Univ., Houghton, MI (United States). Dept. of Chemical Engineering; Saha, Dipendu [Widener Univ., Chester, PA (United States). Dept. of Chemical Engineering

    2014-08-21

    We report that soft-templated mesoporous carbon is morphologically a non-nano type of carbon. It is a relatively newer variety of biomaterial, which has already demonstrated its successful role in drug delivery applications. To investigate the toxicity and biocompatibility, we introduced three types of mesoporous carbons with varying synthesis conditions and pore textural properties. We compared the Brunauer–Emmett–Teller (BET) surface area and pore width and performed cytotoxicity experiments with HeLa cells, cell viability studies with fibroblast cells and hemocomapatibility studies. Cytotoxicity tests reveal that two of the carbons are not cytotoxic, with cell survival over 90%. The mesoporous carbon with the highest surface area showed slight toxicity (~70% cell survival) at the highest carbon concentration of 500 μg/mL. Fibroblast cell viability assays suggested high and constant viability of over 98% after 3 days with no apparent relation with materials property and good visible cell-carbon compatibility. No hemolysis (<1%) was confirmed for all the carbon materials. Protein adsorption experiments with bovine serum albumin (BSA) and fibrinogen revealed a lower protein binding capacity of 0.2–0.6 mg/m2 and 2–4 mg/m2 for BSA and fibrinogen, respectively, with lower binding associated with an increase in surface area. The results of this study confirm the biocompatibility of soft-templated mesoporous carbons.

  4. Biocompatible Peritoneal Dialysis Fluids: Clinical Outcomes

    Directory of Open Access Journals (Sweden)

    Yeoungjee Cho

    2012-01-01

    Full Text Available Peritoneal dialysis (PD is a preferred home dialysis modality and has a number of added advantages including improved initial patient survival and cost effectiveness over haemodialysis. Despite these benefits, uptake of PD remains relatively low, especially in developed countries. Wider implementation of PD is compromised by higher technique failure from infections (e.g., PD peritonitis and ultrafiltration failure. These are inevitable consequences of peritoneal injury, which is thought to result primarily from continuous exposure to PD fluids that are characterised by their “unphysiologic” composition. In order to overcome these barriers, a number of more biocompatible PD fluids, with neutral pH, low glucose degradation product content, and bicarbonate buffer have been manufactured over the past two decades. Several preclinical studies have demonstrated their benefit in terms of improvement in host cell defence, peritoneal membrane integrity, and cytokine profile. This paper aims to review randomised controlled trials assessing the use of biocompatible PD fluids and their effect on clinical outcomes.

  5. Biocompatibilite des complexes proteines-nanoparticules: Perspectives sur la reponse cellulaire aux nanoparticules d'oxyde de fer fonctionnalisees, revetues d'un corona

    Science.gov (United States)

    Mbeh, Doris Antoinette

    This thesis presents the study of the biocompatibility of nanoparticles (NPs) of iron oxide (Fe3O4) candidates for targeted delivery of therapeutic molecules. We especially devoted to study the impact of the surface composition of the NPs and protein adsorption at the surface thereof on the cellular responses. To do this, we first examined the toxic potential of magnetite with various functionalizations: one that is prepared with (1) a monolayer of oleic acid (Fe3O4@OA), which is then converted to (2) an envelope silane containing an amine (Fe3O4@NH 2), (3) a coating of silica (Fe3O4@SiO 2), and (4) an envelope containing a silane coating on amine silica (Fe3O4@SiO2@NH 2). The presence of these groups at the surface of the NPs was confirmed by XPS and transmission electron microscopy (TEM) analysis. We were able to prove that the toxic potential of NPs is dose-dependent and we determine the biocompatible doses for each surface functionalization. Microscopic observation of the morphology of the cells exposed to NPs, and their proinflammatory and mitochondrial activity showed that, in addition to surface features, the cell culture medium also affect the cytotoxicity of the NPs. These results clearly show that in order to use our NPs as pharmaceutical nanocarrier safely, we need to control the surface functionalization and the dynamic interaction between the NP and the physiological environment in which it is suspended. To understand the interaction between the NP and the culture medium, as a first step, we used three different culture media namely: DMEM, F-12K and DMEM / F12 (see Appendix A) and uncoated magnetite (Fe3O 4). These media were enriched with either fetal bovine serum (see Appendix B) or with a synthetic serum (SFMS). We have proved the presence of a protein corona on NPs suspended in culture media enriched with bovine serum. We also demonstrated that the formation of the corona depends on the composition of the culture medium and that the cytotoxic

  6. Analysis of the structure, particle morphology and photoluminescent properties of ZnS:Mn2+ nanoparticulate phosphors

    CSIR Research Space (South Africa)

    Raleaooa, PV

    2018-01-01

    Full Text Available stream_source_info Raleaooa_20160_2018.pdf.txt stream_content_type text/plain stream_size 1286 Content-Encoding UTF-8 stream_name Raleaooa_20160_2018.pdf.txt Content-Type text/plain; charset=UTF-8 Optik - International... journal for Light and Electron Optics Analysis of the structure, particle morphology and photoluminescent properties of ZnS:Mn2+ nanoparticulate phosphors Raleaooa PV Roodt A Mhlongo GH Motaung DE Ntwaeaborwa OM ABSTRACT: The structure...

  7. Interactions in heated milk model systems with different ratios of nanoparticulated whey protein at varying pH

    DEFF Research Database (Denmark)

    Liu, Guanchen; Jæger, Tanja C.; Nielsen, Søren B.

    2017-01-01

    To better understand the interactions between nanoparticulated whey protein (NWP) and other milk proteins during acidification, milk model systems were diluted to 0.5% protein concentration and adjusted to pH of 6.0-4.5 following homogenisation and heat treatment. The diluted systems with different...... concentrations of NWP (0-0.5%) were characterised in terms of particle size, viscosity, surface charge and hydrophobicity. When pH was adjusted to 5.5, aggregation was initiated at levels of NWP (0.25-0.5%) leading to significant increase in particle size and viscosity. Pure NWP (0.5%) showed largest initial...

  8. Nanoparticulate-induced toxicity and related mechanism in vitro and in vivo

    International Nuclear Information System (INIS)

    Kim, Hye Won; Ahn, Eun-Kyung; Jee, Bo Keun; Yoon, Hyoung-Kyu; Lee, Kweon Haeng; Lim, Young

    2009-01-01

    In urban areas, the quantity of exhaust particles from vehicle emissions is tremendous and has been regarded as the main contributor to particulate matter (PM) pollution. Recently, the nano-sized PM on public health has begun to raise the attention. The increased toxicity of nanoparticulate can be largely explained by their small size, high airborne concentration, extensive surface area and high content of organic carbon and transition metals. We have attempted to address the toxicity of nano sized-particlulate matter by comparing various particulates including micro-SiO 2 (mSiO 2 ), nano-SiO 2 (nSiO 2 ), micro-TiO 2 (mTiO 2 ), and nano-TiO 2 (nTiO 2 ) in RAW264.7 cells and in vivo. The cell viability of all particulates decreased dose dependently. 24-h incubation with nSiO2 demonstrated apoptosis in RAW264.7 using Annexin-V binding immunofluorescent microscopy, but not in any other particulates. In vivo, cytotoxicity of nanosized was higher than micro-sized particulates. As higher the concentration of particulates, the more pulmonary injury and neutrophilic infiltration were observed in nano-sized than micro-sized particulates, respectively. Particularly, 5.0 mg/kg of mTiO 2 never shows any increase of neutrophile even with high cellularity of total cells and macrophages. From these results, we suggested that particulate-induced respiratory toxicity be influenced by component, size, and dose of particulates including the characteristic nature of the target cells in vitro and in vivo.

  9. Phase I dose escalation safety study of nanoparticulate paclitaxel (CTI 52010) in normal dogs.

    Science.gov (United States)

    Axiak, Sandra M; Selting, Kim A; Decedue, Charles J; Henry, Carolyn J; Tate, Deborah; Howell, Jahna; Bilof, K James; Kim, Dae Y

    2011-01-01

    Paclitaxel is highly effective in the treatment of many cancers in humans, but cannot be routinely used in dogs as currently formulated due to the exquisite sensitivity of this species to surfactant-solubilizing agents. CTI 52010 is a formulation of nanoparticulate paclitaxel consisting of drug and normal saline. Our objectives were to determine the maximally tolerated dose, dose-limiting toxicities, and pharmacokinetics of CTI 52010 administered intravenously to normal dogs. Three normal adult hound dogs were evaluated by physical examination, complete blood count, chemistry profile, and urinalysis. Dogs were treated with staggered escalating dosages of CTI 52010 with a 28-day washout. All dogs were treated with a starting dosage of 40 mg/m(2), and subsequent dosages were escalated at 50% (dog 1), 100% (dog 2), or 200% (dog 3) with each cycle, to a maximum of 240 mg/m(2). Dogs were monitored by daily physical assessment and weekly laboratory evaluation. Standard criteria were used to grade adverse events. Plasma was collected at regular intervals to determine pharmacokinetics. Dogs were euthanized humanely, and necropsy was performed one week after the last treatment. The dose-limiting toxicity was grade 4 neutropenia and the maximum tolerated dosage was 120 mg/m(2). Grade 1-2 gastrointestinal toxicity was noted at higher dosages. Upon post mortem evaluation, no evidence of organ (liver, kidney, spleen) toxicity was noted. CTI 52010 was well tolerated when administered intravenously to normal dogs. A starting dosage for a Phase I/II trial in tumor-bearing dogs is 80 mg/m(2).

  10. The anti-tumor efficacy of nanoparticulate form of ICD-85 versus free form

    Directory of Open Access Journals (Sweden)

    Zare Mirakabadi, A.

    2015-04-01

    Full Text Available Biodegradable polymeric nanoparticles (NPs have been intensively studied as a possible way to enhance anti-tumor efficacy while reducing side effects. ICD-85, derived from the venom of two separate species of venomous animals, has been shown to exhibit anti-cancer activity. In this report polymer based sodium alginate nanoparticles of ICD-85 was used to enhance its therapeutic effects and reduce its side effects. The inhibitory effect was evaluated by MTT assay. The necrotic effect was assessed using LDH assay. The induction of apoptosis was analyzed by caspase-8 colorimetric assay kit. Cytotoxicity assay in HeLa cells demonstrated enhanced efficacy of ICD-85 loaded NPs compared to the free ICD-85. The IC50 values obtained in HeLa cells after 48 h, for free ICD-85 and ICD-85 loaded NPs were 26±2.9μg ml-1 and 18±2.5μg ml-1, respectively. While it was observed that free ICD-85 exhibits mild cytotoxicity towards normal MRC-5 cells (IC50>60μg ml-1, ICD-85 loaded NPs was found to have higher efficacy in anti-proliferative activity on HeLa cells in vitro without any significant cytotoxic effect on normal MRC-5 cells. The apoptosis-induction mechanism by both form of ICD-85 on HeLa cells was found to be through activation of caspase-8 with approximately 2 fold greater of ICD-85 loaded NPs as compared to free ICD-85. Our work reveals that although ICD-85 in free form is relatively selective to inhibit the growth of cancer cells via apoptosis as compared to normal cells, but nanoparticulate form increases its selectivity towards cancer cells.

  11. Nanoparticulate STING agonists are potent lymph node-targeted vaccine adjuvants.

    Science.gov (United States)

    Hanson, Melissa C; Crespo, Monica P; Abraham, Wuhbet; Moynihan, Kelly D; Szeto, Gregory L; Chen, Stephanie H; Melo, Mariane B; Mueller, Stefanie; Irvine, Darrell J

    2015-06-01

    Cyclic dinucleotides (CDNs) are agonists of stimulator of IFN genes (STING) and have potential as vaccine adjuvants. However, cyclic di-GMP (cdGMP) injected s.c. shows minimal uptake into lymphatics/draining lymph nodes (dLNs) and instead is rapidly distributed to the bloodstream, leading to systemic inflammation. Here, we encapsulated cdGMP within PEGylated lipid nanoparticles (NP-cdGMP) to redirect this adjuvant to dLNs. Compared with unformulated CDNs, encapsulation blocked systemic dissemination and markedly enhanced dLN accumulation in murine models. Delivery of NP-cdGMP increased CD8+ T cell responses primed by peptide vaccines and enhanced therapeutic antitumor immunity. A combination of a poorly immunogenic liposomal HIV gp41 peptide antigen and NP-cdGMP robustly induced type I IFN in dLNs, induced a greater expansion of vaccine-specific CD4+ T cells, and greatly increased germinal center B cell differentiation in dLNs compared with a combination of liposomal HIV gp41 and soluble CDN. Further, NP-cdGMP promoted durable antibody titers that were substantially higher than those promoted by the well-studied TLR agonist monophosphoryl lipid A and comparable to a much larger dose of unformulated cdGMP, without the systemic toxicity of the latter. These results demonstrate that nanoparticulate delivery safely targets CDNs to the dLNs and enhances the efficacy of this adjuvant. Moreover, this approach can be broadly applied to other small-molecule immunomodulators of interest for vaccines and immunotherapy.

  12. Progress in Primary Acoustic Thermometry at NIST: 273 K to 505 K

    Science.gov (United States)

    Strouse, G. F.; Defibaugh, D. R.; Moldover, M. R.; Ripple, D. C.

    2003-09-01

    The NIST Acoustic Thermometer determines the thermodynamic temperature by measuring the speed of sound of argon in a spherical cavity. We obtained the thermodynamic temperature of three fixed points on the International Temperature Scale of 1990: the melting point of gallium [T(Ga) = 302.9146 K] and the freezing points of indium [T(In) = 429.7485 K] and tin [T(Sn) = 505.078 K]. The deviations of thermodynamic temperature from the ITS-90 defined temperatures are T - T90 = (4.7 ± 0.6) mK at T(Ga) , T - T90 = (8.8 ± 1.5) mK at T(In) , and T - T90 = (10.7 ± 3.0) mK at T(Sn) , where the uncertainties are for a coverage factor of k = 1. Our results at T(In) and T(Sn) reduce the uncertainty of T - T90 by a factor of two in this range. Both T - T90 at T(Ga) and the measured thermal expansion of the resonator between the triple point of water and T(Ga) are in excellent agreement with the 1992 determination at NIST. The dominant uncertainties in the present data come from frequency-dependent and time-dependent crosstalk between the electroacoustic transducers. We plan to reduce these uncertainties and extend this work to 800 K.

  13. Establishment of a sensor testbed at NIST for plant productivity monitoring

    Science.gov (United States)

    Allen, D. W.; Hutyra, L.; Reinmann, A.; Trlica, A.; Marrs, J.; Jones, T.; Whetstone, J. R.; Logan, B.; Reblin, J.

    2017-12-01

    Accurate assessments of biogenic carbon fluxes is challenging. Correlating optical signatures to plant activity allows for monitoring large regions. New methods, including solar-induced fluorescence (SIF), promise to provide more timely and accurate estimate of plant activity, but we are still developing a full understanding of the mechanistic leakage between plant assimilation of carbon and SIF. We have initiated a testbed to facilitate the evaluation of sensors and methods for remote monitoring of plant activity at the NIST headquarters. The test bed utilizes a forested area of mature trees in a mixed urban environment. A 1 hectare plot within the 26 hectare forest has been instrumented for ecophysiological measurements with an edge (100 m long) that is persistently monitored with multimodal optical sensors (SIF spectrometers, hyperspectral imagers, thermal infrared imaging, and lidar). This biological testbed has the advantage of direct access to the national scales maintained by NIST of measurements related to both the physical and optical measurements of interest. We offer a description of the test site, the sensors, and preliminary results from the first season of observations for ecological, physiological, and remote sensing based estimates of ecosystem productivity.

  14. Speaker diarization system on the 2007 NIST rich transcription meeting recognition evaluation

    Science.gov (United States)

    Sun, Hanwu; Nwe, Tin Lay; Koh, Eugene Chin Wei; Bin, Ma; Li, Haizhou

    2007-09-01

    This paper presents a speaker diarization system developed at the Institute for Infocomm Research (I2R) for NIST Rich Transcription 2007 (RT-07) evaluation task. We describe in details our primary approaches for the speaker diarization on the Multiple Distant Microphones (MDM) conditions in conference room scenario. Our proposed system consists of six modules: 1). Least-mean squared (NLMS) adaptive filter for the speaker direction estimate via Time Difference of Arrival (TDOA), 2). An initial speaker clustering via two-stage TDOA histogram distribution quantization approach, 3). Multiple microphone speaker data alignment via GCC-PHAT Time Delay Estimate (TDE) among all the distant microphone channel signals, 4). A speaker clustering algorithm based on GMM modeling approach, 5). Non-speech removal via speech/non-speech verification mechanism and, 6). Silence removal via "Double-Layer Windowing"(DLW) method. We achieves error rate of 31.02% on the 2006 Spring (RT-06s) MDM evaluation task and a competitive overall error rate of 15.32% for the NIST Rich Transcription 2007 (RT-07) MDM evaluation task.

  15. BIOCOMPATIBILITY OF AZITROMICYN ON CONNECTIVE TISSUE

    Directory of Open Access Journals (Sweden)

    Shafira Kurnia

    2011-01-01

    Full Text Available Background: periodontal disease is commonly caused by bacteria, especially actinomyces actinomycetemcomitans and porphyromonas gingivalis have an abilty enter epithelial cells objectives: to investigate systemic azithromycin as the antibiotic of choice for periodontal disease based on biocomptability test in connective tissue. Material and Methods: BHK 21 cell lines were exposed to 0.025%, 0.050%, 0.075%, and 0.1% azithromycin solution for seven times. Samples were put in incubator for 24 hours. Result: Azitrromycin 0.050%-0.1% showed significant difference between life cells percentage and control, however, azithromycin 0.025% revealed insignificant difference with control. Conclusion: 0.025% azithromycin was considered biocompatible with connective tissue and 0.050% was not.

  16. High quality aluminium doped zinc oxide target synthesis from nanoparticulate powder and characterisation of sputtered thin films

    Energy Technology Data Exchange (ETDEWEB)

    Isherwood, P.J.M., E-mail: P.J.M.Isherwood@lboro.ac.uk [Centre for Renewable Energy Systems Technology, Loughborough University, Loughborough, Leicestershire LE11 3TU (United Kingdom); Neves, N. [Innovnano, S. A., Rua Coimbra Inovação Parque, IParque Lote 13, 3040-570 Antanhol, Coimbra (Portugal); Bowers, J.W. [Centre for Renewable Energy Systems Technology, Loughborough University, Loughborough, Leicestershire LE11 3TU (United Kingdom); Newbatt, P. [Innovnano, S. A., Rua Coimbra Inovação Parque, IParque Lote 13, 3040-570 Antanhol, Coimbra (Portugal); Walls, J.M. [Centre for Renewable Energy Systems Technology, Loughborough University, Loughborough, Leicestershire LE11 3TU (United Kingdom)

    2014-09-01

    Nanoparticulate aluminium-doped zinc oxide powder was synthesised through detonation and subsequent rapid quenching of metallic precursors. This technique allows for precise compositional control and rapid nanoparticle production. The resulting powder was used to form sputter targets, which were used to deposit thin films by radio frequency sputtering. These films show excellent sheet resistance and transmission values for a wide range of deposition temperatures. Crystal structure analysis shows that crystals in the target have a random orientation, whereas the crystals in the films grow perpendicular to the substrate surface and propagate preferentially along the (002) axis. Higher temperature deposition reduces crystal quality with a corresponding decrease in refractive index and an increase in sheet resistance. Films deposited between room temperature and 300 °C were found to have sheet resistances equivalent to or better than indium tin oxide films for a given average transmission value. - Highlights: • Nanoparticulate AZO powder was used to produce sputter targets. • The powder synthesis technique allows for precise compositional control. • Sputtered films show excellent optical, electronic and structural properties. • High temperature films show reduced electrical and structural quality. • For a given transmission, films show equivalent sheet resistances to ITO.

  17. Highly transparent and conductive Al-doped ZnO nanoparticulate thin films using direct write processing

    International Nuclear Information System (INIS)

    Vunnam, S; Ankireddy, K; Kellar, J; Cross, W

    2014-01-01

    Solution processable Al-doped ZnO (AZO) thin films are attractive candidates for low cost transparent electrodes. We demonstrate here an optimized nanoparticulate ink for the fabrication of AZO thin films using scalable, low-cost direct write processing (ultrasonic spray deposition) in air at atmospheric pressure. The thin films were made via thermal processing of as-deposited films. AZO films deposited using the proposed nanoparticulate ink with further reducing in vacuum and rf plasma of forming gas exhibited optical transparency greater than 95% across the visible spectrum, and electrical resistivity of 0.5 Ω cm and it drops down to 7.0 × 10 −2 Ω cm after illuminating with UV light, which is comparable to commercially available tin doped indium oxide colloidal coatings. Various structural analyses were performed to investigate the influence of ink chemistry, deposition parameters, and annealing temperatures on the structural, optical, and electrical characteristics of the spray deposited AZO thin films. Optical micrographs confirmed the presence of surface defects and cracks using the AZO NPs ink without any additives. After adding N-(2-Aminoethyl)-3-aminopropylmethyldimethoxy silane to the ink, AZO films exhibited an optical transparency which was virtually identical to that of the plain glass substrate. (papers)

  18. Performance of the advanced cold neutron source and optics upgrades at the NIST Research Reactor

    International Nuclear Information System (INIS)

    Williams, R.E.; Kopetka, P.; Cook, J.C.; Rowe, J.M.

    2003-01-01

    On March 6, 2002, the NIST Research Reactor resumed routine operation following a six-month shutdown for facility upgrades and maintenance. During the shutdown, the original liquid hydrogen cold neutron source was removed, and the advanced cold source was installed. An optical filter was installed on one of the neutron guides, NG-3, replacing a crystal filter for the 30-m SANS instrument and the guide used between the chopper disks of the Disk Chopper time-of-flight Spectrometer (DCS) installed on NG-4 has been recently reconfigured. Additional improvements in the neutron optics of various instruments are being made. The advanced liquid hydrogen cold neutron source performs as expected, nearly doubling the flux available to most instruments. The measured gains range from about 1.4 at 2 A, to over a factor of two at 15 A. Also as expected, the heat load in the new source increased to 1200 watts, but the previously existing refrigerator has easily accommodated the increase. With intensity gains of a factor of two in the important long wavelength region of the spectrum, the advanced cold source significantly enhances the measurement capability of the cold neutron scattering instrumentation at NIST. The optical filter on NG-3 is also very successful; the 30-m SANS has an additional gain of two at 17 A. A system of refracting lenses and prisms near the SANS sample position has made possible measurements at low Q (0.0005 A -1 ) that were previously not feasible. The DCS has also seen additional intensity gain factors in excess of two for the majority of experiments and at short neutron wavelengths the gains exceed three. In addition, two new triple axis spectrometers will feature double-focusing monochromators in order to exploit the full size of the available thermal and cold neutron beam tubes. The success of the advanced cold source and enhanced neutron optics contributed to the recognition of the NIST Center for Neutron Research as 'the premiere neutron scattering

  19. Phase I dose escalation safety study of nanoparticulate paclitaxel (CTI 52010 in normal dogs

    Directory of Open Access Journals (Sweden)

    Axiak SM

    2011-10-01

    Full Text Available Sandra M Axiak1, Kim A Selting1, Charles J Decedue2, Carolyn J Henry1,3, Deborah Tate1, Jahna Howell2, K James Bilof1, Dae Y Kim4 1Department of Veterinary Medicine and Surgery, University of Missouri, Columbia, MO, USA; 2CritiTech Inc, Lawrence, KS, USA; 3Department of Internal Medicine, Division of Hematology and Oncology; 4Department of Veterinary Pathobiology, University of Missouri, Columbia, MO, USA Background: Paclitaxel is highly effective in the treatment of many cancers in humans, but cannot be routinely used in dogs as currently formulated due to the exquisite sensitivity of this species to surfactant-solubilizing agents. CTI 52010 is a formulation of nanoparticulate paclitaxel consisting of drug and normal saline. Our objectives were to determine the maximally tolerated dose, dose-limiting toxicities, and pharmacokinetics of CTI 52010 administered intravenously to normal dogs. Methods: Three normal adult hound dogs were evaluated by physical examination, complete blood count, chemistry profile, and urinalysis. Dogs were treated with staggered escalating dosages of CTI 52010 with a 28-day washout. All dogs were treated with a starting dosage of 40 mg/m2, and subsequent dosages were escalated at 50% (dog 1, 100% (dog 2, or 200% (dog 3 with each cycle, to a maximum of 240 mg/m2. Dogs were monitored by daily physical assessment and weekly laboratory evaluation. Standard criteria were used to grade adverse events. Plasma was collected at regular intervals to determine pharmacokinetics. Dogs were euthanized humanely, and necropsy was performed one week after the last treatment. Results: The dose-limiting toxicity was grade 4 neutropenia and the maximum tolerated dosage was 120 mg/m2. Grade 1–2 gastrointestinal toxicity was noted at higher dosages. Upon post mortem evaluation, no evidence of organ (liver, kidney, spleen toxicity was noted. Conclusion: CTI 52010 was well tolerated when administered intravenously to normal dogs. A starting

  20. An advanced liquid hydrogen cold source for the NIST research reactor

    International Nuclear Information System (INIS)

    Williams, R.E.; Kopetka, P.; Rowe, J.M.

    1999-01-01

    A second-generation liquid hydrogen cold neutron source is currently being fabricated and will be installed in the NIST reactor early next year. The existing source has operated very successfully over the last four years, providing a six-fold increase in the cold neutron yield compared to the previous heavy ice source. The design of the new source is based on our operating experience with the existing LH 2 source and extensive neutron transport calculations using improved MCNP modeling and computational capabilities. Enhanced mechanical design and manufacturing tools are exploited in the fabrication of the advanced source, which is expected to nearly double the yield of the existing LH 2 source. (author)

  1. Optical Passive Sensor Calibration for Satellite Remote Sensing and the Legacy of NOAA and NIST Cooperation.

    Science.gov (United States)

    Datla, Raju; Weinreb, Michael; Rice, Joseph; Johnson, B Carol; Shirley, Eric; Cao, Changyong

    2014-01-01

    This paper traces the cooperative efforts of scientists at the National Oceanic and Atmospheric Administration (NOAA) and the National Institute of Standards and Technology (NIST) to improve the calibration of operational satellite sensors for remote sensing of the Earth's land, atmosphere and oceans. It gives a chronological perspective of the NOAA satellite program and the interactions between the two agencies' scientists to address pre-launch calibration and issues of sensor performance on orbit. The drive to improve accuracy of measurements has had a new impetus in recent years because of the need for improved weather prediction and climate monitoring. The highlights of this cooperation and strategies to achieve SI-traceability and improve accuracy for optical satellite sensor data are summarized.

  2. Preparation and LSC standardization of ''89 Sr (DNP) using the CIEMAT/NIST method

    International Nuclear Information System (INIS)

    Rodriguez Barquero, L.; Arcos Merino, J.M. Los; Grau Malonda, A.

    1994-01-01

    A procedure for preparation of liquid scintillation counting samples of the strontium DNP complex, labelled with ''89 Sr, is described. The chemical quench, the counting stability and spectral evolution of this compound is studied in six scintillators, Toluene, Toluene-alcohol, Dioxane-naphthalene, HiSafe II, Ultima-Gold and Instagel. The liquid scintillation standardization of ''89Sr-DNP by the CIEMAT/NIST method, using Hisafe II and Ultima-Gold scintillators, has been carried out. The discrepancies between experimental and computed efficiencies are lower than 0.38% and 0.48%, respectively. The solution has been standardized in terms of activity concentration to an overall uncertainty of 0.38%. (Author)

  3. Cold neutron prompt gamma activation analysis at NIST; A progress report

    Energy Technology Data Exchange (ETDEWEB)

    Paul, R L; Lindstrom, R M [National Inst. of Standards and Technology, Gaithersburg, MD (United States). Div. of Inorganic Analytical Research; Vincent, D H [Michigan Univ., Ann Arbor, MI (United States). Dept. of Nuclear Engineering

    1994-05-01

    An instrument for prompt gamma-ray activation analysis is now in operation at the NIST Cold Neutron Research Facility (CNRF). The cold neutron beam is relatively free of contamination by fast neutrons and reactor gamma rays, and the neutron fluence rate is 1.5 x 10 [sup 8] cm [sup -2] x s [sup -1] (thermal equivalent). As a result of a compact target-detector geometry the sensitivity is better by a factor of as much as seven than that obtained with an existing thermal instrument, and hydrogen background is a factor of 50 lower. This instrument was applied to multielement analysis of the Allende meteorite and other materials. (author) 14 refs.; 2 figs.; 1 tab.

  4. Findings and Recommendations from the NIST Workshop on Alternative Fuels and Materials: Biocorrosion.

    Science.gov (United States)

    Mansfield, Elisabeth; Sowards, Jeffrey W; Crookes-Goodson, Wendy J

    2015-01-01

    In 2013, the Applied Chemicals and Materials Division of the National Institute of Standards and Technology (NIST) hosted a workshop to identify and prioritize research needs in the area of biocorrosion. Materials used to store and distribute alternative fuels have experienced an increase in corrosion due to the unique conditions caused by the presence of microbes and the chemistry of biofuels and biofuel precursors. Participants in this workshop, including experts from the microbiological, fuel, and materials communities, delved into the unique materials and chemical challenges that occur with production, transport, and storage of alternative fuels. Discussions focused on specific problems including: a) the changing composition of "drop-in" fuels and the impact of that composition on materials; b) the influence of microbial populations on corrosion and fuel quality; and c) state-of-the-art measurement technologies for monitoring material degradation and biofilm formation.

  5. Preparation and LSC Standardization of ''89Sr (DNP) Using the CIEMAT/NIST Method

    International Nuclear Information System (INIS)

    Rodriguez Barquero, L.; Los Arcos Merino, J. M.; Grau Malonda, A.

    1994-01-01

    A procedure for preparation of liquid scintillation counting samples of the strontium DNP complex, labelled with ''89Sr, is described, the chemical quench, the counting stability and spectral evolution of this compound is studied in six scintillators, Toluene, Toluene-alcohol, Dioxane-naphthalene, HiSafe II, Ultima- Gold and Instagel. The liquid scintillation standardization of 89Sr-DNP by the CIEMAT/NIST method, using HiSafe II and Ultima-Gold scintillators, has been carried out. The discrepancies between experimental and computed efficiencies are lower than 0.38% and 0.48%, respectively. The solution has been standardized in terms of activity concentration to an overall uncertainty of 0,38%. (Author) 10 refs

  6. IUPAC-NIST Solubility Data Series. 95. Alkaline Earth Carbonates in Aqueous Systems. Part 2. Ca

    Science.gov (United States)

    Vanderdeelen, Jan

    2012-06-01

    The alkaline earth carbonates are an important class of minerals. This article is part of a volume in the IUPAC-NIST Solubility Data Series that compiles and critically evaluates solubility data of the alkaline earth carbonates in water and in simple aqueous electrolyte solutions. Part 1 outlined the procedure adopted in this volume, and presented the beryllium and magnesium carbonates. Part 2, the current paper, compiles and critically evaluates the solubility data of calcium carbonate. The chemical forms included are the anhydrous CaCO3 types calcite, aragonite, and vaterite, the monohydrate monohydrocalcite (CaCO3. H2O), the hexahydrate ikaite (CaCO3.6H2O), and an amorphous form. The data were analyzed with two model variants, and thermodynamic data of each form consistent with each of the models and with the CODATA key values for thermodynamics are presented.

  7. IUPAC-NIST Solubility Data Series. 95. Alkaline Earth Carbonates in Aqueous Systems. Part 2. Ca

    International Nuclear Information System (INIS)

    De Visscher, Alex; Vanderdeelen, Jan

    2012-01-01

    The alkaline earth carbonates are an important class of minerals. This article is part of a volume in the IUPAC-NIST Solubility Data Series that compiles and critically evaluates solubility data of the alkaline earth carbonates in water and in simple aqueous electrolyte solutions. Part 1 outlined the procedure adopted in this volume, and presented the beryllium and magnesium carbonates. Part 2, the current paper, compiles and critically evaluates the solubility data of calcium carbonate. The chemical forms included are the anhydrous CaCO 3 types calcite, aragonite, and vaterite, the monohydrate monohydrocalcite (CaCO 3 · H 2 O), the hexahydrate ikaite (CaCO 3 ·6H 2 O), and an amorphous form. The data were analyzed with two model variants, and thermodynamic data of each form consistent with each of the models and with the CODATA key values for thermodynamics are presented.

  8. IUPAC-NIST Solubility Data Series. 95. Alkaline Earth Carbonates in Aqueous Systems. Part 2. Ca

    Energy Technology Data Exchange (ETDEWEB)

    De Visscher, Alex; Vanderdeelen, Jan [Department of Chemical and Petroleum Engineering, and Centre for Environmental Engineering Research and Education (CEERE), Schulich School of Engineering, University of Calgary, Calgary, Alberta, T2N 1N4 (Canada); Department of Applied Analytical and Physical Chemistry, Faculty of Bioscience Engineering, Ghent University, B-9000 Ghent (Belgium)

    2012-06-15

    The alkaline earth carbonates are an important class of minerals. This article is part of a volume in the IUPAC-NIST Solubility Data Series that compiles and critically evaluates solubility data of the alkaline earth carbonates in water and in simple aqueous electrolyte solutions. Part 1 outlined the procedure adopted in this volume, and presented the beryllium and magnesium carbonates. Part 2, the current paper, compiles and critically evaluates the solubility data of calcium carbonate. The chemical forms included are the anhydrous CaCO{sub 3} types calcite, aragonite, and vaterite, the monohydrate monohydrocalcite (CaCO{sub 3}{center_dot} H{sub 2}O), the hexahydrate ikaite (CaCO{sub 3}{center_dot}6H{sub 2}O), and an amorphous form. The data were analyzed with two model variants, and thermodynamic data of each form consistent with each of the models and with the CODATA key values for thermodynamics are presented.

  9. Homogeneity and evaluation of the new NIST leaf certified reference materials

    International Nuclear Information System (INIS)

    Becker, D.A.

    1990-01-01

    The NIST has produced and is in the process of certifying two new leaf CRMs, SRM1515 Apple Leaves and SRM 1547 Peach Leaves, as replacements for the no longer available NBS Orchard Leaves and the almost depleted Citrus Leaves. These two new materials have been processed and are being thoroughly evaluated and should provide the most advanced natural matrix botanical trace-element reference materials available. Caution should be used in determining a basis weight (drying) for these CRMs because of their very fine particle size. Homogeneity has been established by instrumental neutron activation analysis on both leaf materials for five elements, to date, to better than 1.5% (1 s) for 100-mg sample sizes

  10. Ultra-low level plutonium isotopes in the NIST SRM 4355A (Peruvian Soil-1)

    International Nuclear Information System (INIS)

    Inn, Kenneth G.W.; LaRosa, Jerome; Nour, Svetlana; Brooks, George; LaMont, Steve; Steiner, Rob; Williams, Ross; Patton, Brad; Bostick, Debbie; Eiden, Gregory; Petersen, Steve; Douglas, Matthew; Beals, Donna; Cadieux, James; Hall, Greg; Goldberg, Steve; Vogt, Stephan

    2009-01-01

    For more than 20 years, countries and their agencies which monitor radionuclide discharge sites and storage facilities have relied on the National Institute of Standards and Technology (NIST) Standard Reference Material (SRM) 4355 Peruvian Soil. Its low fallout contamination makes it an ideal soil blank for measurements associated with terrestrial-pathway-to-man studies. Presently, SRM 4355 is out of stock, and a new batch of the Peruvian soil is currently under development as future NIST SRM 4355A. Both environmental radioanalytical laboratories and mass spectrometry communities will benefit from the use of this SRM. The former must assess their laboratory procedural contamination and measurement detection limits by measurement of blank sample material. The Peruvian Soil is so low in anthropogenic radionuclide content that it is a suitable virtual blank. On the other hand, mass spectrometric laboratories have high sensitivity instruments that are capable of quantitative isotopic measurements at low plutonium levels in the SRM 4355 (first Peruvian Soil SRM) that provided the mass spectrometric community with the calibration, quality control, and testing material needed for methods development and legal defensibility. The quantification of the ultra-low plutonium content in the SRM 4355A was a considerable challenge for the mass spectrometric laboratories. Careful blank control and correction, isobaric interferences, instrument stability, peak assessment, and detection assessment were necessary. Furthermore, a systematic statistical evaluation of the measurement results and considerable discussions with the mass spectroscopy metrologists were needed to derive the certified values and uncertainties. The one sided upper limit of the 95% tolerance with 95% confidence for the massic 239 Pu content in SRM 4355A is estimated to be 54,000 atoms/g.

  11. Examination of quantitative accuracy of PIXE analysis for atmospheric aerosol particle samples. PIXE analysis of NIST air particulate on filter media

    International Nuclear Information System (INIS)

    Saitoh, Katsumi; Sera, Koichiro

    2005-01-01

    In order to confirm accuracy of the direct analysis of filter samples containing atmospheric aerosol particles collected on a polycarbonate membrane filter by PIXE, we carried out PIXE analysis on a National Institute of Standards and Technology (NIST, USA) air particulate on filter media (SRM 2783). For 16 elements with NIST certified values determined by PIXE analysis - Na, Mg, Al, Si, S, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn and Pb - quantitative values were 80-110% relative to NIST certified values except for Na, Al, Si and Ni. Quantitative values of Na, Al and Si were 140-170% relative to NIST certified values, which were all high, and Ni was 64%. One possible reason why the quantitative values of Na, Al and Si were higher than the NIST certified values could be the difference in the X-ray spectrum analysis method used. (author)

  12. 76 FR 67418 - Request for Comments on NIST Special Publication 500-293, US Government Cloud Computing...

    Science.gov (United States)

    2011-11-01

    ...-1659-01] Request for Comments on NIST Special Publication 500-293, US Government Cloud Computing... Publication 500-293, US Government Cloud Computing Technology Roadmap, Release 1.0 (Draft). This document is... (USG) agencies to accelerate their adoption of cloud computing. The roadmap has been developed through...

  13. Overview of Stabilizing Ligands for Biocompatible Quantum Dot Nanocrystals

    Directory of Open Access Journals (Sweden)

    Aaron Clapp

    2011-11-01

    Full Text Available Luminescent colloidal quantum dots (QDs possess numerous advantages as fluorophores in biological applications. However, a principal challenge is how to retain the desirable optical properties of quantum dots in aqueous media while maintaining biocompatibility. Because QD photophysical properties are directly related to surface states, it is critical to control the surface chemistry that renders QDs biocompatible while maintaining electronic passivation. For more than a decade, investigators have used diverse strategies for altering the QD surface. This review summarizes the most successful approaches for preparing biocompatible QDs using various chemical ligands.

  14. Recent applications of nuclear analytical methods to the certification of elemental content in NIST standard reference materials

    International Nuclear Information System (INIS)

    Greenberg, R.R.; Zeisler, R.; Mackey, E.A.

    2006-01-01

    Well-characterized, certified reference materials (CRMs) play an essential role in assuring the quality of analytical measurements. NIST has been producing CRMs, currently called NIST Standard Reference Materials (SRMs), to validate analytical measurements for nearly one hundred years. The predominant mode of certifying inorganic constituents in complex-matrix SRMs is through the use of two critically evaluated, independent analytical techniques at NIST. These techniques should have no significant sources of error in common. The use of nuclear analytical methods in combination with one of the chemically based analytical method at NIST eliminates the possibility of any significant, common error source. The inherent characteristics of the various forms of nuclear analytical methods make them extremely valuable for SRM certification. Instrumental NAA is nondestructive, which eliminates the possibility of any dissolution problems, and often provides homogeneity information. Radiochemical NAA typically provides nearly blank-free determinations of some highly important, but difficult elements at very low levels. Prompt-gamma NAA complements INAA, and provides independent determinations of some key elements. In addition, all significant uncertainty components can be evaluated for these techniques, and we believe these methods can meet all the requirements of a primary method of measurement as defined by ISO and the CCQM. NIST has certified several SRMs using INAA and RNAA as primary methods. In addition, NIST has compared measurements by INAA and PGAA with other primary methods as part of the CCQM intercomparisons of national metrology institutes. Some significant SRMs recently certified for inorganic constituents with contributions from the nuclear analytical methods include: Toxic Substances in Urine (SRM 2670a), Lake Superior Fish Tissue (SRM 1946), Air Particulate on Filter Media (SRM 2783), Inorganics in Marine Sediment (SRM 2702), Sediment for Solid Sampling (Small

  15. ADHESION OF BIOCOMPATIBLE TiNb COATING

    Directory of Open Access Journals (Sweden)

    Tomas Kolegar

    2017-06-01

    Full Text Available Preparation of a coating with a high quality requires good adhesion of the film to the substrate. The paper deals with the adhesion of biocompatible TiNb coating with different base materials. Several materials such as titanium CP grade 2, titanium alloys Ti6Al4V and stainless steel AISI 316L were measured. Testing samples were made in the shape of small discs. Those samples were coated with a TiNb layer by using the PVD method (magnetron sputtering. Onto the measured layer of TiNb an assistant cylinder was stuck using a high strength epoxy adhesive E1100S. The sample with the assistant cylinder was fixed into a special fixture and the whole assembly underwent pull-off testing for adhesion. The main result of this experiment was determining the strength needed to peel the layer and morphology and size of the breakaway. As a result, we will be able to determine the best base material and conditions where the coating will be remain intact with the base material.

  16. Material Biocompatibility for PCR Microfluidic Chips

    KAUST Repository

    Kodzius, Rimantas; Chang, Donald Choy; Gong, Xiuqing; Wen, Weijia; Wu, Jinbo; Xiao, Kang; Yi, Xin

    2010-01-01

    As part of the current miniaturization trend, biological reactions and processes are being adapted to microfluidics devices. PCR is the primary method employed in DNA amplification, its miniaturization is central to efforts to develop portable devices for diagnostics and testing purposes. A problem is the PCR-inhibitory effect due to interaction between PCR reagents and the surrounding environment, which effect is increased in high-surface-are-to-volume ration microfluidics. In this study, we evaluated the biocompatibility of various common materials employed in the fabrication of microfluidic chips, including silicon, several kinds of silicon oxide, glasses, plastics, wax, and adhesives. Two-temperature PCR was performed with these materials to determine their PCR-inhibitory effect. In most of the cases, addition of bovine serum albumin effectively improved the reaction yield. We also studied the individual PCR components from the standpoint of adsorption. Most of the materials did not inhibit the DNA, whereas they did show noticeable interaction with the DNA polymerase. Our test, instead of using microfluidic devices, can be easily conducted in common PCR tubes using a standard bench thermocycler. Our data supports an overview of the means by which the materials most bio-friendly to microfluidics can be selected.

  17. Biocompatibility and Toxicity of Nano biomaterials 2014

    International Nuclear Information System (INIS)

    Li, X.; Lee, S.Ch.; Zhang, Sh.; Akasaka, T.

    2014-01-01

    It is well known that nano materials have developed rapidly over the past few decades. Based on their unique physicochemical properties and special mechanical properties, nano materials have provided application possibility in many different fields. Currently, as nano biomaterials, they are widely used in various biomedical applications, such as drug delivery systems, tissue engineering, dental/bone implant, and biosensors. For example, nano biomaterials have been used in tissue engineering because of their satisfactory bioactivity, high mechanical properties, and large surface area to adsorb specific proteins. Many kinds of nano biomaterials are used to prepare composite scaffolds to get better biocompatibility and higher ability in repairing specific tissues. Several antibacterial metallic nano biomaterials are used to coat implant surfaces to improve the speed of healing fractures. In addition, lots of nano biomaterials have the potential to break the limitations of the traditional delivery systems. They can load larger amount of drugs and provide stable drug release for long time at the targeted sites, such as tumors. Moreover, they can combine with polymers to furnish simultaneous drug delivery systems with the controllable release rate. Besides these applications, more and more nano biomaterials show great potential to be applied as highly sensitive biosensors because they have higher ability in loading firmly or interacting completely with recognition aptamers.

  18. Material Biocompatibility for PCR Microfluidic Chips

    KAUST Repository

    Kodzius, Rimantas

    2010-04-23

    As part of the current miniaturization trend, biological reactions and processes are being adapted to microfluidics devices. PCR is the primary method employed in DNA amplification, its miniaturization is central to efforts to develop portable devices for diagnostics and testing purposes. A problem is the PCR-inhibitory effect due to interaction between PCR reagents and the surrounding environment, which effect is increased in high-surface-are-to-volume ration microfluidics. In this study, we evaluated the biocompatibility of various common materials employed in the fabrication of microfluidic chips, including silicon, several kinds of silicon oxide, glasses, plastics, wax, and adhesives. Two-temperature PCR was performed with these materials to determine their PCR-inhibitory effect. In most of the cases, addition of bovine serum albumin effectively improved the reaction yield. We also studied the individual PCR components from the standpoint of adsorption. Most of the materials did not inhibit the DNA, whereas they did show noticeable interaction with the DNA polymerase. Our test, instead of using microfluidic devices, can be easily conducted in common PCR tubes using a standard bench thermocycler. Our data supports an overview of the means by which the materials most bio-friendly to microfluidics can be selected.

  19. Tribological study of lubricious DLC biocompatible coatings.

    Science.gov (United States)

    Brizuela, M; Garcia-Luis, A; Viviente, J L; Braceras, I; Oñate, J I

    2002-12-01

    DLC (diamond-like carbon) coatings have remarkable tribological properties due mainly to their good frictional behavior. These coatings can be applied in many industrial and biomedical applications, where sliding can generate wear and frictional forces on the components, such as orthopaedic metal implants. This work reports on the development and tribological characterization of functionally gradient titanium alloyed DLC coatings. A PVD-magnetron sputtering technique has been used as the deposition method. The aim of this work was to study the tribological performance of the DLC coating when metal to metal contact (cobalt chromium or titanium alloys) takes place under dry and lubricated test conditions. Prior work by the authors demonstrates that the DLC coating reduced considerably the wear of the ultra-high-molecular-weight polyethylene (UHMWPE). The DLC coating during mechanical testing exhibited a high elastic recovery (65%) compared to the values obtained from Co-Cr-Mo (15%) and Ti-6Al-4V (23%). The coating exhibited an excellent tribo-performance against the Ti-6Al-4V and Co-Cr-Mo alloys, especially under dry conditions presenting a friction value of 0.12 and almost negligible wear. This coating has passed biocompatibility tests for implant devices on tissue/bone contact according to international standards (ISO 10993).

  20. Non-immunogenic dextran-coated superparamagnetic iron oxide nanoparticles: a biocompatible, size-tunable contrast agent for magnetic resonance imaging.

    Science.gov (United States)

    Unterweger, Harald; Janko, Christina; Schwarz, Marc; Dézsi, László; Urbanics, Rudolf; Matuszak, Jasmin; Őrfi, Erik; Fülöp, Tamás; Bäuerle, Tobias; Szebeni, János; Journé, Clément; Boccaccini, Aldo R; Alexiou, Christoph; Lyer, Stefan; Cicha, Iwona

    2017-01-01

    Iron oxide-based contrast agents have been in clinical use for magnetic resonance imaging (MRI) of lymph nodes, liver, intestines, and the cardiovascular system. Superparamagnetic iron oxide nanoparticles (SPIONs) have high potential as a contrast agent for MRI, but no intravenous iron oxide-containing agents are currently approved for clinical imaging. The aim of our work was to analyze the hemocompatibility and immuno-safety of a new type of dextran-coated SPIONs (SPIONdex) and to characterize these nanoparticles with ultra-high-field MRI. Key parameters related to nanoparticle hemocompatibility and immuno-safety were investigated in vitro and ex vivo. To address concerns associated with hypersensitivity reactions to injectable nanoparticulate agents, we analyzed complement activation-related pseudoallergy (CARPA) upon intravenous administration of SPIONdex in a pig model. Furthermore, the size-tunability of SPIONdex and the effects of size reduction on their biocompatibility were investigated. In vitro, SPIONdex did not induce hemolysis, complement or platelet activation, plasma coagulation, or leukocyte procoagulant activity, and had no relevant effect on endothelial cell viability or endothelial-monocytic cell interactions. Furthermore, SPIONdex did not induce CARPA even upon intravenous administration of 5 mg Fe/kg in pigs. Upon SPIONdex administration in mice, decreased liver signal intensity was observed after 15 minutes and was still detectable 24 h later. In addition, by changing synthesis parameters, a reduction in particle size contrast agent.

  1. Vectorization of copper complexes via biocompatible and biodegradable PLGA nanoparticles.

    Science.gov (United States)

    Courant, T; Roullin, V G; Cadiou, C; Delavoie, F; Molinari, M; Andry, M C; Gafa, V; Chuburu, F

    2010-04-23

    A double emulsion-solvent diffusion approach with fully biocompatible materials was used to encapsulate copper complexes within biodegradable nanoparticles, for which the release kinetics profiles have highlighted their potential use for a prolonged circulating administration.

  2. Vectorization of copper complexes via biocompatible and biodegradable PLGA nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Courant, T; Roullin, V G; Andry, M C [Institut de Chimie Moleculaire de Reims, CNRS UMR 6229, UFR Pharmacie Reims, 51 rue Cognacq-Jay, F-51100 Reims (France); Cadiou, C; Chuburu, F [Institut de Chimie Moleculaire de Reims, CNRS UMR 6229, UFR des Sciences Exactes et Naturelles, Batiment 18-Europol' Agro, BP 1039, F-51687 Reims Cedex 2 (France); Delavoie, F [Laboratoire de Microscopie Electronique Analytique, INSERM UMRS 926, 21 rue Clement Ader, F-51685 Reims Cedex 2 (France); Molinari, M [Laboratoire de Microscopies et d' Etudes des Nanostructures, UFR des Sciences, Universite de Reims Champagne-Ardenne, 21 rue Clement Ader, F-51685 Reims Cedex 2 (France); Gafa, V, E-mail: gaelle.roullin@univ-reims.fr, E-mail: francoise.chuburu@univ-reims.fr [EA4303 ' Inflammation et Immunite de l' Epithelium Respiratoire' , IFR53, UFR de Pharmacie, Universite de Reims Champagne-Ardenne, 51 rue Cognacq-Jay, F-51100 Reims (France)

    2010-04-23

    A double emulsion-solvent diffusion approach with fully biocompatible materials was used to encapsulate copper complexes within biodegradable nanoparticles, for which the release kinetics profiles have highlighted their potential use for a prolonged circulating administration.

  3. Biocompatibility and tissue regenerating capacity of crosslinked dermal sheep collagen

    NARCIS (Netherlands)

    van Wachem, P.B.; van Luyn, M.J.A.; Olde Damink, L.H.H.; Olde damink, L.H.H.; Dijkstra, Pieter J.; Feijen, Jan; Nieuwenhuis, P.

    1994-01-01

    The biocompatibility and tissue regenerating capacity of four crosslinked dermal sheep collagens (DSC) was studied. In vitro, the four DSC versions were found to be noncytotoxic or very low in cytoxicity. After subcutaneous implantation in rats, hexamethylenediisocyanatecrcrosslinked DSC (HDSC)

  4. Vectorization of copper complexes via biocompatible and biodegradable PLGA nanoparticles

    International Nuclear Information System (INIS)

    Courant, T; Roullin, V G; Andry, M C; Cadiou, C; Chuburu, F; Delavoie, F; Molinari, M; Gafa, V

    2010-01-01

    A double emulsion-solvent diffusion approach with fully biocompatible materials was used to encapsulate copper complexes within biodegradable nanoparticles, for which the release kinetics profiles have highlighted their potential use for a prolonged circulating administration.

  5. A 3D-RBS study of irradiation-induced deformation and masking properties of ordered colloidal nanoparticulate masks

    International Nuclear Information System (INIS)

    Zolnai, Z.; Deak, A.; Nagy, N.; Toth, A.L.; Kotai, E.; Battistig, G.

    2010-01-01

    The 500 keV Xe 2+ irradiation-induced anisotropic deformation of ordered colloidal silica nanoparticulate masks is followed using 2 MeV 4 He + Rutherford Backscattering Spectrometry (RBS) with different measurement geometries and the improved data analysis capabilities of the RBS-MAST spectrum simulation code. The three-dimensional (3D) geometrical transformation from spherical to oblate ellipsoidal and polygonal shape and the decrease of the mask's hole size is described. The masking properties of the silica monolayer and the depth distribution of Xe in the underlying Si substrate vs. the irradiated Xe 2+ fluence are discussed. Field Emission Scanning Electron Microscopy (FESEM) is applied as complementary characterization tool. Our results give contribution to clarify the impact of ion-nanoparticle interactions on the potentials and limits of nanosphere lithography. We also show the capability of the conventional RBS technique to characterize laterally ordered submicron-sized three-dimensional structures.

  6. Dynamics of nanoparticules detected at 1 AU by S/WAVES onboard STEREO spacecraft

    Science.gov (United States)

    Belheouane, Soraya; Issautier, Karine; Meyer-Vernet, Nicole; Le Chat, Gaétan; Czechowski, Andrzej; Zaslavsky, Arnaud; Zouganelis, Yannis; Mann, Ingrid

    In order to interpret in detail the S/WAVES data on the interplanetary nanodust discovered by STEREO at 1 AU [Meyer-Vernet et al., 2009], we study the dynamics of nanoparticles in the inner interplanetary medium as well as the distribution of their velocities and directions of arrival, with a model based on [Czechowski and Mann, 2012]. We deduce the charges released by their impacts on the STEREO spacecraft at 1 AU and their dependence on the position of the spacecraft on their orbits. The model studies nanoparticles of size equal or smaller than about 70 nm, assumed to be created via collisional fragmentation of dust grains of larger size moving on keplerian orbits, and sublimation of dust, meteoroids and comets. The nanoparticles are released near the Sun with initial velocities close to keplerian, and mainly subjected to the Lorentz force calculated with a simple solar wind model. A part of the nanoparticles is accelerated to high speeds of the order of 300 km/s, thereby providing impact charges between 10(-14) and 10(-11) Cb [Belheouane, 2014] which enable them to be detected by S/WAVES, whereas another part is trapped within about 0.2 AU from the Sun. We discuss how the fluxes and direction of arrival at 1 AU are expected to change in function of the solar cycle. These results enable us to interpret in detail the STEREO/WAVES observations [Zaslavsky et al., 2012]; [Pantellini et al., 2013]; [Le Chat et al., 2013]. Belheouane, S. (2014). Nanoparticules dans le vent solaire, observations spatiales et theorie. PhD thesis, Pierre and Marie Curie University UPMC. Czechowski, A. and Mann, I. (2012). Nanodust Dynamics in Interplanetary Space, chapter Nanodust Dynamics in Interplanetary Space. Springer Berlin Heidelberg. Le Chat, G., Zaslavsky, A., Meyer-Vernet, N., Issautier, K., Belheouane, S., Pantellini, F., Maksimovic, M., Zouganelis, I., Bale, S., and Kasper, J. (2013). Interplanetary Nanodust Detection by the Solar Terrestrial Relations Observatory/WAVES Low

  7. Coal and tire burning mixtures containing ultrafine and nanoparticulate materials induce oxidative stress and inflammatory activation in macrophages.

    Science.gov (United States)

    Gasparotto, Juciano; Somensi, Nauana; Caregnato, Fernanda F; Rabelo, Thallita K; DaBoit, Kátia; Oliveira, Marcos L S; Moreira, José C F; Gelain, Daniel P

    2013-10-01

    Ultra-fine and nano-particulate materials resulting from mixtures of coal and non-coal fuels combustion for power generation release to the air components with toxic potential. We evaluated toxicological and inflammatory effects at cellular level that could be induced by ultrafine/nanoparticles-containing ashes from burning mixtures of coal and tires from an American power plant. Coal fly ashes (CFA) samples from the combustion of high-S coal and tire-derived fuel, the latter about 2-3% of the total fuel feed, in a 100-MW cyclone utility boiler, were suspended in the cell culture medium of RAW 264.7 macrophages. Cell viability, assessed by MTT reduction, SRB incorporation and contrast-phase microscopy analysis demonstrated that CFA did not induce acute toxicity. However, CFA at 1mg/mL induced an increase of approximately 338% in intracellular TNF-α, while release of this proinflammatory cytokine was increased by 1.6-fold. The expression of the inflammatory mediator CD40 receptor was enhanced by 2-fold, the receptor for advanced glycation endproducts (RAGE) had a 5.7-fold increase and the stress response protein HSP70 was increased nearly 12-fold by CFA at 1mg/mL. Although CFA did not induce cell death, parameters of oxidative stress and reactive species production were found to be altered at several degrees, such as nitrite accumulation (22% increase), DCFH oxidation (3.5-fold increase), catalase (5-fold increase) and superoxide dismutase (35% inhibition) activities, lipoperoxidation (4.2 fold-increase) and sulfhydryl oxidation (40% decrease in free SH groups). The present results suggest that CFA containing ultra-fine and nano-particulate materials from coal and tire combustion may induce sub-chronic cell damage, as they alter inflammatory and oxidative stress parameters at the molecular and cellular levels, but do not induce acute cell death. © 2013.

