WorldWideScience

Sample records for biochemical simulation environment

  1. BioNessie - a grid enabled biochemical networks simulation environment

    OpenAIRE

    Liu, X.; Jiang, J.; Ajayi, O.; Gu, X.; Gilbert, D.; Sinnott, R.O.

    2008-01-01

    The simulation of biochemical networks provides insight and understanding about the underlying biochemical processes and pathways used by cells and organisms. BioNessie is a biochemical network simulator which has been developed at the University of Glasgow. This paper describes the simulator and focuses in particular on how it has been extended to benefit from a wide variety of high performance compute resources across the UK through Grid technologies to support larger scale simulations.

  2. 'BioNessie(G) - a grid enabled biochemical networks simulation environment

    OpenAIRE

    Liu, X; Jiang, J; Ajayi, O; Gu, X; Gilbert, D; Sinnott, R

    2008-01-01

    The simulation of biochemical networks provides insight and understanding about the underlying biochemical processes and pathways used by cells and organisms. BioNessie is a biochemical network simulator which has been developed at the University of Glasgow. This paper describes the simulator and focuses in particular on how it has been extended to benefit from a wide variety of high performance compute resources across the UK through Grid technologies to support larger scal...

  3. HSimulator: Hybrid Stochastic/Deterministic Simulation of Biochemical Reaction Networks

    Directory of Open Access Journals (Sweden)

    Luca Marchetti

    2017-01-01

    Full Text Available HSimulator is a multithread simulator for mass-action biochemical reaction systems placed in a well-mixed environment. HSimulator provides optimized implementation of a set of widespread state-of-the-art stochastic, deterministic, and hybrid simulation strategies including the first publicly available implementation of the Hybrid Rejection-based Stochastic Simulation Algorithm (HRSSA. HRSSA, the fastest hybrid algorithm to date, allows for an efficient simulation of the models while ensuring the exact simulation of a subset of the reaction network modeling slow reactions. Benchmarks show that HSimulator is often considerably faster than the other considered simulators. The software, running on Java v6.0 or higher, offers a simulation GUI for modeling and visually exploring biological processes and a Javadoc-documented Java library to support the development of custom applications. HSimulator is released under the COSBI Shared Source license agreement (COSBI-SSLA.

  4. Urban Simulation Environment (Preprint)

    National Research Council Canada - National Science Library

    Stoor, Bradley J; Pruett, Stanley H; Duquette, Matthew M; Subr, Robert C; MtCastle, Tim

    2006-01-01

    .... The simulation environment will include multiple urban databases for visualization, UAV aerodynamics and control models, camera models, articulated human models, and ground vehicle models to serve...

  5. Urban Simulation Environment (Preprint)

    National Research Council Canada - National Science Library

    Stoor, Bradley J; Pruett, Stanley H; Duquette, Matthew M; Subr, Robert C; MtCastle, Tim

    2006-01-01

    ...) Laboratory are developing a realistic urban simulation environment. The near term objective is to provide an appropriate environment to study the performance of cooperative control algorithms for Unmanned Air Vehicles (UAV...

  6. Deterministic modelling and stochastic simulation of biochemical pathways using MATLAB.

    Science.gov (United States)

    Ullah, M; Schmidt, H; Cho, K H; Wolkenhauer, O

    2006-03-01

    The analysis of complex biochemical networks is conducted in two popular conceptual frameworks for modelling. The deterministic approach requires the solution of ordinary differential equations (ODEs, reaction rate equations) with concentrations as continuous state variables. The stochastic approach involves the simulation of differential-difference equations (chemical master equations, CMEs) with probabilities as variables. This is to generate counts of molecules for chemical species as realisations of random variables drawn from the probability distribution described by the CMEs. Although there are numerous tools available, many of them free, the modelling and simulation environment MATLAB is widely used in the physical and engineering sciences. We describe a collection of MATLAB functions to construct and solve ODEs for deterministic simulation and to implement realisations of CMEs for stochastic simulation using advanced MATLAB coding (Release 14). The program was successfully applied to pathway models from the literature for both cases. The results were compared to implementations using alternative tools for dynamic modelling and simulation of biochemical networks. The aim is to provide a concise set of MATLAB functions that encourage the experimentation with systems biology models. All the script files are available from www.sbi.uni-rostock.de/ publications_matlab-paper.html.

  7. Trick Simulation Environment 07

    Science.gov (United States)

    Lin, Alexander S.; Penn, John M.

    2012-01-01

    The Trick Simulation Environment is a generic simulation toolkit used for constructing and running simulations. This release includes a Monte Carlo analysis simulation framework and a data analysis package. It produces all auto documentation in XML. Also, the software is capable of inserting a malfunction at any point during the simulation. Trick 07 adds variable server output options and error messaging and is capable of using and manipulating wide characters for international support. Wide character strings are available as a fundamental type for variables processed by Trick. A Trick Monte Carlo simulation uses a statistically generated, or predetermined, set of inputs to iteratively drive the simulation. Also, there is a framework in place for optimization and solution finding where developers may iteratively modify the inputs per run based on some analysis of the outputs. The data analysis package is capable of reading data from external simulation packages such as MATLAB and Octave, as well as the common comma-separated values (CSV) format used by Excel, without the use of external converters. The file formats for MATLAB and Octave were obtained from their documentation sets, and Trick maintains generic file readers for each format. XML tags store the fields in the Trick header comments. For header files, XML tags for structures and enumerations, and the members within are stored in the auto documentation. For source code files, XML tags for each function and the calling arguments are stored in the auto documentation. When a simulation is built, a top level XML file, which includes all of the header and source code XML auto documentation files, is created in the simulation directory. Trick 07 provides an XML to TeX converter. The converter reads in header and source code XML documentation files and converts the data to TeX labels and tables suitable for inclusion in TeX documents. A malfunction insertion capability allows users to override the value of any

  8. Training Simulator for Extreme Environments

    OpenAIRE

    Nazir, Salman; Manca, Davide; Komulainen, Tiina M.; Øvergård, Kjell Ivar

    2015-01-01

    - Current technological advancements have enabled the achievement of excellence in design of training simulators. This work highlights the challenges faced by operators in extreme environments and harsh conditions in an attempt to underpin the necessary features of extreme training simulators.

  9. Training Simulator for Extreme Environments

    OpenAIRE

    Nazir, Salman; Manca, Davide; Komulainen, Tiina M.; Øvergård, Kjell Ivar

    2015-01-01

    Current technological advancements have enabled the achievement of excellence in design of training simulators. This work highlights the challenges faced by operators in extreme environments and harsh conditions in an attempt to underpin the necessary features of extreme training simulators.

  10. Biochemical Network Stochastic Simulator (BioNetS: software for stochastic modeling of biochemical networks

    Directory of Open Access Journals (Sweden)

    Elston Timothy C

    2004-03-01

    Full Text Available Abstract Background Intrinsic fluctuations due to the stochastic nature of biochemical reactions can have large effects on the response of biochemical networks. This is particularly true for pathways that involve transcriptional regulation, where generally there are two copies of each gene and the number of messenger RNA (mRNA molecules can be small. Therefore, there is a need for computational tools for developing and investigating stochastic models of biochemical networks. Results We have developed the software package Biochemical Network Stochastic Simulator (BioNetS for efficientlyand accurately simulating stochastic models of biochemical networks. BioNetS has a graphical user interface that allows models to be entered in a straightforward manner, and allows the user to specify the type of random variable (discrete or continuous for each chemical species in the network. The discrete variables are simulated using an efficient implementation of the Gillespie algorithm. For the continuous random variables, BioNetS constructs and numerically solvesthe appropriate chemical Langevin equations. The software package has been developed to scale efficiently with network size, thereby allowing large systems to be studied. BioNetS runs as a BioSpice agent and can be downloaded from http://www.biospice.org. BioNetS also can be run as a stand alone package. All the required files are accessible from http://x.amath.unc.edu/BioNetS. Conclusions We have developed BioNetS to be a reliable tool for studying the stochastic dynamics of large biochemical networks. Important features of BioNetS are its ability to handle hybrid models that consist of both continuous and discrete random variables and its ability to model cell growth and division. We have verified the accuracy and efficiency of the numerical methods by considering several test systems.

  11. Instructional environments for simulations.

    NARCIS (Netherlands)

    van Berkum, J.J.A.; de Jong, T.

    1991-01-01

    The use of computer simulations in education and training can have substantial advantages over other approaches. In comparison with alternatives such as textbooks, lectures, and tutorial courseware, a simulation-based approach offers the opportunity to learn in a relatively realistic problem-solving

  12. Instructional environments for simulations

    NARCIS (Netherlands)

    van Berkum, Jos J.A.; de Jong, Anthonius J.M.

    1991-01-01

    The use of computer simulations in education and training can have substantial advantages over other approaches. In comparison with alternatives such as textbooks, lectures, and tutorial courseware, a simulation-based approach offers the opportunity to learn in a relatively realistic problem-solving

  13. Biochemical markers for the assessment of aquatic environment contamination

    Science.gov (United States)

    Havelková, Marcela; Randák, Tomáš; Blahová, Jana; Slatinská, Iveta; Svobodová, Zdeňka

    2008-01-01

    The need for assessment of aquatic ecosystem contamination and of its impact on water dwelling organisms was developed in response to rising aquatic environmental pollution. In this field study, liver enzymes of phase I and phase II of xenobiotic transformation, namely cytochrome P450, ethoxyresorufin-O-deethylase, glutathione-S-transferase and tripeptide glutathione were used to assess the contamination of the aquatic environment at different rivers in the Czech Republic. The indicator species selected was the male chub (Leuciscus cephalus L.) and male brown trout (Salmo trutta fario). Chemical analyses included also the assessment of the most important inductors of previously mentioned biochemical markers. The major inductors of monitored biomarkers are industrial contaminants which belong to a large group of organic pollutants (PCB, PAH, PCDD/F, DDT, HCH, HCB and OCS), persistent in the environment. Four different groups of river basins were assessed: the River Tichá Orlice and its tributary the Kralický brook; important tributaries of the River Elbe (the rivers Orlice, Chrudimka, Cidlina, Jizera, Vltava, Ohře and Bílina); major rivers in the Czech Republic (the rivers Lužnice, Otava, Sázava, Berounka, Vltava, Labe, Ohře, Svratka, Dyje, Morava and Odra) and the River Vltava. The use of the biochemical markers together with chemical analyses seems to be an effective way to monitor the quality of aquatic environment. PMID:21218108

  14. Final Technical Report "Multiscale Simulation Algorithms for Biochemical Systems"

    Energy Technology Data Exchange (ETDEWEB)

    Petzold, Linda R.

    2012-10-25

    Biochemical systems are inherently multiscale and stochastic. In microscopic systems formed by living cells, the small numbers of reactant molecules can result in dynamical behavior that is discrete and stochastic rather than continuous and deterministic. An analysis tool that respects these dynamical characteristics is the stochastic simulation algorithm (SSA, Gillespie, 1976), a numerical simulation procedure that is essentially exact for chemical systems that are spatially homogeneous or well stirred. Despite recent improvements, as a procedure that simulates every reaction event, the SSA is necessarily inefficient for most realistic problems. There are two main reasons for this, both arising from the multiscale nature of the underlying problem: (1) stiffness, i.e. the presence of multiple timescales, the fastest of which are stable; and (2) the need to include in the simulation both species that are present in relatively small quantities and should be modeled by a discrete stochastic process, and species that are present in larger quantities and are more efficiently modeled by a deterministic differential equation (or at some scale in between). This project has focused on the development of fast and adaptive algorithms, and the fun- damental theory upon which they must be based, for the multiscale simulation of biochemical systems. Areas addressed by this project include: (1) Theoretical and practical foundations for ac- celerated discrete stochastic simulation (tau-leaping); (2) Dealing with stiffness (fast reactions) in an efficient and well-justified manner in discrete stochastic simulation; (3) Development of adaptive multiscale algorithms for spatially homogeneous discrete stochastic simulation; (4) Development of high-performance SSA algorithms.

  15. Coarse-graining stochastic biochemical networks: adiabaticity and fast simulations

    Energy Technology Data Exchange (ETDEWEB)

    Nemenman, Ilya [Los Alamos National Laboratory; Sinitsyn, Nikolai [Los Alamos National Laboratory; Hengartner, Nick [Los Alamos National Laboratory

    2008-01-01

    We propose a universal approach for analysis and fast simulations of stiff stochastic biochemical kinetics networks, which rests on elimination of fast chemical species without a loss of information about mesoscoplc, non-Poissonian fluctuations of the slow ones. Our approach, which is similar to the Born-Oppenhelmer approximation in quantum mechanics, follows from the stochastic path Integral representation of the cumulant generating function of reaction events. In applications with a small number of chemIcal reactions, It produces analytical expressions for cumulants of chemical fluxes between the slow variables. This allows for a low-dimensional, Interpretable representation and can be used for coarse-grained numerical simulation schemes with a small computational complexity and yet high accuracy. As an example, we derive the coarse-grained description for a chain of biochemical reactions, and show that the coarse-grained and the microscopic simulations are in an agreement, but the coarse-gralned simulations are three orders of magnitude faster.

  16. Simulation methods with extended stability for stiff biochemical Kinetics

    Directory of Open Access Journals (Sweden)

    Rué Pau

    2010-08-01

    Full Text Available Abstract Background With increasing computer power, simulating the dynamics of complex systems in chemistry and biology is becoming increasingly routine. The modelling of individual reactions in (biochemical systems involves a large number of random events that can be simulated by the stochastic simulation algorithm (SSA. The key quantity is the step size, or waiting time, τ, whose value inversely depends on the size of the propensities of the different channel reactions and which needs to be re-evaluated after every firing event. Such a discrete event simulation may be extremely expensive, in particular for stiff systems where τ can be very short due to the fast kinetics of some of the channel reactions. Several alternative methods have been put forward to increase the integration step size. The so-called τ-leap approach takes a larger step size by allowing all the reactions to fire, from a Poisson or Binomial distribution, within that step. Although the expected value for the different species in the reactive system is maintained with respect to more precise methods, the variance at steady state can suffer from large errors as τ grows. Results In this paper we extend Poisson τ-leap methods to a general class of Runge-Kutta (RK τ-leap methods. We show that with the proper selection of the coefficients, the variance of the extended τ-leap can be well-behaved, leading to significantly larger step sizes. Conclusions The benefit of adapting the extended method to the use of RK frameworks is clear in terms of speed of calculation, as the number of evaluations of the Poisson distribution is still one set per time step, as in the original τ-leap method. The approach paves the way to explore new multiscale methods to simulate (biochemical systems.

  17. Simulation of stratospheric balloon environment

    International Nuclear Information System (INIS)

    Sable, C.

    1974-01-01

    The behavior of materials used for the construction of stratospheric balloons is studied at DERTS by means of irradiations performed in reals time and simulating the exact flight environment. Two chambers were designed in the laboratory and are described together with the experimental procedure. In order to reduce cost and save time, it is worth accelerating the simulation when only a preliminary evaluation of the sample's properties is required. For this reason, a systematic study was undertaken in order to evaluate the respective effects of different parameters on the material degradation. The results of this study are given [fr

  18. Tyrosine aminotransferase: biochemical and structural properties and molecular dynamics simulations

    Energy Technology Data Exchange (ETDEWEB)

    Mehere, P.; Robinson, H.; Han, Q.; Lemkul, J. A.; Vavricka, C. J.; Bevan, D. R.; Li, J.

    2010-11-01

    Tyrosine aminotransferase (TAT) catalyzes the transamination of tyrosine and other aromatic amino acids. The enzyme is thought to play a role in tyrosinemia type II, hepatitis and hepatic carcinoma recovery. The objective of this study is to investigate its biochemical and structural characteristics and substrate specificity in order to provide insight regarding its involvement in these diseases. Mouse TAT (mTAT) was cloned from a mouse cDNA library, and its recombinant protein was produced using Escherichia coli cells and purified using various chromatographic techniques. The recombinant mTAT is able to catalyze the transamination of tyrosine using {alpha}-ketoglutaric acid as an amino group acceptor at neutral pH. The enzyme also can use glutamate and phenylalanine as amino group donors and p-hydroxy-phenylpyruvate, phenylpyruvate and alpha-ketocaproic acid as amino group acceptors. Through macromolecular crystallography we have determined the mTAT crystal structure at 2.9 {angstrom} resolution. The crystal structure revealed the interaction between the pyridoxal-5'-phosphate cofactor and the enzyme, as well as the formation of a disulphide bond. The detection of disulphide bond provides some rational explanation regarding previously observed TAT inactivation under oxidative conditions and reactivation of the inactive TAT in the presence of a reducing agent. Molecular dynamics simulations using the crystal structures of Trypanosoma cruzi TAT and human TAT provided further insight regarding the substrate-enzyme interactions and substrate specificity. The biochemical and structural properties of TAT and the binding of its cofactor and the substrate may help in elucidation of the mechanism of TAT inhibition and activation.

  19. Tyrosine Aminotransferase: Biochemical and Structural Properties and Molecular Dynamics Simulations

    Energy Technology Data Exchange (ETDEWEB)

    P Mehere; Q Han; J Lemkul; C Vavricka; H Robinson; D Bevan; J Li

    2011-12-31

    Tyrosine aminotransferase (TAT) catalyzes the transamination of tyrosine and other aromatic amino acids. The enzyme is thought to play a role in tyrosinemia type II, hepatitis and hepatic carcinoma recovery. The objective of this study is to investigate its biochemical and structural characteristics and substrate specificity in order to provide insight regarding its involvement in these diseases. Mouse TAT (mTAT) was cloned from a mouse cDNA library, and its recombinant protein was produced using Escherichia coli cells and purified using various chromatographic techniques. The recombinant mTAT is able to catalyze the transamination of tyrosine using {alpha}-ketoglutaric acid as an amino group acceptor at neutral pH. The enzyme also can use glutamate and phenylalanine as amino group donors and p-hydroxy-phenylpyruvate, phenylpyruvate and alpha-ketocaproic acid as amino group acceptors. Through macromolecular crystallography we have determined the mTAT crystal structure at 2.9 {angstrom} resolution. The crystal structure revealed the interaction between the pyridoxal-5'-phosphate cofactor and the enzyme, as well as the formation of a disulphide bond. The detection of disulphide bond provides some rational explanation regarding previously observed TAT inactivation under oxidative conditions and reactivation of the inactive TAT in the presence of a reducing agent. Molecular dynamics simulations using the crystal structures of Trypanosoma cruzi TAT and human TAT provided further insight regarding the substrate-enzyme interactions and substrate specificity. The biochemical and structural properties of TAT and the binding of its cofactor and the substrate may help in elucidation of the mechanism of TAT inhibition and activation.

  20. Computer Simulation in Predicting Biochemical Processes and Energy Balance at WWTPs

    Science.gov (United States)

    Drewnowski, Jakub; Zaborowska, Ewa; Hernandez De Vega, Carmen

    2018-02-01

    Nowadays, the use of mathematical models and computer simulation allow analysis of many different technological solutions as well as testing various scenarios in a short time and at low financial budget in order to simulate the scenario under typical conditions for the real system and help to find the best solution in design or operation process. The aim of the study was to evaluate different concepts of biochemical processes and energy balance modelling using a simulation platform GPS-x and a comprehensive model Mantis2. The paper presents the example of calibration and validation processes in the biological reactor as well as scenarios showing an influence of operational parameters on the WWTP energy balance. The results of batch tests and full-scale campaign obtained in the former work were used to predict biochemical and operational parameters in a newly developed plant model. The model was extended with sludge treatment devices, including anaerobic digester. Primary sludge removal efficiency was found as a significant factor determining biogas production and further renewable energy production in cogeneration. Water and wastewater utilities, which run and control WWTP, are interested in optimizing the process in order to save environment, their budget and decrease the pollutant emissions to water and air. In this context, computer simulation can be the easiest and very useful tool to improve the efficiency without interfering in the actual process performance.

  1. Computer Simulation in Predicting Biochemical Processes and Energy Balance at WWTPs

    Directory of Open Access Journals (Sweden)

    Drewnowski Jakub

    2018-01-01

    Full Text Available Nowadays, the use of mathematical models and computer simulation allow analysis of many different technological solutions as well as testing various scenarios in a short time and at low financial budget in order to simulate the scenario under typical conditions for the real system and help to find the best solution in design or operation process. The aim of the study was to evaluate different concepts of biochemical processes and energy balance modelling using a simulation platform GPS-x and a comprehensive model Mantis2. The paper presents the example of calibration and validation processes in the biological reactor as well as scenarios showing an influence of operational parameters on the WWTP energy balance. The results of batch tests and full-scale campaign obtained in the former work were used to predict biochemical and operational parameters in a newly developed plant model. The model was extended with sludge treatment devices, including anaerobic digester. Primary sludge removal efficiency was found as a significant factor determining biogas production and further renewable energy production in cogeneration. Water and wastewater utilities, which run and control WWTP, are interested in optimizing the process in order to save environment, their budget and decrease the pollutant emissions to water and air. In this context, computer simulation can be the easiest and very useful tool to improve the efficiency without interfering in the actual process performance.

  2. Simulation of mechanical shock environments

    International Nuclear Information System (INIS)

    Lalanne, Christian.

    1975-07-01

    Shocks can produce a severe mechanical environment which must be taken into account when designing and developing new equipments. After some mathematical (Laplace and Fourier transforms) and mechanical recalls (response of a one degree freedom system to a sinusoidal excitation), different analysis methods are compared, these methods being the most used now to compare relative severities of tests and establish specifications. A few chapter deal with the different properties of simple, easy to produce, shock shapes. Then some now-in-use programmators or shock-machines specifications are shown. A final chapter concerns acceleration transducers [fr

  3. An Integrated Qualitative and Quantitative Biochemical Model Learning Framework Using Evolutionary Strategy and Simulated Annealing.

    Science.gov (United States)

    Wu, Zujian; Pang, Wei; Coghill, George M

    2015-01-01

    Both qualitative and quantitative model learning frameworks for biochemical systems have been studied in computational systems biology. In this research, after introducing two forms of pre-defined component patterns to represent biochemical models, we propose an integrative qualitative and quantitative modelling framework for inferring biochemical systems. In the proposed framework, interactions between reactants in the candidate models for a target biochemical system are evolved and eventually identified by the application of a qualitative model learning approach with an evolution strategy. Kinetic rates of the models generated from qualitative model learning are then further optimised by employing a quantitative approach with simulated annealing. Experimental results indicate that our proposed integrative framework is feasible to learn the relationships between biochemical reactants qualitatively and to make the model replicate the behaviours of the target system by optimising the kinetic rates quantitatively. Moreover, potential reactants of a target biochemical system can be discovered by hypothesising complex reactants in the synthetic models. Based on the biochemical models learned from the proposed framework, biologists can further perform experimental study in wet laboratory. In this way, natural biochemical systems can be better understood.

  4. Engineering virtual environment based training simulators

    NARCIS (Netherlands)

    Jense, G.J.; Kuijper, F.

    1998-01-01

    While the potential of Virtual Environments (VE's) for training simulators has been recognized right from the start of the emergence of the technology, to date most VE systems that claim to be training simulators have been developed in an adhoc fashion. Based on requirements of the Royal Netherlands

  5. Virtual Environments for Advanced Trainers and Simulators

    NARCIS (Netherlands)

    Jense, G.J.; Kuijper, F.

    1993-01-01

    Virtual environment technology is expected to make a big impact on future training and simulation systems. Direct stimulation of human senses (eyesight, auditory, tactile) and new paradigms for user input will improve the realism of simulations and thereby the effectiveness of training systems.

  6. Broadband electromagnetic environments simulator (EMES)

    International Nuclear Information System (INIS)

    Pollard, N.

    1977-01-01

    A new test facility has been developed by Sandia Laboratories for determining the effects of electromagnetic environments on systems and components. The facility is capable of producing uniform, vertically polarized, continuous wave (CW) and pulsed fields over the frequency range of dc to 10 GHz. This broadband capability addresses the electromagnetic radiation (EMR) threat and is ideally suited to computer controlled sweeping and data acquisition. EMES is also capable of producing uniform transient fields having the wave shape and magnitude characteristic of a nuclear electromagnetic pulse (EMP) and near lightning. The design consists of a truncated, triplate, rectangular coaxial transmission line. The spacing between the flat center conductor and the ground planes is 4 meters. The line is terminated in its characteristic impedance of 50 ohms. At frequencies below the first resonance of the facility it behaves as a typical coaxial system. Above resonance, a wall of electromagnetic absorbing material provides a nonreflecting termination. Thus, EMES essentially combines the elements of a transmission line and an anechoic chamber. It will not radiate electromagnetic energy into the surrounding area because it is a shielded transmission line

  7. Hybrid deterministic/stochastic simulation of complex biochemical systems.

    Science.gov (United States)

    Lecca, Paola; Bagagiolo, Fabio; Scarpa, Marina

    2017-11-21

    In a biological cell, cellular functions and the genetic regulatory apparatus are implemented and controlled by complex networks of chemical reactions involving genes, proteins, and enzymes. Accurate computational models are indispensable means for understanding the mechanisms behind the evolution of a complex system, not always explored with wet lab experiments. To serve their purpose, computational models, however, should be able to describe and simulate the complexity of a biological system in many of its aspects. Moreover, it should be implemented by efficient algorithms requiring the shortest possible execution time, to avoid enlarging excessively the time elapsing between data analysis and any subsequent experiment. Besides the features of their topological structure, the complexity of biological networks also refers to their dynamics, that is often non-linear and stiff. The stiffness is due to the presence of molecular species whose abundance fluctuates by many orders of magnitude. A fully stochastic simulation of a stiff system is computationally time-expensive. On the other hand, continuous models are less costly, but they fail to capture the stochastic behaviour of small populations of molecular species. We introduce a new efficient hybrid stochastic-deterministic computational model and the software tool MoBioS (MOlecular Biology Simulator) implementing it. The mathematical model of MoBioS uses continuous differential equations to describe the deterministic reactions and a Gillespie-like algorithm to describe the stochastic ones. Unlike the majority of current hybrid methods, the MoBioS algorithm divides the reactions' set into fast reactions, moderate reactions, and slow reactions and implements a hysteresis switching between the stochastic model and the deterministic model. Fast reactions are approximated as continuous-deterministic processes and modelled by deterministic rate equations. Moderate reactions are those whose reaction waiting time is

  8. Biochemical Differences Between Official and Simulated Mixed Martial Arts (MMA) Matches.

    Science.gov (United States)

    Silveira Coswig, Victor; Hideyoshi Fukuda, David; de Paula Ramos, Solange; Boscolo Del Vecchio, Fabricio

    2016-06-01

    One of the goals for training in combat sports is to mimic real situations. For mixed martial arts (MMA), simulated sparring matches are a frequent component during training, but a there is a lack of knowledge considering the differences in sparring and competitive environments. The main objective of this study was to compare biochemical responses to sparring and official MMA matches. Twenty five male professional MMA fighters were evaluated during official events (OFF = 12) and simulated matches (SIM = 13). For both situations, blood samples were taken before (PRE) and immediately after (POST) matches. For statistical analysis, two-way analysis of variance (time x group and time x winner) were used to compare the dependent parametric variables. For non-parametric data, the Kruskal-Wallis test was used and differences were confirmed by Mann-Whitney tests. No significant differences were observed among the groups for demographic variables. The athletes were 26.5 ± 5 years with 80 ± 10 kg, 1.74 ± 0.05 m and had 39.4 ± 25 months of training experience. Primary results indicated higher blood glucose concentration prior to fights for OFF group (OFF= 6.1 ± 1.2 mmol/L and SIM= 4.4 ± 0.7 mmol/L; P < 0.01) and higher ALT values for OFF group at both time points (OFF: PRE = 41.2 ± 12 U/L, POST = 44.2 ± 14.1 U/L; SIM: PRE = 28.1 ± 13.8 U/L, POST = 30.5 ± 12.5 U/L; P = 0.001). In addition, the blood lactate showed similar responses for both groups (OFF: PRE= 4 [3.4 - 4.4] mmol/L, POST= 16.9 [13.8 - 23.5] mmol/L; SIM: PRE = 3.8 [2.8 - 5.5] mmol/L, POST= 16.8 [12.3 - 19.2] mmol/L; P < 0.001). In conclusion, MMA official and simulated matches induce similar high intensity glycolytic demands and minimal changes to biochemical markers of muscle damage immediately following the fights. Glycolytic availability prior to the fights was raised exclusively in response to official matches.

  9. Meta-stochastic simulation of biochemical models for systems and synthetic biology.

    Science.gov (United States)

    Sanassy, Daven; Widera, Paweł; Krasnogor, Natalio

    2015-01-16

    Stochastic simulation algorithms (SSAs) are used to trace realistic trajectories of biochemical systems at low species concentrations. As the complexity of modeled biosystems increases, it is important to select the best performing SSA. Numerous improvements to SSAs have been introduced but they each only tend to apply to a certain class of models. This makes it difficult for a systems or synthetic biologist to decide which algorithm to employ when confronted with a new model that requires simulation. In this paper, we demonstrate that it is possible to determine which algorithm is best suited to simulate a particular model and that this can be predicted a priori to algorithm execution. We present a Web based tool ssapredict that allows scientists to upload a biochemical model and obtain a prediction of the best performing SSA. Furthermore, ssapredict gives the user the option to download our high performance simulator ngss preconfigured to perform the simulation of the queried biochemical model with the predicted fastest algorithm as the simulation engine. The ssapredict Web application is available at http://ssapredict.ico2s.org. It is free software and its source code is distributed under the terms of the GNU Affero General Public License.

  10. Incorporating extrinsic noise into the stochastic simulation of biochemical reactions: A comparison of approaches

    Science.gov (United States)

    Thanh, Vo Hong; Marchetti, Luca; Reali, Federico; Priami, Corrado

    2018-02-01

    The stochastic simulation algorithm (SSA) has been widely used for simulating biochemical reaction networks. SSA is able to capture the inherently intrinsic noise of the biological system, which is due to the discreteness of species population and to the randomness of their reciprocal interactions. However, SSA does not consider other sources of heterogeneity in biochemical reaction systems, which are referred to as extrinsic noise. Here, we extend two simulation approaches, namely, the integration-based method and the rejection-based method, to take extrinsic noise into account by allowing the reaction propensities to vary in time and state dependent manner. For both methods, new efficient implementations are introduced and their efficiency and applicability to biological models are investigated. Our numerical results suggest that the rejection-based method performs better than the integration-based method when the extrinsic noise is considered.

  11. Virtual environment application with partial gravity simulation

    Science.gov (United States)

    Ray, David M.; Vanchau, Michael N.

    1994-01-01

    To support manned missions to the surface of Mars and missions requiring manipulation of payloads and locomotion in space, a training facility is required to simulate the conditions of both partial and microgravity. A partial gravity simulator (Pogo) which uses pneumatic suspension is being studied for use in virtual reality training. Pogo maintains a constant partial gravity simulation with a variation of simulated body force between 2.2 and 10 percent, depending on the type of locomotion inputs. this paper is based on the concept and application of a virtual environment system with Pogo including a head-mounted display and glove. The reality engine consists of a high end SGI workstation and PC's which drive Pogo's sensors and data acquisition hardware used for tracking and control. The tracking system is a hybrid of magnetic and optical trackers integrated for this application.

  12. Morpho-Physiological and Biochemical Criteria of Acanthamoeba spp. Isolated from the Egyptian Aquatic Environment

    Science.gov (United States)

    Al-Herrawy, A; Bahgat, M; Mohammed, A; Ashour, A; Hikal, W

    2013-01-01

    Background The free-living amoebae Acanthamoeba spp., have been recognized as etiologic agents of amoebic encephalitis, keratitis, otitis, lung lesions and other skin infections mainly in immuno-compromised individuals. In this study, morpho-physiological and biochemical characterization of Acanthamoeba strains isolated from the Egyptian aquatic environment were surveyed. Methods Some Acanthamoeba species were cultivated on non-nutrient agar. Isolated strains of Acanthamoeba were identification based on the morphology of trophic and cyst forms in addition to temperature and osmo-tolerance assays. Biochemical characterization of the isolated amoeba strains was performed using quantitative assay as well as qualitative determination of proteolytic activity in zymograph analysis. Results Potentially pathogenic Acanthamoeba species were isolated from all of the examined water sources. Colorimetric assays showed protease activity in the heat-tolerant isolates of Acanthamoeba. All pathogenic isolates of Acanthamoeba exhibited higher protease activity than did the non-pathogenic ones. The zymographic protease assays showed various banding patterns for different strains of Acanthamoeba. Conclusion The incidence and prevalence of the pathogenic Acanthamoeba species in the aquatic environment using parasitological and biochemical diagnostic tools will provide baseline data against which the risk factors associated with waterborne transmission can be identified. PMID:23914245

  13. Engineering virtual-environment-based training simulators

    Science.gov (United States)

    Jense, Hans; Kuijper, Frido

    1998-04-01

    While the potential of Virtual Environments (VE's) for training simulators has been recognized right from the start of the emergence of the technology, to date most VE systems that claim to be training simulators have been developed in an adhoc fashion. Based on requirements of the Royal Netherlands Army and Air Force, we have recently developed VE based training simulators following basic systems engineering practice. This paper reports on our approach in general, and specifically focuses on two examples. The first is a distributed VE system for training Forward Air Controllers (FAC's). This system comprises an immersive VE for the FAC trainee, as well as a number of other components, all interconnected in a network infrastructure utilizing the DIS/HLA standard protocols for distributed simulation. The prototype VE FAC simulator is currently being used in the training program of the Netherlands Integrated Air/Ground Operations School. Feedback from the users is being collected as input for a follow-on development activity. A second development is aimed at the evaluation of VE technology for training gunnery procedures with the Stinger man-portable air-defense system. In this project, a system is being developed that enables us to evaluate a number of different configurations with respect to both human and systems performance characteristics.

  14. Environmental simulation within a virtual environment

    Science.gov (United States)

    Huang, Bo; Claramunt, Christophe

    Visualization has been an integral part of environmental simulation to facilitate comprehension of complex environmental processes. Traditionally, data analysis and visualization are often considered and performed as post-processing steps after a simulation has been run. Despite the advantage of these approaches, any user interaction with the model computation is often not allowed. This paper introduces an alternative approach to exploring an environmental model, TOPMODEL, where the model-supported simulation process can be visualized, controlled and tuned through interactive steering in a 3D virtual environment. This virtual environment can run on a WEB browser and is developed using the component software technology, which allows users to assemble modeling and visualization components with flexibility. The 3D visualization of the model is accomplished by Java/VRML interaction through the External Authoring Interface (EAI). The interaction through process steering enables users to experiment with model computation and observe the model behavior through dynamic 3D graphics, thereby enhancing investigation of the dynamic environmental process. The performance of the Java/VRML approach has also been examined through the comparison with the Java 3D and the conventional 2D approaches.

  15. Manual materials handling in simulated motion environments.

    Science.gov (United States)

    Holmes, Michael W; MacKinnon, Scott N; Matthews, Julie; Albert, Wayne J; Mills, Steven

    2008-05-01

    Seafaring occupations have been shown to place operators at an increased risk for injury. The purpose of this study was to understand better the demands of a moving environment on the ability of a person to perform specific lifting tasks. Subjects lifted a 15-kg load under four different lifting conditions. A 6-degree-of-freedom ship motion simulator imposed repeatable deck motions under foot while subjects executed the lifting tasks. Subjects were oriented in three different positions on the simulator floor to inflict different motion profiles. Electromyographic records of four muscles were collected bilaterally, and thoracolumbar kinematics were measured. A repeated-measures ANOVA was employed to assess trunk motions and muscle activities across lifting and motion conditions. The erector spinae muscles showed a trend toward significant differences for motion effects. Maximal sagittal velocities were significantly smaller for all motion states in comparison with the stable condition (p environment will likely increase the operator's risk for overexertion injuries, particularly to the trunk region.

  16. Cell survival in a simulated Mars environment

    Science.gov (United States)

    Todd, Paul; Kurk, Michael Andy; Boland, Eugene; Thomas, David

    2016-07-01

    The most ancient life forms on earth date back comfortably to the time when liquid water was believed to be abundant on Mars. These ancient life forms include cyanobacteria, contemporary autotrophic earth organisms believed to have descended from ancestors present as long as 3.5 billion years ago. Contemporary cyanobacteria have adapted to the earth environment's harshest conditions (long-term drying, high and low temperature), and, being autotrophic, they are among the most likely life forms to withstand space travel and the Mars environment. However, it is unlikely that humans would unwittingly contaminate a planetary spacecraft with these microbes. One the other hand, heterotrophic microbes that co-habit with humans are more likely spacecraft contaminants, as history attests. Indeed, soil samples from the Atacama desert have yielded colony-forming organisms resembling enteric bacteria. There is a need to understand the survivability of cyanobacteria (likely survivors, unlikely contaminants) and heterotrophic eubacteria (unlikely survivors, likely contaminants) under simulated planetary conditions. A 35-day test was performed in a commercial planetary simulation system (Techshot, Inc., Greenville, IN) in which the minimum night-time temperature was -80 C, the maximum daytime temperature was +26 C, the simulated day-night light cycle in earth hours was 12-on and 12-off, and the total pressure of the pure CO _{2} atmosphere was maintained below 11 mbar. Any water present was allowed to equilibrate with the changing temperature and pressure. The gas phase was sampled into a CR1-A low-pressure hygrometer (Buck Technologies, Boulder, CO), and dew/frost point was measured once every hour and recorded on a data logger, along with the varying temperature in the chamber, from which the partial pressure of water was calculated. According to measurements there was no liquid water present throughout the test except during the initial pump-down period when aqueous specimens

  17. Efficient simulation of intrinsic, extrinsic and external noise in biochemical systems.

    Science.gov (United States)

    Pischel, Dennis; Sundmacher, Kai; Flassig, Robert J

    2017-07-15

    Biological cells operate in a noisy regime influenced by intrinsic, extrinsic and external noise, which leads to large differences of individual cell states. Stochastic effects must be taken into account to characterize biochemical kinetics accurately. Since the exact solution of the chemical master equation, which governs the underlying stochastic process, cannot be derived for most biochemical systems, approximate methods are used to obtain a solution. In this study, a method to efficiently simulate the various sources of noise simultaneously is proposed and benchmarked on several examples. The method relies on the combination of the sigma point approach to describe extrinsic and external variability and the τ -leaping algorithm to account for the stochasticity due to probabilistic reactions. The comparison of our method to extensive Monte Carlo calculations demonstrates an immense computational advantage while losing an acceptable amount of accuracy. Additionally, the application to parameter optimization problems in stochastic biochemical reaction networks is shown, which is rarely applied due to its huge computational burden. To give further insight, a MATLAB script is provided including the proposed method applied to a simple toy example of gene expression. MATLAB code is available at Bioinformatics online. flassig@mpi-magdeburg.mpg.de. Supplementary data are available at Bioinformatics online. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

  18. Computer simulation of spacecraft/environment interaction

    CERN Document Server

    Krupnikov, K K; Mileev, V N; Novikov, L S; Sinolits, V V

    1999-01-01

    This report presents some examples of a computer simulation of spacecraft interaction with space environment. We analysed a set data on electron and ion fluxes measured in 1991-1994 on geostationary satellite GORIZONT-35. The influence of spacecraft eclipse and device eclipse by solar-cell panel on spacecraft charging was investigated. A simple method was developed for an estimation of spacecraft potentials in LEO. Effects of various particle flux impact and spacecraft orientation are discussed. A computer engineering model for a calculation of space radiation is presented. This model is used as a client/server model with WWW interface, including spacecraft model description and results representation based on the virtual reality markup language.

  19. Computer simulation of spacecraft/environment interaction

    International Nuclear Information System (INIS)

    Krupnikov, K.K.; Makletsov, A.A.; Mileev, V.N.; Novikov, L.S.; Sinolits, V.V.

    1999-01-01

    This report presents some examples of a computer simulation of spacecraft interaction with space environment. We analysed a set data on electron and ion fluxes measured in 1991-1994 on geostationary satellite GORIZONT-35. The influence of spacecraft eclipse and device eclipse by solar-cell panel on spacecraft charging was investigated. A simple method was developed for an estimation of spacecraft potentials in LEO. Effects of various particle flux impact and spacecraft orientation are discussed. A computer engineering model for a calculation of space radiation is presented. This model is used as a client/server model with WWW interface, including spacecraft model description and results representation based on the virtual reality markup language

  20. Human Performance in Simulated Reduced Gravity Environments

    Science.gov (United States)

    Cowley, Matthew; Harvill, Lauren; Rajulu, Sudhakar

    2014-01-01

    NASA is currently designing a new space suit capable of working in deep space and on Mars. Designing a suit is very difficult and often requires trade-offs between performance, cost, mass, and system complexity. Our current understanding of human performance in reduced gravity in a planetary environment (the moon or Mars) is limited to lunar observations, studies from the Apollo program, and recent suit tests conducted at JSC using reduced gravity simulators. This study will look at our most recent reduced gravity simulations performed on the new Active Response Gravity Offload System (ARGOS) compared to the C-9 reduced gravity plane. Methods: Subjects ambulated in reduced gravity analogs to obtain a baseline for human performance. Subjects were tested in lunar gravity (1.6 m/sq s) and Earth gravity (9.8 m/sq s) in shirt-sleeves. Subjects ambulated over ground at prescribed speeds on the ARGOS, but ambulated at a self-selected speed on the C-9 due to time limitations. Subjects on the ARGOS were given over 3 minutes to acclimate to the different conditions before data was collected. Nine healthy subjects were tested in the ARGOS (6 males, 3 females, 79.5 +/- 15.7 kg), while six subjects were tested on the C-9 (6 males, 78.8 +/- 11.2 kg). Data was collected with an optical motion capture system (Vicon, Oxford, UK) and was analyzed using customized analysis scripts in BodyBuilder (Vicon, Oxford, UK) and MATLAB (MathWorks, Natick, MA, USA). Results: In all offloaded conditions, variation between subjects increased compared to 1-g. Kinematics in the ARGOS at lunar gravity resembled earth gravity ambulation more closely than the C-9 ambulation. Toe-off occurred 10% earlier in both reduced gravity environments compared to earth gravity, shortening the stance phase. Likewise, ankle, knee, and hip angles remained consistently flexed and had reduced peaks compared to earth gravity. Ground reaction forces in lunar gravity (normalized to Earth body weight) were 0.4 +/- 0.2 on

  1. Simulating Chemistry in Star Forming Environments

    Science.gov (United States)

    Gong, Munan

    Chemistry plays an important role in the interstellar medium (ISM), regulating the heating and cooling of the gas and determining abundances of molecular species that trace gas properties in observations. One of the most abundant and important molecules in the ISM is CO. CO is a main coolant for the molecular ISM, and the CO(J = 1 - 0) line emission is a widely used observational tracer for molecular clouds. In Chapter 2, we propose a new simplified chemical network for hydrogen and carbon chemistry in the atomic and molecular ISM. We compare results from our chemical network in detail with results from a full photodissociation region (PDR) code, and also with the Nelson & Langer (NL99) network previously adopted in the simulation literature. We show that our chemical network gives similar results to the PDR code in the equilibrium abundances of all species over a wide range of densities, temperature, and metallicities, whereas the NL99 network shows significant disagreement. We also compare with observations of diffuse and translucent clouds. We find that the CO, CHx and OHx abundances are consistent with equilibrium predictions for densities n = 100 - 1000 cm-3, but the predicted equilibrium CI abundance is higher than observations, signaling the potential importance of non-equilibrium/dynamical effects. In Chapter 3, we apply our new chemistry network to a study of the XCO conversion factor, which is used to convert the CO luminosity to the total H2 mass. We use numerical simulations to investigate how XCO depends on numerical resolution, non-equilibrium chemistry, physical environment, and observational beam size. Our study employs 3D magnetohydrodynamics (MHD) simulations of galactic disks with solar neighborhood conditions, where star formation and the three-phase interstellar medium (ISM) is self-consistently generated by the interaction between gravity and stellar feedback. Synthetic CO maps are obtained by post-processing the MHD simulations with chemistry

  2. Biochemical Effects of Carbohydrate Supplementation in a Simulated Competition of Short Terrestrial Duathlon

    Directory of Open Access Journals (Sweden)

    Campbell Bill

    2006-12-01

    Full Text Available Abstract The purpose of the present study was to investigate the biochemical effects of carbohydrate supplementation in a simulated competition of short terrestrial duathlon. Ten duathletes participated in a simulated competition of short terrestrial duathlon 30 minutes after the ingestion of a 6% (30 g/500 ml maltodextrin solution (MALT or a placebo (PLA. This solution was also ingested every 15 minutes during the competition (12 g/200 ml; and immediately after the competition (18 g/300 ml. Samples of blood were collected at 3 time points: 1 at rest 1 hour before the beginning of the competition; 2 during the competition (approximately 1 hour and 45 minutes after the 1st collection; 3 immediately after the competition. Blood was analyzed for blood glucose, lactate, insulin and cortisol. Significant differences were observed in relation to blood glucose levels between MALT and PLA in the post-competition phase. There was also a significant difference in the lactate levels observed between MALT and PLA during the competition phase. Similarly, a significant difference in the cortisol concentrations during and after the competition phases (MALT and PLA were observed. We conclude that maltodextrin supplementation appears to be beneficial during short terrestrial duathlon competition as evidenced by biochemical markers.

  3. Simulators and the simulation environment: getting the balance right in simulation-based surgical education.

    Science.gov (United States)

    Sadideen, Hazim; Hamaoui, Karim; Saadeddin, Munir; Kneebone, Roger

    2012-01-01

    Simulation occupies a central position in surgical education. It offers a safe environment for trainees to develop and improve their skills through sustained deliberate self-practice and appropriate feedback. This review explores the role of simulators and the simulation environment in light of educational theory to promote effective learning. Information was obtained from peer-reviewed publications, books and online material. A simplistic perspective frames simulation as a means of gaining technical skills on basic models by offering a safe alternative to carrying out procedures on real patients. Although necessary, that aspect of simulation requires greater depth to satisfy the growing demand for alternatives to traditional clinical learning. A more realistic view should frame simulation as a means to gaining mastery within a complex clinical world. In order to strike the balance on simulating an ideal clinical scenario, alignment of the simulator and the simulation environment in the appropriate context appears crucial. Copyright © 2012 Surgical Associates Ltd. Published by Elsevier Ltd. All rights reserved.

  4. Watershed modeling of dissolved oxygen and biochemical oxygen demand using a hydrological simulation Fortran program.

    Science.gov (United States)

    Liu, Zhijun; Kieffer, Janna M; Kingery, William L; Huddleston, David H; Hossain, Faisal

    2007-11-01

    Several inland water bodies in the St. Louis Bay watershed have been identified as being potentially impaired due to low level of dissolved oxygen (DO). In order to calculate the total maximum daily loads (TMDL), a standard watershed model supported by U.S. Environmental Protection Agency, Hydrological Simulation Program Fortran (HSPF), was used to simulate water temperature, DO, and bio-chemical oxygen demand (BOD). Both point and non-point sources of BOD were included in watershed modeling. The developed model was calibrated at two time periods: 1978 to 1986 and 2000 to 2001 with simulated DO closely matched the observed data and captured the seasonal variations. The model represented the general trend and average condition of observed BOD. Water temperature and BOD decay are the major factors that affect DO simulation, whereas nutrient processes, including nitrification, denitrification, and phytoplankton cycle, have slight impacts. The calibrated water quality model provides a representative linkage between the sources of BOD and in-stream DO\\BOD concentrations. The developed input parameters in this research could be extended to similar coastal watersheds for TMDL determination and Best Management Practice (BMP) evaluation.

  5. Space environment simulation and sensor calibration facility

    Science.gov (United States)

    Engelhart, Daniel P.; Patton, James; Plis, Elena; Cooper, Russell; Hoffmann, Ryan; Ferguson, Dale; Hilmer, Robert V.; McGarity, John; Holeman, Ernest

    2018-02-01

    The Mumbo space environment simulation chamber discussed here comprises a set of tools to calibrate a variety of low flux, low energy electron and ion detectors used in satellite-mounted particle sensors. The chamber features electron and ion beam sources, a Lyman-alpha ultraviolet lamp, a gimbal table sensor mounting system, cryogenic sample mount and chamber shroud, and beam characterization hardware and software. The design of the electron and ion sources presented here offers a number of unique capabilities for space weather sensor calibration. Both sources create particle beams with narrow, well-characterized energetic and angular distributions with beam diameters that are larger than most space sensor apertures. The electron and ion sources can produce consistently low fluxes that are representative of quiescent space conditions. The particle beams are characterized by 2D beam mapping with several co-located pinhole aperture electron multipliers to capture relative variation in beam intensity and a large aperture Faraday cup to measure absolute current density.

  6. Innovative Training Concepts for Use in Distributed Interactive Simulation Environments

    Science.gov (United States)

    1993-03-22

    simulation environments for training, part ydisributed intemacive simulation DIS) environments, innovative training concepts are needed to capitalize fully...the powerful role that simulation environments can piay in trwining derived from the FBC research program. These concepts were formulated to capitalize ...field training, the General Accounting Office (GAO, 1991) sUma I the commnon training shortfalls identified by CALL based on their analysis of lessons

  7. Analysis and Selection of the Simulation Environment

    OpenAIRE

    Giulioni, Gianfranco; Zini, Floriano

    2005-01-01

    This document provides the initial report of the Simulation work package (Work Package 4,WP4) of the CATNETS project. It contains an analisys of the requirements for a simulation tool to be used in CATNETS and an evaluation of a number of grid and general purpose simulators with respect to the selected requirements. A reasoned choice of a suitable simulator is performed based on the evaluation conducted. Diese Arbeit analysiert die Anforderungen an eine Simulationsumgebung für die Analyse ...

  8. Cyto-Sim: a formal language model and stochastic simulator of membrane-enclosed biochemical processes.

    Science.gov (United States)

    Sedwards, Sean; Mazza, Tommaso

    2007-10-15

    Compartments and membranes are the basis of cell topology and more than 30% of the human genome codes for membrane proteins. While it is possible to represent compartments and membrane proteins in a nominal way with many mathematical formalisms used in systems biology, few, if any, explicitly model the topology of the membranes themselves. Discrete stochastic simulation potentially offers the most accurate representation of cell dynamics. Since the details of every molecular interaction in a pathway are often not known, the relationship between chemical species in not necessarily best described at the lowest level, i.e. by mass action. Simulation is a form of computer-aided analysis, relying on human interpretation to derive meaning. To improve efficiency and gain meaning in an automatic way, it is necessary to have a formalism based on a model which has decidable properties. We present Cyto-Sim, a stochastic simulator of membrane-enclosed hierarchies of biochemical processes, where the membranes comprise an inner, outer and integral layer. The underlying model is based on formal language theory and has been shown to have decidable properties (Cavaliere and Sedwards, 2006), allowing formal analysis in addition to simulation. The simulator provides variable levels of abstraction via arbitrary chemical kinetics which link to ordinary differential equations. In addition to its compact native syntax, Cyto-Sim currently supports models described as Petri nets, can import all versions of SBML and can export SBML and MATLAB m-files. Cyto-Sim is available free, either as an applet or a stand-alone Java program via the web page (http://www.cosbi.eu/Rpty_Soft_CytoSim.php). Other versions can be made available upon request.

  9. STSE: Spatio-Temporal Simulation Environment Dedicated to Biology

    Directory of Open Access Journals (Sweden)

    Gerber Susanne

    2011-04-01

    Full Text Available Abstract Background Recently, the availability of high-resolution microscopy together with the advancements in the development of biomarkers as reporters of biomolecular interactions increased the importance of imaging methods in molecular cell biology. These techniques enable the investigation of cellular characteristics like volume, size and geometry as well as volume and geometry of intracellular compartments, and the amount of existing proteins in a spatially resolved manner. Such detailed investigations opened up many new areas of research in the study of spatial, complex and dynamic cellular systems. One of the crucial challenges for the study of such systems is the design of a well stuctured and optimized workflow to provide a systematic and efficient hypothesis verification. Computer Science can efficiently address this task by providing software that facilitates handling, analysis, and evaluation of biological data to the benefit of experimenters and modelers. Results The Spatio-Temporal Simulation Environment (STSE is a set of open-source tools provided to conduct spatio-temporal simulations in discrete structures based on microscopy images. The framework contains modules to digitize, represent, analyze, and mathematically model spatial distributions of biochemical species. Graphical user interface (GUI tools provided with the software enable meshing of the simulation space based on the Voronoi concept. In addition, it supports to automatically acquire spatial information to the mesh from the images based on pixel luminosity (e.g. corresponding to molecular levels from microscopy images. STSE is freely available either as a stand-alone version or included in the linux live distribution Systems Biology Operational Software (SB.OS and can be downloaded from http://www.stse-software.org/. The Python source code as well as a comprehensive user manual and video tutorials are also offered to the research community. We discuss main concepts

  10. STSE: Spatio-Temporal Simulation Environment Dedicated to Biology.

    Science.gov (United States)

    Stoma, Szymon; Fröhlich, Martina; Gerber, Susanne; Klipp, Edda

    2011-04-28

    Recently, the availability of high-resolution microscopy together with the advancements in the development of biomarkers as reporters of biomolecular interactions increased the importance of imaging methods in molecular cell biology. These techniques enable the investigation of cellular characteristics like volume, size and geometry as well as volume and geometry of intracellular compartments, and the amount of existing proteins in a spatially resolved manner. Such detailed investigations opened up many new areas of research in the study of spatial, complex and dynamic cellular systems. One of the crucial challenges for the study of such systems is the design of a well stuctured and optimized workflow to provide a systematic and efficient hypothesis verification. Computer Science can efficiently address this task by providing software that facilitates handling, analysis, and evaluation of biological data to the benefit of experimenters and modelers. The Spatio-Temporal Simulation Environment (STSE) is a set of open-source tools provided to conduct spatio-temporal simulations in discrete structures based on microscopy images. The framework contains modules to digitize, represent, analyze, and mathematically model spatial distributions of biochemical species. Graphical user interface (GUI) tools provided with the software enable meshing of the simulation space based on the Voronoi concept. In addition, it supports to automatically acquire spatial information to the mesh from the images based on pixel luminosity (e.g. corresponding to molecular levels from microscopy images). STSE is freely available either as a stand-alone version or included in the linux live distribution Systems Biology Operational Software (SB.OS) and can be downloaded from http://www.stse-software.org/. The Python source code as well as a comprehensive user manual and video tutorials are also offered to the research community. We discuss main concepts of the STSE design and workflow. We

  11. Distance Discrimination Thresholds During Flight Simulation in a Maritime Environment

    Science.gov (United States)

    2011-11-01

    UNCLASSIFIED Distance Discrimination Thresholds During Flight Simulation in a Maritime Environment Jessica Parker Air Operations...Distance Discrimination Thresholds During Flight Simulation in a Maritime Environment Executive Summary The Aeronautical Design Standard...position to be perceived. This minimum distance was defined as the distance discrimination threshold. For both high and low sea states, the thresholds

  12. Simulation based Virtual Learning Environment in Medical Genetics Counseling

    DEFF Research Database (Denmark)

    Makransky, Guido; Bonde, Mads Tvillinggaard; Wulff, Julie S. G.

    2016-01-01

    Background: Simulation based learning environments are designed to improve the quality of medical education by allowing students to interact with patients, diagnostic laboratory procedures, and patient data in a virtual environment. However, few studies have evaluated whether simulation based...... in medicine, received a 2-hour training session in a simulation based learning environment. The main outcomes were pre- to post- changes in knowledge, intrinsic motivation, and self-efficacy, together with post-intervention evaluation of the effect of the simulation on student understanding of everyday...... feel more confident counseling a patient after the simulation. Conclusions: The simulation based learning environment increased students’ learning, intrinsic motivation, and self-efficacy (although the strength of these effects differed depending on their pre-test knowledge), and increased...

  13. Biochemical process of low level radioactive liquid simulation waste containing detergent

    International Nuclear Information System (INIS)

    Kundari, Noor Anis; Putra, Sugili; Mukaromah, Umi

    2015-01-01

    Research of biochemical process of low level radioactive liquid waste containing detergent has been done. Thse organic liquid wastes are generated in nuclear facilities such as from laundry. The wastes that are cotegorized as hazard and poison materials are also radioactive. It must be treated properly by detoxification of the hazard and decontamination of the radionuclides to ensure that the disposal of the waste meets the requirement of standard quality of water. This research was intended to determine decontamination factor and separation efficiensies, its kinetics law, and to produce a supernatant that ensured the environmental quality standard. The radioactive element in the waste was thorium with activity of 5.10 −5 Ci/m 3 . The radioactive liquid waste which were generated in simulation plant contains detergents that was further processed by aerobic biochemical process using SGB 103 bacteria in a batch reactor equipped with aerators. Two different concentration of samples were processed and analyzed for 212 hours and 183 hours respectively at a room temperature. The product of this process is a liquid phase called as supernatant and solid phase material called sludge. The chemical oxygen demand (COD), biological oxygen demand (BOD), suspended solid (SS), and its alpha activity were analyzed. The results show that the decontamination factor and the separation efficiency of the lower concentration samples are higher compared to the samples with high concentration. Regarding the decontamination factor, the result for 212 hours processing of waste with detergent concentration of 1.496 g/L was 3.496 times, whereas at the detergent concentration of 0.748 g/L was 15.305 times for 183 hours processing. In case of the separation efficiency, the results for both samples were 71.396% and 93.465% respectively. The Bacterial growth kinetics equation follow Monod’s model and the decreasing of COD and BOD were first order with the rate constant of 0.01 hour −1

  14. Biochemical process of low level radioactive liquid simulation waste containing detergent

    Energy Technology Data Exchange (ETDEWEB)

    Kundari, Noor Anis, E-mail: nooranis@batan.go.id; Putra, Sugili; Mukaromah, Umi [Sekolah Tinggi Teknologi Nuklir – Badan Tenaga Nuklir Nasional Jl. Babarsari P.O. BOX 6101 YKBB Yogyakarta 55281 Telp : (0274) 48085, 489716, Fax : (0274) 489715 (Indonesia)

    2015-12-29

    Research of biochemical process of low level radioactive liquid waste containing detergent has been done. Thse organic liquid wastes are generated in nuclear facilities such as from laundry. The wastes that are cotegorized as hazard and poison materials are also radioactive. It must be treated properly by detoxification of the hazard and decontamination of the radionuclides to ensure that the disposal of the waste meets the requirement of standard quality of water. This research was intended to determine decontamination factor and separation efficiensies, its kinetics law, and to produce a supernatant that ensured the environmental quality standard. The radioactive element in the waste was thorium with activity of 5.10{sup −5} Ci/m{sup 3}. The radioactive liquid waste which were generated in simulation plant contains detergents that was further processed by aerobic biochemical process using SGB 103 bacteria in a batch reactor equipped with aerators. Two different concentration of samples were processed and analyzed for 212 hours and 183 hours respectively at a room temperature. The product of this process is a liquid phase called as supernatant and solid phase material called sludge. The chemical oxygen demand (COD), biological oxygen demand (BOD), suspended solid (SS), and its alpha activity were analyzed. The results show that the decontamination factor and the separation efficiency of the lower concentration samples are higher compared to the samples with high concentration. Regarding the decontamination factor, the result for 212 hours processing of waste with detergent concentration of 1.496 g/L was 3.496 times, whereas at the detergent concentration of 0.748 g/L was 15.305 times for 183 hours processing. In case of the separation efficiency, the results for both samples were 71.396% and 93.465% respectively. The Bacterial growth kinetics equation follow Monod’s model and the decreasing of COD and BOD were first order with the rate constant of 0

  15. Biochemical process of low level radioactive liquid simulation waste containing detergent

    Science.gov (United States)

    Kundari, Noor Anis; Putra, Sugili; Mukaromah, Umi

    2015-12-01

    Research of biochemical process of low level radioactive liquid waste containing detergent has been done. Thse organic liquid wastes are generated in nuclear facilities such as from laundry. The wastes that are cotegorized as hazard and poison materials are also radioactive. It must be treated properly by detoxification of the hazard and decontamination of the radionuclides to ensure that the disposal of the waste meets the requirement of standard quality of water. This research was intended to determine decontamination factor and separation efficiensies, its kinetics law, and to produce a supernatant that ensured the environmental quality standard. The radioactive element in the waste was thorium with activity of 5.10-5 Ci/m3. The radioactive liquid waste which were generated in simulation plant contains detergents that was further processed by aerobic biochemical process using SGB 103 bacteria in a batch reactor equipped with aerators. Two different concentration of samples were processed and analyzed for 212 hours and 183 hours respectively at a room temperature. The product of this process is a liquid phase called as supernatant and solid phase material called sludge. The chemical oxygen demand (COD), biological oxygen demand (BOD), suspended solid (SS), and its alpha activity were analyzed. The results show that the decontamination factor and the separation efficiency of the lower concentration samples are higher compared to the samples with high concentration. Regarding the decontamination factor, the result for 212 hours processing of waste with detergent concentration of 1.496 g/L was 3.496 times, whereas at the detergent concentration of 0.748 g/L was 15.305 times for 183 hours processing. In case of the separation efficiency, the results for both samples were 71.396% and 93.465% respectively. The Bacterial growth kinetics equation follow Monod's model and the decreasing of COD and BOD were first order with the rate constant of 0.01 hour-1.

  16. Simulation Platform: a cloud-based online simulation environment.

    Science.gov (United States)

    Yamazaki, Tadashi; Ikeno, Hidetoshi; Okumura, Yoshihiro; Satoh, Shunji; Kamiyama, Yoshimi; Hirata, Yutaka; Inagaki, Keiichiro; Ishihara, Akito; Kannon, Takayuki; Usui, Shiro

    2011-09-01

    For multi-scale and multi-modal neural modeling, it is needed to handle multiple neural models described at different levels seamlessly. Database technology will become more important for these studies, specifically for downloading and handling the neural models seamlessly and effortlessly. To date, conventional neuroinformatics databases have solely been designed to archive model files, but the databases should provide a chance for users to validate the models before downloading them. In this paper, we report our on-going project to develop a cloud-based web service for online simulation called "Simulation Platform". Simulation Platform is a cloud of virtual machines running GNU/Linux. On a virtual machine, various software including developer tools such as compilers and libraries, popular neural simulators such as GENESIS, NEURON and NEST, and scientific software such as Gnuplot, R and Octave, are pre-installed. When a user posts a request, a virtual machine is assigned to the user, and the simulation starts on that machine. The user remotely accesses to the machine through a web browser and carries out the simulation, without the need to install any software but a web browser on the user's own computer. Therefore, Simulation Platform is expected to eliminate impediments to handle multiple neural models that require multiple software. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. CHAVIR: A virtual site simulation environment

    International Nuclear Information System (INIS)

    Leservot, Arnauld; Chodorge, Laurent

    2006-01-01

    In nuclear field, any companies involved in the management and/or the design and performance of an intervention aim at preparing it, by finding the most appropriate scenario(s) under several needs: - Technical requirements: feasibility, kind of means to engage, operating modes, tasks scheduling; - economical requirements: global mission cost minimization; - Environmental requirements: take into account the individual and collective dose rate received by the human operators involved in the intervention(s), according to the ALARA principle. Today, they also must answer complex questions to design their interventions with increasing reactivity and always lowering costs. Besides, they must be brought to answer unexpected situations during the effective realization of their nuclear interventions, and naturally to consolidate their experience feedback of the missions. An interesting way to help them in these different needs consists in taking advantage of simulation. The paper has the following contents: - Introduction; - CHAVIR project; - Goal; - Simulation and virtual reality; - Strategy; - Interactive dose evaluation; - Requirements; - Physical algorithm; - Objects representation; - Calculation optimization; - Interactive mechanical simulation; - First study cases; - Conclusion - prospects. To summarize, the authors succeeded in developing a software simulation tool, helping the users from nuclear field to prepare their interventions. CHAVIR allows interactive evaluation of dose rate, when taking into account real industrial models coming from CAD world. One can also perform mechanical simulations, to address accessibilities issues and design scenario involving either manual tasks of robotic interventions. CHAVIR is already entered the industrialization process. It aims at becoming shortly a commercial software tool for dismantling site simulation, adapted to the professional needs in order to respect the ALARA principle. It should efficiently contribute to optimize

  18. Development of a Smart Grid Simulation Environment

    NARCIS (Netherlands)

    Delamare, J; Bitachon, B.; Peng, Z.; Wang, Y.; Haverkort, Boudewijn R.H.M.; Jongerden, M.R.

    2015-01-01

    With the increased integration of renewable energy sources the interaction between energy producers and consumers has become a bi-directional exchange. Therefore, the electrical grid must be adapted into a smart grid which effectively regulates this two-way interaction. With the aid of simulation,

  19. Genotypic, physiological, and biochemical characterization of potentially pathogenic Acanthamoeba isolated from the environment in Cairo, Egypt.

