WorldWideScience

Sample records for biocompatible biodegradable copolymer

  1. Injectable biocompatible and biodegradable pH-responsive hollow particle gels containing poly(acrylic acid): the effect of copolymer composition on gel properties.

    Science.gov (United States)

    Halacheva, Silvia S; Adlam, Daman J; Hendow, Eseelle K; Freemont, Tony J; Hoyland, Judith; Saunders, Brian R

    2014-05-12

    The potential of various pH-responsive alkyl (meth)acrylate ester- and (meth)acrylic acid-based copolymers, including poly(methyl methacrylate-co-acrylic acid) (PMMA-AA) and poly(n-butyl acrylate-co-methacrylic acid) (PBA-MAA), to form pH-sensitive biocompatible and biodegradable hollow particle gel scaffolds for use in non-load-bearing soft tissue regeneration have been explored. The optimal copolymer design criteria for preparation of these materials have been established. Physical gels which are both pH- and redox-sensitive were formed only from PMMA-AA copolymers. MMA is the optimal hydrophobic monomer, whereas the use of various COOH-containing monomers, e.g., MAA and AA, will always induce a pH-triggered physical gelation. The PMMA-AA gels were prepared at physiological pH range from concentrated dispersions of swollen, hollow, polymer-based particles cross-linked with either cystamine (CYS) or 3,3'-dithiodipropionic acid dihydrazide (DTP). A linear relationship between particle swelling ratios, gel elasticity, and ductility was observed. The PMMA-AA gels with lower AA contents feature lower swelling ratios, mechanical strengths, and ductilities. Increasing the swelling ratio (e.g., through increasing AA content) decreased the intraparticle elasticity; however, intershell contact and gel elasticity were found to increase. The mechanical properties and performance of the gels were tuneable upon varying the copolymers' compositions and the structure of the cross-linker. Compared to PMMA-AA/CYS, the PMMA-AA/DTP gels were more elastic and ductile. The biodegradability and cytotoxicity of the new hollow particle gels were tested for the first time and related to their composition, mechanical properties, and morphology. The new PMMA-AA/CYS and PMMA-AA/DTP gels have shown good biocompatibility, biodegradability, strength, and interconnected porosity and therefore have good potential as a tissue repair agent.

  2. Adhesion of biocompatible and biodegradable micropatterned surfaces

    NARCIS (Netherlands)

    Kaiser, J.S.; Kamperman, M.M.G.; Souza, E.J.; Schick, B.; Arzt, E.

    2011-01-01

    We studied the effects of pillar dimensions and stiffness of biocompatible and biodegradable micropatterned surfaces on adhesion on different compliant substrates. The micropatterned adhesives were based on biocompatible polydimethylsiloxane (PDMS) and biodegradable poly(lactic-co-glycolic) acid (PL

  3. 3D structuring of biocompatible and biodegradable polymers via stereolithography.

    Science.gov (United States)

    Gill, Andrew A; Claeyssens, Frederik

    2011-01-01

    The production of user-defined 3D microstructures from biocompatible and biodegradable materials via free-form fabrication is an important step to create off-the-shelf technologies to be used as tissue engineering scaffolds. One method of achieving this is the microstereolithography of block copolymers, allowing high resolution microstructuring of materials with tuneable physical properties. A versatile protocol for the production and photofunctionalisation of pre-polymers for microstereolithography is presented along with a discussion of the possible microstereolithography set-ups and previous work in the field.

  4. Self-assembled antimicrobial and biocompatible copolymer films on titanium.

    Science.gov (United States)

    Pfaffenroth, Cornelia; Winkel, Andreas; Dempwolf, Wibke; Gamble, Lara J; Castner, David G; Stiesch, Meike; Menzel, Henning

    2011-11-10

    Copolymers of 4-vinyl-N-hexylpyridinium bromide and dimethyl(2-methacryloyloxyethyl) phosphonate self-assemble to form ultrathin layers on titanium surfaces that show antimicrobial activity, and biocompatibility. The copolymer layers are characterized by contact angle measurements, ellipsometry and XPS. Antibacterial activity is assessed by investigation of adherence of S. mutans. Biocompatibility is rated based on human gingival fibroblast adhesion and proliferation. By balancing the opposing effects of the chemical composition on biocompatibility and antimicrobial activity, copolymer coatings are fabricated that are able to inhibit the growth of S. mutans on the surface but still show attachment of gingival fibroblasts, and therefore might prevent biofilm formation on implants.

  5. Synthesis, characterizations and biocompatibility of novel biodegradable star block copolymers based on poly[(R)-3-hydroxybutyrate] and poly(epsilon-caprolactone)

    DEFF Research Database (Denmark)

    Wang, Liang; Wang, Xiaojuan; Xu, Kaitian;

    2010-01-01

    Star block copolymers based on poly[(R)-3-hydroxybutyrate] (PHB) and poly(epsilon-caprolactone) (PCL), termed SPHBCL, were successfully synthesized with structural variation on arm numbers and lengths via coupling reactions and ring opening polymerizations. Arm numbers 3, 4 and 6 of SPHBCL were...

  6. Solubility of dense CO2 in two biocompatible acrylate copolymers

    Directory of Open Access Journals (Sweden)

    A. R. C. Duarte

    2006-06-01

    Full Text Available Biocompatible polymers and copolymers are frequently being used as part of controlled delivery systems. These systems can be prepared using a "clean and environment friendly" technology like supercritical fluids. One great advantage of this process is that compressed carbon dioxide has excellent plasticizing properties and can swell most biocompatible polymeric matrixes, thus promoting drug impregnation processes. Mass sorption of two acrylate biocompatible copolymers contact with supercritical carbon dioxide is reported. Equilibrium solubility of dense carbon dioxide in poly(methylmethacrylate-co-ethylhexylacrylate and poly(methylmethacrylate-co-ethylhexylacrylate-co-ethyleneglycoldimethacrylate was studied by a static method at 10.0 MPa and 313 K. The reticulated copolymer had Fickean behavior and its diffusion coefficient was calculated, under operating conditions.

  7. Vectorization of copper complexes via biocompatible and biodegradable PLGA nanoparticles

    Science.gov (United States)

    Courant, T.; Roullin, V. G.; Cadiou, C.; Delavoie, F.; Molinari, M.; Andry, M. C.; Gafa, V.; Chuburu, F.

    2010-04-01

    A double emulsion-solvent diffusion approach with fully biocompatible materials was used to encapsulate copper complexes within biodegradable nanoparticles, for which the release kinetics profiles have highlighted their potential use for a prolonged circulating administration.

  8. Vectorization of copper complexes via biocompatible and biodegradable PLGA nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Courant, T; Roullin, V G; Andry, M C [Institut de Chimie Moleculaire de Reims, CNRS UMR 6229, UFR Pharmacie Reims, 51 rue Cognacq-Jay, F-51100 Reims (France); Cadiou, C; Chuburu, F [Institut de Chimie Moleculaire de Reims, CNRS UMR 6229, UFR des Sciences Exactes et Naturelles, Batiment 18-Europol' Agro, BP 1039, F-51687 Reims Cedex 2 (France); Delavoie, F [Laboratoire de Microscopie Electronique Analytique, INSERM UMRS 926, 21 rue Clement Ader, F-51685 Reims Cedex 2 (France); Molinari, M [Laboratoire de Microscopies et d' Etudes des Nanostructures, UFR des Sciences, Universite de Reims Champagne-Ardenne, 21 rue Clement Ader, F-51685 Reims Cedex 2 (France); Gafa, V, E-mail: gaelle.roullin@univ-reims.fr, E-mail: francoise.chuburu@univ-reims.fr [EA4303 ' Inflammation et Immunite de l' Epithelium Respiratoire' , IFR53, UFR de Pharmacie, Universite de Reims Champagne-Ardenne, 51 rue Cognacq-Jay, F-51100 Reims (France)

    2010-04-23

    A double emulsion-solvent diffusion approach with fully biocompatible materials was used to encapsulate copper complexes within biodegradable nanoparticles, for which the release kinetics profiles have highlighted their potential use for a prolonged circulating administration.

  9. Vectorization of copper complexes via biocompatible and biodegradable PLGA nanoparticles.

    Science.gov (United States)

    Courant, T; Roullin, V G; Cadiou, C; Delavoie, F; Molinari, M; Andry, M C; Gafa, V; Chuburu, F

    2010-04-23

    A double emulsion-solvent diffusion approach with fully biocompatible materials was used to encapsulate copper complexes within biodegradable nanoparticles, for which the release kinetics profiles have highlighted their potential use for a prolonged circulating administration.

  10. In vivo biocompatibility of radiation crosslinked acrylamide copolymers

    Energy Technology Data Exchange (ETDEWEB)

    Saraydin, Dursun E-mail: saraydin@cumhuriyet.edu.tr; Uenver-Saraydin, Serpil; Karadag, Erdener; Koptagel, Emel; Gueven, Olgun

    2004-04-01

    In vitro swelling and in vivo biocompatibility of radiation crosslinked acrylamide copolymers such as acrylamide/crotonic acid (AAm/CA) and acrylamide/itaconic acid (AAm/IA) were studied. The swelling kinetics of acrylamide copolymers were performed in distilled water, human serum and some simulated physiological fluids such as phosphate buffer, pH 7.4, glycine-HCl buffer, pH 1.1, physiological saline solution, and some swelling and diffusion parameters have been calculated. AAm/CA and AAm/IA hydrogels were subcutaneously implanted in rats for up to 10 weeks and the immediate short- and long-term tissue response to these implants were investigated. Histological analysis indicated that tissue reaction at the implant site progressed from an initial acute inflammatory response. No necrosis, tumorigenesis or infection was observed at the implant site up to 10 weeks. The radiation crosslinked AAm/CA and AAm/IA copolymers were found well tolerated, non-toxic and highly biocompatible. However, AAm/IA copolymer was not found to be compatible biomaterials, because one of the AAm/IA samples was disintegrated into small pieces in the rat.

  11. A new biodegradable and biocompatible gadolinium (III) -polymer for liver magnetic resonance imaging contrast agent.

    Science.gov (United States)

    Xiao, Yan; Xue, Rong; You, Tianyan; Li, Xiaojing; Pei, Fengkui

    2015-07-01

    A new biodegradable and biocompatible gadolinium (III) -copolymer (ACL-A2-DOTA-Gd) has been developed as a potential liver magnetic resonance imaging (MRI) contrast agent. ACL-A2-DOTA-Gd consisted of a poly (aspartic acid-co-leucine) unit bound with 1,4,7,10-tetraazacyclododecan-1,4,7,10-tetraacetic acid-gadolinium (Gd-DOTA) via the linkage of ethylenediamine. In vitro, the biodegradable experiment and cytotoxicity assay showed the biodegradability and biocompatibility of this gadolinium-polymer. ACL-A2-DOTA-Gd presented an increase in relaxivity of 2.4 times than the clinical Gd-DOTA. In vivo, gadolinium (III)-copolymer was mainly accumulated in the liver, and it could be excreted via the renal and hepatobiliary mechanism. The average enhancement of ACL-A2-DOTA-Gd (60.71±5.93%, 50-80 min) in liver was 2.62-fold greater than that of Gd-DOTA (23.16±3.55%, 10-30 min). ACL-A2-DOTA-Gd could be as a potential liver MRI contrast agent with a long time-window.

  12. Facile synthesis and characterization of novel biodegradable amphiphilic block copolymers bearing pendant hydroxyl groups

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Gaicen; Fan, Xiaoshan; Xu, Bingcan; Zhang, Delong; Hu, Zhiguo, E-mail: zghu@htu.cn

    2014-10-01

    Novel amphiphilic block copolymers bearing pendant hydroxyl groups polylactide-b–poly(3,3-bis(Hydroxymethyl–triazolylmethyl) oxetane)-b–polylactide (PLA-b–PHMTYO-b–PLA) were synthesized via a facile and efficient method. First, the block copolymer intermediates polylactide-b–poly(3,3-Diazidomethyloxetane)-b–polylactide (PLA-b–PBAMO-b–PLA) were synthesized through ring-opening polymerization of lactide using PBAMO as a macroinitiator. Following “Click” reaction of PLA-b–PBAMO-b–PLA with propargyl alcohol provided the targeted amphiphilic block copolymers PLA-b–PHMTYO-b–PLA with pendant hydroxyl groups. The composition and structure of prepared copolymers were characterized by {sup 1}H nuclear magnetic resonance ({sup 1}H NMR) spectroscopy, Fourier transform infrared (FT-IR) and gel permeation chromatography (GPC). The self-assembly behavior of the copolymers in water was investigated by transmission electron microscope (TEM), dynamic light scattering (DLS) and static light scattering (SLS). The results showed that the novel copolymers PLA-b–PHMTYO-b–PLA self-assembled into spherical micelles with diameters ranging from 100 nm to 200 nm in aqueous solution. These copolymers also exhibited low critical micellar concentrations (CMC: 6.9 × 10{sup −4} mg/mL and 3.9 × 10{sup −5} mg/mL, respectively). In addition, the in vitro cytotoxicity of these copolymers was determined in the presence of L929 cells. The results showed that the block copolymers PLA-b–PHMTYO-b–PLA exhibited better biocompatibility. Therefore, these well-defined copolymers are expected to find some applications in drug delivery or tissue engineering. - Highlights: • The method to synthesize PLA-b–PHMTYO-b–PLA is relatively facile and efficient. • PLA-b–PHMTYO-b–PLA self-assembles into spherical micelles with low CMC in water. • PLA-b–PHMTYO-b–PLA exhibits better biocompatibility and biodegradability.

  13. A biodegradable and biocompatible gecko-inspired tissue adhesive.

    Science.gov (United States)

    Mahdavi, Alborz; Ferreira, Lino; Sundback, Cathryn; Nichol, Jason W; Chan, Edwin P; Carter, David J D; Bettinger, Chris J; Patanavanich, Siamrut; Chignozha, Loice; Ben-Joseph, Eli; Galakatos, Alex; Pryor, Howard; Pomerantseva, Irina; Masiakos, Peter T; Faquin, William; Zumbuehl, Andreas; Hong, Seungpyo; Borenstein, Jeffrey; Vacanti, Joseph; Langer, Robert; Karp, Jeffrey M

    2008-02-19

    There is a significant medical need for tough biodegradable polymer adhesives that can adapt to or recover from various mechanical deformations while remaining strongly attached to the underlying tissue. We approached this problem by using a polymer poly(glycerol-co-sebacate acrylate) and modifying the surface to mimic the nanotopography of gecko feet, which allows attachment to vertical surfaces. Translation of existing gecko-inspired adhesives for medical applications is complex, as multiple parameters must be optimized, including: biocompatibility, biodegradation, strong adhesive tissue bonding, as well as compliance and conformability to tissue surfaces. Ideally these adhesives would also have the ability to deliver drugs or growth factors to promote healing. As a first demonstration, we have created a gecko-inspired tissue adhesive from a biocompatible and biodegradable elastomer combined with a thin tissue-reactive biocompatible surface coating. Tissue adhesion was optimized by varying dimensions of the nanoscale pillars, including the ratio of tip diameter to pitch and the ratio of tip diameter to base diameter. Coating these nanomolded pillars of biodegradable elastomers with a thin layer of oxidized dextran significantly increased the interfacial adhesion strength on porcine intestine tissue in vitro and in the rat abdominal subfascial in vivo environment. This gecko-inspired medical adhesive may have potential applications for sealing wounds and for replacement or augmentation of sutures or staples.

  14. Biodegradable and Biocompatible Systems Based on Hydroxyapatite Nanoparticles

    Directory of Open Access Journals (Sweden)

    Pau Turon

    2017-01-01

    Full Text Available Composites of hydroxyapatite (HAp are widely employed in biomedical applications due to their biocompatibility, bioactivity and osteoconductivity properties. In fact, the development of industrially scalable hybrids at low cost and high efficiency has a great impact, for example, on bone tissue engineering applications and even as drug delivery systems. New nanocomposites constituted by HAp nanoparticles and synthetic or natural polymers with biodegradable and biocompatible characteristics have constantly been developed and extensive works have been published concerning their applications. The present review is mainly focused on both the capability of HAp nanoparticles to encapsulate diverse compounds as well as the preparation methods of scaffolds incorporating HAp. Attention has also been paid to the recent developments on antimicrobial scaffolds, bioactive membranes, magnetic scaffolds, in vivo imaging systems, hydrogels and coatings that made use of HAp nanoparticles.

  15. Biocompatibility and Structural Features of Biodegradable Polymer Scaffolds.

    Science.gov (United States)

    Nasonova, M V; Glushkova, T V; Borisov, V V; Velikanova, E A; Burago, A Yu; Kudryavtseva, Yu A

    2015-11-01

    We performed a comparative analysis of physicochemical properties and biocompatibility of scaffolds of different composition on the basis of biodegradable polymers fabricated by casting and electrospinning methods. For production of polyhydroxyalkanoate-based scaffolds by electrospinning method, the optimal concentration of the polymer was 8-10%. Fiber diameter and properties of the scaffold produced by electrospinning method depended on polymer composition. Addition of polycaprolactone increased elasticity of the scaffolds. Bio- and hemocompatibility of the scaffolds largely depended on the composition formulation and method of scaffold fabrication. Polylactide introduced into the composition of polyhydroxybutyrate-oxyvalerate scaffolds accelerated degradation and increased adhesive properties of the scaffolds.

  16. POLY (β-HYDROXYALKANOATES): NATURAL BIOCOMPATIBLE AND BIODEGRADABLE POLYESTERS PRODUCED BY BACTERIA

    Institute of Scientific and Technical Information of China (English)

    ROBERT W.LENZ; RICHARD A.GROSS; HELMUT BRANDL; R.CLINTON FULLER

    1989-01-01

    A wide variety of different types of microorganisms are known to produce intracellular energy and carbon storage products, which have been generally described as being poly (β-hydroxybutyrate ), PHB, but which are, more often than not, copolymers containing different alkyl groups at the β-position. Hence, PHB belongs to the family ofpoly (β-hydroxyalkanoastes), PHA, all of which are usually formed as intracellular inclusions in bacteria under unbalanced growth conditions. Recently, it became of industrial interest to evaluate these PHA polyesters as natural biodegradable and biocompatible plastics for a wide range of possible applications, such as surgical sutures or packaging containers. For industrial applications, the controlled incorporation of repeating units with different chain lengths into a series ofcopolymers is desirable in order to produce polyesters with a range of material properties because physical and chemical characteristics depend strongly on the polymer composition. Such "tailor- made" copolymers can be produced under controlled growth conditions in that, if a defined mixture of substrates for a certain type of microorganisms is supplied, a well defined and reproducible copolymer is formed.

  17. Bioactive, mechanically favorable, and biodegradable copolymer nanocomposites for orthopedic applications.

    Science.gov (United States)

    Victor, Sunita Prem; Muthu, Jayabalan

    2014-06-01

    We report the synthesis of mechanically favorable, bioactive, and biodegradable copolymer nanocomposites for potential bone applications. The nanocomposites consist of in situ polymerized biodegradable copolyester with hydroxyapatite (HA). Biodegradable copolyesters comprise carboxy terminated poly(propylene fumarate) (CT-PPF) and poly(trimethylol propane fumarate co mannitol sebacate) (TF-Co-MS). Raman spectral imaging clearly reveals a uniform homogenous distribution of HA in the copolymer matrix. The mechanical studies reveal that improved mechanical properties formed when crosslinked with methyl methacrylate (MMA) when compared to N-vinyl pyrrolidone (NVP). The SEM micrographs of the copolymer nanocomposites reveal a serrated structure reflecting higher mechanical strength, good dispersion, and good interfacial bonding of HA in the polymer matrix. In vitro degradation of the copolymer crosslinked with MMA is relatively more than that of NVP and the degradation decreases with an increase in the amount of the HA filler. The mechanically favorable and degradable MMA based nanocomposites also have favorable bioactivity, blood compatibility, cytocompatibility and cell adhesion. The present nanocomposite is a more promising material for orthopedic applications.

  18. Comparative study on the biodegradation and biocompatibility of silicate bioceramic coatings on biodegradable magnesium alloy as biodegradable biomaterial

    Science.gov (United States)

    Razavi, M.; Fathi, M. H.; Savabi, O.; Razavi, S. M.; Hashemibeni, B.; Yazdimamaghani, M.; Vashaee, D.; Tayebi, L.

    2014-03-01

    Many clinical cases as well as in vivo and in vitro assessments have demonstrated that magnesium alloys possess good biocompatibility. Unfortunately, magnesium and its alloys degrade too quickly in physiological media. In order to improve the biodegradation resistance and biocompatibility of a biodegradable magnesium alloy, we have prepared three types of coating include diopside (CaMgSi2O6), akermanite (Ca2MgSi2O6) and bredigite (Ca7MgSi4O16) coating on AZ91 magnesium alloy through a micro-arc oxidation (MAO) and electrophoretic deposition (EPD) method. In this research, the biodegradation and biocompatibility behavior of samples were evaluated in vitro and in vivo. The in vitro analysis was performed by cytocompatibility and MTT-assay and the in vivo test was conducted on the implantation of samples in the greater trochanter of adult rabbits. The results showed that diopside coating has the best bone regeneration and bredigite has the best biodegradation resistance compared to others.

  19. Syntheses of amphiphilic biodegradable copolymers of poly(ethyl ethylene phosphate) and poly(3-hydroxybutyrate) for drug delivery

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Biodegradable and amphiphilic triblock copolymers poly(ethyl ethylene phosphate)-poly(3-hydroxybutyrate)-poly(ethyl ethylene phosphate) (PEEP-b-PHB-b-PEEP) have been successfully synthesized through ring-opening polymerization. The structures are confirmed by gel permeation chromatography and NMR analyses. Crystallization investigated by X-ray diffraction reveals that the block copolymer with higher content of poly(ethyl ethylene phosphate) (PEEP) is more amorphous, showing decreased crystallizability. The obtained copolymers self-assemble into biodegradable nanoparticles with a coreshell micellar structure in aqueous solution, verified by the probe-based fluorescence measurements and transmission electronic microscopy (TEM) observation. The hydrophobic poly(3-hydroxybutyrate) (PHB) block serves as the core of the micelles and the micelles are stabilized by the hydrophilic PEEP block. The size and size distribution are related to the compositions of the copolymers. Paclitaxel (PTX) has been encapsulated into the micelles as a model drug and a sustained drug release from the micelles is observed. MTT assay also demonstrates that the block copolymers are biocompatible, rendering these copolymers attractive for drug delivery.

  20. Syntheses of amphiphilic biodegradable copolymers of poly(ethyl ethylene phosphate) and poly(3-hydroxybutyrate) for drug delivery

    Institute of Scientific and Technical Information of China (English)

    CHENG Jing; WANG Jun

    2009-01-01

    Biodegradable and amphiphilic triblock copolymers poly(ethyl ethylene phosphate)-poly(3-hydroxybutyrate)-poly(ethyl ethylene phosphate) (PEEP-b-PHB-b-PEEP) have been successfully synthesized through ring-opening polymerization.The structures are confirmed by gel permeation chromatography and NMR analyses.Crystallization investigated by X-ray diffraction reveals that the block copolymer with higher content of poly(ethyl ethylene phosphate) (PEEP) is more amorphous,showing decreased crystallizability.The obtained copolymers self-assemble into biodegradable nanoparticles with a coreshell micellar structure in aqueous solution,verified by the probe-based fluorescence measurements and transmission electronic microscopy (TEM) observation.The hydrophobic poly(3-hydroxybutyrate) (PHB) block serves as the core of the micelles and the micelles are stabilized by the hydrophilic PEEP block.The size and size distribution are related to the compositions of the copolymers.Paclitaxel (PTX) has been encapsulated into the micelles as a model drug and a sustained drug release from the micelles is observed.MTT assay also demonstrates that the block copolymers are biocompatible,rendering these copolymers attractive for drug delivery.

  1. Biocompatibility Assessment of PLCL-Sericin Copolymer Membranes Using Wharton’s Jelly Mesenchymal Stem Cells

    Directory of Open Access Journals (Sweden)

    Kewalin Inthanon

    2016-01-01

    Full Text Available Stem cells based tissue engineering requires biocompatible materials, which allow the cells to adhere, expand, and differentiate in a large scale. An ideal biomaterial for clinical application should be free from mammalian products which cause immune reactivities and pathogen infections. We invented a novel biodegradable poly(L-lactic-co-ε-caprolactone-sericin (PLCL-SC copolymer membrane which was fabricated by electrospinning. Membranes with concentrations of 2.5 or 5% (w/v SC exhibited qualified texture characteristics with a noncytotoxic release profile. The hydrophilic properties of the membranes were 35–40% higher than those of a standard PLCL and commercial polystyrene (PS. The improved characteristics of the membranes were due to an addition of new functional amide groups, C=O, N–H, and C–N, onto their surfaces. Degradation of the membranes was controllable, depending on the content proportion of SC. Results of thermogram indicated the superior stability and crystallinity of the membranes. These membranes enhanced human Wharton’s jelly mesenchymal stem cells (hWJMSC proliferation by increasing cyclin A and also promoted cell adhesion by upregulating focal adhesion kinase (FAK. On the membranes, hWJMSC differentiated into a neuronal lineage with the occurrence of nestin. These data suggest that PLCL-SC electrospun membrane represents some properties which will be useful for tissue engineering and medical applications.

  2. Self-Assembled Antimicrobial and biocompatible copolymer films on Titanium

    OpenAIRE

    2011-01-01

    Biofilm formation on biomedical devices such as dental implants can result in serious infections and finally in device failure. Polymer coatings which provide antimicrobial action to surfaces without compromising the compatibility with human tissue are of great interest. Copolymers of 4-vinyl-N-hexylpyridinium bromide and dimethyl(2-methacryloyloxyethyl) phosphonate are interesting candidates in this respect. These copolymers form ultrathin polycationic layers on titanium surfaces. As the cop...

  3. Synthesis and self-assembly behavior of a biodegradable and sustainable soybean oil-based copolymer nanomicelle

    Science.gov (United States)

    Bao, Lixia; Bian, Longchun; Zhao, Mimi; Lei, Jingxin; Wang, Jiliang

    2014-08-01

    Herein, we report a novel amphiphilic biodegradable and sustainable soybean oil-based copolymer (SBC) prepared by grafting hydrophilic and biocompatible hydroxyethyl acrylate (HEA) polymeric segments onto the natural hydrophobic soybean oil chains. FTIR, H1-NMR, and GPC measurements have been used to investigate the molecular structure of the obtained SBC macromolecules. Self-assembly behaviors of the prepared SBC in aqueous solution have also been extensively evaluated by fluorescence spectroscopy and transmission electron microscopy. The prepared SBC nanocarrier with the size range of 40 to 80 nm has a potential application in the biomedical field.

  4. Biodegradable polyesters reinforced with triclosan loaded polylactide micro/nanofibers: Properties, release and biocompatibility

    Directory of Open Access Journals (Sweden)

    L. J. del Valle

    2012-04-01

    Full Text Available Mechanical properties and drug release behavior were studied for three biodegradable polyester matrices (polycaprolactone, poly(nonamethylene azelate and the copolymer derived from 1,9-nonanediol and an equimolar mixture of azelaic and pimelic acids reinforced with polylactide (PLA fibers. Electrospinning was used to produce suitable mats constituted by fibers of different diameters (i.e. from micro- to nanoscale and a homogeneous dispersion of a representative hydrophobic drug (i.e. triclosan. Fabrics were prepared by a molding process, which allowed cold crystallization of PLA micro/nanofibers and hot crystallization of the polyester matrices. The orientation of PLA molecules during electrospinning favored the crystallization process, which was slightly enhanced when the diameter decreased. Incorporation of PLA micro/nanofibers led to a significant increase in the elastic modulus and tensile strength, and in general to a decrease in the strain at break. The brittle fracture was clearer when high molecular weight samples with high plastic deformation were employed. Large differences in the release behavior were detected depending on the loading process, fiber diameter size and hydrophobicity of the polyester matrix. The release of samples with the drug only loaded into the reinforcing fibers was initially fast and then became slow and sustained, resulting in longer lasting antimicrobial activity. Biocompatibility of all samples studied was demonstrated by adhesion and proliferation assays using HEp-2 cell cultures.

  5. Biocompatibility of poly (DL-lactic acid/glycine) copolymers

    NARCIS (Netherlands)

    Schakenraad, J.M.; Dijkstra, P.J.

    1991-01-01

    In this review the authors discuss the polymer chemical, physical and cell biological aspects of poly (DL-lactic acid/glycine) copolymers, both in vitro and in vivo. The mechanism and rate of degradation and the degree of foreign body reaction were evaluated as a function of the molecular compositi

  6. Biodegradable Magnesium Alloys for Orthopaedic Applications: A Review on Corrosion, Biocompatibility and Surface Modifications.

    OpenAIRE

    Agarwal, Sankalp; Curtin, James; Duffy, Brendan; Jaiswal, Swarna

    2016-01-01

    Magnesium (Mg) and its alloys have been extensively explored as potential biodegradable implant materials for orthopaedic applications (e.g. Fracture fixation). However, the rapid corrosion of Mg based alloys in physiological conditions has delayed their introduction for therapeutic applications to date. The present review focuses on corrosion, biocompatibility and surface modifications of biodegradable Mg alloys for orthopaedic applications. Initially, the corrosion behaviour of Mg alloys an...

  7. Biodegradable and biocompatible polymers for tissue engineering application: a review.

    Science.gov (United States)

    Asghari, Fatemeh; Samiei, Mohammad; Adibkia, Khosro; Akbarzadeh, Abolfazl; Davaran, Soodabeh

    2017-03-01

    Since so many years ago, tissue damages that are caused owing to various reasons attract scientists' attention to find a practical way to treat. In this regard, many studies were conducted. Nano scientists also suggested some ways and the newest one is called tissue engineering. They use biodegradable polymers in order to replace damaged structures in tissues to make it practical. Biodegradable polymers are dominant scaffolding materials in tissue engineering field. In this review, we explained about biodegradable polymers and their application as scaffolds.

  8. Advanced drug and gene delivery systems based on functional biodegradable polycarbonates and copolymers

    NARCIS (Netherlands)

    Chen, Wei; Meng, F.; Cheng, R.; Deng, C.; Feijen, J.; Zhong, Z.

    2014-01-01

    Biodegradable polymeric nanocarriers are one of the most promising systems for targeted and controlled drug and gene delivery. They have shown several unique advantages such as excellent biocompatibility, prolonged circulation time, passive tumor targeting via the enhanced permeability and retention

  9. Preparation, Stability, and Bio-Compatability of Block Copolymer Vesicles

    Science.gov (United States)

    Discher, Dennis; Lee, James C.-M.; Bermudez, Harry; Bates, Frank; Discher, Bohdana

    2001-03-01

    Vesicles made completely from diblock copolymers polymersomes can be stably prepared by a wide range of techniques common to liposomes. Processes such as film rehydration, sonication, and extrusion can generate many micron giants as well as monodisperse, 100 nm vesicles of PEO-PEE (polyethyleneoxide polyethylethylene) or PEO PBD (polyethyleneoxide polybutadiene). These thick-walled vesicles of polymer can encapsulate macromolecules just as liposomes can, but, unlike many pure liposome systems, these polymersomes exhibit no in-surface thermal transitions and a sub-population even survive autoclaving. Suspension in blood plasma has no immediate ill-effect on vesicle stability, and neither adhesion nor stimulation of phagocytes are apparent when giant polymersomes are held in direct, protracted contact. Proliferating cells, in addition, are unaffected when cultured for an extended time with an excess of polymersomes, and several injections of 10 mg doses into rats show no ill-effect. The results are consistent with the steric stabilization that PEG-lipid can impart to liposomes, but the present single-component polymersomes are far more stable mechanically and are not limited by PEG driven micellization.

  10. Biodegradation of polystyrene-graft-starch copolymers in three different types of soil.

    Science.gov (United States)

    Nikolic, Vladimir; Velickovic, Sava; Popovic, Aleksandar

    2014-01-01

    Materials based on polystyrene and starch copolymers are used in food packaging, water pollution treatment, and textile industry, and their biodegradability is a desired characteristic. In order to examine the degradation patterns of modified, biodegradable derivates of polystyrene, which may keep its excellent technical features but be more environmentally friendly at the same time, polystyrene-graft-starch biomaterials obtained by emulsion polymerization in the presence of new type of initiator/activator pair (potassium persulfate/different amines) were subjected to 6-month biodegradation by burial method in three different types of commercially available soils: soil rich in humus and soil for cactus and orchid growing. Biodegradation was monitored by mass decrease, and the highest degradation rate was achieved in soil for cactus growing (81.30%). Statistical analysis proved that microorganisms in different soil samples have different ability of biodegradation, and there is a significant negative correlation between the share of polystyrene in copolymer and degree of biodegradation. Grafting of polystyrene on starch on one hand prevents complete degradation of starch that is present (with maximal percentage of degraded starch ranging from 55 to 93%), while on the other hand there is an upper limit of share of polystyrene in the copolymer (ranging from 37 to 77%) that is preventing biodegradation of degradable part of copolymers.

  11. A biodegradable and biocompatible gecko-inspired tissue adhesive

    OpenAIRE

    Mahdavi, Alborz; Ferreira, Lino; Sundback, Cathryn; Nichol, Jason W.; Chan, Edwin P.; Carter, David J. D.; Bettinger, Chris J.; Patanavanich, Siamrut; Chignozha, Loice; Ben-Joseph, Eli; Galakatos, Alex; Pryor, Howard; Pomerantseva, Irina; Masiakos, Peter T.; Faquin, William

    2008-01-01

    There is a significant medical need for tough biodegradable polymer adhesives that can adapt to or recover from various mechanical deformations while remaining strongly attached to the underlying tissue. We approached this problem by using a polymer poly(glycerol-co-sebacate acrylate) and modifying the surface to mimic the nanotopography of gecko feet, which allows attachment to vertical surfaces. Translation of existing gecko-inspired adhesives for medical applications is complex, as multipl...

  12. Tautomerizable β-ketonitrile copolymers for bone tissue engineering: Studies of biocompatibility and cytotoxicity

    Energy Technology Data Exchange (ETDEWEB)

    Lastra, M. Laura [Laboratorio de Investigaciones en Osteopatías y Metabolismo Mineral (LIOMM), Facultad de Ciencias Exactas, UNLP (1900), 47 y 115, 1900 La Plata (Argentina); Molinuevo, M. Silvina, E-mail: silvinamolinuevo@yahoo.com.ar [Laboratorio de Investigaciones en Osteopatías y Metabolismo Mineral (LIOMM), Facultad de Ciencias Exactas, UNLP (1900), 47 y 115, 1900 La Plata (Argentina); Giussi, Juan M. [Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), CCT-La Plata, CC16 suc. 4, 1900 La Plata (Argentina); Laboratorio de Estudio de Compuestos Orgánicos (LADECOR), Facultad de Ciencias Exactas, UNLP, 47 y 115, 1900 La Plata (Argentina); Allegretti, Patricia E. [Laboratorio de Estudio de Compuestos Orgánicos (LADECOR), Facultad de Ciencias Exactas, UNLP, 47 y 115, 1900 La Plata (Argentina); Blaszczyk-Lezak, Iwona; Mijangos, Carmen [Instituto de Ciencia y Tecnología de Polímeros, CSIC, Juan de la Cierva 3, 28006 Madrid (Spain); Cortizo, M. Susana, E-mail: gcortizo@infta.unlp.edu.ar [Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), CCT-La Plata, CC16 suc. 4, 1900 La Plata (Argentina)

    2015-06-01

    β-Ketonitrile tautomeric copolymers have demonstrated tunable hydrophilicity/hydrophobicity properties according to surrounding environment, and mechanical properties similar to those of human bone tissue. Both characteristic properties make them promising candidates as biomaterials for bone tissue engineering. Based on this knowledge we have designed two scaffolds based on β-ketonitrile tautomeric copolymers which differ in chemical composition and surface morphology. Two of them were nanostructured, using an anodized aluminum oxide (AAO) template, and the other two obtained by solvent casting methodology. They were used to evaluate the effect of the composition and their structural modifications on the biocompatibility, cytotoxicity and degradation properties. Our results showed that the nanostructured scaffolds exhibited higher degradation rate by macrophages than casted scaffolds (6 and 2.5% of degradation for nanostructured and casted scaffolds, respectively), a degradation rate compatible with bone regeneration times. We also demonstrated that the β-ketonitrile tautomeric based scaffolds supported osteoblastic cell proliferation and differentiation without cytotoxic effects, suggesting that these biomaterials could be useful in the bone tissue engineering field. - Graphical abstract: β-Ketonitrile tautomeric copolymers were nanostructured in nanorods using anodized aluminum oxide (AAO) template. These nanorods had good biocompatibility properties supporting osteoblastic growth and differentiation without cytotoxic effects, making them promising for bone tissue engineering. - Highlights: • Tautomeric β-ketonitrile copolymer based scaffold was obtained with different compositions. • Scaffolds exhibited tunable hydrophilicity/hydrophobicity properties and good mechanical properties. • Nanostructured scaffolds exhibited higher degradation rate than casted scaffolds by macrophages. • Scaffolds support osteoblastic cell proliferation and

  13. Biocompatible fluorinated polyglycerols for droplet microfluidics as an alternative to PEG-based copolymer surfactants.

    Science.gov (United States)

    Wagner, Olaf; Thiele, Julian; Weinhart, Marie; Mazutis, Linas; Weitz, David A; Huck, Wilhelm T S; Haag, Rainer

    2016-01-07

    In droplet-based microfluidics, non-ionic, high-molecular weight surfactants are required to stabilize droplet interfaces. One of the most common structures that imparts stability as well as biocompatibility to water-in-oil droplets is a triblock copolymer surfactant composed of perfluoropolyether (PFPE) and polyethylene glycol (PEG) blocks. However, the fast growing applications of microdroplets in biology would benefit from a larger choice of specialized surfactants. PEG as a hydrophilic moiety, however, is a very limited tool in surfactant modification as one can only vary the molecular weight and chain-end functionalization. In contrast, linear polyglycerol offers further side-chain functionalization to create custom-tailored, biocompatible droplet interfaces. Herein, we describe the synthesis and characterization of polyglycerol-based triblock surfactants with tailored side-chain composition, and exemplify their application in cell encapsulation and in vitro gene expression studies in droplet-based microfluidics.

  14. Synthesis and characterization of biodegradable materials: PDLLA-(MAh-Diol)n-PDLLA copolymer

    Institute of Scientific and Technical Information of China (English)

    Jia Chen; Yuan Liang Wang; Mei Na Huang

    2007-01-01

    The novel biodegradable copolymer PDLLA-(MAH-Diol)n-PDLLA with unsaturated bond was synthesized by copolymerizing lactide and prepolymer, which was prepared by the polycondensation of maleic anhydride and poly(ethylene glycol), using ptoluene sulphonic acid as catalyst. The new copolymer has improved hydrophilicity and flexibility. The structure and properties of the novel polymers were studied by FTIR, NMR, GPC-MALLS and DSC.

  15. Block copolymer micelles as nanocontainers for controlled release of proteins from biocompatible oil phases.

    Science.gov (United States)

    Miller, Andrew C; Bershteyn, Anna; Tan, Wuisiew; Hammond, Paula T; Cohen, Robert E; Irvine, Darrell J

    2009-04-13

    Biocompatible oils are used in a variety of medical applications ranging from vaccine adjuvants to vehicles for oral drug delivery. To enable such nonpolar organic phases to serve as reservoirs for delivery of hydrophilic compounds, we explored the ability of block copolymer micelles in organic solvents to sequester proteins for sustained release across an oil-water interface. Self-assembly of the block copolymer, poly(-caprolactone)-block-poly(2-vinyl pyridine) (PCL-b-P2VP), was investigated in toluene and oleic acid, a biocompatible naturally occurring fatty acid. Micelle formation in toluene was characterized by dynamic light scattering (DLS) and atomic force microscopy (AFM) imaging of micelles cast onto silicon substrates. Cryogenic transmission electron microscopy confirmed a spherical morphology in oleic acid. Studies of homopolymer solubility implied that micelles in oleic acid consist of a P2VP corona and a PCL core, while P2VP formed the core of micelles assembled in toluene. The loading of two model proteins (ovalbumin (ova) and bovine serum albumin (BSA)) into micelles was demonstrated with loadings as high as 7.8% wt of protein per wt of P2VP in oleic acid. Characterization of block copolymer morphology in the two solvents after protein loading revealed spherical particles with similar size distributions to the as-assembled micelles. Release of ova from micelles in oleic acid was sustained for 12-30 h upon placing the oil phase in contact with an aqueous bath. Unique to the situation of micelle assembly in an oily phase, the data suggest protein is sequestered in the P2VP corona block of PCL-b-P2VP micelles in oleic acid. More conventionally, protein loading occurs in the P2VP core of micelles assembled in toluene.

  16. Biodegradation of starch–graft–polystyrene and starch–graft–poly(methacrylic acid copolymers in model river water

    Directory of Open Access Journals (Sweden)

    Nikolić Vladimir

    2013-01-01

    Full Text Available In this paper the biodegradation study of grafted copolymers of polystyrene (PS and corn starch and poly(methacrylic acid and corn starch in model river water is described. These copolymers were obtained in the presence of different amine activators. The synthesized copolymers and products of degradation were characterized by Fourier Transform Infrared Spectroscopy (FTIR and Scanning Electron Microscopy (SEM. Biodegradation was monitored by mass decrease and number of microorganisms by Koch’s method. Biodegradation of both copolymers advanced with time, poly(methacrylic acid-graft-starch copolymers completely degraded after 21 day, and polystyrene-graft-starch partially degraded (45.78-93.09 % of total mass after 27 days. Differences in the degree of biodegradation are consequences of different structure of the samples, and there is a significant negative correlation between the share of polystyrene in copolymer and degree of biodegradation. The grafting degree of PS necessary to prevent biodegradation was 54 %. Based on experimental evidence, mechanisms of both biodegradation processes are proposed, and influence of degree of starch and synthetic component of copolymers on degradation were established. [Projekat Ministarstva nauke Republike Srbije, br. 172001 i br. 172062

  17. Biodegradation and in vivo biocompatibility of rosin: a natural film-forming polymer.

    Science.gov (United States)

    Satturwar, Prashant M; Fulzele, Suniket V; Dorle, Avinash K

    2003-10-22

    The specific aim of the present study was to investigate the biodegradation and biocompatibility characteristics of rosin, a natural film-forming polymer. Both in vitro as well as in vivo methods were used for assessment of the same. The in vitro degradation of rosin films was followed in pH 7.4 phosphate buffered saline at 37 degrees C and in vivo by subdermal implantation in rats for up to 90 days. Initial biocompatibility was followed on postoperative days 7, 14, 21, and 28 by histological observations of the surrounding tissues around the implanted films. Poly (DL-lactic-co-glycolic acid) (PLGA) (50:50) was used as reference material for biocompatibility. Rate and extent of degradation were followed in terms of dry film weight loss, molecular weight (MW) decline, and surface morphological changes. Although the rate of in vitro degradation was slow, rosin-free films showed complete degradation between 60 and 90 days following subdermal implantation in rats. The films degraded following different rates, in vitro and in vivo, but the mechanism followed was primarily bulk degradation. Rosin films demonstrated inflammatory reactions similar to PLGA, indicative of good biocompatibility. Good biocompatibility comparable to PLGA is demonstrated by the absence of necrosis or abscess formation in the surrounding tissues. The study provides valuable insight, which may lead to new applications of rosin in the field of drug delivery.

  18. Biodegradable shape-memory block co-polymers for fast self-expandable stents.

    Science.gov (United States)

    Xue, Liang; Dai, Shiyao; Li, Zhi

    2010-11-01

    Block co-polymers PCTBVs (M(n) of 36,300-65,300 g/mol, T(m) of 39-40 and 142 degrees C) containing hyperbranched three-arm poly(epsilon-caprolactone) (PCL) as switching segment and microbial polyester PHBV as crystallizable hard segment were designed as biodegradable shape-memory polymer (SMP) for fast self-expandable stent and synthesized in 96% yield by the reaction of three-arm PCL-triol (M(n) of 4200 g/mol, T(m) of 47 degrees C) with methylene diphenyl 4,4'-diisocyanate isocynate (MDI) to form the hyperbrached MDI-linked PCL (PTCM; M(n) of 25,400 g/mol and a T(m) of 38 degrees C), followed by further polymerization with PHBV-diol (M(n) of 2200 g/mol, T(m) of 137 and 148 degrees C). The polymers were characterized by (1)H NMR, GPC, DSC, tensile test, and cyclic thermomechanical tensile test. PCTBVs showed desired thermal properties, mechanical properties, and ductile nature. PCTBV containing 25 wt% PHBV (PCTBV-25) demonstrated excellent shape-memory property at 40 degrees C, with R(f) of 94%, R(r) of 98%, and shape recovery within 25s. PCTBV-25 was also shown as a safe material with good biocompatibility by cytotoxicity tests and cell growth experiments. The stent made from PCTBV-25 film showed nearly complete self-expansion at 37 degrees C within only 25 s, which is much better and faster than the best known self-expandable stents.

  19. In vivo biocompatibility and biodegradation of a novel thin and mechanically stable collagen scaffold.

    Science.gov (United States)

    Rahmanian-Schwarz, Afshin; Held, Manuel; Knoeller, Tabea; Stachon, Susanne; Schmidt, Timo; Schaller, Hans-Eberhard; Just, Lothar

    2014-04-01

    The demand for scaffolds comprised of natural materials such as collagen has increased in recent years. However, many scaffolds rely on chemical or physical modifications in order to comply with the necessary requirements for biomedical engineering. We evaluated the in vivo biocompatibility and biodegradation of a novel, thin, mechanically stable, and chemically non-crosslinked collagen cell carrier (CCC). CCC was implanted subcutaneously into 25 adult Lewis rats and biopsies were taken on days 7, 14, 21, 42, and 84 after surgery. For histological analysis, paraffin sections of implanted skin were immunolabeled for CD68 and stained by hematoxylin-eosin and Masson-Goldner's trichrome method. Macroscopic analysis of skin surface during wound healing process showed a normal physiological reaction. Biodegradation of CCC was completed 42 days after subcutaneous implantation. Histological evaluation revealed no evidence of encapsulation, scar formation, or long-term vascularization and inflammation. The collagen type I based biomaterial demonstrated a high in vivo biocompatibility, low irritability, complete resorption, and replacement by autologous tissue. The in vivo biocompatibility and degradation behavior encourage for further evaluation of CCC in surgical applications and regenerative medicine.

  20. Biocompatible medical implant materials with binding sites for a biodegradable drug-delivery system

    Directory of Open Access Journals (Sweden)

    Al-Dubai H

    2011-10-01

    Full Text Available Haifa Al-Dubai1, Gisela Pittner1, Fritz Pittner1, Franz Gabor21Max F Perutz Laboratories, Department of Biochemistry, University of Vienna, Vienna, Austria; 2Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Life Sciences, University of Vienna, Vienna, AustriaAbstract: Feasibility studies have been carried out for development of a biocompatible coating of medical implant materials allowing the binding of biodegradable drug-delivery systems in a way that their reloading might be possible. These novel coatings, able to bind biodegradable nanoparticles, may serve in the long run as drug carriers to mediate local pharmacological activity. After biodegradation of the nanoparticles, the binding sites could be reloaded with fresh drug-delivering particles. As a suitable receptor system for the nanoparticles, antibodies are anchored. The design of the receptor is of great importance as any bio- or chemorecognitive interaction with other components circulating in the blood has to be avoided. Furthermore, the binding between receptor and the particles has to be strong enough to keep them tightly bound during their lifetime, but on the other hand allow reloading after final degradation of the particles. The nanoparticles suggested as a drug-delivery system for medical implants can be loaded with different pharmaceuticals such as antibiotics, growth factors, or immunosuppressives. This concept may enable the changing of medication, even after implantation of the medical device, if afforded by patients’ needs.Keywords: antibody immobilization, biocompatible coating, chitosan nanoparticles, drug targeting, medical device

  1. Surfactant-free synthesis of biodegradable, biocompatible, and stimuli-responsive cationic nanogel particles.

    Science.gov (United States)

    Urakami, Hiromitsu; Hentschel, Jens; Seetho, Kellie; Zeng, Hanxiang; Chawla, Kanika; Guan, Zhibin

    2013-10-14

    Nanogels have attracted much attention lately because of their many potential applications, including as nanocarriers for drug and gene delivery. Most nanogels reported previously, however, are not biodegradable, and their synthesis often requires the use of surfactants. Herein we report a surfactant-free method for the preparation of biodegradable, biocompatible, and stimuli-responsive cationic nanogels. The nanogels were synthesized by simply coaservating linear polymer precursors in mixed solvents followed by in situ cross-linking with homobifunctional cross-linkers. The versatility of this approach has been demonstrated by employing two different polymers and various cross-linkers to prepare nanogel particles with diameters ranging from 170 to 220 nm. Specifically, disulfide-containing tetralysine (TetK)- and oligoethylenimine (OEI)-based prepolymers were prepared and the subsequent nanogels were formed by covalently cross-linking the polymer coacervate phase. Nanogel particles are responsive to pH changes, increasing in size and zeta-potential with concomitant lowering of solution pH. Furthermore, as revealed by AFM imaging, nanogel particles were degradable in the presence of glutathione at concentrations similar to those in intracellular environment (10 mM). Both the nanogel and the polymer precursors were determined to exhibit minimal cytotoxicity against fibroblast 3T3 cells by flow cytometric analyses and fluorescent imaging. This study demonstrates a new surfactant-free method for preparing biodegradable, biocompatible, and stimuli-responsive nanogels as potential nanocarriers for the delivery of drugs and genes.

  2. Biodegradability and Biocompatibility Study of Poly(Chitosan-g-lactic Acid Scaffolds

    Directory of Open Access Journals (Sweden)

    Zhe Zhang

    2012-03-01

    Full Text Available A biodegradable, biocompatible poly(chitosan-g-lactic acid (PCLA scaffold was prepared and evaluated in vitro and in vivo. The PCLA scaffold was obtained by grafting lactic acid (LA onto the amino groups on chitosan (CS without a catalyst. The PCLA scaffolds were characterized by Fourier Transform infrared spectroscopy (FT-IR and scanning electron microscopy (SEM. The biodegradabilty was determined by mass loss in vitro, and degradation in vivo as a function of feed ratio of LA/CS. Bone marrow mesenchymal stem cell (BMSC culture experiments and histological examination were performed to evaluate the PCLA scaffolds’ biocompatibility. The results indicated that PCLA was promising for tissue engineering application.

  3. Factors influencing the biodegradability of biocomposites based on ethylene-octene copolymer (EOC) and vegetable fillers

    Science.gov (United States)

    Zykova, A. K.; Pantyukhov, P. V.; Monakhova, T. V.; Kolesnikova, N. N.; Popov, A. A.; Ramos, C. C.

    2016-11-01

    In this study the role of the content of filler, its nature (particle geometry in particular) and the type of the copolymer matrix were examined. For the study three grades of ethylene-octene copolymer were chosen. Composites were mixed in proportion from 70 to 30 wt % of the polymer matrix content. Water absorption was determined; thermal oxidative degradation was studied; and a biodegradation test on recovered soil was carried out. It was concluded that water absorption and weight loss correlate with the filler content. It was found that biocomposites with oil flax straw are more prone to water absorption and weight loss than the same ones with wood flour. The most stable matrix to oxidation was Lucene 370, then Lucene 670 and Lucene 760. Therefore, biocomposites based on Lucene 760 should be more biodegradable than others.

  4. Biodegradable and biocompatible high elastic chitosan scaffold is cell-friendly both in vitro and in vivo.

    Science.gov (United States)

    Pang, Yichuan; Qin, An; Lin, Xianfeng; Yang, Lin; Wang, Qiang; Wang, Zhengke; Shan, Zhi; Li, Shengyun; Wang, Jiying; Fan, Shunwu; Hu, Qiaoling

    2017-01-17

    Biodegradable and biocompatible macromolecule chitosan has been favored for a variety of clinical applications. We reported herein the fabrication of a novel chitosan scaffold with high elasticity. This scaffold can be easily compressed and thus enable the insertion of such scaffold into surgical lesions during minimal invasive surgeries. In addition, this novel scaffold can restore its shape when released. We evidenced that this high elastic scaffold has better biocompatibility than traditional chitosan scaffold. Therefore, this new chitosan material might lead to the manufacture of a variety of novel biodegradable biomedical materials and devices.

  5. Evaluation of biodegradation and biocompatibility of collagen/chitosan/alkaline phosphatase biopolymeric membranes

    Indian Academy of Sciences (India)

    E BERTEANU; D IONITA; M SIMOIU; M PARASCHIV; R TATIA; A APATEAN; M SIDOROFF; L TCACENCO

    2016-04-01

    The aim of this study was to develop a new variant of membranes based on collagen (COL), chitosan (CHI) and alkaline phosphatase (ALP) immobilized and cross-linking with glutaraldehyde (GA) at different concentrations. The biodegradation in the presence of collagenase was investigated. Biocompatibility was evaluated by MTT assay using a mouse fibroblast cell culture type NCTC (clone 929). Non-cross-linked samples were biocompatible and membranes cross-linked with low concentrations of GA (0.04, 0.08%) were also iocompatible. However, high concentrations of GA lead to a decreased biocompatibility. The adsorption behaviour of Ca$^{2+}$ ions to all membraneswere evaluated using the Freundlich isotherms. Haemolytic studies were performed in order to consider their applications in biomineralization process. By the addition of collagen and ALP to chitosan, the haemolytic indexdecreases, the COL–CHI–ALP membrane being in the non-haemolytic domain, while the COL–CHI–ALP–GA membrane has a haemolytic index greater than 2, and is slightly haemolytic.

  6. Fungal biodegradation of lignopolystyrene graft copolymers. [Pleurotus ostreatus; Phanerochaete chrysosporium; Trametes versicolor; Gloeophyllum trabeum

    Energy Technology Data Exchange (ETDEWEB)

    Milstein, O.; Gersonde, R.; Huttermann, A. (Forstbotanisches Inst. der Univ. Gottingen (Germany)); MengJiu Chen; Meister, J.J (Univ. of Detroit Mercy, MI (United States))

    1992-10-01

    White rot basidiomycetes were able to biodegrade styrene (1-phenylethene) graft copolymers of lignin containing different proportions of lignin and polystyrene (poly(1-phenylethylene)). The biodegradation tests were run on lignin-styrene copolymerization products which contained 10.3, 32.2, and 50.4{percent} (wt/wt) lignin. The polymer samples were incubated with the white rot fungi Pleurotus ostreatus, Phanerochaete chrysosporium, and Trametes versicolor and the brown rot fungus Gloeophyllum trabeum. White rot fungi degraded the plastic samples at a rate which increased with increasing lignin content in the copolymer sample. Both polystyrene and lignin components of the copolymer were readily degraded. Polystyrene pellets were not degradable in these tests. Degradation was verified for both incubated and control samples by weight loss, quantitative UV spectrophotometric analysis of both lignin and styrene residues, scanning electron microscopy of the plastic surface, and the presence of enzymes active in degradation during incubation. Brown rot fungus did not affect any of the plastics. White rot fungi produced and secreted oxidative enzymes associated with lignin degradation in liquid media during incubation with lignin-polystyrene copolymer.

  7. Mechanical properties, biocompatibility, and biodegradation of cross-linked cellulose acetate-reinforced polyester composites.

    Science.gov (United States)

    Wu, Chin-San

    2014-05-25

    Composites of treated (cross-linked) cellulose acetate (t-CA) and acrylic acid-grafted poly(hydroxyalkanoate) (PHA-g-AA/t-CA) exhibited noticeably superior mechanical properties compared with PHA/CA composites due to greater compatibility between the two components. The dispersion covering of t-CA in the PHA-g-AA matrix was highly homogeneous as a result of condensation reactions. Human lung fibroblasts (FBs) were seeded on these two series of composites to characterize the biocompatibility properties. In a time-dependent course, the FB proliferation results demonstrated higher performance from the PHA/CA series of composites than from the PHA-g-AA/t-CA composites. The water resistance of PHA-g-AA/t-CA was higher than that of PHA/CA, although the weight loss of both composites buried in Acetobacter pasteurianus (A. pasteurianus) indicated that they were both biodegradable, especially at higher levels of cellulose acetate substitution. The PHA/CA and PHA-g-AA/t-CA composites were more biodegradable than pure PHA, implying a strong connection between cellulose acetate content and biodegradability.

  8. Development and Characterization of Biocompatible Fullerene [C60]/Amphiphilic Block Copolymer Nanocomposite

    Directory of Open Access Journals (Sweden)

    Alok Chaurasia

    2015-01-01

    Full Text Available We report a supramolecular process for the synthesis of well-defined fullerene (C60/polymer colloid nanocomposites in an aqueous solution via complex formation. A biocompatible triblock poly(4-vinylpyridine-b-polyethylene-b-poly(4-vinylpyridine, P4VP8-b-PEO105-b-P4VP8, was synthesized by atom transfer radical polymerization. The block copolymer formed complexes with C60 in toluene and resulted in fullerene assembly in cluster form. Nanocomposite dispersion in an aqueous solution could be obtained using an aged solution of the polymer/C60/toluene solution by a solvent evaporation technique. The UV-Vis and FTIR spectroscopy confirmed the complex formation of fullerene with the polymer which plays a significant role in controlling the PDI and size of polymer/C60 micelles in the toluene solution. The particle size and morphology of P4VP8-b-PEO105-b-P4VP8 and P4VP8-b-PEO105-b-P4VP8/C60 mixture were studied by dynamic light scattering (DLS and transmission electron microscopy (TEM. In a cytotoxicity test, both pure polymer and the resulting polymer/C60 composite in water showed more than 90% cell viability at 1 mg/mL concentration.

  9. New Biodegradable Thermoplastic Multiblock Copolymers from Lactic Acid, ε-Caprolactone, Poly(Ethylene Oxide) and Toluene Diisocyanate

    Institute of Scientific and Technical Information of China (English)

    Jen(o) Borda; Sándor Kéki; Ildikó Bodnár; Nóra Németh; Miklós Zsuga

    2005-01-01

    @@ 1Introduction The interest in finding new biodegradable materials for applications in important areas has been motivated by environmental protection aspects. Foremost among the potentially biodegradable and biocompatible polymers, poly(lactic acid) and poly(ε-caprolactone) received considerable attention as their potential application in a wide range of biomedical and pharmaceutical areas was recognized.

  10. Short-term in vitro and in vivo biocompatibility of a biodegradable polyurethane foam based on 1,4-butanediisocyanate

    NARCIS (Netherlands)

    Van Minnen, B; Van Leeuwen, MBM; Stegenga, B; Zuidema, J; Hissink, CE; Van Kooten, TG; Bos, RRM

    2005-01-01

    In this study short-term in vitro and in vivo biocompatibility apects of a biodegradable polyurethane (PU) foam were evaluated. The PU consists of hard urethane segments and amorphous soft segments based on a copolyester of dl-lactide and epsilon-caprolactone. The urethane segments are of uniform le

  11. "Green" electronics: biodegradable and biocompatible materials and devices for sustainable future.

    Science.gov (United States)

    Irimia-Vladu, Mihai

    2014-01-21

    "Green" electronics represents not only a novel scientific term but also an emerging area of research aimed at identifying compounds of natural origin and establishing economically efficient routes for the production of synthetic materials that have applicability in environmentally safe (biodegradable) and/or biocompatible devices. The ultimate goal of this research is to create paths for the production of human- and environmentally friendly electronics in general and the integration of such electronic circuits with living tissue in particular. Researching into the emerging class of "green" electronics may help fulfill not only the original promise of organic electronics that is to deliver low-cost and energy efficient materials and devices but also achieve unimaginable functionalities for electronics, for example benign integration into life and environment. This Review will highlight recent research advancements in this emerging group of materials and their integration in unconventional organic electronic devices.

  12. Rapid synthesis of biodegradable poly(epsilon-caprolactone-co-p-dioxanone) random copolymers under microwave irradiation

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Biodegradable poly(epsilon-caprolactone-co-p-dioxanone)(PCDO) random copolymers have been synthesized by ring-opening polymerization of epsilon-caprolactone(CL) and p-dioxanone(PDO) under microwave irradiation.The effects of irradiation time and different CL/PDO molar feed ratios on the microwave-assisted ring-opening polymerization(MROP) of PCDO have been discussed.The resultant products were characterized by ~1H NMR,GPC and DSC.It was found that the polymerization was completed within 20 min at 140℃.In...

  13. Preparation and in vitro evaluation of doxorubicin-loaded Fe3O4 magnetic nanoparticles modified with biocompatible copolymers

    Directory of Open Access Journals (Sweden)

    Akbarzadeh A

    2012-02-01

    modified with PLGA:PEG2000, PLGA:PEG3000, and PLGA:PEG4000 copolymers was 69.5%, 73%, and 78%, respectively, and the release kinetics were controlled. The in vitro cytotoxicity test showed that the Fe3O4-PLGA:PEG4000 magnetic nanoparticles had no cytotoxicity and were biocompatible.Conclusion: There is potential for use of these nanoparticles for biomedical application. Future work includes in vivo investigation of the targeting capability and effectiveness of these nanoparticles in the treatment of lung cancer.Keywords: superparamagnetic iron oxide nanoparticles, triblock copolymer, doxorubicin encapsulation, water uptake, drug encapsulation efficiency

  14. Electrospinning of Biodegradable and Biocompatible Nanofiber Patches from Solutions of ``Green'' Materials for Plant Protection against Fungi Attack

    Science.gov (United States)

    Sett, Soumyadip; Lee, Minwook; Yarin, Alexander; Moghadam, S. M. Alavi; Meinke, Matthias; Schroeder, Wolfgang

    2015-11-01

    Biodegradable and biocompatible soy protein/petroleum-derived polymer monolithic fibers containing adhesives were electrospun on commercial rayon pads. The polymers used, PVA and PCL, are widely used in the biomedical industry, including such applications as drug delivery and scaffold manufacturing. Soy protein is an abundant waste of SoyDiesel production, and is widely used as a nutrient. The soy content in our fibers was as high as 40% w/w. Four different adhesives, including ordinary wood glue, repositionable glue and FDA-approved pressure-sensitive glue were used for electrospinning and electrospraying. The normal and shear adhesive strengths of the patches developed in this work were measured and compared. The adhesive strength was sufficient enough to withstand normal atmospheric conditions. These biodegradable and biocompatible nano-textured patches are ready to be used on prune locations without being carried away by wind and will protect plants against fungi attack at these locations, preventing diseases like Vine Decline.

  15. Silk-pectin hydrogel with superior mechanical properties, biodegradability, and biocompatibility.

    Science.gov (United States)

    Numata, Keiji; Yamazaki, Shoya; Katashima, Takuya; Chuah, Jo-Ann; Naga, Naofumi; Sakai, Takamasa

    2014-06-01

    A new method is developed to prepare silk hydrogels and silk-pectin hydrogels via dialysis against methanol to obtain hydrogels with high concentrations of silk fibroin. The relationship between the mechanical and biological properties and the structure of the silk-pectin hydrogels is subsequently evaluated. The present results suggest that pectin associates with silk molecules when the silk concentration exceeds 15 wt%, suggesting that a silk concentration of over 15 wt% is critical to construct interacting silk-pectin networks. The silk-pectin hydrogel reported here is composed of a heterogeneous network, which is different from fiber-reinforced, interpenetrated networks and double-network hydrogels, as well as high-stiffness hydrogels (elastic modulus of 4.7 ± 0.9 MPa, elastic stress limit of 3.9 ± 0.1 MPa, and elastic strain limit of 48.4 ± 0.5%) with regard to biocompatibility and biodegradability.

  16. Plasma treatment for improving cell biocompatibility of a biodegradable polymer scaffold for vascular graft applications.

    Science.gov (United States)

    Valence, Sarra de; Tille, Jean-Christophe; Chaabane, Chiraz; Gurny, Robert; Bochaton-Piallat, Marie-Luce; Walpoth, Beat H; Möller, Michael

    2013-09-01

    Biodegradable synthetic scaffolds are being evaluated by many groups for the application of vascular tissue engineering. In addition to the choice of the material and the structure of the scaffold, tailoring the surface properties can have an important effect on promoting adequate tissue regeneration. The objective of this study was to evaluate the effect of an increased hydrophilicity of a polycaprolactone vascular graft by treatment with a cold air plasma. To this end, treated and untreated scaffolds were characterized, evaluated in vitro with smooth muscle cells, and implanted in vivo in the rat model for 3 weeks, both in the subcutaneous location and as an aortic replacement. The plasma treatment significantly increased the hydrophilicity of the scaffold, with complete wetting after a treatment of 60 sec, but did not change fiber morphology or mechanical properties. Smooth muscle cells cultured on plasma treated patches adopt a spread out morphology compared to a small, rounded morphology on untreated patches. Subcutaneous implantation revealed a low foreign body reaction for both types of scaffolds and a more extended and dense cellular infiltrate in the plasma treated scaffolds. In the vascular position, the plasma treatment induced a better cellularization of the graft wall, while it did not affect endothelialization rate or intimal hyperplasia. Plasma treatment is therefore an accessible tool to easily increase the biocompatibility of a scaffold and accelerate tissue regeneration without compromising mechanical strength, which are valuable advantages for vascular tissue engineering.

  17. Tailored protein release from biodegradable poly(ε-caprolactone-PEG)- b-poly(ε-caprolactone) multiblock-copolymer implants

    NARCIS (Netherlands)

    Stankovic, Milica; Tomar, Jasmine; Hiemstra, Christine; Steendam, Rob; Frijlink, Henderik W.; Hinrichs, Wouter L. J.

    2014-01-01

    In this study, the in vitro release of proteins from novel, biodegradable phase-separated poly(ε-caprolactone-PEG)-block-poly(ε-caprolactone), [PCL-PEG]-b-[PCL]) multiblock copolymers with different block ratios and with a low melting temperature (49-55 °C) was studied. The effect of block ratio and

  18. Controlled synthesis of biodegradable lactide polymers and copolymers using novel in situ generated or single-site stereoselective polymerization initiators

    NARCIS (Netherlands)

    Zhong, Zhiyuan; Dijkstra, Pieter J.; Feijen, Jan

    2004-01-01

    Polylactides and their copolymers are key biodegradable polymers used widely in biomedical, pharmaceutical and ecological applications. The development of synthetic pathways and catalyst/initiator systems to produce pre-designed polylactides, as well as the fundamental understanding of the polymeriz

  19. Reengineered graft copolymers as a potential alternative for the bone tissue engineering application by inducing osteogenic markers expression and biocompatibility.

    Science.gov (United States)

    Thangavelu, Muthukumar; R Narasimha, Raghavan; Adithan, Aravinthan; A, Chandrasekaran; Jong-Hoon, Kim; Thotapalli Parvathaleswara, Sastry

    2016-07-01

    Composite scaffolds of nano-hydroxyapatite with demineralized bone matrix were prepared and they were graft copolymerized for better bone regeneration and drug delivery applications. The graft copolymers were characterized for their physiochemical properties using conventional methods like FTIR, TGA, XRD and SEM. The scaffolds were seeded with 3T3 and MG63 cells for studying their biocompatibility and their temporal expression of ALP activity, the rate of calcium deposition and their gene expression of collagen type I (Coll-1), osteopontin (OP), osteonectin (ON), and osteocalcin (OC) were studied. In vivo studies were conducted using sub-cutaneous implantation models in male Wister rats for 6 months. Periodic radiography and post-autopsy histopathology was analysed at 15days, 1, 2, 3, 4, 5, and 6 months. The obtained in vitro results clearly confirm that the bone scaffolds prepared in this study are biocompatible, superior osteoinductivity, capable of supporting growth, maturation of MG 63 osteoblast like cells; the gene expression profile revealed that the material is capable of supporting the in vitro growth and maturation of osteoblast-like cells and maturation. The in vivo results stand a testimony to the in vitro results in proving the biocompatibility and osteoinductivity of the materials.

  20. Poly(trimethylene carbonate)/Poly(malic acid) Amphiphilic Diblock Copolymers as Biocompatible Nanoparticles.

    Science.gov (United States)

    Barouti, Ghislaine; Khalil, Ali; Orione, Clement; Jarnouen, Kathleen; Cammas-Marion, Sandrine; Loyer, Pascal; Guillaume, Sophie M

    2016-02-18

    Amphiphilic polycarbonate-poly(hydroxyalkanoate) diblock copolymers, namely, poly(trimethylene carbonate) (PTMC)-b-poly(β-malic acid) (PMLA), are reported for the first time. The synthetic strategy relies on commercially available catalysts and initiator. The controlled ring-opening polymerization (ROP) of trimethylene carbonate (TMC) catalyzed by the organic guanidine base 1,5,7-triazabicyclo[4.4.0]dec-5-ene (TBD), associated with iPrOH as an initiator, provided iPrO-PTMC-OH, which served as a macroinitiator in the controlled ROP of benzyl β-malolactonate (MLABe) catalyzed by the neodymium triflate salt (Nd(OTf)3). The resulting hydrophobic iPrO-PTMC-b-PMLABe-OH copolymers were then hydrogenolyzed into the parent iPrO-PTMC-b-PMLA-OH copolymers. A range of well-defined copolymers, featuring different sizes of segments (Mn,NMR up to 9300 g mol(-1) ; ÐM =1.28-1.40), were thus isolated in gram quantities, as evidenced by NMR spectroscopy, size exclusion chromatography, thermogravimetric analysis, differential scanning calorimetry, and contact angle analyses. Subsequently, PTMC-b-PMLA copolymers with different hydrophilic weight fractions (11-75 %) self-assembled in phosphate-buffered saline upon nanoprecipitation into well-defined nano-objects with Dh =61-176 nm, a polydispersity index nanoparticles demonstrated no significant effect on cell viability at low concentrations, and a very low cytotoxicity at high concentrations only for PTMC-b-PMLA copolymers exhibiting hydrophilic fractions over 47 %, thus illustrating the potential of these copolymers as promising nanoparticles.

  1. Temperature-sensitivity and cell biocompatibility of freeze-dried nanocomposite hydrogels incorporated with biodegradable PHBV

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Qingsong, E-mail: zqs8011@163.com; Chen, Li, E-mail: chenlis@tjpu.edu.cn; Dong, Youyu; Lu, Si

    2013-04-01

    The structure, morphology, thermal behaviors and cytotoxicity of novel hydrogels, composed of poly(N-isopropylacrylamide)(PNIPAM) and biodegradable polyester poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) under nanoclay hectorite “Laponite XLG” severed as physical cross-linker, were characterized by X-ray diffraction, scanning electron microscopy, gravimetric method, differential scanning calorimetry, and cell culture experiments. It was found that, due to the introduction of hydrophobic PHBV, the homogeneity of interior pore in the pure PNIPAM nanocomposite hydrogel was disrupted, the transparency and swelling degree gradually decreased. Although the weight ratio between PHBV and NIPAM increased from 5 to 40 wt.%, the volume phase transition temperature (VPTTs) of hydrogel were not altered compared with the pure PNIPAM nanocomposite hydrogel. No matter what PHBV content, the PHBV/PNIPAM/Hectorite hydrogels always exhibit good stimuli-responsibility. In addition, human hepatoma cells(HepG2) adhesion and spreading on the surface of PHBV-based hydrogels was greatly improved than that of pure PNIPAM nanocomposite hydrogel at 37 °C due to the introduction of PHBV. Highlights: ► Thermo-responsive and cell biocompatible hydrogels incorporated PHBV was synthesized. ► The introduction of PHBV decreases the transparency of nanocomposite hydrogel. ► The introduction of PHBV has a little shift on VPTTs of nanocomposite hydrogel. ► The HepG2 cells could adhere and spread on the surface of PHBV-based hydrogels. ► Cell sheet could be detached simultaneously from the surface of hydrogels.

  2. Mechanical properties, in vitro corrosion and biocompatibility of newly developed biodegradable Mg-Zr-Sr-Ho alloys for biomedical applications

    Science.gov (United States)

    Ding, Yunfei; Lin, Jixing; Wen, Cuie; Zhang, Dongmei; Li, Yuncang

    2016-08-01

    Our previous studies have demonstrated that Mg-Zr-Sr alloys can be anticipated as excellent biodegradable implant materials for load-bearing applications. In general, rare earth elements (REEs) are widely used in magnesium (Mg) alloys with the aim of enhancing the mechanical properties of Mg-based alloys. In this study, the REE holmium (Ho) was added to an Mg-1Zr-2Sr alloy at different concentrations of Mg1Zr2SrxHo alloys (x = 0, 1, 3, 5 wt. %) and the microstructure, mechanical properties, degradation behaviour and biocompatibility of the alloys were systematically investigated. The results indicate that the addition of Ho to Mg1Zr2Sr led to the formation of the intermetallic phases MgHo3, Mg2Ho and Mg17Sr2 which resulted in enhanced mechanical strength and decreased degradation rates of the Mg-Zr-Sr-Ho alloys. Furthermore, Ho addition (≤5 wt. %) to Mg-Zr-Sr alloys led to enhancement of cell adhesion and proliferation of osteoblast cells on the Mg-Zr-Sr-Ho alloys. The in vitro biodegradation and the biocompatibility of the Mg-Zr-Sr-Ho alloys were both influenced by the Ho concentration in the Mg alloys; Mg1Zr2Sr3Ho exhibited lower degradation rates than Mg1Zr2Sr and displayed the best biocompatibility compared with the other alloys.

  3. Weathering and Biodegradation Study on Graft Copolymer Compatibilized Hybrid Bionanocomposites of Poly(Lactic Acid)

    Science.gov (United States)

    Sajna, VP; Nayak, Sanjay K.; Mohanty, Smita

    2016-07-01

    This work reports on the influence of moisture absorption and accelerated weathering on the properties of graft copolymer compatibilized bionanocomposites of poly(lactic acid) (PLA). Moisture absorption tests were conducted for 30 days by immersing the samples in a distilled water bath at room temperature, and the amount of moisture absorbed in each time interval was measured. The rate of moisture uptake decreased by incorporation of C30B nanoclay and graft copolymer into fiber-reinforced PLA composites. Changes in the mechanical properties of composites in each time interval of moisture absorption were investigated using tensile and impact tests. Exposure to moisture caused significant drops in the mechanical properties. The morphological characterization of biocomposites during the aforementioned tests has been made using SEM, while bionanocomposites were analyzed by TEM. Further, this paper also reported the effect of accelerated weathering on the mechanical properties and the results are confirmed through SEM analysis. Biodegradation behaviors of PLA biocomposites and bionanocomposites have also been studied.

  4. Tunable Nanocarrier Morphologies from Glycopolypeptide-based Amphiphilic Biocompatible Star Copolymers and Their Carbohydrate Specific Intracellular Delivery

    KAUST Repository

    Pati, Debasis

    2015-12-21

    Nano-carriers with carbohydrates on the surface represent a very interesting class of drug delivery vehicles since carbohydrates are involved in bio-molecular recognition events in vivo. We have synthesized biocompatible miktoarm star copolymers comprising glycopolypeptide and poly(ε-caprolactone) chains, using ring opening polymerization and ‘click chemistry’. The amphiphilic copolymers were self-assembled in water into morphologies such as nanorods, polymersomes and micelles with carbohydrates displayed on the surface. We demonstrate that, the formation of nanostructure could be tuned by chain length of the blocks and was not affected by the type of sugar residue. These nanostructures were characterized in detail using a variety of techniques such as TEM, AFM, cryogenic electron microscopy, spectrally resolved fluorescence imaging and dye encapsulation techniques. We show that it is possible to sequester both hydrophobic as well as hydrophilic dyes within the nanostructures. Finally, we show that these non-cytotoxic manno-sylated rods and polymersomes were selectively and efficiently taken up by MDA-MB-231 breast cancer cells demonstrating their potential as nanocarriers for drug delivery.

  5. Controlled synthesis of biodegradable lactide polymers and copolymers using novel in situ generated or single-site stereoselective polymerization initiators.