  8. IMMUNOTOXICOLOGICAL ASPECTS OF BIOCOMPATIBILITY OF TITANIUM

    Directory of Open Access Journals (Sweden)

    Maya Lyapina

    2017-05-01

    Full Text Available Titanium (Ti is a non-essential metal element. TiO2 is used predominantly in the form of micro and nanoparticles in consumer products, including cosmetics and food. Because of its excellent biocompatibility, the trade-pure titan and its alloys are widely used as an alternative to certain metals in invasive medicine, surgery, dental medicine. Contemporary data concerning the sources of exposure to titanium, immune reactions to Ti alloys, current knowledge and perspectives of diagnosis of sensitization or allergic reactions to titanium are discussed. Conclusion: TiO2 is much more stable than pure Ti and alloys used in the implants, that should be taken into account when conducting research and analysing the results. The evidence of possible toxic effects is insufficient. It is difficult to assess the frequency of Ti allergy due to the uncertainty of diagnostic methods, but it is believed that it is very low. This is supported by the evidence that Ti and TiO2 (often as NP doesn’t penetrate through the healthy skin. Skin patch testing with currently available formulations of Ti and TiO2 has no significant value in clinical practice, and currently, it is assumed that there is no reliable method for diagnosis Ti allergy. The functional analysis of cytokine release and investigation of genetic characteristics could be useful for individual risk assessment in dental implantology. Such studies may also help to investigate separately early and late implant loss, as well as to develop new diagnostic tools.

  9. Corrosion and surface modification on biocompatible metals: A review.

    Science.gov (United States)

    Asri, R I M; Harun, W S W; Samykano, M; Lah, N A C; Ghani, S A C; Tarlochan, F; Raza, M R

    2017-08-01

    Corrosion prevention in biomaterials has become crucial particularly to overcome inflammation and allergic reactions caused by the biomaterials' implants towards the human body. When these metal implants contacted with fluidic environments such as bloodstream and tissue of the body, most of them became mutually highly antagonistic and subsequently promotes corrosion. Biocompatible implants are typically made up of metallic, ceramic, composite and polymers. The present paper specifically focuses on biocompatible metals which favorably used as implants such as 316L stainless steel, cobalt-chromium-molybdenum, pure titanium and titanium-based alloys. This article also takes a close look at the effect of corrosion towards the implant and human body and the mechanism to improve it. Due to this corrosion delinquent, several surface modification techniques have been used to improve the corrosion behavior of biocompatible metals such as deposition of the coating, development of passivation oxide layer and ion beam surface modification. Apart from that, surface texturing methods such as plasma spraying, chemical etching, blasting, electropolishing, and laser treatment which used to improve corrosion behavior are also discussed in detail. Introduction of surface modifications to biocompatible metals is considered as a "best solution" so far to enhanced corrosion resistance performance; besides achieving superior biocompatibility and promoting osseointegration of biocompatible metals and alloys. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Simulation evaluation of NIST air-kerma rate calibration standard for electronic brachytherapy.

    Science.gov (United States)

    Hiatt, Jessica R; Rivard, Mark J; Hughes, H Grady

    2016-03-01

    Dosimetry for the model S700 50 kV electronic brachytherapy (eBT) source (Xoft, Inc., a subsidiary of iCAD, San Jose, CA) was simulated using Monte Carlo (MC) methods by Rivard et al. ["Calculated and measured brachytherapy dosimetry parameters in water for the Xoft Axxent x-ray source: An electronic brachytherapy source," Med. Phys. 33, 4020-4032 (2006)] and recently by Hiatt et al. ["A revised dosimetric characterization of the model S700 electronic brachytherapy source containing an anode-centering plastic insert and other components not included in the 2006 model," Med. Phys. 42, 2764-2776 (2015)] with improved geometric characterization. While these studies examined the dose distribution in water, there have not previously been reports of the eBT source calibration methods beyond that recently reported by Seltzer et al. ["New national air-kerma standard for low-energy electronic brachytherapy sources," J. Res. Natl. Inst. Stand. Technol. 119, 554-574 (2014)]. Therefore, the motivation for the current study was to provide an independent determination of air-kerma rate at 50 cm in air K̇air(d=50 cm) using MC methods for the model S700 eBT source. Using CAD information provided by the vendor and disassembled sources, an MC model was created for the S700 eBT source. Simulations were run using the mcnp6 radiation transport code for the NIST Lamperti air ionization chamber according to specifications by Boutillon et al. ["Comparison of exposure standards in the 10-50 kV x-ray region," Metrologia 5, 1-11 (1969)], in air without the Lamperti chamber, and in vacuum without the Lamperti chamber. K̇air(d=50 cm) was determined using the *F4 tally with NIST values for the mass energy-absorption coefficients for air. Photon spectra were evaluated over 2 π azimuthal sampling for polar angles of 0° ≤ θ ≤ 180° every 1°. Volume averaging was averted through tight radial binning. Photon energy spectra were determined over all polar angles in both air and vacuum using

  11. Liquid Scintillation Counting Standardization of {sup 2}2NaCl by te CIEMAT/NIST method; Calibracion por Centelleo Liquido del ''22NaCl, mediante el metodo CIEMAT/NIST

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez Barquero, L.; Grau Carles, A.; Grau Malonda, A.

    1995-07-01

    We describe a procedure for preparing a stable solution of ''22NaCl for liquid scintillation counting and its counting stability and spectral evolution in Insta-Gel''R is studied. The solution has been standardised in terms of activity concentration by the CIEMAT/NIST method with discrepancies between experimental and computed efficiencies lower than 0.4 % and an overall uncertainty of 0.35 %. (Author) 4 refs.

  12. A comparative study of 129I content in environmental standard materials IAEA-375, NIST SRM 4354 and NIST SRM 4357 by Thermal Ionization Mass Spectrometry and Accelerator Mass Spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Olson, John; Adamic, Mary; Snyder, Darin; Brookhart, Jacob; Hahn, Paula; Watrous, Matthew

    2016-11-01

    Iodine environmental measurements have consistently been backed up in the literature by standard materials like IAEA-375, Chernobyl Soil. There are not many other sources of a certified reference material for 129I content for mass spectrometry measurements. Some that have been found in the literature include NIST-4354 and NIST-4357. They are still available at the time of this writing. They don’t have certified content or isotopic values. There has been some work in the literature to show that iodine is present, but there hasn’t been enough to establish a consensus value. These materials have been analyzed at INL through two separate mass spectrometry techniques. They involve a combustion method of the starting material in oxygen, followed by TIMS analysis and a leaching preparation analyzed by accelerator mass spectrometry. Combustion/TIMS preparation of NIST SRM-4354 resulted in a 129I/127I ratio of 1.92 x 10-6 which agrees with AMS measurements which measured the 129I/127I ratio to be 1.93 x 10-6.

  13. Doxorubicin loaded Polymeric Nanoparticulate Delivery System to overcome drug resistance in osteosarcoma

    International Nuclear Information System (INIS)

    Susa, Michiro; Iyer, Arun K; Ryu, Keinosuke; Hornicek, Francis J; Mankin, Henry; Amiji, Mansoor M; Duan, Zhenfeng

    2009-01-01

    Drug resistance is a primary hindrance for the efficiency of chemotherapy against osteosarcoma. Although chemotherapy has improved the prognosis of osteosarcoma patients dramatically after introduction of neo-adjuvant therapy in the early 1980's, the outcome has since reached plateau at approximately 70% for 5 year survival. The remaining 30% of the patients eventually develop resistance to multiple types of chemotherapy. In order to overcome both the dose-limiting side effects of conventional chemotherapeutic agents and the therapeutic failure incurred from multidrug resistant (MDR) tumor cells, we explored the possibility of loading doxorubicin onto biocompatible, lipid-modified dextran-based polymeric nanoparticles and evaluated the efficacy. Doxorubicin was loaded onto a lipid-modified dextran based polymeric nano-system. The effect of various concentrations of doxorubicin alone or nanoparticle loaded doxorubicin on KHOS, KHOS R2 , U-2OS, and U-2OS R2 cells was analyzed. Effects on drug retention, immunofluorescence, Pgp expression, and induction of apoptosis were also analyzed. Dextran nanoparticles loaded with doxorubicin had a curative effect on multidrug resistant osteosarcoma cell lines by increasing the amount of drug accumulation in the nucleus via Pgp independent pathway. Nanoparticles loaded with doxorubicin also showed increased apoptosis in osteosarcoma cells as compared with doxorubicin alone. Lipid-modified dextran nanoparticles loaded with doxorubicin showed pronounced anti-proliferative effects against osteosarcoma cell lines. These findings may lead to new treatment options for MDR osteosarcoma

  14. Visualizing Magnetic domain of Electric Steel using Grating Interferometer at NG6 of NIST

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Ju; Oh, Oh Sung; Lee, Se Ho; Kim, Dae Seung; Lee, Seung Wook [Pusan National University, Busan (Korea, Republic of); Kim, Jong Yul [KAERI, Daejeon (Korea, Republic of); Kwon, Oh Yeoul [Pohang Iron and Steel Company, Pohang (Korea, Republic of); Hussey, D. S.; Jacobson, D. L.; Lamannad, J. M. [NIST, Gaithersburg (United States)

    2016-05-15

    The Grating Interferometer is one of new imaging techniques provides improved contrast images, Phase Contrast Image and Dark-Field Image, which have never been seen before by conventional radiography. Neutron Dark-Field Imaging (NDFI) suggests new approach for material science providing the scattering image caused by the micro-structure of object. We attracted to the application of NDFI for material science, the electric steel which produce magnetic scattering information especially. In this study, we developed 1 dimensional gratings using gadox filling method to make the Talbot-Lau Interferometer (TLI). The experiment was conducted at cold neutron imaging facility NG6 of National Institute of Standards and Technologies, NIST. We confirmed that the 3 order Talbot-Lau type of neutron grating interferometer which is composed of gratings made by gadox filling method is well operated at cold neutron imaging beamline. NDFI is definitely powerful visualizing tool for material science, especially magnetic materials. In further study, we will research electric steel more in realistic conditions when it is worked as a component of electric motor.

  15. Measured Polarized Spectral Responsivity of JPSS J1 VIIRS Using the NIST T-SIRCUS

    Science.gov (United States)

    McIntire, Jeff; Young, James B.; Moyer, David; Waluschka, Eugene; Xiong, Xiaoxiong

    2015-01-01

    Recent pre-launch measurements performed on the Joint Polar Satellite System (JPSS) J1 Visible Infrared Imaging Radiometer Suite (VIIRS) using the National Institute of Standards and Technology (NIST) Traveling Spectral Irradiance and Radiance Responsivity Calibrations Using Uniform Sources (T-SIRCUS) monochromatic source have provided wavelength dependent polarization sensitivity for select spectral bands and viewing conditions. Measurements were made at a number of input linear polarization states (twelve in total) and initially at thirteen wavelengths across the bandpass (later expanded to seventeen for some cases). Using the source radiance information collected by an external monitor, a spectral responsivity function was constructed for each input linear polarization state. Additionally, an unpolarized spectral responsivity function was derived from these polarized measurements. An investigation of how the centroid, bandwidth, and detector responsivity vary with polarization state was weighted by two model input spectra to simulate both ground measurements as well as expected on-orbit conditions. These measurements will enhance our understanding of VIIRS polarization sensitivity, improve the design for future flight models, and provide valuable data to enhance product quality in the post-launch phase.

  16. Results and Systematic Studies of the UCN Lifetime Experiment at NIST

    Science.gov (United States)

    Huffer, Craig Reeves

    The neutron beta-decay lifetime is important in understanding weak interactions in the framework of the Standard Model, and it is an input to nuclear astrophysics and Big Bang Nucleosynthesis. Current measurements of the neutron beta-decay lifetime disagree, which has motivated additional experiments that are sensitive to different sets of systematic effects. An effort continues at the NIST Center for Neutron Research (NCNR) to improve the statistical and systematic limitations of an experiment to measure the neutron beta-decay lifetime using magnetically trapped UCN. In the experiment, a monoenergetic 0:89 nm cold neutron is incident on a superfluid 4He target within the minimum field region of an Ioffe type magnetic trap. Some of the neutrons are subsequently downscattered by single phonons in the helium to low energies (≈ 200 neV), and those in the appropriate spin state become trapped. The inverse process, upscattering of UCN, is suppressed by the low phonon density in the analysis, data, and systematics will be discussed. After accounting for the systematic effects the measured lifetime disagrees with the current PDG mean neutron beta-decay lifetime by about 9 of our standard deviations, which is a strong indication of unaccounted for systematic effects. Additional 3He contamination will be shown to be the most likely candidate for the additional systematic shift, which motivated the commissioning and initial operation of a heat flush purifier for purifying additional 4He. This work ends with a description of the 4He purifier and its performance.

  17. Analysis of Loss-of-Coolant Accidents in the NIST Research Reactor - Early Phase

    Energy Technology Data Exchange (ETDEWEB)

    Baek, Joo S.; Diamond, David

    2016-12-06

    A study of the fuel temperature during the early phase of a loss-of-coolant accident (LOCA) in the NIST research reactor (NBSR) was completed. Previous studies had been reported in the preliminary safety analysis report for the conversion of the NBSR from high-enriched uranium (HEU) fuel to low-enriched (LEU) fuel. Those studies had focused on the most vulnerable LOCA situation, namely, a double-ended guillotine break in the time period after reactor trip when water is drained from either the coolant channels inside the fuel elements or the region outside the fuel elements. The current study fills in a gap in the analysis which is the early phase of the event when there may still be water present but the reactor is at power or immediately after reactor trip and pumps have tripped. The calculations were done, for both the current HEU-fueled core and the proposed LEU core, with the TRACE thermal-hydraulic systems code. Several break locations and different break sizes were considered. In all cases the increase in the clad (or fuel meat) temperature was relatively small so that a large margin to the temperature threshold for blistering (the Safety Limit for the NBSR) remained.

  18. JY1 time scale: a new Kalman-filter time scale designed at NIST

    International Nuclear Information System (INIS)

    Yao, Jian; Parker, Thomas E; Levine, Judah

    2017-01-01

    We report on a new Kalman-filter hydrogen-maser time scale (i.e. JY1 time scale) designed at the National Institute of Standards and Technology (NIST). The JY1 time scale is composed of a few hydrogen masers and a commercial Cs clock. The Cs clock is used as a reference clock to ease operations with existing data. Unlike other time scales, the JY1 time scale uses three basic time-scale equations, instead of only one equation. Also, this time scale can detect a clock error (i.e. time error, frequency error, or frequency drift error) automatically. These features make the JY1 time scale stiff and less likely to be affected by an abnormal clock. Tests show that the JY1 time scale deviates from the UTC by less than  ±5 ns for ∼100 d, when the time scale is initially aligned to the UTC and then is completely free running. Once the time scale is steered to a Cs fountain, it can maintain the time with little error even if the Cs fountain stops working for tens of days. This can be helpful when we do not have a continuously operated fountain or when the continuously operated fountain accidentally stops, or when optical clocks run occasionally. (paper)

  19. Analysis of JPSS J1 VIIRS Polarization Sensitivity Using the NIST T-SIRCUS

    Science.gov (United States)

    McIntire, Jeffrey W.; Young, James B.; Moyer, David; Waluschka, Eugene; Oudrari, Hassan; Xiong, Xiaoxiong

    2015-01-01

    The polarization sensitivity of the Joint Polar Satellite System (JPSS) J1 Visible Infrared Imaging Radiometer Suite (VIIRS) measured pre-launch using a broadband source was observed to be larger than expected for many reflective bands. Ray trace modeling predicted that the observed polarization sensitivity was the result of larger diattenuation at the edges of the focal plane filter spectral bandpass. Additional ground measurements were performed using a monochromatic source (the NIST T-SIRCUS) to input linearly polarized light at a number of wavelengths across the bandpass of two VIIRS spectral bands and two scan angles. This work describes the data processing, analysis, and results derived from the T-SIRCUS measurements, comparing them with broadband measurements. Results have shown that the observed degree of linear polarization, when weighted by the sensor's spectral response function, is generally larger on the edges and smaller in the center of the spectral bandpass, as predicted. However, phase angle changes in the center of the bandpass differ between model and measurement. Integration of the monochromatic polarization sensitivity over wavelength produced results consistent with the broadband source measurements, for all cases considered.

  20. Dissemination of 3D Visualizations of Complex Function Data for the NIST Digital Library of Mathematical Functions

    Directory of Open Access Journals (Sweden)

    Qiming Wang

    2007-03-01

    Full Text Available The National Institute of Standards and Technology (NIST is developing a digital library to replace the widely used National Bureau of Standards Handbook of Mathematical Functions published in 1964. The NIST Digital Library of Mathematical Functions (DLMF will include formulas, methods of computation, references, and links to software for over forty functions. It will be published both in hardcopy format and as a website featuring interactive navigation, a mathematical equation search, 2D graphics, and dynamic interactive 3D visualizations. This paper focuses on the development and accessibility of the 3D visualizations for the digital library. We examine the techniques needed to produce accurate computations of function data, and through a careful evaluation of several prototypes, we address the advantages and disadvantages of using various technologies, including the Virtual Reality Modeling Language (VRML, interactive embedded graphics, and video capture to render and disseminate the visualizations in an environment accessible to users on various platforms.

  1. Variation de la composition de nanoparticules de 1-10 nm obtenues par séparation de phase dans un verre de silice

    OpenAIRE

    Blanc , W; Francois-Saint-Cyr , H; Martin , I; Lecoustumer , P; Hombourger , C; R. Neuville , D.; Larson , D.J.; Prosa , T.J.; Guillermier , C

    2014-01-01

    National audience; Les verres contenant des nanoparticules ont de nombreuses applications industrielles, notamment grâce à leurs excellentes propriétés thermo-mécaniques [1]. Ils présentent aussi un intérêt pour les propriétés optiques. En effet, l'encapsulation d'ions luminescents (ions de terre rare par exemple) dans des nanoparticules entraînent de nouvelles propriétés de luminescence qui n'existeraient pas dans le verre hôte (bande d'émission élargie, efficacité quantique augmentée, etc) ...

  2. Liquid scintillation counting standardization of ''125 I in organic and inorganic samples by the CIEMAT/NIST method

    International Nuclear Information System (INIS)

    Rodriguez Barquero, L.; Grau Malonda, A.; Los Arcos Merino, J.M.; Grau Carles, A.

    1994-01-01

    The liquid scintillation counting standardization of organic and inorganic samples of ''125 I by the CIEMAT/NIST method using five different scintillators is described. The discrepancies between experimental and computed efficiencies are lower than 1.4% and 1.7%, for inorganic and organic samples, respectively, in the interval 421-226 of quenching parameter. Both organic and inorganic solutions have been standardized in terms of activity concentration to an overall uncertainty of 0.76%

  3. Liquid scintillation counting standardization of 125I in organic and inorganic samples by the CIEMAT/NIST method

    International Nuclear Information System (INIS)

    Rodriguez Barquero, L.; Grau Malonda, A.; Los Arcos Merino, J. M.; Grau Carles, A.

    1994-01-01

    The liquid scintillation counting standardization of organic and inorganic samples of ''I25I by the CIEMAT/NIST method using five different scintillators is described. The discrepancies between experimental and computed efficiencies are lower than 1.4% and 1.7%, for inorganic and organic samples, respectively, in the interval 421-226 of quenching parameter. Both organic and inorganic solutions have been standardized in terms of activity concentration to an overall uncertainty of 0.76%. (Author) 14 refs

  4. Microfabrication of biocompatible hydrogels by proton beam writing

    Science.gov (United States)

    Nagasawa, Naotsugu; Kimura, Atsushi; Idesaki, Akira; Yamada, Naoto; Koka, Masashi; Satoh, Takahiro; Ishii, Yasuyuki; Taguchi, Mitsumasa

    2017-10-01

    Functionalization of biocompatible materials is expected to be widely applied in biomedical engineering and regenerative medicine fields. Hydrogel has been expected as a biocompatible scaffold which support to keep an organ shape during cell multiplying in regenerative medicine. Therefore, it is important to understanding a surface microstructure (minute shape, depth of flute) and a chemical characteristic of the hydrogel affecting the cell culture. Here, we investigate the microfabrication of biocompatible polymeric materials, such as the water-soluble polysaccharide derivatives hydroxypropyl cellulose and carboxymethyl cellulose, by use of proton beam writing (PBW). These polymeric materials were dissolved thoroughly in pure water using a planetary centrifugal mixer, and a sample sheet (1 mm thick) was formed on polyethylene terephthalate (PET) film. Crosslinking to form hydrogels was induced using a 3.0 MeV focused proton beam from the single-ended accelerator at Takasaki Ion Accelerators for Advanced Radiation Application. The aqueous samples were horizontally irradiated with the proton beam through the PET cover film, and then rinsed with deionized water. Microstructured hydrogels were obtained on the PET film using the PBW technique without toxic crosslinking reagents. Cell adhesion and proliferation on the microfabricated biocompatible hydrogels were investigated. Microfabrication of HPC and CMC by the use of PBW is expected to produce new biocompatible materials that can be applied in biological and medical applications.

  5. Biocompatibility of hydrogel-based scaffolds for tissue engineering applications.

    Science.gov (United States)

    Naahidi, Sheva; Jafari, Mousa; Logan, Megan; Wang, Yujie; Yuan, Yongfang; Bae, Hojae; Dixon, Brian; Chen, P

    2017-09-01

    Recently, understanding of the extracellular matrix (ECM) has expanded rapidly due to the accessibility of cellular and molecular techniques and the growing potential and value for hydrogels in tissue engineering. The fabrication of hydrogel-based cellular scaffolds for the generation of bioengineered tissues has been based on knowledge of the composition and structure of ECM. Attempts at recreating ECM have used either naturally-derived ECM components or synthetic polymers with structural integrity derived from hydrogels. Due to their increasing use, their biocompatibility has been questioned since the use of these biomaterials needs to be effective and safe. It is not surprising then that the evaluation of biocompatibility of these types of biomaterials for regenerative and tissue engineering applications has been expanded from being primarily investigated in a laboratory setting to being applied in the multi-billion dollar medicinal industry. This review will aid in the improvement of design of non-invasive, smart hydrogels that can be utilized for tissue engineering and other biomedical applications. In this review, the biocompatibility of hydrogels and design criteria for fabricating effective scaffolds are examined. Examples of natural and synthetic hydrogels, their biocompatibility and use in tissue engineering are discussed. The merits and clinical complications of hydrogel scaffold use are also reviewed. The article concludes with a future outlook of the field of biocompatibility within the context of hydrogel-based scaffolds. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Optimization of nanoparticulate indium tin oxide slurries for the manufacture of ultra-thin indium tin oxide coatings with the slot-die coating process

    International Nuclear Information System (INIS)

    Wegener, M.; Riess, K.; Roosen, A.

    2016-01-01

    This paper deals with the optimization of colloidal processing to achieve suitable nanoparticulate indium tin oxide (ITO) slurries for the production of sub-μm-thin ITO coatings with the slot die coating process. For application in printed electronics these ITO coatings, which are composite films consisting of nanoparticulate ITO and a polymeric binder, should offer high flexibility, transparency and electrical conductivity. To preserve their flexibility, the composite films are not subject to any heat treatment, instead they are used as deposited and dried. To achieve very good transparency and electrical conductivity at the same time, the slurries must exhibit excellent dispersivity to result in a dense particle packing during film formation and drying. To reduce materials costs, films with thicknesses of several 100 nm are of interest. Therefore, the slot-die technique was applied as a fast, pre-dosing technique to produce sub-μm-thin ITO/binder composite films. The resulting ITO/binder films were characterized with regard to their key properties such as total transmission and specific electrical resistance. With the colloidal optimization of ethanol- and water-based nanoparticulate ITO slurries using PVP and PVB as binders, it was possible to achieve films of 250 nm in thickness exhibiting high total transmission of ∝ 93 % and a low specific electrical resistance of ∝ 10 Ω.cm.

  7. Fabrication of palladium nanoparticles immobilized on an amine-functionalized ceramic membrane support using a nanoparticulate colloidal impregnation method with enhanced catalytic properties

    Energy Technology Data Exchange (ETDEWEB)

    Du, Yan; Chen, Rizhi [Nanjing Tech University, Nanjing (China)

    2015-09-15

    An efficient and reusable catalyst was developed by depositing palladium nanoparticles on an amine-functionalized ceramic membrane support using a nanoparticulate colloidal impregnation method. The as-prepared Pdloaded ceramic membrane support was characterized by XRD, SEM, EDS, TEM, XPS, ICP, and its catalytic properties were investigated in the liquid-phase p-nitrophenol hydrogenation. A comparative study was also made with the palladium nanoparticles deposited on an amine-functionalized ceramic membrane support by an impregnation-reduction method. The palladium nanoparticles could be homogeneously immobilized on the ceramic membrane support surface, and exhibited excellent catalytic performance in the p-nitrophenol hydrogenation. The catalytic activity of the Pdloaded ceramic membrane support prepared by the nanoparticulate colloidal impregnation method increased by 16.6% compared to that of impregnation-reduction method. In the nanoparticulate colloidal impregnation method, palladium nanoparticles were presynthesized, higher loading of Pd(0) could be obtained, resulting in better catalytic activity. The as-prepared Pd-loaded ceramic membrane support could be easily reused for several cycles without appreciable degradation of catalytic activity.

  8. Optimization of nanoparticulate indium tin oxide slurries for the manufacture of ultra-thin indium tin oxide coatings with the slot-die coating process

    Energy Technology Data Exchange (ETDEWEB)

    Wegener, M.; Riess, K.; Roosen, A. [Erlangen-Nuremberg Univ., Erlangen (Germany). Dept. of Materials Science, Glass and Ceramics

    2016-07-01

    This paper deals with the optimization of colloidal processing to achieve suitable nanoparticulate indium tin oxide (ITO) slurries for the production of sub-μm-thin ITO coatings with the slot die coating process. For application in printed electronics these ITO coatings, which are composite films consisting of nanoparticulate ITO and a polymeric binder, should offer high flexibility, transparency and electrical conductivity. To preserve their flexibility, the composite films are not subject to any heat treatment, instead they are used as deposited and dried. To achieve very good transparency and electrical conductivity at the same time, the slurries must exhibit excellent dispersivity to result in a dense particle packing during film formation and drying. To reduce materials costs, films with thicknesses of several 100 nm are of interest. Therefore, the slot-die technique was applied as a fast, pre-dosing technique to produce sub-μm-thin ITO/binder composite films. The resulting ITO/binder films were characterized with regard to their key properties such as total transmission and specific electrical resistance. With the colloidal optimization of ethanol- and water-based nanoparticulate ITO slurries using PVP and PVB as binders, it was possible to achieve films of 250 nm in thickness exhibiting high total transmission of ∝ 93 % and a low specific electrical resistance of ∝ 10 Ω.cm.

  9. Nanoparticulate zinc oxide as a coating material for orthopedic and dental implants.

    Science.gov (United States)

    Memarzadeh, Kaveh; Sharili, Amir S; Huang, Jie; Rawlinson, Simon C F; Allaker, Robert P

    2015-03-01

    Orthopedic and dental implants are prone to infection. In this study, we describe a novel system using zinc oxide nanoparticles (nZnO) as a coating material to inhibit bacterial adhesion and promote osteoblast growth. Electrohydrodynamic atomisation (EHDA) was employed to deposit mixtures of nZnO and nanohydroxyapatite (nHA) onto the surface of glass substrates. Nano-coated substrates were exposed to Staphylococcus aureus suspended in buffered saline or bovine serum to determine antimicrobial activity. Our results indicate that 100% nZnO and 75% nZnO/25% nHA composite-coated substrates have significant antimicrobial activity. Furthermore, osteoblast function was explored by exposing cells to nZnO. UMR-106 cells exposed to nZnO supernatants showed minimal toxicity. Similarly, MG-63 cells cultured on nZnO substrates did not show release of TNF-α and IL-6 cytokines. These results were reinforced by both proliferation and differentiation studies which revealed that a substrate coated with exclusively nZnO is more efficient than composite surface coatings. Finally, electron and light microscopy, together with immunofluorescence staining, revealed that all cell types tested, including human mesenchymal cell (hMSC), were able to maintain normal cell morphology when adhered onto the surface of the nano-coated substrates. Collectively, these findings indicate that nZnO can, on its own, provide an optimal coating for future bone implants that are both antimicrobial and biocompatible. © 2014 Wiley Periodicals, Inc.

  10. Tailoring NIST Security Controls for the Ground System: Selection and Implementation -- Recommendations for Information System Owners

    Science.gov (United States)

    Takamura, Eduardo; Mangum, Kevin

    2016-01-01

    . Certain protective measures for the general enterprise may not be as efficient within the ground segment. This is what the authors have concluded through observations and analysis of patterns identified from the various security assessments performed on NASA missions such as MAVEN, OSIRIS-REx, New Horizons and TESS, to name a few. The security audits confirmed that the framework for managing information system security developed by the National Institute of Standards and Technology (NIST) for the federal government, and adopted by NASA, is indeed effective. However, the selection of the technical, operational and management security controls offered by the NIST model - and how they are implemented - does not always fit the nature and the environment where the ground system operates in even though there is no apparent impact on mission success. The authors observed that unfit controls, that is, controls that are not necessarily applicable or sufficiently effective in protecting the mission systems, are often selected to facilitate compliance with security requirements and organizational expectations even if the selected controls offer minimum or non-existent protection. This paper identifies some of the standard security controls that can in fact protect the ground system, and which of them offer little or no benefit at all. It offers multiple scenarios from real security audits in which the controls are not effective without, of course, disclosing any sensitive information about the missions assessed. In addition to selection and implementation of controls, the paper also discusses potential impact of recent legislation such as the Federal Information Security Modernization Act (FISMA) of 2014 - aimed at the enterprise - on the ground system, and offers other recommendations to Information System Owners (ISOs).

  11. Cysteine modified polyaniline films improve biocompatibility for two cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Yslas, Edith I., E-mail: eyslas@exa.unrc.edu.ar [Departamento de Biología Molecular, Universidad Nacional de Río Cuarto, Agencia Postal Nro3, X580BYA Río Cuarto (Argentina); Cavallo, Pablo; Acevedo, Diego F.; Barbero, César A. [Departamento de Química, Universidad Nacional de Río Cuarto, Agencia Postal Nro3, X580BYA Río Cuarto (Argentina); Rivarola, Viviana A. [Departamento de Biología Molecular, Universidad Nacional de Río Cuarto, Agencia Postal Nro3, X580BYA Río Cuarto (Argentina)

    2015-06-01

    This work focuses on one of the most exciting application areas of conjugated conducting polymers, which is cell culture and tissue engineering. To improve the biocompatibility of conducting polymers we present an easy method that involves the modification of the polymer backbone using L-cysteine. In this publication, we show the synthesis of polyaniline (PANI) films supported onto Polyethylene terephthalate (PET) films, and modified using cysteine (PANI-Cys) in order to generate a biocompatible substrate for cell culture. The PANI-Cys films are characterized by Fourier Transform infrared and UV–visible spectroscopy. The changes in the hydrophilicity of the polymer films after and before the modification were tested using contact angle measurements. After modification the contact angle changes from 86° ± 1 to 90° ± 1, suggesting a more hydrophylic surface. The adhesion properties of LM2 and HaCaT cell lines on the surface of PANI-Cys films in comparison with tissue culture plastic (TCP) are studied. The PANI-Cys film shows better biocompatibility than PANI film for both cell lines. The cell morphologies on the TCP and PANI-Cys film were examined by florescence and Atomic Force Microscopy (AFM). Microscopic observations show normal cellular behavior when PANI-Cys is used as a substrate of both cell lines (HaCaT and LM2) as when they are cultured on TCP. The ability of these PANI-Cys films to support cell attachment and growth indicates their potential use as biocompatible surfaces and in tissue engineering. - Highlights: • A new surface PANI-Cys was produced on films of polyethylene terephthalate. • The relationship between surface characteristics and biocompatibility is analyzed. • The PANI-Cys film presents good biocompatibility for two cell lines.

  12. Accident Analysis for the NIST Research Reactor Before and After Fuel Conversion

    Energy Technology Data Exchange (ETDEWEB)

    Baek J.; Diamond D.; Cuadra, A.; Hanson, A.L.; Cheng, L-Y.; Brown, N.R.

    2012-09-30

    Postulated accidents have been analyzed for the 20 MW D2O-moderated research reactor (NBSR) at the National Institute of Standards and Technology (NIST). The analysis has been carried out for the present core, which contains high enriched uranium (HEU) fuel and for a proposed equilibrium core with low enriched uranium (LEU) fuel. The analyses employ state-of-the-art calculational methods. Three-dimensional Monte Carlo neutron transport calculations were performed with the MCNPX code to determine homogenized fuel compositions in the lower and upper halves of each fuel element and to determine the resulting neutronic properties of the core. The accident analysis employed a model of the primary loop with the RELAP5 code. The model includes the primary pumps, shutdown pumps outlet valves, heat exchanger, fuel elements, and flow channels for both the six inner and twenty-four outer fuel elements. Evaluations were performed for the following accidents: (1) control rod withdrawal startup accident, (2) maximum reactivity insertion accident, (3) loss-of-flow accident resulting from loss of electrical power with an assumption of failure of shutdown cooling pumps, (4) loss-of-flow accident resulting from a primary pump seizure, and (5) loss-of-flow accident resulting from inadvertent throttling of a flow control valve. In addition, natural circulation cooling at low power operation was analyzed. The analysis shows that the conversion will not lead to significant changes in the safety analysis and the calculated minimum critical heat flux ratio and maximum clad temperature assure that there is adequate margin to fuel failure.

  13. Biocompatible Nanoengineering of Graphene based Materials for Sensor Applications

    DEFF Research Database (Denmark)

    Halder, Arnab

    Personalized healthcare and diagnostics is one of the most active areas of research in both academia and industry. Point-of-care sensing devices for monitoring and regulating from simple ions to large complex molecules are essential in our everyday life. These simple and inexpensive devices permit...... for novel glucose biosensing. In the next step, the pre-synthesized biocompatible graphene was functionalized with a redox active molecule, ferrocene. The as synthesized redox active and biocompatible graphene was further functionalized with enzymes and used for glucose and cholesterol biosensing. Finally...

  14. [Study on biocompatibility of MIM 316L stainless steel].

    Science.gov (United States)

    Wang, Guohui; Zhu, Shaihong; Li, Yiming; Zhao, Yanzhong; Zhou, Kechao; Huang, Boyun

    2007-04-01

    This study was aimed to evaluate the biocompatibility of metal powder injection molding (MIM) 316L stainless steel. The percentage of S-period cells was detected by flow cytometry after L929 cells being incubated with extraction of MIM 316L stainless steel, and titanium implant materials for clinical application were used as control. In addition, both materials were implanted in animals and the histopathological evaluations were carried out. The statistical analyses show that there are no significant differences between the two groups (P > 0.05), which demonstrate that MIM 316L stainless steel has good biocompatibility.

  15. Synthesis of biocompatible polymers by plasma

    International Nuclear Information System (INIS)

    Colin O, E.

    2007-01-01

    In this work biocompatible polymers were synthesized by plasma based on pyrrole, ethyleneglycol and allylamine. These monomers are biologically important because they contain oxygen and nitrogen in their structure and they form bonding like; N-H, C-N, C-O and O-H that are also in the human system. The polymers were synthesized with splendor electric discharges to 13.5 MHz, among 10 and 100 W, resistive coupling, pressure of 10 -1 mbar and 180 minutes of reaction. The interaction of the biological systems with biomaterials depends in many cases of the properties that present the surfaces, because the rough and/or porous surfaces favor the adherence of cells. The results indicate that the ruggedness of the polymers can be controlled with the synthesis energy, since when modifying it flat and/or rough surfaces they are obtained. The compatibility of water with other solutions that it is a form of increasing the adhesion of cells with biopolymers. The affinity with water and solutions is evaluated calculating the contact angle of the polymers surface with drops of concentration solutions and similar composition to the extracellular liquid of the spinal marrow of the human body. The solutions that were proven were based on NaCl, NaCl-MgSO 4 , and a mixture Krebs-Ringer that has chemical composition and similar concentration to that of the fluids of the spinal marrow. In the Poly pyrrole (PPy)/Polyethyleneglycol (PEG) copolymer, the biggest angles corresponded to the Krebs-Ringer solution, in the interval of 18 to 14 degrees and those lowest to the NaCl solution, of 14.5 at 11 degrees. The Poly allylamine had the more high values with water in the interval of 16.5 to 12.5 degrees and those lowest with the NaCl solution, of 13 at 9.5 degrees. On the other hand, in the derived polymers of pyrrole the more high values corresponded to the treatment with water, until 37, and those lowest to the NaCl-MgSO 4 solution, up to 10. The solutions where participated NaCl its produced

  16. Polyvinylidene Fluoride Micropore Membranes as Solid-Phase Extraction Disk for Preconcentration of Nanoparticulate Silver in Environmental Waters.

    Science.gov (United States)

    Zhou, Xiao-Xia; Lai, Yu-Jian; Liu, Rui; Li, Sha-Sha; Xu, Jing-Wen; Liu, Jing-Fu

    2017-12-05

    Efficient separation and preconcentration of trace nanoparticulate silver (NAg) from large-volume environmental waters is a prerequisite for reliable analysis and therefore understanding the environmental processes of silver nanoparticles (AgNPs). Herein, we report the novel use of polyvinylidene fluoride (PVDF) filter membrane for disk-based solid phase extraction (SPE) of NAg in 1 L of water samples with the disk-based SPE system, which consists of a syringe pump and a syringe filter holder to embed the filter membrane. While the PVDF membrane can selectively adsorb NAg in the presence of Ag + , aqueous solution of 2% (m/v) FL-70 is found to efficiently elute NAg. Analysis of NAg is performed following optimization of filter membrane and elution conditions with an enrichment factor of 1000. Additionally, transmission electron microscopy (TEM), UV-vis spectroscopy, and size-exclusion chromatography coupled with ICP-MS (SEC-ICP-MS) analysis showed that the extraction gives rise to no change in NAg size or shape, making this method attractive for practical applications. Furthermore, feasibility of the protocol is verified by applying it to extract NAg in four real waters with recoveries of 62.2-80.2% at 0.056-0.58 μg/L spiked levels. This work will facilitate robust studies of trace NAg transformation and their hazard assessments in the environment.

  17. Thermal hysteresis kinetic effects of spin crossover nanoparticulated systems studied by FORC diagram method on an Ising-like model

    International Nuclear Information System (INIS)

    Atitoaie, Alexandru; Stoleriu, Laurentiu; Tanasa, Radu; Stancu, Alexandru; Enachescu, Cristian

    2016-01-01

    The scientific community is manifesting a high research interest on spin crossover compounds and their recently synthesized nanoparticles, due to their various appealing properties, such as the bistability between a diamagnetic low spin state and a paramagnetic high spin state (HS), inter-switchable by temperature or pressure changes, light irradiation or magnetic field. The utility of these compounds showing hysteresis covers a broad area of applications, from the development of more efficient designs of temperature and pressure sensors to automotive and aeronautic industries and even a new type of molecular actuators. We are proposing in this work a study regarding the kinetic effects and the distribution of reversible and irreversible components on the thermal hysteresis of spin crossover nanoparticulated systems. We are considering here tridimensional systems with different sizes and also systems of nanoparticles with a Gaussian size distribution. The correlations between the kinetics of the thermal hysteresis, the distributions of sizes and intermolecular interactions and the transition temperature distributions were established by using the FORC (First Order Reversal Curves) method using a Monte Carlo technique within an Ising-like system.

  18. Complement activation as a bioequivalence issue relevant to the development of generic liposomes and other nanoparticulate drugs

    International Nuclear Information System (INIS)

    Szebeni, Janos; Storm, Gert

    2015-01-01

    Liposomes are known to activate the complement (C) system, which can lead in vivo to a hypersensitivity syndrome called C activation-related pseudoallergy (CARPA). CARPA has been getting increasing attention as a safety risk of i.v. therapy with liposomes, whose testing is now recommended in bioequivalence evaluations of generic liposomal drug candidates. This review highlights the adverse consequences of C activation, the unique symptoms of CARPA triggered by essentially all i.v. administered liposomal drugs, and the various features of vesicles influencing this adverse immune effect. For the case of Doxil, we also address the mechanism of C activation and the opsonization vs. long circulation (stealth) paradox. In reviewing the methods of assessing C activation and CARPA, we delineate the most sensitive porcine model and an algorithm for stepwise evaluation of the CARPA risk of i.v. liposomes, which are proposed for standardization for preclinical toxicology evaluation of liposomal and other nanoparticulate drug candidates. - Highlights: • Outlining of difficulties in generic development of liposomal drugs. • New regulatory requirements to evaluate CARPA in preclinical studies. • Review of complement activation by liposomes and its adverse consequences (CARPA). • Assays of C activation in vitro and CARPA in vivo, with the porcine test in focus. • Decision tree how to handle the risk of CARPA assessed by a battery of tests.

  19. Revisiting the Fundamentals in the Design and Control of Nanoparticulate Colloids in the Frame of Soft Chemistry1

    Science.gov (United States)

    Uskoković, Vuk

    2013-01-01

    This review presents thoughts on some of the fundamental features of conceptual models applied in the design of fine particles in the frames of colloid and soft chemistry. A special emphasis is placed on the limitations of these models, an acknowledgment of which is vital in improving their intricacy and effectiveness in predicting the outcomes of the corresponding experimental settings. Thermodynamics of self-assembly phenomena illustrated on the examples of protein assembly and micellization is analyzed in relation to the previously elaborated thesis that each self-assembly in reality presents a co-assembly, since it implies a mutual reorganization of the assembling system and its immediate environment. Parameters used in the design of fine particles by precipitation are discussed while referring to solubility product, various measures of supersaturation levels, induction time, nucleation and crystal growth rates, interfacial energies, and the Ostwald–Lussac law of phases. Again, the main drawbacks and inadequacies of using the aforementioned parameters in tailoring the materials properties in a soft and colloidal chemical setting were particularly emphasized. The basic and practical limitations of zeta-potential analyses, routinely used to stabilize colloidal dispersions and initiate specific interactions between soft chemical entities, were also outlined. The final section of the paper reiterates the unavoidable presence of practical qualitative models in the design and control of nanoparticulate colloids, which is supported by the overwhelming complexity of quantitative relationships that govern the processes of their formation and assembly. PMID:24490052

  20. Revisiting the Fundamentals in the Design and Control of Nanoparticulate Colloids in the Frame of Soft Chemistry.

    Science.gov (United States)

    Uskoković, Vuk

    2013-10-01

    This review presents thoughts on some of the fundamental features of conceptual models applied in the design of fine particles in the frames of colloid and soft chemistry. A special emphasis is placed on the limitations of these models, an acknowledgment of which is vital in improving their intricacy and effectiveness in predicting the outcomes of the corresponding experimental settings. Thermodynamics of self-assembly phenomena illustrated on the examples of protein assembly and micellization is analyzed in relation to the previously elaborated thesis that each self-assembly in reality presents a co-assembly, since it implies a mutual reorganization of the assembling system and its immediate environment. Parameters used in the design of fine particles by precipitation are discussed while referring to solubility product, various measures of supersaturation levels, induction time, nucleation and crystal growth rates, interfacial energies, and the Ostwald-Lussac law of phases. Again, the main drawbacks and inadequacies of using the aforementioned parameters in tailoring the materials properties in a soft and colloidal chemical setting were particularly emphasized. The basic and practical limitations of zeta-potential analyses, routinely used to stabilize colloidal dispersions and initiate specific interactions between soft chemical entities, were also outlined. The final section of the paper reiterates the unavoidable presence of practical qualitative models in the design and control of nanoparticulate colloids, which is supported by the overwhelming complexity of quantitative relationships that govern the processes of their formation and assembly.

  1. Complement activation as a bioequivalence issue relevant to the development of generic liposomes and other nanoparticulate drugs

    Energy Technology Data Exchange (ETDEWEB)

    Szebeni, Janos, E-mail: jszebeni2@gmail.com [Nanomedicine Research and Education Center, Semmelweis University, Budapest & SeroScience Ltd, Budapest (Hungary); Storm, Gert [Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Utrecht (Netherlands)

    2015-12-18

    Liposomes are known to activate the complement (C) system, which can lead in vivo to a hypersensitivity syndrome called C activation-related pseudoallergy (CARPA). CARPA has been getting increasing attention as a safety risk of i.v. therapy with liposomes, whose testing is now recommended in bioequivalence evaluations of generic liposomal drug candidates. This review highlights the adverse consequences of C activation, the unique symptoms of CARPA triggered by essentially all i.v. administered liposomal drugs, and the various features of vesicles influencing this adverse immune effect. For the case of Doxil, we also address the mechanism of C activation and the opsonization vs. long circulation (stealth) paradox. In reviewing the methods of assessing C activation and CARPA, we delineate the most sensitive porcine model and an algorithm for stepwise evaluation of the CARPA risk of i.v. liposomes, which are proposed for standardization for preclinical toxicology evaluation of liposomal and other nanoparticulate drug candidates. - Highlights: • Outlining of difficulties in generic development of liposomal drugs. • New regulatory requirements to evaluate CARPA in preclinical studies. • Review of complement activation by liposomes and its adverse consequences (CARPA). • Assays of C activation in vitro and CARPA in vivo, with the porcine test in focus. • Decision tree how to handle the risk of CARPA assessed by a battery of tests.

  2. Thermal hysteresis kinetic effects of spin crossover nanoparticulated systems studied by FORC diagram method on an Ising-like model

    Energy Technology Data Exchange (ETDEWEB)

    Atitoaie, Alexandru, E-mail: atitoaie@phys-iasi.ro [Department. of Physics, “Alexandru Ioan Cuza” University, 700506 Iasi (Romania); National Institute of Research and Development for Technical Physics, Iasi (Romania); Stoleriu, Laurentiu [Department. of Physics, “Alexandru Ioan Cuza” University, 700506 Iasi (Romania); Tanasa, Radu [Department. of Physics, “Alexandru Ioan Cuza” University, 700506 Iasi (Romania); Department of Engineering, University of Cambridge, CB2 1PZ Cambridge (United Kingdom); Stancu, Alexandru; Enachescu, Cristian [Department. of Physics, “Alexandru Ioan Cuza” University, 700506 Iasi (Romania)

    2016-04-01

    The scientific community is manifesting a high research interest on spin crossover compounds and their recently synthesized nanoparticles, due to their various appealing properties, such as the bistability between a diamagnetic low spin state and a paramagnetic high spin state (HS), inter-switchable by temperature or pressure changes, light irradiation or magnetic field. The utility of these compounds showing hysteresis covers a broad area of applications, from the development of more efficient designs of temperature and pressure sensors to automotive and aeronautic industries and even a new type of molecular actuators. We are proposing in this work a study regarding the kinetic effects and the distribution of reversible and irreversible components on the thermal hysteresis of spin crossover nanoparticulated systems. We are considering here tridimensional systems with different sizes and also systems of nanoparticles with a Gaussian size distribution. The correlations between the kinetics of the thermal hysteresis, the distributions of sizes and intermolecular interactions and the transition temperature distributions were established by using the FORC (First Order Reversal Curves) method using a Monte Carlo technique within an Ising-like system.

  3. Biocompatibility studies of polyacrylonitrile membranes modified with carboxylated polyetherimide

    Energy Technology Data Exchange (ETDEWEB)

    Senthilkumar, S.; Rajesh, S.; Jayalakshmi, A.; Mohan, D., E-mail: mohantarun@gmail.com

    2013-10-15

    Poly (ether-imide) (PEI) was carboxylated and used as the hydrophilic modification agent for the preparation of polyacrylonitrile (PAN) membranes. Membranes were prepared with different blend compositions of PAN and CPEI by diffusion induced precipitation. The modified membranes were characterized by thermo gravimetric analysis (TGA), mechanical analysis, scanning electron microscopy (SEM) and contact angle measurement to understand the influence of CPEI on the properties of the membranes. The biocompatibility studies exhibited reduced plasma protein adsorption, platelet adhesion and thrombus formation on the modified membrane surface. The complete blood count (CBC) results of CPEI incorporated membranes showed stable CBC values and significant decrease in the complement activation were also observed. In addition to good cytocompatibility, monocytes cultured on these modified membranes exhibited improved functional profiles in 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide (MTT) assay. Thus it could be concluded that PAN/CPEI membranes with excellent biocompatibility can be useful for hemodialysis. Highlights: • Carboxylated PEI was prepared and utilized as hydrophilic modification agent. • CPEI incorporated into PAN to improved biocompatibility and cyto compatibility • Biocompatibility of membranes was correlated with morphology and hydrophilicity. • Antifouling studies of the PAN/CPEI membranes was studied by BSA as model foulant.

  4. Polyaniline cryogels: Biocompatibility of novel conducting macroporous material

    Czech Academy of Sciences Publication Activity Database

    Humpolíček, P.; Radaszkiewicz, K. A.; Capáková, Z.; Pacherník, J.; Bober, Patrycja; Kašpárková, V.; Rejmontová, P.; Lehocký, M.; Ponížil, P.; Stejskal, Jaroslav

    2018-01-01

    Roč. 8, 09 January (2018), s. 1-12, č. článku 135. ISSN 2045-2322 R&D Projects: GA ČR(CZ) GA17-05095S Institutional support: RVO:61389013 Keywords : polyaniline * cryogel * biocompatibility Subject RIV: CD - Macromolecular Chemistry OBOR OECD: Polymer science Impact factor: 4.259, year: 2016

  5. Heating ability and biocompatibility study of silica-coated magnetic ...

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 38; Issue 6. Heating ability and biocompatibility study of silica-coated magnetic nanoparticles as heating mediators for magnetic hyperthermia and magnetically triggered drug delivery systems. Meysam Soleymani Mohammad Edrissi. Volume 38 Issue 6 October 2015 ...

  6. Novel Development of Biocompatible Coatings for Bone Implants

    Directory of Open Access Journals (Sweden)

    Nicholas Yue Hou

    2015-10-01

    Full Text Available Prolonged life expectancy also results in an increased need for high-performance orthopedic implants. It has been shown that a compromised tissue-implant interface could lead to adverse immune-responses and even the dislodging of the implant. To overcome these obstacles, our research team has been seeking ways to decrease the risk of faulty tissue-implant interfaces by improving the biocompatibility and the osteo-inductivity of conventional orthopedic implants using ultrafine particle coatings. These particles were enriched with various bioactive additives prior to coating, and the coated biomaterial surfaces exhibited significantly increased biocompatibility and osteoinductivity. Physical assessments firstly confirmed the proper incorporation of the bioactive additives after examining their surface chemical composition. Then, in vitro assays demonstrated the biocompatibility and osteo-inductivity of the coated surfaces by studying the morphology of attached cells and their mineralization abilities. In addition, by quantifying the responses, activities and gene expressions, cellular evaluations confirmed the positive effects of these polymer based bioactive coatings. Consequently, the bioactive ultrafine polymer particles demonstrated their ability in improving the biocompatibility and osteo-inductivity of conventional orthopedic implants. As a result, our research team hope to apply this technology to the field of orthopedic implants by making them more effective medical devices through decreasing the risk of implant-induced immune responses and the loosening of the implant.

  7. Biocompatibility of Bletilla striata Microspheres as a Novel Embolic Agent

    Directory of Open Access Journals (Sweden)

    ShiHua Luo

    2015-01-01

    Full Text Available We have prepared Chinese traditional herb Bletilla striata into microspheres as a novel embolic agent for decades. The aim of this study was to evaluate the biocompatibility of Bletilla striata microspheres (BSMs. After a thermal test of BSMs in vitro, the cell biocompatibility of BSMs was investigated in mouse fibroblasts and human umbilical vein endothelial cells using the methyl tetrazolium (MTT assay. In addition, blood biocompatibility was evaluated. In vivo intramuscular implantation and renal artery embolization in rabbits with BSMs were used to examine the inflammatory response. The experimental rabbits did not develop any fever symptoms after injection of BSMs, and BSMs exhibited no cytotoxicity in cultured mouse fibroblasts and human umbilical vein endothelial cells. Additionally, BSMs exhibited high compatibility with red blood cells and no hemolysis activity. Intramuscular implantation with BSMs resulted in a gradually lessened mild inflammatory reaction that disappeared after eight weeks. The occlusion of small renal vessels was associated with a mild perivascular inflammatory reaction without significant renal and liver function damage. In conclusion, we believe that BSMs exhibit high biocompatibility and are a promising embolic agent.

  8. Liquid scintillation counting standardization of 125I in organic and inorganic samples by the CIEMAT/NIST method; Calibracion por centelleo liquido del 125I en muestras inorganicas y organicas, mediante el metodo CIEMAT/NIST

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez Barquero, L.; Grau Malonda, A.; Los Arcos Merino, J. M.; Grau Carles, A.

    1994-07-01

    The liquid scintillation counting standardization of organic and inorganic samples of ''I25I by the CIEMAT/NIST method using five different scintillators is described. The discrepancies between experimental and computed efficiencies are lower than 1.4% and 1.7%, for inorganic and organic samples, respectively, in the interval 421-226 of quenching parameter. Both organic and inorganic solutions have been standardized in terms of activity concentration to an overall uncertainty of 0.76%. (Author) 14 refs.

  9. A Liquid Deuterium Cold Neutron Source for the NIST Research Reactor - Conceptual Design

    International Nuclear Information System (INIS)

    Williams, R. E.; Middleton, M.; Kopetka, P.; Rowe, J. M.; Brand, P. C.

    2013-01-01

    The NBSR is a 20 MW research reactor operated by the NIST Center for Neutron Research (NCNR) as a neutron source providing beams of thermal and cold neutrons for research in materials science, fundamental physics and nuclear chemistry. A large, 550 mm diameter beam port was included in the design for the installation of a cold neutron source, and the NCNR has been steadily improving its cold neutron facilities for more than 25 years. Monte Carlo Simulations have shown that a liquid deuterium (LD 2 ) source will provide a gain of 1.5 to 2 for neutron wavelengths between 4 A and 10 A with respect to the existing liquid hydrogen cold source. The conceptual design for the LD 2 source will be presented. To achieve these gains, a large volume (35 litres) of LD 2 is required. The expected nuclear heat load in this moderator and vessel is 4000 W. A new, 7 kW helium refrigerator is being built to provide the necessary cooling capacity; it will be completely installed and tested early in 2014. The source will operate as a naturally circulating thermosiphon, very similar to the horizontal cold source in the High Flux Reactor at the Institut Laue-Langevin (ILL) in Grenoble. A condenser will be mounted on the reactor face about 2 m above the source providing the gravitational head to supply the source with LD 2 . The system will always be open to a 16 m3 ballast tank to store the deuterium at 500 kPa when the refrigerator is not operating, and providing a passively safe response to a refrigerator trip. It is expected the source will operate at 23 K, the boiling point of LD 2 at 100 kPa. All components will be surrounded by a blanket of helium to prevent the possibility of creating a flammable mixture of deuterium and air. A design for the cryostat assembly, consisting of the moderator chamber, vacuum jacket, helium containment and a heavy water cooling water jacket, has been completed and sent to procurement to solicit bids. It is expected that installation of the LD 2 cold

  10. Retrospective Analysis of NIST Standard Reference Material 1450, Fibrous Glass Board, for Thermal Insulation Measurements

    Science.gov (United States)

    Zarr, Robert R; Heckert, N Alan; Leigh, Stefan D

    2014-01-01

    Thermal conductivity data acquired previously for the establishment of Standard Reference Material (SRM) 1450, Fibrous Glass Board, as well as subsequent renewals 1450a, 1450b, 1450c, and 1450d, are re-analyzed collectively and as individual data sets. Additional data sets for proto-1450 material lots are also included in the analysis. The data cover 36 years of activity by the National Institute of Standards and Technology (NIST) in developing and providing thermal insulation SRMs, specifically high-density molded fibrous-glass board, to the public. Collectively, the data sets cover two nominal thicknesses of 13 mm and 25 mm, bulk densities from 60 kg·m−3 to 180 kg·m−3, and mean temperatures from 100 K to 340 K. The analysis repetitively fits six models to the individual data sets. The most general form of the nested set of multilinear models used is given in the following equation: λ(ρ,T)=a0+a1ρ+a2T+a3T3+a4e−(T−a5a6)2where λ(ρ,T) is the predicted thermal conductivity (W·m−1·K−1), ρ is the bulk density (kg·m−3), T is the mean temperature (K) and ai (for i = 1, 2, … 6) are the regression coefficients. The least squares fit results for each model across all data sets are analyzed using both graphical and analytic techniques. The prevailing generic model for the majority of data sets is the bilinear model in ρ and T. λ(ρ,T)=a0+a1ρ+a2T One data set supports the inclusion of a cubic temperature term and two data sets with low-temperature data support the inclusion of an exponential term in T to improve the model predictions. Physical interpretations of the model function terms are described. Recommendations for future renewals of SRM 1450 are provided. An Addendum provides historical background on the origin of this SRM and the influence of the SRM on external measurement programs. PMID:26601034

  11. A Liquid Deuterium Cold Neutron Source for the NIST Research Reactor - Conceptual Design

    Energy Technology Data Exchange (ETDEWEB)

    Williams, R. E.; Middleton, M.; Kopetka, P.; Rowe, J. M.; Brand, P. C. [NIST Center for Neutron Research, Gaithersburg (United States)

    2013-07-01

    The NBSR is a 20 MW research reactor operated by the NIST Center for Neutron Research (NCNR) as a neutron source providing beams of thermal and cold neutrons for research in materials science, fundamental physics and nuclear chemistry. A large, 550 mm diameter beam port was included in the design for the installation of a cold neutron source, and the NCNR has been steadily improving its cold neutron facilities for more than 25 years. Monte Carlo Simulations have shown that a liquid deuterium (LD{sub 2}) source will provide a gain of 1.5 to 2 for neutron wavelengths between 4 A and 10 A with respect to the existing liquid hydrogen cold source. The conceptual design for the LD{sub 2} source will be presented. To achieve these gains, a large volume (35 litres) of LD{sub 2} is required. The expected nuclear heat load in this moderator and vessel is 4000 W. A new, 7 kW helium refrigerator is being built to provide the necessary cooling capacity; it will be completely installed and tested early in 2014. The source will operate as a naturally circulating thermosiphon, very similar to the horizontal cold source in the High Flux Reactor at the Institut Laue-Langevin (ILL) in Grenoble. A condenser will be mounted on the reactor face about 2 m above the source providing the gravitational head to supply the source with LD{sub 2}. The system will always be open to a 16 m3 ballast tank to store the deuterium at 500 kPa when the refrigerator is not operating, and providing a passively safe response to a refrigerator trip. It is expected the source will operate at 23 K, the boiling point of LD{sub 2} at 100 kPa. All components will be surrounded by a blanket of helium to prevent the possibility of creating a flammable mixture of deuterium and air. A design for the cryostat assembly, consisting of the moderator chamber, vacuum jacket, helium containment and a heavy water cooling water jacket, has been completed and sent to procurement to solicit bids. It is expected that

  12. Biocompatibility of acrylic resin after being soaked in sodium hypochlorite

    Directory of Open Access Journals (Sweden)

    Nike Hendrijatini

    2009-06-01

    Full Text Available Background: Acrylic resin as basic material for denture will stay on oral mucosa for a very long time. The polymerization of acrylic resin can be performed by conventional method and microwave, both produce different residual monomer at different toxicity. Acrylic resin can absorb solution, porous and possibly absorb disinfectantt as well, that may have toxic reaction with the tissue. Sodium Hypochlorite as removable denture disinfectant can be expected to be biocompatible to human body. The problem is how biocompatible acrylic resin which has been processed by conventional method and microwave method after being soaked in sodium hypochlorite solution. Purpose: The aim of this study was to understand in vitro biocompatibility of acrylic resin which has polimerated by conventional method and microwave after being soaked in sodium hypochlorite using tissue culture. Methods: Four groups of acrylic resin plate were produced, the first group was acrylic resin plate with microwave polymeration and soaked in sodium hypochlorite, the second group was acrylic resin plate with microwave polymeration but not soaked, the thirdwas one with conventional method and soaked and the last group was one with conventional method but not soaked, and in 1 control group. Each group consists of 7 plates. Biocompatibility test was performed in-vitro on each material using fibroblast tissue culture (BHK-21 cell-line. Result: The percentage between living cells and dead cells from materials which was given acrylic plate was wounted. The data was analyzed statistically with T test. Conclusion: The average value of living cells is higher in acrylic resin poimerization using microwave method compared to conventional method, in both soaked and non soaked (by sodium hypochlorite group. This means that sodium hypochlorite 0.5% was biocompatible to the mouth mucosa as removable denture disinfectant for 10 minutes soaking and washing afterwards.