    Science.gov (United States)

    Tawfeek, Gihan Mostafa; Bishara, Sawsan Abdel-Hamid; Sarhan, Rania Mohammad; ElShabrawi Taher, Eman; ElSaady Khayyal, Amira

    2016-05-01

    Acanthamoebae are the most common opportunistic amphizoic protozoa that cause life-threatening granulomatous amoebic encephalitis in immunocompromised individuals and sight-threatening amoebic keratitis (AK) in contact lens wearers. The present work aimed to determine the presence of Acanthamoeba isolates in different environmental sources: water, soil, and dust in Cairo, Egypt and to characterize the pathogenic potential of the isolated Acanthamoeba using physiological and biochemical assays as well as determination of the genotypes in an attempt to correlate pathogenicity with certain genotypes. The study included the collection of 22 corneal scrapings from patients complaining of symptoms and signs indicative of acanthamoeba keratitis (AK) and 75 environmental samples followed by cultivation on non-nutrient agar plates preseeded with E. coli. Positive samples for Acanthamoeba were subjected to osmo- and thermo-tolerance assays and zymography analysis. Potentially pathogenic isolates were subjected to PCR amplification using genus-specific primer pair. Isolates were classified at the genotype level based on the sequence analysis of Acanthamoeba 18S rRNA gene (diagnostic fragment 3). The total detection rate for Acanthamoeba in environmental samples was 33.3 %, 31.4 % in water, 40 % in soil, and 20 % in dust samples. Three and two Acanthamoeba isolates from water and soil sources, respectively, had the potential for pathogenicity as they exhibited full range of pathogenic traits. Other 12 isolates were designated as weak potential pathogens. Only ten of the environmental isolates were positive in PCR and were classified by genotype analysis into T4 genotype (70 %), T3 (10 %) and T5 (20 %). Potential pathogens belonged to genotypes T4 (from water) and T5 (from soil) while weak potential pathogens belonged to genotypes T3 (from water) and T4 (from water and soil). Additionally, T7 genotype was isolated from keratitis patients. There is a considerable

  20. Fast stochastic simulation of biochemical reaction systems by alternative formulations of the chemical Langevin equation

    KAUST Repository

    Mélykúti, Bence

    2010-01-01

    The Chemical Langevin Equation (CLE), which is a stochastic differential equation driven by a multidimensional Wiener process, acts as a bridge between the discrete stochastic simulation algorithm and the deterministic reaction rate equation when simulating (bio)chemical kinetics. The CLE model is valid in the regime where molecular populations are abundant enough to assume their concentrations change continuously, but stochastic fluctuations still play a major role. The contribution of this work is that we observe and explore that the CLE is not a single equation, but a parametric family of equations, all of which give the same finite-dimensional distribution of the variables. On the theoretical side, we prove that as many Wiener processes are sufficient to formulate the CLE as there are independent variables in the equation, which is just the rank of the stoichiometric matrix. On the practical side, we show that in the case where there are m1 pairs of reversible reactions and m2 irreversible reactions there is another, simple formulation of the CLE with only m1 + m2 Wiener processes, whereas the standard approach uses 2 m1 + m2. We demonstrate that there are considerable computational savings when using this latter formulation. Such transformations of the CLE do not cause a loss of accuracy and are therefore distinct from model reduction techniques. We illustrate our findings by considering alternative formulations of the CLE for a human ether a-go-go related gene ion channel model and the Goldbeter-Koshland switch. © 2010 American Institute of Physics.

  1. Battle Lab Simulation Collaboration Environment (BLSCE): Multipurpose Platform for Simulation C2

    National Research Council Canada - National Science Library

    Dunn, III, Charles; Pressley, Corey S; Sheppard, Arthur

    2006-01-01

    ...) in a closed, distributed, simulation-rich environment. The configuration, maintenance, administrative and security responsibilities have been assigned to the Battle Command Battle Laboratory Gordon (BCBL-G...

  2. HLA component based environment for distributed multiscale simulations

    NARCIS (Netherlands)

    Rycerz, K.; Bubak, M.; Sloot, P.M.A.; Getov, V.

    2008-01-01

    In this paper we present the Grid environment that supports application building basing on a High Level Architecture (HLA) component model. The proposed model is particularly suitable for distributed multiscale simulations. Original HLA partly supports interoperability and composability of

  3. Applying virtual environments to training and simulation (abstract)

    NARCIS (Netherlands)

    Jense, G.J.; Kuijper, F.

    1993-01-01

    Virtual environment (VE) technology is expected to make a big impact on future training and simulation systems. Direct stimulation of human-senses (eyesight, auditory, tactile) and new paradigms for user input will improve the realism of simulations and thereby the effectiveness of training systems.

  4. NECTAR: Simulation and Visualization in a 3D Collaborative Environment

    NARCIS (Netherlands)

    Law, Y.W.; Chan, K.Y.

    For simulation and visualization in a 3D collaborative environment, an architecture called the Nanyang Experimental CollaboraTive ARchitecture (NECTAR) has been developed. The objective is to support multi-user collaboration in a virtual environment with an emphasis on cost-effectiveness and

  5. Simulation environment for algorithms and agents evaluation.

    Directory of Open Access Journals (Sweden)

    Pablo CHAMOSO

    2016-06-01

    Full Text Available This article presents an adaptive platform that can simulate the centralized control of different smart city areas. For example, public lighting and intelligent management, public zones of buildings, energy distribution, etc. It can operate the hardware infrastructure and perform optimization both in energy consumption and economic control from a modular architecture which is fully adaptable to most cities. Machine-to-machine (M2M permits connecting all the sensors of the city so that they provide the platform with a perfect perspective of the global city status. To carry out this optimization, the platform offers the developers a software that operates on the hardware infrastructure and merges various techniques of artificial intelligence (AI and statistics, such as artificial neural networks (ANN, multi-agent systems (MAS or a Service Oriented Approach (SOA, forming an Internet of Services (IoS. Different case studies were tested by using the presented platform, and further development is still underway with additional case studies.

  6. Evaluating teamwork in a simulated obstetric environment.

    Science.gov (United States)

    Morgan, Pamela J; Pittini, Richard; Regehr, Glenn; Marrs, Carol; Haley, Michèle F

    2007-05-01

    The National Confidential Enquiry into Maternal Deaths identified "lack of communication and teamwork" as a leading cause of substandard obstetric care. The authors used high-fidelity simulation to present obstetric scenarios for team assessment. Obstetric nurses, physicians, and resident physicians were repeatedly assigned to teams of five or six, each team managing one of four scenarios. Each person participated in two or three scenarios with differently constructed teams. Participants and nine external raters rated the teams' performances using a Human Factors Rating Scale (HFRS) and a Global Rating Scale (GRS). Interrater reliability was determined using intraclass correlations and the Cronbach alpha. Analyses of variance were used to determine the reliability of the two measures, and effects of both scenario and rater profession (R.N. vs. M.D.) on scores. Pearson product-moment correlations were used to compare external with self-generated assessments. The average of nine external rater scores showed good reliability for both HFRS and GRS; however, the intraclass correlation coefficients for a single rater was low. There was some effect of rater profession on self-generated HFRS but not on GRS. An analysis of profession-specific subscores on the HFRS revealed no interaction between profession of rater and profession being rated. There was low correlation between externally and self-generated team assessments. This study does not support the use of the HFRS for assessment of obstetric teams. The GRS shows promise as a summative but not a formative assessment tool. It is necessary to develop a domain specific behavioral marking system for obstetric teams.

  7. An intelligent simulation environment for control system design

    International Nuclear Information System (INIS)

    Robinson, J.T.

    1989-01-01

    The Oak Ridge National Laboratory is currently assisting in the development of advanced control systems for the next generation of nuclear power plants. This paper presents a prototype interactive and intelligent simulation environment being developed to support this effort. The environment combines tools from the field of Artificial Intelligence; in particular object-oriented programming, a LISP programming environment, and a direct manipulation user interface; with traditional numerical methods for simulating combined continuous/discrete processes. The resulting environment is highly interactive and easy to use. Models may be created and modified quickly through a window oriented direct manipulation interface. Models may be modified at any time, even as the simulation is running, and the results observed immediately via real-time graphics. 8 refs., 3 figs

  8. A Simulated Learning Environment for Teaching Medicine Dispensing Skills.

    Science.gov (United States)

    McDowell, Jenny; Styles, Kim; Sewell, Keith; Trinder, Peta; Marriott, Jennifer; Maher, Sheryl; Naidu, Som

    2016-02-25

    To develop an authentic simulation of the professional practice dispensary context for students to develop their dispensing skills in a risk-free environment. A development team used an Agile software development method to create MyDispense, a web-based simulation. Modeled on virtual learning environments elements, the software employed widely available standards-based technologies to create a virtual community pharmacy environment. Assessment. First-year pharmacy students who used the software in their tutorials, were, at the end of the second semester, surveyed on their prior dispensing experience and their perceptions of MyDispense as a tool to learn dispensing skills. The dispensary simulation is an effective tool for helping students develop dispensing competency and knowledge in a safe environment.

  9. Survey on bio-chemical complex harmonized with global environment. 3; Kankyo chowagata seibutsu kagaku konbinato ni kansuru chosa. 3

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    A survey was conducted of bio-chemical complex harmonized with the global environment for the purpose of constructing the material production process harmonized with the environment by the process fusion between biological conversion and chemical reaction. Palm oil was taken up as renewable raw material plant resource. The process utilizing bio-chemical reaction advances at normal temperature and pressure and is high in reaction specificity and selectivity. This is a recycling, circulation and environmental harmony type production technology which brings high yield, energy conservation, resource conservation, and low environmental loads. Waste water treatment and production of useful substances from sludge were thought as elementary technology. A possibility was studied of enzyme production by culturing solid waste, and the enzyme was applied to the hydrolysis process. The paper indicated trace components in the palm oil and the extraction method and proposed the production process of new derivatives for adding value to hydrolysate. A study was also made of the overall process flow which integrated these new processes and the material balance. The comprehensive evaluation of this new process was made from the aspect of the product structure, the market, construction cost, economical efficiency, and the environment. 133 refs., 65 figs., 56 tabs.

  10. Novel Interface for Simulation of Assembly Operations in Virtual Environments

    Directory of Open Access Journals (Sweden)

    CRACIUN, E.-G.

    2013-02-01

    Full Text Available The objective of this paper is to propose a new interface based on human gestures for simulation of assembly operation inside virtual environments. Using as a guide the current context for assembly simulation, we have analyzed the existing techniques used in developing gesture-based interface and extracted the constituent elements for an assembly gesture interface. The interface we propose offers support for assembly/disassembly operation, replace or delete components inside a virtual scene. To improve the current practice in virtual assembly simulation, our interface is an efficient method for assembly operations and a competitive approach for the current assembly simulation techniques.

  11. Conducting Simulation Studies in the R Programming Environment

    Directory of Open Access Journals (Sweden)

    Kevin A. Hallgren

    2013-10-01

    Full Text Available Simulation studies allow researchers to answer specific questions about data analysis, statistical power, and best-practices for obtainingaccurate results in empirical research. Despite the benefits that simulation research can provide, many researchers are unfamiliar with available tools for conducting their own simulation studies. The use of simulation studies need not be restricted toresearchers with advanced skills in statistics and computer programming, and such methods can be implemented by researchers with a variety of abilities and interests. The present paper provides an introduction to methods used for running simulationstudies using the R statistical programming environment and is written for individuals with minimal experience running simulation studies or using R. The paper describes the rationale and benefits of using simulations and introduces R functions relevant for many simulation studies. Three examples illustrate different applications for simulation studies, including (a the use of simulations to answer a novel question about statistical analysis, (b the use of simulations to estimate statistical power, and (c the use of simulations to obtain confidence intervals of parameter estimates throughbootstrapping. Results and fully annotated syntax from these examples are provided.

  12. Development of a Simulated Environment for Human-Robot Interaction

    Directory of Open Access Journals (Sweden)

    Karsten Berns

    2011-12-01

    Full Text Available Human-robot interaction scenarios are extremely complicated and require precise definition of the environment variables for rigorously testing different aspects of robotic behavior. The environmental setup affects the behaviors of both the humans and the robots, as they respond differently under varying accoustic or lightning conditions. Moreover, conducting several experiments repeatedly with the humans as test subjects also causes behavioral changes in them and eventually the responses remain no longer similar to the already conducted experiments. Thus making it is impossible to perform interaction scenarios in a repeatable manner. Developing and using 3D simulations, where different parameters can be adjusted, is the most beneficial solution in such cases. This requires not only the development of different simulated robots but also the simulation of dynamic surroundings including the interaction partner. In this paper, we present a simulation framework that allows the simulation of human-robot interaction including the simulated interaction partner and its dynamics.

  13. Condition and biochemical profile of blue mussels (Mytilus edulis L.) cultured at different depths in a cold water coastal environment

    Science.gov (United States)

    Gallardi, Daria; Mills, Terry; Donnet, Sebastien; Parrish, Christopher C.; Murray, Harry M.

    2017-08-01

    The growth and health of cultured blue mussels (Mytilus edulis) are affected by environmental conditions. Typically, culture sites are situated in sheltered areas near shore (i.e., 20 m depth) mussel culture has been growing. This study evaluated the effect of culture depth on blue mussels in a cold water coastal environment (Newfoundland, Canada). Culture depth was examined over two years from September 2012 to September 2014; mussels from three shallow water (5 m) and three deep water (15 m) sites were compared for growth and biochemical composition; culture depths were compared for temperature and chlorophyll a. Differences between the two years examined were noted, possibly due to harsh winter conditions in the second year of the experiment. In both years shallow and deep water mussels presented similar condition; in year 2 deep water mussels had a significantly better biochemical profile. Lipid and glycogen analyses showed seasonal variations, but no significant differences between shallow and deep water were noted. Fatty acid profiles showed a significantly higher content of omega-3 s (20:5ω3; EPA) and lower content of bacterial fatty acids in deep water sites in year 2. Everything considered, deep water appeared to provide a more favorable environment for mussel growth than shallow water under harsher weather conditions.

  14. Distributed collaborative environments for 21st century modeling and simulation

    Science.gov (United States)

    McQuay, William K.

    2001-09-01

    Distributed collaboration is an emerging technology that will significantly change how modeling and simulation is employed in 21st century organizations. Modeling and simulation (M&S) is already an integral part of how many organizations conduct business and, in the future, will continue to spread throughout government and industry enterprises and across many domains from research and development to logistics to training to operations. This paper reviews research that is focusing on the open standards agent-based framework, product and process modeling, structural architecture, and the integration technologies - the glue to integrate the software components. A distributed collaborative environment is the underlying infrastructure that makes communication between diverse simulations and other assets possible and manages the overall flow of a simulation based experiment. The AFRL Collaborative Environment concept will foster a major cultural change in how the acquisition, training, and operational communities employ M&S.

  15. A simulation and training environment for robotic radiosurgery

    International Nuclear Information System (INIS)

    Schlaefer, Alexander; Gill, Jakub; Schweikard, Achim

    2008-01-01

    To provide a software environment for simulation of robotic radiosurgery, particularly to study the effective robot workspace with respect to the treatment plan quality, and to illustrate the concepts of robotic radiosurgery. A simulation environment for a robotic radiosurgery system was developed using Java and Java3D. The kinematics and the beam characteristics were modeled and linked to a treatment planning module. Simulations of different robot workspace parameters for two example radiosurgical patient cases were performed using the novel software tool. The first case was an intracranial lesion near the left inner ear, the second case was a spinal lesion. The planning parameters for both cases were visualized with the novel simulation environment. An incremental extension of the robot workspace had limited effect for the intracranial case, where the original workspace already covered the left side of the patient. For the spinal case, a larger workspace resulted in a noticeable improvement in plan quality and a large portion of the beams being delivered from the extended workspace. The new software environment is useful to simulate and analyze parameters and configurations for robotic radiosurgery. An enlarged robot workspace may result in improved plan quality depending on the location of the target region. (orig.)

  16. A simulation and training environment for robotic radiosurgery

    Energy Technology Data Exchange (ETDEWEB)

    Schlaefer, Alexander [University of Luebeck, Institute for Robotics and Cognitive Systems, Luebeck (Germany); Stanford University, Department of Radiation Oncology, Stanford, CA (United States); Gill, Jakub; Schweikard, Achim [University of Luebeck, Institute for Robotics and Cognitive Systems, Luebeck (Germany)

    2008-09-15

    To provide a software environment for simulation of robotic radiosurgery, particularly to study the effective robot workspace with respect to the treatment plan quality, and to illustrate the concepts of robotic radiosurgery. A simulation environment for a robotic radiosurgery system was developed using Java and Java3D. The kinematics and the beam characteristics were modeled and linked to a treatment planning module. Simulations of different robot workspace parameters for two example radiosurgical patient cases were performed using the novel software tool. The first case was an intracranial lesion near the left inner ear, the second case was a spinal lesion. The planning parameters for both cases were visualized with the novel simulation environment. An incremental extension of the robot workspace had limited effect for the intracranial case, where the original workspace already covered the left side of the patient. For the spinal case, a larger workspace resulted in a noticeable improvement in plan quality and a large portion of the beams being delivered from the extended workspace. The new software environment is useful to simulate and analyze parameters and configurations for robotic radiosurgery. An enlarged robot workspace may result in improved plan quality depending on the location of the target region. (orig.)

  17. IMPETUS - Interactive MultiPhysics Environment for Unified Simulations.

    Science.gov (United States)

    Ha, Vi Q; Lykotrafitis, George

    2016-12-08

    We introduce IMPETUS - Interactive MultiPhysics Environment for Unified Simulations, an object oriented, easy-to-use, high performance, C++ program for three-dimensional simulations of complex physical systems that can benefit a large variety of research areas, especially in cell mechanics. The program implements cross-communication between locally interacting particles and continuum models residing in the same physical space while a network facilitates long-range particle interactions. Message Passing Interface is used for inter-processor communication for all simulations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. A SIMULATION ENVIRONMENT FOR AUTOMATIC NIGHT DRIVING AND VISUAL CONTROL

    OpenAIRE

    Arroyo Rubio, Fernando

    2012-01-01

    This project consists on developing an automatic night driving system in a simulation environment. The simulator I have used is TORCS. TORCS is an Open Source car racing simulator written in C++. It is used as an ordinary car racing game, as a IA racing game and as a research platform. The goal of this thesis is to implement an automatic driving system to control the car under night conditions using computer vision. A camera is implemented inside the vehicle and it will detect the reflective ...

  19. MARS: An Educational Environment for Multiagent Robot Simulations

    Directory of Open Access Journals (Sweden)

    Marco Casini

    2016-01-01

    Full Text Available Undergraduate robotics students often find it difficult to design and validate control algorithms for teams of mobile robots. This is mainly due to two reasons. First, very rarely, educational laboratories are equipped with large teams of robots, which are usually expensive, bulky, and difficult to manage and maintain. Second, robotics simulators often require students to spend much time to learn their use and functionalities. For this purpose, a simulator of multiagent mobile robots named MARS has been developed within the Matlab environment, with the aim of helping students to simulate a wide variety of control algorithms in an easy way and without spending time for understanding a new language. Through this facility, the user is able to simulate multirobot teams performing different tasks, from cooperative to competitive ones, by using both centralized and distributed controllers. Virtual sensors are provided to simulate real devices. A graphical user interface allows students to monitor the robots behaviour through an online animation.

  20. TACOP : A cognitive agent for a naval training simulation environment

    NARCIS (Netherlands)

    Doesburg, W.A. van; Heuvelink, A.; Broek, E.L. van den

    2005-01-01

    This paper describes how cognitive modeling can be exploited in the design of software agents that support naval training sessions. The architecture, specifications, and embedding of the cognitive agent in a simulation environment are described. Subsequently, the agent's functioning was evaluated in

  1. TACOP: A Cognitive Agent for a Naval Training Simulation Environment

    NARCIS (Netherlands)

    van Doesburg, W.A.; Verbeeck, K.; Heuvelink, A.; Tuyls, K.; Nowé, A.; van den Broek, Egon; Manderick, B.; Kuijpers, B.

    2005-01-01

    The full version of this paper appeared in: Doesburg, W. A. van, Heuvelink, A., and Broek, E. L. van den (2005). TACOP: A cognitive agent for a naval training simulation environment. In M. Pechoucek, D. Steiner, and S. Thompson (Eds.), Proceedings of the Industry Track of the Fourth International

  2. ADVANCE, a modular vehicle simulation environment in MATLAB/SIMULINK

    NARCIS (Netherlands)

    Eelkema, J.; Vink, W.; Tillaart, E. van den

    2002-01-01

    This paper presents the development of a hybrid electric powertrain test platform. In the development process use has been made of ADVANCE, a modular vehicle simulation environment in MATLAB/Simulink. The background, philosophy, and the concept of the ADVANCE tool are discussed and a brief

  3. Identifying Breeding Priorities for Blueberry Flavor Using Biochemical, Sensory, and Genotype by Environment Analyses.

    Science.gov (United States)

    Gilbert, Jessica L; Guthart, Matthew J; Gezan, Salvador A; Pisaroglo de Carvalho, Melissa; Schwieterman, Michael L; Colquhoun, Thomas A; Bartoshuk, Linda M; Sims, Charles A; Clark, David G; Olmstead, James W

    2015-01-01

    Breeding for a subjective goal such as flavor is challenging, as many blueberry cultivars are grown worldwide, and identifying breeding targets relating to blueberry flavor biochemistry that have a high degree of genetic control and low environmental variability are priorities. A variety of biochemical compounds and physical characters induce the sensory responses of taste, olfaction, and somatosensation, all of which interact to create what is perceived flavor. The goal of this study was to identify the flavor compounds with a larger genetic versus environmental component regulating their expression over an array of cultivars, locations, and years. Over the course of three years, consumer panelists rated overall liking, texture, sweetness, sourness, and flavor intensity of 19 southern highbush blueberry (Vaccinium corymbosum hybrids) genotypes in 30 sensory panels. Significant positive correlations to overall liking of blueberry fruit (Pblueberry sensory components, and many of the compounds affecting consumer favor of blueberries, such as fructose, pH, β-caryophyllene oxide and 2-heptanone, were sufficiently genetically controlled that allocating resources for their breeding is worthwhile.

  4. Status Report of Simulated Space Radiation Environment Facility

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Phil Hyun; Nho, Young Chang; Jeun, Joon Pyo; Choi, Jae Hak; Lim, Youn Mook; Jung, Chan Hee; Jeon, Young Kyu

    2007-11-15

    The technology for performance testing and improvement of materials which are durable at space environment is a military related technology and veiled and securely regulated in advanced countries such as US and Russia. This core technology cannot be easily transferred to other country too. Therefore, this technology is the most fundamental and necessary research area for the successful establishment of space environment system. Since the task for evaluating the effects of space materials and components by space radiation plays important role in satellite lifetime extension and running failure percentage decrease, it is necessary to establish simulated space radiation facility and systematic testing procedure. This report has dealt with the status of the technology to enable the simulation of space environment effects, including the effect of space radiation on space materials. This information such as the fundamental knowledge of space environment and research status of various countries as to the simulation of space environment effects of space materials will be useful for the research on radiation hardiness of the materials. Furthermore, it will be helpful for developer of space material on deriving a better choice of materials, reducing the design cycle time, and improving safety.

  5. Virtual agents in a simulated virtual training environment

    Science.gov (United States)

    Achorn, Brett; Badler, Norman L.

    1993-01-01

    A drawback to live-action training simulations is the need to gather a large group of participants in order to train a few individuals. One solution to this difficulty is the use of computer-controlled agents in a virtual training environment. This allows a human participant to be replaced by a virtual, or simulated, agent when only limited responses are needed. Each agent possesses a specified set of behaviors and is capable of limited autonomous action in response to its environment or the direction of a human trainee. The paper describes these agents in the context of a simulated hostage rescue training session, involving two human rescuers assisted by three virtual (computer-controlled) agents and opposed by three other virtual agents.

  6. Deterministic and stochastic simulation and analysis of biochemical reaction networks the lactose operon example.

    Science.gov (United States)

    Yildirim, Necmettin; Kazanci, Caner

    2011-01-01

    A brief introduction to mathematical modeling of biochemical regulatory reaction networks is presented. Both deterministic and stochastic modeling techniques are covered with examples from enzyme kinetics, coupled reaction networks with oscillatory dynamics and bistability. The Yildirim-Mackey model for lactose operon is used as an example to discuss and show how deterministic and stochastic methods can be used to investigate various aspects of this bacterial circuit. © 2011 Elsevier Inc. All rights reserved.

  7. A Multiagent Modeling Environment for Simulating Work Practice in Organizations

    Science.gov (United States)

    Sierhuis, Maarten; Clancey, William J.; vanHoof, Ron

    2004-01-01

    In this paper we position Brahms as a tool for simulating organizational processes. Brahms is a modeling and simulation environment for analyzing human work practice, and for using such models to develop intelligent software agents to support the work practice in organizations. Brahms is the result of more than ten years of research at the Institute for Research on Learning (IRL), NYNEX Science & Technology (the former R&D institute of the Baby Bell telephone company in New York, now Verizon), and for the last six years at NASA Ames Research Center, in the Work Systems Design and Evaluation group, part of the Computational Sciences Division (Code IC). Brahms has been used on more than ten modeling and simulation research projects, and recently has been used as a distributed multiagent development environment for developing work practice support tools for human in-situ science exploration on planetary surfaces, in particular a human mission to Mars. Brahms was originally conceived of as a business process modeling and simulation tool that incorporates the social systems of work, by illuminating how formal process flow descriptions relate to people s actual located activities in the workplace. Our research started in the early nineties as a reaction to experiences with work process modeling and simulation . Although an effective tool for convincing management of the potential cost-savings of the newly designed work processes, the modeling and simulation environment was only able to describe work as a normative workflow. However, the social systems, uncovered in work practices studied by the design team played a significant role in how work actually got done-actual lived work. Multi- tasking, informal assistance and circumstantial work interactions could not easily be represented in a tool with a strict workflow modeling paradigm. In response, we began to develop a tool that would have the benefits of work process modeling and simulation, but be distinctively able to

  8. Identifying Breeding Priorities for Blueberry Flavor Using Biochemical, Sensory, and Genotype by Environment Analyses.

    Directory of Open Access Journals (Sweden)

    Jessica L Gilbert

    Full Text Available Breeding for a subjective goal such as flavor is challenging, as many blueberry cultivars are grown worldwide, and identifying breeding targets relating to blueberry flavor biochemistry that have a high degree of genetic control and low environmental variability are priorities. A variety of biochemical compounds and physical characters induce the sensory responses of taste, olfaction, and somatosensation, all of which interact to create what is perceived flavor. The goal of this study was to identify the flavor compounds with a larger genetic versus environmental component regulating their expression over an array of cultivars, locations, and years. Over the course of three years, consumer panelists rated overall liking, texture, sweetness, sourness, and flavor intensity of 19 southern highbush blueberry (Vaccinium corymbosum hybrids genotypes in 30 sensory panels. Significant positive correlations to overall liking of blueberry fruit (P<0.001 were found with sweetness (R2 = 0.70, texture (R2 = 0.68, and flavor (R2 = 0.63. Sourness had a significantly negative relationship with overall liking (R2 = 0.55. The relationship between flavor and texture liking was also linear (R2 = 0.73, P<0.0001 demonstrating interaction between olfaction and somatosensation. Partial least squares analysis was used to identify sugars, acids, and volatile compounds contributing to liking and sensory intensities, and revealed strong effects of fructose, pH, and several volatile compounds upon all sensory parameters measured. To assess the feasibility of breeding for flavor components, a three year study was conducted to compare genetic and environmental influences on flavor biochemistry. Panelists could discern genotypic variation in blueberry sensory components, and many of the compounds affecting consumer favor of blueberries, such as fructose, pH, β-caryophyllene oxide and 2-heptanone, were sufficiently genetically controlled that allocating resources for their

  9. Generic Simulator Environment for Realistic Simulation - Autonomous Entity Proof and Emotion in Decision Making

    Directory of Open Access Journals (Sweden)

    Mickaël Camus

    2004-10-01

    Full Text Available Simulation is usually used as an evaluation and testing system. Many sectors are concerned such as EUROPEAN SPACE AGENCY or the EUROPEAN DEFENCE. It is important to make sure that the project is error-free in order to continue it. The difficulty is to develop a realistic environment for the simulation and the execution of a scenario. This paper presents PALOMA, a Generic Simulator Environment. This project is based essantially on the Chaos Theory and Complex Systems to create and direct an environment for a simulation. An important point is the generic aspect. PALOMA will be able to create an environment for different sectors (Aero-space, Biology, Mathematic, .... PALOMA includes six components : the Simulation Engine, the Direction Module, the Environment Generator, the Natural Behavior Restriction, the Communication API and the User API. Three languages are used to develop this simulator. SCHEME for the Direction language, C/C++ for the development of modules and OZ/MOZART for the heart of PALOMA.

  10. A virtual environment for simulation of radiological accidents

    International Nuclear Information System (INIS)

    Silva, Tadeu Augusto de Almeida; Farias, Oscar Luiz Monteiro de

    2013-01-01

    A virtual environment is a computer environment, representative of a subset of the real world, and where models of the real world entities, process and events are included in a virtual (three-dimensional) space. Virtual environments are ideal tools for simulation of certain critical processes, such as radiological accidents, where human beings or properties can suffer irreversible or long term damages. Radiological accidents are characterized by the significant exposure to radiation of specialized workers and general public. The early detection of a radiological accident and the determination of its possible extension are essential factors for the planning of prompt answers and emergency actions. This paper proposes the integration of georeferenced representation of the three-dimensional space and agent-based models, with the objective to construct virtual environments that have the capacity to simulate radiological accidents. The three-dimensional georeferenced representations of space candidates are: 1) the spatial representation of traditional geographical information systems (GIS); 2) the representation adopted by Google Maps®. Adding agents to these spatial representations allow us to simulate radiological accidents, quantify the doses received by members of the public, obtain a possible spatial distribution of people contaminated, estimate the number of contaminated individuals, estimate the impact on the health-network, estimate environmental impacts, generate exclusion zones, build alternative scenarios and train staff to deal with radiological accidents. (author)

  11. Simulation environment and graphical visualization environment: a COPD use-case.

    Science.gov (United States)

    Huertas-Migueláñez, Mercedes; Mora, Daniel; Cano, Isaac; Maier, Dieter; Gomez-Cabrero, David; Lluch-Ariet, Magí; Miralles, Felip

    2014-11-28

    Today, many different tools are developed to execute and visualize physiological models that represent the human physiology. Most of these tools run models written in very specific programming languages which in turn simplify the communication among models. Nevertheless, not all of these tools are able to run models written in different programming languages. In addition, interoperability between such models remains an unresolved issue. In this paper we present a simulation environment that allows, first, the execution of models developed in different programming languages and second the communication of parameters to interconnect these models. This simulation environment, developed within the Synergy-COPD project, aims at helping and supporting bio-researchers and medical students understand the internal mechanisms of the human body through the use of physiological models. This tool is composed of a graphical visualization environment, which is a web interface through which the user can interact with the models, and a simulation workflow management system composed of a control module and a data warehouse manager. The control module monitors the correct functioning of the whole system. The data warehouse manager is responsible for managing the stored information and supporting its flow among the different modules. It has been proved that the simulation environment presented here allows the user to research and study the internal mechanisms of the human physiology by the use of models via a graphical visualization environment. A new tool for bio-researchers is ready for deployment in various use cases scenarios.

  12. Qualified operator training in the simulated control room environment

    International Nuclear Information System (INIS)

    Ionescu, Teodor; Studineanu, Emil; Radulescu, Catalina; Bolocan, Gabriel

    2005-01-01

    Full text: Mainly designed for the training of the Cernavoda NPP Unit 2 operators, the virtual simulated environment allows the training of the already qualified operators for Cernavoda NPP Unit 1, adding to the already trained knowledge, the differences which has occurred in the Unit 2 design. Using state-of-the-art computers and displays and qualified software, the virtual simulated panels could offer a viable alternative to classic hardware-based training. This approach allows quick training of the new procedures required by the new configuration of the re-designed operator panels in the main control room of Cernavoda NPP Unit 2. (authors)

  13. Simulation Environment for Orion Launch Abort System Control Design Studies

    Science.gov (United States)

    McMinn, J. Dana; Jackson, E. Bruce; Christhilf, David M.

    2007-01-01

    The development and use of an interactive environment to perform control system design and analysis of the proposed Crew Exploration Vehicle Launch Abort System is described. The environment, built using a commercial dynamic systems design package, includes use of an open-source configuration control software tool and a collaborative wiki to coordinate between the simulation developers, control law developers and users. A method for switching between multiple candidate control laws and vehicle configurations is described. Aerodynamic models, especially in a development program, change rapidly, so a means for automating the implementation of new aerodynamic models is described.

  14. Simulation of snow accumulation and melt in needleleaf forest environments

    Directory of Open Access Journals (Sweden)

    C. R. Ellis

    2010-06-01

    Full Text Available Drawing upon numerous field studies and modelling exercises of snow processes, the Cold Regions Hydrological Model (CRHM was developed to simulate the four season hydrological cycle in cold regions. CRHM includes modules describing radiative, turbulent and conductive energy exchanges to snow in open and forest environments, as well as account for losses from canopy snow sublimation and rain evaporation. Due to the physical-basis and rigorous testing of each module, there is a minimal need for model calibration. To evaluate CRHM, simulations of snow accumulation and melt were compared to observations collected at paired forest and clearing sites of varying latitude, elevation, forest cover density, and climate. Overall, results show that CRHM is capable of characterising the variation in snow accumulation between forest and clearing sites, achieving a model efficiency of 0.51 for simulations at individual sites. Simulations of canopy sublimation losses slightly overestimated observed losses from a weighed cut tree, having a model efficiency of 0.41 for daily losses. Good model performance was demonstrated in simulating energy fluxes to snow at the clearings, but results were degraded from this under forest cover due to errors in simulating sub-canopy net longwave radiation. However, expressed as cumulative energy to snow over the winter, simulated values were 96% and 98% of that observed at the forest and clearing sites, respectively. Overall, the good representation of the substantial variations in mass and energy between forest and clearing sites suggests that CRHM may be useful as an analytical or predictive tool for snow processes in needleleaf forest environments.

  15. Electrophysiological measurement of interest during walking in a simulated environment.

    Science.gov (United States)

    Takeda, Yuji; Okuma, Takashi; Kimura, Motohiro; Kurata, Takeshi; Takenaka, Takeshi; Iwaki, Sunao

    2014-09-01

    A reliable neuroscientific technique for objectively estimating the degree of interest in a real environment is currently required in the research fields of neuroergonomics and neuroeconomics. Toward the development of such a technique, the present study explored electrophysiological measures that reflect an observer's interest in a nearly-real visual environment. Participants were asked to walk through a simulated shopping mall and the attractiveness of the shopping mall was manipulated by opening and closing the shutters of stores. During the walking task, participants were exposed to task-irrelevant auditory probes (two-stimulus oddball sequence). The results showed a smaller P2/early P3a component of task-irrelevant auditory event-related potentials and a larger lambda response of eye-fixation-related potentials in an interesting environment (i.e., open-shutter condition) than in a boring environment (i.e., closed-shutter condition); these findings can be reasonably explained by supposing that participants allocated more attentional resources to visual information in an interesting environment than in a boring environment, and thus residual attentional resources that could be allocated to task-irrelevant auditory probes were reduced. The P2/early P3a component and the lambda response may be useful measures of interest in a real visual environment. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Experiences with a simulated learning environment - the SimuScape©: Virtual environments in medical education

    Directory of Open Access Journals (Sweden)

    Anna-Lena Thies

    2014-03-01

    Full Text Available INTRODUCTION: Simulation as a tool for medical education has gained considerable importance in the past years. Various studies have shown that the mastering of basic skills happens best if taught in a realistic and workplace-based context. It is necessary that simulation itself takes place in the realistic background of a genuine clinical or in an accordingly simulated learning environment. METHODS: A panoramic projection system that allows the simulation of different scenarios has been created at the medical school of the Westphalian Wilhelms-University  Muenster/Germany. The SimuScape© is a circular training room of six meters in diameter and has the capacity to generate pictures or moving images as well as the corresponding background noises for medical students, who are then able to interact with simulated patients inside a realistic environment. RESULTS: About 1,000 students have been instructed using the SimuScape© in the courses of emergency medicine, family medicine and anesthesia. The SimuScape©, with its 270°-panoramic projection, gives the students the impression “of being right in the center of action”.  It is a flexible learning environment that can be easily integrated into curricular teaching and which is in full operation for 10 days per semester. CONCLUSION: The SimuScape© allows the establishment of new medical areas outside the hospital and surgery for simulation and it is an extremely adaptable and cost-effective utilization of a lecture room. In this simulated environment it is possible to teach objectives like self-protection and patient care during disturbing environmental influences in practice.

  17. Simulated learning environment experience in nursing students for paediatric practice.

    Science.gov (United States)

    Mendoza-Maldonado, Yessy; Barría-Pailaquilén, René Mauricio

    2018-03-24

    The training of health professionals requires the acquisition of clinical skills in a safe and efficient manner, which is facilitated by a simulated learning environment (SLE). It is also an efficient alternative when there are limitations for clinical practice in certain areas. This paper shows the work undertaken in a Chilean university in implementing paediatric practice using SLE. Over eight days, the care experience of a hospitalized infant was studied applying the nursing process. The participation of a paediatrician, resident physician, nursing technician, and simulated user was included in addition to the use of a simulation mannequin and equipment. Simulation of care was integral and covered interaction with the child and family and was developed in groups of six students by a teacher. The different phases of the simulation methodology were developed from a pedagogical point of view. The possibility of implementing paediatric clinical practice in an efficient and safe way was confirmed. The experience in SLE was highly valued by the students, allowing them to develop different skills and abilities required for paediatric nursing through simulation. Copyright © 2018 Elsevier España, S.L.U. All rights reserved.

  18. Virtual environment display for a 3D audio room simulation

    Science.gov (United States)

    Chapin, William L.; Foster, Scott

    1992-06-01

    Recent developments in virtual 3D audio and synthetic aural environments have produced a complex acoustical room simulation. The acoustical simulation models a room with walls, ceiling, and floor of selected sound reflecting/absorbing characteristics and unlimited independent localizable sound sources. This non-visual acoustic simulation, implemented with 4 audio ConvolvotronsTM by Crystal River Engineering and coupled to the listener with a Poihemus IsotrakTM, tracking the listener's head position and orientation, and stereo headphones returning binaural sound, is quite compelling to most listeners with eyes closed. This immersive effect should be reinforced when properly integrated into a full, multi-sensory virtual environment presentation. This paper discusses the design of an interactive, visual virtual environment, complementing the acoustic model and specified to: 1) allow the listener to freely move about the space, a room of manipulable size, shape, and audio character, while interactively relocating the sound sources; 2) reinforce the listener's feeling of telepresence into the acoustical environment with visual and proprioceptive sensations; 3) enhance the audio with the graphic and interactive components, rather than overwhelm or reduce it; and 4) serve as a research testbed and technology transfer demonstration. The hardware/software design of two demonstration systems, one installed and one portable, are discussed through the development of four iterative configurations. The installed system implements a head-coupled, wide-angle, stereo-optic tracker/viewer and multi-computer simulation control. The portable demonstration system implements a head-mounted wide-angle, stereo-optic display, separate head and pointer electro-magnetic position trackers, a heterogeneous parallel graphics processing system, and object oriented C++ program code.

  19. Expanding the modeling capabilities of the cognitive environment simulation

    International Nuclear Information System (INIS)

    Roth, E.M.; Mumaw, R.J.; Pople, H.E. Jr.

    1991-01-01

    The Nuclear Regulatory Commission has been conducting a research program to develop more effective tools to model the cognitive activities that underlie intention formation during nuclear power plant (NPP) emergencies. Under this program an artificial intelligence (AI) computer simulation called Cognitive Environment Simulation (CES) has been developed. CES simulates the cognitive activities involved in responding to a NPP accident situation. It is intended to provide an analytic tool for predicting likely human responses, and the kinds of errors that can plausibly arise under different accident conditions to support human reliability analysis. Recently CES was extended to handle a class of interfacing loss of coolant accidents (ISLOCAs). This paper summarizes the results of these exercises and describes follow-on work currently underway

  20. A High Throughput Workflow Environment for Cosmological Simulations

    Science.gov (United States)

    Brandon, Erickson; Evrard, A. E.; Singh, R.; Marru, S.; Pierce, M.; Becker, M. R.; Kravtsov, A.; Busha, M. T.; Wechsler, R. H.; Ricker, P. M.; DES Simulations Working Group

    2013-01-01

    The Simulation Working Group (SimWG) of the Dark Energy Survey (DES) is collaborating with an XSEDE science gateway team to develop a distributed workflow management layer for the production of wide-area synthetic galaxy catalogs from large N-body simulations. We use the suite of tools in Airavata, an Apache Incubator project, to generate and archive multiple 10^10-particle N-body simulations of nested volumes on XSEDE supercomputers. Lightcone outputs are moved via Globus Online to SLAC, where they are transformed into multi-band, catalog-level descriptions of gravitationally lensed galaxies covering 10,000 sq deg to high redshift. We outline the method and discuss efficiency and provenance improvements brought about in N-body production. Plans to automate data movement and post-processing within the workflow are sketched, as are risks associated with working in an environment of constantly evolving services.

  1. Virtual environment simulation as a tool to support evacuation planning

    International Nuclear Information System (INIS)

    Mol, Antonio C.; Grecco, Claudio H.S.; Santos, Isaac J.A.L.; Carvalho, Paulo V.R.; Jorge, Carlos A.F.; Sales, Douglas S.; Couto, Pedro M.; Botelho, Felipe M.; Bastos, Felipe R.

    2007-01-01

    This work is a preliminary study of the use of a free game-engine as a tool to build and to navigate in virtual environments, with a good degree of realism, for virtual simulations of evacuation from building and risk zones. To achieve this goal, some adjustments in the game engine have been implemented. A real building with four floors, consisting of some rooms with furniture and people, has been virtually implemented. Simulations of simple different evacuation scenarios have been performed, measuring the total time spent in each case. The measured times have been compared with their corresponding real evacuation times, measured in the real building. The first results have demonstrated that the virtual environment building with the free game engine is capable to reproduce the real situation with a satisfactory level. However, it is important to emphasize that such virtual simulations serve only as an aid in the planning of real evacuation simulations, and as such must never substitute the later. (author)

  2. Construction material processed using lunar simulant in various environments

    Science.gov (United States)

    Chase, Stan; Ocallaghan-Hay, Bridget; Housman, Ralph; Kindig, Michael; King, John; Montegrande, Kevin; Norris, Raymond; Vanscotter, Ryan; Willenborg, Jonathan; Staubs, Harry

    1995-01-01

    The manufacture of construction materials from locally available resources in space is an important first step in the establishment of lunar and planetary bases. The objective of the CoMPULSIVE (Construction Material Processed Using Lunar Simulant In Various Environments) experiment is to develop a procedure to produce construction materials by sintering or melting Johnson Space Center Simulant 1 (JSC-1) lunar soil simulant in both earth-based (1-g) and microgravity (approximately 0-g) environments. The characteristics of the resultant materials will be tested to determine its physical and mechanical properties. The physical characteristics include: crystalline, thermal, and electrical properties. The mechanical properties include: compressive tensile, and flexural strengths. The simulant, placed in a sealed graphite crucible, will be heated using a high temperature furnace. The crucible will then be cooled by radiative and forced convective means. The core furnace element consists of space qualified quartz-halogen incandescent lamps with focusing mirrors. Sample temperatures of up to 2200 C are attainable using this heating method.

  3. A novel open-type biosensor for the in-situ monitoring of biochemical oxygen demand in an aerobic environment.

    Science.gov (United States)

    Yamashita, Takahiro; Ookawa, Natsuki; Ishida, Mitsuyoshi; Kanamori, Hiroyuki; Sasaki, Harumi; Katayose, Yuichi; Yokoyama, Hiroshi

    2016-12-05

    Biochemical oxygen demand (BOD) is a widely used index of water-quality assessment. Since bioelectrochemical BOD biosensors require anaerobic conditions for anodic reactions, they are not directly used in aerobic environments such as aeration tanks. Normally, the BOD biosensors are closed-type, where the anode is packed inside a closed chamber to avoid exposure to oxygen. In this study, a novel bioelectrochemical open-type biosensor was designed for in-situ monitoring of BOD during intermittent aeration. The open-type anode, without any protection against exposure to oxygen, was directly inserted into an intermittently aerated tank filled with livestock wastewater. Anodic potential was controlled using a potentiostat. Interestingly, this novel biosensor generated similar levels of current under both aerating and non-aerating conditions, and showed a logarithmic correlation (R 2  > 0.9) of current with BOD concentrations up to 250 mg/L. Suspended solids in the wastewater attached to and covered the whole anode, presumably leading to the production of anaerobic conditions inside the covered anode via biological oxygen removal. Exoelectrogenic anaerobes (Geobacter spp.) were detected inside the covered anode using the 16S-rRNA gene. This biosensor will have various practical applications, such as the automatic control of aeration intensity and the in-situ monitoring of natural water environments.

  4. Selected Haematological and Biochemical Indices of Nile Tilapia (Oreochromis niloticus Reared in the Environment with Cyanobacterial Water Bloom

    Directory of Open Access Journals (Sweden)

    Miroslava Palíková

    2010-01-01

    Full Text Available The aim of this study was to evaluate the influence of toxic cyanobacterial water blooms on blood indices in the Nile tilapia (Oreochromis niloticus. Experimental fish were exposed to natural cyanobacterial water blooms (consisting mainly of Microcystis aeruginosa and M. ichthyoblabe which contained microcystins (total concentration 1187 - 1211 μg g-1 of dry weight and 17.4 - 25.4 μg l-1 of water for 28 days without additional feeding. Control groups of fish were kept in another pond without apparent cyanobacterial bloom formation. Experimental and control rearing ponds had the same water source. After exposure, fish were placed in dechlorinated potable water for the same period. Statistical evaluation of the influence of cyanobacterial water bloom on biochemical indices of experimental fish showed a distinct increase of alkaline phosphatase (p ⪬ 0.05, total bilirubin (p ⪬ 0.001, creatinine (p ⪬ 0.01, lactate (p ⪬ 0.01 and urea (p ⪬ 0.01 when compared to controls. After transfer to the dechlorinated potable water the experimental group showed significantly lower values of phosphorus (p ⪬ 0.001, urea (p ⪬ 0.01 and cholinesterase (p ⪬ 0.05 and higher values of lactate (p ⪬ 0.05 and iron (p ⪬ 0.05 compared to controls. It may be concluded that the exposure of the Nile tilapia to the environment containing cyanobacterial water bloom influenced only some biochemical indices. However, this modulation is to a much lower degree compared to the common carp and silver carp.

  5. Creating pedestrian crash scenarios in a driving simulator environment.

    Science.gov (United States)

    Chrysler, Susan T; Ahmad, Omar; Schwarz, Chris W

    2015-01-01

    In 2012 in the United States, pedestrian injuries accounted for 3.3% of all traffic injuries but, disproportionately, pedestrian fatalities accounted for roughly 14% of traffic-related deaths (NHTSA 2014 ). In many other countries, pedestrians make up more than 50% of those injured and killed in crashes. This research project examined driver response to crash-imminent situations involving pedestrians in a high-fidelity, full-motion driving simulator. This article presents a scenario development method and discusses experimental design and control issues in conducting pedestrian crash research in a simulation environment. Driving simulators offer a safe environment in which to test driver response and offer the advantage of having virtual pedestrian models that move realistically, unlike test track studies, which by nature must use pedestrian dummies on some moving track. An analysis of pedestrian crash trajectories, speeds, roadside features, and pedestrian behavior was used to create 18 unique crash scenarios representative of the most frequent and most costly crash types. For the study reported here, we only considered scenarios where the car is traveling straight because these represent the majority of fatalities. We manipulated driver expectation of a pedestrian both by presenting intersection and mid-block crossing as well as by using features in the scene to direct the driver's visual attention toward or away from the crossing pedestrian. Three visual environments for the scenarios were used to provide a variety of roadside environments and speed: a 20-30 mph residential area, a 55 mph rural undivided highway, and a 40 mph urban area. Many variables of crash situations were considered in selecting and developing the scenarios, including vehicle and pedestrian movements; roadway and roadside features; environmental conditions; and characteristics of the pedestrian, driver, and vehicle. The driving simulator scenarios were subjected to iterative testing to

  6. The biochemical diversity of life near and above 100°C in marine environments.

    Science.gov (United States)

    Adams, M W

    1998-12-01

    Hyperthermophilic micro-organisms grow at temperatures above 90 °C with a current upper limit of 113 °C. They are a recent discovery in the microbial world and have been isolated mainly from marine geothermal environments, which include both shallow and deep sea hydrothermal vents. By 16S rRNA analyses they are the most slowly evolving of all extant life forms, and all but two of the nearly 20 known genera are classified as Archaea (formerly Archaebacteria). Almost all hyperthermophiles are strict anaerobes. They include species of methanogens, iron-oxidizers and sulphate reducers, but the majority are obligate heterotrophs that depend upon the reduction of elemental sulphur (S°) to hydrogen sulphide for significant growth. The heterotrophs utilize proteinaceous materials as carbon and energy sources, although a few species are also saccharolytic. A scheme for electron flow during the oxidation of carbohydrates and peptides and the reduction of S° has been proposed. Two S°-reducing enzymes have been purified from the cytoplasm of one hyperthermophile (T(opt) 100 °C) that is able to grow either with and without S°. However, the mechanisms by which S° reduction is coupled to energy conservation in this organism and in obligate S°-reducing hyperthermophiles is not known. In the heterotrophs, sugar fermentation is achieved by a novel glycolytic pathway involving unusual ADP-dependent kinases and ATP synthetases, and novel oxidoreductases that are ferredoxin- rather than NAD(P)-linked. Similarly, peptide fermentation involves several unusual ferredoxin-linked oxidoreductases not found in mesophilic organisms. Several of these oxido-reductases contain tungsten, an element that is rarely used in biological systems. Tungsten is present in exceedingly low concentrations in normal sea water, but hydrothermal systems contain much higher tungsten concentrations, more than sufficient to support hyperthermophilic life. 1998 Society of Applied Microbiology.

  7. Construction of the quantitative analysis environment using Monte Carlo simulation

    International Nuclear Information System (INIS)

    Shirakawa, Seiji; Ushiroda, Tomoya; Hashimoto, Hiroshi; Tadokoro, Masanori; Uno, Masaki; Tsujimoto, Masakazu; Ishiguro, Masanobu; Toyama, Hiroshi

    2013-01-01

    The thoracic phantom image was acquisitioned of the axial section to construct maps of the source and density with Monte Carlo (MC) simulation. The phantom was Heart/Liver Type HL (Kyoto Kagaku Co., Ltd.) single photon emission CT (SPECT)/CT machine was Symbia T6 (Siemence) with the collimator LMEGP (low-medium energy general purpose). Maps were constructed from CT images with an in-house software using Visual studio C Sharp (Microsoft). The code simulation of imaging nuclear detectors (SIMIND) was used for MC simulation, Prominence processor (Nihon Medi-Physics) for filter processing and image reconstruction, and the environment DELL Precision T7400 for all image processes. For the actual experiment, the phantom was given 15 MBq of 99m Tc assuming the uptake 2% at the dose of 740 MBq in its myocardial portion and SPECT image was acquisitioned and reconstructed with Butter-worth filter and filter back projection method. CT images were similarly obtained in 0.3 mm thick slices, which were filed in one formatted with digital imaging and communication in medicine (DICOM), and then processed for application to SIMIND for mapping the source and density. Physical and mensuration factors were examined in ideal images by sequential exclusion and simulation of those factors as attenuation, scattering, spatial resolution deterioration and statistical fluctuation. Gamma energy spectrum, SPECT projection and reconstructed images given by the simulation were found to well agree with the actual data, and the precision of MC simulation was confirmed. Physical and mensuration factors were found to be evaluable individually, suggesting the usefulness of the simulation for assessing the precision of their correction. (T.T.)

  8. N-Body Simulations of Galaxies in the Cluster Environment

    Science.gov (United States)

    Humphrey, Nicholas; Berrington, R. C.

    2010-01-01

    We present numerous N-body simulations of galaxy clusters consisting of up to 600,000 total particles and 50 galaxies each to characterize the evolution of galaxies in the cluster environment. These simulations were run on the Ball State University (BSU) College of Science and Humanities (CSH) 64-node Beowulf Cluster. Because the velocity dispersion (σ) is a tracer of a galaxies’ potential well and therefore its mass, we will use it to examine the mass evolution of the galaxies in the simulations by fitting a function to the σ of the galaxies. The strength of this function is its direct comparison to observational data. We further investigate the evolution of the galaxy structure parameters through the use of projected mass radii and line-of-sight (LOS) σ. Additionally, we discuss the use of alternate orbital parameters such as Vesc to investigate the potential wells of the galaxies. Our goal is to isolate the mass and luminosity evolution from the environmental effects on the evolution of elliptical galaxies. This project is a subset of a continuing study whose intent is to combine observational data with numerical techniques to study the effects of a galaxies’ environment on its mass evolution and internal dynamics.

  9. Simulation of Physical Experiments in Immersive Virtual Environments

    Science.gov (United States)

    Noor, Ahmed K.; Wasfy, Tamer M.

    2001-01-01

    An object-oriented event-driven immersive Virtual environment is described for the creation of virtual labs (VLs) for simulating physical experiments. Discussion focuses on a number of aspects of the VLs, including interface devices, software objects, and various applications. The VLs interface with output devices, including immersive stereoscopic screed(s) and stereo speakers; and a variety of input devices, including body tracking (head and hands), haptic gloves, wand, joystick, mouse, microphone, and keyboard. The VL incorporates the following types of primitive software objects: interface objects, support objects, geometric entities, and finite elements. Each object encapsulates a set of properties, methods, and events that define its behavior, appearance, and functions. A container object allows grouping of several objects. Applications of the VLs include viewing the results of the physical experiment, viewing a computer simulation of the physical experiment, simulation of the experiments procedure, computational steering, and remote control of the physical experiment. In addition, the VL can be used as a risk-free (safe) environment for training. The implementation of virtual structures testing machines, virtual wind tunnels, and a virtual acoustic testing facility is described.

  10. Improved climate risk simulations for rice in arid environments.

    Directory of Open Access Journals (Sweden)

    Pepijn A J van Oort

    Full Text Available We integrated recent research on cardinal temperatures for phenology and early leaf growth, spikelet formation, early morning flowering, transpirational cooling, and heat- and cold-induced sterility into an existing to crop growth model ORYZA2000. We compared for an arid environment observed potential yields with yields simulated with default ORYZA2000, with modified subversions of ORYZA2000 and with ORYZA_S, a model developed for the region of interest in the 1990s. Rice variety 'IR64' was sown monthly 15-times in a row in two locations in Senegal. The Senegal River Valley is located in the Sahel, near the Sahara desert with extreme temperatures during day and night. The existing subroutines underestimated cold stress and overestimated heat stress. Forcing the model to use observed spikelet number and phenology and replacing the existing heat and cold subroutines improved accuracy of yield simulation from EF = -0.32 to EF =0.70 (EF is modelling efficiency. The main causes of improved accuracy were that the new model subversions take into account transpirational cooling (which is high in arid environments and early morning flowering for heat sterility, and minimum rather than average temperature for cold sterility. Simulations were less accurate when also spikelet number and phenology were simulated. Model efficiency was 0.14 with new heat and cold routines and improved to 0.48 when using new cardinal temperatures for phenology and early leaf growth. The new adapted subversion of ORYZA2000 offers a powerful analytic tool for climate change impact assessment and cropping calendar optimisation in arid regions.

  11. Simulation Environment Based on the Universal Verification Methodology

    CERN Document Server

    AUTHOR|(SzGeCERN)697338

    2016-01-01

    Universal Verification Methodology (UVM) is a standardized approach of verifying integrated circuit designs, targeting a Coverage-Driven Verification (CDV). It combines automatic test generation, self-checking testbenches, and coverage metrics to indicate progress in the design verification. The flow of the CDV differs from the traditional directed-testing approach. With the CDV, a testbench developer, by setting the verification goals, starts with an structured plan. Those goals are targeted further by a developed testbench, which generates legal stimuli and sends them to a device under test (DUT). The progress is measured by coverage monitors added to the simulation environment. In this way, the non-exercised functionality can be identified. Moreover, the additional scoreboards indicate undesired DUT behaviour. Such verification environments were developed for three recent ASIC and FPGA projects which have successfully implemented the new work-flow: (1) the CLICpix2 65 nm CMOS hybrid pixel readout ASIC desi...

  12. Virtual environment display for a 3D audio room simulation

    Science.gov (United States)

    Chapin, William L.; Foster, Scott H.

    1992-01-01

    The development of a virtual environment simulation system integrating a 3D acoustic audio model with an immersive 3D visual scene is discussed. The system complements the acoustic model and is specified to: allow the listener to freely move about the space, a room of manipulable size, shape, and audio character, while interactively relocating the sound sources; reinforce the listener's feeling of telepresence in the acoustical environment with visual and proprioceptive sensations; enhance the audio with the graphic and interactive components, rather than overwhelm or reduce it; and serve as a research testbed and technology transfer demonstration. The hardware/software design of two demonstration systems, one installed and one portable, are discussed through the development of four iterative configurations.

  13. Fungal growth in culture media simulating an extreme environment.

    Science.gov (United States)

    Alvarez-Pérez, Sergio; Blanco, José L; Alba, Patricia; García, Marta E

    2011-01-01

    There is an increasing interest in the study of microorganisms that inhabit extreme environments for reasons that vary from gaining insight into the origin of life to the searching of new biotechnological applications. In this work, we studied the tolerance of fungi isolated from the Aguas Agrias Stream (AAS; Tharsis, Huelva, Spain), an acidic metal-rich environment, to a culture medium prepared with water from this extreme ecosystem (AASW medium). The ability of some culture collection strains of moulds and yeasts to grow on AASW medium was also assessed. For moulds, a tolerance index was calculated by dividing the growth diameter of colonies on AASW medium by the diameter in the control medium, and their germinative potential was recorded. For yeasts and yeast-like fungi, the minimum inhibitory concentration of AASW was determined. In general, the fungi isolated from the AAS showed differences in their ability to germinate and grow on AASW medium. Collection strains of the genus Aspergillus could grow on AASW medium, but showed some differences in tolerance when compared to environmental isolates. Extremotolerant fungi can manifest differences in their tolerance to culture media that simulate the conditions of their natural habitat. The results of this work suggest that the ability of fungi to grow in acidic, metal-rich environments might be more widespread than previously thought, and highlight the importance of determining the factors that are responsible for tolerance to these extreme environments. Copyright © 2010 Revista Iberoamericana de Micología. Published by Elsevier Espana. All rights reserved.

  14. Integrated Clinical Training for Space Flight Using a High-Fidelity Patient Simulator in a Simulated Microgravity Environment

    Science.gov (United States)

    Hurst, Victor; Doerr, Harold K.; Polk, J. D.; Schmid, Josef; Parazynksi, Scott; Kelly, Scott

    2007-01-01

    This viewgraph presentation reviews the use of telemedicine in a simulated microgravity environment using a patient simulator. For decades, telemedicine techniques have been used in terrestrial environments by many cohorts with varied clinical experience. The success of these techniques has been recently expanded to include microgravity environments aboard the International Space Station (ISS). In order to investigate how an astronaut crew medical officer will execute medical tasks in a microgravity environment, while being remotely guided by a flight surgeon, the Medical Operation Support Team (MOST) used the simulated microgravity environment provided aboard DC-9 aircraft teams of crew medical officers, and remote flight surgeons performed several tasks on a patient simulator.

  15. ESSE: Engineering Super Simulation Emulation for Virtual Reality Systems Environment

    International Nuclear Information System (INIS)

    Suh, Kune Y.; Yeon, Choul W.

    2008-01-01

    The trademark 4 + D Technology TM based Engineering Super Simulation Emulation (ESSE) is introduced. ESSE resorting to three-dimensional (3D) Virtual Reality (VR) technology pledges to provide with an interactive real-time motion, sound and tactile and other forms of feedback in the man machine systems environment. In particular, the 3D Virtual Engineering Neo cybernetic Unit Soft Power (VENUS) adds a physics engine to the VR platform so as to materialize a physical atmosphere. A close cooperation system and prompt information share are crucial, thereby increasing the necessity of centralized information system and electronic cooperation system. VENUS is further deemed to contribute towards public acceptance of nuclear power in general, and safety in particular. For instance, visualization of nuclear systems can familiarize the public in answering their questions and alleviating misunderstandings on nuclear power plants answering their questions and alleviating misunderstandings on nuclear power plants (NPPs) in general, and performance, security and safety in particular. An in-house flagship project Systemic Three-dimensional Engine Platform Prototype Engineering (STEPPE) endeavors to develop the Systemic Three-dimensional Engine Platform (STEP) for a variety of VR applications. STEP is home to a level system providing the whole visible scene of virtual engineering of man machine system environment. The system is linked with video monitoring that provides a 3D Computer Graphics (CG) visualization of major events. The database linked system provides easy access to relevant blueprints. The character system enables the operators easy access to visualization of major events. The database linked system provides easy access to relevant blueprints. The character system enables the operators to access the virtual systems by using their virtual characters. Virtually Engineered NPP Informative systems by using their virtual characters. Virtually Engineered NPP Informative

  16. Comparison of discrete event simulation tools in an academic environment

    Directory of Open Access Journals (Sweden)

    Mario Jadrić

    2014-12-01

    Full Text Available A new research model for simulation software evaluation is proposed consisting of three main categories of criteria: modeling and simulation capabilities of the explored tools, and tools’ input/output analysis possibilities, all with respective sub-criteria. Using the presented model, two discrete event simulation tools are evaluated in detail using the task-centred scenario. Both tools (Arena and ExtendSim were used for teaching discrete event simulation in preceding academic years. With the aim to inspect their effectiveness and to help us determine which tool is more suitable for students i.e. academic purposes, we used a simple simulation model of entities competing for limited resources. The main goal was to measure subjective (primarily attitude and objective indicators while using the tools when the same simulation scenario is given. The subjects were first year students of Master studies in Information Management at the Faculty of Economics in Split taking a course in Business Process Simulations (BPS. In a controlled environment – in a computer lab, two groups of students were given detailed, step-by-step instructions for building models using both tools - first using ExtendSim then Arena or vice versa. Subjective indicators (students’ attitudes were collected using an online survey completed immediately upon building each model. Subjective indicators primarily include students’ personal estimations of Arena and ExtendSim capabilities/features for model building, model simulation and result analysis. Objective indicators were measured using specialised software that logs information on user's behavior while performing a particular task on their computer such as distance crossed by mouse during model building, the number of mouse clicks, usage of the mouse wheel and speed achieved. The results indicate that ExtendSim is well preferred comparing to Arena with regards to subjective indicators while the objective indicators are

  17. Molecular Simulation and Biochemical Studies Support an Elevator-type Transport Mechanism in EIIC.

    Science.gov (United States)

    Lee, Jumin; Ren, Zhenning; Zhou, Ming; Im, Wonpil

    2017-06-06

    Enzyme IIC (EIIC) is a membrane-embedded sugar transport protein that is part of the phosphoenolpyruvate-dependent phosphotransferases. Crystal structures of two members of the glucose EIIC superfamily, bcChbC in the inward-facing conformation and bcMalT in the outward-facing conformation, were previously solved. Comparing the two structures led us to the hypothesis that sugar translocation could be achieved by an elevator-type transport mechanism in which a transport domain binds to the substrate and, through rigid body motions, transports it across the membrane. To test this hypothesis and to obtain more accurate descriptions of alternate conformations of the two proteins, we first performed collective variable-based steered molecular dynamics (CVSMD) simulations starting with the two crystal structures embedded in model lipid bilayers, and steered their transport domain toward their own alternative conformation. Our simulations show that large rigid-body motions of the transport domain (55° in rotation and 8 Å in translation) lead to access of the substrate binding site to the alternate side of the membrane. H-bonding interactions between the sugar and the protein are intact, although the side chains of the binding-site residues were not restrained in the simulation. Pairs of residues in bcMalT that are far apart in the crystal structure become close to each other in the simulated model. Some of these pairs can be cross-linked by a mercury ion when mutated to cysteines, providing further support for the CVSMD-generated model. In addition, bcMalT binds to maltose with similar affinities before and after the cross-linking, suggesting that the binding site is preserved after the conformational change. In combination, these results support an elevator-type transport mechanism in EIIC. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  18. A COMPUTATIONAL WORKBENCH ENVIRONMENT FOR VIRTUAL POWER PLANT SIMULATION

    Energy Technology Data Exchange (ETDEWEB)

    Mike Bockelie; Dave Swensen; Martin Denison; Adel Sarofim; Connie Senior

    2004-12-22

    In this report is described the work effort to develop and demonstrate a software framework to support advanced process simulations to evaluate the performance of advanced power systems. Integrated into the framework are a broad range of models, analysis tools, and visualization methods that can be used for the plant evaluation. The framework provides a tightly integrated problem-solving environment, with plug-and-play functionality, and includes a hierarchy of models, ranging from fast running process models to detailed reacting CFD models. The framework places no inherent limitations on the type of physics that can be modeled, numerical techniques, or programming languages used to implement the equipment models, or the type or amount of data that can be exchanged between models. Tools are provided to analyze simulation results at multiple levels of detail, ranging from simple tabular outputs to advanced solution visualization methods. All models and tools communicate in a seamless manner. The framework can be coupled to other software frameworks that provide different modeling capabilities. Three software frameworks were developed during the course of the project. The first framework focused on simulating the performance of the DOE Low Emissions Boiler System Proof of Concept facility, an advanced pulverized-coal combustion-based power plant. The second framework targeted simulating the performance of an Integrated coal Gasification Combined Cycle - Fuel Cell Turbine (IGCC-FCT) plant configuration. The coal gasifier models included both CFD and process models for the commercially dominant systems. Interfacing models to the framework was performed using VES-Open, and tests were performed to demonstrate interfacing CAPE-Open compliant models to the framework. The IGCC-FCT framework was subsequently extended to support Virtual Engineering concepts in which plant configurations can be constructed and interrogated in a three-dimensional, user-centered, interactive

  19. LASSIE: simulating large-scale models of biochemical systems on GPUs.

    Science.gov (United States)

    Tangherloni, Andrea; Nobile, Marco S; Besozzi, Daniela; Mauri, Giancarlo; Cazzaniga, Paolo

    2017-05-10

    Mathematical modeling and in silico analysis are widely acknowledged as complementary tools to biological laboratory methods, to achieve a thorough understanding of emergent behaviors of cellular processes in both physiological and perturbed conditions. Though, the simulation of large-scale models-consisting in hundreds or thousands of reactions and molecular species-can rapidly overtake the capabilities of Central Processing Units (CPUs). The purpose of this work is to exploit alternative high-performance computing solutions, such as Graphics Processing Units (GPUs), to allow the investigation of these models at reduced computational costs. LASSIE is a "black-box" GPU-accelerated deterministic simulator, specifically designed for large-scale models and not requiring any expertise in mathematical modeling, simulation algorithms or GPU programming. Given a reaction-based model of a cellular process, LASSIE automatically generates the corresponding system of Ordinary Differential Equations (ODEs), assuming mass-action kinetics. The numerical solution of the ODEs is obtained by automatically switching between the Runge-Kutta-Fehlberg method in the absence of stiffness, and the Backward Differentiation Formulae of first order in presence of stiffness. The computational performance of LASSIE are assessed using a set of randomly generated synthetic reaction-based models of increasing size, ranging from 64 to 8192 reactions and species, and compared to a CPU-implementation of the LSODA numerical integration algorithm. LASSIE adopts a novel fine-grained parallelization strategy to distribute on the GPU cores all the calculations required to solve the system of ODEs. By virtue of this implementation, LASSIE achieves up to 92× speed-up with respect to LSODA, therefore reducing the running time from approximately 1 month down to 8 h to simulate models consisting in, for instance, four thousands of reactions and species. Notably, thanks to its smaller memory footprint, LASSIE

  20. Architectural Large Constructed Environment. Modeling and Interaction Using Dynamic Simulations

    Science.gov (United States)

    Fiamma, P.