    Science.gov (United States)

    Zhong, Zhiyuan; Dijkstra, Pieter J; Feijen, Jan

    2004-01-01

    Polylactides and their copolymers are key biodegradable polymers used widely in biomedical, pharmaceutical and ecological applications. The development of synthetic pathways and catalyst/initiator systems to produce pre-designed polylactides, as well as the fundamental understanding of the polymerization reactions, has continuously been an important topic. Here, we will address the recent advances in the ring-opening polymerization of lactides, with an emphasis on the highly versatile in situ generated initiator systems and single-site stereoselective initiators. The in situ generated initiators including in situ formed yttrium, calcium and zinc alkoxides all have been shown to bring about a rapid and living polymerization of lactides under mild conditions, which facilitated the preparation of a variety of advanced lactide-based biomaterials. For example, well-defined di- and tri-block copolymers consisting of hydrophilic poly(ethylene glycol) blocks and hydrophobic polyester blocks, which form novel biodegradable polymersomes or biodegradable thermosensitive hydrogels, have been prepared. In the past few years, significant progress has also been made in the area of stereoselective polymerization of lactides. This new generation of initiators has enabled the production of polylactide materials with novel microstructures and/or properties, such as heterotactic (--RRSSRRSSRRSS--) polylactide, crystalline syndiotactic (--RSRSRSRSRSRS--) polylactide and isotactic stereoblock (--Rn Sn Rn Sn--) polylactide, exhibiting a high melting temperature. The recently developed polymerizations using in situ generated initiators and stereoselective polymerizations have no doubt opened a brand-new avenue for the design and exploration of polylactides and their copolymers.

  6. Fabrication of Novel Biodegradable α-Tricalcium Phosphate Cement Set by Chelating Capability of Inositol Phosphate and Its Biocompatibility

    Directory of Open Access Journals (Sweden)

    Toshiisa Konishi

    2013-01-01

    Full Text Available Biodegradable α-tricalcium phosphate (α-TCP cement based on the chelate-setting mechanism of inositol phosphate (IP6 was developed. This paper examined the effect of the milling time of α-TCP powder on the material properties of the cement. In addition, biocompatibility of the result cement in vitro using osteoblasts and in vivo using rabbit models will be studied as well. The α-TCP powders were ballmilled using ZrO2 beads in pure water for various durations up to 270 minutes, with a single-phase α-TCP obtained at ballmilling for 120 minutes. The resulting cement was mostly composed of α-TCP phase, and the compressive strength of the cement was 8.5±1.1 MPa, which suggested that the cements set with keeping the crystallite phase of starting cement powder. The cell-culture test indicated that the resulting cements were biocompatible materials. In vivo studies showed that the newly formed bones increased with milling time at a slight distance from the cement specimens and grew mature at 24 weeks, and the surface of the cement was resorbed by tartrate-resistant acid phosphatase-(TRAP-positive osteoclast-like cells until 24 weeks of implantation. The present α-TCP cement is promising for application as a novel paste-like artificial bone with biodegradability and osteoconductivity.

  7. Stimuli-Responsive Biodegradable Hyperbranched Polymer-Gadolinium Conjugates as Efficient and Biocompatible Nanoscale Magnetic Resonance Imaging Contrast Agents.

    Science.gov (United States)

    Sun, Ling; Li, Xue; Wei, Xiaoli; Luo, Qiang; Guan, Pujun; Wu, Min; Zhu, Hongyan; Luo, Kui; Gong, Qiyong

    2016-04-27

    The efficacy and biocompatibility of nanoscale magnetic resonance imaging (MRI) contrast agents depend on optimal molecular structures and compositions. Gadolinium [Gd(III)] based dendritic macromolecules with well-defined and tunable nanoscale sizes are excellent candidates as multivalent MRI contrast agents. Here, we propose a novel alternate preparation of biodegradable hyperbranched polymer-gadolinium conjugates via a simple strategy and report potentially efficient and biocompatible nanoscale MRI contrast agents for cancer diagnosis. The enzyme-responsive hyperbranched poly(oligo-(ethylene glycol) methacrylate)-gadolinium conjugate (HB-POEGMA-Gd) was prepared via one-step reversible addition-fragmentation chain transfer (RAFT) polymerization and Gd(III) chelating, and the cRGDyK functionalized polymer (HB-POEGMA-cRGD-Gd) was obtained via click chemistry. By using an enzyme similar to lysosomal cathepsin B, hyperbranched conjugates of high molecular weights (MW) (180 and 210 kDa) and nanoscale sizes (38 and 42 nm) were degraded into low MW (25 and 30 kDa) and smaller products (4.8 and 5.2 nm) below the renal threshold. Conjugate-based nanoscale systems had three-fold more T1 relaxivity compared to clinical agent diethylenediaminepentaacetic acid (DTPA)-Gd. Animal studies with the nanoscale system offered greater tumor accumulation and enhanced signal intensity (SI) in mouse U87 tumors of which the greatest activity was conferred by the cRGDyK moiety functionalized hyperbranched conjugate. In vitro cytotoxicity, hemocompatibility and in vivo toxicity studies confirmed no adverse events. This design strategy for multifunctional Gd(III)-labeled biodegradable dendritic macromolecules may have significant potential as future efficient, biocompatible polymeric nanoscale MRI diagnostic contrast agents for cancer.

  8. Novel biodegradable aliphatic poly(butylene succinate-co-cyclic carbonate)s bearing functionalizable carbonate building blocks: II. Enzymatic biodegradation and in vitro biocompatibility assay.

    Science.gov (United States)

    Yang, Jing; Tian, Weisheng; Li, Qiaobo; Li, Yang; Cao, Amin

    2004-01-01

    In a previous study, we have reported chemical synthesis of novel aliphatic poly(butylene succinate-co-cyclic carbonate) P(BS-co-CC)s bearing various functionalizable carbonate building blocks, and this work will continue to present our new studies on their enzymatic degradation and in vitro cell biocompatibility assay. First, enzymatic degradation of the novel P(BS-co-CC) film samples was investigated with two enzymes of lipase B Candida Antartic (Novozyme 435) and lipase Porcine Pancreas PPL, and it was revealed that copolymerizing linear poly(butylene succinate) PBS with a functionalizable carbonate building block could remarkably accelerate the enzymatic degradation of a synthesized product P(BS-co-CC), and its biodegradation behavior was found to strongly depend on the overall impacts of several important factors as the cyclic carbonate (CC) comonomer structure and molar content, molar mass, thermal characteristics, morphology, the enzyme-substrate specificity, and so forth. Further, the biodegraded residual film samples and water-soluble enzymatic degradation products were allowed to be analyzed by means of proton nuclear magnetic resonance (1H NMR), gel permeation chromatograph (GPC), differential scanning calorimeter (DSC), attenuated total reflection FTIR (ATR-FTIR), scanning electron microscope (SEM), and liquid chromatograph-mass spectrometry (LC-MS). On the experimental evidences, an exo-type mechanism of enzymatic chain hydrolysis preferentially occurring in the noncrystalline domains was suggested for the synthesized new P(BS-co-CC) film samples. With regard to their cell biocompatibilities, an assay with NIH 3T3 mouse fibroblast cell was conducted using the novel synthesized P(BS-co-CC) films as substrates with respect to the cell adhesion and proliferation, and these new biodegradable P(BS-co-CC) samples were found to exhibit as low cell toxicity as the PLLA control, particularly the two samples of poly(butylene succinate-co-18.7 mol % dimethyl

  9. Synthesis of biodegradable amphiphilic Y-shaped block co-polymers via ring-opening polymerization for drug delivery.

    Science.gov (United States)

    Jia, Lin; Yan, Lifeng; Li, Yang

    2011-01-01

    A series of novel Y-shaped biodegradable block co-polymers of poly(ε-caprolactone) (PCL) and poly(ethyl ethylene phosphate) (PEEP) (PCL-(PEEP)2) were synthesized via ring-opening polymerization (ROP) of EEP with bis-hydroxy-functional ROP initiator (init-PCL-(OH)2). The init-PCL-(OH)2 was synthesized by ROP of CL using 4-hydroxybutyl acrylate (HBA) as initiator and L-tartaric acid as catalyst in bulk, and subsequently the resulting vinyl-terminated PCL was end-capped by acetyl chloride, followed by Michael addition using excess diethanolamine. The Y-shaped co-polymers and their intermediates were characterized by (1)H-, (13)C-, (31)P-NMR, FT-IR and gel-permeation chromatography. The results indicated that the molecular weight of the Y-shaped co-polymers increased with the increasing of the molar ratios of EEP to init-PCL-(OH)2 in the feed, while the PCL chain length was kept constant. The amphiphilic block co-polymers could self-assemble into micelles in aqueous solution, which was demonstrated by dynamic light scattering, (1)H-NMR and atomic force microscopy. A study of controlled release of indomethacin indicated that the amphiphilic block co-polymers could potentially provide novel vehicles for drug delivery.

  10. Biocompatible, biodegradable polymer-based, lighter than or light as water scaffolds for tissue engineering and methods for preparation and use thereof

    Science.gov (United States)

    Laurencin, Cato T. (Inventor); Pollack, Solomon R. (Inventor); Levine, Elliot (Inventor); Botchwey, Edward (Inventor); Lu, Helen H. (Inventor); Khan, Mohammed Yusuf (Inventor)

    2012-01-01

    Scaffolds for tissue engineering prepared from biocompatible, biodegradable polymer-based, lighter than or light as water microcarriers and designed for cell culturing in vitro in a rotating bioreactor are provided. Methods for preparation and use of these scaffolds as tissue engineering devices are also provided.

  11. Improvement of Uveal and Capsular Biocompatibility of Hydrophobic Acrylic Intraocular Lens by Surface Grafting with 2-Methacryloyloxyethyl Phosphorylcholine-Methacrylic Acid Copolymer

    Science.gov (United States)

    Tan, Xuhua; Zhan, Jiezhao; Zhu, Yi; Cao, Ji; Wang, Lin; Liu, Sa; Wang, Yingjun; Liu, Zhenzhen; Qin, Yingyan; Wu, Mingxing; Liu, Yizhi; Ren, Li

    2017-01-01

    Biocompatibility of intraocular lens (IOL) is critical to vision reconstruction after cataract surgery. Foldable hydrophobic acrylic IOL is vulnerable to the adhesion of extracellular matrix proteins and cells, leading to increased incidence of postoperative inflammation and capsule opacification. To increase IOL biocompatibility, we synthesized a hydrophilic copolymer P(MPC-MAA) and grafted the copolymer onto the surface of IOL through air plasma treatment. X-ray photoelectron spectroscopy, atomic force microscopy and static water contact angle were used to characterize chemical changes, topography and hydrophilicity of the IOL surface, respectively. Quartz crystal microbalance with dissipation (QCM-D) showed that P(MPC-MAA) modified IOLs were resistant to protein adsorption. Moreover, P(MPC-MAA) modification inhibited adhesion and proliferation of lens epithelial cells (LECs) in vitro. To analyze uveal and capsular biocompatibility in vivo, we implanted the P(MPC-MAA) modified IOLs into rabbits after phacoemulsification. P(MPC-MAA) modification significantly reduced postoperative inflammation and anterior capsule opacification (ACO), and did not affect posterior capsule opacification (PCO). Collectively, our study suggests that surface modification by P(MPC-MAA) can significantly improve uveal and capsular biocompatibility of hydrophobic acrylic IOL, which could potentially benefit patients with blood-aqueous barrier damage. PMID:28084469

  12. In situ gelling pH- and temperature-sensitive biodegradable block copolymer hydrogels for drug delivery.

    Science.gov (United States)

    Singh, Narendra K; Lee, Doo Sung

    2014-11-10

    Stimuli-sensitive injectable polymeric hydrogels have been extensively investigated during the past decade as bioactive agent delivery vehicles and for tissue engineering applications. An aqueous solution of these polymers undergoes a sol-to-gel phase transition in response to external stimuli such as pH, temperature, salt, light, biomolecules, electromagnetic field, etc. Bioactive molecules or cells can be mixed into the low-viscosity state of the polymer solution and injected into the body at a target site, forming an in situ hydrogel depot, which can then serve as bioactive-molecule-releasing carriers or a cell-growing microenvironment. This review systematically summarizes the recent progress in biodegradable and injectable block copolymer hydrogels, giving special attention to the novel and promising pH- and temperature-sensitive injectable block copolymer hydrogels for biomedical applications. The gelation mechanism, formation of ionic complexes, and biodegradation are highlighted as key factors responsible for controlled protein/drug delivery. The advantages and perspectives of pH- and temperature-sensitive injectable block copolymer hydrogels are also highlighted.

  13. Preparation, Characterization, and Mechanism for Biodegradable and Biocompatible Polyurethane Shape Memory Elastomers.

    Science.gov (United States)

    Chien, Yu-Chun; Chuang, Wei-Tsung; Jeng, U-Ser; Hsu, Shan-Hui

    2017-02-15

    Thermally induced shape memory is an attractive feature of certain functional materials. Among the shape memory polymers, shape memory elastomers (SMEs) especially those with biodegradability have great potential in the biomedical field. In this study, we prepared waterborne biodegradable polyurethane SME based on poly(ε-caprolactone) (PCL) oligodiol and poly(l-lactic acid) (PLLA) oligodiol as the mixed soft segments. The ratio of the soft segments in polyurethanes was optimized for shape memory behavior. The thermally induced shape memory mechanism of the series of polyurethanes was clarified using differential scanning calorimeter (DSC), X-ray diffraction (XRD), and small-angle X-ray scattering (SAXS). In particular, the in situ SAXS measurements combined with shape deformation processes were employed to examine the stretch-induced (oriented) crystalline structure of the polyurethanes and to elucidate the unique mechanism for shape memory properties. The polyurethane with optimized PLLA crystalline segments showed a diamond-shape two-dimensional SAXS pattern after being stretched, which gave rise to better shape fixing and shape recovery. The shape memory behavior was further tested in 37 °C water. The biodegradable polyurethane comprising 38 wt % PCL segments and 25 wt % PLLA segments and synthesized at a relatively lower temperature by the waterborne procedure showed ∼100% shape recovery in 37 °C water. The biodegradable polyurethane SME also demonstrated good endothelial cell viability as well as low platelet adhesion/activation. We conclude that the waterborne biodegradable polyurethane SME possesses a unique thermally induced shape memory mechanism and may have potential applications in making shape memory biodegradable stents or scaffolds.

  14. Biocompatible branched copolymer nanoparticles prepared by RAFT polymerization as MRI/PET bimodal tracers

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Chang-Tong [Lee Kong Chian School of Medicine, Nanyang Technological University (Singapore); Tao, He; Jackson, Alexander W [Institute of Chemical and Engineering Sciences, Agency for Science Technology and Research (Singapore); Chandrasekharan, Prashant [Laboratory of Molecular Imaging, Singapore Bioimaging Consortium, Agency for Science Technology and Research (Singapore); Padmanabhan, Parasuraman [Lee Kong Chian School of Medicine, Nanyang Technological University (Singapore); Gulyás, Balázs; Halldin, Christer [Lee Kong Chian School of Medicine, Nanyang Technological University (Singapore); Karolinska Institutet, Department of Clinical Neuroscience, Stockholm (Sweden)

    2015-05-18

    Stable branched copolymer nanoparticles of varying size (Dh = 20 – 35 nm) have been developed and employed as MRI nano-sized contrast agents. RAFT polymerization has been employed to prepare these novel nanoparticles possessing DO3A macrocycles within their cores and succinimidyl ester benzoate functionalities within their coronas. It has been demonstrated that these nanoparticles can chelate gadolinium and in vitro cytotoxicity studies using HK-2 cells established their negligible toxicity profile. In vivo MRI experiments showed that these nanoparticles have a high relaxivity and a long blood retention time. Xenograft experiments further illustrated the ability of these nanoparticles to perfuse and passively accumulate in tumor cells, presumably through the enhanced EPR effect. The presence of the succinimidyl ester benzoate functionalities within the nanoparticle coronas will permit future surface modification with fluorophores or targeting moieties to generate nanoparticles to study opportunities for bimodal imaging nano-probes or active cell targeting contrast agents. The chelation with PET radioisotopes (68Ga(III) or 64Cu(II)) can afford various PET tracers.

  15. Biocompatibility, biodegradation, and neovascularization of human single-unit platelet-rich fibrin glue: an in vivo analysis

    Institute of Scientific and Technical Information of China (English)

    Wu Xiuwen; Ren Jianan; Yao Genhong; Zhou Bo; Wang Gefei; Gu Guosheng; Luan Jianfeng

    2014-01-01

    Background The clinical applications of fibrin glue span over several surgical modalities.The aim of this study was to evaluate the biocompatibility and biodegradation of different formulations of platelet-rich fibrin glue in vivo and examine its effects on the neovascularization of wound sites.Methods Human-derived single-unit fibrin glue was prepared.Incisions were made on the backs of rats,and these were coated with homemade glues containing different concentrations of aminomethylbenzoic acid (Groups A-F) or commercial adhesives (Group G).A sham control group was included (Group H).The wounds were examined by histological analysis and immunohistochemistry at several time points.Results Successful wound closure was achieved in all groups by day 12.Acute inflammation occurred during the first six days,but gradually disappeared.The longest sealant duration was achieved using the lowest concentration of antifibrinolytic agent in a 1:10 volume ratio with cryoprecipitate.Expression levels of the platelet endothelial cell adhesion molecule-1 were significantly higher in Groups A and C compared to the control groups (Groups G and H) on day 3 (P <0.05).Conclusions Single-unit platelet-rich fibrin glue has excellent biocompatibility and is associated with the upregulation of neovascularization.The addition of aminomethylbenzoic acid could prevent the degradation of fibrin glue.

  16. A long-term in vitro biocompatibility study of a biodegradable polyurethane and its degradation products

    NARCIS (Netherlands)

    van Minnen, B; Stegenga, B; van Leeuwen, MBM; van Kooten, TG; Bos, RRM

    2006-01-01

    The biological safety of degradation products from degradable biomaterials is very important. In this study a new method is proposed to test the cytotoxicity of these degradation products with the aim to save time, laboratory animals, and research funds. A biodegradable polyurethane (PU) foam was su

  17. Study of the biodegradation and in vivo biocompatibility of novel biomaterials.

    Science.gov (United States)

    Fulzele, S V; Satturwar, P M; Dorle, A K

    2003-09-01

    The degradation of two rosin-based biomaterials, the glycerol ester of maleic rosin (GMR) and the pentaerythritol ester of maleic rosin (PMR), was examined in vitro in phosphate-buffered saline at pH 7.4 and in vivo in a subcutaneous rat model. Free films of the two biomaterials with mean thickness 0.4+/-0.02 mm were used for the study. The initial biocompatibility was followed by microscopic examination of the inflammatory tissue response to the implanted films. Sample weight loss and molecular weight decline of the free films was used to monitor the degradation quantitatively, while surface morphological changes were analysed for qualitative estimation. Biocompatibility response was followed on post-operative days 7, 14, 21 and 28 and compared with those of poly(DL-lactic-co-glycolic acid) (PLGA) (50:50) films. Both biomaterials showed slow in vitro degradation when compared with the in vivo rate. The mechanism followed was, however, bulk degradation of the films. The penta-esterified form of maleic rosin was observed to degrade more rapidly than glycerol esterified maleic rosin. The acute and subacute inflammatory reactions were characterized by fibrosis at the end of 28 days. The biomaterials showed reasonable tissue tolerance to the extent evaluated. There was a total absence of tissue necrosis or abscess formation for all implanted films. The response, although not identical to that of PLGA, is reasonable, promising new drug delivery applications for rosin biomaterials.

  18. Biocompatible and biodegradable fibrinogen microspheres for tumor-targeted doxorubicin delivery.

    Science.gov (United States)

    Joo, Jae Yeon; Park, Gil Yong; An, Seong Soo A

    2015-01-01

    In the development of effective drug delivery carriers, many researchers have focused on the usage of nontoxic and biocompatible materials and surface modification with targeting molecules for tumor-specific drug delivery. Fibrinogen (Fbg), an abundant glycoprotein in plasma, could be a potential candidate for developing drug carriers because of its biocompatibility and tumor-targeting property via arginine-glycine-aspartate (RGD) peptide sequences. Doxorubicin (DOX), a chemotherapeutic agent, was covalently conjugated to Fbg, and the microspheres were prepared. Acid-labile and non-cleavable linkers were used for the conjugation of DOX to Fbg, resulting in an acid-triggered drug release under a mild acidic condition and a slow-controlled drug release, respectively. In vitro cytotoxicity tests confirmed low cytotoxicity in normal cells and high antitumor effect toward cancer cells. In addition, it was discovered that a longer linker could make the binding of cells to Fbg drug carriers easier. Therefore, DOX-linker-Fbg microspheres could be a suitable drug carrier for safer and effective drug delivery.

  19. Biocompatibility of poly(D,L-lactic-co-hydroxymethyl glycolic acid) microspheres after subcutaneous and subcapsular renal injection

    NARCIS (Netherlands)

    Kazazi-Hyseni, F; Zandstra, J; Popa, E R; Goldschmeding, R; Lathuile, A A R; Veldhuis, G J; Van Nostrum, C F; Hennink, W E; Kok, R J

    2015-01-01

    Poly(D,L-lactic-co-hydroxymethyl glycolic acid) (PLHMGA) is a biodegradable copolymer with potential as a novel carrier in polymeric drug delivery systems. In this study, the biocompatibility of PLHMGA microspheres (PLHMGA-ms) was investigated both in vitro in three different cell types (PK-84, HK-2

  20. Biodegradable Nanoparticles Made of Amino-Acid-Based Ester Polymers: Preparation, Characterization, and In Vitro Biocompatibility Study

    Directory of Open Access Journals (Sweden)

    Temur Kantaria

    2016-12-01

    Full Text Available A systematic study of fabricating nanoparticles (NPs by cost-effective polymer deposition/solvent displacement (nanoprecipitation method has been carried out. Five amino acid based biodegradable (AABB ester polymers (four neutral and one cationic, four organic solvents miscible with water, and eight surfactants were tested for the fabrication of the goal NPs. Depending on the nature of the AABB polymers, organic solvents and surfactants, as well as on the fabrication conditions, the size (Mean Particle Diameter of the NPs could be tuned within 42 ÷ 398 nm, the zeta-potential within 12.5 ÷ +28 mV. The stability (resuspendability of the NPs upon storage (at room temperature and refrigerated was tested as well. In Vitro biocompatibility study of the NPs was performed with four different stable cell lines: A549, HeLa (human; RAW264.7, Hepa 1-6 (murine. Comparing the NPs parameters, their stability upon storage, and the data of biological examinations the best were found: As the AABB polymer, a poly(ester amide composed of l-leucine, 1,6-hexanediol and sebacic acid–8L6, as a solvent (organic phase—DMSO, and as a surfactant, Tween 20.

  1. Controlling initial biodegradation of magnesium by a biocompatible strontium phosphate conversion coating.

    Science.gov (United States)

    Chen, X B; Nisbet, D R; Li, R W; Smith, P N; Abbott, T B; Easton, M A; Zhang, D-H; Birbilis, N

    2014-03-01

    A simple strontium phosphate (SrP) conversion coating process was developed to protect magnesium (Mg) from the initial degradation post-implantation. The coating morphology, deposition rate and resultant phases are all dependent on the processing temperature, which determines the protective ability for Mg in minimum essential medium (MEM). Coatings produced at 80 °C are primarily made up of strontium apatite (SrAp) with a granular surface, a high degree of crystallinity and the highest protective ability, which arises from retarding anodic dissolution of Mg in MEM. Following 14 days' immersion in MEM, the SrAp coating maintained its integrity with only a small fraction of the surface corroded. The post-degradation effect of uncoated Mg and Mg coated at 40 and 80 °C on the proliferation and differentiation of human mesenchymal stem cells was also studied, revealing that the SrP coatings are biocompatible and permit proliferation to a level similar to that of pure Mg. The present study suggests that the SrP conversion coating is a promising option for controlling the early rapid degradation rate, and hence hydrogen gas evolution, of Mg implants without adverse effects on surrounding cells and tissues.

  2. Fiber laser micromachining of magnesium alloy tubes for biocompatible and biodegradable cardiovascular stents

    Science.gov (United States)

    Demir, Ali Gökhan; Previtali, Barbara; Colombo, Daniele; Ge, Qiang; Vedani, Maurizio; Petrini, Lorenza; Wu, Wei; Biffi, Carlo Alberto

    2012-02-01

    Magnesium alloys constitute an attractive solution for cardiovascular stent applications due to their intrinsic properties of biocompatibility and relatively low corrosion resistance in human-body fluids, which results in as a less intrusive treatment. Laser micromachining is the conventional process used to cut the stent mesh, which plays the key role for the accurate reproduction of the mesh design and the surface quality of the produced stent that are important factors in ensuring the mechanical and corrosion resistance properties of such a kind of devices. Traditionally continuous or pulsed laser systems working in microsecond pulse regime are employed for stent manufacturing. Pulsed fiber lasers on the other hand, are a relatively new solution which could balance productivity and quality aspects with shorter ns pulse durations and pulse energies in the order of mJ. This work reports the study of laser micromachining and of AZ31 magnesium alloy for the manufacturing of cardiovascular stents with a novel mesh design. A pulsed active fiber laser system operating in nanosecond pulse regime was employed for the micromachining. Laser parameters were studied for tubular cutting on a common stent material, AISI 316L tubes with 2 mm in diameter and 0.2 mm in thickness and on AZ31 tubes with 2.5 mm in diameter and 0.2 in thickness. In both cases process parameters conditions were examined for reactive and inert gas cutting solutions and the final stent quality is compared.

  3. Designing of Biodegradable and Biocompatible Release and Delivery Systems of Selected Antioxidants Used in Cosmetology.

    Science.gov (United States)

    Maksymiak, Magdalena; Debowska, Renata; Bazela, Karolina; Dzwigalowska, Agata; Orchel, Arkadiusz; Jelonek, Katarzyna; Dolegowska, Barbara; Kowalczuk, Marek; Adamus, Grazyna

    2015-11-09

    Conjugates of antioxidants p-anisic (p-AA) and vanillic (VA) acids with nontoxic, biocompatible, and biodegradedable oligo-(R,S)-(3-hydoxybutyrate) carrier were synthesized, and their structural and biological characterization was performed. The molecular structure of the bioconjugates, in which antioxidants are covalently bonded with oligo(3-hydroxybutyrate) (OHB) chains, has been proven by mass spectrometry supported by NMR. The bioconjugate hydrolytic degradation studies allowed gaining thorough insight into the hydrolysis process and confirmed the release of p-AA and VA. In vitro studies demonstrated that all of the conjugates studied were well tolerated by KB and HaCaT cell lines, as they had no marked cytotoxicity, while conjugates with a relatively short OHB carrier are optimal to support keratinocyte function. The preliminary study of the biological activity confirmed the protective effect of VA-OHB conjugates against H2O2-induced lipid peroxidation in human keratinocytes (HaCaT). It was also demonstrated that the selected bioconjugates can penetrate all layers of the skin, which shows their functionality and opens up their potential application in cosmetology.

  4. Biodegradable amphiphilic block copolymers containing functionalized PEO blocks:Controlled synthesis and biomedical potentials

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    A series of controllable amphiphilic block copolymers composed of poly(ethylene oxide)(PEO) as the hydrophilic block and poly(ε-caprolactone)(PCL) as the hydrophobic block with the amino terminal group at the end of the PEO chain(PCL-b-PEO-NH2) were synthesized.Based on the further reaction of reactive amino groups,diblock copolymers with functional carboxyl groups(PCL-b-PEO-COOH) and functional compounds RGD(PCL-b-PEO-RGD) as well as the triblock copolymers with thermosensitive PNIPAAm blocks(PCL-b-PEO-b-PNIPAAM) were synthesized.The well-controlled structures of these copolymers with functional groups and blocks were characterized by gel permeation chromatography(GPC) and 1H NMR spectroscopy.These copolymers with functionalized hydrophilic blocks were fabricated into microspheres for the examination of biofunctions via cell culture experiments and in vitro drug release.The results indicated the significance of introducing functional groups(e.g.,NH2,COOH and RGD) into the end of the hydrophilic block of amphiphilic block copolymers for biomedical potentials in tissue engineering and controlled drug release.

  5. Biodegradation, biocompatibility, and osteoconduction evaluation of collagen-nanohydroxyapatite cryogels for bone tissue regeneration.

    Science.gov (United States)

    Salgado, Christiane Laranjo; Grenho, Liliana; Fernandes, Maria Helena; Colaço, Bruno Jorge; Monteiro, Fernando Jorge

    2016-01-01

    Designing biomimetic biomaterials inspired by the natural complex structure of bone and other hard tissues is still a challenge nowadays. The control of the biomineralization process onto biomaterials should be evaluated before clinical application. Aiming at bone regeneration applications, this work evaluated the in vitro biodegradation and interaction between human bone marrow stromal cells (HBMSC) cultured on different collagen/nanohydroxyapatite cryogels. Cell proliferation, differentiation, morphology, and metabolic activity were assessed through different protocols. All the biocomposite materials allowed physiologic apatite deposition after incubation in simulated body fluid and the cryogel with the highest nanoHA content showed to have the highest mechanical strength (DMA). The study clearly showed that the highest concentration of nanoHA granules on the cryogels were able to support cell type's survival, proliferation, and individual functionality in a monoculture system, for 21 days. In fact, the biocomposites were also able to differentiate HBMSCs into osteoblastic phenotype. The composites behavior was also assessed in vivo through subcutaneous and bone implantation in rats to evaluate its tissue-forming ability and degradation rate. The cryogels Coll/nanoHA (30 : 70) promoted tissue regeneration and adverse reactions were not observed on subcutaneous and bone implants. The results achieved suggest that scaffolds of Coll/nanoHA (30 : 70) should be considered promising implants for bone defects that present a grotto like appearance with a relatively small access but a wider hollow inside. This material could adjust to small dimensions and when entering into the defect, it could expand inside and remain in close contact with the defect walls, thus ensuring adequate osteoconductivity.

  6. STUDIES ON GRAFT COPOLYMERIZATION OF DL—LACTIDE ON CORN STARCH AND BIODEGRADABILITY OF THE COPOLYMERS

    Institute of Scientific and Technical Information of China (English)

    YOUYingcai; ZHUChangying; 等

    2000-01-01

    The starch/D,L-lactide graft copolymers were synthesized by reacting D,L-lactide with corn starch in N,N-dimethylacetamide(DMAM)in the presence of triethylamine(NEt3)and anhydrous lithium chloride.The effect of reaction time and the molar ratio of D,L-lactide to glucose structural unit of starch on monomer conversion(C%),graft(G%)and graft efficiency(GE%)were studied,The C%,G%and GE% could approach 37.3% 179.7%and 68.0%,respectively when the molar ratio of D,L-lactide to glucose structuralunit of starch is 10:1 and the graft copolymerization was carried out at 80-85℃ for 4hr under nitrogen atmosphere.The Fourier transforms infra-red (FTIR) spectroscopy.differential scanning calorimetry(DSC)and X_ray diffraction (XRD) spectroscopy were used in order to characterize the graft copolymers.FTIR spectra show that absorption band at 1740cm-1 confirmed the formation of ester bond,indicating the starch /D,L-lactide graft copolymers were produced,the DSC characteristic results show the melting temperature of the graft copolymer were elevated slightly as the molar ratio of D,L-lactide to glucose structural units of starch increased and the X-ray diffraction spectra show the synthesized graft copolymers were amorphous.The degradability of graft copolymer was tested with the aid of acid,alkali and microbe such as bacillus subtilis and staphylococcus aureus.The results of water rsistance show the graft copolymer produced can be used as a component of impermeable coating for cardboard.

  7. Thymine-functionalized amphiphilic biodegradable copolymers for high-efficiency loading and controlled release of methotrexate.

    Science.gov (United States)

    Cheng, Dong-Bing; Li, You-Mei; Cheng, Yin-Jia; Wu, Yan; Chang, Xiu-Peng; He, Feng; Zhuo, Ren-Xi

    2015-12-01

    In this study, a novel thymine-functionalized six-membered cyclic carbonate monomer (TAC) was synthesized by the Michael-addition reaction between thymine and acryloyl carbonate (AC). The corresponding functional amphiphilic block copolymer mPEG-b-PTAC was further successfully synthesized by ring-opening polymerization using immobilized porcine pancreas lipase (IPPL) as the catalyst and mPEG as the macroinitiator. Meanwhile, mPEG-b-P(TAC-co-DTC) and mPEG-b-PDTC were also synthesized by the same enzymatic methods for comparison on different TAC contents. The structures of monomer and copolymers were characterized by (1)H-NMR, (13)C-NMR and FTIR. All the amphiphilic block copolymers could self-assemble to form nano-sized micelles in aqueous solution. Transmission electron microscopy (TEM) observation showed that the micelles dispersed in spherical shape with nano-size before and after MTX loading. (1)H-NMR and FTIR results confirmed the successful formation of multiple hydrogen-bonding interactions between exposed thymine groups of hydrophobic PTAC segments and 2,6-diaminopyridine (DAP) groups of MTX molecules, which resulting in the higher drug loading capacity and the pH-sensitive drug release behavior. MTT assays also indicated lower toxicity of copolymer but higher potent cytotoxic activity of MTX-loaded copolymer against HeLa cells.

  8. Enzymatic synthesis and characterization of novel biodegradable copolymers of 5-benzyloxy-trimethylene carbonate with 1,4-dioxan-2-one.

    Science.gov (United States)

    He, Feng; Jia, Hua-Li; Liu, Gang; Wang, Yan-Ping; Feng, Jun; Zhuo, Ren-Xi

    2006-08-01

    Enzymatic ring-opening copolymerization of 5-benzyloxy-trimethylene carbonate (BTMC) and 1,4-dioxan-2-one (DON) was investigated for the first time. Immobilized porcine pancreas lipase (IPPL) on silica particles was selected to perform the copolymerization. A series of novel biodegradable copolymers with different compositions were characterized by (1)H NMR, (13)C NMR, and GPC. The influences of reaction conditions such as polymerization time and catalyst concentration on the yield and molecular weight of the copolymers were also studied. The copolymerizations of different monomer feed ratios were carried out in bulk at 150 degrees C with 4.5 wt per thousand IPPL as a catalyst for 24 h. With the increase of the BTMC molar feed ratio from 20% to 79%, the M(n) of the resulting copolymers increased from 5600 to 63400. Water uptake and static contact angle experiments showed that the hydrophilicity of copolymers could be improved with increasing DON content in the copolymers. Moreover, the in vitro drug release rate (ibuprofen as the model drug) of the resulting copolymers also increased along with the DON content in the copolymers.

  9. Polyethyleneimine-poly(ethylene glycol)-star-copolymers as efficient and biodegradable vectors for mammalian cell transfection.

    Science.gov (United States)

    Ladewig, Katharina; Xu, Zhi Ping; Gray, Peter; Max Lu, G Q

    2014-07-01

    High molecular weight (MW) polyethyleneimine (PEI) has been successfully used for the transfection of a broad variety of cell lines. In contrast to low MW PEI, which exhibits low transfection efficiencies but also low cytotoxicity, high MW PEI-mediated transfection achieves much higher efficiencies but at the cost of cell viability; therefore its use in commercial scale transfection and clinical application is limited. In this work we address this problem by constructing biodegradable high MW PEI mimics built from low MW PEI building blocks. The end-groups of small 5-arm star polyethylene glycol (PEG) prepolymers were decorated with linear oligo-ethyleneimine (OEI)/PEI arms of various MW via azomethine linkages. The resultant PEI-PEG-star-copolymers were investigated for their ability to complex plasmid DNA. Polymer/DNA complexes were characterized using techniques such as dynamic light scattering and transmission electron microscopy. Having established their cytotoxicity limits, they were tested as gene delivery vehicles for the transfection of suspension adapted Chinese hamster ovary (CHO-S) cells under serum-free conditions and adherent human embryonic kidney cells (HEK293T) in serum containing medium. Our PEI-PEG-star-copolymers showed a reduced cytotoxicity compared to high MW PEI while maintaining the ability to complex plasmid DNA and transfect mammalian cells, with significant transfection efficiencies. The effects of the optimum parameters on the transfection of mammalian cells using such novel polymers are discussed.

  10. Biodegradable and Biocompatible Biomaterial, Polyhydroxybutyrate, Produced by an Indigenous Vibrio sp. BM-1 Isolated from Marine Environment

    Directory of Open Access Journals (Sweden)

    Ho-Shing Wu

    2011-04-01

    Full Text Available Polyhydroxybutyrate (PHB is one of the polyhydroxyalkanoates (PHAs which has biodegradable and biocompatible properties. They are adopted in the biomedical field, in, for example, medical implants and drug delivery carriers. This study seeks to promote the production of PHB by Vibrio sp. BM-1, isolated from a marine environment by improving constituents of medium and implementing an appropriate fermentation strategy. This study successfully developed a glycerol-yeast extract-tryptone (GYT medium that can facilitate the growth of Vibrio sp. BM-1 and lead to the production of 1.4 g/L PHB at 20 h cultivation. This study also shows that 1.57 g/L PHB concentration and 16% PHB content were achieved, respectively, when Vibrio sp. BM-1 was cultivated with MS-GYT medium (mineral salts-supplemented GYT medium for 12 h. Both cell dry weight (CDW and residual CDW remained constant at around 8.2 g/L and 8.0 g/L after the 12 h of cultivation, until the end of the experiment. However, both 16% of PHB content and 1.57 g/L of PHB production decreased rapidly to 3% and 0.25 g/L, respectively from 12 h of cultivation to 40 h of cultivation. The results suggest that the secretion of PHB depolymerase that might be caused by the addition of mineral salts reduced PHB after 12 h of cultivation. However, work will be done to explain the effect of adding mineral salts on the production of PHB by Vibrio sp. BM-1 in the near future.

  11. Thermoplastic biodegradable elastomers based on ε-caprolactone and L-lactide block co-polymers: a new synthetic approach.

    Science.gov (United States)

    Lipik, Vitali T; Kong, Jen Fong; Chattopadhyay, Sujay; Widjaja, Leonardus K; Liow, Sing S; Venkatraman, Subbu S; Abadie, Marc J M

    2010-11-01

    Although biodegradable polymers have found extensive application in medical devices, there are very few commercially available elastomeric biodegradable polymers. In this work, starting with the well-known monomers L-lactide and ε-caprolactone, we developed elastomers using a multiblock co-polymer approach. This ensures that the degradation products of such elastomers are also acceptable from a cytotoxicity standpoint. A series of polymers with various structures was synthesized utilizing a design of experiment approach. The basic structure is that of a diblock, with each block being modified by the addition of co-monomer. The synthesized polymers exhibited a range of mechanical properties from a typical thermoplastic polymer to that approaching a good thermoplastic elastomer. 13C nuclear magnetic resonance analysis, size exclusion chromatography and differential scanning calorimetry measurements have been utilized to relate the observed range of mechanical properties to the structure. In addition, the elastomeric nature has been established with the use of creep and recovery measurements. Such elastomers may find a variety of biomedical applications, ranging from stent coatings to atrial septal defect occluders.

  12. Synthesis and Properties of Biodegradable Copolymers of 9-Phenyl-2,4,8,10-tetraoxaspiro-[5,5]undcane-3-one and Ethylene Ethyl Phosphate

    Institute of Scientific and Technical Information of China (English)

    Jian XU; Zhi Lan LIU; Ren Xi ZHUO

    2006-01-01

    Novel biodegradable copolymer poly(CC-co-EEP) was synthesized by ring-opening copolymerization of cyclic carbonate 9-phenyl-2, 4, 8, 10-tetraoxaspiro-[5, 5]undcane-3-one (CC)and ethylene ethyl phosphate (EEP). The obtained poly (CC-co-EEP)s were characterized by FTIR, 1H NMR, 13C NMR and gel permeation chromatography (GPC). In vitro hydrolytic degradation of the copolymers were investigated in phosphate buffer solution (pH=7.4).Hydrophilic phosphate units apparently improved the degradability of poly(carbonate-phosphate).

  13. Poly(citric acid)-block-poly(ethylene glycol) copolymers--new biocompatible hybrid materials for nanomedicine.

    Science.gov (United States)

    Naeini, Ashkan Tavakoli; Adeli, Mohsen; Vossoughi, Manouchehr

    2010-08-01

    Linear-dendritic ABA triblock copolymers containing poly(ethylene glycol) (PEG) as B block and hyperbranched poly(citric acid) (PCA) as A blocks were synthesized through polycondensation. The molecular self-assembly of synthesized PCA-PEG-PCA copolymers in water led to formation of nanoparticles and fibers in different sizes and shapes depending on the time and size of PCA blocks. Ten days after dissolving PCA-PEG-PCA copolymers in water, the size of fibers had reached several millimeters. Mixing a water solution of fluorescein as a small guest molecule and PCA-PEG-PCA copolymers led to the encapsulation of fluorescein by products of molecular self-assembly. To investigate their potential application in nanomedicine and to understand the limitations and capabilities of these materials as nanoexcipients in biological systems, different types of short-term in vitro cytotoxicity experiments on the HT1080 cell line (human fibrosarcoma) and hemocompatibility tests were performed. From the clinical editor: This manuscript investigates the potentials of linear-dendritic ABA triblock copolymers containing poly(ethylene glycol) (PEG) as B block and hyperbranched poly(citric acid) (PCA) as A blocks for future applications in nanomedicine.

  14. Surface modification with well-defined biocompatible triblock copolymers Improvement of biointerfacial phenomena on a poly(dimethylsiloxane) surface.

    Science.gov (United States)

    Iwasaki, Yasuhiko; Takamiya, Mika; Iwata, Ryoko; Yusa, Shin-Ichi; Akiyoshi, Kazunari

    2007-06-15

    To improve interfacial phenomena of poly(dimethylsiloxane) (PDMS) as biomaterials, well-defined triblock copolymers were prepared as coating materials by reversible addition-fragmentation chain transfer (RAFT) controlled polymerization. Hydroxy-terminated poly(vinylmethylsiloxane-co-dimethylsiloxane) (HO-PV(l)D(m)MS-OH) was synthesized by ring-opening polymerization. The copolymerization ratio of vinylmethylsiloxane to dimethylsiloxane was 1/9. The molecular weight of HO-PV(l)D(m)MS-OH ranged from (1.43 to 4.44)x10(4), and their molecular weight distribution (M(w)/M(n)) as determined by size-exclusion chromatography equipped with multiangle laser light scattering (SEC-MALS) was 1.16. 4-Cyanopentanoic acid dithiobenzoate was reacted with HO-PV(l)D(m)MS-OH to obtain macromolecular chain transfer agents (macro-CTA). 2-Methacryloyloxyethyl phosphorylcholine (MPC) was polymerized with macro-CTAs. The gel-permeation chromatography (GPC) chart of synthesized polymers was a single peak and M(w)/M(n) was relatively narrow (1.3-1.6). Then the poly(MPC) (PMPC)-PV(l)D(m)MS-PMPC triblock copolymers were synthesized. The molecular weight of PMPC in a triblock copolymer was easily controllable by changing the polymerization time or the composition of the macro-CTA to a monomer in the feed. The synthesized block copolymers were slightly soluble in water and extremely soluble in ethanol and 2-propanol. Surface modification was performed via hydrosilylation. The block copolymer was coated on the PDMS film whose surface was pretreated with poly(hydromethylsiloxane). The surface wettability and lubrication of the PDMS film were effectively improved by immobilization with the block copolymers. In addition, the number of adherent platelets from human platelet-rich plasma (PRP) was dramatically reduced by surface modification. Particularly, the triblock copolymer having a high composition ratio of MPC units to silicone units was effective in improving the surface properties of PDMS. By

  15. Skin delivery by block copolymer nanoparticles (block copolymer micelles).

    Science.gov (United States)

    Laredj-Bourezg, Faiza; Bolzinger, Marie-Alexandrine; Pelletier, Jocelyne; Valour, Jean-Pierre; Rovère, Marie-Rose; Smatti, Batoule; Chevalier, Yves

    2015-12-30

    Block copolymer nanoparticles often referred to as "block copolymer micelles" have been assessed as carriers for skin delivery of hydrophobic drugs. Such carriers are based on organic biocompatible and biodegradable materials loaded with hydrophobic drugs: poly(lactide)-block-poly(ethylene glycol) copolymer (PLA-b-PEG) nanoparticles that have a solid hydrophobic core made of glassy poly(d,l-lactide), and poly(caprolactone)-block-poly(ethylene glycol) copolymer (PCL-b-PEG) nanoparticles having a liquid core of polycaprolactone. In vitro skin absorption of all-trans retinol showed a large accumulation of retinol in stratum corneum from both block copolymer nanoparticles, higher by a factor 20 than Polysorbate 80 surfactant micelles and by a factor 80 than oil solution. Additionally, skin absorption from PLA-b-PEG nanoparticles was higher by one order of magnitude than PCL-b-PEG, although their sizes (65nm) and external surface (water-swollen PEG layer) were identical as revealed by detailed structural characterizations. Fluorescence microscopy of histological skin sections provided a non-destructive picture of the storage of Nile Red inside stratum corneum, epidermis and dermis. Though particle cores had a different physical states (solid or liquid as measured by (1)H NMR), the ability of nanoparticles for solubilization of the drug assessed from their Hildebrand solubility parameters appeared the parameter of best relevance regarding skin absorption.

  16. Photoluminescent and biodegradable polycitrate-polyethylene glycol-polyethyleneimine polymers as highly biocompatible and efficient vectors for bioimaging-guided siRNA and miRNA delivery.

    Science.gov (United States)

    Wang, Min; Guo, Yi; Yu, Meng; Ma, Peter X; Mao, Cong; Lei, Bo

    2017-02-20

    Development of biodegradable and biocompatible non-viral vectors with intrinsical multifunctional properties such as bioimaging ability for highly efficient nucleic acids delivery still remains a challenge. Here, a biodegradable poly (1,8-octanedio-citric acid)-co-polyethylene glycol grafted with polyethyleneimine (PEI) (POCG-PEI) polymers with the photoluminescent capacity were synthesized for nucleic acids delivery (siRNA and miRNA). POCG-PEI polymers can efficiently bind various nucleic acids, protect them against enzymatic degradation and release the genes in the presence of polyanionic heparin. POCG-PEI also showed a significantly low cytotoxicity, enhanced cellular uptake and high transfection efficiency of nucleic acids, as compared to commercial transfection agents, lipofectamine 2000 (Lipo) and polyethylenimine (PEI 25K). POCG-PEI polymers demonstrate an excellent photostability, which allows for imaging the cells and real-time tracking the nucleic acids delivery. The photoluminescent property, low cytotoxicity, biodegradation, good gene binding and protection ability and high genes delivery efficiency make POCG-PEI highly competitive as a non-virus vector for genes delivery and real-time bioimaging applications. Our results may be also an important step for designing biodegradable biomaterials with multifunctional properties towards bioimaging-guided genes therapeutic applications.

  17. MANUFACTURING BIODEGRADABLE COMPOSITE MATERIALS BASED ON POLYETHYLENE AND FUNCTIONALIZED BY ALCOHOLYSIS OF ETHYLENE-VINYL ACETATE COPOLYMER

    Directory of Open Access Journals (Sweden)

    Aleksandr A. Shabarin

    2016-06-01

    Full Text Available Introduction. The continuous growth of production and consumption of plastic packaging creates a serious problem of disposal of package. This problem has ecological character, because the contents of the landfills decompose for decades, emit toxic com¬pounds and pollute the environment. The work is devoted to obtaining and investigation mechanical and rheological properties of biodegradable composite materials based on polyethylene and starch. Materials and Methods. In this work the author used polyethylene grade HDPE 273- 83 (GOST 16338-85, Sevilen brand 12206-007 (TU 6-05-1636-97 and potato starch (GOST 53876-2010 as a filler. Functionalization of sevilen was carried in the 30 % ethanol solution KOH at a temperature 80 °C during 3 hours. Compounding components was carried out at the laboratory of the two rotary mixer HAAKE PolyLab Rheomix 600 OS with rotors Banbury. Formation of plates for elastic strength and rheological studies were carried out on a hydraulic press Gibitre. Elastic and strength tests were carried out on the tensile machine the UAI-7000 M. Rheology tests were carried out on the rheometer Haake MARS III. The humidity filler (starch authors determined by the thermogravimetric method on the analyzer of moisture “Evlas-2M”. Results. It is shown, that the filler should not contain more than 7% moisture. Functionalization of ethylene with vinyl acetate copolymer (sevilen has performed by the method of alkaline alcoholysis. By the method of IC – spectroscopy the authors confirmed the presence of hydroxyl groups in the polymer. Using as a compatibilizer functionalized by the method of alcoholises has greatly ( significantly improved physical, mechanical and rheological properties of composite materials. Optimal content of sevilen (F in the compound according to the results of experiments amount 10 %. Discussion and Conclusions. Using of functionalized by the method of alcoholysis ethy-lene-vinyl acetate copolymer as a

  18. Selective adsorption of Pb (II) ions by amylopectin-g-poly (acrylamide-co-acrylic acid): A bio-degradable graft copolymer.

    Science.gov (United States)

    Sasmal, Dinabandhu; Maity, Jayanta; Kolya, Haradhan; Tripathy, Tridib

    2017-04-01

    Amylopectin-g-poly (acrylamide-co-acrylic acid) [AP-g-poly (AM-co-AA)] was synthesised in water medium by using potassium perdisulphate as an initiator. The graft copolymer was characterized by molecular weight determination by size exclusion chromatography (SEC), fourier transform infrared spectroscopy (FTIR) and nuclear magnetic resonance (NMR) spectroscopy, scanning electron microscope (SEM) studies, thermal analysis, measurement of neutralisation equivalent and biodegradation studies. The graft copolymer was used for Pb (II) ion removal from aqueous solution. The Pb (II) ion removal capacity of the graft copolymer was also compared with another laboratory developed graft copolymer Amylopectin-g-poly (acrylamide) (AP-g-PAM). Both the graft copolymers were also used for the competitive metal ions removal with Pb (II)/Cd (II), Pb (II)/Zn (II), Pb (II)/Ni (II), Pb (II)/Cu (II) pairs separately under similar conditions. AP-g-poly (AM-co-AA) showed better Pb (II) ion adsorbing power over AP-g-PAM and also much selective towards Pb (II) ions. The adsorption follows a second order rate equation and Langmuir isotherm model.

  19. Preliminary evaluation of radionuclides incorporation in biocompatible and biodegradable seeds; Avaliacao preliminar da incorporacao de radionuclideos em sementes biocompativeis e biodegradaveis

    Energy Technology Data Exchange (ETDEWEB)

    Roberto, Wanderley dos Santos [Centro Federal de Educacao Tecnologica de Ouro Preto (CEFET-OP), MG (Brazil); Pereira, Marivalda M.; Campos, Tarcisio P.R. de [Minas Gerais Univ., Belo Horizonte, MG (Brazil). Dept. de Engenharia Nuclear

    2001-07-01

    The present work aims the development of radioactive seeds, biocompatible and biodegradable, with the objective of adding options in the cancer treatment. The work focus on the production of seeds biodegradable that incorporate radioisotopes with half life inferior than the degradation time of the material. The idea of producing devices with biodegradable materials impregnated with radioisotopes of short half life will offer new possibilities in the cancer treatment, since they can be used following the same procedures of the permanent interstitial brachytherapy, but using degradable materials compatible with the physiological environment. It will be discussed in particular the possible application of these seeds in the treatment of prostate cancer. A review of the subject and a preliminary evaluation of the viability of production of the seeds will be presented. The method of production of the seeds is based on the incorporation of Iodine and Samarium in glass matrixes obtained by sol-gel processing, XRF, and was done in the samples produced and the incorporation of Iodine and Samarium atoms was confirmed. (author)

  20. Viability of biocompatible and biodegradable seeds production with incorporated radionuclides; Viabilidade da producao de sementes biocompativeis e biodegradaveis com radionuclideos incorporados

    Energy Technology Data Exchange (ETDEWEB)

    Roberto, W.S. [Centro Federal de Educacao Tecnologica de Ouro Preto (CEFET/OP), MG (Brazil); Pereira, M.M.; Vasconcelos, W.L.; Campos, T.P.R. [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil)], e-mail: wanderley@nuclear.ufmg.br

    2000-07-01

    The present work aims the development of radioactive seeds, biocompatible and biodegradable, with the objective of adding options in the cancer treatment. The work focus on the production of seeds biodegradable that incorporate radioisotopes with half life inferior than the degradation time of the material. The idea of producing devices with biodegradable materials impregnated with radioisotopes of short half life will offer new possibilities in the cancer treatment, since they can be used following the same procedures of the permanent interstitial brachytherapy, but using degradable materials compatible with the physiological environment. It will be discussed in particular the possible application of these seeds in the treatment of prostate cancer. A review of the subject and a preliminary evaluation of the viability of production of the seeds will be presented. The method of production of the seeds is based on the incorporation of Iodine and Samarium in glass matrixes obtained by sol-gel processing. X-ray fluorescence was done in the samples produced and the incorporation of Iodine and Samarium atoms was confirmed. (author)

  1. Synthesis and Characterization of a Biodegradable Copolymer: RGD Peptide Modification of Poly (lactic acid-co-lysine)

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    The poly ( lactic acid- co-lysine ) was synthesized using IR and 1 H NMR to characterize the copolymer. And then the RGD modification copolymer RGD-PLAL was prepared. The contact angles were used to see the RGD modification occurrence. Also high molecular weight polymer was controlled to the reaction of polymerization of copolymer.

  2. Photoinduced graft-copolymer synthesis and characterization of methacrylic acid onto natural biodegradable lignocellulose fiber.

    Science.gov (United States)

    Khan, Ferdous

    2004-01-01

    UV radiation induced graft copolymerization of methacrylic acid onto natural lignocellulose (jute) fiber was carried out both by "simultaneous irradiation and grafting" and by preirradiation methods using 1-hydroxycyclohexyl-phenyl ketone as a photoinitiator. In the "simultaneous irradiation and grafting" method, the variation of graft weight with UV-radiation time, monomer concentration, and the concentration of photoinitiator was investigated. In the case of the preirradiation method, the incorporation of 2-methyl-2-propene 1-sulfonic acid, sodium salt, into the grafting reaction solution played a most important role in suppressing the homopolymer/gel formation and facilitating graft copolymerization. The optimum value of the reaction parameters on the percentage of grafting was evaluated. In comparison, results showed that the method of graft-copolymer synthesis has significant influence on graft weight. The study on the mechanical and thermal properties of grafted samples was conducted. The results showed that the percentage of grafting has a significant effect on the mechanical and thermal properties in the case of grafted samples. Considering the water absorption property, the jute-poly(methacrylic acid)-grafted sample showed a maximum up to 42% increase in hydrophilicity with respect to that of the "as received" sample. Attenuated total reflection infrared studies indicate that the estimation of the degree of grafting could be achieved by correlating band intensities with the percent graft weight.

  3. Biodegradable block poly(ester-urethane)s based on poly(3-hydroxybutyrate-co-4-hydroxybutyrate) copolymers.

    Science.gov (United States)

    Ou, Wenfeng; Qiu, Handi; Chen, Zhifei; Xu, Kaitian

    2011-04-01

    A series of block poly(ester-urethane)s (abbreviated as PU3/4HB) based on biodegradable poly(3-hydroxybutyrate-co-4-hydroxybutyrate) (P3/4HB) segments were synthesized by a facile way of melting polymerization using 1,6-hexamethylene diisocyanate (HDI) as the coupling agent and stannous octanoate (Sn(Oct)(2)) as catalyst, with different 4HB contents and segment lengths. The chemical structure, molecular weight and distribution were systematically characterized by (1)H nuclear magnetic resonance spectrum (NMR), Fourier transform infrared spectroscopy (FTIR) and gel permeation chromatography (GPC). The thermal property was studied by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The hydrophilicity was investigated by static contact angle of deionized water and CH(2)I(2). DSC curves revealed that the PU3/4HB polyurethanes have their T(g) from -25.6 °C to -4.3 °C, and crystallinity from 2.5% to 25.3%, being almost amorphous to semi-crystalline. The obtained PU3/4HBs are hydrophobic (water contact angle 77.4°-95.9°), and their surface free energy (SFE) were studied. The morphology of platelets adhered on the polyurethane film observed by scanning electron microscope (SEM) showed that platelets were activated on the PU3/4HB films which would lead to blood coagulation. The lactate dehydrogenase (LDH) assay revealed that the PU3/4HBs displayed higher platelet adhesion property than raw materials and biodegradable polymer polylactic acid (PLA) and would be potential hemostatic materials. Crystallinity degree, hydrophobicity, surface free energy and urethane linkage content play important roles in affecting the LDH activity and hence the platelet adhesion. CCK-8 assay showed that the PU3/4HB is non-toxic and well for cell growth and proliferation of mouse fibroblast L929. It showed that the hydrophobicity is an important factor for cell growth while 3HB content of the PU3/4HB is important for the cell proliferation. Through changing the

  4. Biodegradable and biocompatible epoxidized vegetable oil modified thermostable poly(vinyl chloride): thermal and performance characteristics post biodegradation with Pseudomonas aeruginosa and Achromobacter sp.

    Science.gov (United States)

    Das, Gautam; Bordoloi, Naba K; Rai, Sudhir K; Mukherjee, Ashis K; Karak, Niranjan

    2012-03-30

    The increased production of municipal solid waste by the disposal of plastic materials heightens the urgency to develop biodegradable materials for daily use. In vitro-biodegradation study on poly(vinyl chloride) (PVC) plasticized by epoxidized Mesua ferrea L. seed oil at three different weight percentages (PVC/ENO ratio of 75/25, 50/50 and 25/75) was conducted by using Pseudomonas aeruginosa and Achromobacter sp. bacteria. The test bacterial species were able to grow on the polymer matrix by using it as a source of energy; however the pristine PVC did not support the microbial growth. The PVC/ENO material of 25/75 ratio showed the highest percent (%) of biodegradation compared to other tested systems. The bacterial count and the dry biomass post 180 days of inoculation in 25/75 plasticized PVC suggested bacterial growth at the expense of degradation of the system. The tensile strength of 25/75 PVC/ENO system, post 180 days of inoculation by Pseudomonas aeruginosa and Achromobacter sp. decreased by about 53% and 43% respectively. Further, surface erosion phenomenon and structural change of the matrix after bacterial growth, as studied by FTIR and SEM analysis of PVC/ENO of 25/75 ratio exhibited noticeable deterioration post 180 days of inoculation.

  5. Biodegradable Nanoparticles of mPEG-PLGA-PLL Triblock Copolymers as Novel Non-Viral Vectors for Improving siRNA Delivery and Gene Silencing

    Directory of Open Access Journals (Sweden)

    Qiu-Sheng Shi

    2012-01-01

    Full Text Available Degradation of mRNA by RNA interference is one of the most powerful and specific mechanisms for gene silencing. However, insufficient cellular uptake and poor stability have limited its usefulness. Here, we report efficient delivery of siRNA via the use of biodegradable nanoparticles (NPs made from monomethoxypoly(ethylene glycol-poly(lactic-co-glycolic acid-poly-l-lysine (mPEG-PLGA-PLL triblock copolymers. Various physicochemical properties of mPEG-PLGA-PLL NPs, including morphology, size, surface charge, siRNA encapsulation efficiency, and in vitro release profile of siRNA from NPs, were characterized by scanning electron microscope, particle size and zeta potential analyzer, and high performance liquid chromatography. The levels of siRNA uptake and targeted gene inhibition were detected in human lung cancer SPC-A1-GFP cells stably expressing green fluorescent protein. Examination of the cultured SPC-A1-GFP cells with fluorescent microscope and flow cytometry showed NPs loading Cy3-labeled siRNA had much higher intracellular siRNA delivery efficiencies than siRNA alone and Lipofectamine-siRNA complexes. The gene silencing efficiency of mPEG-PLGA-PLL NPs was higher than that of commercially available transfecting agent Lipofectamine while showing no cytotoxicity. Thus, the current study demonstrates that biodegradable NPs of mPEG-PLGA-PLL triblock copolymers can be potentially applied as novel non-viral vectors for improving siRNA delivery and gene silencing.

  6. HIGH-MOLECULAR-WEIGHT COPOLYMERS OF L-LACTIDE AND EPSILON-CAPROLACTONE AS BIODEGRADABLE ELASTOMERIC IMPLANT MATERIALS

    NARCIS (Netherlands)

    GRIJPMA, DW; ZONDERVAN, GJ; PENNINGS, AJ

    1991-01-01

    High molecular weight copolymers of L-lactide and epsilon-caprolactone have been synthesized by ring opening copolymerization with stannous octoate as catalyst. The good mechanical properties of the 50/50 copolymers make it a suitable material for biomedical applications such as nerve guides etc., w

  7. Biodegradable gadolinium-chelated cationic poly(urethane amide) copolymers for gene transfection and magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Xiaolong [Department of Radiology, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065 (China); Wang, Gangmin [Department of Urology, Huashan Hospital, Fudan University, Shanghai 200040 (China); Shi, Ting [The Institute for Translational Nanomedicine, Shanghai East Hospital, Institute for Biomedical Engineering and Nanoscience, Tongji University School of Medicine, Shanghai 200092 (China); Shao, Zhihong [Department of Radiology, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065 (China); Zhao, Peng; Shi, Donglu [The Institute for Translational Nanomedicine, Shanghai East Hospital, Institute for Biomedical Engineering and Nanoscience, Tongji University School of Medicine, Shanghai 200092 (China); Ren, Jie [Institute of Nano and Biopolymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804 (China); Lin, Chao, E-mail: chaolin@tongji.edu.cn [The Institute for Translational Nanomedicine, Shanghai East Hospital, Institute for Biomedical Engineering and Nanoscience, Tongji University School of Medicine, Shanghai 200092 (China); Wang, Peijun, E-mail: tjpjwang@sina.com [Department of Radiology, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065 (China)

    2016-08-01

    Theranostic nano-polyplexes containing gene and imaging agents hold a great promise for tumor diagnosis and therapy. In this work, we develop a group of new gadolinium (Gd)-chelated cationic poly(urethane amide)s for gene delivery and T{sub 1}-weighted magnetic resonance (MR) imaging. Cationic poly(urethane amide)s (denoted as CPUAs) having multiple disulfide bonds, urethane and amide linkages were synthesized by stepwise polycondensation reaction between 1,4-bis(3-aminopropyl)piperazine and a mixture of di(4-nitrophenyl)-2, 2′-dithiodiethanocarbonate (DTDE-PNC) and diethylenetriaminepentaacetic acid (DTPA) dianhydride at varied molar ratios. Then, Gd-chelated CPUAs (denoted as GdCPUAs) were produced by chelating Gd(III) ions with DTPA residues of CPUAs. These GdCPUAs could condense gene into nanosized and positively-charged polyplexes in a physiological condition and, however, liberated gene in an intracellular reductive environment. In vitro transfection experiments revealed that the GdCPUA at a DTDE-PNC/DTPA residue molar ratio of 85/15 induced the highest transfection efficiency in different cancer cells. This efficiency was higher than that yielded with 25 kDa branched polyethylenimine as a positive control. GdCPUAs and their polyplexes exhibited low cytotoxicity when an optimal transfection activity was detected. Moreover, GdCPUAs may serve as contrast agents for T{sub 1}-weighted magnetic resonance imaging. The results of this work indicate that biodegradable Gd-chelated cationic poly(urethane amide) copolymers have high potential for tumor theranostics. - Highlights: • Novel cationic gadolinium-chelated poly(urethane amide)s (GdCPUAs) are prepared. • GdCPUAs can induce a high transfection efficacy in different cancer cells. • GdCPUAs reveal good cyto-compatibility against cancer cells. • GdCPUAs may be applied as T{sub 1}-contrast agents for magnetic resonance imaging. • GdCPUAs hold high potential for cancer theranostics.

  8. Evaluation of a new biocompatible poly(N-(morpholino ethyl methacrylate)-based copolymer for the delivery of ruthenium oligonucleotides, targeting HPV16 E6 oncogene.

    Science.gov (United States)

    Reschner, Anca; Shim, Yong Ho; Dubois, Philippe; Delvenne, Philippe; Evrard, Brigitte; Marcélis, Lionel; Moucheron, Cécile; Kirsch-De Mesmaeker, Andrée; Defrancq, Eric; Raes, Martine; Piette, Jacques; Collard, Laurence; Piel, Géraldine

    2013-08-01

    This study investigates the use of a new biocompatible block copolymer poly(2-(dimethylamino)ethyl methacrylate-N-(morpholino)ethyl methacrylate (PDMAEMA-b-PMEMA) for the delivery of a particular antisense oligonucleotide targeting E6 gene from human papilloma virus. This antisense oligonucleotide was derivatized with a polyazaaromatic Ru(II) complex which, under visible illumination, is able to produce an irreversible crosslink with the complementary targeted sequence. The purpose of this study is to determine whether by the use of a suitable transfection agent, it is possible to increase the efficiency of the antisense oligonucleotide targeting E6 gene, named Ru-P-4. In a recent study, we showed that Oligofectamine transfected Ru-P-4 antisense oligonucleotide failed to inhibit efficiently the growth of cervical cancer cell line SiHa, contrarily to the Ru-P-6 antisense oligonucleotide, another sequence also targeting the E6 gene. The ability of PDMAEMA-b-PMEMA to form polyplexes with optimal physicochemical characteristics was investigated first. Then the ability of the PDMAEMA-b-PMEMA/Ru-P-4 antisense oligonucleotide polyplexes to transfect two keratinocyte cell lines (SiHa and HaCat) and the capacity of polyplexes to inhibit HPV16+ cervical cancer cell growth was evaluated. PDMAEMA-b-PMEMA base polyplexes at the optimal molar ratio of polymer nitrogen atoms to DNA phosphates (N/P), were able to deliver Ru-P-4 antisense oligonucleotide and to induce a higher growth inhibition in human cervical cancer SiHa cells, compared to other formulations based on Oligofectamine.

  9. Biodegradable long-circulating polymeric nanospheres.

    Science.gov (United States)

    Gref, R; Minamitake, Y; Peracchia, M T; Trubetskoy, V; Torchilin, V; Langer, R

    1994-03-18

    Injectable nanoparticulate carriers have important potential applications such as site-specific drug delivery or medical imaging. Conventional carriers, however, cannot generally be used because they are eliminated by the reticulo-endothelial system within seconds or minutes after intravenous injection. To address these limitations, monodisperse biodegradable nanospheres were developed from amphiphilic copolymers composed of two biocompatible blocks. The nanospheres exhibited dramatically increased blood circulation times and reduced liver accumulation in mice. Furthermore, they entrapped up to 45 percent by weight of the drug in the dense core in a one-step procedure and could be freeze-dried and easily redispersed without additives in aqueous solutions.

  10. Biodegradable beta-Tri-Calciumphosphate/hydroxyethyl methacrylate enhanced three component bone adhesive demonstrates biocompatibility without evidence of systemic toxicity in a rabbit model.

    Science.gov (United States)

    Bauer, Natali B; Brinke, Nina; Heiss, Christian; Skorupa, Agnes B; Peters, Fabian; Kraus, Ralf; Schnettler, Reinhard; Moritz, Andreas

    2009-08-01

    Bone gluing is an attractive surgical technique; however, its use in patients is hampered by a variety of side effects. Therefore, it was the aim of this ethically approved study to evaluate a novel biodegradable beta-Tri-Calciumphosphate (beta-TCP, Cerasorb)-enhanced bone adhesive regarding its toxicity and biocompatibility in a rabbit model. Fifty healthy New Zealand White rabbits were assigned in the study (n = 21) and sham-operated control group (n = 29). In the study group, a cylindrical part (4.6 x 10.0 mm) of the proximal tibia and distal femur was removed, reimplanted, and bone adhesive was applied. Blinded physical examination and sampling for hematology, clinical chemistry, and acute phase proteins (haptoglobin, C-reactive protein (CRP)) was performed before surgery and after 12, 24, 48, 72, 240, and 504 h. Significant findings of the physical examination included a slightly higher grading of warmth (p = 0.0019) and pain (p < 0.0001) of the wound 240 h after surgery in the study group. No significant differences between albumin, haptoglobin, CRP, and urea concentrations in both groups were evident, whereas the study group demonstrated significantly lower leukocyte count, total protein, and globulin concentrations (p < 0.0001). As expected, both groups showed a marked transient increase in muscle enzymes (Creatine Kinase and Aspartate Aminotransferase) following the surgery (p < 0.0001). Twelve to 24 h after surgery, a significant decrease in ionized calcium from 1.38 +/- 0.12 mmol/L to 1.06 +/- 0.13 mmol/L was noted in the study group (p < 0.0001). The results clearly indicated that the novel beta-TCP-enhanced bone adhesive showed good biocompatibility without significant evidence of acute or subacute local or systemic toxicity.

  11. Synthesis and Characterization of a Novel Functional Biodegradable Copolymer-Poly(lactic acid-4-hydroxyproline-polyethylene glycol)

    Institute of Scientific and Technical Information of China (English)

    Jiu Fang DUAN; Yu Bin ZHENG

    2006-01-01

    A series of poly(lactic acid-4-hydroxyproline-polyethylene glycol) (PLA-Hpr-PEG) copolymers were synthesized by direct melt copolymerization of D,L-lactic acid and 4-hydroxyproline with different feed amount of polyethylene glycol (PEG) 0.1%, 0.5%, 1% and 5%, respectively. The properties of these copolymers were characterized by using IR spectroscopy, proton nuclear magnetic resonance (1H-NMR) spectroscopy, gel permeation chromatography (GPC), X-ray diffraction and differential scaning calorimetry (DSC). PLA-Hpr-PEG are amorphous copolymers. Copolymers showed increasing water uptake capacity with increasing PEG percentage in the feed, which result in an increasing degradable rate in phosphate buffer solution (pH 7.4) at 37℃.

  12. Potential for polyhydroxyalkanoates and policaprolactone copolymer use as tissue-engineered scaffolds in cardiovascular surgery

    Directory of Open Access Journals (Sweden)

    L. V. Antonova

    2012-01-01

    Full Text Available The absence of reliably functioning small-diameter vascular grafts for coronary artery bypass graft surgery remains one of the most important issues of cardiovascular surgery. Tissue-engineered grafts have to be characterized by highly hemocompatible, biomechanical and biocompatible properties, be quickly biodegradable and have non-toxic degradation products. This article presents polyhydroxyalkanoate and policaprolactone main characteristics and evaluates their potential use as polymers for producing vascular grafts. Biocompatibility, good physical and mechanical properties of these polymers and their better performance in copolymer scaffolds were demonstrated.

  13. Characteristics and biocompatibility of a biodegradable genipin-cross-linked gelatin/β-tricalcium phosphate reinforced nerve guide conduit.

    Science.gov (United States)

    Yang, Yi-Chin; Shen, Chiung-Chyi; Huang, Tsung-Bin; Chang, Shun-Hsung; Cheng, Hsu-Chen; Liu, Bai-Shuan

    2010-10-01

    To modulate the mechanical properties of nerve guide conduit for surgical manipulation, this study develops a biodegradable composite containing genipin cross-linked gelatin annexed with β-tricalcium phosphate ceramic particles as a nerve guide material. The conduit was dark bluish and round with a rough and compact outer surface compared to the genipin cross-linked gelatin conduit (without β-tricalcium phosphate). Water uptake and swelling tests indicate that the conduit noticeably increases the stability in water, and the hydrated conduit does not collapse and stenose. The conduit has a sufficiently high level of mechanical properties to serve as a nerve guide. After subcutaneous implantation on the dorsal side of a rat, the degraded conduit only evokes a mild tissue response, and the formation of a very thin fibrous capsule surrounds the conduit. This paper assesses the effectiveness of the conduit as a guidance channel when we use it to repair a 10 mm gap in the rat's sciatic nerve. The experimental results show no gross inflammatory reactions of the peripheral nerve tissues at the implantation site in either group. In overall gross examination, the diameter of the intratubular and newly formed nerve fibers in the conduits exceeds that of the silicone tubes during the implantation period. The quantitative results indicate the superiority of the conduits over the silicone tubes. This study microscopically observes the nerve regeneration in the tissue section at the middle region of all implanted conduits. Therefore, the histomorphometric assessment demonstrates that the conduit could be a candidate for peripheral nerve repair.

  14. Molecular Design of Synthetic Biodegradable Polymers as Cell Scaffold Materials

    Institute of Scientific and Technical Information of China (English)

    WANG Shen-guo; WAN Yu-qing; CAI Qing; HE Bin; CHEN Wen-na

    2004-01-01

    Poly(lactic acid) and its copolymers are regarded as the most useful biomaterials. The good biocompatibility, biodegradability and mechanical properties of them make the synthetic biodegradable polymers have primary application to tissue engineering. The advantages and disadvantages of the synthetic biodegradable polymers as cell scaffold materials are evaluated. This article reviews the modification of polylactide-family aliphatic polymers to improve the cell affinity when the polymers are used as cell scaffolds. We have developed four main approaches: to modify polyester cell scaffolds in combination of plasma treating and collagen coating; to introduce hydrophilic segments into aliphatic polyester backbones; to introduce pendant functional groups into polyester chains; to modify polyester with dextran. The results of the cell cultures prove that the approaches mentioned above have improved the cell affinity of the polyesters and have modulated cell function such as adhesion, proliferation and migration.

  15. Synthesis and Characterization of Biodegradable Amphiphilic Star and Y-Shaped Block Copolymers as Potential Carriers for Vinorelbine

    Directory of Open Access Journals (Sweden)

    Fatemeh Bahadori

    2014-01-01

    Full Text Available Two amphiphilic block copolymers using hydrophobic poly(ε-caprolactone (PCL and hydrophilic poly(ethylene glycol (PEG were successfully synthesized. One of them is an (A-b-B4 type star polymer [(PCL-b-PEG4] and the other one is a Y-shaped PEG–(PCL2. A star-shaped polymer (PCL-b-PEG4 was prepared by ring-opening polymerization (ROP of ε-caprolactone continued by click reaction of (PCL-azide4 and PEG-alkyne. The synthesis of Y-shaped PEG–(PCL2 block copolymer was carried out via Diels-Alder click reaction of a furan protected maleimide end-functionalized PEG (PEG-MI with an anthracene end-functionalized PCL following the ROP of ε-caprolactone. The characterization of micelles is carried out using both materials in aqueous media as drug delivery vehicles, which showed satisfying results and enhanced the cytotoxic effect of the anti-cancer drug vinorelbine (VLB. However, micelles consisted of Y-shaped unimers were found to be more convenient for delivery of hydrophobic drugs such as VLB because they formed in lower concentration, carrying a higher amount of drugs and owing a monomodal distribution. We concluded that the free tails of hydrophobic chains in Y-shaped block copolymer facilitate the assembly of amphiphilic material in water to form micelles.

  16. Characterisation of copolymer, poly (hydroxybutyrate-co-hydroxyvalerate) (PHB-co-PHV) produced by Halomonas campisalis (MCM B-1027), its biodegradability and potential application.

    Science.gov (United States)

    Kulkarni, Snehal O; Kanekar, Pradnya P; Jog, Jyoti P; Patil, Prashant A; Nilegaonkar, Smita S; Sarnaik, Seema S; Kshirsagar, Pranav R

    2011-06-01

    Characterisation of polyhydroxyalkanoate (PHA) film produced by haloalkalitolerant Halomonas campisalis (MCM B-1027) in 14L SS fermenter revealed it to have composition of monomer units, HB:HV as 96:4 as analysed by (1)H NMR indicating the PHA as a co-polymer of PHB-co-PHV, molecular weight by gel permeation chromatography as 2.08 × 10(6), melting temperature 166.51°C, tensile strength 18.8 MPa; two relaxations namely beta transition corresponding to the glass rubber transition and alpha transition corresponding to crystalline relaxation by Dynamic Mechanical Thermal analysis and only one relaxation corresponding to MWS interfacial polarisation with activation energy of 129 kJ/mol by broadband dielectric spectroscopy. Optical microscopic studies showed typical Maltese-cross pattern of spherulites. The PHA film was found to be biodegradable by standard ASTM method as well as by soil burial method. The leak proof polymer bags prepared from the film could be used as a packaging material.

  17. INCLUSION COMPLEX FORMATION BETWEEN α-CYCLODEXTRIN AND BIODEGRADABLE COMBLIKE COPOLYMERS WITH POLY(α,β-MALIC ACID) BACKBONES AND mPEG SIDE CHAINS

    Institute of Scientific and Technical Information of China (English)

    Jing Zeng; Yuan Li; Jia-jing Li; Rui Wang; Bin He; Yu Nie; Xiang-lin Luo; Zhi-rong Zhang; Zhong-wei Gua

    2009-01-01

    Inclusion complexes(ICs)composed of ocyclodextrins(α-CD)and biodegradable comblike copolymers with poly(α,β-malic acid)(PMA)backbones and methylated poly(ethylene glycol)(mPEG)side chains were prepared by the host-guest reaction.Two series of ICs with mPEG750 and mPEG2000 were prepared.The stoichiometry(EG/CD)of all the ICs in mPEG2000 series was 3.1,no matter what the graft degree was.While in mPEG750 series,the stoichiometry(EG/CD)was very different;it increased with the amount of mPEG decreasing.The decomposition temperatures of the fragments in ICs were closely related to graft degrees.The stack of α-CDs in ICs was a channel-type structure.The crystal of ICs was lamellar,and it could be reorganized to well-defined supermolecular structure.