  13. Comparison of elemental quantity by PIXE and ICP-MS and/or ICP-AES for NIST standards

    International Nuclear Information System (INIS)

    Saitoh, K.; Sera, K.; Gotoh, T.; Nakamura, M.

    2002-01-01

    Urban particulate matter (SRM 1648), Buffalo River sediment (SRM 2704) and pine needle (SRM 1575) standard reference materials prepared by the National Institute of Standards and Technology (NIST, USA) were analyzed by three multi-element analysis methods, i.e., particle induced X-ray emission (PIXE), inductively coupled plasma-mass spectrometry (ICP-MS) and inductively coupled plasma-atomic emission spectrometry (ICP-AES); values determined by those analysis methods were compared with certified and/or non-certified values of NIST samples. Values determined by PIXE were 70-120% relative to certified and/or non-certified values of NIST samples except for Co in the urban particulate matter, for V and Co in Buffalo River sediment and for Ni and Br in the pine needles samples. In particular, Al, K, Ca, Cr, Mn, Fe, Cu, Zn and Pb were 85-110% in all samples. On the other hand, Na and Fe values determined by ICP-MS were very much different from the certified values in all samples, but the other elements were 70-120%. As for ICP-AES, all elements except for Na were 80-100% in all samples. Comparing the values determined by PIXE and those determined by ICP-MS and/or ICP-AES, there was a slight difference between the samples, but the range was 75-120% except for Na, V, Fe and Co determined by ICP-MS and Na determined by ICP-AES, which was generally consistent with PIXE

  14. The Atomic Spectroscopy Data Center at the National Institute of Standards and Technology (NIST). Activities 1999-2001

    International Nuclear Information System (INIS)

    Wiese, W.L.

    2001-01-01

    Dr. Wiese discussed activities and trends at the NIST Data Centers in the last two years. He reviewed priorities covered in data work and reviewed the bibliographic and numerical databases now on their website. The Atomic Spectra Database (ASD) is their main atomic physics web database and this is a reference data, e.g., the wavelength data is generally accurate to six significant figures and transition probability data is certain to with less than ±50%. Dr. Wiese also reported about recent work on the compilation and evaluation of data for wavelengths and energy levels of elements Cu, Kr and Mo (and several others), which are fusion relevant

  15. The Atomic Spectroscopy Data Center at the National Institute of Standards and Technology (NIST). Activities 1999-2001

    Energy Technology Data Exchange (ETDEWEB)

    Wiese, W L

    2001-12-01

    Dr. Wiese discussed activities and trends at the NIST Data Centers in the last two years. He reviewed priorities covered in data work and reviewed the bibliographic and numerical databases now on their website. The Atomic Spectra Database (ASD) is their main atomic physics web database and this is a reference data, e.g., the wavelength data is generally accurate to six significant figures and transition probability data is certain to with less than {+-}50%. Dr. Wiese also reported about recent work on the compilation and evaluation of data for wavelengths and energy levels of elements Cu, Kr and Mo (and several others), which are fusion relevant.

  16. Nano-crystalline thin and nano-particulate thick TiO{sub 2} layer: Cost effective sequential deposition and study on dye sensitized solar cell characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Das, P.; Sengupta, D. [Centre for Advanced Materials Processing, CSIR-Central Mechanical Engineering Research Institute, Durgapur, 713209 West Bengal (India); CSIR-Central Mechanical Engineering Research Institute, Academy of Scientific and Innovative Research (AcSIR), Durgapur, 713209 West Bengal (India); Kasinadhuni, U. [Department of Engineering Physics, Bengal College of Engineering and Technology, Durgapur, West Bengal (India); Mondal, B. [Centre for Advanced Materials Processing, CSIR-Central Mechanical Engineering Research Institute, Durgapur, 713209 West Bengal (India); Mukherjee, K., E-mail: kalisadhanm@yahoo.com [Centre for Advanced Materials Processing, CSIR-Central Mechanical Engineering Research Institute, Durgapur, 713209 West Bengal (India)

    2015-06-15

    Highlights: • Thin TiO{sub 2} layer is deposited on conducting substrate using sol–gel based dip coating. • TiO{sub 2} nano-particles are synthesized using hydrothermal route. • Thick TiO{sub 2} particulate layer is deposited on prepared thin layer. • Dye sensitized solar cells are made using thin and thick layer based photo-anode. • Introduction of thin layer in particulate photo-anode improves the cell efficiency. - Abstract: A compact thin TiO{sub 2} passivation layer is introduced between the mesoporous TiO{sub 2} nano-particulate layer and the conducting glass substrate to prepare photo-anode for dye-sensitized solar cell (DSSC). In order to understand the effect of passivation layer, other two DSSCs are also developed separately using TiO{sub 2} nano-particulate and compact thin film based photo-anodes. Nano-particles are prepared using hydrothermal synthesis route and the compact passivation layer is prepared by simply dip coating the precursor sol prepared through wet chemical route. The TiO{sub 2} compact layer and the nano-particles are characterised in terms of their micro-structural features and phase formation behavior. It is found that introduction of a compact TiO{sub 2} layer in between the mesoporous TiO{sub 2} nano-particulate layer and the conducting substrate improves the solar to electric conversion efficiency of the fabricated cell. The dense thin passivation layer is supposed to enhance the photo-excited electron transfer and prevent the recombination of photo-excited electrons.

  17. Nano-crystalline thin and nano-particulate thick TiO2 layer: Cost effective sequential deposition and study on dye sensitized solar cell characteristics

    International Nuclear Information System (INIS)

    Das, P.; Sengupta, D.; Kasinadhuni, U.; Mondal, B.; Mukherjee, K.

    2015-01-01

    Highlights: • Thin TiO 2 layer is deposited on conducting substrate using sol–gel based dip coating. • TiO 2 nano-particles are synthesized using hydrothermal route. • Thick TiO 2 particulate layer is deposited on prepared thin layer. • Dye sensitized solar cells are made using thin and thick layer based photo-anode. • Introduction of thin layer in particulate photo-anode improves the cell efficiency. - Abstract: A compact thin TiO 2 passivation layer is introduced between the mesoporous TiO 2 nano-particulate layer and the conducting glass substrate to prepare photo-anode for dye-sensitized solar cell (DSSC). In order to understand the effect of passivation layer, other two DSSCs are also developed separately using TiO 2 nano-particulate and compact thin film based photo-anodes. Nano-particles are prepared using hydrothermal synthesis route and the compact passivation layer is prepared by simply dip coating the precursor sol prepared through wet chemical route. The TiO 2 compact layer and the nano-particles are characterised in terms of their micro-structural features and phase formation behavior. It is found that introduction of a compact TiO 2 layer in between the mesoporous TiO 2 nano-particulate layer and the conducting substrate improves the solar to electric conversion efficiency of the fabricated cell. The dense thin passivation layer is supposed to enhance the photo-excited electron transfer and prevent the recombination of photo-excited electrons

  18. Occurrence and behaviour of dissolved, nano-particulate and micro-particulate iron in waste waters and treatment systems: new insights from electrochemical analysis.

    Science.gov (United States)

    Matthies, R; Aplin, A C; Horrocks, B R; Mudashiru, L K

    2012-04-01

    Cyclic-, Differential Pulse- and Steady-state Microdisc Voltammetry (CV, DPV, SMV) techniques have been used to quantify the occurrence and fate of dissolved Fe(ii)/Fe(iii), nano-particulate and micro-particulate iron over a 12 month period in a series of net-acidic and net-alkaline coal mine drainages and passive treatment systems. Total iron in the mine waters is typically 10-100 mg L(-1), with values up to 2100 mg L(-1). Between 30 and 80% of the total iron occurs as solid phase, of which 20 to 80% is nano-particulate. Nano-particulate iron comprises 20 to 70% of the nominally "dissolved" (i.e. sedimentation are the only processes required to remove solid phase iron, these data have important implications for the generation or consumption of acidity during water treatment. In most waters, the majority of truly dissolved iron occurs as Fe(ii) (average 64 ± 22%). Activities of Fe(ii) do not correlate with pH and geochemical modelling shows that no Fe(ii) mineral is supersaturated. Removal of Fe(ii) must proceed via oxidation and hydrolysis. Except in waters with pH waters are generally supersaturated with respect to ferrihydrite and schwertmannite, and are not at redox equilibrium, indicating the key role of oxidation and hydrolysis kinetics on water treatment. Typically 70-100% of iron is retained in the treatment systems. Oxidation, hydrolysis, precipitation, coagulation and sedimentation occur in all treatment systems and - independent of water chemistry and the type of treatment system - hydroxides and oxyhydroxysulfates are the main iron sinks. The electrochemical data thus reveal the rationale for incomplete iron retention in individual systems and can thus inform future design criteria. The successful application of this low cost and rapid electrochemical method demonstrates its significant potential for real-time, on-site monitoring of iron-enriched waters and may in future substitute traditional analytical methods.

  19. Differential sensitivity of light-harnessing photosynthetic events in wheat and sunflower to exogenously applied ionic and nanoparticulate silver.

    Science.gov (United States)

    Pardha-Saradhi, P; Shabnam, Nisha; Sharmila, P; Ganguli, Ashok K; Kim, Hyunook

    2018-03-01

    Potential impacts of inevitable leaks of silver nanoparticles (AgNPs) into environment on human beings need attention. Owing to the vitality of photosynthesis in maintaining life and ecosystem functioning, impacts of exogenously applied nanoparticulate and Ag + on photosystem (PS)II function, which governs overall photosynthesis, in wheat and sunflower were evaluated. PSII efficiency and related Chl a fluorescence kinetics of these two plants remained unaffected by AgNPs. However, Ag + caused a significant decline in the PSII activity and related fluorescence steps in wheat, but not in sunflower. Electron flow between Q A and PQ pool was found most sensitive to Ag + . Number of active reaction centers, electron transport, trapping of absorbed light for photochemistry, and performance index declined, while dissipation of absorbed light energy as heat significantly increased in wheat exposed to Ag + . Total antioxidant activity in sunflower was least affected by both Ag and AgNPs. In contrast, in the case of wheat, the antioxidant activity was declined by Ag + but not by AgNPs. Further, the amount of silver absorbed by plants exposed to Ag + was higher than that absorbed by plants exposed to AgNPs. While wheat retained majority of Ag in its roots, sunflower showed major Ag accumulation in stem. Photosynthetic events in sunflower, unlike wheat, were least affected as no detectable Ag levels was recorded in their leaves. Our findings revealed that AgNPs seemed non/less-toxic to light harnessing photosynthetic machinery of wheat, compared to Ag + . Photosynthetic events in sunflower were not affected by Ag + , either, as its translocation to leaves was restricted. Copyright © 2017. Published by Elsevier Ltd.

  20. BIOCOMPATIBLE FLUORESCENT MICROSPHERES: SAFE PARTICLES FOR MATERIAL PENETRATION STUDIES

    Energy Technology Data Exchange (ETDEWEB)

    Farquar, G; Leif, R

    2009-07-15

    Biocompatible polymers with hydrolyzable chemical bonds have been used to produce safe, non-toxic fluorescent microspheres for material penetration studies. The selection of polymeric materials depends on both biocompatibility and processability, with tailored fluorescent properties depending on specific applications. Microspheres are composed of USFDA-approved biodegradable polymers and non-toxic fluorophores and are therefore suitable for tests where human exposure is possible. Micropheres were produced which contain unique fluorophores to enable discrimination from background aerosol particles. Characteristics that affect dispersion and adhesion can be modified depending on use. Several different microsphere preparation methods are possible, including the use of a vibrating orifice aerosol generator (VOAG), a Sono-Tek atomizer, an emulsion technique, and inkjet printhead. Applications for the fluorescent microspheres include challenges for biodefense system testing, calibrants for biofluorescence sensors, and particles for air dispersion model validation studies.

  1. DENTAL MATERIAL BIOCOMPATIBILITY: A CROSS-SECTIONAL STUDY

    Directory of Open Access Journals (Sweden)

    Carmen SAVIN

    2017-06-01

    Full Text Available The aim of this study is to assess the knowledge of the students in the Faculty of Dental Medicine of Iasi on the biocompatibility of the dental materials used in current practice. To this end, we elaborated our own questionnaire, including 10 questions to which 92 students from the last 2 years of study answered. The questionnaire cotains assertions on the potential toxic reactions of the most frequently used dental materials. The students answered correctly to the questions related to the biocompatibility of certain dental materials, such as glass-ionomer cement and calcium hydroxide, and they recognized that allergic reactions determined by acrylic resins may occur. We also noticed the lack of knowledge referring to the irreversible modifications produced by the tooth whitening substances on the enamel and dentin, as well as to the side effects produced by dental amalgam.

  2. Biocompatible Synthetic and Semi-synthetic Polymers - A Patent Analysis.

    Science.gov (United States)

    Ranganathan, Balu; Miller, Charles; Sinskey, Anthony

    2018-01-01

    Bioengineering has come of ages by setting up spare parts manufacturing units to be used in human body such as invasive implants and interventional controlled drug delivery in vivo systems. As a matter of fact patients on basis of their fiscal strength have the option to undergo prophylactic tactical manoeuvre for longer life spans. In this sphere of invasive implants, biocompatible polymer implants are a state of the art cutting edge technology with outstanding innovations leading to number of very successful start-up companies with a plethora of patent portfolios. From 2000 onwards, patent filings and grants for biocompatible polymers are expanding. Currently definition of biocompatibility is quite ambiguous with respect to the use of FDA approved polymeric materials. This article analysed patent portfolios for the trend patterns of prolific biocompatible polymers for capitalization and commercialization in the forthcoming years. Pair Bulk Data (PBD) portal was used to mine patent portfolios. In this patent preliminary analysis report, patents from 2000 to 2015 were evaluated using 317(c) filings, grants and classifications data for poly(vinyl alcohol) (PVA), poly(glycolic acid) (PGA), poly(hydroxyalkanoates) (PHAs) and poly(lactic acid) (PLA). This patent portfolio preliminary analysis embarks into patent analysis for New Product Development (NPD) for corporate R&D investment managerial decisions and on government advocacy for federal funding which is decisive for developmental advances. An in-depth patent portfolio investigation with return of investment (RoI) is in the pipeline. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  3. Biomolecular modification of zirconia surfaces for enhanced biocompatibility

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, Shih-Kuang; Hsu, Hsueh-Chuan [Department of Dental Technology and Materials Science, Central Taiwan University of Science and Technology, Taichung 40601, Taiwan, ROC (China); Ho, Wen-Fu [Department of Chemical and Materials Engineering, National University of Kaohsiung, Taiwan, ROC (China); Yao, Chun-Hsu [Department of Biomedical Imaging and Radiological Science, China Medical University, Taichung 40402, Taiwan, ROC (China); Chang, Pai-Ling [Taoyuan General Hospital, Taoyuan 33004, Taiwan, ROC (China); Wu, Shih-Ching, E-mail: scwu@ctust.edu.tw [Department of Dental Technology and Materials Science, Central Taiwan University of Science and Technology, Taichung 40601, Taiwan, ROC (China)

    2014-12-01

    Yttria-tetragonal zirconia polycrystal (Y-TZP) is a preferred biomaterial due to its good mechanical properties. In order to improve the biocompatibility of zirconia, RGD-peptide derived from extracellular matrix proteins was employed to modify the surface of Y-TZP to promote cell adhesion in this study. The surface of Y-TZP specimens was first modified using a hydrothermal method for different lengths of time. The topographies of modified Y-TZP specimens were analyzed by contact angle, XRD, FTIR, AFM, and FE-SEM. The mechanical properties were evaluated using Vickers hardness and three point bending strength. Then, the RGD-peptide was immobilized on the surface of the Y-TZP by chemical treatment. These RGD-peptide immobilized Y-TZP specimens were characterized by FTIR and AFM, and then were cocultured with MG-63 osteoblast cells for biocompatibility assay. The cell morphology and proliferation were evaluated by SEM, WST-1, and ALP activity assay. The XRD results indicated that the phase transition, from tetragonal phase to monoclinic phase, was increased with a longer incubation time of hydrothermal treatment. However, there were no significant differences in mechanical strengths after RGD-peptide was successfully grafted onto the Y-TZP surface. The SEM images showed that the MG-63 cells appeared polygonal, spindle-shaped, and attached on the RGD-peptide immobilized Y-TZP. The proliferation and cellular activities of MG-63 cells on the RGD-peptide immobilized Y-TZP were better than that on the unmodified Y-TZP. From the above results, the RGD-peptide can be successfully grafted onto the hydrothermal modified Y-TZP surface. The RGD-peptide immobilized Y-TZP can increase cell adhesion, and thus, improve the biocompatibility of Y-TZP. - Highlights: • Covalent bonding between peptide and Y-TZP was proposed. • Stable biomimetic structures produced on the surface of zirconia. • The biocompatibility was improved.

  4. Biocompatibility of orthopaedic implants on bone forming cells

    OpenAIRE

    Kapanen, A. (Anita)

    2002-01-01

    Abstract Reindeer antler was studied for its possible use as a bone implant material. A molecular biological study showed that antler contains a growth factor promoting bone formation. Ectopic bone formation assay showed that antler is not an equally effective inducer as allogenic material. Ectopic bone formation assay was optimised for biocompatibility studies of orthopaedic NiTi implants. Ti-6Al-4V and stainless steel were used as reference materials. The assay...

  5. Biocompatibility of Polyhydroxybutyrate Microspheres: in vitro and in vivo Evaluation

    OpenAIRE

    Shishatskaya, Ekaterina I.; Voinova, Olga N.; Goreva, Anastasya V.; Mogilnaya, Olga A.; Volova, Tatiana G.

    2008-01-01

    Microspheres have been prepared from the resorbable linear polyester of β-hydroxybutyric acid (polyhydroxybutyrate, PHB) by the solvent evaporation technique and investigated in vitro and in vivo. Biocompatibility of the microspheres has been proved in tests in the culture of mouse fibroblast cell line NIH 3Т3 and in experiments on intramuscular implantation of the microspheres to Wistar rats for 3 months. Tissue response to the implantation of polymeric microspheres has been found to consist...

  6. Primary standardization of {sup 152}Eu by 4πβ(LS) - γ (NaI) coincidence counting and CIEMAT-NIST method

    Energy Technology Data Exchange (ETDEWEB)

    Ruzzarin, A., E-mail: aruzzarin@nuclear.ufrj.br [Coordenacao de Pos-Graduacao e Pesquisa de Engenharia (LIN/PEN/COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Lab. de Instrumentação Nuclear; Cruz, P.A.L. da; Ferreira Filho, A.L.; Iwahara, A. [Instituto de Radioproteção e Dosimetria (LNMRI/IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil). Lab. Nacional de Metrologia das Radiações Ionizantes

    2017-07-01

    The 4πβ-γ coincidence counting and CIEMAT/NIST liquid scintillation method were used in the standardization of a solution of {sup 152}Eu. In CIEMAT/NIST method, measurements were performed in a Liquid Scintillation Counter model Wallac 1414. In the 4πβ-γ coincidence counting, the solution was standardized using a coincidence method with 'beta-efficiency extrapolation'. A simple 4πβ-γ coincidence system was used, with acrylic scintillation cell coupled to two coincident photomultipliers at 180° each other and NaI(Tl) detector. The activity concentrations obtained were 156.934 ± 0.722 and 157.403 ± 0.113 kBq/g, respectively, for CIEMAT/NIST and 4πβ-γ coincidence counting measurement methods. (author)

  7. Synthesis, characterization and in vivo evaluation of biocompatible ferrogels

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Lopez, M.T., E-mail: modesto@ugr.es [Department of Applied Physics, University of Granada, Granada (Spain); Instituto de Investigación Biosanitaria ibs.GRANADA, Granada (Spain); Rodriguez, I.A. [Instituto de Investigación Biosanitaria ibs.GRANADA, Granada (Spain); Department of Histology (Tissue Engineering Group), University of Granada, Granada (Spain); Rodriguez-Arco, L. [Department of Applied Physics, University of Granada, Granada (Spain); Instituto de Investigación Biosanitaria ibs.GRANADA, Granada (Spain); Carriel, V. [Instituto de Investigación Biosanitaria ibs.GRANADA, Granada (Spain); Department of Histology (Tissue Engineering Group), University of Granada, Granada (Spain); Bonhome-Espinosa, A.B. [Department of Applied Physics, University of Granada, Granada (Spain); Instituto de Investigación Biosanitaria ibs.GRANADA, Granada (Spain); Campos, F. [Instituto de Investigación Biosanitaria ibs.GRANADA, Granada (Spain); Department of Histology (Tissue Engineering Group), University of Granada, Granada (Spain); Zubarev, A. [Department of Mathematical Physics, Ural Federal University, Ekaterinburg (Russian Federation); Duran, J.D.G. [Department of Applied Physics, University of Granada, Granada (Spain); Instituto de Investigación Biosanitaria ibs.GRANADA, Granada (Spain)

    2017-06-01

    A hydrogel is a 3-D network of polymer chains in which water is the dispersion medium. Hydrogels have found extensive applications in the biomedical field due to their resemblance to living tissues. Furthermore, hydrogels can be endowed with exceptional properties by addition of synthetic materials. For example, magnetic field-sensitive gels, called ferrogels, are obtained by embedding magnetic particles in the polymer network. Novel living tissues with unique magnetic field-sensitive properties were recently prepared by 3-D cell culture in biocompatible ferrogels. This paper critically reviews the most recent progress and perspectives in their synthesis, characterization and biocompatibility evaluation. Optimization of ferrogels for this novel application requires low-density, strongly magnetic, multi-domain particles. Interestingly, the rheological properties of the resulting ferrogels in the absence of field were largely enhanced with respect to nonmagnetic hydrogels, which can only be explained by the additional cross-linking imparted by the embedded magnetic particles. Remarkably, rheological measurements under an applied magnetic field demonstrated that ferrogels presented reversibly tunable mechanical properties, which constitutes a unique advantage with respect to nonmagnetic hydrogels. In vivo evaluation of ferrogels showed good biocompatibility, with only some local inflammatory response, and no particle migration or damage to distant organs.

  8. Biocompatibility of Chitosan Carriers with Application in Drug Delivery

    Directory of Open Access Journals (Sweden)

    Ana Grenha

    2012-09-01

    Full Text Available Chitosan is one of the most used polysaccharides in the design of drug delivery strategies for administration of either biomacromolecules or low molecular weight drugs. For these purposes, it is frequently used as matrix forming material in both nano and micron-sized particles. In addition to its interesting physicochemical and biopharmaceutical properties, which include high mucoadhesion and a great capacity to produce drug delivery systems, ensuring the biocompatibility of the drug delivery vehicles is a highly relevant issue. Nevertheless, this subject is not addressed as frequently as desired and even though the application of chitosan carriers has been widely explored, the demonstration of systems biocompatibility is still in its infancy. In this review, addressing the biocompatibility of chitosan carriers with application in drug delivery is discussed and the methods used in vitro and in vivo, exploring the effect of different variables, are described. We further provide a discussion on the pros and cons of used methodologies, as well as on the difficulties arising from the absence of standardization of procedures.

  9. Biocompatibility of two experimental scaffolds for regenerative endodontics

    Directory of Open Access Journals (Sweden)

    Dephne Jack Xin Leong

    2016-05-01

    Full Text Available Objectives The biocompatibility of two experimental scaffolds for potential use in revascularization or pulp regeneration was evaluated. Materials and Methods One resilient lyophilized collagen scaffold (COLL, releasing metronidazole and clindamycin, was compared to an experimental injectable poly(lactic-co-glycolic acid scaffold (PLGA, releasing clindamycin. Human dental pulp stem cells (hDPSCs were seeded at densities of 1.0 × 104, 2.5 × 104, and 5.0 × 104. The cells were investigated by light microscopy (cell morphology, MTT assay (cell proliferation and a cytokine (IL-8 ELISA test (biocompatibility. Results Under microscope, the morphology of cells coincubated for 7 days with the scaffolds appeared healthy with COLL. Cells in contact with PLGA showed signs of degeneration and apoptosis. MTT assay showed that at 5.0 × 104 hDPSCs, COLL demonstrated significantly higher cell proliferation rates than cells in media only (control, p < 0.01 or cells co-incubated with PLGA (p < 0.01. In ELISA test, no significant differences were observed between cells with media only and COLL at 1, 3, and 6 days. Cells incubated with PLGA expressed significantly higher IL-8 than the control at all time points (p < 0.01 and compared to COLL after 1 and 3 days (p < 0.01. Conclusions The COLL showed superior biocompatibility and thus may be suitable for endodontic regeneration purposes.

  10. Biocompatibility of root filling pastes used in primary teeth.

    Science.gov (United States)

    Lima, C C B; Conde Júnior, A M; Rizzo, M S; Moura, R D; Moura, M S; Lima, M D M; Moura, L F A D

    2015-05-01

    To evaluate the biocompatibility of two pastes designed to fill the root canals of primary teeth. A study group of 54 mice received subcutaneous tissue implants of polyethylene tubes containing CTZ or calcium hydroxide paste or, as a negative control, empty tubes. Biocompatibility was evaluated on days 7, 21 and 63, yielding a total of nine groups of six animals each. Following the experimental intervals, the implant areas were removed and subjected to histologic processing. After the tissues were stained with HE and Masson trichrome, two pathologists performed a histologic analysis of the samples in a blinded manner. Collagen fibre formation, tissue thickness and inflammatory cell infiltration were analysed qualitatively. Quantitative morphometry was performed for the thickness, perimeter length and tissue area of the region in direct contact with the open tube. anova with the Tukey post-test and Kruskal-Wallis analysis followed by Dunn's post-test, with significance established as P tube decreased during the experimental periods in all groups. The CTZ and calcium hydroxide pastes demonstrated biocompatibility with subcutaneous tissue in this experimental model. © 2014 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  11. In Vitro Biocompatibility of Endodontic Sealers Incorporating Antibacterial Nanoparticles

    Directory of Open Access Journals (Sweden)

    Itzhak Abramovitz

    2012-01-01

    Full Text Available The main cause of endodontic disease is bacteria. Disinfection is presently achieved by cleaning the root canal system prior to obturation. Following setting, root canal filling is devoid of any antibacterial effect. Endodontic sealers with antimicrobial properties yet biocompatible may enhance root canal therapy. For this purpose, quaternized polyethylenimine nanoparticles which are antibacterial polymers, biocompatible, nonvolatile, and stable may be used. The aim of the present study was to examine the impact of added QPEI on the cytotoxicity of AH Plus, Epiphany, and GuttaFlow endodontic sealers. The effect of these sealers on the proliferation of RAW 264.7 macrophage and L-929 fibroblast cell lines and on the production of TNFα from macrophages was examined. Cell vitality was evaluated using a colorimetric XTT assay. The presence of cytokines was determined by two-site ELISA. Results show that QPEI at 1% concentration does not impair the basic properties of the examined sealers in both macrophages and fibroblast cell lines. Incorporation of 1% QPEI into the sealers did not impair their biocompatibility. QPEI is a potential clinical candidate to improve antibacterial activity of sealers without increasing cytotoxicity.

  12. A green chemistry approach for synthesizing biocompatible gold nanoparticles

    Science.gov (United States)

    Gurunathan, Sangiliyandi; Han, JaeWoong; Park, Jung Hyun; Kim, Jin-Hoi

    2014-05-01

    Gold nanoparticles (AuNPs) are a fascinating class of nanomaterial that can be used for a wide range of biomedical applications, including bio-imaging, lateral flow assays, environmental detection and purification, data storage, drug delivery, biomarkers, catalysis, chemical sensors, and DNA detection. Biological synthesis of nanoparticles appears to be simple, cost-effective, non-toxic, and easy to use for controlling size, shape, and stability, which is unlike the chemically synthesized nanoparticles. The aim of this study was to synthesize homogeneous AuNPs using pharmaceutically important Ganoderma spp . We developed a simple, non-toxic, and green method for water-soluble AuNP synthesis by treating gold (III) chloride trihydrate (HAuCl4) with a hot aqueous extract of the Ganoderma spp . mycelia. The formation of biologically synthesized AuNPs (bio-AuNPs) was characterized by ultraviolet (UV)-visible absorption spectroscopy, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), energy dispersive X-ray (EDX), dynamic light scattering (DLS), and transmission electron microscopy (TEM). Furthermore, the biocompatibility of as-prepared AuNPs was evaluated using a series of assays, such as cell viability, lactate dehydrogenase leakage, and reactive oxygen species generation (ROS) in human breast cancer cells (MDA-MB-231). The color change of the solution from yellow to reddish pink and strong surface plasmon resonance were observed at 520 nm using UV-visible spectroscopy, and that indicated the formation of AuNPs. DLS analysis revealed the size distribution of AuNPs in liquid solution, and the average size of AuNPs was 20 nm. The size and morphology of AuNPs were investigated using TEM. The biocompatibility effect of as-prepared AuNPs was investigated in MDA-MB-231 breast cancer cells by using various concentrations of AuNPs (10 to 100 μM) for 24 h. Our findings suggest that AuNPs are non-cytotoxic and biocompatible. To the best of our knowledge

  13. Preparation and LSC Standardization of ''89Sr (DNP) Using the CIEMAT/NIST Method; Preparacion del ''89Sr(DNP) y calibracion por centelleo liquido, mediante el metodo CIEMAT/NIST

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez Barquero, L.; Los Arcos Merino, J. M.; Grau Malonda, A.

    1994-07-01

    A procedure for preparation of liquid scintillation counting samples of the strontium DNP complex, labelled with ''89Sr, is described, the chemical quench, the counting stability and spectral evolution of this compound is studied in six scintillators, Toluene, Toluene-alcohol, Dioxane-naphthalene, HiSafe II, Ultima- Gold and Instagel. The liquid scintillation standardization of 89Sr-DNP by the CIEMAT/NIST method, using HiSafe II and Ultima-Gold scintillators, has been carried out. The discrepancies between experimental and computed efficiencies are lower than 0.38% and 0.48%, respectively. The solution has been standardized in terms of activity concentration to an overall uncertainty of 0,38%. (Author) 10 refs.

  14. Effect of nano-particulate sol-gel coatings on the oxidation resistance of high-strength steel alloys during the press-hardening process

    Energy Technology Data Exchange (ETDEWEB)

    Yekehtaz, M.; Benfer, S.; Fuerbeth, W. [DECHEMA-Forschungsinstitut, Theodor-Heuss-Allee 25, D-60486 Frankfurt am Main (Germany); Klesen, C.; Bleck, W. [Institut fuer Eisenhuettenkunde der RWTH Aachen, Intzestrasse 1, D-52072 Aachen (Germany)

    2012-10-15

    The need for lighter constructional materials in automotive industries has increased the use of high-strength steel alloys. To enhance passenger's safety press hardening may be applied to steel parts. However, as the steel parts are heated up to 950 C during this process they have to be protected by some kind of coating against the intense oxide formation usually taking place. As the coating systems used so far all have certain disadvantages in this work the ability of nano-particulate thin coatings obtained by the sol-gel process to improve the oxidation resistance of 22MnB5 steel is investigated. The coatings obtained from three sols containing lithium aluminum silicate and potassium aluminum silicate showed the best performance against oxidation. The structural properties of the coating materials were characterized using different methods like XRD and differential thermal analysis. Comparison of the oxidation rate constants proved the ability of the coatings to protect against oxidation at temperatures up to 800 C. Press-hardening experiments in combination with investigations on the thermal shock resistance of the coated samples also showed the ability of the coatings to stay intact during press hardening with only slight spalling of the coatings in the bending areas. The absence of any secondary intermetallic phases and layer residues during laser beam welding experiments on coated samples proves the suitability of the nano-particulate coatings for further industrial processing. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  15. Application of x-ray nano-particulate markers for the visualization of intermediate layers and interfaces using scanning electron microscopy

    Science.gov (United States)

    Bessudnova, Nadezda O.; Bilenko, David I.; Zakharevich, Andrey M.

    2012-03-01

    In this study the methodology of biological sample preparation for dental research using SEM/EDX has been elaborated. (1)The original cutting equipment supplied with 3D user-controlled sample fixation and an adjustable cooling system has been designed and evaluated. (2) A new approach to the root dentine drying procedure has been developed to preserve structure peculiarities of root dentine. (3) A novel adhesive system with embedded X-Ray nanoparticulate markers has been designed. (4)The technique allowing for visualization of bonding resins, interfaces and intermediate layers between tooth hard tissues and restorative materials of endodontically treated teeth using the X-ray nano-particulate markers has been developed and approved. These methods and approaches were used to compare the objective depth of penetration of adhesive systems of different generations in root dentine. It has been shown that the depth of penetration in dentine is less for adhesive systems of generation VI in comparison with bonding resins of generation V, which is in agreement with theoretical evidence. The depth of penetration depends on the correlation between the direction of dentinal tubules, bonding resin delivery and gravity.

  16. High accuracy determination of trace elements in NIST standard reference materials by isotope dilution ICP-MS

    International Nuclear Information System (INIS)

    Paulsen, P.J.; Beary, E.S.

    1996-01-01

    At NIST (National Institute of Standards and Technology), ICP-MS ID (inductively coupled mass spectrometry isotope dilution) has been used to certify a wide range of elements in a variety of materials with high accuracy. Both the chemical preparation and instrumental procedures are simpler than with other ID mass spectrometric techniques. The ICP-MS has picogram/ml detection limits for most elements using fixed operating parameters. Chemical separations are required only to remove an interference (from molecular ions as well as isobaric atoms), or to pre-concentrate the analyte. For example, chemical separations were required for the analysis of SRM 2711, Montana II Soil, but not for boron in peach leaves, SRM 1547.(3 refs., 3 tabs., 2 figs

  17. Osteogenic and antimicrobial nanoparticulate calcium phosphate and poly-(D,L-lactide-co-glycolide) powders for the treatment of osteomyelitis

    International Nuclear Information System (INIS)

    Uskoković, Vuk; Hoover, Charles; Vukomanović, Marija; Uskoković, Dragan P.; Desai, Tejal A.

    2013-01-01

    Development of a material for simultaneous sustained and localized delivery of antibiotics and induction of spontaneous regeneration of hard tissues affected by osteomyelitis stands for an important clinical need. In this work, a comparative analysis of the bacterial and osteoblastic cell response to two different nanoparticulate carriers of clindamycin, an antibiotic commonly prescribed in the treatment of bone infection, one composed of calcium phosphate and the other comprising poly-(D,L-lactide-co-glycolide)-coated calcium phosphate, was carried out. Three different non-cytotoxic phases of calcium phosphate, exhibiting dissolution and drug release profiles in the range of one week to two months to one year, respectively, were included in the analysis: monetite, amorphous calcium phosphate and hydroxyapatite. Spherical morphologies and narrow size distribution of both types of nanopowders were confirmed in transmission and scanning electron microscopic analyses. The antibiotic-containing powders exhibited sustained drug release contingent upon the degradation rate of the carrier. Assessment of the antibacterial performance of the antibiotic-encapsulated powders against Staphylococcus aureus, the most common pathogen isolated from infected bone, yielded satisfactory results both in broths and on blood agar plates for all the analyzed powders. In contrast, no cytotoxic behavior was detected upon the incubation of the antibiotic powders with the osteoblastic MC3T3-E1 cell line for up to three weeks. The cells were shown to engage in a close contact with the antibiotic-containing particles, irrespective of their internal or surface phase composition, polymeric or mineral. At the same time, both types of particles upregulated the expression of osteogenic markers osteocalcin, osteopontin, Runx2 and protocollagen type I, suggesting their ability to promote osteogenesis and enhance remineralization of the infected site in addition to eliminating the bacterial source of

  18. Osteogenic and antimicrobial nanoparticulate calcium phosphate and poly-(D,L-lactide-co-glycolide) powders for the treatment of osteomyelitis

    Energy Technology Data Exchange (ETDEWEB)

    Uskoković, Vuk, E-mail: vuk21@yahoo.com [Therapeutic Micro and Nanotechnology Laboratory, Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA (United States); Hoover, Charles [Department of Cell and Tissue Biology, University of California, San Francisco, CA (United States); Vukomanović, Marija [Institute of Technical Sciences, Serbian Academy of Sciences and Arts, Belgrade (Serbia); Advanced Materials Department, Jožef Stefan Institute, Ljubljana (Slovenia); Uskoković, Dragan P. [Institute of Technical Sciences, Serbian Academy of Sciences and Arts, Belgrade (Serbia); Desai, Tejal A. [Therapeutic Micro and Nanotechnology Laboratory, Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA (United States)

    2013-08-01

    Development of a material for simultaneous sustained and localized delivery of antibiotics and induction of spontaneous regeneration of hard tissues affected by osteomyelitis stands for an important clinical need. In this work, a comparative analysis of the bacterial and osteoblastic cell response to two different nanoparticulate carriers of clindamycin, an antibiotic commonly prescribed in the treatment of bone infection, one composed of calcium phosphate and the other comprising poly-(D,L-lactide-co-glycolide)-coated calcium phosphate, was carried out. Three different non-cytotoxic phases of calcium phosphate, exhibiting dissolution and drug release profiles in the range of one week to two months to one year, respectively, were included in the analysis: monetite, amorphous calcium phosphate and hydroxyapatite. Spherical morphologies and narrow size distribution of both types of nanopowders were confirmed in transmission and scanning electron microscopic analyses. The antibiotic-containing powders exhibited sustained drug release contingent upon the degradation rate of the carrier. Assessment of the antibacterial performance of the antibiotic-encapsulated powders against Staphylococcus aureus, the most common pathogen isolated from infected bone, yielded satisfactory results both in broths and on blood agar plates for all the analyzed powders. In contrast, no cytotoxic behavior was detected upon the incubation of the antibiotic powders with the osteoblastic MC3T3-E1 cell line for up to three weeks. The cells were shown to engage in a close contact with the antibiotic-containing particles, irrespective of their internal or surface phase composition, polymeric or mineral. At the same time, both types of particles upregulated the expression of osteogenic markers osteocalcin, osteopontin, Runx2 and protocollagen type I, suggesting their ability to promote osteogenesis and enhance remineralization of the infected site in addition to eliminating the bacterial source of

  19. Exploring a Black Body Source as an Absolute Radiometric Calibration Standard and Comparison with a NIST Traced Lamp Standard

    Science.gov (United States)

    Green, Robert O.; Chrien, Thomas; Sarture, Chuck

    2001-01-01

    Radiometric calibration of the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) is required for the scientific research and application objectives pursued with the spectroscopic measurements. Specifically calibration is required for: inter-comparison of AVIRIS data measured at different locations and at different times; analysis of AVIRIS data with data measured by other instruments; and analysis of AVIRIS data in conjunction with computer models. The primary effect of radiometric calibration is conversion of AVIRIS instrument response values (digitized numbers, or DN) to units of absolute radiance. For example, a figure shows the instrument response spectrum measured by AVIRIS over a portion of Rogers Dry Lake, California, and another figure shows the same spectrum calibrated to radiance. Only the calibrated spectrum may be quantitatively analyzed for science research and application objectives. Since the initial development of the AVIRIS instrument-radiometric calibration has been based upon a 1000-W irradiance lamp with a calibration traced to the National Institute of Standards and Technology (NIST). There are several advantages to this irradiance-lamp calibration approach. First, the considerable effort of NIST backs up the calibration. Second, by changing the distance to the lamp, the output can closely span the radiance levels measured by AVIRIS. Third, this type of standard is widely used. Fourth, these calibrated lamps are comparatively inexpensive. Conversely, there are several disadvantages to this approach as well. First, the lamp is not a primary standard. Second, the lamp output characteristics may change in an unknown manner through time. Third, it is difficult to assess, constrain, or improve the calibration uncertainty delivered with the lamp. In an attempt to explore the effect and potentially address some of these disadvantages a set of analyses and measurements comparing an irradiance lamp with a black-body source have been completed

  20. Primary standardization of C-14 by means of CIEMAT/NIST, TDCR and 4πβ-γ methods

    International Nuclear Information System (INIS)

    Kuznetsova, Maria

    2016-01-01

    In this work, the primary standardization of "1"4C solution, which emits beta particles of maximum energy 156 keV, was made by means of three different methods: CIEMAT/NIST and TDCR (Triple To Double Coincidence Ratio) methods in liquid scintillation systems and the tracing method, in the 4πβ-γ coincidence system. TRICARB LSC (Liquid Scintillator Counting) system, equipped with two photomultipliers tubes, was used for CIEMAT/NIST method, using a "3H standard that emits beta particles with maximum energy of 18.7 keV, as efficiency tracing. HIDEX 300SL LSC system, equipped with three photomultipliers tubes, was used for TDCR method. Samples of "1"4C and "3H, for the liquid scintillator system, were prepared using three commercial scintillation cocktails, UltimaGold, Optiphase Hisafe3 and InstaGel-Plus, in order to compare the performance in the measurements. All samples were prepared with 15 mL scintillators, in glass vials with low potassium concentration. Known aliquots of radioactive solution were dropped onto the cocktail scintillators. In order to obtain the quenching parameter curve, a nitro methane carrier solution and 1 mL of distilled water were used. For measurements in the 4πβ-γ system, "6"0Co was used as beta gamma emitter. SCS (software coincidence system) was applied and the beta efficiency was changed by using electronic discrimination. The behavior of the extrapolation curve was predicted with code ESQUEMA, using Monte Carlo technique. The "1"4C activity obtained by the three methods applied in this work was compared and the results showed to be in agreement, within the experimental uncertainty. (author)

  1. Repeatability of magnetic resonance fingerprinting T1 and T2 estimates assessed using the ISMRM/NIST MRI system phantom.

    Science.gov (United States)

    Jiang, Yun; Ma, Dan; Keenan, Kathryn E; Stupic, Karl F; Gulani, Vikas; Griswold, Mark A

    2017-10-01

    The purpose of this study was to evaluate accuracy and repeatability of T 1 and T 2 estimates of a MR fingerprinting (MRF) method using the ISMRM/NIST MRI system phantom. The ISMRM/NIST MRI system phantom contains multiple compartments with standardized T 1 , T 2 , and proton density values. Conventional inversion-recovery spin echo and spin echo methods were used to characterize the T 1 and T 2 values in the phantom. The phantom was scanned using the MRF-FISP method over 34 consecutive days. The mean T 1 and T 2 values were compared with the values from the spin echo methods. The repeatability was characterized as the coefficient of variation of the measurements over 34 days. T 1 and T 2 values from MRF-FISP over 34 days showed a strong linear correlation with the measurements from the spin echo methods (R 2  = 0.999 for T 1 ; R 2  = 0.996 for T 2 ). The MRF estimates over the wide ranges of T 1 and T 2 values have less than 5% variation, except for the shortest T 2 relaxation times where the method still maintains less than 8% variation. MRF measurements of T 1 and T 2 are highly repeatable over time and across wide ranges of T 1 and T 2 values. Magn Reson Med 78:1452-1457, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  2. Synthesis of biocompatible polymers by plasma; Sintesis de polimeros biocompatibles por plasma

    Energy Technology Data Exchange (ETDEWEB)

    Colin O, E

    2007-07-01

    In this work biocompatible polymers were synthesized by plasma based on pyrrole, ethyleneglycol and allylamine. These monomers are biologically important because they contain oxygen and nitrogen in their structure and they form bonding like; N-H, C-N, C-O and O-H that are also in the human system. The polymers were synthesized with splendor electric discharges to 13.5 MHz, among 10 and 100 W, resistive coupling, pressure of 10{sup -1} mbar and 180 minutes of reaction. The interaction of the biological systems with biomaterials depends in many cases of the properties that present the surfaces, because the rough and/or porous surfaces favor the adherence of cells. The results indicate that the ruggedness of the polymers can be controlled with the synthesis energy, since when modifying it flat and/or rough surfaces they are obtained. The compatibility of water with other solutions that it is a form of increasing the adhesion of cells with biopolymers. The affinity with water and solutions is evaluated calculating the contact angle of the polymers surface with drops of concentration solutions and similar composition to the extracellular liquid of the spinal marrow of the human body. The solutions that were proven were based on NaCl, NaCl-MgSO{sub 4}, and a mixture Krebs-Ringer that has chemical composition and similar concentration to that of the fluids of the spinal marrow. In the Poly pyrrole (PPy)/Polyethyleneglycol (PEG) copolymer, the biggest angles corresponded to the Krebs-Ringer solution, in the interval of 18 to 14 degrees and those lowest to the NaCl solution, of 14.5 at 11 degrees. The Poly allylamine had the more high values with water in the interval of 16.5 to 12.5 degrees and those lowest with the NaCl solution, of 13 at 9.5 degrees. On the other hand, in the derived polymers of pyrrole the more high values corresponded to the treatment with water, until 37, and those lowest to the NaCl-MgSO{sub 4} solution, up to 10. The solutions where participated Na

  3. Discrepancy of sodium mass fraction determined by INAA in the NIST SRM1547 and SRM1515 reference materials and their certified values

    International Nuclear Information System (INIS)

    Kamenik, Jan; Kucera, Jan

    2015-01-01

    Determination of sodium content in NIST standard reference materials (SRM) SRM 1547 and SRM 1515 in recent years yielded values higher than NIST certified values. Similarly, increased values were published for SRM 1547 by several laboratories, however, published sodium values SRM 1515 are in general in agreement with the certified value. Additional analysis of SRM 1547 and SRM 1515 using NIST SRM 3152a Sodium Standard Solution as a calibrator confirmed increased Na values. Inhomogeneity indicating external contamination of the stock material was not found. Moreover, increased Na value was also determined for freshly opened bottle of SRM 1547 material. Analysis of the historical material A-2 from our archive, which is identical with SRM 1515 and was distributed by NIST prior to the SRM 1515 certification and stored in a polyethylene vial, yielded a value in agreement with the certified value. A hypothesis was formulated that sodium in SRM 1547 and SRM 1515 materials could have been increasing after certification, perhaps due to the release of sodium from the glass bottle. (author)

  4. CERT (registered trademark) Resilience Management Model (CERT (registered trademark)-RMM) V1.1: NIST Special Publication Crosswalk Version 2

    Science.gov (United States)

    2014-06-01

    27000 series, COBIT, the British Standards Institution’s BS 25999, and ISO 24762  includes quantitative process measurements that can be used to...the NIST special publications 800 series, the International Organization for Standards ( ISO ) and International Electrotechnical Commission (IEC

  5. Green chemistry approach for the synthesis of biocompatible graphene

    Science.gov (United States)

    Gurunathan, Sangiliyandi; Han, Jae Woong; Kim, Jin-Hoi

    2013-01-01

    Background Graphene is a single-atom thick, two-dimensional sheet of hexagonally arranged carbon atoms isolated from its three-dimensional parent material, graphite. One of the most common methods for preparation of graphene is chemical exfoliation of graphite using powerful oxidizing agents. Generally, graphene is synthesized through deoxygenation of graphene oxide (GO) by using hydrazine, which is one of the most widespread and strongest reducing agents. Due to the high toxicity of hydrazine, it is not a promising reducing agent in large-scale production of graphene; therefore, this study focused on a green or sustainable synthesis of graphene and the biocompatibility of graphene in primary mouse embryonic fibroblast cells (PMEFs). Methods Here, we demonstrated a simple, rapid, and green chemistry approach for the synthesis of reduced GO (rGO) from GO using triethylamine (TEA) as a reducing agent and stabilizing agent. The obtained TEA reduced GO (TEA-rGO) was characterized by ultraviolet (UV)–visible absorption spectroscopy, X-ray diffraction (XRD), particle size dynamic light scattering (DLS), scanning electron microscopy (SEM), Raman spectroscopy, and atomic force microscopy (AFM). Results The transition of graphene oxide to graphene was confirmed by UV–visible spectroscopy. XRD and SEM were used to investigate the crystallinity of graphene and the surface morphologies of prepared graphene respectively. The formation of defects further supports the functionalization of graphene as indicated in the Raman spectrum of TEA-rGO. Surface morphology and the thickness of the GO and TEA-rGO were analyzed using AFM. The presented results suggest that TEA-rGO shows significantly more biocompatibility with PMEFs cells than GO. Conclusion This is the first report about using TEA as a reducing as well as a stabilizing agent for the preparation of biocompatible graphene. The proposed safe and green method offers substitute routes for large-scale production of graphene

  6. A rheological and microscopical characterization of biocompatible ferrofluids

    International Nuclear Information System (INIS)

    Nowak, J.; Wolf, D.; Odenbach, S.

    2014-01-01

    There is an increasing interest in suspensions of magnetic nanoparticles in the biomedical area. Those ferrofluids are e.g. used for magnetic resonance imaging and emerging research focuses on employing the fluids for magnetic drug targeting or magnetic particle heating as a potential treatment for cancer. For these applications the knowledge of the suspensions' thermophysical properties is of major interest to guarantee a safe and effective application. Therefore the flow behavior cannot be neglected as it might significantly influence the execution of the aforementioned applications. In this experimental study two biocompatible ferrofluids were investigated. Rheological measurements were carried out using rotational rheometry. To allow an interpretation of the fluids' behavior the microscopic make-up was investigated using dynamic light scattering and transmission electron microscopy. Measurements of diluted ferrofluids were carried out as a first step to simulate the rheological behavior reflecting the concentration of magnetic nanoparticles found in blood flow for most biomedical applications of such fluids. The detected strong effects show the potential to significantly influence application and handling of the biocompatible ferrofluids in the medical area and should therefore be taken into account for further research as well as for the application of such fluids. - Highlights: • The rheology of biocompatible multicore ferrofluids is influenced by magnetic fields. • The flow curves can be described by the Herschel–Bulkley model. • A connection between the magnetoviscous effect and the particle size is found. • The strong magnetoviscous effect exists even if the fluids are diluted. • The connection between the effect and the dilution is mathematically described

  7. Ultrasound-assisted fabrication of a biocompatible magnetic hydroxyapatite.

    Science.gov (United States)

    Zhou, Gang; Song, Wei; Hou, Yongzhao; Li, Qing; Deng, Xuliang; Fan, Yubo

    2014-10-01

    This work describes the fabrication and characterization of a biocompatible magnetic hydroxyapatite (HA) using an ultrasound-assisted co-precipitation method. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), and transmission electron microscopy (TEM) were used to characterize the structure and chemical composition of the produced samples. The M-H loops of synthesized materials were traced using a vibrating sample magnetometer (VSM) and the biocompatibility was evaluated by cell culture and MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay. Furthermore, in vivo histopathological examinations were used to evaluate the potential toxicological effects of Fe₃O₄-HA composites on kidney of SD rats injected intraperitoneally with Fe₃O₄-HA particles. The results showed that magnetic iron oxide particles first replace OH ions of HA, which are parallel to the c axis, and then enter the HA crystal lattice which produces changes in the crystal surface of HA. Chemical bond interaction was observed between PO₄³⁻ groups of HA and iron ions of Fe₃O₄. The saturation magnetization (MS ) of Fe₃O₄-HA composites was 46.36 emu/g obtained from VSM data. Cell culture and MTT assays indicated that HA could affect the growth and proliferation of HEK-293 cells. This Fe₃O₄-HA composite produced no negative effects on cell morphology, viability, and proliferation and exhibited remarkable biocompatibility. Moreover, no inflammatory cell infiltration was observed in kidney histopathology slices. Therefore, this study succeeds to develop a Fe₃O₄-HA composite as a prospective biomagnetic material for future applications. © 2013 Wiley Periodicals, Inc.

  8. A capillary viscometer designed for the characterization of biocompatible ferrofluids

    Energy Technology Data Exchange (ETDEWEB)

    Nowak, J., E-mail: johannes.nowak@tu-dresden.de; Odenbach, S.

    2016-08-01

    Suspensions of magnetic nanoparticles are receiving a growing interest in biomedical research. These ferrofluids can, e.g., be used for the treatment of cancer, making use of the drug targeting principle or using an artificially induced heating. To enable a safe application the basic properties of the ferrofluids have to be well understood, including the viscosity of the fluids if an external magnetic field is applied. It is well known that the viscosity of ferrofluids rises if a magnetic field is applied, where the rise depends on shear rate and magnetic field strength. In case of biocompatible ferrofluids such investigations proved to be rather complicated as the experimental setup should be close to the actual application to allow justified predictions of the effects which have to be expected. Thus a capillary viscometer, providing a flow situation comparable to the flow in a blood vessel, has been designed. The glass capillary is exchangeable and different inner diameters can be used. The range of the shear rates has been adapted to the range found in the human organism. The application of an external magnetic field is enabled with two different coil setups covering the ranges of magnetic field strengths required on the one hand for a theoretical understanding of particle interaction and resulting changes in viscosity and on the other hand for values necessary for a potential biomedical application. The results show that the newly designed capillary viscometer is suitable to measure the magnetoviscous effect in biocompatible ferrofluids and that the results appear to be consistent with data measured with rotational rheometry. In addition, a strong change of the flow behaviour of a biocompatible ferrofluid was proven for ranges of the shear rate and the magnetic field strength expected for a potential biomedical application. - Highlights: • A capillary viscometer to characterize biocompatible ferrofluids is presented. • Shear rates and capillary diameters

  9. Biocompatible implants and methods of making and attaching the same

    Energy Technology Data Exchange (ETDEWEB)

    Rowley, Adrian P; Laude, Lucien D; Humayun, Mark S; Weiland, James D; Lotfi, Atoosa; Markland, Jr., Francis S

    2014-10-07

    The invention provides a biocompatible silicone implant that can be securely affixed to living tissue through interaction with integral membrane proteins (integrins). A silicone article containing a laser-activated surface is utilized to make the implant. One example is an implantable prosthesis to treat blindness caused by outer retinal degenerative diseases. The device bypasses damaged photoreceptors and electrically stimulates the undamaged neurons of the retina. Electrical stimulation is achieved using a silicone microelectrode array (MEA). A safe, protein adhesive is used in attaching the MEA to the retinal surface and assist in alleviating focal pressure effects. Methods of making and attaching such implants are also provided.