    2011-09-01

    How to use for the architectural design, the simulation coming from a large size data model? The topic is related to the phase coming usually after the acquisition of the data, during the construction of the model and especially after, when designers must have an interaction with the simulation, in order to develop and verify their idea. In the case of study, the concept of interaction includes the concept of real time "flows". The work develops contents and results that can be part of the large debate about the current connection between "architecture" and "movement". The focus of the work, is to realize a collaborative and participative virtual environment on which different specialist actors, client and final users can share knowledge, targets and constraints to better gain the aimed result. The goal is to have used a dynamic micro simulation digital resource that allows all the actors to explore the model in powerful and realistic way and to have a new type of interaction in a complex architectural scenario. On the one hand, the work represents a base of knowledge that can be implemented more and more; on the other hand the work represents a dealt to understand the large constructed architecture simulation as a way of life, a way of being in time and space. The architectural design before, and the architectural fact after, both happen in a sort of "Spatial Analysis System". The way is open to offer to this "system", knowledge and theories, that can support architectural design work for every application and scale. We think that the presented work represents a dealt to understand the large constructed architecture simulation as a way of life, a way of being in time and space. Architecture like a spatial configuration, that can be reconfigurable too through designing.

  1. ARCHITECTURAL LARGE CONSTRUCTED ENVIRONMENT. MODELING AND INTERACTION USING DYNAMIC SIMULATIONS

    Directory of Open Access Journals (Sweden)

    P. Fiamma

    2012-09-01

    Full Text Available How to use for the architectural design, the simulation coming from a large size data model? The topic is related to the phase coming usually after the acquisition of the data, during the construction of the model and especially after, when designers must have an interaction with the simulation, in order to develop and verify their idea. In the case of study, the concept of interaction includes the concept of real time "flows". The work develops contents and results that can be part of the large debate about the current connection between "architecture" and "movement". The focus of the work, is to realize a collaborative and participative virtual environment on which different specialist actors, client and final users can share knowledge, targets and constraints to better gain the aimed result. The goal is to have used a dynamic micro simulation digital resource that allows all the actors to explore the model in powerful and realistic way and to have a new type of interaction in a complex architectural scenario. On the one hand, the work represents a base of knowledge that can be implemented more and more; on the other hand the work represents a dealt to understand the large constructed architecture simulation as a way of life, a way of being in time and space. The architectural design before, and the architectural fact after, both happen in a sort of "Spatial Analysis System". The way is open to offer to this "system", knowledge and theories, that can support architectural design work for every application and scale. We think that the presented work represents a dealt to understand the large constructed architecture simulation as a way of life, a way of being in time and space. Architecture like a spatial configuration, that can be reconfigurable too through designing.

  2. A High-Fidelity Batch Simulation Environment for Integrated Batch and Piloted Air Combat Simulation Analysis

    Science.gov (United States)

    Goodrich, Kenneth H.; McManus, John W.; Chappell, Alan R.

    1992-01-01

    A batch air combat simulation environment known as the Tactical Maneuvering Simulator (TMS) is presented. The TMS serves as a tool for developing and evaluating tactical maneuvering logics. The environment can also be used to evaluate the tactical implications of perturbations to aircraft performance or supporting systems. The TMS is capable of simulating air combat between any number of engagement participants, with practical limits imposed by computer memory and processing power. Aircraft are modeled using equations of motion, control laws, aerodynamics and propulsive characteristics equivalent to those used in high-fidelity piloted simulation. Databases representative of a modern high-performance aircraft with and without thrust-vectoring capability are included. To simplify the task of developing and implementing maneuvering logics in the TMS, an outer-loop control system known as the Tactical Autopilot (TA) is implemented in the aircraft simulation model. The TA converts guidance commands issued by computerized maneuvering logics in the form of desired angle-of-attack and wind axis-bank angle into inputs to the inner-loop control augmentation system of the aircraft. This report describes the capabilities and operation of the TMS.

  3. Simulating the UV Environment For the Synthesis of Prebiotic Molecules

    Science.gov (United States)

    Ranjan, S.; Sasselov, D.

    2014-03-01

    UV radiation plays a key role in the era of biogenesis. The young Sun was more UV-active than the modern Sun (Ribas et al. 2010), and the Earth lacked an ozone layer, implying a larger UV flux both on Earth, as well as on asteroids/comets. Ultraviolet radiation can help drive prebiotic molecule synthesis (e.g., Chyba et al. 1992; Powner et al. 2009) or destroy biologically important molecules (e.g., Johns et al. 1967). These effects are wavelength dependent: they are sensitive to ionzation, bond, and ro-vibrational transition energies of biologically relevant molecules and their precursors. When simulating the environment at biogenesis it is therefore important to ensure realistic levels of UV input, in both magnitude and spectral shape. Many laboratory simulations of biomolecule synthesis under prebiotic conditions to date have been done with atomic lamps (e.g., Powner et al. 2007). These lamps are safe, stable, and affordable UV sources, well-suited for initial studies. However, their emission spectra are a poor match to prebiotic conditions: low-pressure lamps are characterized by line emission, while higher-pressure lamps do not well-reproduce the spectrum of the young Sun. In this paper, we present spectra that are more realistic approximations to prebiotic conditions. Using published opacity lists and atmospheric models, we compute the attenuation of the flux from a young Sunanalog due to water, and from the present-day Sun due to a planetary atmosphere. We compare these spectra to those emitted by lamps used in studies today, and explore the potential biological implications of the differences. We conclude by discussing possibilities for better simulating the prebiotic UV environment in lab setups.

  4. Evaluating an immersive virtual environment prototyping and simulation system

    Science.gov (United States)

    Nemire, Kenneth

    1997-05-01

    An immersive virtual environment (IVE) modeling and simulation tool is being developed for designing advanced weapon and training systems. One unique feature of the tool is that the design, and not just visualization of the design is accomplished with the IVE tool. Acceptance of IVE tools requires comparisons with current commercial applications. In this pilot study, expert users of a popular desktop 3D graphics application performed identical modeling and simulation tasks using both the desktop and IVE applications. The IVE tool consisted of a head-mounted display, 3D spatialized sound, spatial trackers on head and hands, instrumented gloves, and a simulated speech recognition system. The results are preliminary because performance from only four users has been examined. When using the IVE system, users completed the tasks to criteria in less time than when using the desktop application. Subjective ratings of the visual displays in each system were similar. Ratings for the desktop controls were higher than for the IVE controls. Ratings of immersion and user enjoyment were higher for the IVE than for the desktop application. These results are particular remarkable because participants had used the desktop application regularly for three to five years and the prototype IVE tool for only three to six hours.

  5. Augmenting Sand Simulation Environments through Subdivision and Particle Refinement

    Science.gov (United States)

    Clothier, M.; Bailey, M.

    2012-12-01

    Recent advances in computer graphics and parallel processing hardware have provided disciplines with new methods to evaluate and visualize data. These advances have proven useful for earth and planetary scientists as many researchers are using this hardware to process large amounts of data for analysis. As such, this has provided opportunities for collaboration between computer graphics and the earth sciences. Through collaboration with the Oregon Space Grant and IGERT Ecosystem Informatics programs, we are investigating techniques for simulating the behavior of sand. We are also collaborating with the Jet Propulsion Laboratory's (JPL) DARTS Lab to exchange ideas and gain feedback on our research. The DARTS Lab specializes in simulation of planetary vehicles, such as the Mars rovers. Their simulations utilize a virtual "sand box" to test how a planetary vehicle responds to different environments. Our research builds upon this idea to create a sand simulation framework so that planetary environments, such as the harsh, sandy regions on Mars, are more fully realized. More specifically, we are focusing our research on the interaction between a planetary vehicle, such as a rover, and the sand beneath it, providing further insight into its performance. Unfortunately, this can be a computationally complex problem, especially if trying to represent the enormous quantities of sand particles interacting with each other. However, through the use of high-performance computing, we have developed a technique to subdivide areas of actively participating sand regions across a large landscape. Similar to a Level of Detail (LOD) technique, we only subdivide regions of a landscape where sand particles are actively participating with another object. While the sand is within this subdivision window and moves closer to the surface of the interacting object, the sand region subdivides into smaller regions until individual sand particles are left at the surface. As an example, let's say

  6. Plasma environment of Titan: a 3-D hybrid simulation study

    Directory of Open Access Journals (Sweden)

    S. Simon

    2006-05-01

    Full Text Available Titan possesses a dense atmosphere, consisting mainly of molecular nitrogen. Titan's orbit is located within the Saturnian magnetosphere most of the time, where the corotating plasma flow is super-Alfvénic, yet subsonic and submagnetosonic. Since Titan does not possess a significant intrinsic magnetic field, the incident plasma interacts directly with the atmosphere and ionosphere. Due to the characteristic length scales of the interaction region being comparable to the ion gyroradii in the vicinity of Titan, magnetohydrodynamic models can only offer a rough description of Titan's interaction with the corotating magnetospheric plasma flow. For this reason, Titan's plasma environment has been studied by using a 3-D hybrid simulation code, treating the electrons as a massless, charge-neutralizing fluid, whereas a completely kinetic approach is used to cover ion dynamics. The calculations are performed on a curvilinear simulation grid which is adapted to the spherical geometry of the obstacle. In the model, Titan's dayside ionosphere is mainly generated by solar UV radiation; hence, the local ion production rate depends on the solar zenith angle. Because the Titan interaction features the possibility of having the densest ionosphere located on a face not aligned with the ram flow of the magnetospheric plasma, a variety of different scenarios can be studied. The simulations show the formation of a strong magnetic draping pattern and an extended pick-up region, being highly asymmetric with respect to the direction of the convective electric field. In general, the mechanism giving rise to these structures exhibits similarities to the interaction of the ionospheres of Mars and Venus with the supersonic solar wind. The simulation results are in agreement with data from recent Cassini flybys.

  7. Plasma environment of Titan: a 3-D hybrid simulation study

    Directory of Open Access Journals (Sweden)

    S. Simon

    2006-05-01

    Full Text Available Titan possesses a dense atmosphere, consisting mainly of molecular nitrogen. Titan's orbit is located within the Saturnian magnetosphere most of the time, where the corotating plasma flow is super-Alfvénic, yet subsonic and submagnetosonic. Since Titan does not possess a significant intrinsic magnetic field, the incident plasma interacts directly with the atmosphere and ionosphere. Due to the characteristic length scales of the interaction region being comparable to the ion gyroradii in the vicinity of Titan, magnetohydrodynamic models can only offer a rough description of Titan's interaction with the corotating magnetospheric plasma flow. For this reason, Titan's plasma environment has been studied by using a 3-D hybrid simulation code, treating the electrons as a massless, charge-neutralizing fluid, whereas a completely kinetic approach is used to cover ion dynamics. The calculations are performed on a curvilinear simulation grid which is adapted to the spherical geometry of the obstacle. In the model, Titan's dayside ionosphere is mainly generated by solar UV radiation; hence, the local ion production rate depends on the solar zenith angle. Because the Titan interaction features the possibility of having the densest ionosphere located on a face not aligned with the ram flow of the magnetospheric plasma, a variety of different scenarios can be studied. The simulations show the formation of a strong magnetic draping pattern and an extended pick-up region, being highly asymmetric with respect to the direction of the convective electric field. In general, the mechanism giving rise to these structures exhibits similarities to the interaction of the ionospheres of Mars and Venus with the supersonic solar wind. The simulation results are in agreement with data from recent Cassini flybys.

  8. Small Engine Technology (SET) - Task 14 Axisymmetric Engine Simulation Environment

    Science.gov (United States)

    Miller, Max J.

    1999-01-01

    As part of the NPSS (Numerical Propulsion Simulation System) project, NASA Lewis has a goal of developing an U.S. industry standard for an axisymmetric engine simulation environment. In this program, AlliedSignal Engines (AE) contributed to this goal by evaluating the ENG20 software and developing support tools. ENG20 is a NASA developed axisymmetric engine simulation tool. The project was divided into six subtasks which are summarized below: Evaluate the capabilities of the ENG20 code using an existing test case to see how this procedure can capture the component interactions for a full engine. Link AE's compressor and turbine axisymmetric streamline curvature codes (UD0300M and TAPS) with ENG20, which will provide the necessary boundary conditions for an ENG20 engine simulation. Evaluate GE's Global Data System (GDS), attempt to use GDS to do the linking of codes described in Subtask 2 above. Use a turbofan engine test case to evaluate various aspects of the system, including the linkage of UD0300M and TAPS with ENG20 and the GE data storage system. Also, compare the solution results with cycle deck results, axisymmetric solutions (UD0300M and TAPS), and test data to determine the accuracy of the solution. Evaluate the order of accuracy and the convergence time for the solution. Provide a monthly status report and a final formal report documenting AE's evaluation of ENG20. Provide the developed interfaces that link UD0300M and TAPS with ENG20, to NASA. The interface that links UD0300M with ENG20 will be compatible with the industr,, version of UD0300M.

  9. Home automation and simulation of presence in empty environments

    Directory of Open Access Journals (Sweden)

    Marques Israel

    2017-01-01

    Full Text Available Since their humble beginnings at the dawn of the 20th Century until contemporary age, automation and control systems have grown exponentially in both complexity and importance. Its relevance on human activities, be they mundane tasks or crucial processes, is self-evident. Among its many utilities, automated systems acquire a noble mission when put in service to protect life and property from aggressors of any kind. This paper discusses how home automation components can be utilized to implement an alternative domestic security strategy that consists in simulating the presence of an individual in an empty environment in the absence of its owner in order dissuade potential trespassing criminals, once they would feel highly discouraged to carry the criminal act should they believe the property is occupied.

  10. Flexible Environments for Grand-Challenge Simulation in Climate Science

    Science.gov (United States)

    Pierrehumbert, R.; Tobis, M.; Lin, J.; Dieterich, C.; Caballero, R.

    2004-12-01

    Current climate models are monolithic codes, generally in Fortran, aimed at high-performance simulation of the modern climate. Though they adequately serve their designated purpose, they present major barriers to application in other problems. Tailoring them to paleoclimate of planetary simulations, for instance, takes months of work. Theoretical studies, where one may want to remove selected processes or break feedback loops, are similarly hindered. Further, current climate models are of little value in education, since the implementation of textbook concepts and equations in the code is obscured by technical detail. The Climate Systems Center at the University of Chicago seeks to overcome these limitations by bringing modern object-oriented design into the business of climate modeling. Our ultimate goal is to produce an end-to-end modeling environment capable of configuring anything from a simple single-column radiative-convective model to a full 3-D coupled climate model using a uniform, flexible interface. Technically, the modeling environment is implemented as a Python-based software component toolkit: key number-crunching procedures are implemented as discrete, compiled-language components 'glued' together and co-ordinated by Python, combining the high performance of compiled languages and the flexibility and extensibility of Python. We are incrementally working towards this final objective following a series of distinct, complementary lines. We will present an overview of these activities, including PyOM, a Python-based finite-difference ocean model allowing run-time selection of different Arakawa grids and physical parameterizations; CliMT, an atmospheric modeling toolkit providing a library of 'legacy' radiative, convective and dynamical modules which can be knitted into dynamical models, and PyCCSM, a version of NCAR's Community Climate System Model in which the coupler and run-control architecture are re-implemented in Python, augmenting its flexibility

  11. SISMA: A SOFTWARE FOR DYNAMIC SIMULATION OF METABOLIC PATHWAYS IN BIOCHEMICAL EDUCATION

    Directory of Open Access Journals (Sweden)

    J.A. Macedo

    2008-05-01

    Full Text Available The main purpose of metabolic pathway charts is  clarifying the flow of reactants and products  devised by enzyme  catalytic  reactions . Learning the wealth of information in metabolic pathways , however, is both challenging and overwhelming for students, mainly due to the static nature of printed charts.  In this sense the goal of this work was to develop a software environment for  metabolic chart studies, enhancing both student learning and retention. The system named SISMA (Sistema de Simulações Metabólicas was developed using  the  Unified Modeling Language (UML and Rational Unified Process (RUP tools for specifying, visualizing, constructing, and documenting  the  software system.  SISMA  was modelled with  JAVA programming  language, due to its versatility, efficiency, platform portability, and security. Use Case diagrams were constructing to describe the available functionality of  the software  and  the set of scenarios describing the interactions with the end user, with constraints defined by B usiness  Rules.  In brief, SISMA  can  dynamically  illustrate standard and physiopathological  flow of reactants, create and modifiy compounds, pathways,  and co-factors, and report kinectic data,  among others.  In this way SISMA  can be used as a complementary tool on both conventional full-time as distance learning courses in biochemistry and biotechnology.

  12. Flight Simulation of ARES in the Mars Environment

    Science.gov (United States)

    Kenney, P. Sean; Croom, Mark A.

    2011-01-01

    A report discusses using the Aerial Regional- scale Environmental Survey (ARES) light airplane as an observation platform on Mars in order to gather data. It would have to survive insertion into the atmosphere, fly long enough to meet science objectives, and provide a stable platform. The feasibility of such a platform was tested using the Langley Standard Real- Time Simulation in C++. The unique features of LaSRS++ are: full, six-degrees- of-freedom flight simulation that can be used to evaluate the performance of the aircraft in the Martian environment; capability of flight analysis from start to finish; support of Monte Carlo analysis of aircraft performance; and accepting initial conditions from POST results for the entry and deployment of the entry body. Starting with a general aviation model, the design was tweaked to maintain a stable aircraft under expected Martian conditions. Outer mold lines were adjusted based on experience with the Martian atmosphere. Flight control was modified from a vertical acceleration control law to an angle-of-attack control law. Navigation was modified from a vertical acceleration control system to an alpha control system. In general, a pattern of starting with simple models with well-understood behaviors was selected and modified during testing.

  13. Learning environment simulator for decision making in severe weather

    Energy Technology Data Exchange (ETDEWEB)

    Powell, Dennis R. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); LeClaire, Rene J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2010-10-04

    The Severe Weather Planning Simulator (SWPS), developed by Los Alamos National Laboratory (LANL), is a computer-based learning environment of conditions and response options to potential severe weather conditions at the Macondo Well (MC252) during response and recovery operations. SWPS is a computer aid designed to expose users to uncertain hurricane conditions and allow them to make decisions at a high level about ship deployment and operations and be exposed to potential consequences in personnel and equipment safety and pollution prevention efforts. The goal is not to predict the future but rather to expose decision makers to potential scenarios and the tradeoffs that will need to be considered when making decisions about personnel and ship deployment. Although this work is focused solely on Macondo response operations, it is readily extensible to other recovery operations involving a range of conditions, geographic locations and exploration assets. Documented herein is a brief summary of the results of an initial trial of SWPS with four employees of BP involved with Macondo response operations. SWPS uses system level models to represent ship operations including movements to port under storm threat and the return to operations, ship fragility, personnel movements and vulnerability in storm conditions, pollution prevention results, a hurricane scenario generation model and a decision model. The models are wrapped in an interface enabling users to observe conditions, make decisions on ship and personnel movements and evaluate the results of their actions. A two hour workshop was conducted on August 18 at the BP Westlake offices in Houston to assess a preliminary version of the simulator. The workshop goal was to assess the potential utility of SWPS, evaluate its interface, and function and gather suggestions for further development. Four BP employees - Ed Bracken, Hugh Banon, Earnest Bush, and Troy Endicott - were introduced to the simulator and asked to run

  14. Simulation of machine-maintenance training in virtual environment

    International Nuclear Information System (INIS)

    Yoshikawa, Hidekazu; Tezuka, Tetsuo; Kashiwa, Ken-ichiro; Ishii, Hirotake

    1997-01-01

    The periodical inspection of nuclear power plants needs a lot of workforces with a high degree of technical skill for the maintenance of various sorts of machines. Therefore, a new type of maintenance training system is required, where trainees can get training safely, easily and effectively. In this study we developed a training simulation system for disassembling a check valve in virtual environment (VE). The features of this system are as follows: Firstly, the trainees can execute tasks even in wrong order, and can experience the resultant conditions. In order to realize this environment, we developed a new Petri-net model for representing the objects' states in VE. This Petri-net model has several original characteristics, which make it easier to manage the change of the objects' states. Furthermore, we made a support system for constructing the Petri-net model of machine-disassembling training, because the Petri-net model is apt to become of large size. The effectiveness of this support system is shown through the system development. Secondly, this system can perform appropriate tasks to be done next in VE whenever the trainee wants even after some mistakes have been made. The effectiveness of this function has also been confirmed by experiments. (author)

  15. Simulating cloud environment for HIS backup using secret sharing.

    Science.gov (United States)

    Kuroda, Tomohiro; Kimura, Eizen; Matsumura, Yasushi; Yamashita, Yoshinori; Hiramatsu, Haruhiko; Kume, Naoto

    2013-01-01

    In the face of a disaster hospitals are expected to be able to continue providing efficient and high-quality care to patients. It is therefore crucial for hospitals to develop business continuity plans (BCPs) that identify their vulnerabilities, and prepare procedures to overcome them. A key aspect of most hospitals' BCPs is creating the backup of the hospital information system (HIS) data at multiple remote sites. However, the need to keep the data confidential dramatically increases the costs of making such backups. Secret sharing is a method to split an original secret message so that individual pieces are meaningless, but putting sufficient number of pieces together reveals the original message. It allows creation of pseudo-redundant arrays of independent disks for privacy-sensitive data over the Internet. We developed a secret sharing environment for StarBED, a large-scale network experiment environment, and evaluated its potential and performance during disaster recovery. Simulation results showed that the entire main HIS database of Kyoto University Hospital could be retrieved within three days even if one of the distributed storage systems crashed during a disaster.

  16. Simulation of Temperature, Nutrients, Biochemical Oxygen Demand, and Dissolved Oxygen in the Catawba River, South Carolina, 1996-97

    Science.gov (United States)

    Feaster, Toby D.; Conrads, Paul; Guimaraes, Wladmir B.; Sanders, Curtis L.; Bales, Jerad D.

    2003-01-01

    Time-series plots of dissolved-oxygen concentrations were determined for various simulated hydrologic and point-source loading conditions along a free-flowing section of the Catawba River from Lake Wylie Dam to the headwaters of Fishing Creek Reservoir in South Carolina. The U.S. Geological Survey one-dimensional dynamic-flow model, BRANCH, was used to simulate hydrodynamic data for the Branched Lagrangian Transport Model. Waterquality data were used to calibrate the Branched Lagrangian Transport Model and included concentrations of nutrients, chlorophyll a, and biochemical oxygen demand in water samples collected during two synoptic sampling surveys at 10 sites along the main stem of the Catawba River and at 3 tributaries; and continuous water temperature and dissolved-oxygen concentrations measured at 5 locations along the main stem of the Catawba River. A sensitivity analysis of the simulated dissolved-oxygen concentrations to model coefficients and data inputs indicated that the simulated dissolved-oxygen concentrations were most sensitive to watertemperature boundary data due to the effect of temperature on reaction kinetics and the solubility of dissolved oxygen. Of the model coefficients, the simulated dissolved-oxygen concentration was most sensitive to the biological oxidation rate of nitrite to nitrate. To demonstrate the utility of the Branched Lagrangian Transport Model for the Catawba River, the model was used to simulate several water-quality scenarios to evaluate the effect on the 24-hour mean dissolved-oxygen concentrations at selected sites for August 24, 1996, as simulated during the model calibration period of August 23 27, 1996. The first scenario included three loading conditions of the major effluent discharges along the main stem of the Catawba River (1) current load (as sampled in August 1996); (2) no load (all point-source loads were removed from the main stem of the Catawba River; loads from the main tributaries were not removed); and (3

  17. Comparative Study of the Effectiveness of Three Learning Environments: Hyper-Realistic Virtual Simulations, Traditional Schematic Simulations and Traditional Laboratory

    Science.gov (United States)

    Martinez, Guadalupe; Naranjo, Francisco L.; Perez, Angel L.; Suero, Maria Isabel; Pardo, Pedro J.

    2011-01-01

    This study compared the educational effects of computer simulations developed in a hyper-realistic virtual environment with the educational effects of either traditional schematic simulations or a traditional optics laboratory. The virtual environment was constructed on the basis of Java applets complemented with a photorealistic visual output.…

  18. Adaptation of a cyanobacterium to a biochemically rich environment in experimental evolution as an initial step toward a chloroplast-like state.

    Science.gov (United States)

    Hosoda, Kazufumi; Habuchi, Masumi; Suzuki, Shingo; Miyazaki, Mikako; Takikawa, Go; Sakurai, Takahiro; Kashiwagi, Akiko; Sueyoshi, Makoto; Matsumoto, Yusuke; Kiuchi, Ayako; Mori, Kotaro; Yomo, Tetsuya

    2014-01-01

    Chloroplasts originated from cyanobacteria through endosymbiosis. The original cyanobacterial endosymbiont evolved to adapt to the biochemically rich intracellular environment of the host cell while maintaining its photosynthetic function; however, no such process has been experimentally demonstrated. Here, we show the adaptation of a model cyanobacterium, Synechocystis sp. PCC 6803, to a biochemically rich environment by experimental evolution. Synechocystis sp. PCC 6803 does not grow in a biochemically rich, chemically defined medium because several amino acids are toxic to the cells at approximately 1 mM. We cultured the cyanobacteria in media with the toxic amino acids at 0.1 mM, then serially transferred the culture, gradually increasing the concentration of the toxic amino acids. The cells evolved to show approximately the same specific growth rate in media with 0 and 1 mM of the toxic amino acid in approximately 84 generations and evolved to grow faster in the media with 1 mM than in the media with 0 mM in approximately 181 generations. We did not detect a statistically significant decrease in the autotrophic growth of the evolved strain in an inorganic medium, indicating the maintenance of the photosynthetic function. Whole-genome resequencing revealed changes in the genes related to the cell membrane and the carboxysome. Moreover, we quantitatively analyzed the evolutionary changes by using simple mathematical models, which evaluated the evolution as an increase in the half-maximal inhibitory concentration (IC50) and estimated quantitative characteristics of the evolutionary process. Our results clearly demonstrate not only the potential of a model cyanobacterium to adapt to a biochemically rich environment without a significant decrease in photosynthetic function but also the properties of its evolutionary process, which sheds light of the evolution of chloroplasts at the initial stage.

  19. WinGraphics: An optimized windowing environment for interactive real-time simulations

    International Nuclear Information System (INIS)

    Verboncoeur, J.P.; Vahedi, V.

    1989-01-01

    We have developed a customized windowing environment, Win Graphics, which provides particle simulation codes with an interactive user interface. The environment supports real-time animation of the simulation, displaying multiple diagnostics as they evolve in time. In addition, keyboard and printer (PostScript and dot matrix) support is provided. This paper describes this environment

  20. The Development and Evaluation of a Computer-Simulated Science Inquiry Environment Using Gamified Elements

    Science.gov (United States)

    Tsai, Fu-Hsing

    2018-01-01

    This study developed a computer-simulated science inquiry environment, called the Science Detective Squad, to engage students in investigating an electricity problem that may happen in daily life. The environment combined the simulation of scientific instruments and a virtual environment, including gamified elements, such as points and a story for…

  1. Transport of Zinc Oxide Nanoparticles in a Simulated Gastric Environment

    Science.gov (United States)

    Mayfield, Ryan T.

    Recent years have seen a growing interest in the use of many types of nano sized materials in the consumer sector. Potential uses include encapsulation of nutrients, providing antimicrobial activity, altering texture, or changing bioavailability of nutrients. Engineered nanoparticles (ENP) possess properties that are different than larger particles made of the same constituents. Properties such as solubility, aggregation state, and toxicity can all be changed as a function of size. The gastric environment is an important area for study of engineered nanoparticles because of the varied physical, chemical, and enzymatic processes that are prevalent there. These all have the potential to alter those properties of ENP that make them different from their bulk counterparts. The Human Gastric Simulator (HGS) is an advanced in vitro model that can be used to study many facets of digestion. The HGS consists of a plastic lining that acts as the stomach cavity with two sets of U-shaped arms on belts that provide the physical forces needed to replicate peristalsis. Altering the position of the arms or changing the speed of the motor which powers them allows one to tightly hone and replicate varied digestive conditions. Gastric juice, consisting of salts, enzymes, and acid levels which replicate physiological conditions, is introduced to the cavity at a controllable rate. The release of digested food from the lumen of simulated stomach is controlled by a peristaltic pump. The goal of the HGS is to accurately and repeatedly simulate human digestion. This study focused on introducing foods spiked with zinc oxide ENP and bulk zinc oxide into the HGS and then monitoring how the concentration of each changed at two locations in the HGS over a two hour period. The two locations chosen were the highest point in the lumen of the stomach, which represented the fundus, and a point just beyond the equivalent of the pylorus, which represented the antrum of the stomach. These points were

  2. High versus low crewmember autonomy in space simulation environments

    Science.gov (United States)

    Kanas, Nick; Saylor, Stephanie; Harris, Matthew; Neylan, Thomas; Boyd, Jennifer; Weiss, Daniel S.; Baskin, Pamela; Cook, Colleen; Marmar, Charles

    2010-10-01

    Given the long distances involved and the kinds of activities planned, crewmembers participating in long-duration exploratory space missions such as an expedition to Mars will have more autonomy than in previous space missions. In order to study the impact of high versus low crew autonomy on crewmembers and the crew-mission control interaction, we conducted a series of pilot studies involving three space simulation settings: NEEMO missions, the Haughton-Mars Project, and the pilot phase of the Mars 500 Program. As in our previous on-orbit studies on the Mir and International Space Station, crew and mission control subjects working in missions involving these three settings completed a weekly study questionnaire that assessed mood and interpersonal interactions using the Profile of Mood States, the Group Environment Scale, and the Work Environment Scale. The Mars 500 pilot study also directly assessed individual and group autonomy. In these studies, high autonomy periods were those where crewmembers planned much of their work schedule, whereas low autonomy periods were those where mission control personnel developed the schedule, much as happens now during actual space flight conditions. Our results suggested that high work autonomy was well-received by the crews, mission goals were accomplished, and there were no adverse effects. During high autonomy periods, crewmember mood was generally reported as being better and creativity was higher, but mission control personnel reported some confusion about their work role. The crewmember group environment in the Mars 500 pilot study was dependent on the nationality mix. Despite scoring lower in work pressure overall, the four Russian crewmembers reported a greater rise in work pressure from low to high autonomy than the two Europeans. In contrast, the European crewmembers reported a greater rise in dysphoric mood in going from low to high autonomy, whereas the Russians' emotional state remained the same or slightly

  3. Fluorine environment in bioactive glasses: ab initio molecular dynamics simulations.

    Science.gov (United States)

    Christie, Jamieson K; Pedone, Alfonso; Menziani, Maria Cristina; Tilocca, Antonio

    2011-03-10

    Fluorinated bioactive glasses (FBGs) combine the antibacterial properties of fluorine with the biological activity of phosphosilicate glasses. Because their biomedical application depends on the release of fluorine, the detailed characterization of the fluorine environment in FBGs is the key to understand their properties. Car-Parrinello molecular dynamics (CPMD) simulations have been performed on a 45S5 Bioglass composition in which 10 mol % of the CaO has been replaced with CaF(2), and have allowed us to resolve some longstanding issues about the atomic structure of fluorinated bioglasses, with particular regard to the structural role of fluorine. F is coordinated almost entirely to the modifier ions Na and Ca, with a very small amount of residual Si-F bonds, whose fraction only becomes significant in the melt precursor. High temperature leads to Si-F bonds in both tetra- (SiO(3)F) and, less frequently, penta-coordinated (SiO(4)F and SiO(3)F(2)) complexes, showing that formation of these bonds through the expansion of the SiO(4) coordination shell is generally less favored. There is no evidence for preferential bonding of F to either modifier ion: almost all F atoms are coordinated to both calcium and sodium in a "mixed state", rather than exclusively to either, as had been conjectured. We discuss the consequences of these findings on the properties of fluorine-containing bioglasses. © 2011 American Chemical Society

  4. Corrosion Performance of Stainless Steels in a Simulated Launch Environment

    Science.gov (United States)

    Calle, Luz Marina; Vinje, Rubiela D.; MacDowell, Louis

    2004-01-01

    At the Kennedy Space Center, NASA relies on stainless steel (SS) tubing to supply the gases and fluids required to launch the Space Shuttle. 300 series SS tubing has been used for decades but the highly corrosive environment at the launch pad has proven to be detrimental to these alloys. An upgrade with higher alloy content materials has become necessary in order to provide a safer and long lasting launch facility. In the effort to find the most suitable material to replace the existing AISI 304L SS ([iNS S30403) and AISI 316L SS (UNS S31603) shuttle tubing, a study involving atmospheric exposure at the corrosion test site near the launch pads and electrochemical measurements is being conducted. This paper presents the results of an investigation in which stainless steels of the 300 series, 304L, 316L, and AISI 317L SS (UNS S31703) as well as highly alloyed stainless steels 254-SMO (UNS S32154), AL-6XN (N08367) and AL29-4C ([iNS S44735) were evaluated using direct current (DC) electrochemical techniques under conditions designed to simulate those found at the Space Shuttle Launch pad. The electrochemical results were compared to the atmospheric exposure data and evaluated for their ability to predict the long-term corrosion performance of the alloys.

  5. Simulating bicycle wayfinding mechanisms in an urban environment

    Directory of Open Access Journals (Sweden)

    Greg Rybarczyk

    2014-01-01

    Full Text Available With the increased recognition that bicycling is a sustainable transportation mode choice, there is a continued interest in understanding how the built environment affects bicyclist travel behavior. Research on the influence of small-scale built form elements, such as street characteristics, on bicyclist wayfinding is limited. wayfinding is defined as a purposeful way of reaching from point A to point B; it is comprised of decision-making and subsequent movement. This research uses an agent-based model to investigate how small-scale urban design affects bicyclist wayfinding. Using geographic information systems and statistical analysis, different types of simulated bicycle agents were compared to observed bicycle volumes. Statistically significant positive relationships between bicycle agent types and observational data existed. The largest correspondence between agents and field observations occurred along central routes that were accessible from other streets (R2 = .377 and that had fewer decision-making junctions (R2 = .352. Bicyclists selected streets that were wider and with fewer obstructions to one’s forward view. The results support the need to design streetscapes that offer a high level of visibility and reduced stops to promote bicycling. The study also describes a modeling approach that can be replicated by urban planners to understand bicyclist travel patterns.

  6. Full immersion simulation: validation of a distributed simulation environment for technical and non-technical skills training in Urology.

    Science.gov (United States)

    Brewin, James; Tang, Jessica; Dasgupta, Prokar; Khan, Muhammad S; Ahmed, Kamran; Bello, Fernando; Kneebone, Roger; Jaye, Peter

    2015-07-01

    To evaluate the face, content and construct validity of the distributed simulation (DS) environment for technical and non-technical skills training in endourology. To evaluate the educational impact of DS for urology training. DS offers a portable, low-cost simulated operating room environment that can be set up in any open space. A prospective mixed methods design using established validation methodology was conducted in this simulated environment with 10 experienced and 10 trainee urologists. All participants performed a simulated prostate resection in the DS environment. Outcome measures included surveys to evaluate the DS, as well as comparative analyses of experienced and trainee urologist's performance using real-time and 'blinded' video analysis and validated performance metrics. Non-parametric statistical methods were used to compare differences between groups. The DS environment demonstrated face, content and construct validity for both non-technical and technical skills. Kirkpatrick level 1 evidence for the educational impact of the DS environment was shown. Further studies are needed to evaluate the effect of simulated operating room training on real operating room performance. This study has shown the validity of the DS environment for non-technical, as well as technical skills training. DS-based simulation appears to be a valuable addition to traditional classroom-based simulation training. © 2014 The Authors BJU International © 2014 BJU International Published by John Wiley & Sons Ltd.

  7. A novel natural environment background model for Monte Carlo simulation and its application in the simulation of anticoincidence measurement.

    Science.gov (United States)

    Li, Sangang; Wang, Lei; Cheng, Yi; Tuo, Xianguo; Liu, Mingzhe; Yao, Fuliang; Leng, Fengqing; Cheng, Yuanyuan; Cai, Ting; Zhou, Yan

    2016-02-01

    This study proposes a novel natural environment background model by modeling brief environment conditions. It uses Geant4 program to simulate decays of (238)U, (232)Th, and (40)K in soil and obtains compositions of different-energy gamma rays in the natural environment background. The simulated gamma spectrum of the natural environment background agrees well with the experimental spectrum, particularly above 250 keV. The model is used in the simulation of anticoincidence measurement, indicating that the natural environment background can be decreased by approximately 88%, and the Compton attenuation factor is 2.22. The simulation of anticoincidence measurement can improve the minimum detectable activity (MDA) of the detection system. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. A novel natural environment background model for Monte Carlo simulation and its application in the simulation of anticoincidence measurement

    International Nuclear Information System (INIS)

    Li, Sangang; Wang, Lei; Cheng, Yi; Tuo, Xianguo; Liu, Mingzhe; Yao, Fuliang; Leng, Fengqing; Cheng, Yuanyuan; Cai, Ting; Zhou, Yan

    2016-01-01

    This study proposes a novel natural environment background model by modeling brief environment conditions. It uses Geant4 program to simulate decays of 238 U, 232 Th, and 40 K in soil and obtains compositions of different-energy gamma rays in the natural environment background. The simulated gamma spectrum of the natural environment background agrees well with the experimental spectrum, particularly above 250 keV. The model is used in the simulation of anticoincidence measurement, indicating that the natural environment background can be decreased by approximately 88%, and the Compton attenuation factor is 2.22. The simulation of anticoincidence measurement can improve the minimum detectable activity (MDA) of the detection system. - Highlights: • This study proposes a novel natural environment background model by simulating decays of 238 U, 232 Th, and 40 K in soil. • The simulated gamma spectrum of the natural environment background agrees well with the experimental spectrum, particularly above 250 keV. • The proposed environment background model is applied to study the properties of anticoincidence detector.

  9. Review of computer simulations of isotope effects on biochemical reactions: From the Bigeleisen equation to Feynman's path integral.

    Science.gov (United States)

    Wong, Kin-Yiu; Xu, Yuqing; Xu, Liang

    2015-11-01

    Enzymatic reactions are integral components in many biological functions and malfunctions. The iconic structure of each reaction path for elucidating the reaction mechanism in details is the molecular structure of the rate-limiting transition state (RLTS). But RLTS is very hard to get caught or to get visualized by experimentalists. In spite of the lack of explicit molecular structure of the RLTS in experiment, we still can trace out the RLTS unique "fingerprints" by measuring the isotope effects on the reaction rate. This set of "fingerprints" is considered as a most direct probe of RLTS. By contrast, for computer simulations, oftentimes molecular structures of a number of TS can be precisely visualized on computer screen, however, theoreticians are not sure which TS is the actual rate-limiting one. As a result, this is an excellent stage setting for a perfect "marriage" between experiment and theory for determining the structure of RLTS, along with the reaction mechanism, i.e., experimentalists are responsible for "fingerprinting", whereas theoreticians are responsible for providing candidates that match the "fingerprints". In this Review, the origin of isotope effects on a chemical reaction is discussed from the perspectives of classical and quantum worlds, respectively (e.g., the origins of the inverse kinetic isotope effects and all the equilibrium isotope effects are purely from quantum). The conventional Bigeleisen equation for isotope effect calculations, as well as its refined version in the framework of Feynman's path integral and Kleinert's variational perturbation (KP) theory for systematically incorporating anharmonicity and (non-parabolic) quantum tunneling, are also presented. In addition, the outstanding interplay between theory and experiment for successfully deducing the RLTS structures and the reaction mechanisms is demonstrated by applications on biochemical reactions, namely models of bacterial squalene-to-hopene polycyclization and RNA 2'-O

  10. Numerical Simulations of Gas Cloud Expansion in Rarefied Environment

    National Research Council Canada - National Science Library

    Dogra, Virendra K; Wadsworth, Dean C

    2005-01-01

    Time accurate numerical simulations of a high temperature source cloud of gas expanding into an ambient atmosphere are performed using a multiple temperature gas model and the direct simulation Monte Carlo (DSMC) method...

  11. A Framework for Visually Realistic Multi-robot Simulation in Natural Environment

    OpenAIRE

    Ganoni, Ori; Mukundan, Ramakrishnan

    2017-01-01

    This paper presents a generalized framework for the simulation of multiple robots and drones in highly realistic models of natural environments. The proposed simulation architecture uses the Unreal Engine4 for generating both optical and depth sensor outputs from any position and orientation within the environment and provides several key domain specific simulation capabilities. Various components and functionalities of the system have been discussed in detail. The simulation engine also allo...

  12. High Fidelity Simulation of Littoral Environments: Applications and Coupling of Participating Models

    National Research Council Canada - National Science Library

    Allard, Richard

    2003-01-01

    The High Fidelity Simulation of Littoral Environments (HFSoLE) Challenge Project (C75) encompasses a suite of seven oceanographic models capable of exchanging information in a physically meaningful sense across the littoral environment...

  13. Simulations of embodied evolving semiosis: Emergent semantics in artificial environments

    Energy Technology Data Exchange (ETDEWEB)

    Rocha, L.M.; Joslyn, C.

    1998-02-01

    As we enter this amazing new world of artificial and virtual systems and environments in the context of human communities, we are interested in the development of systems and environments which have the capacity to grow and evolve their own meanings in the context of this community of interaction. In this paper the authors analyze the necessary conditions to achieve systems and environments with these properties: (1) a coupled interaction between a system and its environment; (2) an environment with sufficient initial richness and structure to allow for; (3) embodied emergent classification of that environment system coupling; and (4) which is subject to pragmatic selection.

  14. Comparison of portable oxygen concentrators in a simulated airplane environment.

    Science.gov (United States)

    Fischer, Rainald; Wanka, Eva R; Einhaeupl, Franziska; Voll, Klaus; Schiffl, Helmut; Lang, Susanne M; Gruss, Martin; Ferrari, Uta

    2013-01-01

    Portable oxygen concentrators (POC) are highly desirable for patients with lung disease traveling by airplane, as these devices allow theoretically much higher travel times if additional batteries can be used. However, it is unclear whether POCs produce enough oxygen in airplanes at cruising altitude, even if complying with aviation regulations. We evaluated five frequently used POCs (XPO2 (Invacare, USA), Freestyle (AirSep C., USA), Evergo (Philipps Healthcare, Germany), Inogen One (Inogen, USA), Eclipse 3 (Sequal, USA)) at an altitude of 2650 m (as simulated airplane environment) in 11 patients with chronic obstructive lung disease (COPD) and compared theses POCs with the standard oxygen system (WS120, EMS Ltd., Germany) used by Lufthansa. Oxygen was delivered by each POC for 30 min to each patient at rest, blood gases were then drawn from the arterialized ear lobe. All POCs were able to deliver enough oxygen to increase the PaO(2) of our subjects by at least 1.40 kPa (10 mmHg). However, to achieve this increase, the two most lightweight POCs (Freestyle and Invacare XPO2) had to be run at their maximum level. This causes a significant reduction of battery life. The three other POCs (EverGo, Inogen One, Eclipse 3) and the WS120 were able to increase the PaO(2) by more than 2.55 kPa (20 mmHg), which provides extra safety for patients with more severe basal hypoxemia. When choosing the right oxygen system for air travel in patients in COPD, not only weight, but also battery life and maximum possible oxygen output must be considered carefully. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Simulation training tools for nonlethal weapons using gaming environments

    Science.gov (United States)

    Donne, Alexsana; Eagan, Justin; Tse, Gabriel; Vanderslice, Tom; Woods, Jerry

    2006-05-01

    Modern simulation techniques have a growing role for evaluating new technologies and for developing cost-effective training programs. A mission simulator facilitates the productive exchange of ideas by demonstration of concepts through compellingly realistic computer simulation. Revolutionary advances in 3D simulation technology have made it possible for desktop computers to process strikingly realistic and complex interactions with results depicted in real-time. Computer games now allow for multiple real human players and "artificially intelligent" (AI) simulated robots to play together. Advances in computer processing power have compensated for the inherent intensive calculations required for complex simulation scenarios. The main components of the leading game-engines have been released for user modifications, enabling game enthusiasts and amateur programmers to advance the state-of-the-art in AI and computer simulation technologies. It is now possible to simulate sophisticated and realistic conflict situations in order to evaluate the impact of non-lethal devices as well as conflict resolution procedures using such devices. Simulations can reduce training costs as end users: learn what a device does and doesn't do prior to use, understand responses to the device prior to deployment, determine if the device is appropriate for their situational responses, and train with new devices and techniques before purchasing hardware. This paper will present the status of SARA's mission simulation development activities, based on the Half-Life gameengine, for the purpose of evaluating the latest non-lethal weapon devices, and for developing training tools for such devices.

  16. Biochemical Hypermedia: Galactose Metabolism.

    Directory of Open Access Journals (Sweden)

    J.K. Sugai

    2013-05-01

    Full Text Available Introduction: Animations of biochemical processes and virtual laboratory environments lead to true molecular simulations. The use of interactive software’s in education can improve cognitive capacity, better learning and, mainly, it makes information acquisition easier. Material and Methods: This work presents the development of a biochemical hypermedia to understanding of the galactose metabolism. It was developed with the help of concept maps, ISIS Draw, ADOBE Photoshop and FLASH MX Program. Results and Discussion: A step by step animation process shows the enzymatic reactions of galactose conversion to glucose-1-phosphate (to glycogen synthesis, glucose-6-phosphate (glycolysis intermediary, UDP-galactose (substrate to mucopolysaccharides synthesis and collagen’s glycosylation. There are navigation guide that allow scrolling the mouse over the names of the components of enzymatic reactions of via the metabolism of galactose. Thus, explanatory text box, chemical structures and animation of the actions of enzymes appear to navigator. Upon completion of the module, the user’s response to the proposed exercise can be checked immediately through text box with interactive content of the answer. Conclusion: This hypermedia was presented for undergraduate students (UFSC who revealed that it was extremely effective in promoting the understanding of the theme.

  17. Initial Development of a Quadcopter Simulation Environment for Auralization

    Science.gov (United States)

    Christian, Andrew; Lawrence, Joseph

    2016-01-01

    This paper describes a recently created computer simulation of quadcopter flight dynamics for the NASA DELIVER project. The goal of this effort is to produce a simulation that includes a number of physical effects that are not usually found in other dynamics simulations (e.g., those used for flight controller development). These effects will be shown to have a significant impact on the fidelity of auralizations - entirely synthetic time-domain predictions of sound - based on this simulation when compared to a recording. High-fidelity auralizations are an important precursor to human subject tests that seek to understand the impact of vehicle configurations on noise and annoyance.

  18. Simulation of indoor environment in low energy housing

    DEFF Research Database (Denmark)

    Vagiannis, Georgios; Knudsen, Henrik N.; Toftum, Jørn

    2012-01-01

    The aim of this study was to assess whether low energy consumption in dwellings imposes problems by deteriorating the indoor environment. Several indoor environment parameters were correlated with the energy consumption of low energy houses. One house from a village of low energy houses in Denmar...... with the installation of a chiller, a comfortable thermal indoor environment could be achieved with only a minor increase in the energy consumption....

  19. Using Social Simulations to Assess and Train Potential Leaders to Make Effective Decisions in Turbulent Environments

    Science.gov (United States)

    Hunsaker, L. Phillip

    2007-01-01

    Purpose: The purpose of this paper is to describe two social simulations created to assess leadership potential and train leaders to make effective decisions in turbulent environments. One is set in the novel environment of a lunar moon colony and the other is a military combat command. The research generated from these simulations for assessing…

  20. Simulation of GNSS reflected signals and estimation of position accuracy in GNSS-challenged environment

    DEFF Research Database (Denmark)

    Jakobsen, Jakob; Jensen, Anna B. O.; Nielsen, Allan Aasbjerg

    2015-01-01

    The paper describes the development and testing of a simulation tool, called QualiSIM. The tool estimates GNSS-based position accuracy based on a simulation of the environment surrounding the GNSS antenna, with a special focus on city-scape environments with large amounts of signal reflections from...

  1. Protein-protein interactions in a crowded environment: an analysis via cross-docking simulations and evolutionary information.

    Directory of Open Access Journals (Sweden)

    Anne Lopes

    Full Text Available Large-scale analyses of protein-protein interactions based on coarse-grain molecular docking simulations and binding site predictions resulting from evolutionary sequence analysis, are possible and realizable on hundreds of proteins with variate structures and interfaces. We demonstrated this on the 168 proteins of the Mintseris Benchmark 2.0. On the one hand, we evaluated the quality of the interaction signal and the contribution of docking information compared to evolutionary information showing that the combination of the two improves partner identification. On the other hand, since protein interactions usually occur in crowded environments with several competing partners, we realized a thorough analysis of the interactions of proteins with true partners but also with non-partners to evaluate whether proteins in the environment, competing with the true partner, affect its identification. We found three populations of proteins: strongly competing, never competing, and interacting with different levels of strength. Populations and levels of strength are numerically characterized and provide a signature for the behavior of a protein in the crowded environment. We showed that partner identification, to some extent, does not depend on the competing partners present in the environment, that certain biochemical classes of proteins are intrinsically easier to analyze than others, and that small proteins are not more promiscuous than large ones. Our approach brings to light that the knowledge of the binding site can be used to reduce the high computational cost of docking simulations with no consequence in the quality of the results, demonstrating the possibility to apply coarse-grain docking to datasets made of thousands of proteins. Comparison with all available large-scale analyses aimed to partner predictions is realized. We release the complete decoys set issued by coarse-grain docking simulations of both true and false interacting partners, and

  2. Evaluation and development the routing protocol of a fully functional simulation environment for VANETs

    Science.gov (United States)

    Ali, Azhar Tareq; Warip, Mohd Nazri Mohd; Yaakob, Naimah; Abduljabbar, Waleed Khalid; Atta, Abdu Mohammed Ali

    2017-11-01

    Vehicular Ad-hoc Networks (VANETs) is an area of wireless technologies that is attracting a great deal of interest. There are still several areas of VANETS, such as security and routing protocols, medium access control, that lack large amounts of research. There is also a lack of freely available simulators that can quickly and accurately simulate VANETs. The main goal of this paper is to develop a freely available VANETS simulator and to evaluate popular mobile ad-hoc network routing protocols in several VANETS scenarios. The VANETS simulator consisted of a network simulator, traffic (mobility simulator) and used a client-server application to keep the two simulators in sync. The VANETS simulator also models buildings to create a more realistic wireless network environment. Ad-Hoc Distance Vector routing (AODV), Dynamic Source Routing (DSR) and Dynamic MANET On-demand (DYMO) were initially simulated in a city, country, and highway environment to provide an overall evaluation.

  3. Discrete event simulation in an artificial intelligence environment: Some examples

    International Nuclear Information System (INIS)

    Roberts, D.J.; Farish, T.

    1991-01-01

    Several Los Alamos National Laboratory (LANL) object-oriented discrete-event simulation efforts have been completed during the past three years. One of these systems has been put into production and has a growing customer base. Another (started two years earlier than the first project) was completed but has not yet been used. This paper will describe these simulation projects. Factors which were pertinent to the success of the one project, and to the failure of the second project will be discussed (success will be measured as the extent to which the simulation model was used as originally intended). 5 figs

  4. Representing and Enacting Movement: The Body as an Instructional Resource in a Simulator-Based Environment

    Science.gov (United States)

    Sellberg, Charlott

    2017-01-01

    Simulators are used to practice in a safe setting before training in a safety-critical environment. Since the nature of situations encountered in high-risk domains is complex and dynamic, it is considered important for the simulation to resemble conditions of real world tasks. For this reason, simulation-based training is often discussed in terms…

  5. Knowledge in the loop: Semantics representation for multimodal simulative environments

    OpenAIRE

    Latoschik, Marc Erich; Biermann, Peter; Wachsmuth, Ipke; Butz, Andreas; Fisher, Brian; Krüger, Antonio; Olivier, Patrick

    2005-01-01

    This article describes the integration of knowledge based techniques into simulative Virtual Reality (VR) applications. The approach is motivated using multimodal Virtual Construction as an example domain. An abstract Knowledge Representation Layer (KRL) is proposed which is expressive enough to define all necessary data for diverse simulation tasks and which additionally provides a base formalism for the integration of Artificial Intelligence (AI) representations. The KRL supports two differ...

  6. Comparative study of the effectiveness of three learning environments: Hyper-realistic virtual simulations, traditional schematic simulations and traditional laboratory

    Science.gov (United States)

    Martínez, Guadalupe; Naranjo, Francisco L.; Pérez, Ángel L.; Suero, Maria Isabel; Pardo, Pedro J.

    2011-12-01

    This study compared the educational effects of computer simulations developed in a hyper-realistic virtual environment with the educational effects of either traditional schematic simulations or a traditional optics laboratory. The virtual environment was constructed on the basis of Java applets complemented with a photorealistic visual output. This new virtual environment concept, which we call hyper-realistic, transcends basic schematic simulation; it provides the user with a more realistic perception of a physical phenomenon being simulated. We compared the learning achievements of three equivalent, homogeneous groups of undergraduates—an experimental group who used only the hyper-realistic virtual laboratory, a first control group who used a schematic simulation, and a second control group who used the traditional laboratory. The three groups received the same theoretical preparation and carried out equivalent practicals in their respective learning environments. The topic chosen for the experiment was optical aberrations. An analysis of variance applied to the data of the study demonstrated a statistically significant difference (p value learning achievements attained by the group using the hyper-realistic virtual environment were 6.1 percentage points higher than those for the group using the traditional schematic simulations and 9.5 percentage points higher than those for the group using the traditional laboratory.

  7. Comparative study of the effectiveness of three learning environments: Hyper-realistic virtual simulations, traditional schematic simulations and traditional laboratory

    Directory of Open Access Journals (Sweden)

    Maria Isabel Suero

    2011-10-01

    Full Text Available This study compared the educational effects of computer simulations developed in a hyper-realistic virtual environment with the educational effects of either traditional schematic simulations or a traditional optics laboratory. The virtual environment was constructed on the basis of Java applets complemented with a photorealistic visual output. This new virtual environment concept, which we call hyper-realistic, transcends basic schematic simulation; it provides the user with a more realistic perception of a physical phenomenon being simulated. We compared the learning achievements of three equivalent, homogeneous groups of undergraduates—an experimental group who used only the hyper-realistic virtual laboratory, a first control group who used a schematic simulation, and a second control group who used the traditional laboratory. The three groups received the same theoretical preparation and carried out equivalent practicals in their respective learning environments. The topic chosen for the experiment was optical aberrations. An analysis of variance applied to the data of the study demonstrated a statistically significant difference (p value <0.05 between the three groups. The learning achievements attained by the group using the hyper-realistic virtual environment were 6.1 percentage points higher than those for the group using the traditional schematic simulations and 9.5 percentage points higher than those for the group using the traditional laboratory.

  8. Simulation fails to replicate stress in trainees performing a technical procedure in the clinical environment.

    Science.gov (United States)

    Baker, B G; Bhalla, A; Doleman, B; Yarnold, E; Simons, S; Lund, J N; Williams, J P

    2017-01-01

    Simulation-based training (SBT) has become an increasingly important method by which doctors learn. Stress has an impact upon learning, performance, technical, and non-technical skills. However, there are currently no studies that compare stress in the clinical and simulated environment. We aimed to compare objective (heart rate variability, HRV) and subjective (state trait anxiety inventory, STAI) measures of stress theatre with a simulated environment. HRV recordings were obtained from eight anesthetic trainees performing an uncomplicated rapid sequence induction at pre-determined procedural steps using a wireless Polar RS800CX monitor © in an emergency theatre setting. This was repeated in the simulated environment. Participants completed an STAI before and after the procedure. Eight trainees completed the study. The theatre environment caused an increase in objective stress vs baseline (p = .004). There was no significant difference between average objective stress levels across all time points (p = .20) between environments. However, there was a significant interaction between the variables of objective stress and environment (p = .045). There was no significant difference in subjective stress (p = .27) between environments. Simulation was unable to accurately replicate the stress of the technical procedure. This is the first study that compares the stress during SBT with the theatre environment and has implications for the assessment of simulated environments for use in examinations, rating of technical and non-technical skills, and stress management training.

  9. Designing a search and rescue simulation environment for studying the performance of agent organizations

    NARCIS (Netherlands)

    Ghijsen, M.; Jansweijer, W.; Wielinga, B.

    2012-01-01

    In the study on performance of organizations of Multi-Agent Systems there exists a need to understand the effects of the task-environment and organization of the agents on the performance of Multi-Agent Systems. Current simulation environments often lack sufficient control over the environment and

  10. Controlling Unmanned Systems in a Simulated Counter-Insurgency Environment

    National Research Council Canada - National Science Library

    Sterling, Bruce S; Perala, Chuck H

    2007-01-01

    ...), unmanned ground vehicles (UGVs), and unmanned ground sensors in a COIN environment. Results showed that workload and stress for all the independent variables that we examined were less than half the possible scale level...

  11. The ITSIMBW Environment for Simulation and Decision Support

    Science.gov (United States)

    2006-09-01

    preceding paragraphs distinguishes ITSimBw from other commonly used military simulation tools such as MANA [2] or Pythagoras [3]. LAMPS can be used to...M. K. 2002. MANA Map Aware Non-uniform Automata Version 2.0 User’s Manual. [3] Bitinas, E. 2002. Pythagoras : The newest member of the Project

  12. Survey on bio-chemical complex harmonized with global environment. 2; Kankyo chowagata seibutsu kagaku konbinato ni kansuru chosa. 2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-03-01

    The technical background was investigated for the purpose of making an effective use of the environmentally harmonized type production process and biomass resource, and the concept was indicated of a biochemical complex using vegetable fat and oil as a raw material. The vegetable fat and oil used were mainly palm oil and coconut oil. As to the production of commodity chemicals from palm oil, investigations were made on the outlook of the production amount and the composition of fat and oil, and a study was made on a possibility of substituting palm oil for beef fallow as a raw material of fatty acid. Relating to a large amount of the waste of biomass left after collecting the useful part of plants with fat and oil, a process was studied and proposed of producing useful enzymes by the solid culture method in which the biomass waste was used as a raw material. The enzymes produced here were made to be used for conversion of fat and oil and production of bioplastics, etc. Also, as to the plastics produced by microorganism, results of the recent research were examined on fungus bodies and the culture medium, bioreactors, separation and refining after producing fungus bodies, physical properties of the plastics, etc. 178 refs., 77 figs., 68 tabs.

  13. Simulation based virtual learning environment in medical genetics counseling

    DEFF Research Database (Denmark)

    Makransky, Guido; Bonde, Mads T.; Wulff, Julie S. G.

    2016-01-01

    learning environments increase students' knowledge, intrinsic motivation, and self-efficacy, and help them generalize from laboratory analyses to clinical practice and health decision-making. METHODS: An entire class of 300 University of Copenhagen first-year undergraduate students, most with a major...

  14. Improved climate risk simulations for rice in arid environments

    NARCIS (Netherlands)

    Oort, van P.A.J.; Vries, de M.; Yoshida, H.; Saito, K.

    2015-01-01

    We integrated recent research on cardinal temperatures for phenology and early leaf growth, spikelet formation, early morning flowering, transpirational cooling, and heat- and cold-induced sterility into an existing to crop growth model ORYZA2000. We compared for an arid environment observed

  15. Simulated Nitrogen Deposition has Minor Effects on Ecosystem Pools and Fluxes of Energy, Elements, and Biochemicals in a Northern Hardwoods Forest

    Science.gov (United States)

    Talhelm, A. F.; Pregitzer, K. S.; Burton, A. J.; Xia, M.; Zak, D. R.

    2017-12-01

    The elemental and biochemical composition of plant tissues is an important influence on primary productivity, decomposition, and other aspects of biogeochemistry. Human activity has greatly altered biogeochemical cycles in ecosystems downwind of industrialized regions through atmospheric nitrogen deposition, but most research on these effects focuses on individual elements or steps in biogeochemical cycles. Here, we quantified pools and fluxes of biomass, the four major organic elements (carbon, oxygen, hydrogen, nitrogen), four biochemical fractions (lignin, structural carbohydrates, cell walls, and soluble material), and energy in a mature northern hardwoods forest in Michigan. We sampled the organic and mineral soil, fine and coarse roots, leaf litter, green leaves, and wood for chemical analyses. We then combined these data with previously published and archival information on pools and fluxes within this forest, which included replicated plots receiving either ambient deposition or simulated nitrogen deposition (3 g N m-2 yr-1 for 18 years). Live wood was the largest pool of energy and all elements and biochemical fractions. However, the production of wood, leaf litter, and fine roots represented similar fluxes of carbon, hydrogen, oxygen, cell wall material, and energy, while nitrogen fluxes were dominated by leaf litter and fine roots. Notably, the flux of lignin via fine roots was 70% higher than any other flux. Experimental nitrogen deposition had relatively few significant effects, increasing foliar nitrogen, increasing the concentration of lignin in the soil organic horizon and decreasing pools of all elements and biochemical fractions in the soil organic horizon except nitrogen, lignin, and structural carbohydrates. Overall, we found that differences in tissue chemistry concentrations were important determinants of ecosystem-level pools and fluxes, but that nitrogen deposition had little effect on concentrations, pools, or fluxes in this mature forest

  16. Smile - a dynamic simulation environment. Smile - eine dynamische Simulationsumgebung

    Energy Technology Data Exchange (ETDEWEB)

    Jochum, P. (Institut fuer Energietechnik, TU Berlin (Germany)); Kloas, M. (Institut fuer Energietechnik, TU Berlin (Germany))

    1993-08-01

    One has been working on the development of a new system for the dynamic simulation of complex energy conversion processed at the Institute for Energy Technology of the Technical University of Berlin since the beginning of 1990. The aim of the work is the production of as flexible a program as possible for the simulation of (nearly) any plant configuration from general energy technology, including the ecological and economic aspects. This program with the name of Smile should serve consultants and designers of industrial, community and private energy supplies as an aid for planning, design and optimisation of multi-valent heating systems. The results up to now and the prospects developed from these are described in the article. (BWI)

  17. A COMPUTATIONAL WORKBENCH ENVIRONMENT FOR VIRTUAL POWER PLANT SIMULATION

    Energy Technology Data Exchange (ETDEWEB)

    Mike Bockelie; Dave Swensen; Martin Denison; Connie Senior; Adel Sarofim; Bene Risio

    2002-07-28

    This is the seventh Quarterly Technical Report for DOE Cooperative Agreement No.: DE-FC26-00NT41047. The goal of the project is to develop and demonstrate a computational workbench for simulating the performance of Vision 21 Power Plant Systems. Within the last quarter, good progress has been made on the development of the IGCC workbench. A series of parametric CFD simulations for single stage and two stage generic gasifier configurations have been performed. An advanced flowing slag model has been implemented into the CFD based gasifier model. A literature review has been performed on published gasification kinetics. Reactor models have been developed and implemented into the workbench for the majority of the heat exchangers, gas clean up system and power generation system for the Vision 21 reference configuration. Modifications to the software infrastructure of the workbench have been commenced to allow interfacing to the workbench reactor models that utilize the CAPE{_}Open software interface protocol.