  18. Imparting superhydrophobicity to biodegradable poly(lactide-co-glycolide) electrospun meshes.

    Science.gov (United States)

    Kaplan, Jonah A; Lei, Hongyi; Liu, Rong; Padera, Robert; Colson, Yolonda L; Grinstaff, Mark W

    2014-07-14

    The synthesis of a family of new poly(lactic acid-co-glycerol monostearate) (PLA-PGC18) copolymers and their use as biodegradable polymer dopants is reported to enhance the hydrophobicity of poly(lactic acid-co-glycolic acid) (PLGA) nonwoven meshes. Solutions of PLGA are doped with PLA-PGC18 and electrospun to form meshes with micrometer-sized fibers. Fiber diameter, percent doping, and copolymer composition influence the nonwetting nature of the meshes and alter their mechanical (tensile) properties. Contact angles as high as 160° are obtained with 30% polymer dopant. Lastly, these meshes are nontoxic, as determined by an NIH/3T3 cell biocompatibility assay, and displayed a minimal foreign body response when implanted in mice. In summary, a general method for constructing biodegradable fibrous meshes with tunable hydrophobicity is described for use in tissue engineering and drug delivery applications.

  19. Poly(amino carbonate urethane)-based biodegradable, temperature and pH-sensitive injectable hydrogels for sustained human growth hormone delivery

    OpenAIRE

    V. H. Giang Phan; Thavasyappan Thambi; Huu Thuy Trang Duong; Doo Sung Lee

    2016-01-01

    In this study, a new pH-/temperature-sensitive, biocompatible, biodegradable, and injectable hydrogel based on poly(ethylene glycol)-poly(amino carbonate urethane) (PEG-PACU) copolymers has been developed for the sustained delivery of human growth hormone (hGH). In aqueous solutions, PEG-PACU-based copolymers existed as sols at low pH and temperature (pH 6.0, 23 °C), whereas they formed gels in the physiological condition (pH 7.4, 37 °C). The physicochemical characteristics, including gelatio...

  20. Synthesis, Characteristics and Potential Application of Poly(β-Amino Ester Urethane)-Based Multiblock Co-Polymers as an Injectable, Biodegradable and pH/Temperature-Sensitive Hydrogel System.

    Science.gov (United States)

    Huynh, Cong Truc; Nguyen, Minh Khanh; Jeong, In Ki; Kim, Sung Wan; Lee, Doo Sung

    2012-01-01

    Physical polymeric hydrogels have significant potential for use as injectable depot drug/protein-delivery systems. In this study, a series of novel injectable, biodegradable and pH/temperature-sensitive multiblock co-polymer physical hydrogels composed of poly(ethylene glycol) (PEG) and poly(β-amino ester urethane) (PEU) was synthesized by the polyaddition between the isocyanate groups of 1,6-diisocyanato hexamethylene and the hydroxyl groups of PEG and a synthesized monomer BTB (or ETE) in chloroform in the presence of dibutyltin dilaurate as a catalyst. The synthesized co-polymers were characterized by nuclear magnetic resonance spectroscopy, Fourier transform infrared spectroscopy and gel-permeation chromatography. Aqueous solutions of the co-polymers showed a sol-to-gel phase transition with increasing pH and a gel-to-sol phase transition with increasing temperature. The gel regions covered the physiological conditions (37°C, pH 7.4) and could be controlled by changing the molecular weight of PEG, PEG/PEU ratio and co-polymer solution concentration. A gel formed rapidly in situ after injecting the co-polymer solution subcutaneously into SD rats and remained for more than 2 weeks in the body. The cytotoxicity tests confirmed the non-cytotoxicity of this co-polymer hydrogel. The controlled in vitro release of the model anticancer drug, doxorubicin, from this hydrogel occurred over a 7-day period. This hydrogel is a potential candidate for biomedical applications and drug/protein-delivery systems.

  1. [Biodegradable catheters and urinary stents. When?

    Science.gov (United States)

    Soria, F; Morcillo, E; López de Alda, A; Pastor, T; Sánchez-Margallo, F M

    2016-10-01

    One of the main wishes in the field of urinary catheters and stents is to arm them with biodegradable characteristics because we consider a failure of these devices the need for retrieval, the forgotten catheter syndrome as well as the adverse effects permanent devices cause after fulfilling their aim. The efforts focused in new designs, coatings and biomaterials aim to increase the biocompatibility of theses internal devices. Lately, there have been correct advances to answer the main challenges regarding biodegradable ureteral devices. Thus, modulation of the rate of degradation has been achieved thanks to new biomaterials and the use of copolymers that enable to choose the time of permanence as it is programmed with conventional double J catheters. Biocompatibility has improved with the use of new polymers that adapt better to the urine. Finally, one of the main problems is elimination of degraded fragments and experimentally it has be demonstrated that new designs elicit controlled degradation, from distal to proximal; using stranding and combination of copolymers degradation may be caused by dilution, reducing fragmentation to the last stages of life of the prosthesis. Moreover, it has been demonstrated that biodegradable catheters potentially may cause less urinary tract infection, less encrustation and predictably they will diminish catheter morbidity, since their degradation process reduces adverse effects. Regarding the development of biodegradable urethral stents, it is necessary to find biomaterials that enable maintaining their biomechanical properties in the long term, keeping open the urethral lumen both in patients with BPH and urethral stenosis. Modulation of the time of degradation of the prosthesis has been achieved, but the appearance of urothelial hyperplasia is still a constant in the initial phases after implantation. The development of drug eluting stents, anti-proliferative or anti-inflammatory, as well as biodegradable stents biocoated is a

  2. Preparation of biodegradable PLA/PLGA membranes with PGA mesh and their application for periodontal guided tissue regeneration

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Eun Jin; Kang, Inn-Kyu [Department of Polymer Science, Kyungpook National University, 1370 Sankyuk-dong, Buk-gu, Daegu 702-701 (Korea, Republic of); Yoon, Suk Joon [Department of Biology, Sookmyung Women' s University, Hyochangwongil 52, Yongsan-gu, Seoul 140-742 (Korea, Republic of); Yeo, Guw-Dong; Pai, Chaul-Min, E-mail: ikkang@knu.ac.k [Samyang Central R and D Center, 63-2 Hwaam-dong, Yusung-gu, Daejeon 305-717 (Korea, Republic of)

    2009-10-15

    A biodegradable polylactic acid (PLA)/poly(glycolide-co-lactide) copolymer (PLGA) membrane with polyglycolic acid (PGA) mesh was prepared to aid the effective regeneration of defective periodontal tissues. The microporous membrane used in this study consists of biodegradable polymers, and seems to have a structure to provide appropriate properties for periodontal tissue regeneration. Based on the albumin permeation test, it is known that the biodegradable membrane exhibits the suitable permeability of nutrients. The membrane maintained its physical integrity for 6-8 weeks, which could be sufficient to retain space in the periodontal pocket. Cell attachment and cytotoxicity tests were performed with respect to the evaluation of biocompatibility of the membrane. As a result, the membrane did not show any cytotoxicity. The safety and therapeutic efficacies of the biodegradable membranes were confirmed in animal tests.

  3. Preparation of biodegradable PLA/PLGA membranes with PGA mesh and their application for periodontal guided tissue regeneration.

    Science.gov (United States)

    Kim, Eun Jin; Yoon, Suk Joon; Yeo, Guw-Dong; Pai, Chaul-Min; Kang, Inn-Kyu

    2009-10-01

    A biodegradable polylactic acid (PLA)/poly(glycolide-co-lactide) copolymer (PLGA) membrane with polyglycolic acid (PGA) mesh was prepared to aid the effective regeneration of defective periodontal tissues. The microporous membrane used in this study consists of biodegradable polymers, and seems to have a structure to provide appropriate properties for periodontal tissue regeneration. Based on the albumin permeation test, it is known that the biodegradable membrane exhibits the suitable permeability of nutrients. The membrane maintained its physical integrity for 6-8 weeks, which could be sufficient to retain space in the periodontal pocket. Cell attachment and cytotoxicity tests were performed with respect to the evaluation of biocompatibility of the membrane. As a result, the membrane did not show any cytotoxicity. The safety and therapeutic efficacies of the biodegradable membranes were confirmed in animal tests.

  4. Photocurable biodegradable liquid copolymers: synthesis of acrylate-end-capped trimethylene carbonate-based prepolymers, photocuring, and hydrolysis.

    Science.gov (United States)

    Matsuda, Takehisa; Kwon, Il Keun; Kidoaki, Satoru

    2004-01-01

    Various photocurable liquid biodegradable trimethylene carbonate (TMC)-based (co)oligomers were prepared by ring-opening (co)polymerization of TMC with or without L-lactide (LL) using low molecular weight poly(ethylene glycol) (PEG) (mol wt 200, 600, or 1000) or trimethylolpropane (TMP) as an initiator. Resultant (co)oligomers were pastes, viscous liquids, or liquids at room temperature, depending on the monomer composition and monomer/initiator ratio. Liquid (co)oligomers were subsequently end-capped with acrylate groups. Upon visible-light irradiation in the presence of camphorquinone as a radical generator, rapid liquid-to-solid transformation occurred to produce photocured solid. The photocuring yield increased with photoirradiation time, photointensity, and camphorquinone concentration. The photocured polymers derived from low molecular weight PEG (PEG200) and TMP exhibited much reduced hydrolysis potential compared with PEG1000-derived polymers in terms of weight loss, water uptake, and swelling depth. Force-distance curve measurements by nanoindentation using atomic force microscopy clearly showed that Young's moduli of the photocured polymer films decreased with increasing hydrolysis time. Their potential biomedical applications are discussed.

  5. Injectable biodegradable hybrid hydrogels based on thiolated collagen and oligo(acryloyl carbonate)-poly(ethylene glycol)-oligo(acryloyl carbonate) copolymer for functional cardiac regeneration.

    Science.gov (United States)

    Xu, Guohui; Wang, Xiaolin; Deng, Chao; Teng, Xiaomei; Suuronen, Erik J; Shen, Zhenya; Zhong, Zhiyuan

    2015-03-01

    Injectable biodegradable hybrid hydrogels were designed and developed based on thiolated collagen (Col-SH) and multiple acrylate containing oligo(acryloyl carbonate)-b-poly(ethylene glycol)-b-oligo(acryloyl carbonate) (OAC-PEG-OAC) copolymers for functional cardiac regeneration. Hydrogels were readily formed under physiological conditions (37°C and pH 7.4) from Col-SH and OAC-PEG-OAC via a Michael-type addition reaction, with gelation times ranging from 0.4 to 8.1 min and storage moduli from 11.4 to 55.6 kPa, depending on the polymer concentrations, solution pH and degrees of substitution of Col-SH. The collagen component in the hybrid hydrogels retained its enzymatic degradability against collagenase, and the degradation time of the hydrogels increased with increasing polymer concentration. In vitro studies showed that bone marrow mesenchymal stem cells (BMSCs) exhibited rapid cell spreading and extensive cellular network formation on these hybrid hydrogels. In a rat infarction model, the infarcted left ventricle was injected with PBS, hybrid hydrogels, BMSCs or BMSC-encapsulating hybrid hydrogels. Echocardiography demonstrated that the hybrid hydrogels and BMSC-encapsulating hydrogels could increase the ejection fraction at 28 days compared to the PBS control group, resulting in improved cardiac function. Histology revealed that the injected hybrid hydrogels significantly reduced the infarct size and increased the wall thickness, and these were further improved with the BMSC-encapsulating hybrid hydrogel treatment, probably related to the enhanced engraftment and persistence of the BMSCs when delivered within the hybrid hydrogel. Thus, these injectable hybrid hydrogels combining intrinsic bioactivity of collagen, controlled mechanical properties and enhanced stability provide a versatile platform for functional cardiac regeneration.

  6. Orthopaedic applications for PLA-PGA biodegradable polymers.

    Science.gov (United States)

    Athanasiou, K A; Agrawal, C M; Barber, F A; Burkhart, S S

    1998-10-01

    Biodegradable polymers, especially those belonging to the family of polylactic acid (PLA) and polyglycolic acid (PGA), play an increasingly important role in orthopaedics. These polymers degrade by hydrolysis and enzymatic activity and have a range of mechanical and physical properties that can be engineered appropriately to suit a particular application. Their degradation characteristics depend on several parameters including their molecular structure, crystallinity, and copolymer ratio. These biomaterials are also rapidly gaining recognition in the fledging field of tissue engineering because they can be fashioned into porous scaffolds or carriers of cells, extracellular matrix components, and bioactive agents. Although their future appears to be bright, several questions regarding the biocompatibility of these materials linger and should be addressed before their wide-scale use. In the context of musculoskeletal tissue, this report provides a comprehensive review of properties and applications of biodegradable PLA/PGA polymers and their copolymers. Of special interest are orthopaedic applications, biocompatibility studies, and issues of sterilization and storage of these versatile biomaterials. Also discussed is the fact that terms such as PLA, PGA, or PLA-PGA do not denote one material, but rather a large family of materials that have a wide range of differing bioengineering properties and concomitant biological responses. An analysis of some misconceptions, problems, and potential solutions is also provided.

  7. In vitro biocompatibility and antibacterial efficacy of a degradable poly(L-lactide-co-epsilon-caprolactone) copolymer incorporated with silver nanoparticles.

    Science.gov (United States)

    Samberg, Meghan E; Mente, Peter; He, Ting; King, Martin W; Monteiro-Riviere, Nancy A

    2014-07-01

    Silver nanoparticles (Ag-nps) are currently used as a natural biocide to prevent undesired bacterial growth in clothing, cosmetics and medical products. The objective of the study was to impart antibacterial properties through the incorporation of Ag-nps at increasing concentrations to electrospun degradable 50:50 poly(L-lactide-co-epsilon-caprolactone) scaffolds for skin tissue engineering applications. The biocompatibility of the scaffolds containing Ag-nps was evaluated with human epidermal keratinocytes (HEK); cell viability and proliferation were evaluated using Live/Dead and alamarBlue viability assays following 7 and 14 days of cell culture on the scaffolds. Significant decreases in cell viability and proliferation were noted for the 1.0 mg(Ag) g(scaffold)(-1) after 7 and 14 days on Ag-nps scaffolds. After 14 days, scanning electron microscopy revealed a confluent layer of HEK on the surface of the 0.0 and 0.1 mg(Ag) g(scaffold)(-1). Both 0.5 and 1.0 mg(Ag) g(scaffold)(-1) were capable of inhibiting both Gram positive and negative bacterial strains. Uniaxial tensile tests revealed a significant (p < 0.001) decrease in the modulus of elasticity following Ag-nps incorporation compared to control. These findings suggest that a scaffold containing between 0.5 and 1.0 mg(Ag) g(scaffold)(-1) is both biocompatible and antibacterial, and is suitable for skin tissue engineering graft scaffolds.

  8. Surface construction and biocompatibility of polymeric used for cardiovascular medical device○

    Institute of Scientific and Technical Information of China (English)

    Chen Bao-lin; Wang Dong-an

    2013-01-01

    BACKGROUND:Biomaterials for the treatment of cardiovascular diseases must have anti-thrombotic, anti-biodegradability and anti-infective ability in the blood-contact condition. OBJECTIVE:To investigate the biocompatibility, blood compatibility and cytocompatibility of new implantable (interfered) polymer material (surface) used in cardiovascular tissue engineering. METHODS:The PubMed database and Wanfang database were retrieved for the related articles from 1967 to 2012 with the key words of“biocompatibility, lood compatibility, biomedical materials, biomedical polymer materials”. RESUTLS AND CONCLUSION:The graft copolymer surface and a block copolymer surfactant that can be used as biological materials were in-depth analyzed though analyzing the design requirements of type, application, cardiovascular medical devices and implantable soft tissue substitutes of polymeric biomaterials used for cardiovascular medicine. The results showed that the difference between the surface and noumenon wil be reflected on many molecular layers that extended from the surface to the noumenon, while the two main factors of surface energy and molecular motion determined the noumenon/surface behavior including the noumenon/surface difference and surface phase separation. If the understanding of the noumenon/surface consisting difference should be taking into consideration, the other determinant should be added too, that was the crystal ization behavior of each competent. If the one of the components contained in the graft copolymer surface and a block copolymer surfactant had higher crystal inity, the other components wil be squeezed out;crystal ization could also hindered the motion and diffusion of molecules, and eventual y, the incompatibility degree of two components of copolymers wil affect the phase separation tendency in the noumenon and surface layers.

  9. Biodegradable elastomeric scaffolds for soft tissue engineering

    NARCIS (Netherlands)

    Pego, Ana Paula; Poot, André A.; Grijpma, Dirk W.; Feijen, Jan

    2003-01-01

    Elastomeric copolymers of 1,3-trimethylene carbonate (TMC) and ε-caprolactone (CL) and copolymers of TMC and D,L-lactide (DLLA) have been evaluated as candidate materials for the preparation of biodegradable scaffolds for soft tissue engineering. TMC-DLLA copolymers are amorphous and degrade more r

  10. Poly(amino carbonate urethane)-based biodegradable, temperature and pH-sensitive injectable hydrogels for sustained human growth hormone delivery

    Science.gov (United States)

    Phan, V. H. Giang; Thambi, Thavasyappan; Duong, Huu Thuy Trang; Lee, Doo Sung

    2016-07-01

    In this study, a new pH-/temperature-sensitive, biocompatible, biodegradable, and injectable hydrogel based on poly(ethylene glycol)-poly(amino carbonate urethane) (PEG-PACU) copolymers has been developed for the sustained delivery of human growth hormone (hGH). In aqueous solutions, PEG-PACU-based copolymers existed as sols at low pH and temperature (pH 6.0, 23 °C), whereas they formed gels in the physiological condition (pH 7.4, 37 °C). The physicochemical characteristics, including gelation rate, mechanical strength and viscosity, of the PEG-PACU hydrogels could be finely tuned by varying the polymer weight, pH and temperature of the copolymer. An in vivo injectable study in the back of Sprague-Dawley (SD) rats indicated that the copolymer could form an in situ gel, which exhibited a homogenous porous structure. In addition, an in vivo biodegradation study of the PEG-PACU hydrogels showed controlled degradation of the gel matrix without inflammation at the injection site and the surrounding tissue. The hGH-loaded PEG-PACU copolymer solution readily formed a hydrogel in SD rats, which subsequently inhibited the initial hGH burst and led to the sustained release of hGH. Overall, the PEG-PACU-based copolymers prepared in this study are expected to be useful biomaterials for the sustained delivery of hGH.

  11. In vitro degradation and biocompatibility of a strontium-containing micro-arc oxidation coating on the biodegradable ZK60 magnesium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Xiao [Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China); Yang, Xiaoming [Panyu Hospital of Chinese Medicine, 65 Qiaodong Road, Guangzhou 511400 (China); Tan, Lili, E-mail: lltan@imr.ac.cn [Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China); Li, Mei [Hospital of Orthopedics, Guangzhou General Hospital of Guangzhou Military Command, 111 Liuhua Road, Guangzhou 510010 (China); Wang, Xin [College of Chemistry, Liaoning University, 66 Chongshanzhong Road, Shenyang 110036 (China); Zhang, Yu, E-mail: luck_2001@126.com [Hospital of Orthopedics, Guangzhou General Hospital of Guangzhou Military Command, 111 Liuhua Road, Guangzhou 510010 (China); Yang, Ke, E-mail: kyang@imr.ac.cn [Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China); Hu, Zhuangqi [Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China); Qiu, Jianhong [Trauson Medical Instrument Co., Ltd., Changzhou 213163 (China)

    2014-01-01

    Magnesium alloys are promising biodegradable implant candidates for orthopedic application. In the present study, a phosphate-based micro-arc oxidation (MAO) coating was applied on the ZK60 alloy to decrease its initial degradation rate. Strontium (Sr) was incorporated into the coating in order to improve the bioactivity of the coating. The in vitro degradation studies showed that the MAO coating containing Sr owned a better initial corrosion resistance, which was mainly attributed to the superior inner barrier layer, and a better long-term protective ability, probably owning to its larger thickness, superior inner barrier layer and the superior apatite formation ability. The degradation of MAO coating was accompanied by the formation of degradation layer and Ca-P deposition layer. The in vitro cell tests demonstrated that the incorporation of Sr into the MAO coating enhanced both the proliferation of preosteoblast cells and the alkaline phosphatase activity of the murine bone marrow stromal cells. In conclusion, the MAO coating with Sr is a promising surface treatment for the biodegradable magnesium alloys.

  12. PLLA scaffolds surface-engineered via poly (propylene imine) dendrimers for improvement on its biocompatibility/controlled pH biodegradability

    Science.gov (United States)

    Ganjalinia, Atiyeah.; Akbari, Somaye.; Solouk, Atefeh.

    2017-02-01

    Novel aminolyzed Poly (L) Lactic Acid (PLLA) films and electrospun nanofibrous scaffolds were fabricated and characterized as potential substrates for tissue engineering. The second generation polypropylene imine dendrimer (PPI-G2) was used as the aminolysis agent to functionalize the inert surface of PLLA substrates directly without any pre-modification process. The effect of the solvent type, G2 concentration, reaction temperature and time were studied by following weight reduction percentage, FTIR and contact angle measurements due to determined optimum conditions. In addition, the modified scaffolds abbreviated by PLLA/G2 were analyzed using mechanical properties, SEM images and dye assays as host-guest modeling. The results indicate that under the 0.5 (wt.%) G2 concentration, ethanol as the solvent, room temperature and 4 h of treatment, the optimum conditions were obtained. It was shown that the hydrophilic properties of PLLA/G2 were greatly enhanced. Also, pH value analysis revealed that after 4 weeks, the biodegradation of PLLA caused massive immune cells infusion and inflammation in the medium through increasing the acidic rate by secretion the lactic acid, whereas the PLLA/G2 scaffolds greatly reduced and stabilize the acidic rate through aminolysis reaction. Finally, promoted cell adhesion and viability underlined the favorable properties of PLLA/G2 scaffolds as a biodegradable biomaterial for biomedical implants.

  13. Biodegradable intestinal stents:A review

    Institute of Scientific and Technical Information of China (English)

    Zhanhui Wang; Nan Li; Rui Li; Yawei Li; Liqun Ruan

    2014-01-01

    Biodegradable stents are an attractive alternative to self-expanding metal stents in the treatment of intestinal strictures. Biodegradable stent can be made of biodegradable polymers and biodegradable metals (magnesium alloys). An overview on current biodegradable intestinal stents is presented. The future trends and perspectives in the development of biodegradable intestinal stents are proposed. For the biodegradable polymer intestinal stents, the clinical trials have shown promising results, although improved design of stents and reduced migration rate are expected. For the biodegradable magnesium intestinal stents, results of preliminary studies indicate magnesium alloys to have good biocompatibility. With many of the key fundamental and practical issues resolved and better methods for adjusting corrosion resistance and progressing biocompatibilities of magnesium alloys, it is possible to use biodegradable intestinal stents made of magnesium alloys in hospital in the not too distant future.

  14. Intracellular degradation of microspheres based on cross-linked dextran hydrogels or amphiphilic block copolymers: A comparative Raman microscopy study

    NARCIS (Netherlands)

    Manen, van Henk-Jan; Apeldoorn, van Aart A.; Verrijk, Ruud; Blitterswijk, van Clemens A.; Otto, Cees

    2007-01-01

    Micro- and nanospheres composed of biodegradable polymers show promise as versatile devices for the controlled delivery of biopharmaceuticals. Whereas important properties such as drug release profiles, biocompatibility, and (bio)degradability have been determined for many types of biodegradable par

  15. Biodegradable Tri-Block Copolymer Poly(lactic acid-poly(ethylene glycol-poly(L-lysine(PLA-PEG-PLL as a Non-Viral Vector to Enhance Gene Transfection

    Directory of Open Access Journals (Sweden)

    Na Zhang

    2011-02-01

    Full Text Available Low cytotoxicity and high gene transfection efficiency are critical issues in designing current non-viral gene delivery vectors. The purpose of the present work was to synthesize the novel biodegradable poly (lactic acid-poly(ethylene glycol-poly(L-lysine (PLA-PEG-PLL copolymer, and explore its applicability and feasibility as a non-viral vector for gene transport. PLA-PEG-PLL was obtained by the ring-opening polymerization of Lys(Z-NCA onto amine-terminated NH2-PEG-PLA, then acidolysis to remove benzyloxycarbonyl. The tri-block copolymer PLA-PEG-PLL combined the characters of cationic polymer PLL, PLA and PEG: the self-assembled nanoparticles (NPs possessed a PEG loop structure to increase the stability, hydrophobic PLA segments as the core, and the primary ε-amine groups of lysine in PLL to electrostatically interact with negatively charged phosphate groups of DNA to deposit with the PLA core. The physicochemical properties (morphology, particle size and surface charge and the biological properties (protection from nuclease degradation, plasma stability, in vitro cytotoxicity, and in vitro transfection ability in HeLa and HepG2 cells of the gene-loaded PLA-PEG-PLL nanoparticles (PLA-PEG-PLL NPs were evaluated, respectively. Agarose gel electrophoresis assay confirmed that the PLA-PEG-PLL NPs could condense DNA thoroughly and protect DNA from nuclease degradation. Initial experiments showed that PLA-PEG-PLL NPs/DNA complexes exhibited almost no toxicity and higher gene expression (up to 21.64% in HepG2 cells and 31.63% in HeLa cells than PEI/DNA complexes (14.01% and 24.22%. These results revealed that the biodegradable tri-block copolymer PLA-PEG-PLL might be a very attractive candidate as a non-viral vector and might alleviate the drawbacks of the conventional cationic vectors/DNA complexes for gene delivery in vivo.

  16. A biodegradable ocular implant for long-term suppression of intraocular pressure.

    Science.gov (United States)

    Ng, Xu Wen; Liu, Kerh Lin; Veluchamy, Amutha Barathi; Lwin, Nyein Chan; Wong, Tina T; Venkatraman, Subbu S

    2015-10-01

    Timolol maleate (TM) has been used for many years for the reduction of intraocular pressure (IOP) in glaucoma patients. However, the topical mode of administration (eyedrops) is far from optimal because of the issues of low bioavailability, high drug wastage, and lack of patient compliance. Suboptimal control of the IOP leads to disease progression and eventually to blindness. Ideally, TM is delivered to the patient so that its action is both localized and sustained for 3 months or more. In this work, we developed a subconjunctival TM microfilm for sustained, long-term delivery of TM to the eyes, using the biodegradable elastomer poly(lactide-co-caprolactone) (PLC). The copolymer is biocompatible and has flexibility and mechanical characteristics suitable for a patient-acceptable implant. Controlling the release of TM for 3 months is challenging, and this work describes how, by using a combination of multilayering and blending with poly(ethylene glycol) (PEG) copolymers, we were able to develop a TM-incorporated biodegradable film that can deliver TM at a therapeutic dose for 90 days in vitro. The data was further confirmed in a diseased primate model, with sustained IOP-lowering effects for 5 months with a single implant, with acceptable biocompatibility and partial degradation.

  17. Antibacterial modification of an injectable, biodegradable, non-cytotoxic block copolymer-based physical gel with body temperature-stimulated sol-gel transition and controlled drug release.

    Science.gov (United States)

    Wang, Xiaowen; Hu, Huawen; Wang, Wenyi; Lee, Ka I; Gao, Chang; He, Liang; Wang, Yuanfeng; Lai, Chuilin; Fei, Bin; Xin, John H

    2016-07-01

    Biomaterials are being extensively used in various biomedical fields; however, they are readily infected with microorganisms, thus posing a serious threat to the public health care. We herein presented a facile route to the antibacterial modification of an important A-B-A type biomaterial using poly (ethylene glycol) methyl ether (mPEG)- poly(ε-caprolactone) (PCL)-mPEG as a typical model. Inexpensive, commercial bis(2-hydroxyethyl) methylammonium chloride (DMA) was adopted as an antibacterial unit. The effective synthesis of the antibacterial copolymer mPEG-PCL-∼∼∼-PCL-mPEG (where ∼∼∼ denotes the segment with DMA units) was well confirmed by FTIR and (1)H NMR spectra. At an appropriate modification extent, the DMA unit could render the copolymer mPEG-PCL-∼∼∼-PCL-mPEG highly antibacterial, but did not largely alter its fascinating intrinsic properties including the thermosensitivity (e.g., the body temperature-induced sol-gel transition), non-cytotoxicity, and controlled drug release. A detailed study on the sol-gel-sol transition behavior of different copolymers showed that an appropriate extent of modification with DMA retained a sol-gel-sol transition, despite the fact that a too high extent caused a loss of sol-gel-sol transition. The hydrophilic and hydrophobic balance between mPEG and PCL was most likely broken upon a high extent of quaternization due to a large disturbance effect of DMA units at a large quantity (as evidenced by the heavily depressed PCL segment crystallinity), and thus the micelle aggregation mechanism for the gel formation could not work anymore, along with the loss of the thermosensitivity. The work presented here is highly expected to be generalized for synthesis of various block copolymers with immunity to microorganisms. Light may also be shed on understanding the phase transition behavior of various multiblock copolymers.

  18. Impact of the structure of biocompatible aliphatic polycarbonates on siRNA transfection ability.

    Science.gov (United States)

    Frère, Antoine; Kawalec, Michal; Tempelaar, Sarah; Peixoto, Paul; Hendrick, Elodie; Peulen, Olivier; Evrard, Brigitte; Dubois, Philippe; Mespouille, Laetitia; Mottet, Denis; Piel, Géraldine

    2015-03-09

    RNAi therapeutics are promising therapeutic tools that have sparked the interest of many researchers. In an effort to provide a safe alternative to PEI, we have designed a series of new guanidinium- and morpholino-functionalized biocompatible and biodegradable polycarbonate vectors. The impact of different functions (morpholino-, guanidinium-, hydrophobic groups) of the architecture (linear homopolymer to dumbbell-shape) and of the molecular weight of these copolymers on their capacity to form polyplexes and to decrease the expression of two epigenetic regulators of gene expression, HDAC7 and HDAC5, was evaluated. The use of one of these polymers combining morpholine and guanidine functions at the ratio >1 and hydrophobic trimethylene carbonate groups showed a significant decrease of mRNA and protein level in HeLa cells, similar to PEI. These results highlight the potential of polycarbonate vectors for future in vivo application as an anticancer therapy.

  19. PCL-PDMS-PCL copolymer-based microspheres mediate cardiovascular differentiation from embryonic stem cells

    Science.gov (United States)

    Song, Liqing

    Poly-epsilon-caprolactone (PCL) based copolymers have received much attention as drug or growth factor delivery carriers and tissue engineering scaffolds due to their biocompatibility, biodegradability, and tunable biophysical properties. Copolymers of PCL and polydimethylsiloxane (PDMS) also have shape memory behaviors and can be made into thermoresponsive shape memory polymers for various biomedical applications such as smart sutures and vascular stents. However, the influence of biophysical properties of PCL-PDMS-PCL copolymers on stem cell lineage commitment is not well understood. In this study, PDMS was used as soft segments of varying length to tailor the biophysical properties of PCL-based co-polymers. While low elastic modulus (embryonic stem cells, the range of 60-100 MPa PCL-PDMS-PCL showed little influence on the differentiation. Then different size (30-140 mum) of microspheres were fabricated from PCL-PDMS-PCL copolymers and incorporated within embryoid bodies (EBs). Mesoderm differentiation was induced using bone morphogenetic protein (BMP)-4 for cardiovascular differentiation. Differential expressions of mesoderm progenitor marker KDR and vascular markers CD31 and VE-cadherin were observed for the cells differentiated from EBs incorporated with microspheres of different size, while little difference was observed for cardiac marker alpha-actinin expression. Small size of microspheres (30 mum) resulted in higher expression of KDR while medium size of microspheres (94 mum) resulted in higher CD31 and VE-cadherin expression. This study indicated that the biophysical properties of PCL-based copolymers impacted stem cell lineage commitment, which should be considered for drug delivery and tissue engineering applications.

  20. Biocompatibility study of two diblock copolymeric nanoparticles for biomedical applications by in vitro toxicity testing

    Science.gov (United States)

    Goñi-de-Cerio, Felipe; Mariani, Valentina; Cohen, Dror; Madi, Lea; Thevenot, Julie; Oliveira, Hugo; Uboldi, Chiara; Giudetti, Guido; Coradeghini, Rosella; Garanger, Elisabeth; Rossi, François; Portugal-Cohen, Meital; Oron, Miriam; Korenstein, Rafi; Lecommandoux, Sébastien; Ponti, Jessica; Suárez-Merino, Blanca; Heredia, Pedro

    2013-11-01

    Drugs used for chemotherapy normally carry out adverse, undesired effects. Nanotechnology brings about new horizons to tackle cancer disease with a different strategy. One of the most promising approaches is the use of nanocarriers to transport active drugs. These nanocarriers need to have special properties to avoid immune responses and toxicity, and it is critical to study these effects. Nanocarriers may have different nature, but polypeptide-based copolymers have attracted considerable attention for their biocompatibility, controlled and slow biodegradability as well as low toxicity. Little has been done regarding specific nanocarriers toxicity. In this study, we performed a thorough toxicological study of two different block copolymer nanoparticles (NPs); poly(trimethylene carbonate)- block-poly( l-glutamic acid) (PTMC- b-PGA) and poly(ethylene glycol)- block-poly( γ-benzyl- l-glutamate) (PEG- b-PBLG) with sizes between 113 and 131 nm. Low blood-serum-protein interaction was observed. Moreover, general toxicity assays and other endpoints (apoptosis or necrosis) showed good biocompatibility for both NPs. Reactive oxygen species increased in only two cell lines (HepG2 and TK6) in the presence of PTMC- b-PGA. Cytokine production study showed cytokine induction only in one cell line (A549). We also performed the same assays on human skin organ culture before and after UVB light treatment, with a moderate toxicity after treatment independent of NPs presence or absence. Interleukin 1 induction was also observed due to the combined effect of PEG- b-PBLG and UVB light irradiation. Future in vivo studies for biocompatibility and toxicity will provide more valuable information, but, so far, the findings presented here suggest the possibility of using these two NPs as nanocarriers for nanomedical applications, always taking into account the application procedure and the way in which they are implemented.

  1. Biocompatibility study of two diblock copolymeric nanoparticles for biomedical applications by in vitro toxicity testing

    Energy Technology Data Exchange (ETDEWEB)

    Goñi-de-Cerio, Felipe [GAIKER Technology Centre (Spain); Mariani, Valentina [European Commission, Nanobiosciences Unit, Institute for Health and Consumer Protection, Joint Research Centre (Italy); Cohen, Dror [Dead Sea Laboratories, AHAVA (Israel); Madi, Lea [Tel-Aviv University, Department of Physiology and Pharmacology, Sackler School of Medicine (Israel); Thevenot, Julie; Oliveira, Hugo [ENSCPB, Université de Bordeaux (France); Uboldi, Chiara; Giudetti, Guido; Coradeghini, Rosella [European Commission, Nanobiosciences Unit, Institute for Health and Consumer Protection, Joint Research Centre (Italy); Garanger, Elisabeth [ENSCPB, Université de Bordeaux (France); Rossi, François [European Commission, Nanobiosciences Unit, Institute for Health and Consumer Protection, Joint Research Centre (Italy); Portugal-Cohen, Meital; Oron, Miriam [Dead Sea Laboratories, AHAVA (Israel); Korenstein, Rafi [Tel-Aviv University, Department of Physiology and Pharmacology, Sackler School of Medicine (Israel); Lecommandoux, Sébastien [ENSCPB, Université de Bordeaux (France); Ponti, Jessica [European Commission, Nanobiosciences Unit, Institute for Health and Consumer Protection, Joint Research Centre (Italy); Suárez-Merino, Blanca; Heredia, Pedro, E-mail: heredia@gaiker.es [GAIKER Technology Centre (Spain)

    2013-11-15

    Drugs used for chemotherapy normally carry out adverse, undesired effects. Nanotechnology brings about new horizons to tackle cancer disease with a different strategy. One of the most promising approaches is the use of nanocarriers to transport active drugs. These nanocarriers need to have special properties to avoid immune responses and toxicity, and it is critical to study these effects. Nanocarriers may have different nature, but polypeptide-based copolymers have attracted considerable attention for their biocompatibility, controlled and slow biodegradability as well as low toxicity. Little has been done regarding specific nanocarriers toxicity. In this study, we performed a thorough toxicological study of two different block copolymer nanoparticles (NPs); poly(trimethylene carbonate)-block–poly(l-glutamic acid) (PTMC-b–PGA) and poly(ethylene glycol)-block–poly(γ-benzyl-l-glutamate) (PEG-b–PBLG) with sizes between 113 and 131 nm. Low blood–serum–protein interaction was observed. Moreover, general toxicity assays and other endpoints (apoptosis or necrosis) showed good biocompatibility for both NPs. Reactive oxygen species increased in only two cell lines (HepG2 and TK6) in the presence of PTMC-b–PGA. Cytokine production study showed cytokine induction only in one cell line (A549). We also performed the same assays on human skin organ culture before and after UVB light treatment, with a moderate toxicity after treatment independent of NPs presence or absence. Interleukin 1 induction was also observed due to the combined effect of PEG-b–PBLG and UVB light irradiation. Future in vivo studies for biocompatibility and toxicity will provide more valuable information, but, so far, the findings presented here suggest the possibility of using these two NPs as nanocarriers for nanomedical applications, always taking into account the application procedure and the way in which they are implemented.

  2. Biodegradable thermogels.

    Science.gov (United States)

    Park, Min Hee; Joo, Min Kyung; Choi, Bo Gyu; Jeong, Byeongmoon

    2012-03-20

    All living creatures respond to external stimuli. Similarly, some polymers undergo conformational changes in response to changes in temperature, pH, magnetic field, electrical field, or the wavelength of light. In one type of stimuli-responsive polymer, thermogel polymers, the polymer aqueous solution undergoes sol-to-gel transition as the temperature increases. Drugs or cells can be mixed into the polymer aqueous solution when it is in its lower viscosity solution state. After injection of the solution into a target site, heating prompts the formation of a hydrogel depot in situ, which can then act as a drug releasing system or a cell growing matrix. In this Account, we describe key materials developed in our laboratory for the construction of biodegradable thermogels. We particularly emphasize recently developed polypeptide-based materials where the secondary structure and nanoassembly play an important role in the determining the material properties. This Account will provide insights for controlling parameters, such as the sol-gel transition temperature, gel modulus, critical gel concentration, and degradability of the polymer, when designing a new thermogel system for a specific biomedical application. By varying the stereochemistry of amino acids in polypeptides, the molecular weight of hydrophobic/hydrophilic blocks, the composition of the polypeptides, the hydrophobic end-capping of the polypeptides, and the microsequences of a block copolymer, we have controlled the thermosensitivity and nanoassembly patterns of the polymers. We have investigated a series of thermogel biodegradable polymers. Polymers such as poly(lactic acid-co-glycolic acid), polycaprolactone, poly(trimethylene carbonate), polycyanoacrylate, sebacic ester, polypeptide were used as hydrophobic blocks, and poly(ethylene glycol) and poly(vinyl pyrrolidone) were used as hydrophilic blocks. To prepare a polymer sensitive to pH and temperature, carboxylic acid or amine groups were introduced

  3. BIODEGRADABLE MICROSPHERES: A REVIEW

    Directory of Open Access Journals (Sweden)

    Kaur Dupinder

    2012-12-01

    Full Text Available Microspheres are characteristically free flowing powders consisting of proteins or synthetic polymers having a particle size ranging from 1-1000 μm. The range of techniques for the preparation of microspheres offers a variety of opportunities to control aspects of drug administration and enhance the therapeutic efficacy of a given drug. Of the many polymeric drug delivery systems, biodegradable polymers have been used widely as drug delivery systems because of their biocompatibility and biodegradability. The majority of biodegradable polymers have been used in the form of microparticles, from which the incorporated drug is released to the environment in a controlled manner. They can be employed to deliver medication in a rate-controlled and sometimes targeted manner. Medication is released from a microsphere by drug leaching from the polymer or by degradation of the polymer matrix. This review discusses characteristics and degradation behaviors of biodegradable polymers which are currently used in drug delivery.

  4. Amphiphilic Spider Silk-Like Block Copolymers with Tunable Physical Properties and Morphology for Biomedical Applications

    Science.gov (United States)

    Huang, Wenwen; Krishnaji, Sreevidhya; Kaplan, David; Cebe, Peggy

    2013-03-01

    Silk-based materials are important candidates for biomedical applications because of their excellent biocompatibility and biodegradability. To generate silk amphiphilic biopolymers with potential use in guided tissue repair and drug delivery, a novel family of spider silk-like block copolymers was synthesized by recombinant DNA technology. Block copolymer thermal properties, structural conformations, protein-water interactions, and self-assembly morphologies were studied with respect to well controlled protein amino acid sequences. A theoretical model was used to predict the heat capacity of the protein and protein-water complex. Using thermal analysis, two glass transitions were observed: Tg1 is related to conformational changes caused by bound water removal, while Tg2 (>Tg1) is the glass transition of dry protein. Real-time infrared spectroscopy and X-ray diffraction confirmed that different secondary structural changes occur during the two Tg relaxations. Using scanning electron microscopy, fibrillar networks and hollow vesicles are observed, depending on protein block copolymer sequence. This study provides a deeper understanding of the relationship between protein physical properties and amino acid sequence, with implications for design of other protein-based materials. Support was provided from the NSF CBET-0828028 and the MRI Program under DMR-0520655 for thermal analysis instrumentation.

  5. Biodegradable polymeric prodrugs of naltrexone

    NARCIS (Netherlands)

    Bennet, D.B.; Li, X.; Adams, N.W.; Kim, S.W.; Hoes, C.J.T.; Feijen, J.

    1991-01-01

    The development of a biodegradable polymeric drug delivery system for the narcotic antagonist naltrexone may improve patient compliance in the treatment of opiate addiction. Random copolymers consisting of the ¿-amino acids N5-(3-hydroxypropyl--glutamine and -leucine were synthesized with equimolar

  6. Biodegradation of Silk Biomaterials

    OpenAIRE

    Bochu Wang; Yang Cao

    2009-01-01

    Silk fibroin from the silkworm, Bombyx mori, has excellent properties such as biocompatibility, biodegradation, non-toxicity, adsorption properties, etc. As a kind of ideal biomaterial, silk fibroin has been widely used since it was first utilized for sutures a long time ago. The degradation behavior of silk biomaterials is obviously important for medical applications. This article will focus on silk-based biomaterials and review the degradation behaviors of silk materials.

  7. Manufacturing of biodegradable polyurethane scaffolds based on polycaprolactone using a phase separation method: physical properties and in vitro assay

    Directory of Open Access Journals (Sweden)

    Asefnejad A

    2011-10-01

    Full Text Available Azadeh Asefnejad1, Mohammad Taghi Khorasani2, Aliasghar Behnamghader3, Babak Farsadzadeh1, Shahin Bonakdar4 1Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran; 2Iran Polymers and Petrochemical Institute, Tehran, Iran; 3Materials and Energy Research Center, Tehran, Iran; 4National Cell Bank of Iran, Pasteur Institute of Iran, Tehran, Iran Background: Biodegradable polyurethanes have found widespread use in soft tissue engineering due to their suitable mechanical properties and biocompatibility. Methods: In this study, polyurethane samples were synthesized from polycaprolactone, hexamethylene diisocyanate, and a copolymer of 1,4-butanediol as a chain extender. Polyurethane scaffolds were fabricated by a combination of liquid–liquid phase separation and salt leaching techniques. The effect of the NCO:OH ratio on porosity content and pore morphology was investigated. Results: Scanning electron micrographs demonstrated that the scaffolds had a regular distribution of interconnected pores, with pore diameters of 50–300 µm, and porosities of 64%–83%. It was observed that, by increasing the NCO:OH ratio, the average pore size, compressive strength, and compressive modulus increased. L929 fibroblast and chondrocytes were cultured on the scaffolds, and all samples exhibited suitable cell attachment and growth, with a high level of biocompatibility. Conclusion: These biodegradable polyurethane scaffolds demonstrate potential for soft tissue engineering applications. Keywords: polyurethane, tissue engineering, biodegradable, fibroblast cells

  8. Green and biodegradable electronics

    Directory of Open Access Journals (Sweden)

    Mihai Irimia-Vladu

    2012-07-01

    Full Text Available We live in a world where the lifetime of electronics is becoming shorter, now approaching an average of several months. This poses a growing ecological problem. This brief review will present some of the initial steps taken to address the issue of electronic waste with biodegradable organic electronic materials. Many organic materials have been shown to be biodegradable, safe, and nontoxic, including compounds of natural origin. Additionally, the unique features of such organic materials suggest they will be useful in biofunctional electronics; demonstrating functions that would be inaccessible for traditional inorganic compounds. Such materials may lead to fully biodegradable and even biocompatible/biometabolizable electronics for many low-cost applications. This review highlights recent progress in these classes of material, covering substrates and insulators, semiconductors, and finally conductors.

  9. Electrospinning of Biocompatible Nanofibers

    Science.gov (United States)

    Coughlin, Andrew J.; Queen, Hailey A.; McCullen, Seth D.; Krause, Wendy E.

    2006-03-01

    Artificial scaffolds for growing cells can have a wide range of applications including wound coverings, supports in tissue cultures, drug delivery, and organ and tissue transplantation. Tissue engineering is a promising field which may resolve current problems with transplantation, such as rejection by the immune system and scarcity of donors. One approach to tissue engineering utilizes a biodegradable scaffold onto which cells are seeded and cultured, and ideally develop into functional tissue. The scaffold acts as an artificial extracellular matrix (ECM). Because a typical ECM contains collagen fibers with diameters of 50-500 nm, electrostatic spinning (electrospinning) was used to mimic the size and structure of these fibers. Electrospinning is a novel way of spinning a nonwoven web of fibers on the order of 100 nm, much like the web of collagen in an ECM. We are investigating the ability of several biocompatible polymers (e.g., chitosan and polyvinyl alcohol) to form defect-free nanofiber webs and are studying the influence of the zero shear rate viscosity, molecular weight, entanglement concentration, relaxation time, and solvent on the resulting fiber size and morphology.

  10. Synthesis, Characterization and Biocompatibility of Biodegradable Elastomeric Poly(ether-ester urethane)s Based on Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) and Poly(ethylene glycol) via Melting Polymerization

    DEFF Research Database (Denmark)

    Li, Zibiao; Yang, Xiaodi; Wu, Linping

    2009-01-01

    Poly(ether-ester urethane)s (PUs) multiblock co-polymers were synthesized from telechelic hydroxylated poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx) and poly(ethylene glycol) (PEG) via a melting polymerization (MP) process using 1,6-hexamethylene diisocyanate (HDI) as a non-toxic couplin...

  11. Glycine/Glycolic acid based copolymers

    NARCIS (Netherlands)

    Veld, in 't Peter J.A.; Shen, Zheng-Rong; Takens, Gijsbert A.J.; Dijkstra, Pieter J.; Feijen, Jan

    1994-01-01

    Glycine/glycolic acid based biodegradable copolymers have been prepared by ring-opening homopolymerization of morpholine-2,5-dione, and ring-opening copolymerization of morpholine-2,5-dione and glycolide. The homopolymerization of morpholine-2,5-dione was carried out in the melt at 200°C for 3 min u

  12. Characterization and Biocompatibility of Biopolyester Nanofibers

    OpenAIRE

    Tang Hui Ying; Tetsuji Yamaoka; Tadahisa Iwata; Daisuke Ishii

    2009-01-01

    Biodegradable nanofibers are expected to be promising scaffold materials for biomedical engineering, however, biomedical applications require control of the degradation behavior and tissue response of nanofiber scaffolds in vivo. For this purpose, electrospun nanofibers of poly(hydroxyalkanoate)s (PHAs) and poly(lactide)s (PLAs) were subjected to degradation tests in vitro and in vivo. In this review, characterization and biocompatibility of nanofibers derived from PHAs and PLAs are described...

  13. Generation of Microcellular Biodegradable Polycaprolactone Foams in Supercritical Carbon Dioxide

    Institute of Scientific and Technical Information of China (English)

    Xu Qun; Ren Xian-wen; Chang Yu-ning; Yu Long; Wang Jing-wu

    2004-01-01

    Present now the application of microcellular polymeric materials in biomedical field is growing rapidly, as that of guided tissue regeneration and cell transplantation. As far as guided tissue regeneration is concerned, porous implants are used as size selective membrane to promote the growth of a special tissue in a healing site. Ideally, the implant should be inherently biocompatible,have well-defined cell size and be resorbable with appropriate biodegradation rates.Poly(a-caprolactone) (PCL) is a kind of materials suit for the demands above. PCL is biocompatible and biodegradable aliphatic polyester which is nontoxic for living organisms and bioresorbable after a period of implantation. Because of its unique combination of biocompatibility, permeability and biodegradability, PCL and some of its copolymer with lactides and glycolide have been widely applied in medicine as artificial skin, artificial bone and containers for sustained drug release.Goel and Beckman have reported a new method to generate microcellular poly(methy l methacrylate) foams in which the samples are saturated with CO2 under a series of supercritical (SC)conditions, and then the system is rapidly depressurized to atmospheric pressure at constant temperature. Unlike traditional methods, it reduces glass-transition temperature (Tg) of the mixture to below the experimental temperature rather than directly heat the system above Tg. In this process of nucleation, no phase separation occurs as well as no phase boundary meets, so the cellular structure of the foam can be retained better.In this work, we have generated PCL foams by using supercritical CO2. Because of the low glass transition temperature (Tg = -60 ℃) of PCL far below the ice point, the experimental temperature in our study is much higher than Tg, which is different from the studies by others before. A series of variable factors on the foam structure as saturation temperature, saturation pressure, saturation time and depressurization

  14. Star-shaped copolymer grafted PEI and REDV as a gene carrier to improve migration of endothelial cells.

    Science.gov (United States)

    Lv, Juan; Hao, Xuefang; Li, Qian; Akpanyung, Mary; Nejjari, Abdelilah; Neve, Agnaldo Luis; Ren, Xiangkui; Feng, Yakai; Shi, Changcan; Zhang, Wencheng

    2017-01-17

    In this work, a biodegradable star-shaped copolymer poly(lactide-co-3(S)-methyl-morpholine-2,5-dione)6 (Star-(PLMD)6) was synthesized via ring-opening polymerization (ROP), and subsequently a gene carrier Star-PLMD-g-PEI-g-PEG-CREDVW was prepared by grafting polyethyleneimine (PEI), polyethylene glycol (PEG) and targeting peptide REDV onto Star-(PLMD)6. This gene carrier could form stable micelles to condense pEGFP-ZNF580 through electrostatic interaction. The resulting complexes were biocompatible and showed high efficiency in gene delivery. In addition, these complexes exhibited high selectivity for endothelial cells (ECs), high transfection efficiency and enhanced migration of ECs. The protein level of ZNF580 expression was significantly high (up to 85%), while the control group was only 51%. This combination of degradability, targeting ligand and star-structure strategy exhibits a significant advantage in transfection efficiency and migration of ECs.

  15. 聚丙交酯/乙交酯胆道支架生物降解及与宿主的相容性%Biodegradability and biocompatibility of polylactide/glycolide biliary stent

    Institute of Scientific and Technical Information of China (English)

    施纯朝; 赵晓飞; 吴晓峰

    2015-01-01

    BACKGROUND:Biliary stent is widely used in different biliary tract surgeries, and there are some defects in the use of biliary stent. OBJECTIVE:To explore the biodegradability and compatibility of polylactide/glycolide biliary stent. METHODS:The polylactide/glycolide biliary stent was prepared, and immersed in the bile. At 1, 2, 3, 4 and 5 weeks after soaking, eight experimental stents were dried and placed under the scanning electron microscope. In the sterile condition, the stent was implanted under the rat skin. At 1, 2, 3, 4, and 5 weeks after implantation, two rats were sacrificed. The stent was taken out. The appearance of the stent and muscle structure of experimental animals was observed. The gross appearance of stent was observed at different time by scanning electron microscopy. The rate of degradation was calculated. The muscle structure of experimental animal and the stent were understood. RESULTS AND CONCLUSION:At 1 week, stent shape remained almost intact, but the texture became soft;surface roughness and cracks gradual y appeared;stent wal col apse was visible. The stent was completely degraded at 5 weeks. Before degradation, the stent presented clear three-dimensional reticular structure observed by scanning electron microscopy. With the time extended, the stent surface and section corrosion became worsened. By gel permeation chromatography detection, at 1 week of implantation, the molecular mass of the stent declined rapidly, and then gradual y declined. At 2 weeks, the relative molecular mass decreased to 15 000. At 4 weeks, stent mass loss was approximately 40%. Al the experimental animals were survived, no poisoning, al ergy or heat source response. The operative wound was healed wel , and no infection occurred. By histological observation, at 5 weeks, the stent was completely degraded, with a degradation rate of 100%. Surrounding muscles recovered to a normal state. These results indicate that the polylactide/glycolide biliary stent has good

  16. FRET Imaging Trackable Long-Circulating Biodegradable Nanomedicines for Ovarian Cancer Therapy

    Science.gov (United States)

    2014-09-01

    Award Number: W81XWH-13-1-0160 TITLE: FRET Imaging Trackable Long-Circulating Biodegradable ...TITLE AND SUBTITLE FRET Imaging Trackable Long-Circulating Biodegradable Nanomedicines for Ovarian Cancer Therapy 5a. CONTRACT NUMBER...strategy, which permits visualizing the biodegradation of copolymer-drug conjugates at the body, tissue and cell levels in real time. The information

  17. Construction of collagen II/hyaluronate/chondroitin-6-sulfate tri-copolymer scaffold for nucleus pulposus tissue engineering and preliminary analysis of its physico-chemical properties and biocompatibility.

    Science.gov (United States)

    Li, Chang-Qing; Huang, Bo; Luo, Gang; Zhang, Chuan-Zhi; Zhuang, Ying; Zhou, Yue

    2010-02-01

    To construct a novel scaffold for nucleus pulposus (NP) tissue engineering, The porous type II collagen (CII)/hyaluronate (HyA)-chondroitin-6-sulfate (6-CS) scaffold was prepared using 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide (EDC) and N-hydroxysuccinimide (NHS) cross-linking system. The physico-chemical properties and biocompatibility of CII/HyA-CS scaffolds were evaluated. The results suggested CII/HyA-CS scaffolds have a highly porous structure (porosity: 94.8 +/- 1.5%), high water-binding capacity (79.2 +/- 2.8%) and significantly improved mechanical stability by EDC/NHS crosslinking (denaturation temperature: 74.6 +/- 1.8 and 58.1 +/- 2.6 degrees C, respectively, for the crosslinked scaffolds and the non-crosslinked; collagenase degradation rate: 39.5 +/- 3.4 and 63.5 +/- 2.0%, respectively, for the crosslinked scaffolds and the non-crosslinked). The CII/HyA-CS scaffolds also showed satisfactory cytocompatibility and histocompatibility as well as low immunogenicity. These results indicate CII/HyA-CS scaffolds may be an alternative material for NP tissue engineering due to the similarity of its composition and physico-chemical properties to those of the extracellular matrices (ECM) of native NP.

  18. An amphiphilic graft copolymer-based nanoparticle platform for reduction-responsive anticancer and antimalarial drug delivery

    Science.gov (United States)

    Najer, Adrian; Wu, Dalin; Nussbaumer, Martin G.; Schwertz, Geoffrey; Schwab, Anatol; Witschel, Matthias C.; Schäfer, Anja; Diederich, François; Rottmann, Matthias; Palivan, Cornelia G.; Beck, Hans-Peter; Meier, Wolfgang

    2016-08-01

    Medical applications of anticancer and antimalarial drugs often suffer from low aqueous solubility, high systemic toxicity, and metabolic instability. Smart nanocarrier-based drug delivery systems provide means of solving these problems at once. Herein, we present such a smart nanoparticle platform based on self-assembled, reduction-responsive amphiphilic graft copolymers, which were successfully synthesized through thiol-disulfide exchange reaction between thiolated hydrophilic block and pyridyl disulfide functionalized hydrophobic block. These amphiphilic graft copolymers self-assembled into nanoparticles with mean diameters of about 30-50 nm and readily incorporated hydrophobic guest molecules. Fluorescence correlation spectroscopy (FCS) was used to study nanoparticle stability and triggered release of a model compound in detail. Long-term colloidal stability and model compound retention within the nanoparticles was found when analyzed in cell media at body temperature. In contrast, rapid, complete reduction-triggered disassembly and model compound release was achieved within a physiological reducing environment. The synthesized copolymers revealed no intrinsic cellular toxicity up to 1 mg mL-1. Drug-loaded reduction-sensitive nanoparticles delivered a hydrophobic model anticancer drug (doxorubicin, DOX) to cancer cells (HeLa cells) and an experimental, metabolically unstable antimalarial drug (the serine hydroxymethyltransferase (SHMT) inhibitor (+/-)-1) to Plasmodium falciparum-infected red blood cells (iRBCs), with higher efficacy compared to similar, non-sensitive drug-loaded nanoparticles. These responsive copolymer-based nanoparticles represent a promising candidate as smart nanocarrier platform for various drugs to be applied to different diseases, due to the biocompatibility and biodegradability of the hydrophobic block, and the protein-repellent hydrophilic block.Medical applications of anticancer and antimalarial drugs often suffer from low aqueous

  19. Biodegradable polymersomes for targeted ultrasound imaging

    NARCIS (Netherlands)

    Zhou, W.; Meng, F.; Engbers, G.H.M.; Feijen, J.

    2006-01-01

    Biodegradable polymersomes with a sub-micron size were prepared by using poly(ethylene glycol)–polylactide (PEG–PDLLA) block-copolymers in aqueous media. Air-encapsulated polymersomes could be obtained by a lyophilization/rehydration procedure. Preliminary results showed that these polymersomes were

  20. Structure-property relationships and biocompatibility of carbohydrate crosslinked polyurethanes.

    Science.gov (United States)

    Solanki, Archana; Mehta, Jayen; Thakore, Sonal

    2014-09-22

    Biocompatible and biodegradable polyurethanes (PUs) based on castor oil and polypropylene glycols (PPGs) were prepared using various carbohydrate crosslinkers: monosaccharide (glucose), disaccharide (sucrose) and polysaccharides (starch and cellulose). The mechanical and thermal properties were investigated and interpreted on the basis of SEM study. The advantage of incorporating various carbohydrates is to have tunable mechanical properties and biodegradability due to variety in their structure. The glass transition temperature and sorption behavior were dominated by the type of polyol than by the type of crosslinker. All the PUs were observed to be biodegradable as well as non-cytotoxic as revealed by MTT assay in normal lung cell line L132. The study supports the suitability of carbohydrates as important components of biocompatible PUs for development of biomedical devices.

  1. 可降解脑血管支架材料生物相容性的系统评价%Systematical evaluation for the biocompatibility of biodegradable cerebrovascular stent materials

    Institute of Scientific and Technical Information of China (English)

    瞿浩; 李玫; 袁萍; 郭琴

    2011-01-01

    BACKGROUND: To select and develop cerebrovascular stent materials with a good bio com patb ility e currently a hot research OBJECTIVE: To systematically evaluate the b io co mp ati bi lity of biodegradable cerebrovascularstent materials, and to analyze the safety and prognosis after stent implantation.METHODS: A computer-based online search of Embase (1930/2011-08). MEDUNE (1966/2011-12).CBM(1978/2011-08)ar>d CHKI were performed for articles about animal experiments and clinical applications focusing on the bio compatibility of biodegradable cerebrovascularr stent materials.RESULTSAHD CONCLUSION: Of 24selected articles, 15 related animal experiments results show that various types of biodegradable cerebrovascularstent with good biocompatibilrty have favorable effects on preventing vascular thrombosis and restenosis by s up press ing endometrial hyperplasia. Nine related clinical experiments results show that biodegradable cerebrovascular stente can decrease the rate of restenosis and improve patients' prognosis; however, the safety needs long-term studies. Biodegradable cerebrovascular stent materials with good bio compatibility are effective and safe for cerebrovascular diseases. F urther studies with long-term follow-up are required to assess the restenosis rates in the intracranial vas culature.%背景:选择和开发具有良好生物相容性的脑血管支架材料是目前研究的热点.目的:系统评价可降解脑血管支架材料生物相容性的相关文献,客观分析生物可降解支架置入的安全性及预后.方法:计算机检索Embase(1980/2011-08)、MEDLINE(1966/2011-08)、中国生物医学文献数据库(CBM,1978/2011-08)、中文学术期刊全文数据库(CNKI)有关可降解脑血管支架生物相容性的动物实验和临床试验的文献,进行可归纳总结.结果与结论:共纳入24篇文章,15篇有关可降解脑血管支架材料生物相容性的动物实验结论均显示,多种可降解脑血管支架材料可抑制

  2. 共聚比不同的两种聚乳酸-聚羟基乙酸共聚物材料生物相容性观测%Biocompatibility of two binds of poly (DL-lactide-co-glycolide)conduits with different copolymer ratio of lactide

    Institute of Scientific and Technical Information of China (English)

    张文捷; 周跃; 王建忠

    2005-01-01

    BACKGROUND: Recently, α-hydroxy-acid and aliphatic series polyester synthetized with its derivates such as polylactide and polyglycolide have been studied extensively for scaffold of peripheral nerve tissue engineering.These materials might improve the effect of nerve guidance through overcoming several shortcomings of autografts, including permanent denervation of donor site, tissue deficiency, and potential differences in tissue structure and size.OBJECTIVE: To investigate the biocompatibility of poly (DL-lactide-coglycolide) (PLGA). Copolymer ratio of lactide: glycolide was 85:15 or 50:50)and evaluate its effect on nerve guidance.DESIGN: A comparative study and observation.SETTING: Department of Orthopaedics, Xinqiao Hospital of Third Military Medical University of Chinese PLA.MATERIALS: A total of 66 Wistar rats of either sex and clean grade,weighting 180-200 g, were involved; the 85:15 or 50:50 copolymer of poly (lactide-co-glycolde) (PLGA).METHODS: The experiment was carried out in Field Surgery Institute No. 6; State Key Laboratory of Trauma, Burns and Compound Injury, Daping Hospital of Third Military Medical University, from November 2001 to December 2002. ① Co-culture of Schwann cells with PLGA film: Growth of Schwann cells co-cultured with PLGA film was observed under scanning electron microscope. ② Histological observation of PLGA film: Fifteen Wistar rats were randomly divided into five groups (according to 1, 2, 4, 8and 12 weeks time point postoperatively) with 3 rats in each group. PLGA was trimmed to pieces of film with the size of 10.0 mm × 5.0 mm × 0.3 mmand implanted into the rat dorsal muscles under aseptic condition. Hematoxylin/eosin staining was used to evaluate inflammatory reaction. ③Bridging of sciatic nerve defect in rats with PLGA conduits: Fifty-one Wistar rats were divided into PLGA (85:15) conduit group, PLGA (50:50) conduit group and silicone conduit group, each of which was further divided into 5 subgroups according to

  3. Development of biocompatible and functional polymeric nanoparticles for site-specific delivery of radionuclides

    Directory of Open Access Journals (Sweden)

    Nicolas eLepareur

    2015-09-01

    Full Text Available Introduction: Encapsulation of biologically active molecules into nanoparticles (NPs, for sitespecific delivery, is a fast growing area. These NPs must be biocompatible, non-toxic, and ableto release their load in a controlled way. We have developed a series of NPs based on (biodegradable and biocompatible poly(malic acid derivatives, poly(benzyl malate (PMLABe, with its PEG-grafted stealth analogue and target-specific biotin-PEG-b-PMLABe one. A lipophilic radiotracer has then been encapsulated into these NPs.Methods: Monomers were synthesized from DL-aspartic acid. PEG42-b-PMLABe73 and Biot-PEG66-b-PMLABe73 block copolymers were obtained by anionic ring-opening polymerization of benzyl malolactonate in presence of -methoxy--carboxy-PEG42 and -biotin--carboxy-PEG66 as initiators. NPs were prepared by nanoprecipitation. Size, polydispersity and zeta potential were measured by DLS and zetametry. 99mTc-SSS was prepared as previously described. Encapsulation efficacy was assessed varying different parameters, such as encapsulation with preformed NPs or during their formation, influence of the solvent, and of the method to prepare the NPs. After decay, 99mTc-loaded NPs were also analyzed by DLS and zetametry. NPs’ morphology was assessed by TEM.Results: 99mTc-SSS was added during nanoprecipitation, using two different methods, to ensure good encapsulation. Radiolabeled NPs present increased diameters, with identical low polydispersity indexes and negative zeta potentials in comparison to non-radiolabeled NPs. Conclusion: A radiotracer was successfully encapsulated, but some further optimization are still needed. Next step will be to modify these radiolabeled NPs with an hepatotrope peptide, and to replace 99mTc with 188Re for therapy. Our team is also working on drugs’ encapsulation and grafting of a fluorescent probe. Combining these modalities is of interest for combined chemo-/radiotherapy, bimodal imaging and/or theranostic

  4. Biodegradable Polymers

    Directory of Open Access Journals (Sweden)

    Isabelle Vroman

    2009-04-01

    Full Text Available Biodegradable materials are used in packaging, agriculture, medicine and other areas. In recent years there has been an increase in interest in biodegradable polymers. Two classes of biodegradable polymers can be distinguished: synthetic or natural polymers. There are polymers produced from feedstocks derived either from petroleum resources (non renewable resources or from biological resources (renewable resources. In general natural polymers offer fewer advantages than synthetic polymers. The following review presents an overview of the different biodegradable polymers that are currently being used and their properties, as well as new developments in their synthesis and applications.

  5. Characterization and Biocompatibility of Biopolyester Nanofibers

    Directory of Open Access Journals (Sweden)

    Tang Hui Ying

    2009-10-01

    Full Text Available Biodegradable nanofibers are expected to be promising scaffold materials for biomedical engineering, however, biomedical applications require control of the degradation behavior and tissue response of nanofiber scaffolds in vivo. For this purpose, electrospun nanofibers of poly(hydroxyalkanoates (PHAs and poly(lactides (PLAs were subjected to degradation tests in vitro and in vivo. In this review, characterization and biocompatibility of nanofibers derived from PHAs and PLAs are described. In particular, the effects of the crystalline structure of poly[(R-3-hydroxybutyrate], stereocomplex structure of PLA, and monomer composition of PHA on the degradation behaviors are described in detail. These studies show the potential of biodegradable polyester nanofibers as scaffold material, for which suitable degradation rate and regulated interaction with surrounding tissues are required.

  6. Environmental biodegradation of haloarchaea-produced poly(3-hydroxybutyrate-co-3-hydroxyvalerate) in activated sludge

    DEFF Research Database (Denmark)

    Liu, Xiao-Bin; Wu, Linping; Hou, Jing

    2016-01-01

    Novel poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBHV) copolymers produced by haloarchaea are excellent candidate biomaterials. However, there is no report hitherto focusing on the biodegradation of PHBHV synthesized by haloarchaea. In this study, an environmental biodegradation of haloarchaea......-order copolymer PHBHV-1 (O-PHBHV-1) possessing the highest surface roughness. The order of biodegradation rate was in the opposite trend to the degree of crystallizability of the films. Meanwhile, thermal degradation temperature of most films decreased after biodegradation. Additionally, the surface erosion...

  7. Graft copolymerization of glycerol 1,3-diglycerolate diacrylate onto poly(3-hydroxyoctanoate) to improve physical properties and biocompatibility.

    Science.gov (United States)

    Kim, Hyung Woo; Chung, Moon Gyu; Kim, Young Baek; Rhee, Young Ha

    2008-10-01

    Glycerol 1,3-diglycerol diacrylate-grafted poly(3-hydroxyoctanoate) (GDD-g-PHO) copolymers were prepared by heating homogeneous solutions of PHO, GDD monomer and benzoylperoxide initiator. Experiments showed that GDD was successfully grafted onto the PHO chains and that the resulting copolymers had enhanced thermal properties and mechanical strengths. The surfaces and the bulk of GDD-g-PHO copolymers became more hydrophilic as the GDD grafting density in the copolymer increased. Measurements of the growth of Chinese hamster ovary cells and the adsorption of blood proteins and platelets in vitro showed that biocompatibility was also enhanced by grafting of GDD groups. These results indicate that the GDD-g-PHO copolymers are promising materials for biocompatible biomedical applications.

  8. RESEARCH ON DEGRADATION PERFORMANCE OF BIODEGRADABLE MATERIALS-POLYLACTIC ACID AND ITS COPOLYMERS%生物降解材料聚乳酸及其共聚物的降解研究

    Institute of Scientific and Technical Information of China (English)

    李金良; 周才根

    2011-01-01

    The fundamental nature, biodegradable process and machanism of PLA were introduced. The research progress of biodegrade method of PLA at home and abroad was reviewed. The effecting factors of PLA degradation were discussed. The development and application prospect of PLA were outlooked.%论述了聚乳酸(PLA)的基本性质、降解过程、降解机理,综述了国内外PLA降解方法的研究进展,探讨了降解的影响因素,并展望了PLA的开发和应用前景.

  9. Immersed multilayer biodegradable ureteral stent with reformed biodegradation: An in vitro experiment.

    Science.gov (United States)

    Yang, Ganggang; Xie, Hua; Huang, Yichen; Lv, Yiqing; Zhang, Mingqing; Shang, Yafeng; Zhou, Junmei; Wang, Liping; Wang, Jin-Ye; Chen, Fang

    2017-03-01

    Objective The aim of this study was to develop a novel immersed multilayer biodegradable ureteral stent with reformed biodegradation and evaluate it in vitro. Methods Poly(glycolic-co-lactic acid) (PGLA), microsphere zein and BaSO4 were employed to produce a multilayer biodegradable stent using immersion technology. Tests of the biodegradable stents and conventional control stents were conducted in human urine in vitro to evaluate the biodegradable properties. The biocompatibility was assessed by the morphology and proliferation of urine-derived cells cultured with extracted media from the biodegradable stent and a latex material positive control. Results An immersed multilayer biodegradable stent was successfully produced. It began to degrade in week 2 and was fully degraded by week 4. The mass loss ratio in the first 2 weeks was low (approximately 10.0% at 1 week, 20.0% at 2 weeks) and increased after 3 weeks (approximately 70%) to the end of testing. During the first 2 weeks, the radial compression load performances of the biodegradable stents were better than those of the control stents with statistically significant differences ( p = 0.00, p = 0.01) and the tensile strengths were lower in the biodegradable stents than those in the control stents throughout the experiment. SEM showed that the stents degraded layer by layer from the outer to the inner wall. The influences on the cells of extracted medium from the biodegradable stents were morphologically slight and lower than 10% in relative growth rates. Conclusions This preliminary study demonstrates that the immersed multilayer biodegradable ureteral stent has good radial compression and biocompatible performance and can be degraded in vitro within 4 weeks in a moderate manner.

  10. Poly(butylene succinate) and its copolymers: research, development and industrialization.

    Science.gov (United States)

    Xu, Jun; Guo, Bao-Hua

    2010-11-01

    Poly(butylene succinate) (PBS) and its copolymers are a family of biodegradable polymers with excellent biodegradability, thermoplastic processability and balanced mechanical properties. In this article, production of the monomers succinic acid and butanediol, synthesis, processing and properties of PBS and its copolymers are reviewed. The physical properties and biodegradation rate of PBS materials can be varied in a wide range through copolymerization with different types and various contents of monomers. PBS has a wide temperature window for thermoplastic processing, which makes the resin suitable for extrusion, injection molding, thermoforming and film blowing. Finally, we summarized industrialization and applications of PBS.

  11. A NEW PLLA PCL COPOLYMER FOR NERVE REGENERATION

    NARCIS (Netherlands)

    DENDUNNEN, WFA; SCHAKENRAAD, JM; ZONDERVAN, GJ; PENNINGS, AJ; VANDERLEI, B; ROBINSON, PH

    1993-01-01

    The aim of this study is to evaluate the functional and cell biological applicability of a two-ply nerve guide constructed of a PLLA/PCL (i.e. poly-L-lactide and poly-epsilon-caprolactone) copolymer. To do so, we performed a cytotoxicity test, a subcutaneous biodegradation test and an in situ implan

  12. Radiation crosslinking of Bionolle and its biodegradation

    Energy Technology Data Exchange (ETDEWEB)

    Suhartini, Meri; Mitomo, H. [Gunma Univ., Faculty of Engineering, Dept. of Biological and Chemical Engineering, Kiryu, Gunma (Japan); Nagasawa, Naotsugu; Yoshii, Fumio; Kume, Tamikazu [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    2002-03-01

    Biodegradable aliphatic polymer such as poly(butylene succinate) (Bionolle no.1001), poly(butylene succinate adipate copolymer) (Bionolle no.3001 and no.3020) were irradiated to give crosslinking structure in the presence of inorganic materials. Pure Bionolle no.1001, Bionolle no.3001 and no. 3020 have low gel fraction in radiation. These samples have high gel fraction by irradiation in the presence of silicon dioxide and carbon black, especially for Bionolle no.3001. Biodegradability of crosslinked Bionolle no.3001 evaluated by enzymatic and soil burial tests were accelerated by addition of inorganic materials. (author)

  13. A BIODEGRADABLE RUBBER BY CROSS-LINKING POLY(HYDROXYALKANOATE) FROM PSEUDOMONAS-OLEOVORANS

    NARCIS (Netherlands)

    DEKONING, GJM; VANBILSEN, HMM; LEMSTRA, PJ; HAZENBERG, W; WITHOLT, B; PREUSTING, H; VANDERGALIEN, JG; SCHIRMER, A; JENDROSSEK, D

    1994-01-01

    Poly((R)-3-hydroxyalkanoate)s (PHAs) are bacterial storage polyesters, currently receiving much attention because of their potential application as biodegradable and biocompatible plastics. Among them are the PHAs from Pseudomonas oleovorans, which are semicrystalline elastomers. Their applicability

  14. A biodegradable rubber by crosslinking poly(hydroxyalkanoate) from Pseudomonas oleovorans

    NARCIS (Netherlands)

    DEKONING, GJM; VANBILSEN, HMM; LEMSTRA, PJ; HAZENBERG, W; Witholt, B.; Preusting, H.; VANDERGALIEN, JG; SCHIRMER, A; JENDROSSEK, D

    1994-01-01

    Poly((R)-3-hydroxyalkanoate)s (PHAs) are bacterial storage polyesters, currently receiving much attention because of their potential application as biodegradable and biocompatible plastics. Among them are the PHAs from Pseudomonas oleovorans, which are semicrystalline elastomers. Their applicability

  15. Progress of biodegradable metals

    Institute of Scientific and Technical Information of China (English)

    Huafang Li; Yufeng Zheng; Ling Qin

    2014-01-01

    Biodegradable metals (BMs) are metals and alloys expected to corrode gradually in vivo, with an appropriate host response elicited by released corrosion products, then dissolve completely upon fulfilling the mission to assist with tissue healing with no implant residues. In the present review article, three classes of BMs have been systematically reviewed, including Mg-based, Fe-based and Zn-based BMs. Among the three BM systems, Mg-based BMs, which now have several systems reported the successful of clinical trial results, are considered the vanguards and main force. Fe-based BMs, with pure iron and Fe–Mn based alloys as the most promising, are still on the animal test stage. Zn-based BMs, supposed to have the degradation rate between the fast Mg-based BMs and the slow Fe-based BMs, are a rising star with only several reports and need much further research. The future research and development direction for the BMs are proposed, based on the clinical requirements on controllable degradation rate, prolonged mechanical stability and excellent biocompat-ibility, by optimization of alloy composition design, regulation on microstructure and mechanical properties, and following surface modification.

  16. Novel fluorescent amphiphilic block copolymers: photophysics behavior and interactions with DNA

    Directory of Open Access Journals (Sweden)

    2007-06-01

    Full Text Available In this study, novel amphiphilic fluorescent copolymers poly(N-vinylpyrrolidone-b-poly(N-methacryloyl-N'-(α-naphthylthiourea (PVP-b-PNT were synthesized via ATRP with poly(N-vinylpyrrolidone-Cl as macroinitiator and N-methacryloyl-N'-α-naphthylthiourea (NT as hydrophobic segment. PVP-b-PNT copolymers were characterized by 1H NMR, GPC-MALLS and fluorescence measurements. The aggregation behavior of PVP-b-PNT in water was investigated by transmission electron microscope (TEM and dynamic light scattering (DLS measurement. The photophysics behavior of PVP-b-PNT showed that block copolymer formed strong excimer. The interaction of DNA with the block copolymer made the excimer of block copolymer quench. The cytotoxicity result of PVP-b-PNT in cell culture in vitro indicated that this copolymer PVP-b-PNT had good biocompatibility.