  10. Histological evaluation of biocompatibility of Cynoscion acoupa otoliths in rats

    OpenAIRE

    Bastos, Talita Santos; UNIT-Universidade Tiradentes/ ITP- Instituto de Tecnologia e Pesquisa; Oliveira, Clauberto Rodrigues de; UNIT-Universidade Tiradentes/ ITP- Instituto de Tecnologia e Pesquisa; Melo, Genecy Calado de; Santos, José Cleveilton dos; Rodrigues, Sheyla Alves; Xavier-Filho, Lauro; Albuquerque-Júnior, Ricardo Luiz Cavalcanti de

    2013-01-01

    The purpose of this study was to evaluate the biocompatibility of Cynoscion acoupa´s otoliths by in vivo assays performed in Wistar rats. The material was prepared using 2g of powded Cynoscion acoupa’s otoliths and 0.5g of hydrolyzed collagen diluted in distilled water. The biological tests consisted of the use of 24 Wistar rats, which were implanted in polyethylene tubes containing otoliths (HI) on the right side of the back, empty tubes (IC) on the left. The animals were euthanized 3, 7 and...

  11. Graphene foam as a biocompatible scaffold for culturing human neurons

    Science.gov (United States)

    Mattei, Cristiana; Nasr, Babak; Hudson, Emma J.; Alshawaf, Abdullah J.; Chana, Gursharan; Everall, Ian P.; Dottori, Mirella; Skafidas, Efstratios

    2018-01-01

    In this study, we explore the use of electrically active graphene foam as a scaffold for the culture of human-derived neurons. Human embryonic stem cell (hESC)-derived cortical neurons fated as either glutamatergic or GABAergic neuronal phenotypes were cultured on graphene foam. We show that graphene foam is biocompatible for the culture of human neurons, capable of supporting cell viability and differentiation of hESC-derived cortical neurons. Based on the findings, we propose that graphene foam represents a suitable scaffold for engineering neuronal tissue and warrants further investigation as a model for understanding neuronal maturation, function and circuit formation. PMID:29657752

  12. Biocompatibility of root-end filling materials: recent update

    Directory of Open Access Journals (Sweden)

    Payal Saxena

    2013-08-01

    Full Text Available The purpose of a root-end filling is to establish a seal between the root canal space and the periradicular tissues. As root-end filling materials come into contact with periradicular tissues, knowledge of the tissue response is crucial. Almost every available dental restorative material has been suggested as the root-end material of choice at a certain point in the past. This literature review on root-end filling materials will evaluate and comparatively analyse the biocompatibility and tissue response to these products, with primary focus on newly introduced materials.

  13. Bulk metallic glass matrix composite for good biocompatibility

    International Nuclear Information System (INIS)

    Hadjoub, F; Metiri, W; Doghmane, A; Hadjoub, Z

    2012-01-01

    Reinforcement volume fraction effects on acoustical parameters of Zr 41.2 Ti 13.8 Cu 12.5 Ni 10 Be 22.5 matrix composites reinforced by Mg, Ag and Cd metals have been studied via a simulation program based on acoustic microscopy technique. Moreover, acoustical parameters of human bone were compared to those of BMGs in both monolithic and reinforced case. It was found that elastic behavior of BMGs matrix composites in high reinforcement volume fraction is similar of that of human bone. This behavior leads to high biocompatibility and good transfer of stress between composite material and human system.

  14. Science and technology of biocompatible thin films for implantable biomedical devices.

    Energy Technology Data Exchange (ETDEWEB)

    Li, W.; Kabius, B.; Auciello, O.; Materials Science Division

    2010-01-01

    This presentation focuses on reviewing research to develop two critical biocompatible film technologies to enable implantable biomedical devices, namely: (1) development of bioinert/biocompatible coatings for encapsulation of Si chips implantable in the human body (e.g., retinal prosthesis implantable in the human eye) - the coating involves a novel ultrananocrystalline diamond (UNCD) film or hybrid biocompatible oxide/UNCD layered films; and (2) development of biocompatible films with high-dielectric constant and microfabrication process to produce energy storage super-capacitors embedded in the microchip to achieve full miniaturization for implantation into the human body.

  15. Stealth Biocompatible Si-Based Nanoparticles for Biomedical Applications

    Science.gov (United States)

    Chaix, Arnaud; Gary-Bobo, Magali; Angeletti, Bernard; Masion, Armand; Da Silva, Afitz; Daurat, Morgane; Lichon, Laure; Garcia, Marcel; Morère, Alain; El Cheikh, Khaled; Durand, Jean-Olivier; Cunin, Frédérique; Auffan, Mélanie

    2017-01-01

    A challenge regarding the design of nanocarriers for drug delivery is to prevent their recognition by the immune system. To improve the blood residence time and prevent their capture by organs, nanoparticles can be designed with stealth properties using polymeric coating. In this study, we focused on the influence of surface modification with polyethylene glycol and/or mannose on the stealth behavior of porous silicon nanoparticles (pSiNP, ~200 nm). In vivo biodistribution of pSiNPs formulations were evaluated in mice 5 h after intravenous injection. Results indicated that the distribution in the organs was surface functionalization-dependent. Pristine pSiNPs and PEGylated pSiNPs were distributed mainly in the liver and spleen, while mannose-functionalized pSiNPs escaped capture by the spleen, and had higher blood retention. The most efficient stealth behavior was observed with PEGylated pSiNPs anchored with mannose that were the most excreted in urine at 5 h. The biodegradation kinetics evaluated in vitro were in agreement with these in vivo observations. The biocompatibility of the pristine and functionalized pSiNPs was confirmed in vitro on human cell lines and in vivo by cytotoxic and systemic inflammation investigations, respectively. With their biocompatibility, biodegradability, and stealth properties, the pSiNPs functionalized with mannose and PEG show promising potential for biomedical applications. PMID:28946628

  16. Zirconia based dental ceramics: structure, mechanical properties, biocompatibility and applications.

    Science.gov (United States)

    Gautam, Chandkiram; Joyner, Jarin; Gautam, Amarendra; Rao, Jitendra; Vajtai, Robert

    2016-12-06

    Zirconia (ZrO 2 ) based dental ceramics have been considered to be advantageous materials with adequate mechanical properties for the manufacturing of medical devices. Due to its very high compression strength of 2000 MPa, ZrO 2 can resist differing mechanical environments. During the crack propagation on the application of stress on the surface of ZrO 2 , a crystalline modification diminishes the propagation of cracks. In addition, zirconia's biocompatibility has been studied in vivo, leading to the observation of no adverse response upon the insertion of ZrO 2 samples into the bone or muscle. In vitro experimentation has exhibited the absence of mutations and good viability of cells cultured on this material leading to the use of ZrO 2 in the manufacturing of hip head prostheses. The mechanical properties of zirconia fixed partial dentures (FPDs) have proven to be superior to other ceramic/composite restorations and hence leading to their significant applications in implant supported rehabilitations. Recent developments were focused on the synthesis of zirconia based dental materials. More recently, zirconia has been introduced in prosthetic dentistry for the fabrication of crowns and fixed partial dentures in combination with computer aided design/computer aided manufacturing (CAD/CAM) techniques. This systematic review covers the results of past as well as recent scientific studies on the properties of zirconia based ceramics such as their specific compositions, microstructures, mechanical strength, biocompatibility and other applications in dentistry.

  17. BIOCOMPATIBLE FLUORESCENT MICROSPHERES: SAFE PARTICLES FOR MATERIAL PENETRATION STUDIES

    Energy Technology Data Exchange (ETDEWEB)

    farquar, G; Leif, R

    2008-09-12

    Biocompatible polymers with hydrolyzable chemical bonds are being used to produce safe, non-toxic fluorescent microspheres for material penetration studies. The selection of polymeric materials depends on both biocompatibility and processability, with tailored fluorescent properties depending on specific applications. Microspheres are composed of USFDA-approved biodegradable polymers and non-toxic fluorophores and are therefore suitable for tests where human exposure is possible. Micropheres are being produced which contain unique fluorophores to enable discrimination from background aerosol particles. Characteristics that affect dispersion and adhesion can be modified depending on use. Several different microsphere preparation methods are possible, including the use of a vibrating orifice aerosol generator (VOAG), a Sono-Tek atomizer, an emulsion technique, and inkjet printhead. The advantages and disadvantages of each method will be presented and discussed in greater detail along with fluorescent and charge properties of the aerosols. Applications for the fluorescent microspheres include challenges for biodefense system testing, calibrants for biofluorescence sensors, and particles for air dispersion model validation studies.

  18. Biocompatibility and biodegradation studies of subconjunctival implants in rabbit eyes.

    Directory of Open Access Journals (Sweden)

    Yan Peng

    Full Text Available Sustained ocular drug delivery is difficult to achieve. Most drugs have poor penetration due to the multiple physiological barriers of the eye and are rapidly cleared if applied topically. Biodegradable subconjunctival implants with controlled drug release may circumvent these two problems. In our study, two microfilms (poly [d,l-lactide-co-glycolide] PLGA and poly[d,l-lactide-co-caprolactone] PLC were developed and evaluated for their degradation behavior in vitro and in vivo. We also evaluated the biocompatibility of both microfilms. Eighteen eyes (9 rabbits were surgically implanted with one type of microfilm in each eye. Serial anterior-segment optical coherence tomography (AS-OCT scans together with serial slit-lamp microscopy allowed us to measure thickness and cross-sectional area of the microfilms. In vitro studies revealed bulk degradation kinetics for both microfilms, while in vivo studies demonstrated surface erosion kinetics. Serial slit-lamp microscopy revealed no significant inflammation or vascularization in both types of implants (mean increase in vascularity grade PLGA50/50 12±0.5% vs. PLC70/30 15±0.6%; P = 0.91 over a period of 6 months. Histology, immunohistochemistry and immuno-fluorescence also revealed no significant inflammatory reaction from either of the microfilms, which confirmed that both microfilms are biocompatible. The duration of the drug delivery can be tailored by selecting the materials, which have different degradation kinetics, to suit the desired clinical therapeutic application.

  19. Biocompatibility evaluation of magnetosomes formed by Acidithiobacillus ferrooxidans

    International Nuclear Information System (INIS)

    Yan Lei; Yue Xiaoxuan; Zhang Shuang; Chen Peng; Xu Zhiliang; Li Yang; Li Hongyu

    2012-01-01

    Magnetite nanocrystal has been extensively used in biomedical field. Currently, an interesting alternative to synthetic magnetic Fe 3 O 4 nanoparticles, called magnetosome, has been found in magnetotactic bacteria. It has been reported that Acidithiobacillus ferrooxidans (At. ferrooxidans) has a potential to synthesize magnetosome. In this study, transmission electron microscope (TEM) was used to analyze the magnetite particles in At. ferrooxidans BY-3. The magnetosomes formed by this bacterium were isolated by a method combining ultracentrifugation and magnetic separation. Crystalline phase and surface functional group of the magnetosomes were investigated by X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR), respectively. Biocompatibility of the magnetosomes was systematically evaluated at various concentrations (0.5, 1.0, 2.0 and 4.0 mg/ml). MTT test, hemolysis assay and Micronucleus Test were carried out to evaluate in vitro cytotoxicity, blood toxicity and genotoxicity of magnetosomes, respectively. Under these conditions, magnetosomes showed no cytotoxic, genotoxic and hemolytic effects up to 4.0 mg/ml indicating good biocompatibility of these biological nanoparticles. These revealed that the magnetosomes might have a potential for biotechnological and biomedical applications in the future. - Highlights: ► The production of magnetosomes from At. ferrooxidans has been easily available. ► Several techniques are used to characterize properties of the magnetosomes. ► The magnetosomes have no cytotoxicity, no hemolysis activity and no genotoxicity.

  20. Kombucha-synthesized bacterial cellulose: preparation, characterization, and biocompatibility evaluation.

    Science.gov (United States)

    Zhu, Changlai; Li, Feng; Zhou, Xinyang; Lin, Lin; Zhang, Tianyi

    2014-05-01

    Bacterial cellulose (BC) is a natural biomaterial with unique properties suitable for tissue engineering applications, but it has not yet been used for preparing nerve conduits to repair peripheral nerve injuries. The objectives of this study were to prepare and characterize the Kampuchea-synthesized bacterial cellulose (KBC) and further evaluate the biocompatibility of KBC with peripheral nerve cells and tissues in vitro and in vivo. KBC membranes were composed of interwoven ribbons of about 20-100 nm in width, and had a high purity and the same crystallinity as that of cellulose Iα. The results from light and scanning electron microscopy, MTT assay, flow cytometry, and RT-PCR indicated that no significant differences in the morphology and cell function were observed between Schwann cells (SCs) cultured on KBC membranes and glass slips. We also fabricated a nerve conduit using KBC, which was implanted into the spatium intermusculare of rats. At 1, 3, and 6 weeks post-implantation, clinical chemistry and histochemistry showed that there were no significant differences in blood counts, serum biochemical parameters, and tissue reactions between implanted rats and sham-operated rats. Collectively, our data indicated that KBC possessed good biocompatibility with primary cultured SCs and KBC did not exert hematological and histological toxic effects on nerve tissues in vivo. Copyright © 2013 Wiley Periodicals, Inc.

  1. Dispersion of multi-walled carbon nanotubes in biocompatible dispersants

    International Nuclear Information System (INIS)

    Piret, J.-P.; Detriche, S.; Vigneron, R.; Vankoningsloo, S.; Rolin, S.; Mejia Mendoza, J. H.; Masereel, B.; Lucas, S.; Delhalle, J.; Luizi, F.; Saout, C.; Toussaint, O.

    2010-01-01

    Owing to their phenomenal electrical and mechanical properties, carbon nanotubes (CNT) have been an area of intense research since their discovery in 1991. Different applications for these nanoparticles have been proposed, among others, in electronics and optics but also in the medical field. In parallel, emerging studies have suggested potential toxic effects of CNT while others did not, generating some conflicting outcomes. These discrepancies could be, in part, due to different suspension approaches used and to the agglomeration state of CNT in solution. In this study, we described a standardized protocol to obtain stable CNT suspensions, using two biocompatible dispersants (Pluronic F108 and hydroxypropylcellulose) and to estimate the concentration of CNT in solution. CNT appear to be greatly individualized in these two dispersants with no detection of remaining bundles or agglomerates after sonication and centrifugation. Moreover, CNT remained perfectly dispersed when added to culture medium used for in vitro cell experiments. We also showed that Pluronic F108 is a better dispersant than hydroxypropylcellulose. In conclusion, we have developed a standardized protocol using biocompatible surfactants to obtain reproducible and stable multi-walled carbon nanotubes suspensions which can be used for in vitro or in vivo toxicological studies.

  2. Metallic Zinc Exhibits Optimal Biocompatibility for Bioabsorbable Endovascular Stents

    Science.gov (United States)

    Bowen, Patrick K.; Guillory, Roger J.; Shearier, Emily R.; Seitz, Jan-Marten; Drelich, Jaroslaw; Bocks, Martin; Zhao, Feng; Goldman, Jeremy

    2015-01-01

    Although corrosion resistant bare metal stents are considered generally effective, their permanent presence in a diseased artery is an increasingly recognized limitation due to the potential for long-term complications. We previously reported that metallic zinc exhibited an ideal biocorrosion rate within murine aortas, thus raising the possibility of zinc as a candidate base material for endovascular stenting applications. This study was undertaken to further assess the arterial biocompatibility of metallic zinc. Metallic zinc wires were punctured and advanced into the rat abdominal aorta lumen for up to 6.5 months. This study demonstrated that metallic zinc did not provoke responses that often contribute to restenosis. Low cell densities and neointimal tissue thickness, along with tissue regeneration within the corroding implant, point to optimal biocompatibility of corroding zinc. Furthermore, the lack of progression in neointimal tissue thickness over 6.5 months or the presence of smooth muscle cells near the zinc implant suggest that the products of zinc corrosion may suppress the activities of inflammatory and smooth muscle cells. PMID:26249616

  3. Shape memory alloys: metallurgy, biocompatibility, and biomechanics for neurosurgical applications.

    Science.gov (United States)

    Hoh, Daniel J; Hoh, Brian L; Amar, Arun P; Wang, Michael Y

    2009-05-01

    SHAPE MEMORY ALLOYS possess distinct dynamic properties with particular applications in neurosurgery. Because of their unique physical characteristics, these materials are finding increasing application where resiliency, conformation, and actuation are needed. Nitinol, the most frequently manufactured shape memory alloy, responds to thermal and mechanical stimuli with remarkable mechanical properties such as shape memory effect, super-elasticity, and high damping capacity. Nitinol has found particular use in the biomedical community because of its excellent fatigue resistance and biocompatibility, with special interest in neurosurgical applications. The properties of nitinol and its diffusionless phase transformations contribute to these unique mechanical capabilities. The features of nitinol, particularly its shape memory effect, super-elasticity, damping capacity, as well as its biocompatibility and biomechanics are discussed herein. Current and future applications of nitinol and other shape memory alloys in endovascular, spinal, and minimally invasive neurosurgery are introduced. An understanding of the metallurgic properties of nitinol provides a foundation for further exploration of its use in neurosurgical implant design.

  4. Biocompatibility of Subcutaneously Implanted Plant-Derived Cellulose Biomaterials.

    Science.gov (United States)

    Modulevsky, Daniel J; Cuerrier, Charles M; Pelling, Andrew E

    2016-01-01

    There is intense interest in developing novel biomaterials which support the invasion and proliferation of living cells for potential applications in tissue engineering and regenerative medicine. Decellularization of existing tissues have formed the basis of one major approach to producing 3D scaffolds for such purposes. In this study, we utilize the native hypanthium tissue of apples and a simple preparation methodology to create implantable cellulose scaffolds. To examine biocompatibility, scaffolds were subcutaneously implanted in wild-type, immunocompetent mice (males and females; 6-9 weeks old). Following the implantation, the scaffolds were resected at 1, 4 and 8 weeks and processed for histological analysis (H&E, Masson's Trichrome, anti-CD31 and anti-CD45 antibodies). Histological analysis revealed a characteristic foreign body response to the scaffold 1 week post-implantation. However, the immune response was observed to gradually disappear by 8 weeks post-implantation. By 8 weeks, there was no immune response in the surrounding dermis tissue and active fibroblast migration within the cellulose scaffold was observed. This was concomitant with the deposition of a new collagen extracellular matrix. Furthermore, active blood vessel formation within the scaffold was observed throughout the period of study indicating the pro-angiogenic properties of the native scaffolds. Finally, while the scaffolds retain much of their original shape they do undergo a slow deformation over the 8-week length of the study. Taken together, our results demonstrate that native cellulose scaffolds are biocompatible and exhibit promising potential as a surgical biomaterial.

  5. Biocompatibility selenium nanoparticles with an intrinsic oxidase-like activity

    Science.gov (United States)

    Guo, Leilei; Huang, Kaixun; Liu, Hongmei

    2016-03-01

    Selenium nanoparticles (SeNPs) are considered to be the new selenium supplement forms with high biological activity and low toxicity; however, the molecular mechanism by which SeNPs exert the biological function is unclear. Here, we reported that biocompatibility SeNPs possessed intrinsic oxidase-like activity. Using Na2SeO3 as a precursor and glutathione as a reductant, biocompatibility SeNPs were synthesized by the wet chemical reduction method in the presence of bovine serum albumin (BSA). The results of structure characterization revealed that synthesized SeNPs were amorphous red elementary selenium with spherical morphology, and ranged in size from 25 to 70 nm size with a narrow distribution (41.4 ± 6.7 nm). The oxidase-like activity of the as-synthesized SeNPs was tested with 3,3',5,5'-tetramethylbenzidine (TMB) as a substrate. The results indicated that SeNPs could catalyze the oxidization of TMB by dissolved oxygen. These SeNPs showed an optimum catalytic activity at pH 4 and 30 °C, and the oxidase-like activity was higher as the concentration of SeNPs increased and the size of SeNPs decreased. The Michaelis constant ( K m) values and maximal reaction velocity ( V max) of the SeNPs for TMB oxidation were 0.0083 mol/L and 3.042 μmol/L min, respectively.

  6. In vitro corrosion and biocompatibility of binary magnesium alloys.

    Science.gov (United States)

    Gu, Xuenan; Zheng, Yufeng; Cheng, Yan; Zhong, Shengping; Xi, Tingfei

    2009-02-01

    As bioabsorbable materials, magnesium alloys are expected to be totally degraded in the body and their biocorrosion products not deleterious to the surrounding tissues. It's critical that the alloying elements are carefully selected in consideration of their cytotoxicity and hemocompatibility. In the present study, nine alloying elements Al, Ag, In, Mn, Si, Sn, Y, Zn and Zr were added into magnesium individually to fabricate binary Mg-1X (wt.%) alloys. Pure magnesium was used as control. Their mechanical properties, corrosion properties and in vitro biocompatibilities (cytotoxicity and hemocompatibility) were evaluated by SEM, XRD, tensile test, immersion test, electrochemical corrosion test, cell culture and platelet adhesion test. The results showed that the addition of alloying elements could influence the strength and corrosion resistance of Mg. The cytotoxicity tests indicated that Mg-1Al, Mg-1Sn and Mg-1Zn alloy extracts showed no significant reduced cell viability to fibroblasts (L-929 and NIH3T3) and osteoblasts (MC3T3-E1); Mg-1Al and Mg-1Zn alloy extracts indicated no negative effect on viabilities of blood vessel related cells, ECV304 and VSMC. It was found that hemolysis and the amount of adhered platelets decreased after alloying for all Mg-1X alloys as compared to the pure magnesium control. The relationship between the corrosion products and the in vitro biocompatibility had been discussed and the suitable alloying elements for the biomedical applications associated with bone and blood vessel had been proposed.

  7. Non-immunogenic dextran-coated superparamagnetic iron oxide nanoparticles: a biocompatible, size-tunable contrast agent for magnetic resonance imaging

    Directory of Open Access Journals (Sweden)

    Unterweger H

    2017-07-01

    Full Text Available Harald Unterweger,1,* Christina Janko,1,* Marc Schwarz,2 László Dézsi,3 Rudolf Urbanics,4 Jasmin Matuszak,1 Erik Őrfi,3 Tamás Fülöp,3 Tobias Bäuerle,2 János Szebeni,3,4 Clément Journé,5 Aldo R Boccaccini,6 Christoph Alexiou,1 Stefan Lyer,1 Iwona Cicha1 1Cardiovascular Nanomedicine Unit, Section of Experimental Oncology und Nanomedicine (SEON, Else Kröner-Fresenius-Stiftung-Professorship, ENT Department, University Hospital Erlangen, Friedrich-Alexander-Universitaet Erlangen-Nuernberg, 2Preclinical Imaging Platform Erlangen (PIPE, Institute of Radiology, University Hospital Erlangen, Erlangen, Germany; 3Nanomedicine Research and Education Center, Semmelweis University, 4SeroScience Ltd., Budapest, Hungary; 5Inserm U1148, Fédération de Recherche en Imagerie Multimodalités (FRIM, X Bichat Hospital, Paris Diderot University, Paris, France; 6Institute of Biomaterials, Department of Materials Science and Engineering, University Erlangen-Nuremberg, Erlangen, Germany *These authors contributed equally to this work Abstract: Iron oxide-based contrast agents have been in clinical use for magnetic resonance imaging (MRI of lymph nodes, liver, intestines, and the cardiovascular system. Superparamagnetic iron oxide nanoparticles (SPIONs have high potential as a contrast agent for MRI, but no intravenous iron oxide-containing agents are currently approved for clinical imaging. The aim of our work was to analyze the hemocompatibility and immuno-safety of a new type of dextran-coated SPIONs (SPIONdex and to characterize these nanoparticles with ultra-high-field MRI. Key parameters related to nanoparticle hemocompatibility and immuno-safety were investigated in vitro and ex vivo. To address concerns associated with hypersensitivity reactions to injectable nanoparticulate agents, we analyzed complement activation-related pseudoallergy (CARPA upon intravenous administration of SPIONdex in a pig model. Furthermore, the size-tunability of SPIONdex and

  8. : Effets respiratoires des nanoparticules

    OpenAIRE

    Andujar , Pascal; Lanone , Sophie; Brochard , Patrick; Boczkowski , Jorge

    2009-01-01

    International audience; Nanotechnology, defined as techniques aimed to design, characterize and produce materials on a nanometer scale, is a fast-growing field today. Nanomaterials are made of nanoobjects (nanoparticles, nanofibers, nanotubes...). The nanoscale confers on these materials their novel, hitherto unknown, chemical and physical properties by the laws of quantum physics which are essentially expressed on this scale. Nanotechnology applications are numerous (e.g., cosmetics, industr...

  9. Comparative phototoxicity of nanoparticulate and bulk ZnO to a free-living nematode Caenorhabditis elegans: The importance of illumination mode and primary particle size

    International Nuclear Information System (INIS)

    Ma, H.; Kabengi, N.J.; Bertsch, P.M.; Unrine, J.M.; Glenn, T.C.; Williams, P.L.

    2011-01-01

    The present study evaluated phototoxicity of nanoparticulate ZnO and bulk-ZnO under natural sunlight (NSL) versus ambient artificial laboratory light (AALL) illumination to a free-living nematode Caenorhabditis elegans. Phototoxicity of nano-ZnO and bulk-ZnO was largely dependent on illumination method as 2-h exposure under NSL caused significantly greater mortality in C. elegans than under AALL. This phototoxicity was closely related to photocatalytic reactive oxygen species (ROS) generation by the ZnO particles as indicated by concomitant methylene blue photodegradation. Both materials caused mortality in C. elegans under AALL during 24-h exposure although neither degraded methylene blue, suggesting mechanisms of toxicity other than photocatalytic ROS generation were involved. Particle dissolution of ZnO did not appear to play an important role in the toxicity observed in this study. Nano-ZnO showed greater phototoxicity than bulk-ZnO despite their similar size of aggregates, suggesting primary particle size is more important than aggregate size in determining phototoxicity. - Highlights: → Phototoxicity of nano- or bulk-ZnO was enhanced by natural sunlight illumination. → This phototoxicity was well-correlated to photocatalytic ROS generation. → Toxicity of ZnO particles not related to photocatalytic ROS generation was also observed. → Nano-ZnO showed greater phototoxicity than bulk-ZnO due to its greater total surface area per unit mass. → Primary particle size appeared to be more important than aggregate size in determining phototoxicity. - Phototoxicity of nanoparticulate and bulk ZnO was greatly enhanced by natural sunlight illumination compared to artificial laboratory light illumination.

  10. Comparative phototoxicity of nanoparticulate and bulk ZnO to a free-living nematode Caenorhabditis elegans: The importance of illumination mode and primary particle size

    Energy Technology Data Exchange (ETDEWEB)

    Ma, H., E-mail: mah77@uga.edu [Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA 30602 (United States); Kabengi, N.J.; Bertsch, P.M.; Unrine, J.M. [Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY 40546 (United States); Glenn, T.C.; Williams, P.L. [Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA 30602 (United States)

    2011-06-15

    The present study evaluated phototoxicity of nanoparticulate ZnO and bulk-ZnO under natural sunlight (NSL) versus ambient artificial laboratory light (AALL) illumination to a free-living nematode Caenorhabditis elegans. Phototoxicity of nano-ZnO and bulk-ZnO was largely dependent on illumination method as 2-h exposure under NSL caused significantly greater mortality in C. elegans than under AALL. This phototoxicity was closely related to photocatalytic reactive oxygen species (ROS) generation by the ZnO particles as indicated by concomitant methylene blue photodegradation. Both materials caused mortality in C. elegans under AALL during 24-h exposure although neither degraded methylene blue, suggesting mechanisms of toxicity other than photocatalytic ROS generation were involved. Particle dissolution of ZnO did not appear to play an important role in the toxicity observed in this study. Nano-ZnO showed greater phototoxicity than bulk-ZnO despite their similar size of aggregates, suggesting primary particle size is more important than aggregate size in determining phototoxicity. - Highlights: > Phototoxicity of nano- or bulk-ZnO was enhanced by natural sunlight illumination. > This phototoxicity was well-correlated to photocatalytic ROS generation. > Toxicity of ZnO particles not related to photocatalytic ROS generation was also observed. > Nano-ZnO showed greater phototoxicity than bulk-ZnO due to its greater total surface area per unit mass. > Primary particle size appeared to be more important than aggregate size in determining phototoxicity. - Phototoxicity of nanoparticulate and bulk ZnO was greatly enhanced by natural sunlight illumination compared to artificial laboratory light illumination.

  11. Vesicular (liposomal and nanoparticulated delivery of curcumin: a comparative study on carbon tetrachloride–mediated oxidative hepatocellular damage in rat model

    Directory of Open Access Journals (Sweden)

    Choudhury ST

    2016-05-01

    Full Text Available Somsubhra Thakur Choudhury,1 Nirmalendu Das,2 Swarupa Ghosh,2 Debasree Ghosh,2 Somsuta Chakraborty,2 Nahid Ali1 1Infectious Diseases and Immunology, 2Drug Development, Diagnostics and Biotechnology, CSIR-Indian Institute of Chemical Biology, Kolkata, West Bengal, India Abstract: The liver plays a vital role in biotransforming and extricating xenobiotics and is thus prone to their toxicities. Short-term administration of carbon tetrachloride (CCl4 causes hepatic inflammation by enhancing cellular reactive oxygen species (ROS level, promoting mitochondrial dysfunction, and inducing cellular apoptosis. Curcumin is well accepted for its antioxidative and anti-inflammatory properties and can be considered as an effective therapeutic agent against hepatotoxicity. However, its therapeutic efficacy is compromised due to its insolubility in water. Vesicular delivery of curcumin can address this limitation and thereby enhance its effectiveness. In this study, it was observed that both liposomal and nanoparticulated formulations of curcumin could increase its efficacy significantly against hepatotoxicity by preventing cellular oxidative stress. However, the best protection could be obtained through the polymeric nanoparticle-mediated delivery of curcumin. Mitochondria have a pivotal role in ROS homeostasis and cell survivability. Along with the maintenance of cellular ROS levels, nanoparticulated curcumin also significantly (P<0.0001 increased cellular antioxidant enzymes, averted excessive mitochondrial destruction, and prevented total liver damage in CCl4-treated rats. The therapy not only prevented cells from oxidative damage but also arrested the intrinsic apoptotic pathway. In addition, it also decreased the fatty changes in hepatocytes, centrizonal necrosis, and portal inflammation evident from the histopathological analysis. To conclude, curcumin-loaded polymeric nanoparticles are more effective in comparison to liposomal curcumin in preventing CCl4

  12. Nanoparticulate hollow TiO2 fibers as light scatterers in dye-sensitized solar cells: layer-by-layer self-assembly parameters and mechanism.

    Science.gov (United States)

    Rahman, Masoud; Tajabadi, Fariba; Shooshtari, Leyla; Taghavinia, Nima

    2011-04-04

    Hollow structures show both light scattering and light trapping, which makes them promising for dye-sensitized solar cell (DSSC) applications. In this work, nanoparticulate hollow TiO(2) fibers are prepared by layer-by-layer (LbL) self-assembly deposition of TiO(2) nanoparticles on natural cellulose fibers as template, followed by thermal removal of the template. The effect of LbL parameters such as the type and molecular weight of polyelectrolyte, number of dip cycles, and the TiO(2) dispersion (amorphous or crystalline sol) are investigated. LbL deposition with weak polyelectrolytes (polyethylenimine, PEI) gives greater nanoparticle deposition yield compared to strong polyelectrolytes (poly(diallyldimethylammonium chloride), PDDA). Decreasing the molecular weight of the polyelectrolyte results in more deposition of nanoparticles in each dip cycle with narrower pore size distribution. Fibers prepared by the deposition of crystalline TiO(2) nanoparticles show higher surface area and higher pore volume than amorphous nanoparticles. Scattering coefficients and backscattering properties of fibers are investigated and compared with those of commercial P25 nanoparticles. Composite P25-fiber films are electrophoretically deposited and employed as the photoanode in DSSC. Photoelectrochemical measurements showed an increase of around 50% in conversion efficiency. By employing the intensity-modulated photovoltage and photocurrent spectroscopy methods, it is shown that the performance improvement due to addition of fibers is mostly due to the increase in light-harvesting efficiency. The high surface area due to the nanoparticulate structure and strong light harvesting due to the hollow structure make these fibers promising scatterers in DSSCs. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Effects of the addition of nanoparticulate calcium carbonate on setting time, dimensional change, compressive strength, solubility and pH of MTA.

    Science.gov (United States)

    Bernardi, A; Bortoluzzi, E A; Felippe, W T; Felippe, M C S; Wan, W S; Teixeira, C S

    2017-01-01

    To evaluate nanoparticulate calcium carbonate (NPCC) using transmission electron microscopy and the effects of NPCC addition to MTA in regard to the setting time, dimensional change, compressive strength, solubility and pH. The experimental groups were G1 (MTA), G2 (MTA with 5% NPCC) and G3 (MTA with 10% NPCC). The tests followed ISO and ADA standards. The specimens in the dimensional change and compressive strength tests were measured immediately after setting, after 24 h and after 30 days. In the solubility test, rings filled with cement were weighed after setting and after 30 days. The pH was measured after 24 h and 30 days. The data were analysed with the ANOVA, Tukey's and Kruskal-Wallis tests (α = 5%). The setting time was reduced (P  G2 > G3). The solubility test revealed a difference amongst the groups when the specimens were hydrated: G2 > G1 > G3 and dehydrated: G3 > G2 > G1. The pH of the groups was similar at 24 h with higher values in each group after 30 days (P calcium carbonate had a cubic morphology with few impurities. The addition of nanoparticulate calcium carbonate to MTA accelerated the setting time, decreased compressive strength and, after 30 days, resulted in lower dimensional change (G2), higher solubility and a higher pH. © 2015 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  14. Green chemistry approach for the synthesis of biocompatible graphene

    Directory of Open Access Journals (Sweden)

    Gurunathan S

    2013-07-01

    Full Text Available Sangiliyandi Gurunathan, Jae Woong Han, Jin-Hoi Kim Department of Animal Biotechnology, Konkuk University, Seoul, South Korea Background: Graphene is a single-atom thick, two-dimensional sheet of hexagonally arranged carbon atoms isolated from its three-dimensional parent material, graphite. One of the most common methods for preparation of graphene is chemical exfoliation of graphite using powerful oxidizing agents. Generally, graphene is synthesized through deoxygenation of graphene oxide (GO by using hydrazine, which is one of the most widespread and strongest reducing agents. Due to the high toxicity of hydrazine, it is not a promising reducing agent in large-scale production of graphene; therefore, this study focused on a green or sustainable synthesis of graphene and the biocompatibility of graphene in primary mouse embryonic fibroblast cells (PMEFs. Methods: Here, we demonstrated a simple, rapid, and green chemistry approach for the synthesis of reduced GO (rGO from GO using triethylamine (TEA as a reducing agent and stabilizing agent. The obtained TEA reduced GO (TEA-rGO was characterized by ultraviolet (UV–visible absorption spectroscopy, X-ray diffraction (XRD, particle size dynamic light scattering (DLS, scanning electron microscopy (SEM, Raman spectroscopy, and atomic force microscopy (AFM. Results: The transition of graphene oxide to graphene was confirmed by UV–visible spectroscopy. XRD and SEM were used to investigate the crystallinity of graphene and the surface morphologies of prepared graphene respectively. The formation of defects further supports the functionalization of graphene as indicated in the Raman spectrum of TEA-rGO. Surface morphology and the thickness of the GO and TEA-rGO were analyzed using AFM. The presented results suggest that TEA-rGO shows significantly more biocompatibility with PMEFs cells than GO. Conclusion: This is the first report about using TEA as a reducing as well as a stabilizing agent for the

  15. Ocular biocompatibility of gelatin microcarriers functionalized with oxidized hyaluronic acid

    Energy Technology Data Exchange (ETDEWEB)

    Lai, Jui-Yang, E-mail: jylai@mail.cgu.edu.tw [Institute of Biochemical and Biomedical Engineering, Chang Gung University, Taoyuan 33302, Taiwan (China); Biomedical Engineering Research Center, Chang Gung University, Taoyuan 33302, Taiwan (China); Center for Tissue Engineering, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan (China); Department of Ophthalmology, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan (China); Department of Materials Engineering, Ming Chi University of Technology, New Taipei City 24301, Taiwan (China); Ma, David Hui-Kang [Center for Tissue Engineering, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan (China); Department of Ophthalmology, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan (China); Department of Chinese Medicine, Chang Gung University, Taoyuan 33302, Taiwan (China)

    2017-03-01

    Given that the presence of aldehyde groups on the oxidized sugar residues may pose toxicity concerns, it is necessary to examine the safety of gelatin microcarriers (GMC) functionalized with oxidized hyaluronic acid (oHA) for potential ophthalmic applications. In this study, the ocular biocompatibility of biopolymer microcarriers was investigated in vitro using primary rabbit corneal cell cultures and in vivo using the anterior chamber of the rabbit eye model. Our results showed that different types of corneal cells including epithelial, stromal, and endothelial cells remain viable and actively proliferate following 2 and 4 days of exposure to test materials. In addition, similar interleukin-6 gene expression levels and comet tail lengths were seen in the presence and absence of biopolymer microcarriers, suggesting no cellular inflammation and genotoxicity. After 7 and 14 days of intracameral injection in the rabbit eyes, both the GMC samples and their counterparts functionalized with oHA were well tolerated in the ocular anterior chamber as demonstrated by slit-lamp biomicroscopy. Clinical observations including specular microscopic examinations, corneal topography, and corneal thickness measurements also showed that the rabbits bearing biopolymer microcarriers exhibit no signs of corneal edema and astigmatism as well as endothelial damage, indicating the absence of tissue response. It is concluded that the GMC materials functionalized with oHA (oxidation level: 10.4 ± 0.9%) are compatible toward corneal cells and ocular anterior segment tissues at a concentration of 10 mg/ml. The information about the effect of coupling of aldehyde-functionalized HA to gelatin on in vitro and in vivo biocompatibility of biopolymer composites can be used as further development of corneal stromal cell microcarriers for tissue engineering applications. - Highlights: • We examine in vitro and in vivo ocular biocompatibility of biopolymer microcarrier. • Gelatin-oxidized HA

  16. Translational Applications of Nanodiamonds: From Biocompatibility to Theranostics

    Science.gov (United States)

    Moore, Laura Kent

    Nanotechnology marks the next phase of development for drug delivery, contrast agents and gene therapy. For these novel systems to achieve success in clinical translation we must see that they are both effective and safe. Diamond nanoparticles, also known as nanodiamonds (NDs), have been gaining popularity as molecular delivery vehicles over the last decade. The uniquely faceted, carbon nanoparticles possess a number of beneficial properties that are being harnessed for applications ranging from small-molecule drug delivery to biomedical imaging and gene therapy. In addition to improving the effectiveness of a variety of therapeutics and contrast agents, initial studies indicate that NDs are biocompatible. In this work we evaluate the translational potential of NDs by demonstrating efficacy in molecular delivery and scrutinizing particle tolerance. Previous work has demonstrated that NDs are effective vehicles for the delivery of anthracycline chemotherapeutics and gadolinium(III) based contrast agents. We have sought to enhance the gains made in both areas through the addition of active targeting. We find that ND-mediated targeted delivery of epirubicin to triple negative breast cancers induces tumor regression and virtually eliminates drug toxicities. Additionally, ND-mediated delivery of the MRI contrast agent ProGlo boosts the per gadolinium relaxivity four fold, eliminates water solubility issues and effectively labels progesterone receptor expressing breast cancer cells. Both strategies open the door to the development of targeted, theranostic constructs based on NDs, capable of treating and labeling breast cancers at the same time. Although we have seen that NDs are effective vehicles for molecular delivery, for any nanoparticle to achieve clinical utility it must be biocompatible. Preliminary research has shown that NDs are non-toxic, however only a fraction of the ND-subtypes have been evaluated. Here we present an in depth analysis of the cellular

  17. Ocular biocompatibility of gelatin microcarriers functionalized with oxidized hyaluronic acid

    International Nuclear Information System (INIS)

    Lai, Jui-Yang; Ma, David Hui-Kang

    2017-01-01

    Given that the presence of aldehyde groups on the oxidized sugar residues may pose toxicity concerns, it is necessary to examine the safety of gelatin microcarriers (GMC) functionalized with oxidized hyaluronic acid (oHA) for potential ophthalmic applications. In this study, the ocular biocompatibility of biopolymer microcarriers was investigated in vitro using primary rabbit corneal cell cultures and in vivo using the anterior chamber of the rabbit eye model. Our results showed that different types of corneal cells including epithelial, stromal, and endothelial cells remain viable and actively proliferate following 2 and 4 days of exposure to test materials. In addition, similar interleukin-6 gene expression levels and comet tail lengths were seen in the presence and absence of biopolymer microcarriers, suggesting no cellular inflammation and genotoxicity. After 7 and 14 days of intracameral injection in the rabbit eyes, both the GMC samples and their counterparts functionalized with oHA were well tolerated in the ocular anterior chamber as demonstrated by slit-lamp biomicroscopy. Clinical observations including specular microscopic examinations, corneal topography, and corneal thickness measurements also showed that the rabbits bearing biopolymer microcarriers exhibit no signs of corneal edema and astigmatism as well as endothelial damage, indicating the absence of tissue response. It is concluded that the GMC materials functionalized with oHA (oxidation level: 10.4 ± 0.9%) are compatible toward corneal cells and ocular anterior segment tissues at a concentration of 10 mg/ml. The information about the effect of coupling of aldehyde-functionalized HA to gelatin on in vitro and in vivo biocompatibility of biopolymer composites can be used as further development of corneal stromal cell microcarriers for tissue engineering applications. - Highlights: • We examine in vitro and in vivo ocular biocompatibility of biopolymer microcarrier. • Gelatin-oxidized HA

  18. Effects of surface finishing conditions on the biocompatibility of a nickel-chromium dental casting alloy.

    LENUS (Irish Health Repository)

    McGinley, Emma Louise

    2011-07-01

    To assess the effects of surface finishing condition (polished or alumina particle air abraded) on the biocompatibility of direct and indirect exposure to a nickel-chromium (Ni-Cr) d.Sign®10 dental casting alloy on oral keratinocytes. Biocompatibility was performed by assessing cellular viability and morphology, metabolic activity, cellular toxicity and presence of inflammatory cytokine markers.

  19. Immune Response Augmentation in Metastasized Breast Cancer by Localized Therapy Utilizing Biocompatible Magnetic Fluids. Addendum

    Science.gov (United States)

    2009-08-01

    Metastasized Breast Cancer by Localized Therapy Utilizing Biocompatible Magnetic Fluids PRINCIPAL INVESTIGATOR: Cahit A. Evrensel...AND SUBTITLE 5a. CONTRACT NUMBER Immune Response Augmentation in Metastasized Breast Cancer by Localized Therapy Utilizing Biocompatible... Magneto -rheological Fluid (MRF) iron nano-particles were synthesized using the reverse micelle technique and coated with poly(NIPAAm). The size

  20. Whole genome expression profiling using DNA microarray for determining biocompatibility of polymeric surfaces

    DEFF Research Database (Denmark)

    Stangegaard, Michael; Wang, Zhenyu; Kutter, Jörg Peter

    2006-01-01

    There is an ever increasing need to find surfaces that are biocompatible for applications like medical implants and microfluidics-based cell culture systems. The biocompatibility of five different surfaces with different hydrophobicity was determined using gene expression profiling as well as more...

  1. Silk-polypyrrole biocompatible actuator performance under biologically relevant conditions

    Science.gov (United States)

    Hagler, Jo'elen; Peterson, Ben; Murphy, Amanda; Leger, Janelle

    Biocompatible actuators that are capable of controlled movement and can function under biologically relevant conditions are of significant interest in biomedical fields. Previously, we have demonstrated that a composite material of silk biopolymer and the conducting polymer polypyrrole (PPy) can be formed into a bilayer device that can bend under applied voltage. Further, these silk-PPy composites can generate forces comparable to human muscle (>0.1 MPa) making them ideal candidates for interfacing with biological tissues. Here silk-PPy composite films are tested for performance under biologically relevant conditions including exposure to a complex protein serum and biologically relevant temperatures. Free-end bending actuation performance, current response, force generation and, mass degradation were investigated . Preliminary results show that when exposed to proteins and biologically relevant temperatures, these silk-PPy composites show minimal degradation and are able to generate forces and conduct currents comparable to devices tested under standard conditions. NSF.

  2. Biocompatibility of epoxidized styrene-butadiene-styrene block copolymer membrane

    International Nuclear Information System (INIS)

    Yang, Jen Ming; Tsai, Shih Chang

    2010-01-01

    Styrene-butadiene-styrene block copolymer (SBS) membrane was prepared by solution casting method and then was epoxidized with peroxyformic acid generated in situ to yield the epoxidized styrene-butadiene-styrene block copolymer membrane (ESBS). The structure and properties of ESBS were characterized with infrared spectroscopy, Universal Testing Machine, differential scanning calorimetry (DSC), and thermogravimetry analysis (TGA). The performances of contact angle, water content, protein adsorption, and water vapor transmission rate on ESBS membrane were determined. After epoxidation, the hydrophilicity of the membrane increased. The water vapor transmission rate of ESBS membrane is similar to human skin. The biocompatibility of ESBS membrane was evaluated with the cell culture of fibroblasts on the membrane. It revealed that the cells not only remained viable but also proliferated on the surface of the various ESBS membranes and the population doubling time for fibroblast culture decreased.

  3. Surface functionalized biocompatible magnetic nanospheres for cancer hyperthermia.

    Energy Technology Data Exchange (ETDEWEB)

    Liu, X.; Novosad, V.; Rozhkova, E. A.; Chen, H.; Yefremenko, V.; Pearson, J.; Torno, M.; Bader, S. D.; Rosengart, A. J.; Univ. Chicago Pritzker School of Medicine

    2007-06-01

    We report a simplified single emulsion (oil-in-water) solvent evaporation protocol to synthesize surface functionalized biocompatible magnetic nanospheres by using highly concentrated hydrophobic magnetite (gel) and a mixture of poly(D,L lactide-co-glycolide) (PLGA) and poly(lactic acid-block-polyethylene glycol-maleimide) (PLA-PEG-maleimide) (10:1 by mass) polymers. The as-synthesized particles are approximately spherical with an average diameter of 360-370 nm with polydispersity index of 0.12-0.18, are surface-functionalized with maleimide groups, and have saturation magnetization values of 25-40 emu/g. The efficiency of the heating induced by 400-kHz oscillating magnetic fields is compared for two samples with different magnetite loadings. Results show that these nanospheres have the potential to provide an efficient cancer-targeted hyperthermia.

  4. Biocompatible yogurt carbon dots: evaluation of utilization for medical applications

    Science.gov (United States)

    Dinç, Saliha; Kara, Meryem; Demirel Kars, Meltem; Aykül, Fatmanur; Çiçekci, Hacer; Akkuş, Mehmet

    2017-09-01

    In this study, carbon dots (CDs) were produced from yogurt, a fermented milk product, via microwave-assisted process (800 W) in 30 min without using any additional chemical agents. Yogurt CDs had outstanding nitrogen and oxygen ratios. These dots were monodisperse and about 2 nm sized. The toxicological assessments of yogurt carbon dots in human cancer cells and normal epithelial cells and their fluorescence imaging in living cell system were carried out. Yogurt carbon dots had intense fluorescent signal under confocal microscopy and good fluorescence stability in living cell system. The resulting yogurt carbon dots exhibited high biocompatibility up to 7.1 mg/mL CD concentration which may find utilization in medical applications such as cellular tracking, imaging and drug delivery. Yogurt carbon dots have potential to be good diagnostic agents to visualize cancer cells which may be developed as a therapeutic carrier.

  5. Motion Control of Urea-Powered Biocompatible Hollow Microcapsules.

    Science.gov (United States)

    Ma, Xing; Wang, Xu; Hahn, Kersten; Sánchez, Samuel

    2016-03-22

    The quest for biocompatible microswimmers powered by compatible fuel and with full motion control over their self-propulsion is a long-standing challenge in the field of active matter and microrobotics. Here, we present an active hybrid microcapsule motor based on Janus hollow mesoporous silica microparticles powered by the biocatalytic decomposition of urea at physiological concentrations. The directional self-propelled motion lasts longer than 10 min with an average velocity of up to 5 body lengths per second. Additionally, we control the velocity of the micromotor by chemically inhibiting and reactivating the enzymatic activity of urease. The incorporation of magnetic material within the Janus structure provides remote magnetic control on the movement direction. Furthermore, the mesoporous/hollow structure can load both small molecules and larger particles up to hundreds of nanometers, making the hybrid micromotor an active and controllable drug delivery microsystem.

  6. 3D Printing of Biocompatible Supramolecular Polymers and their Composites.

    Science.gov (United States)

    Hart, Lewis R; Li, Siwei; Sturgess, Craig; Wildman, Ricky; Jones, Julian R; Hayes, Wayne

    2016-02-10

    A series of polymers capable of self-assembling into infinite networks via supramolecular interactions have been designed, synthesized, and characterized for use in 3D printing applications. The biocompatible polymers and their composites with silica nanoparticles were successfully utilized to deposit both simple cubic structures, as well as a more complex twisted pyramidal feature. The polymers were found to be not toxic to a chondrogenic cell line, according to ISO 10993-5 and 10993-12 standard tests and the cells attached to the supramolecular polymers as demonstrated by confocal microscopy. Silica nanoparticles were then dispersed within the polymer matrix, yielding a composite material which was optimized for inkjet printing. The hybrid material showed promise in preliminary tests to facilitate the 3D deposition of a more complex structure.

  7. Biocompatibility selenium nanoparticles with an intrinsic oxidase-like activity

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Leilei; Huang, Kaixun; Liu, Hongmei, E-mail: hmliu2004@126.com [Huazhong University of Science and Technology, School of Chemistry and Chemical Engineering (China)

    2016-03-15

    Selenium nanoparticles (SeNPs) are considered to be the new selenium supplement forms with high biological activity and low toxicity; however, the molecular mechanism by which SeNPs exert the biological function is unclear. Here, we reported that biocompatibility SeNPs possessed intrinsic oxidase-like activity. Using Na{sub 2}SeO{sub 3} as a precursor and glutathione as a reductant, biocompatibility SeNPs were synthesized by the wet chemical reduction method in the presence of bovine serum albumin (BSA). The results of structure characterization revealed that synthesized SeNPs were amorphous red elementary selenium with spherical morphology, and ranged in size from 25 to 70 nm size with a narrow distribution (41.4 ± 6.7 nm). The oxidase-like activity of the as-synthesized SeNPs was tested with 3,3′,5,5′-tetramethylbenzidine (TMB) as a substrate. The results indicated that SeNPs could catalyze the oxidization of TMB by dissolved oxygen. These SeNPs showed an optimum catalytic activity at pH 4 and 30 °C, and the oxidase-like activity was higher as the concentration of SeNPs increased and the size of SeNPs decreased. The Michaelis constant (K{sub m}) values and maximal reaction velocity (V{sub max}) of the SeNPs for TMB oxidation were 0.0083 mol/L and 3.042 μmol/L min, respectively.

  8. Biocompatibility of chitosan/Mimosa tenuiflora scaffolds for tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Martel-Estrada, Santos Adriana [Instituto de arquitectura diseño y arte, Universidad Autónoma de Ciudad Juárez, Ave. Del Charro #610 norte, Col. Partido Romero, C.P. 32320 Cd. Juárez, Chihuahua (Mexico); Rodríguez-Espinoza, Brenda [Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, Anillo envolvente del PRONAF y Estocolmo, C.P. 32320 Cd. Juárez, Chihuahua (Mexico); Santos-Rodríguez, Elí [ICTP Meso-American Centre for Theoretical Physics (ICTP-MCTP)/Universidad Autónoma de Chiapas, Ciudad Universitaria, Carretera Zapata Km. 4, Real del Bosque (Terán), C.P. 29040 Tuxtla Gutiérrez, Chiapas (Mexico); Jiménez-Vega, Florinda [Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, Anillo envolvente del PRONAF y Estocolmo, C.P. 32320 Cd. Juárez, Chihuahua (Mexico); García-Casillas, Perla E.; Martínez-Pérez, Carlos A. [Instituto de Ingeniería y Tecnología, Universidad Autónoma de Ciudad Juárez, Ave. Del Charro #610 norte, Col. Partido Romero, C.P. 32320 Cd. Juárez, Chihuahua (Mexico); and others

    2015-09-15

    Highlights: • The porosity of the composites allow biological processes for the cell adaptation on the scaffolds. • The composites improve the viability and proliferation of cells. • Composition of the scaffold plays an important role in the biocompatibility. • The results indicate that Mimosa Tenuiflora can induce the differentiation of osteoblast cells. - Abstract: In search of a plant that exhibits osteogenic activity, Mimosa tenuiflora (M. tenuiflora) cortex represents the opportunity to create a biomaterial that, together with the chitosan, is osteoconductive and promote better and rapid regeneration of bone tissue. Thus, the composite of chitosan/M. tenuiflora cortex fabricated will have properties of biocompatibility and allow the osteoblast proliferation. Composites were developed with different concentrations of chitosan/M. tenuiflora cortex (w/w) using thermally induced phase separation technique (TIPS). To analyze the effects of composite on osteoblasts, primary cultures, each sample was collected on days 1, 3 and 7 after seeding. The evaluation of composites consisted of viability and proliferation tests in which we observed the metabolic activity of the cells using MTT reagent and determined the DNA concentration by means of fluorescence. The expression of the marker alkaline phosphatase (ALP) using p-nitrophenyl phosphate was examined, allowing the observation to the activity of proliferation and differentiation of osteoblastic cells. Moreover, an analysis of biomineralization was performed using scanning electron microscopy (SEM), energy dispersive spectroscopy, infrared spectroscopy and X-ray diffraction. The results showed that 80/20 chitosan/M. tenuiflora cortex biocomposite has the best performance with osteoblasts compared to biomaterials 100/0 and 70/30 chitosan/M. tenuiflora composites. Finally, it was determined that the composite of chitosan/M. tenuiflora cortex presents no cytotoxicity and increases the capacity of the osteoblasts

  9. E-beam crosslinked, biocompatible functional hydrogels incorporating polyaniline nanoparticles

    International Nuclear Information System (INIS)

    Dispenza, C.; Sabatino, M.A.; Niconov, A.; Chmieliewska, D.; Spadaro, G.

    2011-01-01

    Complete text of publication follows. Objective of this research is to develop a functional soft nanocomposites platform that combines the electro-optic properties of conjugated polymer nanoparticles with process flexibility, highly hydrophilic character, 3D structure and biocompatibility of hydrogels, to yield novel soft materials with multi-application potential in diagnostic, therapeutic and regenerative medicine. PANI aqueous nanocolloids in their acid doped, inherently conductive form, are synthesised by means of suitable polymeric stabilisers, i.e. water soluble polymers, that may prevent irreversible PANI particles coalescence and precipitation during synthesis and upon storage. Depending on the nature nad concentration of the polymeric stabiliser, e.g. polyvinyl pyrrolidone (PVP), polyvinylalcohol (PVA) or chitosan (CT), PANI has been synthesised in form of nanoscalar rods, spherical particles or rice grains, respectively. In the present work, e-beam irradiation with a 12 MeV Linac accelerator has been tested, in alternative to gamma-rays, as a viable industrial methodology to generate hydrogel nanocomposites via in-situ crosslinking of the polymers already used to stabilise polyaniline nanocolloids, at low temperature, with no recourse to further addition of molecular weight chemicals and in a few minutes. In these conditions nanoparticles morphology of PANI should be preserved and interesting electro-optical properties can be imparted. The swelling properties of the different hydrogel nanocomposites have been investigated at the variance of the chemical structure of the matrix material and of the pH of the swelling medium. UV-visible absorption and fluorescence spectroscopies demonstrate the retained optical activity of the dispersed PANI nanoparticles when incorporated in the hydrogels. Selected formulations have been also subjected to MTT assays and absence of cytotoxicity has been ascertained as the first necessary step to assess their biocompatibility.

  10. Biocompatible Poly(catecholamine)-Film Electrode for Potentiometric Cell Sensing.

    Science.gov (United States)

    Kajisa, Taira; Yanagimoto, Yoshiyuki; Saito, Akiko; Sakata, Toshiya

    2018-02-23

    Surface-coated poly(catecholamine) (pCA) films have attracted attention as biomaterial interfaces owing to their biocompatible and physicochemical characteristics. In this paper, we report that pCA-film-coated electrodes are useful for potentiometric biosensing devices. Four different types of pCA film, l-dopa, dopamine, norepinephrine, and epinephrine, with thicknesses in the range of 7-27 nm were electropolymerized by oxidation on Au electrodes by using cyclic voltammetry. By using the pCA-film electrodes, the pH responsivities were found to be 39.3-47.7 mV/pH within the pH range of 1.68 to 10.01 on the basis of the equilibrium reaction with hydrogen ions and the functional groups of the pCAs. The pCA films suppressed nonspecific signals generated by other ions (Na + , K + , Ca 2+ ) and proteins such as albumin. Thus, the pCA-film electrodes can be used in pH-sensitive and pH-selective biosensors. HeLa cells were cultivated on the surface of the pCA-film electrodes to monitor cellular activities. The surface potential of the pCA-film electrodes changed markedly because of cellular activity; therefore, the change in the hydrogen ion concentration around the cell/pCA-film interface could be monitored in real time. This was caused by carbon dioxide or lactic acid that is generated by cellular respiration and dissolves in the culture medium, resulting in the change of hydrogen concentration. pCA-film electrodes are suitable for use in biocompatible and pH-responsive biosensors, enabling the more selective detection of biological phenomena.

  11. Biocompatibility of Advanced Manufactured Titanium Implants—A Review

    Science.gov (United States)

    Sidambe, Alfred T.