  18. A COMPUTATIONAL WORKBENCH ENVIRONMENT FOR VIRTUAL POWER PLANT SIMULATION

    Energy Technology Data Exchange (ETDEWEB)

    Mike Bockelie; Dave Swensen; Martin Denison; Connie Senior; Zumao Chen; Temi Linjewile; Adel Sarofim; Bene Risio

    2003-04-25

    This is the tenth Quarterly Technical Report for DOE Cooperative Agreement No: DE-FC26-00NT41047. The goal of the project is to develop and demonstrate a computational workbench for simulating the performance of Vision 21 Power Plant Systems. Within the last quarter, good progress has been made on all aspects of the project. Calculations for a full Vision 21 plant configuration have been performed for two gasifier types. An improved process model for simulating entrained flow gasifiers has been implemented into the workbench. Model development has focused on: a pre-processor module to compute global gasification parameters from standard fuel properties and intrinsic rate information; a membrane based water gas shift; and reactors to oxidize fuel cell exhaust gas. The data visualization capabilities of the workbench have been extended by implementing the VTK visualization software that supports advanced visualization methods, including inexpensive Virtual Reality techniques. The ease-of-use, functionality and plug-and-play features of the workbench were highlighted through demonstrations of the workbench at a DOE sponsored coal utilization conference. A white paper has been completed that contains recommendations on the use of component architectures, model interface protocols and software frameworks for developing a Vision 21 plant simulator.

  19. A COMPUTATIONAL WORKBENCH ENVIRONMENT FOR VIRTUAL POWER PLANT SIMULATION

    International Nuclear Information System (INIS)

    Mike Bockelie; Dave Swensen; Martin Denison

    2002-01-01

    This is the fifth Quarterly Technical Report for DOE Cooperative Agreement No: DE-FC26-00NT41047. The goal of the project is to develop and demonstrate a computational workbench for simulating the performance of Vision 21 Power Plant Systems. Within the last quarter, our efforts have become focused on developing an improved workbench for simulating a gasifier based Vision 21 energyplex. To provide for interoperability of models developed under Vision 21 and other DOE programs, discussions have been held with DOE and other organizations developing plant simulator tools to review the possibility of establishing a common software interface or protocol to use when developing component models. A component model that employs the CCA protocol has successfully been interfaced to our CCA enabled workbench. To investigate the software protocol issue, DOE has selected a gasifier based Vision 21 energyplex configuration for use in testing and evaluating the impacts of different software interface methods. A Memo of Understanding with the Cooperative Research Centre for Coal in Sustainable Development (CCSD) in Australia has been completed that will enable collaborative research efforts on gasification issues. Preliminary results have been obtained for a CFD model of a pilot scale, entrained flow gasifier. A paper was presented at the Vision 21 Program Review Meeting at NETL (Morgantown) that summarized our accomplishments for Year One and plans for Year Two and Year Three

  20. Estimation, modeling, and simulation of patterned growth in extreme environments.

    Science.gov (United States)

    Strader, B; Schubert, K E; Quintana, M; Gomez, E; Curnutt, J; Boston, P

    2011-01-01

    In the search for life on Mars and other extraterrestrial bodies or in our attempts to identify biological traces in the most ancient rock record of Earth, one of the biggest problems facing us is how to recognize life or the remains of ancient life in a context very different from our planet's modern biological examples. Specific chemistries or biological properties may well be inapplicable to extraterrestrial conditions or ancient Earth environments. Thus, we need to develop an arsenal of techniques that are of broader applicability. The notion of patterning created in some fashion by biological processes and properties may provide such a generalized property of biological systems no matter what the incidentals of chemistry or environmental conditions. One approach to recognizing these kinds of patterns is to look at apparently organized arrangements created and left by life in extreme environments here on Earth, especially at various spatial scales, different geologies, and biogeochemical circumstances.

  1. Charging of Basic Structural Shapes in a Simulated Lunar Environment

    Science.gov (United States)

    Craven, P.; Schneider, T.; Vaughn, J.; Wang, J.; Polansky, J.

    2012-12-01

    In order to understand the effect of the charging environment on and around structures on the lunar surface, we have exposed basic structural shapes to electrons and Vacuum Ultra-Violet (VUV) radiation. The objects were, in separate runs, isolated, grounded, and placed on dielectric surfaces. In this presentation, the effects of electron energy, VUV flux, and sample orientation, on the charging of the objects will be examined. The potential of each of the object surfaces was monitored in order to determine the magnitude of the ram and wake effects under different orientations relative to the incoming beams (solar wind). This is a part of, and complementary to, the study of the group at USC under Dr. J. Wang, the purpose of which is to model the effects of the charging environment on structures on the lunar surface.

  2. Motion Sickness Prevention by Stroboscopic Environment during Simulated Military Transport

    Science.gov (United States)

    2009-07-20

    known, most of these drugs fall into three classes: antidopaminergics, anticholinergics, and antihistamines ( Drug Facts and Comparisons, 1999...vomiting 2 center also is directly stimulated by motion and by high levels of acetylcholine. Therefore, most drugs that are used to prevent or...Brendley, K. W., Marti, J., & DiZio, P. 2003. Motion Coupled Visual Environment (MOCOVE): Drug -Free Alleviations of Motion Sickness. U.S

  3. An Open-Source Simulation Environment for Model-Based Engineering, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed work is a new spacecraft simulation environment for model-based engineering of flight algorithms and software. The goal is to provide a much faster way...

  4. Training and learning for crisis management using a virtual simulation/gaming environment

    NARCIS (Netherlands)

    Walker, W.E.; Giddings, J.; Armstrong, S.

    2011-01-01

    Recent advances in computers, networking, and telecommunications offer new opportunities for using simulation and gaming as methodological tools for improving crisis management. It has become easy to develop virtual environments to support games, to have players at distributed workstations

  5. REVIEW: Digital Simulations For Improving Education: 
Learning Through Artificial Teaching Environments

    OpenAIRE

    OZAN, Reviewed By Özlem

    2009-01-01

    Simulations in education, both for children and adults, become popular with the development of computer technology, because they are fun and engaging and allow learners to internalize knowledge by applying new skills in a risk-free environment.

  6. Lithium-ion Battery Electrothermal Model, Parameter Estimation, and Simulation Environment

    Directory of Open Access Journals (Sweden)

    Simone Orcioni

    2017-03-01

    Full Text Available The market for lithium-ion batteries is growing exponentially. The performance of battery cells is growing due to improving production technology, but market request is growing even more rapidly. Modeling and characterization of single cells and an efficient simulation environment is fundamental for the development of an efficient battery management system. The present work is devoted to defining a novel lumped electrothermal circuit of a single battery cell, the extraction procedure of the parameters of the single cell from experiments, and a simulation environment in SystemC-WMS for the simulation of a battery pack. The electrothermal model of the cell was validated against experimental measurements obtained in a climatic chamber. The model is then used to simulate a 48-cell battery, allowing statistical variations among parameters. The different behaviors of the cells in terms of state of charge, current, voltage, or heat flow rate can be observed in the results of the simulation environment.

  7. Adaptation of MCORTEX to the AEGIS Simulation Environment.

    Science.gov (United States)

    1984-06-01

    real-time functions of the AEGIS weapons system and incorporation of valid simulation procesos for test and evaluation of the total system. The INTFL...ile, 19E-1. 3. 1 i ta 1 Research, ?-L/I Lanizuage Reference Manual , 19;--2. 9. Dieital ;esearch, ProgrAmmer’s Utilities Guide for the --------- Famiy...GuilAe fror &OBO/eOP5; vased Development Systjems 1980 12. INTEL Corperattor. ISIS-II PL/1M-&F C ompil1 r Operator’s Manual , 1979. 13. INTEL Corperation

  8. Biochemical Responses of Juvenile European Sturgeon, (Huso Huso to A Sub-Lethal Level of Copper and Cadmium in Freshwater and Brackish Water Environments

    Directory of Open Access Journals (Sweden)

    Saeed Zahedi

    2013-08-01

    Full Text Available In Caspian Sea basin, sturgeons spend the larval and juvenile stages in freshwaters of rivers and then, they migrate to brackish waters of the sea where they grow and mature. With regard to the elevation of the metal concentrations in coastal waters and sediments of the Caspian Sea and its adjacent rivers, it is likely that juvenile sturgeon are exposed to sub-lethal levels of metals during seawater entry process. We compared the biochemical responses of juvenile European sturgeon, (Beluga, Huso huso exposed to a sub-lethal level of copper (Cu, 20 μg/L and cadmium (Cd, 300 μg/L in freshwater (FW, 0 ppt and brackish water (BW, 11 ppt for seven days. The results showed that the levels of plasma glucose increased significantly in BW and in all metal exposed groups. Also, plasma cortisol concentrations showed significant increases when juveniles were exposed to BW, Cu(FW/BW and Cd(BW. The activity of liver superoxide dismutase (SOD decreased significantly in BW compared with FW. Moreover, Cu and Cd exposure enhanced the activity of SOD in BW, while SOD did not show any changes in FW. The levels of tissue and plasma proteins as well as plasma triiodothyronine (T3, thyroxine (T4 and liver Catalase (CAT activity remained constant when animals were exposed to Cu/Cd in both FW and BW environments. Our data indicate that exposure of juvenile beluga to BW stimulated the general biochemical responses of stress such as cortisol and glucose, while sub-lethal exposure to Cu and Cd caused oxidative stress in BW environment but not in FW

  9. Effect of tidal environment on the trophic balance of mixotrophic hexacorals using biochemical profile and photochemical performance as indicators.

    Science.gov (United States)

    Rosa, Inês C; Rocha, Rui J M; Cruz, Igor; Lopes, Ana; Menezes, Natália; Bandarra, Narcisa; Kikuchi, Ruy; Serôdio, João; Soares, Amadeu M V M; Rosa, Rui

    2018-04-01

    Fluctuations of environmental factors in intertidal habitats can disrupt the trophic balance of mixotrophic cnidarians. We investigated the effect of tidal environments (subtidal, tidal pools and emerged areas) on fatty acid (FA) content of Zoanthus sociatus and Siderastrea stellata. Effect on photophysiology was also accessed as an autotrophy proxy. There was a general tendency of a lower percentage of zooplankton-associated FAs in colonies from emerged areas or tidal pools when compared with colonies from the subtidal environment. Moreover, tidal environment significantly affected the photophysiology of both species. Colonies from the subtidal generally showed lower values of α, ETR max and E k when compared with their conspecifics from tidal pools or emerged areas. However, the absence of consistent patterns in F v /F m and in dinoflagellate-associated FAs, suggest that these corals are well adapted to intertidal conditions. This suggests that intertidal pressures may disturb the trophic balance, mainly by affecting heterotrophy of these species. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. A COMPUTATIONAL WORKBENCH ENVIRONMENT FOR VIRTUAL POWER PLANT SIMULATION

    Energy Technology Data Exchange (ETDEWEB)

    Mike Bockelie; Dave Swensen; Martin Denison; Zumao Chen; Temi Linjewile; Mike Maguire; Adel Sarofim; Connie Senior; Changguan Yang; Hong-Shig Shim

    2004-04-28

    This is the fourteenth Quarterly Technical Report for DOE Cooperative Agreement No: DE-FC26-00NT41047. The goal of the project is to develop and demonstrate a Virtual Engineering-based framework for simulating the performance of Advanced Power Systems. Within the last quarter, good progress has been made on all aspects of the project. Software development efforts have focused primarily on completing a prototype detachable user interface for the framework and on integrating Carnegie Mellon Universities IECM model core with the computational engine. In addition to this work, progress has been made on several other development and modeling tasks for the program. These include: (1) improvements to the infrastructure code of the computational engine, (2) enhancements to the model interfacing specifications, (3) additional development to increase the robustness of all framework components, (4) enhanced coupling of the computational and visualization engine components, (5) a series of detailed simulations studying the effects of gasifier inlet conditions on the heat flux to the gasifier injector, and (6) detailed plans for implementing models for mercury capture for both warm and cold gas cleanup have been created.

  11. Simulating The Environment Around Planet-Hosting Stars

    Science.gov (United States)

    Alvarado-Gómez, Julián David; Hussain, G.; Grunhut, J.; Cohen, O.; Garrafo, C.; Drake, J. J.; Gombosi, T. I.

    2016-08-01

    Recent developments in instrumentation and observational techniques have opened a new window for stellar magnetic field studies. In particular Zeeman Doppler Imaging (ZDI) is now routinely used to recover the large-scale magnetic field topologies of stars different from the Sun, including several planet-hosting stars. These stellar magnetic fields intimately affect the environment around late-type stars by driving the coronal high-energy radiation (EUV/X-rays), transient events (e.g. flares and coronal mass ejections), and the development of stellar winds and astrospheres. These elements can have a strong impact in the evolution of planetary systems via star-planet interactions and erosion of exoplanetary atmospheres. In this context, the results from ZDI data-driven, detailed 3D MHD modeling of the coronal conditions and circumstellar environment around three planet hosting stars are presented. For one of the considered systems (HD 1237), we investigate the interactions of the magnetized stellar wind with the exoplanet, assuming a Jupiter-like magnetosphere around it.

  12. Students' Expectations of the Learning Process in Virtual Reality and Simulation-Based Learning Environments

    Science.gov (United States)

    Keskitalo, Tuulikki

    2012-01-01

    Expectations for simulations in healthcare education are high; however, little is known about healthcare students' expectations of the learning process in virtual reality (VR) and simulation-based learning environments (SBLEs). This research aims to describe first-year healthcare students' (N=97) expectations regarding teaching, studying, and…

  13. Behavioral finance and games: simulations in the academic environment

    Directory of Open Access Journals (Sweden)

    Eliana Marcia Martins Fittipaldi Torga

    2017-12-01

    Full Text Available ABSTRACT The contribution from this study lies in its reflection on the factors that influence market efficiency, which requires a multidisciplinary view to analyze the intervening factors that impact results of the financial system. It also contributes by reflecting on the need for new approaches for training professionals who will go on to work in financial and related areas and preparing them by using different financial analysis techniques; by reflecting on the fact that analytical practices are influenced by social, cognitive, and emotional aspects, enabling the students to be better prepared to act in the financial market; by presenting various technical possibilities and providing more comprehensive knowledge to choose the one that best suits the object of analysis and their preferences; and by reflecting on different ways of perceiving investment opportunities and risk, which can be expanded on in other studies on the segmentation of clients according to their preferences in the investor market. The aim of this study was to analyze how social and psychological aspects influenced the decisions involved in simulated trading operations. The relevance lies in its discussion of the philosophical and epistemological position in finance, which suffers from a vision that only focuses on the rationality of means and does not explain the anomalies verified in the financial market. The study originated from the application of a company game simulating the work of stock market trading desk operators, applied in the Stock Market Operations course and using fundamental, technical, and graphical techniques. The population was intentional and made up of undergraduate and graduate students from one of the four best Brazilian federal universities. The data analysis was performed by analyzing the content of the questionnaires applied and the journal entries made during participant observation.

  14. Predicting Innovation Acceptance by Simulation in Virtual Environments (Theoretical Foundations)

    Science.gov (United States)

    León, Noel; Duran, Roberto; Aguayo, Humberto; Flores, Myrna

    This paper extends the current development of a methodology for Computer Aided Innovation. It begins with a presentation of concepts related to the perceived capabilities of virtual environments in the Innovation Cycle. The main premise establishes that it is possible to predict the acceptance of a new product in a specific market, by releasing an early prototype in a virtual scenario to quantify its general reception and to receive early feedback from potential customers. The paper continues to focus this research on a synergistic extension of techniques that have their origins in optimization and innovation disciplines. TRIZ (Theory of Inventive Problem Solving), extends the generation of variants with Evolutionary Algorithms (EA) and finally to present the designer and the intended customer, creative and innovative alternatives. All of this developed on a virtual software interface (Virtual World). The work continues with a general description of the project as a step forward to improve the overall strategy.

  15. Combining human and machine expertise for self-directed learning in simulation-based discovery environments

    NARCIS (Netherlands)

    de Jong, Anthonius J.M.; van Joolingen, Wouter; Swaak, Janine; Veermans, K.H.; Limbach, R.; King, S.; Gureghian, D.

    1998-01-01

    SIMQUEST is an authoring system for designing and creating simulation-based learning environments. The special character of SIMQUEST learning environments is that they include cognitive support for learners which means that they provide learners with support in the discovery process. In SIMQUEST

  16. Intelligent manufacturing through participation : a participative simulation environment for integral manufacturing enterprise renewal

    NARCIS (Netherlands)

    Eijnatten, F.M. van

    2002-01-01

    This book deals with a 'Participative Simulation environment for Intelligent Manufacturing' (PSIM). PSIM is a software environment for use in assembly operations and it is developed and pilot-demonstrated in five companies: Volvo (Sweden), Finland Post, Fiat (Italy), Yamatake (Japan), Ford (USA).

  17. The Potential of Simulated Environments in Teacher Education: Current and Future Possibilities

    Science.gov (United States)

    Dieker, Lisa A.; Rodriguez, Jacqueline A.; Lignugaris/Kraft, Benjamin; Hynes, Michael C.; Hughes, Charles E.

    2014-01-01

    The future of virtual environments is evident in many fields but is just emerging in the field of teacher education. In this article, the authors provide a summary of the evolution of simulation in the field of teacher education and three factors that need to be considered as these environments further develop. The authors provide a specific…

  18. Development and applications of the UAL-based SNS ring simulation environment

    International Nuclear Information System (INIS)

    Malitsky, N.; Cameron, P.; Fedotov, A.V.; Smith, J.; Wei, J.

    2002-01-01

    The SNS Ring off-line parallel simulation environment based on the Unified Accelerator Libraries (UAL) has been implemented and used for extensive full-scale beam dynamics studies arising in high-intensity rings. The paper describes the structure of this environment and its application to various high-intensity topics and diagnostics modeling

  19. DEVELOPMENT AND APPLICATIONS OF THE UAL BASED SNS RING SIMULATION ENVIRONMENT.

    Energy Technology Data Exchange (ETDEWEB)

    MALITSKY,N.; CAMERON,P.; FEDOTOV,A.V.; SMITH,J.; WEI,J.

    2002-04-08

    The SNS Ring off-line parallel simulation environment based on the Unified Accelerator Libraries (UAL) has en implemented and used for extensive full-scale beam dynamics studies arising in high-intensity ring. The paper describes the structure of this environment and its application to various high-intensity topics and diagnostics modeling.

  20. DEVELOPMENT AND APPLICATIONS OF THE UAL BASED SNS RING SIMULATION ENVIRONMENT

    International Nuclear Information System (INIS)

    MALITSKY, N.; CAMERON, P.; FEDOTOV, A.V.; SMITH, J.; WEI, J.

    2002-01-01

    The SNS Ring off-line parallel simulation environment based on the Unified Accelerator Libraries (UAL) has en implemented and used for extensive full-scale beam dynamics studies arising in high-intensity ring. The paper describes the structure of this environment and its application to various high-intensity topics and diagnostics modeling

  1. Real-Time and High-Fidelity Simulation Environment for Autonomous Ground Vehicle Dynamics

    Science.gov (United States)

    Cameron, Jonathan; Myint, Steven; Kuo, Calvin; Jain, Abhi; Grip, Havard; Jayakumar, Paramsothy; Overholt, Jim

    2013-01-01

    This paper reports on a collaborative project between U.S. Army TARDEC and Jet Propulsion Laboratory (JPL) to develop a unmanned ground vehicle (UGV) simulation model using the ROAMS vehicle modeling framework. Besides modeling the physical suspension of the vehicle, the sensing and navigation of the HMMWV vehicle are simulated. Using models of urban and off-road environments, the HMMWV simulation was tested in several ways, including navigation in an urban environment with obstacle avoidance and the performance of a lane change maneuver.

  2. Simulation of environment effects on retro-reflectors in ITER

    International Nuclear Information System (INIS)

    Voitsenya, V.S.; Berezhnyj, V.L.; Konovalov, V.G.; Naidenkova, D.I.; Ryzhkov, V.I.; Solodovchenko, S.I.; Bardamid, A.F.; Vinnichenko, M.V.; Belyaeva, A.I.; Donne, A.J.H.; Gil, Ch.; Lipa, M.; Schunke, B.; Topkov, A.N.

    2004-01-01

    The use of retro-reflectors (RR) is considered for 2 plasma diagnostics in ITER: -) poloidal multichannel polarimetry that is supposed to operate on a single wavelength (118 μm) and -) toroidal multichannel polarimetry that will use a dual frequency CO 2 laser operating at 10.6 and 9.27 μm. In order to shorten the time of simulation experiments, the long term sputtering effects on optical properties of RR were studied with Cu mirrors instead of Mo mirrors, results are reported in this series of slides. It was shown that the sputtering of the top 5 μm layer from a poly-crystal Mo mirror would not result in a noticeable decrease of reflectance at 118 μm. For the toroidal polarimetry system with much shorter wavelengths, a similar sputtering rate is absolutely inadmissible due to much longer path length of the probing beam. It was also shown that the micro-relief that will develop on the surface of RR due to long-term sputtering, can significantly change both the reflectance and the polarization angle of the reflecting beam. Polarization angle will also be changed if the surface of RR is coated with a carbon film

  3. Design of a simulation environment for laboratory management by robot organizations

    Science.gov (United States)

    Zeigler, Bernard P.; Cellier, Francois E.; Rozenblit, Jerzy W.

    1988-01-01

    This paper describes the basic concepts needed for a simulation environment capable of supporting the design of robot organizations for managing chemical, or similar, laboratories on the planned U.S. Space Station. The environment should facilitate a thorough study of the problems to be encountered in assigning the responsibility of managing a non-life-critical, but mission valuable, process to an organized group of robots. In the first phase of the work, we seek to employ the simulation environment to develop robot cognitive systems and strategies for effective multi-robot management of chemical experiments. Later phases will explore human-robot interaction and development of robot autonomy.

  4. Reprint of: Simulation Platform: a cloud-based online simulation environment.

    Science.gov (United States)

    Yamazaki, Tadashi; Ikeno, Hidetoshi; Okumura, Yoshihiro; Satoh, Shunji; Kamiyama, Yoshimi; Hirata, Yutaka; Inagaki, Keiichiro; Ishihara, Akito; Kannon, Takayuki; Usui, Shiro

    2011-11-01

    For multi-scale and multi-modal neural modeling, it is needed to handle multiple neural models described at different levels seamlessly. Database technology will become more important for these studies, specifically for downloading and handling the neural models seamlessly and effortlessly. To date, conventional neuroinformatics databases have solely been designed to archive model files, but the databases should provide a chance for users to validate the models before downloading them. In this paper, we report our on-going project to develop a cloud-based web service for online simulation called "Simulation Platform". Simulation Platform is a cloud of virtual machines running GNU/Linux. On a virtual machine, various software including developer tools such as compilers and libraries, popular neural simulators such as GENESIS, NEURON and NEST, and scientific software such as Gnuplot, R and Octave, are pre-installed. When a user posts a request, a virtual machine is assigned to the user, and the simulation starts on that machine. The user remotely accesses to the machine through a web browser and carries out the simulation, without the need to install any software but a web browser on the user's own computer. Therefore, Simulation Platform is expected to eliminate impediments to handle multiple neural models that require multiple software. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Simulating unsteady transport of nitrogen, biochemical oxygen demand, and dissolved oxygen in the Chattahoochee River downstream from Atlanta, Georgia

    Science.gov (United States)

    Jobson, Harvey E.

    1985-01-01

    As part of an intensive water-quality assessment of the Chattahoochee River, repetitive water-quality measurements were made at 12 sites along a 69-kilometer reach of the river downstream of Atlanta, Georgia. Concentrations of seven constituents (temperature, dissolved oxygen, ultimate carbonaceous biochemical oxygen demand (BOD), organic nitrogen, ammonia, nitrite, and nitrate) were obtained during two periods of 36 hours, one starting on August 30, 1976, and the other starting on May 31, 1977. The study reach contains one large and several small sewage outfalls and receives the cooling water from two large powerplants. An unsteady water-quality model of the Lagrangian type was calibrated using the 1977 data and verified using the 1976 data. The model provided a good means of interpreting these data even though both the flow and the pollution loading rates were highly unsteady. A kinetic model of the cascade type accurately described the physical and biochemical processes occurring in the river. All rate coefficients, except reaeration coefficients and those describing the resuspension of BOD, were fitted to the 1977 data and verified using the 1976 data. The study showed that, at steady low flow, about 38 percent of the BOD settled without exerting an oxygen demand. At high flow, this settled BOD was resuspended and exerted an immediate oxygen demand. About 70 percent of the ammonia extracted from the water column was converted to nitrite, but the fate of the remaining 30 percent is unknown. Photosynthetic production was not an important factor in the oxygen balance during either run.

  6. Repeated Induction of Inattentional Blindness in a Simulated Aviation Environment

    Science.gov (United States)

    Kennedy, Kellie D.; Stephens, Chad L.; Williams, Ralph A.; Schutte, Paul C.

    2017-01-01

    The study reported herein is a subset of a larger investigation on the role of automation in the context of the flight deck and used a fixed-based, human-in-the-loop simulator. This paper explored the relationship between automation and inattentional blindness (IB) occurrences in a repeated induction paradigm using two types of runway incursions. The critical stimuli for both runway incursions were directly relevant to primary task performance. Sixty non-pilot participants performed the final five minutes of a landing scenario twice in one of three automation conditions: full automation (FA), partial automation (PA), and no automation (NA). The first induction resulted in a 70 percent (42 of 60) detection failure rate with those in the PA condition significantly more likely to detect the incursion compared to the FA condition or the NA condition. The second induction yielded a 50 percent detection failure rate. Although detection improved (detection failure rates declined) in all conditions, those in the FA condition demonstrated the greatest improvement with doubled detection rates. The detection behavior in the first trial did not preclude a failed detection in the second induction. Group membership (IB vs. Detection) in the FA condition showed a greater improvement than those in the NA condition and rated the Mental Demand and Effort subscales of the NASA-TLX (NASA Task Load Index) significantly higher for Time 2 compared Time 1. Participants in the FA condition used the experience of IB exposure to improve task performance whereas those in the NA condition did not, indicating the availability and reallocation of attentional resources in the FA condition. These findings support the role of engagement in operational attention detriment and the consideration of attentional failure causation to determine appropriate mitigation strategies.

  7. A COMPUTATIONAL WORKBENCH ENVIRONMENT FOR VIRTUAL POWER PLANT SIMULATION

    Energy Technology Data Exchange (ETDEWEB)

    Mike Bockelie; Dave Swensen; Martin Denison; Zumao Chen; Mike Maguire; Adel Sarofim; Changguan Yang; Hong-Shig Shim

    2004-01-28

    This is the thirteenth Quarterly Technical Report for DOE Cooperative Agreement No: DE-FC26-00NT41047. The goal of the project is to develop and demonstrate a Virtual Engineering-based framework for simulating the performance of Advanced Power Systems. Within the last quarter, good progress has been made on all aspects of the project. Software development efforts have focused on a preliminary detailed software design for the enhanced framework. Given the complexity of the individual software tools from each team (i.e., Reaction Engineering International, Carnegie Mellon University, Iowa State University), a robust, extensible design is required for the success of the project. In addition to achieving a preliminary software design, significant progress has been made on several development tasks for the program. These include: (1) the enhancement of the controller user interface to support detachment from the Computational Engine and support for multiple computer platforms, (2) modification of the Iowa State University interface-to-kernel communication mechanisms to meet the requirements of the new software design, (3) decoupling of the Carnegie Mellon University computational models from their parent IECM (Integrated Environmental Control Model) user interface for integration with the new framework and (4) development of a new CORBA-based model interfacing specification. A benchmarking exercise to compare process and CFD based models for entrained flow gasifiers was completed. A summary of our work on intrinsic kinetics for modeling coal gasification has been completed. Plans for implementing soot and tar models into our entrained flow gasifier models are outlined. Plans for implementing a model for mercury capture based on conventional capture technology, but applied to an IGCC system, are outlined.

  8. Monitoring the effects of exposure to lead and cadmium in working and living environment through standard biochemical blood parameters and liver endonucleases activity

    Directory of Open Access Journals (Sweden)

    Nikolić Ružica S.

    2011-01-01

    Full Text Available Heavy metals as pollutants in the working and living environment are a serious health and environmental problem because they are toxic, non-biodegradable, accumulate in living systems and have a long half-life in soil. Sources of lead contamination are combustion products in the chemical industry and metallurgy, industrial waste water, landfills, traffic etc. Lead enters into the body via the food chain and drinking water. In the body lead is deposited in the liver, kidneys, brain and mineral tissues. Excretion of lead causes damage to the epithelial cells of certain organs. High level exposure to cadmium is usually the result of environmental pollution by human activities. Exposure to cadmium can lead to acute and chronic tissue damage of various organs, including liver and kidneys in humans and in animals. In this paper we analyzed the effects of lead and cadmium exposure, in working and living environment, on the model system of experimental animals, particularly the activity of certain liver enzymes, acid and alkaline DNase, and standard biochemical blood parameters. The study showed that lead and cadmium significantly affect the protein content, red blood cells, hemoglobin and hematocrit, and the activity of liver enzymes. This harmful effect of this toxic metal can be reduced by the supplements.

  9. Mixed response in bacterial and biochemical variables to simulated sand mining in placer-rich beach sediments, Ratnagiri, West coast of India.

    Science.gov (United States)

    Fernandes, Christabelle E G; Das, Anindita; Nath, B N; Faria, Daphne G; Loka Bharathi, P A

    2012-05-01

    We investigated the influence on bacterial community and biochemical variables through mechanical disturbance of sediment-akin to small-scale mining in Kalbadevi beach, Ratnagiri, a placer-rich beach ecosystem which is a potential mining site. Changes were investigated by comparing three periods, namely phase I before disturbance, phase II just after disturbance, and phase III 24 h after disturbance as the bacterial generation time is ≤7 h. Cores from dune, berm, high-, mid-, and low-tide were examined for changes in distribution of total bacterial abundance, total direct viability (counts under aerobic and anaerobic conditions), culturability and biochemical parameters up to 40 cm depth. Results showed that bacterial abundance decreased by an order from 10(6) cells g(-1) sediment, while, viability reduced marginally. Culturability on different-strength nutrient broth increased by 155% during phase II. Changes in sedimentary proteins, carbohydrates, and lipids were marked at berm and dune and masked at other levels by tidal influence. Sedimentary ATP reduced drastically. During phase III, Pearson's correlation between these variables evolved from non-significant to significant level. Thus, simulated disturbance had a mixed effect on bacterial and biochemical variables of the sediments. It had a negative impact on bacterial abundance, viability and ATP but positive impact on culturability. Viability, culturability, and ATP could act as important indicators reflecting the disturbance in the system at short time intervals. Culturability, which improved by an order, could perhaps be a fraction that contributes to restoration of the system at bacterial level. This baseline information about the potential mining site could help in developing rational approach towards sustainable harnessing of resources with minimum damage to the ecosystem.

  10. Virtual X-ray imaging techniques in an immersive casting simulation environment

    International Nuclear Information System (INIS)

    Li, Ning; Kim, Sung-Hee; Suh, Ji-Hyun; Cho, Sang-Hyun; Choi, Jung-Gil; Kim, Myoung-Hee

    2007-01-01

    A computer code was developed to simulate radiograph of complex casting products in a CAVE TM -like environment. The simulation is based on the deterministic algorithms and ray tracing techniques. The aim of this study is to examine CAD/CAE/CAM models at the design stage, to optimize the design and inspect predicted defective regions with fast speed, good accuracy and small numerical expense. The present work discusses the algorithms for the radiography simulation of CAD/CAM model and proposes algorithmic solutions adapted from ray-box intersection algorithm and octree data structure specifically for radiographic simulation of CAE model. The stereoscopic visualization of full-size of product in the immersive casting simulation environment as well as the virtual X-ray images of castings provides an effective tool for design and evaluation of foundry processes by engineers and metallurgists

  11. D-VASim: An Interactive Virtual Laboratory Environment for the Simulation and Analysis of Genetic Circuits

    DEFF Research Database (Denmark)

    Baig, Hasan; Madsen, Jan

    2016-01-01

    Simulation and behavioral analysis of genetic circuits is a standard approach of functional verification prior to their physical implementation. Many software tools have been developed to perform in silico analysis for this purpose, but none of them allow users to interact with the model during...... the behavior of genetic logic circuit models represented in an SBML (Systems Biology Markup Language). Hence, SBML models developed in other software environments can be analyzed and simulated in D-VASim. D-VASim offers deterministic as well as stochastic simulation; and differs from other software tools...... runtime. The runtime interaction gives the user a feeling of being in the lab performing a real world experiment. In this work, we present a user-friendly software tool named D-VASim (Dynamic Virtual Analyzer and Simulator), which provides a virtual laboratory environment to simulate and analyze...

  12. Interactive Learning Environment: Web-based Virtual Hydrological Simulation System using Augmented and Immersive Reality

    Science.gov (United States)

    Demir, I.

    2014-12-01

    Recent developments in internet technologies make it possible to manage and visualize large data on the web. Novel visualization techniques and interactive user interfaces allow users to create realistic environments, and interact with data to gain insight from simulations and environmental observations. The hydrological simulation system is a web-based 3D interactive learning environment for teaching hydrological processes and concepts. The simulation systems provides a visually striking platform with realistic terrain information, and water simulation. Students can create or load predefined scenarios, control environmental parameters, and evaluate environmental mitigation alternatives. The web-based simulation system provides an environment for students to learn about the hydrological processes (e.g. flooding and flood damage), and effects of development and human activity in the floodplain. The system utilizes latest web technologies and graphics processing unit (GPU) for water simulation and object collisions on the terrain. Users can access the system in three visualization modes including virtual reality, augmented reality, and immersive reality using heads-up display. The system provides various scenarios customized to fit the age and education level of various users. This presentation provides an overview of the web-based flood simulation system, and demonstrates the capabilities of the system for various visualization and interaction modes.

  13. Using numeric simulation in an online e-learning environment to teach functional physiological contexts.

    Science.gov (United States)

    Christ, Andreas; Thews, Oliver

    2016-04-01

    Mathematical models are suitable to simulate complex biological processes by a set of non-linear differential equations. These simulation models can be used as an e-learning tool in medical education. However, in many cases these mathematical systems have to be treated numerically which is computationally intensive. The aim of the study was to develop a system for numerical simulation to be used in an online e-learning environment. In the software system the simulation is located on the server as a CGI application. The user (student) selects the boundary conditions for the simulation (e.g., properties of a simulated patient) on the browser. With these parameters the simulation on the server is started and the simulation result is re-transferred to the browser. With this system two examples of e-learning units were realized. The first one uses a multi-compartment model of the glucose-insulin control loop for the simulation of the plasma glucose level after a simulated meal or during diabetes (including treatment by subcutaneous insulin application). The second one simulates the ion transport leading to the resting and action potential in nerves. The student can vary parameters systematically to explore the biological behavior of the system. The described system is able to simulate complex biological processes and offers the possibility to use these models in an online e-learning environment. As far as the underlying principles can be described mathematically, this type of system can be applied to a broad spectrum of biomedical or natural scientific topics. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  14. Physics-based statistical model and simulation method of RF propagation in urban environments

    Science.gov (United States)

    Pao, Hsueh-Yuan; Dvorak, Steven L.

    2010-09-14

    A physics-based statistical model and simulation/modeling method and system of electromagnetic wave propagation (wireless communication) in urban environments. In particular, the model is a computationally efficient close-formed parametric model of RF propagation in an urban environment which is extracted from a physics-based statistical wireless channel simulation method and system. The simulation divides the complex urban environment into a network of interconnected urban canyon waveguides which can be analyzed individually; calculates spectral coefficients of modal fields in the waveguides excited by the propagation using a database of statistical impedance boundary conditions which incorporates the complexity of building walls in the propagation model; determines statistical parameters of the calculated modal fields; and determines a parametric propagation model based on the statistical parameters of the calculated modal fields from which predictions of communications capability may be made.

  15. Elucidation of corrosion factors based on the data acquisition simulating complex real environment. Examples of marine environment and nuclear facilities

    International Nuclear Information System (INIS)

    Yamamoto, Masahiro

    2016-01-01

    This study has devised a test method simulating real environment as an accelerated corrosion test, and has elucidated the factors that determine the actual corrosion phenomena based on analysis of the obtained data. As part of this effort, this paper explains implemented contents on the corrosion phenomena of nuclear facilities associated with radioactive materials and marine environment. As for the macroscopic corrosion phenomena of common steel in the marine environment, the process where the maximum of corrosion rate just below a tidal zone proceeds under natural environment was analyzed using an experimental tank. The mechanism was assumed like this: At just under the tidal zone, anode current flows at the time of high tide flow by a larger amount than in the underwater part, whose effect makes the anode current continuously flow even at the time of low tide flow, which increases a corrosion amount. This study also examined in detail the intergranular corrosion phenomena of stainless steel under Np-containing conditions at nuclear fuel reprocessing facilities. The result showed that Np contained in boiling nitric acid solution was reduced to pentavalent on metal's surface, corroding stainless steel, and it afterwards was re-oxidized to hexavalent in the solution. The mechanism to accelerate corrosion by repeating this process could be proposed. As for the corrosion phenomena of stainless steel in a light-water reactor, the measurement results suggested the corrosion environment containing oxygen or hydrogen peroxide produced by radiolysis. (A.O.)

  16. SMILE - a simulation environment for the simulation of solar heating systems; Einsatz der Simulationsumgebung Smile zur Simulation solar unterstuetzter Heizsysteme

    Energy Technology Data Exchange (ETDEWEB)

    Jochum, P. [Technische Univ., Berlin (Germany). Inst. fuer Energietechnik

    1995-12-31

    Since 1990 Institut fuer Energietechnik, Technische Universitaet Berlin, has been developing a new system for the dynamic simulation of complex energy conversion processes to obtain a flexible program for the simulation of (almost) any general energy technology system configuration. Modules for efficiency analysis and optimization will be integrated to be able to use the program as a multivalent heating systems planning and design tool. (orig./HW) [Deutsch] Am Institut fuer Energietechnik der Technischen Universitaet Berlin wird seit 1990 an der Entwicklung eines neuen Systems zur dynamischen Simulation komplexer energiewandelnder Prozesse gearbeitet. Ziel der Arbeit ist die Erstellung eines moeglichst flexibel einsetzbaren Programms zur Simulation (fast) beliebiger Anlagenkonfigurationen aus der allgemeinen Energietechnik. Durch die Integration von Modulen zur Wirtschaftlichkeitsanalyse und zur Optimierung soll das entstehende Programm als Hilfsmittel fuer Planung und Auslegung von multivalenten Heizsystemen eingesetzt werden koennen. (orig./HW)

  17. Simulation-based computation of dose to humans in radiological environments

    Energy Technology Data Exchange (ETDEWEB)

    Breazeal, N.L. [Sandia National Labs., Livermore, CA (United States); Davis, K.R.; Watson, R.A. [Sandia National Labs., Albuquerque, NM (United States); Vickers, D.S. [Brigham Young Univ., Provo, UT (United States). Dept. of Electrical and Computer Engineering; Ford, M.S. [Battelle Pantex, Amarillo, TX (United States). Dept. of Radiation Safety

    1996-03-01

    The Radiological Environment Modeling System (REMS) quantifies dose to humans working in radiological environments using the IGRIP (Interactive Graphical Robot Instruction Program) and Deneb/ERGO simulation software. These commercially available products are augmented with custom C code to provide radiation exposure information to, and collect radiation dose information from, workcell simulations. Through the use of any radiation transport code or measured data, a radiation exposure input database may be formulated. User-specified IGRIP simulations utilize these databases to compute and accumulate dose to programmable human models operating around radiation sources. Timing, distances, shielding, and human activity may be modeled accurately in the simulations. The accumulated dose is recorded in output files, and the user is able to process and view this output. The entire REMS capability can be operated from a single graphical user interface.

  18. Simulation-based computation of dose to humans in radiological environments

    International Nuclear Information System (INIS)

    Breazeal, N.L.; Davis, K.R.; Watson, R.A.; Vickers, D.S.; Ford, M.S.

    1996-03-01

    The Radiological Environment Modeling System (REMS) quantifies dose to humans working in radiological environments using the IGRIP (Interactive Graphical Robot Instruction Program) and Deneb/ERGO simulation software. These commercially available products are augmented with custom C code to provide radiation exposure information to, and collect radiation dose information from, workcell simulations. Through the use of any radiation transport code or measured data, a radiation exposure input database may be formulated. User-specified IGRIP simulations utilize these databases to compute and accumulate dose to programmable human models operating around radiation sources. Timing, distances, shielding, and human activity may be modeled accurately in the simulations. The accumulated dose is recorded in output files, and the user is able to process and view this output. The entire REMS capability can be operated from a single graphical user interface

  19. Simulating the Near-Surface Environments of Solar System Bodies in the Laboratory

    Science.gov (United States)

    Donaldson Hanna, K. L.; Bowles, N. E.; Greenhagen, B. T.

    2016-12-01

    Thermal infrared (TIR) emissivity measurements are sensitive to a planetary body's near-surface (upper hundreds of microns) environment, porosity and particle size, which make the interpretation of thermal infrared remote sensing observations of planetary surfaces challenging. Thus, well-constrained laboratory TIR measurements of analogue samples for a range of particle sizes, porosities and near-surface environments are needed. Near-surface environments and porosities for a range of solar system bodies can be simulated using facilities within University of Oxford's Planetary Spectroscopy Facility (PSF). The Simulated Lunar Environment Chamber (SLEC) within Oxford's PSF is a vacuum chamber capable of simulating near-surface conditions for a range of solar system bodies by varying atmospheric pressure and incident solar irradiation. By varying the near-surface environment, the thermal gradient in the upper hundreds of microns of the sample is varied, which can affect the position and contrast of diagnostic features in TIR spectra. The atmospheric pressure inside the chamber is varied between 1000, 5 and < 10-4 mbar to simulate Earth, Mars and airless bodies (e.g. the Moon, Mars' moons and asteroids) conditions. The solar-like irradiation is varied by adjusting the power of the halogen lamp until the brightness temperature of the sample is similar to the brightness temperature of the simulated planetary body. Varying the sample packing in the sample cup simulates a range of near-surface porosities. Here we present laboratory emissivity spectra of a suite of well-characterized rock, soil and mineral samples (< 25 mm in particle size) measured under a range of simulated planetary conditions including Earth, Mars, Moon and asteroids. These well-controlled laboratory measurements enable the interpretation of remote sensing observations, which help in determining a planet's surface composition as well as the consolidated nature of its regolith.

  20. Simulating Near-Surface Environments of Solar System Bodies in the Laboratory

    Science.gov (United States)

    Donaldson Hanna, Kerri; Bowles, Neil

    2017-04-01

    Thermal infrared (TIR) emissivity measurements are sensitive to a planetary body's near-surface (upper hundreds of microns) environment, porosity and particle size, which make the interpretation of thermal infrared remote sensing observations of planetary surfaces challenging. Thus, well-constrained laboratory TIR measurements of analogue samples for a range of particle sizes, porosities and near-surface environments are needed. Near-surface environments and porosities for a range of solar system bodies can be simulated using facilities within University of Oxford's Planetary Spectroscopy Facility (PSF). The Simulated Lunar Environment Chamber (SLEC) within Oxford's PSF is a vacuum chamber capable of simulating near-surface conditions for a range of solar system bodies by varying atmospheric pressure and incident solar irradiation. By varying the near-surface environment, the thermal gradient in the upper hundreds of microns of the sample is varied, which can affect the position and contrast of diagnostic features in TIR spectra. The atmospheric pressure inside the chamber is varied between 1000, 5 and < 10-4 mbar to simulate Earth, Mars and airless bodies (e.g. the Moon, Mars' moons and asteroids) conditions. The solar-like irradiation is varied by adjusting the power of the halogen lamp until the brightness temperature of the sample is similar to the brightness temperature of the simulated planetary body. Varying the sample packing in the sample cup simulates a range of near-surface porosities. Here we present laboratory emissivity spectra of a suite of well-characterized rock, soil and mineral samples (< 25 microns in particle size) measured under a range of simulated planetary conditions including Earth, Mars, Moon and asteroids. These well-controlled laboratory measurements enable the interpretation of remote sensing observations, which help in determining a planet's surface composition as well as the consolidated nature of its regolith.

  1. Indian deepsea environment experiment (index): Achievements and applications

    Digital Repository Service at National Institute of Oceanography (India)

    Sharma, R.

    impact experiment. Evaluation of impact of simulated disturbance in the benthic environment shows vertical mixing of sediment, lateral distribution of particles, changes in geochemical and biochemical conditions as well as reduction in biomass...

  2. Modeling and Simulation of Renewable Hybrid Power System using Matlab Simulink Environment

    OpenAIRE

    Cristian Dragoş Dumitru; Adrian Gligor

    2010-01-01

    The paper presents the modeling of a solar-wind-hydroelectric hybrid system in Matlab/Simulink environment. The application is useful for analysis and simulation of a real hybrid solar-wind-hydroelectric system connected to a public grid. Application is built on modular architecture to facilitate easy study of each component module influence. Blocks like wind model, solar model, hydroelectric model, energy conversion and load are implemented and the results of simulation are also presented. A...

  3. A Validation of a Simulation Environment for Motion Sensing Electronic Textiles

    OpenAIRE

    Einsmann, Christopher

    2006-01-01

    Electrical components constantly being scaled down in size allows for small, inexpensive sensors to be placed on or around the human body for motion sensing applications. In addition, the merging of textiles with electrical components, known as electronic textiles (e-textiles), allows for these sensors to be placed directly on a wearable fabric. Simulation allows for extensive application testing and verification before prototype development. This thesis presents a simulation environment for ...

  4. Integrated Simulation Environment for Unmanned Autonomous Systems—Towards a Conceptual Framework

    Directory of Open Access Journals (Sweden)

    M. G. Perhinschi

    2010-01-01

    Full Text Available The paper initiates a comprehensive conceptual framework for an integrated simulation environment for unmanned autonomous systems (UAS that is capable of supporting the design, analysis, testing, and evaluation from a “system of systems” perspective. The paper also investigates the current state of the art of modeling and performance assessment of UAS and their components and identifies directions for future developments. All the components of a comprehensive simulation environment focused on the testing and evaluation of UAS are identified and defined through detailed analysis of current and future required capabilities and performance. The generality and completeness of the simulation environment is ensured by including all operational domains, types of agents, external systems, missions, and interactions between components. The conceptual framework for the simulation environment is formulated with flexibility, modularity, generality, and portability as key objectives. The development of the conceptual framework for the UAS simulation reveals important aspects related to the mechanisms and interactions that determine specific UAS characteristics including complexity, adaptability, synergy, and high impact of artificial and human intelligence on system performance and effectiveness.

  5. Degradation mechanism of magnesium alloy stent under simulated human micro-stress environment.

    Science.gov (United States)

    Liu, Dexue; Hu, Shiwen; Yin, Xunyan; Liu, Jianjun; Jia, Zhi; Li, Qinglin

    2018-03-01

    In this study, a vascular stent made of WE43 magnesium alloy was used as a research object and placed in a special physical simulation device constructed independently. This device provided a platform for the study of the degradation of the stent in a dynamic environment. The simulated body fluid of Hank's buffered salt solution flowing inside it would not only make the stent corroded but also apply cyclic shear stress to it, which get closer to the micro-stress environment in human blood vessels. In addition, by means of computer numerical simulation software, ANSYS Fluent 15.0, the fluid-structure interaction (FSI) model was established to simulate the wall shear stress (WSS) exerted by the flowing blood on stent in the blood vessel. Combined with the results of numerical simulation and physical simulation experiments, the degradation mechanism of magnesium alloy sent in an environment similar to the human blood vessels was studied. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. A Data Stream Model For Runoff Simulation In A Changing Environment

    Science.gov (United States)

    Yang, Q.; Shao, J.; Zhang, H.; Wang, G.

    2017-12-01

    Runoff simulation is of great significance for water engineering design, water disaster control, water resources planning and management in a catchment or region. A large number of methods including concept-based process-driven models and statistic-based data-driven models, have been proposed and widely used in worldwide during past decades. Most existing models assume that the relationship among runoff and its impacting factors is stationary. However, in the changing environment (e.g., climate change, human disturbance), their relationship usually evolves over time. In this study, we propose a data stream model for runoff simulation in a changing environment. Specifically, the proposed model works in three steps: learning a rule set, expansion of a rule, and simulation. The first step is to initialize a rule set. When a new observation arrives, the model will check which rule covers it and then use the rule for simulation. Meanwhile, Page-Hinckley (PH) change detection test is used to monitor the online simulation error of each rule. If a change is detected, the corresponding rule is removed from the rule set. In the second step, for each rule, if it covers more than a given number of instance, the rule is expected to expand. In the third step, a simulation model of each leaf node is learnt with a perceptron without activation function, and is updated with adding a newly incoming observation. Taking Fuxi River catchment as a case study, we applied the model to simulate the monthly runoff in the catchment. Results show that abrupt change is detected in the year of 1997 by using the Page-Hinckley change detection test method, which is consistent with the historic record of flooding. In addition, the model achieves good simulation results with the RMSE of 13.326, and outperforms many established methods. The findings demonstrated that the proposed data stream model provides a promising way to simulate runoff in a changing environment.

  7. A novel approach to simulate gene-environment interactions in complex diseases

    Directory of Open Access Journals (Sweden)

    Nicodemi Mario

    2010-01-01

    Full Text Available Abstract Background Complex diseases are multifactorial traits caused by both genetic and environmental factors. They represent the major part of human diseases and include those with largest prevalence and mortality (cancer, heart disease, obesity, etc.. Despite a large amount of information that has been collected about both genetic and environmental risk factors, there are few examples of studies on their interactions in epidemiological literature. One reason can be the incomplete knowledge of the power of statistical methods designed to search for risk factors and their interactions in these data sets. An improvement in this direction would lead to a better understanding and description of gene-environment interactions. To this aim, a possible strategy is to challenge the different statistical methods against data sets where the underlying phenomenon is completely known and fully controllable, for example simulated ones. Results We present a mathematical approach that models gene-environment interactions. By this method it is possible to generate simulated populations having gene-environment interactions of any form, involving any number of genetic and environmental factors and also allowing non-linear interactions as epistasis. In particular, we implemented a simple version of this model in a Gene-Environment iNteraction Simulator (GENS, a tool designed to simulate case-control data sets where a one gene-one environment interaction influences the disease risk. The main aim has been to allow the input of population characteristics by using standard epidemiological measures and to implement constraints to make the simulator behaviour biologically meaningful. Conclusions By the multi-logistic model implemented in GENS it is possible to simulate case-control samples of complex disease where gene-environment interactions influence the disease risk. The user has full control of the main characteristics of the simulated population and a Monte

  8. Characterization of water quality and simulation of temperature, nutrients, biochemical oxygen demand, and dissolved oxygen in the Wateree River, South Carolina, 1996-98

    Science.gov (United States)

    Feaster, Toby D.; Conrads, Paul

    2000-01-01

    In May 1996, the U.S. Geological Survey entered into a cooperative agreement with the Kershaw County Water and Sewer Authority to characterize and simulate the water quality in the Wateree River, South Carolina. Longitudinal profiling of dissolved-oxygen concentrations during the spring and summer of 1996 revealed dissolved-oxygen minimums occurring upstream from the point-source discharges. The mean dissolved-oxygen decrease upstream from the effluent discharges was 2.0 milligrams per liter, and the decrease downstream from the effluent discharges was 0.2 milligram per liter. Several theories were investigated to obtain an improved understanding of the dissolved-oxygen dynamics in the upper Wateree River. Data suggest that the dissolved-oxygen concentration decrease is associated with elevated levels of oxygen-consuming nutrients and metals that are flowing into the Wateree River from Lake Wateree. Analysis of long-term streamflow and water-quality data collected at two U.S. Geological Survey gaging stations suggests that no strong correlation exists between streamflow and dissolved-oxygen concentrations in the Wateree River. However, a strong negative correlation does exist between dissolved-oxygen concentrations and water temperature. Analysis of data from six South Carolina Department of Health and Environmental Control monitoring stations for 1980.95 revealed decreasing trends in ammonia nitrogen at all stations where data were available and decreasing trends in 5-day biochemical oxygen demand at three river stations. The influence of various hydrologic and point-source loading conditions on dissolved-oxygen concentrations in the Wateree River were determined by using results from water-quality simulations by the Branched Lagrangian Transport Model. The effects of five tributaries and four point-source discharges were included in the model. Data collected during two synoptic water-quality samplings on June 23.25 and August 11.13, 1997, were used to calibrate

  9. The Atomic Simulation Environment - A Python library for working with atoms

    DEFF Research Database (Denmark)

    Larsen, Ask Hjorth; Mortensen, Jens Jørgen; Blomqvist, Jakob

    2017-01-01

    The Atomic Simulation Environment (ASE) is a software package written in the Python programming language with the aim of setting up, steering, and analyzing atomistic simula- tions. In ASE, tasks are fully scripted in Python. The powerful syntax of Python combined with the NumPy array library make...

  10. Realistic simulation of laser range finder behavior in a smoky environment

    NARCIS (Netherlands)

    Formsma, O.; Dijkshoorn, N.; van Noort, S.; Visser, A.; Ruiz-del-Solar, J.; Chown, E.; Plöger, P.G.

    2011-01-01

    The Urban Search and Rescue Simulation used for RoboCup lacks realistic response of laser range finders on smoke. In this paper, the behavior of a Hokuyo and Sick laser range finder in a smoky environment is studied. The behavior of the lasers is among others a function of the visibility level, and

  11. Teachers' Conceptions and Their Approaches to Teaching in Virtual Reality and Simulation-Based Learning Environments

    Science.gov (United States)

    Keskitalo, Tuulikki

    2011-01-01

    This research article focuses on virtual reality (VR) and simulation-based training, with a special focus on the pedagogical use of the Virtual Centre of Wellness Campus known as ENVI (Rovaniemi, Finland). In order to clearly understand how teachers perceive teaching and learning in such environments, this research examines the concepts of…

  12. KMsim: A Meta-modelling Approach and Environment for Creating Process-Oriented Knowledge Management Simulations.

    NARCIS (Netherlands)

    Anjewierden, Anjo Allert; Shostak, I.; Tsjernikova, Irina; de Hoog, Robert; Gómez Perez, A.; Benjamins, V.R.

    2002-01-01

    This paper presents a new approach to modelling process-oriented knowledge management (KM) and describes a simulation environment (called KMSIM) that embodies the approach. Since the beginning of modelling researchers have been looking for better and novel ways to model systems and to use

  13. Learning Patterns as Criterion for Forming Work Groups in 3D Simulation Learning Environments

    Science.gov (United States)

    Maria Cela-Ranilla, Jose; Molías, Luis Marqués; Cervera, Mercè Gisbert

    2016-01-01

    This study analyzes the relationship between the use of learning patterns as a grouping criterion to develop learning activities in the 3D simulation environment at University. Participants included 72 Spanish students from the Education and Marketing disciplines. Descriptive statistics and non-parametric tests were conducted. The process was…

  14. A Language and Environment for Analysis of Dynamics by SimulaTiOn

    NARCIS (Netherlands)

    Bosse, T.; Jonker, C.M.; van der Meij, L.; Treur, J.

    2007-01-01

    This article presents the language and software environment LEADSTO that has been developed to model and simulate dynamic processes in terms of both qualitative and quantitative concepts. The LEADSTO language is a declarative order-sorted temporal language, extended with quantitative notions like

  15. LEADSTO: a Language and Environment for Analysis of Dynamics by SimulaTiOn

    NARCIS (Netherlands)

    Bosse, T.; Jonker, C.M.; van der Meij, L.; Treur, J.

    2005-01-01

    This paper presents the language and software environment LEADSTO that has been developed to model and simulate the dynamics of Multi-Agent Systems (MAS) in terms of both qualitative and quantitative concepts. The LEADSTO language is a declarative order-sorted temporal language, extended with

  16. GADEN: A 3D Gas Dispersion Simulator for Mobile Robot Olfaction in Realistic Environments

    Directory of Open Access Journals (Sweden)

    Javier Monroy

    2017-06-01

    Full Text Available This work presents a simulation framework developed under the widely used Robot Operating System (ROS to enable the validation of robotics systems and gas sensing algorithms under realistic environments. The framework is rooted in the principles of computational fluid dynamics and filament dispersion theory, modeling wind flow and gas dispersion in 3D real-world scenarios (i.e., accounting for walls, furniture, etc.. Moreover, it integrates the simulation of different environmental sensors, such as metal oxide gas sensors, photo ionization detectors, or anemometers. We illustrate the potential and applicability of the proposed tool by presenting a simulation case in a complex and realistic office-like environment where gas leaks of different chemicals occur simultaneously. Furthermore, we accomplish quantitative and qualitative validation by comparing our simulated results against real-world data recorded inside a wind tunnel where methane was released under different wind flow profiles. Based on these results, we conclude that our simulation framework can provide a good approximation to real world measurements when advective airflows are present in the environment.

  17. Objective fidelity evaluation in multisensory virtual environments: auditory cue fidelity in flight simulation.

    Directory of Open Access Journals (Sweden)

    Georg F Meyer

    Full Text Available We argue that objective fidelity evaluation of virtual environments, such as flight simulation, should be human-performance-centred and task-specific rather than measure the match between simulation and physical reality. We show how principled experimental paradigms and behavioural models to quantify human performance in simulated environments that have emerged from research in multisensory perception provide a framework for the objective evaluation of the contribution of individual cues to human performance measures of fidelity. We present three examples in a flight simulation environment as a case study: Experiment 1: Detection and categorisation of auditory and kinematic motion cues; Experiment 2: Performance evaluation in a target-tracking task; Experiment 3: Transferrable learning of auditory motion cues. We show how the contribution of individual cues to human performance can be robustly evaluated for each task and that the contribution is highly task dependent. The same auditory cues that can be discriminated and are optimally integrated in experiment 1, do not contribute to target-tracking performance in an in-flight refuelling simulation without training, experiment 2. In experiment 3, however, we demonstrate that the auditory cue leads to significant, transferrable, performance improvements with training. We conclude that objective fidelity evaluation requires a task-specific analysis of the contribution of individual cues.

  18. Biochemical and molecular dynamic simulation analysis of a weak coiled coil association between kinesin-II stalks.

    Directory of Open Access Journals (Sweden)

    Harinath Doodhi

    Full Text Available DEFINITION: Kinesin-2 refers to the family of motor proteins represented by conserved, heterotrimeric kinesin-II and homodimeric Osm3/Kif17 class of motors. BACKGROUND: Kinesin-II, a microtubule-based anterograde motor, is composed of three different conserved subunits, named KLP64D, KLP68D and DmKAP in Drosophila. Although previous reports indicated that coiled coil interaction between the middle segments of two dissimilar motor subunits established the heterodimer, the molecular basis of the association is still unknown. METHODOLOGY/PRINCIPAL FINDINGS: Here, we present a detailed heterodimeric association model of the KLP64D/68D stalk supported by extensive experimental analysis and molecular dynamic simulations. We find that KLP64D stalk is unstable, but forms a weak coiled coil heteroduplex with the KLP68D stalk when coexpressed in bacteria. Local instabilities, relative affinities between the C-terminal stalk segments, and dynamic long-range interactions along the stalks specify the heterodimerization. Thermal unfolding studies and independent simulations further suggest that interactions between the C-terminal stalk fragments are comparatively stable, whereas the N-terminal stalk reversibly unfolds at ambient temperature. CONCLUSIONS/SIGNIFICANCE: Results obtained in this study suggest that coiled coil interaction between the C-terminal stalks of kinesin-II motor subunits is held together through a few hydrophobic and charged interactions. The N-terminal stalk segments are flexible and could uncoil reversibly during a motor walk. This supports the requirement for a flexible coiled coil association between the motor subunits, and its role in motor function needs to be elucidated.

  19. Biochemical and Molecular Dynamic Simulation Analysis of a Weak Coiled Coil Association between Kinesin-II Stalks

    Science.gov (United States)

    Doodhi, Harinath; Jana, Swadhin C.; Devan, Pavithra; Mazumdar, Shyamalava; Ray, Krishanu

    2012-01-01

    Definition Kinesin-2 refers to the family of motor proteins represented by conserved, heterotrimeric kinesin-II and homodimeric Osm3/Kif17 class of motors. Background Kinesin-II, a microtubule-based anterograde motor, is composed of three different conserved subunits, named KLP64D, KLP68D and DmKAP in Drosophila. Although previous reports indicated that coiled coil interaction between the middle segments of two dissimilar motor subunits established the heterodimer, the molecular basis of the association is still unknown. Methodology/Principal Findings Here, we present a detailed heterodimeric association model of the KLP64D/68D stalk supported by extensive experimental analysis and molecular dynamic simulations. We find that KLP64D stalk is unstable, but forms a weak coiled coil heteroduplex with the KLP68D stalk when coexpressed in bacteria. Local instabilities, relative affinities between the C-terminal stalk segments, and dynamic long-range interactions along the stalks specify the heterodimerization. Thermal unfolding studies and independent simulations further suggest that interactions between the C-terminal stalk fragments are comparatively stable, whereas the N-terminal stalk reversibly unfolds at ambient temperature. Conclusions/Significance Results obtained in this study suggest that coiled coil interaction between the C-terminal stalks of kinesin-II motor subunits is held together through a few hydrophobic and charged interactions. The N-terminal stalk segments are flexible and could uncoil reversibly during a motor walk. This supports the requirement for a flexible coiled coil association between the motor subunits, and its role in motor function needs to be elucidated. PMID:23029351

  20. Simulation of the Effect of Realistic Space Vehicle Environments on Binary Metal Alloys

    Science.gov (United States)

    Westra, Douglas G.; Poirier, D. R.; Heinrich, J. C.; Sung, P. K.; Felicelli, S. D.; Phelps, Lisa (Technical Monitor)

    2001-01-01

    Simulations that assess the effect of space vehicle acceleration environments on the solidification of Pb-Sb alloys are reported. Space microgravity missions are designed to provide a near zero-g acceleration environment for various types of scientific experiments. Realistically. these space missions cannot provide a perfect environment. Vibrations caused by crew activity, on-board experiments, support systems stems (pumps, fans, etc.), periodic orbital maneuvers, and water dumps can all cause perturbations to the microgravity environment. In addition, the drag on the space vehicle is a source of acceleration. Therefore, it is necessary to predict the impact of these vibration-perturbations and the steady-state drag acceleration on the experiments. These predictions can be used to design mission timelines. so that the experiment is run during times that the impact of the acceleration environment is acceptable for the experiment of interest. The simulations reported herein were conducted using a finite element model that includes mass, species, momentum, and energy conservation. This model predicts the existence of "channels" within the processing mushy zone and subsequently "freckles" within the fully processed solid, which are the effects of thermosolutal convection. It is necessary to mitigate thermosolutal convection during space experiments of metal alloys, in order to study and characterize diffusion-controlled transport phenomena (microsegregation) that are normally coupled with macrosegregation. The model allows simulation of steady-state and transient acceleration values ranging from no acceleration (0 g). to microgravity conditions (10(exp -6) to 10(exp -3) g), to terrestrial gravity conditions (1 g). The transient acceleration environments simulated were from the STS-89 SpaceHAB mission and from the STS-94 SpaceLAB mission. with on-orbit accelerometer data during different mission periods used as inputs for the simulation model. Periods of crew exercise

  1. Low cycle corrosion fatigue properties of F316Ti in simulated LWR primary environment

    International Nuclear Information System (INIS)

    Xu Xuelian; Ding Yaping; Katada, Y.; Sato, S.