  17. Current trends in biodegradable polyhydroxyalkanoates.

    Science.gov (United States)

    Chanprateep, Suchada

    2010-12-01

    The microbial polyesters known as polyhydroxyalkanoates (PHAs) positively impact global climate change scenarios by reducing the amount of non-degradable plastic used. A wide variety of different monomer compositions of PHAs has been described, as well as their future prospects for applications where high biodegradability or biocompatibility is required. PHAs can be produced from renewable raw materials and are degraded naturally by microorganisms that enable carbon dioxide and organic compound recycling in the ecosystem, providing a buffer to climate change. This review summarizes recent research on PHAs and addresses the opportunities as well as challenges for their place in the global market.

  18. Biocompatibility of Tri-block Bone-matrix Material in vitro

    Institute of Scientific and Technical Information of China (English)

    DUAN Deyu; ZHENG Qixin; HAO Jie; GUO Xiaodong

    2007-01-01

    To evaluate the biocompatibility of poly(lactic acid/glycolic acid/ asparagic acid-copolyethylene glycol)(PLGA-[ASP-PEG]) tri-block copolymer in vitro, L929 fibroblast was co-cultured with the copolymer for cytotoxicity, hemolysis and pyrogen tests. And, compared with PLGA, the adhesiveness rate of the copolymer was calculated. The experimental results show that the toxicity gradation of the material was 0-1; L929 fibroblasts had a good cell morphology and proliferated rapidly on the surface of the material; hemolysis ratio was 3.08%; there was no pyrogen reaction. The adhesiveness of PLGA-[ASP-PEG] was better than that of the PLGA's(P<0.05). The results confirm that the PLGA-[ASP-PEG] has a good biocompatibility.

  19. Fabrication of Biodegradable Polyester Nanocomposites by Electrospinning for Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Zhi-Cai Xing

    2011-01-01

    Full Text Available Recently, nanocomposites have emerged as an efficient strategy to upgrade the structural and functional properties of synthetic polymers. Polyesters have attracted wide attention because of their biodegradability and biocompatibility. A logic consequence has been the introduction of natural extracellular matrix (ECM molecules, organic or inorganic nanostructures to biodegradable polymers to produce nanocomposites with enhanced properties. Consequently, the improvement of the interfacial adhesion between biodegradable polymers and natural ECM molecules or nanostructures has become the key technique in the fabrication of nanocomposites. Electrospinning has been employed extensively in the design and development of tissue engineering scaffolds to generate nanofibrous substrates of synthetic biodegradable polymers and to simulate the cellular microenvironment. In this paper, several types of biodegradable polyester nanocomposites were prepared by electrospinning, with the aim of being used as tissue engineering scaffolds. The combination of biodegradable nanofibrous polymers and natural ECM molecules or nanostructures opens new paradigms for tissue engineering applications.

  20. Hybrid, Nanoscale Phospholipid/Block Copolymer Vesicles

    Directory of Open Access Journals (Sweden)

    Bo Liedberg

    2013-09-01

    Full Text Available Hybrid phospholipid/block copolymer vesicles, in which the polymeric membrane is blended with phospholipids, display interesting self-assembly behavior, incorporating the robustness and chemical versatility of polymersomes with the softness and biocompatibility of liposomes. Such structures can be conveniently characterized by preparing giant unilamellar vesicles (GUVs via electroformation. Here, we are interested in exploring the self-assembly and properties of the analogous nanoscale hybrid vesicles (ca. 100 nm in diameter of the same composition prepared by film-hydration and extrusion. We show that the self-assembly and content-release behavior of nanoscale polybutadiene-b-poly(ethylene oxide (PB-PEO/1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylcholine (POPC hybrid phospholipid/block copolymer vesicles can be tuned by the mixing ratio of the amphiphiles. In brief, these hybrids may provide alternative tools for drug delivery purposes and molecular imaging/sensing applications and clearly open up new avenues for further investigation.

  1. Nanostructure controlled sustained delivery of human growth hormone using injectable, biodegradable, pH/temperature responsive nanobiohybrid hydrogel

    Science.gov (United States)

    Singh, Narendra K.; Nguyen, Quang Vinh; Kim, Bong Sup; Lee, Doo Sung

    2015-02-01

    The clinical efficacy of a therapeutic protein, the human growth hormone (hGH), is limited by its short plasma half-life and premature degradation. To overcome this limitation, we proposed a new protein delivery system by the self-assembly and intercalation of a negatively charged hGH onto a positively charged 2D-layered double hydroxide nanoparticle (LDH). The LDH-hGH ionic complex, with an average particle size of approximately 100 nm, retards hGH diffusion. Nanobiohybrid hydrogels (PAEU/LDH-hGH) were prepared by dispersing the LDH-hGH complex into a cationic pH- and temperature-sensitive injectable PAEU copolymer hydrogel to enhance sustained hGH release by dual ionic interactions. Biodegradable copolymer hydrogels comprising poly(β-amino ester urethane) and triblock poly(ε-caprolactone-lactide)-poly(ethylene glycol)-poly-(ε-caprolactone-lactide) (PCLA-PEG-PCLA) were synthesized and characterized. hGH was self-assembled and intercalated onto layered LDH nanoparticles through an anion exchange technique. X-ray diffraction and zeta potential results showed that the LDH-hGH complex was prepared successfully and that the PAEU/LDH-hGH nanobiohybrid hydrogel had a disordered intercalated nanostructure. The biocompatibility of the nanobiohybrid hydrogel was confirmed by an in vitro cytotoxicity test. The in vivo degradation of pure PAEU and its nanobiohybrid hydrogels was investigated and it showed a controlled degradation of the PAEU/LDH nanobiohybrids compared with the pristine PAEU copolymer hydrogel. The LDH-hGH loaded injectable hydrogels suppressed the initial burst release of hGH and extended the release period for 13 days in vitro and 5 days in vivo. The developed nanohybrid hydrogel has the potential for application as a protein carrier to improve patient compliance.The clinical efficacy of a therapeutic protein, the human growth hormone (hGH), is limited by its short plasma half-life and premature degradation. To overcome this limitation, we proposed a new

  2. A new route to fabricate biocompatible hydrogels with controlled drug delivery behavior.

    Science.gov (United States)

    Hu, Xiaohong; Gong, Xiao

    2016-05-15

    Hydrogels for drug delivery have attracted extensive interests since they can be used for biomaterials such as contact lenses. Here, we report that biocompatible hydrogels for contact lenses with controlled drug delivery behavior can be fabricated using copolymer hydrogels and Layer-by-Layer (LbL) surface modification technique. Methyl acrylic anhydride (MAA) modified β-cyclodextrin (β-CD) (MA-β-CD) was synthesized and copolymerized with hydroxyethyl methacrylate (HEMA) to form copolymer hydrogel. The introduction of second monomer of MA-β-CD would accelerate the polymerization of hydrogel, leading to increase of residual CC groups. The structure of copolymers was characterized by differential scanning calorimetry (DSC). Transparence, equilibrium swelling ratio and contact angle of copolymer hydrogel were also detailed discussed in the work. In vitro drug release results showed that copolymer hydrogel with higher MA-β-CD content exhibited a better drug loading capacity and drug release behaviors could be tuned by MA-β-CD/monomer ratio. Finally, alkynyl functional hyaluronic acid (HA-BP) and nitrine functional chitosan (CS-N3) were synthesized and covalently cross-linked to copolymer hydrogel surface using LbL technique through click chemistry. The successful LbL multilayers were confirmed by X-ray Photoelectron Spectroscopy (XPS). Resultsofcytotoxicityexperiment revealed that the hydrogels were biocompatible since they could support the growth of cells.

  3. Biocompatible implant surface treatments.

    Science.gov (United States)

    Pattanaik, Bikash; Pawar, Sudhir; Pattanaik, Seema

    2012-01-01

    Surface plays a crucial role in biological interactions. Surface treatments have been applied to metallic biomaterials in order to improve their wear properties, corrosion resistance, and biocompatibility. A systematic review was performed on studies investigating the effects of implant surface treatments on biocompatibility. We searched the literature using PubMed, electronic databases from 1990 to 2009. Key words such as implant surface topography, surface roughness, surface treatment, surface characteristics, and surface coatings were used. The search was restricted to English language articles published from 1990 to December 2009. Additionally, a manual search in the major dental implant journals was performed. When considering studies, clinical studies were preferred followed by histological human studies, animal studies, and in vitro studies. A total of 115 articles were selected after elimination: clinical studies, 24; human histomorphometric studies, 11; animal histomorphometric studies, 46; in vitro studies, 34. The following observations were made in this review: · The focus has shifted from surface roughness to surface chemistry and a combination of chemical manipulations on the porous structure. More investigations are done regarding surface coatings. · Bone response to almost all the surface treatments was favorable. · Future trend is focused on the development of osteogenic implant surfaces. Limitation of this study is that we tried to give a broader overview related to implant surface treatments. It does not give any conclusion regarding the best biocompatible implant surface treatment investigated till date. Unfortunately, the eventually selected studies were too heterogeneous for inference of data.

  4. Calcium orthophosphate coatings on magnesium and its biodegradable alloys.

    Science.gov (United States)

    Dorozhkin, Sergey V

    2014-07-01

    Biodegradable metals have been suggested as revolutionary biomaterials for bone-grafting therapies. Of these metals, magnesium (Mg) and its biodegradable alloys appear to be particularly attractive candidates due to their non-toxicity and as their mechanical properties match those of bones better than other metals do. Being light, biocompatible and biodegradable, Mg-based metallic implants have several advantages over other implantable metals currently in use, such as eliminating both the effects of stress shielding and the requirement of a second surgery for implant removal. Unfortunately, the fast degradation rates of Mg and its biodegradable alloys in the aggressive physiological environment impose limitations on their clinical applications. This necessitates development of implants with controlled degradation rates to match the kinetics of bone healing. Application of protective but biocompatible and biodegradable coatings able to delay the onset of Mg corrosion appears to be a reasonable solution. Since calcium orthophosphates are well tolerated by living organisms, they appear to be the excellent candidates for such coatings. Nevertheless, both the high chemical reactivity and the low melting point of Mg require specific parameters for successful deposition of calcium orthophosphate coatings. This review provides an overview of current coating techniques used for deposition of calcium orthophosphates on Mg and its biodegradable alloys. The literature analysis revealed that in all cases the calcium orthophosphate protective coatings both increased the corrosion resistance of Mg-based metallic biomaterials and improved their surface biocompatibility.

  5. In situ formation and gelation mechanism of thermoresponsive stereocomplexed hydrogels upon mixing diblock and triblock poly(lactic acid)/poly(ethylene glycol) copolymers.

    Science.gov (United States)

    Mao, Hailiang; Pan, Pengju; Shan, Guorong; Bao, Yongzhong

    2015-05-28

    A novel in situ formed gel system with potential biodegradability and biocompatibility is developed by mixing the diblock and triblock poly(lactic acid)/poly(ethylene glycol) (PLA/PEG) copolymers with opposite configurations of PLA blocks. In situ gelation of such system is extremely fast, which happens within 10 s after mixing. In situ gelation, gel-to-sol transition, crystalline structure, microstructures, and mechanical properties of PLA-PEG/PLA-PEG-PLA enantiomerically mixed gels are significantly influenced by the mixing ratio, degree of polymerization for PEG block in triblock (DPPEG,tri) and diblock copolymers (DPPEG,di). It is found that in situ gelation of PLA-PEG/PLA-PEG-PLA enantiomeric mixture just happen at relatively smaller PLA-PEG/PLA-PEG-PLA mass ratio and larger DPPEG,tri. Hydrodynamic diameters of PLA-PEG and PLA-PEG-PLA copolymers in dilute solution increase remarkably upon mixing, indicating the formation of bridging networks. Stereocomplexed crystallites are formed for the PLA hydrophobic domains in PLA-PEG/PLA-PEG-PLA enantiomeric mixtures. As indicated by synchrotron-radiation SAXS analysis, the enantiomeric mixture changes from a compactly to loosely aggregated structure and the intermicellar distance enhances with increasing DPPEG,tri, DPPEG,di, or PLA-PEG-PLA fraction. Gelation mechanism of PLA-PEG/PLA-PEG-PLA enantiomeric mixture is proposed, in which part of PLA-PEG-PLA chains act as the connecting bridges between star and flower-like micelles and the stereocomplexed crystallites in micelle cores act as physically cross-linked points.

  6. CAVITATION PROPERTIES OF BLOCK COPOLYMER STABILIZED PHASE-SHIFT NANOEMULSIONS USED AS DRUG CARRIERS

    OpenAIRE

    Rapoport, Natalya; Christensen, Douglas A.; KENNEDY, ANNE M.; NAM, KWEONHO

    2010-01-01

    Cavitation properties of block copolymer stabilized perfluoropentane nanoemulsions have been investigated. The nanoemulsions were stabilized by two biodegradable amphiphilic block copolymers differing in the structure of the hydrophobic block, poly(ethylene oxide)-co-poly(L-lactide) (PEG-PLLA) and poly(ethylene oxide)-co-polycaprolactone (PEG-PCL). Cavitation parameters were measured in liquid emulsions and gels as a function of ultrasound pressure for unfocused or focused 1-MHz ultrasound. A...

  7. Synthesis and Characterization of Chitosan-g-poly(D, L-lactic acid) Copolymer

    Institute of Scientific and Technical Information of China (English)

    Hua YANG; Shao Bing ZHOU; Xian Mo DENG

    2005-01-01

    Biodegradable chitosan-g-poly (D, L-lactic acid) copolymers were prepared via two methods. (1) The lactide was grafted onto hydroxyl groups of chitosan by using macromolecular initiator sodium of trimethylsilyl-chitosan, (2) poly (D,L-lactic acid)(PLA) with low molecular weight can be linked to the amino group by coupling activated PLA to trimethylsilyl-chitosan. Two graft copolymers had hydrophilic-hydrophobic character and can be applied as carriers for drug delivery.

  8. Biocompatibility of composite resins

    Directory of Open Access Journals (Sweden)

    Sayed Mostafa Mousavinasab

    2011-01-01

    Full Text Available Dental materials that are used in dentistry should be harmless to oral tissues, so they should not contain any leachable toxic and diffusible substances that can cause some side effects. Reports about probable biologic hazards, in relation to dental resins, have increased interest to this topic in dentists. The present paper reviews the articles published about biocompatibility of resin-restorative materials specially resin composites and monomers which are mainly based on Bis-GMA and concerns about their degradation and substances which may be segregated into oral cavity.

  9. Studies on Preparation of Poly(3,4-Dihydroxyphenylalanine-Polylactide Copolymers and the Effect of the Structure of the Copolymers on Their Properties

    Directory of Open Access Journals (Sweden)

    Dongjian Shi

    2016-03-01

    Full Text Available Properties of copolymers are generally influenced by the structure of the monomers and polymers. For the purpose of understanding the effect of polymer structure on the properties, two kinds of copolymers, poly(3,4-dihydroxyphenylalanine-g-polylactide and poly(3,4-dihydroxyphenylalanine-b-polylactide (PDOPA-g-PLA and PDOPA-b-PLA were designed and prepared by ring-opening polymerization of lactide with pre-prepared PDOPA as the initiator and the amidation of the functional PLA and PDOPA oligomer, respectively. The molecular weight and composition of the copolymers could be adjusted by changing the molar ratio of LA and DOPA and were confirmed by gel permeation chromatography (GPC and proton nuclear magnetic resonance (1H NMR spectra. The obtained copolymers with graft and block structures showed high solubility even in common organic solvents. The effects of the graft and block structures on the thermal and degradation properties were also detected. The PDOPA-g-PLA copolymers showed higher thermal stability than the PDOPA-b-PLA copolymers, due to the PDOPA-g-PLA copolymers with regular structure and strong π-π stacking interactions among the intermolecular and intramolecular chains. In addition, the degradation results showed that the PDOPA-g-PLA copolymers and the copolymers with higher DOPA composition had quicker degradation speeds. Interestingly, both two kinds of copolymers, after degradation, became undissolved in the organic solvents because of the oxidation and crosslinking formation of the catechol groups in the DOPA units during degradation in alkaline solution. Moreover, fluorescent microscopy results showed good biocompatibility of the PDOPA-g-PLA and PDOPA-b-PLA copolymers. The PDOPA and PLA copolymers have the potential applications to the biomedical and industrial fields.

  10. Novel biodegradable nanocarriers for enhanced drug delivery.

    Science.gov (United States)

    Gagliardi, Mariacristina

    2016-12-01

    With the refinement of functional properties, the interest around biodegradable materials, in biorelated applications and, in particular, in their use as controlled drug-delivery systems, increased in the last decades. Biodegradable materials are an ideal platform to obtain nanoparticles for spatiotemporal controlled drug delivery for the in vivo administration, thanks to their biocompatibility, functionalizability, the control exerted on delivery rates and the complete degradation. Their application in systems for cancer treatment, brain and cardiovascular diseases is already a consolidated practice in research, while the bench-to-bedside translation is still late. This review aims at summarizing reported applications of biodegradable materials to obtain drug-delivery nanoparticles in the last few years, giving a complete overview of pros and cons related to degradable nanomedicaments.

  11. Anaerobic biodegradability of macropollutants

    DEFF Research Database (Denmark)

    Angelidaki, Irini

    2002-01-01

    A variety of test procedures for determination of anaerobic biodegradability has been reported. This paper reviews the methods developed for determination of anaerobic biodegradability of macro-pollutants. Anaerobic biodegradability of micro-pollutants is not included. Furthermore, factors import...

  12. Biocompatibility of Niobium Coatings

    Directory of Open Access Journals (Sweden)

    René Olivares-Navarrete

    2011-09-01

    Full Text Available Niobium coatings deposited by magnetron sputtering were evaluated as a possible surface modification for stainless steel (SS substrates in biomedical implants. The Nb coatings were deposited on 15 mm diameter stainless steel substrates having an average surface roughness of 2 mm. To evaluate the biocompatibility of the coatings three different in vitro tests, using human alveolar bone derived cells, were performed: cellular adhesion, proliferation and viability. Stainless steel substrates and tissue culture plastic were also studied, in order to give comparative information. No toxic response was observed for any of the surfaces, indicating that the Nb coatings act as a biocompatible, bioinert material. Cell morphology was also studied by immune-fluorescence and the results confirmed the healthy state of the cells on the Nb surface. X-ray diffraction analysis of the coating shows that the film is polycrystalline with a body centered cubic structure. The surface composition and corrosion resistance of both the substrate and the Nb coating were also studied by X-ray photoelectron spectroscopy and potentiodynamic tests. Water contact angle measurements showed that the Nb surface is more hydrophobic than the SS substrate.

  13. Critical evaluation of biodegradable polymers used in nanodrugs

    Directory of Open Access Journals (Sweden)

    Marin E

    2013-08-01

    Full Text Available Edgar Marin,1–3 Maria Isabel Briceño,2 Catherina Caballero-George11Unit of Pharmacology, Center of Biodiversity and Drug Discovery, Institute of Scientific Research and High Technology Services, 2Nano Dispersions Technology, Panama, Republic of Panama; 3Department of Biotechnology, Archaria Nagarjuna University, Guntur, IndiaAbstract: Use of biodegradable polymers for biomedical applications has increased in recent decades due to their biocompatibility, biodegradability, flexibility, and minimal side effects. Applications of these materials include creation of skin, blood vessels, cartilage scaffolds, and nanosystems for drug delivery. These biodegradable polymeric nanoparticles enhance properties such as bioavailability and stability, and provide controlled release of bioactive compounds. This review evaluates the classification, synthesis, degradation mechanisms, and biological applications of the biodegradable polymers currently being studied as drug delivery carriers. In addition, the use of nanosystems to solve current drug delivery problems are reviewed.Keywords: biodegradable polymers, nanoparticles, drug delivery, cellular uptake, biomedical applications

  14. Porous Biodegradable Metals for Hard Tissue Scaffolds: A Review

    Directory of Open Access Journals (Sweden)

    A. H. Yusop

    2012-01-01

    Full Text Available Scaffolds have been utilized in tissue regeneration to facilitate the formation and maturation of new tissues or organs where a balance between temporary mechanical support and mass transport (degradation and cell growth is ideally achieved. Polymers have been widely chosen as tissue scaffolding material having a good combination of biodegradability, biocompatibility, and porous structure. Metals that can degrade in physiological environment, namely, biodegradable metals, are proposed as potential materials for hard tissue scaffolding where biodegradable polymers are often considered as having poor mechanical properties. Biodegradable metal scaffolds have showed interesting mechanical property that was close to that of human bone with tailored degradation behaviour. The current promising fabrication technique for making scaffolds, such as computation-aided solid free-form method, can be easily applied to metals. With further optimization in topologically ordered porosity design exploiting material property and fabrication technique, porous biodegradable metals could be the potential materials for making hard tissue scaffolds.

  15. Biodegradation and bioremediation

    DEFF Research Database (Denmark)

    Albrechtsen, H.-J.

    1996-01-01

    Anmeldelse af Alexander,M.: Biodegradation and bioremediation. Academic Press, Sandiego, USA, 1994......Anmeldelse af Alexander,M.: Biodegradation and bioremediation. Academic Press, Sandiego, USA, 1994...

  16. Biodegradable PLGA-b-PEG polymeric nanoparticles: synthesis, properties, and nanomedical applications as drug delivery system

    Energy Technology Data Exchange (ETDEWEB)

    Locatelli, Erica; Comes Franchini, Mauro, E-mail: mauro.comesfranchini@unibo.it [University of Bologna, Dipartimento di Chimica Industriale Toso Montanari (Italy)

    2012-12-15

    During the past decades many synthetic polymers have been studied for nanomedicine applications and in particular as drug delivery systems. For this purpose, polymers must be non-toxic, biodegradable, and biocompatible. Polylactic-co-glycolic acid (PLGA) is one of the most studied polymers due to its complete biodegradability and ability to self-assemble into nanometric micelles that are able to entrap small molecules like drugs and to release them into body in a time-dependent manner. Despite fine qualities, using PLGA polymeric nanoparticles for in vivo applications still remains an open challenge due to many factors such as poor stability in water, big diameter (150-200 nm), and the removal of these nanocarriers from the blood stream by the liver and spleen thus reducing the concentration of drugs drastically in tumor tissue. Polyethylene glycol (PEG) is the most used polymers for drug delivery applications and the first PEGylated product is already on the market for over 20 years. This is due to its stealth behavior that inhibits the fast recognition by the immune system (opsonization) and generally leads to a reduced blood clearance of nanocarriers increasing blood circulation time. Furthermore, PEG is hydrophilic and able to stabilize nanoparticles by steric and not ionic effects especially in water. PLGA-PEG block copolymer is an emergent system because it can be easily synthesized and it possesses all good qualities of PLGA and also PEG capability so in the last decade it arose as one of the most promising systems for nanoparticles formation, drug loading, and in vivo drug delivery applications. This review will discuss briefly on PLGA-b-PEG synthesis and physicochemical properties, together with its improved qualities with respect to the single PLGA and PEG polymers. Moreover, we will focus on but in particular will treat nanoparticles formation and uses as new drug delivery system for nanomedical applications.

  17. A biodegradabilidade da blenda de poli(β-Hidroxibutirato-co-Valerato/amido anfótero na presença de microrganismos The Biodegradation of polyhydroxybutyrate-co-valerate/amphiprotic starch in the presence of microorganisms

    Directory of Open Access Journals (Sweden)

    Nadjane S. Coelho

    2008-09-01

    Full Text Available O crescimento do consumo de plásticos vem gerando grandes problemas ambientais, pois um polímero, uma vez descartado no ambiente, necessita de mais de cem anos para se degradar. O plástico ideal deve apresentar propriedades industriais desejáveis e, ao mesmo tempo ser degradável num período considerado satisfatório. Busca-se desenvolver plásticos com boas propriedades para embalagens e que possam ser biodegradados quando descartados ao ambiente. Neste trabalho avaliamos a biodegradação da blenda do copolímero poli(β-hidroxibutirato-co-valerato, PHB-HV, que é um termoplástico natural, biodegradável e biocompatível, e do amido anfótero, na proporção de 75 e 25% m/m, respectivamente. Os resultados foram obtidos através do teste de Sturm, uma metodologia para a avaliação da biodegradação na presença de uma cultura mista dos fungos Phanerochaete chrysosporium e Talaromyces wortmannii. Os resultados evidenciam a biodegradação da blenda em função do tempo, de acordo com os resultados do teste de Sturm, com o aparecimento de grupos carboxílicos terminais. Foi detectado também o aparecimento de nova simetria cristalina na estrutura polimérica.The increasing consumption of plastics has generated environmental problems because it takes more than a hundred years for a discarded polymer to degrade. The ideal plastic should present desirable industrial properties and be degradable within a satisfactory time period. Researches is conducted to plastics with good properties for packaging, but that are biodegradable when discarded to the environment. In this work we evaluated the biodegradation of the blend of the copolymer poly(hydroxybutyrate-hydroxyvalerate, PHB-HV, which is a natural, biodegradable and biocompatible thermoplastic, and of the starch amphiprotic, in the proportion of 75 and 25% m/m, respectively. The results were obtained through the Sturm test, a methodology for the evaluation of biodegradation in the presence

  18. In Vitro Models in BiocompatibilityAssessment for Biomedical-Grade Chitosan Derivatives in Wound Management

    Directory of Open Access Journals (Sweden)

    Lim Chin Keong

    2009-03-01

    Full Text Available One of the ultimate goals of wound healing research is to find effective healing techniques that utilize the regeneration of similar tissues. This involves the modification of various wound dressing biomaterials for proper wound management. The biopolymer chitosan (b-1,4-D-glucosamine has natural biocompatibility and biodegradability that render it suitable for wound management. By definition, a biocompatible biomaterial does not have toxic or injurious effects on biological systems. Chemical and physical modifications of chitosan influence its biocompatibility and biodegradability to an uncertain degree. Hence, the modified biomedical-grade of chitosan derivatives should be pre-examined in vitro in order to produce high-quality, biocompatible dressings. In vitro toxicity examinations are more favorable than those performed in vivo, as the results are more reproducible and predictive. In this paper, basic in vitro tools were used to evaluate cellular and molecular responses with regard to the biocompatibility of biomedical-grade chitosan. Three paramount experimental parameters of biocompatibility in vitro namely cytocompatibility, genotoxicity and skin pro-inflammatory cytokine expression, were generally reviewed for biomedical-grade chitosan as wound dressing.

  19. Progress of biodegradable metals

    Directory of Open Access Journals (Sweden)

    Huafang Li

    2014-10-01

    Full Text Available Biodegradable metals (BMs are metals and alloys expected to corrode gradually in vivo, with an appropriate host response elicited by released corrosion products, then dissolve completely upon fulfilling the mission to assist with tissue healing with no implant residues. In the present review article, three classes of BMs have been systematically reviewed, including Mg-based, Fe-based and Zn-based BMs. Among the three BM systems, Mg-based BMs, which now have several systems reported the successful of clinical trial results, are considered the vanguards and main force. Fe-based BMs, with pure iron and Fe–Mn based alloys as the most promising, are still on the animal test stage. Zn-based BMs, supposed to have the degradation rate between the fast Mg-based BMs and the slow Fe-based BMs, are a rising star with only several reports and need much further research. The future research and development direction for the BMs are proposed, based on the clinical requirements on controllable degradation rate, prolonged mechanical stability and excellent biocompatibility, by optimization of alloy composition design, regulation on microstructure and mechanical properties, and following surface modification.

  20. Block and Graft Copolymers of Polyhydroxyalkanoates

    Science.gov (United States)

    Marchessault, Robert H.; Ravenelle, François; Kawada, Jumpei

    2004-03-01

    Polyhydroxyalkanoates (PHAs) were modified for diblock copolymer and graft polymer by catalyzed transesterification in the melt and by chemical synthesis to extend the side chains of the PHAs, and the polymers were studied by transmission electron microscopy (TEM) X-ray diffraction, thermal analysis and nuclear magnetic resonance (NMR). Catalyzed transesterification in the melt is used to produce diblock copolymers of poly[3-hydroxybutyrate] (PHB) and monomethoxy poly[ethylene glycol] (mPEG) in a one-step process. The resulting diblock copolymers are amphiphilic and self-assemble into sterically stabilized colloidal suspensions of PHB crystalline lamellae. Graft polymer was synthesized in a two-step chemical synthesis from biosynthesized poly[3-hydroxyoctanoate-co-3-hydroxyundecenoate] (PHOU) containing ca. 25 mol chains. 11-mercaptoundecanoic acid reacts with the side chain alkenes of PHOU by the radical addition creating thioether linkage with terminal carboxyl functionalities. The latter groups were subsequently transformed into the amide or ester linkage by tridecylamine or octadecanol, respectively, producing new graft polymers. The polymers have different physical properties than poly[3-hydroxyoctanoate] (PHO) which is the main component of the PHOU, such as non-stickiness and higher thermal stability. The combination of biosynthesis and chemical synthesis produces a hybrid thermoplastic elastomer with partial biodegradability.

  1. BIOCOMPATIBLE FLUORESCENT MICROSPHERES: SAFE PARTICLES FOR MATERIAL PENETRATION STUDIES

    Energy Technology Data Exchange (ETDEWEB)

    Farquar, G; Leif, R

    2009-07-15

    Biocompatible polymers with hydrolyzable chemical bonds have been used to produce safe, non-toxic fluorescent microspheres for material penetration studies. The selection of polymeric materials depends on both biocompatibility and processability, with tailored fluorescent properties depending on specific applications. Microspheres are composed of USFDA-approved biodegradable polymers and non-toxic fluorophores and are therefore suitable for tests where human exposure is possible. Micropheres were produced which contain unique fluorophores to enable discrimination from background aerosol particles. Characteristics that affect dispersion and adhesion can be modified depending on use. Several different microsphere preparation methods are possible, including the use of a vibrating orifice aerosol generator (VOAG), a Sono-Tek atomizer, an emulsion technique, and inkjet printhead. Applications for the fluorescent microspheres include challenges for biodefense system testing, calibrants for biofluorescence sensors, and particles for air dispersion model validation studies.

  2. Dynamic in vivo biocompatibility of angiogenic peptide amphiphile nanofibers.

    Science.gov (United States)

    Ghanaati, Shahram; Webber, Matthew J; Unger, Ronald E; Orth, Carina; Hulvat, James F; Kiehna, Sarah E; Barbeck, Mike; Rasic, Angela; Stupp, Samuel I; Kirkpatrick, C James

    2009-10-01

    Biomaterials that promote angiogenesis have great potential in regenerative medicine for rapid revascularization of damaged tissue, survival of transplanted cells, and healing of chronic wounds. Supramolecular nanofibers formed by self-assembly of a heparin-binding peptide amphiphile and heparan sulfate-like glycosaminoglycans were evaluated here using a dorsal skinfold chamber model to dynamically monitor the interaction between the nanofiber gel and the microcirculation, representing a novel application of this model. We paired this model with a conventional subcutaneous implantation model for static histological assessment of the interactions between the gel and host tissue. In the static analysis, the heparan sulfate-containing nanofiber gels were found to persist in the tissue for up to 30 days and revealed excellent biocompatibility. Strikingly, as the nanofiber gel biodegraded, we observed the formation of a de novo vascularized connective tissue. In the dynamic experiments using the dorsal skinfold chamber, the material again demonstrated good biocompatibility, with minimal dilation of the microcirculation and only a few adherent leukocytes, monitored through intravital fluorescence microscopy. The new application of the dorsal skinfold model corroborated our findings from the traditional static histology, demonstrating the potential use of this technique to dynamically evaluate the biocompatibility of materials. The observed biocompatibility and development of new vascularized tissue using both techniques demonstrates the potential of these angiogenesis-promoting materials for a host of regenerative strategies.

  3. Antitumor efficacy of poly(dimer acid-dodecanedioic acid) copolymer in mice bearing Sarcoma-180 tumor.

    Science.gov (United States)

    Guo, Wen-Xun; Shi, Zongli; Zeng, Fan-Bing; Liang, Kui; Chen, Xian-Hong; Ai, Yong-Ping; Fang, Min; Sun, Xiao; Zhang, Zhi; Hu, Li-Xin

    2007-08-01

    The drug release profiles of poly(dimer acid-dodecanedioic acid) P(DA-DDDA) copolymer containing 5% adriamycin hydrochloride (ADM) in vitro were evaluated. The biocompatibility of P(DA-DDDA) under mice skin was also evaluated, macroscopic observation and microscopic analysis demonstrated that the copolymer is biocompatible and well tolerated in vivo. Antitumor efficacy of P(DA-DDDA) copolymers containing 5% adriamycin hydrochloride (ADM) implanted subcutaneously in mice bearing Sarcoma-180 tumor exhibited increased volume doubling time (VDT) (31 +/- 1.5 days) compared to plain subcutaneous injection of ADM (7 +/- 0.9 days). The studies suggest that P(DA-DDDA) copolymer as an effective carrier for antineoplastic drug like adriamycin hydrochloride has a very good prospect in the treatment of noumenon tumors.

  4. Biodegradable compounds: Rheological, mechanical and thermal properties

    Science.gov (United States)

    Nobile, Maria Rossella; Lucia, G.; Santella, M.; Malinconico, M.; Cerruti, P.; Pantani, R.

    2015-12-01

    Recently great attention from industry has been focused on biodegradable polyesters derived from renewable resources. In particular, PLA has attracted great interest due to its high strength and high modulus and a good biocompatibility, however its brittleness and low heat distortion temperature (HDT) restrict its wide application. On the other hand, Poly(butylene succinate) (PBS) is a biodegradable polymer with a low tensile modulus but characterized by a high flexibility, excellent impact strength, good thermal and chemical resistance. In this work the two aliphatic biodegradable polyesters PBS and PLA were selected with the aim to obtain a biodegradable material for the industry of plastic cups and plates. PBS was also blended with a thermoplastic starch. Talc was also added to the compounds because of its low cost and its effectiveness in increasing the modulus and the HDT of polymers. The compounds were obtained by melt compounding in a single screw extruder and the rheological, mechanical and thermal properties were investigated. The properties of the two compounds were compared and it was found that the values of the tensile modulus and elongation at break measured for the PBS/PLA/Talc compound make it interesting for the production of disposable plates and cups. In terms of thermal resistance the compounds have HDTs high enough to contain hot food or beverages. The PLA/PBS/Talc compound can be, then, considered as biodegradable substitute for polystyrene for the production of disposable plates and cups for hot food and beverages.

  5. Resisting protein adsorption on biodegradable polyester brushes.

    Science.gov (United States)

    Hu, Xinfang; Gorman, Christopher B

    2014-08-01

    The protein adsorption and degradation behaviors of poly(lactic acid), poly(glycolic acid) (PGA) and poly(ε-caprolactone) (PCL) brushes and their co-polymer brushes with oligo(ethylene glycol) (OEG) were studied. Both brush structure and relative amount of OEG and polyester were found to be important to the protein resistance of the brushes. A protein-resisting surface can be fabricated either by using OEG as the top layer of a copolymer brush or by increasing the amount of OEG relative to polyester when using a hydroxyl terminated OEG (OEG-OH) and a methoxy terminated OEG (OEG-OMe) mixture as the substrate layer. The degradation of single polyester brushes and their co-polymer brushes using OEG-OH as a substrate layer or using OEG as a top layer was hindered. This phenomenon was rationalized by the inhibition of the proposed back-biting process as the hydroxy end groups of polyester were blocked by OEG molecules. Among these brushes tested, PGA co-polymer brushes using the methoxy/hydroxyl OEG mixture as the substrate layer proved to be both protein-resistant and degradable due to the relatively large amount of OEG moieties and the good biodegradability of PGA.

  6. 生物降解高分子胶束-金壳纳米结构的制备和性能研究%PREPARATION AND PROPERTIES OF BIODEGRADABLE COPOLYMER MICELLE@GOLD NANOSHELLS

    Institute of Scientific and Technical Information of China (English)

    袁海键; 董常明

    2013-01-01

    cells were killed, while the gold nanoshells had low cytotoxicity. Collectively, the micelle@ gold nanoshells demonstrated good biocompatibility, and could efficiently kill tumor cells in vitro,making them potential for photothermal tumor therapy.

  7. Biocompatibility of Coronary Stents

    Directory of Open Access Journals (Sweden)

    Thamarasee M. Jeewandara

    2014-01-01

    Full Text Available Cardiovascular disease is the dominant cause of mortality in developed countries, with coronary artery disease (CAD a predominant contributor. The development of stents to treat CAD was a significant innovation, facilitating effective percutaneous coronary revascularization. Coronary stents have evolved from bare metal compositions, to incorporate advances in pharmacological therapy in what are now known as drug eluting stents (DES. Deployment of a stent overcomes some limitations of balloon angioplasty alone, but provides an acute stimulus for thrombus formation and promotes neointimal hyperplasia. First generation DES effectively reduced in-stent restenosis, but profoundly delay healing and are susceptible to late stent thrombosis, leading to significant clinical complications in the long term. This review characterizes the development of coronary stents, detailing the incremental improvements, which aim to attenuate the major clinical complications of thrombosis and restenosis. Despite these enhancements, coronary stents remain fundamentally incompatible with the vasculature, an issue which has largely gone unaddressed. We highlight the latest modifications and research directions that promise to more holistically design coronary implants that are truly biocompatible.

  8. Flexible organic light emitting diodes fabricated on biocompatible silk fibroin substrate

    Science.gov (United States)

    Liu, Yuqiang; Xie, Yuemin; Liu, Yuan; Song, Tao; Zhang, Ke-Qin; Liao, Liangsheng; Sun, Baoquan

    2015-10-01

    Flexible and biodegradable electronics are currently under extensive investigation for biocompatible and environmentally-friendly applications. Synthetic plastic foils are widely used as substrates for flexible electronics. But typical plastic substrates such as polyethylene naphthalate (PEN) could not be degraded in a natural bio-environment. A great demand still exists for a next-generation biocompatible and biodegradable substrate for future application. For example, electronic devices can be potentially integrated into the human body. In this work, we demonstrate that the biocompatible and biodegradable natural silk fibroin (SF) films embedded with silver nanowires (AgNWs) mesh could be employed as conductive transparent substrates to fabricate flexible organic light emitting diodes (OLEDs). Compared with commercial PEN substrates coated with indium tin oxide, the AgNWs/SF composite substrates exhibit a similar sheet resistance of 12 Ω sq-1, a lower surface roughness, as well as a broader light transmission range. Flexible OLEDs based on AgNWs/SF substrates achieve a current efficiency of 19 cd A-1, demonstrating the potential of the flexible AgNWs/SF films as conductive and transparent substrates for next-generation biodegradable devices.

  9. Polyester-based (bio)degradable polymers as environmentally friendly materials for sustainable development.

    Science.gov (United States)

    Rydz, Joanna; Sikorska, Wanda; Kyulavska, Mariya; Christova, Darinka

    2014-12-29

    This review focuses on the polyesters such as polylactide and polyhydroxyalkonoates, as well as polyamides produced from renewable resources, which are currently among the most promising (bio)degradable polymers. Synthetic pathways, favourable properties and utilisation (most important applications) of these attractive polymer families are outlined. Environmental impact and in particular (bio)degradation of aliphatic polyesters, polyamides and related copolymer structures are described in view of the potential applications in various fields.

  10. Biodegradable polyesters based on succinic acid

    Directory of Open Access Journals (Sweden)

    Nikolić Marija S.

    2003-01-01

    Full Text Available Two series of aliphatic polyesters based on succinic acid were synthesized by copolymerization with adipic acid for the first series of saturated polyesters, and with fumaric acid for the second series. Polyesters were prepared starting from the corresponding dimethyl esters and 1,4-butanediol by melt transesterification in the presence of a highly effective catalyst tetra-n-butyl-titanate, Ti(0Bu4. The molecular structure and composition of the copolyesters was determined by 1H NMR spectroscopy. The effect of copolymer composition on the physical and thermal properties of these random polyesters were investigated using differential scanning calorimetry. The degree of crystallinity was determined by DSC and wide angle X-ray. The degrees of crystallinity of the saturated and unsaturated copolyesters were generally reduced with respect to poly(butylene succinate, PBS. The melting temperatures of the saturated polyesters were lower, while the melting temperatures of the unsaturated copolyesters were higher than the melting temperature of PBS. The biodegradability of the polyesters was investigated by enzymatic degradation tests. The enzymatic degradation tests were performed in a buffer solution with Candida cylindracea lipase and for the unsaturated polyesters with Rhizopus arrhizus lipase. The extent of biodegradation was quantified as the weight loss of polyester films. Also the surface of the polyester films after degradation was observed using optical microscopy. It could be concluded that the biodegradability depended strongly on the degree of crystallinity, but also on the flexibility of the chain backbone. The highest biodegradation was observed for copolyesters containing 50 mol.% of adipic acid units, and in the series of unsaturated polyesters for copolyesters containing 5 and 10 mol.% of fumarate units. Although the degree of crystallinity of the unsaturated polyesters decreased slightly with increasing unsaturation, the biodegradation

  11. Surface Mechanical and Rheological Behaviors of Biocompatible Poly((D,L-lactic acid-ran-glycolic acid)-block-ethylene glycol) (PLGA-PEG) and Poly((D,L-lactic acid-ran-glycolic acid-ran-ε-caprolactone)-block-ethylene glycol) (PLGACL-PEG) Block Copolymers at the Air-Water Interface

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyun Chang; Lee, Hoyoung; Khetan, Jawahar; Won, You-Yeon [Purdue

    2016-02-01

    Air–water interfacial monolayers of poly((d,l-lactic acid-ran-glycolic acid)-block-ethylene glycol) (PLGA–PEG) exhibit an exponential increase in surface pressure under high monolayer compression. In order to understand the molecular origin of this behavior, a combined experimental and theoretical investigation (including surface pressure–area isotherm, X-ray reflectivity (XR) and interfacial rheological measurements, and a self-consistent field (SCF) theoretical analysis) was performed on air–water monolayers formed by a PLGA–PEG diblock copolymer and also by a nonglassy analogue of this diblock copolymer, poly((d,l-lactic acid-ran-glycolic acid-ran-caprolactone)-block-ethylene glycol) (PLGACL–PEG). The combined results of this study show that the two mechanisms, i.e., the glass transition of the collapsed PLGA film and the lateral repulsion of the PEG brush chains that occur simultaneously under lateral compression of the monolayer, are both responsible for the observed PLGA–PEG isotherm behavior. Upon cessation of compression, the high surface pressure of the PLGA–PEG monolayer typically relaxes over time with a stretched exponential decay, suggesting that in this diblock copolymer situation, the hydrophobic domain formed by the PLGA blocks undergoes glass transition in the high lateral compression state, analogously to the PLGA homopolymer monolayer. In the high PEG grafting density regime, the contribution of the PEG brush chains to the high monolayer surface pressure is significantly lower than what is predicted by the SCF model because of the many-body attraction among PEG segments (referred to in the literature as the “n-cluster” effects). The end-grafted PEG chains were found to be protein resistant even under the influence of the “n-cluster” effects.

  12. Surface Mechanical and Rheological Behaviors of Biocompatible Poly((D,L-lactic acid-ran-glycolic acid)-block-ethylene glycol) (PLGA-PEG) and Poly((D,L-lactic acid-ran-glycolic acid-ran-ε-caprolactone)-block-ethylene glycol) (PLGACL-PEG) Block Copolymers at the Air-Water Interface.

    Science.gov (United States)

    Kim, Hyun Chang; Lee, Hoyoung; Khetan, Jawahar; Won, You-Yeon

    2015-12-29

    Air-water interfacial monolayers of poly((D,L-lactic acid-ran-glycolic acid)-block-ethylene glycol) (PLGA-PEG) exhibit an exponential increase in surface pressure under high monolayer compression. In order to understand the molecular origin of this behavior, a combined experimental and theoretical investigation (including surface pressure-area isotherm, X-ray reflectivity (XR) and interfacial rheological measurements, and a self-consistent field (SCF) theoretical analysis) was performed on air-water monolayers formed by a PLGA-PEG diblock copolymer and also by a nonglassy analogue of this diblock copolymer, poly((D,L-lactic acid-ran-glycolic acid-ran-caprolactone)-block-ethylene glycol) (PLGACL-PEG). The combined results of this study show that the two mechanisms, i.e., the glass transition of the collapsed PLGA film and the lateral repulsion of the PEG brush chains that occur simultaneously under lateral compression of the monolayer, are both responsible for the observed PLGA-PEG isotherm behavior. Upon cessation of compression, the high surface pressure of the PLGA-PEG monolayer typically relaxes over time with a stretched exponential decay, suggesting that in this diblock copolymer situation, the hydrophobic domain formed by the PLGA blocks undergoes glass transition in the high lateral compression state, analogously to the PLGA homopolymer monolayer. In the high PEG grafting density regime, the contribution of the PEG brush chains to the high monolayer surface pressure is significantly lower than what is predicted by the SCF model because of the many-body attraction among PEG segments (referred to in the literature as the "n-cluster" effects). The end-grafted PEG chains were found to be protein resistant even under the influence of the "n-cluster" effects.

  13. Fabrication and Biocompatibility of Electrospun Silk Biocomposites

    Science.gov (United States)

    Wei, Kai; Kim, Byoung-Suhk; Kim, Ick-Soo

    2011-01-01

    Silk fibroin has attracted great interest in tissue engineering because of its outstanding biocompatibility, biodegradability and minimal inflammatory reaction. In this study, two kinds of biocomposites based on regenerated silk fibroin are fabricated by electrospinning and post-treatment processes, respectively. Firstly, regenerated silk fibroin/tetramethoxysilane (TMOS) hybrid nanofibers with high hydrophilicity are prepared, which is superior for fibroblast attachment. The electrospinning process causes adjacent fibers to ‘weld’ at contact points, which can be proved by scanning electron microscope (SEM). The water contact angle of silk/tetramethoxysilane (TMOS) composites shows a sharper decrease than pure regenerated silk fibroin nanofiber, which has a great effect on the early stage of cell attachment behavior. Secondly, a novel tissue engineering scaffold material based on electrospun silk fibroin/nano-hydroxyapatite (nHA) biocomposites is prepared by means of an effective calcium and phosphate (Ca–P) alternate soaking method. nHA is successfully produced on regenerated silk fibroin nanofiber within several min without any pre-treatments. The osteoblastic activities of this novel nanofibrous biocomposites are also investigated by employing osteoblastic-like MC3T3-E1 cell line. The cell functionality such as alkaline phosphatase (ALP) activity is ameliorated on mineralized silk nanofibers. All these results indicate that this silk/nHA biocomposite scaffold material may be a promising biomaterial for bone tissue engineering. PMID:24957869

  14. [Development of biodegradable magnesium-based biomaterials].

    Science.gov (United States)

    Zhu, Shengfa; Xu, Li; Huang, Nan

    2009-04-01

    Magnesium is a macroelement which is indispensable to human bodies. As a lightweight metal with high specific strength and favorable biocompatibility, magnesium and its alloys have been introduced in the field of biomedical materials research and have a broad application prospect. It is possible to develop new type of biodegradable medical magnesium alloys by use of the poor corrosion resistance of magnesium. Bioabsorbable magnesium stents implanted in vivo could mechanically support the vessel in a short term, effectly prevent the acute coronary occlusion and in-stent restenosis, and then be gradully biodegraded and completely absorbed in a long term. Osteoconductive bioactivity in magnesium-based alloys could promote the apposition growth of bone tissue. This paper reviews the progress of magnesium and its alloys applied in bone tissue and cardiovascular stents, and the prospect of the future research of magnesium-based biomaterials is discussed.

  15. In vivo bone biocompatibility and degradation of porous fumarate-based polymer/alumoxane nanocomposites for bone tissue engineering.

    NARCIS (Netherlands)

    Mistry, A.S.; Pham, Q.P.; Schouten, C.; Yeh, T.; Christenson, E.M.; Mikos, A.G.; Jansen, J.A.

    2010-01-01

    The objective of this study was to determine how the incorporation of surface-modified alumoxane nanoparticles into a biodegradable fumarate-based polymer affects in vivo bone biocompatibility (characterized by direct bone contact and bone ingrowth) and in vivo degradability. Porous scaffolds were f

  16. Biodegradable synthetic bone composites

    Science.gov (United States)

    Liu, Gao; Zhao, Dacheng; Saiz, Eduardo; Tomsia, Antoni P.

    2013-01-01

    The invention provides for a biodegradable synthetic bone composition comprising a biodegradable hydrogel polymer scaffold comprising a plurality of hydrolytically unstable linkages, and an inorganic component; such as a biodegradable poly(hydroxyethylmethacrylate)/hydroxyapatite (pHEMA/HA) hydrogel composite possessing mineral content approximately that of human bone.

  17. Synthesis and Characterization of ABBA Block Copolymer of Glycolide and ε-Caprolactone

    Institute of Scientific and Technical Information of China (English)

    CHEN Li; CHEN Xue-si; DENG Ming-xiao; JING Xia-bin

    2005-01-01

    A biodegradable ABBA block copolymer was synthesized via the ring-opening co-polymerization of ε-caprolactone(CL, B) and glycolide(A) by means of step polymerization in the presence of ethylene glycol as an initiator and stannous octanoate as a catalyst at 110 ℃ for 48 h. The molecular length of the PCL pre-polymer(BB) could be adjusted by controlling the molar ratio of the ethylene glycol initiator to ε-caprolactone monomer. The structure and the composition of the block copolymer were determined by the weight ratio of the monomer glycolide(A) to PCL pre-polymer(BB). The block copolymers were characterized by 1H NMR, GPC, DSC and X-ray. The results confirm the successful synthesis of an ABBA block copolymer.

  18. [Biodegradation of polyethylene].

    Science.gov (United States)

    Yang, Jun; Song, Yi-ling; Qin, Xiao-yan

    2007-05-01

    Plastic material is one of the most serious solid wastes pollution. More than 40 million tons of plastics produced each year are discarded into environment. Plastics accumulated in the environment is highly resistant to biodegradation and not be able to take part in substance recycle. To increase the biodegradation efficiency of plastics by different means is the main research direction. This article reviewed the recent research works of polyethylene biodegradation that included the modification and pretreatment of polyethylene, biodegradation pathway, the relevant microbes and enzymes and the changes of physical, chemical and biological properties after biodegradation. The study directions of exploiting the kinds of life-forms of biodegradation polyethylene except the microorganisms, isolating and cloning the key enzymes and gene that could produce active groups, and enhancing the study on polyethylene biodegradation without additive were proposed.

  19. Biodegradable p(DLLA-epsilon-CL) nerve guides versus autologous nerve grafts : Electromyographic and video analysis

    NARCIS (Netherlands)

    Meek, MF; Nicolai, JPA; Gramsbergen, A; van der Werf, J.F.A.

    2001-01-01

    The aim of this study was to evaluate the functional effects of bridging a gap in the sciatic nerve of the rat with either a biodegradable copolymer of (DL)-lactide and epsilon -caprolactone [p(DLLA-epsilon -CL)] nerve guide or an autologous nerve graft. Electromyograms (EMGs) of the gastrocnemius (

  20. New Polytetrahydrofuran Graft Copolymers.

    Science.gov (United States)

    1979-03-15

    chioroprene) , chiorobutyl - ~~~~~ rubber , bromobutyl rubber , chlorinated EPDM , chlorinated poly(buta— diene) and chlorinated butadiene styrene copolymer...for initial detailed studies (3 ,4 , 6 , 7 — 9 ) . Many soluble metal salts with cations capable of stabilizing an on].um ion polymerization (SO3CF 3

  1. Block coordination copolymers

    Energy Technology Data Exchange (ETDEWEB)

    Koh, Kyoung Moo; Wong-Foy, Antek G; Matzger, Adam J; Benin, Annabelle I; Willis, Richard R

    2014-11-11

    The present invention provides compositions of crystalline coordination copolymers wherein multiple organic molecules are assembled to produce porous framework materials with layered or core-shell structures. These materials are synthesized by sequential growth techniques such as the seed growth technique. In addition, the invention provides a simple procedure for controlling functionality.

  2. Block coordination copolymers

    Science.gov (United States)

    Koh, Kyoung Moo; Wong-Foy, Antek G; Matzger, Adam J; Benin, Annabelle I; Willis, Richard R

    2012-11-13

    The present invention provides compositions of crystalline coordination copolymers wherein multiple organic molecules are assembled to produce porous framework materials with layered or core-shell structures. These materials are synthesized by sequential growth techniques such as the seed growth technique. In addition, the invention provides a simple procedure for controlling functionality.

  3. Polyhydroxyalkanoate copolymers from forest biomass.

    Science.gov (United States)

    Keenan, Thomas M; Nakas, James P; Tanenbaum, Stuart W

    2006-07-01

    /w) PHA contents, and 4-67 mol% 3HV compositions. These data are comparable to copolymer yields and cellular contents reported for hexose plus levulinic acid-based shake-flask cultures, as reported using Alcaligenes eutrophus and Pseudomonas putida. However, our findings presage a conceivable alternative, forestry-based biorefinery approach for the production of value-added biodegradable PHA polymers. Specifically, this review describes the current and potential utilization of lignocellulosic process streams as platform precursors to PHA polymers including hemicellulosic hydrolysates, residual cellulose-derived levulinic acid, tall oil fatty acids (Kraft pulping residual), and lignin-derived aromatics.

  4. Synthesis and characterization of biodegradable amphiphilic PEG-grafted poly(DTC-co-CL)

    Institute of Scientific and Technical Information of China (English)

    Qiu Jin Zhang; Wei Pu Zhu; Zhi Quan Shen

    2010-01-01

    A novel biodegradable copolymer,poly(5,5-dibromomethyltrimethylene carbonate-co-ε-caprolactone)(poly(DBTC-co-CL))with pendant bromine groups,was synthesized via ring-opening polymerization(ROP)of ε-caprolactone(CL)and 5,5-dibromomethyltrimethylene carbonate(DBTC)using stannous octoate(Sn(Oct)2)as catalyst.Then the pendant bromine groups were completely converted into azide form,which permitted"click"reaction with alkyne-terminated polyethylene(A-PEG)by Huisgen 1,3-dipolar cycloadditions preparing biodegradable amphiphilic poly(DTC-co-CL)-g-PEG graft copolymer.The graft copolymer was characterized by nuclear magnetic resonance(NMR)and size-exclusion chromatography(SEC).

  5. Biocompatibility Assessment of Novel Bioresorbable Alloys Mg-Zn-Se and Mg-Zn-Cu for Endovascular Applications: In- Vitro Studies

    OpenAIRE

    Persaud-Sharma, Dharam; Budiansky, Noah; McGoron, Anthony J

    2013-01-01

    Previous studies have shown that using biodegradable magnesium alloys such as Mg-Zn and Mg-Zn-Al possess the appropriate mechanical properties and biocompatibility to serve in a multitude of biological applications ranging from endovascular to orthopedic and fixation devices. The objective of this study was to evaluate the biocompatibility of novel as-cast magnesium alloys Mg-1Zn-1Cu wt.% and Mg-1Zn-1Se wt.% as potential implantable biomedical materials, and compare their biologically effecti...

  6. Biodegradable polymer optical fiber (Conference Presentation)

    Science.gov (United States)

    Zhang, Chenji; Kalaba, Surge; Shan, Dingying; Xu, Kaitian; Yang, Jian; Liu, Zhiwen

    2016-10-01

    Biocompatible and even biodegradable polymers have unique advantages in various biomedical applications. Recent years, photonic devices fabricated using biocompatible polymers have been widely studied. In this work, we manufactured an optical fiber using biodegradable polymer POC and POMC. This step index optical fiber is flexible and easy to handle. Light was coupled into this polymer fiber by directly using objective. The fiber has a good light guiding property and an approximate loss of 2db/cm. Due to the two layer structure, our fiber is able to support applications inside biological tissue. Apart from remarkable optical performance, our fiber was also found capable of performing imaging. By measuring the impulse response of this multimode polymer fiber and using the linear inversion algorithm, concept proving experiments were completed. Images input into our fiber were able to be retrieved from the intensity distribution of the light at the output end. Experiment result proves the capability of our optical fiber to be used as a fiber endoscopy no needs to remove.

  7. Biocompatible Polymer/Quantum Dots Hybrid Materials: Current Status and Future Developments

    Directory of Open Access Journals (Sweden)

    Lei Shen

    2011-12-01

    Full Text Available Quantum dots (QDs are nanometer-sized semiconductor particles with tunable fluorescent optical property that can be adjusted by their chemical composition, size, or shape. In the past 10 years, they have been demonstrated as a powerful fluorescence tool for biological and biomedical applications, such as diagnostics, biosensing and biolabeling. QDs with high fluorescence quantum yield and optical stability are usually synthesized in organic solvents. In aqueous solution, however, their metallic toxicity, non-dissolubility and photo-luminescence instability prevent the direct utility of QDs in biological media. Polymers are widely used to cover and coat QDs for fabricating biocompatible QDs. Such hybrid materials can provide solubility and robust colloidal and optical stability in water. At the same time, polymers can carry ionic or reactive functional groups for incorporation into the end-use application of QDs, such as receptor targeting and cell attachment. This review provides an overview of the recent development of methods for generating biocompatible polymer/QDs hybrid materials with desirable properties. Polymers with different architectures, such as homo- and co-polymer, hyperbranched polymer, and polymeric nanogel, have been used to anchor and protect QDs. The resulted biocompatible polymer/QDs hybrid materials show successful applications in the fields of bioimaging and biosensing. While considerable progress has been made in the design of biocompatible polymer/QDs materials, the research challenges and future developments in this area should affect the technologies of biomaterials and biosensors and result in even better biocompatible polymer/QDs hybrid materials.

  8. Biodegradable polymers: emerging excipients for the pharmaceutical and medical device industries.

    Directory of Open Access Journals (Sweden)

    Bhavesh Patel

    2013-12-01

    Full Text Available Worldwide many researchers are exploring the potential use of biodegradable polymerics as carriers for a wide range of therapeutic applications. In the past two decades, considerable progress has been made in the development of biodegradable polymeric materials, mainly in the biomedical and pharmaceutical industries due to their versatility, biocompatibility and biodegradability properties. The present review focuses on the use of biodegradable polymers in various therapeutic areas like orthopedic and contraceptive device, surgical sutures, implants, depot parenteral injections, etc. Biodegradable polymers have also contributed significantly to the development of drug-eluting stents (DES used for the treatment of obstructive coronary artery disease, such as angioplasty. Biodegradable synthetic polymers have potential applications in orthopedic device fixation due to properties that impact bone healing, formation, regeneration or substitution in the human body. The present review also emphasizes areas such as the chemistry of polymer synthesis, factors affecting the biodegradation, methods for the production of biodegradable polymer based formulations, the application of biodegradable polymers in dental implants, nasal drug deliveries, contraceptive devices, immunology, gene, transdermal, ophthalmic and veterinary applications, as well as, the sterilization of biodegradable based formulations and regulatory considerations for product filing.

  9. Stretchable biocompatible electronics by embedding electrical circuitry in biocompatible elastomers.

    Science.gov (United States)

    Jahanshahi, Amir; Salvo, Pietro; Vanfleteren, Jan

    2012-01-01

    Stretchable and curvilinear electronics has been used recently for the fabrication of micro systems interacting with the human body. The applications range from different kinds of implantable sensors inside the body to conformable electrodes and artificial skins. One of the key parameters in biocompatible stretchable electronics is the fabrication of reliable electrical interconnects. Although very recent literature has reported on the reliability of stretchable interconnects by cyclic loading, work still needs to be done on the integration of electrical circuitry composed of rigid components and stretchable interconnects in a biological environment. In this work, the feasibility of a developed technology to fabricate simple electrical circuits with meander shaped stretchable interconnects is presented. Stretchable interconnects are 200 nm thin Au layer supported with polyimide (PI). A stretchable array of light emitting diodes (LEDs) is embedded in biocompatible elastomer using this technology platform and it features a 50% total elongation.

  10. Synthesis and Characterization of Graft Copolymer of Dextran and 2-Acrylamido-2-methylpropane Sulphonic Acid

    Directory of Open Access Journals (Sweden)

    Venkanna Azmeera

    2012-01-01

    Full Text Available A novel biodegradable graft copolymer of dextran (Dx and 2-acrylamido-2-methyl-1-propane sulphonic acid (AMPS was synthesized by grafting poly-AMPS chains onto dextran backbone by free radical polymerization using ceric ammonium nitrate (CAN as an initiator. Different amounts of AMPS were used to synthesize four different grades of graft copolymers with different side chain lengths. These grafted polymers were characterized by elemental analysis, FTIR, 1HNMR, rheological technique, scanning electron microscopy (SEM, thermogravimetric analysis (TGA, and X-ray diffractometry (XRD. They exhibited efficient flocculation performance in kaolin suspension.

  11. SYNTHESIS OF POLY(ETHYLENE TEREPHTHALATE)-POLYCAPROLACTONE BLOCK COPOLYMER BY DIRECT COPOLYMERIZATION

    Institute of Scientific and Technical Information of China (English)

    Shen-guo Wang; Kai Tang

    1999-01-01

    Poly(ethylene terephthalate)-polycaprolactone block copolymer (PCL-b-PET) is a polyester with improved biodegradability. In the present paper, a new direct copolymerization method of ε-caprolactone (ε-CL) and bishydroxyethylene terephthalate (BHET) in the presence of Ti(OBu)4 was proposed for the synthesis of PCL-b-PET. The PCL-b-PET copolymer was characterized by IR, GPC and 1H-NMR techniques, and the effects of synthesis conditions, such as temperature, reaction time and concentration of catalyst on the copolymerization were discussed.

  12. STUDY ON PET-PA66 COPOLYMER

    Institute of Scientific and Technical Information of China (English)

    WU Rongrui; SHI Weitong

    1992-01-01

    In this work the PET-PA66 copolymers are obtained. The characterization of chemical structure of copolymer chain by NMR method is also given . It is shown that when the 66 Nylon salt is added in the copolycondensation, the adipic acid and hexamethylenediamine reacted mainly by itself and the obtained copolymer is a random copolymer, and when the Nylon 66 oligomer is added, the obtained copolymer is a block copolymer. The result of NMR analysis is demonstrated by properties investigation.

  13. Block copolymer battery separator

    Science.gov (United States)

    Wong, David; Balsara, Nitash Pervez

    2016-04-26

    The invention herein described is the use of a block copolymer/homopolymer blend for creating nanoporous materials for transport applications. Specifically, this is demonstrated by using the block copolymer poly(styrene-block-ethylene-block-styrene) (SES) and blending it with homopolymer polystyrene (PS). After blending the polymers, a film is cast, and the film is submerged in tetrahydrofuran, which removes the PS. This creates a nanoporous polymer film, whereby the holes are lined with PS. Control of morphology of the system is achieved by manipulating the amount of PS added and the relative size of the PS added. The porous nature of these films was demonstrated by measuring the ionic conductivity in a traditional battery electrolyte, 1M LiPF.sub.6 in EC/DEC (1:1 v/v) using AC impedance spectroscopy and comparing these results to commercially available battery separators.

  14. Biodegradability of plastics.

    Science.gov (United States)

    Tokiwa, Yutaka; Calabia, Buenaventurada P; Ugwu, Charles U; Aiba, Seiichi

    2009-08-26

    Plastic is a broad name given to different polymers with high molecular weight, which can be degraded by various processes. However, considering their abundance in the environment and their specificity in attacking plastics, biodegradation of plastics by microorganisms and enzymes seems to be the most effective process. When plastics are used as substrates for microorganisms, evaluation of their biodegradability should not only be based on their chemical structure, but also on their physical properties (melting point, glass transition temperature, crystallinity, storage modulus etc.). In this review, microbial and enzymatic biodegradation of plastics and some factors that affect their biodegradability are discussed.

  15. Biocompatible polysaccharide-based cryogels

    Energy Technology Data Exchange (ETDEWEB)

    Reichelt, Senta, E-mail: senta.reichelt@iom-leipzig.de [Leibniz Institute of Surface Modification, Permoserstr. 15, 04318 Leipzig (Germany); Becher, Jana; Weisser, Jürgen [Innovent e.V., Pruessingstr. 27B, 07745 Jena (Germany); Prager, Andrea; Decker, Ulrich [Leibniz Institute of Surface Modification, Permoserstr. 15, 04318 Leipzig (Germany); Möller, Stephanie; Berg, Albrecht; Schnabelrauch, Matthias [Innovent e.V., Pruessingstr. 27B, 07745 Jena (Germany)

    2014-02-01

    This study focuses on the development of novel biocompatible macroporous cryogels by electron-beam assisted free-radical crosslinking reaction of polymerizable dextran and hyaluronan derivatives. As a main advantage this straightforward approach provides highly pure materials of high porosity without using additional crosslinkers or initiators. The cryogels were characterized with regard to their morphology and their basic properties including thermal and mechanical characteristics, and swellability. It was found that the applied irradiation dose and the chemical composition strongly influence the material properties of the resulting cryogels. Preliminary cytotoxicity tests illustrate the excellent in vitro-cytocompatibility of the fabricated cryogels making them especially attractive as matrices in tissue regeneration procedures. - Graphical abstract: Electron-beam initiated synthesis of biocompatible cryogels based on natural polymers. - Highlights: • Successful electron-beam induced synthesis of dextran and hyaluronan cryogels. • Mechanical and thermal stable cryogels were obtained. • Excellent cytocompatibility of the materials was proven. • Promising materials for tissue engineering were developed.

  16. Low-Temperature Processable Block Copolymers That Preserve the Function of Blended Proteins.

    Science.gov (United States)

    Iwasaki, Yasuhiko; Takemoto, Kyohei; Tanaka, Shinya; Taniguchi, Ikuo

    2016-07-11

    Low-temperature processable polymers have attracted increasing interest as ecological materials because of their reduced energy consumption during processing and suitability for making composites with heat-sensitive biomolecules at ambient temperature. In the current study, low-temperature processable biodegradable block copolymers were synthesized by ring-opening polymerization of l-lactide (LLA) using polyphosphoester as a macroinitiator. The polymer films could be processed under a hydraulic pressure of 35 MPa. The block copolymer films swelled in water because the polyphosphoester block was partially hydrated. Interestingly, the swelling ratio of the films changed with temperature. The pressure-induced order-to-disorder transition of the block copolymers was characterized by small-angle X-ray scattering; a crystallinity reduction in the block copolymers was observed after application of pressure. The crystallinity of the block copolymers was recovered after removing the applied pressure. The Young's modulus of the block copolymer films increased as the LLA unit content increased. Moreover, the modulus did not change after multiple processing cycles and the recyclability of the block copolymers was also confirmed. Finally, polymer films with embedded proteinase K as a model protein were prepared. The activity of catalase loaded into the polymer films was evaluated after processing at different temperatures. The activity of catalase was preserved when the polymer films were processed at room temperature but was significantly reduced after high-temperature processing. The suitability of low-temperature processable biodegradable polymers for making biofunctional composites without reducing protein activity was clarified. These materials will be useful for biomedical and therapeutic applications.

  17. Biocompatible and Bioeliminable Hydrophilic Polymers

    Institute of Scientific and Technical Information of China (English)

    Paolo; FerrutiUniversità

    2007-01-01

    1 Introduction This presentation will report on some recent results obtained in Milan on two polymer families of biomedical interest, namely poly(N-vinyl-2-pyrrolidinone) and polyamidoamines. 2 Results and DiscussionPoly(N-vinyl-2-pyrrolidinone) (PVP) is a well known bioactive and biocompatible polymer. In its soluble form, it is largely used as excipient of oral pharmaceutical formulations, especially for its high water solubilising power.In its crosslinked form, it plays a relevant role as biomateria...

  18. The foreign body reaction to a biodegradable biomaterial differs between rats and mice

    NARCIS (Netherlands)

    Khouw, IMSL; van Wachem, PB; Molema, G; Plantinga, JA; de Leij, LFMH; van Luyn, MJA

    2000-01-01

    Before a biomaterial can be applied in the clinic, biocompatibility must be tested in in vivo models, by monitoring the foreign body reaction. In this study, we compared the foreign body reaction (EBR) to the biodegradable biomaterial hexamethylenediisocyanate crosslinked dermal sheep collagen (HDSC

  19. NOVEL AMPHIPHILIC FLUORESCENT GRAFT COPOLYMER: SYNTHESIS,CHARACTERIZATION AND ENCAPSULATION OF A HYDROPHOBIC AGENT

    Institute of Scientific and Technical Information of China (English)

    Zhao-qiang Wu; Shu Yang; Wen-yan Liao; Ling-zhi Meng

    2006-01-01

    Novel amphiphilic fluorescent graft copolymer (PVP-PyAHy) was successfully synthesized by the free radical copolymerization of hydrophobic monomer N-(1-pyrenebutyryl)-N'-acryloyl hydrazide (PyAHy) with hydrophilic precursor polymers of vinyl-functionalized poly(N-vinylpyrrolidone) (PVP) in DMF. The copolymer is amphiphilic and has intrinsic fluorescence. FT-IR, 1H-NMR, TEM, gel permeation chromatography-multi-angle laser light scattering, UV-Vis spectroscopy and fluorescence spectroscopy were used to characterize this copolymer. The TEM observation shows that the copolymer PVP-PyAHy forms micelles in aqueous solution. Results of fluorometric measurements illustrate that the critical micelle concentration (CMC) value of PVP-PyAHy in aqueous solution is about 0.90 mg/mL. To examine the encapsulation ability of the copolymer in aqueous media, methyl yellow was employed as a model hydrophobic agent. The loading level of the polymer to methyl yellow is 8.8 mg/g. The cytotoxicity assays for Madin Darby Canine Kidney (MDCK) cells shows good biocompatibility of PVP-PyAHy in vitro. These results suggest the potential of this copolymer PVP-PyAHy as drugs delivery carrier and fluorescent tracer.

  20. Syntheses and Surface Properties of Polyacrylonitrile-based Copolymer Membranes Containing Sugar Moieties

    Institute of Scientific and Technical Information of China (English)

    HUANG Xiao-jun; WAN Ling-shu; DAI Zheng-wei; KOU Rui-qiang; XU Zhi-kang

    2005-01-01

    To improve the hydrophilicity of polyacrylonitrile-based membranes, sugar moieties were incorporated into acrylonitrile-based copolymers via the radical copolymerization of α-allyl glucoside(AG) with acrylonitrile(AN) with 2,2'-azobis-iso-butyronitrile(AIBN) as the initiator in dimethyl sulphoxide(DMSO). It was found that the yield increased with the increase of the initiator concentration and reaction time, while it decreased with the increase of the monomer molar ratio of AG to AN. Raising the AG proportion in the monomer mixture resulted in the increase of the AG content in the copolymer. Mv of the copolymers decreased with increasing the AG monomer fraction in feed. The copolymers were fabricated into dense membranes and their surface properties were studied by means of the water contact angle measurement and platelet adhesion tests. It was found that the static water contact angle on the membrane decreased significantly from 70° to 33° with the increase of the AG content. The adhesive number of platelets on the membrane surface also decreased significantly with increasing AG content in the copolymers. These results demonstrate that the hydrophilicity and biocompatibility of the acrylonitrile-based copolymer membranes could be improved efficiently by the copolymerization of acrylonitrile with vinyl carbohydrates.

  1. 新型药物载体聚乙醇-聚丙交酯载药颗粒的制备及表征%Preparation and characterization of biodegradable nanoparticles from methoxy poly(ethylene glycol)-poly(D,L-lactide)block copolymers as novel drug carriers

    Institute of Scientific and Technical Information of China (English)

    姜维; 王运东; 张建铮; 甘泉; 张汉威; 贝建中; 赵秀文; 费维扬

    2006-01-01

    Methoxy poly(ethylene glycol)-poly(D,L-lactide) block copolymers (PEG-PLA) were prepared through ring-opening polymerization.The oil in water suspension method was used to prepare block copolymer micelles. The critical micelle concentration (CMC) by fluorescence spectroscopy was 0.0056 mg·ml-1. The physical state of the inner core region of micelles was characterized with 1HNMR. The size of indomethacin (IMC) loaded micelles measured by dynamic light scattering (DLS) showed narrow monodisperse size distribution and the average diameters were less than 50 nm. In addition, the nanoparticles with relatively high drug loading content (DLC) were obtained.

  2. Synthetic biodegradable nerve conduits for repair of injured peripheral nerve:good biocompatibility%合成可生物降解神经导管修复损伤周围神经:生物相容性良好

    Institute of Scientific and Technical Information of China (English)

    张孙富; 王斌

    2015-01-01

    BACKGROUND:In the treatment of peripheral nerve injury, we can use autologous nerve or the nerve conduit of different materials. OBJECTIVE:To explore the effects of biodegradable nerve conduit in repairing peripheral nerve injury. METHODS:A total of 48 New Zealand white rabbits were randomly divided into autologous nerve graft group, silicone catheter group and biodegradable nerve conduit group. 10-mm sciatic nerve was obtained from each group to construct animal models of sciatic nerve defect, which was repaired with autologous nerve, silicone catheter and biodegradable nerve conduit. RESULTS AND CONCLUSION:At 3 weeks after transplantation, motor nerve conduction and recovery rate of triceps muscle wet weight were poorer in the silicone catheter group than in the autologous nerve graft group. Motor nerve conduction and recovery rate of triceps muscle wet weight were similar between the biodegradable nerve conduit group and autologous nerve graft group. At 12 weeks, a large number of uniform myelinated nerve fiber was visible in the autologous nerve graft group. A large number of uneven myelinated nerve fiber was found in the biodegradable nerve conduit group. A smal number of uneven myelinated nerve fiber was seen in the silicone catheter group. These data suggest that the synthetic biodegradable materials of nerve conduit can obtain good effect, which is close to the autologous nerve graft.%背景:临床对周围神经损伤进行修复治疗的时候,可以利用自体神经进行治疗或者利用不同材质的神经导管进行治疗。目的:探索合成可生物降解材料神经导管在周围神经损伤修复中的应用效果。方法:48只新西兰大白兔,随机等分为3组,自体神经移植组、硅胶导管组和可降解神经导管组。各组动物切除10 mm坐骨神经,构建坐骨神经缺损动物模型,并分别利用自体神经、硅胶导管以及可降解神经导管进行坐骨神经修复

  3. A new dextran-graft-polybutylmethacrylate copolymer coated on 316L metallic stents enhances endothelial cell coverage.

    Science.gov (United States)

    Derkaoui, S M; Labbé, A; Chevallier, P; Holvoet, S; Roques, C; Avramoglou, T; Mantovani, D; Letourneur, D

    2012-09-01

    Amphiphilic copolymers based on the copolymerization of hydrophilic and hydrophobic moieties offer versatility in various biomedical material applications. Here, a new biocompatible copolymer of dextran-graft-polybutylmethacrylate is synthesized for the coating of metallic endovascular stents. Coating of metallic surfaces is performed and analyzed by X-ray photoelectron spectroscopy, attenuated total reflection Fourier transform infrared spectroscopy, contact angle measurement, atomic force microscopy and scanning electron microscopy before and after deformation corresponding to stent deployment by a balloon catheter. In the conditions described here, the resulting coating is smooth and uniform with neither cracks nor detachment after stent expansion. Interestingly, surfaces coated with the copolymer greatly improve in vitro adhesion and growth of endothelial cells. This copolymer provides new opportunities for implanted biomaterials.

  4. Biomimetic potential of some methacrylate-based copolymers: a comparative study.

    Science.gov (United States)

    Zecheru, Teodora; Filmon, Robert; Rusen, Edina; Mărculescu, Bogdan; Zerroukhi, Amar; Cincu, Corneliu; Chappard, Daniel

    2009-11-01

    Preparation of new biocompatible materials for bone recovery has consistently gained interest in the last few decades. Special attention was given to polymers that contain negatively charged groups, such as phosphate, carboxyl, and sulfonic groups toward calcification. This present paper work demonstrates that other functional groups present also potential application in bone pathology. New copolymers of 2-hydroxyethyl methacrylate with diallyldimethylammonium chloride (DADMAC), glycidyl methacrylate (GlyMA), methacrylic acid (MAA), 2-methacryloyloxymethyl acetoacetate (MOEAA), 2-methacryloyloxyethyltriethylammonium chloride (MOETAC), and tetrahydrofurfuryl methacrylate (THFMA) were obtained. The copolymers were characterized by FTIR, swelling potential, and they were submitted to in vitro tests for calcification and cytotoxicity evaluation. GlyMA and MOETAC-containing copolymers show promising results for further in vivo mineralization tests, as a potential alternative to the classical bone grafts, in bone tissue engineering.