    2014-01-01

    Titanium (Ti) and its alloys may be processed via advanced powder manufacturing routes such as additive layer manufacturing (or 3D printing) or metal injection moulding. This field is receiving increased attention from various manufacturing sectors including the medical devices sector. It is possible that advanced manufacturing techniques could replace the machining or casting of metal alloys in the manufacture of devices because of associated advantages that include design flexibility, reduced processing costs, reduced waste, and the opportunity to more easily manufacture complex or custom-shaped implants. The emerging advanced manufacturing approaches of metal injection moulding and additive layer manufacturing are receiving particular attention from the implant fabrication industry because they could overcome some of the difficulties associated with traditional implant fabrication techniques such as titanium casting. Using advanced manufacturing, it is also possible to produce more complex porous structures with improved mechanical performance, potentially matching the modulus of elasticity of local bone. While the economic and engineering potential of advanced manufacturing for the manufacture of musculo-skeletal implants is therefore clear, the impact on the biocompatibility of the materials has been less investigated. In this review, the capabilities of advanced powder manufacturing routes in producing components that are suitable for biomedical implant applications are assessed with emphasis placed on surface finishes and porous structures. Given that biocompatibility and host bone response are critical determinants of clinical performance, published studies of in vitro and in vivo research have been considered carefully. The review concludes with a future outlook on advanced Ti production for biomedical implants using powder metallurgy. PMID:28788296

  12. Designing biocompatible Ti-based metallic glasses for implant applications

    International Nuclear Information System (INIS)

    Calin, Mariana; Gebert, Annett; Ghinea, Andreea Cosmina; Gostin, Petre Flaviu; Abdi, Somayeh; Mickel, Christine; Eckert, Jürgen

    2013-01-01

    Ti-based metallic glasses show high potential for implant applications; they overcome in several crucial respects their well-established biocompatible crystalline counterparts, e.g. improved corrosion properties, higher fracture strength and wear resistance, increased elastic strain range and lower Young's modulus. However, some of the elements required for glass formation (e.g. Cu, Ni) are harmful for the human body. We critically reviewed the biological safety and glass forming tendency in Ti of 27 elements. This can be used as a basis for the future designing of novel amorphous Ti-based implant alloys entirely free of harmful additions. In this paper, two first alloys were developed: Ti 75 Zr 10 Si 15 and Ti 60 Nb 15 Zr 10 Si 15 . The overheating temperature of the melt before casting can be used as the controlling parameter to produce fully amorphous materials or bcc-Ti-phase reinforced metallic glass nano-composites. The beneficial effect of Nb addition on the glass-formation and amorphous phase stability was assessed by X-ray diffraction, transmission electron microscopy and differential scanning calorimetry. Crystallization and mechanical behavior of ribbons are influenced by the amount and distribution of the nano-scaled bcc phase existing in the as-cast state. Their electrochemical stability in Ringer's solution at 310 K was found to be significantly better than that of commercial Ti-based biomaterials; no indication for pitting corrosion was recorded. Highlights: ► Link between biocompatibility and glass-forming ability of alloying additions in Ti ► Selection of Ti–Zr–Si and Ti–Zr–Nb–Si glass-forming alloys ► Two novel glassy alloys were developed: Ti 75 Zr 10 Si 15 and Ti 60 Nb 15 Zr 10 Si 15. ► Glass-formation, thermal stability, corrosion and mechanical behavior were studied. ► Assessing the suitability for orthopedic applications.

  13. Radiation synthesis of biocompatible hydrogels of dextran methacrylate

    International Nuclear Information System (INIS)

    Szafulera, Kamila; Wach, Radosław A.; Olejnik, Alicja K.; Rosiak, Janusz M.; Ulański, Piotr

    2018-01-01

    The aim of this work was to synthesize biocompatible dextran-based hydrogels through crosslinking initiated by ionizing radiation. A series of derivatives of dextran has been synthesized by coupling of methacrylated glycidyl to the structure of this polysaccharide, yielding dextran methacrylate (Dex-MA) of the degree of methacrylate substitution (DS) up to 1.13 as characterised by FTIR and NMR spectroscopy. Chemically crosslinked hydrogels were formed by electron-beam irradiation of Dex-MA in aqueous solution in the absence of low-molecular-weight additives such as catalysts, monomers or crosslinking agents. Crosslinking of Dex-MA in aqueous solutions of 20 g/l and above was an efficient process, the gels were formed at doses as low as 0.5 kGy (experiments conducted up to 100 kGy) and were characterised by high content of insoluble fraction (70–100%). Due to high crosslinking density the equilibrium degree of swelling of fabricated gels was controlled principally by the initial concentration of Dex-MA solution subjected to irradiation, and it was in the range of 20 to over 100 g of water absorbed by gram of gel. Cytocompatibility of hydrogels was examined using XTT assay through evaluation of the cell viability being in indirect contact with hydrogels. The results indicated that hydrogels of Dex-MA of the average DS below 1 were not cytotoxic. Altogether, our data demonstrate that irradiation of methacrylated dextran in aqueous solution is an efficient method of fabrication of biocompatible hydrogels, which applications in regeneration medicine are anticipated. - Highlights: • Synthesis of dextran methacrylate with various degrees of substitutions. • Synthesis of dextran-based hydrogels through radiation technique. • Gel faction (GF) and equilibrium degree of swelling (EDS) study. • Cytocompatibility of Dex-MA hydrogels demonstrated (XTT test).

  14. Biocompatibility of Advanced Manufactured Titanium Implants—A Review

    Directory of Open Access Journals (Sweden)

    Alfred T. Sidambe

    2014-12-01

    Full Text Available Titanium (Ti and its alloys may be processed via advanced powder manufacturing routes such as additive layer manufacturing (or 3D printing or metal injection moulding. This field is receiving increased attention from various manufacturing sectors including the medical devices sector. It is possible that advanced manufacturing techniques could replace the machining or casting of metal alloys in the manufacture of devices because of associated advantages that include design flexibility, reduced processing costs, reduced waste, and the opportunity to more easily manufacture complex or custom-shaped implants. The emerging advanced manufacturing approaches of metal injection moulding and additive layer manufacturing are receiving particular attention from the implant fabrication industry because they could overcome some of the difficulties associated with traditional implant fabrication techniques such as titanium casting. Using advanced manufacturing, it is also possible to produce more complex porous structures with improved mechanical performance, potentially matching the modulus of elasticity of local bone. While the economic and engineering potential of advanced manufacturing for the manufacture of musculo-skeletal implants is therefore clear, the impact on the biocompatibility of the materials has been less investigated. In this review, the capabilities of advanced powder manufacturing routes in producing components that are suitable for biomedical implant applications are assessed with emphasis placed on surface finishes and porous structures. Given that biocompatibility and host bone response are critical determinants of clinical performance, published studies of in vitro and in vivo research have been considered carefully. The review concludes with a future outlook on advanced Ti production for biomedical implants using powder metallurgy.

  15. Biocompatibility of Advanced Manufactured Titanium Implants-A Review.

    Science.gov (United States)

    Sidambe, Alfred T

    2014-12-19

    Titanium (Ti) and its alloys may be processed via advanced powder manufacturing routes such as additive layer manufacturing (or 3D printing) or metal injection moulding. This field is receiving increased attention from various manufacturing sectors including the medical devices sector. It is possible that advanced manufacturing techniques could replace the machining or casting of metal alloys in the manufacture of devices because of associated advantages that include design flexibility, reduced processing costs, reduced waste, and the opportunity to more easily manufacture complex or custom-shaped implants. The emerging advanced manufacturing approaches of metal injection moulding and additive layer manufacturing are receiving particular attention from the implant fabrication industry because they could overcome some of the difficulties associated with traditional implant fabrication techniques such as titanium casting. Using advanced manufacturing, it is also possible to produce more complex porous structures with improved mechanical performance, potentially matching the modulus of elasticity of local bone. While the economic and engineering potential of advanced manufacturing for the manufacture of musculo-skeletal implants is therefore clear, the impact on the biocompatibility of the materials has been less investigated. In this review, the capabilities of advanced powder manufacturing routes in producing components that are suitable for biomedical implant applications are assessed with emphasis placed on surface finishes and porous structures. Given that biocompatibility and host bone response are critical determinants of clinical performance, published studies of in vitro and in vivo research have been considered carefully. The review concludes with a future outlook on advanced Ti production for biomedical implants using powder metallurgy.

  16. Biocompatibility selenium nanoparticles with an intrinsic oxidase-like activity

    International Nuclear Information System (INIS)

    Guo, Leilei; Huang, Kaixun; Liu, Hongmei

    2016-01-01

    Selenium nanoparticles (SeNPs) are considered to be the new selenium supplement forms with high biological activity and low toxicity; however, the molecular mechanism by which SeNPs exert the biological function is unclear. Here, we reported that biocompatibility SeNPs possessed intrinsic oxidase-like activity. Using Na 2 SeO 3 as a precursor and glutathione as a reductant, biocompatibility SeNPs were synthesized by the wet chemical reduction method in the presence of bovine serum albumin (BSA). The results of structure characterization revealed that synthesized SeNPs were amorphous red elementary selenium with spherical morphology, and ranged in size from 25 to 70 nm size with a narrow distribution (41.4 ± 6.7 nm). The oxidase-like activity of the as-synthesized SeNPs was tested with 3,3′,5,5′-tetramethylbenzidine (TMB) as a substrate. The results indicated that SeNPs could catalyze the oxidization of TMB by dissolved oxygen. These SeNPs showed an optimum catalytic activity at pH 4 and 30 °C, and the oxidase-like activity was higher as the concentration of SeNPs increased and the size of SeNPs decreased. The Michaelis constant (K m ) values and maximal reaction velocity (V max ) of the SeNPs for TMB oxidation were 0.0083 mol/L and 3.042 μmol/L min, respectively.

  17. Biocompatibility of Subcutaneously Implanted Plant-Derived Cellulose Biomaterials

    Science.gov (United States)

    Pelling, Andrew E.

    2016-01-01

    There is intense interest in developing novel biomaterials which support the invasion and proliferation of living cells for potential applications in tissue engineering and regenerative medicine. Decellularization of existing tissues have formed the basis of one major approach to producing 3D scaffolds for such purposes. In this study, we utilize the native hypanthium tissue of apples and a simple preparation methodology to create implantable cellulose scaffolds. To examine biocompatibility, scaffolds were subcutaneously implanted in wild-type, immunocompetent mice (males and females; 6–9 weeks old). Following the implantation, the scaffolds were resected at 1, 4 and 8 weeks and processed for histological analysis (H&E, Masson’s Trichrome, anti-CD31 and anti-CD45 antibodies). Histological analysis revealed a characteristic foreign body response to the scaffold 1 week post-implantation. However, the immune response was observed to gradually disappear by 8 weeks post-implantation. By 8 weeks, there was no immune response in the surrounding dermis tissue and active fibroblast migration within the cellulose scaffold was observed. This was concomitant with the deposition of a new collagen extracellular matrix. Furthermore, active blood vessel formation within the scaffold was observed throughout the period of study indicating the pro-angiogenic properties of the native scaffolds. Finally, while the scaffolds retain much of their original shape they do undergo a slow deformation over the 8-week length of the study. Taken together, our results demonstrate that native cellulose scaffolds are biocompatible and exhibit promising potential as a surgical biomaterial. PMID:27328066

  18. Radiation synthesis of biocompatible hydrogels of dextran methacrylate

    Science.gov (United States)

    Szafulera, Kamila; Wach, Radosław A.; Olejnik, Alicja K.; Rosiak, Janusz M.; Ulański, Piotr

    2018-01-01

    The aim of this work was to synthesize biocompatible dextran-based hydrogels through crosslinking initiated by ionizing radiation. A series of derivatives of dextran has been synthesized by coupling of methacrylated glycidyl to the structure of this polysaccharide, yielding dextran methacrylate (Dex-MA) of the degree of methacrylate substitution (DS) up to 1.13 as characterised by FTIR and NMR spectroscopy. Chemically crosslinked hydrogels were formed by electron-beam irradiation of Dex-MA in aqueous solution in the absence of low-molecular-weight additives such as catalysts, monomers or crosslinking agents. Crosslinking of Dex-MA in aqueous solutions of 20 g/l and above was an efficient process, the gels were formed at doses as low as 0.5 kGy (experiments conducted up to 100 kGy) and were characterised by high content of insoluble fraction (70-100%). Due to high crosslinking density the equilibrium degree of swelling of fabricated gels was controlled principally by the initial concentration of Dex-MA solution subjected to irradiation, and it was in the range of 20 to over 100 g of water absorbed by gram of gel. Cytocompatibility of hydrogels was examined using XTT assay through evaluation of the cell viability being in indirect contact with hydrogels. The results indicated that hydrogels of Dex-MA of the average DS below 1 were not cytotoxic. Altogether, our data demonstrate that irradiation of methacrylated dextran in aqueous solution is an efficient method of fabrication of biocompatible hydrogels, which applications in regeneration medicine are anticipated.

  19. Glycan characterization of the NIST RM monoclonal antibody using a total analytical solution: From sample preparation to data analysis.

    Science.gov (United States)

    Hilliard, Mark; Alley, William R; McManus, Ciara A; Yu, Ying Qing; Hallinan, Sinead; Gebler, John; Rudd, Pauline M

    Glycosylation is an important attribute of biopharmaceutical products to monitor from development through production. However, glycosylation analysis has traditionally been a time-consuming process with long sample preparation protocols and manual interpretation of the data. To address the challenges associated with glycan analysis, we developed a streamlined analytical solution that covers the entire process from sample preparation to data analysis. In this communication, we describe the complete analytical solution that begins with a simplified and fast N-linked glycan sample preparation protocol that can be completed in less than 1 hr. The sample preparation includes labelling with RapiFluor-MS tag to improve both fluorescence (FLR) and mass spectral (MS) sensitivities. Following HILIC-UPLC/FLR/MS analyses, the data are processed and a library search based on glucose units has been included to expedite the task of structural assignment. We then applied this total analytical solution to characterize the glycosylation of the NIST Reference Material mAb 8761. For this glycoprotein, we confidently identified 35 N-linked glycans and all three major classes, high mannose, complex, and hybrid, were present. The majority of the glycans were neutral and fucosylated; glycans featuring N-glycolylneuraminic acid and those with two galactoses connected via an α1,3-linkage were also identified.

  20. Biomass-burning derived aromatic acids in NIST standard reference material 1649b and the environmental implications

    Science.gov (United States)

    Gao, Shaopeng; Xu, Baiqing; Dong, Xueling; Zheng, Xiaoyan; Wan, Xin; Kang, Shichang; Song, Qiuyin; Kawamura, Kimitaka; Cong, Zhiyuan

    2018-07-01

    Biomass burning is a serious problem in the environment and climate system. However, the source identification of biomass-burning aerosols was somewhat impeded, partly due to the difficulty in quantification of relevant molecular markers. In this study, we present reference values for five aromatic acids (including p-hydroxybenzoic, vanillic, dehydroabietic, syringic and p-coumaric acids) in the NIST Standard Reference Material (SRM) 1649b. The concentration of levoglucosan was also revisited. Notable positive matrix effect was found for vanillic, dehydroabietic, syringic and coumaric acid. Using the standard addition method, the average value of p-hydroxybenzoic, vanillic, syringic, dehydroabietic and p-coumaric acids in SRM 1649b were found to be 26.9, 9.53, 1.13, 7.60 and 1.66 μg g-1, respectively. The analytical method developed in this study was also applied to the PM10 samples from Beijing and PM2.5 samples from South Asia (Godavari, Nepal). The ratios of vanillic to p-hydroxybenzoic acid and syringic to vanillic acid further suggested that their biomass-burning types are mainly related to hard wood and herbaceous species (i.e., agricultural residues).

  1. Manajemen Risiko Keamanan Informasi Menggunakan Framework NIST SP 800-30 Revisi 1 (Studi Kasus: STMIK Sumedang

    Directory of Open Access Journals (Sweden)

    Fathoni Mahardika

    2017-07-01

    Full Text Available STMIK Sumedang merupakan institusi yang sudah terbiasa menggunakan perangkat teknologi, dimana pengawasannya dilakukan oleh suatu divisi tersendiri yaitu bagian UPT LPSI. Namun terdapat permasalahan dalam penggunaan TI yang ada saat ini antara lain : (1 Masih sering terjadinya insiden keamanan informasi yang menyebabkan terganggunya proses bisnis perusahaan, (2 Belum adanya pengawasan dan perencanaan yang tepat dalam pengelolaan keamanan informasi di STMIK Sumedang.Manajemen resiko adalah metode untuk penilaian dan mitigasi resiko terhadap aspek kebutuhan keamanan informasi yang memuat 3 unsur penting yaitu : Confidentiality (kerahasiaan, Integrity (integritas, dan Availability (ketersediaan. Manajemen resiko keamanan informasi yang digunakan mengacu pada NIST SP 800-30 Revisi 1. Standar ini digunakan sebagai acuan dalam melakukan manajemen resiko keamanan informasi, untuk mengantisipasi risiko agar kerugian tidak terjadi terhadap organisasi. Sehingga resiko dapat dikelola ke level yang dapat diterima organisasi. Diharapkan akan mengurangi dampak insiden sistem dan teknologi informasi di institusi perguruan tinggi, melindungi proses bisnis organisasi yang penting dari ancaman keamanan, meminimalisir risiko kerugian serta menghindari kegagalan serius terhadap informasi yang ada di STMIK Sumedang. Setelah dilakukan manajemen risiko maka diperlukan control keamanan sebagai dasar acuan bahwa risiko dilakukan mitigasi, diterima/ditransfer oleh pihak manajemen. Kontrol keamanan dikembangkan dari ISO 27002. Untuk mengetahui sejauh mana keamanan informasi organisasi maka dilakukan maturity keamanan informasi organisasi menggunakan control yang dikembangkan dari ISO 27002. Dari hasil maturity ini menjadi dasar dibuatnya rekomendasi standar kebijakan keamanan informasi di STMIK Sumedang.

  2. Activity measurements of the radionuclide 109Cd for the PTB, Germany and the NIST, USA in the ongoing comparison BIPM.RI(II)-K1.Cd-109

    International Nuclear Information System (INIS)

    Ratel, G.; Michotte, C.; Janssen, H.; Kossert, K.; Lucas, L.; Karam, L.

    2005-01-01

    In 2004, the Physikalisch-Technische Bundesanstalt (PTB, Germany) and the National Institute of Standards and Technology (NIST, USA) each submitted one sample of known activity of 109 Cd to the International Reference System (SIR). The PTB result replaces their previous measurement of 1994 and the NIST result updates their 1986 CCRI(II) comparison result. The values of the activity submitted were about 15 MBq and 42 MBq. The new key comparison results have replaced the earlier values in the matrix of degrees of equivalence that now contains six results, identifier BIPM.RI(II)-K1.Cd-109, to which the remaining eleven results from the CCRI(II)-K2.Cd-109 held in 1986 are still linked. (authors)

  3. SU-F-I-13: Correction Factor Computations for the NIST Ritz Free Air Chamber for Medium-Energy X Rays

    International Nuclear Information System (INIS)

    Bergstrom, P

    2016-01-01

    Purpose: The National Institute of Standards and Technology (NIST) uses 3 free-air chambers to establish primary standards for radiation dosimetry at x-ray energies. For medium-energy × rays, the Ritz free-air chamber is the main measurement device. In order to convert the charge or current collected by the chamber to the radiation quantities air kerma or air kerma rate, a number of correction factors specific to the chamber must be applied. Methods: We used the Monte Carlo codes EGSnrc and PENELOPE. Results: Among these correction factors are the diaphragm correction (which accounts for interactions of photons from the x-ray source in the beam-defining diaphragm of the chamber), the scatter correction (which accounts for the effects of photons scattered out of the primary beam), the electron-loss correction (which accounts for electrons that only partially expend their energy in the collection region), the fluorescence correction (which accounts for ionization due to reabsorption ffluorescence photons and the bremsstrahlung correction (which accounts for the reabsorption of bremsstrahlung photons). We have computed monoenergetic corrections for the NIST Ritz chamber for the 1 cm, 3 cm and 7 cm collection plates. Conclusion: We find good agreement with other’s results for the 7 cm plate. The data used to obtain these correction factors will be used to establish air kerma and it’s uncertainty in the standard NIST x-ray beams.

  4. Rigorous quantitative elemental microanalysis by scanning electron microscopy/energy dispersive x-ray spectrometry (SEM/EDS) with spectrum processing by NIST DTSA-II

    Science.gov (United States)

    Newbury, Dale E.; Ritchie, Nicholas W. M.

    2014-09-01

    Quantitative electron-excited x-ray microanalysis by scanning electron microscopy/silicon drift detector energy dispersive x-ray spectrometry (SEM/SDD-EDS) is capable of achieving high accuracy and high precision equivalent to that of the high spectral resolution wavelength dispersive x-ray spectrometer even when severe peak interference occurs. The throughput of the SDD-EDS enables high count spectra to be measured that are stable in calibration and resolution (peak shape) across the full deadtime range. With this high spectral stability, multiple linear least squares peak fitting is successful for separating overlapping peaks and spectral background. Careful specimen preparation is necessary to remove topography on unknowns and standards. The standards-based matrix correction procedure embedded in the NIST DTSA-II software engine returns quantitative results supported by a complete error budget, including estimates of the uncertainties from measurement statistics and from the physical basis of the matrix corrections. NIST DTSA-II is available free for Java-platforms at: http://www.cstl.nist.gov/div837/837.02/epq/dtsa2/index.html).

  5. SU-F-I-13: Correction Factor Computations for the NIST Ritz Free Air Chamber for Medium-Energy X Rays

    Energy Technology Data Exchange (ETDEWEB)

    Bergstrom, P [National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD 20899 (United States)

    2016-06-15

    Purpose: The National Institute of Standards and Technology (NIST) uses 3 free-air chambers to establish primary standards for radiation dosimetry at x-ray energies. For medium-energy × rays, the Ritz free-air chamber is the main measurement device. In order to convert the charge or current collected by the chamber to the radiation quantities air kerma or air kerma rate, a number of correction factors specific to the chamber must be applied. Methods: We used the Monte Carlo codes EGSnrc and PENELOPE. Results: Among these correction factors are the diaphragm correction (which accounts for interactions of photons from the x-ray source in the beam-defining diaphragm of the chamber), the scatter correction (which accounts for the effects of photons scattered out of the primary beam), the electron-loss correction (which accounts for electrons that only partially expend their energy in the collection region), the fluorescence correction (which accounts for ionization due to reabsorption ffluorescence photons and the bremsstrahlung correction (which accounts for the reabsorption of bremsstrahlung photons). We have computed monoenergetic corrections for the NIST Ritz chamber for the 1 cm, 3 cm and 7 cm collection plates. Conclusion: We find good agreement with other’s results for the 7 cm plate. The data used to obtain these correction factors will be used to establish air kerma and it’s uncertainty in the standard NIST x-ray beams.

  6. Influence of ionic conductivity of the nano-particulate coating phase on oxygen surface exchange of La0.58Sr0.4Co0.2Fe0.8O3-δ

    NARCIS (Netherlands)

    Saher, S.; Naqash, S.; Boukamp, Bernard A.; Hu, Bobing; Xia, Changrong; Bouwmeester, Henricus J.M.

    2017-01-01

    The oxygen surface exchange kinetics of mixed-conducting perovskite La0.58Sr0.4Co0.2Fe0.8O3 d (LSCF) ceramics coated with a porous nano-particulate layer of either gadolinea (Gd2O3), ceria (CeO2) or 20 mol% Gd-doped ceria (GCO) was determined by electrical conductivity relaxation (ECR). The

  7. Hemocompatibility and biocompatibility of antibacterial biomimetic hybrid films

    Energy Technology Data Exchange (ETDEWEB)

    Coll Ferrer, M. Carme [Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA 19104 (United States); Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA 19104 (United States); Eckmann, Uriel N. [Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA 19104 (United States); Composto, Russell J. [Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA 19104 (United States); Eckmann, David M., E-mail: eckmanndm@uphs.upenn.edu [Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA 19104 (United States)

    2013-11-01

    In previous work, we developed novel antibacterial hybrid coatings based on dextran containing dispersed Ag NPs (∼ 5 nm, DEX-Ag) aimed to offer dual protection against two of the most common complications associated with implant surgery, infections and rejection of the implant. However, their blood-material interactions are unknown. In this study, we assess the hemocompatibility and biocompatibility of DEX-Ag using fresh blood and two cell lines of the immune system, monocytes (THP-1 cells) and macrophages (PMA-stimulated THP-1 cells). Glass, polyurethane (PU) and bare dextran (DEX) were used as reference surfaces. PU, DEX and DEX-Ag exhibited non-hemolytic properties. Relative to glass (100%), platelet attachment on PU, DEX and DEX-Ag was 15%, 10% and 34%, respectively. Further, we assessed cell morphology and viability, pro-inflammatory cytokines expression (TNF-α and IL-1β), pro-inflammatory eicosanoid expression (Prostaglandin E{sub 2}, PGE{sub 2}) and release of reactive oxygen species (ROS, superoxide and H{sub 2}O{sub 2}) following incubation of the cells with the surfaces. The morphology and cell viability of THP-1 cells were not affected by DEX-Ag whereas DEX-Ag minimized spreading of PMA-stimulated THP-1 cells and caused a reduction in cell viability (16% relative to other surfaces). Although DEX-Ag slightly enhanced release of ROS, the expression of pro-inflammatory cytokines remained minimal with similar levels of PGE{sub 2}, as compared to the other surfaces studied. These results highlight low toxicity of DEX-Ag and hold promise for future applications in vivo. - Highlights: • We examined specific blood-contact reactions of dextran doped with Ag NPs coatings. • Biocompatibility was assessed with THP-1 cells and PMA-stimulated THP-1 cells. • Glass, polyurethane and dextran were used as reference surfaces. • Hybrid coatings exhibited non-hemolytic properties. • Low toxicity, inflammatory response and ROS suggest potential for in vivo use.

  8. Evaluation of the sensitivity of the 'Wiley registry of tandem mass spectral data, MSforID' with MS/MS data of the 'NIST/NIH/EPA mass spectral library'.

    Science.gov (United States)

    Oberacher, Herbert; Whitley, Graeme; Berger, Bernd

    2013-04-01

    Tandem mass spectral libraries are versatile tools for small molecular identification finding application in forensic science, doping control, drug monitoring, food and environmental analysis, as well as metabolomics. Two important libraries are the 'Wiley Registry of Tandem Mass Spectral Data, MSforID' (Wiley Registry MSMS) and the collection of MS/MS spectra part of the 2011 edition of the 'NIST/NIH/EPA Mass Spectral Library' (NIST 11 MSMS). Herein, the sensitivity and robustness of the Wiley Registry MSMS were evaluated using spectra extracted from the NIST 11 MSMS library. The sample set was found to be heterogeneous in terms of mass spectral resolution, type of CID, as well as applied collision energies. Nevertheless, sensitive compound identification with a true positive identification rate ≥95% was possible using either the MSforID Search program or the NIST MS Search program 2.0g for matching. To rate the performance of the Wiley Registry MSMS, cross-validation experiments were repeated using subcollections of NIST 11 MSMS as reference library and spectra extracted from the Wiley Registry MSMS as positive controls. Unexpectedly, with both search algorithms tested, correct results were obtained in less than 88% of cases. We examined possible causes for the results of the cross validation study. The large number of precursor ions represented by a single tandem mass spectrum only was identified as the basic cause for the comparably lower sensitivity of the NIST library. Copyright © 2013 John Wiley & Sons, Ltd.

  9. Synthesis and characterization of nano structures of Silica SBA-16 containing Gadolinium-159 as potential nanoparticulated system for cancer therapy

    International Nuclear Information System (INIS)

    Oliveira, Andre Felipe de

    2013-01-01

    Cancer is a leading cause of death worldwide, and malignant neoplasms of the lung, stomach, liver, colon and breast in greater numbers. And recently observed in the literature a large number of reviews where new materials, especially nanoparticle, has been studied as drug carriers and radioisotopes applied to cancer treatment. How mesoporous materials based on silica, thanks to its huge surface area and biocompatibility, have been studied intensively providing broad applications in various areas, the use of nanostructured silica SBA-16 might be a carrier specific radioisotope accumulate in the cells malignant. Thus the aim of this study is to develop in vitro studies using SBA-16 can selectively concentrate in malignant cells therapeutic amounts of the radioisotope Gadolinium-159 escorting them to death. This work was performed orderly synthesis of mesoporous silica, SBA-16 and incorporating the complex Gd-DTPA-BMA, as well as chemical and structural characterization. The techniques used to analyze the occurrence of the incorporation of the gadolinium complex in the silica matrix were elemental analysis (CHN), atomic emission spectroscopy (ICP-AES), infrared spectroscopy (FTIR), nitrogen adsorption (BET), small-angle X-ray scattering (SAXS) and thermogravimetric analysis (TG). To analyze the morphology of pure silica used the scanning electron microscopy (SEM) and transmission electron microscopy (TEM). By photon correlation spectroscopy (PCS) it was possible to obtain a measure of mean particle size, the polydispersity index (PDI) of the silica SBA-16, and the zeta potential by laser Doppler anemometry (LDA). The results of incorporation analyzed by ICP-AES indicated that the material SBA-16 had a higher rate of incorporation of gadolinium (93%). The release kinetics in simulated body fluid, showed considerable stability and low release (1%). The mesoporous silica SBA-16 showed cell viability in direct contact with cell culture. Samples with gadolinium

  10. Post hoc interlaboratory comparison of single particle ICP-MS size measurements of NIST gold nanoparticle reference materials.

    Science.gov (United States)

    Montoro Bustos, Antonio R; Petersen, Elijah J; Possolo, Antonio; Winchester, Michael R

    2015-09-01

    Single particle inductively coupled plasma-mass spectrometry (spICP-MS) is an emerging technique that enables simultaneous measurement of nanoparticle size and number quantification of metal-containing nanoparticles at realistic environmental exposure concentrations. Such measurements are needed to understand the potential environmental and human health risks of nanoparticles. Before spICP-MS can be considered a mature methodology, additional work is needed to standardize this technique including an assessment of the reliability and variability of size distribution measurements and the transferability of the technique among laboratories. This paper presents the first post hoc interlaboratory comparison study of the spICP-MS technique. Measurement results provided by six expert laboratories for two National Institute of Standards and Technology (NIST) gold nanoparticle reference materials (RM 8012 and RM 8013) were employed. The general agreement in particle size between spICP-MS measurements and measurements by six reference techniques demonstrates the reliability of spICP-MS and validates its sizing capability. However, the precision of the spICP-MS measurement was better for the larger 60 nm gold nanoparticles and evaluation of spICP-MS precision indicates substantial variability among laboratories, with lower variability between operators within laboratories. Global particle number concentration and Au mass concentration recovery were quantitative for RM 8013 but significantly lower and with a greater variability for RM 8012. Statistical analysis did not suggest an optimal dwell time, because this parameter did not significantly affect either the measured mean particle size or the ability to count nanoparticles. Finally, the spICP-MS data were often best fit with several single non-Gaussian distributions or mixtures of Gaussian distributions, rather than the more frequently used normal or log-normal distributions.

  11. A New Biocompatible and Antibacterial Phosphate Free Glass-Ceramic for Medical Applications

    Science.gov (United States)

    Cabal, Belén; Alou, Luís; Cafini, Fabio; Couceiro, Ramiro; Sevillano, David; Esteban-Tejeda, Leticia; Guitián, Francisco; Torrecillas, Ramón; Moya, José S.

    2014-01-01

    In the attempt to find valid alternatives to classic antibiotics and in view of current limitations in the efficacy of antimicrobial-coated or loaded biomaterials, this work is focused on the development of a new glass-ceramic with antibacterial performance together with safe biocompatibility. This bactericidal glass-ceramic composed of combeite and nepheline crystals in a residual glassy matrix has been obtained using an antimicrobial soda-lime glass as a precursor. Its inhibitory effects on bacterial growth and biofilm formation were proved against five biofilm-producing reference strains. The biocompatibility tests by using mesenchymal stem cells derived from human bone indicate an excellent biocompatibility. PMID:24961911

  12. A New Biocompatible and Antibacterial Phosphate Free Glass-Ceramic for Medical Applications

    Science.gov (United States)

    Cabal, Belén; Alou, Luís; Cafini, Fabio; Couceiro, Ramiro; Sevillano, David; Esteban-Tejeda, Leticia; Guitián, Francisco; Torrecillas, Ramón; Moya, José S.

    2014-06-01

    In the attempt to find valid alternatives to classic antibiotics and in view of current limitations in the efficacy of antimicrobial-coated or loaded biomaterials, this work is focused on the development of a new glass-ceramic with antibacterial performance together with safe biocompatibility. This bactericidal glass-ceramic composed of combeite and nepheline crystals in a residual glassy matrix has been obtained using an antimicrobial soda-lime glass as a precursor. Its inhibitory effects on bacterial growth and biofilm formation were proved against five biofilm-producing reference strains. The biocompatibility tests by using mesenchymal stem cells derived from human bone indicate an excellent biocompatibility.

  13. Synthesis and photocatalytic activity of Eu{sup 3+}-doped nanoparticulate TiO{sub 2} sols and thermal stability of the resulting xerogels

    Energy Technology Data Exchange (ETDEWEB)

    Borlaf, Mario; Moreno, Rodrigo [Instituto de Cerámica y Vidrio, Consejo Superior de Investigaciones Científicas, CSIC, C/Kelsen 5, 28049 Madrid (Spain); Ortiz, Angel L. [Departamento de Ingeniería Mecánica, Energética y de los Materiales, Universidad de Extremadura, Avda. de Elvas S/N, 06006 Badajoz (Spain); Colomer, María T., E-mail: tcolomer@icv.csic.es [Instituto de Cerámica y Vidrio, Consejo Superior de Investigaciones Científicas, CSIC, C/Kelsen 5, 28049 Madrid (Spain)

    2014-03-01

    The synthesis of nanoparticulate TiO{sub 2} sols without and with Eu{sup 3+} doping (1, 2, or 3 mol%) by the colloidal sol–gel method in aqueous media was investigated, with emphasis on the effect of the Eu{sup 3+} doping on the peptization time and rheological properties of the sols. It was found that the addition of Eu{sup 3+} increasingly retards the peptization process, and also results in sols with greater aggregate sizes which are therefore more viscous, although in all cases the distributions of aggregate sizes are unimodal and the flow behavior is Newtonian. The shifting of the isoelectric point of the sols toward greater pH with increasing Eu{sup 3+} doping indicates that the aforementioned trends are due to the chemical adsorption of europium ionic complexes in the form of solvated species. Furthermore, the effect of Eu{sup 3+} doping on the ultraviolet–visible spectrum and photocatalytic activity of the peptized sols was also explored. It was found that the Eu{sup 3+} doping increasingly shifts slightly the absorption edge from the ultraviolet to the visible range, and that its effect on the photocatalytic activity is certainly complex because this is enhanced only if the Eu{sup 3+} cations have some electronic transition (charge transfer transition or transitions between the ground state and the excited states) at the wavelength of the incident radiation, in which case the photocatalytic activity first increases with increasing Eu{sup 3+} content and then decreases perhaps due to occurrence of Eu–Eu interactions or simply to the greater aggregation state. Finally, the influence of the Eu{sup 3+} doping on the thermal stability of the nanoparticulate xerogels resulting from the drying of the peptized sols was also examined by X-ray thermo-diffractometry together with transmission electron microscopy, selected area electron diffractometry, and X-ray energy-dispersive spectrometry. It was found that although the xerogels crystallize all as anatase

  14. Synthesis and photocatalytic activity of Eu3+-doped nanoparticulate TiO2 sols and thermal stability of the resulting xerogels

    International Nuclear Information System (INIS)

    Borlaf, Mario; Moreno, Rodrigo; Ortiz, Angel L.; Colomer, María T.

    2014-01-01

    The synthesis of nanoparticulate TiO 2 sols without and with Eu 3+ doping (1, 2, or 3 mol%) by the colloidal sol–gel method in aqueous media was investigated, with emphasis on the effect of the Eu 3+ doping on the peptization time and rheological properties of the sols. It was found that the addition of Eu 3+ increasingly retards the peptization process, and also results in sols with greater aggregate sizes which are therefore more viscous, although in all cases the distributions of aggregate sizes are unimodal and the flow behavior is Newtonian. The shifting of the isoelectric point of the sols toward greater pH with increasing Eu 3+ doping indicates that the aforementioned trends are due to the chemical adsorption of europium ionic complexes in the form of solvated species. Furthermore, the effect of Eu 3+ doping on the ultraviolet–visible spectrum and photocatalytic activity of the peptized sols was also explored. It was found that the Eu 3+ doping increasingly shifts slightly the absorption edge from the ultraviolet to the visible range, and that its effect on the photocatalytic activity is certainly complex because this is enhanced only if the Eu 3+ cations have some electronic transition (charge transfer transition or transitions between the ground state and the excited states) at the wavelength of the incident radiation, in which case the photocatalytic activity first increases with increasing Eu 3+ content and then decreases perhaps due to occurrence of Eu–Eu interactions or simply to the greater aggregation state. Finally, the influence of the Eu 3+ doping on the thermal stability of the nanoparticulate xerogels resulting from the drying of the peptized sols was also examined by X-ray thermo-diffractometry together with transmission electron microscopy, selected area electron diffractometry, and X-ray energy-dispersive spectrometry. It was found that although the xerogels crystallize all as anatase phase, this is increasingly more thermally stable

  15. Metallic ion release from biocompatible cobalt-based alloy

    Directory of Open Access Journals (Sweden)

    Dimić Ivana D.

    2014-01-01

    Full Text Available Metallic biomaterials, which are mainly used for the damaged hard tissue replacements, are materials with high strength, excellent toughness and good wear resistance. The disadvantages of metals as implant materials are their susceptibility to corrosion, the elastic modulus mismatch between metals and human hard tissues, relatively high density and metallic ion release which can cause serious health problems. The aim of this study was to examine metallic ion release from Co-Cr-Mo alloy in artificial saliva. In that purpose, alloy samples were immersed into artificial saliva with different pH values (4.0, 5.5 and 7.5. After a certain immersion period (1, 3 and 6 weeks the concentrations of released ions were determined using Inductively Coupled Plasma - Mass Spectrophotometer (ICP-MS. The research findings were used in order to define the dependence between the concentration of released metallic ions, artificial saliva pH values and immersion time. The determined released metallic ions concentrations were compared with literature data in order to describe and better understand the phenomenon of metallic ion release from the biocompatible cobalt-based alloy. [Projekat Ministarstva nauke Republike Srbije, br. III 46010 i br. ON 174004

  16. Fabrication and Biocompatibility of Electrospun Silk Biocomposites

    Directory of Open Access Journals (Sweden)

    Ick-Soo Kim

    2011-10-01

    Full Text Available Silk fibroin has attracted great interest in tissue engineering because of its outstanding biocompatibility, biodegradability and minimal inflammatory reaction. In this study, two kinds of biocomposites based on regenerated silk fibroin are fabricated by electrospinning and post-treatment processes, respectively. Firstly, regenerated silk fibroin/tetramethoxysilane (TMOS hybrid nanofibers with high hydrophilicity are prepared, which is superior for fibroblast attachment. The electrospinning process causes adjacent fibers to ‘weld’ at contact points, which can be proved by scanning electron microscope (SEM. The water contact angle of silk/tetramethoxysilane (TMOS composites shows a sharper decrease than pure regenerated silk fibroin nanofiber, which has a great effect on the early stage of cell attachment behavior. Secondly, a novel tissue engineering scaffold material based on electrospun silk fibroin/nano-hydroxyapatite (nHA biocomposites is prepared by means of an effective calcium and phosphate (Ca–P alternate soaking method. nHA is successfully produced on regenerated silk fibroin nanofiber within several min without any pre-treatments. The osteoblastic activities of this novel nanofibrous biocomposites are also investigated by employing osteoblastic-like MC3T3-E1 cell line. The cell functionality such as alkaline phosphatase (ALP activity is ameliorated on mineralized silk nanofibers. All these results indicate that this silk/nHA biocomposite scaffold material may be a promising biomaterial for bone tissue engineering.

  17. Biocompatibility of biodegradable semiconducting melanin films for nerve tissue engineering.

    Science.gov (United States)

    Bettinger, Christopher J; Bruggeman, Joost P; Misra, Asish; Borenstein, Jeffrey T; Langer, Robert

    2009-06-01

    The advancement of tissue engineering is contingent upon the development and implementation of advanced biomaterials. Conductive polymers have demonstrated potential for use as a medium for electrical stimulation, which has shown to be beneficial in many regenerative medicine strategies including neural and cardiac tissue engineering. Melanins are naturally occurring pigments that have previously been shown to exhibit unique electrical properties. This study evaluates the potential use of melanin films as a semiconducting material for tissue engineering applications. Melanin thin films were produced by solution processing and the physical properties were characterized. Films were molecularly smooth with a roughness (R(ms)) of 0.341 nm and a conductivity of 7.00+/-1.10 x 10(-5)S cm(-1) in the hydrated state. In vitro biocompatibility was evaluated by Schwann cell attachment and growth as well as neurite extension in PC12 cells. In vivo histology was evaluated by examining the biomaterial-tissue response of melanin implants placed in close proximity to peripheral nerve tissue. Melanin thin films enhanced Schwann cell growth and neurite extension compared to collagen films in vitro. Melanin films induced an inflammation response that was comparable to silicone implants in vivo. Furthermore, melanin implants were significantly resorbed after 8 weeks. These results suggest that solution-processed melanin thin films have the potential for use as a biodegradable semiconducting biomaterial for use in tissue engineering applications.

  18. Effect of surface pre-treatments on biocompatibility of magnesium.

    Science.gov (United States)

    Lorenz, Carla; Brunner, Johannes G; Kollmannsberger, Philip; Jaafar, Leila; Fabry, Ben; Virtanen, Sannakaisa

    2009-09-01

    This study reports the influence of Mg surface passivation on the survival rate of human HeLa cells and mouse fibroblasts in cell culture experiments. Polished samples of commercially pure Mg show high reactivity in the cell culture medium, leading to a pH shift in the alkaline direction, and therefore cell adhesion and survival is strongly impaired. Passivation of the Mg surface in 1M NaOH can strongly enhance cell survival. The best initial cell adhesion is observed for Mg samples incubated in simulated body fluid (M-SBF), which leads to the formation of a biomimetic, amorphous Ca/Mg-phosphate layer with high surface roughness. This surface layer, however, passivates and seals the Mg surface only partially. Subsequent Mg dissolution leads to a significantly stronger pH increase compared to NaOH-passivated samples, which prevents long-term cell survival. These results demonstrate that surface passivation with NaOH and M-SBF together with the associated changes of surface reactivity, chemistry and roughness provide a viable strategy to facilitate cell survival on otherwise non-biocompatible Mg surfaces.

  19. Piper betle-mediated green synthesis of biocompatible gold nanoparticles

    Science.gov (United States)

    Punuri, Jayasekhar Babu; Sharma, Pragya; Sibyala, Saranya; Tamuli, Ranjan; Bora, Utpal

    2012-08-01

    Here, we report the novel use of the ethonolic leaf extract of Piper betle for gold nanoparticle (AuNP) synthesis. The successful formation of AuNPs was confirmed by UV-visible spectroscopy, and different parameters such as leaf extract concentration (2%), gold salt concentration (0.5 mM), and time (18 s) were optimized. The synthesized AuNPs were characterized with different biophysical techniques such as transmission electron microscopy (TEM), Fourier transform infrared (FT-IR) spectroscopy, X-ray diffraction (XRD), and energy-dispersive X-ray spectroscopy (EDX). TEM experiments showed that nanoparticles were of various shapes and sizes ranging from 10 to 35 nm. FT-IR spectroscopy revealed that AuNPs were functionalized with biomolecules that have primary amine group -NH2, carbonyl group, -OH groups, and other stabilizing functional groups. EDX showed the presence of the elements on the surface of the AuNPs. FT-IR and EDX together confirmed the presence of biomolecules bounded on the AuNPs. Cytotoxicity of the AuNPs was tested on HeLa and MCF-7 cancer cell lines, and they were found to be nontoxic, indicating their biocompatibility. Thus, synthesized AuNPs have potential for use in various biomedical applications.

  20. Biocompatibility of Er:YSGG laser radiated root surfaces

    Science.gov (United States)

    Benthin, Hartmut; Ertl, Thomas P.; Schmidt, Dirk; Purucker, Peter; Bernimoulin, J.-P.; Mueller, Gerhard J.

    1996-01-01

    Pulsed Er:YAG and Er:YSGG lasers are well known to be effective instruments for the ablation of dental hard tissues. Developments in the last years made it possible to transmit the laser radiation at these wavelengths with flexible fibers. Therefore the application in the periodontal pocket may be possible. The aim of this study was to evaluate the in-vitro conditions to generate a bioacceptable root surface. Twenty extracted human teeth, stored in an antibiotic solution, were conventionally scaled, root planed and axially separated into two halves. Two main groups were determined. With the first group laser radiation was carried out without and in the second group with spray cooling. The laser beam was scanned about root surface areas. Laser parameters were varied in a selected range. The biocompatibility was measured with the attachment of human gingival fibroblasts and directly compared to conventionally treated areas of the root surfaces. The fibroblasts were qualified and counted in SEM investigations. On conventionally treated areas gingival fibroblasts show the typical uniform cover. In dependance on the root roughness after laser treatment the fibroblasts loose the typical parallel alignment to the root surface. With spray cooling a better in-vitro attachment could be obtained. Without spray cooling the higher increase in temperature conducted to less bioacceptance by the human gingival fibroblasts to the root surface. These results show the possibility of producing bioacceptable root surfaces with pulsed laser radiation in the range of very high water absorption near 3 micrometer.

  1. New injectable elastomeric biomaterials for hernia repair and their biocompatibility.

    Science.gov (United States)

    Skrobot, J; Zair, L; Ostrowski, M; El Fray, M

    2016-01-01

    Complications associated with implantation of polymeric hernia meshes remain a difficult surgical challenge. We report here on our work, developing for the first time, an injectable viscous material that can be converted to a solid and elastic implant in vivo, thus successfully closing herniated tissue. In this study, long-chain fatty acids were used for the preparation of telechelic macromonomers end-capped with methacrylic functionalities to provide UV curable systems possessing high biocompatibility, good mechanical strength and flexibility. Two different systems, comprising urethane and ester bonds, were synthesized from non-toxic raw materials and then subjected to UV curing after injection of viscous material into the cavity at the abdominal wall during hernioplasty in a rabbit hernia model. No additional fixation or sutures were required. The control group of animals was treated with commercially available polypropylene hernia mesh. The observation period lasted for 28 days. We show here that artificially fabricated defect was healed and no reherniation was observed in the case of the fatty acid derived materials. Importantly, the number of inflammatory cells found in the surrounding tissue was comparable to these found around the standard polypropylene mesh. No inflammatory cells were detected in connective tissues and no sign of necrosis has been observed. Collectively, our results demonstrated that new injectable and photocurable systems can be used for minimally invasive surgical protocols in repair of small hernia defects. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Viability of biocompatible and biodegradable seeds production with incorporated radionuclides

    International Nuclear Information System (INIS)

    Roberto, W.S.; Pereira, M.M.; Vasconcelos, W.L.; Campos, T.P.R.

    2000-01-01

    The present work aims the development of radioactive seeds, biocompatible and biodegradable, with the objective of adding options in the cancer treatment. The work focus on the production of seeds biodegradable that incorporate radioisotopes with half life inferior than the degradation time of the material. The idea of producing devices with biodegradable materials impregnated with radioisotopes of short half life will offer new possibilities in the cancer treatment, since they can be used following the same procedures of the permanent interstitial brachytherapy, but using degradable materials compatible with the physiological environment. It will be discussed in particular the possible application of these seeds in the treatment of prostate cancer. A review of the subject and a preliminary evaluation of the viability of production of the seeds will be presented. The method of production of the seeds is based on the incorporation of Iodine and Samarium in glass matrixes obtained by sol-gel processing. X-ray fluorescence was done in the samples produced and the incorporation of Iodine and Samarium atoms was confirmed. (author)

  3. Biocompatibility of Plastic Clip in Neurocranium - Experimental Study on Dogs.

    Science.gov (United States)

    Delibegovic, Samir; Dizdarevic, Kemal; Cickusic, Elmir; Katica, Muhamed; Obhodjas, Muamer; Ocus, Muhamed

    2016-01-01

    A potential advantage of the use of the plastic clips in neurosurgery is their property of causing fewer artifacts than titanium clips as assessed by computed tomography and magnetic resonance scans. The biocompatibility of plastic clips was demonstrated in the peritoneal cavity, but their behavior in the neurocranium is not known. Twelve aggressive stray dogs designated for euthanasia were taken for this experimental study. The animals were divided into two groups. In all cases, after anesthesia, a craniotomy was performed, and after opening the dura, a proximal part titanium clip was placed on the isolated superficial Sylvian vein (a permanent Yasargil FT 746 T clip at a 90° angle, while a plastic Hem-o-lok clip ML was placed on another part of the vein). The first group of animals was sacrificed on the 7 th postoperative day and the second group on the 60 th postoperative day. Samples of tissue around the clips were taken for a histopathological evaluation. The plastic clip caused a more intensive tissue reaction than the titanium clip on the 7 th postoperative day, but there was no statistical difference. Even on the 60 th postoperative day there was no significant difference in tissue reaction between the titanium and plastic clips. These preliminary results confirm the possibility for the use of plastic clips in neurosurgery. Before their use in human neurosurgery, further studies are needed to investigate the long-term effects of the presence of plastic clips in the neurocranium, as well as studies of the aneurysmal model.

  4. Microwave-assisted hydrothermal synthesis of biocompatible silver sulfide nanoworms

    Science.gov (United States)

    Xing, Ruimin; Liu, Shanhu; Tian, Shufang

    2011-10-01

    In this study, silver sulfide nanoworms were prepared via a rapid microwave-assisted hydrothermal method by reacting silver nitrate and thioacetamide in the aqueous solution of the Bovine Serum Albumin (BSA) protein. The morphology, composition, and crystallinity of the nanoworms were characterized by field emission scanning electron microscopy (FESEM), X-ray powder diffraction (XRD), transmission electron microscopy (TEM), selected area electron diffraction (SAED), X-ray energy dispersive spectroscopy (EDS), and Fourier transform infrared (FTIR) spectroscopy. The results show that the nanoworms were assembled by multiple adjacent Ag2S nanoparticles and stabilized by a layer of BSA attached to their surface. The nanoworms have the sizes of about 50 nm in diameter and hundreds of nanometers in length. The analyses of high-resolution TEM and their correlative Fast Fourier Transform (FFT) indicate that the adjacent Ag2S nanoparticles grow by misoriented attachment at the connective interfaces to form the nanoworm structure. In vitro assays on the human cervical cancer cell line HeLa show that the nanoworms exhibit good biocompatibility due to the presence of BSA coating. This combination of features makes the nanoworms attractive and promising building blocks for advanced materials and devices.

  5. Structural properties of silver doped hydroxyapatite and their biocompatibility

    International Nuclear Information System (INIS)

    Ciobanu, C.S.; Iconaru, S.L.; Pasuk, I.; Vasile, B.S.; Lupu, A.R.; Hermenean, A.; Dinischiotu, A.; Predoi, D.

    2013-01-01

    The aim of this study was to obtain a novel hydroxyapatite-based material with high biocompatibility. The structural properties of the samples were well characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and X-ray Photoelectron Spectroscopy (XPS). The X-ray diffraction studies revealed the characteristic peaks of hydroxyapatite in each sample. Other phases or impurities were not observed. The scanning electron microscopy observations suggest that the doping components have no influence on the surface morphology of the samples, which reveals a homogeneous aspect of the synthesized particles for all samples. The presence of calcium (Ca), phosphor (P), oxygen (O) and silver (Ag) in the Ag:HAp is confirmed by energy dispersive X-ray (EDAX) and X-ray Photoelectron Spectroscopy analyses. Nanocrystalline silver doped HAp stimulated viability and potentiated the activation of murine macrophages. - Highlights: ► A simple and low cost methodology to obtain Ag:HAp powders was described in this paper. ► Nanocrystalline Ag:HAp with different x Ag from can be obtained at 100 °C by co-precipitation. ► The study aims to understand the effects of Ag:HAp NPs with different x Ag on macrophage cells

  6. Performance and biocompatibility of extremely tough alginate/polyacrylamide hydrogels.

    Science.gov (United States)

    Darnell, Max C; Sun, Jeong-Yun; Mehta, Manav; Johnson, Christopher; Arany, Praveen R; Suo, Zhigang; Mooney, David J

    2013-11-01

    Although hydrogels now see widespread use in a host of applications, low fracture toughness and brittleness have limited their more broad use. As a recently described interpenetrating network (IPN) of alginate and polyacrylamide demonstrated a fracture toughness of ≈ 9000 J/m(2), we sought to explore the biocompatibility and maintenance of mechanical properties of these hydrogels in cell culture and in vivo conditions. These hydrogels can sustain a compressive strain of over 90% with minimal loss of Young's Modulus as well as minimal swelling for up to 50 days of soaking in culture conditions. Mouse mesenchymal stem cells exposed to the IPN gel-conditioned media maintain high viability, and although cells exposed to conditioned media demonstrate slight reductions in proliferation and metabolic activity (WST assay), these effects are abrogated in a dose-dependent manner. Implantation of these IPN hydrogels into subcutaneous tissue of rats for 8 weeks led to mild fibrotic encapsulation and minimal inflammatory response. These results suggest the further exploration of extremely tough alginate/PAAM IPN hydrogels as biomaterials. © 2013 Elsevier Ltd. All rights reserved.

  7. In vivo biocompatibility evaluation of Cibacron blue-agarose.

    Science.gov (United States)

    Kao, J M; Rose, R; Yousef, M; Hunter, S K; Rodgers, V G

    1999-12-15

    This study investigated the biocompatibility of Cibacron blue-agarose as a biomaterial for microencapsulation. Cibacron blue-agarose is known to have an affinity for albumin under certain pH conditions and in the proper steric environment. Thus it was postulated that the material's high affinity for host albumin might reduce a secondary immune response and reduce the fibrotic overgrowth that often accompanies transplanted foreign materials. In vivo tests were performed using the Lewis rat model. Both Cibacron blue-agarose and plain agarose disks were prepared, with some disks from each group being pre-exposed to sera from Lewis rats. The disks were transplanted into the peritoneal cavities of Lewis rats. After 115 days the disks were excised. Fibrotic overgrowth was analyzed using light microscopy, and a blind study was used to measure the average growth thickness on each disk. The results demonstrated that all disks developed some fibrotic encapsulation and that the presence of Cibacron blue was not significant in reducing fibrotic overgrowth (p = 0.62). Agarose disks pre-exposed to sera had significantly less average overgrowth than any other group (p = 0. 06). Copyright 1999 John Wiley & Sons, Inc.

  8. A new biocompatible nanocomposite as a promising constituent of sunscreens.

    Science.gov (United States)

    Amin, Rehab M; Elfeky, Souad A; Verwanger, Thomas; Krammer, Barbara

    2016-06-01

    Skin naturally uses antioxidants to protect itself from the damaging effects of sunlight. If this is not sufficient, other measures have to be taken. Like this, hydroxyapatite has the potential to be applied as an active constituent of sunscreens since calcium phosphate absorbs in the ultraviolet region (UV). The objective of the present work was to synthesize a hydroxyapatite-ascorbic acid nanocomposite (HAp/AA-NC) as a new biocompatible constituent of sunscreens and to test its efficiency with skin cell models. The synthesized HAp/AA-NC was characterized by Fourier transform infrared spectroscopy, transmission electron microscopy, absorption spectrophotometry and X-ray diffraction analysis. The protective effect of the construct was tested with respect to viability and intracellular reactive oxygen species (ROS) generation of primary human dermal fibroblasts (SKIN) and human epidermal keratinocytes (HaCaT). Both cell lines were irradiated with UV light, λmax=254 nm with a fluence of 25 mJ cm(-2) to mimic the effect of UV radiation of sunlight on the skin. Results showed that HAp/AA-NC had a stimulating effect on the cell viability of both, HaCaT and SKIN cells, relative to the irradiated control. Intracellular ROS significantly decreased in UV irradiated cells when treated with HAp/AA-NC. We conclude that the synthesized HAp/AA-NC have been validated in vitro as a skin protector against the harmful effect of UV-induced ROS. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Current and future biocompatibility aspects of biomaterials for hip prosthesis

    Directory of Open Access Journals (Sweden)

    Amit Aherwar

    2015-12-01

    Full Text Available The field of biomaterials has turn into an electrifying area because these materials improve the quality and longevity of human life. The first and foremost necessity for the selection of the biomaterial is the acceptability by human body. However, the materials used in hip implants are designed to sustain the load bearing function of human bones for the start of the patient’s life. The most common classes of biomaterials used are metals, polymers, ceramics, composites and apatite. These five classes are used individually or in combination with other materials to form most of the implantation devices in recent years. Numerous current and promising new biomaterials i.e. metallic, ceramic, polymeric and composite are discussed to highlight their merits and their frailties in terms of mechanical and metallurgical properties in this review. It is concluded that current materials have their confines and there is a need for more refined multi-functional materials to be developed in order to match the biocompatibility, metallurgical and mechanical complexity of the hip prosthesis.