    1998-11-01

    Environment effect on fatigue performance of materials used for Pressurized boundary, including fatigue life and crack growth rate, are of importance to nuclear safety. To predict the fatigue life of nuclear materials and to improve the design of nuclear materials, it is necessary to investigated the material fatigue performances in corrosive environment and to get the fatigue data under its environment to be used in. Low cycle corrosion fatigue (CF) performance investigation of domestic F316Ti in simulated BWR and PWR primary environment was carried out. The result shows that the high temperature water environment is one of the most important factors on CF properties. For the same material, the low cycle fatigue life in high temperature air is longer than that in simulated BWR and PWR primary environments. In high temperature water, domestic F316Ti has almost the same low cycle corrosion fatigue performance as F316 (made in Japan). All of the fatigue data are scattered within ASME best-fit curve and ASME design fatigue curve. In high strain range, there is no significant difference of the CF performance for F316Ti in both of BWR and PWR primary environments. With the decrease of strain amplitude, the difference appears gradually. The data is located at the short life side of the fatigue data in simulated BWR primary environment. Titanium is distributed uniformly in F316Ti manufactured in Fushun Steel Factory. Ni, Cr, Mo in this material are located at the high side of the alloy chemical composition range. So, F316Ti has a better CF property in high temperature water

  2. Modelling of an industrial environment, part 1.: Monte Carlo simulations of photon transport

    International Nuclear Information System (INIS)

    Kis, Z.; Eged, K.; Meckbach, R.; Voigt, G.

    2002-01-01

    After a nuclear accident releasing radioactive material into the environment the external exposures may contribute significantly to the radiation exposure of the population (UNSCEAR 1988, 2000). For urban populations the external gamma exposure from radionuclides deposited on the surfaces of the urban-industrial environments yields the dominant contributions to the total dose to the public (Kelly 1987; Jacob and Meckbach 1990). The radiation field is naturally influenced by the environment around the sources. For calculations of the shielding effect of the structures in complex and realistic urban environments Monte Carlo methods turned out to be useful tools (Jacob and Meckbach 1987; Meckbach et al. 1988). Using these methods a complex environment can be set up in which the photon transport can be solved on a reliable way. The accuracy of the methods is in principle limited only by the knowledge of the atomic cross sections and the computational time. Several papers using Monte Carlo results for calculating doses from the external gamma exposures were published (Jacob and Meckbach 1987, 1990; Meckbach et al. 1988; Rochedo et al. 1996). In these papers the Monte Carlo simulations were run in urban environments and for different photon energies. The industrial environment can be defined as such an area where productive and/or commercial activity is carried out. A good example can be a factory or a supermarket. An industrial environment can rather be different from the urban ones as for the types and structures of the buildings and their dimensions. These variations will affect the radiation field of this environment. Hence there is a need to run new Monte Carlo simulations designed specially for the industrial environments

  3. Using Virtual Reality Simulation Environments to Assess Competence for Emergency Medicine Learners.

    Science.gov (United States)

    McGrath, Jillian L; Taekman, Jeffrey M; Dev, Parvati; Danforth, Douglas R; Mohan, Deepika; Kman, Nicholas; Crichlow, Amanda; Bond, William F

    2018-02-01

    Immersive learning environments that use virtual simulation (VS) technology are increasingly relevant as medical learners train in an environment of restricted clinical training hours and a heightened focus on patient safety. We conducted a consensus process with a breakout group of the 2017 Academic Emergency Medicine Consensus Conference "Catalyzing System Change Through Health Care Simulation: Systems, Competency, and Outcomes." This group examined the current uses of VS in training and assessment, including limitations and challenges in implementing VS into medical education curricula. We discuss the role of virtual environments in formative and summative assessment. Finally, we offer recommended areas of focus for future research examining VS technology for assessment, including high-stakes assessment in medical education. Specifically, we discuss needs for determination of areas of focus for VS training and assessment, development and exploration of virtual platforms, automated feedback within such platforms, and evaluation of effectiveness and validity of VS education. © 2017 by the Society for Academic Emergency Medicine.

  4. An expert system for automatic mesh generation for Sn particle transport simulation in parallel environment

    International Nuclear Information System (INIS)

    Apisit, Patchimpattapong; Alireza, Haghighat; Shedlock, D.

    2003-01-01

    An expert system for generating an effective mesh distribution for the SN particle transport simulation has been developed. This expert system consists of two main parts: 1) an algorithm for generating an effective mesh distribution in a serial environment, and 2) an algorithm for inference of an effective domain decomposition strategy for parallel computing. For the first part, the algorithm prepares an effective mesh distribution considering problem physics and the spatial differencing scheme. For the second part, the algorithm determines a parallel-performance-index (PPI), which is defined as the ratio of the granularity to the degree-of-coupling. The parallel-performance-index provides expected performance of an algorithm depending on computing environment and resources. A large index indicates a high granularity algorithm with relatively low coupling among processors. This expert system has been successfully tested within the PENTRAN (Parallel Environment Neutral-Particle Transport) code system for simulating real-life shielding problems. (authors)

  5. Properties of simulated Milky Way-mass galaxies in loose group and field environments

    Science.gov (United States)

    Few, C. G.; Gibson, B. K.; Courty, S.; Michel-Dansac, L.; Brook, C. B.; Stinson, G. S.

    2012-11-01

    Aims: We test the validity of comparing simulated field disk galaxies with the empirical properties of systems situated within environments more comparable to loose groups, including the Milky Way's Local Group. Methods: Cosmological simulations of Milky Way-mass galaxies have been realised in two different environment samples: in the field and in loose groups environments with similar properties to the Local Group. Apart from the differing environments of the galaxies, the samples are kept as homogeneous as possible with equivalent ranges in last major merger time, halo mass and halo spin. Comparison of these two samples allow for systematic differences in the simulations to be identified. A kinematic decomposition is employed to objectively quantify the spheroid-to-disk ratio and to isolate the disk-star population. Metallicity gradients, disk scale lengths, colours, magnitudes and age-velocity dispersion relations are studied for each galaxy in the suite and the strength of the link between these and environment of the galaxies is studied. Results: Metallicity gradients are consistent with observations of HII regions in spiral galaxies and, in agreement with observations, correlate with total galaxy mass. The bulge-to-disk ratio of the galaxies show that these galaxies are less spheroid dominated than many other simulated galaxies in literature with the majority of both samples being disk dominated. We find that secular evolution and mergers dominate the spread of morphologies and metallicity gradients with no visible differences between the two environment samples. In contrast with this consistency in the two samples there is tentative evidence for a systematic difference in the velocity dispersion-age relations of galaxies in the different environments. Loose group galaxies appear to have more discrete steps in their velocity dispersion-age relations, if this is true it suggests that impulsive heating is more efficient in the stars of galaxies in denser

  6. Research on the laser transmission characteristics simulation and comprehensive test in complex channel environment

    Science.gov (United States)

    Fu, Qiang; Liu, Jianhua; Wang, Xiaoman; Jiang, Huilin; Liu, Zhi

    2014-12-01

    The laser transmission characteristics affected in the complex channel environment, which limits the performance of laser equipment and engineering application severely. The article aim at the influence of laser transmission in atmospheric and seawater channels, summarizes the foreign researching work of the simulation and comprehensive test regarding to the laser transmission characteristics in complex environment. And researched the theory of atmospheric turbulence effect, water attenuation features, and put forward the corresponding theoretical model. And researched the simulate technology of atmospheric channel and sea water channel, put forward the analog device plan, adopt the similar theory of flowing to simulate the atmosphere turbulence .When the flowing has the same condition of geometric limits including the same Reynolds, they must be similar to each other in the motivation despite of the difference in the size, speed, and intrinsic quality. On this basis, set up a device for complex channel simulation and comprehensive testing, the overall design of the structure of the device, Hot and Cold Air Convection Simulation of Atmospheric Turbulence, mainly consists of cell body, heating systems, cooling systems, automatic control system. he simulator provides platform and method for the basic research of laser transmission characteristics in the domestic.

  7. Support Method of Model Description Error Detection on a Programming Environment for Multi Agent Simulation

    Science.gov (United States)

    Itakura, Kota; Hatakeyama, Go; Akiyoshi, Masanori; Komoda, Norihisa

    Recently, there are various proposals on tool for multi-agent simulation. However, in such simulation tools, analysts who do not have programming skill spend a lot of time to develop programs because notation of simulation models is not defined sufficiently and programming language is varied on tools. To solve this problem, a programming environment that defines the notation of simulation model has poposed. In this environment, analysts can design simulation with a graph representation and get the program code without writing programs. However, it is difficult to find errors that cause unintended behavior in simulation. Therefore, we propose a support method as a model debugger which helps users to find errors. The debugger generates candidates of errors, using a user's report of unintended behavior based on “typical report patterns”. Candidates of errors are extracted from “tree structure of error-inducing factors” that consists of source patterns of errors. In this paper, we executed experiments that compare time needed for examinees to find errors. Experimental results show the time to find errors by utilizing our model debugger is shortened.

  8. A Novel CPU/GPU Simulation Environment for Large-Scale Biologically-Realistic Neural Modeling

    Directory of Open Access Journals (Sweden)

    Roger V Hoang

    2013-10-01

    Full Text Available Computational Neuroscience is an emerging field that provides unique opportunities to studycomplex brain structures through realistic neural simulations. However, as biological details are added tomodels, the execution time for the simulation becomes longer. Graphics Processing Units (GPUs are now being utilized to accelerate simulations due to their ability to perform computations in parallel. As such, they haveshown significant improvement in execution time compared to Central Processing Units (CPUs. Most neural simulators utilize either multiple CPUs or a single GPU for better performance, but still show limitations in execution time when biological details are not sacrificed. Therefore, we present a novel CPU/GPU simulation environment for large-scale biological networks,the NeoCortical Simulator version 6 (NCS6. NCS6 is a free, open-source, parallelizable, and scalable simula-tor, designed to run on clusters of multiple machines, potentially with high performance computing devicesin each of them. It has built-in leaky-integrate-and-fire (LIF and Izhikevich (IZH neuron models, but usersalso have the capability to design their own plug-in interface for different neuron types as desired. NCS6is currently able to simulate one million cells and 100 million synapses in quasi real time by distributing dataacross these heterogeneous clusters of CPUs and GPUs.

  9. The prebiotic source influences the growth, biochemical features and survival under simulated gastrointestinal conditions of the probiotic Lactobacillus acidophilus.

    Science.gov (United States)

    Nazzaro, Filomena; Fratianni, Florinda; Nicolaus, Barbara; Poli, Annarita; Orlando, Pierangelo

    2012-06-01

    The viability of the probiotic strain Lactobacillus acidophilus DSM 20079, after its passage through the simulated gastric and pancreatic juices, was evaluated as function of its pre-growth in a medium containing the known prebiotics pectin or inulin, and was compared to glucose used as control. The presence of pectin or inulin did not affect the growth (12.11(log10) colony forming units/mL and 12.08(log10) colony forming units/mL for pectin and inulin respectively versus 12.22(log10) colony forming units/mL obtained for glucose). Pectin and inulin, in contrast to glucose, induced cell stress resistance against gastrointestinal juices (Δ(log10) 1 and 2 colony forming units/mL respectively, versus Δ(log10) 4.5 for glucose). The data were confirmed by the analysis of the protein pattern following stress treatments which, in the case of microbial cells grown with glucose, revealed a relevant protein degradation after the double passage through simulated gastric and intestinal juices. An impressive metabolic change, as function of the growth conditions, was demonstrated by analyzing the proteomic profile with a μ-2DE system, used herein for the first time as evaluation tool of prebiotic-probiotic interactions. The analysis revealed a different pH protein distribution that was mostly acidic in the presence of pectin and neutral-alkaline in the presence of inulin. Both prebiotics stimulated the production of butyrate, a relevant healthy bio-molecule not detectable in the presence of glucose, that was measured by HPLC analysis to be 14.5 fold higher after growth in the presence of inulin, as compared to pectin. Three specific proteins were detected at pH 6 after growth in the presence of pectin or inulin. They could be correlated to the stress resistance and/or to the production of butyrate, the common phenotypic characteristics induced in the bacterial strain by the two prebiotics. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Effect of Simulant Type on the Absorptance and Emittance of Dusted Thermal Control Surfaces in a Simulated Lunar Environment

    Science.gov (United States)

    Gaier, James R.

    2010-01-01

    During the Apollo program the effects of lunar dust on thermal control surfaces was found to be more significant than anticipated, with several systems overheating due to deposition of dust on them. In an effort to reduce risk to future missions, a series of tests has been initiated to characterize the effects of dust on these surfaces, and then to develop technologies to mitigate that risk. Given the variations in albedo across the lunar surface, one variable that may be important is the darkness of the lunar dust, and this study was undertaken to address that concern. Three thermal control surfaces, AZ-93 white paint and AgFEP and AlFEP second surface mirrors were dusted with three different lunar dust simulants in a simulated lunar environment, and their integrated solar absorptance ( ) and thermal emittance ( ) values determined experimentally. The three simulants included JSC-1AF, a darker mare simulant, NU-LHT-1D, a light highlands simulant, and 1:1 mixture of the two. The response of AZ-93 was found to be slightly more pronounced than that of AgFEP. The increased with fractional dust coverage in both types of samples by a factor of 1.7 to 3.3, depending on the type of thermal control surface and the type of dust. The of the AZ-93 decreased by about 10 percent when fully covered by dust, while that of AgFEP increased by about 10 percent. It was found that / varied by more than a factor of two depending on the thermal control surface and the darkness of the dust. Given that the darkest simulant used in this study may be lighter than the darkest dust that could be encountered on the lunar surface, it becomes apparent that the performance degradation of thermal control surfaces due to dust on the Moon will be strongly dependent on the and of the dust in the specific locality

  11. [Simulation of quantitative characters by genes with biochemically definable action : V. Investigations of the methods of measurement].

    Science.gov (United States)

    Forkmann, G; Seyffert, W

    1972-01-01

    At measuring the anthocyanin content of the flowers of defined genotypes of the stock, Matthiola incana, in preceding investigations a comparatively high variability of the measured values within the lines was observed. The investigations on the genetics of the quantitative character "anthocyanin content" are based on these measurements. Therefore it is important to examine whether or not an insufficient isogenisation of the genetic background of the parental lines or errors in the measuring technique are partly responsible for the high variability. The elimination of recognizable sources of error should lead back the variation within a line mainly to the interaction between genotype and environment.The results show that differences in the genetic background are unlikely. On the contrary there are the following sources of error in the hitherto applied technique: 1. Unequal sampling with respect to the developmental stage of the flowers and of the single petals within double flowers. 2. Unequal patterns of extraction dependent on the quantity and quality of the anthocyanins. 3. Errors in pipetting in connection with the dilution of extracts. An improved technique of sampling and processing is proposed.

  12. Particle simulations of electric and dust environment near the lunar vertical hole

    Science.gov (United States)

    Miyake, Y.; Funaki, Y.; Nishino, M. N.; Usui, H.

    2018-01-01

    We study the electric and dust environment near a complex surface structure on the moon: a vertical hole. In order to model an electric field structure near the surface, we performed the particle-in-cell simulations. The simulations provide electric field and plasma current density profiles in three-dimensional space above the complex lunar surface topography. Subsequently, we applied the obtained electric field and plasma current density data to the test-particle simulation on the dynamics of submicronsized charged dust grains. We focus on an effect of a stochastic charging process of such small dust grains. Because of their small surface areas, the dusts will get/lose one elementary charge infrequently. The preliminary simulation results show an evidence of dust mobilization across the sunlight-shadow interface formed inside the lunar hole.

  13. The atomic simulation environment-a Python library for working with atoms.

    Science.gov (United States)

    Hjorth Larsen, Ask; Jørgen Mortensen, Jens; Blomqvist, Jakob; Castelli, Ivano E; Christensen, Rune; Dułak, Marcin; Friis, Jesper; Groves, Michael N; Hammer, Bjørk; Hargus, Cory; Hermes, Eric D; Jennings, Paul C; Bjerre Jensen, Peter; Kermode, James; Kitchin, John R; Leonhard Kolsbjerg, Esben; Kubal, Joseph; Kaasbjerg, Kristen; Lysgaard, Steen; Bergmann Maronsson, Jón; Maxson, Tristan; Olsen, Thomas; Pastewka, Lars; Peterson, Andrew; Rostgaard, Carsten; Schiøtz, Jakob; Schütt, Ole; Strange, Mikkel; Thygesen, Kristian S; Vegge, Tejs; Vilhelmsen, Lasse; Walter, Michael; Zeng, Zhenhua; Jacobsen, Karsten W

    2017-07-12

    The atomic simulation environment (ASE) is a software package written in the Python programming language with the aim of setting up, steering, and analyzing atomistic simulations. In ASE, tasks are fully scripted in Python. The powerful syntax of Python combined with the NumPy array library make it possible to perform very complex simulation tasks. For example, a sequence of calculations may be performed with the use of a simple 'for-loop' construction. Calculations of energy, forces, stresses and other quantities are performed through interfaces to many external electronic structure codes or force fields using a uniform interface. On top of this calculator interface, ASE provides modules for performing many standard simulation tasks such as structure optimization, molecular dynamics, handling of constraints and performing nudged elastic band calculations.

  14. Absorbed Heat-flux Method for Ground Simulation of On-orbit Thermal Environment of Satellite

    Directory of Open Access Journals (Sweden)

    Jeong-Soo Kim

    1999-12-01

    Full Text Available An absorbed heat-flux method for ground simulation of on-orbit thermal environment of satellite is addressed in this paper. For satellite ground test, high vacuum and extremely low temperature of deep space are achieved by space simulation chamber, while spatial environmental heating is simulated by employing the absorbed heat-flux method. The methodology is explained in detail with test requirement and setup implemented on a satellite. Developed heat-load control system is presented with an adjusted PID-control logic and the system schematic realized is shown. A practical and successful application of the heat simulation method to KOMPSAT(Korea Multi-purpose Satellitethermal environmental test is demonstrated, finally.

  15. The Challenge of Grounding Planning in Simulation with an Interactive Model Development Environment

    Science.gov (United States)

    Clement, Bradley J.; Frank, Jeremy D.; Chachere, John M.; Smith, Tristan B.; Swanson, Keith J.

    2011-01-01

    A principal obstacle to fielding automated planning systems is the difficulty of modeling. Physical systems are modeled conventionally based on specification documents and the modeler's understanding of the system. Thus, the model is developed in a way that is disconnected from the system's actual behavior and is vulnerable to manual error. Another obstacle to fielding planners is testing and validation. For a space mission, generated plans must be validated often by translating them into command sequences that are run in a simulation testbed. Testing in this way is complex and onerous because of the large number of possible plans and states of the spacecraft. Though, if used as a source of domain knowledge, the simulator can ease validation. This paper poses a challenge: to ground planning models in the system physics represented by simulation. A proposed, interactive model development environment illustrates the integration of planning and simulation to meet the challenge. This integration reveals research paths for automated model construction and validation.

  16. ASSESSMENT OF VISUAL PERCEPTION OF WEB-BASED VIRTUAL ENVIRONMENTS SIMULATIONS OF AN URBAN CONTEXT.

    Directory of Open Access Journals (Sweden)

    Ayman Hassaan A. Mahmoud

    2011-03-01

    Full Text Available The existing research literature on environmental perception is a body of work mainly based on the use of static representation of environments. However, the real world is usually experienced in a dynamic experience. Virtual environments’ technologies offer the potential to produce simulated environments that create the impression that we are in spaces other than those we actually occupy. A review of literature on environmental perception revealed two components of perception: “space-based” and “object-based” perception. An experiment was conducted to investigate visual perception obtained from a direct experience of an urban landscape and from its representations in desktop virtual environments (desktop VEs. The issues investigated were: accuracy of space-based and object-based visual perception obtained from the physical environment and from desktop virtual environment. A series of tests were administered to assess the visual perception of participants who explored the urban environment following a direct experience, and X3D-VRML models. The results indicated that participants who experienced the X3D-VRML models conducted fewer errors in space-based perception tests. There was evidence that participants in X3D-VRML perceived more objects than their counterparts in the physical environment. Similarities and differences between the physical and virtual environments were discussed suggesting the potential and limitations of desktop VEs in environmental representation. An agenda for future research work is suggested.

  17. Validation of the mean radiant temperature simulated by the RayMan software in urban environments.

    Science.gov (United States)

    Lee, Hyunjung; Mayer, Helmut

    2016-11-01

    The RayMan software is worldwide applied in investigations on different issues in human-biometeorology. However, only the simulated mean radiant temperature (T mrt ) has been validated so far in a few case studies. They are based on T mrt values, which were experimentally determined in urban environments by use of a globe thermometer or applying the six-directional method. This study analyses previous T mrt validations in a comparative manner. Their results are extended by a recent validation of T mrt in an urban micro-environment in Freiburg (southwest Germany), which can be regarded as relatively heterogeneous due to different shading intensities by tree crowns. In addition, a validation of the physiologically equivalent temperature (PET) simulated by RayMan is conducted for the first time. The validations are based on experimentally determined T mrt and PET values, which were calculated from measured meteorological variables in the daytime of a clear-sky summer day. In total, the validation results show that RayMan is capable of simulating T mrt satisfactorily under relatively homogeneous site conditions. However, the inaccuracy of simulated T mrt is increasing with lower sun elevation and growing heterogeneity of the simulation site. As T mrt represents the meteorological variable that mostly governs PET in the daytime of clear-sky summer days, the accuracy of simulated T mrt is mainly responsible for the accuracy of simulated PET. The T mrt validations result in some recommendations, which concern an update of physical principles applied in the RayMan software to simulate the short- and long-wave radiant flux densities, especially from vertical building walls and tree crowns.

  18. Validation of the mean radiant temperature simulated by the RayMan software in urban environments

    Science.gov (United States)

    Lee, Hyunjung; Mayer, Helmut

    2016-11-01

    The RayMan software is worldwide applied in investigations on different issues in human-biometeorology. However, only the simulated mean radiant temperature ( T mrt) has been validated so far in a few case studies. They are based on T mrt values, which were experimentally determined in urban environments by use of a globe thermometer or applying the six-directional method. This study analyses previous T mrt validations in a comparative manner. Their results are extended by a recent validation of T mrt in an urban micro-environment in Freiburg (southwest Germany), which can be regarded as relatively heterogeneous due to different shading intensities by tree crowns. In addition, a validation of the physiologically equivalent temperature (PET) simulated by RayMan is conducted for the first time. The validations are based on experimentally determined T mrt and PET values, which were calculated from measured meteorological variables in the daytime of a clear-sky summer day. In total, the validation results show that RayMan is capable of simulating T mrt satisfactorily under relatively homogeneous site conditions. However, the inaccuracy of simulated T mrt is increasing with lower sun elevation and growing heterogeneity of the simulation site. As T mrt represents the meteorological variable that mostly governs PET in the daytime of clear-sky summer days, the accuracy of simulated T mrt is mainly responsible for the accuracy of simulated PET. The T mrt validations result in some recommendations, which concern an update of physical principles applied in the RayMan software to simulate the short- and long-wave radiant flux densities, especially from vertical building walls and tree crowns.

  19. Premar-2: a Monte Carlo code for radiative transport simulation in atmospheric environments

    International Nuclear Information System (INIS)

    Cupini, E.

    1999-01-01

    The peculiarities of the PREMAR-2 code, aimed at radiation transport Monte Carlo simulation in atmospheric environments in the infrared-ultraviolet frequency range, are described. With respect to the previously developed PREMAR code, besides plane multilayers, spherical multilayers and finite sequences of vertical layers, each one with its own atmospheric behaviour, are foreseen in the new code, together with the refraction phenomenon, so that long range, highly slanted paths can now be more faithfully taken into account. A zenithal angular dependence of the albedo coefficient has moreover been introduced. Lidar systems, with spatially independent source and telescope, are allowed again to be simulated, and, in this latest version of the code, sensitivity analyses to be performed. According to this last feasibility, consequences on radiation transport of small perturbations in physical components of the atmospheric environment may be analyze and the related effects on searched results estimated. The availability of a library of physical data (reaction coefficients, phase functions and refraction indexes) is required by the code, providing the essential features of the environment of interest needed of the Monte Carlo simulation. Variance reducing techniques have been enhanced in the Premar-2 code, by introducing, for instance, a local forced collision technique, especially apt to be used in Lidar system simulations. Encouraging comparisons between code and experimental results carried out at the Brasimone Centre of ENEA, have so far been obtained, even if further checks of the code are to be performed [it

  20. Measurement of contact angles in a simulated microgravity environment generated by a large gradient magnetic field.

    Science.gov (United States)

    Liu, Yong-Ming; Chen, Rui-Qing; Wu, Zi-Qing; Zhu, Jing; Shi, Jian-Yu; Lu, Hui-Meng; Shang, Peng; Yin, Da-Chuan

    2016-09-01

    The contact angle is an important parameter that is essential for studying interfacial phenomena. The contact angle can be measured using commercially available instruments. However, these well-developed instruments may not function or may be unsuitable for use in some special environments. A simulated microgravity generated by a large gradient magnetic field is such an environment in which the current measurement instruments cannot be installed. To measure the contact angle in this environment, new tools must be designed and manufactured to be compatible with the size and physical environment. In this study, we report the development and construction of a new setup that was specifically designed for use in a strong magnetic field to measure the contact angle between a levitated droplet and a solid surface. The application of the setup in a large gradient magnetic field was tested, and the contact angles were readily measured.

  1. Semantic and Virtual Reality-Enhanced Configuration of Domestic Environments: The Smart Home Simulator

    Directory of Open Access Journals (Sweden)

    Daniele Spoladore

    2017-01-01

    Full Text Available This paper introduces the Smart Home Simulator, one of the main outcomes of the D4All project. This application takes into account the variety of issues involved in the development of Ambient Assisted Living (AAL solutions, such as the peculiarity of each end-users, appliances, and technologies with their deployment and data-sharing issues. The Smart Home Simulator—a mixed reality application able to support the configuration and customization of domestic environments in AAL systems—leverages on integration capabilities of Semantic Web technologies and the possibility to model relevant knowledge (about both the dwellers and the domestic environment into formal models. It also exploits Virtual Reality technologies as an efficient means to simplify the configuration of customized AAL environments. The application and the underlying framework will be validated through two different use cases, each one foreseeing the customized configuration of a domestic environment for specific segments of users.

  2. Time-Domain Simulations of Transient Species in Experimentally Relevant Environments

    Energy Technology Data Exchange (ETDEWEB)

    Ueltschi, Tyler W.; Fischer, Sean A.; Apra, Edoardo; Tarnovsky, Alexander N.; Govind, Niranjan; El-Khoury, Patrick Z.; Hess, Wayne P.

    2016-02-04

    Simulating the spectroscopic properties of short-lived thermal and photochemical reaction intermediates and products is a challenging task, as these species often feature atypical molecular and electronic structures. The complex environments in which such species typically reside in practice add further complexity to the problem. Herein, we tackle this problem in silico using ab initio molecular dynamics (AIMD) simulations, employing iso-CHBr3, namely H(Br)C-Br-Br, as a prototypical system. This species was chosen because it features both a non-conventional C-Br-Br bonding pattern, as well as a strong dependence of its spectral features on the local environment in which it resides, as illustrated in recent experimental reports. The spectroscopic properties of iso-CHBr3 were measured by several groups that captured this transient intermediate in the photochemistry of CHBr3 in the gas phase, in rare gas matrices at 5K, and in solution under ambient laboratory conditions. We simulate the UV-Vis and IR spectra of iso-CHBr3 in all three media, including a Ne cluster (64 atoms) and a methylcyclohexane cage (14 solvent molecules) representative of the matrix isolated and solvated species. We exclusively perform fully quantum mechanical static and dynamic simulations. By comparing our condensed phase simulations to their experimental analogues, we stress the importance of (i) conformational sampling, even at cryogenic temperatures, and (ii) using a fully quantum mechanical description of both solute and bath to properly account for the experimental observables.

  3. Social Force Model-Based Group Behavior Simulation in Virtual Geographic Environments

    Directory of Open Access Journals (Sweden)

    Lin Huang

    2018-02-01

    Full Text Available Virtual geographic environments (VGEs are extensively used to explore the relationship between humans and environments. Crowd simulation provides a method for VGEs to represent crowd behaviors that are observed in the real world. The social force model (SFM can simulate interactions among individuals, but it has not sufficiently accounted for inter-group and intra-group behaviors which are important components of crowd dynamics. We present the social group force model (SGFM, based on an extended SFM, to simulate group behaviors in VGEs with focuses on the avoiding behaviors among different social groups and the coordinate behaviors among subgroups that belong to one social group. In our model, psychological repulsions between social groups make them avoid with the whole group and group members can stick together as much as possible; while social groups are separated into several subgroups, the rear subgroups try to catch up and keep the whole group cohesive. We compare the simulation results of the SGFM with the extended SFM and the phenomena in videos. Then we discuss the function of Virtual Reality (VR in crowd simulation visualization. The results indicate that the SGFM can enhance social group behaviors in crowd dynamics.

  4. State estimation approach for live aircraft engagement in a C2 simulation environment

    CSIR Research Space (South Africa)

    Duvenhage, A

    2007-01-01

    Full Text Available for Live Aircraft Engagement in a C2 Simulation Environment Arno Duvenhage Willem H. le Roux Council for Scientific and Industrial Research Meiring Naude Rd Pretoria South Africa aduvenhage@csir.co.za, whleroux@csir.co.za Keywords: Alpha... specific example of the algorithm implemented as part of a threat injector service that was added to a ground based air defense simulation. This was done to enable the engagement of live aircraft during exercises. The algorithm can be called an alpha...

  5. Improving the adaptability of simulated evolutionary swarm robots in dynamically changing environments.

    Science.gov (United States)

    Yao, Yao; Marchal, Kathleen; Van de Peer, Yves

    2014-01-01

    One of the important challenges in the field of evolutionary robotics is the development of systems that can adapt to a changing environment. However, the ability to adapt to unknown and fluctuating environments is not straightforward. Here, we explore the adaptive potential of simulated swarm robots that contain a genomic encoding of a bio-inspired gene regulatory network (GRN). An artificial genome is combined with a flexible agent-based system, representing the activated part of the regulatory network that transduces environmental cues into phenotypic behaviour. Using an artificial life simulation framework that mimics a dynamically changing environment, we show that separating the static from the conditionally active part of the network contributes to a better adaptive behaviour. Furthermore, in contrast with most hitherto developed ANN-based systems that need to re-optimize their complete controller network from scratch each time they are subjected to novel conditions, our system uses its genome to store GRNs whose performance was optimized under a particular environmental condition for a sufficiently long time. When subjected to a new environment, the previous condition-specific GRN might become inactivated, but remains present. This ability to store 'good behaviour' and to disconnect it from the novel rewiring that is essential under a new condition allows faster re-adaptation if any of the previously observed environmental conditions is reencountered. As we show here, applying these evolutionary-based principles leads to accelerated and improved adaptive evolution in a non-stable environment.

  6. Improving the adaptability of simulated evolutionary swarm robots in dynamically changing environments.

    Directory of Open Access Journals (Sweden)

    Yao Yao

    Full Text Available One of the important challenges in the field of evolutionary robotics is the development of systems that can adapt to a changing environment. However, the ability to adapt to unknown and fluctuating environments is not straightforward. Here, we explore the adaptive potential of simulated swarm robots that contain a genomic encoding of a bio-inspired gene regulatory network (GRN. An artificial genome is combined with a flexible agent-based system, representing the activated part of the regulatory network that transduces environmental cues into phenotypic behaviour. Using an artificial life simulation framework that mimics a dynamically changing environment, we show that separating the static from the conditionally active part of the network contributes to a better adaptive behaviour. Furthermore, in contrast with most hitherto developed ANN-based systems that need to re-optimize their complete controller network from scratch each time they are subjected to novel conditions, our system uses its genome to store GRNs whose performance was optimized under a particular environmental condition for a sufficiently long time. When subjected to a new environment, the previous condition-specific GRN might become inactivated, but remains present. This ability to store 'good behaviour' and to disconnect it from the novel rewiring that is essential under a new condition allows faster re-adaptation if any of the previously observed environmental conditions is reencountered. As we show here, applying these evolutionary-based principles leads to accelerated and improved adaptive evolution in a non-stable environment.

  7. Improving the Adaptability of Simulated Evolutionary Swarm Robots in Dynamically Changing Environments

    Science.gov (United States)

    Yao, Yao; Marchal, Kathleen; Van de Peer, Yves

    2014-01-01

    One of the important challenges in the field of evolutionary robotics is the development of systems that can adapt to a changing environment. However, the ability to adapt to unknown and fluctuating environments is not straightforward. Here, we explore the adaptive potential of simulated swarm robots that contain a genomic encoding of a bio-inspired gene regulatory network (GRN). An artificial genome is combined with a flexible agent-based system, representing the activated part of the regulatory network that transduces environmental cues into phenotypic behaviour. Using an artificial life simulation framework that mimics a dynamically changing environment, we show that separating the static from the conditionally active part of the network contributes to a better adaptive behaviour. Furthermore, in contrast with most hitherto developed ANN-based systems that need to re-optimize their complete controller network from scratch each time they are subjected to novel conditions, our system uses its genome to store GRNs whose performance was optimized under a particular environmental condition for a sufficiently long time. When subjected to a new environment, the previous condition-specific GRN might become inactivated, but remains present. This ability to store ‘good behaviour’ and to disconnect it from the novel rewiring that is essential under a new condition allows faster re-adaptation if any of the previously observed environmental conditions is reencountered. As we show here, applying these evolutionary-based principles leads to accelerated and improved adaptive evolution in a non-stable environment. PMID:24599485

  8. Interaction of a 238Pu fueled-sphere assembly with a simulated terrestrial environment

    International Nuclear Information System (INIS)

    Steinkruger, F.J.; Patterson, J.H.; Herrera, B.; Nelson, G.B.; Matlack, G.M.; Waterbury, G.R.; Pavone, D.

    1981-02-01

    A 238 Pu fueled sphere assembly (FSA) was exposed to a simulated humid environment on sandy soil for 3 y. After a 70-week exposure, plutonium was first detected in measurable quantities in rain and condensate samples. A core sample taken in the ninety-third week contained 302 ng of plutonium. Examination of the FSA after exposure revealed a hole in the bottom of the graphite impact shell (GIS) and a leaking weld on the vent assembly of the postimpact containment shell (PICS). These two openings may be the pathways for plutonium entry into the environment from the FSA

  9. A novel agent-based simulation framework for sensing in complex adaptive environments

    OpenAIRE

    Niazi, Muaz A.; Hussain, Amir

    2017-01-01

    In this paper we present a novel Formal Agent-Based Simulation framework (FABS). FABS uses formal specification as a means of clear description of wireless sensor networks (WSN) sensing a Complex Adaptive Environment. This specification model is then used to develop an agent-based model of both the wireless sensor network as well as the environment. As proof of concept, we demonstrate the application of FABS to a boids model of self-organized flocking of animals monitored by a random deployme...

  10. SIMULATIONS IN TECHNOLOGICAL ENVIRONMENTS AS A TOOL FOR TRAINING IN TRANSVERSAL COMPETENCES FOR UNIVERSITY STUDENTS

    Directory of Open Access Journals (Sweden)

    Mercè Gisbert Cervera

    2010-02-01

    Full Text Available This paper consists of a reflection on how the technological environments can play a key role in the current Higher Education scene. This reflection observes the structural configuration and the key agents of the educational process. The content is developed firstly locating the student in the University of the 21st century; the methodological renovation is analyzed from two perspectives: the development of the technologies and the new role of teacher and student in this new scene; finally the simulations in technological environments are proposed as a valuable strategy to give response to the formative needs of the student in the current society.

  11. Development and experimental validation of computational methods to simulate abnormal thermal and structural environments

    International Nuclear Information System (INIS)

    Moya, J.L.; Skocypec, R.D.; Thomas, R.K.

    1993-01-01

    Over the past 40 years, Sandia National Laboratories (SNL) has been actively engaged in research to improve the ability to accurately predict the response of engineered systems to abnormal thermal and structural environments. These engineered systems contain very hazardous materials. Assessing the degree of safety/risk afforded the public and environment by these engineered systems, therefore, is of upmost importance. The ability to accurately predict the response of these systems to accidents (to abnormal environments) is required to assess the degree of safety. Before the effect of the abnormal environment on these systems can be determined, it is necessary to ascertain the nature of the environment. Ascertaining the nature of the environment, in turn, requires the ability to physically characterize and numerically simulate the abnormal environment. Historically, SNL has demonstrated the level of safety provided by these engineered systems by either of two approaches: (1) a purely regulatory approach, or (2) by a Probabilistic Risk Assessment (PRA). This paper will address the latter of the two approaches

  12. Influence of oligosaccharides on the growth and tolerance capacity of lactobacilli to simulated stress environment.

    Science.gov (United States)

    Pan, X; Wu, T; Zhang, L; Cai, L; Song, Z

    2009-03-01

    Lactobacilli should resist stress environments in industry process and gastrointestinal tract before exerting their beneficial effects. To explore the possible stabilizers in probiotic products, prebiotic oligosaccharides were investigated. We investigated the effect of four selected oligosaccharides on the survival of probiotic Lactobacillus plantarum and L. acidophilus to simulated stress conditions. It was found that the tolerance of lactobacilli to simulated artificial gastrointestinal juice, heat treatment and phenol solution was obviously enhanced in fructo-oligosaccharides (FOS) and xylo-oligosaccharides (XOS) group. In addition, chito-oligosaccharides (COS), manno-oligosaccharides (MOS) and glucose also had positive effect compared with control group (without sugar). Prebiotic oligosaccharides, especially XOS and FOS added in medium have protection function to lactobacilli in stress environments. The protection function of oligosaccharides may correlate with the bacteria growth, which was stimulated by these oligosaccharides. Prebiotic oligosaccharides may be used as stabilizers in probiotic products.

  13. Overview of the OGC CDB Standard for 3D Synthetic Environment Modeling and Simulation

    Directory of Open Access Journals (Sweden)

    Sara Saeedi

    2017-10-01

    Full Text Available Recent advances in sensor and platform technologies, such as satellite systems, unmanned aerial vehicles (UAV, manned aerial platforms, and ground-based sensor networks have resulted in massive volumes of data being produced and collected about the earth. Processing, managing, and analyzing these data is one of the main challenges in 3D synthetic representation used in modeling and simulation (M&S of the natural environment. M&S devices, such as flight simulators, traditionally require a variety of different databases to provide a synthetic representation of the world. M&S often requires integration of data from a variety of sources stored in different formats. Thus, for simulation of a complex synthetic environment, such as a 3D terrain model, tackling interoperability among its components (geospatial data, natural and man-made objects, dynamic and static models is a critical challenge. Conventional approaches used local proprietary data models and formats. These approaches often lacked interoperability and created silos of content within the simulation community. Therefore, open geospatial standards are increasingly perceived as a means to promote interoperability and reusability for 3D M&S. In this paper, the Open Geospatial Consortium (OGC CDB Standard is introduced. “CDB” originally referred to Common DataBase, which is currently considered as a name with no abbreviation in the OGC community. The OGC CDB is an international standard for structuring, modeling, and storing geospatial information required in high-performance modeling and simulation applications. CDB defines the core conceptual models, use cases, requirements, and specifications for employing geospatial data in 3D M&S. The main features of the OGC CDB Standard are described as the run-time performance, full plug-and-play interoperable geospatial data store, usefulness in 3D and dynamic simulation environment, ability to integrate proprietary and open-source data formats

  14. Influence of a controlled environment simulating an in-flight airplane cabin on dry eye disease.

    Science.gov (United States)

    Tesón, Marisa; González-García, María J; López-Miguel, Alberto; Enríquez-de-Salamanca, Amalia; Martín-Montañez, Vicente; Benito, María Jesús; Mateo, María Eugenia; Stern, Michael E; Calonge, Margarita

    2013-03-01

    To evaluate symptoms, signs, and the levels of 16 tears inflammatory mediators of dry eye (DE) patients exposed to an environment simulating an in-flight air cabin in an environmental chamber. Twenty DE patients were exposed to controlled environment simulating an in-flight airplane cabin (simulated in-flight condition [SIC]) of 23°C, 5% relative humidity, localized air flow, and 750 millibars (mb) of barometric pressure. As controls, 15 DE patients were subjected to a simulated standard condition (SSC) of 23°C, 45% relative humidity, and 930 mb. A DE symptoms questionnaire, diagnostic tests, and determination of 16 tear molecules by multiplex bead array were performed before and 2 hours after exposure. After SIC exposure, DE patients became more symptomatic, suffered a significant (P ≤ 0.05) decrease in tear stability (tear break up time) (from 2.18 ± 0.28 to 1.53 ± 0.20), and tear volume (phenol red thread test), and a significant (P ≤ 0.05) increase in corneal staining, both globally (0.50 ± 0.14 before and 1.25 ± 0.19 after) and in each area (Baylor scale). After SSC, DE patients only showed a mild, but significant (P ≤ 0.05), increase in central and inferior corneal staining. Consistently, tear levels of IL-6 and matrix metalloproteinase (MMP)-9 significantly increased and tear epidermal growth factor (EGF) significantly decreased (P ≤ 0.05) only after SIC. The controlled adverse environment conditions in this environmental chamber can simulate the conditions in which DE patients might be exposed during flight. As this clearly impaired their lacrimal functional unit, it would be advisable that DE patients use therapeutic strategies capable of ameliorating these adverse episodes.

  15. Simulation of three-phase induction motor drives using indirect field oriented control in PSIM environment

    Science.gov (United States)

    Aziri, Hasif; Patakor, Fizatul Aini; Sulaiman, Marizan; Salleh, Zulhisyam

    2017-09-01

    This paper presents the simulation of three-phase induction motor drives using Indirect Field Oriented Control (IFOC) in PSIM environment. The asynchronous machine is well known about natural limitations fact of highly nonlinearity and complexity of motor model. In order to resolve these problems, the IFOC is applied to control the instantaneous electrical quantities such as torque and flux component. As FOC is controlling the stator current that represented by a vector, the torque component is aligned with d coordinate while the flux component is aligned with q coordinate. There are five levels of the incremental system are gradually built up to verify and testing the software module in the system. Indeed, all of system build levels are verified and successfully tested in PSIM environment. Moreover, the corresponding system of five build levels are simulated in PSIM environment which is user-friendly for simulation studies in order to explore the performance of speed responses based on IFOC algorithm for three-phase induction motor drives.

  16. Conversion of a mainframe simulation for maintenance performance to a PC environment

    International Nuclear Information System (INIS)

    Gertman, D.I.

    1991-01-01

    A computer-based simulation capable of generating human error probabilities (HEPs) for maintenance activities is presented. The HEPs are suitable for use in probabilistic risk assessments (PRAs) and are an important source of information for data management systems such as NUCLARR- the Nuclear Computerized Library for Assessing Reactor Reliability. (1) The basic computer model MAPPS--the maintenance personnel performance simulation has been developed and validated by the US NRC in order to improve maintenance practices and procedures at nuclear power plants. This model validated previously, has now been implemented and improved, in a PC environment, and renamed MicroMAPPS. The model is stochastically based, able to simulate the performance of 2 to 15 person crews for a variety of maintenance conditions. These conditions include aspects of crew actions as potentially influenced by the task, the environment, or characteristics of the personnel involved. The nature of the software code makes it particularly appropriate for determining changes in HEP rates due to fluctuations in important task, environment,. or personnel parameters. The presentation presents a brief review of the mainframe version of the code and presents a summarization of the enhancements which dramatically change the nature of the human computer interaction

  17. Effects of Dietary L-carnitine Supplementation on Growth Performance, Organ Weight, Biochemical Parameters and Ascites Susceptibility in Broilers Reared Under Low-temperature Environment

    Directory of Open Access Journals (Sweden)

    Y. W. Wang

    2013-02-01

    Full Text Available The objective of this study was to investigate the effects of L-carnitine on growth performance, organ weight, biochemical parameters of blood, heart and liver, and ascites susceptibility of broilers at different ages reared under a low-temperature environment. A total of 420 1-d-old male Ross 308 broilers were randomly assigned to two dietary treatments with fifteen replicates of fourteen broilers each. Treatment diets consisted of L-carnitine supplementation at levels of 0 and 100 mg/kg. At 11-d of age, low temperature stress was used to increase ascites susceptibility. Blood, heart and liver samples were collected at different ages for analysis of boichemical parameters. The results showed that, there was no significant difference in growth performance with L-carnitine supplementation, but the mortality due to ascites was significantly decreased. Dietary L-carnitine supplementation significantly reduced heart index (HI and ascites heart index (AHI on d 21, lung index (LUI on d 35 and liver index (LI on d 42. The broilers fed diets containing L-carnitine had significantly lower red blood cell counts (RBC, hemoglobin (HGB concentration and hematocrit (HCT on d 42. Dietary L-carnitine supplementation significantly reduced malondialdehyde (MDA content of heart tissue on d 21 and 35, and significantly increased total superoxide dismutase (T-SOD and Glutathione peroxidase (GSH-Px activity of the heart on d 21 and 42. L-carnitine supplementation significantly reduced serum triglyceride (TG content on d 28 and 35 and serum glucose (GLU on d 35 and 42, and significantly increased serum total protein (TP and globulin (GLO content on d 42. L-carnitine supplementation significantly enhanced liver succinodehydrogenase (SDH, malic dehydrogenase (MDH and Na+-K+-ATPase activity on d 28, and tended to reduce the lactic acid (LD level of liver on d 35 (p = 0.06. L-carnitine supplementation significantly reduced serum uric acid (UA content on d 28, 35 and 42

  18. The effects of the aircraft cabin environment on passengers during simulated flights

    DEFF Research Database (Denmark)

    Strøm-Tejsen, Peter

    2007-01-01

    A 3-row, 21-seat section of a simulated Boeing 767 aircraft cabin has been built in a climate chamber, simulating the cabin environment not only in terms of materials and geometry, but also in terms of cabin air and wall temperatures and ventilation with very dry air. This realistic simulation en...... of air quality, air freshness, and thermal sensation, improving these perceptions when temperature was lowered....... of the symptoms commonly associated with the aircraft cabin. It suggests that it would be beneficial to remove ozone at levels less than currently specified. The last study, investigating the influence of air temperature on passenger comfort and symptoms, showed that cabin air temperature affected the perception...

  19. Mathematical model for simulation of the fate of copper in a marine environment

    International Nuclear Information System (INIS)

    Orlob, G.T.; Hrovat, D.; Wakeman, T.; Harrison, F.L.

    1979-01-01

    A mathematical model for the simulation of the fate of copper in a marine environment was developed. The model, which describes the kinetics of copper transformation from ionic copper to complexes with dissolved organic matter and sorption on suspended sediment, is imbedded in a two-dimensional finite element model which is capable of simulating advection and diffusion processes in natural receiving waters. Kinetic rate and equilibrium constants for the model were developed independently in laboratory experiments. A test simulation was performed under realistic conditions of slug discharge of ionic copper with the cooling water from a nuclear power station situated on the California coast. Results show that the model performed correctly under the conditions assumed. Future research and development is directed toward improving description of copper kinetics under varying environmental conditions and exploring the sensitivity of the model

  20. Geographical/Spatial Orientation Ability Within Real-World and Simulated Large-Scale Environments.

    Science.gov (United States)

    Bryant, K J

    1991-01-01

    Geographical/Spatial orientation ability is studied within real-world and simulated environments. Participants (n=1148), residents of San Francisco or Marin County, were assigned to one of four media presentation conditions, two of which are studied here: Auto Tour (a 25-minute tour of the research site) or Model Film (a color film of the tour route). The Embedded Figures Task, dispositional measures, slide-recognition, map-placement, and map-sketch tasks were administered. Simulation condition, previous exposure, visual-spatial ability, and dispositional measures significantly predicted performance on the general factor (Geographic/Spatial orientation ability). Structural equations models are developed, identifying different aspects of effective performance for Auto Tour and Model Film conditions. Differences in individual performance within presentation condition underscore the need for careful evaluation of the effectiveness o9f simulators as training devices.

  1. Comprehensive modelling and simulation of cylindrical nanoparticles manipulation by using a virtual reality environment.

    Science.gov (United States)

    Korayem, Moharam Habibnejad; Hoshiar, Ali Kafash; Ghofrani, Maedeh

    2017-08-01

    With the expansion of nanotechnology, robots based on atomic force microscope (AFM) have been widely used as effective tools for displacing nanoparticles and constructing nanostructures. One of the most limiting factors in AFM-based manipulation procedures is the inability of simultaneously observing the controlled pushing and displacing of nanoparticles while performing the operation. To deal with this limitation, a virtual reality environment has been used in this paper for observing the manipulation operation. In the simulations performed in this paper, first, the images acquired by the atomic force microscope have been processed and the positions and dimensions of nanoparticles have been determined. Then, by dynamically modelling the transfer of nanoparticles and simulating the critical force-time diagrams, a controlled displacement of nanoparticles has been accomplished. The simulations have been further developed for the use of rectangular, V-shape and dagger-shape cantilevers. The established virtual reality environment has made it possible to simulate the manipulation of biological particles in a liquid medium. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Toward real-time simulation of physics-based fluid behaviors in a synthetic virtual environment

    Science.gov (United States)

    Fu, Xiaodong

    implemented an interactive vehicle driving simulation environment that integrates both the surface wave simulation and dust simulation. We have also explored the possibility of exploiting our simulation engines for learning fluid concepts.

  3. A PC/workstation cluster computing environment for reservoir engineering simulation applications

    International Nuclear Information System (INIS)

    Hermes, C.E.; Koo, J.

    1995-01-01

    Like the rest of the petroleum industry, Texaco has been transferring its applications and databases from mainframes to PC's and workstations. This transition has been very positive because it provides an environment for integrating applications, increases end-user productivity, and in general reduces overall computing costs. On the down side, the transition typically results in a dramatic increase in workstation purchases and raises concerns regarding the cost and effective management of computing resources in this new environment. The workstation transition also places the user in a Unix computing environment which, to say the least, can be quite frustrating to learn and to use. This paper describes the approach, philosophy, architecture, and current status of the new reservoir engineering/simulation computing environment developed at Texaco's E and P Technology Dept. (EPTD) in Houston. The environment is representative of those under development at several other large oil companies and is based on a cluster of IBM and Silicon Graphics Intl. (SGI) workstations connected by a fiber-optics communications network and engineering PC's connected to local area networks, or Ethernets. Because computing resources and software licenses are shared among a group of users, the new environment enables the company to get more out of its investments in workstation hardware and software

  4. Simulating extreme environments: Ergonomic evaluation of Chinese pilot performance and heat stress tolerance.

    Science.gov (United States)

    Li, Jing; Tian, Yinsheng; Ding, Li; Zou, Huijuan; Ren, Zhaosheng; Shi, Liyong; Feathers, David; Wang, Ning

    2015-06-05

    High-temperatures in the cockpit environment can adversely influence pilot behavior and performance. To investigate the impact of high thermal environments on Chinese pilot performance in a simulated cockpit environment. Ten subjects volunteered to participate in the tests under 40°C and 45°C high-temperature simulations in an environmentally controlled chamber. Measures such as grip strength, perception, dexterity, somatic sense reaction, and analytical reasoning were taken. The results were compared to the Combined Index of Heat Stress (CIHS). CIHS exceeded the heat stress safety limit after 45 min under 40°C, grip strength decreased by 12% and somatic perception became 2.89 times larger than the initial value. In the case of 45°C, CIHS exceeded the safety limit after only 20 min, while the grip strength decreased just by 3.2% and somatic perception increased to 4.36 times larger than the initial value. Reaction and finger dexterity were not statistically different from baseline measurements, but the error rate of analytical reasoning test rose remarkably. Somatic perception was the most sensitive index to high-temperature, followed by grip strength. Results of this paper may help to improve environmental control design of new fighter cockpit and for pilot physiology and cockpit environment ergonomics research for Chinese pilots.

  5. Building interactive virtual environments for simulated training in medicine using VRML and Java/JavaScript.

    Science.gov (United States)

    Korocsec, D; Holobar, A; Divjak, M; Zazula, D

    2005-12-01

    Medicine is a difficult thing to learn. Experimenting with real patients should not be the only option; simulation deserves a special attention here. Virtual Reality Modelling Language (VRML) as a tool for building virtual objects and scenes has a good record of educational applications in medicine, especially for static and animated visualisations of body parts and organs. However, to create computer simulations resembling situations in real environments the required level of interactivity and dynamics is difficult to achieve. In the present paper we describe some approaches and techniques which we used to push the limits of the current VRML technology further toward dynamic 3D representation of virtual environments (VEs). Our demonstration is based on the implementation of a virtual baby model, whose vital signs can be controlled from an external Java application. The main contributions of this work are: (a) outline and evaluation of the three-level VRML/Java implementation of the dynamic virtual environment, (b) proposal for a modified VRML Timesensor node, which greatly improves the overall control of system performance, and (c) architecture of the prototype distributed virtual environment for training in neonatal resuscitation comprising the interactive virtual newborn, active bedside monitor for vital signs and full 3D representation of the surgery room.

  6. A simulation study of gene-by-environment interactions in GWAS implies ample hidden effects

    Science.gov (United States)

    Marigorta, Urko M.; Gibson, Greg

    2014-01-01

    The switch to a modern lifestyle in recent decades has coincided with a rapid increase in prevalence of obesity and other diseases. These shifts in prevalence could be explained by the release of genetic susceptibility for disease in the form of gene-by-environment (GxE) interactions. Yet, the detection of interaction effects requires large sample sizes, little replication has been reported, and a few studies have demonstrated environmental effects only after summing the risk of GWAS alleles into genetic risk scores (GRSxE). We performed extensive simulations of a quantitative trait controlled by 2500 causal variants to inspect the feasibility to detect gene-by-environment interactions in the context of GWAS. The simulated individuals were assigned either to an ancestral or a modern setting that alters the phenotype by increasing the effect size by 1.05–2-fold at a varying fraction of perturbed SNPs (from 1 to 20%). We report two main results. First, for a wide range of realistic scenarios, highly significant GRSxE is detected despite the absence of individual genotype GxE evidence at the contributing loci. Second, an increase in phenotypic variance after environmental perturbation reduces the power to discover susceptibility variants by GWAS in mixed cohorts with individuals from both ancestral and modern environments. We conclude that a pervasive presence of gene-by-environment effects can remain hidden even though it contributes to the genetic architecture of complex traits. PMID:25101110

  7. Numerical Simulation for Thermal Shock Resistance of Thermal Protection Materials Considering Different Operating Environments

    Directory of Open Access Journals (Sweden)

    Weiguo Li

    2013-01-01

    Full Text Available Based on the sensitivities of material properties to temperature and the complexity of service environment of thermal protection system on the spacecraft, ultrahigh-temperature ceramics (UHTCs, which are used as thermal protection materials, cannot simply consider thermal shock resistance (TSR of the material its own but need to take the external constraint conditions and the thermal environment into full account. With the thermal shock numerical simulation on hafnium diboride (HfB2, a detailed study of the effects of the different external constraints and thermal environments on the TSR of UHTCs had been made. The influences of different initial temperatures, constraint strengths, and temperature change rates on the TSR of UHTCs are discussed. This study can provide a more intuitively visual understanding of the evolution of the TSR of UHTCs during actual operation conditions.

  8. A stochastic simulator of a blood product donation environment with demand spikes and supply shocks.

    Science.gov (United States)

    An, Ming-Wen; Reich, Nicholas G; Crawford, Stephen O; Brookmeyer, Ron; Louis, Thomas A; Nelson, Kenrad E

    2011-01-01

    The availability of an adequate blood supply is a critical public health need. An influenza epidemic or another crisis affecting population mobility could create a critical donor shortage, which could profoundly impact blood availability. We developed a simulation model for the blood supply environment in the United States to assess the likely impact on blood availability of factors such as an epidemic. We developed a simulator of a multi-state model with transitions among states. Weekly numbers of blood units donated and needed were generated by negative binomial stochastic processes. The simulator allows exploration of the blood system under certain conditions of supply and demand rates, and can be used for planning purposes to prepare for sudden changes in the public's health. The simulator incorporates three donor groups (first-time, sporadic, and regular), immigration and emigration, deferral period, and adjustment factors for recruitment. We illustrate possible uses of the simulator by specifying input values for an 8-week flu epidemic, resulting in a moderate supply shock and demand spike (for example, from postponed elective surgeries), and different recruitment strategies. The input values are based in part on data from a regional blood center of the American Red Cross during 1996-2005. Our results from these scenarios suggest that the key to alleviating deficit effects of a system shock may be appropriate timing and duration of recruitment efforts, in turn depending critically on anticipating shocks and rapidly implementing recruitment efforts.

  9. Monte Carlo simulation of photon migration in a cloud computing environment with MapReduce

    Science.gov (United States)

    Pratx, Guillem; Xing, Lei

    2011-01-01

    Monte Carlo simulation is considered the most reliable method for modeling photon migration in heterogeneous media. However, its widespread use is hindered by the high computational cost. The purpose of this work is to report on our implementation of a simple MapReduce method for performing fault-tolerant Monte Carlo computations in a massively-parallel cloud computing environment. We ported the MC321 Monte Carlo package to Hadoop, an open-source MapReduce framework. In this implementation, Map tasks compute photon histories in parallel while a Reduce task scores photon absorption. The distributed implementation was evaluated on a commercial compute cloud. The simulation time was found to be linearly dependent on the number of photons and inversely proportional to the number of nodes. For a cluster size of 240 nodes, the simulation of 100 billion photon histories took 22 min, a 1258 × speed-up compared to the single-threaded Monte Carlo program. The overall computational throughput was 85,178 photon histories per node per second, with a latency of 100 s. The distributed simulation produced the same output as the original implementation and was resilient to hardware failure: the correctness of the simulation was unaffected by the shutdown of 50% of the nodes. PMID:22191916

  10. Scientific Visualization and Simulation for Multi-dimensional Marine Environment Data

    Science.gov (United States)

    Su, T.; Liu, H.; Wang, W.; Song, Z.; Jia, Z.

    2017-12-01

    As higher attention on the ocean and rapid development of marine detection, there are increasingly demands for realistic simulation and interactive visualization of marine environment in real time. Based on advanced technology such as GPU rendering, CUDA parallel computing and rapid grid oriented strategy, a series of efficient and high-quality visualization methods, which can deal with large-scale and multi-dimensional marine data in different environmental circumstances, has been proposed in this paper. Firstly, a high-quality seawater simulation is realized by FFT algorithm, bump mapping and texture animation technology. Secondly, large-scale multi-dimensional marine hydrological environmental data is virtualized by 3d interactive technologies and volume rendering techniques. Thirdly, seabed terrain data is simulated with improved Delaunay algorithm, surface reconstruction algorithm, dynamic LOD algorithm and GPU programming techniques. Fourthly, seamless modelling in real time for both ocean and land based on digital globe is achieved by the WebGL technique to meet the requirement of web-based application. The experiments suggest that these methods can not only have a satisfying marine environment simulation effect, but also meet the rendering requirements of global multi-dimension marine data. Additionally, a simulation system for underwater oil spill is established by OSG 3D-rendering engine. It is integrated with the marine visualization method mentioned above, which shows movement processes, physical parameters, current velocity and direction for different types of deep water oil spill particle (oil spill particles, hydrates particles, gas particles, etc.) dynamically and simultaneously in multi-dimension. With such application, valuable reference and decision-making information can be provided for understanding the progress of oil spill in deep water, which is helpful for ocean disaster forecasting, warning and emergency response.

  11. Analysis of the Thermo-Elastic Response of Space Reflectors to Simulated Space Environment

    Science.gov (United States)

    Allegri, G.; Ivagnes, M. M.; Marchetti, M.; Poscente, F.

    2002-01-01

    The evaluation of space environment effects on materials and structures is a key matter to develop a proper design of long duration missions: since a large part of satellites operating in the earth orbital environment are employed for telecommunications, the development of space antennas and reflectors featured by high dimensional stability versus space environment interactions represents a major challenge for designers. The structural layout of state of the art space antennas and reflectors is very complex, since several different sensible elements and materials are employed: particular care must be placed in evaluating the actual geometrical configuration of the reflectors operating in the space environment, since very limited distortions of the designed layout can produce severe effects on the quality of the signal both received and transmitted, especially for antennas operating at high frequencies. The effects of thermal loads due to direct sunlight exposition and to earth and moon albedo can be easily taken into account employing the standard methods of structural analysis: on the other hand the thermal cycling and the exposition to the vacuum environment produce a long term damage accumulation which affects the whole structure. The typical effects of the just mentioned exposition are the outgassing of polymeric materials and the contamination of the exposed surface, which can affect sensibly the thermo-mechanical properties of the materials themselves and, therefore, the structural global response. The main aim of the present paper is to evaluate the synergistic effects of thermal cycling and of the exposition to high vacuum environment on an innovative antenna developed by Alenia Spazio S.p.a.: to this purpose, both an experimental and numerical research activity has been developed. A complete prototype of the antenna has been exposed to the space environment simulated by the SAS facility: this latter is constituted by an high vacuum chamber, equipped by

  12. Prediction and evaluation method of wind environment in the early design stage using BIM-based CFD simulation

    International Nuclear Information System (INIS)

    Lee, Sumi; Song, Doosam

    2010-01-01

    Drastic urbanization and manhattanization are causing various problems in wind environment. This study suggests a CFD simulation method to evaluate wind environment in the early design stage of high-rise buildings. The CFD simulation of this study is not a traditional in-depth simulation, but a method to immediately evaluate wind environment for each design alternative and provide guidelines for design modification. Thus, the CFD simulation of this study to evaluate wind environments uses BIM-based CFD tools to utilize building models in the design stage. This study examined previous criteria to evaluate wind environment for pedestrians around buildings and selected evaluation criteria applicable to the CFD simulation method of this study. Furthermore, proper mesh generation method and CPU time were reviewed to find a meaningful CFD simulation result for determining optimal design alternative from the perspective of wind environment in the design stage. In addition, this study is to suggest a wind environment evaluation method through a BIM-based CFD simulation.

  13. Training Effectiveness of a Wide Area Virtual Environment in Medical Simulation.

    Science.gov (United States)

    Wier, Grady S; Tree, Rebekah; Nusr, Rasha

    2017-02-01

    The success of war fighters and medical personnel handling traumatic injuries largely depends on the quality of training they receive before deployment. The purpose of this study was to gauge the utility of a Wide Area Virtual Environment (WAVE) as a training adjunct by comparing and evaluating student performance, measuring sense of realism, and assessing the impact on student satisfaction with their training exposure in an immersive versus a field environment. This comparative prospective cohort study examined the utility of a three-screen WAVE where subjects were immersed in the training environment with medical simulators. Standard field training commenced for the control group subjects. Medical skills, time to completion, and Team Strategies and Tools to Enhance Performance and Patient Safety objective metrics were assessed for each team (n = 94). In addition, self-efficacy questionnaires were collected for each subject (N = 470). Medical teams received poorer overall team scores (F1,186 = 0.756, P = 0.001), took longer to complete the scenario (F1,186 = 25.15, P = 0.001), and scored lower on The National Registry of Emergency Medical Technicians trauma assessment checklist (F1,186 = 1.13, P = 0.000) in the WAVE versus the field environment. Critical thinking and realism factors within the self-efficacy questionnaires scored higher in the WAVE versus the field [(F1,466 = 8.04, P = 0.005), (F1,465 = 18.57, P = 0.000), and (F1,466 = 53.24, P = 0.000), respectively]. Environmental and emotional stressors may negatively affect critical thinking and clinical skill performance of medical teams. However, by introducing more advanced simulation trainings with added stressors, students may be able to adapt and overcome barriers to performance found in high-stress environments.

  14. Learning environment simulator: a tool for local decision makers and first responders

    Energy Technology Data Exchange (ETDEWEB)

    Leclaire, Rene J [Los Alamos National Laboratory; Hirsch, Gary B [CLE, INCORPORATED

    2009-01-01

    The National Infrastructure Simulation and Analysis Center (NISAC) has developed a prototype learning environment simulator (LES) based on the Critical Infrastructure Protection Decision Support System (CIPDSS) infrastructure and scenario models. The LES is designed to engage decision makers at the grass-roots level (local/city/state) to deepen their understanding of an evolving crisis, enhance their intuition and allow them to test their own strategies for events before they occur. An initial version is being developed, centered on a pandemic influenza outbreak and has been successfully tested with a group of hospital administrators and first responders. LES is not a predictive tool but rather a simulated environment allowing the user to experience the complexities of a crisis before it happens. Users can contrast various approaches to the crisis, competing with alternative strategies of their own or other participants. LES is designed to assist decision makers in making informed choices by functionally representing relevant scenarios before they occur, including impacts to critical infrastructures with their interdependencies, and estimating human health & safety and economic impacts. In this paper a brief overview of the underlying models are given followed by a description of the LES, its interface and usage and an overview of the experience testing LES with a group of hospital administrators and first responders. The paper concludes with a brief discussion of the work remaining to make LES operational.