  5. Biodegradable fiksasyon malzemeleri

    OpenAIRE

    Seber, Sinan

    2004-01-01

    Problems related to metallic implant had increased the interest to biodegradables. In this paper, the physical and chemical properties, degradation modalities, implant design, clinical studies with techniques, and complications of biodegradable implants, especially polylactic and polyglycolic acid, were reviewed. Also our studies, on the antibiotic delivery capacities of these implants; and the prediction of immunological reactions with our clinical experiences were presented.

  6. Synthesis of morpholine-2,5-dione derivative copolymer and its degradation in vitro

    Institute of Scientific and Technical Information of China (English)

    ZHAO Yanchao; CHENG Shujun; CHEN Jianding

    2007-01-01

    In this experiment we prepared the copolymer of L-lactide (L-LA) and (3s)-[(benzyloxycarbonyl) methyl] morpholine-2,5-dione (BMD) using tin(Ⅱ)-octanoate initiat-ed ring-opening copolymerization. The maximum relative number-average molecular weight (Mn) of copolymer was over 8.0×104. The degradation study proceeded in vitro and poly(L-lactide-co-glycollide) used as the control sample.Changes in mass and molecular weight were studied during the immersion in buffer solutions [phosphate-buffered saline solution (PBS), pH = 7.4] at 37℃. The hydrolytic degrada-tion of both the morpholine-2,5-dione derivative copolymer and the control sample were completed in 3 months. A palladium on charcoal catalyst [Pd/C (5%)] was used as the catalyzer for hydrogenolysis.1H-NMR (nuclear magnetic resonance) analysis and gel permeation chromatography (GPC) were used to investigate the degree of the hydroge-nolysis of the copolymer with different Mn. The contact angle showed that the biodegradable copolymer had good hydro- philicity. These findings suggested that this copolymer would have a high potential application for pharmaceutical products.

  7. Biodegradable black phosphorus-based nanospheres for in vivo photothermal cancer therapy

    Science.gov (United States)

    Shao, Jundong; Xie, Hanhan; Huang, Hao; Li, Zhibin; Sun, Zhengbo; Xu, Yanhua; Xiao, Quanlan; Yu, Xue-Feng; Zhao, Yuetao; Zhang, Han; Wang, Huaiyu; Chu, Paul K.

    2016-09-01

    Photothermal therapy (PTT) offers many advantages such as high efficiency and minimal invasiveness, but clinical adoption of PTT nanoagents have been stifled by unresolved concerns such as the biodegradability as well as long-term toxicity. Herein, poly (lactic-co-glycolic acid) (PLGA) loaded with black phosphorus quantum dots (BPQDs) is processed by an emulsion method to produce biodegradable BPQDs/PLGA nanospheres. The hydrophobic PLGA not only isolates the interior BPQDs from oxygen and water to enhance the photothermal stability, but also control the degradation rate of the BPQDs. The in vitro and in vivo experiments demonstrate that the BPQDs/PLGA nanospheres have inappreciable toxicity and good biocompatibility, and possess excellent PTT efficiency and tumour targeting ability as evidenced by highly efficient tumour ablation under near infrared (NIR) laser illumination. These BP-based nanospheres combine biodegradability and biocompatibility with high PTT efficiency, thus promising high clinical potential.

  8. Biodegradable black phosphorus-based nanospheres for in vivo photothermal cancer therapy

    Science.gov (United States)

    Shao, Jundong; Xie, Hanhan; Huang, Hao; Li, Zhibin; Sun, Zhengbo; Xu, Yanhua; Xiao, Quanlan; Yu, Xue-Feng; Zhao, Yuetao; Zhang, Han; Wang, Huaiyu; Chu, Paul K.

    2016-01-01

    Photothermal therapy (PTT) offers many advantages such as high efficiency and minimal invasiveness, but clinical adoption of PTT nanoagents have been stifled by unresolved concerns such as the biodegradability as well as long-term toxicity. Herein, poly (lactic-co-glycolic acid) (PLGA) loaded with black phosphorus quantum dots (BPQDs) is processed by an emulsion method to produce biodegradable BPQDs/PLGA nanospheres. The hydrophobic PLGA not only isolates the interior BPQDs from oxygen and water to enhance the photothermal stability, but also control the degradation rate of the BPQDs. The in vitro and in vivo experiments demonstrate that the BPQDs/PLGA nanospheres have inappreciable toxicity and good biocompatibility, and possess excellent PTT efficiency and tumour targeting ability as evidenced by highly efficient tumour ablation under near infrared (NIR) laser illumination. These BP-based nanospheres combine biodegradability and biocompatibility with high PTT efficiency, thus promising high clinical potential. PMID:27686999

  9. BIOCOMPATIBLE FLUORESCENT MICROSPHERES: SAFE PARTICLES FOR MATERIAL PENETRATION STUDIES

    Energy Technology Data Exchange (ETDEWEB)

    farquar, G; Leif, R

    2008-09-12

    Biocompatible polymers with hydrolyzable chemical bonds are being used to produce safe, non-toxic fluorescent microspheres for material penetration studies. The selection of polymeric materials depends on both biocompatibility and processability, with tailored fluorescent properties depending on specific applications. Microspheres are composed of USFDA-approved biodegradable polymers and non-toxic fluorophores and are therefore suitable for tests where human exposure is possible. Micropheres are being produced which contain unique fluorophores to enable discrimination from background aerosol particles. Characteristics that affect dispersion and adhesion can be modified depending on use. Several different microsphere preparation methods are possible, including the use of a vibrating orifice aerosol generator (VOAG), a Sono-Tek atomizer, an emulsion technique, and inkjet printhead. The advantages and disadvantages of each method will be presented and discussed in greater detail along with fluorescent and charge properties of the aerosols. Applications for the fluorescent microspheres include challenges for biodefense system testing, calibrants for biofluorescence sensors, and particles for air dispersion model validation studies.

  10. Cytocompatibility of biodegradable poly(ethylene glycol)-b-poly(L-lactide)-b-poly(L-glutamic acid) tri-block copolymer with human umbilical vein endothelial cells%生物可降解材料聚乙二醇-聚乳酸-聚谷氨酸三嵌段共聚物与人脐静脉内皮细胞的相容性

    Institute of Scientific and Technical Information of China (English)

    刘斌; 宋显晶; 刘婕妤; 姜锋; 史永峰; 双东思; 李智博

    2008-01-01

    BACKGROUND: Poly(ethylene glycol)-b-poly(L-lactide)-b-poly(L-glutamic acid) (PEG-PLA-PGL) tri-block copolymers have good applied foreground in constructing tissue engineering scaffold materials. Whether endothelial cells survive and grow on the materials has a direct influence on the application as a biodegradable material for the scaffold of endothelial cell vector.OBJECTIVE: To explore the cytocompatibility of PEG-PLA-PGL tri-block copolymers with human umbilical vein endothelial cells (HUVECs).DESIGN: Randomized control observation.SETTING: the Second Hospital of Jilin University.MATERIALS: The experiment was carried out in the Department of Pathobiology, School of Basic Medical Sciences, Jilin University from February to October in 2006. Human umbilical cord about 20 cm length came from one neonatal infant who was delivered normally after enough months in the Department of Gynecology and Obstetrics, the Second Hospital of Jilin University. Human umbilical cord was sampled in the informed consents of the infant's family member. The experimentation was authorized by the medical ethic committee of the hospital. PEG-PLA-PGL membranes were provided by Changchun Institute of Applied Chemistry, Chinese Academy of Sciences. Inverted microscope and phase-contrast microscope were bought from Olympus Company (Japan).METHODS: HUVECs cultivated and grew steadily, were inoculated onto PEG-PLA-PGL membranes, serving as the experiment group. While the culture medium without PEG-PLA-PGL membranes were taken as the control group.①Cytocompatibility of PEG-PLA-PGL membranes with HUVECs was evaluated by observing cellular growth through phase-contrast microscope.②The proliferation index of cells was detected by MTT method in 1, 3, 5 and 7 days after inoculation.MAIN OUTCOME MEASURES: ①Cytocompatibility of PEG-PLA-PGL membranes with HUVECs;②The proliferation index of cells in l, 3, 5 and 7 days after inoculationRESULTS: ①Cytocompatibility of PEG-PLA-PGL membranes with

  11. Polyether/Polyester Graft Copolymers

    Science.gov (United States)

    Bell, Vernon L., Jr.; Wakelyn, N.; Stoakley, D. M.; Proctor, K. M.

    1986-01-01

    Higher solvent resistance achieved along with lower melting temperature. New technique provides method of preparing copolymers with polypivalolactone segments grafted onto poly (2,6-dimethyl-phenylene oxide) backbone. Process makes strong materials with improved solvent resistance and crystalline, thermally-reversible crosslinks. Resulting graft copolymers easier to fabricate into useful articles, including thin films, sheets, fibers, foams, laminates, and moldings.

  12. The influence of pendant hydroxyl groups on enzymatic degradation and drug delivery of amphiphilic poly[glycidol-block-(epsilon-caprolactone)] copolymers.

    Science.gov (United States)

    Mao, Jing; Gan, Zhihua

    2009-11-10

    An amphiphilic diblock copolymer PG-b-PCL with well-controlled structure and pendant hydroxyl groups along hydrophilic block was synthesized by sequential anionic ring-opening polymerization. The micellization and drug release of PG-b-PCL copolymers using pyrene as a fluorescence probe were investigated for determining the influences of copolymer composition and lipase concentration on drug loading capacity and controlled release behavior. The biodegradation of PG-b-PCL copolymers was studied with microspheres as research samples. It has been concluded that the polar hydroxyl groups along each repeat unit of hydrophilic PG block in PG-b-PCL copolymer have great influences on drug encapsulation, drug release, and enzymatic degradation of micelles and microspheres.

  13. Biodegradable and radically polymerized elastomers with enhanced processing capabilities.

    Science.gov (United States)

    Ifkovits, Jamie L; Padera, Robert F; Burdick, Jason A

    2008-09-01

    The development of biodegradable materials with elastomeric properties is beneficial for a variety of applications, including for use in the engineering of soft tissues. Although others have developed biodegradable elastomers, they are restricted by their processing at high temperatures and under vacuum, which limits their fabrication into complex scaffolds. To overcome this, we have modified precursors to a tough biodegradable elastomer, poly(glycerol sebacate) (PGS) with acrylates to impart control over the crosslinking process and allow for more processing options. The acrylated-PGS (Acr-PGS) macromers are capable of crosslinking through free radical initiation mechanisms (e.g., redox and photo-initiated polymerizations). Alterations in the molecular weight and % acrylation of the Acr-PGS led to changes in formed network mechanical properties. In general, Young's modulus increased with % acrylation and the % strain at break increased with molecular weight when the % acrylation was held constant. Based on the mechanical properties, one macromer was further investigated for in vitro and in vivo degradation and biocompatibility. A mild to moderate inflammatory response typical of implantable biodegradable polymers was observed, even when formed as an injectable system with redox initiation. Moreover, fibrous scaffolds of Acr-PGS and a carrier polymer, poly(ethylene oxide), were prepared via an electrospinning and photopolymerization technique and the fiber morphology was dependent on the ratio of these components. This system provides biodegradable polymers with tunable properties and enhanced processing capabilities towards the advancement of approaches in engineering soft tissues.

  14. Biocompatibility of plasma nanostructured biopolymers

    Energy Technology Data Exchange (ETDEWEB)

    Slepičková Kasálková, N. [Department of Solid State Engineering, Institute of Chemical Technology, 166 28 Prague (Czech Republic); Slepička, P., E-mail: petr.slepicka@vscht.cz [Department of Solid State Engineering, Institute of Chemical Technology, 166 28 Prague (Czech Republic); Bačáková, L. [Institute of Physiology, Academy of Sciences of the Czech Republic 142 20 Prague (Czech Republic); Sajdl, P. [Department of Power Engineering, Institute of Chemical Technology, 166 28 Prague (Czech Republic); Švorčík, V. [Department of Solid State Engineering, Institute of Chemical Technology, 166 28 Prague (Czech Republic)

    2013-07-15

    Many areas of medicine such as tissue engineering requires not only mastery of modification techniques but also thorough knowledge of the interaction of cells with solid state substrates. Plasma treatment can be used to effective modification, nanostructuring and therefore can significantly change properties of materials. In this work the biocompatibility of the plasma nanostructured biopolymers substrates was studied. Changes in surface chemical structure were studied by X-ray photoelectron spectroscopy (XPS). The morphology pristine and modified samples were determined using atomic force microscopy (AFM). The surface wettability was determined by goniometry from contact angle. Biocompatibility was determined by in vitro tests, the rat vascular smooth muscle cells (VSMCs) were cultivated on the pristine and plasma modified biopolymer substrates. Their adhesion, proliferation, spreading and homogeneous distribution on polymers was monitored. It was found that the plasma treatment leads to rapid decrease of contact angle for all samples. Contact angle decreased with increasing time of modification. XPS measurements showed that plasma treatment leads to changes in ratio of polar and non-polar groups. Plasma modification was accompanied by a change of surface morphology. Biological tests found that plasma treatment have positive effect on cells adhesion and proliferation cells and affects the size of cell’s adhesion area. Changes in plasma power or in exposure time influences the number of adhered and proliferated cells and their distribution on biopolymer surface.

  15. Factors influencing alginate gel biocompatibility.

    Science.gov (United States)

    Tam, Susan K; Dusseault, Julie; Bilodeau, Stéphanie; Langlois, Geneviève; Hallé, Jean-Pierre; Yahia, L'Hocine

    2011-07-01

    Alginate remains the most popular polymer used for cell encapsulation, yet its biocompatibility is inconsistent. Two commercially available alginates were compared, one with 71% guluronate (HiG), and the other with 44% (IntG). Both alginates were purified, and their purities were verified. After 2 days in the peritoneal cavity of C57BL/6J mice, barium (Ba)-gel and calcium (Ca)-gel beads of IntG alginate were clean, while host cells were adhered to beads of HiG alginate. IntG gel beads, however, showed fragmentation in vivo while HiG gel beads stayed firm. The physicochemical properties of the sodium alginates and their gels were thoroughly characterized. The intrinsic viscosity of IntG alginate was 2.5-fold higher than that of HiG alginate, suggesting a greater molecular mass. X-ray photoelectron spectroscopy indicated that both alginates were similar in elemental composition, including low levels of counterions in all gels. The wettabilities of the alginates and gels were also identical, as measured by contact angles of water on dry films. Ba-gel beads of HiG alginate resisted swelling and degradation when immersed in water, much more than the other gel beads. These results suggest that the main factors contributing to the biocompatibility of gels of purified alginate are the mannuronate/guluronate content and/or intrinsic viscosity.

  16. The Biocompatibility of Wool Keratin

    Institute of Scientific and Technical Information of China (English)

    LIU Mei; YU Wei-dong; WANG Xue-lei

    2007-01-01

    Keratin is the major structural fibrous protein providing outer covering such as hair, wool, feathers, etc. When being used as a kind of biomaterials, the biocompatibility of wool keratin is one of the most critical questions. By now, there has not been systemic study on the biocompatibiiity of keratin. Therefore, in this article we used the procedures of skin irritation, haemolysis and subcutaneous implantation according to ISO 10993 to study it. Moreover, the Fourier transform-infrared (FTIR) spectroscopy was utilized to analyse the impurity and structure modification of wool keratin film. The part of the animal tests showed that the wool keratin films prepared by authors were biocompatible. But the residual of sodium dodecyi sulfate (SDS) affected the results of other tests. Consequently, the wool keratin membrane is one kind of favourable and promising biomaterial for biomedical and histological utilization. The residual SDS used as an agent should be eliminated from the keratin solution or membrane completely if for biological usage. In conclusion, wool keratin, as a kind of natural protein, prospectively could be applied in biomedical materials and scaffolds of tissue engineering.

  17. Bioglass: A novel biocompatible innovation

    Directory of Open Access Journals (Sweden)

    Vidya Krishnan

    2013-01-01

    Full Text Available Advancement of materials technology has been immense, especially in the past 30 years. Ceramics has not been new to dentistry. Porcelain crowns, silica fillers in composite resins, and glass ionomer cements have already been proved to be successful. Materials used in the replacement of tissues have come a long way from being inert, to compatible, and now regenerative. When hydroxyapatite was believed to be the best biocompatible replacement material, Larry Hench developed a material using silica (glass as the host material, incorporated with calcium and phosphorous to fuse broken bones. This material mimics bone material and stimulates the regrowth of new bone material. Thus, due to its biocompatibility and osteogenic capacity it came to be known as "bioactive glass-bioglass." It is now encompassed, along with synthetic hydroxyapatite, in the field of biomaterials science known as "bioactive ceramics." The aim of this article is to give a bird′s-eye view, of the various uses in dentistry, of this novel, miracle material which can bond, induce osteogenesis, and also regenerate bone.

  18. Cationic Copolymerization of 3,3-Bis(hydroxymethyl)oxetane and Glycidol: Biocompatible Hyperbranched Polyether Polyols with High Content of Primary Hydroxyl Groups.

    Science.gov (United States)

    Christ, Eva-Maria; Hobernik, Dominika; Bros, Matthias; Wagner, Manfred; Frey, Holger

    2015-10-12

    The cationic ring-opening copolymerization of 3,3-bis(hydroxymethyl)oxetane (BHMO) with glycidol using different comonomer ratios (BHMO content from 25 to 90%) and BF3OEt2 as an initiator has been studied. Apparent molecular weights of the resulting hyperbranched polyether copolymers ranged from 1400 to 3300 g mol(-1) (PDI: 1.21-1.48; method: SEC, linear PEG standards). Incorporation of both comonomers is evidenced by MALDI-TOF mass spectroscopy. All hyperbranched polyether polyols with high content of primary hydroxyl groups portray good solubility in water, which correlates with an increasing content of glycerol units. Detailed NMR characterization was employed to elucidate the copolymer microstructures. Kinetic studies via FTIR demonstrated a weak gradient-type character of the copolymers. MTT assays of the copolymers (up to 100 μg mL(-1)) on HEK and fibroblast cell lines (3T3, L929, WEHI) as well as viability tests on the fibroblast cells were carried out to assess the biocompatibility of the materials, confirming excellent biocompatibility. Transfection efficiency characterization by flow cytometry and confocal laser microscopy demonstrated cellular uptake of the copolymers. Antiadhesive properties of the materials on surfaces were assessed by adhesion assays with fibroblast cells.

  19. Preparation and characterizations of naproxen-loaded magnetic nanoparticles coated with PLA- g-chitosan copolymer

    Science.gov (United States)

    Thammawong, C.; Sreearunothai, P.; Petchsuk, A.; Tangboriboonrat, P.; Pimpha, N.; Opaprakasit, P.

    2012-08-01

    Naproxen (NPX) drug-loaded magnetic nanoparticles (MNPs) have been prepared in a one-step process utilizing a biocompatible polylactide-grafted-chitosan copolymer. The copolymer serves both as a NPX drug carrier as well as a polymeric surfactant for the synthesis of MNPs without the use of any additional surfactant. Highly stable MNPs with high magnetization in the form of maghemite (γ-Fe2O3) are prepared in aqueous media. Effects of preparation conditions on structures and properties of the copolymer-coated and drug-loaded MNPs are investigated by employing particle size and zeta potential measurements, transmission electron microscopy, vibrating sample magnetometer, X-ray diffraction, Fourier-transform infrared, nuclear magnetic resonance, and confocal Raman spectroscopy. The results show that average particle size (150-300 nm), coating efficiency, and coating structures of the resulting MNPs materials are strongly dependent on MNP/copolymer and MNP/NPX ratios in feed. It is also observed that NPX acts as co-surfactant in the drug-loading process, resulting in different encapsulating structures with the variation in the MNP/copolymer and MNP/NPX ratios. Properties of the MNPs materials can be further optimized for use in specific biomedical applications.

  20. Preparation and characterizations of naproxen-loaded magnetic nanoparticles coated with PLA-g-chitosan copolymer

    Energy Technology Data Exchange (ETDEWEB)

    Thammawong, C.; Sreearunothai, P. [Thammasat University, School of Bio-Chemical Engineering and Technology, Sirindhorn International Institute of Technology (SIIT) (Thailand); Petchsuk, A. [National Metal and Materials Technology Center (MTEC) (Thailand); Tangboriboonrat, P. [Mahidol University, Department of Chemistry, Faculty of Science (Thailand); Pimpha, N. [National Nanotechnology Center (NANOTEC) (Thailand); Opaprakasit, P., E-mail: pakorn@siit.tu.ac.th [Thammasat University, School of Bio-Chemical Engineering and Technology, Sirindhorn International Institute of Technology (SIIT) (Thailand)

    2012-08-15

    Naproxen (NPX) drug-loaded magnetic nanoparticles (MNPs) have been prepared in a one-step process utilizing a biocompatible polylactide-grafted-chitosan copolymer. The copolymer serves both as a NPX drug carrier as well as a polymeric surfactant for the synthesis of MNPs without the use of any additional surfactant. Highly stable MNPs with high magnetization in the form of maghemite ({gamma}-Fe{sub 2}O{sub 3}) are prepared in aqueous media. Effects of preparation conditions on structures and properties of the copolymer-coated and drug-loaded MNPs are investigated by employing particle size and zeta potential measurements, transmission electron microscopy, vibrating sample magnetometer, X-ray diffraction, Fourier-transform infrared, nuclear magnetic resonance, and confocal Raman spectroscopy. The results show that average particle size (150-300 nm), coating efficiency, and coating structures of the resulting MNPs materials are strongly dependent on MNP/copolymer and MNP/NPX ratios in feed. It is also observed that NPX acts as co-surfactant in the drug-loading process, resulting in different encapsulating structures with the variation in the MNP/copolymer and MNP/NPX ratios. Properties of the MNPs materials can be further optimized for use in specific biomedical applications.

  1. Biocompatible nanomaterials based on dendrimers, hydrogels and hydrogel nanocomposites for use in biomedicine

    Science.gov (United States)

    Khoa Nguyen, Cuu; Quyen Tran, Ngoc; Phuong Nguyen, Thi; Hai Nguyen, Dai

    2017-03-01

    Over the past decades, biopolymer-based nanomaterials have been developed to overcome the limitations of other macro- and micro- synthetic materials as well as the ever increasing demand for the new materials in nanotechnology, biotechnology, biomedicine and others. Owning to their high stability, biodegradability, low toxicity, and biocompatibility, biopolymer-based nanomaterials hold great promise for various biomedical applications. The pursuit of this review is to briefly describe our recent studies regarding biocompatible biopolymer-based nanomaterials, particularly in the form of dendrimers, hydrogels, and hydrogel composites along with the synthetic and modification approaches for the utilization in drug delivery, tissue engineering, and biomedical implants. Moreover, in vitro and in vivo studies for the toxicity evaluation are also discussed.

  2. Enhanced mechanical performance of biocompatible hemicelluloses-based hydrogel via chain extension.

    Science.gov (United States)

    Qi, Xian-Ming; Chen, Ge-Gu; Gong, Xiao-Dong; Fu, Gen-Que; Niu, Ya-Shuai; Bian, Jing; Peng, Feng; Sun, Run-Cang

    2016-09-16

    Hemicelluloses are widely used to prepare gel materials because of their renewability, biodegradability, and biocompatibility. Here, molecular chain extension of hemicelluloses was obtained in a two-step process. Composite hydrogels were prepared via free radical graft copolymerization of crosslinked quaternized hemicelluloses (CQH) and acrylic acid (AA) in the presence of crosslinking agent N,N'-methylenebisacrylamide (MBA). This chain extension strategy significantly improved the mechanical performance of the resulting hydrogels. The crosslinking density, compression modulus, and swelling capacities of hydrogels were tuned by changing the AA/CQH and MBA/CQH contents. Moreover, the biocompatibility test suggests that the hemicelluloses-based hydrogels exhibited no toxicity to cells and allowed cell growth. Taken together, these properties demonstrated that the composite hydrogels have potential applications in the fields of water absorbents, cell culture, and other functional biomaterials.

  3. Evaluation of inherent toxicology and biocompatibility of magnesium phosphate bone cement.

    Science.gov (United States)

    Yu, Yonglin; Wang, Jing; Liu, Changsheng; Zhang, Bingwen; Chen, Honghong; Guo, Han; Zhong, Gaoren; Qu, Weidong; Jiang, Songhui; Huang, Huangyuan

    2010-04-01

    Magnesium phosphate cement (MPC) is a kind of novel biodegradable bone adhesive for its distinct performance. However, there is few research work concerning on the systemic biocompatibility and genetic toxicological evaluation of MPC. In this study, the investigation on the inherited toxicology of MPC including gene mutation assay (Ames test), chromosome aberration assay (micronucleus test), and DNA damage assay (unscheduled DNA synthesis test) were carried out. Fracture healing and degradation behavior were explored for the evaluation of the biocompatibility of MPC, using macroscopical histological, histomorphometrical, and scanning electron microscopical methods. The results of mutagenicity and potential carcinogenicity of MPC extracts were negative, and the animal implantation illustrated no toxicity and good resorption. The study suggested that bioresorbable MPC was safe for application and might have potential applications for physiological fracture fixation.

  4. Enhanced mechanical performance of biocompatible hemicelluloses-based hydrogel via chain extension

    Science.gov (United States)

    Qi, Xian-Ming; Chen, Ge-Gu; Gong, Xiao-Dong; Fu, Gen-Que; Niu, Ya-Shuai; Bian, Jing; Peng, Feng; Sun, Run-Cang

    2016-01-01

    Hemicelluloses are widely used to prepare gel materials because of their renewability, biodegradability, and biocompatibility. Here, molecular chain extension of hemicelluloses was obtained in a two-step process. Composite hydrogels were prepared via free radical graft copolymerization of crosslinked quaternized hemicelluloses (CQH) and acrylic acid (AA) in the presence of crosslinking agent N,N’-methylenebisacrylamide (MBA). This chain extension strategy significantly improved the mechanical performance of the resulting hydrogels. The crosslinking density, compression modulus, and swelling capacities of hydrogels were tuned by changing the AA/CQH and MBA/CQH contents. Moreover, the biocompatibility test suggests that the hemicelluloses-based hydrogels exhibited no toxicity to cells and allowed cell growth. Taken together, these properties demonstrated that the composite hydrogels have potential applications in the fields of water absorbents, cell culture, and other functional biomaterials. PMID:27634095

  5. Chitosan-coated mesoporous MIL-100(Fe) nanoparticles as improved bio-compatible oral nanocarriers

    Science.gov (United States)

    Hidalgo, T.; Giménez-Marqués, M.; Bellido, E.; Avila, J.; Asensio, M. C.; Salles, F.; Lozano, M. V.; Guillevic, M.; Simón-Vázquez, R.; González-Fernández, A.; Serre, C.; Alonso, M. J.; Horcajada, P.

    2017-01-01

    Nanometric biocompatible Metal-Organic Frameworks (nanoMOFs) are promising candidates for drug delivery. Up to now, most studies have targeted the intravenous route, related to pain and severe complications; whereas nanoMOFs for oral administration, a commonly used non-invasive and simpler route, remains however unexplored. We propose here the biofriendly preparation of a suitable oral nanocarrier based on the benchmarked biocompatible mesoporous iron(III) trimesate nanoparticles coated with the bioadhesive polysaccharide chitosan (CS). This method does not hamper the textural/structural properties and the sorption/release abilities of the nanoMOFs upon surface engineering. The interaction between the CS and the nanoparticles has been characterized through a combination of high resolution soft X-ray absorption and computing simulation, while the positive impact of the coating on the colloidal and chemical stability under oral simulated conditions is here demonstrated. Finally, the intestinal barrier bypass capability and biocompatibility of CS-coated nanoMOF have been assessed in vitro, leading to an increased intestinal permeability with respect to the non-coated material, maintaining an optimal biocompatibility. In conclusion, the preservation of the interesting physicochemical features of the CS-coated nanoMOF and their adapted colloidal stability and progressive biodegradation, together with their improved intestinal barrier bypass, make these nanoparticles a promising oral nanocarrier. PMID:28256600

  6. Chitosan-coated mesoporous MIL-100(Fe) nanoparticles as improved bio-compatible oral nanocarriers

    Science.gov (United States)

    Hidalgo, T.; Giménez-Marqués, M.; Bellido, E.; Avila, J.; Asensio, M. C.; Salles, F.; Lozano, M. V.; Guillevic, M.; Simón-Vázquez, R.; González-Fernández, A.; Serre, C.; Alonso, M. J.; Horcajada, P.

    2017-03-01

    Nanometric biocompatible Metal-Organic Frameworks (nanoMOFs) are promising candidates for drug delivery. Up to now, most studies have targeted the intravenous route, related to pain and severe complications; whereas nanoMOFs for oral administration, a commonly used non-invasive and simpler route, remains however unexplored. We propose here the biofriendly preparation of a suitable oral nanocarrier based on the benchmarked biocompatible mesoporous iron(III) trimesate nanoparticles coated with the bioadhesive polysaccharide chitosan (CS). This method does not hamper the textural/structural properties and the sorption/release abilities of the nanoMOFs upon surface engineering. The interaction between the CS and the nanoparticles has been characterized through a combination of high resolution soft X-ray absorption and computing simulation, while the positive impact of the coating on the colloidal and chemical stability under oral simulated conditions is here demonstrated. Finally, the intestinal barrier bypass capability and biocompatibility of CS-coated nanoMOF have been assessed in vitro, leading to an increased intestinal permeability with respect to the non-coated material, maintaining an optimal biocompatibility. In conclusion, the preservation of the interesting physicochemical features of the CS-coated nanoMOF and their adapted colloidal stability and progressive biodegradation, together with their improved intestinal barrier bypass, make these nanoparticles a promising oral nanocarrier.

  7. BIODEGRADATION BEHAVIOR OF POLY(METHYL METHACRYLATE GRAFTED SAGO STARCH BIOPOLYMER

    Directory of Open Access Journals (Sweden)

    Isam Yassin Qudsieh

    2010-09-01

    Full Text Available The graft copolymerization of poly(methyl methacrylate (PMMA onto sago starch (sago starch-g-PMMA was carried out using ceric ammonium nitrate (CAN as an initiator. PMMA was grafted onto sago starch using CAN as an initiator under nitrogen gas atmosphere. The maximum percentage of grafting (%G was determined to be 246% at the optimum conditions. The copolymers produced were characterized by Fourier Transform Infrared Spectrophotometry (FTIR, The FTIR spectra of the copolymers clearly indicated the presence of characteristic peaks of PMMA and sago starch, which suggested that PMMA had been successfully grafted on the sago starch. Biodegradability studies of sago starch-g-PMMA and sago starch were carried out by ?-amylase enzyme. Maximum biodegradation of the biopolymer was achieved after 3 days of incubation, while for the product was 7 days. The maximum production of glucose was achieved when the concentration of -amylase was 50 ppm.

  8. Dissolution chemistry and biocompatibility of single-crystalline silicon nanomembranes and associated materials for transient electronics.

    Science.gov (United States)

    Hwang, Suk-Won; Park, Gayoung; Edwards, Chris; Corbin, Elise A; Kang, Seung-Kyun; Cheng, Huanyu; Song, Jun-Kyul; Kim, Jae-Hwan; Yu, Sooyoun; Ng, Joanne; Lee, Jung Eun; Kim, Jiyoung; Yee, Cassian; Bhaduri, Basanta; Su, Yewang; Omennetto, Fiorenzo G; Huang, Yonggang; Bashir, Rashid; Goddard, Lynford; Popescu, Gabriel; Lee, Kyung-Mi; Rogers, John A

    2014-06-24

    Single-crystalline silicon nanomembranes (Si NMs) represent a critically important class of material for high-performance forms of electronics that are capable of complete, controlled dissolution when immersed in water and/or biofluids, sometimes referred to as a type of "transient" electronics. The results reported here include the kinetics of hydrolysis of Si NMs in biofluids and various aqueous solutions through a range of relevant pH values, ionic concentrations and temperatures, and dependence on dopant types and concentrations. In vitro and in vivo investigations of Si NMs and other transient electronic materials demonstrate biocompatibility and bioresorption, thereby suggesting potential for envisioned applications in active, biodegradable electronic implants.

  9. Development of aliphatic biodegradable photoluminescent polymers

    Science.gov (United States)

    Yang, Jian; Zhang, Yi; Gautam, Santosh; Liu, Li; Dey, Jagannath; Chen, Wei; Mason, Ralph P.; Serrano, Carlos A.; Schug, Kevin A.; Tang, Liping

    2009-01-01

    None of the current biodegradable polymers can function as both implant materials and fluorescent imaging probes. The objective of this study was to develop aliphatic biodegradable photoluminescent polymers (BPLPs) and their associated cross-linked variants (CBPLPs) for biomedical applications. BPLPs are degradable oligomers synthesized from biocompatible monomers including citric acid, aliphatic diols, and various amino acids via a convenient and cost-effective polycondensation reaction. BPLPs can be further cross-linked into elastomeric cross-linked polymers, CBPLPs. We have shown representatively that BPLP-cysteine (BPLP-Cys) and BPLP-serine (BPLP-Ser) offer advantages over the traditional fluorescent organic dyes and quantum dots because of their preliminarily demonstrated cytocompatibility in vitro, minimal chronic inflammatory responses in vivo, controlled degradability and high quantum yields (up to 62.33%), tunable fluorescence emission (up to 725 nm), and photostability. The tensile strength of CBPLP-Cys film ranged from 3.25 ± 0.13 MPa to 6.5 ± 0.8 MPa and the initial Modulus was in a range of 3.34 ± 0.15 MPa to 7.02 ± 1.40 MPa. Elastic CBPLP-Cys could be elongated up to 240 ± 36%. The compressive modulus of BPLP-Cys (0.6) (1:1:0.6 OD:CA:Cys) porous scaffold was 39.60 ± 5.90 KPa confirming the soft nature of the scaffolds. BPLPs also possess great processability for micro/nano-fabrication. We demonstrate the feasibility of using BPLP-Ser nanoparticles (“biodegradable quantum dots”) for in vitro cellular labeling and noninvasive in vivo imaging of tissue engineering scaffolds. The development of BPLPs and CBPLPs represents a new direction in developing fluorescent biomaterials and could impact tissue engineering, drug delivery, bioimaging. PMID:19506254

  10. Molecularly Imprinted Biodegradable Nanoparticles

    Science.gov (United States)

    Gagliardi, Mariacristina; Bertero, Alice; Bifone, Angelo

    2017-01-01

    Biodegradable polymer nanoparticles are promising carriers for targeted drug delivery in nanomedicine applications. Molecu- lar imprinting is a potential strategy to target polymer nanoparticles through binding of endogenous ligands that may promote recognition and active transport into specific cells and tissues. However, the lock-and-key mechanism of molecular imprinting requires relatively rigid cross-linked structures, unlike those of many biodegradable polymers. To date, no fully biodegradable molecularly imprinted particles have been reported in the literature. This paper reports the synthesis of a novel molecularly- imprinted nanocarrier, based on poly(lactide-co-glycolide) (PLGA) and acrylic acid, that combines biodegradability and molec- ular recognition properties. A novel three-arm biodegradable cross-linker was synthesized by ring-opening polymerization of glycolide and lactide initiated by glycerol. The resulting macromer was functionalized by introduction of end-functions through reaction with acryloyl chloride. Macromer and acrylic acid were used for the synthesis of narrowly-dispersed nanoparticles by radical polymerization in diluted conditions in the presence of biotin as template molecule. The binding capacity of the imprinted nanoparticles towards biotin and biotinylated bovine serum albumin was twentyfold that of non-imprinted nanoparti- cles. Degradation rates and functional performances were assessed in in vitro tests and cell cultures, demonstrating effective biotin-mediated cell internalization. PMID:28071745

  11. Molecularly Imprinted Biodegradable Nanoparticles

    Science.gov (United States)

    Gagliardi, Mariacristina; Bertero, Alice; Bifone, Angelo

    2017-01-01

    Biodegradable polymer nanoparticles are promising carriers for targeted drug delivery in nanomedicine applications. Molecu- lar imprinting is a potential strategy to target polymer nanoparticles through binding of endogenous ligands that may promote recognition and active transport into specific cells and tissues. However, the lock-and-key mechanism of molecular imprinting requires relatively rigid cross-linked structures, unlike those of many biodegradable polymers. To date, no fully biodegradable molecularly imprinted particles have been reported in the literature. This paper reports the synthesis of a novel molecularly- imprinted nanocarrier, based on poly(lactide-co-glycolide) (PLGA) and acrylic acid, that combines biodegradability and molec- ular recognition properties. A novel three-arm biodegradable cross-linker was synthesized by ring-opening polymerization of glycolide and lactide initiated by glycerol. The resulting macromer was functionalized by introduction of end-functions through reaction with acryloyl chloride. Macromer and acrylic acid were used for the synthesis of narrowly-dispersed nanoparticles by radical polymerization in diluted conditions in the presence of biotin as template molecule. The binding capacity of the imprinted nanoparticles towards biotin and biotinylated bovine serum albumin was twentyfold that of non-imprinted nanoparti- cles. Degradation rates and functional performances were assessed in in vitro tests and cell cultures, demonstrating effective biotin-mediated cell internalization.

  12. Creating biocompatible oil-water interfaces without synthesis: direct interactions between primary amines and carboxylated perfluorocarbon surfactants.

    Science.gov (United States)

    DeJournette, Cheryl J; Kim, Joonyul; Medlen, Haley; Li, Xiangpeng; Vincent, Luke J; Easley, Christopher J

    2013-11-05

    Currently, one of the most prominent methods used to impart biocompatibility to aqueous-in-oil droplets is to synthesize a triblock copolymer surfactant composed of perfluoropolyether and polyether blocks. The resulting surfactants (EA surfactant, KryJeffa, etc.) allow generation of highly biocompatible droplet surfaces while maintaining the heat stability of the starting material. However, production of these surfactants requires expertise in synthetic organic chemistry, creating a barrier to widespread adoption in the field. Herein, we describe a simple alternative to synthetic modification of surfactants to impart biocompatibility. We have observed that aqueous-in-oil droplet surfaces can be made biocompatible and heat stable by merely exploiting binding interactions between polyetherdiamine additives in the aqueous phase and carboxylated perfluorocarbon surfactants in the oil phase. Droplets formed under these conditions are shown to possess biocompatible surfaces capable of supporting picoliter-scale protein assays, droplet polymerase chain reaction (PCR), and droplet DNA amplification with isothermal recombinase polymerase amplification (RPA). Droplets formed with polyetherdiamine aqueous additives are stable enough to withstand temperature cycling during PCR (30-40 cycles at 60-94 °C) while maintaining biocompatibility, and the reaction efficiency of RPA is shown to be similar to that with a covalently modified surfactant (KryJeffa). The binding interaction was confirmed with various methods, including FT-IR spectroscopy, NMR spectroscopy, electrospray ionization mass spectrometry (ESI-MS), and fluorescence microscopy. Overall, our results suggest that, by simply introducing a commercially-available, polyetherdiamine additive (Jeffamine ED-900) to the aqueous phase, researchers can avoid synthetic methods in generating biocompatible droplet surfaces capable of supporting DNA and protein analysis at the subnanoliter scale.

  13. Biocompatibility of crystalline opal nanoparticles

    Directory of Open Access Journals (Sweden)

    Hernández-Ortiz Marlen

    2012-10-01

    Full Text Available Abstract Background Silica nanoparticles are being developed as a host of biomedical and biotechnological applications. For this reason, there are more studies about biocompatibility of silica with amorphous and crystalline structure. Except hydrated silica (opal, despite is presents directly and indirectly in humans. Two sizes of crystalline opal nanoparticles were investigated in this work under criteria of toxicology. Methods In particular, cytotoxic and genotoxic effects caused by opal nanoparticles (80 and 120 nm were evaluated in cultured mouse cells via a set of bioassays, methylthiazolyldiphenyl-tetrazolium-bromide (MTT and 5-bromo-2′-deoxyuridine (BrdU. Results 3T3-NIH cells were incubated for 24 and 72 h in contact with nanocrystalline opal particles, not presented significant statistically difference in the results of cytotoxicity. Genotoxicity tests of crystalline opal nanoparticles were performed by the BrdU assay on the same cultured cells for 24 h incubation. The reduction of BrdU-incorporated cells indicates that nanocrystalline opal exposure did not caused unrepairable damage DNA. Conclusions There is no relationship between that particles size and MTT reduction, as well as BrdU incorporation, such that the opal particles did not induce cytotoxic effect and genotoxicity in cultured mouse cells.

  14. A review on biodegradable materials for cardiovascular stent application

    Science.gov (United States)

    Hou, Li-Da; Li, Zhen; Pan, Yu; Sabir, MuhammadIqbal; Zheng, Yu-Feng; Li, Li

    2016-09-01

    A stent is a medical device designed to serve as a temporary or permanent internal scaffold to maintain or increase the lumen of a body conduit. The researchers and engineers diverted to investigate biodegradable materials due to the limitation of metallic materials in stent application such as stent restenosis which requires prolonged anti platelet therapy, often result in smaller lumen after implantation and obstruct re-stenting treatments. Biomedical implants with temporary function for the vascular intervention are extensively studied in recent years. The rationale for biodegradable stent is to provide the support for the vessel in predicted period of time and then degrading into biocompatible constituent. The degradation of stent makes the re-stenting possible after several months and also ameliorates the vessel wall quality. The present article focuses on the biodegradable materials for the cardiovascular stent. The objective of this review is to describe the possible biodegradable materials for stent and their properties such as design criteria, degradation behavior, drawbacks and advantages with their recent clinical and preclinical trials.

  15. BARRIER PROPERTIES OF VINYLIDENE CHLORIDE COPOLYMERS

    Institute of Scientific and Technical Information of China (English)

    LI Yuesheng; WENG Zhixue; HUANG Zhiming; PAN Zuren

    1996-01-01

    The permeability coefficients of a series of copolymers of vinylidene chloride (VDC)with methyl acrylate (MA), butyl acrylate (BA) or vinyl chloride (VC) (as comonomer)to oxygen and carbon dioxide have been measured at 1.0 MPa and 30℃, while those to water vapor have been measured at 30℃ and 100% relative humidity. All the copolymers are semicrystalline. VDC/MA copolymers have lower melting temperature compared with VDC/BA copolymers, while that melting temperature of VDC/VC copolymer is higher than that of VDC/acrylate copolymers with the same VDC content. The barrier property of the copolymers is predominantly controlled by crystallite, free volume fraction, and cohesive energy. The permeability coefficients of VDC/MA copolymers to oxygen, carbon dioxide, and water vapor were successfully correlated with the ratio of free volume to cohesive energy.

  16. Lignin poly(lactic acid) copolymers

    Energy Technology Data Exchange (ETDEWEB)

    Olsson, Johan Vilhelm; Chung, Yi-Lin; Li, Russell Jingxian; Waymouth, Robert; Sattely, Elizabeth; Billington, Sarah; Frank, Curtis W.

    2017-02-14

    Provided herein are graft co-polymers of lignin and poly(lactic acid) (lignin-g-PLA copolymer), thermoset and thermoplastic polymers including them, methods of preparing these polymers, and articles of manufacture including such polymers.

  17. Biodegradable Oxamide-Phenylene-Based Mesoporous Organosilica Nanoparticles with Unprecedented Drug Payloads for Delivery in Cells

    KAUST Repository

    Croissant, Jonas

    2016-06-03

    We describe biodegradable mesoporous hybrid NPs in the presence of proteins, and its application for drug delivery. We synthesized oxamide-phenylene-based mesoporous organosilica nanoparticles (MON) in the absence of silica source which had a remarkably high organic content with a high surface area. Oxamide functions provided biodegradability in the presence of trypsin model proteins. MON displayed exceptionally high payloads of hydrophilic and hydrophobic drugs (up to 84 wt%), and a unique zero premature leakage without the pore capping, unlike mesoporous silica. MON were biocompatible and internalized into cancer cells for drug delivery.

  18. In vivo study of nanostructured diopside (CaMgSi{sub 2}O{sub 6}) coating on magnesium alloy as biodegradable orthopedic implants

    Energy Technology Data Exchange (ETDEWEB)

    Razavi, Mehdi, E-mail: mrzavi2659@gmail.com [Biomaterials Research Group, Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Torabinejad Dental Research Center, School of Dentistry, Isfahan University of Medical Sciences, Isfahan 81746-73461 (Iran, Islamic Republic of); School of Materials Science and Engineering, Helmerich Advanced Technology Research Center, Oklahoma State University, Tulsa, OK 74106 (United States); School of Electrical and Computer Engineering, Helmerich Advanced Technology Research Center, Oklahoma State University, Tulsa, OK 74106 (United States); Fathi, Mohammadhossein [Biomaterials Research Group, Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Dental Materials Research Center, Isfahan University of Medical Sciences, Isfahan (Iran, Islamic Republic of); Savabi, Omid [Torabinejad Dental Research Center, School of Dentistry, Isfahan University of Medical Sciences, Isfahan 81746-73461 (Iran, Islamic Republic of); Razavi, Seyed Mohammad [School of Dentistry, Isfahan University of Medical Sciences, Isfahan 81746-73461 (Iran, Islamic Republic of); Heidari, Fariba; Manshaei, Maziar [Torabinejad Dental Research Center, School of Dentistry, Isfahan University of Medical Sciences, Isfahan 81746-73461 (Iran, Islamic Republic of); Vashaee, Daryoosh [School of Electrical and Computer Engineering, Helmerich Advanced Technology Research Center, Oklahoma State University, Tulsa, OK 74106 (United States); Tayebi, Lobat, E-mail: lobat.tayebi@okstate.edu [School of Materials Science and Engineering, Helmerich Advanced Technology Research Center, Oklahoma State University, Tulsa, OK 74106 (United States); School of Chemical Engineering, Oklahoma State University, Stillwater, OK 74078 (United States)

    2014-09-15

    Highlights: • In vitro biocompatibility of biodegradable Mg alloy was improved by diopside coating. • In vivo biocompatibility of biodegradable Mg alloy was improved by diopside coating. • Degradation behavior of biodegradable Mg alloy was improved by diopside coating. - Abstract: In order to improve the corrosion resistance and bioactivity of a biodegradable magnesium alloy, we have recently prepared a nanostructured diopside (CaMgSi{sub 2}O{sub 6}) coating on AZ91 magnesium alloy through a combined micro-arc oxidation (MAO) and electrophoretic deposition (EPD) method (reported elsewhere). In this work, we performed a detailed biocompatibility analysis of the implants made by this material and compared their performance with those of the uncoated and micro arc oxidized magnesium implants. The biocompatibility evaluation of samples was performed by culturing L-929 cells and in vivo animal study, including implantation of samples in greater trochanter of rabbits, radiography and histological examinations. The results from both the in vitro and in vivo studies indicated that the diopside/MAO coated magnesium implant significantly enhanced cell viability, biodegradation resistance and new bone formation compared with both the uncoated and the micro-arc oxidized magnesium implants. Our data provides an example of how the proper surface treatment of magnesium implants can overcome their drawbacks in terms of high degradation rate and gas bubble formation under physiological conditions.

  19. Editorial: Biodegradable Materials

    Directory of Open Access Journals (Sweden)

    Carl Schaschke

    2014-11-01

    Full Text Available This Special Issue “Biodegradable Materials” features research and review papers concerning recent advances on the development, synthesis, testing and characterisation of biomaterials. These biomaterials, derived from natural and renewable sources, offer a potential alternative to existing non-biodegradable materials with application to the food and biomedical industries amongst many others. In this Special Issue, the work is expanded to include the combined use of fillers that can enhance the properties of biomaterials prepared as films. The future application of these biomaterials could have an impact not only at the economic level, but also for the improvement of the environment.

  20. Synthesis and characterization of a novel water-soluble cationic diblock copolymer with star conformation by ATRP

    Energy Technology Data Exchange (ETDEWEB)

    Li, Shuzhao [Department of Chemical Engineering, University of New Brunswick, Fredericton, NB E3B 5A3 (Canada); School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237 (China); Xiao, Miaomiao [Department of Chemical Engineering, University of New Brunswick, Fredericton, NB E3B 5A3 (Canada); Zheng, Anna [School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237 (China); Xiao, Huining, E-mail: hxiao@unb.ca [Department of Chemical Engineering, University of New Brunswick, Fredericton, NB E3B 5A3 (Canada)

    2014-10-01

    A water-soluble cationic diblock copolymer, CD-PAM-b-PMeDMA, was synthesized through atom transfer radical polymerization (ATRP) from a β-cyclodextrin (CD) macroinitiator with 10-active sites (10Br-β-CD). In order to reduce the cytotoxicity of the CD-PAM-b-PMeDMA, biocompatible polyacrylamide (PAM) was first introduced onto the surface of β-CD as a scaffold structure by ATRP using the 10Br-β-CD as a macroinitiator. The reaction conditions of AM were explored and optimized. The ATRP of [2-(methacryloyloxy)ethyl] trimethyl ammonium chloride (MeDMA) was also performed to synthesize the second cationic block using the resulting CD-PAM as a macroinitiator. The resulting diblock copolymer shows an increased hydrodynamic radius in aqueous solution with a pretty low concentration compared with β-CD. In addition, it appears a near-uniform coniform after being deposited on mica ascribed to the presence of an asymmetric 10-arm structure. - Highlights: • A 10-arm diblock polymer was prepared by ATRP for the potential use as a non-viral gene delivery. • PAM was first synthesized in a controlled manner considering its biocompatibility. • The hydrodynamic radius of the copolymer in aqueous solution increase to 130 nm from 7.5 nm of CD. • The copolymer appears coniform after deposited on mica surface due to the charge attraction.

  1. A biocompatible magnetic film: synthesis and characterization

    OpenAIRE

    Chatterjee, Jhunu; Haik, Yousef; Chen, Ching Jen

    2004-01-01

    Background Biotechnology applications of magnetic gels include biosensors, targeted drug delivery, artificial muscles and magnetic buckles. These gels are produced by incorporating magnetic materials in the polymer composites. Methods A biocompatible magnetic gel film has been synthesized using polyvinyl alcohol. The magnetic gel was dried to generate a biocompatible magnetic film. Nanosized iron oxide particles (γ-Fe2O3, ~7 nm) have been used to produce the magnetic gel. Results The surface ...

  2. Micellization and Dynamics of a Block Copolymer

    DEFF Research Database (Denmark)

    Hvidt, Søren

    2006-01-01

    Triblock copolymers of the type EPE, where E and P denote ethylene oxide and propylene oxide blocks, respectively, are industrially important copolymers often called Pluronics or Poloxamers. EPE copolymers form micelles with a core of P blocks and different micellar shapes depending on block leng...

  3. Carbon Fiber Biocompatibility for Implants

    Directory of Open Access Journals (Sweden)

    Richard Petersen

    2016-01-01

    Full Text Available Carbon fibers have multiple potential advantages in developing high-strength biomaterials with a density close to bone for better stress transfer and electrical properties that enhance tissue formation. As a breakthrough example in biomaterials, a 1.5 mm diameter bisphenol-epoxy/carbon-fiber-reinforced composite rod was compared for two weeks in a rat tibia model with a similar 1.5 mm diameter titanium-6-4 alloy screw manufactured to retain bone implants. Results showed that carbon-fiber-reinforced composite stimulated osseointegration inside the tibia bone marrow measured as percent bone area (PBA to a great extent when compared to the titanium-6-4 alloy at statistically significant levels. PBA increased significantly with the carbon-fiber composite over the titanium-6-4 alloy for distances from the implant surfaces of 0.1 mm at 77.7% vs. 19.3% (p < 10−8 and 0.8 mm at 41.6% vs. 19.5% (p < 10−4, respectively. The review focuses on carbon fiber properties that increased PBA for enhanced implant osseointegration. Carbon fibers acting as polymer coated electrically conducting micro-biocircuits appear to provide a biocompatible semi-antioxidant property to remove damaging electron free radicals from the surrounding implant surface. Further, carbon fibers by removing excess electrons produced from the cellular mitochondrial electron transport chain during periods of hypoxia perhaps stimulate bone cell recruitment by free-radical chemotactic influences. In addition, well-studied bioorganic cell actin carbon fiber growth would appear to interface in close contact with the carbon-fiber-reinforced composite implant. Resulting subsequent actin carbon fiber/implant carbon fiber contacts then could help in discharging the electron biological overloads through electrochemical gradients to lower negative charges and lower concentration.

  4. A novel route for the production of chitosan/poly(lactide-co-glycolide) graft copolymers for electrospinning

    Energy Technology Data Exchange (ETDEWEB)

    Xie Deming [Tissue Engineering Laboratory, Department of Biomedical Engineering, Jinan University, Guangzhou, 510630 (China); Huang Huamei [Morphological Experiments Center of Medical College, Jinan University, Guangzhou, 510630 (China); Blackwood, Keith; MacNeil, Sheila [Tissue Engineering Group, Department of Engineering Materials and Division of Biomedical Sciences and Medicine, Kroto Research Institute, University of Sheffield North Campus, Broad Lane, Sheffield S3 7HQ (United Kingdom)

    2010-12-15

    Both chitosan and polylactide/polyglycolide have good biocompatibility and can be used to produce tissue engineering scaffolds for cultured cells. However the synthetic scaffolds lack groups that would facilitate their modification, whereas chitosan has extensive active amide and hydroxyl groups which would allow it to be subsequently modified for the attachment of peptides, proteins and drugs. Also chitosan is very hydrophilic, whereas PLGA is relatively hydrophobic. Accordingly there are many situations where it would be ideal to have a copolymer of both, especially one that could be electrospun to provide a versatile range of scaffolds for tissue engineering. Our aim was to develop a novel route of chitosan-g-PLGA preparation and evaluate the copolymers in terms of their chemical characterization, their performance on electrospinning and their ability to support the culture of fibroblasts as an initial biological evaluation of these scaffolds. Chitosan was first modified with trimethylsilyl chloride, and catalyzed by dimethylamino pyridine. PLGA-grafted chitosan copolymers were prepared by reaction with end-carboxyl PLGA (PLGA-COOH). FT-IR and{sup 1}H-NMR characterized the copolymer molecular structure as being substantially different to that of the chitosan or PLGA on their own. Elemental analysis showed an average 18 pyranose unit intervals when PLGA-COOH was grafted into the chitosan molecular chain. Differential scanning calorimetry results showed that the copolymers had different thermal properties from PLGA and chitosan respectively. Contact angle measurements demonstrated that copolymers became more hydrophilic than PLGA. The chitosan-g-PLGA copolymers were electrospun to produce either nano- or microfibers as desired. A 3D fibrous scaffold of the copolymers gave good fibroblast adhesion and proliferation which did not differ significantly from the performance of the cells on the chitosan or PLGA electrospun scaffolds. In summary this work presents a

  5. Copolymers For Capillary Gel Electrophoresis

    Science.gov (United States)

    Liu, Changsheng; Li, Qingbo

    2005-08-09

    This invention relates to an electrophoresis separation medium having a gel matrix of at least one random, linear copolymer comprising a primary comonomer and at least one secondary comonomer, wherein the comonomers are randomly distributed along the copolymer chain. The primary comonomer is an acrylamide or an acrylamide derivative that provides the primary physical, chemical, and sieving properties of the gel matrix. The at least one secondary comonomer imparts an inherent physical, chemical, or sieving property to the copolymer chain. The primary and secondary comonomers are present in a ratio sufficient to induce desired properties that optimize electrophoresis performance. The invention also relates to a method of separating a mixture of biological molecules using this gel matrix, a method of preparing the novel electrophoresis separation medium, and a capillary tube filled with the electrophoresis separation medium.

  6. Poly(glycerol-dodecanoate), a biodegradable polyester for medical devices and tissue engineering scaffolds.

    Science.gov (United States)

    Migneco, Francesco; Huang, Yen-Chih; Birla, Ravi K; Hollister, Scott J

    2009-11-01

    In this paper we describe the mechanical and biological features of a thermosetting polyester synthesized from glycerol and dodecanedioic acid named Poly-Glycerol-Dodecanoate (PGD). This polymer shows a glass transition temperature (T(g)) around 32 degrees C, and this accounts for its mechanical properties. At room temperature (21 degrees ) PGD behaves like a stiff elastic-plastic material, while at body temperature (37 degrees C), it shows a compliant non-linear elastic behavior. Together with biodegradability and biocompatibility PGD has distinct shape memory features. After the polymer is cured, no matter what the final configuration is, we can recover the original shape by heating PGD to temperatures of 32 degrees C and higher. The mechanical properties together with biocompatibility/biodegradability and shape memory features make PGD an attractive polymer for biomedical applications.

  7. Biodegradable Materials for Nonwovens

    Science.gov (United States)

    Demand for nonwovens is increasing globally, particularly in the disposable products area. As the consumption of nonwoven products with short life increases, the burden on waste disposal also rises. In this context, biodegradable nonwovens become more important today and for the future. Several new ...

  8. Grey water biodegradability

    NARCIS (Netherlands)

    Abu Ghunmi, L.; Zeeman, G.; Fayyad, M.; Van Lier, J.B.

    2010-01-01

    Knowing the biodegradability characteristics of grey water constituents is imperative for a proper design and operation of a biological treatment system of grey water. This study characterizes the different COD fractions of dormitory grey water and investigates the effect of applying different condi

  9. Grey water biodegradability

    NARCIS (Netherlands)

    Abu Ghunmi, L.; Zeeman, G.; Fayyad, M.; Lier, van J.B.

    2011-01-01

    Knowing the biodegradability characteristics of grey water constituents is imperative for a proper design and operation of a biological treatment system of grey water. This study characterizes the different COD fractions of dormitory grey water and investigates the effect of applying different condi

  10. Polyester-Based, Biodegradable Core-Multishell Nanocarriers for the Transport of Hydrophobic Drugs

    Directory of Open Access Journals (Sweden)

    Karolina A. Walker

    2016-05-01

    Full Text Available A water-soluble, core-multishell (CMS nanocarrier based on a new hyperbranched polyester core building block was synthesized and characterized towards drug transport and degradation of the nanocarrier. The hydrophobic drug dexamethasone was encapsulated and the enzyme-mediated biodegradability was investigated by NMR spectroscopy. The new CMS nanocarrier can transport one molecule of dexamethasone and degrades within five days at a skin temperature of 32 °C to biocompatible fragments.

  11. Acid-Labile Amphiphilic PEO-b-PPO-b-PEO Copolymers: Degradable Poloxamer Analogs.

    Science.gov (United States)

    Worm, Matthias; Kang, Biao; Dingels, Carsten; Wurm, Frederik R; Frey, Holger

    2016-05-01

    Poly ((ethylene oxide)-b-(propylene oxide)-b-(ethylene oxide)) triblock copolymers commonly known as poloxamers or Pluronics constitute an important class of nonionic, biocompatible surfactants. Here, a method is reported to incorporate two acid-labile acetal moieties in the backbone of poloxamers to generate acid-cleavable nonionic surfactants. Poly(propylene oxide) is functionalized by means of an acetate-protected vinyl ether to introduce acetal units. Three cleavable PEO-PPO-PEO triblock copolymers (Mn,total = 6600, 8000, 9150 g·mol(-1) ; Mn,PEO = 2200, 3600, 4750 g·mol(-1) ) have been synthesized using anionic ring-opening polymerization. The amphiphilic copolymers exhibit narrow molecular weight distributions (Ð = 1.06-1.08). Surface tension measurements reveal surface-active behavior in aqueous solution comparable to established noncleavable poloxamers. Complete hydrolysis of the labile junctions after acidic treatment is verified by size exclusion chromatography. The block copolymers have been employed as surfactants in a miniemulsion polymerization to generate polystyrene (PS) nanoparticles with mean diameters of ≈200 nm and narrow size distribution, as determined by dynamic light scattering and scanning electron microscopy. Acid-triggered precipitation facilitates removal of surfactant fragments from the nanoparticles, which simplifies purification and enables nanoparticle precipitation "on demand."

  12. Nanoassemblies of Tissue-Reactive, Polyoxazoline Graft-Copolymers Restore the Lubrication Properties of Degraded Cartilage.

    Science.gov (United States)

    Morgese, Giulia; Cavalli, Emma; Müller, Mischa; Zenobi-Wong, Marcy; Benetti, Edmondo M

    2017-03-13

    Osteoarthritis leads to an alteration in the composition of the synovial fluid, which is associated with an increase in friction and the progressive and irreversible destruction of the articular cartilage. In order to tackle this degenerative disease, there has been a growing interest in the medical field to establish effective, long-term treatments to restore cartilage lubrication after damage. Here we develop a series of graft-copolymers capable of assembling selectively on the degraded cartilage, resurfacing it, and restoring the lubricating properties of the native tissue. These comprise a polyglutamic acid backbone (PGA) coupled to brush-forming, poly-2-methyl-2-oxazoline (PMOXA) side chains, which provide biopassivity and lubricity to the surface, and to aldehyde-bearing tissue-reactive groups, for the anchoring on the degenerated cartilage via Schiff bases. Optimization of the graft-copolymer architecture (i.e., density and length of side chains and amount of tissue-reactive functions) allowed a uniform passivation of the degraded cartilage surface. Graft-copolymer-treated cartilage showed very low coefficients of friction within synovial fluid, reestablishing and in some cases improving the lubricating properties of the natural cartilage. Due to these distinctive properties and their high biocompatibility and stability under physiological conditions, cartilage-reactive graft-copolymers emerge as promising injectable formulations to slow down the progression of cartilage degradation, which characterizes the early stages of osteoarthritis.

  13. Development and characterization of biodegradable polymer blends - PHBV/PCL irradiated with gamma rays

    Energy Technology Data Exchange (ETDEWEB)

    Rosario, F. [Faculdade de Tecnologia da Zona Leste (FATEC-ZL), Sao Paulo, SP (Brazil). Centro Paulo Souza; Casarin, S.A.; Agnelli, J.A.M. [Universidade Federal de Sao Carlos (DEMa/UFSCar), SP (Brazil). Dept. de Engenharia de Materiais; Souza Junior, O.F. de [Universidade de Sao Paulo (IFSC/USP), Sao Carlos, SP (Brazil). Inst. de Fisica

    2010-07-01

    This paper presents the results of a study that aimed to develop PHBV biodegradable polymer blends, in a major concentration with PCL, irradiate the pure polymers and blends in two doses of gamma radiation and to analyze the changes in chemical and mechanical properties. The blends used in this study were from natural biodegradable copolymer poly (hydroxybutyrate-valerate) (PHBV) and synthetic biodegradable polymer poly (caprolactone) (PCL 2201) with low molar mass (2,000 g/mol). Several samples were prepared in a co-rotating twin-screw extruder and afterwards, the tensile specimens were injected for the irradiation treatment with 50 kGy to 100 kGy doses and for the mechanical tests. The characterization of the samples before and after the irradiation treatments was performed through scanning electron microscopy (SEM), dynamic mechanical thermal analysis (DMTA), differential scanning calorimetry (DSC) and mechanical tensile tests. (author)

  14. Development in Synthesis and Modification of Biodegradable Poly(butylene succinate) and its Copolymers%可生物降解聚丁二酸丁二醇酯及其共聚物的合成及改性研究进展

    Institute of Scientific and Technical Information of China (English)

    王国利; 徐军; 郭宝华

    2011-01-01

    Poly(butylene succinate) (PBS) as one of most important biodegradable polymers are paid lot of concerns in its synthesis and modification. The use of biodegradable polymers can decrease “White Pollution" caused by using of common polymers, such as PP, PE and etc. In this paper the polycondensation methods and process of PBS are reviewed. In order to enhance their properties and extend their application fields, the physical and chemical modifications of PBS are also given an introduction.%聚丁二酸丁二醇酯(PBS)是一种重要的可生物降解聚合物材料,在一定程度上可以缓解由于使用传统聚合物材料造成的"白色污染"问题.其合成和改性研究受到广泛的关注.本论文对PBS的聚合工艺及方法等方面进行了综述,并对PBS材料物理或化学改性进行了阐述.

  15. Biocompatibility of electrospun human albumin: a pilot study.

    Science.gov (United States)

    Noszczyk, B H; Kowalczyk, T; Łyżniak, M; Zembrzycki, K; Mikułowski, G; Wysocki, J; Kawiak, J; Pojda, Z

    2015-03-02

    Albumin is rarely used for electrospinning because it does not form fibres in its native globular form. This paper presents a novel method for electrospinning human albumin from a solution containing pharmaceutical grade protein and 25% polyethylene oxide (PEO) used as the fibre-forming agent. After spontaneous cross-linking at body temperature, with no further chemicals added, the fibres become insoluble and the excess PEO can be washed out. Albumin deposited along the fibres retains its native characteristics, such as its non-adhesiveness to cells and its susceptibility for degradation by macrophages. To demonstrate this we evaluated the mechanical properties, biocompatibility and biodegradability of this novel product. After subcutaneous implantation in mice, albumin mats were completely resorbable within six days and elicited only a limited local inflammatory response. In vitro, the mats suppressed cell attachment and migration. As this product is inexpensive, produced from human pharmaceutical grade albumin without chemical modifications, retains its native protein properties and fulfils the specific requirements for anti-adhesive dressings, its clinical use can be expedited. We believe that it could specifically be used when treating paediatric patients with epidermolysis bullosa, in whom non-healing wounds occur after minor hand injuries which lead to rapid adhesions and devastating contractures.

  16. Fabrication and Biocompatibility of Electrospun Silk Biocomposites

    Directory of Open Access Journals (Sweden)

    Ick-Soo Kim

    2011-10-01

    Full Text Available Silk fibroin has attracted great interest in tissue engineering because of its outstanding biocompatibility, biodegradability and minimal inflammatory reaction. In this study, two kinds of biocomposites based on regenerated silk fibroin are fabricated by electrospinning and post-treatment processes, respectively. Firstly, regenerated silk fibroin/tetramethoxysilane (TMOS hybrid nanofibers with high hydrophilicity are prepared, which is superior for fibroblast attachment. The electrospinning process causes adjacent fibers to ‘weld’ at contact points, which can be proved by scanning electron microscope (SEM. The water contact angle of silk/tetramethoxysilane (TMOS composites shows a sharper decrease than pure regenerated silk fibroin nanofiber, which has a great effect on the early stage of cell attachment behavior. Secondly, a novel tissue engineering scaffold material based on electrospun silk fibroin/nano-hydroxyapatite (nHA biocomposites is prepared by means of an effective calcium and phosphate (Ca–P alternate soaking method. nHA is successfully produced on regenerated silk fibroin nanofiber within several min without any pre-treatments. The osteoblastic activities of this novel nanofibrous biocomposites are also investigated by employing osteoblastic-like MC3T3-E1 cell line. The cell functionality such as alkaline phosphatase (ALP activity is ameliorated on mineralized silk nanofibers. All these results indicate that this silk/nHA biocomposite scaffold material may be a promising biomaterial for bone tissue engineering.

  17. Effect of solvents on the enzyme mediated degradation of copolymers

    Science.gov (United States)

    Banerjee, Aditi; Chatterjee, Kaushik; Madras, Giridhar

    2015-09-01

    The biodegradation of polycaprolactone (PCL), polylactic acid (PLA), polyglycolide (PGA) and their copolymers, poly (lactide-co-glycolide) and poly (D, L-lactide-co-caprolactone) (PLCL) was investigated. The influence of different solvents on the degradation of these polymers at 37 °C in the presence of two different lipases namely Novozym 435 and the free lipase of porcine pancreas was investigated. The rate coefficients for the polymer degradation and enzyme deactivation were determined using continuous distribution kinetics. Among the homopolymers, the degradation of PGA was nearly an order of magnitude lower than that for PCL and PLA. The overall rate coefficients of the copolymers were higher than their respective homopolymers. Thus, PLCL degraded faster than either PCL or PLA. The degradation was highly dependent on the viscosity of the solvent used with the highest degradation observed in acetone. The degradation of the polymers in acetone was nearly twice that observed in dimethyl sulfoxide indicating that the degradation decreases with increase in the solvent viscosity. The degradation of the polymers in water-solvent mixtures indicated an optimal water content of 2.5 wt% of water.

  18. Fabrication of drug-loaded anti-infective guided tissue regeneration membrane with adjustable biodegradation property.

    Science.gov (United States)

    Xue, Jiajia; Shi, Rui; Niu, Yuzhao; Gong, Min; Coates, Phil; Crawford, Aileen; Chen, Dafu; Tian, Wei; Zhang, Liqun

    2015-11-01

    For guided tissue regeneration (GTR) membrane, synchronization of the membrane biodegradation rate and tissue regeneration rate is important. Besides, the major reason for GTR membrane failure in clinical application is infection which can be prevented by loading anti-bacterial drug. To realize the consistency in membrane degradation rate and tissue regeneration rate of the anti-infective membrane, we developed metronidazole-loaded electrospun poly(ɛ-caprolactone)-gelatin nanofiber membranes with different poly(ɛ-caprolactone)/gelatin ratios (95:5, 90:10, 80:20, 70:30, 60:40, and 50:50). Homogeneous nanofibers were successfully fabricated. The mechanical strength of the membranes increased with the poly(ɛ-caprolactone) content, while the hydrophilicity decreased. The controlled and sustained release of metronidazole from all the membranes prevented the colonization of anaerobic bacteria. At all poly(ɛ-caprolactone)/gelatin ratios, all the membranes presented good biocompatibility while the increase of gelatin content resulted in enhanced cell adhesion and proliferation. Subcutaneous implantation in rabbits for 8 months demonstrated that all the membranes showed good biocompatibility without infection. Both in vitro and in vivo results showed that the biodegradation rate of the membranes was accelerated with the increase of gelatin content. The biodegradation rate and biocompatibility of the membranes can be adjusted by changing the PCL/gelatin ratio. The optimal membrane can be chosen based on the patient and tissue type to realize the synchronization of membrane degradation with tissue regeneration for the best treatment effect.

  19. Polyether-polyester graft copolymer

    Science.gov (United States)

    Bell, Vernon L. (Inventor)

    1987-01-01

    Described is a polyether graft polymer having improved solvent resistance and crystalline thermally reversible crosslinks. The copolymer is prepared by a novel process of anionic copolymerization. These polymers exhibit good solvent resistance and are well suited for aircraft parts. Previous aromatic polyethers, also known as polyphenylene oxides, have certain deficiencies which detract from their usefulness. These commercial polymers are often soluble in common solvents including the halocarbon and aromatic hydrocarbon types of paint thinners and removers. This limitation prevents the use of these polyethers in structural articles requiring frequent painting. In addition, the most popular commercially available polyether is a very high melting plastic. This makes it considerably more difficult to fabricate finished parts from this material. These problems are solved by providing an aromatic polyether graft copolymer with improved solvent resistance and crystalline thermally reversible crosslinks. The graft copolymer is formed by converting the carboxyl groups of a carboxylated polyphenylene oxide polymer to ionic carbonyl groups in a suitable solvent, reacting pivalolactone with the dissolved polymer, and adding acid to the solution to produce the graft copolymer.

  20. Liquid ethylene-propylene copolymers

    Science.gov (United States)

    Rhein, R. A.; Ingham, J. D.; Humphrey, M. F.

    1975-01-01

    Oligomers are prepared by heating solid ethylene-propylene rubber in container that retains solid and permits liquid product to flow out as it is formed. Molecular weight and viscosity of liquids can be predetermined by process temperature. Copolymers have low viscosity for given molecular weight.

  1. pH-responsive biocompatible fluorescent polymer nanoparticles based on phenylboronic acid for intracellular imaging and drug delivery.

    Science.gov (United States)

    Li, Shengliang; Hu, Kelei; Cao, Weipeng; Sun, Yun; Sheng, Wang; Li, Feng; Wu, Yan; Liang, Xing-Jie

    2014-11-21

    To address current medical challenges, there is an urgent need to develop drug delivery systems with multiple functions, such as simultaneous stimuli-responsive drug release and real-time imaging. Biocompatible polymers have great potential for constructing smart multifunctional drug-delivery systems through grafting with other functional ligands. More importantly, novel biocompatible polymers with intrinsic fluorescence emission can work as theranostic nanomedicines for real-time imaging and drug delivery. Herein, we developed a highly fluorescent nanoparticle based on a phenylboronic acid-modified poly(lactic acid)-poly(ethyleneimine)(PLA-PEI) copolymer loaded with doxorubicin (Dox) for intracellular imaging and pH-responsive drug delivery. The nanoparticles exhibited superior fluorescence properties, such as fluorescence stability, no blinking and excitation-dependent fluorescence behavior. The Dox-loaded fluorescent nanoparticles showed pH-responsive drug release and were more effective in suppressing the proliferation of MCF-7 cells. In addition, the biocompatible fluorescent nanoparticles could be used as a tool for intracellular imaging and drug delivery, and the process of endosomal escape was traced by real-time imaging. These pH-responsive and biocompatible fluorescent polymer nanoparticles, based on phenylboronic acid, are promising tools for intracellular imaging and drug delivery.

  2. In vitro biocompatibility of schwann cells on surfaces of biocompatible polymeric electrospun fibrous and solution-cast film scaffolds.

    Science.gov (United States)

    Sangsanoh, Pakakrong; Waleetorncheepsawat, Suchada; Suwantong, Orawan; Wutticharoenmongkol, Patcharaporn; Weeranantanapan, Oratai; Chuenjitbuntaworn, Boontharika; Cheepsunthorn, Poonlarp; Pavasant, Prasit; Supaphol, Pitt

    2007-05-01

    The in vitro responses of Schwann cells (RT4-D6P2T, a schwannoma cell line derived from a chemically induced rat peripheral neurotumor) on various types of electrospun fibrous scaffolds of some commercially available biocompatible and biodegradable polymers, i.e., poly(3-hydroxybutyrate) (PHB), poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), polycaprolactone (PCL), poly(l-lactic acid) (PLLA), and chitosan (CS), were reported in comparison with those of the cells on corresponding solution-cast film scaffolds as well as on a tissue-culture polystyrene plate (TCPS), used as the positive control. At 24 h after cell seeding, the viability of the attached cells on the various substrates could be ranked as follows: PCL film > TCPS > PCL fibrous > PLLA fibrous > PHBV film > CS fibrous approximately CS film approximately PLLA film > PHB film > PHBV fibrous > PHB fibrous. At day 3 of cell culture, the viability of the proliferated cells on the various substrates could be ranked as follows: TCPS > PHBV film > PLLA film > PCL film > PLLA fibrous > PHB film approximately PCL fibrous > CS fibrous > CS film > PHB fibrous > PHBV fibrous. At approximately 8 h after cell seeding, the cells on the flat surfaces of all of the film scaffolds and that of the PCL nanofibrous scaffold appeared in their characteristic spindle shape, while those on the surfaces of the PHB, PHBV, and PLLA macrofibrous scaffolds also appeared in their characteristic spindle shape, but with the cells being able to penetrate to the inner side of the scaffolds.

  3. Polybiguanide (PHMB) loaded in PLA scaffolds displaying high hydrophobic, biocompatibility and antibacterial properties

    Energy Technology Data Exchange (ETDEWEB)

    Llorens, Elena; Calderón, Silvia [Departament d' Enginyeria Química, Universitat Politècnica de Catalunya, Av. Diagonal 647, Barcelona E-08028 (Spain); Valle, Luis J. del, E-mail: luis.javier.del.valle@upc.edu [Departament d' Enginyeria Química, Universitat Politècnica de Catalunya, Av. Diagonal 647, Barcelona E-08028 (Spain); Puiggalí, Jordi [Departament d' Enginyeria Química, Universitat Politècnica de Catalunya, Av. Diagonal 647, Barcelona E-08028 (Spain); Center for Research in Nano-Engineering (CrNE), Universitat Politècnica de Catalunya, Edifici C, C/Pasqual i Vila s/n, Barcelona E-08028 (Spain)

    2015-05-01

    Polyhexamethylenebiguanide hydrochloride (PHMB), a low molecular weight polymer related to chlorohexidine (CHX), is a well-known antibacterial agent. In this study, polylactide (PLA) nanofibers loaded with PHMB were produced by electrospinning to obtain 3D biodegradable scaffolds with antibacterial properties. PLA fibers loaded with CHX were used as control. The electrospun fibers were studied and analyzed by SEM, FTIR, DSC and contact angle measurements. PHMB and CHX release from loaded scaffolds was evaluated, as well as their antibacterial activity and biocompatibility. The results showed that the nanofibers became smoother and their diameter smaller with increasing the amount of loaded PHMB. This feature led to an increase of both surface roughness and hydrophobicity of the scaffold. PHMB release was highly dependent on the hydrophilicity of the medium and differed from that determined for CHX. Lastly, PHMB-loaded PLA scaffolds showed antibacterial properties since they inhibited adhesion and bacterial growth, and exhibited biocompatible characteristics for the adhesion and proliferation of both fibroblast and epithelial cell lines. - Highlights: • Nanofibers of PLA-PHMB (antibacterial polymer) were prepared by electrospinning. • PHMB has hydrophilic character but the PLA-PHMB scaffolds were highly hydrophobic. • The high-hydrophobicity of the new scaffolds conditioned the release of PHMB. • The controlled release of PHMB inhibited the growth and bacterial adhesion. • PLA-PHMB scaffolds have biocompatibility with fibroblast and epithelial cells.