  10. Deciphering cellular morphology and biocompatibility using polymer microarrays

    International Nuclear Information System (INIS)

    Pernagallo, Salvatore; Unciti-Broceta, Asier; DIaz-Mochon, Juan Jose; Bradley, Mark

    2008-01-01

    A quantitative and qualitative analysis of cellular adhesion, morphology and viability is essential in understanding and designing biomaterials such as those involved in implant surfaces or as tissue-engineering scaffolds. As a means to simultaneously perform these studies in a high-throughput (HT) manner, we report a normalized protocol which allows the rapid analysis of a large number of potential cell binding substrates using polymer microarrays and high-content fluorescence microscopy. The method was successfully applied to the discovery of optimal polymer substrates from a 214-member polyurethane library with mouse fibroblast cells (L929), as well as simultaneous evaluation of cell viability and cellular morphology. Analysis demonstrated high biocompatibility of the binding polymers and permitted the identification of several different cellular morphologies, showing that specific polymer interactions may provoke changes in cell shape. In addition, SAR studies showed a clear correspondence between cellular adhesion and polymer structure. The approach can be utilized to perform multiple experiments (up to 1024 single experiments per slide) in a highly reproducible manner, leading to the generation of vast amounts of data in a short time period (48-72 h) while reducing dramatically the quantities of polymers, reagents and cells used

  11. Biocompatibility of Portland cement combined with different radiopacifying agents.

    Science.gov (United States)

    Lourenço Neto, Natalino; Marques, Nádia C T; Fernandes, Ana Paula; Rodini, Camila O; Duarte, Marco A H; Lima, Marta C; Machado, Maria A A M; Abdo, Ruy C C; Oliveira, Thais M

    2014-03-01

    The aim of this study was to evaluate the response of rat subcutaneous tissue to Portland cement combined with two different radiopacifying agents, iodoform (CHI3) and zirconium oxide (ZrO2). These materials were placed in polyethylene tubes and implanted into the dorsal connective tissue of Wistar rats for 7 and 15 days. The specimens were then stained with hematoxylin and eosin, and inflammatory reaction parameters were evaluated by light microscopy. The intensity of the inflammatory response to the sealants was analyzed by two blind calibrated observers throughout the experimental period. Histological analysis showed that all the materials caused a moderated inflammatory reaction at 7 days, which then diminished with time. At 15 days, the inflammatory reaction was almost absent, and fibroblasts and collagen fibers were observed indicating normal tissue healing. The degrees of the inflammatory reaction on different days throughout the experimental period were compared using the non-parametric Kruskal-Wallis test. Statistical analysis demonstrated no significant differences amongst the groups, and Portland cement associated with radiopacifying agents gave satisfactory results. Therefore, Portland cement used in combination with radiopacifying agents can be considered a biocompatible material. Although our results are very encouraging, further studies are needed in order to establish safe clinical indications for Portland cement combined with radiopacifying agents.

  12. Laser synthesis of aluminium nanoparticles in biocompatible polymer solutions

    Science.gov (United States)

    Singh, Rina; Soni, R. K.

    2014-08-01

    Pulsed laser ablation of Aluminium (Al) in pure water rapidly forms a thin alumina (Al2O3) layer which drastically modifies surface plasmon resonance (SPR) absorption characteristics in deep-UV region. Initially, pure aluminium nanoparticles (NPs) are generated in water without any stabilizers or surfactants at low laser fluence which gradually transform to stable Al-Al2O3 core-shell nanostructure with increasing either residency time or fluence. The role of laser wavelength and fluence on the SPR properties and oxidation characteristics of Al NPs has been investigated in detail. We also present a one-step in situ synthesis of oxide-free stable Al NPs in biocompatible polymer solutions using laser ablation in liquid method. We have used nonionic polymers (PVP, PVA and PEG) and anionic surfactant (SDS) stabilizer to suppress the Al2O3 formation and studied the effect of polymer functional group, polymeric chain length, polymer concentration and anionic surfactant on the incipient embryonic aluminium particles and their sizes. The different functional groups of polymers resulted in different oxidation states of Al. PVP and PVA polymers resulted in pure Al NPs; however, PEG and SDS resulted in alumina-modified Al NPs. The Al nanoparticles capped with PVP, PVA, and PEG show a good correlation between nanoparticle stability and monomeric length of the polymer chain.

  13. Initial biocompatibility of plasma polymerized hexamethyldisiloxane films with different wettability

    Science.gov (United States)

    Krasteva, N. A.; Toromanov, G.; Hristova, K. T.; Radeva, E. I.; Pecheva, E. V.; Dimitrova, R. P.; Altankov, G. P.; Pramatarova, L. D.

    2010-11-01

    Understanding the relationships between material surface properties, behaviour of adsorbed proteins and cellular responses is essential to design optimal material surfaces for tissue engineering. In this study we modify thin layers of plasma polymerized hexamethyldisiloxane (PPHMDS) by ammonia treatment in order to increase surface wettability and the corresponding biological response. The physico-chemical properties of the polymer films were characterized by contact angle (CA) measurements and Fourier Transform Infrared Spectroscopy (FTIR) analysis.Human umbilical vein endothelial cells (HUVEC) were used as model system for the initial biocompatibility studies following their behavior upon preadsorption of polymer films with three adhesive proteins: fibronectin (FN), fibrinogen (FG) and vitronectin (VN). Adhesive interaction of HUVEC was evaluated after 2 hours by analyzing the overall cell morphology, and the organization of focal adhesion contacts and actin cytoskeleton. We have found similar good cellular response on FN and FG coated polymer films, with better pronounced vinculin expression on FN samples while. Conversely, on VN coated surfaces the wettability influenced significantly initial celular interaction spreading. The results obtained suggested that ammonia plasma treatment can modulate the biological activity of the adsorbed protein s on PPHMDS surfaces and thus to influence the interaction with endothelial cells.

  14. Biocompatible Amphiphilic Hydrogel-Solid Dimer Particles as Colloidal Surfactants.

    Science.gov (United States)

    Chen, Dong; Amstad, Esther; Zhao, Chun-Xia; Cai, Liheng; Fan, Jing; Chen, Qiushui; Hai, Mingtan; Koehler, Stephan; Zhang, Huidan; Liang, Fuxin; Yang, Zhenzhong; Weitz, David A

    2017-12-26

    Emulsions of two immiscible liquids can slowly coalesce over time when stabilized by surfactant molecules. Pickering emulsions stabilized by colloidal particles can be much more stable. Here, we fabricate biocompatible amphiphilic dimer particles using a hydrogel, a strongly hydrophilic material, and achieve large contrast in the wetting properties of the two bulbs, resulting in enhanced stabilization of emulsions. We generate monodisperse single emulsions of alginate and shellac solution in oil using a flow-focusing microfluidics device. Shellac precipitates from water and forms a solid bulb at the periphery of the droplet when the emulsion is exposed to acid. Molecular interactions result in amphiphilic dimer particles that consist of two joined bulbs: one hydrogel bulb of alginate in water and the other hydrophobic bulb of shellac. Alginate in the hydrogel compartment can be cross-linked using calcium cations to obtain stable particles. Analogous to surfactant molecules at the interface, the resultant amphiphilic particles stand at the water/oil interface with the hydrogel bulb submerged in water and the hydrophobic bulb in oil and are thus able to stabilize both water-in-oil and oil-in-water emulsions, making these amphiphilic hydrogel-solid particles ideal colloidal surfactants for various applications.

  15. Biocompatibility of electrospun human albumin: a pilot study.

    Science.gov (United States)

    Noszczyk, B H; Kowalczyk, T; Łyżniak, M; Zembrzycki, K; Mikułowski, G; Wysocki, J; Kawiak, J; Pojda, Z

    2015-03-02

    Albumin is rarely used for electrospinning because it does not form fibres in its native globular form. This paper presents a novel method for electrospinning human albumin from a solution containing pharmaceutical grade protein and 25% polyethylene oxide (PEO) used as the fibre-forming agent. After spontaneous cross-linking at body temperature, with no further chemicals added, the fibres become insoluble and the excess PEO can be washed out. Albumin deposited along the fibres retains its native characteristics, such as its non-adhesiveness to cells and its susceptibility for degradation by macrophages. To demonstrate this we evaluated the mechanical properties, biocompatibility and biodegradability of this novel product. After subcutaneous implantation in mice, albumin mats were completely resorbable within six days and elicited only a limited local inflammatory response. In vitro, the mats suppressed cell attachment and migration. As this product is inexpensive, produced from human pharmaceutical grade albumin without chemical modifications, retains its native protein properties and fulfils the specific requirements for anti-adhesive dressings, its clinical use can be expedited. We believe that it could specifically be used when treating paediatric patients with epidermolysis bullosa, in whom non-healing wounds occur after minor hand injuries which lead to rapid adhesions and devastating contractures.

  16. Nanomechanics of biocompatible hollow thin-shell polymer microspheres.

    Science.gov (United States)

    Glynos, Emmanouil; Koutsos, Vasileios; McDicken, W Norman; Moran, Carmel M; Pye, Stephen D; Ross, James A; Sboros, Vassilis

    2009-07-07

    The nanomechanical properties of biocompatible thin-shell hollow polymer microspheres with approximately constant ratio of shell thickness to microsphere diameter were measured by nanocompression tests in aqueous conditions. These microspheres encapsulate an inert gas and are used as ultrasound contrast agents by releasing free microbubbles in the presence of an ultrasound field as a result of free gas leakage from the shell. The tests were performed using an atomic force microscope (AFM) employing the force-distance curve technique. An optical microscope, on which the AFM was mounted, was used to guide the positioning of tipless cantilevers on top of individual microspheres. We performed a systematic study using several cantilevers with spring constants varying from 0.08 to 2.3 N/m on a population of microspheres with diameters from about 2 to 6 microm. The use of several cantilevers with various spring constants allowed a systematic study of the mechanical properties of the microsphere thin shell at different regimes of force and deformation. Using thin-shell mechanics theory for small deformations, the Young's modulus of the thin wall material was estimated and was shown to exhibit a strong size effect: it increased as the shell became thinner. The Young's modulus of thicker microsphere shells converged to the expected value for the macroscopic bulk material. For high applied forces, the force-deformation profiles showed a reversible and/or irreversible nonlinear behavior including "steps" and "jumps" which were attributed to mechanical instabilities such as buckling events.

  17. Lactose oleate as new biocompatible surfactant for pharmaceutical applications.

    Science.gov (United States)

    Perinelli, D R; Lucarini, S; Fagioli, L; Campana, R; Vllasaliu, D; Duranti, A; Casettari, L

    2018-03-01

    Sugar fatty acid esters are an interesting class of non-ionic, biocompatible and biodegradable sugar-based surfactants, recently emerged as a valid alternative to the traditional commonly employed (e.g. polysorbates and polyethylene glycol derivatives). By varying the polar head (carbohydrate moiety) and the hydrophobic tail (fatty acid), surfactants with different physico-chemical characteristics can be easily prepared. While many research papers have focused on sucrose derivatives, relatively few studies have been carried out on lactose-based surfactants. In this work, we present the synthesis and the physico-chemical characterization of lactose oleate. The new derivative was obtained by enzymatic mono-esterification of lactose with oleic acid. Thermal, surface, and aggregation properties of the surfactant were studied in detail and the cytotoxicity profile was investigated by MTS and LDH assays on intestinal Caco-2 monolayers. Transepithelial electrical resistance (TEER) measurements on Caco-2 cells showed a transient and reversible effect on the tight junctions opening, which correlates with the increased permeability of 4 kDa fluorescein-labelled dextran (as model for macromolecular drugs) in a concentration dependent manner. Moreover, lactose oleate displayed a satisfactory antimicrobial activity over a range of Gram-positive and Gram-negative bacteria. Overall, the obtained results are promising for a further development of lactose oleate as an intestinal absorption enhancer and/or an alternative biodegradable preservative for pharmaceutical and food applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Antimicrobial Effect of Biocompatible Silicon Nanoparticles Activated Using Therapeutic Ultrasound.

    Science.gov (United States)

    Shevchenko, Svetlana N; Burkhardt, Markus; Sheval, Eugene V; Natashina, Ulyana A; Grosse, Christina; Nikolaev, Alexander L; Gopin, Alexander V; Neugebauer, Ute; Kudryavtsev, Andrew A; Sivakov, Vladimir; Osminkina, Liubov A

    2017-03-14

    In this study, we report a method for the suppression of Escherichia coli (E. coli) vitality by means of therapeutic ultrasound irradiation (USI) using biocompatible silicon nanoparticles as cavitation sensitizers. Silicon nanoparticles without (SiNPs) and with polysaccharide (dextran) coating (DSiNPs) were used. Both types of nanoparticles were nontoxic to Hep 2 cells up to a concentration of 2 mg/mL. The treatment of bacteria with nanoparticles and application of 1 W/cm 2 USI resulted in the reduction of their viabilities up to 35 and 72% for SiNPs and DSiNPs, respectively. The higher bacterial viability reduction for DSiNPs as compared with SiNPs can be explained by the fact that the biopolymer shell of the polysaccharide provides a stronger adhesion of nanoparticles to the bacterial surface. Transmission electron microscopy (TEM) studies showed that the bacterial lipid shell was partially perforated after the combined treatment of DSiNPs and USI, which can be explained by the lysis of bacterial membrane due to the cavitation sensitized by the SiNPs. Furthermore, we have shown that 100% inhibition of E. coli bacterial colony growth is possible by coupling the treatments of DSiNPs and USI with an increased intensity of up to 3 W/cm 2 . The observed results reveal the application of SiNPs as promising antimicrobial agents.

  19. Mechanical properties, structure, bioadhesion, and biocompatibility of pectin hydrogels.

    Science.gov (United States)

    Markov, Pavel A; Krachkovsky, Nikita S; Durnev, Eugene A; Martinson, Ekaterina A; Litvinets, Sergey G; Popov, Sergey V

    2017-09-01

    The surface structure, biocompatibility, textural, and adhesive properties of calcium hydrogels derived from 1, 2, and 4% solutions of apple pectin were examined in this study. An increase in the pectin concentration in hydrogels was shown to improve their stability toward elastic and plastic deformation. The elasticity of pectin hydrogels, measured as Young's modulus, ranged from 6 to 100 kPa. The mechanical properties of the pectin hydrogels were shown to correspond to those of soft tissues. The characterization of surface roughness in terms of the roughness profile (Ra) and the root-mean-square deviation of the roughness profile (Rq) indicated an increased roughness profile for hydrogels depending on their pectin concentration. The adhesion of AU2% and AU4% hydrogels to the serosa abdominal wall, liver, and colon was higher than that of the AU1% hydrogel. The adhesion of macrophages and the non-specific adsorption of blood plasma proteins were found to increase as the pectin concentration in the hydrogels increased. The rate of degradation of all hydrogels was higher in phosphate buffered saline (PBS) than that in DMEM and a fibroblast cell monolayer. The pectin hydrogel was also found to have a low cytotoxicity. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 2572-2581, 2017. © 2017 Wiley Periodicals, Inc.

  20. Biocompatible and detectable carboxylated nanodiamond on human cell

    International Nuclear Information System (INIS)

    Liu, K-K; Cheng, C-L; Chang, C-C; Chao, J-I

    2007-01-01

    Surface-modified carboxylated nanometre-sized diamond (cND) has been applied for the conjugation of biological molecules such as DNA and protein. In this study, we evaluated the biocompatibility and detection of cNDs and carbon nanotubes on human lung A549 epithelial cells and HFL-1 normal fibroblasts. Treatment with 5 or 100 nm cND particles, 0.1-100 μg ml -1 , did not reduce the cell viability and alter the protein expression profile in lung cells; however, carbon nanotubes induced cytotoxicity in these cells. The cNDs particles were accumulated in A549 cells, which were observed by atomic force microscopy and laser scanning confocal microscopy. Both 5 and 100 nm cNDs particles exhibited the green fluorescence and were ingested into cells. Moreover, the fluorescence intensities were increased in cells via a concentration-dependent manner after treatment with 5 and 100 nm cNDs, which can be detected by flow cytometer analysis. The fluorescence intensities of 5 nm cNDs were relative higher than 100 nm cNDs in cells at equal concentration treatment. The observation demonstrated that cND-interacting with cell is detectable by a confocal microscope, flow cytometer and atomic force microscope. These nanoparticles may be useful for further biomedical applications based on the properties of uptake ability, detectability and little cytotoxicity in human cells

  1. Biocompatible and detectable carboxylated nanodiamond on human cell

    Energy Technology Data Exchange (ETDEWEB)

    Liu, K-K [Institute of Pharmacology and Toxicology, Tzu Chi University, Hualien 970, Taiwan (China); Cheng, C-L [Department of Physics, National Dong Hwa University, Hualien 974, Taiwan (China); Chang, C-C [Department of Biological Science and Technology, National Chiao Tung University, Hsin-Chu 300, Taiwan (China); Chao, J-I [Institute of Pharmacology and Toxicology, Tzu Chi University, Hualien 970, Taiwan (China)

    2007-08-15

    Surface-modified carboxylated nanometre-sized diamond (cND) has been applied for the conjugation of biological molecules such as DNA and protein. In this study, we evaluated the biocompatibility and detection of cNDs and carbon nanotubes on human lung A549 epithelial cells and HFL-1 normal fibroblasts. Treatment with 5 or 100 nm cND particles, 0.1-100 {mu}g ml{sup -1}, did not reduce the cell viability and alter the protein expression profile in lung cells; however, carbon nanotubes induced cytotoxicity in these cells. The cNDs particles were accumulated in A549 cells, which were observed by atomic force microscopy and laser scanning confocal microscopy. Both 5 and 100 nm cNDs particles exhibited the green fluorescence and were ingested into cells. Moreover, the fluorescence intensities were increased in cells via a concentration-dependent manner after treatment with 5 and 100 nm cNDs, which can be detected by flow cytometer analysis. The fluorescence intensities of 5 nm cNDs were relative higher than 100 nm cNDs in cells at equal concentration treatment. The observation demonstrated that cND-interacting with cell is detectable by a confocal microscope, flow cytometer and atomic force microscope. These nanoparticles may be useful for further biomedical applications based on the properties of uptake ability, detectability and little cytotoxicity in human cells.

  2. Large-scale Manufacturing of Nanoparticulate-based Lubrication Additives for Improved Energy Efficiency and Reduced Emissions

    Energy Technology Data Exchange (ETDEWEB)

    Erdemir, Ali [Argonne National Laboratory

    2013-09-26

    and environmental objectives of DOE and our nation. In this project, most of the boron-based materials with known and potential anti-friction and -wear properties have been manufactured as colloidal additives and tested for their effectiveness in controlling friction and wear. Unlike other anti-friction and -wear additives, which consist of zinc, molybdenum, sulfur, phosphorus, and even chlorine, lubricious boron compounds considered in this project are made of boron, oxygen, nitrogen, and hydrogen, which are more environmentally benign. Among others, boric acid is a natural mineral (known in mineralogy as "sassolite"). Based on our earlier exploratory research, it was found to offer the best overall prospect in terms of performance improvements, environmental friendliness, and ease of manufacturing and, hence, cost effectiveness. Hexagonal boron nitride and borax also offered good prospects for improving the tribological properties of lubricated sliding surfaces. Boron oxide particles were found to be rather hard and somewhat abrasive and, hence, were not considered beyond the initial screening studies. In our bench-top tribological evaluation, we also demonstrated that those additives which worked well with engine oils could work equally well with very common gear oils. When added at appropriate concentrations, such gear oils were found to provide significant resistance to micropitting and scuffing failures in bench-top tribological test systems. Their traction coefficients were also reduced substantially and their scuffing limits were improved considerably. Such impressive tribological behavior of boron-based additives may have been due to their high chemical affinities to interact with sliding contact surfaces and to form slick and protective boundary films. Indeed, our surface studies have confirmed that most of the boron-based nanoparticulate additives prepared in our project possess a strong tendency to form a boron-rich boundary film on sliding contact

  3. Flexible and biocompatible high-performance solid-state micro-battery for implantable orthodontic system

    KAUST Repository

    Kutbee, Arwa T.; Bahabry, Rabab R.; Alamoudi, Kholod O.; Ghoneim, Mohamed T.; Cordero, Marlon D.; Almuslem, Amani S.; Gumus, Abdurrahman; Diallo, Elhadj M.; Nassar, Joanna M.; Hussain, Aftab M.; Khashab, Niveen M.; Hussain, Muhammad Mustafa

    2017-01-01

    To augment the quality of our life, fully compliant personalized advanced health-care electronic system is pivotal. One of the major requirements to implement such systems is a physically flexible high-performance biocompatible energy storage

  4. Development of a discriminatory biocompatibility testing model for non-precious dental casting alloys.

    LENUS (Irish Health Repository)

    McGinley, Emma Louise

    2011-12-01

    To develop an enhanced, reproducible and discriminatory biocompatibility testing model for non-precious dental casting alloys, prepared to a clinically relevant surface finishing condition, using TR146 oral keratinocyte cells.

  5. Rational Design and Enhanced Biocompatibility of a Dry Adhesive Medical Skin Patch

    KAUST Repository

    Kwak, Moon Kyu; Jeong, Hoon-Eui; Suh, Kahp Y.

    2011-01-01

    A new type of medical skin patch is developed that contains high-density, mushroom-like micropillars. Such dry-adhesive micropillars are highly biocompatible, have minimized side effects, and provide reasonable normal adhesion strength. To arrive

  6. Biocompatibility of individually designed scaffolds with human periosteum for use in tissue engineering.

    NARCIS (Netherlands)

    Becker, S.T.; Douglas, T.E.L.; Acil, Y.; Seitz, H.; Sivananthan, S.; Wiltfang, J.; Warnke, P.H.

    2010-01-01

    The aim of this study was to evaluate and compare the biocompatibility of computer-assisted designed (CAD) synthetic hydroxyapatite (HA) and tricalciumphosphate (TCP) blocks and natural bovine hydroxyapatite blocks for augmentations and endocultivation by supporting and promoting the proliferation

  7. Biocompatible and totally disintegrable semiconducting polymer for ultrathin and ultralightweight transient electronics.

    Science.gov (United States)

    Lei, Ting; Guan, Ming; Liu, Jia; Lin, Hung-Cheng; Pfattner, Raphael; Shaw, Leo; McGuire, Allister F; Huang, Tsung-Ching; Shao, Leilai; Cheng, Kwang-Ting; Tok, Jeffrey B-H; Bao, Zhenan

    2017-05-16

    Increasing performance demands and shorter use lifetimes of consumer electronics have resulted in the rapid growth of electronic waste. Currently, consumer electronics are typically made with nondecomposable, nonbiocompatible, and sometimes even toxic materials, leading to serious ecological challenges worldwide. Here, we report an example of totally disintegrable and biocompatible semiconducting polymers for thin-film transistors. The polymer consists of reversible imine bonds and building blocks that can be easily decomposed under mild acidic conditions. In addition, an ultrathin (800-nm) biodegradable cellulose substrate with high chemical and thermal stability is developed. Coupled with iron electrodes, we have successfully fabricated fully disintegrable and biocompatible polymer transistors. Furthermore, disintegrable and biocompatible pseudo-complementary metal-oxide-semiconductor (CMOS) flexible circuits are demonstrated. These flexible circuits are ultrathin (<1 μm) and ultralightweight (∼2 g/m 2 ) with low operating voltage (4 V), yielding potential applications of these disintegrable semiconducting polymers in low-cost, biocompatible, and ultralightweight transient electronics.

  8. Bioinspired, Ultrastrong, Highly Biocompatible, and Bioactive Natural Polymer/Graphene Oxide Nanocomposite Films.

    Science.gov (United States)

    Zhu, Wen-Kun; Cong, Huai-Ping; Yao, Hong-Bin; Mao, Li-Bo; Asiri, Abdullah M; Alamry, Khalid A; Marwani, Hadi M; Yu, Shu-Hong

    2015-09-09

    Tough and biocompatible nanocomposite films: A new type of bioinspired ultrastrong, highly biocompatible, and bioactive konjac glucomannan (KGM)/graphene oxide (GO) nanocomposite film is fabricated on a large scale by a simple solution-casting method. Such KGM-GO composite films exhibit much enhanced mechanical properties under the strong hydrogen-bonding interactions, showing great potential in the fields of tissue engineering and food package. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Frontiers in biomaterials the design, synthetic strategies and biocompatibility of polymer scaffolds for biomedical application

    CERN Document Server

    Cao, Shunsheng

    2014-01-01

    Frontiers in Biomaterials: The Design, Synthetic Strategies and Biocompatibility of Polymer Scaffolds for Biomedical Application, Volume 1" highlights the importance of biomaterials and their interaction with biological system. The need for the development of biomaterials as scaffold for tissue regeneration is driven by the increasing demands for materials that mimic functions of extracellular matrices of body tissues.This ebook covers the latest challenges on the biocompatibility of scaffold overtime after implantation and discusses the requirement of innovative technologies and strategies f

  10. An animal model in sheep for biocompatibility testing of biomaterials in cancellous bones

    OpenAIRE

    Nuss, Katja MR; Auer, Joerg A; Boos, Alois; Rechenberg, Brigitte von

    2006-01-01

    Abstract Background The past years have seen the development of many synthetic bone replacements. To test their biocompatibility and ability for osseointegration, osseoinduction and -conduction requires their placement within bone preferably in an animal experiment of a higher species. Methods A suitable experimental animal model in sheep with drill holes of 8 mm diameter and 13 mm depth within the proximal and distal humerus and femur for testing biocompatibility issues is introduced. Result...

  11. Graphene Films Show Stable Cell Attachment and Biocompatibility with Electrogenic Primary Cardiac Cells

    OpenAIRE

    Kim, Taeyong; Kahng, Yung Ho; Lee, Takhee; Lee, Kwanghee; Kim, Do Han

    2013-01-01

    Graphene has attracted substantial attention due to its advantageous materialistic applicability. In the present study, we tested the biocompatibility of graphene films synthesized by chemical vapor deposition with electrogenic primary adult cardiac cells (cardiomyocytes) by measuring the cell properties such as cell attachment, survival, contractility and calcium transients. The results show that the graphene films showed stable cell attachment and excellent biocompatibility with the electro...

  12. A new biocompatible nanocomposite as a promising constituent of sunscreens

    Energy Technology Data Exchange (ETDEWEB)

    Amin, Rehab M., E-mail: rehabamin@niles.edu.eg [Department of Laser Applications in Photochemistry, National Institute of Laser Enhanced Sciences, Cairo University (Egypt); Elfeky, Souad A. [Department of Laser Applications in Photochemistry, National Institute of Laser Enhanced Sciences, Cairo University (Egypt); University of Bath, Department of Chemistry, Bath BA2 7AY (United Kingdom); Verwanger, Thomas; Krammer, Barbara [Department of Molecular Biology, University of Salzburg, Hellbrunnerstr. 34, 5020 Salzburg (Austria)

    2016-06-01

    Skin naturally uses antioxidants to protect itself from the damaging effects of sunlight. If this is not sufficient, other measures have to be taken. Like this, hydroxyapatite has the potential to be applied as an active constituent of sunscreens since calcium phosphate absorbs in the ultraviolet region (UV). The objective of the present work was to synthesize a hydroxyapatite–ascorbic acid nanocomposite (HAp/AA-NC) as a new biocompatible constituent of sunscreens and to test its efficiency with skin cell models. The synthesized HAp/AA-NC was characterized by Fourier transform infrared spectroscopy, transmission electron microscopy, absorption spectrophotometry and X-ray diffraction analysis. The protective effect of the construct was tested with respect to viability and intracellular reactive oxygen species (ROS) generation of primary human dermal fibroblasts (SKIN) and human epidermal keratinocytes (HaCaT). Both cell lines were irradiated with UV light, λ{sub max} = 254 nm with a fluence of 25 mJ cm{sup −2} to mimic the effect of UV radiation of sunlight on the skin. Results showed that HAp/AA-NC had a stimulating effect on the cell viability of both, HaCaT and SKIN cells, relative to the irradiated control. Intracellular ROS significantly decreased in UV irradiated cells when treated with HAp/AA-NC. We conclude that the synthesized HAp/AA-NC have been validated in vitro as a skin protector against the harmful effect of UV-induced ROS. - Highlights: • Hydroxyapatite–ascorbic acid nanocomposites were synthesized and characterized. • The prepared composites had a stimulating effect on the skin cell viability. • Reactive oxygen species decreased in UV-irradiated nanocomposite treated cells. • Hydroxyapatite–ascorbic acid nanocomposites could be used in sunscreens.

  13. Synthesis of biocompatible nanoparticle drug complexes for inhibition of mycobacteria

    International Nuclear Information System (INIS)

    Bhave, Tejashree; Ghoderao, Prachi; Sanghavi, Sonali; Babrekar, Harshada; Bhoraskar, S V; Ganesan, V; Kulkarni, Anjali

    2013-01-01

    Tuberculosis (TB) is one of the most critical infectious diseases affecting the world today. Current TB treatment involves six months long daily administration of four oral doses of antibiotics. Due to severe side effects and the long treatment, a patient's adherence is low and this results in relapse of symptoms causing an alarming increase in the prevalence of multi-drug resistant (MDR) TB. Hence, it is imperative to develop a new drug delivery technology wherein these effects can be reduced. Rifampicin (RIF) is one of the widely used anti-tubercular drugs (ATD). The present study discusses the development of biocompatible nanoparticle–RIF complexes with superior inhibitory activity against both Mycobacterium smegmatis (M. smegmatis) and Mycobacterium tuberculosis (M. tuberculosis). Iron oxide nanoparticles (NPs) synthesized by gas phase condensation and NP-RIF complexes were tested against M. smegmatis SN2 strain as well as M. tuberculosis H37Rv laboratory strain. These complexes showed significantly better inhibition of M. smegmatis SN2 strain at a much lower effective concentration (27.5 μg ml −1 ) as compared to neat RIF (125 μg ml −1 ). Similarly M. tuberculosis H37Rv laboratory strain was susceptible to both nanoparticle–RIF complex and neat RIF at a minimum inhibitory concentration of 0.22 and 1 μg ml −1 , respectively. Further studies are underway to determine the efficacy of NPs–RIF complexes in clinical isolates of M. tuberculosis as well as MDR isolates. (paper)

  14. A new biocompatible nanocomposite as a promising constituent of sunscreens

    International Nuclear Information System (INIS)

    Amin, Rehab M.; Elfeky, Souad A.; Verwanger, Thomas; Krammer, Barbara

    2016-01-01

    Skin naturally uses antioxidants to protect itself from the damaging effects of sunlight. If this is not sufficient, other measures have to be taken. Like this, hydroxyapatite has the potential to be applied as an active constituent of sunscreens since calcium phosphate absorbs in the ultraviolet region (UV). The objective of the present work was to synthesize a hydroxyapatite–ascorbic acid nanocomposite (HAp/AA-NC) as a new biocompatible constituent of sunscreens and to test its efficiency with skin cell models. The synthesized HAp/AA-NC was characterized by Fourier transform infrared spectroscopy, transmission electron microscopy, absorption spectrophotometry and X-ray diffraction analysis. The protective effect of the construct was tested with respect to viability and intracellular reactive oxygen species (ROS) generation of primary human dermal fibroblasts (SKIN) and human epidermal keratinocytes (HaCaT). Both cell lines were irradiated with UV light, λ_m_a_x = 254 nm with a fluence of 25 mJ cm"−"2 to mimic the effect of UV radiation of sunlight on the skin. Results showed that HAp/AA-NC had a stimulating effect on the cell viability of both, HaCaT and SKIN cells, relative to the irradiated control. Intracellular ROS significantly decreased in UV irradiated cells when treated with HAp/AA-NC. We conclude that the synthesized HAp/AA-NC have been validated in vitro as a skin protector against the harmful effect of UV-induced ROS. - Highlights: • Hydroxyapatite–ascorbic acid nanocomposites were synthesized and characterized. • The prepared composites had a stimulating effect on the skin cell viability. • Reactive oxygen species decreased in UV-irradiated nanocomposite treated cells. • Hydroxyapatite–ascorbic acid nanocomposites could be used in sunscreens.

  15. Design Concept of Dialyzer Biomaterials: How to Find Biocompatible Polymers Based on the Biointerfacial Water Structure.

    Science.gov (United States)

    Tanaka, Masaru

    2017-01-01

    Although various types of materials have been used widely in dialyzers, most biomaterials lack the desired functional properties to interface with blood and have not been engineered for optimum performance. Therefore, there is increasing demand to develop novel materials to address such problems in the dialysis arena. Numerous parameters of polymeric biomaterials can affect biocompatibility in a controlled manner. The mechanisms responsible for the biocompatibility of polymers at the molecular level have not been clearly demonstrated, although many theoretical and experimental efforts have been made to try and understand them. Moreover, water interactions have been recognized as fundamental for the blood response to contact with polymers. We have proposed the 'intermediate water' concept and hypothesized that intermediate water, which prevents the proteins and blood cells from directly contacting the polymer surface, or nonfreezing water on the polymer surface, plays an important role in the biocompatibility of polymers. This chapter provides an overview of the recent experimental progress of biocompatible polymers measured by thermal, spectroscopic, and surface force techniques. Additionally, it highlights recent developments in the use of biocompatible polymeric biomaterials for dialyzers and provides an overview of the progress made in the design of multifunctional biomedical polymers by controlling the biointerfacial water structure through precision polymer synthesis. Key Messages: Intermediate water was found only in hydrated biopolymers (proteins, polysaccharides, and nucleic acids, DNA and RNA) and hydrated biocompatible synthetic polymers. Intermediate water could be one of the main screening factors for the design of appropriate dialyzer materials. © 2017 S. Karger AG, Basel.

  16. In Vitro Models in BiocompatibilityAssessment for Biomedical-Grade Chitosan Derivatives in Wound Management

    Directory of Open Access Journals (Sweden)

    Lim Chin Keong

    2009-03-01

    Full Text Available One of the ultimate goals of wound healing research is to find effective healing techniques that utilize the regeneration of similar tissues. This involves the modification of various wound dressing biomaterials for proper wound management. The biopolymer chitosan (b-1,4-D-glucosamine has natural biocompatibility and biodegradability that render it suitable for wound management. By definition, a biocompatible biomaterial does not have toxic or injurious effects on biological systems. Chemical and physical modifications of chitosan influence its biocompatibility and biodegradability to an uncertain degree. Hence, the modified biomedical-grade of chitosan derivatives should be pre-examined in vitro in order to produce high-quality, biocompatible dressings. In vitro toxicity examinations are more favorable than those performed in vivo, as the results are more reproducible and predictive. In this paper, basic in vitro tools were used to evaluate cellular and molecular responses with regard to the biocompatibility of biomedical-grade chitosan. Three paramount experimental parameters of biocompatibility in vitro namely cytocompatibility, genotoxicity and skin pro-inflammatory cytokine expression, were generally reviewed for biomedical-grade chitosan as wound dressing.

  17. Elemental and Isotopic Analysis of Uranium Oxide an NIST Glass Standards by FEMTOSECOND-LA-ICP-MIC-MS

    International Nuclear Information System (INIS)

    Ebert, Chris; Zamzow, Daniel S.; McBay, Eddie H.; Bostick, Debra A.; Bajic, Stanley J.; Baldwin, David P.; Houk, R.S.

    2009-01-01

    The objective of this work was to test and demonstrate the analytical figures of merit of a femtosecond-laser ablation (fs-LA) system coupled with an inductively coupled plasma-multi-ion collector-mass spectrometer (ICP-MIC-MS). The mobile fs-LA sampling system was designed and assembled at Ames Laboratory and shipped to Oak Ridge National Laboratory (ORNL), where it was integrated with an ICP-MIC-MS. The test period of the integrated systems was February 2-6, 2009. Spatially-resolved analysis of particulate samples is accomplished by 100-shot laser ablation using a fs-pulsewidth laser and monitoring selected isotopes in the resulting ICP-MS transient signal. The capability of performing high sensitivity, spatially resolved, isotopic analyses with high accuracy and precision and with virtually no sample preparation makes fs-LA-ICP-MIC-MS valuable for the measurement of actinide isotopes at low concentrations in very small samples for nonproliferation purposes. Femtosecond-LA has been shown to generate particles from the sample that are more representative of the bulk composition, thereby minimizing weaknesses encountered in previous work using nanosecond-LA (ns-LA). The improvement of fs- over ns-LA sampling arises from the different mechanisms for transfer of energy into the sample in these two laser pulse-length regimes. The shorter duration fs-LA pulses induce less heating and cause less damage to the sample than the longer ns pulses. This results in better stoichiometric sampling (i.e., a closer correlation between the composition of the ablated particles and that of the original solid sample), which improves accuracy for both intra- and inter-elemental analysis. The primary samples analyzed in this work are (a) solid uranium oxide powdered samples having different 235 U to 238 U concentration ratios, and (b) glass reference materials (NIST 610, 612, 614, and 616). Solid uranium oxide samples containing 235 U in depleted, natural, and enriched abundances were

  18. Charpy impact test results on five materials and NIST verification specimens using instrumented 2-mm and 8-mm strikers

    International Nuclear Information System (INIS)

    Nanstad, R.K.; Sokolov, M.A.

    1995-01-01

    The Heavy-Section Steel Irradiation Program at Oak Ridge National Laboratory is involved in two cooperative projects, with international participants, both of which involve Charpy V-notch impact tests with instrumented strikers of 2mm and 8mm radii. Two heats of A 533 grade B class I pressure vessel steel and a low upper-shelf (LUS) submerged-arc (SA) weld were tested on the same Charpy machine, while one heat of a Russian Cr-Mo-V forging steel and a high upper-shelf (HUS) SA weld were tested on two different machines. The number of replicate tests at any one temperature ranged from 2 to 46 specimens. Prior to testing with each striker, verification specimens at the low, high, and super high energy levels from the National Institute of Standards and Technology (NIST) were tested. In the two series of verification tests, the tests with the 2mm striker met the requirements at the low and high energy levels but not at the super high energy. For one plate, the 2mm striker showed somewhat higher average absorbed energies than those for the 8-mm striker at all three test temperatures. For the second plate and the LUS weld, however, the 2mm striker showed somewhat lower energies at both test temperatures. For the Russian forging steel and the HUS weld, tests were conducted over a range of temperatures with tests at one laboratory using the 8mm striker and tests at a second laboratory using the 2mm striker. Lateral expansion was measured for all specimens and the results are compared with the absorbed energy results. The overall results showed generally good agreement (within one standard deviation) in energy measurements by the two strikers. Load-time traces from the instrumented strikers were also compared and used to estimate shear fracture percentage. Four different formulas from the European Structural Integrity Society draft standard for instrumented Charpy test are compared and a new formula is proposed for estimation of percent shear from the force-time trace

  19. Novel biocompatible materials for in vivo two-photon polymerisation

    Energy Technology Data Exchange (ETDEWEB)

    Torgersen, J.

    2013-07-01

    Two-photon polymerisation (2PP) is a versatile laser fabrication technique that allows the creation of 3D structures at micro- and nanometre precision. The structures are created additively in direct accordance to a computer-aided design (CAD). It requires tightly focused fs-pulsed light sources usually operating in the near infrared wavelength range. In this region, biological tissues exhibit a window of transparency and only absorb light minimally. When operating below a certain pulse energy threshold, the laser light does not cause any cellular damage. This theoretically allows inducing 2PP in the presence of living biological tissues and cells. Suitable biocompatible formulations that can render bioactive constructs would potentially allow building a dynamic environment with topographical, chemical and mechanical cues similar to that of the natural extracellular matrix. In that way, 2PP would allow to alter key elements of this environment without changing any other influencing factors. To explore these possibilities, 2PP has to overcome two main limitations, the slow process speeds and the lack of available optimised formulations. In this thesis, we report the design and realisation of a 2PP experimental setup, which allows fabricating hydrogel structures from novel water-based formulations. Writing speeds of above 100 mm/s are feasible, which is the highest speed reported in 2PP. Moreover, the presented components have the potential to be formed in vivo, in the presence of living cells and tissues. Using water-soluble two-photon optimised photoinitiators, we could effectively cross-link acrylates in formulations of up to 80% water content. As acrylates show a tendency towards Michael addition to proteins, we explored the use of vinyl ester and vinyl carbonate monomers for 2PP. In contrast to acrylic polymers, which form potentially toxic poly (acrylic acid), vinyl ester and carbonate polymers form biocompatible poly (vinyl alcohol) during degradation

  20. Laser welding of nanoparticulate TiO2 and transparent conducting oxide electrodes for highly efficient dye-sensitized solar cell

    International Nuclear Information System (INIS)

    Kim, Jinsoo; Kim, Jonghyun; Lee, Myeongkyu

    2010-01-01

    Poor interfacial contact is often encountered in nanoparticulate film-based devices. The dye-sensitized solar cell (DSSC) is a representative case in which a nanoporous TiO 2 electrode needs to be prepared on the transparent conducting oxide (TCO)-coated glass substrate. In this study, we demonstrate that the inter-electrode contact resistance accounts for a considerable portion of the total resistance of a DSSC and its efficiency can be greatly enhanced by welding the interface with a laser. TiO 2 films formed on the TCO-coated glass substrate were irradiated with a pulsed ultraviolet laser beam at 355 nm; this transmits through the TCO and glass but is strongly absorbed by TiO 2 . Electron microscopy analysis and impedance measurements showed that a thin continuous TiO 2 layer is formed at the interface as a result of the local melting of TiO 2 nanoparticles and this layer completely bridges the gap between the two electrodes, improving the current flow with a reduced contact resistance. We were able to improve the efficiency by 35-65% with this process. DSSCs fabricated using a homemade TiO 2 paste revealed an efficiency improvement from η = 3.3% to 5.4%, and an increase from 8.2% to 11.2% was achieved with the TiO 2 electrodes made from a commercial paste.

  1. Physico-Chemical and Electrochemical Properties of Nanoparticulate NiO/C Composites for High Performance Lithium and Sodium Ion Battery Anodes

    Directory of Open Access Journals (Sweden)

    Amaia Iturrondobeitia

    2017-12-01

    Full Text Available Nanoparticulate NiO and NiO/C composites with different carbon proportions have been prepared for anode application in lithium and sodium ion batteries. Structural characterization demonstrated the presence of metallic Ni in the composites. Morphological study revealed that the NiO and Ni nanoparticles were well dispersed in the matrix of amorphous carbon. The electrochemical study showed that the lithium ion batteries (LIBs, containing composites with carbon, have promising electrochemical performances, delivering specific discharge capacities of 550 mAh/g after operating for 100 cycles at 1C. These excellent results could be explained by the homogeneity of particle size and structure, as well as the uniform distribution of NiO/Ni nanoparticles in the in situ generated amorphous carbon matrix. On the other hand, the sodium ion battery (NIB with the NiO/C composite revealed a poor cycling stability. Post-mortem analyses revealed that this fact could be ascribed to the absence of a stable Solid Electrolyte Interface (SEI or passivation layer upon cycling.

  2. Initial in vitro screening approach to investigate the potential health and environmental hazards of Envirox™ – a nanoparticulate cerium oxide diesel fuel additive

    Directory of Open Access Journals (Sweden)

    Whittingham Andrew

    2007-12-01

    Full Text Available Abstract Nanotechnology is the new industrial revolution of the 21st Century as the various processes lead to radical improvements in medicine, manufacturing, energy production, land remediation, information technology and many other everyday products and applications. With this revolution however, there are undoubted concerns for health, safety and the environment which arise from the unique nature of materials and processes at the nanometre scale. The in vitro assays used in the screening strategy are all validated, internationally accepted protocols and provide a useful indication of potential toxicity of a chemical as a result of effects on various toxicological endpoints such as local site of contact (dermal irritation, general cytotoxicity and mutagenicity. The initial in vitro screening strategy described in this paper to investigate the potential health implications, if any, which may arise following exposure to one specific application of nanoparticulate cerium oxide used as a diesel fuel borne catalyst, reflects a precautionary approach and the results will inform judgement on how best to proceed to ensure safe use.

  3. Laser welding of nanoparticulate TiO{sub 2} and transparent conducting oxide electrodes for highly efficient dye-sensitized solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jinsoo; Kim, Jonghyun; Lee, Myeongkyu, E-mail: myeong@yonsei.ac.kr [Department of Materials Science and Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of)

    2010-08-27

    Poor interfacial contact is often encountered in nanoparticulate film-based devices. The dye-sensitized solar cell (DSSC) is a representative case in which a nanoporous TiO{sub 2} electrode needs to be prepared on the transparent conducting oxide (TCO)-coated glass substrate. In this study, we demonstrate that the inter-electrode contact resistance accounts for a considerable portion of the total resistance of a DSSC and its efficiency can be greatly enhanced by welding the interface with a laser. TiO{sub 2} films formed on the TCO-coated glass substrate were irradiated with a pulsed ultraviolet laser beam at 355 nm; this transmits through the TCO and glass but is strongly absorbed by TiO{sub 2}. Electron microscopy analysis and impedance measurements showed that a thin continuous TiO{sub 2} layer is formed at the interface as a result of the local melting of TiO{sub 2} nanoparticles and this layer completely bridges the gap between the two electrodes, improving the current flow with a reduced contact resistance. We were able to improve the efficiency by 35-65% with this process. DSSCs fabricated using a homemade TiO{sub 2} paste revealed an efficiency improvement from {eta} = 3.3% to 5.4%, and an increase from 8.2% to 11.2% was achieved with the TiO{sub 2} electrodes made from a commercial paste.

  4. Toxicity of nanoparticulate and bulk ZnO, Al2O3 and TiO2 to the nematode Caenorhabditis elegans

    International Nuclear Information System (INIS)

    Wang Huanhua; Wick, Robert L.; Xing Baoshan

    2009-01-01

    Limited information is available on the environmental behavior and associated potential risk of manufactured oxide nanoparticles (NPs). In this research, toxicity of nanoparticulate and bulk ZnO, Al 2 O 3 and TiO 2 were examined to the nematode Caenorhabditis elegans with Escherichia coli as a food source. Parallel experiments with dissolved metal ions from NPs were also conducted. The 24-h median lethal concentration (LC 50 ) and sublethal endpoints were assessed. Both NPs and their bulk counterparts were toxic, inhibiting growth and especially the reproductive capability of the nematode. The 24-h LC 50 for ZnO NPs (2.3 mg L -1 ) and bulk ZnO was not significantly different, but significantly different between Al 2 O 3 NPs (82 mg L -1 ) and bulk Al 2 O 3 (153 mg L -1 ), and between TiO 2 NPs (80 mg L -1 ) and bulk TiO 2 (136 mg L -1 ). Oxide solubility influenced the toxicity of ZnO and Al 2 O 3 NPs, but nanoparticle-dependent toxicity was indeed observed for the investigated NPs. - ZnO, Al 2 O 3 and TiO 2 nanoparticles are more toxic than their bulk counterparts to the nematode, Caenorhabditis elegans

  5. Heavy Oil Upgrading and Enhanced Recovery in a Steam Injection Process Assisted by NiO- and PdO-Functionalized SiO2 Nanoparticulated Catalysts

    Directory of Open Access Journals (Sweden)

    Luisana Cardona

    2018-03-01

    Full Text Available This work aims to investigate the effect of active catalytic nanoparticles on the improvement of the efficiency in recovery of a continuous steam injection process. Catalytic nanoparticles were selected through batch-adsorption experiments and the subsequent evaluation of the temperature for catalytic steam gasification in a thermogravimetric analyzer. A nanoparticulated SiO2 support was functionalized with 1.0 wt % of NiO and PdO nanocrystals, respectively, to improve the catalytic activity of the nanoparticles. Oil recovery was evaluated using a sand pack in steam injection scenarios in the absence and presence of a 500 mg/L SiNi1Pd1 nanoparticles-based nanofluid. The displacement test was carried out by constructing the base curves with water injection followed by steam injection in the absence and presence of the prepared treatment. The oil recovery increased 56% after steam injection with nanoparticles in comparison with the steam injection in the absence of the catalysts. The API gravity increases from 7.2° to 12.1°. Changes in the asphaltenes fraction corroborated the catalytic effect of the nanoparticles by reducing the asphaltenes content and the 620 °C+ residue 40% and 47%, respectively. Also, rheological measurements showed that the viscosity decreased by up to 85% (one order of magnitude after the nanofluid treatment during the steam injection process.

  6. Toxicity of nanoparticulate and bulk ZnO, Al{sub 2}O{sub 3} and TiO{sub 2} to the nematode Caenorhabditis elegans

    Energy Technology Data Exchange (ETDEWEB)

    Wang Huanhua; Wick, Robert L. [Department of Plant, Soil and Insect Sciences, University of Massachusetts, Stockbridge Hall, Amherst, MA 01003 (United States); Xing Baoshan [Department of Plant, Soil and Insect Sciences, University of Massachusetts, Stockbridge Hall, Amherst, MA 01003 (United States)], E-mail: bx@pssci.umass.edu

    2009-04-15

    Limited information is available on the environmental behavior and associated potential risk of manufactured oxide nanoparticles (NPs). In this research, toxicity of nanoparticulate and bulk ZnO, Al{sub 2}O{sub 3} and TiO{sub 2} were examined to the nematode Caenorhabditis elegans with Escherichia coli as a food source. Parallel experiments with dissolved metal ions from NPs were also conducted. The 24-h median lethal concentration (LC{sub 50}) and sublethal endpoints were assessed. Both NPs and their bulk counterparts were toxic, inhibiting growth and especially the reproductive capability of the nematode. The 24-h LC{sub 50} for ZnO NPs (2.3 mg L{sup -1}) and bulk ZnO was not significantly different, but significantly different between Al{sub 2}O{sub 3} NPs (82 mg L{sup -1}) and bulk Al{sub 2}O{sub 3} (153 mg L{sup -1}), and between TiO{sub 2} NPs (80 mg L{sup -1}) and bulk TiO{sub 2} (136 mg L{sup -1}). Oxide solubility influenced the toxicity of ZnO and Al{sub 2}O{sub 3} NPs, but nanoparticle-dependent toxicity was indeed observed for the investigated NPs. - ZnO, Al{sub 2}O{sub 3} and TiO{sub 2} nanoparticles are more toxic than their bulk counterparts to the nematode, Caenorhabditis elegans.

  7. Design, characterization, and aerosolization of organic solution advanced spray-dried moxifloxacin and ofloxacin dipalmitoylphosphatidylcholine (DPPC) microparticulate/nanoparticulate powders for pulmonary inhalation aerosol delivery

    Science.gov (United States)

    Duan, Jinghua; Vogt, Frederick G; Li, Xiaojian; Hayes, Don; Mansour, Heidi M

    2013-01-01

    The aim of this study was to design and develop respirable antibiotics moxifloxacin (MOXI) hydrochloride and ofloxacin (OFLX) microparticles and nanoparticles, and multifunctional antibiotics particles with or without lung surfactant 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) for targeted dry powder inhalation delivery as a pulmonary nanomedicine. Particles were rationally designed and produced by advanced spray-drying particle engineering from an organic solution in closed mode (no water) from dilute solution. Scanning electron microscopy indicated that these particles had both optimal particle morphology and surface morphology, and the particle size distributions were suitable for pulmonary delivery. Comprehensive and systematic physicochemical characterization and in vitro aerosol dispersion performance revealed significant differences between these two fluoroquinolone antibiotics following spray drying as drug aerosols and as cospray-dried antibiotic drug: DPPC aerosols. Fourier transform infrared spectroscopy and confocal Raman microspectroscopy were employed to probe composition and interactions in the solid state. Spray-dried MOXI was rendered noncrystalline (amorphous) following organic solution advanced spray drying. This was in contrast to spray-dried OFLX, which retained partial crystallinity, as did OFLX:DPPC powders at certain compositions. Aerosol dispersion performance was conducted using inertial impaction with a dry powder inhaler device approved for human use. The present study demonstrates that the use of DPPC offers improved aerosol delivery of MOXI as cospray-dried microparticulate/nanoparticulate powders, whereas residual partial crystallinity influenced aerosol dispersion of OFLX and most of the compositions of OFLX:DPPC inhalation powders. PMID:24092972

  8. Transferability of ASTM/NIST alanine-polyethylene recipe at ISS. American Society for Testing and Materials/National Institute for Standards and Technology. Istituto Superiore de Sanita

    Science.gov (United States)

    De Angelis C; Fattibene; Onori; Petetti; Bartolotta; Sansone Santamaria A

    2000-05-01

    Alanine-polyethylene solid state dosimeters were prepared at Istituto Superiore di Sanita (ISS) following the recipe proposed by National Institute of Standards and Technology (NIST) with the goal of testing its transferability. Dosimeters were prepared using 95% alanine and 5% polyethylene, by weight. They are rugged and of increased sensitivity, repeatability and reproducibility as respect to the ISS alanine-paraffin pellets. Reproducibility of about 1% was obtained at 10 Gy and at 3 Gy if one single pellet or a stack of five dosimeters were used, respectively.

  9. Aplicación del NFIS (Nist Fingerprint Image Software para la Extracción de Características de Huellas Dactilares Aplicación del NFIS (Nist Fingerprint Image Software para la Extracción de Características de Huellas Dactilares

    Directory of Open Access Journals (Sweden)

    Noé Mosqueda Valadez

    2012-02-01

    Full Text Available Este artículo presenta una descripción acerca de las huellas dactilares y sus características, así como la extracción de puntos característicos de la misma por medio del programa NFIS desarrollado por el NIST (National Institute of Standards and Technology en conjunción con el FBI (Federal Bureau of Investigation, descripción de algunas herramientas, así como un panorama general de un sistema AFAS (Automatic Fingerprint Authentification System y de un sistema AFIS (Automatic Fingerprint Identification System. This paper presents a description about the fingerprints and its characteristics, as well as the extraction of their characteristic points by means of the application of the program NFIS (NIST Fingerprint Image Software developed by the NIST (National Institute of Standards and Technology in conjunction with the FBI (Federal Bureau of Investigation, the description of some tools, as well as a general view of a system AFAS (Automatic Fingerprint Authentification System and of a system AFIS (Automatic Fingerprint Identification System.

  10. Neural Implants, Packaging for Biocompatible Implants, and Improving Fabricated Capacitors

    Science.gov (United States)

    Agger, Elizabeth Rose

    We have completed the circuit design and packaging procedure for an NIH-funded neural implant, called a MOTE (Microscale Optoelectronically Transduced Electrode). Neural recording implants for mice have greatly advanced neuroscience, but they are often damaging and limited in their recording location. This project will result in free-floating implants that cause less damage, provide rapid electronic recording, and increase range of recording across the cortex. A low-power silicon IC containing amplification and digitization sub-circuits is powered by a dual-function gallium arsenide photovoltaic and LED. Through thin film deposition, photolithography, and chemical and physical etching, the Molnar Group and the McEuen Group (Applied and Engineering Physics department) will package the IC and LED into a biocompatible implant approximately 100microm3. The IC and LED are complete and we have begun refining this packaging procedure in the Cornell NanoScale Science & Technology Facility. ICs with 3D time-resolved imaging capabilities can image microorganisms and other biological samples given proper packaging. A portable, flat, easily manufactured package would enable scientists to place biological samples on slides directly above the Molnar group's imaging chip. We have developed a packaging procedure using laser cutting, photolithography, epoxies, and metal deposition. Using a flip-chip method, we verified the process by aligning and adhering a sample chip to a holder wafer. In the CNF, we have worked on a long-term metal-insulator-metal (MIM) capacitor characterization project. Former Fellow and continuing CNF user Kwame Amponsah developed the original procedure for the capacitor fabrication, and another former fellow, Jonilyn Longenecker, revised the procedure and began the arduous process of characterization. MIM caps are useful to clean room users as testing devices to verify electronic characteristics of their active circuitry. This project's objective is to

  11. Biocompatible Nanocomplexes for Molecular Targeted MRI Contrast Agent

    Science.gov (United States)

    Chen, Zhijin; Yu, Dexin; Wang, Shaojie; Zhang, Na; Ma, Chunhong; Lu, Zaijun

    2009-07-01

    Accurate diagnosis in early stage is vital for the treatment of Hepatocellular carcinoma. The aim of this study was to investigate the potential of poly lactic acid-polyethylene glycol/gadolinium-diethylenetriamine-pentaacetic acid (PLA-PEG/Gd-DTPA) nanocomplexes using as biocompatible molecular magnetic resonance imaging (MRI) contrast agent. The PLA-PEG/Gd-DTPA nanocomplexes were obtained using self-assembly nanotechnology by incubation of PLA-PEG nanoparticles and the commercial contrast agent, Gd-DTPA. The physicochemical properties of nanocomplexes were measured by atomic force microscopy and photon correlation spectroscopy. The T1-weighted MR images of the nanocomplexes were obtained in a 3.0 T clinical MR imager. The stability study was carried out in human plasma and the distribution in vivo was investigated in rats. The mean size of the PLA-PEG/Gd-DTPA nanocomplexes was 187.9 ± 2.30 nm, and the polydispersity index was 0.108, and the zeta potential was -12.36 ± 3.58 mV. The results of MRI test confirmed that the PLA-PEG/Gd-DTPA nanocomplexes possessed the ability of MRI, and the direct correlation between the MRI imaging intensities and the nano-complex concentrations was observed ( r = 0.987). The signal intensity was still stable within 2 h after incubation of the nanocomplexes in human plasma. The nanocomplexes gave much better image contrast effects and longer stagnation time than that of commercial contrast agent in rat liver. A dose of 0.04 mmol of gadolinium per kilogram of body weight was sufficient to increase the MRI imaging intensities in rat livers by five-fold compared with the commercial Gd-DTPA. PLA-PEG/Gd-DTPA nanocomplexes could be prepared easily with small particle sizes. The nanocomplexes had high plasma stability, better image contrast effect, and liver targeting property. These results indicated that the PLA-PEG/Gd-DTPA nanocomplexes might be potential as molecular targeted imaging contrast agent.