  15. Computational growth model of breast microcalcification clusters in simulated mammographic environments.

    Science.gov (United States)

    Plourde, Shayne M; Marin, Zach; Smith, Zachary R; Toner, Brian C; Batchelder, Kendra A; Khalil, Andre

    2016-09-01

    When screening for breast cancer, the radiological interpretation of mammograms is a difficult task, particularly when classifying precancerous growth such as microcalcifications (MCs). Biophysical modeling of benign vs. malignant growth of MCs in simulated mammographic backgrounds may improve characterization of these structures A mathematical model based on crystal growth rules for calcium oxide (benign) and hydroxyapatite (malignant) was used in conjunction with simulated mammographic backgrounds, which were generated by fractional Brownian motion of varying roughness and quantified by the Hurst exponent to mimic tissue of varying density. Simulated MC clusters were compared by fractal dimension, average circularity of individual MCs, average number of MCs per cluster, and average cluster area. Benign and malignant clusters were distinguishable by average circularity, average number of MCs per cluster, and average cluster area with pbreast tissue density, which suggests tissue environment plays a role in regulating MC growth. Benign and malignant MCs are distinguishable in all types of tissue by shape, size, and area, which is consistent with findings in the literature. These results may help to better understand the effects of the tissue environment on tumor progression, and improve classification of MCs in mammograms via computer-aided diagnosis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. A Scaffolding Framework to Support Learning of Emergent Phenomena Using Multi-Agent-Based Simulation Environments

    Science.gov (United States)

    Basu, Satabdi; Sengupta, Pratim; Biswas, Gautam

    2015-04-01

    Students from middle school to college have difficulties in interpreting and understanding complex systems such as ecological phenomena. Researchers have suggested that students experience difficulties in reconciling the relationships between individuals, populations, and species, as well as the interactions between organisms and their environment in the ecosystem. Multi-agent-based computational models (MABMs) can explicitly capture agents and their interactions by representing individual actors as computational objects with assigned rules. As a result, the collective aggregate-level behavior of the population dynamically emerges from simulations that generate the aggregation of these interactions. Past studies have used a variety of scaffolds to help students learn ecological phenomena. Yet, there is no theoretical framework that supports the systematic design of scaffolds to aid students' learning in MABMs. Our paper addresses this issue by proposing a comprehensive framework for the design, analysis, and evaluation of scaffolding to support students' learning of ecology in a MABM. We present a study in which middle school students used a MABM to investigate and learn about a desert ecosystem. We identify the different types of scaffolds needed to support inquiry learning activities in this simulation environment and use our theoretical framework to demonstrate the effectiveness of our scaffolds in helping students develop a deep understanding of the complex ecological behaviors represented in the simulation..

  17. How to avoid simulation sickness in virtual environments during user displacement

    Science.gov (United States)

    Kemeny, A.; Colombet, F.; Denoual, T.

    2015-03-01

    Driving simulation (DS) and Virtual Reality (VR) share the same technologies for visualization and 3D vision and may use the same technics for head movement tracking. They experience also similar difficulties when rendering the displacements of the observer in virtual environments, especially when these displacements are carried out using driver commands, including steering wheels, joysticks and nomad devices. High values for transport delay, the time lag between the action and the corresponding rendering cues and/or visual-vestibular conflict, due to the discrepancies perceived by the human visual and vestibular systems when driving or displacing using a control device, induces the so-called simulation sickness. While the visual transport delay can be efficiently reduced using high frequency frame rate, the visual-vestibular conflict is inherent to VR, when not using motion platforms. In order to study the impact of displacements on simulation sickness, we have tested various driving scenarios in Renault's 5-sided ultra-high resolution CAVE. First results indicate that low speed displacements with longitudinal and lateral accelerations under a given perception thresholds are well accepted by a large number of users and relatively high values are only accepted by experienced users and induce VR induced symptoms and effects (VRISE) for novice users, with a worst case scenario corresponding to rotational displacements. These results will be used for optimization technics at Arts et Métiers ParisTech for motion sickness reduction in virtual environments for industrial, research, educational or gaming applications.

  18. The Effect of Photovoltaic Panels on the Rooftop Temperature in the EnergyPlus Simulation Environment

    Directory of Open Access Journals (Sweden)

    Changhai Peng

    2016-01-01

    Full Text Available In this paper, the effects that photovoltaic (PV panels have on the rooftop temperature in the EnergyPlus simulation environment were investigated for the following cases: with and without PV panels, with and without exposure to sunlight, and using roof materials with different thermal conductivities and for different climatic zones. The results demonstrate that heat transfer by convection, radiation, and conduction in the air gaps between PV panels and the building envelope can be simulated in the EnergyPlus environment when these air gaps are in the “air conditioning zone.” Nevertheless, in most cases, particularly on the rooftop, the air gaps between the PV panels and the building envelope cannot be set as the “air conditioning zone.” Therefore, in this case, none of the EnergyPlus models are appropriate to simulate the effect that PV panels have on the rooftop temperature. However, all the terms of the Heat Balance Model, including the absorbed direct and diffuse solar radiation, net long-wave radiation with the air and surroundings, convective exchange with the outside air, and conduction flux in or out of the surface, can still be used to calculate the temperature and heat flux within the BIPV’s air gap.

  19. Evaluation of materials for bipolar plates in simulated PEM fuel-cell cathodic environments

    Energy Technology Data Exchange (ETDEWEB)

    Rivas, S.V.; Belmonte, M.R.; Moron, L.E.; Torres, J.; Orozco, G. [Centro de Investigacion y Desarrollo Technologico en Electroquimica S.C. Parcque Sanfandila, Queretaro (Mexico); Perez-Quiroz, J.T. [Mexican Transport Inst., Queretaro (Mexico); Cortes, M. A. [Mexican Petroleum Inst., Mexico City (Mexico)

    2008-04-15

    The bipolar plates in proton exchange membrane fuel cells (PEMFC) are exposed to an oxidizing environment on the cathodic side, and therefore are susceptible to corrosion. Corrosion resistant materials are needed for the bipolar plates in order to improve the lifespan of fuel cells. This article described a study in which a molybdenum (Mo) coating was deposited over austenitic stainless steel 316 and carbon steel as substrates in order to evaluate the resulting surfaces with respect to their corrosion resistance in simulated anodic and cathodic PEMFC environments. The molybdenum oxide films were characterized by scanning electron microscopy (SEM) and Raman spectroscopy. The article presented the experiment and discussed the results of the corrosion behaviour of coated stainless steel. In general, the electrochemical characterization of bare materials and coated steel consisted of slow potentiodynamic polarization curves followed by a constant potential polarization test. The test medium was 0.5M sulfuric acid with additional introduction of oxygen to simulate the cathodic environment. All tests were performed at ambient temperature and at 50 degrees Celsius. The potentiostat used was a Gamry instrument. It was concluded that it is possible to deposit Mo-oxides on steel without using another alloying metal. The preferred substrate for corrosion prevention was found to be an alloy with high chromium content. 24 refs., 4 figs.

  20. Thermal dynamic simulation of wall for building energy efficiency under varied climate environment

    Science.gov (United States)

    Wang, Xuejin; Zhang, Yujin; Hong, Jing

    2017-08-01

    Aiming at different kind of walls in five cities of different zoning for thermal design, using thermal instantaneous response factors method, the author develops software to calculation air conditioning cooling load temperature, thermal response factors, and periodic response factors. On the basis of the data, the author gives the net work analysis about the influence of dynamic thermal of wall on air-conditioning load and thermal environment in building of different zoning for thermal design regional, and put forward the strategy how to design thermal insulation and heat preservation wall base on dynamic thermal characteristic of wall under different zoning for thermal design regional. And then provide the theory basis and the technical references for the further study on the heat preservation with the insulation are in the service of energy saving wall design. All-year thermal dynamic load simulating and energy consumption analysis for new energy-saving building is very important in building environment. This software will provide the referable scientific foundation for all-year new thermal dynamic load simulation, energy consumption analysis, building environment systems control, carrying through farther research on thermal particularity and general particularity evaluation for new energy -saving walls building. Based on which, we will not only expediently design system of building energy, but also analyze building energy consumption and carry through scientific energy management. The study will provide the referable scientific foundation for carrying through farther research on thermal particularity and general particularity evaluation for new energy saving walls building.

  1. Thermal and fluid simulation of the environment under the dashboard, compared with measurement data

    Science.gov (United States)

    Popescu, C. S.; Sirbu, G. M.; Nita, I. C.

    2017-10-01

    The development of vehicles during the last decade is related to the evolution of electronic systems added in order to increase the safety and the number of services available on board, such as advanced driver-assistance systems (ADAS). Cars already have a complex computer network, with electronic control units (ECUs) connected to each other and receiving information from many sensors. The ECUs transfer an important heat power to the environment, while proper operating conditions need to be provided to ensure their reliability at high and low temperature, vibration and humidity. In a car cabin, electronic devices are usually placed in the compartment under the dashboard, an enclosed space designed for functional purposes. In the early stages of the vehicle design it has become necessary to analyse the environment under dashboard, by the use of Computational Fluid Dynamics (CFD) simulations and measurements. This paper presents the cooling of heat sinks by natural convection, a thermal and fluid simulation of the environment under the dashboard compared with test data.

  2. GOOSE Version 1.4: A powerful object-oriented simulation environment for developing reactor models

    International Nuclear Information System (INIS)

    Nypaver, D.J.; March-Leuba, C.; Abdalla, M.A.; Guimaraes, L.

    1992-01-01

    A prototype software package for a fully interactive Generalized Object-Oriented Simulation Environment (GOOSE) is being developed at Oak Ridge National Laboratory. Dynamic models are easily constructed and tested; fully interactive capabilities allow the user to alter model parameters and complexity without recompilation. This environment provides assess to powerful tools such as numerical integration packages, graphical displays, and online help. In GOOSE, portability has been achieved by creating the environment in Objective-C 1 , which is supported by a variety of platforms including UNIX and DOS. GOOSE Version 1.4 introduces new enhancements like the capability of creating ''initial,'' ''dynamic,'' and ''digital'' methods. The object-oriented approach to simulation used in GOOSE combines the concept of modularity with the additional features of allowing precompilation, optimization, testing, and validation of individual modules. Once a library of classes has been defined and compiled, models can be built and modified without recompilation. GOOSE Version 1.4 is primarily command-line driven

  3. Reduction of Endogenous Melatonin Accelerates Cognitive Decline in Mice in a Simulated Occupational Formaldehyde Exposure Environment

    Directory of Open Access Journals (Sweden)

    Yufei Mei

    2016-02-01

    Full Text Available Individuals afflicted with occupational formaldehyde (FA exposure often suffer from abnormal behaviors such as aggression, depression, anxiety, sleep disorders, and in particular, cognitive impairments. Coincidentally, clinical patients with melatonin (MT deficiency also complain of cognitive problems associated with the above mental disorders. Whether and how FA affects endogenous MT metabolism and induces cognitive decline need to be elucidated. To mimic occupational FA exposure environment, 16 healthy adult male mice were exposed to gaseous FA (3 mg/m3 for 7 consecutive days. Results showed that FA exposure impaired spatial memory associated with hippocampal neuronal death. Biochemical analysis revealed that FA exposure elicited an intensive oxidative stress by reducing systemic glutathione levels, in particular, decreasing brain MT concentrations. Inversely, intraperitoneal injection of MT markedly attenuated FA-induced hippocampal neuronal death, restored brain MT levels, and reversed memory decline. At tissue levels, injection of FA into the hippocampus distinctly reduced brain MT concentrations. Furthermore, at cellular and molecular levels, we found that FA directly inactivated MT in vitro and in vivo. These findings suggest that MT supplementation contributes to the rescue of cognitive decline, and may alleviate mental disorders in the occupational FA-exposed human populations.

  4. pCloud: A Cloud-based Power Market Simulation Environment

    Energy Technology Data Exchange (ETDEWEB)

    Rudkevich, Aleksandr; Goldis, Evgeniy

    2012-12-02

    This research conducted by the Newton Energy Group, LLC (NEG) is dedicated to the development of pCloud: a Cloud-based Power Market Simulation Environment. pCloud is offering power industry stakeholders the capability to model electricity markets and is organized around the Software as a Service (SaaS) concept -- a software application delivery model in which software is centrally hosted and provided to many users via the internet. During the Phase I of this project NEG developed a prototype design for pCloud as a SaaS-based commercial service offering, system architecture supporting that design, ensured feasibility of key architecture's elements, formed technological partnerships and negotiated commercial agreements with partners, conducted market research and other related activities and secured funding for continue development of pCloud between the end of Phase I and beginning of Phase II, if awarded. Based on the results of Phase I activities, NEG has established that the development of a cloud-based power market simulation environment within the Windows Azure platform is technologically feasible, can be accomplished within the budget and timeframe available through the Phase II SBIR award with additional external funding. NEG believes that pCloud has the potential to become a game-changing technology for the modeling and analysis of electricity markets. This potential is due to the following critical advantages of pCloud over its competition: - Standardized access to advanced and proven power market simulators offered by third parties. - Automated parallelization of simulations and dynamic provisioning of computing resources on the cloud. This combination of automation and scalability dramatically reduces turn-around time while offering the capability to increase the number of analyzed scenarios by a factor of 10, 100 or even 1000. - Access to ready-to-use data and to cloud-based resources leading to a reduction in software, hardware, and IT costs

  5. Multiplatform Mission Planning and Operations Simulation Environment for Adaptive Remote Sensors

    Science.gov (United States)

    Smith, G.; Ball, C.; O'Brien, A.; Johnson, J. T.

    2017-12-01

    We report on the design and development of mission simulator libraries to support the emerging field of adaptive remote sensors. We will outline the current state of the art in adaptive sensing, provide analysis of how the current approach to performing observing system simulation experiments (OSSEs) must be changed to enable adaptive sensors for remote sensing, and present an architecture to enable their inclusion in future OSSEs.The growing potential of sensors capable of real-time adaptation of their operational parameters calls for a new class of mission planning and simulation tools. Existing simulation tools used in OSSEs assume a fixed set of sensor parameters in terms of observation geometry, frequencies used, resolution, or observation time, which allows simplifications to be made in the simulation and allows sensor observation errors to be characterized a priori. Adaptive sensors may vary these parameters depending on the details of the scene observed, so that sensor performance is not simple to model without conducting OSSE simulations that include sensor adaptation in response to varying observational environment. Adaptive sensors are of significance to resource-constrained, small satellite platforms because they enable the management of power and data volumes while providing methods for multiple sensors to collaborate.The new class of OSSEs required to utilize adaptive sensors located on multiple platforms must answer the question: If the physical act of sensing has a cost, how does the system determine if the science value of a measurement is worth the cost and how should that cost be shared among the collaborating sensors?Here we propose to answer this question using an architecture structured around three modules: ADAPT, MANAGE and COLLABORATE. The ADAPT module is a set of routines to facilitate modeling of adaptive sensors, the MANAGE module will implement a set of routines to facilitate simulations of sensor resource management when power and data

  6. Using Virtual Simulations in the Design of 21st Century Space Science Environments

    Science.gov (United States)

    Hutchinson, Sonya L.; Alves, Jeffery R.

    1996-01-01

    Space Technology has been rapidly increasing in the past decade. This can be attributed to the future construction of the International Space Station (ISS). New innovations must constantly be engineered to make ISS the safest, quality, research facility in space. Since space science must often be gathered by crew members, more attention must be geared to the human's safety and comfort. Virtual simulations are now being used to design environments that crew members can live in for long periods of time without harmful effects to their bodies. This paper gives a few examples of the ergonomic design problems that arise on manned space flights, and design solutions that follow NASA's strategic commitment to customer satisfaction. The conclusions show that virtual simulations are a great asset to 21st century design.

  7. A SIMULATION BASED APPROACH FOR AN INVESTMENT PROJECT EVALUATION UNDER UNCERTAIN AND RISKY ENVIRONMENTS

    Directory of Open Access Journals (Sweden)

    Özgür YALÇINKAYA

    2010-06-01

    Full Text Available Under high uncertainty and risky environments, the future estimations related to project proposalscannot be certain and really materialized values. It is inevitable that there exists a deviation or gap betweenforecasted values and actual values. Thus, project risk level of the proposal should be analyzedin the assessment phase. Simulation based project evaluation approaches enables to make more reliableinvestment decision since they permits including future uncertainty and risk in analyze process. Inaddition, many times, project proposals are evaluated with more than one conflicted criteria. The aimof this paper is to present a new approach that accounts for multiple objectives for evaluating riskyinvestment projects and determining projects risk level. With the proposed simulation based optimizationapproach, necessity values for project parameters are determined to reach the expected profitabilityof the investment with the minimum initial investment cost. Also, there is an illustrative examplegiven in this study as an application of the proposed approach.

  8. Modeling and Simulation of Renewable Hybrid Power System using Matlab Simulink Environment

    Directory of Open Access Journals (Sweden)

    Cristian Dragoş Dumitru

    2010-12-01

    Full Text Available The paper presents the modeling of a solar-wind-hydroelectric hybrid system in Matlab/Simulink environment. The application is useful for analysis and simulation of a real hybrid solar-wind-hydroelectric system connected to a public grid. Application is built on modular architecture to facilitate easy study of each component module influence. Blocks like wind model, solar model, hydroelectric model, energy conversion and load are implemented and the results of simulation are also presented. As an example, one of the most important studies is the behavior of hybrid system which allows employing renewable and variable in time energy sources while providing a continuous supply. Application represents a useful tool in research activity and also in teaching

  9. Numerical Relativity Simulations of Compact Binary Populations in Dense Stellar Environments

    Science.gov (United States)

    Glennon, Derek Ray; Huerta, Eliu; Allen, Gabrielle; Haas, Roland; Seidel, Edward; NCSA Gravity Group

    2018-01-01

    We present a catalog of numerical relativity simulations that describe binary black hole mergers on eccentric orbits. These simulations have been obtained with the open source, Einstein Toolkit numerical relativity software, using the Blue Waters supercomputer. We use this catalog to quantify observables, such as the mass and spin of black holes formed by binary black hole mergers, as a function of eccentricity. This study is the first of its kind in the literature to quantify these astrophysical observables for binary black hole mergers with mass-ratios q<6, and eccentricities e<0.2. This study is an important step in understanding the properties of eccentric binary black hole mergers, and informs the use of gravitational wave observations to confirm or rule out the existence of compact binary populations in dense stellar environments.

  10. Simulation-Based Dysphagia Training: Teaching Interprofessional Clinical Reasoning in a Hospital Environment.

    Science.gov (United States)

    Miles, Anna; Friary, Philippa; Jackson, Bianca; Sekula, Julia; Braakhuis, Andrea

    2016-06-01

    This study evaluated hospital readiness and interprofessional clinical reasoning in speech-language pathology and dietetics students following a simulation-based teaching package. Thirty-one students participated in two half-day simulation workshops. The training included orientation to the hospital setting, part-task skill learning and immersive simulated cases. Students completed workshop evaluation forms. They filled in a 10-question survey regarding confidence, knowledge and preparedness for working in a hospital environment before and immediately after the workshops. Students completed written 15-min clinical vignettes at 1 month prior to training, immediately prior to training and immediately after training. A marking rubric was devised to evaluate the responses to the clinical vignettes within a framework of interprofessional education. The simulation workshops were well received by all students. There was a significant increase in students' self-ratings of confidence, preparedness and knowledge following the study day (p training with the greatest increase in clinical reasoning (p training has benefits in developing hospital readiness and clinical reasoning in allied health students.

  11. Simulation-Based Learning Environments to Teach Complexity: The Missing Link in Teaching Sustainable Public Management

    Directory of Open Access Journals (Sweden)

    Michael Deegan

    2014-05-01

    Full Text Available While public-sector management problems are steeped in positivistic and socially constructed complexity, public management education in the management of complexity lags behind that of business schools, particularly in the application of simulation-based learning. This paper describes a Simulation-Based Learning Environment for public management education that includes a coupled case study and System Dynamics simulation surrounding flood protection, a domain where stewardship decisions regarding public infrastructure and investment have direct and indirect effects on businesses and the public. The Pointe Claire case and CoastalProtectSIM simulation provide a platform for policy experimentation under conditions of exogenous uncertainty (weather and climate change as well as endogenous effects generated by structure. We discuss the model in some detail, and present teaching materials developed to date to support the use of our work in public administration curricula. Our experience with this case demonstrates the potential of this approach to motivate sustainable learning about complexity in public management settings and enhance learners’ competency to deal with complex dynamic problems.

  12. Impact of Urban Surface Roughness Length Parameterization Scheme on Urban Atmospheric Environment Simulation

    Directory of Open Access Journals (Sweden)

    Meichun Cao

    2014-01-01

    Full Text Available In this paper, the impact of urban surface roughness length z0 parameterization scheme on the atmospheric environment simulation over Beijing has been investigated through two sets of numerical experiments using the Weather Research and Forecasting model coupled with the Urban Canopy Model. For the control experiment (CTL, the urban surface z0 parameterization scheme used in UCM is the model default one. For another experiment (EXP, a newly developed urban surface z0 parameterization scheme is adopted, which takes into account the comprehensive effects of urban morphology. The comparison of the two sets of simulation results shows that all the roughness parameters computed from the EXP run are larger than those in the CTL run. The increased roughness parameters in the EXP run result in strengthened drag and blocking effects exerted by buildings, which lead to enhanced friction velocity, weakened wind speed in daytime, and boosted turbulent kinetic energy after sunset. Thermal variables (sensible heat flux and temperature are much less sensitive to z0 variations. In contrast with the CTL run, the EXP run reasonably simulates the observed nocturnal low-level jet. Besides, the EXP run-simulated land surface-atmosphere momentum and heat exchanges are also in better agreement with the observation.

  13. The connection between mass, environment and slow rotation in simulated galaxies

    Science.gov (United States)

    Lagos, Claudia del P.; Schaye, Joop; Bahé, Yannick; Van de Sande, Jesse; Kay, Scott T.; Barnes, David; Davis, Timothy A.; Dalla Vecchia, Claudio

    2018-02-01

    Recent observations from integral field spectroscopy (IFS) indicate that the fraction of galaxies that are slow rotators, FSR, depends primarily on stellar mass, with no significant dependence on environment. We investigate these trends and the formation paths of slow rotators (SRs) using the EAGLE and HYDRANGEA hydro-dynamical simulations. EAGLE consists of several cosmological boxes of volumes up to (100 Mpc)^3, while HYDRANGEA consists of 24 cosmological simulations of galaxy clusters and their environment. Together they provide a statistically significant sample in the stellar mass range 10^{9.5} M_{⊙}-10^{12.3} M_{⊙}, of 16,358 galaxies. We construct IFS-like cubes and measure stellar spin parameters, λR, and ellipticities, allowing us to classify galaxies into slow/fast rotators as in observations. The simulations display a primary dependence of FSR on stellar mass, with a weak dependence on environment. At fixed stellar mass, satellite galaxies are more likely to be SRs than centrals. FSR shows a dependence on halo mass at fixed stellar mass for central galaxies, while no such trend is seen for satellites. We find that ≈70% of SRs at z = 0 have experienced at least one merger with mass ratio ≥0.1, with dry mergers being at least twice more common than wet mergers. Individual dry mergers tend to decrease λR, while wet mergers mostly increase it. However, 30% of SRs at z = 0 have not experienced mergers, and those inhabit halos with median spins twice smaller than the halos hosting the rest of the SRs. Thus, although the formation paths of SRs can be varied, dry mergers and/or halos with small spins dominate.

  14. HumMod: A Modeling Environment for the Simulation of Integrative Human Physiology.

    Science.gov (United States)

    Hester, Robert L; Brown, Alison J; Husband, Leland; Iliescu, Radu; Pruett, Drew; Summers, Richard; Coleman, Thomas G

    2011-01-01

    Mathematical models and simulations are important tools in discovering key causal relationships governing physiological processes. Simulations guide and improve outcomes of medical interventions involving complex physiology. We developed HumMod, a Windows-based model of integrative human physiology. HumMod consists of 5000 variables describing cardiovascular, respiratory, renal, neural, endocrine, skeletal muscle, and metabolic physiology. The model is constructed from empirical data obtained from peer-reviewed physiological literature. All model details, including variables, parameters, and quantitative relationships, are described in Extensible Markup Language (XML) files. The executable (HumMod.exe) parses the XML and displays the results of the physiological simulations. The XML description of physiology in HumMod's modeling environment allows investigators to add detailed descriptions of human physiology to test new concepts. Additional or revised XML content is parsed and incorporated into the model. The model accurately predicts both qualitative and quantitative changes in clinical and experimental responses. The model is useful in understanding proposed physiological mechanisms and physiological interactions that are not evident, allowing one to observe higher level emergent properties of the complex physiological systems. HumMod has many uses, for instance, analysis of renal control of blood pressure, central role of the liver in creating and maintaining insulin resistance, and mechanisms causing orthostatic hypotension in astronauts. Users simulate different physiological and pathophysiological situations by interactively altering numerical parameters and viewing time-dependent responses. HumMod provides a modeling environment to understand the complex interactions of integrative physiology. HumMod can be downloaded at http://hummod.org.

  15. HumMod: A modeling environment for the simulation of integrative human physiology

    Directory of Open Access Journals (Sweden)

    Robert eHester

    2011-04-01

    Full Text Available Mathematical models and simulations are important tools in discovering key causal relationships governing physiological processes. Simulations guide and improve outcomes of medical interventions involving complex physiology. We developed HumMod, a Windows-based model of integrative human physiology. HumMod consists of 5000 variables describing cardiovascular, respiratory, renal, neural, endocrine, skeletal muscle and metabolic physiology. The model is constructed from empirical data obtained from peer-reviewed physiological literature. All model details, including variables, parameters and quantitative relationships, are described in Extensible Markup Language (XML files. The executable (HumMod.exe parses the XML and displays the results of the physiological simulations. The XML description of physiology in HumMod¹s modeling environment allows investigators to add detailed descriptions of human physiology to test new concepts. Additional or revised XML content is parsed and incorporated into the model. The model accurately predicts both qualitative and quantitative changes in clinical and experimental responses. The model is useful in understanding proposed physiological mechanisms and physiological interactions that are not evident, allowing one to observe higher level emergent properties of the complex physiological systems. HumMod has many uses, for instance, analysis of renal control of blood pressure, central role of the liver in creating and maintaining insulin resistance, and mechanisms causing orthostatic hypotension in astronauts. Users simulate different physiological and pathophysiological situations by interactively altering numerical parameters and viewing time-dependent responses. HumMod provides a modeling environment to understand the complex interactions of integrative physiology. HumMod can be downloaded at http://hummod.org

  16. CoaSim: A Flexible Environment for Simulating Genetic Data under Coalescent Models

    DEFF Research Database (Denmark)

    Mailund; Schierup, Mikkel Heide; Pedersen, Christian Nørgaard Storm

    2005-01-01

    Background Coalescent simulations are playing a large role in interpreting large scale intra- polymorphism surveys and for planning and evaluating association studies. Coalescent of data sets under different models can be compared to the actual data to test different evolutionary factors and thus...... get insight into these. Results We have created the CoaSim application as a flexible environment for Monte various types of genetic data under equilibrium and non-equilibrium coalescent variety of applications. Interaction with the tool is through the Guile version scripting language. Scheme scripts...

  17. Full-Particle Simulations on Electrostatic Plasma Environment near Lunar Vertical Holes

    Science.gov (United States)

    Miyake, Y.; Nishino, M. N.

    2015-12-01

    The Kaguya satellite and the Lunar Reconnaissance Orbiter have observed a number of vertical holes on the terrestrial Moon [Haruyama et al., GRL, 2009; Robinson et al., PSS, 2012], which have spatial scales of tens of meters and are possible lava tube skylights. The hole structure has recently received particular attention, because the structure gives an important clue to the complex volcanic history of the Moon. The holes also have high potential as locations for constructing future lunar bases, because of fewer extra-lunar rays/particles and micrometeorites reaching the hole bottoms. In this sense, these holes are not only interesting in selenology, but are also significant from the viewpoint of electrostatic environments. The subject can also be an interesting resource of research in comparative planetary science, because hole structures have been found in other solar system bodies such as the Mars. The lunar dayside electrostatic environment is governed by electrodynamic interactions among the solar wind plasma, photoelectrons, and the charged lunar surface, providing topologically complex boundaries to the plasma. We use the three-dimensional, massively-parallelized, particle-in-cell simulation code EMSES [Miyake and Usui, POP, 2009] to simulate the near-hole plasma environment on the Moon [Miyake and Nishino, Icarus, 2015]. We took into account the solar wind plasma downflow, photoelectron emission from the sunlit part of the lunar surface, and plasma charge deposition on the surface. The simulation domain consists of 400×400×2000 grid points and contains about 25 billion plasma macro-particles. Thus, we need to use supercomputers for the simulations. The vertical wall of the hole introduces a new boundary for both photo and solar wind electrons. The current balance condition established at a hole bottom is altered by the limited solar wind electron penetration into the hole and complex photoelectron current paths inside the hole. The self

  18. A Participatory Design Approach to Develop an Interactive Sound Environment Simulator.

    Science.gov (United States)

    Hanssen, Geir K; Dahl, Yngve

    2016-10-01

    Our purpose is to provide insight into the added value of applying a participatory design approach in the design of an interactive sound environment simulator to facilitate communication and understanding between patients and audiologists in consultation situations. We have applied a qualitative approach, presenting results and discussion in the form of a story, following 3 consecutive steps: problem investigation, design, and evaluation. We provide an overview of lessons learned, emphasizing how patients and audiologists took roles and responsibilities in the design process and the effects of this involvement. Our results suggest that participatory design is a viable and practical approach to address multifaceted problems directly affecting patients and practitioners.

  19. Thermal environment in a simulated double office room with convective and radiant cooling systems

    DEFF Research Database (Denmark)

    Mustakallio, Panu; Bolashikov, Zhecho Dimitrov; Rezgals, Lauris

    2017-01-01

    The thermal environment in a double office room obtained with chilled beam (CB), chilled beam with radiant panel (CBR), chilled ceiling with ceiling installed mixing ventilation (CCMV) and overhead mixing total volume ventilation (MTVV) under summer (cooling) condition was compared. Design (peak......) and usual (average) heat load from solar radiation, office equipment, lighting and occupants was simulated, respectively at 62 W/m2 and 38 W/m2 under four different workstation layouts. Air temperature, globe (operative) temperature, radiant asymmetry, air velocity and turbulent intensity were measured...

  20. Effects of personal relevance and simulated darkness on the affective appraisal of a virtual environment

    Directory of Open Access Journals (Sweden)

    Alexander Toet

    2016-02-01

    Full Text Available This study investigated whether personal relevance influences the affective appraisal of a desktop virtual environment (VE in simulated darkness. In the real world, darkness often evokes thoughts of vulnerability, threat, and danger, and may automatically precipitate emotional responses consonant with those thoughts (fear of darkness. This influences the affective appraisal of a given environment after dark and the way humans behave in that environment in conditions of low lighting. Desktop VEs are increasingly deployed to study the effects of environmental qualities and (architectural or lighting interventions on human behaviour and feelings of safety. Their (ecological validity for these purposes depends critically on their ability to correctly address the user’s cognitive and affective experience. Previous studies with desktop (i.e., non-immersive VEs found that simulated darkness only slightly affects the user’s behavioral and emotional responses to the represented environment, in contrast to the responses observed for immersive VEs. We hypothesize that the desktop VE scenarios used in previous studies less effectively induced emotional and behavioral responses because they lacked personal relevance. In addition, factors like signs of social presence and relatively high levels of ambient lighting may also have limited these responses. In this study, young female volunteers explored either a daytime or a night-time (low ambient light level version of a desktop VE representing a deserted (no social presence prototypical Dutch polder landscape. To enhance the personal relevance of the simulation, a fraction of the participants were led to believe that the virtual exploration tour would prepare them for a follow-up tour through the real world counterpart of the VE. The affective appraisal of the VE and the emotional response of the participants were measured through self-report. The results show that the VE was appraised as slightly less

  1. OST: analysis tool for real time software by simulation of material and software environments

    International Nuclear Information System (INIS)

    Boulc'h; Le Meur; Lapassat; Salichon; Segalard

    1988-07-01

    The utilization of microprocessors systems in a nuclear installation control oblige a great operation safety in the installation operation and in the environment protection. For the safety analysis of these installations the Institute of Protection and Nuclear Safety (IPSN) will dispose tools which permit to make controls during all the life of the software. The simulation and test tool (OST) which have been created is completely made by softwares. It is used on VAX calculators and can be easily transportable on other calculators [fr

  2. Effects of personal relevance and simulated darkness on the affective appraisal of a virtual environment.

    Science.gov (United States)

    Toet, Alexander; Houtkamp, Joske M; Vreugdenhil, Paul E

    2016-01-01

    This study investigated whether personal relevance influences the affective appraisal of a desktop virtual environment (VE) in simulated darkness. In the real world, darkness often evokes thoughts of vulnerability, threat, and danger, and may automatically precipitate emotional responses consonant with those thoughts (fear of darkness). This influences the affective appraisal of a given environment after dark and the way humans behave in that environment in conditions of low lighting. Desktop VEs are increasingly deployed to study the effects of environmental qualities and (architectural or lighting) interventions on human behaviour and feelings of safety. Their (ecological) validity for these purposes depends critically on their ability to correctly address the user's cognitive and affective experience. Previous studies with desktop (i.e., non-immersive) VEs found that simulated darkness only slightly affects the user's behavioral and emotional responses to the represented environment, in contrast to the responses observed for immersive VEs. We hypothesize that the desktop VE scenarios used in previous studies less effectively induced emotional and behavioral responses because they lacked personal relevance. In addition, factors like signs of social presence and relatively high levels of ambient lighting may also have limited these responses. In this study, young female volunteers explored either a daytime or a night-time (low ambient light level) version of a desktop VE representing a deserted (no social presence) prototypical Dutch polder landscape. To enhance the personal relevance of the simulation, a fraction of the participants were led to believe that the virtual exploration tour would prepare them for a follow-up tour through the real world counterpart of the VE. The affective appraisal of the VE and the emotional response of the participants were measured through self-report. The results show that the VE was appraised as slightly less pleasant and more

  3. Monte Carlo simulations of the radiation environment for the CMS Experiment

    CERN Document Server

    AUTHOR|(CDS)2068566; Bayshev, I.; Bergstrom, I.; Cooijmans, T.; Dabrowski, A.; Glöggler, L.; Guthoff, M.; Kurochkin, I.; Vincke, H.; Tajeda, S.

    2016-01-01

    Monte Carlo radiation transport codes are used by the CMS Beam Radiation Instrumentation and Luminosity (BRIL) project to estimate the radiation levels due to proton-proton collisions and machine induced background. Results are used by the CMS collaboration for various applications: comparison with detector hit rates, pile-up studies, predictions of radiation damage based on various models (Dose, NIEL, DPA), shielding design, estimations of residual dose environment. Simulation parameters, and the maintenance of the input files are summarised, and key results are presented. Furthermore, an overview of additional programs developed by the BRIL project to meet the specific needs of CMS community is given.

  4. Electrostatic environment near lunar vertical hole: 3D plasma particle simulations

    Science.gov (United States)

    Miyake, Yohei; Nishino, Masaki N.

    2015-11-01

    The dayside electrostatic environment near the lunar surface is governed by interactions among the solar wind plasma, photoelectrons, and the charged lunar surface, providing topologically complex boundaries to the plasma. Three-dimensional, particle-in-cell simulations are applied to recently discovered vertical holes on the Moon, which have spatial scales of tens of meters and greater depth-to-diameter ratios than typical impact craters. The vertical wall of the hole introduces a new boundary for both photo and solar wind electrons. The current balance condition established at a hole bottom is altered by the limited solar wind electron penetration into the hole due to loss at the wall and photoelectron current path connecting the hole bottom and wall surfaces. The self-consistent modeling not only reproduces intense differential charging between sunlit and shadowed surfaces, but also reveals the potential difference between sunlit surfaces inside and outside the hole, demonstrating the uniqueness of the near-hole electrostatic environment.

  5. Experiences of simulated tracer dispersal studies using effluent discharges at Tarapur aquatic environment

    International Nuclear Information System (INIS)

    Sudheendran, V.; Baburajan, A.; Sawane, Pratibha; Rao, D.D.; Hegde, A.G.

    2007-01-01

    The nuclear complex in Tarapur, Maharashtra is a multi facility nuclear site comprising of power reactors and research facilities. Each facility has independent liquid effluent discharge line to Arabian Sea. Experimental studies were conducted to evaluate dilution factors in the aquatic environment using liquid effluent releases as tracer from one of the facilities. 3 H and 137 Cs radioisotopes present in the routine releases were used as simulated tracer nuclides. The dilution factors(D.F) observed for tritium were in the range of 20-20000 in a distance range of 10 m to 1500 m respectively and for 137 Cs the D.F. were in the range of 50 to 900 over a distance range of 10-200 m. The paper describes the analytical methodology and sampling scenarios and the results of dilution factors obtained for Tarapur aquatic environment. (author)

  6. Alkali-resistant glass fiber reinforced high strength concrete in simulated aggressive environment

    Directory of Open Access Journals (Sweden)

    W. H. Kwan

    2018-02-01

    Full Text Available The durability of the alkali-resistant (AR glass fiber reinforced concrete (GFRC in three simulated aggresive environments, namely tropical climate, cyclic air and seawater and seawater immersion was investigated. Durability examinations include chloride diffusion, gas permeability, X-ray diffraction (XRD and scanning electron microscopy examination (SEM. The fiber content is in the range of 0.6 % to 2.4 %. Results reveal that the specimen containing highest AR glass fiber content suffered severe strength loss in seawater environment and relatively milder strength loss under cyclic conditions. The permeability property was found to be more inferior with the increase in the fiber content of the concrete. This suggests that the AR glass fiber is not suitable for use as the fiber reinforcement in concrete is exposed to seawater. However, in both the tropical climate and cyclic wetting and drying, the incorporation of AR glass fiber prevents a drastic increase in permeability.

  7. Comparison of absolute biochemical parameters of undisturbed soils in Mediterranean environments (NE Spain) with corresponding parameters relative to soil organic carbon

    OpenAIRE

    Jiménez de Ridder, Patrícia; Marando, Graciela; Josa March, Ramon; Ginovart Gisbert, Marta; Ras Sabido, Antoni; Bonmati Pont, Manuel

    2017-01-01

    The study of soil quality requires the establishment of quality standards. To this end, several authors have highlighted the need to create databases of quality indicators, such as biochemical properties, for different types of undisturbed soils under various climates and to establish standardised methodologies for their development. In Spain, studies of the quality of native soils were initiated > 15 years ago by several groups of authors from differing locations, but little is known regardi...

  8. Tree-crown-resolving large-eddy simulation for evaluating greenery effects on urban heat environments

    Science.gov (United States)

    Matsuda, K.; Onishi, R.; Takahashi, K.

    2017-12-01

    Urban high temperatures due to the combined influence of global warming and urban heat islands increase the risk of heat stroke. Greenery is one of possible countermeasures for mitigating the heat environments since the transpiration and shading effect of trees can reduce the air temperature and the radiative heat flux. In order to formulate effective measures, it is important to estimate the influence of the greenery on the heat stroke risk. In this study, we have developed a tree-crown-resolving large-eddy simulation (LES) model that is coupled with three-dimensional radiative transfer (3DRT) model. The Multi-Scale Simulator for the Geoenvironment (MSSG) is used for performing building- and tree-crown-resolving LES. The 3DRT model is implemented in the MSSG so that the 3DRT is calculated repeatedly during the time integration of the LES. We have confirmed that the computational time for the 3DRT model is negligibly small compared with that for the LES and the accuracy of the 3DRT model is sufficiently high to evaluate the radiative heat flux at the pedestrian level. The present model is applied to the analysis of the heat environment in an actual urban area around the Tokyo Bay area, covering 8 km × 8 km with 5-m grid mesh, in order to confirm its feasibility. The results show that the wet-bulb globe temperature (WBGT), which is an indicator of the heat stroke risk, is predicted in a sufficiently high accuracy to evaluate the influence of tree crowns on the heat environment. In addition, by comparing with a case without the greenery in the Tokyo Bay area, we have confirmed that the greenery increases the low WBGT areas in major pedestrian spaces by a factor of 3.4. This indicates that the present model can predict the greenery effect on the urban heat environment quantitatively.

  9. An Examination of Surgical Skill Performance under Combat Conditions Using a Mannequin-Based Simulator in a Virtual Environment

    National Research Council Canada - National Science Library

    Scerbo, Mark W; Weireter, Jr., Leonard J; Bliss, James P; Schmidt, Elizabeth A; Hanner, Hope

    2004-01-01

    .... The participants then performed the procedure in a fully immersive CAVE virtual environment running a combat simulation including gunfire, explosions, and a virtual sniper under both daylight and nighttime conditions...

  10. Interactive simulator for e-Learning environments: a teaching software for health care professionals.

    Science.gov (United States)

    De Lazzari, Claudio; Genuini, Igino; Pisanelli, Domenico M; D'Ambrosi, Alessandra; Fedele, Francesco

    2014-12-18

    There is an established tradition of cardiovascular simulation tools, but the application of this kind of technology in the e-Learning arena is a novel approach. This paper presents an e-Learning environment aimed at teaching the interaction of cardiovascular and lung systems to health-care professionals. Heart-lung interaction must be analyzed while assisting patients with severe respiratory problems or with heart failure in intensive care unit. Such patients can be assisted by mechanical ventilatory assistance or by thoracic artificial lung."In silico" cardiovascular simulator was experimented during a training course given to graduate students of the School of Specialization in Cardiology at 'Sapienza' University in Rome.The training course employed CARDIOSIM©: a numerical simulator of the cardiovascular system. Such simulator is able to reproduce pathophysiological conditions of patients affected by cardiovascular and/or lung disease. In order to study the interactions among the cardiovascular system, the natural lung and the thoracic artificial lung (TAL), the numerical model of this device has been implemented. After having reproduced a patient's pathological condition, TAL model was applied in parallel and hybrid model during the training course.Results obtained during the training course show that TAL parallel assistance reduces right ventricular end systolic (diastolic) volume, but increases left ventricular end systolic (diastolic) volume. The percentage changes induced by hybrid TAL assistance on haemodynamic variables are lower than those produced by parallel assistance. Only in the case of the mean pulmonary arterial pressure, there is a percentage reduction which, in case of hybrid assistance, is greater (about 40%) than in case of parallel assistance (20-30%).At the end of the course, a short questionnaire was submitted to students in order to assess the quality of the course. The feedback obtained was positive, showing good results with respect to

  11. Simulation of thermal environment in a three-layer vinyl greenhouse by natural ventilation control

    Science.gov (United States)

    Jin, Tea-Hwan; Shin, Ki-Yeol; Yoon, Si-Won; Im, Yong-Hoon; Chang, Ki-Chang

    2017-11-01

    A high energy, efficient, harmonious, ecological greenhouse has been highlighted by advanced future agricultural technology recently. This greenhouse is essential for expanding the production cycle toward growth conditions through combined thermal environmental control. However, it has a negative effect on farming income via huge energy supply expenses. Because not only production income, but operating costs related to thermal load for thermal environment control is important in farming income, it needs studies such as a harmonious ecological greenhouse using natural ventilation control. This study is simulated for energy consumption and thermal environmental conditions in a three-layered greenhouse by natural ventilation using window opening. A virtual 3D model of a three-layered greenhouse was designed based on the real one in the Gangneung area. This 3D model was used to calculate a thermal environment state such as indoor temperature, relative humidity, and thermal load in the case of a window opening rate from 0 to 100%. There was also a heat exchange operated for heating or cooling controlled by various setting temperatures. The results show that the cooling load can be reduced by natural ventilation control in the summer season, and the heat exchange capacity for heating can also be simulated for growth conditions in the winter season.

  12. Interaction of green tea polyphenols with dairy matrices in a simulated gastrointestinal environment.

    Science.gov (United States)

    Lamothe, Sophie; Azimy, Naheed; Bazinet, Laurent; Couillard, Charles; Britten, Michel

    2014-10-01

    The consumption of polyphenols in green tea has been associated with beneficial health effects. Although polyphenols are unstable in the intestinal environment, they may be protected by interactions with dairy proteins during digestion. The objectives of this study were to evaluate the effect of a green tea extract on the digestibility of different dairy matrices and to monitor the antioxidant activity of these matrices with or without the green tea extract during digestion in a simulated gastrointestinal environment. Milk, yogurt and cheese with similar fat-to-protein ratios were subjected to simulated digestion. Matrix degradation, protein and fat hydrolysis, polyphenol concentration and radical scavenging activity were analyzed during gastric and intestinal digestion phases. Cheese was the matrix most resistant to protein and fat digestion. The addition of the green tea extract significantly decreased proteolysis in the gastric phase but had no effect in the intestinal phase. The kinetics of fatty acid release was reduced by the presence of the green tea extract. Transition from the gastric phase to the intestinal phase induced a 50% decrease in the antioxidant activity of the control (tea extract dispersed in water) due to the degradation of polyphenols. The presence of dairy matrices significantly improved polyphenol stability in the intestinal phase and increased the antioxidant activity by 29% (cheese) to 42% (milk) compared to the control. These results suggest that simultaneous consumption of green tea and dairy products helps to maintain the integrity and antioxidant activity of polyphenols during digestion.

  13. On the Efficient Simulation of Outage Probability in a Log-normal Fading Environment

    KAUST Repository

    Rached, Nadhir B.

    2017-02-15

    The outage probability (OP) of the signal-to-interference-plus-noise ratio (SINR) is an important metric that is used to evaluate the performance of wireless systems. One difficulty toward assessing the OP is that, in realistic scenarios, closed-form expressions cannot be derived. This is for instance the case of the Log-normal environment, in which evaluating the OP of the SINR amounts to computing the probability that a sum of correlated Log-normal variates exceeds a given threshold. Since such a probability does not admit a closed-form expression, it has thus far been evaluated by several approximation techniques, the accuracies of which are not guaranteed in the region of small OPs. For these regions, simulation techniques based on variance reduction algorithms is a good alternative, being quick and highly accurate for estimating rare event probabilities. This constitutes the major motivation behind our work. More specifically, we propose a generalized hybrid importance sampling scheme, based on a combination of a mean shifting and a covariance matrix scaling, to evaluate the OP of the SINR in a Log-normal environment. We further our analysis by providing a detailed study of two particular cases. Finally, the performance of these techniques is performed both theoretically and through various simulation results.

  14. High fidelity medical simulation in the difficult environment of a helicopter: feasibility, self-efficacy and cost

    Directory of Open Access Journals (Sweden)

    Holland Carolyn

    2006-10-01

    Full Text Available Abstract Background This study assessed the feasibility, self-efficacy and cost of providing a high fidelity medical simulation experience in the difficult environment of an air ambulance helicopter. Methods Seven of 12 EM residents in their first postgraduate year participated in an EMS flight simulation as the flight physician. The simulation used the Laerdal SimMan™ to present a cardiac and a trauma case in an EMS helicopter while running at flight idle. Before and after the simulation, subjects completed visual analog scales and a semi-structured interview to measure their self-efficacy, i.e. comfort with their ability to treat patients in the helicopter, and recognition of obstacles to care in the helicopter environment. After all 12 residents had completed their first non-simulated flight as the flight physician; they were surveyed about self-assessed comfort and perceived value of the simulation. Continuous data were compared between pre- and post-simulation using a paired samples t-test, and between residents participating in the simulation and those who did not using an independent samples t-test. Categorical data were compared using Fisher's exact test. Cost data for the simulation experience were estimated by the investigators. Results The simulations functioned correctly 5 out of 7 times; suggesting some refinement is necessary. Cost data indicated a monetary cost of $440 and a time cost of 22 hours of skilled instructor time. The simulation and non-simulation groups were similar in their demographics and pre-hospital experiences. The simulation did not improve residents' self-assessed comfort prior to their first flight (p > 0.234, but did improve understanding of the obstacles to patient care in the helicopter (p = 0.029. Every resident undertaking the simulation agreed it was educational and it should be included in their training. Qualitative data suggested residents would benefit from high fidelity simulation in other

  15. Crevice corrosion of corrosion-resistant alloys in simulated sour gas environments

    International Nuclear Information System (INIS)

    Azuma, S.; Kudo, T.

    1991-01-01

    This paper discusses crevice corrosion behaviors of corrosion-resistant alloys (CRAs) with various Ni, Cr, and Mo contents investigated in conditions simulating the sour gas environment encountered in oil and gas production. Crevice corrosion occurred more easily in a 0.1 MPa H 2 S environment than in a 1.0 MPa H 2 S environment. Ni, Cr and Mo all improved crevice corrosion resistance in electrochemical and immersion tests. The improving effect of Ni and Cr on crevice corrosion resistance reached saturation at 20 percent of their contents. Alloys containing more than 6% Mo exhibited excellent crevice corrosion resistance, which could not be achieved by the increment in Ni and Cr contents. The onset of the crevice corrosion on CRAs in H 2 S-Cl - environment was investigated by electrochemically studying the pH drop in the crevice solution and the depassivation pH (pH d ). These are considered to determine the extent of crevice corrosion resistance in comparison to that in O 2 -Cl - environment. It has been shown that the crevice corrosion frequency from the immersion test in 0.1 MPa H 2 S was better correlated with the pH d in the deaerated solution rather than the pH d in the H 2 S containing solution. The crevice corrosion resistance under 0.1 and 1 MPa H 2 S is discussed in relation to the pH d dependent on the H 2 S concentration in the crevice

  16. Environment

    DEFF Research Database (Denmark)

    Valentini, Chiara

    2017-01-01

    The term environment refers to the internal and external context in which organizations operate. For some scholars, environment is defined as an arrangement of political, economic, social and cultural factors existing in a given context that have an impact on organizational processes and structures....... For others, environment is a generic term describing a large variety of stakeholders and how these interact and act upon organizations. Organizations and their environment are mutually interdependent and organizational communications are highly affected by the environment. This entry examines the origin...... and development of organization-environment interdependence, the nature of the concept of environment and its relevance for communication scholarships and activities....

  17. 40 CFR 158.2000 - Biochemical pesticides definition and applicability.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Biochemical pesticides definition and applicability. 158.2000 Section 158.2000 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS DATA REQUIREMENTS FOR PESTICIDES Biochemical Pesticides § 158.2000 Biochemical pesticides...

  18. Real-time 3D radiation risk assessment supporting simulation of work in nuclear environments.

    Science.gov (United States)

    Szőke, I; Louka, M N; Bryntesen, T R; Bratteli, J; Edvardsen, S T; RøEitrheim, K K; Bodor, K

    2014-06-01

    This paper describes the latest developments at the Institute for Energy Technology (IFE) in Norway, in the field of real-time 3D (three-dimensional) radiation risk assessment for the support of work simulation in nuclear environments. 3D computer simulation can greatly facilitate efficient work planning, briefing, and training of workers. It can also support communication within and between work teams, and with advisors, regulators, the media and public, at all the stages of a nuclear installation's lifecycle. Furthermore, it is also a beneficial tool for reviewing current work practices in order to identify possible gaps in procedures, as well as to support the updating of international recommendations, dissemination of experience, and education of the current and future generation of workers.IFE has been involved in research and development into the application of 3D computer simulation and virtual reality (VR) technology to support work in radiological environments in the nuclear sector since the mid 1990s. During this process, two significant software tools have been developed, the VRdose system and the Halden Planner, and a number of publications have been produced to contribute to improving the safety culture in the nuclear industry.This paper describes the radiation risk assessment techniques applied in earlier versions of the VRdose system and the Halden Planner, for visualising radiation fields and calculating dose, and presents new developments towards implementing a flexible and up-to-date dosimetric package in these 3D software tools, based on new developments in the field of radiation protection. The latest versions of these 3D tools are capable of more accurate risk estimation, permit more flexibility via a range of user choices, and are applicable to a wider range of irradiation situations than their predecessors.

  19. Real-time 3D radiation risk assessment supporting simulation of work in nuclear environments

    International Nuclear Information System (INIS)

    Szoke, I; Louka, M N; Bryntesen, T R; Bratteli, J; Edvardsen, S T; RøEitrheim, K K; Bodor, K

    2014-01-01

    This paper describes the latest developments at the Institute for Energy Technology (IFE) in Norway, in the field of real-time 3D (three-dimensional) radiation risk assessment for the support of work simulation in nuclear environments. 3D computer simulation can greatly facilitate efficient work planning, briefing, and training of workers. It can also support communication within and between work teams, and with advisors, regulators, the media and public, at all the stages of a nuclear installation’s lifecycle. Furthermore, it is also a beneficial tool for reviewing current work practices in order to identify possible gaps in procedures, as well as to support the updating of international recommendations, dissemination of experience, and education of the current and future generation of workers. IFE has been involved in research and development into the application of 3D computer simulation and virtual reality (VR) technology to support work in radiological environments in the nuclear sector since the mid 1990s. During this process, two significant software tools have been developed, the VRdose system and the Halden Planner, and a number of publications have been produced to contribute to improving the safety culture in the nuclear industry. This paper describes the radiation risk assessment techniques applied in earlier versions of the VRdose system and the Halden Planner, for visualising radiation fields and calculating dose, and presents new developments towards implementing a flexible and up-to-date dosimetric package in these 3D software tools, based on new developments in the field of radiation protection. The latest versions of these 3D tools are capable of more accurate risk estimation, permit more flexibility via a range of user choices, and are applicable to a wider range of irradiation situations than their predecessors. (paper)

  20. The Relationship Between Technical And Nontechnical Skills Within A Simulation-Based Ureteroscopy Training Environment.

    Science.gov (United States)

    Brunckhorst, Oliver; Shahid, Shahab; Aydin, Abdullatif; Khan, Shahid; McIlhenny, Craig; Brewin, James; Sahai, Arun; Bello, Fernando; Kneebone, Roger; Shamim Khan, Muhammad; Dasgupta, Prokar; Ahmed, Kamran

    2015-01-01

    Little integration of technical and nontechnical skills (e.g., situational awareness, communication, decision making, teamwork, and leadership) teaching exists within surgery. We therefore aimed to (1) evaluate the relationship between these 2 skill sets within a simulation-based environment and (2) assess if certain nontechnical skill components are of particular relevance to technical performance. A prospective analysis of data acquired from a comparative study of simulation vs nonsimulation training was conducted. Half of the participants underwent training of technical and nontechnical skills within ureteroscopy, with the remaining half undergoing no training. All were assessed within a full immersion environment against both technical (time to completion, Objective Structured Assessment of Technical Skills, and task-specific checklist scores) and nontechnical parameters (Nontechnical Skills for Surgeons [NOTSS] rating scale). The data of whole and individual cohorts were analyzed using Pearson correlation coefficient. The trial took place within the Simulation and Interactive Learning Centre at Guy's Hospital, London, UK. In total, 32 novice participants with no prior practical ureteroscopy experience were included within the data analysis. A correlation was found within all outcome measures analyzed. For the whole cohort, a strong negative correlation was found between time to completion and NOTSS scores (r = -0.75, p Technical Skills (r = 0.89, p skill components demonstrated a strong correlation with all technical skill parameters, regardless of training. A strong correlation between technical and nontechnical performance exists, which was demonstrated to be irrespective of training received. This may suggest an inherent link between skill sets. Furthermore, all nontechnical skill sets are important in technical performance. This supports the notion that both of these skills should be trained and assessed together within 1 curriculum. Copyright © 2015

  1. Numerical Simulation of Blast Action on Civil Structures in Urban Environment

    Science.gov (United States)

    Valger, Svetlana A.; Fedorova, Natalya N.; Fedorov, Alexander V.

    2017-10-01

    Nowadays, a lot of industrial accidents accompanied by explosions are happening throughout the world. Also, increase in the number of terrorist acts committed by means of explosions is observed. For improving safety of buildings and structures it is necessary to raise their resistance to explosive effects, as well as to be able to predict degree of potential damage upon explosive loads of various intensities. One of the principal goals in designing the structure resistant to explosive effects is to determine the dynamic response of structures to the impact of the blast wave. To this end, the transient pressure loads on the walls of the civil engineering structures are to be determined. The simulation of explosion is highly complicated, involving an explosion causing the shock wave propagation in air and then interaction with a structure. The engineering-level techniques permit one to estimate an explosive shock impact only for isolated buildings. The complexity of the building, the presence of nearby structures and the surrounding environment cannot be taken into account. Advanced computer aid engineering (CAE) software techniques combined with the latest methods of discrete three-dimensional city modelling permits one to simulate and analyse the effects of explosions in urban areas with a precision which previously was not possible. In the paper, the simulation results are presented of shock wave forming due to a spherical explosive charge and its propagation in the vicinity of geometrical configuration imitating an urban environment. The numerical simulation of a flow in the vicinity of prisms of different cross-sections and heights located on a flat plate was performed. The calculations are carried out in a three-dimensional non-viscous formulation using ANSYS software. On a basis of simulation results, a complex wave structures were analysed, and all the peculiarities of flows and pressure history records on building walls were described and explained. The

  2. Optimizing NEURON Simulation Environment Using Remote Memory Access with Recursive Doubling on Distributed Memory Systems.

    Science.gov (United States)

    Shehzad, Danish; Bozkuş, Zeki

    2016-01-01

    Increase in complexity of neuronal network models escalated the efforts to make NEURON simulation environment efficient. The computational neuroscientists divided the equations into subnets amongst multiple processors for achieving better hardware performance. On parallel machines for neuronal networks, interprocessor spikes exchange consumes large section of overall simulation time. In NEURON for communication between processors Message Passing Interface (MPI) is used. MPI_Allgather collective is exercised for spikes exchange after each interval across distributed memory systems. The increase in number of processors though results in achieving concurrency and better performance but it inversely affects MPI_Allgather which increases communication time between processors. This necessitates improving communication methodology to decrease the spikes exchange time over distributed memory systems. This work has improved MPI_Allgather method using Remote Memory Access (RMA) by moving two-sided communication to one-sided communication, and use of recursive doubling mechanism facilitates achieving efficient communication between the processors in precise steps. This approach enhanced communication concurrency and has improved overall runtime making NEURON more efficient for simulation of large neuronal network models.

  3. Field scale simulation of axial hydrokinetic turbines in a natural marine environment

    Science.gov (United States)

    Chawdhary, Saurabh; Angelidis, Dionysios; Shen, Lian; Sotiropoulos, Fotis

    2016-11-01

    Commercialization of marine and hydrokinetic (MHK) energy technologies is still in the development stage. Existing technologies need fundamental research to enable efficient energy extraction from identified MHK sites. We propose a large eddy simulation (LES)-based framework to investigate the site-specific flow dynamics past MHK arrays in a real-life marine environment. To this end, we use advanced computational tools developed at the Saint Anthony Falls Laboratory (SAFL) to resolve the vast range of scales present in the flow. The new generation unstructured Cartesian flow solver, coupled with a sharp interface immersed boundary method for 3D incompressible flows, is used to numerically investigate New York City's East River, where an array of MHK turbines is to be deployed as part of the Roosevelt Island Tidal Energy (RITE) Project. Multi-resolution simulations on locally refined grids are used to simulate the flow in a section of the East River with detailed river bathymetry and inset turbines at field scale. The results are analyzed in terms of the wake recovery, overall wake dynamics, and the power produced by the turbines. These results will help develop design guidelines for the site-specific turbine array configuration. This work was supported by NSF Grant IIP-1318201.

  4. Sci—Fri PM: Topics — 05: Experience with linac simulation software in a teaching environment

    International Nuclear Information System (INIS)

    Carlone, Marco; Harnett, Nicole; Jaffray, David; Norrlinger, Bern; Prooijen, Monique van; Milne, Emily

    2014-01-01

    Medical linear accelerator education is usually restricted to use of academic textbooks and supervised access to accelerators. To facilitate the learning process, simulation software was developed to reproduce the effect of medical linear accelerator beam adjustments on resulting clinical photon beams. The purpose of this report is to briefly describe the method of operation of the software as well as the initial experience with it in a teaching environment. To first and higher orders, all components of medical linear accelerators can be described by analytical solutions. When appropriate calibrations are applied, these analytical solutions can accurately simulate the performance of all linear accelerator sub-components. Grouped together, an overall medical linear accelerator model can be constructed. Fifteen expressions in total were coded using MATLAB v 7.14. The program was called SIMAC. The SIMAC program was used in an accelerator technology course offered at our institution; 14 delegates attended the course. The professional breakdown of the participants was: 5 physics residents, 3 accelerator technologists, 4 regulators and 1 physics associate. The course consisted of didactic lectures supported by labs using SIMAC. At the conclusion of the course, eight of thirteen delegates were able to successfully perform advanced beam adjustments after two days of theory and use of the linac simulator program. We suggest that this demonstrates good proficiency in understanding of the accelerator physics, which we hope will translate to a better ability to understand real world beam adjustments on a functioning medical linear accelerator

  5. Experimental measurement of a shipboard fire environment with simulated radioactive materials packages

    International Nuclear Information System (INIS)

    Koski, J.A.; Wix, S.D.

    1996-01-01

    Results from a series of eight test fires ranging in size from 2.2 to 18.8 MW conducted aboard the Coast Guard fire test ship Mayo Lykes at Mobile, Alabama are presented and discussed. Tests aboard the break-bulk type cargo ship consisted of heptane spray fires simulating engine room and galley fires, wood crib fires simulating cargo hold fires, and pool fires staged for comparison to land-based regulatory fire results. Primary instrumentation for the tests consisted of two pipe calorimeters that simulated a typical package shape for radioactive materials packages. The calorimeters were both located adjacent to the fires and on the opposite side of the cargo hold bulkhead nearest the fire. The calorimeters were constructed from 1.5 m length sections of nominal 2 foot diameter schedule 60 steel pipe. Type K thermocouples were attached at 12 locations on the circumference and ends of the calorimeter. Fire heat fluxes to the calorimeter surfaces were estimated with the use of the Sandia SODDIT inverse heat conduction code. Experimental results from all types of tests are discussed, and some comparisons are made between the environments found on the ship and those found in land-based pool fire tests

  6. Drawing-Based Simulation for Primary School Science Education: An Experimental Study of the GearSketch Learning Environment

    NARCIS (Netherlands)

    Leenaars, Frank; van Joolingen, Wouter; Gijlers, Aaltje H.; Bollen, Lars

    2012-01-01

    Touch screen computers are rapidly becoming available to millions of students. These devices make the implementation of drawing-based simulation environments like Gear Sketch possible. This study shows that primary school students who received simulation-based support in a drawing-based learning

  7. Antioxidant activity and nutrient release from polyphenol-enriched cheese in a simulated gastrointestinal environment.

    Science.gov (United States)

    Lamothe, Sophie; Langlois, Ariane; Bazinet, Laurent; Couillard, Charles; Britten, Michel

    2016-03-01

    Green tea polyphenols are recognized for their antioxidant properties and their effects on lipid digestion kinetics. Polyphenols are sensitive to degradation in the intestinal environment. Interactions with dairy proteins could modulate the stability and biological activity of polyphenols during digestion. The objective of this study was to evaluate the release of nutrients (polyphenols, fatty acids and peptides) and the antioxidant activity in polyphenol-enriched cheese containing different levels of calcium in a simulated gastrointestinal environment. The relationship between cheese matrix texture, matrix degradation and nutrient release during digestion was also studied. Green tea extract was added to milk at 0% or 0.1%, and cheeses were produced on a laboratory scale. The level of available calcium was adjusted to low (Ca(low)), regular (Ca(reg)) or high (Ca(high)) during the salting step of the cheese-making process. Cheeses were subjected to simulated digestion. The rate and extent of fatty acid release were 21% lower for Ca(low) cheese than for Ca(reg) and Ca(high) cheeses. The greater adhesiveness of Ca(low) cheese, which resulted in lower rates of matrix degradation and proteolysis, contributed to the reduced rate of lipolysis. The presence of green tea extract in cheese reduced the release of free fatty acids at the end of digestion by 7%. The addition of green tea extract increased cheese hardness but did not influence matrix degradation or proteolysis profiles. The formation of complexes between tea polyphenols and proteins within the cheese matrix resulted in a more than twofold increase in polyphenol recovery in the intestinal phase compared with the control (tea polyphenol extract incubated with polyphenol-free cheese). Antioxidant activity was 14% higher in the digest from polyphenol-enriched cheese than in the control. These results suggest that cheese is an effective matrix for the controlled release of nutrients and for the protection of green

  8. Health Effects of Airline Cabin Environments in Simulated 8-Hour Flights.

    Science.gov (United States)

    2017-07-01

    Commercial air travel is usually without health incidents. However, there is a view that cabin environments may be detrimental to health, especially flights of 8 h or more. Concerns have been raised about deep vein thrombosis, upper respiratory tract infections, altitude sickness, and toxins from the engines. Passenger cabin simulators were used to achieve a comparative observational study with 8-h flights at pressures equivalent to terrestrial altitudes of ground, 4000, 6000, and 8000 ft. Biomarkers of thrombosis (D-Dimer), inflammation (interleukin-6), and respiratory dysfunction (FEV1) and oxygen saturation (Spo2) were measured, as well as pulse and blood pressure. The wellbeing of the passengers was also monitored. During 36 flights, 1260 healthy subjects [626 women (F) and 634 men (M) (mean age = 43, SD = 16)] were assessed. Additionally, 72 subjects with chronic obstructive pulmonary disease (F = 32, M = 40, mean age = 48, SD = 17) and 74 with heart failure (F = 50, M = 24, mean age = 54, SD = 14) contributed to 11 flights. Additionally, 76 normal controls were observed while engaged in a usual day's work (F = 38, M = 38, mean age = 39, SD = 15). There were no health-significant changes in D-Dimer, interleukin-6, or FEV1. Spo2 varied as expected, with lowest values at 8000 ft and in patients with cardiopulmonary disease. The only differences from the controls were the loss of the normal diurnal variations in interleukin-6 and D-Dimer. This very large, comparative, controlled study provides much reassurance for the traveling public, who use airline flights of up to 8 h. We did not show evidence of the development of venous thrombosis, inflammation, respiratory embarrassment, nor passenger distress. No significant symptoms or adverse effects were reported.Ideal Cabin Environment (ICE) Research Consortium of the European Community 6th Framework Programme. Health effects of airline cabin environments in simulated 8-hour flights. Aerosp Med Hum Perform. 2017; 88(7):651-656.