  4. In vitro biocompatibility assessment of Co-Cr-Mo dental cast alloy

    Directory of Open Access Journals (Sweden)

    Dimić Ivana

    2015-01-01

    Full Text Available Metallic materials, such as Co-Cr-Mo alloys, are exposed to aggressive conditions in the oral cavity which represents ideal environment for metallic ion release and biodegradation. The released metallic ions from dental materials can cause local and/or systemic adverse effects in the human body. Therefore, the dental materials are required to possess appropriate mechanical, physical, chemical and biological properties. The biocompatibility of metallic materials is very important for dental applications. Accordingly, the aim of this study was to examine metallic ion release and cytotoxicity of Co-30Cr-5Mo cast alloy as the initial phase of biocompatibility evaluation. Determination of human (MRC-5 and animal (L929 fibroblast cells viability was conducted using three in vitro test methods: colorimetric methyl-thiazol-tetrazolium (MTT test, dye exclusion test (DET and agar diffusion test (ADT. Furthermore, the cells morphology and growth were analyzed using scanning electron microscopy (SEM. The obtained results indicated that Co-30Cr-5Mo alloy did not release harmful elements in high concentrations that could cause detrimental effects on human and animal fibroblasts under the given experimental conditions. Moreover, the fibroblast cells showed good adhesion on the Co-30Cr-5Mo alloy surface. Therefore, it can be concluded that Co-30Cr-5Mo alloy is biocompatible material which can be safely used in dentistry. [Projekat Ministarstva nauke Republike Srbije, br. III 46010 i br. ON 174004

  5. Chitosan-graft poly(p-dioxanone) copolymers: preparation, characterization, and properties.

    Science.gov (United States)

    Wang, Xiu-Li; Huang, Yan; Zhu, Jiang; Pan, Yan-Bo; He, Rui; Wang, Yu-Zhong

    2009-04-21

    A new biodegradable copolymer of chitosan and poly(p-dioxanone) (PPDO) was prepared through a protection-graft-deprotection procedure using N-phthaloyl-chitosan as an intermediate. PPDO terminated with the isocyanate group was allowed to react with hydroxyl groups of the N-phthaloyl-protected chitosan, and then the phthaloyl group was cleaved to give the free amino groups. The length of PPDO graft chains can be controlled easily by using the prepolymers of PPDO with different molecular weights. The resulting products were thoroughly characterized with FT-IR, (1)H NMR, TG, DSC, SEM, and WAXD. The copolymers were used as drug carriers for sinomenine (7,8-didehydro-4-hydroxy-3,7-dimethoxy-17-methyl-9alpha,13alpha,14alpha-morphinan-6-one) and these exhibited a significant controlled drug-releasing behavior whether in artificial gastric juice or in neutral phosphate buffer solution.

  6. Absorbable and biodegradable polymers

    CERN Document Server

    Shalaby, Shalaby W

    2003-01-01

    INTRODUCTION NOTES: Absorbable/Biodegradable Polymers: Technology Evolution. DEVELOPMENT AND APPLICATIONOF NEW SYSTEMS: Segmented Copolyesters with Prolonged Strength Retention Profiles. Polyaxial Crystalline Fiber-Forming Copolyester. Polyethylene Glycol-Based Copolyesters. Cyanoacrylate-Based Systems as Tissue Adhesives. Chitosan-Based Systems. Hyaluronic Acid-Based Systems. DEVELOPMENTS IN PREPARATIVE, PROCESSING, AND EVALUATION METHODS: New Approaches to the Synthesis of Crystalline. Fiber-Forming Aliphatic Copolyesters. Advances in Morphological Development to Tailor the Performance of Me

  7. Safe biodegradable fluorescent particles

    Science.gov (United States)

    Martin, Sue I.; Fergenson, David P.; Srivastava, Abneesh; Bogan, Michael J.; Riot, Vincent J.; Frank, Matthias

    2010-08-24

    A human-safe fluorescence particle that can be used for fluorescence detection instruments or act as a safe simulant for mimicking the fluorescence properties of microorganisms. The particle comprises a non-biological carrier and natural fluorophores encapsulated in the non-biological carrier. By doping biodegradable-polymer drug delivery microspheres with natural or synthetic fluorophores, the desired fluorescence can be attained or biological organisms can be simulated without the associated risks and logistical difficulties of live microorganisms.

  8. Opportunities and challenges for the biodegradable magnesium alloys as next-generation biomaterials.

    Science.gov (United States)

    Ding, Wenjiang

    2016-06-01

    In recent years, biodegradable magnesium alloys emerge as a new class of biomaterials for tissue engineering and medical devices. Deploying biodegradable magnesium-based materials not only avoids a second surgical intervention for implant removal but also circumvents the long-term foreign body effect of permanent implants. However, these materials are often subjected to an uncontrolled and fast degradation, acute toxic responses and rapid structural failure presumably due to a localized, too rapid corrosion process. The patented Mg-Nd-Zn-based alloys (JiaoDa BioMg [JDBM]) have been developed in Shanghai Jiao Tong University in recent years. The alloy series exhibit lower biodegradation rate and homogeneous nanophasic degradation patterns as compared with other biodegradable Mg alloys. The in vitro cytotoxicity tests using various types of cells indicate excellent biocompatibility of JDBM. Finally, bone implants using JDBM-1 alloy and cardiovascular stents using JDBM-2 alloy have been successfully fabricated and in vivo long-term assessment via implantation in animal model have been performed. The results confirmed the reduced degradation rate in vivo, excellent tissue compatibility and long-term structural and mechanical durability. Thus, this novel Mg-alloy series with highly uniform nanophasic biodegradation represent a major breakthrough in the field and a promising candidate for manufacturing the next generation biodegradable implants.

  9. Recent advances in biodegradable metals for medical sutures: a critical review.

    Science.gov (United States)

    Seitz, Jan-Marten; Durisin, Martin; Goldman, Jeremy; Drelich, Jaroslaw W

    2015-09-16

    Sutures that biodegrade and dissolve over a period of several weeks are in great demand to stitch wounds and surgical incisions. These new materials are receiving increased acceptance across surgical procedures whenever permanent sutures and long-term care are not needed. Unfortunately, both inflammatory responses and adverse local tissue reactions in the close-to-stitching environment are often reported for biodegradable polymeric sutures currently used by the medical community. While bioabsorbable metals are predominantly investigated and tested for vascular stent or osteosynthesis applications, they also appear to possess adequate bio-compatibility, mechanical properties, and corrosion stability to replace biodegradable polymeric sutures. In this Review, biodegradable alloys made of iron, magnesium, and zinc are critically evaluated as potential materials for the manufacturing of soft and hard tissue sutures. In the case of soft tissue closing and stitching, these metals have to compete against currently available degradable polymers. In the case of hard tissue closing and stitching, biodegradable sternal wires could replace the permanent sutures made of stainless steel or titanium alloys. This Review discusses the specific materials and degradation properties required by all suture materials, summarizes current suture testing protocols and provides a well-grounded direction for the potential future development of biodegradable metal based sutures.

  10. Impacts of Repeat Unit Structure and Copolymer Architecture on Thermal and Solution Properties in Homopolymers, Copolymers, and Copolymer Blends

    Science.gov (United States)

    Marrou, Stephen Raye

    Gradient copolymers are a relatively new type of copolymer architecture in which the distribution of comonomers gradually varies over the length of the copolymer chain, resulting in a number of unusual properties derived from the arrangement of repeat units. For example, nanophase-segregated gradient copolymers exhibit extremely broad glass transition temperatures (Tgs) resulting from the wide range of compositions present in the nanostructure. This dissertation presents a number of studies on how repeat unit structure and copolymer architecture dictate bulk and solution properties, specifically taking inspiration from the gradient copolymer architecture and comparing the response from this compositionally heterogeneous material to other more conventional materials. The glass transition behavior of a range of common homopolymers was studied to determine the effects of subunit structure on Tg breadth, observing a significant increase in T g breadth with increasing side chain length in methacrylate-based homopolymers and random copolymers. Additionally, increasing the composition distribution of copolymers, either by blending individual random copolymers of different overall composition or synthesizing random copolymers to high conversion, resulted in significant increases to Tg breadth. Plasticization of homopolymers and random copolymers with low molecular weight additives also served to increase the Tg breadth; the most dramatic effect was observed in the selective plasticization of a styrene/4-vinylpyridine gradient copolymer with increases in T g breadth to values above 100 °C. In addition, the effects of repeat unit structure and copolymer architecture on other polymer properties besides Tg were also investigated. The intrinsic fluorescence of styrene units in styrene-containing copolymers was studied, noting the impact of repeat unit structure and copolymer architecture on the resulting fluorescence spectra in solution. The impact of repeat unit structure on

  11. Biodegradation and Osteosarcoma Cell Cultivation on Poly(aspartic acid) Based Hydrogels.

    Science.gov (United States)

    Juriga, Dávid; Nagy, Krisztina; Jedlovszky-Hajdú, Angéla; Perczel-Kovách, Katalin; Chen, Yong Mei; Varga, Gábor; Zrínyi, Miklós

    2016-09-14

    Development of novel biodegradable and biocompatible scaffold materials with optimal characteristics is important for both preclinical and clinical applications. The aim of the present study was to analyze the biodegradability of poly(aspartic acid)-based hydrogels, and to test their usability as scaffolds for MG-63 osteoblast-like cells. Poly(aspartic acid) was fabricated from poly(succinimide) and hydrogels were prepared using natural amines as cross-linkers (diaminobutane and cystamine). Disulfide bridges were cleaved to thiol groups and the polymer backbone was further modified with RGD sequence. Biodegradability of the hydrogels was evaluated by experiments on the base of enzymes and cell culture medium. Poly(aspartic acid) hydrogels possessing only disulfide bridges as cross-links proved to be degradable by collagenase I. The MG-63 cells showed healthy, fibroblast-like morphology on the double cross-linked and RGD modified hydrogels. Thiolated poly(aspartic acid) based hydrogels provide ideal conditions for adhesion, survival, proliferation, and migration of osteoblast-like cells. The highest viability was found on the thiolated PASP gels while the RGD motif had influence on compacted cluster formation of the cells. These biodegradable and biocompatible poly(aspartic acid)-based hydrogels are promising scaffolds for cell cultivation.

  12. Anaerobic Biodegradation of Detergent Surfactants

    Directory of Open Access Journals (Sweden)

    Erich Jelen

    2009-03-01

    Full Text Available Detergent surfactantscan be found in wastewater in relevant concentrations. Most of them are known as ready degradable under aerobic conditions, as required by European legislation. Far fewer surfactants have been tested so far for biodegradability under anaerobic conditions. The natural environment is predominantly aerobic, but there are some environmental compartments such as river sediments, sub-surface soil layer and anaerobic sludge digesters of wastewater treatment plants which have strictly anaerobic conditions. This review gives an overview on anaerobic biodegradation processes, the methods for testing anaerobic biodegradability, and the anaerobic biodegradability of different detergent surfactant types (anionic, nonionic, cationic, amphoteric surfactants.

  13. Pharmacokinetics and biodegradation performance of a hydroxypropyl chitosan derivative

    Science.gov (United States)

    Shao, Kai; Han, Baoqin; Dong, Wen; Song, Fulai; Liu, Weizhi; Liu, Wanshun

    2015-10-01

    Hydroxypropyl chitosan (HP-chitosan) has been shown to have promising applications in a wide range of areas due to its biocompatibility, biodegradability and various biological activities, especially in the biomedical and pharmaceutical fields. However, it is not yet known about its pharmacokinetics and biodegradation performance, which are crucial for its clinical applications. In order to lay a foundation for its further applications and exploitations, here we carried out fluorescence intensity and GPC analyses to determine the pharmacokinetics mode of fluorescein isothiocyanate-labeled HP-chitosan (FITC-HP-chitosan) and its biodegradability. The results showed that after intraperitoneal administration at a dose of 10 mg per rat, FITC-HP-chitosan could be absorbed rapidly and distributed to liver, kidney and spleen through blood. It was indicated that FITC-HP-chitosan could be utilized effectively, and 88.47% of the FITC-HP-chitosan could be excreted by urine within 11 days with a molecular weight less than 10 kDa. Moreover, our data indicated that there was an obvious degradation process occurred in liver (hydroxypropyl-modified chitosan as materials in drug delivery, tissue engineering and biomedical area.

  14. Biodegradable, thermoplastic polyurethane grafts for small diameter vascular replacements.

    Science.gov (United States)

    Bergmeister, Helga; Seyidova, Nargiz; Schreiber, Catharina; Strobl, Magdalena; Grasl, Christian; Walter, Ingrid; Messner, Barbara; Baudis, Stefan; Fröhlich, Sophie; Marchetti-Deschmann, Martina; Griesser, Markus; di Franco, Matt; Krssak, Martin; Liska, Robert; Schima, Heinrich

    2015-01-01

    Biodegradable vascular grafts with sufficient in vivo performance would be more advantageous than permanent non-degradable prostheses. These constructs would be continuously replaced by host tissue, leading to an endogenous functional implant which would adapt to the need of the patient and exhibit only limited risk of microbiological graft contamination. Adequate biomechanical strength and a wall structure which promotes rapid host remodeling are prerequisites for biodegradable approaches. Current approaches often reveal limited tensile strength and therefore require thicker or reinforced graft walls. In this study we investigated the in vitro and in vivo biocompatibility of thin host-vessel-matched grafts (n=34) formed from hard-block biodegradable thermoplastic polyurethane (TPU). Expanded polytetrafluoroethylene (ePTFE) conduits (n=34) served as control grafts. Grafts were analyzed by various techniques after retrieval at different time points (1 week; 1, 6, 12 months). TPU grafts showed significantly increased endothelial cell proliferation in vitro (Pbiodegradable vascular implant. Degradable grafts showed equivalent long-term performance characteristics compared to the clinically used, non-degradable material with improvements in intimal hyperplasia and ingrowth of host cells.

  15. Volatile organic compound detection using nanostructured copolymers.

    Science.gov (United States)

    Li, Bo; Sauvé, Genevieve; Iovu, Mihaela C; Jeffries-El, Malika; Zhang, Rui; Cooper, Jessica; Santhanam, Suresh; Schultz, Lawrence; Revelli, Joseph C; Kusne, Aaron G; Kowalewski, Tomasz; Snyder, Jay L; Weiss, Lee E; Fedder, Gary K; McCullough, Richard D; Lambeth, David N

    2006-08-01

    Regioregular polythiophene-based conductive copolymers with highly crystalline nanostructures are shown to hold considerable promise as the active layer in volatile organic compound (VOC) chemresistor sensors. While the regioregular polythiophene polymer chain provides a charge conduction path, its chemical sensing selectivity and sensitivity can be altered either by incorporating a second polymer to form a block copolymer or by making a random copolymer of polythiophene with different alkyl side chains. The copolymers were exposed to a variety of VOC vapors, and the electrical conductivity of these copolymers increased or decreased depending upon the polymer composition and the specific analytes. Measurements were made at room temperature, and the responses were found to be fast and appeared to be completely reversible. Using various copolymers of polythiophene in a sensor array can provide much better discrimination to various analytes than existing solid state sensors. Our data strongly indicate that several sensing mechanisms are at play simultaneously, and we briefly discuss some of them.

  16. Preparation, in vitro degradability, cytotoxicity, and in vivo biocompatibility of porous hydroxyapatite whisker-reinforced poly(L-lactide) biocomposite scaffolds.

    Science.gov (United States)

    Xie, Lu; Yu, Haiyang; Yang, Weizhong; Zhu, Zhuoli; Yue, Li

    2016-01-01

    Biodegradable and bioactive scaffolds with interconnected macroporous structures, suitable biodegradability, adequate mechanical property, and excellent biocompatibility have drawn increasing attention in bone tissue engineering. Hence, in this work, porous hydroxyapatite whisker-reinforced poly(L-lactide) (HA-w/PLLA) composite scaffolds with different ratios of HA and PLLA were successfully developed through compression molding and particle leaching. The microstructure, in vitro mineralization, cytocompatibility, hemocompatibility, and in vivo biocompatibility of the porous HA-w/PLLA were investigated for the first time. The SEM results revealed that these HA-w/PLLA scaffolds possessed interconnected pore structures. Compared with porous HA powder-reinforced PLLA (HA-p/PLLA) scaffolds, HA-w/PLLA scaffolds exhibited better mechanical property and in vitro bioactivity, as more formation of bone-like apatite layers were induced on these scaffolds after mineralization in SBF. Importantly, in vitro cytotoxicity displayed that porous HA-w/PLLA scaffold with HA/PLLA ratio of 1:1 (HA-w1/PLLA1) produced no deleterious effect on human mesenchymal stem cells (hMSCs), and cells performed elevated cell proliferation, indicating a good cytocompatibility. Simultaneously, well-behaved hemocompatibility and favorable in vivo biocompatibility determined from acute toxicity test and histological evaluation were also found in the porous HA-w1/PLLA1 scaffold. These findings may provide new prospects for utilizing the porous HA whisker-based biodegradable scaffolds in bone repair, replacement, and augmentation applications.

  17. Plasmonic biocompatible silver-gold alloyed nanoparticles.

    Science.gov (United States)

    Sotiriou, Georgios A; Etterlin, Gion Diego; Spyrogianni, Anastasia; Krumeich, Frank; Leroux, Jean-Christophe; Pratsinis, Sotiris E

    2014-11-14

    The addition of Au during scalable synthesis of nanosilver drastically minimizes its surface oxidation and leaching of toxic Ag(+) ions. These biocompatible and inexpensive silver-gold nanoalloyed particles exhibit superior plasmonic performance than commonly used pure Au nanoparticles, and as such these nanoalloys have great potential in theranostic applications.

  18. The influence of chain stretching on the phase behavior of multiblock copolymer and comb copolymer melts

    NARCIS (Netherlands)

    Angerman, HJ; ten Brinke, G

    2003-01-01

    The subject of this paper is inspired by microphase-separated copolymer melts in which a small-scale structure is present inside one of the phases of a large-scale structure. Such a situation can arise in a diblock copolymer melt, if one of the blocks of the diblock is in itself a multiblock copolym

  19. Synthesis and Characterization of Biodegradable Ultrasonicated Films made from Chitosan/al2o3 Polymer Nanocomposites

    Science.gov (United States)

    Prakash, B.; Jothirajan, M. A.; Umapathy, S.; Amala, Viji

    Chitosan is a biopolymer which is biodegradable, biocompatible, non toxic and cationic in nature. Due to these interesting properties, it finds advanced applications in sensors, drug delivery vehicle and gene therapy etc., In this present work, the biocompatible Al2O3 Nano particles were embedded into Chitosan Polymer matrix by ultrasonication route. XRD and FTIR studies confirm the presence of Al2O3 nanoparticle in the Chitosan polymer matrix. The morphological, optical, electrical properties of the polymer nano composite films are carried out by employing scanning electron microscopy (SEM), UV- Vis, LCR and Impedance studies.

  20. Fully biodegradable coronary stents : progress to date.

    Science.gov (United States)

    Ramcharitar, Steve; Serruys, Patrick W

    2008-01-01

    The limitations of currently available metallic drug-eluting stents have renewed interest in biodegradable stents (BDS). Apart from removing the (offending) foreign material that may potentiate a thrombotic event, BDS have the advantage of avoiding 'full metal jackets,' and thus can preclude subsequent coronary surgery. In addition, they do not interfere with the diagnostic evaluation of non-invasive imaging such as cardiac magnetic resonance and CT. There are now several BDS in development or in clinical trials that incorporate a variety of biodegradable polymer technologies. Two broad categories of materials are generally used: those made from organic biopolymers and those made from corrodible metals. However, to date, none of the materials/stents tested have been able to establish a perfect balance between biocompatibility, the kinetics of degradation needed to maintain mechanical strength to limit recoil, and inflammation. However, studies, such as the ABSORB trial with the everolimus eluting poly-L-lactide stent, which demonstrated comparable restenotic rates with bare metallic stents and a low incidence of major adverse cardiac events (MACE) at 12 months of 3.3%, with only one patient having a non-Q-wave myocardial infarction and no target lesion revascularization, suggest that there has been significant progress with respect to the earlier prototypes. The acute recoil observed could potentially be addressed with the polytyrosine REVA stent currently being evaluated in the RESORB trial, which incorporates a novel locking mechanism within its design. Alternative BDS designs include the combination of an antiproliferative drug with endothelial progenitor cell capturing antibodies to facilitate epithelialization and/or dual eluting having, in addition to the antiproliferative drug, polymeric salicyclic acid to limit inflammation. Compared with biodegradable polymers, there are fewer metals used in the manufacture of BDS. The only metal BDS in trials is the

  1. Copolymers of fluorinated polydienes and sulfonated polystyrene

    Science.gov (United States)

    Mays, Jimmy W.; Gido, Samuel P.; Huang, Tianzi; Hong, Kunlun

    2009-11-17

    Copolymers of fluorinated polydienes and sulfonated polystyrene and their use in fuel cell membranes, batteries, breathable chemical-biological protective materials, and templates for sol-gel polymerization.

  2. Biocompatible and bioadhesive hydrogels based on 2-hydroxyethyl methacrylate, monofunctional poly(alkylene glycols and itaconic acid

    Directory of Open Access Journals (Sweden)

    Mićić Maja M.

    2007-01-01

    Full Text Available New types of hydrogels were prepared by the radical copolymerization of 2-hydroxyethyl methacrylate, itaconic acid and four different poly(alkylene glycol (methacrylate components (Bisomers in a water/ethanol mixture as solvent. The polymers swell in water at 25°C to yield homogeneous transparent hydrogels. All the hydrogels displayed pH sensitive behavior in buffers of the pH range from 2.20 to 7.40, under conditions similar to those of biological fluids. The presence of these two comonomers, which were added to HEMA, increased the swelling degree of the hydrogels and gave gels with better elasticity. The hydrogels were thermally stable in the vicinity of the physiological temperature (37°C. The copolymer containing pure poly(ethylene glycol acrylate units generally had the best properties. The tests performed on the hydrogels confirmed that they were neither hemolytic nor cytotoxic. The copolymer samples showed better cell viability and less hemolytic activity than the PHEMA sample, confirming the assumption that poly(alkylene glycols improve the biocompatibility of hydrogels. Due to their swelling and mechanical characteristics, as well as the very good biocompatibility and bioadhesive properties, poly(Bisomer/HEMA/IA hydrogels are promising for utilization in the field of biomedicals, especially for the controlled release of drugs.

  3. New Biocompatible Polyesters Derived from α-Amino Acids: Hydrolytic Degradation Behavior

    Directory of Open Access Journals (Sweden)

    Jeoshua Katzhendler

    2010-10-01

    Full Text Available New polymers were synthesized from α-hydroxy acids derived from the natural amino acids Ile, Leu, Phe, and Val, combined with lactic acid, glycolic acid and 6-hydroxyhexanoic acid by direct condensation. The toxicity was determined and the degradation process of these polyesters was investigated under physiological conditions by analyzing the composition of the degraded polymers and the oligomers cleaved in the buffer medium. The polymers were found to be non toxic to two cell lines. Polymers displayed a biphasic degradation behavior. In most cases, a linear relationship was found between the weight loss constant and the hydrophobicity of the polymers, Log P. Regarding the second stage of weight loss, it is apparent that polymers derived from α-hydroxy(Lisoleucine ((LHOIle and α-hydroxy(LValine ((LHOVal degraded much faster than those derived from α-hydroxy(Lleucine ((LHOLeu and α-hydroxy(Lphenylalanine ((LHOPhe, probably due to different spatial orientation of the side chains. Copolymers of 6-hydroxyhexanoic acid displayed slow degradation rates as expected, whereas the degradation profile of copolymers of lactic acid was similar to the other homopolymers. These new polyesters may serve as potential biocompatible materials for medical applications.

  4. JTEC monograph on biodegradable polymers and plastics in Japan: Research, development, and applications

    Science.gov (United States)

    Lenz, Robert W.

    1995-01-01

    A fact-finding team of American scientists and engineers visited Japan to assess the status of research and development and applications in biodegradable polymers. The visit was sponsored by the National Science Foundation and industry. In Japan, the team met with representatives of 31 universities, government ministries and institutes, companies, and associations. Japan's national program on biodegradable polymers and plastics evaluates new technologies, testing methods, and potential markets for biodegradables. The program is coordinated by the Biodegradable Plastics Society of Japan, which seeks to achieve world leadership in biodegradable polymer technology and identify commercial opportunities for exploiting this technology. The team saw no major new technology breakthroughs. Japanese scientists and engineers are focusing on natural polymers from renewable resources, synthetic polymers, and bacterially-produced polymers such as polyhydroxyalkanoates, poly(amino acids), and polysaccharides. The major polymers receiving attention are the Zeneca PHBV copolymers, Biopol(registered trademark), poly(lactic acid) from several sources, polycaprolactone, and the new synthetic polyester, Bionolle(registered trademark), from Showa High Polymer. In their present state of development, these polymers all have major deficiencies that inhibit their acceptance for large-scale applications.

  5. Synthesis of poly(D,L-lactide-co-glycolide) copolymers and its chemical characterization by NMR and FTIR; Sintese e caracterizacao quimica por RMN e FTIR do copolimero poli(D,L-lactideo-co-glicolideo)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    Poly(D,L-lactide-co-glycolide) copolymer is of great interest for medical applications. This interest is justified by the fact that it is bioreabsorbable, biocompatible and non-toxic, while its degradation kinetics can be modified by the copolymerization ratio of the monomers. In this study, copolymers were synthesized at 175 deg C by opening the rings of the cyclic dimers of the D,L-lactide and glycolide monomers in the presence of stannous octoate initiator and lauryl alcohol co-initiator. The efficient application of a vacuum to the reaction medium, coupled with adequate stirring, is fundamental for the success of the synthesis. The following analysis techniques were used to characterize the synthesized copolymers: Nuclear Magnetic Resonance Spectroscopy (NMR) and Fourier Transform Infrared Spectroscopy (FTIR). The chemical composition and the ratio of the monomers in the synthesized copolymer were determined. (author)

  6. Microbial biosurfactants and biodegradation.

    Science.gov (United States)

    Ward, Owen P

    2010-01-01

    Microbial biosurfactants are amphipathic molecules having typical molecular weights of 500-1500 Da, made up of peptides, saccharides or lipids or their combinations. In biodegradation processes they mediate solubilisation, mobilization and/or accession of hydrophobic substrates to microbes. They may be located on the cell surface or be secreted into the extracellular medium and they facilitate uptake of hydrophobic molecules through direct cellular contact with hydrophobic solids or droplets or through micellarisation. They are also involved in cell physiological processes such as biofilm formation and detachment, and in diverse biofilm associated processes such as wastewater treatment and microbial pathogenesis. The protection of contaminants in biosurfactants micelles may also inhibit uptake of contaminants by microbes. In bioremediation processes biosurfactants may facilitate release of contaminants from soil, but soils also tend to bind surfactants strongly which makes their role in contaminant desorption more complex. A greater understanding of the underlying roles played by biosurfactants in microbial physiology and in biodegradative processes is developing through advances in cell and molecular biology.

  7. Novel three-dimensional nerve tissue engineering scaffolds and its biocompatibility with Schwann cells

    Institute of Scientific and Technical Information of China (English)

    YUAN Jian-dong; NIE Wen-bo; FU Qiang; LIAN Xiao-feng; HOU Tie-sheng; TAN Zhi-qing

    2009-01-01

    To develop a novel scaffolding method for the copolymers poly lactide-co-glycolide acid (PLGA) to construct a three-dimensional (3-D) scaffold and explore its biocompatibility through culturing Schwann cells (SCs) on it. Methods: The 3-D scaffolds were made by means of melt spinning, extension and weaving. The queueing disci-pline of the micro-channels were observed under a scan-ning electronic microscope (SEM).The sizes of the micropores and the factors of porosity were also measured. Sciatic nerves were harvested from 3-day-old Sprague Dawley (SD) rats for culture of SCs. SCs were separated, purified, and then implanted on PLGA scaffolds, gelatin sponge and poly-L-lysine (PLL)-coated tissue culture poly-styrene (TCPS) were used as biomaterial and cell-support-ive controls, respectively. The effect of PLGA on the adherence, proliferation and apoptosis of SCs were exam-ined in vitro in comparison with gelatin sponge and TCPS. Results: The micro-channels arrayed in parallel manners, and the pore sizes of the channels were uniform. No significant difference was found in the activity of Schwann cells cultured on PLEA and those on TCPS (P>0.05), and the DNA of PLGA scaffolds was not damaged. Conclusion: The 3-D scaffolds developed in this study have excellent structure and biocompatibility, which may be taken as a novel scaffold candidate for nerve-tissue engineering.

  8. Lipid diffusion and swelling in a phase separated biocompatible thermoplastic elastomer.

    Science.gov (United States)

    Fittipaldi, Mauro; Grace, Landon R

    2016-12-01

    Lipid uptake was analyzed via gravimetric measurements in a biocompatible poly(styrene-block-isobutylene-block-styrene) (SIBS) copolymer. Absorption followed Fickian diffusion behavior very closely, although some deviation was noticed once saturation was reached. Diffusion parameters of three different SIBS formulations were calculated and used to predict the behavior of a fourth type based on molecular weight and relative polystyrene content. SIBS with lower polystyrene content and molecular weight showed lower physical stability and developed surface cracks that propagated with exposure to the lipid medium. Saturation lipid content varied from 45% to 63% by weight and was inversely related to polystyrene content, suggesting most of the plasticization is occurring in the isobutylene phase of SIBS. Moreover, swelling of specimens was monitored throughout the immersion in the lipid medium and ranged from 32% to 58%. Swelling in formulations with lower hard phase (polystyrene) was significantly higher than the swelling in SIBS with higher hard phase content. This is consistent with lipid-induced plasticization occurring in the soft (polyisobutylene) segments, relaxing the polymer network and leading to increased swelling and lipid uptake. The biocompatibility and tailorability of SIBS through control of hard/soft phase ratio offer significant advantages for in vivo applications. However, the lipophilic nature of the material and the associated degradation may render the polymer unusable in certain applications. The predictive model of lipid uptake introduced here will allow more accurate evaluation of lipid susceptibility during the preliminary design phase of SIBS-based in vivo structures.

  9. Synthetic routes to degradable copolymers deriving from the biosynthesized polyhydroxyalkanoates: A mini review

    Directory of Open Access Journals (Sweden)

    Y. Ke

    2016-01-01

    Full Text Available Polyhydroxyalkanoates are a family of natural polyesters being produced as intracellular carbon and energy reserves by a wide variety of microorganisms. They have developed rapidly in both research and development efforts globally in the last 15 years. Till now, over 100 different types of PHAs have been successfully biosynthesized using both genetic engineering and fermentation techniques. Their unique biodegradable, biocompatible and thermoplastic characteristics make PHAs promising candidates for the commodity and biomedical applications. This review focused on the chemical synthesis of the derivatives of the biosynthesized PHAs.

  10. Biocompatible and biodegradable poly(Tannic Acid) hydrogel with antimicrobial and antioxidant properties.

    Science.gov (United States)

    Sahiner, Nurettin; Sagbas, Selin; Sahiner, Mehtap; Silan, Coskun; Aktas, Nahit; Turk, Mustafa

    2016-01-01

    A novel resourceful bulk poly(Tannic Acid) (p(TA)) hydrogel was prepared by crosslinking TA molecules with an epoxy crosslinker, trimethylolpropane triglycidyl ether (TMPGDE), in an autoclave at 90°C for 2h. The obtained p(TA) hydrogels were in disk form and have highly porous morphology. The swelling characteristics of p(TA) hydrogels were investigated in wound healing pH conditions of pH 5.4, 7.4, and 9 at 37.5°C, and the hydrogels showed good swelling and moisture content behavior. Especially, p(TA) hydrogels were found to be sensitive to pH 9 with 1669% maximum swelling. P(TA) hydrogels were completely degraded at pH 9 hydrolytically in 9 days. Total phenol contents and the effects of scavenging ABTS(+) radicals of degraded p(TA) hydrogels at pH 5.4, 7.4, and 9 were evaluated and calculated in terms of gallic acid equivalent and trolox equivalent antioxidant capacity, respectively, and found to be very effective. Moreover, degraded p(TA) hydrogels display strong antimicrobial behavior against gram positive Staphylococcus aureus, Bacillus subtilis, gram negative Pseudomonas aeruginosa bacteria strains and Candida albicans fungus strain. The WST-1 results indicated that bulk p(TA) hydrogels have no cyctotoxicity to the L929 fibroblast cell line in vitro.

  11. Aqueous Two-Phase Systems formed by Biocompatible and Biodegradable Polysaccharides and Acetonitrile.

    Science.gov (United States)

    de Brito Cardoso, Gustavo; Souza, Isabela Nascimento; Pereira, Matheus M; Freire, Mara G; Soares, Cleide Mara Faria; Lima, Álvaro Silva

    2014-11-05

    In this work, it is shown that novel aqueous two-phase systems can be formed by the combination of acetonitrile and polysaccharides, namely dextran. Several ternary phase diagrams were determined at 25 °C for the systems composed of water + acetonitrile + dextran. The effect of the dextran molecular weight (6,000, 40,000 and 100,000 g.mol(-1)) was ascertained toward their ability to undergo liquid-liquid demixing. An increase in the dextran molecular weight favors the phase separation. Furthermore, the effect of temperature (25, 35 and 45 °C) was evaluated for the system constituted by the dextran of higher molecular weight. Lower temperatures are favorable for phase separation since lower amounts of dextran and acetonitrile are required for the creation of aqueous two-phase systems. In general, acetonitrile is enriched in the top phase while dextran is majorly concentrated in the bottom phase. The applicability of this new type of two-phase systems as liquid-liquid extraction approaches was also evaluated by the study of the partition behavior of a well-known antioxidant - vanillin - and used here as a model biomolecule. The optimized conditions led to an extraction efficiency of vanillin of 95% at the acetonitrile-rich phase.

  12. Pachyman Derivatives from Poria Cocos : A Potential Biocompatible and Biodegradable Excipients for Drug Delivery System

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Poria cocos, a fungus that grows on the roots of pine trees, is one of the most important traditional medicines in China and Japan, and has pharmacological importance in diuretic, antibacterial, antitumor, mitogenic, complement activating, and immune stimulating activities. Pachyman from P. cocos sclerotium has the typical structure of polysaccharide that full of hydroxy groups similar to cellulose, starch and chitosan. A series of derivatives with different degree of substitution(DS) from pachyman have bee...

  13. Sculpting with light: Light/matter interactions in biocompatible polymers

    Science.gov (United States)

    Applegate, Matthew B.

    When light interacts with matter either the light or the material can be changed. This dissertation focuses on light/matter interaction in silk fibroin and its utility for biomedical applications. Silk, a natural biocompatible, biodegradable polymer, has a large 3-photon absorption cross-section which allows modest peak intensity light to cause significant multiphoton absorption. This absorption allows voids to be formed with three dimensional control within soft, transparent silk hydrogels. A theoretical model of the void formation process is developed to allow the size of the voids to be predicted for a range of laser and sample parameters. Arbitrary 3D patterns are created in silk gels that allow cells to penetrate into the bulk of the gel both in vitro and in vivo. To explore how silk can be used to alter light, the creation of step-index optical waveguides, formed by encapsulating a silk film within a silk hydrogel, is described. These waveguides allow light to be delivered to targets through several centimeters of highly scattering biological tissue. Finally, the interaction of light with riboflavin is used to photocrosslink silk to form solid structures, rather than voids. The mechanism of crosslinking to be driven by radicalized tyrosine residues resulting in the formation of dityrosine bonds which lead to the gelation of a liquid silk solution. Riboflavin is a versatile photoinitiator and can be used to crosslink collagen as well as silk, which allows silk to be crosslinked directly to corneal collagen. When applied to the eye, an artificial corneal layer is formed which has the potential to treat various corneal diseases and allow for risk-free laser vision correction. These studies show the versatility of light-based processing of silk for a wide variety of medical applications.

  14. Cytotoxicity of copolymer PHEMA-g-LDPE obtained for ionizing radiation; Citotoxicidade de copolimero de PEBD-e-PHEMA obtido por radiacao ionizante

    Energy Technology Data Exchange (ETDEWEB)

    Lorenzetti, Solange G.; Camillo, Maria A.P.; Higa, Olga Z. [Instituto de Pesquisas Energeticas e Nucleares (IPEN), Sao Paulo, SP (Brazil). Centro de Biologia Molecular]. E-mail: solangl@ig.com.br; Queiroz, Alvaro A.A. de [Universidade Federal de Itajuba, MG (Brazil). Dept. de Fisica e Quimica

    2005-07-01

    Polymeric biomaterials are the polymers described in the literature which are employed in medicine and biotechnology. The aim of the work was the preparation of biocompatible polymeric surface for the posterior immobilization of protein compounds using grafted copolymers obtained by ionizing radiation. The copolymers was obtained by gamma irradiation induced grafting of 2-hydroxyethyl methacrylate (HEMA) onto low density polyethylene (LDPE) in different conditions.. The grafting yield ranged from 2% to 50%. The copolymers were analysed by infrared spectroscopy (FTIR). MEV micrographs showed a smooth surface for the virgin LDPE and rough surface for the copolymers due to the grafted PHEMA. The hydrophilic property appeared with the grafting increase of PHEMA onto LDPE. The diffusion coefficient was determined. Cytotoxicity assay was performed for the evaluation of biocompatibility. The method is based on the quantitative assesment of surviving viable cells upon exposure of CHO cells to the material extract and incubation with the supravital dye MTS. The amount of MTS, taken up by the population of cells is directly proportional to the number of viable cells in culture. The grafted polymers were not cytotoxic and will be used for the chemical immobilization of the enzyme phospholipase A2, purified from the rattlesnake venom. (author)

  15. Drug targeting to tumors using HPMA copolymers

    NARCIS (Netherlands)

    Lammers, T.G.G.M.

    2009-01-01

    Copolymers based on N-(2-hydroxypropyl)methacrylamide (HPMA) are prototypic and well-characterized polymeric drug carriers that have been broadly implemented in the delivery of anticancer agents. HPMA copolymers circulate for prolonged periods of time, and by means of the Enhance Permeability and Re

  16. PEO-related block copolymer surfactants

    DEFF Research Database (Denmark)

    Mortensen, K.

    2001-01-01

    Non-ionic block copolymer systems based on hydrophilic poly(ethylene oxide) and more hydrophobic co-polymer blocks are used intensively in a variety of industrial and personal applications. A brief description on the applications is presented. The physical properties of more simple model systems ...

  17. Micellization and Characterization of Block Copolymer Detergents

    DEFF Research Database (Denmark)

    Hvidt, Søren

    Triblock copolymers of the type EPE, where E and P denote ethylene oxide and propylene oxide blocks, respectively, are used widely in industry as emulsifiers, anti-foaming agents, and in delayed drug release. EPE copolymers form micelles with a core of P blocks and different micellar shapes depen...

  18. Long-term evaluation of functional nerve recovery after reconstruction with a thin-walled biodegradable poly (DL-lactide-epsilon-caprolactone) nerve guide, using walking track analysis and electrostimulation tests

    NARCIS (Netherlands)

    Meek, MF; Den Dunnen, WFA; Schakenraad, JM; Robinson, PH

    1999-01-01

    This study was performed to evaluate the long-term functional nerve recovery after reconstruction of a IO-mm gap in the sciatic nerve of the rat, with a thin-walled nerve guide, composed of a biodegradable copolymer of DL-lactide and epsilon-caprolactone [p(DLLA-epsilon-CL)]. To evaluate both motor

  19. Biodegradable nanocomposite hydrogel structures with enhanced mechanical properties prepared by photo-crosslinking solutions of poly(trimethylene carbonate)-poly(ethylene glycol)-poly(trimethylene carbonate) macromonomers and nanoclay particles

    NARCIS (Netherlands)

    Sharifi, S.; Blanquer, S.B.G.; Kooten, van T.G.; Grijpma, D.W.

    2012-01-01

    Soft hydrogels with elasticity modulus values lower than 100 kPa that are tough and biodegradable are of great interest in medicine and in tissue engineering applications. We have developed a series of soft hydrogel structures from different methacrylate-functionalized triblock copolymers of poly(et

  20. Drug-loading capacity and nuclear targeting of multiwalled carbon nanotubes grafted with anionic amphiphilic copolymers

    Directory of Open Access Journals (Sweden)

    Tsai HC

    2013-11-01

    Full Text Available Hsieh-Chih Tsai,1,* Jeng-Yee Lin,2,* Faiza Maryani,1 Chun-Chiang Huang,1 Toyoko Imae1,31Graduate Institute of Applied Science and Technology, 2Division of Plastic Surgery, Department of Surgery, Taipei Medical University Hospital, Taipei Medical University, 3Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan *These authors contributed equally to this work Abstract: In this study, three types of hybrid nanotubes (NTs, ie, oxidized multiwalled carbon NTs (COOH MWCNTs, heparin (Hep-conjugated MWCNTs (Hep MWCNTs, and diblock copolymer polyglycolic acid (PGA-co-heparin conjugated to MWCNTs (PGA MWCNTs, were synthesized with improved biocompatibility and drug-loading capacity. Hydrophilic Hep substituents on MWCNTs improved biocompatibility and acted as nucleus-sensitive segments on the CNT carrier, whereas the addition of PGA enhanced drug-loading capacity. In the PGA MWCNT system, the amphiphilic copolymer (PGA-Hep formed micelles on the side walls of CNTs, as confirmed by electron microscopy. The PGA system encapsulated the hydrophobic drug with high efficiency compared to the COOH MWCNT and Hep MWCNT systems. This is because the drug was loaded onto the PGA MWCNTs through hydrophobic forces and onto the CNTs by ∏–∏ stacking interactions. Additionally, most of the current drug-carrier designs that target cancer cells release the drug in the lysosome or cytoplasm. However, nuclear-targeted drug release is expected to kill cancer cells more directly and efficiently. In our study, PGA MWCNT carriers effectively delivered the active anticancer drug doxorubicin into targeted nuclei. This study may provide an effective strategy for the development of carbon-based drug carriers for nuclear-targeted drug delivery. Keywords: carbon nanotube, amphiphilic copolymer, drug loading, nucleus targeting, cancer therapy

  1. Enhancing biodegradability of priority substances (pesticides) by solar photo-Fenton.

    Science.gov (United States)

    Lapertot, Milena; Pulgarín, César; Fernández-Ibáñez, Pilar; Maldonado, Manuel I; Pérez-Estrada, Leonidas; Oller, Isabel; Gernjak, Wolfgang; Malato, Sixto

    2006-03-01

    In this paper, we present the photo-Fenton treatment in a solar pilot-plant scale of several EU priority hazardous substances (Alachlor, Atrazine, Chlorfenvinphos, Diuron and Isoproturon) dissolved in water. The results have been evaluated not only from the point of view of contaminant disappearance and mineralisation, but also of toxicity reduction and enhancement of biodegradability. Degradation was monitored by total organic carbon, pesticide concentration by HPLC-UV, inorganics released by ion chromatography, and biodegradability by the Zahn-Wellens (Z-W) test. The total volume of the solar photoreactor, composed of compound parabolic collectors with a total area of 4.16m2, was between 70 and 82 L. The treatment was shown to be effective, mineralising all of the pesticides tested, both alone and in mixtures. In order to find out the conditions for biocompatibility using the photo-Fenton reaction as a pre-treatment step, wastewater inoculated with unacclimated municipal sludge containing pesticides after certain degradation time was evaluated by the Z-W test. Biodegradability was enhanced (70% considered biodegradable) by the photo-Fenton treatment after 12-25min. It may be concluded that the photo-Fenton treatment consistently enhances biodegradability of wastewater containing pesticides.

  2. Biocompatibility of Resin-based Dental Materials

    OpenAIRE

    Keyvan Moharamzadeh; Ian M. Brook; Richard van Noort

    2009-01-01

    Oral and mucosal adverse reactions to resin-based dental materials have been reported. Numerous studies have examined thebiocompatibility of restorative dental materials and their components, and a wide range of test systems for the evaluation of the biological effects of these materials have been developed. This article reviews the biological aspects of resin-based dental materials and discusses the conventional as well as the new techniques used for biocompatibility assessment of dental mat...

  3. Controlled release of protein from biodegradable multi-sensitive injectable poly(ether-urethane) hydrogel.

    Science.gov (United States)

    Li, Xiaomeng; Wang, Yangyun; Chen, Jiaming; Wang, Yinong; Ma, Jianbiao; Wu, Guolin

    2014-03-12

    The synthesis and characterization of multi-sensitive polymers for use as injectable hydrogels for controlled protein/drug delivery is reported. A series of biodegradable multi-sensitive poly(ether-urethane)s were prepared through a simple one-pot condensation of poly(ethylene glycol), 2,2'-dithiodiethanol, N-methyldiethanolamine, and hexamethylene diisocyanate. The sol-gel phase transition behaviors of the obtained copolymers were investigated. Experimental results showed that the aqueous medium comprising the multi-segment copolymers underwent a sol-to-gel phase transition with increasing temperature and pH. At a certain concentration, the copolymer solution could immediately change to a gel under physiological conditions (37 °C and pH 7.4), indicating their suitability as in situ injectable hydrogels in vivo. Insulin was used as a model protein drug for evaluation of the injectable hydrogels as a site-specific drug delivery system. The controlled release of insulin from the hydrogel devices was demonstrated by degradation of the copolymer, which is modulated via the 2,2'-dithiodiethanol content in the poly(ether-urethane)s. These hydrogels having multi-responsive properties may prove to be promising candidates for injectable and controllable protein drug delivery devices.

  4. Biodegradation of Polypropylene Nonwovens

    Science.gov (United States)

    Keene, Brandi Nechelle

    The primary aim of the current research is to document the biodegradation of polypropylene nonwovens and filament under composting environments. To accelerate the biodegradat ion, pre-treatments and additives were incorporated into polypropylene filaments and nonwovens. The initial phase (Chapter 2) of the project studied the biodegradation of untreated polypropylene with/without pro-oxidants in two types of composting systems. Normal composting, which involved incubation of samples in food waste, had little effect on the mechanical properties of additive-free spunbond nonwovens in to comparison prooxidant containing spunbond nonwovens which were affected significantly. Modified composting which includes the burial of samples with food and compressed air, the polypropylene spunbond nonwovens with/without pro-oxidants displayed an extreme loss in mechanical properties and cracking on the surface cracking. Because the untreated spunbond nonwovens did not completely decompose, the next phase of the project examined the pre-treatment of gamma-irradiation or thermal aging prior to composting. After exposure to gamma-irradiation and thermal aging, polypropylene is subjected to oxidative degradation in the presence of air and during storage after irradiat ion. Similar to photo-oxidation, the mechanism of gamma radiation and thermal oxidative degradation is fundamentally free radical in nature. In Chapter 3, the compostability of thermal aged spunbond polypropylene nonwovens with/without pro-oxidant additives. The FTIR spectrum confirmed oxidat ion of the polypropylene nonwovens with/without additives. Cracking on both the pro-oxidant and control spunbond nonwovens was showed by SEM imaging. Spunbond polypropylene nonwovens with/without pro-oxidants were also preirradiated by gamma rays followed by composting. Nonwovens with/without pro-oxidants were severely degraded by gamma-irradiation after up to 20 kGy exposure as explained in Chapter 4. Furthermore (Chapter 5), gamma

  5. STUDY ON POLYSULFONE-POLYESTER BLOCK COPOLYMERS

    Institute of Scientific and Technical Information of China (English)

    DING Youjun; QI Daquan

    1988-01-01

    Synthesis and characterization of a series of Polysulfone (PSF)-Polyester (PEs) block copolymers were studied.The degree of randomness (B) of these block copolymers was calculated from the intensities of their proton signals in 1H NMR spectra and lies in the region of 0 < B < 1. It was shown that the degree of randomness (B) and the average sequence length (L) in block copolymers were relatively dependent on the reaction conditions, various feed ratios and structure of diols.The phenomenon was observed, when the PSF-PEs block copolymers dissolved in different solvents they had different viscosities and molecular conformations.The PSF-PEs block copolymers had better solvent resistance than homo-polysulfone.

  6. Biocompatible 3D printed magnetic micro needles

    KAUST Repository

    Kavaldzhiev, Mincho

    2017-01-30

    Biocompatible functional materials play a significant role in drug delivery, tissue engineering and single cell analysis. We utilized 3D printing to produce high aspect ratio polymer resist microneedles on a silicon substrate and functionalized them by iron coating. Two-photon polymerization lithography has been used for printing cylindrical, pyramidal, and conical needles from a drop cast IP-DIP resist. Experiments with cells were conducted with cylindrical microneedles with 630 ± 15 nm in diameter with an aspect ratio of 1:10 and pitch of 12 μm. The needles have been arranged in square shaped arrays with various dimensions. The iron coating of the needles was 120 ± 15 nm thick and has isotropic magnetic behavior. The chemical composition and oxidation state were determined using energy electron loss spectroscopy, revealing a mixture of iron and Fe3O4 clusters. A biocompatibility assessment was performed through fluorescence microscopy using calcein/EthD-1 live/dead assay. The results show a very high biocompatibility of the iron coated needle arrays. This study provides a strategy to obtain electromagnetically functional microneedles that benefit from the flexibility in terms of geometry and shape of 3D printing. Potential applications are in areas like tissue engineering, single cell analysis or drug delivery.

  7. Biodegradable plastics from renewable sources.

    Science.gov (United States)

    Flieger, M; Kantorová, M; Prell, A; Rezanka, T; Votruba, J

    2003-01-01

    Plastic waste disposal is a huge ecotechnological problem and one of the approaches to solving this problem is the development of biodegradable plastics. This review summarizes data on their use, biodegradability, commercial reliability and production from renewable resources. Some commercially successful biodegradable plastics are based on chemical synthesis (i.e. polyglycolic acid, polylactic acid, polycaprolactone, and polyvinyl alcohol). Others are products of microbial fermentations (i.e. polyesters and neutral polysaccharides) or are prepared from chemically modified natural products (e.g., starch, cellulose, chitin or soy protein).

  8. Lung toxicity of biodegradable nanoparticles.

    Science.gov (United States)

    Fattal, Elias; Grabowski, Nadége; Mura, Simona; Vergnaud, Juliette; Tsapis, Nicolas; Hillaireau, Hervé

    2014-10-01

    Biodegradable nanoparticles exhibit high potentialities for local or systemic drug delivery through lung administration making them attractive as nanomedicine carriers. However, since particulate matter or some inorganic manufactured nanoparticles exposed to lung cells have provoked cytotoxic effects, inflammatory and oxidative stress responses, it becomes important to investigate nanomedicine toxicity towards the lungs. This is the reason why, in the present review, the behavior of biodegradable nanoparticles towards the different parts of the respiratory tract as well as the toxicological consequences, measured on several models in vitro, ex vivo or in vivo, are described. Taken all together, the different studies carried out so far conclude on no or slight toxicity of biodegradable nanoparticles.

  9. Silkworm Gut Fiber of Bombyx mori as an Implantable and Biocompatible Light-Diffusing Fiber

    Directory of Open Access Journals (Sweden)

    Jose Luis Cenis

    2016-07-01

    Full Text Available This work describes a new approach to the delivery of light in deeper tissues, through a silk filament that is implantable, biocompatible, and biodegradable. In the present work, silkworm gut fibers (SGFs of Bombyx mori L., are made by stretching the silk glands. Morphological, structural, and optical properties of the fibers have been characterized and the stimulatory effect of red laser light diffused from the fiber was assayed in fibroblast cultures. SGFs are formed by silk fibroin (SF mainly in a β-sheet conformation, a stable and non-soluble state in water or biological fluids. The fibers showed a high degree of transparency to visible and infrared radiation. Using a red laser (λ = 650 nm as source, the light was efficiently diffused along the fiber wall, promoting a significant increment in the cell metabolism 5 h after the irradiation. SGFs have shown their excellent properties as light-diffusing optical fibers with a stimulatory effect on cells.

  10. Dissolution chemistry and biocompatibility of silicon- and germanium-based semiconductors for transient electronics.

    Science.gov (United States)

    Kang, Seung-Kyun; Park, Gayoung; Kim, Kyungmin; Hwang, Suk-Won; Cheng, Huanyu; Shin, Jiho; Chung, Sangjin; Kim, Minjin; Yin, Lan; Lee, Jeong Chul; Lee, Kyung-Mi; Rogers, John A

    2015-05-01

    Semiconducting materials are central to the development of high-performance electronics that are capable of dissolving completely when immersed in aqueous solutions, groundwater, or biofluids, for applications in temporary biomedical implants, environmentally degradable sensors, and other systems. The results reported here include comprehensive studies of the dissolution by hydrolysis of polycrystalline silicon, amorphous silicon, silicon-germanium, and germanium in aqueous solutions of various pH values and temperatures. In vitro cellular toxicity evaluations demonstrate the biocompatibility of the materials and end products of dissolution, thereby supporting their potential for use in biodegradable electronics. A fully dissolvable thin-film solar cell illustrates the ability to integrate these semiconductors into functional systems.

  11. Silkworm Gut Fiber of Bombyx mori as an Implantable and Biocompatible Light-Diffusing Fiber.

    Science.gov (United States)

    Cenis, Jose Luis; Aznar-Cervantes, Salvador D; Lozano-Pérez, Antonio Abel; Rojo, Marta; Muñoz, Juan; Meseguer-Olmo, Luis; Arenas, Aurelio

    2016-07-16

    This work describes a new approach to the delivery of light in deeper tissues, through a silk filament that is implantable, biocompatible, and biodegradable. In the present work, silkworm gut fibers (SGFs) of Bombyx mori L., are made by stretching the silk glands. Morphological, structural, and optical properties of the fibers have been characterized and the stimulatory effect of red laser light diffused from the fiber was assayed in fibroblast cultures. SGFs are formed by silk fibroin (SF) mainly in a β-sheet conformation, a stable and non-soluble state in water or biological fluids. The fibers showed a high degree of transparency to visible and infrared radiation. Using a red laser (λ = 650 nm) as source, the light was efficiently diffused along the fiber wall, promoting a significant increment in the cell metabolism 5 h after the irradiation. SGFs have shown their excellent properties as light-diffusing optical fibers with a stimulatory effect on cells.

  12. Hazard effects of nanoparticles in central nervous system: Searching for biocompatible nanomaterials for drug delivery.

    Science.gov (United States)

    Leite, Paulo Emílio Corrêa; Pereira, Mariana Rodrigues; Granjeiro, José Mauro

    2015-10-01

    Nanostructured materials are widely used in many applications of industry and biomedical fields. Nanoparticles emerges as potential pharmacological carriers that can be applied in the regenerative medicine, diagnosis and drug delivery. Different types of nanoparticles exhibit ability to cross the brain blood barrier (BBB) and accumulate in several brain areas. Then, efforts have been done to develop safer nanocarrier systems to treat disorders of central nervous system (CNS). However, several in vitro and in vivo studies demonstrated that nanoparticles of different materials exhibit a wide range of neurotoxic effects inducing neuroinflammation and cognitive impairment. For this reason, polymeric nanoparticles arise as a promisor alternative due to their biocompatible and biodegradable properties. After an overview of CNS location and neurotoxic effects of translocated nanoparticles, this review addresses the use of polymeric nanoparticles to the treatment of neuroinfectious diseases, as acquired immunodeficiency syndrome (AIDS) and meningitis.

  13. Biodegradable micromechanical sensors

    DEFF Research Database (Denmark)

    Keller, Stephan Sylvest; Greve, Anders; Schmid, Silvan

    The development of biopolymers for food packaging, medical engineering or drug delivery is a growing field of research [1]. At the same time, the interest in methods for detailed analysis of biopolymers is increasing. Micromechanical sensors are versatile tools for the characterization of mechani......The development of biopolymers for food packaging, medical engineering or drug delivery is a growing field of research [1]. At the same time, the interest in methods for detailed analysis of biopolymers is increasing. Micromechanical sensors are versatile tools for the characterization...... of biopolymers to microfabrication is challenging, as these polymers are affected by common processes such as photolithography or wet etching. Here, we present two methods for fabrication of biodegradable micromechanical sensors. First, we fabricated bulk biopolymer microcantilevers using nanoimprint lithography...

  14. Biodegradation of propellant ingredients

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Y.Z.; Sundaram, S.T.; Sharma, A. [Geo-centers, Inc., Lake Hopatcong, NJ (United States)] [and others

    1995-12-31

    This paper summarizes efforts to degrade nitrocellulose (NC) and nitroglycerin (NG) with fungi. Screening experiments were performed to determine the ability of mycelial fungi to biodegrade NC. The greatest amount of NC degradation was obtained with Sclerotium rolfsii ATCC 24459 and Fusarium solani IFO 31093. These fungi were then tested for NG degradation. It was found that the combined culture aerobically degraded 100% of the NG to form a mixture of 55% dinitroglycerin (DNG) and 5% of mononitroglycerin (MNG) in two days, with no further change observed afterward. In the presence of 1.2% glucose and 0.05% ammonium nitrate, NG was completely degraded in two days and a mixture of 20% DNG and 16% MNG was formed after 11 days. Based on these results, it appears that the combination of the fungi in a one to one ratio can be used to degrade both of these energetic compounds.

  15. Towards excimer-laser-based stereolithography: a rapid process to fabricate rigid biodegradable photopolymer scaffolds.

    Science.gov (United States)

    Beke, S; Anjum, F; Tsushima, H; Ceseracciu, L; Chieregatti, E; Diaspro, A; Athanassiou, A; Brandi, F

    2012-11-01

    We demonstrate high-resolution photocross-linking of biodegradable poly(propylene fumarate) (PPF) and diethyl fumarate (DEF) using UV excimer laser photocuring at 308 nm. The curing depth can be tuned in a micrometre range by adjusting the total energy dose (total fluence). Young's moduli of the scaffolds are found to be a few gigapascal, high enough to support bone formation. The results presented here demonstrate that the proposed technique is an excellent tool for the fabrication of stiff and biocompatible structures on a micrometre scale with defined patterns of high resolution in all three spatial dimensions. Using UV laser photocuring at 308 nm will significantly improve the speed of rapid prototyping of biocompatible and biodegradable polymer scaffolds and enables its production in a few seconds, providing high lateral and horizontal resolution. This short timescale is indeed a tremendous asset that will enable a more efficient translation of technology to clinical applications. Preliminary cell tests proved that PPF : DEF scaffolds produced by excimer laser photocuring are biocompatible and, therefore, are promising candidates to be applied in tissue engineering and regenerative medicine.

  16. Coating of poly(p-xylylene) by PLA-PEO-PLA triblock copolymers with excellent polymer-polymer adhesion for stent applications.

    Science.gov (United States)

    Hanefeld, Phillip; Westedt, Ullrich; Wombacher, Ralf; Kissel, Thomas; Schaper, Andreas; Wendorff, Joachim H; Greiner, Andreas

    2006-07-01

    Poly(p-xylylene) (PPX) was deposited by chemical vapor deposition (CVD) on stainless steel substrates. These PPX films were coated by solution casting of poly(lactide)-poly(ethylene oxide)-poly(lactide) triblock copolymers (PLA-PEO-PLA) loaded with 14C-labeled paclitaxel. Adhesion of PLA-PEO-PLA on PPX substrate coatings was measured using the blister test method. Excellent adhesion of the block copolymers on PPX substrates was found. Stress behavior and film integrity of PLA-PEO-PLA was compared to pure PLA on unexpanded and expanded stent bodies and was found to be superior for the block copolymers. The release of paclitaxel from the biodegradable coatings was studied under physiological conditions using the scintillation counter method. Burst release of paclitaxel was observed from PLA-PEO-PLA layers regardless of composition, but an increase in paclitaxel loading was observed with increasing content of PEO.

  17. Rapid self-assembly of block copolymers to photonic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Yan; Sveinbjornsson, Benjamin R; Grubbs, Robert H; Weitekamp, Raymond; Miyake, Garret M; Atwater, Harry A; Piunova, Victoria; Daeffler, Christopher Scot; Hong, Sung Woo; Gu, Weiyin; Russell, Thomas P.

    2016-07-05

    The invention provides a class of copolymers having useful properties, including brush block copolymers, wedge-type block copolymers and hybrid wedge and polymer block copolymers. In an embodiment, for example, block copolymers of the invention incorporate chemically different blocks comprising polymer size chain groups and/or wedge groups that significantly inhibit chain entanglement, thereby enhancing molecular self-assembly processes for generating a range of supramolecular structures, such as periodic nanostructures and microstructures. The present invention also provides useful methods of making and using copolymers, including block copolymers.

  18. Characterization of biodegradable polymers irradiated with swift heavy ions

    Energy Technology Data Exchange (ETDEWEB)

    Salguero, N.G. [Gerencia de Investigacion y Aplicaciones, TANDAR-CNEA, Av. Gral. Paz 1499 (B1650KNA) San Martin, Buenos Aires (Argentina); Grosso, M.F. del, E-mail: delgrosso@tandar.cnea.gov.ar [Gerencia de Investigacion y Aplicaciones, TANDAR-CNEA, Av. Gral. Paz 1499 (B1650KNA) San Martin, Buenos Aires (Argentina); CONICET, Av. Rivadavia 1917 C1033AAJ CABA (Argentina); Duran, H. [CONICET, Av. Rivadavia 1917 C1033AAJ CABA (Argentina); Gerencia de Desarrollo Tecnologico y Proyectos Especiales, CNEA, Av. Gral. Paz 1499 (B1650KNA) San Mart Latin-Small-Letter-Dotless-I Acute-Accent n, Buenos Aires (Argentina); Escuela de Ciencia y Tecnologia, H. Yrigoyen 3100, CP 1650, San Martin, UNSAM (Argentina); Peruzzo, P.J. [CICPBA - Grupo de Materiales y Nanomateriales Polimericos, Instituto de Investigaciones Fisicoquimicas Teoricas y Aplicadas (INIFTA), CCT La Plata CONICET - Universidad Nacional de La Plata, La Plata (Argentina); Amalvy, J.I. [CICPBA - Grupo de Materiales y Nanomateriales Polimericos, Instituto de Investigaciones Fisicoquimicas Teoricas y Aplicadas (INIFTA), CCT La Plata CONICET - Universidad Nacional de La Plata, La Plata (Argentina); Facultad de Ingenieria, Universidad Nacional de La Plata, Calle 116 y 48 (B1900TAG), La Plata (Argentina); Departamento de Ingenieria Quimica, Facultad Regional La Plata, Universidad Tecnologica Nacional, 60 y 124 (1900), La Plata (Argentina); and others

    2012-02-15

    In view of their application as biomaterials, there is an increasing interest in developing new methods to induce controlled cell adhesion onto polymeric materials. The critical step in all these methods involves the modification of polymer surfaces, to induce cell adhesion, without changing theirs degradation and biocompatibility properties. In this work two biodegradable polymers, polyhydroxybutyrate (PHB) and poly-L-lactide acid (PLLA) were irradiated using carbon and sulfur beams with different energies and fluences. Pristine and irradiated samples were degradated by immersion in a phosphate buffer at pH 7.0 and then characterized. The analysis after irradiation and degradation showed a decrease in the contact angle values and changes in their crystallinity properties.

  19. Biodegradation of Absorbable Hydroxyapatite/Poly-DL-lactide Composites in Different Environment

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    To develop a new generation of absorbable fracture fixation devices with enhanced biocompatibility, the biodegradation mechanism and its influence on the cellular response at the tissue/implant interface of hydroxyapatite/ poly-DL-lactide (HA/PDLLA) composites were investigated in vitro and in vivo.HA/PDLLA rods were immersed in phosphate-buffered saline,or implanted in muscle and bony tissue for 52 weeks.Scanning electron microscopic and histological studies were done.The degradation rate was the slowest in vitro,slower in muscle tissue and fast in bone.In vitro, the composites degraded heterogeneously and a hollow structure was formed.In bone,the limited clearing capacity leads to the accumulation of oligomeric debris,which contribute totally to the autocatalytic effect.So,the fastest degradation and intense tissue response were seen.In muscle tissue,oligomeric debris migrated into vicinal fibers over a long distance from the original implant cavity and the tissue reactions were,however, quite moderate.For the same size organic/inorganic composite,the environment where it was placed is the major factor in determining its biodegradation process and cellular reaction.In living tissue,factors such as cells,enzymes and mechanical stress have an obvious influence on the biodegradation and biological process at the tissue/implant interface.The biocompatibility of the HA/PDLLA composites is enhanced with the incorporating of the resorbable HA microparticles.

  20. Release of bovine serum albumin from a hydrogel-cored biodegradable polymer fiber.

    Science.gov (United States)

    Crow, B B; Nelson, K D

    2006-04-15

    We have developed a novel biodegradable, polymeric fiber construct that is coextruded using a wet-spinning process into a core-sheath format with a polysaccharide pre-hydrogel solution as the core fluid and poly(L-lactic acid) (PLLA) as the sheath. The biodegradable, biocompatible fibers were extruded from polymeric emulsions comprised of solutions of various molecular weights of PLLA dissolved in chloroform and containing dispersed, protein-free aqueous phases comprising up to 10% of the emulsion volume. Biologically sensitive agents can be loaded via a dispersed aqueous phase in the polymer, and/or directly into the polysaccharide. We show that this core-sheath fiber format will load a model protein that can be delivered for extended periods in vitro. Bovine serum albumin (BSA) was loaded into the fiber core as a model protein. We have shown that the greater the volume of the protein-free aqueous phase dispersed into the polymeric continuous-phase emulsion, the greater the total release of BSA encapsulated by a core gel comprised of 1% sodium alginate solution. We conclude this fiber format provides a promising vehicle for in vivo delivery of biological molecules. Its biocompatibility and biodegradability also allow for its use as a possible substrate for tissue engineering applications.

  1. Biodegradable and biomimetic elastomeric scaffolds for tissue-engineered heart valves.

    Science.gov (United States)

    Xue, Yingfei; Sant, Vinayak; Phillippi, Julie; Sant, Shilpa

    2017-01-15

    Valvular heart diseases are the third leading cause of cardiovascular disease, resulting in more than 25,000 deaths annually in the United States. Heart valve tissue engineering (HVTE) has emerged as a putative treatment strategy such that the designed construct would ideally withstand native dynamic mechanical environment, guide regeneration of the diseased tissue and more importantly, have the ability to grow with the patient. These desired functions could be achieved by biomimetic design of tissue-engineered constructs that recapitulate in vivo heart valve microenvironment with biomimetic architecture, optimal mechanical properties and possess suitable biodegradability and biocompatibility. Synthetic biodegradable elastomers have gained interest in HVTE due to their excellent mechanical compliance, controllable chemical structure and tunable degradability. This review focuses on the state-of-art strategies to engineer biomimetic elastomeric scaffolds for HVTE. We first discuss the various types of biodegradable synthetic elastomers and their key properties. We then highlight tissue engineering approaches to recreate some of the features in the heart valve microenvironment such as anisotropic and hierarchical tri-layered architecture, mechanical anisotropy and biocompatibility.

  2. Poly(butylene cyclohexanedicarboxylate/diglycolate random copolymers reinforced with SWCNTs for multifunctional conductive biopolymer composites

    Directory of Open Access Journals (Sweden)

    E. Fortunati

    2016-02-01

    Full Text Available The objective of this work was to develop a versatile strategy for preparing multifunctional composite films with tunable properties. Novel conductive composites based on the combination of single walled carbon nanotubes (SWCNTs and biodegradable poly(butylene cyclohexanedicarboxylate/diglycolate random copolymers (P(BCEmBDGn are here presented. In particular, synthesized PBCE homopolymer and two copolymers containing different amounts of ether–oxygen containing co-units, P(BCE90BDG10 and P(BCE70BDG30, have been considered as matrices of SWCNTs based composites. The effect of incorporation of different amounts of SWCNTs (0.1–0.5–0.75–1 wt% on morphological, thermal, mechanical and electrical properties was deeply investigated. The morphology of the fracture surfaces is affected by the SWCNT presence, while the increase in the SWCNT content does not provide significant microstructure modifications. The thermal properties underlined that nanotubes can act as nucleating agents, favouring the polymer crystallization process. The mechanical behavior demonstrated that the introduction of carbon nanotubes both in the case of PBCE homopolymer and in random copolymers based formulations exerted a reinforcing effect. All composites exhibit high electrical conductivity in comparison to the neat polymers. This work demonstrates that this combinatorial approach can be used to develop materials with tunable and advanced functional properties.

  3. Fabrication of pliable biodegradable polymer foams to engineer soft tissues.

    Science.gov (United States)

    Wake, M C; Gupta, P K; Mikos, A G

    1996-01-01

    We have fabricated pliable, porous, biodegradable scaffolds with poly(lactic-co-glycolic acid) (PLGA) and poly(ethylene glycol) (PEG) blends using a solvent-casting and particulate-leaching technique. Our study investigated the effects of four different processing parameters on pliability and pore morphology of the biodegradable scaffolds. The parameters investigated were the PLGA copolymer ratio, the PLGA/PEG blend ratio, the initial salt weight fraction, and the salt particle size. A wide range of shear moduli (0.59 to 9.55 MPa), porosities (0.798 to 0.942), and median pore diameters (71 to 154 microns) was able to be achieved by varying the combination of these parameters. Our study indicates that initial salt weight fraction and PLGA/PEG blend ratio have the most significant effects on the physico-mechanical properties of the scaffolds. Enhanced pliability of the three dimensional foams made with blends of PLGA and PEG is evidenced by the ability to roll them into a tube without macroscopic damage to the scaffold. Pliable polymer substrates hold great promise for regeneration of soft tissues such as skin, or those requiring a tubular conformation such as intestine or vascular grafts.

  4. NANOSTRUCTURES OF FUNCTIONAL BLOCK COPOLYMERS

    Institute of Scientific and Technical Information of China (English)

    Guojun Liu

    2000-01-01

    Nanostructure fabrication from block copolymers in my group normally involves polymer design, synthesis, selfassembly, selective domain crosslinking, and sometimes selective domain removal. Preparation of thin films with nanochannels was used to illustrate the strategy we took. In this particular case, a linear triblock copolymer polyisopreneblock-poly(2-cinnamoylethyl methacrylate)-block-poly(t-butyl acrylate), PI-b-PCEMA-b-PtBA, was used. Films, 25 to50μm thick, were prepared from casting on glass slides a toluene solution of PI-b-PCEMA-b-PtBA and PtBA homopolymer,hPtBA, where hPtBA is shorter than the PtBA block. At the hPtBA mass fraction of 20% relative to the triblock or the total PtBA (hPtBA and PtBA block) volume fraction of 0.44, hPtBA and PtBA formed a seemingly continuous phase in the matrix of PCEMA and PI. Such a block segregation pattern was locked in by photocrosslinking the PCEMA domain. Nanochannels were formed by extracting out hPtBA with solvent. Alternatively, larger channels were obtained from extracting out hPtBA and hydrolyzing the t-butyl groups of the PtBA block. Such membranes were not liquid permeable but had gas permeability constants ~6 orders of magnitude higher than that of low-density polyethylene films.

  5. Poly(trimethylene carbonate)-based polymers engineered for biodegradable functional biomaterials.

    Science.gov (United States)

    Fukushima, K

    2016-01-01

    Aliphatic polycarbonates have drawn attention as biodegradable polymers that can be applied to a broad range of resorbable medical devices. In particular, poly(trimethylene carbonate) (PTMC), its copolymers, and its derivatives are currently studied due to their unique degradation characteristics that are different from those of aliphatic polyesters. Furthermore, their flexible and hydrophobic nature has driven the application of PTMC-based polymers to soft tissue regeneration and drug delivery. This review presents the diverse applications and functionalization strategies of PTMC-based materials in relation to recent advances in medical technologies and their subsequent needs in clinical settings.

  6. Production of Polyhydroxybutyrate (Bioplastic and its Biodegradation by Pseudomonas Lemoignei and Aspergillus Niger

    Directory of Open Access Journals (Sweden)

    S. Kumaravel

    2010-01-01

    Full Text Available The biodegradation of polyhydroxybutyrate (PHB and its copolymer polyhydroxy butyrate-co-hydroxyvalerate (PHB-co-HV was studied. Bacterial as well as fungal isolates were isolated from the local industrial ecosystem. All these isolates were tested for the degradation of the above polymers in assay agar medium as well in liquid cultures. The culture biomass and the clear zone around the colonies were measured to evaluate the activity of these isolates. In all, the fungal isolates were found to degrade these polymers more rapidly when compared to bacteria, due to their versatile depolymerase activities.

  7. Biomedical Applications of Biodegradable Polyesters

    OpenAIRE

    Iman Manavitehrani; Ali Fathi; Hesham Badr; Sean Daly; Ali Negahi Shirazi; Fariba Dehghani

    2016-01-01

    The focus in the field of biomedical engineering has shifted in recent years to biodegradable polymers and, in particular, polyesters. Dozens of polyester-based medical devices are commercially available, and every year more are introduced to the market. The mechanical performance and wide range of biodegradation properties of this class of polymers allow for high degrees of selectivity for targeted clinical applications. Recent research endeavors to expand the application of polymers have be...

  8. Coarse Grained Simulation of Lipid Membrane and Triblock Copolymers

    Science.gov (United States)

    Hatakeyama, Masaomi; Faller, Roland

    2008-02-01

    We investigated the interaction between DPPC (Dipalmitoyl phosphatidylcholine) bilayer and polyethylene oxide-polypropylene oxide-polyethylene oxide (PEO-PPO-PEO) triblock copolymers using coarse grained simulation. We simulated two systems of DPPC bilayer and PEO-PPO-PEO triblock copolymer containing different mole fractions, and simulated DPPC vesicle with the copolymers. We found different adsorption mechanisms of triblock copolymers depending on concentration. And we also observed docking process between a lipid vesicle and a micelle of the copolymers.

  9. Biocompatible multilayer capsules engineered with a graphene oxide derivative: synthesis, characterization and cellular uptake

    Science.gov (United States)

    Del Mercato, Loretta L.; Guerra, Flora; Lazzari, Gianpiero; Nobile, Concetta; Bucci, Cecilia; Rinaldi, Rosaria

    2016-03-01

    Graphene-based capsules have strong potential for a number of applications, including drug/gene delivery, tissue engineering, sensors, catalysis and reactors. The ability to integrate graphene into carrier systems with three-dimensional (3D) geometry may open new perspectives both for fundamental tests of graphene mechanics and for novel (bio)technological applications. However, the assembly of 3D complexes from graphene or its derivatives is challenging because of its poor stability under biological conditions. In this work, we attempted to integrate a layer of graphene oxide derivative into the shell of biodegradable capsules by exploiting a facile layer-by-layer (LbL) protocol. As a first step we optimized the LbL protocol to obtain colloidal suspensions of isolated capsules embedding the graphene oxide derivative. As a following step, we investigated in detail the morphological properties of the hybrid capsules, and how the graphene oxide derivative layer influences the porosity and the robustness of the multilayer composite shells. Finally, we verified the uptake of the capsules modified with the GO derivative by two cell lines and studied their intracellular localization and biocompatibility. As compared to pristine capsules, the graphene-modified capsules possess reduced porosity, reduced shell thickness and a higher stability against osmotic pressure. They show remarkable biocompatibility towards the tested cells and long-term colloidal stability and dispersion. By combining the excellent mechanical properties of a graphene oxide derivative with the high versatility of the LbL method, robust and flexible biocompatible polymeric capsules with novel characteristics have been fabricated.Graphene-based capsules have strong potential for a number of applications, including drug/gene delivery, tissue engineering, sensors, catalysis and reactors. The ability to integrate graphene into carrier systems with three-dimensional (3D) geometry may open new perspectives

  10. Block copolymer membranes for aqueous solution applications

    KAUST Repository

    Nunes, Suzana Pereira

    2016-03-22

    Block copolymers are known for their intricate morphology. We review the state of the art of block copolymer membranes and discuss perspectives in this field. The main focus is on pore morphology tuning with a short introduction on non-porous membranes. The two main strategies for pore formation in block copolymer membranes are (i) film casting and selective block sacrifice and (ii) self-assembly and non-solvent induced phase separation (SNIPS). Different fundamental aspects involved in the manufacture of block copolymer membranes are considered, including factors affecting the equilibrium morphology in solid films, self-assembly of copolymer in solutions and macrophase separation by solvent-non-solvent exchange. Different mechanisms are proposed for different depths of the SNIPS membrane. Block copolymer membranes can be prepared with much narrower pore size distribution than homopolymer membranes. Open questions and indications of what we consider the next development steps are finally discussed. They include the synthesis and application of new copolymers and specific functionalization, adding characteristics to respond to stimuli and chemical environment, polymerization-induced phase separation, and the manufacture of organic-inorganic hybrids.