  12. Biocompatible Nanocomplexes for Molecular Targeted MRI Contrast Agent

    Directory of Open Access Journals (Sweden)

    Yu Dexin

    2009-01-01

    Full Text Available Abstract Accurate diagnosis in early stage is vital for the treatment of Hepatocellular carcinoma. The aim of this study was to investigate the potential of poly lactic acid–polyethylene glycol/gadolinium–diethylenetriamine-pentaacetic acid (PLA–PEG/Gd–DTPA nanocomplexes using as biocompatible molecular magnetic resonance imaging (MRI contrast agent. The PLA–PEG/Gd–DTPA nanocomplexes were obtained using self-assembly nanotechnology by incubation of PLA–PEG nanoparticles and the commercial contrast agent, Gd–DTPA. The physicochemical properties of nanocomplexes were measured by atomic force microscopy and photon correlation spectroscopy. The T1-weighted MR images of the nanocomplexes were obtained in a 3.0 T clinical MR imager. The stability study was carried out in human plasma and the distribution in vivo was investigated in rats. The mean size of the PLA–PEG/Gd–DTPA nanocomplexes was 187.9 ± 2.30 nm, and the polydispersity index was 0.108, and the zeta potential was −12.36 ± 3.58 mV. The results of MRI test confirmed that the PLA–PEG/Gd–DTPA nanocomplexes possessed the ability of MRI, and the direct correlation between the MRI imaging intensities and the nano-complex concentrations was observed (r = 0.987. The signal intensity was still stable within 2 h after incubation of the nanocomplexes in human plasma. The nanocomplexes gave much better image contrast effects and longer stagnation time than that of commercial contrast agent in rat liver. A dose of 0.04 mmol of gadolinium per kilogram of body weight was sufficient to increase the MRI imaging intensities in rat livers by five-fold compared with the commercial Gd–DTPA. PLA–PEG/Gd–DTPA nanocomplexes could be prepared easily with small particle sizes. The nanocomplexes had high plasma stability, better image contrast effect, and liver targeting property. These results indicated that the PLA–PEG/Gd–DTPA nanocomplexes might be potential as molecular

  13. Evaluation of lead isotope compositions of NIST NBS 981 measured by thermal ionization mass spectrometer and multiple-collector inductively coupled plasma mass spectrometer

    Directory of Open Access Journals (Sweden)

    Honglin Yuan

    2016-09-01

    Full Text Available Because Pb isotopes can be used for tracing, they are widely used in many disciplines. The detection and analysis of Pb isotopes of bulk samples are usually conducted using thermal ionization mass spectrometer (TIMS and multiple-collector inductively coupled plasma mass spectrometer (MC-ICP-MS, both of which need external reference materials with known isotopic compositions to correct for the mass discrimination effect produced during analysis. NIST NBS 981 is the most widely used reference material for Pb isotope analysis; however, the isotopic compositions reported by various analytical laboratories, especially those using TIMS, vary from each other. In this study, we statistically evaluated 229 reported TIMS analysis values collected by GeoReM in the last 30 years, 176 reported MC-ICP-MS analysis values, and 938 MC-ICP-MS analysis results from our laboratory in the last five years. After careful investigation, only 40 TIMS results were found to have double or triple spikes. The ratios of the overall weighted averages, 206Pb/204Pb, 207Pb/204Pb, and 208Pb/204Pb, obtained from 40 spiked TIMS reports and 1114 MC-ICP-MS results of NIST NBS 981 isotopes were 16.9406 ± 0.0003 (2s, 15.4957 ± 0.0002 (2s, and 36.7184 ± 0.0007 (2s, respectively.

  14. Biocompatible Polymer/Quantum Dots Hybrid Materials: Current Status and Future Developments

    Directory of Open Access Journals (Sweden)

    Lei Shen

    2011-12-01

    Full Text Available Quantum dots (QDs are nanometer-sized semiconductor particles with tunable fluorescent optical property that can be adjusted by their chemical composition, size, or shape. In the past 10 years, they have been demonstrated as a powerful fluorescence tool for biological and biomedical applications, such as diagnostics, biosensing and biolabeling. QDs with high fluorescence quantum yield and optical stability are usually synthesized in organic solvents. In aqueous solution, however, their metallic toxicity, non-dissolubility and photo-luminescence instability prevent the direct utility of QDs in biological media. Polymers are widely used to cover and coat QDs for fabricating biocompatible QDs. Such hybrid materials can provide solubility and robust colloidal and optical stability in water. At the same time, polymers can carry ionic or reactive functional groups for incorporation into the end-use application of QDs, such as receptor targeting and cell attachment. This review provides an overview of the recent development of methods for generating biocompatible polymer/QDs hybrid materials with desirable properties. Polymers with different architectures, such as homo- and co-polymer, hyperbranched polymer, and polymeric nanogel, have been used to anchor and protect QDs. The resulted biocompatible polymer/QDs hybrid materials show successful applications in the fields of bioimaging and biosensing. While considerable progress has been made in the design of biocompatible polymer/QDs materials, the research challenges and future developments in this area should affect the technologies of biomaterials and biosensors and result in even better biocompatible polymer/QDs hybrid materials.

  15. Development of novel biocompatible hybrid nanocomposites based on polyurethane-silica prepared by sol gel process

    Energy Technology Data Exchange (ETDEWEB)

    Rashti, Ali [Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Yahyaei, Hossein [Department of Polymer Engineering and Color Technology, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Firoozi, Saman [Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Ramezani, Sara [Department of Neuroscience, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Rahiminejad, Ali [Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Karimi, Roya [Department of Tissue Engineering and Applied Cell Science, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Farzaneh, Khadijeh [Tehran Heart Center, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Mohseni, Mohsen [Department of Polymer Engineering and Color Technology, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Ghanbari, Hossein, E-mail: hghanbari@tums.ac.ir [Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Tehran Heart Center, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Medical Biomaterials Research Center, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of)

    2016-12-01

    Due to high biocompatibility, polyurethane has found many applications, particularly in development of biomedical devices. A new nanocomposite based on thermoset polyurethane and silica nanoparticles was synthesized using sol-gel method. Sol-gel process was fulfilled in two acidic and basic conditions by using tetraethylorthosilicate (TEOS) and trimethoxyisocyanatesilane as precursors. The hybrid films characterized for mechanical and surface properties using tensile strength, contact angle, ATR-FTIR and scanning electron microscopy. Biocompatibility and cytotoxicity of the hybrids were assessed using standard MTT, LDH and TUNEL assays. The results revealed that incorporation of silica nanoparticles was significantly improved tensile strength and mechanical properties of the hybrids. Based on the contact angle results, silica nanoparticles increased hydrophilicity of the hybrids. Biocompatibility by using human lung epithelial cell line (MRC-5) demonstrated that the hybrids were significantly less cytotoxic compared to pristine polymer as tested by MTT and LDH assays. TUNEL assay revealed no signs of apoptosis in all tested samples. The results of this study demonstrated that incorporation of silica nanoparticles into polyurethane lead to the enhancement of biocompatibility, indicating that these hybrids could potentially be used in biomedical field in particular as a new coating for medical implants. - Highlights: • Nanocomposites based on polyurethane and nanosilica prepared by sol-gel method fabricated • Addition of inorganic phase improved mechanical properties. • Nanosilica prepared by sol-gel method increased hydrophilicity. • By adding nanosilica to polyurethane biocompatibility increased significantly.

  16. Firefly Luciferin-Inspired Biocompatible Chemistry for Protein Labeling and In Vivo Imaging.

    Science.gov (United States)

    Wang, Yuqi; An, Ruibing; Luo, Zhiliang; Ye, Deju

    2018-04-17

    Biocompatible reactions have emerged as versatile tools to build various molecular imaging probes that hold great promise for the detection of biological processes in vitro and/or in vivo. In this Minireview, we describe the recent advances in the development of a firefly luciferin-inspired biocompatible reaction between cyanobenzothiazole (CBT) and cysteine (Cys), and highlight its versatility to label proteins and build multimodality molecular imaging probes. The review starts from the general introduction of biocompatible reactions, which is followed by briefly describing the development of the firefly luciferin-inspired biocompatible chemistry. We then discuss its applications for the specific protein labeling and for the development of multimodality imaging probes (fluorescence, bioluminescence, MRI, PET, photoacoustic, etc.) that enable high sensitivity and spatial resolution imaging of redox environment, furin and caspase-3/7 activity in living cells and mice. Finally, we offer the conclusions and our perspective on the various and potential applications of this reaction. We hope that this review will contribute to the research of biocompatible reactions for their versatile applications in protein labeling and molecular imaging. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Design, development, and demonstration of a fully LabVIEW controlled in situ electrochemical Fourier transform infrared setup combined with a wall-jet electrode to investigate the electrochemical interface of nanoparticulate electrocatalysts under reaction conditions.

    Science.gov (United States)

    Nesselberger, Markus; Ashton, Sean J; Wiberg, Gustav K H; Arenz, Matthias

    2013-07-01

    We present a detailed description of the construction of an in situ electrochemical ATR-FTIR setup combined with a wall-jet electrode to investigate the electrocatalytic properties of nanoparticulate catalysts in situ under controlled mass transport conditions. The presented setup allows the electrochemical interface to be probed in combination with the simultaneous determination of reaction rates. At the same time, the high level of automation allows it to be used as a standard tool in electrocatalysis research. The performance of the setup was demonstrated by probing the oxygen reduction reaction on a platinum black catalyst in sulfuric electrolyte.

  18. Exposition orale aux nanoparticules de dioxyde de titane (TiO2) : du franchissement de l’épithélium buccal et intestinal au devenir et aux effets dans l’organisme

    OpenAIRE

    Bettini, Sarah

    2014-01-01

    Face à l’utilisation exponentielle des nanomatériaux dans des produits de consommation courante, dont l’alimentation, les conséquences pour l’homme d’une exposition quotidienne aux faibles doses de nanoparticules posent des questions de santé publique. Parmi les différentes voies d’exposition, la voie orale reste la moins documentée, alors que des nanomatériaux sont couramment utilisés comme additifs alimentaires, ou incorporés `a des emballages au contact des aliments, de l’eau, pour b´en´ef...

  19. Interaction of derived polymers from pyrrole with biocompatible solutions

    International Nuclear Information System (INIS)

    Lopez G, O. G.

    2010-01-01

    This work presents a study about the synthesis by plasma, the electric properties and superficial interaction of polymers derived from pyrrole doped with Iodine with potential use as bio material. Poly-pyrrole is a semiconductor and biocompatible polymer with potential application in the development of artificial muscles and implants where the electric interaction between cells and material is an important variable. The syntheses were made at 13.5 MHz in a glass tubular reactor of 1500 cm 3 with electrodes of 6.5 cm diameter and stainless steel flanges. An electrode was connected to the RF terminal of the power supply that is combined with a matching coupling resistance. The monomer and dopant used in this work were pyrrole and Iodine respectively, in closed containers. They were vaporized and injected separately into the reactor at room temperature and 0.1 mbar. The vapors of the reagents mixed freely in the reactor. The synthesis time was 240 min at 40, 60, 80 and 100 W. The polymers were obtained as thin films adhered to the reactor walls. The films were washed and swollen with distilled water and removed from the reactor walls with a small spatula. The polymers were irradiated with gamma rays at 18 and 22 KGy. Due to the fact that the doses are cumulative, the final dose applied was 40 KGy. The polymers characterization was carried out by Fourier Transform Infrared Spectroscopy, thermogravimetric analysis (TGA), scanning electron microscopy, contact angle, electrical conductivity and X-ray diffraction. The analyses indicates that the polymers have very similar structure in almost the entire power range, showing C-O, C=C, C-H, O-H, N-H bonds with a predominantly amorphous structure. The TGA analyses showed that the material has 4 or 5 loses of material. The first one starts after that 115 C except for the material irradiated at 40 KGy, this one begins in 87 C, the second one is in the interval of 196 and 295 C, the third one between 311 and 500 C, and the last

  20. An animal model in sheep for biocompatibility testing of biomaterials in cancellous bones.

    Science.gov (United States)

    Nuss, Katja M R; Auer, Joerg A; Boos, Alois; von Rechenberg, Brigitte

    2006-08-15

    The past years have seen the development of many synthetic bone replacements. To test their biocompatibility and ability for osseointegration, osseoinduction and -conduction requires their placement within bone preferably in an animal experiment of a higher species. A suitable experimental animal model in sheep with drill holes of 8 mm diameter and 13 mm depth within the proximal and distal humerus and femur for testing biocompatibility issues is introduced. This present sheep model allows the placing of up to 8 different test materials within one animal and because of the standardization of the bone defect, routine evaluation by means of histomorphometry is easily conducted. This method was used successfully in 66 White Alpine Sheep. When the drill holes were correctly placed no complications such as spontaneous fractures were encountered. This experimental animal model serves an excellent basis for testing the biocompatibility of novel biomaterials to be used as bone replacement or new bone formation enhancing materials.

  1. Ascorbic acid prevents cellular uptake and improves biocompatibility of chitosan nanoparticles.

    Science.gov (United States)

    Elshoky, Hisham A; Salaheldin, Taher A; Ali, Maha A; Gaber, Mohamed H

    2018-04-11

    Chitosan nanoparticles have many applications, such as gene and drug delivery, due to their biocompatibility. Chitosan nanoparticles are currently produced by dissolution in acetic acid that affects the biocompatibility at acidic pH. Here, we synthesized and characterized chitosan (CS) and ascorbate chitosan (AsCS) nanoparticles and investigated their cytotoxic effects, internalization, and distribution in the human colon carcinoma cell line using confocal laser scanning microscopy (CLSM). The CS and AsCS nanoparticles were spherical with average particle sizes of 44±8.4nm and 87±13.6nm, respectively. CS nanoparticles were taken up by the cells and showed dose-dependent cytotoxicity. By contrast, AsCS nanoparticles were not internalized and showed no cytotoxicity. Therefore, AsCS nanoparticles are more biocompatible than CS nanoparticles and may be more suitable for extracellular drug delivery. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. An animal model in sheep for biocompatibility testing of biomaterials in cancellous bones

    Science.gov (United States)

    Nuss, Katja MR; Auer, Joerg A; Boos, Alois; Rechenberg, Brigitte von

    2006-01-01

    Background The past years have seen the development of many synthetic bone replacements. To test their biocompatibility and ability for osseointegration, osseoinduction and -conduction requires their placement within bone preferably in an animal experiment of a higher species. Methods A suitable experimental animal model in sheep with drill holes of 8 mm diameter and 13 mm depth within the proximal and distal humerus and femur for testing biocompatibility issues is introduced. Results This present sheep model allows the placing of up to 8 different test materials within one animal and because of the standardization of the bone defect, routine evaluation by means of histomorphometry is easily conducted. This method was used successfully in 66 White Alpine Sheep. When the drill holes were correctly placed no complications such as spontaneous fractures were encountered. Conclusion This experimental animal model serves an excellent basis for testing the biocompatibility of novel biomaterials to be used as bone replacement or new bone formation enhancing materials. PMID:16911787

  3. Physicochemical characterization and biocompatibility of alginate-polycation microcapsules designed for islet transplantation

    Science.gov (United States)

    Tam, Susan Kimberly

    Microencapsulation represents a method for immunoprotecting transplanted therapeutic cells or tissues from graft rejection using a physical barrier. This approach is advantageous in that it eliminates the need to induce long-term immunosuppression and allows the option of transplanting non-cadaveric cell sources, such as animal cells and stem cell-derived tissues. The microcapsules that we have investigated are designed to immunoprotect islets of Langerhans (i.e. clusters of insulin-secreting cells), with the goal of treating insulin-dependent diabetes. With the aid of techniques for physicochemical analysis, this research focused on understanding which properties of the microcapsule are the most important for determining its biocompatibility. The objective of this work was to elucidate correlations between the chemical make-up, physicochemical properties, and in vivo biocompatibility of alginate-based microcapsules. Our approach was based on the hypothesis that the immune response to the microcapsules is governed by, and can therefore be controlled by, specific physicochemical properties of the microcapsule and its material components. The experimental work was divided into five phases, each associated with a specific aim : (1) To prove that immunoglobulins adsorb to the surface of alginate-polycation microcapsules, and to correlate this adsorption with the microcapsule chemistry. (2) To test interlaboratory reproducibility in making biocompatible microcapsules, and evaluate the suitability of our materials and fabrication protocols for subsequent studies. (3) To determine which physicochemical properties of alginates affect the in vivo biocompatibility of their gels. (4) To determine which physiochemical properties of alginate-polycation microcapsules are most important for determining their in vivo biocompatibility (5) To determine whether a modestly immunogenic membrane hinders or helps the ability of the microcapsule to immunoprotect islet xenografts in

  4. Functionalization of titanium surface with chitosan via silanation: 3D CLSM imaging of cell biocompatibility behaviour.

    Science.gov (United States)

    Attik, G N; D'Almeida, M; Toury, B; Grosgogeat, B

    2013-09-16

    Biocompatibility ranks as one of the most important properties of dental materials. One of the criteria for biocompatibility is the absence of material toxicity to cells, according to the ISO 7405 and 10993 recommendations. Among numerous available methods for toxicity assessment; 3-dimensional Confocal Laser Scanning Microscopy (3D CLSM) imaging was chosen because it provides an accurate and sensitive index of living cell behavior in contact with chitosan coated tested implants. The purpose of this study was to investigate the in vitro biocompatibility of functionalized titanium with chitosan via a silanation using sensitive and innovative 3D CLSM imaging as an investigation method for cytotoxicity assessment. The biocompatibility of four samples (controls cells, TA6V, TA6V-TESBA and TA6V-TESBAChitosan) was compared in vitro after 24h of exposure. Confocal imaging was performed on cultured human gingival fibroblast (HGF1) like cells using Live/Dead® staining. Image series were obtained with a FV10i confocal biological inverted system and analyzed with FV10-ASW 3.1 Software (Olympus France). Image analysis showed no cytotoxicity in the presence of the three tested substrates after 24 h of contact. A slight decrease of cell viability was found in contact with TA6V-TESBA with and without chitosan compared to negative control cells. Our findings highlighted the use of 3D CLSM confocal imaging as a sensitive method to evaluate qualitatively and quantitatively the biocompatibility behavior of functionalized titanium with chitosan via a silanation. The biocompatibility of the new functionalized coating to HGF1 cells is as good as the reference in biomedical device implantation TA6V.

  5. Interaction of derived polymers from pyrrole with biocompatible solutions; Interaccion de polimeros derivados de pirrol con soluciones biocompatibles

    Energy Technology Data Exchange (ETDEWEB)

    Lopez G, O. G.

    2010-07-01

    This work presents a study about the synthesis by plasma, the electric properties and superficial interaction of polymers derived from pyrrole doped with Iodine with potential use as bio material. Poly-pyrrole is a semiconductor and biocompatible polymer with potential application in the development of artificial muscles and implants where the electric interaction between cells and material is an important variable. The syntheses were made at 13.5 MHz in a glass tubular reactor of 1500 cm{sup 3} with electrodes of 6.5 cm diameter and stainless steel flanges. An electrode was connected to the RF terminal of the power supply that is combined with a matching coupling resistance. The monomer and dopant used in this work were pyrrole and Iodine respectively, in closed containers. They were vaporized and injected separately into the reactor at room temperature and 0.1 mbar. The vapors of the reagents mixed freely in the reactor. The synthesis time was 240 min at 40, 60, 80 and 100 W. The polymers were obtained as thin films adhered to the reactor walls. The films were washed and swollen with distilled water and removed from the reactor walls with a small spatula. The polymers were irradiated with gamma rays at 18 and 22 KGy. Due to the fact that the doses are cumulative, the final dose applied was 40 KGy. The polymers characterization was carried out by Fourier Transform Infrared Spectroscopy, thermogravimetric analysis (TGA), scanning electron microscopy, contact angle, electrical conductivity and X-ray diffraction. The analyses indicates that the polymers have very similar structure in almost the entire power range, showing C-O, C=C, C-H, O-H, N-H bonds with a predominantly amorphous structure. The TGA analyses showed that the material has 4 or 5 loses of material. The first one starts after that 115 C except for the material irradiated at 40 KGy, this one begins in 87 C, the second one is in the interval of 196 and 295 C, the third one between 311 and 500 C, and the

  6. Laser surface modification of polyethersulfone films: effect of laser wavelength on biocompatibility

    International Nuclear Information System (INIS)

    Pazokian, H; Jelvani, S; Mollabashi, M; Barzin, J

    2013-01-01

    In this paper laser ablation of polyethersulfone (PES) films regarding to the change in biocompatibility of the surface is investigated at 3 different wavelengths of 193nm (ArF), 248 nm (KrF) and 308 nm (XeCl). The optimum laser fluence and number of pulses for the improvement of the surface biocompatibility is found by examination of the surface behavior in contact with platelets and fibroblasts cells at 3 wavelengths. These biological modifications are explained by alteration of the surface morphology and chemistry following irradiation. The results show that the KrF laser is the best choice for treatment of PES in biological applications.

  7. Hydrothermal Synthesis and Biocompatibility Study of Highly Crystalline Carbonated Hydroxyapatite Nanorods

    Science.gov (United States)

    Xue, Caibao; Chen, Yingzhi; Huang, Yongzhuo; Zhu, Peizhi

    2015-08-01

    Highly crystalline carbonated hydroxyapatite (CHA) nanorods with different carbonate contents were synthesized by a novel hydrothermal method. The crystallinity and chemical structure of synthesized nanorods were studied by Fourier transform infrared spectroscopy (FTIR), X-ray photo-electronic spectroscopy (XPS), X-ray diffraction (XRD), Raman spectroscopy, and transmission electron microscopy (TEM). The biocompatibility of synthesized CHA nanorods was evaluated by cell viability and alkaline phosphatase (ALP) activity of MG-63 cell line. The biocompatibility evaluation results show that these CHA nanorods are biologically active apatites and potentially promising bone-substitute biomaterials for orthopedic application.

  8. Modified titanium surface with gelatin nano gold composite increases osteoblast cell biocompatibility

    International Nuclear Information System (INIS)

    Lee, Young-Hee; Bhattarai, Govinda; Aryal, Santosh; Lee, Nan-Hee; Lee, Min-Ho; Kim, Tae-Gun; Jhee, Eun-Chung; Kim, Hak-Yong; Yi, Ho-Keun

    2010-01-01

    This study examined the gelatin nano gold (GnG) composite for surface modification of titanium in addition to insure biocompatibility on dental implants or biomaterials. The GnG composite was constructed by gelatin and hydrogen tetrachloroaurate in presence of reducing agent, sodium borohydrate (NabH 4 ). The GnG composite was confirmed by UV-VIS spectroscopy and transmission electron microscopy (TEM). A dipping method was used to modify the titanium surface by GnG composite. Surface was characterized by scanning electron microscopy (SEM) and energy dispersive X-ray (EDX). The MC-3T3 E1 cell viability was assessed by trypan blue and the expression of proteins to biocompatibility were analyzed by Western blotting. The GnG composite showed well dispersed character, the strong absorption at 530 nm, roughness, regular crystal and clear C, Na, Cl, P, and Au signals onto titanium. Further, this composite allowed MC-3T3 E1 growth and viability compared to gelatin and pure titanium. It induced ERK activation and the expression of cell adherent molecules, FAK and SPARC, and growth factor, VEGF. However, GnG decreased the level of SAPK/JNK. This shows that GnG composite coated titanium surfaces have a good biocompatibility for osteoblast growth and attachment than in intact by simple and versatile dipping method. Furthermore, it offers good communication between cell and implant surfaces by regulating cell signaling and adherent molecules, which are useful to enhance the biocompatibility of titanium surfaces.

  9. Membrane biocompatibility does not affect whole body protein metabolism during dialysis

    NARCIS (Netherlands)

    Veeneman, JM; Kingma, HA; Stellaard, F; de Jong, PE; Reijngoud, DJ; Huisman, RM

    2005-01-01

    Background: Protein-calorie malnutrition is present in 30-50% of dialysis patients. The lack of biocompatibility of the dialysis membrane, which results in low-grade inflammation, could be responsible for this malnutrition. We investigated whether protein-energy malnutrition could be partly due to

  10. Biocompatibility of Liposome Nanocarriers in the Rat Inner Ear After Intratympanic Administration

    NARCIS (Netherlands)

    Zou, Jing; Feng, Hao; Sood, Rohit; Kinnunen, Paavo K. J.; Pyykko, Ilmari

    2017-01-01

    Liposome nanocarriers (LPNs) are potentially the future of inner ear therapy due to their high drug loading capacity and efficient uptake in the inner ear after a minimally invasive intratympanic administration. However, information on the biocompatibility of LPNs in the inner ear is lacking. The

  11. In vivo biocompatibility of p(HPMAm-lac)-PEG hydrogels hybridized with hyaluronan

    NARCIS (Netherlands)

    Sabbieti, Maria Giovanna; Dubbini, Alessandra; Laus, Fulvio; Paggi, Emanuele; Marchegiani, Andrea; Capitani, Melania; Marchetti, Luigi; Dini, Fabrizio; Vermonden, Tina; Di Martino, Piera; Agas, Dimitrios; Censi, Roberta

    2017-01-01

    The present study reports on the biocompatibility in vivo after intramuscular and subcutaneous administration in Balb/c mice of vinyl sulphone bearing p(HPMAm-lac1-2)-PEG-p(HPMAm-lac1-2)/thiolated hyaluronic acid hydrogels, designed as novel injectable biomaterials for potential application in the

  12. Use of SU8 as a stable and biocompatible adhesion layer for gold bioelectrodes.

    Science.gov (United States)

    Matarèse, Bruno F E; Feyen, Paul L C; Falco, Aniello; Benfenati, Fabio; Lugli, Paolo; deMello, John C

    2018-04-03

    Gold is the most widely used electrode material for bioelectronic applications due to its high electrical conductivity, good chemical stability and proven biocompatibility. However, it adheres only weakly to widely used substrate materials such as glass and silicon oxide, typically requiring the use of a thin layer of chromium between the substrate and the metal to achieve adequate adhesion. Unfortunately, this approach can reduce biocompatibility relative to pure gold films due to the risk of the underlying layer of chromium becoming exposed. Here we report on an alternative adhesion layer for gold and other metals formed from a thin layer of the negative-tone photoresist SU-8, which we find to be significantly less cytotoxic than chromium, being broadly comparable to bare glass in terms of its biocompatibility. Various treatment protocols for SU-8 were investigated, with a view to attaining high transparency and good mechanical and biochemical stability. Thermal annealing to induce partial cross-linking of the SU-8 film prior to gold deposition, with further annealing after deposition to complete cross-linking, was found to yield the best electrode properties. The optimized glass/SU8-Au electrodes were highly transparent, resilient to delamination, stable in biological culture medium, and exhibited similar biocompatibility to glass.

  13. In vitro and in vivo studies on biocompatibility of carbon fibres

    Czech Academy of Sciences Publication Activity Database

    Rajzer, I.; Menaszek, E.; Bačáková, Lucie; Rom, M.; Blazewicz, M.

    2010-01-01

    Roč. 21, č. 9 (2010), s. 2611-2622 ISSN 0957-4530 R&D Projects: GA ČR GA106/09/1000 Institutional research plan: CEZ:AV0Z50110509 Keywords : carbon fibres * biocompatibility Subject RIV: EI - Biotechnology ; Bionics Impact factor: 2.325, year: 2010

  14. Long-term biocompatibility, chemistry, and function of microencapsulated pancreatic islets

    NARCIS (Netherlands)

    de Vos, P; van Hoogmoed, CG; van Zanten, J; Netter, S; Strubbe, JH; Busscher, HJ

    Transplantation of encapsulated living cells is a promising approach for the treatment of a wide variety of diseases. Large-scale application of the technique, however, is hampered by insufficient biocompatibility of the capsules. In the present study, we have implemented new as well as previously

  15. In vivo study on the biocompatibility of chitosan-hydroxyapatite film depending on degree of deacetylation.

    Science.gov (United States)

    Jeong, Ki-Jae; Song, Younseong; Shin, Hye-Ri; Kim, Ji Eun; Kim, Jeonghyo; Sun, Fangfang; Hwang, Dae-Youn; Lee, Jaebeom

    2017-06-01

    Chitosan, produced from chitin, is one of the polymers with promising applications in various fields. However, despite diverse research studies conducted on its biocompatibility, its uses are still limited. The main reason is the degree of deacetylation (DOD), which represents the proportion of deacetylated units in the polymer and is directly correlated with its biocompatibility property. In this article, the in vivo biocompatibility of three chitosan-hydroxyapatite composite films composed of chitosan with different DOD values was investigated by traditional biological protocols and novel optical spectroscopic analyses. The DOD of the chitosan obtained from three different manufacturers was estimated and calculated by Raman spectroscopy, Fourier transform infrared spectroscopy, and proton nuclear magnetic resonance spectroscopy. The chitosan with the higher DOD induced a higher incidence of inflammation in skin cells. The amino group density, biodegradability, and crystallinity of chitosan are the three possible factors that need to be considered when determining the biocompatibility of the films for in vivo application, as they led to complicated biological results, resulting in either better or worse inflammation even when using chitosan products with the same DOD. This basic study on the relationship between the DOD and inflammation is valuable for the development of further chitosan-based researches. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 1637-1645, 2017. © 2017 Wiley Periodicals, Inc.

  16. Preparation and biocompatibility evaluation of apatite/wollastonite-derived porous bioactive glass ceramic scaffolds

    International Nuclear Information System (INIS)

    Zhang Hua; Ye Xiaojian; Li Jiashun

    2009-01-01

    An apatite/wollastonite-derived (A/W) porous glass ceramic scaffold with highly interconnected pores was successfully fabricated by adding a plastic porosifier. The morphology, porosity and mechanical strength were characterized. The results showed that the glass ceramic scaffold with controllable pore size and porosity displayed open macropores. In addition, good in vitro bioactivity was found for the scaffold obtained by soaking it in simulated body fluid. Mesenchymal stem cells (MSCs) were cultured, expanded and seeded on the scaffold, and the adhesion and proliferation of MSCs were determined using MTT assay and environmental scanning electron microscopy (ESEM). The results revealed that the scaffold was biocompatible and had no negative effects on the MSCs in vitro. The in vivo biocompatibility and osteogenicity were investigated by implanting both the pure scaffold and the MSC/scaffold construct in rabbit mandibles and studying histologically. The results showed that the glass ceramic scaffold exhibited good biocompatibility and osteoconductivity. Moreover, the introduction of MSCs into the scaffold observably improved the efficiency of new bone formation, especially at the initial stage after implantation. However, the glass ceramic scaffold showed the same good biocompatibility and osteogenicity as the hybrid one at the later stage. These results indicate that porous bioactive scaffolds based on the original apatite-wollastonite glass ceramic fulfil the basic requirements of a bone tissue engineering scaffold.

  17. In vivo qualitative analysis of the biocompatibility of different cyanoacrylate-based adhesives

    Directory of Open Access Journals (Sweden)

    Rafael Tobias Moretti Neto

    2008-03-01

    Full Text Available Cyanocrylates have been widely used in the medical and dental fields for several years. In Dentistry, cyanoacrylates have been used for suturing, pulp capping, as retrofilling material in endodontic surgeries, and as cervical plug for pulpless teeth bleaching. The biocompatibility of these adhesives has been the topic of many researches and subcutaneous implantation is an effective methodology for these studies. The present study evaluated the biocompatibility of three different cyanoacrylate-based adhesives. Thirty-six Wistar rats were used, divided into four groups of 9 animals each: A (control - distilled water, B - cyanoacrylate ester (Super Bonder, C - n-butyl-cyanoacrylate (Histoacryl and D - alpha-cyanoacrylate (Three Bond. The materials were dispensed in sponges of polyvinyl chloride, the animals were incised and the sponges were inserted in the subcutaneous tissue and sutured. Each group was sub-divided according to the time of sacrifice of the animals: 7, 21 and 45 days. Subjective analysis of the histologic material showed that all groups presented some degree of irritability, but the inflammatory reaction decreased with the experimental time in all groups. Group D showed an inflammatory reaction which was closer to that of the control group and was considered to have good biocompatibility. Groups B and C were similar and presented more aggressive inflammatory reactions when compared to the control group. Based on the results, it was concluded that alpha-cyanoacrylate (Three Bond was the most biocompatible adhesive because it caused the lowest levels of inflammation.

  18. Synthesis of microbial elastomers based on soybean oily acids. Biocompatibility studies

    International Nuclear Information System (INIS)

    Hazer, Derya Burcu; Hazer, Baki; Kaymaz, Figen

    2009-01-01

    Biocompatibility studies of the autoxidized and unoxidized unsaturated medium-long chain length (m-lcl) co-poly-3-hydroxyalkanoates (m-lclPHAs) derived from soya oily acids have been reported. Pseudomonas oleovorans was grown on a series of mixtures of octanoic acid (OA) and soya oily acids (Sy) with weight ratios of 20:80, 28:72 and 50:50 in order to obtain unsaturated m-lcl copolyesters coded PHO-Sy-2080, PHO-Sy-2872 and PHO-Sy-5050, respectively. The PHA films were obtained by solvent cast from CHCl 3 . They were all originally sticky and waxy except PHO-Sy-5050. Autoxidation of the unsaturated copolyester films was carried out on exposure to air at room temperature in order to obtain crosslinked polymers. They became a highly flexible elastomer after being autoxidized (about 40 days of autoxidation). The in vivo tissue reactions of the autoxidized PHAs were evaluated by subcutaneous implantation in rats. The rats appeared to be healthy throughout the implantation period. No symptom such as necrosis, abscess or tumorigenesis was observed in the vicinity of the implants. Retrieved materials varied in their physical appearance after 6 weeks of implantation. In vivo biocompatibility studies of the medical applications indicated that the microbial copolyesters obtained were all biocompatible and especially the PHOSy series of copolyesters had the highest biocompatibility among them.

  19. Nanoparticle-cell interactions: surface chemistry effects on the cellular uptake of biocompatible block copolymer assemblies

    Czech Academy of Sciences Publication Activity Database

    de Castro, C. E.; Ribeiro, C. A. S.; Alavarse, A. C.; Albuquerque, L. J. C.; da Silva, M. C. C.; Jäger, Eliezer; Surman, František; Schmidt, V.; Giacomelli, C.; Giacomelli, F. C.

    2018-01-01

    Roč. 34, č. 5 (2018), s. 2180-2188 ISSN 0743-7463 R&D Projects: GA ČR(CZ) GA17-09998S Institutional support: RVO:61389013 Keywords : biocompatibility * block copolymers * controlled drug delivery Subject RIV: CD - Macromolecular Chemistry OBOR OECD: Polymer science Impact factor: 3.833, year: 2016

  20. Controllable synthesis of functional nanocomposites: Covalently functionalize graphene sheets with biocompatible L-lysine

    International Nuclear Information System (INIS)

    Mo, Zunli; Gou, Hao; He, Jingxian; Yang, Peipei; Feng, Chao; Guo, Ruibin

    2012-01-01

    Highlights: ► The biocompatible L-lysine functionalized graphene sheets (Gs/Lys) were synthesized controllably using a novel method. ► The Gs/Lys nanocomposites are water-soluble, biocompatible and chiral. ► A chiral graphene derivative was proposed. - Abstract: In this paper a novel method to synthesize functionalize graphene sheets (Gs) by biocompatible L-lysine (Gs/Lys) is reported. The method was composed of two steps: (1) we controllably synthesized self-assembly Gs/Lys-Cu-Lys through the terminal amino of copper L-lysine (Lys-Cu-Lys) attaching to graphite oxide (GO) and then reducing. (2) Obtained the Gs/Lys by eliminating the copper ion. This method could also be used to functionalize other nanomaterials by L-lysine. The Gs/Lys nanocomposites are water-soluble, biocompatible, and above all, it is a chiral material of graphene, which is proposed by us. This novel material will be promising for more applications of graphene. The formation of Gs/Lys nanocomposites were confirmed by scanning electron microscopy (SEM), Fourier-transform infrared spectra (FT-IR), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and thermal gravimetric (TG) analysis.

  1. Biodegradable magnesium alloys for orthopaedic applications: A review on corrosion, biocompatibility and surface modifications

    Energy Technology Data Exchange (ETDEWEB)

    Agarwal, Sankalp [Centre for Research in Engineering and Surface Technology, FOCAS Institute, Dublin Institute of Technology (Ireland); School of Food Science and Environmental Health, Cathal Brugha Street, Dublin Institute of Technology (Ireland); Curtin, James [School of Food Science and Environmental Health, Cathal Brugha Street, Dublin Institute of Technology (Ireland); Duffy, Brendan [Centre for Research in Engineering and Surface Technology, FOCAS Institute, Dublin Institute of Technology (Ireland); Jaiswal, Swarna, E-mail: swarna.jaiswal@dit.ie [Centre for Research in Engineering and Surface Technology, FOCAS Institute, Dublin Institute of Technology (Ireland)

    2016-11-01

    Magnesium (Mg) and its alloys have been extensively explored as potential biodegradable implant materials for orthopaedic applications (e.g. Fracture fixation). However, the rapid corrosion of Mg based alloys in physiological conditions has delayed their introduction for therapeutic applications to date. The present review focuses on corrosion, biocompatibility and surface modifications of biodegradable Mg alloys for orthopaedic applications. Initially, the corrosion behaviour of Mg alloys and the effect of alloying elements on corrosion and biocompatibility is discussed. Furthermore, the influence of polymeric deposit coatings, namely sol-gel, synthetic aliphatic polyesters and natural polymers on corrosion and biological performance of Mg and its alloy for orthopaedic applications are presented. It was found that inclusion of alloying elements such as Al, Mn, Ca, Zn and rare earth elements provides improved corrosion resistance to Mg alloys. It has been also observed that sol-gel and synthetic aliphatic polyesters based coatings exhibit improved corrosion resistance as compared to natural polymers, which has higher biocompatibility due to their biomimetic nature. It is concluded that, surface modification is a promising approach to improve the performance of Mg-based biomaterials for orthopaedic applications. - Highlights: • The Mg based alloys are promising candidates for orthopaedic applications. • The rapid corrosion of Mg can affect human cells, and causes infection and implant failure. • The various physiological factors and Mg alloying elements affect the corrosion and mechanical properties of implants. • The polymeric deposit coatings enhance the corrosion resistance and biocompatibility.

  2. BIOCOMPATIBILITY AND TISSUE REGENERATING CAPACITY OF CROSS-LINKED DERMAL SHEEP COLLAGEN

    NARCIS (Netherlands)

    VANWACHEM, PB; VANLUYN, MJA; DAMINK, LHHO; DIJKSTRA, PJ; FEIJEN, J; NIEUWENHUIS, P

    The biocompatibility and tissue regenerating capacity of four crosslinked dermal sheep collagens (DSC) was studied. In vitro, the four DSC versions were found to be noncytotoxic or very low in cytoxicity. After subcutaneous implantation in rats, hexamethylenediisocyanate-crosslinked DSC (HDSC)

  3. DNA nanosensor based on biocompatible graphene quantum dots and carbon nanotubes.

    Science.gov (United States)

    Qian, Zhao Sheng; Shan, Xiao Yue; Chai, Lu Jing; Ma, Juan Juan; Chen, Jian Rong; Feng, Hui

    2014-10-15

    An ultrasensitive nanosensor based on fluorescence resonance energy transfer (FRET) between biocompatible graphene quantum dots and carbon nanotubes for DNA detection was reported. We take advantage of good biocompatibility and strong fluorescence of graphene quantum dots, base pairing specificity of DNA and unique fluorescence resonance energy transfer between graphene quantum dots and carbon nanotubes to achieve the analysis of low concentrations of DNA. Graphene quantum dots with high quantum yield up to 0.20 were prepared and served as the fluorophore of DNA probe. FRET process between graphene quantum dots-labeled probe and oxidized carbon nanotubes is easily achieved due to their efficient self-assembly through specific π-π interaction. This nanosensor can distinguish complementary and mismatched nucleic acid sequences with high sensitivity and good reproducibility. The detection method based on this nanosensor possesses a broad linear span of up to 133.0 nM and ultralow detection limit of 0.4 nM. The constructed nanosensor is expected to be highly biocompatible because of all its components with excellent biocompatibility. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Thermodynamics of non-bridging oxigen in silica bio-compatible glass-ceramics

    Czech Academy of Sciences Publication Activity Database

    Koga, N.; Strnad, Z.; Šesták, Jaroslav; Strnad, J.

    2003-01-01

    Roč. 71, - (2003), s. 927-937 ISSN 1418-2874 R&D Projects: GA AV ČR IAA4010101 Institutional research plan: CEZ:AV0Z1010914 Keywords : bio-compatible * bone-like apatite * glass-ceramics * mimetic material * thermodynamics Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.598, year: 2002

  5. 75 FR 13556 - Biocompatibles UK Ltd.; Filing of Color Additive Petition

    Science.gov (United States)

    2010-03-22

    ... filed a petition proposing that the color additive regulations be amended to provide for the safe use of...] Biocompatibles UK Ltd.; Filing of Color Additive Petition AGENCY: Food and Drug Administration, HHS. ACTION... polyvinyl alcohol as a color additive in vascular embolization devices. FOR FURTHER INFORMATION CONTACT...

  6. Magnesium alloys for temporary implant applications: stress corrosion cracking and biocompatible coating

    OpenAIRE

    Choudhary, Lokesh Kumar

    2017-01-01

    Magnesium (Mg) alloys have emerged as potential candidate materials for construction of biodegradable temporary implant devices particularly due to advantages of favourable mechanical properties, biodegradability and biocompatibility. However, the poor corrosion resistance of Mg alloys in the physiological environment presents a major challenge to their use as biodegradable temporary implants. Furthermore, complex interaction of mechanical loading and aggressive physiological environment may ...

  7. Biodegradable magnesium alloys for orthopaedic applications: A review on corrosion, biocompatibility and surface modifications

    International Nuclear Information System (INIS)

    Agarwal, Sankalp; Curtin, James; Duffy, Brendan; Jaiswal, Swarna

    2016-01-01

    Magnesium (Mg) and its alloys have been extensively explored as potential biodegradable implant materials for orthopaedic applications (e.g. Fracture fixation). However, the rapid corrosion of Mg based alloys in physiological conditions has delayed their introduction for therapeutic applications to date. The present review focuses on corrosion, biocompatibility and surface modifications of biodegradable Mg alloys for orthopaedic applications. Initially, the corrosion behaviour of Mg alloys and the effect of alloying elements on corrosion and biocompatibility is discussed. Furthermore, the influence of polymeric deposit coatings, namely sol-gel, synthetic aliphatic polyesters and natural polymers on corrosion and biological performance of Mg and its alloy for orthopaedic applications are presented. It was found that inclusion of alloying elements such as Al, Mn, Ca, Zn and rare earth elements provides improved corrosion resistance to Mg alloys. It has been also observed that sol-gel and synthetic aliphatic polyesters based coatings exhibit improved corrosion resistance as compared to natural polymers, which has higher biocompatibility due to their biomimetic nature. It is concluded that, surface modification is a promising approach to improve the performance of Mg-based biomaterials for orthopaedic applications. - Highlights: • The Mg based alloys are promising candidates for orthopaedic applications. • The rapid corrosion of Mg can affect human cells, and causes infection and implant failure. • The various physiological factors and Mg alloying elements affect the corrosion and mechanical properties of implants. • The polymeric deposit coatings enhance the corrosion resistance and biocompatibility.

  8. Immune Response Augmentation in Metastasized Breast Cancer by Localized Therapy Utilizing Biocompatible Magnetic Fluids

    Science.gov (United States)

    2008-08-01

    SUBJECT TERMS Cancer therapy by localized immune response, Magneto -rehological Fluids 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT...Metastasized Breast Cancer by Localized Therapy utilizing Biocompatible Magnetic Fluids PRINCIPAL INVESTIGATOR: Cahit Evrensel...2008 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Immune Response Augmentation in Metastasized Breast Cancer by Localized Therapy utilizing

  9. In Vitro Biocompatibility of Nanoscale Zerovalent Iron Particles (NZVI) Synthesized using tea-polyphenols.

    Science.gov (United States)

    A “green” protocol was used for the rapid generation of nanoscale zerovalent iron (NZVI) particles using tea polyphenols. The NZVI particles were subsequently examined for in vitro biocompatibility using the human keratinocyte cell (HaCaT) line as a skin exposure model. The cell...

  10. Standards and measurements for assessing bone health-workshop report co-sponsored by the International Society for Clinical Densitometry (ISCD) and the National Institute of Standards and Technology (NIST).

    Science.gov (United States)

    Bennett, Herbert S; Dienstfrey, Andrew; Hudson, Lawrence T; Oreskovic, Tammy; Fuerst, Thomas; Shepherd, John

    2006-01-01

    This article reports and discusses the results of the recent ISCD-NIST Workshop on Standards and Measurements for Assessing Bone Health. The purpose of the workshop was to assess the status of efforts to standardize and compare results from dual-energy X-ray absorptiometry (DXA) scans, and then to identify and prioritize ongoing measurement and standards needs.

  11. Correlation between the physicochemical properties of organic solvents and their biocompatibility toward epoxide hydrolase activity in whole-cells of a yeast, Rhodotorulasp

    CSIR Research Space (South Africa)

    Lotter, J

    2004-08-01

    Full Text Available in whole-cells of the yeast Rhodotorula sp. UOFS Y-0448 was investigated. No formal correlation between solvent biocompatibility and physicochemical properties was deductible, although the introduction of hydroxyl groups increased biocompatibility. 1...

  12. Biocompatibility of biomaterials - Lessons learned and considerations for the design of novel materials.

    Science.gov (United States)

    Schmalz, Gottfried; Galler, Kerstin M

    2017-04-01

    Biocompatibility of dental materials has gained increasing interest during recent decades. Meanwhile, legal regulations and standard test procedures are available to evaluate biocompatibility. Herein, these developments will be exemplarily outlined and some considerations for the development of novel materials will be provided. Different aspects including test selection, release of substances, barriers, tissue healing, antibacterial substances, nanoparticles and environmental aspects will be covered. The provided information is mainly based on a review of the relevant literature in international peer reviewed journals, on regulatory documents and on ISO standards. Today, a structured and systematic approach for demonstrating biocompatibility from both a scientific and regulatory point of view is based on a clinical risk assessment in an early stage of material development. This includes the analysis of eluted substances and relevant barriers like dentin or epithelium. ISO standards 14971, 10993, and 7405 specify the modes for clinical risk assessment, test selection and test performance. In contact with breached tissues, materials must not impair the healing process. Antibacterial effects should be based on timely controllable substances or on repellant surfaces. Nanoparticles are produced by intraoral grinding irrespective of the content of nanoparticles in the material, but apparently at low concentrations. Concerns regarding environmental aspects of mercury from amalgam can be met by amalgam separating devices. The status for other materials (e.g. bisphenol-A in resin composites) needs to be evaluated. Finally, the public interest for biocompatibility issues calls for a suitable strategy of risk communication. A wise use of the new tools, especially the clinical risk assessment should aim at preventing the patients, professionals and the environment from harm but should not block the development of novel materials. However, biocompatibility must always be

  13. Tantalum, Niobium and Titanium Coatings for Biocompatibility Improvement of Dental Implants

    Directory of Open Access Journals (Sweden)

    Vajihesadat Mortazavi

    2007-01-01

    Full Text Available Introduction: Metals have a wide range of applications in implant and prosthetic materials in dentistry.Corrosion resistance and biocompatibility of metals should be improved in order to utilizethem as biomaterials. The aim of this work was to prepare metallic coatings on 316L stainless steel dental implants, to evaluate the corrosion characteristics of the uncoated and metallic coated dentalimplants as an indication of biocompatibility and, to compare the effect of the type of the coatings on biocompatibility.Materials and Methods: In this in vitro evaluation, three types of metallic coatings including tantalum, niobium and titanium coatings were compared using a physical vapor deposition process on 316L stainless steel dental implants. Structural characterization techniques including X-ray diffraction, scanning electron microscopy and energy dispersive X-ray analysis were utilized to investigatethe microstructure and morphology of the coatings. Electrochemical potentiodynamic tests were performed in two types of physiological solutions at 37±1°C in order to determine and compare the corrosioncurrent density and corrosion potential characteristics. The mean values were statistically compared by ANOVA at a 95% level of confidence.Results: the findings showed that all of the three types of metallic coatings had a positive effect on improvement of the corrosion behavior. The coatings could increase the corrosion resistance of 316L stainless steel and this trend was independent of the type of physiological environment.Conclusion: The biocompatible metallic coatings could decrease the corrosion current density and is a distinct advantage for prevention of ion release. Decreasing ion release can improve the biocompatibility of the dental implant, and consequently can prevent tissue damage, tissue inflammation and irritation, and can also lead to obtaining a desirable histopathological response.

  14. Biofabrication of a novel biomolecule-assisted reduced graphene oxide: an excellent biocompatible nanomaterial

    Directory of Open Access Journals (Sweden)

    Zhang X

    2016-12-01

    Full Text Available Xi-Feng Zhang,1 Sangiliyandi Gurunathan2 1College of Biological and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan, People’s Republic of China; 2Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul, Republic of Korea Abstract: Graphene has been shown much interest, both in academics and industry due to its extraordinary physical, chemical, and biological proprieties. It shows great promises in biotechnological and biomedical applications as an antibacterial and anticancer agent, nanocarrier, sensor, etc. However, many studies demonstrated the toxicity of graphene in several cell lines, which is an obstacle to its use in biomedical applications. In this study, to improve the biocompatibility of graphene, we used nicotinamide (NAM as a reducing and stabilizing agent to catalyze the reduction of graphene oxide (GO to reduced graphene oxide (rGO. The resulted smaller-sized GO (NAM-rGO showed excellent biocompatibility with mouse embryonic fibroblast cells, evidenced by various cellular assays. Furthermore, NAM-rGO had no effect on mitochondrial membrane permeability and caspase-3 activity compared to GO. Reverse transcription polymerase chain reaction analysis allowed us to identify the molecular mechanisms responsible for NAM-rGO-induced biocompatibility. NAM-rGO significantly induced the expression of genes encoding tight junction proteins (TJPs such as zona occludens-1 (Tjp1 and claudins (Cldn3 without any effect on the expression of cytoskeleton proteins. Furthermore, NAM-rGO enhances the expression of alkaline phosphatase (ALP gene, and it does this in a time-dependent manner. Overall, our study depicted the molecular mechanisms underlying NAM-rGO biocompatibility depending on upregulation of TJPs and ALP. This potential quality of graphene could be used in diverse applications including tissue regeneration and tissue engineering. Keywords: biocompatibility, graphene oxide, nicotinamide, reduced

  15. Novel and simple route to fabricate fully biocompatible plasmonic mushroom arrays adhered on silk biopolymer

    Science.gov (United States)

    Park, Joonhan; Choi, Yunkyoung; Lee, Myungjae; Jeon, Heonsu; Kim, Sunghwan

    2014-12-01

    A fully biocompatible plasmonic quasi-3D nanostructure is demonstrated by a simple and reliable fabrication method using strong adhesion between gold and silk fibroin. The quasi-3D nature gives rise to complex photonic responses in reflectance that are prospectively useful in bio/chemical sensing applications. Laser interference lithography is utilized to fabricate large-area plasmonic nanostructures.A fully biocompatible plasmonic quasi-3D nanostructure is demonstrated by a simple and reliable fabrication method using strong adhesion between gold and silk fibroin. The quasi-3D nature gives rise to complex photonic responses in reflectance that are prospectively useful in bio/chemical sensing applications. Laser interference lithography is utilized to fabricate large-area plasmonic nanostructures. Electronic supplementary information (ESI) available: The incident angle dependence of reflectance spectra and the atomic force microscopy image of the Au nanoparticle array on a silk film after 1 hour of ultrasonication. See DOI: 10.1039/c4nr05172f

  16. Biodegradability and Biocompatibility Study of Poly(Chitosan-g-lactic Acid Scaffolds

    Directory of Open Access Journals (Sweden)

    Zhe Zhang

    2012-03-01

    Full Text Available A biodegradable, biocompatible poly(chitosan-g-lactic acid (PCLA scaffold was prepared and evaluated in vitro and in vivo. The PCLA scaffold was obtained by grafting lactic acid (LA onto the amino groups on chitosan (CS without a catalyst. The PCLA scaffolds were characterized by Fourier Transform infrared spectroscopy (FT-IR and scanning electron microscopy (SEM. The biodegradabilty was determined by mass loss in vitro, and degradation in vivo as a function of feed ratio of LA/CS. Bone marrow mesenchymal stem cell (BMSC culture experiments and histological examination were performed to evaluate the PCLA scaffolds’ biocompatibility. The results indicated that PCLA was promising for tissue engineering application.

  17. Corrosion assessment and enhanced biocompatibility analysis of biodegradable magnesium-based alloys

    Science.gov (United States)

    Pompa, Luis Enrique

    Magnesium alloys have raised immense interest to many researchers because of its evolution as a new third generation material. Due to their biocompatibility, density, and mechanical properties, magnesium alloys are frequently reported as prospective biodegradable implant materials. Moreover, magnesium based alloys experience a natural phenomena to biodegrade in aqueous solutions due to its corrosive activity, which is excellent for orthopedic and cardiovascular applications. However, major concerns with such alloys are fast and non-uniform corrosion degradation. Controlling the degradation rate in the physiological environment determines the success of an implant. In this investigation, three grades of magnesium alloys: AZ31B, AZ91E and ZK60A were studied for their corrosion resistance and biocompatibility. Scanning electron microscopy, energy dispersive spectroscopy, atomic force microscopy and contact angle meter are used to study surface morphology, chemistry, roughness and wettability, respectively. Additionally, the cytotoxicity of the leached metal ions was evaluated by a tetrazolium based bio-assay, MTS.

  18. The Influence of Surface Treatment by Hydrogenation on the Biocompatibility of Different Hydroxyapatite Materials

    International Nuclear Information System (INIS)

    Palcevskis, E; Dindune, A; Dekhtyar, Y; Polyaka, N; Veljovic, D; Sammons, R L

    2011-01-01

    The influence of hydrogenation on the biocompatibility of different hydroxyapatite (HAP) materials was tested. Materials consisted of pure HAP, HAP substituted with manganese (Mn +2 ) and with magnesium (Mg +2 ) - all axially pressed and conventionally sintered for 2 h at 1200 deg. C; pure HAP isostatic pressed and sintered by a microwave technique for 15 min at temperature of 1200 deg. C. Biocompatibility was compared by enumeration of the number of osteoblast-like cells to the materials before and after hydrogenation. Obtained results show that the osteoblastic cells demonstrated a higher ability to attach to HAP if its surface was negatively charged. Hydrogenation altered the surface potential; HAP substituted with manganese - HAP(Mn) and with magnesium - HAP(Mg) demonstrated the highest ability to engineer the charge.

  19. Mechanical properties of biocompatible clay/P(MEO2MA-co-OEGMA) nanocomposite hydrogels.

    Science.gov (United States)

    Xiang, Hengxue; Xia, Mengge; Cunningham, Alexander; Chen, Wei; Sun, Bin; Zhu, Meifang

    2017-08-01

    The effects of crosslinking density, polymer concentration and monomer ratio on the mechanical properties (tensile and compressive properties) of biocompatible clay/P(MEO 2 MA-co-OEGMA) nanocomposite (NC) hydrogels were investigated. These novel NC hydrogels, composed of inorganic/organic networks, were prepared via in-situ free radical polymerization. The results showed that with increasing inorganic crosslinking agent, i.e. clay concentration, an increase in the tensile strength, elongation at break and compressive strength was observed. Similarly, with increasing polymer concentration, the tensile strength and compressive strength of the NC hydrogels increased while the elongation at break decreased. Increasing the molar concentration of OEGMA in the comonomer led to an increase in the tensile strength of the NC hydrogels but a reduction in the compressive strength. Moreover, clay/P(MEO 2 MA-co-OEGMA) NC hydrogels presented good biocompatibility bolstering their application as tissue engineering scaffolds. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Strategies to optimize the biocompatibility of iron oxide nanoparticles - ;SPIONs safe by design;

    Science.gov (United States)

    Janko, Christina; Zaloga, Jan; Pöttler, Marina; Dürr, Stephan; Eberbeck, Dietmar; Tietze, Rainer; Lyer, Stefan; Alexiou, Christoph

    2017-06-01

    Various nanoparticle systems have been developed for medical applications in recent years. For constant improvement of efficacy and safety of nanoparticles, a close interdisciplinary interplay between synthesis, physicochemical characterizations and toxicological investigations is urgently needed. Based on combined toxicological data, we follow a ;safe-by design; strategy for our superparamagnetic iron oxide nanoparticles (SPION). Using complementary interference-free toxicological assay systems, we initially identified agglomeration tendencies in physiological fluids, strong uptake by cells and improvable biocompatibility of lauric acid (LA)-coated SPIONs (SPIONLA). Thus, we decided to further stabilize those particles by an artificial protein corona consisting of serum albumin. This approach finally lead to increased colloidal stability, augmented drug loading capacity and improved biocompatibility in previous in vitro assays. Here, we show in whole blood ex vivo and on isolated red blood cells (RBC) that a protein corona protects RBCs from hemolysis by SPIONs.