  9. Mini-Review: Probing the limits of extremophilic life in extraterrestrial environment-simulated experiments

    Science.gov (United States)

    Lage, Claudia A. S.; Dalmaso, Gabriel Z. L.; Teixeira, Lia C. R. S.; Bendia, Amanda G.; Paulino-Lima, Ivan G.; Galante, Douglas; Janot-Pacheco, Eduardo; Abrevaya, Ximena C.; Azúa-Bustos, Armando; Pelizzari, Vivian H.; Rosado, Alexandre S.

    2012-10-01

    Astrobiology is a relatively recent scientific field that seeks to understand the origin and dynamics of life in the Universe. Several hypotheses have been proposed to explain life in the cosmic context throughout human history, but only now, technology has allowed many of them to be tested. Laboratory experiments have been able to show how chemical elements essential to life, such as carbon, nitrogen, oxygen and hydrogen combine in biologically important compounds. Interestingly, these compounds are ubiquitous. How these compounds were combined to the point of originating cells and complex organisms is still to be unveiled by science. However, our 4.5 billion years old Solar system appeared in a 10 billion years old Universe. Thus, simple cells such as micro-organisms may have had time to form in planets older than ours or in other suitable places in the Universe. One hypothesis related to the appearance of life on Earth is called panspermia, which predicts that microbial life could have been formed in the Universe billions of years ago, travelling between planets, and inseminating units of life that could have become more complex in habitable planets such as Earth. A project designed to test the viability of extremophile micro-organisms exposed to simulated extraterrestrial environments is in progress at the Carlos Chagas Filho Institute of Biophysics (UFRJ, Brazil) to test whether microbial life could withstand inhospitable environments. Radiation-resistant (known or novel ones) micro-organisms collected from extreme terrestrial environments have been exposed (at synchrotron accelerators) to intense radiation sources simulating Solar radiation, capable of emitting radiation in a few hours equivalent to many years of accumulated doses. The results obtained in these experiments reveal an interesting possibility of the existence of microbial life beyond Earth.

  10. The limits of extremophilic life expanded under extraterrestrial environment-simulated experiments

    Science.gov (United States)

    Lage, C.; Dalmaso, G.; Teixeira, L.; Bendia, A.; Rosado, A.

    2012-09-01

    Astrobiology is a brand new area of science that seeks to understand the origin and dynamics of life in the universe. Several hypotheses to explain life in the cosmic context have been developed throughout human history, but only now technology has allowed many of them to be tested. Laboratory experiments have been able to show how chemical elements essential to life, carbon, nitrogen, oxygen and hydrogen combine in biologically important compounds. Interestingly, these compounds are found universally. As these compounds were combined to the point of originating cells and complex organisms is still a challenge to be unveiled by science. However, our 4.5 billion years-old solar system was born within a 10-billion years-old universe. Thus, simple cells like microorganisms may have had time to form in planets older than ours or other suitable molecular places in the universe. One hypothesis to explain the origin of life on Earth is called panspermia, which predicts that microbial life could have been formed in the universe billions of years ago, traveling between planets, and inseminating units of life that could have become more complex in habitable planets like ours. A project designed to test the viability of extremophile microorganisms exposed to simulated extraterrestrial environments is ongoing at the Carlos Chagas Filho Institute of Biophysics to test whether microbial life could withstand those inhospitable environments. Ultra-resistant (known or novel ones) microorganisms collected from terrestrial extreme environments, extremophiles, have been exposed to intense radiation sources simulating solar radiation (at synchrotron accelerators), capable of emitting in a few hours radiation equivalent of million years accumulated doses. The results obtained in these experiments reveal the interesting possibility of the existence of microbial life beyond Earth.

  11. CFD simulation of a cabin thermal environment with and without human body - thermal comfort evaluation

    Science.gov (United States)

    Danca, Paul; Bode, Florin; Nastase, Ilinca; Meslem, Amina

    2018-02-01

    Nowadays, thermal comfort became one of the criteria in choosing a vehicle. In last decades time spent by people in vehicles had risen substantially. During each trip, thermal comfort must to be ensured for a good psychological and physical state of the passengers. Also, a comfortable environment leads to a higher power concentration of the driver thereby to a safe trip for vehicle occupants and for all traffic participants. The present study numerically investigated the effect of human body sited in the driver's place, over the air velocity distribution and over the thermal comfort in a passenger compartment. CFD simulations were made with different angles of the left inlet grill, in both cases, with and without driver presence. In majority of the actual vehicles environment studies, are made without consideration of human body geometry, in this case, the results precision can be affected. The results show that the presence of human body, lead to global changing of the whole flow pattern inside the vehicular cabin. Also, the locations of the maximum velocities are changing with the angle of the guiding vanes. The thermal comfort PMV/PPD indexes were calculated for each case. The presence of human body leads to a more comfortable environment.

  12. Human-robot collaborated path planning for bevel-tip needle steering in simulated human environment.

    Science.gov (United States)

    Jing Xiong; Zeyang Xia; Yangzhou Gan

    2016-08-01

    Clinical Application of linear percutaneous needle insertion is restricted due to issues such as limited path and deflection. Thus steering of flexible needle is critical demanded in the clinic. Previous studies tended to use autonomous methods to conduct path planning for needle steering. However, these methods had very limited adaptabilities, and they also decreased the human operator's domination of the operation, as clinically required. In this case, teleoperation has been an option, while in complicated environments sole teleoperation is not sufficient for a human operator to generate multi-curved insertion path. Therefore, in this paper, we propose a semiautonomous human-robot collaborated path planning method for teleoperated bevel-tip needle steering. The key module of this method is a human-robot collaboration mechanism which consists of the operator input, environment constraints, and path constraints. The proposed method were tested semi-physically in a simulated human environment and the results validated that the proposed method were able to efficiently assist the operator to generate multi-curved paths under human operator's domination.

  13. Flexible Simulation E-Learning Environment for Studying Digital Circuits and Possibilities for It Deployment as Semantic Web Service

    Science.gov (United States)

    Radoyska, P.; Ivanova, T.; Spasova, N.

    2011-01-01

    In this article we present a partially realized project for building a distributed learning environment for studying digital circuits Test and Diagnostics at TU-Sofia. We describe the main requirements for this environment, substantiate the developer platform choice, and present our simulation and circuit parameter calculation tools.…

  14. Use of Heuristics to Facilitate Scientific Discovery Learning in a Simulation Learning Environment in a Physics Domain

    Science.gov (United States)

    Veermans, Koen; van Joolingen, Wouter; de Jong, Ton

    2006-01-01

    This article describes a study into the role of heuristic support in facilitating discovery learning through simulation-based learning. The study compares the use of two such learning environments in the physics domain of collisions. In one learning environment (implicit heuristics) heuristics are only used to provide the learner with guidance…

  15. JULES-crop: a parametrisation of crops in the Joint UK Land Environment Simulator

    Science.gov (United States)

    Osborne, T.; Gornall, J.; Hooker, J.; Williams, K.; Wiltshire, A.; Betts, R.; Wheeler, T.

    2015-04-01

    Studies of climate change impacts on the terrestrial biosphere have been completed without recognition of the integrated nature of the biosphere. Improved assessment of the impacts of climate change on food and water security requires the development and use of models not only representing each component but also their interactions. To meet this requirement the Joint UK Land Environment Simulator (JULES) land surface model has been modified to include a generic parametrisation of annual crops. The new model, JULES-crop, is described and evaluation at global and site levels for the four globally important crops; wheat, soybean, maize and rice. JULES-crop demonstrates skill in simulating the inter-annual variations of yield for maize and soybean at the global and country levels, and for wheat for major spring wheat producing countries. The impact of the new parametrisation, compared to the standard configuration, on the simulation of surface heat fluxes is largely an alteration of the partitioning between latent and sensible heat fluxes during the later part of the growing season. Further evaluation at the site level shows the model captures the seasonality of leaf area index, gross primary production and canopy height better than in the standard JULES. However, this does not lead to an improvement in the simulation of sensible and latent heat fluxes. The performance of JULES-crop from both an Earth system and crop yield model perspective is encouraging. However, more effort is needed to develop the parametrisation of the model for specific applications. Key future model developments identified include the introduction of processes such as irrigation and nitrogen limitation which will enable better representation of the spatial variability in yield.

  16. The JUMP student project: two weeks of space simulation in a Mars-like environment.

    Science.gov (United States)

    de Crombrugghe, Guerric; de Lobkowicz, Ysaline; van Vynckt, Delphine; Reydams, Marc; Denies, Jonathan; Jago, Alban; Le Maire, Victor

    JUMP is a student initiative which aim is to simulate during two weeks the life of astronauts in a Mars-like environment. The simulation will be held in the Mars Desert Research Station (MDRS) a habitat installed by the Mars Society (MS) in the Utah desert. The crew is composed of six students, helped by a remote support of four students, all from different background (engineering, physics, mathematics, biology, and architecture) and degree (bachelor, master, PhD), under the supervision of researchers from several institutes. Several researches will be conducted during the simulation. We shall report on the science and technical results, and implications for Earth-Mars comparative studies. JASE: The Jump Astronaut Safety Experiment (JASE) consists in a deployable Yagi antenna with basic elec-tronics, providing an extremely light and simple way to prevent the solar flares and observe Jupiter bursts. JADE: The Jump Angular Detection Experiment (JADE) is an innovative an-gular particle detector used to determine the irradiation of the surface and monitor the charged particle distribution in Mars' atmosphere. Even if its resolution is low, it is a very light solution compared to pixel detectors. JAPE: The Jump Astronaut Potatoes Experiment (JAPE) will try to grow and eat in a space-like environment high-performance potatoes developed by the Groupe de Recherche en Physiologie Végétale (GRPV) of the UCL in the frame of the Micro-e Ecological Life Support System Alternative (MELiSSA) project of the ESA. JABE: The Jump soil Analysis with a Backpack drill Experiment (JABE) aim to validate a sample procedure, generate vertical profiles of the humidity with a MEMS sensor, and analyze soil samples with a spectrometer. The crew will therefore use a backpack drill, which is portable, fast and easy to use. JARE: The goal of the Jump Astronaut-Rover interaction Experiment (JARE) is to determine how a rover can help an astronaut in his task, and how it is possible to improve this

  17. Gaining insight into the physics of dynamic atomic force microscopy in complex environments using the VEDA simulator.

    Science.gov (United States)

    Kiracofe, Daniel; Melcher, John; Raman, Arvind

    2012-01-01

    Dynamic atomic force microscopy (dAFM) continues to grow in popularity among scientists in many different fields, and research on new methods and operating modes continues to expand the resolution, capabilities, and types of samples that can be studied. But many promising increases in capability are accompanied by increases in complexity. Indeed, interpreting modern dAFM data can be challenging, especially on complicated material systems, or in liquid environments where the behavior is often contrary to what is known in air or vacuum environments. Mathematical simulations have proven to be an effective tool in providing physical insight into these non-intuitive systems. In this article we describe recent developments in the VEDA (virtual environment for dynamic AFM) simulator, which is a suite of freely available, open-source simulation tools that are delivered through the cloud computing cyber-infrastructure of nanoHUB (www.nanohub.org). Here we describe three major developments. First, simulations in liquid environments are improved by enhancements in the modeling of cantilever dynamics, excitation methods, and solvation shell forces. Second, VEDA is now able to simulate many new advanced modes of operation (bimodal, phase-modulation, frequency-modulation, etc.). Finally, nineteen different tip-sample models are available to simulate the surface physics of a wide variety different material systems including capillary, specific adhesion, van der Waals, electrostatic, viscoelasticity, and hydration forces. These features are demonstrated through example simulations and validated against experimental data, in order to provide insight into practical problems in dynamic AFM.

  18. Hydrogen generation by metal corrosion in simulated Waste Isolation Pilot Plant environments. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Telander, M.R.; Westerman, R.E. [Battelle Pacific Northwest Lab., Richland, WA (United States)

    1997-03-01

    The corrosion and gas-generation characteristics of four material types: low-carbon steel (the current waste packaging material for the Waste Isolation Pilot Plant), Cu-base and Ti-base (alternative packaging) materials, and Al-base (simulated waste) materials were determined in both the liquid and vapor phase of Brine A, a brine representative of an intergranular Salado Formation brine. Test environments consisted primarily of anoxic brine with overpressures of N{sub 2}, CO{sub 2}, H{sub 2}S, and H{sub 2}. Limited tests of low-carbon steel were also performed in simulated-backfill environments and in brine environments with pH values ranging from 3 to 11. Low-carbon steel reacted at a slow, measurable rate with anoxic brine, liberating H{sub 2} on an equimolar basis with Fe reacted. Presence of CO{sub 2} caused the initial reaction to proceed more rapidly, but CO{sub 2}-induced passivation stopped the reaction if the CO{sub 2} were present in sufficient quantities. Addition of H{sub 2}S to a CO{sub 2}-passivated system caused reversal of the passivation. Low-carbon steel immersed in brine with H{sub 2}S showed no reaction, apparently because of passivation of the steel by formation of FeS. Addition of CO{sub 2} to an H{sub 2}S-passivated system did not reverse the passivation. Cu- and Ti-base materials showed essentially no corrosion when exposed to brine and overpressures of N{sub 2}, CO{sub 2}, and H{sub 2}S except for the rapid and complete reaction between Cu-base materials and H{sub 2}S. The Al-base materials reacted at approximately the same rate as low-carbon steel when immersed in anoxic Brine A; considerably more rapidly in the presence of CO{sub 2} or H{sub 2}S; and much more rapidly when iron was present in the system as a brine contaminant. High-purity Al was much more susceptible to corrosion than the 6061 alloy. No significant reaction took place on any material in any environment in the vapor-phase exposures.

  19. Hydrogen generation by metal corrosion in simulated Waste Isolation Pilot Plant environments. Final report

    International Nuclear Information System (INIS)

    Telander, M.R.; Westerman, R.E.

    1997-03-01

    The corrosion and gas-generation characteristics of four material types: low-carbon steel (the current waste packaging material for the Waste Isolation Pilot Plant), Cu-base and Ti-base (alternative packaging) materials, and Al-base (simulated waste) materials were determined in both the liquid and vapor phase of Brine A, a brine representative of an intergranular Salado Formation brine. Test environments consisted primarily of anoxic brine with overpressures of N 2 , CO 2 , H 2 S, and H 2 . Limited tests of low-carbon steel were also performed in simulated-backfill environments and in brine environments with pH values ranging from 3 to 11. Low-carbon steel reacted at a slow, measurable rate with anoxic brine, liberating H 2 on an equimolar basis with Fe reacted. Presence of CO 2 caused the initial reaction to proceed more rapidly, but CO 2 -induced passivation stopped the reaction if the CO 2 were present in sufficient quantities. Addition of H 2 S to a CO 2 -passivated system caused reversal of the passivation. Low-carbon steel immersed in brine with H 2 S showed no reaction, apparently because of passivation of the steel by formation of FeS. Addition of CO 2 to an H 2 S-passivated system did not reverse the passivation. Cu- and Ti-base materials showed essentially no corrosion when exposed to brine and overpressures of N 2 , CO 2 , and H 2 S except for the rapid and complete reaction between Cu-base materials and H 2 S. The Al-base materials reacted at approximately the same rate as low-carbon steel when immersed in anoxic Brine A; considerably more rapidly in the presence of CO 2 or H 2 S; and much more rapidly when iron was present in the system as a brine contaminant. High-purity Al was much more susceptible to corrosion than the 6061 alloy. No significant reaction took place on any material in any environment in the vapor-phase exposures

  20. Simulation as a planning tool for job-shop production environment

    Science.gov (United States)

    Maram, Venkataramana; Nawawi, Mohd Kamal Bin Mohd; Rahman, Syariza Abdul; Sultan, Sultan Juma

    2015-12-01

    In this paper, we made an attempt to use discrete event simulation software ARENA® as a planning tool for job shop production environment. We considered job shop produces three types of Jigs with different sequence of operations to study and improve shop floor performance. The sole purpose of the study is to identifying options to improve machines utilization, reducing job waiting times at bottleneck machines. First, the performance of the existing system was evaluated by using ARENA®. Then identified improvement opportunities by analyzing base system results. Second, updated the model with most economical options. The proposed new system outperforms with that of the current base system by 816% improvement in delay times at paint shop by increase 2 to 3 and Jig cycle time reduces by Jig1 92%, Jig2 65% and Jig3 41% and hence new proposal was recommended.

  1. Measured force on elongated bodies in a simulated low-Earth orbit environment

    Energy Technology Data Exchange (ETDEWEB)

    Maldonado, C. A.; Ketsdever, A. D. [University of Colorado, Colorado Springs, CO 80918 (United States); Gimelshein, S. F. [University of Southern California, Los Angeles, CA 90033 (United States)

    2014-12-09

    An overview of the development of a magnetically filtered atomic oxygen plasma source and the application of the source to study low-Earth orbit drag on elongated bodies is presented. Plasma diagnostics show that the magnetic filter plasma source produces atomic oxygen ions (O{sup +}) with streaming energies equivalent to the relative orbital environment of approximately 5eV and can supply the appropriate density for LEO simulation. Previous research has demonstrated that momentum transfer between ions and metal surfaces is equivalent to the momentum transfer expected for neutral molecules with similar energy, due to charge exchange occurring prior to momentum transfer. Total drag measurements of aluminum cuboid geometries of varying length to diameter ratios immersed in the extracted plasma plume are presented as a function of streaming ion energy.

  2. Prototype heater test of the environment around a simulated waste package

    International Nuclear Information System (INIS)

    Ramirez, A.L.; Buscheck, T.A.; Carlson, R.; Daily, W.; Latorre, V.R.; Lee, K; Lin, Wunan; Mao, Nai-hsien; Towse, D.; Ueng, Tzou-Shin; Watwood, D.

    1991-01-01

    This paper presents selected results obtained during the 301 day duration of the Prototype Engineered Barrier System Field Test (PEBSFT) performed in G-Tunnel within the Nevada Test Site. The test described is a precursor to the Engineered Barrier Systems Field Tests (EBSFT) planned for the Exploratory Shaft Facility in Yucca Mountain. The EBSFT will consist of in situ tests of the geohydrologic and geochemical environment in the near field (within a few meters) of heaters emplaced in welded tuff to simulate the thermal effects of waste packages. The paper discusses the evolution of hydrothermal behavior during the prototype test, including rock temperatures, changes in rock moisture content, air permeability of fractures and gas-phase humidity in the heater borehole

  3. Pattern-oriented Agent-based Monte Carlo simulation of Cellular Redox Environment

    DEFF Research Database (Denmark)

    Tang, Jiaowei; Holcombe, Mike; Boonen, Harrie C.M.

    ] could be very important factors. In our project, an agent-based Monte Carlo modeling [6] is offered to study the dynamic relationship between extracellular and intracellular redox and complex networks of redox reactions. In the model, pivotal redox-related reactions will be included, and the reactants....../CYSS) and mitochondrial redox couples. Evidence suggests that both intracellular and extracellular redox can affect overall cell redox state. How redox is communicated between extracellular and intracellular environments is still a matter of debate. Some researchers conclude based on experimental data....... Because complex networks and dynamics of redox still is not completely understood , results of existing experiments will be used to validate the modeling according to ideas in pattern-oriented agent-based modeling[8]. The simulation of this model is computational intensive, thus an application 'FLAME...

  4. Multi-Instance Learning Models for Automated Support of Analysts in Simulated Surveillance Environments

    Science.gov (United States)

    Birisan, Mihnea; Beling, Peter

    2011-01-01

    New generations of surveillance drones are being outfitted with numerous high definition cameras. The rapid proliferation of fielded sensors and supporting capacity for processing and displaying data will translate into ever more capable platforms, but with increased capability comes increased complexity and scale that may diminish the usefulness of such platforms to human operators. We investigate methods for alleviating strain on analysts by automatically retrieving content specific to their current task using a machine learning technique known as Multi-Instance Learning (MIL). We use MIL to create a real time model of the analysts' task and subsequently use the model to dynamically retrieve relevant content. This paper presents results from a pilot experiment in which a computer agent is assigned analyst tasks such as identifying caravanning vehicles in a simulated vehicle traffic environment. We compare agent performance between MIL aided trials and unaided trials.

  5. Contamination Control Assessment of the World's Largest Space Environment Simulation Chamber

    Science.gov (United States)

    Snyder, Aaron; Henry, Michael W.; Grisnik, Stanley P.; Sinclair, Stephen M.

    2012-01-01

    The Space Power Facility s thermal vacuum test chamber is the largest chamber in the world capable of providing an environment for space simulation. To improve performance and meet stringent requirements of a wide customer base, significant modifications were made to the vacuum chamber. These include major changes to the vacuum system and numerous enhancements to the chamber s unique polar crane, with a goal of providing high cleanliness levels. The significance of these changes and modifications are discussed in this paper. In addition, the composition and arrangement of the pumping system and its impact on molecular back-streaming are discussed in detail. Molecular contamination measurements obtained with a TQCM and witness wafers during two recent integrated system tests of the chamber are presented and discussed. Finally, a concluding remarks section is presented.

  6. Methodology Development for Passive Component Reliability Modeling in a Multi-Physics Simulation Environment

    Energy Technology Data Exchange (ETDEWEB)

    Aldemir, Tunc [The Ohio State Univ., Columbus, OH (United States); Denning, Richard [The Ohio State Univ., Columbus, OH (United States); Catalyurek, Umit [The Ohio State Univ., Columbus, OH (United States); Unwin, Stephen [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-01-23

    Reduction in safety margin can be expected as passive structures and components undergo degradation with time. Limitations in the traditional probabilistic risk assessment (PRA) methodology constrain its value as an effective tool to address the impact of aging effects on risk and for quantifying the impact of aging management strategies in maintaining safety margins. A methodology has been developed to address multiple aging mechanisms involving large numbers of components (with possibly statistically dependent failures) within the PRA framework in a computationally feasible manner when the sequencing of events is conditioned on the physical conditions predicted in a simulation environment, such as the New Generation System Code (NGSC) concept. Both epistemic and aleatory uncertainties can be accounted for within the same phenomenological framework and maintenance can be accounted for in a coherent fashion. The framework accommodates the prospective impacts of various intervention strategies such as testing, maintenance, and refurbishment. The methodology is illustrated with several examples.

  7. Reusable Object-Oriented Solutions for Numerical Simulation of PDEs in a High Performance Environment

    Directory of Open Access Journals (Sweden)

    Andrea Lani

    2006-01-01

    Full Text Available Object-oriented platforms developed for the numerical solution of PDEs must combine flexibility and reusability, in order to ease the integration of new functionalities and algorithms. While designing similar frameworks, a built-in support for high performance should be provided and enforced transparently, especially in parallel simulations. The paper presents solutions developed to effectively tackle these and other more specific problems (data handling and storage, implementation of physical models and numerical methods that have arisen in the development of COOLFluiD, an environment for PDE solvers. Particular attention is devoted to describe a data storage facility, highly suitable for both serial and parallel computing, and to discuss the application of two design patterns, Perspective and Method-Command-Strategy, that support extensibility and run-time flexibility in the implementation of physical models and generic numerical algorithms respectively.

  8. The Joint UK Land Environment Simulator (JULES, model description – Part 1: Energy and water fluxes

    Directory of Open Access Journals (Sweden)

    M. J. Best

    2011-09-01

    Full Text Available This manuscript describes the energy and water components of a new community land surface model called the Joint UK Land Environment Simulator (JULES. This is developed from the Met Office Surface Exchange Scheme (MOSES. It can be used as a stand alone land surface model driven by observed forcing data, or coupled to an atmospheric global circulation model. The JULES model has been coupled to the Met Office Unified Model (UM and as such provides a unique opportunity for the research community to contribute their research to improve both world-leading operational weather forecasting and climate change prediction systems. In addition JULES, and its forerunner MOSES, have been the basis for a number of very high-profile papers concerning the land-surface and climate over the last decade. JULES has a modular structure aligned to physical processes, providing the basis for a flexible modelling platform.

  9. CFD simulation of effects of dimension changes of buildings on pollution dispersion in the built environment

    Directory of Open Access Journals (Sweden)

    Ehsan Bijad

    2016-12-01

    Full Text Available As pollutions impose adverse effects on human health and environment, assessment of their dispersion within the urban regions can much help to control them. In urban regions, dynamics of pollutants will be affected by buildings and barriers, and to investigate the dispersion of the pollutants, these barriers must be considered. In this article, CFD simulation is done by applying the 3D approach, the k − ε Realizable turbulence model and two Schmidt numbers (0.3 and 0.7. It has seen that height, length and width of the building in front of the wind, and, the distance between the two buildings back to the main building (the building on which the stack is present, have much influence on the concentration of pollutions. Although there are some differences between the results with different Schmidt numbers, the trend of changes of the concentration in different locations is identical for the two Schmidt numbers.

  10. Heat transfer from a simulated shuttle external tank in the naturally turbulent outdoor environment

    Science.gov (United States)

    Lin, F. N.; Littlefield, M. D.

    1985-01-01

    To estimate the local heat-transfer coefficients around an external-tank (ET) surface, a 9.8-m-high by 8.4-m-diameter ET simulator is constructed, instrumented, and tested in the naturally turbulent outdoor environment. Two different configurations under which the testing is conducted are described. The time-average, local values of Nusselt number at time-average Reynolds numbers of 2.2 x 10 to the 6th, 2.6 x 10 to the 6th, and 4.5 x 10 to the 6th are presented. It is shown that, at the same Reynolds numbers, the heat transfer coefficients due to the atmospheric airflow are higher than those due to airflow in a low-turbulent-intensity wind tunnel.

  11. The Stress Relaxation Process in Sutures Tied with a Surgeon's Knot in a Simulated Biological Environment.

    Science.gov (United States)

    Liber-Kneć, Aneta; Łagan, Sylwia

    2016-01-01

    The exact characteristics of sutures are not only the basis for selecting from among different types of suture, but also provide the necessary information for the design of new surgical sutures. Apart from information relating to the breaking load of a suture reported in pharmacopoeias, the viscoelastic properties of sutures can be an additional selection criterium - one that influences stitching quality, especially when there is a risk of wound dehiscence. The aim of the study was to assess the stress relaxation process for 3 polymeric sutures in an environment simulating the conditions in a living organism and (for comparison) in room conditions. Stress relaxation testing was carried out on 3 polymeric sutures: polypropylene (PP), polydioxanone (PDS) and polyglycolic acid (PGA). To identify the mechanical properties of the sutures, uniaxial tensile tests were conducted according to the Polish Pharmacopoeia. The relaxation test was carried out in room conditions and in the bath simulating a biological environment. The sutures being tested were tied with a surgeon's knot. The PP suture exhibited the greatest stress relaxation (18% of the initial stress in room conditions and 21% of the initial stress in the bath). The PGA suture exhibited the least stress relaxation (approximately 60% of the initial stress in room conditions and 59% of the initial stress in the bath). The PDS suture was tested at a lower strain level and showed stress relaxation similar to the PGA suture (approximately 63% of the initial stress in room conditions and 55% in the bath). Multifilament braided absorbable (PGA) sutures and monofilament absorbable (PDS) sutures had a higher stress relaxation ratio over time than monofilament non-absorbable (PP) sutures. These findings may indicate higher stress maintained over time in PDS and PGA sutures, and thus higher tension at wound edges, sufficient to resist wound dehiscence.

  12. Design and simulation of sensor networks for tracking Wifi users in outdoor urban environments

    Science.gov (United States)

    Thron, Christopher; Tran, Khoi; Smith, Douglas; Benincasa, Daniel

    2017-05-01

    We present a proof-of-concept investigation into the use of sensor networks for tracking of WiFi users in outdoor urban environments. Sensors are fixed, and are capable of measuring signal power from users' WiFi devices. We derive a maximum likelihood estimate for user location based on instantaneous sensor power measurements. The algorithm takes into account the effects of power control, and is self-calibrating in that the signal power model used by the location algorithm is adjusted and improved as part of the operation of the network. Simulation results to verify the system's performance are presented. The simulation scenario is based on a 1.5 km2 area of lower Manhattan, The self-calibration mechanism was verified for initial rms (root mean square) errors of up to 12 dB in the channel power estimates: rms errors were reduced by over 60% in 300 track-hours, in systems with limited power control. Under typical operating conditions with (without) power control, location rms errors are about 8.5 (5) meters with 90% accuracy within 9 (13) meters, for both pedestrian and vehicular users. The distance error distributions for smaller distances (<30 m) are well-approximated by an exponential distribution, while the distributions for large distance errors have fat tails. The issue of optimal sensor placement in the sensor network is also addressed. We specify a linear programming algorithm for determining sensor placement for networks with reduced number of sensors. In our test case, the algorithm produces a network with 18.5% fewer sensors with comparable accuracy estimation performance. Finally, we discuss future research directions for improving the accuracy and capabilities of sensor network systems in urban environments.

  13. STI-GMaS: an open-source environment for simulation of sexually-transmitted infections.

    Science.gov (United States)

    Nelson, Martin R; Sutton, Kelly J; Brook, Bindi S; Mallet, Dann G; Simpson, Daniel P; Rank, Roger G

    2014-06-12

    Sexually-transmitted pathogens often have severe reproductive health implications if treatment is delayed or absent, especially in females. The complex processes of disease progression, namely replication and ascension of the infection through the genital tract, span both extracellular and intracellular physiological scales, and in females can vary over the distinct phases of the menstrual cycle. The complexity of these processes, coupled with the common impossibility of obtaining comprehensive and sequential clinical data from individual human patients, makes mathematical and computational modelling valuable tools in developing our understanding of the infection, with a view to identifying new interventions. While many within-host models of sexually-transmitted infections (STIs) are available in existing literature, these models are difficult to deploy in clinical/experimental settings since simulations often require complex computational approaches. We present STI-GMaS (Sexually-Transmitted Infections - Graphical Modelling and Simulation), an environment for simulation of STI models, with a view to stimulating the uptake of these models within the laboratory or clinic. The software currently focuses upon the representative case-study of Chlamydia trachomatis, the most common sexually-transmitted bacterial pathogen of humans. Here, we demonstrate the use of a hybrid PDE-cellular automata model for simulation of a hypothetical Chlamydia vaccination, demonstrating the effect of a vaccine-induced antibody in preventing the infection from ascending to above the cervix. This example illustrates the ease with which existing models can be adapted to describe new studies, and its careful parameterisation within STI-GMaS facilitates future tuning to experimental data as they arise. STI-GMaS represents the first software designed explicitly for in-silico simulation of STI models by non-theoreticians, thus presenting a novel route to bridging the gap between computational

  14. Salt caves as simulation of natural environment and significance of halotherapy.

    Science.gov (United States)

    Zajac, Joanna; Bojar, Iwona; Helbin, Jadwiga; Kolarzyk, Emilia; Owoc, Alfred

    2014-01-01

    Human activity usually leads to a deterioration in air quality; therefore, searching for places that simulate an environment without pollution is important. Artificial salt caves play crucial role, as a kind of therapy, known as halotherapy, based on treatment in a controlled air medium that simulates a natural salt cave microclimate. Evaluation of awareness about the existence of salt caves, basic knowledge about the purpose for their presence among people who bought salt caves sessions, and checking their subjective estimation of salt caves influence on their well-being. 303 inhabitants (18-51-years-old) of 3 randomly chosen cities of southern Poland were surveyed using a validated author's questionnaire. Both genders were represented in comparable numbers. It was be observed that knowledge about the existence of salt-caves is common - 94% of respondents. 96 persons bought at least 3 salt caves sessions. The majority of women, did this for therapeutic reasons (57%), and men for both therapeutic and relaxation reasons (both 39%). Both among women and men, the dysfunctions intended to be cured by sessions included problems with throat, larynx or sinus. Depression as a reason for buying sessions was mentioned only by women. In general, those who attended felt better after sessions in salt caves. Besides the health benefits, people do not have free time for rest and activities in clean air; moreover, stress is inseparable from everyday life, and for that reasons salt caves become places that help to support a proper lifestyle.

  15. System Dynamics based Dengue modeling environment to simulate evolution of Dengue infection under different climate scenarios

    Science.gov (United States)

    Anwar, R.; Khan, R.; Usmani, M.; Colwell, R. R.; Jutla, A.

    2017-12-01

    Vector borne infectious diseases such as Dengue, Zika and Chikungunya remain a public health threat. An estimate of the World Health Organization (WHO) suggests that about 2.5 billion people, representing ca. 40% of human population,are at increased risk of dengue; with more than 100 million infection cases every year. Vector-borne infections cannot be eradicated since disease causing pathogens survive in the environment. Over the last few decades dengue infection has been reported in more than 100 countries and is expanding geographically. Female Ae. Aegypti mosquito, the daytime active and a major vector for dengue virus, is associated with urban population density and regional climatic processes. However, mathematical quantification of relationships on abundance of vectors and climatic processes remain a challenge, particularly in regions where such data are not routinely collected. Here, using system dynamics based feedback mechanism, an algorithm integrating knowledge from entomological, meteorological and epidemiological processes is developed that has potential to provide ensemble simulations on risk of occurrence of dengue infection in human population. Using dataset from satellite remote sensing, the algorithm was calibrated and validated using actual dengue case data of Iquitos, Peru. We will show results on model capabilities in capturing initiation and peak in the observed time series. In addition, results from several simulation scenarios under different climatic conditions will be discussed.

  16. Numerical Simulation of the Effects of Water Surface in Building Environment

    Science.gov (United States)

    Li, Guangyao; Pan, Yuqing; Yang, Li

    2018-03-01

    Water body could affect the thermal environment and airflow field in the building districts, because of its special thermal characteristics, evaporation and flat surface. The thermal influence of water body in Tongji University Jiading Campus front area was evaluated. First, a suitable evaporation model was selected and then was applied to calculate the boundary conditions of the water surface in the Fluent software. Next, the computational fluid dynamics (CFD) simulations were conducted on the models both with and without water, following the CFD practices guidelines. Finally, the outputs of the two simulations were compared with each other. Results showed that the effect of evaporative cooling from water surface strongly depends on the wind direction and temperature decrease was about 2∼5°C. The relative humidity within the enclosing area was affected by both the building arrangement and surrounding water. An increase of about 0.1∼0.2m/s of wind speed induced by the water evaporation was observed in the open space.

  17. In vitro analysis of nanotoxicity of metallic nanoparticles in simulated intracorporeal bio-environment

    International Nuclear Information System (INIS)

    Meng Huan; Chen Zhen; Zhang Chengcheng; Zhao Yuliang; Xing Gengmei; Yuan Hui; Chen Chunying; Zhao Feng; Ye Chang; Jia Guang; Wang Xiang

    2005-01-01

    The wildly uses of copper in the various aspects of the life and industry have proved that microsized copper is a substance of very low toxicity. However, the recent experimental results indicate that the acute toxicity of nanosized particles in mice is dramatically different from the microsized particles of copper. The biological toxicity of copper showed increasing feature with the decrease of the particle size. To further study these observations, chemical oxidation-reduction titration analysis was carried out to study the kinetics of nano copper particles in simulated gastric juice. Inductively Coupled Plasma Mass Spectrometry (ICP-MS) (Thermo Elemental X7) was used to detect the content of copper in the organs of mice exposed to a wide range of doses. These in vitro studies of chemical reactivity suggest that the nano-sized copper is extremely reactive in simulated intracorporeal environment. The nano copper particles can be converted into ionic form much easier than micro particles of the identical quantity under the same conditions in vitro. The hydrogen ion consumed by nano-sized copper in stomach is dramatically quicker than by micro copper particles. At the presentation, we will discuss the analyzed results for the different distribution of nanoparticles, the different mortality in nano copper treated animal groups between male and female mice, and show evidences demonstrating that the huge surface area as well the ultrahigh chemical reactivity would be the main causes dominating the biological activity/toxicity of metallic nanoparticles in vivo.

  18. Design of a Realistic Test Simulator For a Built-In Self Test Environment

    Directory of Open Access Journals (Sweden)

    A. Ahmad

    2010-12-01

    Full Text Available This paper presents a realistic test approach suitable to Design For Testability (DFT and Built- In Self Test (BIST environments. The approach is culminated in the form of a test simulator which is capable of providing a required goal of test for the System Under Test (SUT. The simulator uses the approach of fault diagnostics with fault grading procedure to provide the tests. The tool is developed on a common PC platform and hence no special software is required. Thereby, it is a low cost tool and hence economical. The tool is very much suitable for determining realistic test sequences for a targeted goal of testing for any SUT. The developed tool incorporates a flexible Graphical User Interface (GUI procedure and can be operated without any special programming skill. The tool is debugged and tested with the results of many bench mark circuits. Further, this developed tool can be utilized for educational purposes for many courses such as fault-tolerant computing, fault diagnosis, digital electronics, and safe - reliable - testable digital logic designs.

  19. Proton generation and transport in the fuel cell environment: atomistic computer simulations

    Science.gov (United States)

    Spohr, Eckhard

    2007-12-01

    Hydrogen atoms in direct methanol fuel cells are produced ’in situ’ by dissociation of methanol on precious metal catalysts (Pt, Pt/Ru) in an aqueous environment. The abstraction of the first hydrogen atom via C H bond cleavage is generally considered to be the rate-limiting step of dissociative methanol adsorption on the catalyst surface. This oxidation reaction on platinum particles in a fuel cell is investigated by means of a combined approach of classical molecular dynamics (MD) simulations and ab initio calculations in order to obtain an understanding of the role of the solvent for the stabilization of intermediates and for the enhancement of proton desorption from the catalyst surface and subsequent transfer into the nearby polymer electrolyte membrane (PEM). The anodically generated protons need to migrate efficiently through the membrane to the cathode were they are consumed. At the same time water and methanol (in a direct methanol fuel cell) transport should be slow. Humidified PEMs are considered to consist of a nanometer-scale phase-separated bicontinuous network of polymer regions providing structural integrity, and of aqueous regions providing the pathways for proton conduction. MD simulations provide a powerful theoretical tool for the investigation and clarification of the relationship between molecular structure and these transport phenomena. In order to atomistically model larger fractions of a humidified PEM, a coarse-grained model of humidified polymer electrolyte membranes has been developed.

  20. Simulation of Earth-Moon-Mars Environments for the Assessment of Organ Doses

    Science.gov (United States)

    Kim, Myung-Hee; Schwadron, Nathan; Townsend, Lawrence W.; Cucinotta, Francis A.

    2010-01-01

    Space radiation environments for historically large solar particle events (SPE) and galactic cosmic rays (GCR) at solar minimum and solar maximum are simulated in order to characterize exposures to radio-sensitive organs for missions to low-Earth orbit (LEO), moon, and Mars. Primary and secondary particles for SPE and GCR are transported through the respective atmosphere of Earth or Mars, space vehicle, and astronaut s body tissues using the HZETRN/QMSFRG computer code. In LEO, exposures are reduced compared to deep space because particles are deflected by the Earth s magnetic field and absorbed by the solid body of the Earth. Geomagnetic transmission function as a function of altitude was applied for the particle flux of charged particles, and the shift or the organ exposures to higher velocity or lower stopping powers compared to those in deep space were analyzed. In the transport through Mars atmosphere, a vertical distribution of atmospheric thickness was calculated from the temperature and pressure data of Mars Global Surveyor, and the directional cosine distribution was implemented to describe the spherically distributed atmospheric distance along the slant path at each altitude. The resultant directional shielding by Mars atmosphere at solar minimum and solar maximum was used for the particle flux simulation at various altitudes on the Martian surface. Finally, atmospheric shielding was coupled with vehicle and body shielding for organ dose estimates. We made predictions of radiation dose equivalents and evaluated acute symptoms at LEO, moon, and Mars at solar minimum and solar maximum.

  1. Understanding the space environment: simulations, statistics and space weather (Julius Bartels Medal Lecture)

    Science.gov (United States)

    Pulkkinen, Tuija

    2017-04-01

    Three disruptive transformations have taken place since the 1990's that have reshaped space research in a major way: Increased computational capacity and improved numerical methods have transformed numerical simulations from rough description of the large-scale dynamics to detailed models capable of describing magnetospheric processes to the accuracy that they compare well with in-situ observations. Coordinated satellite programs and multi-satellite missions have increased the coverage of the near-Earth space from single-satellite observations to statistical databases that allow analysis of the environment changes under varying conditions. The increased use of space assets in non-space-related applications has increased the need for accurate space weather monitoring and forecasts that set new requirements for the accuracy and processing times for as well observations and models. In this presentation, we focus on plasma and energy transfer across the bow shock from the solar wind into the magnetosheath, transport through the magnetosheath, and entry into the magnetosphere across the magnetopause. To that end, we use the GUMICS global magnetohydrodynamic simulation and the Themis 5-spacecraft mission plasma and magnetic field measurements. We show that the transport processes are not uniform, but are different during southward and northward IMF, and during strong and weak driving. We conclude by assessing how these results relate to our capabilities of producing valuable space weather services.

  2. Detection and Tracking of a Novel Genetically Tagged Biological Simulant in the Environment

    Science.gov (United States)

    Emanuel, Peter A.; Buckley, Patricia E.; Sutton, Tiffany A.; Edmonds, Jason M.; Bailey, Andrew M.; Rivers, Bryan A.; Kim, Michael H.; Ginley, William J.; Keiser, Christopher C.; Doherty, Robert W.; Kragl, F. Joseph; Narayanan, Fiona E.; Katoski, Sarah E.; Paikoff, Sari; Leppert, Samuel P.; Strawbridge, John B.; VanReenen, Daniel R.; Biberos, Sally S.; Moore, Douglas; Phillips, Douglas W.; Mingioni, Lisa R.; Melles, Ogba; Ondercin, Daniel G.; Hirsh, Beth; Bieschke, Kendall M.; Harris, Crystal L.; Omberg, Kristin M.; Rastogi, Vipin K.; Van Cuyk, Sheila

    2012-01-01

    A variant of Bacillus thuringiensis subsp. kurstaki containing a single, stable copy of a uniquely amplifiable DNA oligomer integrated into the genome for tracking the fate of biological agents in the environment was developed. The use of genetically tagged spores overcomes the ambiguity of discerning the test material from pre-existing environmental microflora or from previously released background material. In this study, we demonstrate the utility of the genetically “barcoded” simulant in a controlled indoor setting and in an outdoor release. In an ambient breeze tunnel test, spores deposited on tiles were reaerosolized and detected by real-time PCR at distances of 30 m from the point of deposition. Real-time PCR signals were inversely correlated with distance from the seeded tiles. An outdoor release of powdered spore simulant at Aberdeen Proving Ground, Edgewood, MD, was monitored from a distance by a light detection and ranging (LIDAR) laser. Over a 2-week period, an array of air sampling units collected samples were analyzed for the presence of viable spores and using barcode-specific real-time PCR assays. Barcoded B. thuringiensis subsp. kurstaki spores were unambiguously identified on the day of the release, and viable material was recovered in a pattern consistent with the cloud track predicted by prevailing winds and by data tracks provided by the LIDAR system. Finally, the real-time PCR assays successfully differentiated barcoded B. thuringiensis subsp. kurstaki spores from wild-type spores under field conditions. PMID:23001670

  3. Emergent adaptive behaviour of GRN-controlled simulated robots in a changing environment

    Directory of Open Access Journals (Sweden)

    Yao Yao

    2016-12-01

    Full Text Available We developed a bio-inspired robot controller combining an artificial genome with an agent-based control system. The genome encodes a gene regulatory network (GRN that is switched on by environmental cues and, following the rules of transcriptional regulation, provides output signals to actuators. Whereas the genome represents the full encoding of the transcriptional network, the agent-based system mimics the active regulatory network and signal transduction system also present in naturally occurring biological systems. Using such a design that separates the static from the conditionally active part of the gene regulatory network contributes to a better general adaptive behaviour. Here, we have explored the potential of our platform with respect to the evolution of adaptive behaviour, such as preying when food becomes scarce, in a complex and changing environment and show through simulations of swarm robots in an A-life environment that evolution of collective behaviour likely can be attributed to bio-inspired evolutionary processes acting at different levels, from the gene and the genome to the individual robot and robot population.

  4. Emergent adaptive behaviour of GRN-controlled simulated robots in a changing environment.

    Science.gov (United States)

    Yao, Yao; Storme, Veronique; Marchal, Kathleen; Van de Peer, Yves

    2016-01-01

    We developed a bio-inspired robot controller combining an artificial genome with an agent-based control system. The genome encodes a gene regulatory network (GRN) that is switched on by environmental cues and, following the rules of transcriptional regulation, provides output signals to actuators. Whereas the genome represents the full encoding of the transcriptional network, the agent-based system mimics the active regulatory network and signal transduction system also present in naturally occurring biological systems. Using such a design that separates the static from the conditionally active part of the gene regulatory network contributes to a better general adaptive behaviour. Here, we have explored the potential of our platform with respect to the evolution of adaptive behaviour, such as preying when food becomes scarce, in a complex and changing environment and show through simulations of swarm robots in an A-life environment that evolution of collective behaviour likely can be attributed to bio-inspired evolutionary processes acting at different levels, from the gene and the genome to the individual robot and robot population.

  5. Pattern-­oriented Agent-­based Monte Carlo simulation of Cellular Redox Environment

    DEFF Research Database (Denmark)

    Tang, Jiaowei

    Research suggests that cellular redox environment could affect the phenotype and function of cells through a complex reaction network[1]. In cells, redox status is mainly regulated by several redox couples, such as Glutathione/glutathione disulfide (GSH/GSSG), Cysteine/ Cystine (CYS/CYSS) and mit......Research suggests that cellular redox environment could affect the phenotype and function of cells through a complex reaction network[1]. In cells, redox status is mainly regulated by several redox couples, such as Glutathione/glutathione disulfide (GSH/GSSG), Cysteine/ Cystine (CYS......, that there is a connection between extracellular and intracellular redox [2], whereas others oppose this view [3]. In general however, these experiments lack insight into the dynamics, complex network of reactions and transportation through cell membrane of redox. Therefore, current experimental results reveal......' that can be run in parallel with MPI on computer cluster, will be used to implement modeling [9]. In the future, studies will be performed simulating how cellular redox state could affect phenotype of a population of cells, and hereby the tissue and organ if dynamics between intracellular and extracellular...

  6. Emergent adaptive behaviour of GRN-controlled simulated robots in a changing environment

    Science.gov (United States)

    Yao, Yao; Storme, Veronique; Marchal, Kathleen

    2016-01-01

    We developed a bio-inspired robot controller combining an artificial genome with an agent-based control system. The genome encodes a gene regulatory network (GRN) that is switched on by environmental cues and, following the rules of transcriptional regulation, provides output signals to actuators. Whereas the genome represents the full encoding of the transcriptional network, the agent-based system mimics the active regulatory network and signal transduction system also present in naturally occurring biological systems. Using such a design that separates the static from the conditionally active part of the gene regulatory network contributes to a better general adaptive behaviour. Here, we have explored the potential of our platform with respect to the evolution of adaptive behaviour, such as preying when food becomes scarce, in a complex and changing environment and show through simulations of swarm robots in an A-life environment that evolution of collective behaviour likely can be attributed to bio-inspired evolutionary processes acting at different levels, from the gene and the genome to the individual robot and robot population. PMID:28028477

  7. Ultra Low Outgassing silicone performance in a simulated space ionizing radiation environment

    Science.gov (United States)

    Velderrain, M.; Malave, V.; Taylor, E. W.

    2010-09-01

    The improvement of silicone-based materials used in space and aerospace environments has garnered much attention for several decades. Most recently, an Ultra Low Outgassing™ silicone incorporating innovative reinforcing and functional fillers has shown that silicone elastomers with unique and specific properties can be developed to meet applications requiring stringent outgassing requirements. This paper will report on the next crucial step in qualifying these materials for spacecraft applications requiring chemical and physical stability in the presence of ionizing radiation. As a first step in this process, selected materials were irradiated with Co-60 gamma-rays to simulate the total dose received in near- Earth orbits. The paper will present pre-and post-irradiation response data of Ultra Low Outgassing silicone samples exposed under ambient air environment coupled with measurements of collected volatile condensable material (CVCM) and total mass loss (TML) per the standard conditions in ASTM E 595. The data will show an insignificant effect on the CVCMs and TMLs after exposure to various dosages of gamma radiation. This data may favorably impact new applications for these silicone materials for use as an improved sealant for space solar cell systems, space structures, satellite systems and aerospace systems.

  8. Simulations and experimental evaluation of an active orthosis for interaction in virtual environments

    Directory of Open Access Journals (Sweden)

    Tsveov Mihail

    2018-01-01

    Full Text Available In this work, the development of a human arm active orthosis is presented. The orthosis is designed primarily for training and rehabilitation in virtual environments.The orthosis system is intended for embodiment in virtual reality where it is allowing human to perceive forces at different body parts or the weight of lifted objects. In the paper the choice of a mechanical structure is shown equivalent to the structure of the human arm. A mechanical model of the orthosis arm as haptic device is built, where kinematic and dynamic parameters are evaluated. Impedance control scheme is selected as the most suitable for force refection at the hand or arm. An open-loop impedance controller is presented in the paper. Computer experiments are carried out using the dimensions of a real arm orthosis. Computer experiments have been carried out to provide force reflection by VR, according to virtual scenario. The conducted simulations show the range of the forces on the operator hand, orthosis can provide. The results of additional measurements and experimental evaluations of physical quantities in the interaction in a virtual environment are revealed in the paper.

  9. The Value of Biomedical Simulation Environments to Future Human Space Flight Missions

    Science.gov (United States)

    Mulugeta, Lealem; Myers, Jerry G.; Skytland, Nicholas G.; Platts, Steven H.

    2010-01-01

    With the ambitious goals to send manned missions to asteroids and onto Mars, substantial work will be required to ensure the well being of the men and women who will undertake these difficult missions. Unlike current International Space Station or Shuttle missions, astronauts will be required to endure long-term exposure to higher levels of radiation, isolation and reduced gravity. These new operation conditions will pose health risks that are currently not well understood and perhaps unanticipated. Therefore, it is essential to develop and apply advanced tools to predict, assess and mitigate potential hazards to astronaut health. NASA s Digital Astronaut Project (DAP) is working to develop and apply computational models of physiologic response to space flight operation conditions over various time periods and environmental circumstances. The collective application and integration of well vetted models assessing the physiology, biomechanics and anatomy is referred to as the Digital Astronaut. The Digital Astronaut simulation environment will serve as a practical working tool for use by NASA in operational activities such as the prediction of biomedical risks and functional capabilities of astronauts. In additional to space flight operation conditions, DAP s work has direct applicability to terrestrial biomedical research by providing virtual environments for hypothesis testing, experiment design, and to reduce animal/human testing. A practical application of the DA to assess pre and post flight responses to exercise is illustrated and the difficulty in matching true physiological responses is discussed.

  10. Optimal control of building storage systems using both ice storage and thermal mass – Part I: Simulation environment

    International Nuclear Information System (INIS)

    Hajiah, Ali; Krarti, Moncef

    2012-01-01

    Highlights: ► A simulation environment is described to account for both passive and active thermal energy storage (TES) systems. ► Laboratory testing results have been used to validate the predictions from the simulation environment. ► Optimal control strategies for TES systems have been developed as part of the simulation environment. - Abstract: This paper presents a simulation environment that can evaluate the benefits of using simultaneously building thermal capacitance and ice storage system to reduce total operating costs including energy and demand charges while maintaining adequate occupant comfort conditions within commercial buildings. The building thermal storage is controlled through pre-cooling strategies by setting space indoor air temperatures. The ice storage system is controlled by charging the ice tank and operating the chiller during low electrical charge periods and melting the ice during on-peak periods. Optimal controls for both building thermal storage and ice storage are developed to minimize energy charges, demand charges, or combined energy and demand charges. The results obtained from the simulation environment are validated using laboratory testing for an optimal controller.

  11. A real-time computer simulation of nuclear simulator software using standard PC hardware and linux environments

    International Nuclear Information System (INIS)

    Cha, K. H.; Kweon, K. C.

    2001-01-01

    A feasibility study, which standard PC hardware and Real-Time Linux are applied to real-time computer simulation of software for a nuclear simulator, is presented in this paper. The feasibility prototype was established with the existing software in the Compact Nuclear Simulator (CNS). Throughout the real-time implementation in the feasibility prototype, we has identified that the approach can enable the computer-based predictive simulation to be approached, due to both the remarkable improvement in real-time performance and the less efforts for real-time implementation under standard PC hardware and Real-Time Linux envrionments

  12. Premar-2: a Monte Carlo code for radiative transport simulation in atmospheric environments

    Energy Technology Data Exchange (ETDEWEB)

    Cupini, E. [ENEA, Centro Ricerche Ezio Clementel, Bologna, (Italy). Dipt. Innovazione

    1999-07-01

    The peculiarities of the PREMAR-2 code, aimed at radiation transport Monte Carlo simulation in atmospheric environments in the infrared-ultraviolet frequency range, are described. With respect to the previously developed PREMAR code, besides plane multilayers, spherical multilayers and finite sequences of vertical layers, each one with its own atmospheric behaviour, are foreseen in the new code, together with the refraction phenomenon, so that long range, highly slanted paths can now be more faithfully taken into account. A zenithal angular dependence of the albedo coefficient has moreover been introduced. Lidar systems, with spatially independent source and telescope, are allowed again to be simulated, and, in this latest version of the code, sensitivity analyses to be performed. According to this last feasibility, consequences on radiation transport of small perturbations in physical components of the atmospheric environment may be analyze and the related effects on searched results estimated. The availability of a library of physical data (reaction coefficients, phase functions and refraction indexes) is required by the code, providing the essential features of the environment of interest needed of the Monte Carlo simulation. Variance reducing techniques have been enhanced in the Premar-2 code, by introducing, for instance, a local forced collision technique, especially apt to be used in Lidar system simulations. Encouraging comparisons between code and experimental results carried out at the Brasimone Centre of ENEA, have so far been obtained, even if further checks of the code are to be performed. [Italian] Nel presente rapporto vengono descritte le principali caratteristiche del codice di calcolo PREMAR-2, che esegue la simulazione Montecarlo del trasporto della radiazione elettromagnetica nell'atmosfera, nell'intervallo di frequenza che va dall'infrarosso all'ultravioletto. Rispetto al codice PREMAR precedentemente sviluppato, il codice

  13. Towards a functional-structural plant model of cut-rose: simulation of light environment, light absorption, photosynthesis and interference with the plant structure.

    Science.gov (United States)

    Buck-Sorlin, Gerhard; de Visser, Pieter H B; Henke, Michael; Sarlikioti, Vaia; van der Heijden, Gerie W A M; Marcelis, Leo F M; Vos, Jan

    2011-10-01

    The production system of cut-rose (Rosa × hybrida) involves a complex combination of plant material, management practice and environment. Plant structure is determined by bud break and shoot development while having an effect on local light climate. The aim of the present study is to cover selected aspects of the cut-rose system using functional-structural plant modelling (FSPM), in order to better understand processes contributing to produce quality and quantity. The model describes the production system in three dimensions, including a virtual greenhouse environment with the crop, light sources (diffuse and direct sun light and lamps) and photosynthetically active radiation (PAR) sensors. The crop model is designed as a multiscaled FSPM with plant organs (axillary buds, leaves, internodes, flowers) as basic units, and local light interception and photosynthesis within each leaf. A Monte-Carlo light model was used to compute the local light climate for leaf photosynthesis, the latter described using a biochemical rate model. The model was able to reproduce PAR measurements taken at different canopy positions, different times of the day and different light regimes. Simulated incident and absorbed PAR as well as net assimilation rate in upright and bent shoots showed characteristic spatial and diurnal dynamics for different common cultivation scenarios. The model of cut-rose presented allowed the creation of a range of initial structures thanks to interactive rules for pruning, cutting and bending. These static structures can be regarded as departure points for the dynamic simulation of production of flower canes. Furthermore, the model was able to predict local (per leaf) light absorption and photosynthesis. It can be used to investigate the physiology of ornamental plants, and provide support for the decisions of growers and consultants.

  14. Towards a functional–structural plant model of cut-rose: simulation of light environment, light absorption, photosynthesis and interference with the plant structure

    Science.gov (United States)

    Buck-Sorlin, Gerhard; de Visser, Pieter H. B.; Henke, Michael; Sarlikioti, Vaia; van der Heijden, Gerie W. A. M.; Marcelis, Leo F. M.; Vos, Jan

    2011-01-01

    Background and Aims The production system of cut-rose (Rosa × hybrida) involves a complex combination of plant material, management practice and environment. Plant structure is determined by bud break and shoot development while having an effect on local light climate. The aim of the present study is to cover selected aspects of the cut-rose system using functional–structural plant modelling (FSPM), in order to better understand processes contributing to produce quality and quantity. Methods The model describes the production system in three dimensions, including a virtual greenhouse environment with the crop, light sources (diffuse and direct sun light and lamps) and photosynthetically active radiation (PAR) sensors. The crop model is designed as a multiscaled FSPM with plant organs (axillary buds, leaves, internodes, flowers) as basic units, and local light interception and photosynthesis within each leaf. A Monte-Carlo light model was used to compute the local light climate for leaf photosynthesis, the latter described using a biochemical rate model. Key Results The model was able to reproduce PAR measurements taken at different canopy positions, different times of the day and different light regimes. Simulated incident and absorbed PAR as well as net assimilation rate in upright and bent shoots showed characteristic spatial and diurnal dynamics for different common cultivation scenarios. Conclusions The model of cut-rose presented allowed the creation of a range of initial structures thanks to interactive rules for pruning, cutting and bending. These static structures can be regarded as departure points for the dynamic simulation of production of flower canes. Furthermore, the model was able to predict local (per leaf) light absorption and photosynthesis. It can be used to investigate the physiology of ornamental plants, and provide support for the decisions of growers and consultants. PMID:21856634

  15. Holonic multilevel simulation of complex systems : Application to real-time pedestrians simulation in virtual urban environment

    NARCIS (Netherlands)

    Gaud, Nicolas; Galland, Stephane; Gechter, Franck; Hilaire, Vincent; Koukam, Abderrafiaa

    2008-01-01

    Simulation, which creates abstractions of the system is an appropriate approach for studying complex systems that are inaccessible through direct observation and measurement. The problem with simulation of great numbers of interacting entities is that it is difficult to create a reliable and

  16. Environment

    Science.gov (United States)

    2005-01-01

    biodiversity. Consequently, the major environmental challenges facing us in the 21st century include: global climate change , energy, population and food...technological prowess, and security interests. Challenges Global Climate Change – Evidence shows that our environment and the global climate ... urbanization will continue to pressure the regional environment . Although most countries have environmental protection ministries or agencies, a lack of

  17. SECAD-- a Schema-based Environment for Configuring, Analyzing and Documenting Integrated Fusion Simulations. Final report

    International Nuclear Information System (INIS)

    Shasharina, Svetlana

    2012-01-01

    SECAD is a project that developed a GUI for running integrated fusion simulations as implemented in FACETS and SWIM SciDAC projects. Using the GUI users can submit simulations locally and remotely and visualize the simulation results

  18. Adaptive capability as indicated by endocrine and biochemical responses of Malpura ewes subjected to combined stresses (thermal and nutritional) in a semi-arid tropical environment

    Science.gov (United States)

    Sejian, Veerasamy; Maurya, Vijai P.; Naqvi, Sayeed M. K.

    2010-11-01

    A study was conducted to assess the effect of combined stresses (thermal and nutritional) on endocrine and biochemical responses in Malpura ewes. Twenty eight adult Malpura ewes (average body weight 33.56 kg) were used in the present study. The ewes were divided into four groups viz., GI ( n = 7; control), GII ( n = 7; thermal stress), GIII ( n = 7; nutritional stress) and GIV ( n = 7; combined stress). The animals were stall fed with a diet consisting of 60% roughage and 40% concentrate. GI and GII ewes were provided with ad libitum feeding while GIII and GIV ewes were provided with restricted feed (30% intake of GI ewes) to induce nutritional stress. GII and GIV ewes were kept in climatic chamber at 40°C and 55% RH for 6 h a day between 1000 hours and 1600 hours to induce thermal stress. The study was conducted for a period of two estrus cycles. The parameters studied were Hb, PCV, glucose, total protein, total cholesterol, ACP, ALP, cortisol, T4, T3, and insulin. Combined stress significantly ( P ewes. It can be concluded from this study that two stressors occurring simultaneously may impact severely on the biological functions necessary to maintain homeostasis in sheep.

  19. Estimates of Nitrogen, Phosphorus, Biochemical Oxygen Demand, and Fecal Coliforms Entering the Environment Due to Inadequate Sanitation Treatment Technologies in 108 Low and Middle Income Countries.

    Science.gov (United States)

    Fuhrmeister, Erica R; Schwab, Kellogg J; Julian, Timothy R

    2015-10-06

    Understanding the excretion and treatment of human waste (feces and urine) in low and middle income countries (LMICs) is necessary to design appropriate waste management strategies. However, excretion and treatment are often difficult to quantify due to decentralization of excreta management. We address this gap by developing a mechanistic, stochastic model to characterize phosphorus, nitrogen, biochemical oxygen demand (BOD), and fecal coliform pollution from human excreta for 108 LMICs. The model estimates excretion and treatment given three scenarios: (1) use of existing sanitation systems, (2) use of World Health Organization-defined "improved sanitation", and (3) use of best available technologies. Our model estimates that more than 10(9) kg/yr each of phosphorus, nitrogen and BOD are produced. Of this, 22(19-27)%, 11(7-15)%, 17(10-23)%, and 35 (23-47)% (mean and 95% range) BOD, nitrogen, phosphorus, and fecal coliforms, respectively, are removed by existing sanitation systems. Our model estimates that upgrading to "improved sanitation" increases mean removal slightly to between 17 and 53%. Under the best available technology scenario, only approximately 60-80% of pollutants are treated. To reduce impact of nutrient and microbial pollution on human and environmental health, improvements in both access to adequate sanitation and sanitation treatment efficiency are needed.

  20. Thermally Induced Vibrations of the Hubble Space Telescope's Solar Array 3 in a Test Simulated Space Environment

    Science.gov (United States)

    Early, Derrick A.; Haile, William B.; Turczyn, Mark T.; Griffin, Thomas J. (Technical Monitor)

    2001-01-01

    NASA Goddard Space Flight Center and the European Space Agency (ESA) conducted a disturbance verification test on a flight Solar Array 3 (SA3) for the Hubble Space Telescope using the ESA Large Space Simulator (LSS) in Noordwijk, the Netherlands. The LSS cyclically illuminated the SA3 to simulate orbital temperature changes in a vacuum environment. Data acquisition systems measured signals from force transducers and accelerometers resulting from thermally induced vibrations of the SAI The LSS with its seismic mass boundary provided an excellent background environment for this test. This paper discusses the analysis performed on the measured transient SA3 responses and provides a summary of the results.