  11. A poly(acrylic acid)-block-poly(L-glutamic acid) diblock copolymer with improved cell adhesion for surface modification.

    Science.gov (United States)

    Cao, Bin; Yan, Shifeng; Zhang, Kunxi; Song, Zhijiang; Cao, Tian; Chen, Xuesi; Cui, Lei; Yin, Jingbo

    2011-07-07

    A novel PAA-b-PLGA diblock copolymer is synthesized and characterized that has excellent cell adhesion and biocompatibility. Fluorescent DiO labeling is used to monitor the attachment and growth of hASCs on the film surface, and cell proliferation over time is studied. Results show that PLLA modified by a CS/PAA-b-PLGA multilayer film can promote the attachment of human hASCs and provide an advantageous environment for their proliferation. The multilayer film presents excellent biocompatibility and cell adhesive properties, which will provide a new choice for improving the cell attachment in surface modification for tissue engineering. Hydroxyl, carboxyl and amine groups in the CS/PAA-b-PLGA multilayer film may be combined with drugs and growth factors for therapy and differentiation.

  12. Characterization and biocompatibility of organogels based on L-alanine for parenteral drug delivery implants.

    Science.gov (United States)

    Motulsky, Aude; Lafleur, Michel; Couffin-Hoarau, Anne-Claude; Hoarau, Didier; Boury, Frank; Benoit, Jean-Pierre; Leroux, Jean-Christophe

    2005-11-01

    The development of simple and efficient drug delivery systems for the sustained release of peptides/proteins and low molecular weight hydrophilic molecules is an ongoing challenge. The purpose of this work was to prepare and characterize novel biodegradable in situ-forming implants obtained via the self-assembly of L-alanine derivatives in pharmaceutical oils. Six different amphiphilic organogelators based on L-alanine were synthesized. These derivatives could successfully gel various vegetable and synthetic oils approved for parenteral administration. Gelation was thermoreversible, and phase transition temperatures depended on gelator structure, concentration and solvent. Hydrogen bonds and van der Waals interactions were shown to be the main forces implicated in network formation. Selected formulations were then injected subcutaneously in rats for preliminary assessment of biocompatibility. Histopathological analysis of the surrounding tissues revealed mild, chronic inflammation and an overall good biocompatibility profile of the implants over the 8 wk evaluation period. This study demonstrates that in situ-forming organogels represent a potentially promising platform for sustained drug delivery.

  13. Produção biotecnológica de poli-hidroxialcanoatos para a geração de polímeros biodegradáveis no Brasil Biotechnological production of polyhydroxyalkanoates in brazil for biodegradable polymers

    Directory of Open Access Journals (Sweden)

    Luiziana Ferreira da Silva

    2007-01-01

    Full Text Available In recent years, several studies have been developed in Brazil to produce biodegradable materials. A particular family of bacterial polymers, the polyhydroxyalkanoates (PHA, has received special attention. PHAs are thermoplastic, biodegradable, biocompatible, are synthesised from renewable resources and can substitute petrochemical plastics in some applications. Different aspects have been focused to increase productivity and to reduce the cost of PHA production: bacterial improvement, use of industrial by-products as raw material, bioreactor design, process operation strategies, downstream process, mathematical modelling, polymer characterisation, application and biodegradability of blends. A production process was transferred to industry and studies to produce new PHA by controlling monomer composition are in progress. All these aspects are presented in this review.

  14. Synthesis of biocompatible polymers by plasma; Sintesis de polimeros biocompatibles por plasma

    Energy Technology Data Exchange (ETDEWEB)

    Colin O, E

    2007-07-01

    In this work biocompatible polymers were synthesized by plasma based on pyrrole, ethyleneglycol and allylamine. These monomers are biologically important because they contain oxygen and nitrogen in their structure and they form bonding like; N-H, C-N, C-O and O-H that are also in the human system. The polymers were synthesized with splendor electric discharges to 13.5 MHz, among 10 and 100 W, resistive coupling, pressure of 10{sup -1} mbar and 180 minutes of reaction. The interaction of the biological systems with biomaterials depends in many cases of the properties that present the surfaces, because the rough and/or porous surfaces favor the adherence of cells. The results indicate that the ruggedness of the polymers can be controlled with the synthesis energy, since when modifying it flat and/or rough surfaces they are obtained. The compatibility of water with other solutions that it is a form of increasing the adhesion of cells with biopolymers. The affinity with water and solutions is evaluated calculating the contact angle of the polymers surface with drops of concentration solutions and similar composition to the extracellular liquid of the spinal marrow of the human body. The solutions that were proven were based on NaCl, NaCl-MgSO{sub 4}, and a mixture Krebs-Ringer that has chemical composition and similar concentration to that of the fluids of the spinal marrow. In the Poly pyrrole (PPy)/Polyethyleneglycol (PEG) copolymer, the biggest angles corresponded to the Krebs-Ringer solution, in the interval of 18 to 14 degrees and those lowest to the NaCl solution, of 14.5 at 11 degrees. The Poly allylamine had the more high values with water in the interval of 16.5 to 12.5 degrees and those lowest with the NaCl solution, of 13 at 9.5 degrees. On the other hand, in the derived polymers of pyrrole the more high values corresponded to the treatment with water, until 37, and those lowest to the NaCl-MgSO{sub 4} solution, up to 10. The solutions where participated Na

  15. Synthesis of biocompatible polymers by plasma; Sintesis de polimeros biocompatibles por plasma

    Energy Technology Data Exchange (ETDEWEB)

    Colin O, E

    2007-07-01

    In this work biocompatible polymers were synthesized by plasma based on pyrrole, ethyleneglycol and allylamine. These monomers are biologically important because they contain oxygen and nitrogen in their structure and they form bonding like; N-H, C-N, C-O and O-H that are also in the human system. The polymers were synthesized with splendor electric discharges to 13.5 MHz, among 10 and 100 W, resistive coupling, pressure of 10{sup -1} mbar and 180 minutes of reaction. The interaction of the biological systems with biomaterials depends in many cases of the properties that present the surfaces, because the rough and/or porous surfaces favor the adherence of cells. The results indicate that the ruggedness of the polymers can be controlled with the synthesis energy, since when modifying it flat and/or rough surfaces they are obtained. The compatibility of water with other solutions that it is a form of increasing the adhesion of cells with biopolymers. The affinity with water and solutions is evaluated calculating the contact angle of the polymers surface with drops of concentration solutions and similar composition to the extracellular liquid of the spinal marrow of the human body. The solutions that were proven were based on NaCl, NaCl-MgSO{sub 4}, and a mixture Krebs-Ringer that has chemical composition and similar concentration to that of the fluids of the spinal marrow. In the Poly pyrrole (PPy)/Polyethyleneglycol (PEG) copolymer, the biggest angles corresponded to the Krebs-Ringer solution, in the interval of 18 to 14 degrees and those lowest to the NaCl solution, of 14.5 at 11 degrees. The Poly allylamine had the more high values with water in the interval of 16.5 to 12.5 degrees and those lowest with the NaCl solution, of 13 at 9.5 degrees. On the other hand, in the derived polymers of pyrrole the more high values corresponded to the treatment with water, until 37, and those lowest to the NaCl-MgSO{sub 4} solution, up to 10. The solutions where participated Na

  16. Biocompatibility of a novel cyanoacrylate based tissue adhesive: cytotoxicity and biochemical property evaluation.

    Directory of Open Access Journals (Sweden)

    Young Ju Lee

    Full Text Available Cyanoacrylate (CA is most widely used as a medical and commercial tissue adhesive because of easier wound closure, good cosmetic results and little discomfort. But, CA-based tissue adhesives have some limitations including the release of cytotoxic chemicals during biodegradation. In previous study, we made prepolymerized allyl 2-CA (PACA based tissue adhesive, resulting in longer chain structure. In this study, we investigated a biocompatibility of PACA as alternative tissue adhesive for medical application, comparing with that of Dermabond® as commercial tissue adhesive. The biocompatibility of PACA was evaluated for short-term (24 hr and long-term (3 and 7 days using conventional cytotoxicity (WST, neutral red, LIVE/DEAD and TUNEL assays, hematoxylin-eosin (H&E and Masson trichrome (MT staining. Besides we examined the biochemical changes in cells and DNA induced by PACA and Dermabond® utilizing Raman spectroscopy which could observe the denaturation and conformational changes in protein, as well as disintegration of the DNA/RNA by cell death. In particular, we analyzed Raman spectrum using the multivariate statistical methods including principal component analysis (PCA and support vector machine (SVM. As a result, PACA and Dermabond® tissue adhesive treated cells and tissues showed no difference of the cell viability values, histological analysis and Raman spectral intensity. Also, the classification analysis by means of PCA-SVM classifier could not discriminate the difference between the PACA and Dermabond® treated cells and DNA. Therefore we suggest that novel PACA might be useful as potential tissue adhesive with effective biocompatibility.

  17. Injectible bodily prosthetics employing methacrylic copolymer gels

    Science.gov (United States)

    Mallapragada, Surya K.; Anderson, Brian C.

    2007-02-27

    The present invention provides novel block copolymers as structural supplements for injectible bodily prosthetics employed in medical or cosmetic procedures. The invention also includes the use of such block copolymers as nucleus pulposus replacement materials for the treatment of degenerative disc disorders and spinal injuries. The copolymers are constructed by polymerization of a tertiary amine methacrylate with either a (poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide) polymer, such as the commercially available Pluronic.RTM. polymers, or a poly(ethylene glycol) methyl ether polymer.

  18. Novel biocompatible hydrogel nanoparticles: generation and size-tuning of nanoparticles by the formation of micelle templates obtained from thermo-responsive monomers mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Khandadash, Raz; Machtey, Victoria [Bar Ilan University, Department of Chemistry (Israel); Shainer, Inbal [Tel-Aviv University, Department of Neurobiology, The George S. Wise Faculty of Life Sciences (Israel); Gottlieb, Hugo E. [Bar Ilan University, Department of Chemistry (Israel); Gothilf, Yoav [Tel-Aviv University, Department of Neurobiology, The George S. Wise Faculty of Life Sciences, and Sagol School of Neuroscience (Israel); Ebenstein, Yuval [Tel Aviv University, Raymond and Beverly Sackler Faculty of Exact Sciences, School of Chemistry (Israel); Weiss, Aryeh [Bar Ilan University, School of Engineering (Israel); Byk, Gerardo, E-mail: gerardo.byk@biu.ac.il [Bar Ilan University, Department of Chemistry (Israel)

    2014-12-15

    Biocompatible hydrogel nanoparticles are prepared by polymerization and cross-linking of N-isopropyl acrylamide in a micelle template formed by block copolymers macro-monomers at high temperature. Different monomer ratios form, at high temperature, well-defined micelles of different sizes which are further polymerized leading to nanoparticles with varied sizes from 20 to 390 nm. Physico-chemical characterization of the nanoparticles demonstrates their composition and homogeneity. The NPs were tested in vitro and in vivo biocompatibility assays, and their lack of toxicity was proven. The NPs can be labeled with fluorescent probes, and their intracellular fate can be visualized and quantified using confocal microscopy. Their uptake by live stem cells and distribution in whole developing animals is reported. On the basis of our results, a mechanism of nanoparticle formation is suggested. The lack of toxicity makes these nanoparticles especially attractive for biological applications such as screening and bio-sensing.

  19. Biodegradable Magnetic Silica@Iron Oxide Nanovectors with Ultra-Large Mesopores for High Protein Loading, Magnetothermal Release, and Delivery

    KAUST Repository

    Omar, Haneen

    2016-11-29

    The delivery of large cargos of diameter above 15 nm for biomedical applications has proved challenging since it requires biocompatible, stably-loaded, and biodegradable nanomaterials. In this study, we describe the design of biodegradable silica-iron oxide hybrid nanovectors with large mesopores for large protein delivery in cancer cells. The mesopores of the nanomaterials spanned from 20 to 60 nm in diameter and post-functionalization allowed the electrostatic immobilization of large proteins (e.g. mTFP-Ferritin, ~ 534 kDa). Half of the content of the nanovectors was based with iron oxide nanophases which allowed the rapid biodegradation of the carrier in fetal bovine serum and a magnetic responsiveness. The nanovectors released large protein cargos in aqueous solution under acidic pH or magnetic stimuli. The delivery of large proteins was then autonomously achieved in cancer cells via the silica-iron oxide nanovectors, which is thus a promising for biomedical applications.

  20. Biocompatibility of MIM 316L stainless steel

    Institute of Scientific and Technical Information of China (English)

    ZHU Shai-hong; WANG Guo-hui; ZHAO Yan-zhong; LI Yi-ming; ZHOU Ke-chao; HUANG Bai-yun

    2005-01-01

    To evaluate the bioeompatibility of MIM 316L stainless steel, the percentage of S-period cells were detected by flow cytometry after L929 incubated with extraction of MIM 316L stainless steel, using titanium implant materials of clinical application as the contrast. Both materials were implanted in animal and the histopathological evaluations were carried out. The statistical analyses show that there are no significant differences between two groups (P>0.05), which demonstrates that MIM 316L stainless steel has a good biocompatibility.

  1. Self-Assembled Cationic Biodegradable Nanoparticles from pH-Responsive Amino-Acid-Based Poly(Ester Urea Urethane)s and Their Application As a Drug Delivery Vehicle.

    Science.gov (United States)

    He, Mingyu; Potuck, Alicia; Kohn, Julie C; Fung, Katharina; Reinhart-King, Cynthia A; Chu, Chih-Chang

    2016-02-01

    The objective of this study is to develop a new family of biodegradable and biologically active copolymers and their subsequent self-assembled cationic nanoparticles as better delivery vehicles for anticancer drugs to achieve the synergism between the cytotoxicity effects of the loaded drugs and the macrophage inflammatory response of the delivery vehicle. This family of cationic nanoparticles was formulated from a new family of amphiphilic cationic Arginine-Leucine (Arg-Leu)-based poly(ester urea urethane) (Arg-Leu PEUU) synthesized from four building blocks (amino acids, diols, glycerol α-monoallyl ether, and 1,6 hexamethylene diisocyanate). The chemical, physical, and biological properties of Arg-Leu PEUU biomaterials can be tuned by controlling the feed ratio of the four building blocks. The Arg-Leu PEUU copolymers have weight-average molecular weights from 13.4 to 16.8 kDa and glass-transition temperatures from -3.4 to -4.6 °C. The self-assembled cationic nanoparticles (Arg-Leu PEUU NPs) were prepared using a facile dialysis method. Arg-Leu PEUU NPs have average diameters ranging from 187 to 272 nm, show good biocompatibility with 3T3 fibroblasts, and they support bovine aortic endothelial cell (BAEC) proliferation and adhesion. Arg-Leu PEUU NPs also enhanced the macrophages' production of tumor necrosis factor-α (TNF-α) and nitric oxide (NO), but produced relatively low levels of interleukin-10 (IL-10), and therefore, the antitumor activity of macrophages might be enhanced. Arg-Leu PEUU NPs were taken up by HeLa cells after 4 h of incubation. The in vitro hemolysis assay showed the cationic Arg-Leu PEUU NPs increased their chance of endosomal escape at a more acidic pH. Doxorubicin (DOX) was successfully incorporated into the Arg-Leu PEUU NPs, and the DOX-loaded Arg-Leu PEUU NPs exhibited a pH-dependent drug release profile with accelerated release kinetics in a mild acidic condition. The DOX-loaded 6-Arg-4-Leu-4 A/L-2/1 NPs showed higher HeLa cell

  2. Comparison of biocompatibility and adsorption properties of different plastics for advanced microfluidic cell and tissue culture models.

    Science.gov (United States)

    van Midwoud, Paul M; Janse, Arnout; Merema, Marjolijn T; Groothuis, Geny M M; Verpoorte, Elisabeth

    2012-05-01

    Microfluidic technology is providing new routes toward advanced cell and tissue culture models to better understand human biology and disease. Many advanced devices have been made from poly(dimethylsiloxane) (PDMS) to enable experiments, for example, to study drug metabolism by use of precision-cut liver slices, that are not possible with conventional systems. However, PDMS, a silicone rubber material, is very hydrophobic and tends to exhibit significant adsorption and absorption of hydrophobic drugs and their metabolites. Although glass could be used as an alternative, thermoplastics are better from a cost and fabrication perspective. Thermoplastic polymers (plastics) allow easy surface treatment and are generally transparent and biocompatible. This study focuses on the fabrication of biocompatible microfluidic devices with low adsorption properties from the thermoplastics poly(methyl methacrylate) (PMMA), polystyrene (PS), polycarbonate (PC), and cyclic olefin copolymer (COC) as alternatives for PDMS devices. Thermoplastic surfaces were oxidized using UV-generated ozone or oxygen plasma to reduce adsorption of hydrophobic compounds. Surface hydrophilicity was assessed over 4 weeks by measuring the contact angle of water on the surface. The adsorption of 7-ethoxycoumarin, testosterone, and their metabolites was also determined after UV-ozone treatment. Biocompatibility was assessed by culturing human hepatoma (HepG2) cells on treated surfaces. Comparison of the adsorption properties and biocompatibility of devices in different plastics revealed that only UV-ozone-treated PC and COC devices satisfied both criteria. This paper lays an important foundation that will help researchers make informed decisions with respect to the materials they select for microfluidic cell-based culture experiments.

  3. Biodegradation of polyethoxylated nonylphenols.

    Science.gov (United States)

    Ruiz, Yassellis; Medina, Luis; Borusiak, Margarita; Ramos, Nairalith; Pinto, Gilberto; Valbuena, Oscar

    2013-01-01

    Polyethoxylated nonylphenols, with different ethoxylation degrees (NPEO x ), are incorporated into many commercial and industrial products such as detergents, domestic disinfectants, emulsifiers, cosmetics, and pesticides. However, the toxic effects exerted by their degradation products, which are persistent in natural environments, have been demonstrated in several animal and invertebrate aquatic species. Therefore, it seems appropriate to look for indigenous bacteria capable of degrading native NPEO x and its derivatives. In this paper, the isolation of five bacterial strains, capable of using NPEO 15 , as unique carbon source, is described. The most efficient NPEO 15 degrader bacterial strains were identified as Pseudomonas fluorescens (strain Yas2) and Klebsiella pneumoniae (strain Yas1). Maximal growth rates were reached at pH 8, 27°C in a 5% NPEO 15 medium. The NPEO 15 degradation extension, followed by viscometry assays, reached 65% after 54.5 h and 134 h incubation times, while the COD values decreased by 95% and 85% after 24 h for the Yas1 and Yas2 systems, respectively. The BOD was reduced by 99% and 99.9% levels in 24 h and 48 h incubations. The viscosity data indicated that the NPEO 15 biodegradation by Yas2 follows first-order kinetics. Kinetic rate constant (k) and half life time (τ) for this biotransformation were estimated to be 0.0072 h(-1) and 96.3 h, respectively.

  4. Biodegradable Polymers in Bone Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Leon E. Govaert

    2009-07-01

    Full Text Available The use ofdegradable polymers in medicine largely started around the mid 20th century with their initial use as in vivo resorbing sutures. Thorough knowledge on this topic as been gained since then and the potential applications for these polymers were, and still are, rapidly expanding. After improving the properties of lactic acid-based polymers, these were no longer studied only from a scientific point of view, but also for their use in bone surgery in the 1990s. Unfortunately, after implanting these polymers, different foreign body reactions ranging from the presence of white blood cells to sterile sinuses with resorption of the original tissue were observed. This led to the misconception that degradable polymers would, in all cases, lead to inflammation and/or osteolysis at the implantation site. Nowadays, we have accumulated substantial knowledge on the issue of biocompatibility of biodegradable polymers and are able to tailor these polymers for specific applications and thereby strongly reduce the occurrence of adverse tissue reactions. However, the major issue of biofunctionality, when mechanical adaptation is taken into account, has hitherto been largely unrecognized. A thorough understanding of how to improve the biofunctionality, comprising biomechanical stability, but also visualization and sterilization of the material, together with the avoidance of fibrotic tissue formation and foreign body reactions, may greatly enhance the applicability and safety of degradable polymers in a wide area of tissue engineering applications. This review will address our current understanding of these biofunctionality factors, and will subsequently discuss the pitfalls remaining and potential solutions to solve these problems.

  5. Silica reinforced triblock copolymer gels

    DEFF Research Database (Denmark)

    Theunissen, E.; Overbergh, N.; Reynaers, H.

    2004-01-01

    The effect of silica and polymer coated silica particles as reinforcing agents on the structural and mechanical properties of polystyrene-poly(ethylene/butylene)-polystyrene (PS-PEB-PS) triblock gel has been investigated. Different types of chemically modified silica have been compared in order...... to evaluate the influence of the compatibility between gel and filler. Time-resolved SANS and small-angle X-ray scattering (SAXS) shows that the presence of silica particles affects the ordering of the polystyrene domains during gelsetting. The scattering pattern of silica-reinforced gels reveals strong...... a viscoclastic rubber to a plastic fluid and from a plastic fluid to a viscoelastic liquid are shifted to more elevated temperatures when silica is added to the triblock copolymer gel. (C) 2004 Elsevier Ltd. All rights reserved....

  6. MISCIBILITY IN COPOLYMER/HOMOPOLYMER BLENDS

    Institute of Scientific and Technical Information of China (English)

    JIANG Ming

    1988-01-01

    In order to study the miscibility of a copolymer with its corresponding homopolymers, varieties of multicomponent polymers including simple graft, multibranch, diblock, triblock and four-arm block copolymers and so-called ABCPs were synthesized and characterized. The morphologies of the blends comprising the covolymers and the corresponding homopolymers were examined by electron microscopy. It is concluded that beeides molecular weight, architecture of a copolymers has apparent effect on the miscibility, i.e. the more complex is molecular architecture, the greater is conformation restriction in microdomain formation and the less is solubility of homopolymer in corresponding domains. In addition, a density gradient model is suggested for describing the segment distribution of the bound and free chains in block-homopolymer systems. Using this model, Helfand's theory is extended to the blends of copolymer and homopolymer predicting the miscibility which is in good agreement with the experimental results.

  7. Functionalization of magnetic nanoparticles with dendritic-linear-brush-like triblock copolymers and their drug release properties.

    Science.gov (United States)

    He, Xiaohua; Wu, Xiaomeng; Cai, Xin; Lin, Shaoliang; Xie, Meiran; Zhu, Xinyuan; Yan, Deyue

    2012-08-14

    Novel water-soluble dendritic-linear-brush-like triblock copolymer polyamidoamine-b-poly(2-(dimethylamino)ethyl methacrylate)-b-poly(poly(ethylene glycol) methyl ether methacrylate) (PAMAM-b-PDMAEMA-b-PPEGMA)-grafted superparamagnetic iron oxide nanoparticles (SPIONs) were successfully prepared via a two-step copper-mediated atom transfer radical polymerization (ATRP) method. The macroinitiators were immobilized on the surface of Fe(3)O(4) nanoparticles via effective ligand exchange of oleic acid with the propargyl focal point PAMAM-typed dendron (generation 2.0, denoted as propargyl-D(2.0)) containing four carboxyl acid end groups, following a click reaction with 2'-azidoethyl-2-bromoisobutylate (AEBIB). PDMAEMA and PPEGMA were grown gradually from nanoparticle surfaces using the "grafting from" approach, which rendered the SPIONs soluble in water and reversed aggregation. To the best of our knowledge, this is the first report that describes the functionalization of magnetic nanoparticles with dendritic-linear-brush-like triblock copolymers. The modified nanoparticles were systematically studied via TEM, FT-IR, DLS, XRD, NMR, TGA, and magnetization measurements. DLS measurement confirmed that the obtained dendritic-linear-brush-like triblock copolymer-grafted SPIONs had a uniform hydrodynamic particle size of average diameter less than 30 nm. The dendritic-linear-brush-like triblock copolymer-grafted SPIONs possessed excellent biocompatibility by methyl tetrazolium (MTT) assays against NIH3T3 cells and hemolysis assays with rabbit erythrocytes. Furthermore, an anticancer drug, doxorubicin (Dox), was used as a model drug and loaded into the dendritic-linear-brush-like triblock copolymer-grafted SPIONs, and subsequently, the drug releases were performed in phosphoric acid buffer solution pH = 4.7, 7.4, or 11.0 at 37 °C. The results verify that the dendritic-linear-brush-like triblock copolymer-grafted SPIONs possess pH-responsive drug release behavior. The Dox dose

  8. Biocompatible Peritoneal Dialysis Fluids: Clinical Outcomes

    Directory of Open Access Journals (Sweden)

    Yeoungjee Cho

    2012-01-01

    Full Text Available Peritoneal dialysis (PD is a preferred home dialysis modality and has a number of added advantages including improved initial patient survival and cost effectiveness over haemodialysis. Despite these benefits, uptake of PD remains relatively low, especially in developed countries. Wider implementation of PD is compromised by higher technique failure from infections (e.g., PD peritonitis and ultrafiltration failure. These are inevitable consequences of peritoneal injury, which is thought to result primarily from continuous exposure to PD fluids that are characterised by their “unphysiologic” composition. In order to overcome these barriers, a number of more biocompatible PD fluids, with neutral pH, low glucose degradation product content, and bicarbonate buffer have been manufactured over the past two decades. Several preclinical studies have demonstrated their benefit in terms of improvement in host cell defence, peritoneal membrane integrity, and cytokine profile. This paper aims to review randomised controlled trials assessing the use of biocompatible PD fluids and their effect on clinical outcomes.

  9. Biocompatibility of polymethylmethacrylate resins used in dentistry.

    Science.gov (United States)

    Gautam, Rupali; Singh, Raghuwar D; Sharma, Vinod P; Siddhartha, Ramashanker; Chand, Pooran; Kumar, Rakesh

    2012-07-01

    Biocompatibility or tissue compatibility describes the ability of a material to perform with an appropriate host response when applied as intended. Poly-methylmethacrylate (PMMA) based resins are most widely used resins in dentistry, especially in fabrication of dentures and orthodontic appliances. They are considered cytotoxic on account of leaching of various potential toxic substances, most common being residual monomer. Various in vitro and in vivo experiments and cell based studies conducted on acrylic based resins or their leached components have shown them to have cytotoxic effects. They can cause mucosal irritation and tissue sensitization. These studies are not only important to evaluate the long term clinical effect of these materials, but also help in further development of alternate resins. This article reviews information from scientific full articles, reviews, or abstracts published in dental literature, associated with biocompatibility of PMMA resins and it is leached out components. Published materials were searched in dental literature using general and specialist databases, like the PubMED database.

  10. Polyurethane biocompatible silver bionanocomposites for biomedical applications

    Science.gov (United States)

    Filip, D.; Macocinschi, D.; Paslaru, E.; Munteanu, B. S.; Dumitriu, R. P.; Lungu, M.; Vasile, C.

    2014-11-01

    Bionanocomposite membranes based on polyurethane (PU), extracellular matrix (EM), and silver nanoparticles (AgNPs) were prepared by applying both solvent casting method and electrospinning/electrospraying method. PU-EM-Ag compositions were electrospun/electrosprayed onto PU membrane to realize improved biocompatible biomaterials. Surface morphological characteristics and wettability properties were investigated by SEM and AFM techniques and water contact angle measurements. Water contact angle depends on surface chemistry and the two methods employed for preparation of biomembranes as well as roughness of the membrane surfaces. Rheological study brings information on electrospinability of the polymer solutions/dispersions. Silver nanoparticles greatly influence the electrospinability of the polymer dispersions because of the increase in dynamic viscosity with the increasing silver content. Native PU and PU incorporated with low contents of AgNPs less than 0.3 % show high cell proliferation and good biocompatibility. The electrospun PU-EM-Ag nanobiocomposite membranes bring the advantage of using of low amounts of bioactive and biocidal components. The obtained silver nanobiocomposite membranes possess good bioactivity and non-cytotoxicity necessary for biomedical device applications. The obtained nanobiocomposite membranes are expected to find application for medical devices such as urinary catheters, wound dressings, etc.

  11. Antimicrobial and biocompatible properties of nanomaterials.

    Science.gov (United States)

    Ul-Islam, M; Shehzad, A; Khan, S; Khattak, W A; Ullah, M W; Park, J K

    2014-01-01

    The rapid development of drug-resistant characteristics in pathogenic viral, bacterial, and fungal species and the consequent spread of infectious diseases are currently receiving serious attention. Indeed, there is a pressing demand to explore novel materials and develop new strategies that can address these issues of serious concern. Nanomaterials are currently proving to be the most capable therapeutic agents to cope with such hazards. The exceptional physiochemical properties and impressive antimicrobial capabilities of nanoparticles have provoked their utilization in biomedical fields. Nanomaterials of both organic and inorganic nature have shown the capabilities of disrupting microbial cells through different mechanisms. Along with the direct influence on the microbial cell membrane, DNA and proteins, these nanomaterials produce reactive oxygen species (ROS) that damage cell components and viruses. Currently, a serious hazard associated with these antimicrobial nanomaterials is their toxicity to human and animal cells. Extensive studies have reported the dose, time, and cell-dependent toxicology of various nanomaterials, and some have shown excellent biocompatible properties. Nevertheless, there is still debate regarding the use of nanomaterials for medical applications. Therefore, in this review, the antimicrobial activities of various nanomaterials with details of their acting mechanisms were compiled. The relative toxic and biocompatible behavior of nanomaterials emphasized in this study provides information pertaining to their practical applicability in medical fields.

  12. Drug targeting to tumors using HPMA copolymers

    OpenAIRE

    Lammers, T.G.G.M.

    2009-01-01

    Copolymers based on N-(2-hydroxypropyl)methacrylamide (HPMA) are prototypic and well-characterized polymeric drug carriers that have been broadly implemented in the delivery of anticancer agents. HPMA copolymers circulate for prolonged periods of time, and by means of the Enhance Permeability and Retention (EPR) effect, they localize to tumors both effectively and selectively. As a consequence, the concentrations of attached active agents in tumors can be increased, and their accumulation in ...

  13. Amphiphilic diblock copolymers for molecular recognition

    OpenAIRE

    Nehring, Rainer

    2009-01-01

    In this thesis, the synthesis and the characterization of poly(butadiene)-blockpoly( ethylene oxide) copolymers with terminal Me2+-NTA groups (copper or nickel) is described for the first time. A convenient “one-pot” procedure that allows control over the individual block lengths of the copolymer and the end-group functionalization was successfully established. The formation of the metal-polymer complex has been confirmed by EPR and UV/VIS spectroscopy. Mixing of the Ni2+-NT...

  14. Silicone containing copolymers: Synthesis, properties and applications

    OpenAIRE

    Yılgör, Emel; Yılgör, İskender

    2013-01-01

    Accepted Manuscript Title: Silicone containing copolymers: Synthesis, properties and applications Author: Emel Yilgor Iskender Yilgor PII: S0079-6700(13)00141-X DOI: http://dx.doi.org/doi:10.1016/j.progpolymsci.2013.11.003 Reference: JPPS 848 To appear in: Progress in Polymer Science Received date: 1-8-2013 Revised date: 4-11-2013 Accepted date: 8-11-2013 Please cite this article as: Yilgor E, Yilgor I, Silicone containing copolymers: Synthesis, properties ...

  15. Responsive Copolymers for Enhanced Petroleum Recovery

    Energy Technology Data Exchange (ETDEWEB)

    McCormick, C.; Hester, R.

    2001-02-27

    The objectives of this work was to: synthesize responsive copolymer systems; characterize molecular structure and solution behavior; measure rheological properties of aqueous fluids in fixed geometry flow profiles; and to tailor final polymer compositions for in situ rheology control under simulated conditions. This report focuses on the synthesis and characterization of novel stimuli responsive copolymers, the investigation of dilute polymer solutions in extensional flow and the design of a rheometer capable of measuring very dilute aqueous polymer solutions at low torque.

  16. Poly Lactic-co-Glycolic Acid (PLGA as Biodegradable Controlled Drug Delivery Carrier

    Directory of Open Access Journals (Sweden)

    Steven J. Siegel

    2011-08-01

    Full Text Available In past two decades poly lactic-co-glycolic acid (PLGA has been among the most attractive polymeric candidates used to fabricate devices for drug delivery and tissue engineering applications. PLGA is biocompatible and biodegradable, exhibits a wide range of erosion times, has tunable mechanical properties and most importantly, is a FDA approved polymer. In particular, PLGA has been extensively studied for the development of devices for controlled delivery of small molecule drugs, proteins and other macromolecules in commercial use and in research. This manuscript describes the various fabrication techniques for these devices and the factors affecting their degradation and drug release.

  17. Polyanionic collagen membranes for guided tissue regeneration: Effect of progressive glutaraldehyde cross-linking on biocompatibility and degradation.

    Science.gov (United States)

    Veríssimo, D M; Leitão, R F C; Ribeiro, R A; Figueiró, S D; Sombra, A S B; Góes, J C; Brito, G A C

    2010-10-01

    The ultimate goal of periodontal therapy is to control periodontal tissue inflammation and to produce predictable regeneration of that part of the periodontium which has been lost as a result of periodontal disease. In guided tissue regeneration membranes function as mechanical barriers, excluding the epithelium and gingival corium from the root surface and allowing regeneration by periodontal ligament cells. This report aims to study the effect of glutaraldehyde (GA) cross-linking on mineralized polyanionic collagen (PAC) membranes by conducting a histological evaluation of the tissue response (biocompatibility) and by assessing the biodegradation of subcutaneous membrane implants in rats. We studied six different samples: a PAC, a PAC mineralized by alternate soaking processes for either 25 or 75 cycles (PAC 25 and PAC 75, respectively) and these films cross-linked by GA. Inflammatory infiltrate, cytokine dosage, fibrosis capsule thickness, metalloproteinase immunohistochemistry and membrane biodegradation after 1, 7, 15 and 30 days were measured. The inflammatory response was found to be more intense in membranes without cross-linking, while the fibrosis capsules became thicker in cross-linked membranes after 30 days. The membranes without cross-linking suffered intense biodegradation, while the membranes with cross-linking remained intact after 30 days. The cross-linking with GA reduced the inflammatory response and prevented degradation of the membranes over the entire course of the observation period. These membranes are thus an attractive option when the production of new bone depends on the prolonged presence of a mechanical barrier.

  18. Biodegradable polyglycerols with randomly distributed ketal groups as multi-functional drug delivery systems.

    Science.gov (United States)

    Shenoi, Rajesh A; Lai, Benjamin F L; Imran ul-haq, Muhammad; Brooks, Donald E; Kizhakkedathu, Jayachandran N

    2013-08-01

    Biodegradable multi-functional polymeric nanostructures that undergo controlled degradation in response to physiological cues are important in numerous biomedical applications including drug delivery, bio-conjugation and tissue engineering. In this paper, we report the development of a new class of water soluble multi-functional branched biodegradable polymer with high molecular weight and biocompatibility which demonstrates good correlation of in vivo biodegradation and in vitro hydrolysis. Main chain degradable hyperbranched polyglycerols (HPG) (20-100 kDa) were synthesized by the introduction of acid labile groups within the polymer structure by an anionic ring opening copolymerization of glycidol with ketal-containing epoxide monomers with different ketal structures. The water soluble biodegradable HPGs with randomly distributed ketal groups (RBHPGs) showed controlled degradation profiles in vitro depending on the pH of solution, temperature and the structure of incorporated ketal groups, and resulted in non-toxic degradation products. NMR studies demonstrated the branched nature of RBHPGs which is correlating with their smaller hydrodynamic radii. The RBHPGs and their degradation products exhibited excellent blood compatibility and tissue compatibility based on various analyses methods, independent of their molecular weight and ketal group structure. When administered intravenously in mice, tritium labeled RBHPG of molecular weight 100 kDa with dimethyl ketal group showed a circulation half life of 2.7 ± 0.3 h, correlating well with the in vitro polymer degradation half life (4.3 h) and changes in the molecular weight profile during the degradation (as measured by gel permeation chromatography) in buffer conditions at 37 °C. The RBHPG degraded into low molecular weight fragments that were cleared from circulation rapidly. The biodistribution and excretion studies demonstrated that RBHPG exhibited significantly lower tissue accumulation and enhanced urinary

  19. Biocorrosion behavior of biodegradable nanocomposite fibers coated layer-by-layer on AM50 magnesium implant.

    Science.gov (United States)

    Abdal-Hay, Abdalla; Hasan, Anwarul; Kim, Yu-Kyoung; Yu-Kyoung; Lee, Min-Ho; Hamdy, Abdel Salam; Khalil, Khalil Abdelrazek

    2016-01-01

    This article demonstrates the use of hybrid nanofibers to improve the biodegradation rate and biocompatibility of AM50 magnesium alloy. Biodegradable hybrid membrane fiber layers containing nano-hydroxyapatite (nHA) particles and poly(lactide)(PLA) nanofibers were coated layer-by-layer (LbL) on AM50 coupons using a facile single-step air jet spinning (AJS) approach. The corrosion performance of coated and uncoated coupon samples was investigated by means of electrochemical measurements. The results showed that the AJS 3D membrane fiber layers, particularly the hybrid membrane layers containing a small amount of nHA (3 wt.%), induce a higher biocorrosion resistance and effectively decrease the initial degradation rate compared with the neat AM50 coupon samples. The adhesion strength improved highly due to the presence of nHA particles in the AJS layer. Furthermore, the long biodegradation rates of AM50 alloy in Hank's balanced salt solution (HBSS) were significantly controlled by the AJS-coatings. The results showed a higher cytocompatibility for AJS-coatings compared to that for neat Mg alloys. The nanostructured nHA embedded hybrid PLA nanofiber coating can therefore be a suitable coating material for Mg alloy as a potential material for biodegradable metallic orthopedic implants.

  20. PREPARATION OF BIODEGRADABLE FLAX SHIVE CELLULOSE-BASED SUPERABSORBENT POLYMER UNDER MICROWAVE IRRADIATION

    Directory of Open Access Journals (Sweden)

    Hao Feng

    2010-05-01

    Full Text Available Superabsorbent polymer was prepared by graft polymerization of acrylic acid onto the chain of cellulose from flax shive by using potassium persulfate (KPS as an initiator and N,N’-methylenebisacrylamide (MBA as a crosslinker under microwave irradiation. SEM photographs were also studied for more information about the shive, cellulose from shive, and the superabsorbent polymer. The structure of the graft copolymer was confirmed by FT-IR spectroscopy and thermogravimetric analysis (TGA. The biodegradability in soil was measured at 32 and 40 oC. The polymer was porous, and thermal stability of the polymer was observed up to approximately 200 oC. FT-IR analysis indicated that acrylic acid in polymer was successfully grafted onto the cellulose. The graft copolymer was found to be an effective superabsorbent resin, rapidly absorbing water to almost 1000 times its own dry weight at pH around 7.3. The water absorbency in 0.9% NaCl, KCl, FeCl3 solutions and urine were 56.47 g/g, 54.71g/g, 9.89g/g and 797.21g/g, respectively. The product biologically degraded up to 40% at 40 oC in 54 days, which shows good biodegradability.

  1. Jet blown PTFE for control of biocompatibility

    Science.gov (United States)

    Leibner, Evan Scott

    The development of fully hemocompatible cardiovascular biomaterials will have a major impact on the practice of modern medicine. Current artificial surfaces, unlike native vascular surfaces, are not able to control clot and thrombus formation. Protein interactions are an important component in hemocompatibility and can result in decreased patency due to thrombus formation or surface passivation which can improve endothelization. It is believed that controlling these properties, specifically the nanometer sizes of the fibers on the material's surface, will allow for better control of biological responses. The biocompatibility of Teflon, a widely used polymer for vascular grafts, would be improved with nanostructured control of surface features. Due to the difficultly in processing polytetrafluoroethylene (PTFE), it has not been possible to create nanofibrous PTFE surfaces. The novel technique of Jet Blowing allows for the formation of nanostructured PTFE (nPTFE). A systematic investigation into controlling polymer properties by varying the processing conditions of temperature, pressure, and gas used in the Jet Blowing allows for an increased understanding of the effects of plasticization on the material's properties. This fundamental understanding of the material science behind the Jet Blowing process has enabled control of the micro and nanoscale structure of nPTFE. While protein adsorption, a key component of biocompatibility, has been widely studied, it is not fully understood. Major problems in the field of biomaterials include a lack of standard protocols to measure biocompatibility, and inconstant literature on protein adsorption. A reproducible protocol for measuring protein adsorption onto superhydrophobic surfaces (ePTFE and nPTFE) has been developed. Both degassing of PBS buffer solutions and evacuation of the air around the expanded PTFE (ePTFE) prior to contact with protein solutions are essential. Protein adsorption experiments show a four

  2. The Lectin Pathway of Complement and Biocompatibility

    DEFF Research Database (Denmark)

    Hein, Estrid; Garred, Peter

    2015-01-01

    In modern health technologies the use of biomaterials in the form of stents, haemodialysis tubes, artificial implants, bypass circuits etc. is rapidly expanding. The exposure of synthetic, foreign surfaces to the blood and tissue of the host, calls for strict biocompatibility in respect to contac...... been broadly documented. However, the specific role of lectin pathway and the pattern recognition molecules initiating the pathway has only been transiently investigated. Here we review the current data on the field....... and the alternative pathway, all converging in an amplification loop of the cascade system and downstream reactions. Thus, when exposed to foreign substances complement components will be activated and lead to a powerful inflammatory response. Biosurface induced complement activation is a recognised issue that has...

  3. Si-based Nanoparticles: a biocompatibility study

    Science.gov (United States)

    Rivolta, I.; Lettiero, B.; Panariti, A.; D'Amato, R.; Maurice, V.; Falconieri, M.; Herlein, N.; Borsella, E.; Miserocchi, G.

    2010-10-01

    Exposure to silicon nanoparticles (Si-NPs) may occur in professional working conditions or for people undergoing a diagnostic screening test. Despite the fact that silicon is known as a non-toxic material, in the first case the risk is mostly related to the inhalation of nanoparticles, thus the most likely route of entry is across the lung alveolar epithelium. In the case of diagnostic imaging, nanoparticles are usually injected intravenously and Si-NPs could impact on the endothelial wall. In our study we investigated the interaction between selected Si-based NPs and an epithelial lung cell line. Our data showed that, despite the overall silicon biocompatibility, however accurate studies of the potential toxicity induced by the nanostructure and engineered surface characteristics need to be accurately investigated before Si nanoparticles can be safely used for in vivo applications as bio-imaging, cell staining and drug delivery.

  4. Use of alginate, chitosan and cellulose nanocrystals as emulsion stabilizers in the synthesis of biodegradable polymeric nanoparticles.

    Science.gov (United States)

    Rescignano, Nicoletta; Fortunati, Elena; Armentano, Ilaria; Hernandez, Rebeca; Mijangos, Carmen; Pasquino, Rossana; Kenny, José Maria

    2015-05-01

    Biopolymeric nanoparticles (NPs) based on a biodegradable poly(DL-Lactide-co-Glycolide) PLGA copolymer matrix combined with alginate, chitosan and nanostructured cellulose crystals as three different natural emulsion stabilizers, were synthesized by a double emulsion (water/oil/water) method with subsequent solvent evaporation. The morphological, thermal, chemical and rheological properties of the novel designed NPs and the effect of the different emulsion stabilizers used during the synthesis were deeply investigated in order to optimize the synthesis procedure and the development of biodegradable nanoparticles coated with natural polymers. The morphological analysis of the produced nanoparticles showed that all the different formulations presented a spherical shape with smooth surface. Infrared spectroscopy investigations showed that the PLGA copolymer maintained its backbone structure and confirmed the presence of chitosan, alginate and cellulose nanocrystals (CNC) on the nanoparticle surface. The obtained results suggest that PLGA nanoparticles with CNC as emulsion stabilizer might represent promising formulations opening new perspective in the field of self-assembly of biodegradable nanomaterials for medical and pharmaceutical applications.

  5. Effect of Surface Modification on Microbiol Polyhydroxyalkanoate Films on Biocompatibility

    Institute of Scientific and Technical Information of China (English)

    杨霰霜; 赵锴; 陈金春; 夏彩虹; 陈国强

    2001-01-01

    The purpose of this study was to investigate in vitro biocompatibility of a new type of polymer, polyhydroxybutyrate-co-hexanoate (PHBHHx). The hydrophilicity and biocompatibility were studied with two kinds of enzymes, amylase BAN480L and lipase Novozym388. The degree of hydrophilicity was observed using contact angle measurements. In vitro biocompatibility evaluations were carried out by direct incubation of mouse fibroblast cell line L929 on the polyhydroxyalkanoate (PHA) films. The samples treated with BAN480L showed that the PHA biocompatibility increased while the hydrophilicity decreased. Relative to untreated samples, the number of cells on the Novozym388 modified PHBHHx significant decrease as the hydrophilicity also decreased. The results indicated that other surface characteristics besides hydrophilicity influence the biocompatibility of PHBHHx films.

  6. Preparation of non-aggregated fluorescent nanodiamonds (FNDs) by non-covalent coating with a block copolymer and proteins for enhancement of intracellular uptake.

    Science.gov (United States)

    Lee, Jong Woo; Lee, Seonju; Jang, Sangmok; Han, Kyu Young; Kim, Younggyu; Hyun, Jaekyung; Kim, Seong Keun; Lee, Yan

    2013-05-01

    Fluorescent nanodiamonds (FNDs) are very promising fluorophores for use in biosystems due to their high biocompatibility and photostability. To overcome their tendency to aggregate in physiological solutions, which severely limits the biological applications of FNDs, we developed a new non-covalent coating method using a block copolymer, PEG-b-P(DMAEMA-co-BMA), or proteins such as BSA and HSA. By simple mixing of the block copolymer with FNDs, the cationic DMAEMA and hydrophobic BMA moieties can strongly interact with the anionic and hydrophobic moieties on the FND surface, while the PEG block can form a shell to prevent the direct contact between FNDs. The polymer-coated FNDs, along with BSA- and HSA-coated FNDs, showed non-aggregation characteristics and maintained their size at the physiological salt concentration. The well-dispersed, polymer- or protein-coated FNDs in physiological solutions showed enhanced intracellular uptake, which was confirmed by CLSM. In addition, the biocompatibility of the coated FNDs was expressly supported by a cytotoxicity assay. Our simple non-covalent coating with the block copolymer, which can be easily modified by various chemical methods, projects a very promising outlook for future biomedical applications, especially in comparison with covalent coating or protein-based coating.

  7. Biodegradable congress 2012; Bioschmierstoff-Kongress 2012

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-11-01

    Within the Guelzower expert discussions at 5th and 6th June, 2012 in Oberhausen (Federal Republic of Germany) the following lectures were held: (1) Promotion of biodegradable lubricants by means of research and development as well as public relations (Steffen Daebeler); (2) Biodegradable lubricants - An overview of the advantages and disadvantages of the engaged product groups (Hubertus Murrenhoff); (3) Standardization of biodegradable lubricants - CEN/DIN standard committees - state of the art (Rolf Luther); (4) Market research for the utilization of biodegradable lubricants and means of proof of sustainability (Norbert Schmitz); (5) Fields of application for high performance lubricants and requirements upon the products (Gunther Kraft); (6) Investigations of biodegradable lubricants in rolling bearings and gears (Christoph Hentschke); (7) Biodegradable lubricants in central lubrication systems Development of gears and bearings of offshore wind power installations (Reiner Wagner); (8) Investigations towards environmental compatibility of biodegradable lubricants used in offshore wind power installations (Tolf Schneider); (9) Development of glycerine based lubricants for the industrial metalworking (Harald Draeger); (10) Investigations and utilization of biodegradable oils as electroinsulation oils in transformers (Stefan Tenbohlen); (11) Operational behaviour of lubricant oils in vegetable oil operation and Biodiesel operation (Horst Hamdorf); (12) Lubrication effect of lubricating oil of the third generation (Stefan Heitzig); (13) Actual market development from the view of a producer of biodegradable lubricants (Frank Lewen); (14) Utilization of biodegradable lubricants in forestry harvesters (Guenther Weise); (15) New biodegradable lubricants based on high oleic sunflower oil (Otto Botz); (16) Integrated fluid concept - optimized technology and service package for users of biodegradable lubricants (Juergen Baer); (17) Utilization of a bio oil sensor to control

  8. Composite block copolymer stabilized nanoparticles: simultaneous encapsulation of organic actives and inorganic nanostructures.

    Science.gov (United States)

    Gindy, Marian E; Panagiotopoulos, Athanassios Z; Prud'homme, Robert K

    2008-01-01

    We describe the preparation and characterization of hybrid block copolymer nanoparticles (NPs) for use as multimodal carriers for drugs and imaging agents. Stable, water-soluble, biocompatible poly(ethylene glycol)-block-poly(epsilon-caprolactone) NPs simultaneously co-encapsulating hydrophobic organic actives (beta-carotene) and inorganic imaging nanostructures (Au) are prepared using the flash nanoprecipitation process in a multi-inlet vortex mixer. These composite nanoparticles (CNPs) are produced with tunable sizes between 75 nm and 275 nm, narrow particle size distributions, high encapsulation efficiencies, specified component compositions, and long-term stability. The process is tunable and flexible because it relies on the control of mixing and aggregation timescales. It is anticipated that the technique can be applied to a variety of hydrophobic active compounds, fluorescent dyes, and inorganic nanostructures, yielding CNPs for combined therapy and multimodal imaging applications.

  9. Enhanced infarct myocardium repair mediated by thermosensitive copolymer hydrogel-based stem cell transplantation

    Science.gov (United States)

    Xia, Yu; Zhu, Kai; Lai, Hao; Lang, Meidong; Xiao, Yan; Lian, Sheng

    2015-01-01

    Mesenchymal stem cell (MSC) transplantation by intramyocardial injection has been proposed as a promising therapy strategy for cardiac repair after myocardium infarction. However, low retention and survival of grafted MSCs hinder its further application. In this study, copolymer with N-isopropylacrylamide/acrylic acid/2-hydroxylethyl methacrylate-poly(ɛ-caprolactone) ratio of 88:9.6:2.4 was bioconjugated with type I collagen to construct a novel injectable thermosensitive hydrogel. The injectable and biocompatible hydrogel-mediated MSC transplantation could enhance the grafted cell survival in the myocardium, which contributed to the increased neovascularization, decreased interstitial fibrosis, and ultimately improved heart function to a significantly greater degree than regular MSC transplantation. We suggest that this novel hydrogel has the potential for future stem cell transplantation. PMID:25432986

  10. Enhanced infarct myocardium repair mediated by thermosensitive copolymer hydrogel-based stem cell transplantation.

    Science.gov (United States)

    Xia, Yu; Zhu, Kai; Lai, Hao; Lang, Meidong; Xiao, Yan; Lian, Sheng; Guo, Changfa; Wang, Chunsheng

    2015-05-01

    Mesenchymal stem cell (MSC) transplantation by intramyocardial injection has been proposed as a promising therapy strategy for cardiac repair after myocardium infarction. However, low retention and survival of grafted MSCs hinder its further application. In this study, copolymer with N-isopropylacrylamide/acrylic acid/2-hydroxylethyl methacrylate-poly(ɛ-caprolactone) ratio of 88:9.6:2.4 was bioconjugated with type I collagen to construct a novel injectable thermosensitive hydrogel. The injectable and biocompatible hydrogel-mediated MSC transplantation could enhance the grafted cell survival in the myocardium, which contributed to the increased neovascularization, decreased interstitial fibrosis, and ultimately improved heart function to a significantly greater degree than regular MSC transplantation. We suggest that this novel hydrogel has the potential for future stem cell transplantation.

  11. Poly (3-Hydroxyalkanoates): Biodegradable Plastics

    OpenAIRE

    2013-01-01

    During the 1920’s, a polyester called poly (3-hydroxybutyrate) was discovered in bacterial cells. This compound, otherwise known as PHB, is part of a polyester family called polyhydroxyalkanoates (PHAs). Polyhydroxyalkanoates are used as an energy and carbon sto rage compound within certain bacterial cells. Polyhydroxyalkanoates (PHAs) are thermoplastic, biodegradable polyesters synthesized by some bacteria from rene...

  12. Biodegradation kinetics at low concentrations (

    DEFF Research Database (Denmark)

    Toräng, Lars; Albrechtsen, Hans-Jørgen; Nyholm, Niels

    2000-01-01

    Aerobic biodegradation of 2,4-dichlorophenoxyacetic acid (2,4-D) was studied in groundwater added sediment fines. At concentrations at or below 1 mu g/L of 2,4-D degradation kinetic was of true first order without significant growth of specific degraders and with half-life for mineralization...

  13. Biodegradable Pectin/clay Aerogels

    Science.gov (United States)

    Biodegradable, foamlike materials based on renewable pectin and sodium montmorillonite clay were fabricated through a simple, environmentally friendly freeze-drying process. Addition of multivalent cations (Ca2+ and Al3+) resulted in apparent crosslinking of the polymer, and enhancement of aerogel p...

  14. A kinetic model for predicting biodegradation.

    Science.gov (United States)

    Dimitrov, S; Pavlov, T; Nedelcheva, D; Reuschenbach, P; Silvani, M; Bias, R; Comber, M; Low, L; Lee, C; Parkerton, T; Mekenyan, O

    2007-01-01

    Biodegradation plays a key role in the environmental risk assessment of organic chemicals. The need to assess biodegradability of a chemical for regulatory purposes supports the development of a model for predicting the extent of biodegradation at different time frames, in particular the extent of ultimate biodegradation within a '10 day window' criterion as well as estimating biodegradation half-lives. Conceptually this implies expressing the rate of catabolic transformations as a function of time. An attempt to correlate the kinetics of biodegradation with molecular structure of chemicals is presented. A simplified biodegradation kinetic model was formulated by combining the probabilistic approach of the original formulation of the CATABOL model with the assumption of first order kinetics of catabolic transformations. Nonlinear regression analysis was used to fit the model parameters to OECD 301F biodegradation kinetic data for a set of 208 chemicals. The new model allows the prediction of biodegradation multi-pathways, primary and ultimate half-lives and simulation of related kinetic biodegradation parameters such as biological oxygen demand (BOD), carbon dioxide production, and the nature and amount of metabolites as a function of time. The model may also be used for evaluating the OECD ready biodegradability potential of a chemical within the '10-day window' criterion.

  15. Oil recovery with vinyl sulfonic acid-acrylamide copolymers

    Energy Technology Data Exchange (ETDEWEB)

    Norton, C.J.; Falk, D.O.

    1973-12-18

    An aqueous polymer flood containing sulfomethylated alkali metal vinyl sulfonate-acrylamide copolymers was proposed for use in secondary or tertiary enhanced oil recovery. The sulfonate groups on the copolymers sustain the viscosity of the flood in the presence of brine and lime. Injection of the copolymer solution into a waterflooded Berea core, produced 30.5 percent of the residual oil. It is preferred that the copolymers are partially hydrolyzed.

  16. Charge Transport in Conjugated Block Copolymers

    Science.gov (United States)

    Smith, Brandon; Le, Thinh; Lee, Youngmin; Gomez, Enrique

    Interest in conjugated block copolymers for high performance organic photovoltaic applications has increased considerably in recent years. Polymer/fullerene mixtures for conventional bulk heterojunction devices, such as P3HT:PCBM, are severely limited in control over interfaces and domain length scales. In contrast, microphase separated block copolymers self-assemble to form lamellar morphologies with alternating electron donor and acceptor domains, thereby maximizing electronic coupling and local order at interfaces. Efficiencies as high as 3% have been reported in solar cells for one block copolymer, P3HT-PFTBT, but the details concerning charge transport within copolymers have not been explored. To fill this gap, we probed the transport characteristics with thin-film transistors. Excellent charge mobility values for electron transport have been observed on aluminum source and drain contacts in a bottom gate, bottom contact transistor configuration. Evidence of high mobility in ordered PFTBT phases has also been obtained following thermal annealing. The insights gleaned from our investigation serve as useful guideposts, revealing the significance of the interplay between charge mobility, interfacial order, and optimal domain size in organic block copolymer semiconductors.

  17. Thermoreversible copolymer gels for extracellular matrix.

    Science.gov (United States)

    Vernon, B; Kim, S W; Bae, Y H

    2000-07-01

    To improve the properties of a reversible synthetic extracellular matrix based on a thermally reversible polymer, copolymers of N-isopropylacrylamide and acrylic acid were prepared in benzene with varying contents of acrylic acid (0 to 3%) and the thermal properties were evaluated. The poly(N-isopropylacrylamide) and copolymers made with acrylic acid had molecular weights from 0.8 to 1.7 x10(6) D. Differential scanning calorimetry (DSC) showed the high-molecular-weight acrylic acid copolymers had similar onset temperatures to the homopolymers, but the peak width was considerably increased with increasing acrylic acid content. DSC and cloud point measurements showed that polymers with 0 to 3% acrylic acid exhibit a lower critical solution temperature (LCST) transition between 30 degrees and 37 degrees C. In swelling studies, the homopolymer showed significant syneresis at temperatures above 31 degrees C. Copolymers with 1 and 1.5% showed syneresis beginning at 32 degrees and 37 degrees C, respectively. At 37 degrees C the copolymers with 1.5-3% acrylic acid showed little or no syneresis. Due to the high water content and a transition near physiologic conditions (below 37 degrees C), the polymers with 1.5-2.0% acrylic acid exhibited properties that would be useful in the development of a refillable synthetic extracellular matrix. Such a matrix could be applied to several cell types, including islets of Langerhans, for a biohybrid artificial pancreas.

  18. Chain exchange in block copolymer micelles

    Science.gov (United States)

    Lu, Jie; Bates, Frank; Lodge, Timothy

    2014-03-01

    Block copolymer micelles are aggregates formed by self-assembly of amphiphilic copolymers dispersed in a selective solvent, driven by unfavorable interactions between the solvent and the core-forming block. Due to the relatively long chains being subject to additional thermodynamic and dynamic constraints (e.g., entanglements, crystallinity, vitrification), block copolymer micelles exhibit significantly slower equilibration kinetics than small molecule surfactants. As a result, details of the mechanism(s) of equilibration in block copolymer micelles remain unclear. This present works focuses on the chain exchange kinetics of poly(styrene-b-ethylenepropylene) block copolymers in squalane (C30H62) using time-resolved small angle neutron scattering (TR-SANS). A mixture of h-squalane and d-squalane is chosen so that it contrast matches a mixed 50/50 h/d polystyrene micelle core. When the temperature is appropriate and isotopically labeled chains undergo mixing, the mean core contrast with respect to the solvent decreases, and the scattering intensity is therefore reduced. This strategy allows direct probing of chain exchange rate from the time dependent scattering intensity I(q, t).

  19. SCATTERING BY CYCLIC POLYMERS AND COPOLYMERS AT LARGE SCATTERING VECTORS

    NARCIS (Netherlands)

    KOSMAS, M; BENOIT, H; HADZIIOANNOU, G

    1994-01-01

    General formulae allowing the evaluation of the form factors of cyclic block copolymers are established and graphs for cyclic copolymers of the form (A-B)(N) are shown. When N is large, the linear and the cyclic copolymer have the same behaviour. It is possible to extend at large angle an analytical

  20. Adsorption of graft copolymers onto silica and titania.

    NARCIS (Netherlands)

    Bijsterbosch, H.D.; Cohen Stuart, M.A.; Fleer, G.J.

    1998-01-01

    The adsorption of graft copolymers of poly(acrylamide) (PAAm, backbone) and poly(ethylene oxide) (PEO, side chains) from aqueous solution onto silica and titania was studied with reflectometry. Two high-molar-mass copolymers were used with different PEO graft densities (10 and 18% w/w PEO in copolym

  1. 21 CFR 181.32 - Acrylonitrile copolymers and resins.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Acrylonitrile copolymers and resins. 181.32 Section... Ingredients § 181.32 Acrylonitrile copolymers and resins. (a) Acrylonitrile copolymers and resins listed in... of the vinyl chloride resin) resin—for use only in contact with oleomargarine. (iv)...

  2. 21 CFR 175.210 - Acrylate ester copolymer coating.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Acrylate ester copolymer coating. 175.210 Section... COATINGS Substances for Use as Components of Coatings § 175.210 Acrylate ester copolymer coating. Acrylate ester copolymer coating may safely be used as a food-contact surface of articles intended for...

  3. 21 CFR 177.1350 - Ethylene-vinyl acetate copolymers.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ethylene-vinyl acetate copolymers. 177.1350 Section... Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1350 Ethylene-vinyl acetate copolymers. Ethylene-vinyl acetate copolymers may be safely used as articles or components of...

  4. Novel biodegradable α-TCP/poly(amino acid) composite artificial lamina following spinal surgery for prevention of intraspinal scar adhesion.

    Science.gov (United States)

    Ran, Bo; Song, Yue-Ming; Liu, Hao; Liu, Li-Min; Gong, Quan; Li, Tao; Zeng, Jian-Cheng; Yuan, Hai-Feng

    2011-12-01

    Biodegradable copolymer α-TCP/poly(amino acid) composite artificial lamina was prepared and used in goat cervical vertebra resection repair. Cervical 4 was removed by laminectomy, and a vertebra defect of 27 × 9 mm was made. α-TCP/poly(amino acid) composite artificial lamina was inserted in the test group. The efficiency of the copolymer during repair and reconstruction of the goats' vertebra was tested by using X-ray, CT scanning, and histological and biomechanical measurements. In the 24 weeks following the operation, the artificial lamina refrained from shifting, and no dural adhesion pressure was observed. In contrast, the control group suffered from infiltration of soft tissue in the spinal canal, dural pressure and α-TCP/poly(amino acid) degradation. In conclusion, α-TCP/poly(amino acid) composite artificial lamina can significantly prevent scar tissue from infiltrating the spinal canal.

  5. Biocompatible silicon wafer bonding for biomedical microdevices

    Science.gov (United States)

    Hansford, Derek; Desai, Tejal A.; Tu, Jay K.; Ferrari, Mauro

    1998-03-01

    In this paper,several candidate bonding materials are reviewed for use in biomedical microdevices. These include poly propylmethacrylate (PPMA), poly methylmethacrylate (PMMA), a copolymer of poly methacrylate and two types of silicone gels. They were evaluated based on their cytotoxicity and bond strength, as well as several other qualitative assessments. The cytotoxicity was determined through a cell growth assay protocol in which cells were grown on the various substrate and their growth was compared to cells grown on control substrate. The adhesive strength was assessed by using a pressurized plate test in which the adhesive interface was pressurized to failure. All of the substrate were found to be non-cytotoxic in an inert manner except for the industrial silicone adhesive gel. The adhesive strengths of the various materials are compared to each other and to previously published adhesive strengths. All of the materials were found to have a sufficient bonding strength for biomedical applications, but several other factors were determined that limit the use of each material.

  6. In vitro and in vivo CT imaging using bismuth sulfide modified with a highly biocompatible Pluronic F127

    Science.gov (United States)

    Chen, Jun; Yang, Xiao-Quan; Meng, Yuan-Zheng; Huang, Huan-Huan; Qin, Meng-Yao; Yan, Dong-Mei; Zhao, Yuan-Di; Ma, Zhi-Ya

    2014-07-01

    Probe bismuth sulfide modified with Pluronic F127 (Bi2S3-PF127), which has high biocompatibility and dispersibility, is synthesized using triblock copolymer Pluronic F127 to modify hydrophobic Bi2S3 nanoparticles that are prepared by a hot injection method. TEM results show that most of the probe has a length of about 14.85 ± 1.70 nm and a breadth of about 4.79 ± 0.63 nm. After injected into the tail vein of a mouse, the probe has obvious CT contrast enhancement capability from x-ray CT imaging results. Meanwhile, the probe’s in vivo toxicity is also studied. It is found that hematoxylin and eosin stains of major organs have no change. A biochemical analysis (alanine aminotransferase and aspartate aminotransferase) prove the probe has no adverse effects. The results of a blood analysis (white blood cell count, red blood cell count, hemoglobin, and platelet count) are also normal. The biological distribution of Bi by ICP-AES shows that most of nanoparticles are cleaned out after injection 48 h, and the circulation half-life of the probe is 5.0 h, suggesting that Bi2S3-PF127 has a long circulation and indicating that the Bi2S3-PF127 probe has good biocompatibility and safety.

  7. Nanoscale Ionic Aggregate Morphology in Zwitterionic Copolymers

    Science.gov (United States)

    Choi, Jae-Hong; Huyck, Rebecca; Salas-de La Cruz, David; Long, Timothy E.; Winey, Karen I.

    2009-03-01

    The morphology of two different zwitterionic copolymers, poly(sulfobetaine methacrylate-ran-butyl acrylate), and poly(sulfobetaine methacrylamide-ran-butyl acrylate) are investigated as a function of the mol % content of SBMA (7 and 9 mol %) and SBMAm (6, 10 and 13 mol %), respectively. In both copolymers, X-ray scattering results show a new structure in the material arising from ionic aggregates. The sizes of the ionic aggregates are obtained through the scattering model. The sizes of the ionic aggregates increase as the ion content increases. The application of scanning transmission electron microscopy to the study of ionomer morphology has enabled direct, model-independent visualization of the ionic aggregates. The correlation between X-ray scattering results and the real space imaging for morphology of these zwitterionic copolymers will be presented.

  8. Functionalization of Block Copolymer Vesicle Surfaces

    Directory of Open Access Journals (Sweden)

    Wolfgang Meier

    2011-01-01

    Full Text Available In dilute aqueous solutions certain amphiphilic block copolymers self-assemble into vesicles that enclose a small pool of water with a membrane. Such polymersomes have promising applications ranging from targeted drug-delivery devices, to biosensors, and nanoreactors. Interactions between block copolymer membranes and their surroundings are important factors that determine their potential biomedical applications. Such interactions are influenced predominantly by the membrane surface. We review methods to functionalize block copolymer vesicle surfaces by chemical means with ligands such as antibodies, adhesion moieties, enzymes, carbohydrates and fluorophores. Furthermore, surface-functionalization can be achieved by self-assembly of polymers that carry ligands at their chain ends or in their hydrophilic blocks. While this review focuses on the strategies to functionalize vesicle surfaces, the applications realized by, and envisioned for, such functional polymersomes are also highlighted.

  9. Additive-driven assembly of block copolymers

    Science.gov (United States)

    Lin, Ying; Daga, Vikram; Anderson, Eric; Watkins, James

    2011-03-01

    One challenge to the formation of well ordered hybrid materials is the incorporation of nanoscale additives including metal, semiconductor and dielectric nanoparticles at high loadings while maintaining strong segregation. Here we describe the molecular and functional design of small molecule and nanoparticle additives that enhance phase segregation in their block copolymer host and enable high additive loadings. Our approach includes the use of hydrogen bond interactions between the functional groups on the additive or particle that serve as hydrogen bond donors and one segment of the block copolymer containing hydrogen bond acceptors. Further, the additives show strong selectively towards the targeted domains, leading to enhancements in contrast between properties of the phases. In addition to structural changes, we explore how large changes in the thermal and mechanical properties occur upon incorporation of the additives. Generalization of this additive-induced ordering strategy to various block copolymers will be discussed.

  10. Polyhydroxyalkanoate-based natural synthetic hybrid copolymer films: A small-angle neutron scattering study

    Science.gov (United States)

    Foster, L. John R.; Knott, Robert; Sanguanchaipaiwong, Vorapat; Holden, Peter J.

    2006-11-01

    Polyhydroxyalkanoates have attracted attention as biodegradable alternatives to conventional thermoplastics and as biomaterials. Through modification of their biosynthesis using Pseudomonas oleovorans, we have manipulated the material properties of these biopolyesters and produced a natural-synthetic hybrid copolymer of polyhydroxyoctanoate- block-diethylene glycol (PHO- b-DEG). A mixture of PHO and PHO-DEG were solvent cast from analytical grade chloroform and analysed using small-angle neutron scattering. A scattering pattern, easily distinguished above the background, was displayed by the films with a diffraction ring at q∼0.12 Å -1. This narrow ring of intensity is suggestive of a highly ordered system. Analysis of the diffraction pattern supported this concept and showed a d-spacing of approximately 50 Å. In addition, conformation of the hybrid polymer chains can be manipulated to support their self-assembly into ordered microporous films.

  11. Graft Copolymers of Maleic Anhydride and Its Isostructural Analogues: High Performance Engineering Materials

    CERN Document Server

    Rzayev, Zakir M O

    2011-01-01

    This review summarizes the main advances published over the last 15 years outlining the different methods of grafting, including reactive extruder systems, surface modification, grafting and graft copolymerization of synthetic and natural polymers with maleic anhydride and its isostructural analogues such as maleimides and maleates, and anhydrides, esters and imides of citraconic and itaconic acids, derivatives of fumaric acid, etc. Special attention is spared to the grafting of conventional and non-conventional synthetic and natural polymers, including biodegradable polymers, mechanism of grafting and graft copolymerization, in situ grafting reactions in melt by reactive extrusion systems, in solutions and solid state (photo- and plasma-induced graftings), and H-bonding effect in the reactive blend processing. The structural phenomena, unique properties and application areas of these copolymers and their various modifications and composites as high performance engineering materials have been also described.

  12. Electrospun PLGA/gelatin fibrous tubes for the application of biodegradable intestinal stent in rat model.

    Science.gov (United States)

    Son, So-Ra; Franco, Rose-Ann; Bae, Sang-Ho; Min, Young-Ki; Lee, Byong-Taek

    2013-08-01

    A biodegradable fibrous tube was fabricated by electrospinning method using a combination of Poly(lactic-co-glycolic acid) (PLGA) and gelatin dissolved in trifluoroethanol (TFE). Different ratios of the two polymers (PLGA/Gelatin: 1/9, 3/7, 5/5) were used for electrospinning to determine the optimum condition appropriate for intestinal stent application. Fiber morphology was visualized and analyzed using a scanning electron microscope (SEM). Characterizations of physical properties were done according to its tensile strength, surface hydrophilicity, swelling ability, and biodegradability. Biocompatibility of the scaffolds was investigated in vitro using IEC-18 (Rat intestinal epithelial cell). Cell proliferation was quantified using MTT assay and cell adhesion behavior was visualized by SEM and confocal laser scanning microscope. PLGA/Gelatin (5/5) was determined to have adequate material properties and sufficient in vitro biocompatibility. This was then implanted in a male Sprague-Dawley rat for 14 days to determine in vivo behavior of the sample. Histological examination on the intestinal tissue surrounding the graft showed normal morphology comparable to non-implanted intestine.

  13. Peripheral white blood cells profile of biodegradable metal implant in mice animal model

    Energy Technology Data Exchange (ETDEWEB)

    Paramitha, Devi; Noviana, Deni, E-mail: deni@ipb.ac.id; Estuningsih, Sri [Faculty of Veterinary Medicine, Bogor Agricultural University (IPB), Bogor (Indonesia); Ulum, Mokhamad Fakhrul [Faculty of Veterinary Medicine, Bogor Agricultural University (IPB), Bogor (Indonesia); Faculty of Biosciences and Medical Engineering, Universiti Teknologi Malaysia (UTM), Johor Bahru (Malaysia); Nasution, Ahmad Kafrawi [Faculty of Biosciences and Medical Engineering, Universiti Teknologi Malaysia (UTM), Johor Bahru (Malaysia); Faculty of Engineering, Muhammadiyah University of Riau (UMRI), Pekanbaru (Indonesia); Hermawan, Hendra [Department of Mining, Metallurgical and Materials Engineering & CHU de Québec Research Center, Laval University (ULaval) (Canada)

    2015-09-30

    Biocompatibility or safety of the medical device is considered important. It can be determined by blood profile examination. The aim of this study was to assess the biocompatibility of biodegradable metal implant through peripheral white blood cells (WBCs) profile approach. Forty eight male ddy mice were divided into four groups according to the materials implanted: iron wire (Fe), magnesium rod (Mg), stainless steel surgical wire (SS316L) and control with sham (K). Implants were inserted and attached onto the right femoral bone on latero-medial region. In this study, peripheral white blood cells and leukocyte differentiation were the parameters examined. The result showed that the WBCs value of all groups were decreased at the first day after implantation, increased at the 10th day and continued increasing at the 30th day of observation, except Mg group which has decreased. Neutrophil, as an inflammatory cells, was increased at the early weeks and decreased at the day-30 after surgery in all groups. Despite, these values during the observation were still within the normal range. As a conclus ion, biodegradable metal implants lead to an inflammatory reaction, with no adverse effect on WBC value found.

  14. Overview of Stabilizing Ligands for Biocompatible Quantum Dot Nanocrystals

    Directory of Open Access Journals (Sweden)

    Aaron Clapp

    2011-11-01

    Full Text Available Luminescent colloidal quantum dots (QDs possess numerous advantages as fluorophores in biological applications. However, a principal challenge is how to retain the desirable optical properties of quantum dots in aqueous media while maintaining biocompatibility. Because QD photophysical properties are directly related to surface states, it is critical to control the surface chemistry that renders QDs biocompatible while maintaining electronic passivation. For more than a decade, investigators have used diverse strategies for altering the QD surface. This review summarizes the most successful approaches for preparing biocompatible QDs using various chemical ligands.

  15. FABRICATION AND BIOCOMPATIBILITY OF CELL OUTER MEMBRANE MIMETIC SURFACES

    Institute of Scientific and Technical Information of China (English)

    Ming-ming Zong; Yong-kuan Gong

    2011-01-01

    The surface design used for improving biocompatibility is one of the most important issues for the fabrication of medical devices. For mimicking the ideal surface structure of cell outer membrane, a large number of polymers bearing phosphorylcholine (PC) groups have been employed to modify the surfaces of biomaterials and medical devices. It has been demonstrated that the biocompatibility of the modified materials whose surface is required to interact with a living organism has been obviously improved by introducing PC groups. In this review, the fabrication strategies of cell outer membrane mimetic surfaces and their resulted biocompatibilities were summarized.

  16. Dynamics of Block Copolymer Nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Mochrie, Simon G. J.

    2014-09-09

    A detailed study of the dynamics of cadmium sulfide nanoparticles suspended in polystyrene homopolymer matrices was carried out using X-ray photon correlation spectroscopy for temperatures between 120 and 180 °C. For low molecular weight polystyrene homopolymers, the observed dynamics show a crossover from diffusive to hyper-diffusive behavior with decreasing temperatures. For higher molecular weight polystyrene, the nanoparticle dynamics appear hyper-diffusive at all temperatures studied. The relaxation time and characteristic velocity determined from the measured hyper-diffusive dynamics reveal that the activation energy and underlying forces determined are on the order of 2.14 × 10-19 J and 87 pN, respectively. We also carried out a detailed X-ray scattering study of the static and dynamic behavior of a styrene– isoprene diblock copolymer melt with a styrene volume fraction of 0.3468. At 115 and 120 °C, we observe splitting of the principal Bragg peak, which we attribute to phase coexistence of hexagonal cylindrical and cubic double- gyroid structure. In the disordered phase, above 130 °C, we have characterized the dynamics of composition fluctuations via X-ray photon correlation spectroscopy. Near the peak of the static structure factor, these fluctuations show stretched-exponential relaxations, characterized by a stretching exponent of about 0.36 for a range of temperatures immediately above the MST. The corresponding characteristic relaxation times vary exponentially with temperature, changing by a factor of 2 for each 2 °C change in temperature. At low wavevectors, the measured relaxations are diffusive with relaxation times that change by a factor of 2 for each 8 °C change in temperature.

  17. Co-polymer Films for Sensors

    Science.gov (United States)

    Ryan, Margaret A. (Inventor); Homer, Margie L. (Inventor); Yen, Shiao-Pin S. (Inventor); Kisor, Adam (Inventor); Jewell, April D. (Inventor); Shevade, Abhijit V. (Inventor); Manatt, Kenneth S. (Inventor); Taylor, Charles (Inventor); Blanco, Mario (Inventor); Goddard, William A. (Inventor)

    2012-01-01

    Embodiments include a sensor comprising a co-polymer, the co-polymer comprising a first monomer and a second monomer. For some embodiments, the first monomer is poly-4-vinyl pyridine, and the second monomer is poly-4-vinyl pyridinium propylamine chloride. For some embodiments, the first monomer is polystyrene and the second monomer is poly-2-vinyl pyridinium propylamine chloride. For some embodiments, the first monomer is poly-4-vinyl pyridine, and the second monomer is poly-4-vinyl pyridinium benzylamine chloride. Other embodiments are described and claimed.