  1. Biocompatibility of 17-4 PH stainless steel foam for implant applications.

    Science.gov (United States)

    Mutlu, Ilven; Oktay, Enver

    2011-01-01

    In this study, biocompatibility of 17-4 PH stainless steel foam for biomedical implant applications was investigated. 17-4 PH stainless steel foams having porosities in the range of 40-82% with an average pore size of around 600 μm were produced by space holder-sintering technique. Sintered foams were precipitation hardened for times of 1-6 h at temperatures between 450-570 °C. Compressive yield strength and Young's modulus of aged stainless steel foams were observed to vary between 80-130 MPa and 0.73-1.54 GPa, respectively. Pore morphology, pore size and the mechanical properties of the 17-4 PH stainless steel foams were close to cancellous bone. In vitro evaluations of cytotoxicity of the foams were investigated by XTT and MTT assays and showed sufficient biocompatibility. Surface roughness parameters of the stainless steel foams were also determined to characterize the foams.

  2. Effect of biocompatible polymers on the structural integrity of lipid bilayers under external stimuli

    Science.gov (United States)

    Wang, Jia-Yu; Kausik, Ravinath; Chen, Chi-Yuan; Han, Song-I.; Marks, Jeremy; Lee, Ka Yee

    2010-03-01

    Cell membrane dysfunction due to loss of structural integrity is the pathology of tissue death in trauma and common diseases. It is now established that certain biocompatible polymers, such as Poloxamer 188, Poloxamine 1107 and polyethylene glycol (PEG), are effective in sealing of injured cell membranes, and able to prevent acute necrosis. Despite these broad applications of these polymers for human health, the fundamental mechanisms by which these polymers interact with cell membranes are still under debate. Here, the effects of a group of biocompatible polymers on phospholipid membrane integrity under osmotic and oxidative stress were explored using giant unilamellar vesicles as model cell membranes. Our results suggest that the adsorption of the polymers on the membrane surface is responsible for the cell membrane resealing process due to its capability of slowing down the surface hydration dynamics.

  3. Zwitterionic Nanofibers of Super-Glue for Transparent and Biocompatible Multi-Purpose Coatings

    Science.gov (United States)

    Mele, Elisa; Heredia-Guerrero, José A.; Bayer, Ilker S.; Ciofani, Gianni; Genchi, Giada G.; Ceseracciu, Luca; Davis, Alexander; Papadopoulou, Evie L.; Barthel, Markus J.; Marini, Lara; Ruffilli, Roberta; Athanassiou, Athanassia

    2015-09-01

    Here we show that macrozwitterions of poly(ethyl 2-cyanoacrylate), commonly called Super Glue, can easily assemble into long and well defined fibers by electrospinning. The resulting fibrous networks are thermally treated on glass in order to create transparent coatings whose superficial morphology recalls the organization of the initial electrospun mats. These textured coatings are characterized by low liquid adhesion and anti-staining performance. Furthermore, the low friction coefficient and excellent scratch resistance make them attractive as solid lubricants. The inherent texture of the coatings positively affects their biocompatibility. In fact, they are able to promote the proliferation and differentiation of myoblast stem cells. Optically-transparent and biocompatible coatings that simultaneously possess characteristics of low water contact angle hysteresis, low friction and mechanical robustness can find application in a wide range of technological sectors, from the construction and automotive industries to electronic and biomedical devices.

  4. Zirconium phosphate nanoplatelets: a biocompatible nanomaterial for drug delivery to cancer

    Science.gov (United States)

    Saxena, Vipin; Diaz, Agustin; Clearfield, Abraham; Batteas, James D.; Hussain, Muhammad Delwar

    2013-02-01

    The objective of this study was to evaluate the biocompatibility of zirconium phosphate (ZrP) nanoplatelets (NPs), and their use in drug delivery. ZrP and doxorubicin-intercalated ZrP (DOX:ZrP) NPs were characterized by using X-Ray Powder Diffraction (XRPD), Thermogravimetric Analysis (TGA), Transmission Electron Micrography (TEM), Scanning Electron Microscopy (SEM) and Atomic Force Microscopy (AFM). Biocompatibility of ZrP NPs was evaluated in human embryonic kidney (HEK-293), breast cancer (MCF-7), metastatic breast cancer (MDA-MB-231), ovarian cancer (OVCAR-3), resistant cancer (NCI-RES/ADR) cells and mouse macrophage (RAW 264.7) cell lines. Hemocompatibility of ZrP NPs was evaluated with human red blood cells. Simulated body fluid (SBF) of pH 7.4 was used to determine the in vitro release of doxorubicin from DOX:ZrP NPs. Cellular uptake and in vitro cytotoxicity studies of DOX:ZrP NPs were determined in MDA-MB-231. The ZrP nanomaterial can be prepared in the 100-200 nm size range with a platelet-like shape. The ZrP NPs themselves are biocompatible, hemocompatible and showed no toxicity to the macrophage cells. ZrP NPs can intercalate high loads (35% w/w) of doxorubicin between their layers. The release of DOX was sustained for about 2 weeks. DOX:ZrP NPs showed higher cellular uptake and increased cytotoxicity than free DOX in MDA-MB-231 cells. ZrP NPs are highly biocompatible, can intercalate large amounts of drugs and sustain the release of drugs. ZrP NPs improved the cellular uptake and cytotoxicity of DOX to MDA-MB-231 cells. ZrP NPs are promising nanocarriers for drug delivery in cancer therapy.The objective of this study was to evaluate the biocompatibility of zirconium phosphate (ZrP) nanoplatelets (NPs), and their use in drug delivery. ZrP and doxorubicin-intercalated ZrP (DOX:ZrP) NPs were characterized by using X-Ray Powder Diffraction (XRPD), Thermogravimetric Analysis (TGA), Transmission Electron Micrography (TEM), Scanning Electron Microscopy (SEM

  5. Influence of surface treatment on the biocompatibility of aluminum substrates promising for medical application

    Energy Technology Data Exchange (ETDEWEB)

    Kiradzhiyska, D. D., E-mail: denica.kiradjiiska@gmail.com; Mantcheva, R. D., E-mail: r-manch@abv.bg [Medical University - Plovdiv, Faculty of Pharmacy, Department of Chemical Science15A Vassil Aprilov blvd., 4002 Plovdiv (Bulgaria); Feodorova, Y. N.; Draganov, M. M. [Medical University - Plovdiv, Medical Faculty, Department of Medical Biology, 15A Vassil Aprilov blvd., 4002 Plovdiv (Bulgaria); Girginov, Ch. A. [University of Chemical Technology and Metallurgy -Sofia, Department of Chemical Science, Subdepartment of Physical Chemistry, 8 Kliment Ohridski Blvd. 1756 Sofia (Bulgaria); Viraneva, A. P.; Yovcheva, T. A. [University of Plovdiv “Paisiy Hilendarski”, Faculty of Physics, Department of Experimental Physic, 24 Tsar Assen str., 4000 Plovdiv (Bulgaria)

    2016-03-25

    Materials for medical implants should have suitable mechanical properties, excellent biocompatibility and high corrosion resistance. They should not stimulate allergic and immunologic reactions and should not cause cancer. The use of aluminum as a construction material in implantology is continuously expanding. There are various methods for surface treatment to improve its biocompatibility. In this study aluminum samples anodized in 15% H{sub 2} SO{sub 4} or treated with positive or negative corona discharge were investigated. PDL-cell line of immortalized cells, precursors of periodontal ligament and RAW 264.7 cell line from mouse macrophages are used for the bioassays. The results show that 10 and 20 μm thick oxide film provides better development of the PLD cells, compared to untreated aluminum. Metal surfaces with 10 μm thick oxide film show the best properties in terms of cells vitality, proliferation and growth. Polymer treated but uncharged samples show good results.

  6. In vitro calcification and in vivo biocompatibility of the cross-linked polypentapeptide of elastin

    International Nuclear Information System (INIS)

    Wood, S.A.; Lemons, J.E.; Prasad, K.U.; Urry, D.W.

    1986-01-01

    The in vitro calcifiability and molecular weight dependence of calcification of the polypentapeptide, (L X Val1-L X Pro2-Gly3-L X Val4-Gly5)n, which had been gamma-irradiation cross-linked have been determined when exposed to dialyzates of normal, nonaugmented fetal bovine serum. The material was found to calcify: calcifiability was found to be highly molecular weight dependent and to be most favored when the highest molecular weight polymers (n approximately equal to 240) had been used for cross-linking. The in vivo biocompatibility, biodegradability, and calcifiability of the gamma-irradiation cross-linked polypentapeptide were examined in rabbits in both soft and hard tissue sites. The material was found to be biocompatible irrespective of its physical form and to be biodegradable but with n of 200 or less it was not shown to calcify or ossify in the rabbit tibial nonunion model

  7. Biocompatible nanomaterials based on dendrimers, hydrogels and hydrogel nanocomposites for use in biomedicine

    Science.gov (United States)

    Khoa Nguyen, Cuu; Quyen Tran, Ngoc; Phuong Nguyen, Thi; Hai Nguyen, Dai

    2017-03-01

    Over the past decades, biopolymer-based nanomaterials have been developed to overcome the limitations of other macro- and micro- synthetic materials as well as the ever increasing demand for the new materials in nanotechnology, biotechnology, biomedicine and others. Owning to their high stability, biodegradability, low toxicity, and biocompatibility, biopolymer-based nanomaterials hold great promise for various biomedical applications. The pursuit of this review is to briefly describe our recent studies regarding biocompatible biopolymer-based nanomaterials, particularly in the form of dendrimers, hydrogels, and hydrogel composites along with the synthetic and modification approaches for the utilization in drug delivery, tissue engineering, and biomedical implants. Moreover, in vitro and in vivo studies for the toxicity evaluation are also discussed.

  8. Fabrication and wireless micromanipulation of magnetic-biocompatible microrobots using microencapsulation for microrobotics and microfluidics applications.

    Science.gov (United States)

    Li, Hui; Zhang, Jinyong; Zhang, Nannan; Kershaw, Joe; Wang, Lei

    2016-12-01

    It is important to fabricate biocompatible and chemical-resistant microstructures that can be powered and controlled without a tether in fluid environment for applications when contamination must be avoided, like cell manipulation, and applications where connecting the power source to the actuator would be cumbersome, like targeted delivery of chemicals. In this work, a novel fabrication method was described to encapsulate magnetic composite into pure SU-8 structures, enabling the truly microscale ferromagnetic microrobots biocompatible and chemical resistant. The microrobots were developed using the simple multilayer photolithography that allows us to mass produce and were actuated contact-free by external magnetic field to complete micromanipulations of micro-objects. The microrobots were actuated moving along a preplanned path to transport a glass microsphere object at an approximately average speed of 1.1 mm/sec and can be operated to rotate, aim at targets and collect objects.

  9. Low temperature formation of CuIn{sub 1−x}Ga{sub x}Se{sub 2} solar cell absorbers by all printed multiple species nanoparticulate Se + Cu-In + Cu-Ga precursors

    Energy Technology Data Exchange (ETDEWEB)

    Möckel, Stefan A., E-mail: Stefan.A.Moeckel@FAU.de [Department of Materials Science, Chair of Materials for Electronics and Energy Technology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Martensstr, 7, 91058 Erlangen (Germany); Wernicke, Tobias; Arzig, Matthias; Köder, Philipp [Department of Materials Science, Chair of Materials for Electronics and Energy Technology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Martensstr, 7, 91058 Erlangen (Germany); Brandl, Marco [Chair for Crystallography and Structural Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Staudtstr. 3, 91058 Erlangen (Germany); Ahmad, Rameez; Distaso, Monica; Peukert, Wolfgang [Institute of Particle Technology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Cauerstr. 4, 91058 Erlangen (Germany); Hock, Rainer [Chair for Crystallography and Structural Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Staudtstr. 3, 91058 Erlangen (Germany); Wellmann, Peter J. [Department of Materials Science, Chair of Materials for Electronics and Energy Technology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Martensstr, 7, 91058 Erlangen (Germany)

    2015-05-01

    In this work an all nanoparticulate precursor for application in Cu(In{sub 1−x}Ga{sub x})Se{sub 2} solar cell absorbers is presented. Binary Cu-In nanoparticles, Cu-Ga powder and elemental Se nanoparticles were mixed in dispersion and deposited on Mo-coated substrates. Research was focused on Cu(In{sub 1−x}Ga{sub x})Se{sub 2} layer formation kinetics, phase composition characterised by differential scanning calorimetry and in-situ X-ray diffraction (XRD). Furthermore phase composition and morphology were studied by ex-situ XRD, Raman spectroscopy and scanning electron microscopy. The results revealed a fast consumption of the precursor and the formation of CuInSe{sub 2} below 340 °C. Binary secondary phases were not observed at any temperature. - Highlights: • All printable precursor for CIGSe • Formation of Ga droplets • Complete consumption below 340 °C.

  10. Biocompatibility of poly(lactic acid) with incorporated graphene-based materials

    OpenAIRE

    Pinto, Artur Moreira; Moreira, Susana Margarida Gomes; Gonçalves, Inês; Gama, F. M.; Mendes, Adélio; Magalhães, Fernão D.

    2013-01-01

    The incorporation of graphene-based materials has been shown to improve mechanical properties of poly(lactic acid) (PLA). In this work, PLA films and composite PLA films incorporating two graphene-based materials – graphene oxide (GO) and graphene nanoplatelets (GNP) – were prepared and characterized regarding not only biocompatibility, but also surface topography, chemistry and wettability. The presence of both fillers changed the films surface topography, increasing the roughness, and modif...

  11. Biocompatibility of single-walled carbon nanotube composites for bone regeneration.

    Science.gov (United States)

    Gupta, A; Liberati, T A; Verhulst, S J; Main, B J; Roberts, M H; Potty, A G R; Pylawka, T K; El-Amin Iii, S F

    2015-05-01

    The purpose of this study was to evaluate in vivo biocompatibility of novel single-walled carbon nanotubes (SWCNT)/poly(lactic-co-glycolic acid) (PLAGA) composites for applications in bone and tissue regeneration. A total of 60 Sprague-Dawley rats (125 g to 149 g) were implanted subcutaneously with SWCNT/PLAGA composites (10 mg SWCNT and 1gm PLAGA 12 mm diameter two-dimensional disks), and at two, four, eight and 12 weeks post-implantation were compared with control (Sham) and PLAGA (five rats per group/point in time). Rats were observed for signs of morbidity, overt toxicity, weight gain and food consumption, while haematology, urinalysis and histopathology were completed when the animals were killed. No mortality and clinical signs were observed. All groups showed consistent weight gain, and the rate of gain for each group was similar. All groups exhibited a similar pattern for food consumption. No difference in urinalysis, haematology, and absolute and relative organ weight was observed. A mild to moderate increase in the summary toxicity (sumtox) score was observed for PLAGA and SWCNT/PLAGA implanted animals, whereas the control animals did not show any response. Both PLAGA and SWCNT/PLAGA showed a significantly higher sumtox score compared with the control group at all time intervals. However, there was no significant difference between PLAGA and SWCNT/PLAGA groups. Our results demonstrate that SWCNT/PLAGA composites exhibited in vivo biocompatibility similar to the Food and Drug Administration approved biocompatible polymer, PLAGA, over a period of 12 weeks. These results showed potential of SWCNT/PLAGA composites for bone regeneration as the low percentage of SWCNT did not elicit a localised or general overt toxicity. Following the 12-week exposure, the material was considered to have an acceptable biocompatibility to warrant further long-term and more invasive in vivo studies. Cite this article: Bone Joint Res 2015;4:70-7. ©2015 The British Editorial

  12. Rational Design and Enhanced Biocompatibility of a Dry Adhesive Medical Skin Patch

    KAUST Repository

    Kwak, Moon Kyu

    2011-07-28

    A new type of medical skin patch is developed that contains high-density, mushroom-like micropillars. Such dry-adhesive micropillars are highly biocompatible, have minimized side effects, and provide reasonable normal adhesion strength. To arrive at optimal conditions for the dry adhesive skin patch, the proper design of various structural and material parameters of micropillars is investigated. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. What is biocompatibility?: a new definition based on the latest technology.

    Science.gov (United States)

    Mertz, L

    2013-07-01

    Biomaterials have been evolving for a number of decades, and it is about time that better categorizations of biocompatibility were devised to describe them. At least that is the view of Buddy Ratner, professor of bioengineering and chemical engineering, and Michael L. and Myrna Darland Endowed Chair in Technology Commercialization at the University of Washington, as well as director of University of Washington Engineered Biomaterials (UWEB), the university's engineered biomaterials program.

  14. Tribological properties, corrosion resistance and biocompatibility of magnetron sputtered titanium-amorphous carbon coatings

    International Nuclear Information System (INIS)

    Dhandapani, Vishnu Shankar; Subbiah, Ramesh; Thangavel, Elangovan; Arumugam, Madhankumar; Park, Kwideok; Gasem, Zuhair M.; Veeraragavan, Veeravazhuthi; Kim, Dae-Eun

    2016-01-01

    Highlights: • a-C:Ti nanocomposite coatings were prepared on 316L stainless steel by using R.F. magnetron sputtering method. • Properties of the nanocomposite coatings were analyzed with respect to titanium content. • Corrosion resistance, biocompatibility and hydrophobicity of nanocomposite coating were enhanced with increasing titanium content. • Coating with 2.33 at.% titanium showed superior tribological properties compared to other coatings. - Abstract: Amorphous carbon incorporated with titanium (a-C:Ti) was coated on 316L stainless steel (SS) by magnetron sputtering technique to attain superior tribological properties, corrosion resistance and biocompatibility. The morphology, topography and functional groups of the nanostructured a-C:Ti coatings in various concentrations were analyzed using atomic force microscopy (AFM), Raman, X-Ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM). Raman and XPS analyses confirmed the increase in sp"2 bonds with increasing titanium content in the a-C matrix. TEM analysis confirmed the composite nature of the coating and the presence of nanostructured TiC for Ti content of 2.33 at.%. This coating showed superior tribological properties compared to the other a-C:Ti coatings. Furthermore, electrochemical corrosion studies were performed against stimulated body fluid medium in which all the a-C:Ti coatings showed improved corrosion resistance than the pure a-C coating. Preosteoblasts proliferation and viability on the specimens were tested and the results showed that a-C:Ti coatings with relatively high Ti (3.77 at.%) content had better biocompatibility. Based on the results of this work, highly durable coatings with good biocompatibility could be achieved by incorporation of optimum amount of Ti in a-C coatings deposited on SS by magnetron sputtering technique.

  15. Biocompatibility assessment of rice husk-derived biogenic silica nanoparticles for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Alshatwi, Ali A., E-mail: alshatwi@ksu.edu.sa; Athinarayanan, Jegan; Periasamy, Vaiyapuri Subbarayan

    2015-02-01

    Synthetic forms of silica have low biocompatibility, whereas biogenic forms have myriad beneficial effects in current toxicological applications. Among the various sources of biogenic silica, rice husk is considered a valuable agricultural biomass material and a cost-effective resource that can provide biogenic silica for biomedical applications. In the present study, highly pure biogenic silica nanoparticles (bSNPs) were successfully harvested from rice husks using acid digestion under pressurized conditions at 120 °C followed by a calcination process. The obtained bSNPs were subjected to phase identification analysis using X-ray diffraction, which revealed the amorphous nature of the bSNPs. The morphologies of the bSNPs were observed using transmission electron microscopy (TEM), which revealed spherical particles 10 to 30 nm in diameter. Furthermore, the biocompatibility of the bSNPs with human lung fibroblast cells (hLFCs) was investigated using a viability assay and assessing cellular morphological changes, intracellular ROS generation, mitochondrial transmembrane potential and oxidative stress-related gene expression. Our results revealed that the bSNPs did not have any significant incompatibility in these in vitro cell-based approaches. These preliminary findings suggest that bSNPs are biocompatible, could be the best alternative to synthetic forms of silica and are applicable to food additive and biomedical applications. - Highlights: • Simple, rapid and convenient process • Amorphous and spherical with 10–30 nm size SiO{sub 2} nanoparticles were fabricated. • Biogenic silica nanoparticles showed biocompatibility. • bSNPs are an alternative to synthetic forms of silica.

  16. Mechanical properties, corrosion, and biocompatibility of Mg-Zr-Sr-Dy alloys for biodegradable implant applications.

    Science.gov (United States)

    Ding, Yunfei; Lin, Jixing; Wen, Cuie; Zhang, Dongmei; Li, Yuncang

    2017-11-28

    This study investigates the microstructure, mechanical properties, corrosion behavior, and biocompatibility of magnesium (Mg)-based Mg1Zr2SrxDy (x = 0, 1, 1.63, 2.08 wt %) alloys for biodegradable implant applications. The corrosion behavior of the Mg-based alloys has been evaluated in simulated body fluid using an electrochemical technique and hydrogen evolution. The biocompatibility of the Mg-based alloys has been assessed using SaSO2 cells. Results indicate that the addition of Dy to Mg-Zr-Sr alloy showed a positive impact on the corrosion behavior and significantly decreased the degradation rates of the alloys. The degradation rate of Mg1Zr2Sr1.0Dy decreased from 17.61 to 12.50 mm year -1 of Mg1Zr2Sr2.08Dy based on the hydrogen evolution. The ultimate compressive strength decreased from 270.90 MPa for Mg1Zr2Sr1Dy to 236.71 MPa for Mg1Zr2Sr2.08Dy. An increase in the addition of Dy to the Mg-based alloys resulted in an increase in the volume fraction of the Mg 2 Dy phase, which mitigated the galvanic effect between the Mg 17 Sr 2 phase and the Mg matrix, and led to an increase in the corrosion resistance of the base alloy. The biocompatibility of the Mg-based alloys was enhanced with decreasing corrosion rates. Mg1Zr2Sr2.08Dy exhibited the lowest corrosion rate and the highest biocompatibility compared with the other Mg-based alloys. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2017. © 2017 Wiley Periodicals, Inc.

  17. Synthesis and Characterization of PMBN as A Biocompatible Nanopolymer for Bio-Applications

    OpenAIRE

    Puria Motamed Fath; Fatemeh Yazdian; Rogayyeh Jamjah; Bahman Ebrahimi Hosseinzadeh; Maede Rahimnezhad; Razi Sahraeian; Ashrafalsadat Hatamian

    2017-01-01

    Objective Poly [2-methacryloyloxyethyl phosphoryl choline (MPC)-co-n-buthyl methacrylate (BMA)-co-p-nitrophenyl-oxycrabonyl poly ethylene glycol-methacrylate (ME- ONP)] (PMBN), a biocompatible terpolymer, is a unique polymer with applications that range from drug delivery systems (DDS) to scaffolds and biomedical devices. In this research, we have prepared a monomer of p-nitrophenyl-oxycarbonyl poly (ethylene glycol) methacrylate (MEONP) to synthesize this polymer. Next, we designed and prepa...

  18. Biocompatibility study on Ni-free Ti-based and Zr-based bulk metallic glasses

    Energy Technology Data Exchange (ETDEWEB)

    Li, T.H. [Institute of Material Science and Engineering, National Central University, Taoyuan, Taiwan (China); Wong, P.C. [Department of Biomedical Engineering, National Yang-Ming University, Taipei, Taiwan (China); Chang, S.F. [Department of Mechanical Engineering, National Central University, Taoyuan, Taiwan (China); Tsai, P.H. [Institute of Material Science and Engineering, National Central University, Taoyuan, Taiwan (China); Jang, J.S.C., E-mail: jscjang@ncu.edu.tw [Institute of Material Science and Engineering, National Central University, Taoyuan, Taiwan (China); Department of Mechanical Engineering, National Central University, Taoyuan, Taiwan (China); Huang, J.C. [Department of Materials and Optoelectronic Science, National Sun Yat-Sen University, Kaohsiung, Taiwan (China)

    2017-06-01

    Safety and reliability are crucial issues for medical instruments and implants. In the past few decays, bulk metallic glasses (BMGs) have drawn attentions due to their superior mechanical properties, good corrosion resistance, antibacterial and good biocompatibility. However, most Zr-based and Ti-based BMGs contain Ni as an important element which is prone to human allergy problem. In this study, the Ni-free Ti-based and Zr-based BMGs, Ti{sub 40}Zr{sub 10}Cu{sub 36}Pd{sub 14}, and Zr{sub 48}Cu{sub 36}Al{sub 8}Ag{sub 8}, were selected for systematical evaluation of their biocompatibility. Several biocompatibility tests, co-cultural with L929 murine fibroblast cell line, were carried out on these two BMGs, as well as the comparison samples of Ti6Al4V and pure Cu. The results in terms of cellular adhesion, cytotoxicity, and metallic ion release affection reveal that the Ti{sub 40}Zr{sub 10}Cu{sub 36}Pd{sub 14} BMG and Ti6Al4V exhibit the optimum biocompatibility; cells still being attached on the petri dish with good adhesion and exhibiting the spindle shape after direct contact test. Furthermore, the Ti{sub 40}Zr{sub 10}Cu{sub 36}Pd{sub 14} BMG showed very low Cu ion release level, in agreement with the MTT results. Based on the current findings, it is believed that Ni-free Ti-based BMG can act as an ideal candidate for medical implant. - Highlight: • Ni-free bulk metallic glass is promising material for medical implants. • Ni-free Ti-based BMG presents similar cellular adhesion as Ti6Al4V. • Ni-free Ti-based BMG shows less cytotoxicity, and metallic ion release than Ti6Al4V.

  19. Material properties and in vitro biocompatibility of a newly developed bone cement

    Directory of Open Access Journals (Sweden)

    Elke Mitzner

    2009-01-01

    Full Text Available In this study mechanical properties and biocompatibility (In Vitro of a new bone cement were investigated. A new platform technology named COOL is a variable composite of dissolved, chemically modified PMMA and different bioceramics. COOL cures at body temperature via a classical cementation reaction. Compressive strengths ranging from 3.6 ± 0.8 to 62.8 ± 1.3 MPa and bending strengths ranging from 9.9 ± 2.4 to 26.4 ± 3.0 MPa were achieved with different COOL formulations. Porosity varied between 31 and 43%. Varying the components of each formulation mechanical properties and porosity could be adjusted. In Vitro biocompatibility studies with primary human osteoblasts (pHOB in direct contact with different COOL formulations, did not reveal any signs of toxicity. In contrast to Refobacin® R, cells incubated with COOL showed similar density, viability and ALP activity compared to control, if specimen were added immediately to the cell monolayer after preparation. In conclusion, COOL has promising mechanical properties in combination with high biocompatibility In Vitro and combines different advantages of both CPCs and PMMA cements by avoiding some of the respective shortcomings.

  20. Modification of bone graft by blending with lecithin to improve hydrophilicity and biocompatibility

    International Nuclear Information System (INIS)

    Wang, Y; Cui, F Z; Jiao, Y P; Hu, K; Fan, D D

    2008-01-01

    Lecithin was blended to improve the hydrophilicity and biocompatibility of bone graft containing poly(l-lactic acid) (PLLA). Solution blending and freeze drying were used to fabricate symmetrical scaffolds containing different percentages of lecithin (lecithin: PLLA = 0, 5, 10 wt%). Scanning electron microscopy showed that the scaffolds maintained the three-dimensional porous structure. A water uptake experiment proved the significant improvement of hydrophilicity of the blend scaffold. With the addition of lecithin, the compressive strength and compressive modulus decreased. When the weight ratio of lecithin to PLLA was up to 10%, the compressive strength was still more than the lower limit of natural cancellous bone. To test the biocompatibility of the scaffolds, cell culture in vitro and subcutaneous implantation in vivo were performed. MC3T3-E1 preosteoblastic cells were cultured on the scaffolds for 7 days. Methylthiazol tetrazolium assay and laser scanning confocal microscopy were used to exhibit proliferation and morphology of the cells. The subcutaneous implantation in rats tested inflammatory response to the scaffolds. The results proved the better biocompatibility and milder inflammatory reactions of the blend scaffold (lecithin: PLLA = 5%) compared with the scaffold without lecithin. The modified scaffold containing lecithin is promising for bone tissue engineering

  1. A novel fabrication process for out-of-plane microneedle sheets of biocompatible polymer

    Science.gov (United States)

    Han, Manhee; Hyun, Dong-Hun; Park, Hyoun-Hyang; Lee, Seung S.; Kim, Chang-Hyeon; Kim, Changgyou

    2007-06-01

    This paper presents a novel process for fabricating out-of-plane microneedle sheets of biocompatible polymer using in-plane microneedles. This process comprises four steps: (1) fabrication of in-plane microneedles using inclined UV lithography and electroforming, (2) conversion of the in-plane microneedles to an out-of-plane microneedle array, (3) fabrication of a negative PDMS mold and (4) fabrication of out-of-plane microneedle sheets of biocompatible polymer by hot embossing. The in-plane microneedles are fabricated with a sharp tip for low insertion forces and are made long to ensure sufficient penetration depth. The in-plane microneedles are converted into an out-of-plane microneedle array to increase the needle density. The negative mold is fabricated for mass-production using a polymer molding technique. The final out-of-plane microneedle sheets are produced using polycarbonate for biocompatibility by employing the hot embossing process. The height of the fabricated needles ranges from 500 to 1500 µm, and the distance between the needles is 500 to 2000 µm. The radii of curvature are approximately 2 µm, while the tip angles are in the range of 39-56°. Most of the geometrical characteristics of the out-of-plane microneedles can be freely controlled for real life applications such as drug delivery, cosmetic delivery and mesotherapy. Since it is also possible to mass-produce the microneedles, this novel process holds sufficient potential for applications in industrial fields.

  2. Preparation and Biocompatible Surface Modification of Redox Altered Cerium Oxide Nanoparticle Promising for Nanobiology and Medicine

    KAUST Repository

    Nanda, Himansu Sekhar

    2016-11-03

    The biocompatible surface modification of metal oxide nanoparticles via surface functionalization technique has been used as an important tool in nanotechnology and medicine. In this report, we have prepared aqueous dispersible, trivalent metal ion (samarium)-doped cerium oxide nanoparticles (SmCNPs) as model redox altered CNPs of biological relevance. SmCNP surface modified with hydrophilic biocompatible (6-{2-[2-(2-methoxy-ethoxy)-ethoxy]-ethoxy}-hexyl) triethoxysilane (MEEETES) were prepared using ammonia-induced ethylene glycol-assisted precipitation method and were characterized using a variety of complementary characterization techniques. The chemical interaction of functional moieties with the surface of doped nanoparticle was studied using powerful 13C cross polarization magic angle sample spinning nuclear magnetic resonance spectroscopy. The results demonstrated the production of the extremely small size MEEETES surface modified doped nanoparticles with significant reduction in aggregation compared to their unmodified state. Moreover, the functional moieties had strong chemical interaction with the surface of the doped nanoparticles. The biocompatible surface modification using MEEETES should also be extended to several other transition metal ion doped and co-doped CNPs for the production of aqueous dispersible redox altered CNPs that are promising for nanobiology and medicine.

  3. Immobilisation of a fibrillin-1 fragment enhances the biocompatibility of PTFE.

    Science.gov (United States)

    Hajian, Hamid; Wise, Steven G; Bax, Daniel V; Kondyurin, Alexey; Waterhouse, Anna; Dunn, Louise L; Kielty, Cay M; Yu, Young; Weiss, Anthony S; Bilek, Marcela M M; Bannon, Paul G; Ng, Martin K C

    2014-04-01

    Current vascular biomaterials exhibit poor biocompatibility characterised by failure to promote endothelialisation, predisposition to neoinitmal hyperplasia and excessive thrombogenicity. Fibrillin-1, a major constituent of microfibrils is associated with elastic fibres in the arterial wall. Fibrillin-1 binds to endothelial cells through an RGD cell adhesion motif in the fourth TB module. The RGD motif is present in PF8, a recombinant fibrillin-1 fragment. We investigated the potential of PF8 to improve the biocompatibility of PTFE. PF8 enhanced endothelial cell attachment and cell proliferation to a greater extent than fibronectin (pPTFE using plasma immersion ion implantation (PIII), retained these favourable cell interactive properties, again promoting endothelial cell attachment and proliferation. The thrombogenicity of covalently bound PF8 on PTFE was assessed in both static and dynamic conditions. In static conditions, uncoated PIII treated PTFE was more thrombogenic than untreated PTFE, while PF8 coating reduced thrombogenicity. Under flow, there was no difference in the thrombogenicity of PF8 coated PTFE and untreated PTFE. Immobilised PF8 shows a striking ability to promote attachment and growth of endothelial cells on PTFE, while providing a non-thrombogenic surface. These features make PF8 a promising candidate to improve the biocompatibility of current synthetic vascular grafts. Crown Copyright © 2014. Published by Elsevier B.V. All rights reserved.

  4. Sonochemically synthesized biocompatible zirconium phosphate nanoparticles for pH sensitive drug delivery application

    Energy Technology Data Exchange (ETDEWEB)

    Kalita, Himani, E-mail: hkalita74@gmail.com [Department of Chemistry, Indian Institute of Technology Kharagpur, West Bengal 721302 (India); Prashanth Kumar, B.N., E-mail: prasanthkumar999@gmail.com [School of Medical Science and Technology, Indian Institute of Technology Kharagpur, West Bengal 721302 (India); Konar, Suraj, E-mail: suraj.konar@gmail.com [Department of Chemistry, Indian Institute of Technology Kharagpur, West Bengal 721302 (India); Tantubay, Sangeeta, E-mail: sang.chem2@gmail.com [Department of Chemistry, Indian Institute of Technology Kharagpur, West Bengal 721302 (India); Mahto, Madhusudan Kr., E-mail: mahtomk0@gmail.com [Department of Chemistry, Indian Institute of Technology Kharagpur, West Bengal 721302 (India); Mandal, Mahitosh, E-mail: mahitosh@smst.iitkgp.ernet.in [School of Medical Science and Technology, Indian Institute of Technology Kharagpur, West Bengal 721302 (India); Pathak, Amita, E-mail: ami@chem.iitkgp.ernet.in [Department of Chemistry, Indian Institute of Technology Kharagpur, West Bengal 721302 (India)

    2016-03-01

    The present work reports the synthesis of biocompatible zirconium phosphate (ZP) nanoparticles as nanocarrier for drug delivery application. The ZP nanoparticles were synthesized via a simple sonochemical method in the presence of cetyltrimethylammonium bromide and their efficacy for the delivery of drugs has been tested through various in-vitro experiments. The particle size and BET surface area of the nanoparticles were found to be ~ 48 nm and 206.51 m{sup 2}/g respectively. The conventional MTT assay and cellular localization studies of the particles, performed on MDA-MB-231 cell lines, demonstrate their excellent biocompatibility and cellular internalization behavior. The loading of curcumin, an antitumor drug, onto the ZP nanoparticles shows the rapid drug uptake ability of the particles, while the drug release study, performed at two different pH values (at 7.4 and 5) depicts pH sensitive release-profile. The MTT assay and cellular localization studies revealed higher cellular inhibition and better bioavailability of the nanoformulated curcumin compared to free curcumin. - Highlights: • Biocompatible zirconium phosphate nanoparticles were synthesized by a simple sonochemical approach. • Curcumin was rapidly loaded onto the particles by the aid by hydrogen bond formation. • The curcumin loaded zirconium phosphate nanoparticles depict pH triggered drug release phenomenon. • The nanoformulated curcumin showed enhanced anti-tumor activity as compared to the native curcumin.

  5. Sonochemically synthesized biocompatible zirconium phosphate nanoparticles for pH sensitive drug delivery application

    International Nuclear Information System (INIS)

    Kalita, Himani; Prashanth Kumar, B.N.; Konar, Suraj; Tantubay, Sangeeta; Mahto, Madhusudan Kr.; Mandal, Mahitosh; Pathak, Amita

    2016-01-01

    The present work reports the synthesis of biocompatible zirconium phosphate (ZP) nanoparticles as nanocarrier for drug delivery application. The ZP nanoparticles were synthesized via a simple sonochemical method in the presence of cetyltrimethylammonium bromide and their efficacy for the delivery of drugs has been tested through various in-vitro experiments. The particle size and BET surface area of the nanoparticles were found to be ~ 48 nm and 206.51 m"2/g respectively. The conventional MTT assay and cellular localization studies of the particles, performed on MDA-MB-231 cell lines, demonstrate their excellent biocompatibility and cellular internalization behavior. The loading of curcumin, an antitumor drug, onto the ZP nanoparticles shows the rapid drug uptake ability of the particles, while the drug release study, performed at two different pH values (at 7.4 and 5) depicts pH sensitive release-profile. The MTT assay and cellular localization studies revealed higher cellular inhibition and better bioavailability of the nanoformulated curcumin compared to free curcumin. - Highlights: • Biocompatible zirconium phosphate nanoparticles were synthesized by a simple sonochemical approach. • Curcumin was rapidly loaded onto the particles by the aid by hydrogen bond formation. • The curcumin loaded zirconium phosphate nanoparticles depict pH triggered drug release phenomenon. • The nanoformulated curcumin showed enhanced anti-tumor activity as compared to the native curcumin.

  6. Biocompatible polymer microneedle for topical/dermal delivery of tranexamic acid.

    Science.gov (United States)

    A Machekposhti, S; Soltani, M; Najafizadeh, P; Ebrahimi, S A; Chen, P

    2017-09-10

    Recently-introduced biocompatible polymeric microneedles offer an efficient method for drug delivery. Tranexamic acid is a novel drug for treating melasma that is administered both locally and orally and inhibits excessive melanin via melanocyte. The tranexamic acid biocompatible polymer microneedle used in this study was fabricated from PVP and methacrylic acid, using the lithography method. The required mechanical strength to pierce skin was attained by optimizing the ratio of PVP to methacrylic acid. Acute dermal toxicity was done, and drug diffusion in skin layers was simulated by calculating the diffusion coefficient of tranexamic acid in interstitial fluid (plasma). The biocompatible polymer microneedle was fabricated at 60°C. Needles could sustain 0.6N that is enough to pierce stratum corneum. 34% of the released drug was locally effective and the rest permeated through the skin. The pyramidal polymer microneedle in this study was fully released in skin in approx. 7h. This polymer microneedle has no dermal toxicity. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. The biocompatibility of fluorescent nanodiamonds and their mechanism of cellular uptake

    International Nuclear Information System (INIS)

    Vaijayanthimala, Vairakkannu; Tzeng, Yan-Kai; Chang, Huan-Cheng; Li, Chung-Leung

    2009-01-01

    The labeling of cells with fluorescent nanoparticles is promising for various biomedical applications. The objective of this study is to evaluate the biocompatibility and the mechanism of the cellular uptake of fluorescent nanodiamonds (FNDs) in cancer cells (HeLa) and pre-adipocytes (3T3-L1). With flow cytometry and the use of a battery of metabolic and cytoskeletal inhibitors, we found that the mechanism of the FND uptake in both cells is by energy-dependent clathrin-mediated endocytosis. In addition, the surface charge of FND influences its cellular uptake, as the uptake of poly-L-lysine-coated FNDs is better than that of oxidative-acid-purified FNDs at the same concentration in regular medium with or without serum. We also confirm that the proliferative potential of FND-treated and untreated cells does not exhibit any significant differences when measured at bulk cultures, and more stringently at clonal cell density. Further biocompatibility studies indicate that the in vitro differentiation of 3T3-L1 pre-adipocytes and 489-2 osteoprogenitors is not affected by the FND treatment. Our results show that FNDs are biocompatible and ideal candidates for potential applications in human stem cell research.

  8. The biocompatibility of fluorescent nanodiamonds and their mechanism of cellular uptake

    Energy Technology Data Exchange (ETDEWEB)

    Vaijayanthimala, Vairakkannu; Tzeng, Yan-Kai; Chang, Huan-Cheng [Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 106, Taiwan (China); Li, Chung-Leung, E-mail: hcchang@po.sinica.edu.t, E-mail: chungL@gate.sinica.edu.t [Genomics Research Center, Academia Sinica, Taipei 115, Taiwan (China)

    2009-10-21

    The labeling of cells with fluorescent nanoparticles is promising for various biomedical applications. The objective of this study is to evaluate the biocompatibility and the mechanism of the cellular uptake of fluorescent nanodiamonds (FNDs) in cancer cells (HeLa) and pre-adipocytes (3T3-L1). With flow cytometry and the use of a battery of metabolic and cytoskeletal inhibitors, we found that the mechanism of the FND uptake in both cells is by energy-dependent clathrin-mediated endocytosis. In addition, the surface charge of FND influences its cellular uptake, as the uptake of poly-L-lysine-coated FNDs is better than that of oxidative-acid-purified FNDs at the same concentration in regular medium with or without serum. We also confirm that the proliferative potential of FND-treated and untreated cells does not exhibit any significant differences when measured at bulk cultures, and more stringently at clonal cell density. Further biocompatibility studies indicate that the in vitro differentiation of 3T3-L1 pre-adipocytes and 489-2 osteoprogenitors is not affected by the FND treatment. Our results show that FNDs are biocompatible and ideal candidates for potential applications in human stem cell research.

  9. Fabrication of biocompatible free-standing nanopatterned films for primary neuronal cultures

    KAUST Repository

    Cesca, F.; Limongi, T.; Accardo, A.; Rocchi, A.; Orlando, M.; Shalabaeva, V.; Di Fabrizio, Enzo M.; Benfenati, F.

    2014-01-01

    Devising and constructing biocompatible devices for nervous system regeneration is an extremely challenging task. Besides tackling the issue of biocompatibility, biomaterials for neuroscience applications should mimic the complex environment of the extracellular matrix, which in vivo provides neurons with a series of cues and signals to guide cells towards their appropriate targets. In this work, a novel nanopatterned biocompatible poly-ε-caprolactone (PCL) film is realized to assist the attachment and growth of primary hippocampal neurons. Costly and time-consuming processes can be avoided using plasma-surface nanotexturing obtained by a mixed gas SF6/Ar at −5 °C. The intrinsic composition and line topography of nanopatterned PCL ensure healthy development of the neuronal network, as shown by confocal microscopy, by analysing the expression of a range of neuronal markers typical of mature cultures, as well as by scanning electron microscopy. In addition, we show that surface nanopatterning improves differentiation of neurons compared to flat PCL films, while no neural growth was observed on either flat or nanopatterned substrates in the absence of a poly-D-lysine coating. Thus, we successfully optimized a nanofabrication protocol to obtain nanostructured PCL layers endowed with several mechanical and structural characteristics that make them a promising, versatile tool for future tissue engineering studies aimed at neural tissue regeneration.

  10. Biocompatibility and osteoconduction of macroporous silk fibroin implants in cortical defects in sheep.

    Science.gov (United States)

    Uebersax, Lorenz; Apfel, Tanja; Nuss, Katja M R; Vogt, Rainer; Kim, Hyoen Yoo; Meinel, Lorenz; Kaplan, David L; Auer, Joerg A; Merkle, Hans P; von Rechenberg, Brigitte

    2013-09-01

    The goal of the presented study was to compare the biocompatibility and cellular responses to porous silk fibroin (SF) scaffolds produced in a water-based (UPW) or a solvent based process (HFIP) using two different SF sources. For that reason, four different SF scaffolds were implanted (n=6) into drill hole defects in the cancellous bone of the sheep tibia and humerus. The scaffolds were evaluated histologically for biocompatibility, cell-material interaction, and cellular ingrowth. New bone formation was observed macroscopically and histologically at 8 weeks after implantation. For semiquantitative evaluation, the investigated parameters were scored and statistically analyzed (factorial ANOVA). All implants showed good biocompatibility as evident by low infiltration of inflammatory cells and the absent encapsulation of the scaffolds in connective tissue. Multinuclear foreign body giant cells (MFGCs) and macrophages were present in all parts of the scaffold at the material surface and actively degrading the SF material. Cell ingrowth and vascularization were uniform across the scaffold. However, in HFIP scaffolds, local regions of void pores were present throughout the scaffold, probably due to the low pore interconnectivity in this scaffold type in contrast to UPW scaffolds. The amount of newly formed bone was very low in both scaffold types but was more abundant in the periphery than in the center of the scaffolds and for HFIP scaffolds mainly restricted to single pores. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. An animal model in sheep for biocompatibility testing of biomaterials in cancellous bones

    Directory of Open Access Journals (Sweden)

    Boos Alois

    2006-08-01

    Full Text Available Abstract Background The past years have seen the development of many synthetic bone replacements. To test their biocompatibility and ability for osseointegration, osseoinduction and -conduction requires their placement within bone preferably in an animal experiment of a higher species. Methods A suitable experimental animal model in sheep with drill holes of 8 mm diameter and 13 mm depth within the proximal and distal humerus and femur for testing biocompatibility issues is introduced. Results This present sheep model allows the placing of up to 8 different test materials within one animal and because of the standardization of the bone defect, routine evaluation by means of histomorphometry is easily conducted. This method was used successfully in 66 White Alpine Sheep. When the drill holes were correctly placed no complications such as spontaneous fractures were encountered. Conclusion This experimental animal model serves an excellent basis for testing the biocompatibility of novel biomaterials to be used as bone replacement or new bone formation enhancing materials.

  12. Biocompatibility of GaSb thin films grown by RF magnetron sputtering

    Science.gov (United States)

    Nishimoto, Naoki; Fujihara, Junko; Yoshino, Katsumi

    2017-07-01

    GaSb may be suitable for biological applications, such as cellular sensors and bio-medical instrumentation because of its low toxicity compared with As (III) compounds and its band gap energy. Therefore, the biocompatibility and the film properties under physiological conditions were investigated for GaSb thin films with or without a surface coating. GaSb thin films were grown on quartz substrates by RF magnetron sputtering, and then coated with (3-mercaptopropyl) trimethoxysilane (MPT). The electrical properties, surface morphology, and crystal structure of the GaSb thin film were unaffected by the MPT coating. The cell viability assay suggested that MPT-coated GaSb thin films are biocompatible. Bare GaSb was particularly unstable in pH9 buffer. Ga elution was prevented by the MPT coating, although the Ga concentration in the pH 9 buffer was higher than that in the other solutions. The surface morphology and crystal structure were not changed by exposure to the solutions, except for the pH 9 buffer, and the thin film properties of MPT-coated GaSb exposed to distilled water and H2O2 in saline were maintained. These results indicate that MPT-coated GaSb thin films are biocompatible and could be used for temporary biomedical devices.

  13. Sutureless closure of scleral wounds in animal models by the use of laser welded biocompatible patches

    Science.gov (United States)

    Rossi, Francesca; Matteini, Paolo; Menabuoni, Luca; Lenzetti, Ivo; Pini, Roberto

    2011-03-01

    The common procedures used to seal the scleral or conjunctival injuries are based on the traditional suturing techniques, that may induce foreign body reaction during the follow up, with subsequent inflammation and distress for the patient. In this work we present an experimental study on the laser welding of biocompatible patches onto ocular tissues, for the closure of surgical or trauma wounds. The study was performed ex vivo in animal models (porcine eyes). A penetrating perforation of the ocular tissue was performed with a surgical knife. The wound walls were approximated, and a biocompatible patch was put onto the outer surface of the tissue, in order to completely cover the wound as a plaster. The patches were prepared with a biocompatible and biodegradable polymer, showing high mechanical strength, good elasticity, high permeability for vapour and gases and rather low biodegradation. During preparation, Indocyanine Green (ICG) was included in the biopolymeric matrix, so that the films presented high absorption at 810 nm. Effective adhesion of the membranes to the ocular tissues was obtained by using diode laser light emitted from an 810 nm diode laser and delivered by means of a 300 μm core diameter optical fiber, to produce spots of local film/tissue adhesion, due to the photothermal effect at the interface. The result is an immediate closure of the wound, thus reducing post-operative complications due to inflammation.

  14. Flexible organic light emitting diodes fabricated on biocompatible silk fibroin substrate

    Science.gov (United States)

    Liu, Yuqiang; Xie, Yuemin; Liu, Yuan; Song, Tao; Zhang, Ke-Qin; Liao, Liangsheng; Sun, Baoquan

    2015-10-01

    Flexible and biodegradable electronics are currently under extensive investigation for biocompatible and environmentally-friendly applications. Synthetic plastic foils are widely used as substrates for flexible electronics. But typical plastic substrates such as polyethylene naphthalate (PEN) could not be degraded in a natural bio-environment. A great demand still exists for a next-generation biocompatible and biodegradable substrate for future application. For example, electronic devices can be potentially integrated into the human body. In this work, we demonstrate that the biocompatible and biodegradable natural silk fibroin (SF) films embedded with silver nanowires (AgNWs) mesh could be employed as conductive transparent substrates to fabricate flexible organic light emitting diodes (OLEDs). Compared with commercial PEN substrates coated with indium tin oxide, the AgNWs/SF composite substrates exhibit a similar sheet resistance of 12 Ω sq-1, a lower surface roughness, as well as a broader light transmission range. Flexible OLEDs based on AgNWs/SF substrates achieve a current efficiency of 19 cd A-1, demonstrating the potential of the flexible AgNWs/SF films as conductive and transparent substrates for next-generation biodegradable devices.

  15. Biocompatible transferrin-conjugated sodium hexametaphosphate-stabilized gold nanoparticles: synthesis, characterization, cytotoxicity and cellular uptake

    International Nuclear Information System (INIS)

    Parab, Harshala J; Huang, Jing-Hong; Liu, Ru-Shi; Lai, Tsung-Ching; Jan, Yi-Hua; Wang, Jui-Ling; Hsiao, Michael; Chen, Chung-Hsuan; Hwu, Yeu-Kuang; Tsai, Din Ping; Chuang, Shih-Yi; Pang, Jong-Hwei S

    2011-01-01

    The feasibility of using gold nanoparticles (AuNPs) for biomedical applications has led to considerable interest in the development of novel synthetic protocols and surface modification strategies for AuNPs to produce biocompatible molecular probes. This investigation is, to our knowledge, the first to elucidate the synthesis and characterization of sodium hexametaphosphate (HMP)-stabilized gold nanoparticles (Au-HMP) in an aqueous medium. The role of HMP, a food additive, as a polymeric stabilizing and protecting agent for AuNPs is elucidated. The surface modification of Au-HMP nanoparticles was carried out using polyethylene glycol and transferrin to produce molecular probes for possible clinical applications. In vitro cell viability studies performed using as-synthesized Au-HMP nanoparticles and their surface-modified counterparts reveal the biocompatibility of the nanoparticles. The transferrin-conjugated nanoparticles have significantly higher cellular uptake in J5 cells (liver cancer cells) than control cells (oral mucosa fibroblast cells), as determined by inductively coupled plasma mass spectrometry. This study demonstrates the possibility of using an inexpensive and non-toxic food additive, HMP, as a stabilizer in the large-scale generation of biocompatible and monodispersed AuNPs, which may have future diagnostic and therapeutic applications.

  16. Flexible organic light emitting diodes fabricated on biocompatible silk fibroin substrate

    International Nuclear Information System (INIS)

    Liu, Yuqiang; Xie, Yuemin; Liu, Yuan; Song, Tao; Liao, Liangsheng; Sun, Baoquan; Zhang, Ke-Qin

    2015-01-01

    Flexible and biodegradable electronics are currently under extensive investigation for biocompatible and environmentally-friendly applications. Synthetic plastic foils are widely used as substrates for flexible electronics. But typical plastic substrates such as polyethylene naphthalate (PEN) could not be degraded in a natural bio-environment. A great demand still exists for a next-generation biocompatible and biodegradable substrate for future application. For example, electronic devices can be potentially integrated into the human body. In this work, we demonstrate that the biocompatible and biodegradable natural silk fibroin (SF) films embedded with silver nanowires (AgNWs) mesh could be employed as conductive transparent substrates to fabricate flexible organic light emitting diodes (OLEDs). Compared with commercial PEN substrates coated with indium tin oxide, the AgNWs/SF composite substrates exhibit a similar sheet resistance of 12 Ω sq −1 , a lower surface roughness, as well as a broader light transmission range. Flexible OLEDs based on AgNWs/SF substrates achieve a current efficiency of 19 cd A −1 , demonstrating the potential of the flexible AgNWs/SF films as conductive and transparent substrates for next-generation biodegradable devices. (paper)

  17. Evaluation of the biocompatibility of a coating material for an implantable bladder volume sensor

    Directory of Open Access Journals (Sweden)

    Su-Jin Kim

    2012-03-01

    Full Text Available As the applications for implantable medical devices have increased, the need for biocompatible packaging materials has become important. Recently, we reported an implantable sensor for real-time monitoring of the changes in bladder volume, which necessitated finding a safe coating material for use in bladder tissue. At present, materials like polyethylene glycol (PEG, polydimethylsiloxane (PDMS and parylene-C are used in biomedical devices or as coating materials, owing to their excellent safety in various medical fields. However, few studies have assessed their safety in bladder tissue, therefore, we evaluated the biocompatibility of PEG, PDMS and parylene-C in the bladder. All three materials turned out to be safe in in vitro tests of live/dead staining and cell viability. In vivo tests with hematoxylin and eosin and immunofluorescence staining with MAC387 showed no persistent inflammation. Therefore, we consider that the three materials are biocompatible in bladder tissue. Despite this safety, however, PEG has biodegradable characteristics and thus is not suitable for use as packaging. We suggest that PDMS and parylene-C can be used as safe coating materials for the implantable bladder volume sensor reported previously.

  18. Surface Modification of SiO2 Microchannels with Biocompatible Polymer Using Supercritical Carbon Dioxide

    Science.gov (United States)

    Saito, Tatsuro; Momose, Takeshi; Hoshi, Toru; Takai, Madoka; Ishihara, Kazuhiko; Shimogaki, Yukihiro

    2010-11-01

    The surface of 500-mm-long microchannels in SiO2 microchips was modified using supercritical CO2 (scCO2) and a biocompatible polymer was coated on it to confer biocompatibility to the SiO2 surface. In this method, the SiO2 surface of a microchannel was coated with poly(ethylene glycol monomethacrylate) (PEGMA) as the biocompatible polymer using allyltriethoxysilane (ATES) as the anchor material in scCO2 as the reactive medium. Results were compared with those using the conventional wet method. The surface of a microchannel could not be modified by the wet method owing to the surface tension and viscosity of the liquid, but it was modified uniformly by the scCO2 method probably owing to the near-zero surface tension, low viscosity, and high diffusivity of scCO2. The effect of the surface modification by the scCO2 method to prevent the adsorption of protein was as high as that of the modification by the wet method. Modified microchips can be used in biochemical and medical analyses.

  19. Tribological properties, corrosion resistance and biocompatibility of magnetron sputtered titanium-amorphous carbon coatings

    Science.gov (United States)

    Dhandapani, Vishnu Shankar; Subbiah, Ramesh; Thangavel, Elangovan; Arumugam, Madhankumar; Park, Kwideok; Gasem, Zuhair M.; Veeraragavan, Veeravazhuthi; Kim, Dae-Eun

    2016-05-01

    Amorphous carbon incorporated with titanium (a-C:Ti) was coated on 316L stainless steel (SS) by magnetron sputtering technique to attain superior tribological properties, corrosion resistance and biocompatibility. The morphology, topography and functional groups of the nanostructured a-C:Ti coatings in various concentrations were analyzed using atomic force microscopy (AFM), Raman, X-Ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM). Raman and XPS analyses confirmed the increase in sp2 bonds with increasing titanium content in the a-C matrix. TEM analysis confirmed the composite nature of the coating and the presence of nanostructured TiC for Ti content of 2.33 at.%. This coating showed superior tribological properties compared to the other a-C:Ti coatings. Furthermore, electrochemical corrosion studies were performed against stimulated body fluid medium in which all the a-C:Ti coatings showed improved corrosion resistance than the pure a-C coating. Preosteoblasts proliferation and viability on the specimens were tested and the results showed that a-C:Ti coatings with relatively high Ti (3.77 at.%) content had better biocompatibility. Based on the results of this work, highly durable coatings with good biocompatibility could be achieved by incorporation of optimum amount of Ti in a-C coatings deposited on SS by magnetron sputtering technique.

  20. Preparation and Biocompatible Surface Modification of Redox Altered Cerium Oxide Nanoparticle Promising for Nanobiology and Medicine

    KAUST Repository

    Nanda, Himansu Sekhar

    2016-01-01

    The biocompatible surface modification of metal oxide nanoparticles via surface functionalization technique has been used as an important tool in nanotechnology and medicine. In this report, we have prepared aqueous dispersible, trivalent metal ion (samarium)-doped cerium oxide nanoparticles (SmCNPs) as model redox altered CNPs of biological relevance. SmCNP surface modified with hydrophilic biocompatible (6-{2-[2-(2-methoxy-ethoxy)-ethoxy]-ethoxy}-hexyl) triethoxysilane (MEEETES) were prepared using ammonia-induced ethylene glycol-assisted precipitation method and were characterized using a variety of complementary characterization techniques. The chemical interaction of functional moieties with the surface of doped nanoparticle was studied using powerful 13C cross polarization magic angle sample spinning nuclear magnetic resonance spectroscopy. The results demonstrated the production of the extremely small size MEEETES surface modified doped nanoparticles with significant reduction in aggregation compared to their unmodified state. Moreover, the functional moieties had strong chemical interaction with the surface of the doped nanoparticles. The biocompatible surface modification using MEEETES should also be extended to several other transition metal ion doped and co-doped CNPs for the production of aqueous dispersible redox altered CNPs that are promising for nanobiology and medicine.