  18. Polaronic Tunnelling in Organic Triblock Copolymers

    Institute of Scientific and Technical Information of China (English)

    LIU De-Sheng; ZHANG Da-Cheng; XIE Shi-Jie; MEI Liang-Mo

    2005-01-01

    @@ Polaron tunnelling is studied in xPA/nPPP/xPA (PA for polyacetylene and PPP poly (p-phenylene)) triblock copolymer, which has a well-barrier-well structure. An extended tight-binding Hamiltonian including external electric field is adopted. Without electric field, the injected electrons would not extend over the whole copolymer chain but instead be confined in the segments of PA. This is different from the behaviour of the traditional semiconductors. It is found that the polaron can transfer to the potential barrier-PPP segment when the applied electric field reaches a certain value. The critical polaron tunnelling electric fields depend upon the lengths of PPP segments.

  19. Ordering phenomena in ABA triblock copolymer gels

    DEFF Research Database (Denmark)

    Reynders, K.; Mischenko, N.; Kleppinger, R.

    1997-01-01

    Temperature and concentration dependencies of the degree of order in ABA triblock copolymer gels are discussed. Two factors can influence the ordering phenomena: the conformation of the midblocks (links of the network) and the polydispersity of the endblock domains (nodes of the network). The lat......Temperature and concentration dependencies of the degree of order in ABA triblock copolymer gels are discussed. Two factors can influence the ordering phenomena: the conformation of the midblocks (links of the network) and the polydispersity of the endblock domains (nodes of the network...

  20. Studies in reactive extrusion processing of biodegradable polymeric materials

    Science.gov (United States)

    Balakrishnan, Sunder

    Various reaction chemistries such as Polymerization, Polymer cross-linking and Reactive grafting were investigated in twin-screw extruders. Poly (1,4-dioxan-2-one) (PPDX) was manufactured in melt by the continuous polymerization of 1,4-dioxan-2-one (PDX) monomer in a twin-screw extruder using Aluminum tri-sec butoxide (ATSB) initiator. Good and accurate control over molecular weight was obtained by controlling the ratio of monomer to initiator. A screw configuration consisting of only conveying elements was used for the polymerization. The polymerization reaction was characterized by a monomer-polymer dynamic equilibrium, above the melting temperature of the polymer, limiting the equilibrium conversion to 78-percent. Near complete (˜100-percent) conversion was obtained on co-polymerizing PDX monomer with a few mol-percent (around 8-percent) Caprolactone (CL) monomer in a twin-screw extruder using ATSB initiator. The co-polymers exhibited improved thermal stability with reduction in glass transition temperature. The extruder was modeled as an Axial Dispersed Plug Flow Reactor for the polymerization of CL monomer using Residence Time Distribution (RTD) Analysis. The model provided a good fit to the experimental RTD and conversion data. Aliphatic and aliphatic-aromatic co-polyesters, namely Polycaprolactone (PCL) and Poly butylenes (adipate-co-terephthalate) (Ecoflex) were cross-linked in a twin-screw extruder using radical initiator to form micro-gel reinforced biodegradable polyesters. Cross-linked Ecoflex was further extrusion blended with talc to form blends suitable to be blown into films. A screw configuration consisting of conveying and kneading elements was found to be effective in dispersion of the talc particles (5--10 microns) in the polyester matrix. While the rates of crystallization increased for the talc filled polyester blends, overall crystallinity reduced. Mechanical, tear and puncture properties of films made using the talc filled polyester blends

  1. UV photolysis for accelerating pyridine biodegradation.

    Science.gov (United States)

    Zhang, Yongming; Chang, Ling; Yan, Ning; Tang, Yingxia; Liu, Rui; Rittmann, Bruce E

    2014-01-01

    Pyridine, a nitrogen-containing heterocyclic compound, is slowly biodegradable, and coupling biodegradation with UV photolysis is a potential means to accelerate its biotransformation and mineralization. The initial steps of pyridine biodegradation involve mono-oxygenation reactions that have molecular oxygen and an intracellular electron carrier as cosubstrates. We employed an internal circulation baffled biofilm reactor for pyridine biodegradation following three protocols: direct biodegradation (B), biodegradation after photolysis (P+B), and biodegradation with succinic acid added (B+S). Succinic acid was the main UV-photolysis product from pyridine, and its catabolic oxidation generates internal electron carriers that may accelerate the initial steps of pyridine biodegradation. Compared with direct biodegradation of pyridine (B), the removal rate for the same concentration of photolyzed pyridine (P+B) was higher by 15 to 43%, depending on the initial pyridine concentrations (increasing through the range of 130 to 310 mg/L). Adding succinic acid alone (B+S) gave results similar to P+B, which supports that succinic acid was the main agent for accelerating the pyridine biodegradation rate. In addition, protocols P+B and B+S were similar in terms of increasing pyridine mineralization over 10 h: 84% and 87%, respectively, which were higher than with protocol B (72%). The positive impact of succinic acid-whether added directly or produced via UV photolysis-confirms that its catabolism, which produced intracellular electron carriers, accelerated the initial steps of pyridine biotransformation.

  2. Material Biocompatibility for PCR Microfluidic Chips

    KAUST Repository

    Kodzius, Rimantas

    2010-04-23

    As part of the current miniaturization trend, biological reactions and processes are being adapted to microfluidics devices. PCR is the primary method employed in DNA amplification, its miniaturization is central to efforts to develop portable devices for diagnostics and testing purposes. A problem is the PCR-inhibitory effect due to interaction between PCR reagents and the surrounding environment, which effect is increased in high-surface-are-to-volume ration microfluidics. In this study, we evaluated the biocompatibility of various common materials employed in the fabrication of microfluidic chips, including silicon, several kinds of silicon oxide, glasses, plastics, wax, and adhesives. Two-temperature PCR was performed with these materials to determine their PCR-inhibitory effect. In most of the cases, addition of bovine serum albumin effectively improved the reaction yield. We also studied the individual PCR components from the standpoint of adsorption. Most of the materials did not inhibit the DNA, whereas they did show noticeable interaction with the DNA polymerase. Our test, instead of using microfluidic devices, can be easily conducted in common PCR tubes using a standard bench thermocycler. Our data supports an overview of the means by which the materials most bio-friendly to microfluidics can be selected.

  3. Eicosanoid release as laboratory indicator of biocompatibility.

    Science.gov (United States)

    Mahiout, A; Jörres, A; Schultze, G; Meinhold, H; Kessel, M

    1989-06-01

    Biocompatibility evaluation of extracorporeal devices requires the establishment of sensitive indicators of blood cells/surface interactions. Among others, arachidonic acid derivatives, such as prostaglandins and thromboxanes, play an important role in the cell control systems. Hence, the release of eicosanoids during blood exposure to dialyzer membranes was investigated. Experiments included in vitro incubation of human blood with flat membranes (FM), as well as ex vivo perfusion of hollow fiber membranes (HFM) with blood from healthy volunteers in single-pass fashion. In both models, a significant release of prostaglandin E2 (PGE2) and thromboxane B2 (TXB2) was detected. In addition, the amount of eicosanoid release depended on the type of membrane tested. After a 10-min FM incubation with fresh blood, plasma concentrations of TXB2 and PGE2 were pronounced by polycarbonate when compared to Cuprophan and polyacrylonitrile. During 10 min of open loop perfusion of HFM, polymethylmethacrylate was the most active biomaterial, whereas the reactivity of Cuprophan was significantly lower. Among HFM, Hemophan was by far the less active. These results indicate that the release of eicosanoids represents a sensitive parameter of blood cells/membrane reactivity. Thus, the question arises as to whether or not the extracorporeal process of cyclooxygenase activity could contribute to the clinical side effects of chronical hemodialysis.

  4. Microfresado de polímeros biocompatibles

    Directory of Open Access Journals (Sweden)

    Yenny Marcela Orozco O.

    2012-01-01

    Full Text Available En este artículo se presentan resultados de una investigación llevada a cabo en micromecanizado de polímeros biocompatibles. Se describen los procesos de fabricación de micropartes con el fin de mostrar los niveles de precisión y escalas dimensionales alcanzables con un centro de micromecanizado Kern Evo. Adicionalmente, se muestran los resultados de una serie de pruebas de microcorte realizadas con fresas de tungsteno de 100 um de diámetro sobre probetas de PMMA (Polimetilmetacrilato, grado médico para determinar los parámetros que minimizan el tamaño de las rebabas generadas. Para caracterizar tanto superficies generadas, como condiciones iniciales y finales de las herramientas se emplearon técnicas de microscopía óptica y electrónica. Los resultados referentes a las primeras pruebas de mecanizado indican que en el control de las características dimensionales se deben vigilar aspectos como la profundidad de corte establecida, el método de sujeción seleccionado y la tolerancia de alineación de la pieza; incluso deben controlarse las condiciones ambientales del recinto donde opera el equipo.

  5. Aerobic biodegradation of a nonylphenol polyethoxylate and toxicity of the biodegradation metabolites.

    Science.gov (United States)

    Jurado, Encarnación; Fernández-Serrano, Mercedes; Núñez-Olea, Josefa; Lechuga, Manuela

    2009-09-01

    In this paper a study was made of the biodegradation of a non-ionic surfactant, a nonylphenol polyethoxylate, in biodegradability tests by monitoring the residual surfactant matter. The influence of the concentration on the extent of primary biodegradation, the toxicity of biodegradation metabolites, and the kinetics of degradation were also determined. The primary biodegradation was studied at different initial concentrations: 5, 25 and 50 mg/L, (at sub-and supra-critical micelle concentration). The NPEO used in this study can be considered biodegradable since the primary biodegradation had already taken place (a biodegradation greater than 80% was found for the different initial concentration tested). The initial concentration affected the shape of the resulting curve, the mean biodegradation rate and the percentage of biodegradation reached (99% in less than 8 days at 5 mg/L, 98% in less than 13 days at 25 mg/L and 95% in 14 days at 50 mg/L). The kinetic model of Quiroga and Sales (1991) was applied to predict the biodegradation of the NPEO. The toxicity value was measured as EC(20) and EC(50). In addition, during the biodegradation process of the surfactant a toxicity analysis was made of the evolution of metabolites generated, confirming that the subproducts of the biodegradation process were more toxic than the original.

  6. Drug governs the morphology of polyalkylated block copolymer aggregates.

    Science.gov (United States)

    Le Dévédec, F; Her, S; Vogtt, K; Won, A; Li, X; Beaucage, G; Yip, C; Allen, C

    2017-02-16

    Polyalkylated copolymers based on mPEG-b-(AGE-C6,12 or 18)25 have been used to formulate clinically relevant concentrations of doxorubicin (DOX) and the impact of drug incorporation on copolymer aggregation behaviour was examined. The copolymer aggregates were analyzed by various microscopy techniques (TEM, cryo-TEM and AFM) and scattering methods (SANS, DLS). In the absence of the drug, the copolymers formed largely non-spherical aggregates (i.e. cylinders, vesicles). Drug incorporation during copolymer aggregate formation directed the formation of only spherical aggregates. As well, the nature of the core-forming block was found to influence drug release and cytotoxicity of the formulations.

  7. Complete regression of xenograft tumors using biodegradable mPEG-PLA-SN38 block copolymer micelles.

    Science.gov (United States)

    Lu, Lu; Zheng, Yan; Weng, Shuqiang; Zhu, Wenwei; Chen, Jinhong; Zhang, Xiaomin; Lee, Robert J; Yu, Bo; Jia, Huliang; Qin, Lunxiu

    2016-06-01

    7-Ethyl-10-hydroxy-comptothecin (SN38) is an active metabolite of irinotecan (CPT-11) and the clinical application of SN38 is limited by its hydrophobicity and instability. To address these issues, a series of novel amphiphilic mPEG-PLA-SN38-conjugates were synthesized by linking SN38 to mPEG-PLA-SA, and they could form micelles by self-assembly. The effects of mPEG-PLA composition were studied in vitro and in vivo. The mean diameters of mPEG2K-PLA-SN38 micelles and mPEG4K-PLA-SN38 micelles were 10-20nm and 120nm, respectively, and mPEG2K-PLA-SN38 micelles showed greater antitumor efficacy than mPEG4K-PLA-SN38 micelles both in vitro and in vivo. These data suggest that the lengths of mPEG and PLA chains had a major impact on the physicochemical characteristics and antitumor activity of SN38-conjugate micelles.

  8. Molecular Interaction Control in Diblock Copolymer Blends and Multiblock Copolymers with Opposite Phase Behaviors

    Science.gov (United States)

    Cho, Junhan

    2014-03-01

    Here we show how to control molecular interactions via mixing AB and AC diblock copolymers, where one copolymer exhibits upper order-disorder transition and the other does lower disorder-order transition. Linear ABC triblock copolymers possessing both barotropic and baroplastic pairs are also taken into account. A recently developed random-phase approximation (RPA) theory and the self-consistent field theory (SCFT) for general compressible mixtures are used to analyze stability criteria and morphologies for the given systems. It is demonstrated that the copolymer systems can yield a variety of phase behaviors in their temperature and pressure dependence upon proper mixing conditions and compositions, which is caused by the delicate force fields generated in the systems. We acknowledge the financial support from National Research Foundation of Korea and Center for Photofunctional Energy Materials.

  9. Block Copolymers of Ethylene Oxide and Styrene Oxide.New Copolymer Surfactants(Ⅱ)

    Institute of Scientific and Technical Information of China (English)

    Zhuo Yang; David Attwood; Colin Booth

    2003-01-01

    @@ 3.2. Association Number Figure 5 shows the dependence of the weight-average association number (Nw,measured by static light scattering, solution temperature 30 °C) on hydrophobe block length for ES and ESEblock copolymers.

  10. A kind of novel biodegradable hydrogel made from copolymerization of gelatin with polypseudorotaxanes based on {alpha}-CDs

    Energy Technology Data Exchange (ETDEWEB)

    Hou Dandan; Tong Xinming; Yu Huaiqing; Zhang Aiying; Feng Zengguo [School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081 (China)

    2007-09-15

    A kind of novel biodegradable supramolecular hydrogel was synthesized via copolymerization of gelatin methacrylamide with photocurable and biodegradable polypseudorotaxanes under UV irradiation. These polypseudorotaxanes were prepared by supramolecular self-assemblies of {alpha}-cyclodextrins threaded onto amphiphilic LA-PEG-LA copolymers end-capped with methacryloyl groups. The hydrogels are injectable, and their structure was characterized in detail with FTIR, {sup 1}H NMR, XRD, TG and DSC techniques. Their swelling behaviour and morphologies were also examined. The analytical results demonstrated that the channel-type crystalline structure of the polypseudorotaxanes remains in the as-obtained hydrogels. Moreover, the SEM pictures showed that the hydrogels having gelatin methacrylamide are more suitable for cell seeding and proliferation than those without gelatin added.

  11. Genome-engineered Sinorhizobium meliloti for the production of poly(lactic-co-3-hydroxybutyric) acid copolymer.

    Science.gov (United States)

    Tran, Tam T; Charles, Trevor C

    2016-02-01

    Economically competitive commercial production of biodegradable bioplastics with desirable properties is an important goal. In this study, we demonstrate the use of chromosome engineering of an alternative bacterial host, Sinorhizobium meliloti, for production of the copolymer, poly(lactate-co-3-hydroxybutyrate). Codon-optimized genes for 2 previously engineered enzymes, Clostridium propionicum propionate CoA transferase (Pct532Cp) and Pseudomonas sp. strain MBEL 6-19 polyhydroxyalkanoate (PHA) synthase 1 (PhaC1400Ps6-19), were introduced into S. meliloti Rm1021 by chromosome integration, replacing the native phbC gene. On the basis of phenotypic analysis and detection of polymer product by gas chromatography analysis, synthesis and accumulation of the copolymer was confirmed. The chromosome integrant strain, with the introduced genes under the control of the native phbC promoter, is able to produce over 15% cell dry mass of poly(lactate-co-3-hydroxybutyrate), containing 30 mol% lactate, from growth on mannitol. We were also able to purify the polymer from the culture and confirm the structure by NMR and GC-MS. To our knowledge, this is the first demonstration of production of this copolymer in the Alphaproteobacteria. Further optimization of this system may eventually yield strains that are able to produce economically viable commercial product.

  12. Graft (partially carboxymethylated guar gum-g-poly vinyl sulfonic acid) copolymer: from synthesis to applications.

    Science.gov (United States)

    Yadav, Mithilesh; Srivastav, Abhishek; Verma, Shiv Kumar; Behari, Kunj

    2013-09-12

    The aim of the paper is to study the physico-chemical phenomenon of synthesized graft copolymer (carboxymethylated guar gum-g-vinylsulfonic acid). The reaction optimum conditions for grafting has also been determined by studying the effect of vinylsulfonic acid, hydrogen ion, peroxymonosulphate, glycolic acid concentration and carboxymethylated guar gum along with time and temperature. Experimental results show that maximum grafting has been obtained at 1.8 g dm(-3) concentration of partially carboxymethylated guar gum and 5.3 × 10(-2) mol dm(-3) concentration of vinylsulfonic acid. It has been observed that grafting ratio, add on, conversion, efficiency increase up to 4.0 × 10(-3) mol dm(-3) of hydrogen ion, 4 × 10(-3) mol dm(-3) of glycolic acid, 14 × 10(-3) mol dm(-3) of peroxymonosulphate and 35 °C of temperature. Grafted copolymer has been characterized by FTIR spectroscopy and thermogravimetric analysis. Water swelling, flocculating, metal ion uptake and resistance to biodegradability properties of partially carboxymethylated guar gum-g-vinylsulfonic acid have been determined.

  13. Water transport and clustering behavior in homopolymer and graft copolymer polylactide

    Energy Technology Data Exchange (ETDEWEB)

    Du, An; Koo, Donghun; Theryo, Grayce; Hillmyer, Marc A.; Cairncross, Richard A. (Drexel); (UMM)

    2015-02-19

    Polylactide is a bio-based and biodegradable polymer well-known for its renewable origins. Water sorption and clustering behavior in both a homopolymer polylactide and a graft copolymer of polylactide was studied using the quartz crystal microbalance/heat conduction calorimetry (QCM/HCC) technique. The graft copolymer, poly(1,5-cyclooctadiene-co-5-norbornene-2-methanol-graft-D,L-lactide), contained polylactide chains (95 wt.%) grafted onto a hydrophobic rubbery backbone (5 wt.%). Clustering is an important phenomenon in the study of water transport properties in polymers since the presence of water clusters can affect the water diffusivity. The HCC method using the thermal power signals and Van't Hoff's law were both employed to estimate the water sorption enthalpy. Sorption enthalpy of water in both polymers was determined to be approximately -40 kJ/mol for all water activity levels. Zimm-Lundberg analysis showed that water clusters start to form at a water activity of 0.4. The engaged species induced clustering (ENSIC) model was used to curve fit sorption isotherms and showed that the affinity among water molecules is higher than that between water molecules and polymer chains. All the methods used indicate that clustering of water molecules exists in both polymers.

  14. BIODEGRADABLE COATING FROM AGATHIS ALBA

    Directory of Open Access Journals (Sweden)

    NORYAWATI MULYONO

    2012-11-01

    Full Text Available The adhesive property of copal makes it as a potential coating onto aluminum foil to replace polyethylene. This research aimed to develop copal-based coating. The coating was prepared by extracting the copal in ethyl acetate and dipping the aluminium foil in ethyl acetate soluble extract of copal. The characterization of coating included its thickness, weight, thermal and chemical resistance, and biodegradation. The results showed that the coating thickness and weight increased as the copal concentration and dipping frequency increased. Thermal resistance test showed that the coating melted after being heated at 110°C for 30 min. Copal-based coating wasresistant to acidic solution (pH 4.0, water, and coconut oil, but was deteriorated in detergent 1% (w/v and basic solution (pH 10.0. Biodegradability test using Pseudomonas aeruginosa showed weight reduction of 76.82% in 30 days.

  15. Biomedical Applications of Biodegradable Polyesters

    Directory of Open Access Journals (Sweden)

    Iman Manavitehrani

    2016-01-01

    Full Text Available The focus in the field of biomedical engineering has shifted in recent years to biodegradable polymers and, in particular, polyesters. Dozens of polyester-based medical devices are commercially available, and every year more are introduced to the market. The mechanical performance and wide range of biodegradation properties of this class of polymers allow for high degrees of selectivity for targeted clinical applications. Recent research endeavors to expand the application of polymers have been driven by a need to target the general hydrophobic nature of polyesters and their limited cell motif sites. This review provides a comprehensive investigation into advanced strategies to modify polyesters and their clinical potential for future biomedical applications.

  16. Novel biocompatible polymeric blends for bone regeneration: Material and matrix design and development

    Science.gov (United States)

    Deng, Meng

    The first part of the work presented in this dissertation is focused on the design and development of novel miscible and biocompatible polyphosphazene-polyester blends as candidate materials for scaffold-based bone tissue engineering applications. Biodegradable polyesters such as poly(lactide-co-glycolide) (PLAGA) are among the most widely used polymeric materials for bone tissue engineering. However, acidic degradation products resulting from the bulk degradation mechanism often lead to catastrophic failure of the structure integrity, and adversely affect biocompatibility both in vitro and in vivo. One promising approach to circumvent these limitations is to blend PLAGA with other macromolecules that can buffer the acidic degradation products with a controlled degradation rate. Biodegradable polyphosphazenes (PPHOS), a new class of biomedical materials, have proved to be superior candidate materials to achieve this objective due to their unique buffering degradation products. A highly practical blending approach was adopted to develop novel biocompatible, miscible blends of these two polymers. In order to achieve this miscibility, a series of amino acid ester, alkoxy, aryloxy, and dipeptide substituted PPHOS were synthesized to promote hydrogen bonding interactions with PLAGA. Five mixed-substituent PPHOS compositions were designed and blended with PLAGA at different weight ratios producing candidate blends via a mutual solvent method. Preliminary characterization identified two specific side groups namely glycylglycine dipeptide and phenylphenoxy that resulted in improved blend miscibility and enhanced in vitro osteocompatibility. These findings led to the synthesis of a mixed-substituent polyphosphazene poly[(glycine ethyl glycinato)1(phenylphenoxy)1phosphazene] (PNGEGPhPh) for blending with PLAGA. Two dipeptide-based blends having weight ratios of PNGEGPhPh to PLAGA namely 25:75 (Matrix1) and 50:50 (Matrix2) were fabricated. Both of the blends were

  17. Histopathology of biocompatible hydroxylapatite-polyethylene composite in ossiculoplasty

    NARCIS (Netherlands)

    Meijer, AGW; Segenhout, HM; Albers, FWJ; van de Want, HJL

    2002-01-01

    The biocompatibility of hydroxylapatite-polyethylene composite implants (HAPEX, Smith and Nephew) was investigated in this study. Eleven middle ear prostheses, removed during revision surgery, have been examined by light microscopy, transmission electron microscopy and scanning electron microscopy.

  18. Anaerobic Biodegradation of Detergent Surfactants

    OpenAIRE

    Erich Jelen; Ute Merrettig-Bruns

    2009-01-01

    Detergent surfactantscan be found in wastewater in relevant concentrations. Most of them are known as ready degradable under aerobic conditions, as required by European legislation. Far fewer surfactants have been tested so far for biodegradability under anaerobic conditions. The natural environment is predominantly aerobic, but there are some environmental compartments such as river sediments, sub-surface soil layer and anaerobic sludge digesters of wastewater treatment plants which have str...

  19. Preparation of thermo-responsive graft copolymer by using a novel macro-RAFT agent and its application for drug delivery

    Energy Technology Data Exchange (ETDEWEB)

    Song, Cunfeng; Yu, Shirong [Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen 361005 (China); Liu, Cheng; Deng, Yuanming; Xu, Yiting [Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen 361005 (China); Fujian Provincial Key Laboratory of Fire Retardant Materials, Xiamen University, Xiamen 361005 (China); Chen, Xiaoling, E-mail: tinachen0628@163.com [Department of Endodontics, Xiamen Stomatology Hospital, Teaching Hospital of Fujian Medical University, Xiamen 361003 (China); Dai, Lizong, E-mail: lzdai@xmu.edu.cn [Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen 361005 (China); Fujian Provincial Key Laboratory of Fire Retardant Materials, Xiamen University, Xiamen 361005 (China)

    2016-05-01

    A methodology to prepare thermo-responsive graft copolymer by using a novel macro-RAFT agent was proposed. The macro-RAFT agent with pendant dithioester (ZC(S)SR) was facilely prepared via the combination of RAFT polymerization and esterification reaction. By means of ZC(S)SR-initiated RAFT polymerization, the thermo-responsive graft copolymer consisting of poly(methyl methacrylate-co-hydroxylethyl methacrylate) (P(MMA-co-HEMA)) backbone and hydrophilic poly(N-isopropylacrylamide) (PNIPAAm) side chains was constructed through the “grafting from” approach. The chemical compositions and molecular weight distributions of the synthesized polymers were respectively characterized by {sup 1}H nuclear magnetic resonance ({sup 1}H NMR) and gel permeation chromatography (GPC). Self-assembly behavior of the amphiphilic graft copolymers (P(MMA-co-HEMA)-g-PNIPAAm) was studied by transmission electron microscopy (TEM), dynamic light scattering (DLS) and spectrofluorimeter. The critical micelle concentration (CMC) value was 0.052 mg mL{sup −1}. These micelles have thermo-responsibility and a low critical solution temperature (LCST) of 33.5 °C. Further investigation indicated that the guest molecule release property of these micelles, which can be well described by a first-order kinetic model, was significantly affected by temperature. Besides, the micelles exhibited excellent biocompatibility and cellular uptake property. Hence, these micelles are considered to have potential application in controlled drug delivery. - Highlights: • A novel macro-RAFT agent with ZC(S)SR was used for preparing graft copolymer. • P(MMA-co-HEMA)-g-PNIPAAm was successful prepared via the “grafting from” approach. • Thermo-responsibility of the P(MMA-co-HEMA)-g-PNIPAAm micelles was investigated. • The drug release behavior of the P(MMA-co-HEMA)-g-PNIPAAm micelles was studied. • These micelles exhibited excellent biocompatibility and cellular uptake property.

  20. Engineering Flame Retardant Biodegradable Nanocomposites

    Science.gov (United States)

    He, Shan; Yang, Kai; Guo, Yichen; Zhang, Linxi; Pack, Seongchan; Davis, Rachel; Lewin, Menahem; Ade, Harald; Korach, Chad; Kashiwagi, Takashi; Rafailovich, Miriam

    2013-03-01

    Cellulose-based PLA/PBAT polymer blends can potentially be a promising class of biodegradable nanocomposites. Adding cellulose fiber reinforcement can improve mechanical properties of biodegradable plastics, but homogeneously dispersing hydrophilic cellulose in the hydrophobic polymer matrix poses a significant challenge. We here show that resorcinol diphenyl phosphates (RDP) can be used to modify the surface energy, not only reducing phase separation between two polymer kinds but also allowing the cellulose particles and the Halloysite clay to be easily dispersed within polymer matrices to achieve synergy effect using melt blending. Here in this study we describe the use of cellulose fiber and Halloysite clay, coated with RDP surfactant, in producing the flame retardant polymer blends of PBAT(Ecoflex) and PLA which can pass the stringent UL-94 V0 test. We also utilized FTIR, SEM and AFM nanoindentation to elucidate the role RDP plays in improving the compatibility of biodegradable polymers, and to determine structure property of chars that resulted in composites that could have optimized mechanical and thermal properties. Supported by Garcia Polymer Center and NSF Foundation.

  1. Gyroid Membranes made from Nanoporous Blck Copolymers

    DEFF Research Database (Denmark)

    Szewczykowski, Piotr Plzemystaw; Vigild, Martin Etchells; Ndoni, Sokol;

    2007-01-01

    of the membrane and its nanoporosity is e.g. obtained by cross-linking the majority blocks and selectively etching the minority blocks. Here we report on ultrafiltration membranes prepared from a 1,2-polybutadiene-b-polydimethylsiloxane diblock copolymer with gyroid structure. Different experimental methods...

  2. Substrate tolerant direct block copolymer nanolithography

    DEFF Research Database (Denmark)

    Li, Tao; Wang, Zhongli; Schulte, Lars

    2016-01-01

    simplifies the main stream BC lithography process, showing a broad substrate tolerance and allowing for efficient pattern transfer over wafer scale. PDMS-rich poly(styrene-b-dimethylsiloxane) (PS-b-PDMS) copolymers are directly applied on substrates including polymers, silicon and graphene. A single oxygen...

  3. LEDs based on conjugated PPV block copolymers

    NARCIS (Netherlands)

    Brouwer, H.J.; Hilberer, A.; Krasnikov, V.V.; Werts, M.; Wildeman, J.; Hadziioannou, G.

    1997-01-01

    A way to control the bandgap in semi-conducting polymers is by preparing polymers with a partially conjugated backbone. In our laboratory, three conjugated copolymers containing PPV trimers as light emitting chromophores have been synthesized, which emit in the blue, green and orange wavelength regi

  4. Chiral Block Copolymer Structures for Metamaterial Applications

    Science.gov (United States)

    2015-01-27

    MONITOR’S REPORT NUMBER(S) AOARD-114078 12. DISTRIBUTION/AVAILABILITY STATEMENT Distribution A: Approved for public release. Distribtion is...researchers focused o synthesis and processing, morphology and physical characterization of chiral block copolymer (BCP) materials. Such materials a...developed a platform process technology that can fabricate novel netwo morphologies from initial bicontinuous cubic phases through supergroup/subgroup

  5. Helical Ordering in Chiral Block Copolymers

    Science.gov (United States)

    Zhao, Wei; Hong, Sung Woo; Chen, Dian; Grason, Gregory; Russell, Thomas

    2012-02-01

    Introducing molecular chirality into the segments of block copolymers can influence the nature of the resultant morphology. Such an effect was found for poly(styrene-b-L-lactide) (PS-b-PLLA) diblock copolymers where hexagonally packed PLLA helical microdomains (H* phase) form in a PS matrix. However, molecular ordering of PLLA within the helical microdomains and the transfer of chirality from the segmental level to the mesoscale is still not well understood. We developed a field theoretic model to describe the interactions between segments of chiral blocks, which have the tendency to form a ``cholesteric'' texture. Based on the model, we calculated the bulk morphologies of chiral AB diblock copolymers using self-consistent field theory (SCFT). Experiments show that the H* phase only forms when microphase separation between PS and PLLA block happens first and crystallization of PLLA block is suppressed or happens within confined microdomain. Hence, crystalline ordering is not necessary for H* phase formation. The SCFT offers the chance to explore the range of thermodynamic stability of helical structures in the phase diagram of chiral block copolymer melts, by tuning parameters not only like the block segregation strength and composition, but also new parameters such as the ratio between preferred helical pitch to the radius of gyration and the Frank elastic constant for inter-segment distortions.

  6. CONJUGATED BLOCK-COPOLYMERS FOR ELECTROLUMINESCENT DIODES

    NARCIS (Netherlands)

    Hilberer, A; Gill, R.E; Herrema, J.K; Malliaras, G.G; Wildeman, J.; Hadziioannou, G

    1995-01-01

    In this article we review results obtained in our laboratory on the design and study of new light-emitting polymers. We are interested in the synthesis and characterisation of block copolymers with regularly alternating conjugated and non conjugated sequences. The blocks giving rise to luminescence

  7. Nylon 46-polytetramethylene oxide segmented block copolymers

    NARCIS (Netherlands)

    Gaymans, R.J.; Schwering, P.; Haan, de J.L.

    1989-01-01

    Block copolymers were synthesized from amine-terminated polytetramethylene oxide (PMTO) (Mw 800 and 1130) and polyamide 4,6 salt. First prepolymers were prepared at 200–210°C in the presence of a solvent (pyrrolidone). The prepolymers were postcondensed at 255°C (where possible in the solid state) t

  8. Biocompatibility of mannuronic acid-rich alginates.

    Science.gov (United States)

    Klöck, G; Pfeffermann, A; Ryser, C; Gröhn, P; Kuttler, B; Hahn, H J; Zimmermann, U

    1997-05-01

    Highly purified algin preparations free of adverse contaminants with endotoxins and other mitogens recently became available by a new purification process (Klöck et al., Appl. Microbiol. Biotechnol., 1994, 40, 638-643). An advantage of this purification protocol is that it can be applied to alginates with various ratios of mannuronic acid to guluronic acid. High mannuronic acid alginate capsules are of particular practical interest for cell transplantation and for biohybrid organs, because mannuronate-rich alginates are usually less viscous, allowing one to make gels with a higher alginate content. This will increase their stability and reduce the diffusion permeability and could therefore protect immobilized cells more efficiently against the host immune system. Here we report the biocompatibility of purified, mannuronic acid-rich alginate (68% mannuronate residues) in a series of in vitro, as well as in vivo, assays. In contrast to raw alginate extracts, the purified product showed no mitogenic activity towards murine lymphocytes in vitro. Its endotoxin content was reduced to the level of the solvent. Animal studies with these new, purified algin formulations revealed the absence of a mitogen-induced foreign body reaction, even when the purified material (after cross-linking with Ba2+ ions) is implanted into animal models with elevated macrophage activity (diabetes-prone BB/OK rat). Thus, alginate capsules with high mannuronic acid content become available for applications such as implantation. In addition to the utilization as implantable cell reactors in therapy and biotechnology, these purified algins have broad application potential as ocular fillings, tissue replacements, microencapsulated growth factors and/or interleukins or slow-release dosage forms of antibodies, surface coatings of sensors and other invasive medical devices, and in encapsulation of genetically engineered cells for gene therapy.

  9. Block copolymer/ferroelectric nanoparticle nanocomposites

    Science.gov (United States)

    Pang, Xinchang; He, Yanjie; Jiang, Beibei; Iocozzia, James; Zhao, Lei; Guo, Hanzheng; Liu, Jin; Akinc, Mufit; Bowler, Nicola; Tan, Xiaoli; Lin, Zhiqun

    2013-08-01

    Nanocomposites composed of diblock copolymer/ferroelectric nanoparticles were formed by selectively constraining ferroelectric nanoparticles (NPs) within diblock copolymer nanodomains via judicious surface modification of ferroelectric NPs. Ferroelectric barium titanate (BaTiO3) NPs with different sizes that are permanently capped with polystyrene chains (i.e., PS-functionalized BaTiO3NPs) were first synthesized by exploiting amphiphilic unimolecular star-like poly(acrylic acid)-block-polystyrene (PAA-b-PS) diblock copolymers as nanoreactors. Subsequently, PS-functionalized BaTiO3 NPs were preferentially sequestered within PS nanocylinders in the linear cylinder-forming polystyrene-block-poly(methyl methacrylate) (PS-b-PMMA) diblock copolymer upon mixing the BaTiO3 NPs with PS-b-PMMA. The use of PS-b-PMMA diblock copolymers, rather than traditional homopolymers, offers the opportunity for controlling the spatial organization of PS-functionalized BaTiO3 NPs in the PS-b-PMMA/BaTiO3 NP nanocomposites. Selective solvent vapor annealing was utilized to control the nanodomain orientation in the nanocomposites. Vertically oriented PS nanocylinders containing PS-functionalized BaTiO3 NPs were yielded after exposing the PS-b-PMMA/BaTiO3 NP nanocomposite thin film to acetone vapor, which is a selective solvent for PMMA block. The dielectric properties of nanocomposites in the microwave frequency range were investigated. The molecular weight of PS-b-PMMA and the size of BaTiO3 NPs were found to exert an apparent influence on the dielectric properties of the resulting nanocomposites.Nanocomposites composed of diblock copolymer/ferroelectric nanoparticles were formed by selectively constraining ferroelectric nanoparticles (NPs) within diblock copolymer nanodomains via judicious surface modification of ferroelectric NPs. Ferroelectric barium titanate (BaTiO3) NPs with different sizes that are permanently capped with polystyrene chains (i.e., PS-functionalized BaTiO3NPs) were

  10. A review of plastic waste biodegradation.

    Science.gov (United States)

    Zheng, Ying; Yanful, Ernest K; Bassi, Amarjeet S

    2005-01-01

    With more and more plastics being employed in human lives and increasing pressure being placed on capacities available for plastic waste disposal, the need for biodegradable plastics and biodegradation of plastic wastes has assumed increasing importance in the last few years. This review looks at the technological advancement made in the development of more easily biodegradable plastics and the biodegradation of conventional plastics by microorganisms. Additives, such as pro-oxidants and starch, are applied in synthetic materials to modify and make plastics biodegradable. Recent research has shown that thermoplastics derived from polyolefins, traditionally considered resistant to biodegradation in ambient environment, are biodegraded following photo-degradation and chemical degradation. Thermoset plastics, such as aliphatic polyester and polyester polyurethane, are easily attacked by microorganisms directly because of the potential hydrolytic cleavage of ester or urethane bonds in their structures. Some microorganisms have been isolated to utilize polyurethane as a sole source of carbon and nitrogen source. Aliphatic-aromatic copolyesters have active commercial applications because of their good mechanical properties and biodegradability. Reviewing published and ongoing studies on plastic biodegradation, this paper attempts to make conclusions on potentially viable methods to reduce impacts of plastic waste on the environment.

  11. Biodegradation of high molecular weight polylactic acid

    Science.gov (United States)

    Stloukal, Petr; Koutny, Marek; Sedlarik, Vladimir; Kucharczyk, Pavel

    2012-07-01

    Polylactid acid seems to be an appropriate replacement of conventional non-biodegradable synthetic polymer primarily due to comparable mechanical, thermal and processing properties in its high molecular weight form. Biodegradation of high molecular PLA was studied in compost for various forms differing in their specific surface area. The material proved its good biodegradability under composting conditions and all investigated forms showed to be acceptable for industrial composting. Despite expectations, no significant differences in resulting mineralizations were observed for fiber, film and powder sample forms with different specific surface areas. The clearly faster biodegradation was detected only for the thin coating on porous material with high specific surface area.

  12. Study on biodegradable aromatic/aliphatic copolyesters

    Energy Technology Data Exchange (ETDEWEB)

    Yiwang Chen; Licheng Tan; Lie Chen; Yan, Yang; Xiaofeng Wang [Nanchang University, Nanchang (China). School of Materials Science and Engineering. Inst. of Polymer Materials]. E-mail: ywchen@ncu.edu.cn

    2008-04-15

    Progress on biodegradable aromatic/aliphatic copolyesters based on aliphatic and aromatic diacids, diols and ester monomers was reviewed. The aromatic/aliphatic copolyesters combined excellent mechanical properties with biodegradability. Physical properties and biodegradability of copolyesters varied with chain length of the aliphatic polyester segment and atacticity of copolyesters. The process ability of copolyesters could be improved significantly after incorporating a stiff chain segment through copolymerization of aliphatic polyesters with an aromatic liquid crystal element. The aromatic/aliphatic copolyesters as a new type of biodegradable materials could replace some general plastics in certain applications, namely biomedical and environmental friendly fields. (author)

  13. Biodegradable materials as foundry moulding sands binders

    Directory of Open Access Journals (Sweden)

    K. Major - Gabryś

    2015-07-01

    Full Text Available The aim of this article is to show the possibility of using biodegradable materials as part of the composition of foundry moulding and core sand binders. Research shows that moulding sands with biodegradable materials selected as binders are not only less toxic but are also better suited to mechanical reclamation than moulding sands with phenol-furfuryl resin. The use of biodegradable materials as additives to typical synthetic resins can result in their decreased toxicity and improved ability to reclamation as well as in accelerated biodegradation of binding material leftovers of mechanical reclamation.

  14. 生物降解型防污涂料的制备%Preparation of Biodegradation Antifouling Coatings

    Institute of Scientific and Technical Information of China (English)

    余浩杰; 桂泰江; 肖玲; 王科; 于雪艳; 陈正涛; 张华庆

    2012-01-01

    介绍了生物降解型防污涂料用树脂的合成及生物降解型低铜、无铜防污涂料的制备进展情况,讨论了可降解嵌段共聚物树脂的性能、生物降解型防污涂料防污剂及颜填料、助剂的选择及其性能。经过实海挂板检验,初步验证此生物降解型防污涂料具有一定的防污效果,能抑制海洋污损生物的生长。%This paper introduces the synthesis of biodegradation antifouling coatings resin and the preparation progress of biodegradation low copper and copper-free antifouling coatings; discusses the properties of biodegradable block copolymer resin and the selection and the properties of biodegradation antifouling agents, pigments and additives. After panel immersion test, it is validated preliminarily that the antifouling coatings have certain antifouling effect and can inhibit the growth of marine fouling organisms.

  15. Modification of microbial polyacids for drug delivery systems

    OpenAIRE

    Lanz Landázuri, Alberto

    2014-01-01

    Polymers are becoming preferred materials in biomedical applications because of their vast diversity of properties, functionalities and applications. Properties as mechanical strength, stability against degradation, biocompatibility and biodegradability, among others, have been attractive for different medical applications. One of the most interesting applications of these materials is drug delivery systems. Biodegradable polymers and copolymers are the preferred materials for the manufacture...

  16. Sustained Release of Antibacterial Lipopeptides from Biodegradable Polymers against Oral Pathogens

    Science.gov (United States)

    Eckhard, Lea H.; Houri-Haddad, Yael; Sol, Asaf; Zeharia, Rotem; Shai, Yechiel; Beyth, Shaul; Domb, Abraham J.

    2016-01-01

    The development of antibacterial drugs to overcome various pathogenic species, which inhabit the oral cavity, faces several challenges, such as salivary flow and enzymatic activity that restrict dosage retention. Owing to their amphipathic nature, antimicrobial peptides (AMPs) serve as the first line of defense of the innate immune system. The ability to synthesize different types of AMPs enables exploitation of their advantages as alternatives to antibiotics. Sustained release of AMPs incorporated in biodegradable polymers can be advantageous in maintaining high levels of the peptides. In this study, four potent ultra-short lipopeptides, conjugated to an aliphatic acid chain (16C) were incorporated in two different biodegradable polymers: poly (lactic acid co castor oil) (PLACO) and ricinoleic acid-based poly (ester-anhydride) (P(SA-RA)) for sustained release. The lipopeptide and polymer formulations were tested for antibacterial activity during one week, by turbidometric measurements of bacterial outgrowth, anti-biofilm activity by live/dead staining, biocompatibility by hemolysis and XTT colorimetric assays, mode of action by fluorescence-activated cell sorting (FACS) and release profile by a fluorometric assay. The results show that an antibacterial and anti-biofilm effect, as well as membrane disruption, can be achieved by the use of a formulation of lipopeptide incorporated in biodegradable polymer. PMID:27606830

  17. Design of antimicrobial peptides conjugated biodegradable citric acid derived hydrogels for wound healing.

    Science.gov (United States)

    Xie, Zhiwei; Aphale, Nikhil V; Kadapure, Tejaswi D; Wadajkar, Aniket S; Orr, Sara; Gyawali, Dipendra; Qian, Guoying; Nguyen, Kytai T; Yang, Jian

    2015-12-01

    Wound healing is usually facilitated by the use of a wound dressing that can be easily applied to cover the wound bed, maintain moisture, and avoid bacterial infection. In order to meet all of these requirements, we developed an in situ forming biodegradable hydrogel (iFBH) system composed of a newly developed combination of biodegradable poly(ethylene glycol) maleate citrate (PEGMC) and poly(ethylene glycol) diacrylate (PEGDA). The in situ forming hydrogel systems are able to conform to the wound shape in order to cover the wound completely and prevent bacterial invasion. A 2(k) factorial analysis was performed to examine the effects of polymer composition on specific properties, including the curing time, Young's modulus, swelling ratio, and degradation rate. An optimized iFBH formulation was achieved from the systematic factorial analysis. Further, in vitro biocompatibility studies using adult human dermal fibroblasts (HDFs) confirmed that the hydrogels and degradation products are not cytotoxic. The iFBH wound dressing was conjugated and functionalized with antimicrobial peptides as well. Evaluation against bacteria both in vitro and in vivo in rats demonstrated that the peptide-incorporated iFBH wound dressing offered excellent bacteria inhibition and promoted wound healing. These studies indicated that our in situ forming antimicrobial biodegradable hydrogel system is a promising candidate for wound treatment.

  18. Biodegradable Metals for Cardiovascular Stents: from Clinical Concerns to Recent Zn-Alloys.

    Science.gov (United States)

    Bowen, Patrick K; Shearier, Emily R; Zhao, Shan; Guillory, Roger J; Zhao, Feng; Goldman, Jeremy; Drelich, Jaroslaw W

    2016-05-01

    Metallic stents are used to promote revascularization and maintain patency of plaqued or damaged arteries following balloon angioplasty. To mitigate the long-term side effects associated with corrosion-resistant stents (i.e., chronic inflammation and late stage thrombosis), a new generation of so-called "bioabsorbable" stents is currently being developed. The bioabsorbable coronary stents will corrode and be absorbed by the artery after completing their task as vascular scaffolding. Research spanning the last two decades has focused on biodegradable polymeric, iron-based, and magnesium-based stent materials. The inherent mechanical and surface properties of metals make them more attractive stent material candidates than their polymeric counterparts. A third class of metallic bioabsorbable materials that are based on zinc has been introduced in the last few years. This new zinc-based class of materials demonstrates the potential for an absorbable metallic stent with the mechanical and biodegradation characteristics required for optimal stent performance. This review compares bioabsorbable materials and summarizes progress towards bioabsorbable stents. It emphasizes the current understanding of physiological and biological benefits of zinc and its biocompatibility. Finally, the review provides an outlook on challenges in designing zinc-based stents of optimal mechanical properties and biodegradation rate.

  19. Research on a Zn-Cu alloy as a biodegradable material for potential vascular stents application.

    Science.gov (United States)

    Niu, Jialin; Tang, Zibo; Huang, Hua; Pei, Jia; Zhang, Hua; Yuan, Guangyin; Ding, Wenjiang

    2016-12-01

    Zn-based alloys have been viewed as new potential materials for biodegradable implants, such as cardiovascular stents, mainly in consideration of their lower corrosion rate when compared with that of Mg alloys. In this study we developed a new Zinc-4wt.%Copper (Zn-4Cu) alloy as a biodegradable material. Hot extrusion was applied to Zn-4Cu to refine the microstructure and consequently improve its mechanical properties and corrosion resistance. After extrusion, dendritic CuZn5 phases were broken and distributed along the extrusion direction. The grains were refined obviously due to dynamical recrystallization. The yield strength (YS), ultimate tensile strength (UTS) and elongation of the as-extruded alloy are 250±10MPa, 270±10MPa and 51±2%, respectively. The corrosion rate of the as-extruded alloy in Hank's solution is about 9.41(±1.34)μmyear(-1). In vitro evaluation shows that Zn-4Cu presents acceptable toxicity to human endothelial cells, and could effectively inhibit bacteria adhesion and biofilm formation. The present study indicates that the as-extruded Zn-4Cu alloy exhibits excellent strength and ductility, uniform and slow degradation, good biocompatibility and significant antibacterial effect, which make it an excellent candidate material for biodegradable implants, especially for cardiovascular stents application.

  20. Biodegradable device applied in flatfoot surgery: Comparative studies between clinical and technological aspects of removed screws

    Energy Technology Data Exchange (ETDEWEB)

    Ruozi, Barbara, E-mail: barbara.ruozi@unimore.it [Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 183, 41100 Modena, MO (Italy); Belletti, Daniela, E-mail: daniela.belletti@unimore.it [Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 183, 41100 Modena, MO (Italy); Manfredini, Giuseppe, E-mail: giuseppe626@virgilio.it [Orthopaedic and Traumatologic Clinic, University Hospital of Modena and Reggio Emilia, Modena Italy, Director Prof. F. Catani, Via del Pozzo 71, Policlinico, 41100 Modena, MO (Italy); Tonelli, Massimo, E-mail: massimo.tonelli@unimore.it [CIGS, University of Modena and Reggio Emilia, Via Campi 213/A, 41100 Modena, MO (Italy); Sena, Paola, E-mail: paola.sena@unimore.it [Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Via del Pozzo 71, Policlinico, 41100 Modena, MO (Italy); Vandelli, Maria Angela, E-mail: mariaangela.vandelli@unimore.it [Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 183, 41100 Modena, MO (Italy); Forni, Flavio, E-mail: flavio.forni@unimore.it [Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 183, 41100 Modena, MO (Italy); Tosi, Giovanni, E-mail: giovanni.tosi@unimore.it [Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 183, 41100 Modena, MO (Italy)

    2013-04-01

    Poly-L-lactide (PLLA) is one of the most used polymers for biomedical application; its use in sutures and other implants has been widely investigated. Although the knowledge of PLLA biodegradation and biocompatibility features is deep, PLLA screws used to correct the flat foot deformity have deserved attention since they are not degraded in most of cases after a long period of years (3–7) from the implantation. In this article, a clinical and radiological evaluation (NMR, histological and clinical outcomes) on patients was correlated with physico-chemical characterization (by SEM, DSC, GPC and XRD analysis at different temperatures) on both native and patient-recovered screws together with the theoretical degradation processes of PLLA-based implants. The data demonstrated the need for crossing the biodegradation and bioabsorption of the polymer with the characteristics of both the device (geometry, structure and fabrication process) and the implantation site. Highlights: ► Resorbable PLLA screws were proposed for arthroereisis in pediatric flatfoot. ► Satisfactory clinical results were obtained almost in the totality of patients. ► The bioabsorption period is slightly longer than what is expected. ► Patient-recovered screws were analyzed to evaluate the biodegradation stage. ► Degradability/structural integrity during implantation should be ameliorated.

  1. Biocompatible long-sustained release oil-core polyelectrolyte nanocarriers: From controlling physical state and stability to biological impact.

    Science.gov (United States)

    Szczepanowicz, Krzysztof; Bazylińska, Urszula; Pietkiewicz, Jadwiga; Szyk-Warszyńska, Lilianna; Wilk, Kazimiera A; Warszyński, Piotr

    2015-08-01

    It has been generally expected that the most applicable drug delivery system (DDS) should be biodegradable, biocompatible and with incidental adverse effects. Among many micellar aggregates and their mediated polymeric systems, polyelectrolyte oil-core nanocarriers have been found to successfully encapsulate hydrophobic drugs in order to target cells and avoid drug degradation and toxicity as well as to improve drug efficacy, its stability, and better intracellular penetration. This paper reviews recent developments in the formation of polyelectrolyte oil-core nanocarriers by subsequent multilayer adsorption at micellar structures, their imaging, physical state and stability, drug encapsulation and applications, in vitro release profiles and in vitro biological evaluation (cellular uptake and internalization, biocompatibility). We summarize the recent results concerning polyelectrolyte/surfactant interactions at interfaces, fundamental to understand the mechanisms of formation of stable polyelectrolyte layered structures on liquid cores. The fabrication of emulsion droplets stabilized by synergetic surfactant/polyelectrolyte complexes, properties, and potential applications of each type of polyelectrolyte oil-core nanocarriers, including stealth nanocapsules with pegylated shell, are discussed and evaluated.

  2. Poly(ε-caprolactone)/nano fluoridated hydroxyapatite scaffolds for bone tissue engineering: in vitro degradation and biocompatibility study.

    Science.gov (United States)

    Johari, N; Fathi, M H; Golozar, M A; Erfani, E; Samadikuchaksaraei, A

    2012-03-01

    In this study, biodegradation and biocompatibility of novel poly(ε-caparolactone)/nano fluoridated hydroxyapatite (PCL-FHA) scaffolds were investigated. The FHA nanopowders were prepared via mechanical alloying method and had a chemical composition of Ca(10)(PO(4))(6)OH(2-x )F(x) (where x values were selected equal to 0.5 and 2.0). In order to fabricate PCL-FHA scaffolds, 10, 20, 30 and 40 wt% of the FHA were added to the PCL. The PCL-FHA scaffolds were produced by the solvent casting/particulate leaching using sodium chloride particles (with diameters of 300-500 μm) as the porogen. The phase structure, microstructure and morphology of the scaffolds were evaluated using X-ray diffraction, Fourier transform infrared spectroscopy and scanning electron microscopy techniques. Porosity of the scaffolds was measured using the Archimedes' Principle. In vitro degradation of PCL-FHA scaffolds was studied by incubating the samples in phosphate buffered saline at 37°C and pH 7.4 for 30 days. Moreover, biocompatibility was evaluated by MTT assay after seeding and culture of osteoblast-like cells on the scaffolds. Results showed that the osteoblast-like cells attached to and proliferated on PCL-FHA and increasing the porosity of the scaffolds increased the cell viability. Also, degradation rate of scaffolds were increased with increasing the fluorine content in scaffolds composition.

  3. In vitro study of a new biodegradable nanocomposite based on poly propylene fumarate as bone glue.

    Science.gov (United States)

    Shahbazi, S; Moztarzadeh, F; Sadeghi, G Mir Mohamad; Jafari, Y

    2016-12-01

    A novel poly propylene fumarate (PPF)-based glue which is reinforced by nanobioactive glass (NBG) particles and promoted by hydroxyethyl methacrylate (HEMA) as crosslinker agent, was developed and investigated for bone-to-bone bonding applications. In-vitro bioactivity, biodegradability, biocompatibility, and bone adhesion were tested and the results have verified that it can be used as bone glue. In an in-vitro condition, the prepared nanocomposite (PPF/HEMA/NBG) showed improved adhesion to wet bone surfaces. The combined tension and shear resistance between two wet bone surfaces was measured, and its maximum value was 9±59MPa. To investigate the bioactivity and biodegradability of the nanocomposite, it has been immersed in simulated body fluid (SBF). After 14days exposure to SBF, a hydroxyapatite (HA) layer formed on the surface of the composite confirms the bioactivity of this material. In the XRD pattern of the nanocomposite surface, the HA characteristic diffraction peak at θ=26 and 31.8 were observed. Also, by monitoring the weight change after 8weeks immersion in SBF, the mass loss was about 16.46wt%. It has been confirmed that this nanocomposite is a biodegradable material. Also, bioactivity and biodegradability of nanocomposite have been proved by SEM images. It has been showed that by using NBG particles and HEMA precursor, mechanical properties increased significantly. The ultimate tensile strength (UTS) of nanocomposite which contains 20% NBG and the ratio of 70/30wt% PPF/HEMA (PHB.732) was approximately 62MPa, while the UTS in the pure PPF/HEMA was about 32MPa. High cell viability in this nanocomposite (MTT assays, 85-95%) can be attributed to the NBG nature which contains calcium phosphate and is similar to physiological environment. Furthermore, it possesses biomineralization and biodegradation which significantly affected by impregnation of hydrophilic HEMA in the PPF-based polymeric matrix. The results indicated that the new synthesized

  4. Biocompatibility and Bone Formation of Flexible, Cotton Wool-like PLGA/Calcium Phosphate Nanocomposites in Sheep

    Science.gov (United States)

    Schneider, Oliver D; Mohn, Dirk; Fuhrer, Roland; Klein, Karina; Kämpf, Käthi; Nuss, Katja M.R; Sidler, Michèle; Zlinszky, Katalin; von Rechenberg, Brigitte; Stark, Wendelin J

    2011-01-01

    Background: The purpose of this preliminary study was to assess the in vivo performance of synthetic, cotton wool-like nanocomposites consisting of a biodegradable poly(lactide-co-glycolide) fibrous matrix and containing either calcium phosphate nanoparticles (PLGA/CaP 60:40) or silver doped CaP nanoparticles (PLGA/Ag-CaP 60:40). Besides its extraordinary in vitro bioactivity the latter biomaterial (0.4 wt% total silver concentration) provides additional antimicrobial properties for treating bone defects exposed to microorganisms. Materials and Methods: Both flexible artificial bone substitutes were implanted into totally 16 epiphyseal and metaphyseal drill hole defects of long bone in sheep and followed for 8 weeks. Histological and histomorphological analyses were conducted to evaluate the biocompatibility and bone formation applying a score system. The influence of silver on the in vivo performance was further investigated. Results: Semi-quantitative evaluation of histology sections showed for both implant materials an excellent biocompatibility and bone healing with no resorption in the adjacent bone. No signs of inflammation were detectable, either macroscopically or microscopically, as was evident in 5 µm plastic sections by the minimal amount of inflammatory cells. The fibrous biomaterials enabled bone formation directly in the centre of the former defect. The area fraction of new bone formation as determined histomorphometrically after 8 weeks implantation was very similar with 20.5 ± 11.2 % and 22.5 ± 9.2 % for PLGA/CaP and PLGA/Ag-CaP, respectively. Conclusions: The cotton wool-like bone substitute material is easily applicable, biocompatible and might be beneficial in minimal invasive surgery for treating bone defects. PMID:21566736

  5. Controlled release of cortisone drugs from block copolymers synthetized by ATRP

    Science.gov (United States)

    Valenti, G.; La Carta, S.; Mazzotti, G.; Rapisarda, M.; Perna, S.; Di Gesù, R.; Giorgini, L.; Carbone, D.; Recca, G.; Rizzarelli, P.

    2016-05-01

    Diseases affecting posterior eye segment, like macular edema, infection and neovascularization, may cause visual impairment. Traditional treatments, such as steroidal-drugs intravitreal injections, involve chronic course of therapy usually over a period of years. Moreover, they can require frequent administrations of drug in order to have an adequately disease control. This dramatically reduce patient's compliance. Efforts have been made to develop implantable devices that offer an alternative therapeutic approach to bypass many challenges of conventional type of therapy. Implantable drug delivery systems (DDS) have been developed to optimize therapeutic properties of drugs and ensure their slow release in the specific site. Polymeric materials can play an essential role in modulating drug delivery and their use in such field has become indispensable. During last decades, acrylic polymers have obtained growing interest. Biocompatibility and chemical properties make them extremely versatile, allowing their use in many field such as biomedical. In particular, block methacrylate copolymer with a balance of hydrophilic and hydrophobic properties can be suitable for prolonged DDS in biomedical devices. In this work, we focused on the realization of a system for controlled and long term release of betamethasone 17,21-dipropionate (BDP), a cortisone drug, from methacrylic block copolymers, to be tested in the treatment of the posterior eye's diseases. Different series of methyl methacrylate/hydroxyethyl methacrylate (MMA/HEMA) block and random copolymers, with different monomer compositions (10-60% HEMA), were synthetized by Atom Transfer Radical Polymerization (ATRP) to find the best hydrophilic/hydrophobic ratio, able to ensure optimal kinetic release. Copolymer samples were characterized by NMR spectroscopy (1H-NMR, 13C-NMR, CosY), SEC, TGA and DSC. Monitoring of drug release from films loaded with BDP was carried out by HPLC analysis. Evaluation of different kinetic

  6. [Study on biocompatibility of titanium alloys].

    Science.gov (United States)

    Kodama, T

    1989-06-01

    The biocompatibility of two different titanium alloys, Ti-6Al-4V ELI and Ti-5Al-2, 5Fe, and pure titanium were evaluated. The results were as follows: 1) Titanium alloys were implanted into the dorsal subcutaneous tissues of the Hartley guinea-pig for 12 weeks, immersed in calf serum or in Ringer's solution for 8 weeks. The surface changes of the titanium alloys were observed by SEM and the chemical composition was analyzed by XMA. No evident surface changes were found. 2) Three hundred mg, 200 mg and 100 mg of the powders of the tested materials were immersed in 2ml of Eagle's MEM, incubated for 1-7 days, 8-21 days and 22-70 days at 37 C degrees. The amount of metallic elements dissolved in the solutions was measured by ICP and AAS. The detected corrosion rates of V and Al contained in the solution, in which Ti-6Al-4V ELI 100 mg was immersed for 1-7 days, were 194.3 +/- 17.6 and 73.0 +/- 28, 1 pg/mg alloy/day, respectively. V was released more than Al. The amount of Ti was below the detectable limit. The solution Ti-5Al-2.5 Fe 100 mg immersed for 1-7 days contained 31.9 +/- 34.4 pg/mg alloy/day Fe and 25.7 +/- 6.3 pg/mg alloy/day Al. Only in the solution 300 mg immersed for 1-7 days was Ti detected at 1.4 pg/mg alloy/day. 3) By the bacterial mutation assay of Salmonella typhimurium TA 98, Salmonella typhimurium TA 100 and Escherichia coli WP2 uvrA, the solutions, in which the tested materials were immersed, were not found to be mutagenic. 4) By the UDS assay, the grain counts on autoradiography with the solutions, in which the tested materials were immersed, were not greater than the negative control. The results suggest an excellent corrosion resistance of the titanium alloys. Mutagenicity was negative by these mutation assays, indicating that the tested alloys and pure titanium are safe for humans and animals.

  7. Enhanced biocorrosion resistance and biocompatibility of degradable Mg-Nd-Zn-Zr alloy by brushite coating.

    Science.gov (United States)

    Niu, Jialin; Yuan, Guangyin; Liao, Yi; Mao, Lin; Zhang, Jian; Wang, Yongping; Huang, Feng; Jiang, Yao; He, Yaohua; Ding, Wenjiang

    2013-12-01

    To further improve the corrosion resistance and biocompatibility of Mg-Nd-Zn-Zr alloy (JDBM), a biodegradable calcium phosphate coating (Ca-P coating) with high bonding strength was developed using a novel chemical deposition method. The main composition of the Ca-P coating was brushite (CaHPO4·2H2O). The bonding strength between the coating and the JDBM substrate was measured to be over 10 MPa, and the thickness of the coating layer was about 10-30 μm. The in vitro corrosion tests indicated that the Ca-P treatment improved the corrosion resistance of JDBM alloy in Hank's solution. Ca-P treatment significantly reduced the hemolysis rate of JDBM alloy from 48% to 0.68%, and induced no toxicity to MC3T3-E1 cells. The in vivo implantation experiment in New Zealand's rabbit tibia showed that the degradation rate was reduced obviously by the Ca-P treatment and less gas was produced from Ca-P treated JDBM bone plates and screws in early stage of the implantation, and at least 10weeks degradation time can be prolonged by the present coating techniques. Both Ca-P treated and untreated JDBM Mg alloy induced bone growth. The primary results indicate that the present Ca-P treatment is a promising technique for the degradable Mg-based biomaterials for orthopedic applications.

  8. Interaction of Sodium Hyaluronate with a Biocompatible Cationic Surfactant from Lysine: A Binding Study.

    Science.gov (United States)

    Bračič, Matej; Hansson, Per; Pérez, Lourdes; Zemljič, Lidija F; Kogej, Ksenija

    2015-11-10

    Mixtures of natural and biodegradable surfactants and ionic polysaccharides have attracted considerable research interest in recent years because they prosper as antimicrobial materials for medical applications. In the present work, interactions between the lysine-derived biocompatible cationic surfactant N(ε)-myristoyl-lysine methyl ester, abbreviated as MKM, and the sodium salt of hyaluronic acid (NaHA) are investigated in aqueous media by potentiometric titrations using the surfactant-sensitive electrode and pyrene-based fluorescence spectroscopy. The critical micelle concentration in pure surfactant solutions and the critical association concentration in the presence of NaHA are determined based on their dependence on the added electrolyte (NaCl) concentration. The equilibrium between the protonated (charged) and deprotonated (neutral) forms of MKM is proposed to explain the anomalous binding isotherms observed in the presence of the polyelectrolyte. The explanation is supported by theoretical model calculations of the mixed-micelle equilibrium and the competitive binding of the two MKM forms to the surface of the electrode membrane. It is suggested that the presence of even small amounts of the deprotonated form can strongly influence the measured electrode response. Such ionic-nonionic surfactant mixtures are a special case of mixed surfactant systems where the amount of the nonionic component cannot be varied independently as was the case for some of the earlier studies.

  9. Hydroxyapatite-coated magnesium implants with improved in vitro and in vivo biocorrosion, biocompatibility, and bone response.

    Science.gov (United States)

    Kim, Sae-Mi; Jo, Ji-Hoon; Lee, Sung-Mi; Kang, Min-Ho; Kim, Hyoun-Ee; Estrin, Yuri; Lee, Jong-Ho; Lee, Jung-Woo; Koh, Young-Hag

    2014-02-01

    Magnesium and its alloys are candidate materials for biodegradable implants; however, excessively rapid corrosion behavior restricts their practical uses in biological systems. For such applications, surface modification is essential, and the use of anticorrosion coatings is considered as a promising avenue. In this study, we coated Mg with hydroxyapatite (HA) in an aqueous solution containing calcium and phosphate sources to improve its in vitro and in vivo biocorrosion resistance, biocompatibility and bone response. A layer of needle-shaped HA crystals was created uniformly on the Mg substrate even when the Mg sample had a complex shape of a screw. In addition, a dense HA-stratum between this layer and the Mg substrate was formed. This HA-coating layer remarkably reduced the corrosion rate of the Mg tested in a simulated body fluid. Moreover, the biological response, including cell attachment, proliferation and differentiation, of the HA-coated samples was enhanced considerably compared to samples without a coating layer. The preliminary in vivo experiments also showed that the biocorrosion of the Mg implant was significantly retarded by HA coating, which resulted in good mechanical stability. In addition, in the case of the HA-coated implants, biodegradation was mitigated, particularly over the first 6 weeks of implantation. This considerably promoted bone growth at the interface between the implant and bone. These results confirmed that HA-coated Mg is a promising material for biomedical implant applications.

  10. Here today, gone tomorrow: biodegradable soft robots

    Science.gov (United States)

    Rossiter, Jonathan; Winfield, Jonathan; Ieropoulos, Ioannis

    2016-04-01

    One of the greatest challenges to modern technologies is what to do with them when they go irreparably wrong or come to the end of their productive lives. The convention, since the development of modern civilisation, is to discard a broken item and then procure a new one. In the 20th century enlightened environmentalists campaigned for recycling and reuse (R and R). R and R has continued to be an important part of new technology development, but there is still a huge problem of non-recyclable materials being dumped into landfill and being discarded in the environment. The challenge is even greater for robotics, a field which will impact on all aspects of our lives, where discards include motors, rigid elements and toxic power supplies and batteries. One novel solution is the biodegradable robot, an active physical machine that is composed of biodegradable materials and which degrades to nothing when released into the environment. In this paper we examine the potential and realities of biodegradable robotics, consider novel solutions to core components such as sensors, actuators and energy scavenging, and give examples of biodegradable robotics fabricated from everyday, and not so common, biodegradable electroactive materials. The realisation of truly biodegradable robots also brings entirely new deployment, exploration and bio-remediation capabilities: why track and recover a few large non-biodegradable robots when you could speculatively release millions of biodegradable robots instead? We will consider some of these exciting developments and explore the future of this new field.

  11. Primary biodegradation of petroleum hydrocarbons in seawater

    Energy Technology Data Exchange (ETDEWEB)

    Comber, M.I.H.; Den Haan, K.H.; Djemel, N.; Eadsforth, C.V.; King, D.; Paumen, M.L.; Parkerton, T.; Dmytrasz, B.

    2012-12-15

    This report describes primary biodegradation experiments performed to determine the persistence of higher molecular weight petroleum hydrocarbons in seawater. Results from the biodegradation experiments show that the majority of tested petroleum hydrocarbons have half-lives in seawater less than 60 days.

  12. Biodegradation of aliphatic and aromatic polycarbonates.

    Science.gov (United States)

    Artham, Trishul; Doble, Mukesh

    2008-01-01

    Polycarbonate is one of the most widely used engineering plastics because of its superior physical, chemical, and mechanical properties. Understanding the biodegradation of this polymer is of great importance to answer the increasing problems in waste management of this polymer. Aliphatic polycarbonates are known to biodegrade either through the action of pure enzymes or by bacterial whole cells. Very little information is available that deals with the biodegradation of aromatic polycarbonates. Biodegradation is governed by different factors that include polymer characteristics, type of organism, and nature of pretreatment. The polymer characteristics such as its mobility, tacticity, crystallinity, molecular weight, the type of functional groups and substituents present in its structure, and plasticizers or additives added to the polymer all play an important role in its degradation. The carbonate bond in aliphatic polycarbonates is facile and hence this polymer is easily biodegradable. On the other hand, bisphenol A polycarbonate contains benzene rings and quaternary carbon atoms which form bulky and stiff chains that enhance rigidity. Even though this polycarbonate is amorphous in nature because of considerable free volume, it is non-biodegradable since the carbonate bond is inaccessible to enzymes because of the presence of bulky phenyl groups on either side. In order to facilitate the biodegradation of polymers few pretreatment techniques which include photo-oxidation, gamma-irradiation, or use of chemicals have been tested. Addition of biosurfactants to improve the interaction between the polymer and the microorganisms, and blending with natural or synthetic polymers that degrade easily, can also enhance the biodegradation.

  13. Nylon biodegradation by lignin-degrading fungi.

    OpenAIRE

    Deguchi, T; Kakezawa, M; Nishida, T

    1997-01-01

    The biodegradation of nylon by lignin-degrading fungi was investigated. The fungus IZU-154 significantly degraded nylon-66 membrane under ligninolytic conditions. Nuclear magnetic resonance analysis showed that four end groups, CHO, NHCHO, CH3, and CONH2, were formed in the biodegraded nylon-66 membranes, suggesting that nylon-66 was degraded oxidatively.

  14. Biodegradation of Crystal Violet by Agrobacterium radiobacter

    DEFF Research Database (Denmark)

    Parshetti, G.K.; Parshetti, S.G.; Telke, A.A.

    2011-01-01

    and phenol. We proposed the hypothetical metabolic pathway of Crystal Violet biodegradation by A. radiobacter. Phytotoxicity and microbial toxicity study showed that Crystal Violet biodegradation metabolites were less toxic to bacteria (A. radiobacter, P. aurugenosa and A. vinelandii) contributing to soil...

  15. Responsive copolymers for enhanced petroleum recovery. Quarterly technical progress report, December 22, 1993--March 21, 1994

    Energy Technology Data Exchange (ETDEWEB)

    McCormick, C.; Hester, R.

    1994-06-01

    The overall goal of this research is the development of advanced water-soluble copolymers for use in enhanced oil recovery. This report summarizes technical progress for the following tasks: advanced copolymer synthesis; and characterization of molecular structure of copolymers.

  16. Elastin-Coated Biodegradable Photopolymer Scaffolds for Tissue Engineering Applications

    Directory of Open Access Journals (Sweden)

    Rossella Barenghi

    2014-01-01

    Full Text Available One of the main open issues in modern vascular surgery is the nonbiodegradability of implants used for stent interventions, which can lead to small caliber-related thrombosis and neointimal hyperplasia. Some new, resorbable polymeric materials have been proposed to substitute traditional stainless-steel stents, but so far they were affected by poor mechanical properties and low biocompatibility. In this respect, a new material, polypropylene fumarate (PPF, may be considered as a promising candidate to implement the development of next generation stents, due to its complete biodegradability, and excellent mechanical properties and the ease to be precisely patterned. Besides all these benefits, PPF has not been tested yet for vascular prosthesis, mainly because it proved to be almost inert, while the ability to elicit a specific biological function would be of paramount importance in such critical surgery applications. Here, we propose a biomimetic functionalization process, aimed at obtaining specific bioactivation and thus improved cell-polymer interaction. Porous PPF-based scaffolds produced by deep-UV photocuring were coated by elastin and the functionalized scaffolds were extensively characterized, revealing a stable bound between the protein and the polymer surface. Both 3T3 and HUVEC cell lines were used for in vitro tests displaying an enhancement of cells adhesion and proliferation on the functionalized scaffolds.

  17. Biodegradable nanocomposite microparticles as drug delivering injectable cell scaffolds.

    Science.gov (United States)

    Wen, Yanhong; Gallego, Monica Ramos; Nielsen, Lene Feldskov; Jorgensen, Lene; Everland, Hanne; Møller, Eva Horn; Nielsen, Hanne Mørck

    2011-11-30

    Injectable cell scaffolds play a dual role in tissue engineering by supporting cellular functions and delivering bioactive molecules. The present study aimed at developing biodegradable nanocomposite microparticles with sustained drug delivery properties thus potentially being suitable for autologous stem cell therapy. Semi-crystalline poly(l-lactide/dl-lactide) (PLDL70) and poly(l-lactide-co-glycolide) (PLGA85) were used to prepare nanoparticles by the double emulsion method. Uniform and spherical nanoparticles were obtained at an average size of 270-300 nm. The thrombin receptor activator peptide-6 (TRAP-6) was successfully loaded in PLDL70 and PLGA85 nanoparticles. During the 30 days' release, PLDL70 nanoparticles showed sustainable release with only 30% TRAP-6 released within the first 15 days, while almost 80% TRAP-6 was released from PLGA85 nanoparticles during the same time interval. The release mechanism was found to depend on the crystallinity and composition of the nanoparticles. Subsequently, mPEG-PLGA nanocomposite microparticles containing PLDL70 nanoparticles were produced by the ultrasonic atomization method and evaluated to successfully preserve the intrinsic particulate properties and the sustainable release profile, which was identical to that of the nanoparticles. Good cell adhesion of the human fibroblasts onto the nanocomposite microparticles was observed, indicating the desired cell biocompatibility. The presented results thus demonstrate the development of nanocomposite microparticles tailored for sustainable drug release for application as injectable cell scaffolds.

  18. Design, synthesis and characterization of novel biodegradable macrodiols based on poly(DL-lactic acid) and poly(p-dioxanone)

    Institute of Scientific and Technical Information of China (English)

    Chan Yu Zhang; Yan Feng Luo; Su Jun Wang; Zhao Liu; Yuan Liang Wang; Zhi Qing Liang

    2009-01-01

    Integrating poly(lactic acid) (PLA), glycolic acid (GA) and ethylene glycol (EG) will hopefully result in a novel copolymer that combines such advantages as fastened and controllable release rate and improved flexibility together with good biocompatibility. In this study, p-dioxanone (PDO) was employed to copolymerize with DL-lactide (LA) via ring-opening melt polymerization using Sn(Oct)2 as an initiator and ethylene glycol as a co-initiator. The obtained degradable macrodiols (HO-P(LA-co-PDO)-OH) were just such a copolymer consisting of PLA, GA and EG. 1H NMR was employed to characterize the copolymers, and the effect of PDO/LA molar ratios in the feedstock on the molecular weights of HO-P(LA-co-PDO)-OH was investigated by means of end-hydroxyl analysis, 1H NMR or GPC-MALLs. The results confirmed the successful synthesis of HO-P(LA-co-PDO)-OH and revealed that one end-hydroxyl of the micarodiols was donated by LA or PDO and the other one by the co-initiator EG. In addition,the molecular weights of HO-P(LA-co-PDO)-OH increased with decreasing PDO/LA ratios.

  19. COMPOSITIONAL HETEROGENEITY OF ETHYLENE OXIDE-BUTYLENE TEREPHTHALATE SEGMENTED COPOLYMER

    Institute of Scientific and Technical Information of China (English)

    De-zhu Ma; Dong-sheng Li; Ming-chuan Zhao; Mo-zhen Wang; Ran Ye; Xiao-lie Luo

    1999-01-01

    A series of ethylene oxide-butylene terephthalate (EOBT) segmented copolymers with different soft segment length and hard segment content were synthesized. The compositional heterogeneity was studied by solvent extraction. The results show that the compositional heterogeneity increases when soft segment length and hard segment content increase. The compositional heterogeneity is also reflected in the crystallization behavior and morphology of soft and hard segment in EOBT segmented copolymer. The more compositional heterogeneous the EOBT segmented copolymer is, the more different the morphology and the crystallization behavior between separated fractions. Compared with ethylene oxide-ethylene terephthalate (EOET) segmented copolymer, compositional heterogeneity in EOBT segmented copolymer is weaker. But the compositional heterogeneity in EOBT segmented copolymer with long soft segment and high hard segment content is still obvious.

  20. An estimate of the prevalence of biocompatible and habitable planets.

    Science.gov (United States)

    Fogg, M J

    1992-01-01

    A Monte Carlo computer model of extra-solar planetary formation and evolution, which includes the planetary geochemical carbon cycle, is presented. The results of a run of one million galactic disc stars are shown where the aim was to assess the possible abundance of both biocompatible and habitable planets. (Biocompatible planets are defined as worlds where the long-term presence of surface liquid water provides environmental conditions suitable for the origin and evolution of life. Habitable planets are those worlds with more specifically Earthlike conditions). The model gives an estimate of 1 biocompatible planet per 39 stars, with the subset of habitable planets being much rarer at 1 such planet per 413 stars. The nearest biocompatible planet may thus lie approximately 14 LY distant and the nearest habitable planet approximately 31 LY away. If planets form in multiple star systems then the above planet/star ratios may be more than doubled. By applying the results to stars in the solar neighbourhood, it is possible to identify 28 stars at distances of < 22 LY with a non-zero probability of possessing a biocompatible planet.