  1. Using second life virtual simulation environment for mock oral emergency medicine examination.

    Science.gov (United States)

    Schwaab, Jillian; Kman, Nicholas; Nagel, Rollin; Bahner, David; Martin, Daniel R; Khandelwal, Sorabh; Vozenilek, John; Danforth, Douglas R; Nelson, Richard

    2011-05-01

    Oral examination is a method used to evaluate emergency medicine (EM) residents and is a requirement for board certification of emergency physicians. Second Life (SL) is a virtual three-dimensional (3-D) immersive learning environment that has been used for medical education. In this study we explore the use of SL virtual simulation technology to administer mock oral examinations to EM residents. This was a prospective observational study of EM residents who had previously completed mock oral examinations, participating in a similar mock oral examination case scenario conducted via SL. EM residents in this training program completed mock oral examinations in a traditional format, conducted face to face with a faculty examiner. All current residents were invited to participate in a similar case scenario conducted via SL for this study. The examinee managed the case while acting as the physician avatar and communicated via headset and microphone from a remote computer with a faculty examiner who acted as the patient avatar. Participants were surveyed regarding their experience with the traditional and virtual formats using a Likert scale. Twenty-seven EM residents participated in the virtual oral examination. None of the examinees had used SL previously. SL proved easy for examinees to log into (92.6%) and navigate (96.3%). All felt comfortable communicating with the examiner via remote computer. Most examinees thought the SL encounter was realistic (92.6%), and many found it more realistic than the traditional format (70.3%). All examinees felt that the virtual examination was fair, objective, and conducted efficiently. A majority preferred to take oral examinations via SL over the traditional format and expressed interest in using SL for other educational experiences (66.6 and 92.6%, respectively). Application of SL virtual simulation technology is a potential alternative to traditional mock oral examinations for EM residents. © 2011 by the Society for Academic

  2. Corrosion behaviour of zinc and aluminium in simulated nuclear accident environments

    International Nuclear Information System (INIS)

    Piippo, J.; Laitinen, T.; Sirkiae, P.

    1997-02-01

    The corrosion rates of zinc and aluminium were determined in simulated large pipe break and in severe accident cases. An in situ on fine measurement technique, which is based on the resistance measurement of sample wires, was used. In the large pipe break case the corrosion rates of zinc and aluminium were determined at pH 8 and pH 10 in deaerated and in aerated solutions. Tests were also performed in aerated 0.1 M borate buffer solution at pH 9.2. Temperature range was 130 deg C - 50 deg C. The corrosion of zinc appears to be relatively fast in neutral or mildly alkaline aerated water, while both high pH and deaeration tend to reduce the corrosion rates of zinc. The aeration and pH elevation decrease the corrosion rate of aluminium. The simulation of the severe accident case took place in the pH range 3-11 in chloride containing solutions at 50 deg C temperature. The corrosion rate of aluminium was lower than that of zinc, except for the solution with pH 11, in which the corrosion rate of aluminium was practically identical to that of zinc. Both metals corroded more rapidly in the presence of chlorides in acidic and alkalic conditions than in the absence of chlorides at neutral environment. The solubility of zinc and aluminium and the stability of the corrosion products were estimated using thermodynamical calculations. The experimental results and the thermodynamical calculations were in fair agreement. (8 refs.)

  3. New developments and applications of the simulation environment Smile; Neue Entwicklungen und Anwendungen der Simulationsumgebung Smile

    Energy Technology Data Exchange (ETDEWEB)

    Brinckmann, B. [Technische Univ. Berlin (Germany). Inst. fuer Energietechnik; Jochum, P. [Technische Univ. Berlin (Germany). Inst. fuer Energietechnik; Nytsch, C. [Technische Univ. Berlin (Germany). Inst. fuer Energietechnik

    1996-11-01

    The simulation environment Smile developed at the Technical University of Berlin was able to prove its capability and possible use by the continuous expansion of both the areas of application and the models. The language concept started in 1991 has now proved very successful and opens up further interesting prospects. The activities for the integration of optimisation routines have been intensified for some time, where the object orientation provides good support. The area of use of Smile is at present mainly limited to the scientific field, but some first real applications have been able to be analysed. The future extension of Smile will include the further development to a design and planning tool, in contrast to a pure simulation tool. Optimisation will become an ever greater task here. One can see further details from http//www. cs tu-berlin.de/smile/of 4 html. (orig.) [Deutsch] Die an der TU-Berlin entwickelte Simulationsumgebung Smile konnte ihre Faehigkeiten und Einsatzmoeglichkeiten durch die kontinuierliche Ausweitung sowohl der Anwendungsgebiete als auch der Modelle weiter unter Beweis stellen. Das bereits 1991 angelegte Sprachkonzept hat sich bis heute sehr bewaehrt und oeffnet zusehends weitere interessante Perspektiven. So wurden seit einiger Zeit die Aktivitaeten zur Integration von Optimierungsroutinen intensiviert, wobei die angelegte Objektorientierung eine gute Unterstuetzung bietet. Der Einsatzbereich von Smile ist derzeit noch hauptsaechlich auf den Wissenschaftsbereich beschraenkt, jedoch konnten auch schon einige erste reale Anwendungsfaelle analysiert werden. Der zukuenftige Ausbau von Smile wird die Weiterentwicklung hin zu einem Auslegungs- und Planungswerkzeug, im Gegensatz zu einem reinen Simulationstool beinhalten. Hier wird der Optimierung eine immer staerker werdende Aufgabe zugeordnet werden. Weiteres ist unter http://www.cs.tu-berlin.de/{proportional_to}smile/of4.html einsehbar. (orig.)

  4. Salt caves as simulation of natural environment and significance of halotherapy

    Directory of Open Access Journals (Sweden)

    Joanna Zajac

    2014-03-01

    Full Text Available Introduction. Human activity usually leads to a deterioration in air quality; therefore, searching for places that simulate an environment without pollution is important. Artificial salt caves play crucial role, as a kind of therapy, known as halotherapy, based on treatment in a controlled air medium that simulates a natural salt cave microclimate. Objective. Evaluation of awareness about the existence of salt caves, basic knowledge about the purpose for their presence among people who bought salt caves sessions, and checking their subjective estimation of salt caves influence on their well-being. Material & Methods. 303 inhabitants (18–51-years-old of 3 randomly chosen cities of southern Poland were surveyed using a validated author’s questionnaire. Both genders were represented in comparable numbers. Results. It was be observed that knowledge about the existence of salt-caves is common – 94% of respondents. 96 persons bought at least 3 salt caves sessions. The majority of women, did this for therapeutic reasons (57%, and men for both therapeutic and relaxation reasons (both 39%. Both among women and men, the dysfunctions intended to be cured by sessions included problems with throat, larynx or sinus. Depression as a reason for buying sessions was mentioned only by women. In general, those who attended felt better after sessions in salt caves. Conclusion. Besides the health benefits, people do not have free time for rest and activities in clean air; moreover, stress is inseparable from everyday life, and for that reasons salt caves become places that help to support a proper lifestyle.

  5. Telematics-based online client-server/client collaborative environment for radiotherapy planning simulations.

    Science.gov (United States)

    Kum, Oyeon

    2007-11-01

    Customized cancer radiation treatment planning for each patient is very useful for both a patient and a doctor because it provides the ability to deliver higher doses to a more accurately defined tumor and at the same time lower doses to organs at risk and normal tissues. This can be realized by building an accurate planning simulation system to provide better treatment strategies based on each patient's tomographic data such as CT, MRI, PET, or SPECT. In this study, we develop a real-time online client-server/client collaborative environment between the client (health care professionals or hospitals) and the server/client under a secure network using telematics (the integrated use of telecommunications and medical informatics). The implementation is based on a point-to-point communication scheme between client and server/client following the WYSIWIS (what you see is what I see) paradigm. After uploading the patient tomographic data, the client is able to collaborate with the server/client for treatment planning. Consequently, the level of health care services can be improved, specifically for small radiotherapy clinics in rural/remote-country areas that do not possess much experience or equipment such as a treatment planning simulator. The telematics service of the system can also be used to provide continued medical education in radiotherapy. Moreover, the system is easy to use. A client can use the system if s/he is familiar with the Windows(TM) operating system because it is designed and built based on a user-friendly concept. This system does not require the client to continue hardware and software maintenance and updates. These are performed automatically by the server.

  6. Eye Movement Patterns during Locomotion in Real-World and Simulated Environments

    Directory of Open Access Journals (Sweden)

    Ming Zhao

    2012-05-01

    Full Text Available Eye movements in a search-and-count walking task were compared between a simulated (SE and real-world environment (RE. Eye movements were recorded using the mobile WearCam in either RE or the StroMoHab locomotion simulator, a treadmill-based system for gait mobility rehabilitation. For Experiment 1, a RE was prepared with objects (coloured balls and occluding barriers placed along a 38 m long corridor. A video was captured from a walker's viewpoint at 1.3 km/hr. Fifteen subjects per environment reported the total object count after completing a walk while viewing the video in the SE (at 0, 1.3, or 2.5 km/h and RE (at 1.3 km/h. Examining the number of eye transitions (TotET between objects in relation to walking speed in SE, revealed significant increases between 0 and 2.5 km/h (F3, 56 =20.62, p = .02 and 1.3 and 2.5 km/h (F3, 56 =20.62, p = .039, despite no change in video speed; no significant difference was found between 0 and 1.3 km/h. In Experiment 2, 15 subjects viewed a static checkered screen and were instructed to ‘view the screen’ while walking. TotET decreased significantly, between 1.3 km/h and 5.2 km/h (F2, 27 =3.437, p = .014; no significant differences were observed between 2.6 km/h and either 1.3 km/h or 5.2 km/h. In real-world conditions, walking faster increases the difficulty of search tasks, with a likely correlated increase in eye movements. Apparently, the expectation of increased difficulty carries over to SE, even if the visual task is not more difficult. The findings point to physiological and perceptual correlations between locomotion and eye movements.

  7. The cellular environment in computer simulations of radiation-induced damage to DNA

    International Nuclear Information System (INIS)

    Moiseenko, V.V.; Hamm, R.N.; Waker, A.J.; Prestwich, W.V.

    1988-01-01

    Radiation-induced DNA single- and double-strand breaks were modeled for 660 keV photon radiation and scavenger capacity mimicking the cellular environment. Atomistic representation of DNA in B form with a first hydration shell was utilized to model direct and indirect damage. Monte Carlo generated electron tracks were used to model energy deposition in matter and to derive initial spatial distributions of species which appear in the medium following radiolysis. Diffusion of species was followed with time, and their reactions with DNA and each other were modeled in an encounter-controlled manner. Three methods to account for hydroxyl radical diffusion in cellular environment were tested: assumed exponential survival, time-limited modeling and modeling of reactions between hydroxyl radicals and scavengers in an encounter-controlled manner. Although the method based on modeling scavenging in an encounter-controlled manner is more precise, it requires substantially more computer resources than either the exponential or time-limiting method. Scavenger concentrations of 0.5 and 0.15 M were considered using exponential and encounter-controlled methods with reaction rate set at 3x10 9 dm 3 mol -1 s-1. Diffusion length and strand break yields, predicted by these two methods for the same scavenger molarity, were different by 20%-30%. The method based on limiting time of chemistry follow-up to 10 -9 s leads to DNA damage and radical diffusion estimates similar to 0.5 M scavenger concentration in the other two methods. The difference observed in predictions made by the methods considered could be tolerated in computer simulations of DNA damage. (author)

  8. Simulation research for mixed radiation environment in target chamber II of BEPC II-LINAC test beam

    International Nuclear Information System (INIS)

    Tang Xinghua; Li Jiacai; Ke Zunjian; An Guangpeng; Zhang Shaoping; Yang Tao; Xu Jinzhang

    2011-01-01

    In order to get basic physical parameters of radiation environment for detector or sample irradiation experiment and optimal target material choice, Monte Carlo simulation software FLUKA is used to calculate parameters of mixed radiation environment in target chamber II on E2 line of test beam. At last, physical parameters: secondary particles differential fluencies, secondary particles angular differential cross-section, dual differential energy spectrum, dose rate distribution are acquired. (authors)

  9. Testing the Joint UK Land Environment Simulator (JULES) for flood forecasting

    Science.gov (United States)

    Batelis, Stamatios-Christos; Rosolem, Rafael; Han, Dawei; Rahman, Mostaquimur

    2017-04-01

    Land Surface Models (LSM) are based on physics principles and simulate the exchanges of energy, water and biogeochemical cycles between the land surface and lower atmosphere. Such models are typically applied for climate studies or effects of land use changes but as the resolution of LSMs and supporting observations are continuously increasing, its representation of hydrological processes need to be addressed adequately. For example, changes in climate and land use can alter the hydrology of a region, for instance, by altering its flooding regime. LSMs can be a powerful tool because of their ability to spatially represent a region with much finer resolution. However, despite such advantages, its performance has not been extensively assessed for flood forecasting simply because its representation of typical hydrological processes, such as overland flow and river routing, are still either ignored or roughly represented. In this study, we initially test the Joint UK Land Environment Simulator (JULES) as a flood forecast tool focusing on its river routing scheme. In particular, JULES river routing parameterization is based on the Rapid Flow Model (RFM) which relies on six prescribed parameters (two surface and two subsurface wave celerities, and two return flow fractions). Although this routing scheme is simple, the prescription of its six default parameters is still too generalized. Our aim is to understand the importance of each RFM parameter in a series of JULES simulations at a number of catchments in the UK for the 2006-2015 period. This is carried out, for instance, by making a number of assumptions of parameter behaviour (e.g., spatially uniform versus varying and/or temporally constant or time-varying parameters within each catchment). Hourly rainfall radar in combination with the CHESS (Climate, Hydrological and Ecological research Support System) meteorological daily data both at 1 km2 resolution are used. The evaluation of the model is based on hourly runoff

  10. Assessment of biological and biochemical indicators in soil under transgenic Bt and non-Bt cotton crop in a sub-tropical environment.

    Science.gov (United States)

    Sarkar, Binoy; Patra, Ashok K; Purakayastha, T J; Megharaj, Mallavarapu

    2009-09-01

    There is concern that transgenic Bt-crops carry genes that could have undesirable effects on natural and agro-ecosystem functions. We investigated the effect of Bt-cotton (expressing the Cry 1Ac protein) on several microbial and biochemical indicators in a sandy loam soil. Bt-cotton (MRC-6301Bt) and its non-transgenic near-isoline (MRC-6301) were grown in a net-house on a sandy clay loam soil. Soil and root samples were collected 60, 90, and 120 days after sowing. Soil from a control (no-crop) treatment was also included. Samples were analysed for microbial biomass C, N and P (MBC, MBN, MBP), total organic carbon (TOC), and several soil enzyme activities. The microbial quotient (MQ) was calculated as the ratio of MBC-to-TOC. The average of the three sampling events revealed a significant increase in MBC, MBN, MBP and MQ in the soil under Bt-cotton over the non-Bt isoline. The TOC was similar in Bt and non-Bt systems. Potential N mineralization, nitrification, nitrate reductase, and acid and alkaline phosphatase activities were all higher in the soil under Bt-cotton. Root dry weights were not different (P > 0.05), but root volume of Bt-cotton was higher on 90 and 120 days than that of non-Bt cotton. The time of sampling strongly affected the above parameters, with most being highest on 90 days after sowing. We concluded from the data that there were some positive or no negative effects of Bt-cotton on the studied indicators, and therefore cultivation of Bt-cotton appears to be no risk to soil ecosystem functions.

  11. A real-time interactive simulation framework for watershed decision making using numerical models and virtual environment

    Science.gov (United States)

    Zhang, ShangHong; Xia, ZhongXi; Wang, TaiWei

    2013-06-01

    Decision support systems based on a virtual environment (VE) are becoming a popular platform in watershed simulation and management. Simulation speed and data visualization is of great significance to decision making, especially in urgent events. Real-time interaction during the simulation process is also very important for dealing with different conditions and for making timely decisions. In this study, a VE-based real-time interactive simulation framework (VERTISF) is developed and applied to simulation and management of the Dujiangyan Project in China. In VERTISF development, a virtual reality platform and numerical models were hosted on different computers and connected by a network to improve simulation speed. Different types of numerical models were generalized in a unified architecture based on time step, and interactive control was realized by modifying model boundary conditions at each time step. The "instruction-response" method and data interpolation were used to synchronize virtual environment visualization and numerical model calculation. Implementation of the framework was based on modular software design; various computer languages can be used to develop the appropriate module. Since only slight modification was needed for current numerical model integration in the framework, VERTISF was easy to extend. Results showed that VERTISF could take full advantage of hardware development, and it was a simple and effective solution for complex watershed simulation.

  12. Developing a Black Carbon-Substituted Multimedia Model for Simulating the PAH Distributions in Urban Environments.

    Science.gov (United States)

    Wang, Chunhui; Zhou, Shenglu; He, Yue; Wang, Junxiao; Wang, Fei; Wu, Shaohua

    2017-11-06

    A multimedia fugacity model with spatially resolved environmental phases at an urban scale was developed. In this model, the key parameter, organic matter, was replaced with black carbon (BC) and applied to simulate the distributions of phenanthrene (Phe), pyrene (Pyr) and benzo[α]pyrene (BaP) in Nanjing, China. Based on the estimated emissions and measured inflows of air and water, the Phe, Pyr and BaP concentrations in different environment media were calculated under steady-state assumptions. The original model (OC-Model), BC-inclusive model (dual C-Model) and improved model (BC-Model) were validated by comparing observed and predicted Phe, Pyr and BaP concentrations. Our results suggested that lighter polycyclic aromatic hydrocarbons (PAHs) were more affected by BC substitution than their heavier counterparts. We advocate the utilization of sorption with BC in future multimedia fate models for lighter PAHs based on the comparison of the calculated and observed values from measured and published sources. The spatial distributions of the Phe, Pyr and BaP concentrations in all phases were rationally mapped based on the calculated concentrations from the BC-Model, indicating that soil was the dominant sink of PAHs in terrestrial systems, while sediment was the dominant sink of PAHs in aquatic systems.

  13. Corrosion Behavior of Silver-Plated Circuit Boards in a Simulated Marine Environment with Industrial Pollution.

    Science.gov (United States)

    Xiao, Kui; Yi, Pan; Yan, Lidan; Bai, Ziheng; Dong, Chaofang; Dong, Pengfei; Gao, Xiong

    2017-07-06

    The electrochemical corrosion behavior of a silver-plated circuit board (PCB-ImAg) in a polluted marine atmosphere environment (Qingdao in China) is studied through a simulated experiment. The morphologies of PCB-ImAg show some micropores on the surface that act as the corrosion-active points in the tests. Cl - mainly induces microporous corrosion, whereas SO₂ causes general corrosion. Notably, the silver color changes significantly under SO₂ influence. EIS results show that the initial charge transfer resistance in the test containing SO₂ and Cl - is 9.847 × 10³, while it is 3.701 × 10⁴ in the test containing Cl - only, which demonstrates that corrosion accelerates in a mixed atmosphere. Polarization curves further show that corrosion potential is lower in mixed solutions (between -0.397 V SCE and -0.214 V SCE) than it in the solution containing Cl - only (-0.168 V SCE), indicating that corrosion tendency increases with increased HSO₃ - concentration.

  14. Corrosion Behavior of Silver-Plated Circuit Boards in a Simulated Marine Environment with Industrial Pollution

    Directory of Open Access Journals (Sweden)

    Kui Xiao

    2017-07-01

    Full Text Available The electrochemical corrosion behavior of a silver-plated circuit board (PCB-ImAg in a polluted marine atmosphere environment (Qingdao in China is studied through a simulated experiment. The morphologies of PCB-ImAg show some micropores on the surface that act as the corrosion-active points in the tests. Cl− mainly induces microporous corrosion, whereas SO2 causes general corrosion. Notably, the silver color changes significantly under SO2 influence. EIS results show that the initial charge transfer resistance in the test containing SO2 and Cl− is 9.847 × 103, while it is 3.701 × 104 in the test containing Cl− only, which demonstrates that corrosion accelerates in a mixed atmosphere. Polarization curves further show that corrosion potential is lower in mixed solutions (between −0.397 V SCE and −0.214 V SCE than it in the solution containing Cl− only (−0.168 V SCE, indicating that corrosion tendency increases with increased HSO3− concentration.

  15. SERA: Simulation Environment for Radiotherapy Applications - Users Manual Version 1CO

    Energy Technology Data Exchange (ETDEWEB)

    Venhuizen, James Robert; Wessol, Daniel Edward; Wemple, Charles Alan; Wheeler, Floyd J; Harkin, G. J.; Frandsen, M. W.; Albright, C. L.; Cohen, M.T.; Rossmeier, M.; Cogliati, J.J.

    2002-06-01

    This document is the user manual for the Simulation Environment for Radiotherapy Applications (SERA) software program developed for boron-neutron capture therapy (BNCT) patient treatment planning by researchers at the Idaho National Engineering and Environmental Laboratory (INEEL) and students and faculty at Montana State University (MSU) Computer Science Department. This manual corresponds to the final release of the program, Version 1C0, developed to run under the RedHat Linux Operating System (version 7.2 or newer) or the Solaris™ Operating System (version 2.6 or newer). SERA is a suite of command line or interactively launched software modules, including graphical, geometric reconstruction, and execution interface modules for developing BNCT treatment plans. The program allows the user to develop geometric models of the patient as derived from Computed Tomography (CT) and Magnetic Resonance Imaging (MRI) images, perform dose computation for these geometric models, and display the computed doses on overlays of the original images as three dimensional representations. This manual provides a guide to the practical use of SERA, but is not an exhaustive treatment of each feature of the code.

  16. SERA: Simulation Environment for Radiotherapy Applications - Users Manual Version 1CO

    International Nuclear Information System (INIS)

    Venhuizen, James Robert; Wessol, Daniel Edward; Wemple, Charles Alan; Wheeler, Floyd J; Harkin, G. J.; Frandsen, M. W.; Albright, C. L.; Cohen, M.T.; Rossmeier, M.; Cogliati, J.J.

    2002-01-01

    This document is the user manual for the Simulation Environment for Radiotherapy Applications (SERA) software program developed for boron-neutron capture therapy (BNCT) patient treatment planning by researchers at the Idaho National Engineering and Environmental Laboratory (INEEL) and students and faculty at Montana State University (MSU) Computer Science Department. This manual corresponds to the final release of the program, Version 1C0, developed to run under the RedHat Linux Operating System (version 7.2 or newer) or the Solaris Operating System (version 2.6 or newer). SERA is a suite of command line or interactively launched software modules, including graphical, geometric reconstruction, and execution interface modules for developing BNCT treatment plans. The program allows the user to develop geometric models of the patient as derived from Computed Tomography (CT) and Magnetic Resonance Imaging (MRI) images, perform dose computation for these geometric models, and display the computed doses on overlays of the original images as three dimensional representations. This manual provides a guide to the practical use of SERA, but is not an exhaustive treatment of each feature of the code

  17. Corrosion fatigue of alloys 600 and 690 in simulated LWR environments

    Energy Technology Data Exchange (ETDEWEB)

    Ruther, W.E.; Soppett, W.K.; Kassner, T.F. [Argonne National Lab., IL (United States)

    1996-04-01

    Crack growth data were obtained on fracture-mechanics specimens of Alloys 600 and 690 to investigate environmentally assisted cracking (EAC) in simulated boiling water reactor and pressurized water reactor environments at 289 and 320 C. Preliminary information was obtained on the effect of temperature, load ratio, stress intensity (K), and the dissolved-oxygen and -hydrogen concentrations of the water on EAC. Specimens of Type 316NG and sensitized Type 304 stainless steel (SS) were included in several of the experiments to assess the behavior of these materials and Alloy 600 under the same water chemistry and loading conditions. The experimental data are compared with predictions from an Argonne National Laboratory (ANL) model for crack growth rates (CGRs) of SSs in water and the ASME Code Section 11 correlation for CGRs in air at the K{sub max} and load-ratio values in the various tests. The data for all of the materials were bounded by ANL model predictions and the ASME Section 11 ``air line.``

  18. Surgical Space Suits Increase Particle and Microbiological Emission Rates in a Simulated Surgical Environment.

    Science.gov (United States)

    Vijaysegaran, Praveen; Knibbs, Luke D; Morawska, Lidia; Crawford, Ross W

    2018-05-01

    The role of space suits in the prevention of orthopedic prosthetic joint infection remains unclear. Recent evidence suggests that space suits may in fact contribute to increased infection rates, with bioaerosol emissions from space suits identified as a potential cause. This study aimed to compare the particle and microbiological emission rates (PER and MER) of space suits and standard surgical clothing. A comparison of emission rates between space suits and standard surgical clothing was performed in a simulated surgical environment during 5 separate experiments. Particle counts were analyzed with 2 separate particle counters capable of detecting particles between 0.1 and 20 μm. An Andersen impactor was used to sample bacteria, with culture counts performed at 24 and 48 hours. Four experiments consistently showed statistically significant increases in both PER and MER when space suits are used compared with standard surgical clothing. One experiment showed inconsistent results, with a trend toward increases in both PER and MER when space suits are used compared with standard surgical clothing. Space suits cause increased PER and MER compared with standard surgical clothing. This finding provides mechanistic evidence to support the increased prosthetic joint infection rates observed in clinical studies. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. A new perspective of particle adsorption: Dispersed oil and granular materials interactions in simulated coastal environment.

    Science.gov (United States)

    Meng, Long; Bao, Mutai; Sun, Peiyan

    2017-09-15

    This study, adsorption behaviors of dispersed oil in seawaters by granular materials were explored in simulation environment. We quantitatively demonstrated the dispersed oil adsorbed by granular materials were both dissolved petroleum hydrocarbons (DPHs) and oil droplets. Furthermore, DPHs were accounted for 42.5%, 63.4%, and 85.2% (35.5% was emulsion adsorption) in the adsorption of dispersed oil by coastal rocks, sediments, and bacterial strain particles respectively. Effects of controlling parameters, such as temperature, particle size and concentration on adsorption of petroleum hydrocarbons were described in detail. Most strikingly, adsorption concentration was followed a decreasing order of bacterial strain (0.5-2μm)>sediments (0.005-0.625mm)>coastal rocks (0.2-1cm). With particle concentration or temperature increased, adsorption concentration increased for coastal rocks particle but decreased for sediments particle. Besides, particle adsorption rate of petroleum hydrocarbons (n-alkanes and PAHs) was different among granular materials during 60 days. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Corrosion of magnesium and magnesium–calcium alloy in biologically-simulated environment

    Directory of Open Access Journals (Sweden)

    Richard Harrison

    2014-10-01

    Full Text Available A study of biocompatibility and corrosion of both metallic magnesium (Mg and a magnesium alloy containing 1% calcium (Mg–Ca were investigated in in vitro culture conditions with and without the presence of bone marrow derived human mesenchymal stem cells (hMSCs. Chemical analysis of the degraded samples was performed using XRD and FEGSEM. The results from the XRD analysis strongly suggested that crystalline phase of magnesium carbonate was present on the surface of both the Mg and Mg–Ca samples. Flame absorption spectrometry was used to analyse the release of magnesium and calcium ions into the cell culture medium. Magnesium concentration was kept consistently at a level ranging from 40 to 80 mM for both Mg and Mg–Ca samples. No cell growth was observed when in direct contact with the metals apart from a few cells observed at the bottom of culture plate containing Mg–Ca alloy. In general, in vitro study of corrosion of Mg–Ca in a biologically-simulated environment using cell culture medium with the presence of hMSCs demonstrated close resemblances to in vivo corrosion. Although in vitro corrosion of Mg–Ca revealed slow corrosion rate and no immediate cytotoxicity effects to hMSCs, its corrosion rate was still too high to achieve normal stem cell growth when cells and alloys were cultured in vitro in direct contact.

  1. A hybrid simulator model for the control of catastrophic external junctional haemorrhage in the military environment.

    Science.gov (United States)

    Silverplats, Katarina; Jonsson, Anders; Lundberg, Lars

    2016-01-01

    Catastrophic haemorrhage from extremity injuries has for a long time been the single most common cause of preventable death in the military environment. The effective use of extremity tourniquets has increased the survival of combat casualties, and exsanguination from isolated limb injuries is no longer the most common cause of death. Today, the most common cause of potentially preventable death is haemorrhage from the junctional zones, i.e. the most proximal part of the extremities, not amenable to standard tourniquets. Different training techniques to control catastrophic haemorrhage have been used by the Swedish Armed Forces in the pre-deployment training of physicians, nurses and medics for many years. The training techniques include different types of human patient simulators such as moulage patients and manikins. Preferred training conditions for the control of catastrophic haemorrhage include a high degree of realism, in combination with multiple training attempts. This report presents a new hybrid training model for catastrophic external junctional haemorrhage control. It offers a readily reproducible, simple and inexpensive opportunity to train personnel to deal with life threatening catastrophic junctional haemorrhage. In particular, this model offers an opportunity for non-medical military personnel in Sweden to practice control of realistic catastrophic haemorrhage, with multiple training attempts.

  2. Development of a computer program data base of a navigation aid environment for simulated IFR flight and landing studies

    Science.gov (United States)

    Bergeron, H. P.; Haynie, A. T.; Mcdede, J. B.

    1980-01-01

    A general aviation single pilot instrument flight rule simulation capability was developed. Problems experienced by single pilots flying in IFR conditions were investigated. The simulation required a three dimensional spatial navaid environment of a flight navigational area. A computer simulation of all the navigational aids plus 12 selected airports located in the Washington/Norfolk area was developed. All programmed locations in the list were referenced to a Cartesian coordinate system with the origin located at a specified airport's reference point. All navigational aids with their associated frequencies, call letters, locations, and orientations plus runways and true headings are included in the data base. The simulation included a TV displayed out-the-window visual scene of country and suburban terrain and a scaled model runway complex. Any of the programmed runways, with all its associated navaids, can be referenced to a runway on the airport in this visual scene. This allows a simulation of a full mission scenario including breakout and landing.

  3. Development and application of an object-oriented graphical environment for the simulation of space-based sensing systems

    Science.gov (United States)

    Barnhardt, Brian; Rucker, Sean; Bearden, David A.; Barrera, Mark J.

    1996-06-01

    The simulation of developing complex systems requires flexibility to allow for changing system requirements and constraints. The object-oriented paradigm provides an environment suitable for establishing flexibility, rapid reconfiguration of new architectures, and integration of new models. This paper outlines the development and application of the brilliant eyes simulator (BESim), sponsored by the US Air FOrce Space and Missile Systems Center. BESim simulates the Space and Missile Tracking System, formerly known as Brilliant Eyes, which represents the low earth orbiting component of the space based infrared system. BESim has powerful tools for simulation setup and analysis of results. The pre-processor enables the user to specify system characteristics, output data collection, external data interfaces, and modeling fidelity. The post-processor consists of a graphical user interface which allows easy access to all simulation output in graphical or tabular form. This includes 2D and 3D graphical playback of performance results.

  4. The Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry (MALDI-TOF MS identification versus biochemical tests: a study with enterobacteria from a dairy cattle environment

    Directory of Open Access Journals (Sweden)

    Naiara Miranda Bento Rodrigues

    Full Text Available Abstract Mastitis adversely affects milk production and in general cows do not regain their full production levels post recovery, leading to considerable economic losses. Moreover the percentage decrease in milk production depends on the specific pathogen that caused the infection and enterobacteria are responsible for this greater reduction. Phenotypic tests are among the currently available methods used worldwide to identify enterobacteria; however they tend to misdiagnose the species despite the multiple tests carried out. On the other hand The Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry (MALDI-TOF MS technique has been attracting attention for its precise identification of several microorganisms at species level. In the current study, 183 enterobacteria were detected in milk (n = 47 and fecal samples (n = 94 from cows, and samples from water (n = 23 and milk lines (n = 19. All these samples were collected from a farm in Rio de Janeiro with the specific purpose of presenting the MALDI-TOF MS technique as an efficient methodology to identify Enterobacteriaceae from bovine environments. The MALDI-TOF MS technique results matched the biochemical test results in 92.9% (170/183 of the enterobacteria species and the gyrB sequencing confirmed 100% of the proteomic technique results. The amino acid decarboxylation test made the most misidentifications and Enterobacter spp. was the most misidentified genus (76.9%, 10/13. These results aim to clarify the current biochemical errors in enterobacteria identification, considering isolates from a bovine environment, and show the importance for more careful readings of phenotypic tests which are often used in veterinary microbiology laboratories.

  5. Taurus II Stage Test Simulations: Using Large-Scale CFD Simulations to Provide Critical Insight into Plume Induced Environments During Design

    Science.gov (United States)

    Struzenberg, L. L.; West, J. S.

    2011-01-01

    This paper describes the use of targeted Loci/CHEM CFD simulations to evaluate the effects of a dual-engine first-stage hot-fire test on an evolving integrated launch pad/test article design. This effort was undertaken as a part of the NESC Independent Assessment of the Taurus II Stage Test Series. The underlying conceptual model included development of a series of computational models and simulations to analyze the plume induced environments on the pad, facility structures and test article. A pathfinder simulation was first developed, capable of providing quick-turn around evaluation of plume impingement pressures on the flame deflector. Results from this simulation were available in time to provide data for an ongoing structural assessment of the deflector. The resulting recommendation was available in a timely manner and was incorporated into construction schedule for the new launch stand under construction at Wallops Flight Facility. A series of Reynolds-Averaged Navier-Stokes (RANS) quasi-steady simulations representative of various key elements of the test profile was performed to identify potential concerns with the test configuration and test profile. As required, unsteady Hybrid-RANS/LES simulations were performed, to provide additional insight into critical aspects of the test sequence. Modifications to the test-specific hardware and facility structures thermal protection as well as modifications to the planned hot-fire test profile were implemented based on these simulation results.

  6. Energy Consumption and Indoor Environment Predicted by a Combination of Computational Fluid Dynamics and Building Energy Performance Simulation

    DEFF Research Database (Denmark)

    Nielsen, Peter Vilhelm

    2003-01-01

    An interconnection between a building energy performance simulation program and a Computational Fluid Dynamics program (CFD) for room air distribution is introduced for improvement of the predictions of both the energy consumption and the indoor environment.The article describes a calculation...

  7. Tech-X Corporation releases simulation code for solving complex problems in plasma physics : VORPAL code provides a robust environment for simulating plasma processes in high-energy physics, IC fabrications and material processing applications

    CERN Multimedia

    2005-01-01

    Tech-X Corporation releases simulation code for solving complex problems in plasma physics : VORPAL code provides a robust environment for simulating plasma processes in high-energy physics, IC fabrications and material processing applications

  8. A Graphical Interactive Simulation Environment for Production Planning in Bacon Factories

    DEFF Research Database (Denmark)

    Nielsen, Kirsten Mølgaard; Nielsen, Jens Frederik Dalsgaard

    1994-01-01

    The paper describes a graphical interactive simulation tool for production planning in bacon factories........The paper describes a graphical interactive simulation tool for production planning in bacon factories.....

  9. The Next-Generation Goddard Convective-Stratiform Heating Algorithm: New Model Simulations for Tropical and Continental Summertime Environments

    Science.gov (United States)

    Lang, S. E.; Tao, W. K.; Wu, D.

    2016-12-01

    The Goddard Convective-Stratiform Heating (or CSH) algorithm is used to retrieve estimates of cloud heating over the global Tropics using TRMM rainfall data and a set of look-up-tables (LUTs) derived from a series of multi-week cloud-resolving model (CRM) simulations using the Goddard Cumulus Ensemble model (or GCE). These simulations link satellite observables (i.e., surface rainfall and stratiform fraction) with cloud heating profiles, which are not directly observable. The strength of the algorithm relies in part on the representativeness of the simulations; more realistic simulations provide a stronger link between the observables and simulated heating profiles. The current "TRMM" version of the CSH algorithm relies on 2D GCE simulations using an improved version of the Goddard 3-class ice scheme (3ICE), a moderate-sized domain, and 1-km horizontal resolution. Updating the LUTs, which are suitable for tropical and continental summertime environments requires new, more realistic GCE simulations. New simulations are performed using a new, improved 4-class ice scheme, which has been shown to outperform the 3ICE scheme, especially for intense convection. Additional grid configurations are also tested and evaluated to find the best overall setup to for re-deriving and updating the CSH tropical/summertime LUTs.

  10. Intelligent simulation of aquatic environment economic policy coupled ABM and SD models.

    Science.gov (United States)

    Wang, Huihui; Zhang, Jiarui; Zeng, Weihua

    2018-03-15

    Rapid urbanization and population growth have resulted in serious water shortage and pollution of the aquatic environment, which are important reasons for the complex increase in environmental deterioration in the region. This study examines the environmental consequences and economic impacts of water resource shortages under variant economic policies; however, this requires complex models that jointly consider variant agents and sectors within a systems perspective. Thus, we propose a complex system model that couples multi-agent based models (ABM) and system dynamics (SD) models to simulate the impact of alternative economic policies on water use and pricing. Moreover, this model took the constraint of the local water resources carrying capacity into consideration. Results show that to achieve the 13th Five Year Plan targets in Dianchi, water prices for local residents and industries should rise to 3.23 and 4.99 CNY/m 3 , respectively. The corresponding sewage treatment fees for residents and industries should rise to 1.50 and 2.25 CNY/m 3 , respectively, assuming comprehensive adjustment of industrial structure and policy. At the same time, the local government should exercise fine-scale economic policy combined with emission fees assessed for those exceeding a standard, and collect fines imposed as punishment for enterprises that exceed emission standards. When fines reach 500,000 CNY, the total number of enterprises that exceed emission standards in the basin can be controlled within 1%. Moreover, it is suggested that the volume of water diversion in Dianchi should be appropriately reduced to 3.06×10 8 m 3 . The reduced expense of water diversion should provide funds to use for the construction of recycled water facilities. Then the local rise in the rate of use of recycled water should reach 33%, and 1.4 CNY/m 3 for the price of recycled water could be provided to ensure the sustainable utilization of local water resources. Copyright © 2017 Elsevier B

  11. Mixed response in bacterial and biochemical variables to simulated sand mining in placer-rich beach sediments, Ratnagiri, West coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Fernandes, C.E.G.; Das, A.; Nath, B.N.; Faria, D.G.; LokaBharathi, P.A.

    and dune and masked at other levels by tidal influence. Sedimentary ATP reduced drastically. During phase III, Pearson's correlation between these variables evolved from non-significant to significant level. Thus, simulated disturbance had a mixed effect...

  12. An energy-economy-environment model for simulating the impacts of socioeconomic development on energy and environment.

    Science.gov (United States)

    Wang, Wenyi; Zeng, Weihua; Yao, Bo

    2014-01-01

    Many rapidly developing regions have begun to draw the attention of the world. Meanwhile, the energy and environmental issues associated with rapid economic growth have aroused widespread critical concern. Therefore, studying energy, economic, and environmental systems is of great importance. This study establishes a system dynamic model that covers multiple aspects of those systems, such as energy, economy, population, water pollution, air pollution, solid waste, and technology. The model designed here attempts to determine the impacts of socioeconomic development on the energy and environment of Tongzhou District in three scenarios: under current, planning, and sustainable conditions. The results reveal that energy shortages and water pollutions are very serious and are the key issues constraining future social and economic development. Solid waste emissions increase with population growth. The prediction results provide valuable insights into social advancement.

  13. An Energy-Economy-Environment Model for Simulating the Impacts of Socioeconomic Development on Energy and Environment

    Directory of Open Access Journals (Sweden)

    Wenyi Wang

    2014-01-01

    Full Text Available Many rapidly developing regions have begun to draw the attention of the world. Meanwhile, the energy and environmental issues associated with rapid economic growth have aroused widespread critical concern. Therefore, studying energy, economic, and environmental systems is of great importance. This study establishes a system dynamic model that covers multiple aspects of those systems, such as energy, economy, population, water pollution, air pollution, solid waste, and technology. The model designed here attempts to determine the impacts of socioeconomic development on the energy and environment of Tongzhou District in three scenarios: under current, planning, and sustainable conditions. The results reveal that energy shortages and water pollutions are very serious and are the key issues constraining future social and economic development. Solid waste emissions increase with population growth. The prediction results provide valuable insights into social advancement.

  14. Assessment of susceptibility of Type 304 stainless steel to intergranular stress corrosion cracking in simulated Savannah River Reactor environments

    International Nuclear Information System (INIS)

    Ondrejcin, R.S.; Caskey, C.R. Jr.

    1989-01-01

    Intergranular stress corrosion cracking (IGSCC) of Type 304 stainless steel rate tests (CERT) of specimens machined was evaluated by constant extension from Savannah River Plant (SRP) decontaminated process water piping. Results from 12 preliminary CERT tests verified that IGSCC occurred over a wide range of simulated SRP envirorments. 73 specimens were tested in two statistical experimental designs of the central composite class. In one design, testing was done in environments containing hydrogen peroxide; in the other design, hydrogen peroxide was omitted but oxygen was added to the environment. Prediction equations relating IGSCC to temperature and environmental variables were formulated. Temperature was the most important independent variable. IGSCC was severe at 100 to 120C and a threshold temperature between 40C and 55C was identified below which IGSCC did not occur. In environments containing hydrogen peroxide, as in SRP operation, a reduction in chloride concentration from 30 to 2 ppB also significantly reduced IGSCC. Reduction in sulfate concentration from 50 to 7 ppB was effective in reducing IGSCC provided the chloride concentration was 30 ppB or less and temperature was 95C or higher. Presence of hydrogen peroxide in the environment increased IGSCC except when chloride concentration was 11 ppB or less. Actual concentrations of hydrogen peroxide, oxygen and carbon dioxide did not affect IGSCC. Large positive ECP values (+450 to +750 mV Standard Hydrogen Electrode (SHE)) in simulated SRP environments containing hydrogen peroxide and were good agreement with ECP measurements made in SRP reactors, indicating that the simulated environments are representative of SRP reactor environments. Overall CERT results suggest that the most effective method to reduce IGSCC is to reduce chloride and sulfate concentrations

  15. Open-Source Integrated Design-Analysis Environment For Nuclear Energy Advanced Modeling & Simulation Final Scientific/Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    O' Leary, Patrick [Kitware, Inc., Clifton Park, NY (United States)

    2017-01-30

    The framework created through the Open-Source Integrated Design-Analysis Environment (IDAE) for Nuclear Energy Advanced Modeling & Simulation grant has simplify and democratize advanced modeling and simulation in the nuclear energy industry that works on a range of nuclear engineering applications. It leverages millions of investment dollars from the Department of Energy's Office of Nuclear Energy for modeling and simulation of light water reactors and the Office of Nuclear Energy's research and development. The IDEA framework enhanced Kitware’s Computational Model Builder (CMB) while leveraging existing open-source toolkits and creating a graphical end-to-end umbrella guiding end-users and developers through the nuclear energy advanced modeling and simulation lifecycle. In addition, the work deliver strategic advancements in meshing and visualization for ensembles.

  16. PhyloSim - Monte Carlo simulation of sequence evolution in the R statistical computing environment.

    Science.gov (United States)

    Sipos, Botond; Massingham, Tim; Jordan, Gregory E; Goldman, Nick

    2011-04-19

    The Monte Carlo simulation of sequence evolution is routinely used to assess the performance of phylogenetic inference methods and sequence alignment algorithms. Progress in the field of molecular evolution fuels the need for more realistic and hence more complex simulations, adapted to particular situations, yet current software makes unreasonable assumptions such as homogeneous substitution dynamics or a uniform distribution of indels across the simulated sequences. This calls for an extensible simulation framework written in a high-level functional language, offering new functionality and making it easy to incorporate further complexity. PhyloSim is an extensible framework for the Monte Carlo simulation of sequence evolution, written in R, using the Gillespie algorithm to integrate the actions of many concurrent processes such as substitutions, insertions and deletions. Uniquely among sequence simulation tools, PhyloSim can simulate arbitrarily complex patterns of rate variation and multiple indel processes, and allows for the incorporation of selective constraints on indel events. User-defined complex patterns of mutation and selection can be easily integrated into simulations, allowing PhyloSim to be adapted to specific needs. Close integration with R and the wide range of features implemented offer unmatched flexibility, making it possible to simulate sequence evolution under a wide range of realistic settings. We believe that PhyloSim will be useful to future studies involving simulated alignments.

  17. PhyloSim - Monte Carlo simulation of sequence evolution in the R statistical computing environment

    Directory of Open Access Journals (Sweden)

    Massingham Tim

    2011-04-01

    Full Text Available Abstract Background The Monte Carlo simulation of sequence evolution is routinely used to assess the performance of phylogenetic inference methods and sequence alignment algorithms. Progress in the field of molecular evolution fuels the need for more realistic and hence more complex simulations, adapted to particular situations, yet current software makes unreasonable assumptions such as homogeneous substitution dynamics or a uniform distribution of indels across the simulated sequences. This calls for an extensible simulation framework written in a high-level functional language, offering new functionality and making it easy to incorporate further complexity. Results PhyloSim is an extensible framework for the Monte Carlo simulation of sequence evolution, written in R, using the Gillespie algorithm to integrate the actions of many concurrent processes such as substitutions, insertions and deletions. Uniquely among sequence simulation tools, PhyloSim can simulate arbitrarily complex patterns of rate variation and multiple indel processes, and allows for the incorporation of selective constraints on indel events. User-defined complex patterns of mutation and selection can be easily integrated into simulations, allowing PhyloSim to be adapted to specific needs. Conclusions Close integration with R and the wide range of features implemented offer unmatched flexibility, making it possible to simulate sequence evolution under a wide range of realistic settings. We believe that PhyloSim will be useful to future studies involving simulated alignments.

  18. THE EFFECT OF ENVIRONMENT ON MILKY-WAY-MASS GALAXIES IN A CONSTRAINED SIMULATION OF THE LOCAL GROUP

    Energy Technology Data Exchange (ETDEWEB)

    Creasey, Peter; Scannapieco, Cecilia; Nuza, Sebastián E.; Gottlöber, Stefan; Steinmetz, Matthias [Leibniz-Institut für Astrophysik Potsdam (AIP), An der Sternwarte 16, D-14482, Potsdam (Germany); Yepes, Gustavo [Grupo de Astrofísica, Universidad Autónoma de Madrid, Madrid E-28049 (Spain)

    2015-02-10

    In this Letter, we present, for the first time, a study of star formation rate (SFR), gas fraction, and galaxy morphology of a constrained simulation of the Milky Way (MW) and Andromeda (M31) galaxies compared to other MW-mass galaxies. By combining with unconstrained simulations, we cover a sufficient volume to compare these galaxies’ environmental densities ranging from the field to that of the Local Group (LG). This is particularly relevant as it has been shown that, quite generally, galaxy properties depend intimately upon their environment, most prominently when galaxies in clusters are compared to those in the field. For galaxies in loose groups such as the LG, however, environmental effects have been less clear. We consider the galaxy’s environmental density in spheres of 1200 kpc (comoving) and find that while environment does not appear to directly affect morphology, there is a positive trend with SFRs. This enhancement in star formation occurs systematically for galaxies in higher density environments, regardless whether they are part of the LG or in filaments. Our simulations suggest that the richer environment at megaparsec scales may help replenish the star-forming gas, allowing higher specific SFRs in galaxies such as the MW.

  19. Implementation of Parallel Dynamic Simulation on Shared-Memory vs. Distributed-Memory Environments

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Shuangshuang; Chen, Yousu; Wu, Di; Diao, Ruisheng; Huang, Zhenyu

    2015-12-09

    Power system dynamic simulation computes the system response to a sequence of large disturbance, such as sudden changes in generation or load, or a network short circuit followed by protective branch switching operation. It consists of a large set of differential and algebraic equations, which is computational intensive and challenging to solve using single-processor based dynamic simulation solution. High-performance computing (HPC) based parallel computing is a very promising technology to speed up the computation and facilitate the simulation process. This paper presents two different parallel implementations of power grid dynamic simulation using Open Multi-processing (OpenMP) on shared-memory platform, and Message Passing Interface (MPI) on distributed-memory clusters, respectively. The difference of the parallel simulation algorithms and architectures of the two HPC technologies are illustrated, and their performances for running parallel dynamic simulation are compared and demonstrated.

  20. Basic Simulation Environment for Highly Customized Connected and Autonomous Vehicle Kinematic Scenarios.

    Science.gov (United States)

    Chai, Linguo; Cai, Baigen; ShangGuan, Wei; Wang, Jian; Wang, Huashen

    2017-08-23

    To enhance the reality of Connected and Autonomous Vehicles (CAVs) kinematic simulation scenarios and to guarantee the accuracy and reliability of the verification, a four-layer CAVs kinematic simulation framework, which is composed with road network layer, vehicle operating layer, uncertainties modelling layer and demonstrating layer, is proposed in this paper. Properties of the intersections are defined to describe the road network. A target position based vehicle position updating method is designed to simulate such vehicle behaviors as lane changing and turning. Vehicle kinematic models are implemented to maintain the status of the vehicles when they are moving towards the target position. Priorities for individual vehicle control are authorized for different layers. Operation mechanisms of CAVs uncertainties, which are defined as position error and communication delay in this paper, are implemented in the simulation to enhance the reality of the simulation. A simulation platform is developed based on the proposed methodology. A comparison of simulated and theoretical vehicle delay has been analyzed to prove the validity and the creditability of the platform. The scenario of rear-end collision avoidance is conducted to verify the uncertainties operating mechanisms, and a slot-based intersections (SIs) control strategy is realized and verified in the simulation platform to show the supports of the platform to CAVs kinematic simulation and verification.

  1. Experimentation and evaluation of threat detection and local area awareness using advanced computational technologies in a simulated military environment

    Science.gov (United States)

    Metcalfe, Jason S.; Brick Larkin, Gabriella; Johnson, Tony; Oie, Kelvin; Paul, Victor; Davis, James

    2010-04-01

    Tomorrows military systems will require novel methods for assessing Soldier performance and situational awareness (SA) in mobile operations involving mixed-initiative systems. Although new methods may augment Soldier assessments, they may also reduce Soldier performance as a function of demand on workload, requiring concurrent performance of mission and assessment tasks. The present paper describes a unique approach that supports assessment in environments approximating the operational context within which future systems will be deployed. A complex distributed system was required to emulate the operational environment. Separate computational and visualization systems provided an environment representative of the military operational context, including a 3D urban environment with dynamic human entities. Semi-autonomous driving was achieved with a simulated autonomous mobility system and SA was assessed through digital reports. A military crew station mounted on a 6-DOF motion simulator was used to create the physical environment. Cognitive state evaluation was enabled using physiological monitoring. Analyses indicated individual differences in temporal and accuracy components when identifying key features of potential threats; i.e., comparing Soldiers and insurgents with non-insurgent civilians. The assessment approach provided a natural, operationally-relevant means of assessing needs of future secure mobility systems and detecting key factors affecting Soldier-system performance as foci for future development.

  2. Hot and hypoxic environments inhibit simulated soccer performance and exacerbate performance decrements when combined.

    Directory of Open Access Journals (Sweden)

    Jeffrey William Frederick Aldous

    2016-01-01

    Full Text Available The effects of heat and/or hypoxia have been well-documented in match-play data. However, large match-to-match variation for key physical performance measures makes environmental inferences difficult to ascertain from soccer match-play. Therefore, the present study aims to investigate the hot (HOT, hypoxic (HYP and hot-hypoxic (HH mediated-decrements during a non-motorised treadmill based soccer-specific simulation. Twelve male University soccer players completed three familiarisation sessions and four randomised crossover experimental trials of the intermittent Soccer Performance Test (iSPT in normoxic-temperate (CON: 18oC 50% rH, HOT (30oC; 50% rH, HYP (1,000m; 18oC 50% rH and HH (1,000m; 30oC; 50% rH. Physical performance and its performance decrements, body temperatures (rectal, skin and estimated muscle temperature, heart rate (HR, arterial blood oxygen saturation (SaO2, perceived exertion, thermal sensation (TS, body mass changes, blood lactate and plasma volume were all measured. Performance decrements were similar in HOT and HYP [Total Distance (-4%, High-speed distance (~-8% and variable run distance (~-12% covered] and exacerbated in HH [total distance (-9%, high-speed distance (-15% and variable run distance (-15%] compared to CON. Peak sprint speed, was 4% greater in HOT compared with CON and HYP and 7% greater in HH. Sprint distance covered was unchanged (p > 0.05 in HOT and HYP and only decreased in HH (-8% compared with CON. Body mass (-2%, temperatures (+~5% and TS (+18% were altered in HOT. Furthermore, SaO2 (-7% and HR (+3% were changed in HYP. Similar changes in body mass and temperatures, HR, TS and SaO2 were evident in HH to HOT and HYP, however, blood lactate (p < 0.001 and plasma volume (p < 0.001 were only significantly altered in HH. Perceived exertion was elevated (p < 0.05 by 7% in all conditions compared with CON. Regression analysis identified that absolute TS and absolute rise in skin and estimated muscle

  3. Hot and Hypoxic Environments Inhibit Simulated Soccer Performance and Exacerbate Performance Decrements When Combined.

    Science.gov (United States)

    Aldous, Jeffrey W F; Chrismas, Bryna C R; Akubat, Ibrahim; Dascombe, Ben; Abt, Grant; Taylor, Lee

    2015-01-01

    The effects of heat and/or hypoxia have been well-documented in match-play data. However, large match-to-match variation for key physical performance measures makes environmental inferences difficult to ascertain from soccer match-play. Therefore, the present study aims to investigate the hot (HOT), hypoxic (HYP), and hot-hypoxic (HH) mediated-decrements during a non-motorized treadmill based soccer-specific simulation. Twelve male University soccer players completed three familiarization sessions and four randomized crossover experimental trials of the intermittent Soccer Performance Test (iSPT) in normoxic-temperate (CON: 18°C 50% rH), HOT (30°C; 50% rH), HYP (1000 m; 18°C 50% rH), and HH (1000 m; 30°C; 50% rH). Physical performance and its performance decrements, body temperatures (rectal, skin, and estimated muscle temperature), heart rate (HR), arterial blood oxygen saturation (SaO2), perceived exertion, thermal sensation (TS), body mass changes, blood lactate, and plasma volume were all measured. Performance decrements were similar in HOT and HYP [Total Distance (-4%), High-speed distance (~-8%), and variable run distance (~-12%) covered] and exacerbated in HH [total distance (-9%), high-speed distance (-15%), and variable run distance (-15%)] compared to CON. Peak sprint speed, was 4% greater in HOT compared with CON and HYP and 7% greater in HH. Sprint distance covered was unchanged (p > 0.05) in HOT and HYP and only decreased in HH (-8%) compared with CON. Body mass (-2%), temperatures (+2-5%), and TS (+18%) were altered in HOT. Furthermore, SaO2 (-8%) and HR (+3%) were changed in HYP. Similar changes in body mass and temperatures, HR, TS, and SaO2 were evident in HH to HOT and HYP, however, blood lactate (p < 0.001) and plasma volume (p < 0.001) were only significantly altered in HH. Perceived exertion was elevated (p < 0.05) by 7% in all conditions compared with CON. Regression analysis identified that absolute TS and absolute rise in skin and

  4. CONTROLLING VIRTUAL CLOUDS AND MAKING IT RAIN PARTICLE SYSTEMS IN REAL SPACES USING SITUATED AUGMENTED SIMULATION AND PORTABLE VIRTUAL ENVIRONMENTS

    Directory of Open Access Journals (Sweden)

    N. Hedley

    2012-07-01

    Full Text Available The research described in this paper reports on the design, rationale, development and implementation of a set of new geospatial interfaces that combine multi-touch interaction, portable virtual environments, 'geosimulation gaming', and mobile augmented reality. The result is a set of new ways for us to combine the capabilities of geospatial virtual environments, augmented realitiy and geosimulation. These new hybrid interfaces deliver new geospatial information experiences – new ways of connecting spatial data, simulations, and abstract concepts to real spaces. Their potential to enhance environmental perception and learning must be explored.

  5. Scalable Algorithms for Parallel Discrete Event Simulation Systems in Multicore Environments

    Science.gov (United States)

    2013-05-01

    E. Kulawik, Charles L. Seitz, Jakov N. Seizovic, and Wen-King Su. Myrinet – a Gigabit-per-second Local-Area Network. IEEE Micro, 15(1):29–36...pages 765–770. Society for Computer Simulation, December 1989. [63] P. Reynolds and P. Dickens . SPECTRUM: A parallel simulation testbed. In The

  6. Learning Residential Electrical Wiring through Computer Simulation: The Impact of Computer-Based Learning Environments on Student Achievement and Cognitive Load

    Science.gov (United States)

    Liu, Han-Chin; Su, I-Hsien

    2011-01-01

    Multimedia learning environments such as computer simulations are widely accepted as tools for supporting science learning. Although the design of multimedia learning environments can be domain specific, few studies have focused on the use of computer simulations for learning residential electrical wiring. This study aimed to determine whether…

  7. Simulations

    CERN Document Server

    Ngada, Narcisse

    2015-06-15

    The complexity and cost of building and running high-power electrical systems make the use of simulations unavoidable. The simulations available today provide great understanding about how systems really operate. This paper helps the reader to gain an insight into simulation in the field of power converters for particle accelerators. Starting with the definition and basic principles of simulation, two simulation types, as well as their leading tools, are presented: analog and numerical simulations. Some practical applications of each simulation type are also considered. The final conclusion then summarizes the main important items to keep in mind before opting for a simulation tool or before performing a simulation.

  8. Development of high resolution simulations of the atmospheric environment using the MASS model

    Science.gov (United States)

    Kaplan, Michael L.; Zack, John W.; Karyampudi, V. Mohan

    1989-01-01

    Numerical simulations were performed with a very high resolution (7.25 km) version of the MASS model (Version 4.0) in an effort to diagnose the vertical wind shear and static stability structure during the Shuttle Challenger disaster which occurred on 28 January 1986. These meso-beta scale simulations reveal that the strongest vertical wind shears were concentrated in the 200 to 150 mb layer at 1630 GMT, i.e., at about the time of the disaster. These simulated vertical shears were the result of two primary dynamical processes. The juxtaposition of both of these processes produced a shallow (30 mb deep) region of strong vertical wind shear, and hence, low Richardson number values during the launch time period. Comparisons with the Cape Canaveral (XMR) rawinsonde indicates that the high resolution MASS 4.0 simulation more closely emulated nature than did previous simulations of the same event with the GMASS model.

  9. Conceptualization and software development of a simulation environment for probalistic safety assessment of radioactive waste repositories

    Energy Technology Data Exchange (ETDEWEB)

    Ghofrani, Javad

    2016-05-26

    Uncertainty and sensitivity analysis of complex simulation models are prominent issues, both in scientific research and education. ReSUS (Repository Simulation, Uncertainty propagation and Sensitivity analysis) is an integrated platform to perform such analysis with numerical models that simulate the THMC (Thermal Hydraulical Mechanical and Chemical) coupled processes via different programs, in particular in the context of safety assessments for radioactive waste repositories. This thesis presents the idea behind the software platform ReSUS and its working mechanisms. Apart from the idea and the working mechanisms, the thesis describes applications related to the safety assessment of radioactive waste disposal systems. In this thesis, previous simulation tools (including the preceding version of ReSUS) are analyzed in order to provide a comprehensive view of the state of the art. In comparison to this state, a more sophisticated software tool is developed here, which provides features which are not offered by previous simulation tools. To achieve this objective, the software platform ReSUS provides a framework for handling probabilistic data uncertainties using deterministic external simulation tools, thus enhancing uncertainty and sensitivity analysis. This platform performs probabilistic simulations of various models, in particular THMC coupled processes, using stand-alone deterministic simulation software tools. The complete software development process of the ReSUS Platform is discussed in this thesis. ReSUS components are developed as libraries, which are capable of being linked to other code implementations. In addition, ASCII template files are used as means for uncertainty propagation into the input files of deterministic simulation tools. The embedded input sampler and analysis tools allow for sensitivity analysis in several kinds of simulation designs. The novelty of the ReSUS platform consists in the flexibility to assign external stand-alone software

  10. Conceptualization and software development of a simulation environment for probalistic safety assessment of radioactive waste repositories

    International Nuclear Information System (INIS)

    Ghofrani, Javad

    2016-01-01

    Uncertainty and sensitivity analysis of complex simulation models are prominent issues, both in scientific research and education. ReSUS (Repository Simulation, Uncertainty propagation and Sensitivity analysis) is an integrated platform to perform such analysis with numerical models that simulate the THMC (Thermal Hydraulical Mechanical and Chemical) coupled processes via different programs, in particular in the context of safety assessments for radioactive waste repositories. This thesis presents the idea behind the software platform ReSUS and its working mechanisms. Apart from the idea and the working mechanisms, the thesis describes applications related to the safety assessment of radioactive waste disposal systems. In this thesis, previous simulation tools (including the preceding version of ReSUS) are analyzed in order to provide a comprehensive view of the state of the art. In comparison to this state, a more sophisticated software tool is developed here, which provides features which are not offered by previous simulation tools. To achieve this objective, the software platform ReSUS provides a framework for handling probabilistic data uncertainties using deterministic external simulation tools, thus enhancing uncertainty and sensitivity analysis. This platform performs probabilistic simulations of various models, in particular THMC coupled processes, using stand-alone deterministic simulation software tools. The complete software development process of the ReSUS Platform is discussed in this thesis. ReSUS components are developed as libraries, which are capable of being linked to other code implementations. In addition, ASCII template files are used as means for uncertainty propagation into the input files of deterministic simulation tools. The embedded input sampler and analysis tools allow for sensitivity analysis in several kinds of simulation designs. The novelty of the ReSUS platform consists in the flexibility to assign external stand-alone software

  11. Open-Source Integrated Design-Analysis Environment for Nuclear Energy Advanced Modeling & Simulation Phase I Final Report

    Energy Technology Data Exchange (ETDEWEB)

    O' Leary, Patrick [Kitware, Inc., Clifton Park, NY (United States)

    2014-03-18

    Our proposal described an approach for addressing the barriers of advanced modeling and simulation (M&S) adoption by the nuclear energy industry. This will be achieved by developing a state-of-the-art, open-source integrated design-analysis environment (IDAE) to work on a range of nuclear energy applications, while leveraging best-in-class software created through millions of investment dollars from the Department of Energy (DOE) Office for Nuclear Energy (NE) and from several other funding agencies.

  12. Simulation of quantitative characters by genes with biochemically definable action. III. The components of genetic effects in the inheritance of anthocyanins in Matthiola incana R. Br.

    Science.gov (United States)

    Jana, S; Seyffert, W

    1971-01-01

    In a self-pollinated plant species, Matthiola incana R. Br., six groups of isogenic lines were developed which were ideally suited for investigating the properties of individual genes controlling a quantitative character. Each group consisted of four homozygous parents for two alleles at each of the two loci in a common genetic background. A complete 4 × 4 diallel cross was obtained in each group. Because of the identical genetic background each diallel set could be considered as a genetic system of two loci. The biochemical functions of the alleles at each locus modifying the structure of the anthocyanin molecule were known. The phenotypes of the nine possible genotypes were qualitatively distinguishable by their flower colour differences. A quantitative measure of the phenotypic value associated with a genotype is the concentration of anthocyanins in flower tissues. In these simplified genetic systems, the nine phenotypic values could be expressed in terms of nine biometrical quantities, eight of which are attributable to the genetic effects of the alleles at the two loci under consideration. An unique solution of the set of nine equations in nine unknowns provided direct estimates of the parameters specifying additive, dominance and epistatic effects. Thus the effects of individual genes in a well-defined genetic background could be estimated by the use of a simple additive genetic model. An extension of the model provided estimates of the genetic parameters in different years and genetic backgrounds.Dominance was found to be the most important type of gene action in the inheritance of anthocyanin content in the flower tissues of M. incana. There was considerable epistasis, but the effect was very unstable over years and genetic backgrounds. The relative magnitude of additive effect was most stable. Heterosis was observed and was found to be largely due to dominance and additive × dominance interactions.

  13. Comparison of the education effect in simulated environment with educational film on acquiring midwifery students\\' episiotomy skill

    Directory of Open Access Journals (Sweden)

    Z Kalani

    2016-07-01

    Full Text Available Introduction: In clinical education, it is essential to prevent patients from injuries  by using the new educational approaches. Therefore, the students must be ready before involving in any procedures. This study aimed to determine the effect of education in simulated environment and instructional videos on the skills of the episiotomy among midwifery students. Methods: In this interventional study, at the beginning of the sixth term, all of the midwifery students, 30 students, were divided randomly into 3 groups. The education was taken place in simulated environment and using educational films without intervention. The training was performed on training mannequin. The film was prepared from this training and presented to each of the students in film group. A practical test done and the results recorded in check list. The data were analyzed by SPSS software. Results: The mean scores of students in performing an episiotomy based on all of the cases in 3 groups was statistically significant difference (p<0.001. But in comparing 3 groups of two, it was not found any statistically significant difference in all cases between the educational groups in simulated environment and educational film (p=0.975. Overall skill level of students on the basis of all the cases in the group without interference was lower than the other two groups. Conclusion: The educational film, which was designed, based on the scientific principles can be effective in gaining skills as a self-taught. Therefore, using the mentioned methods is recommended in clinical education planning.

  14. Environment

    International Nuclear Information System (INIS)

    McIntyre, A.D.; Turnbull, R.G.H.

    1992-01-01

    The development of the hydrocarbon resources of the North Sea has resulted in both offshore and onshore environmental repercussions, involving the existing physical attributes of the sea and seabed, the coastline and adjoining land. The social and economic repercussions of the industry were equally widespread. The dramatic and speedy impact of the exploration and exploitation of the northern North Sea resources in the early 1970s, on the physical resources of Scotland was quickly realised together with the concern that any environmental and social damage to the physical and social fabric should be kept to a minimum. To this end, a wide range of research and other activities by central and local government, and other interested agencies was undertaken to extend existing knowledge on the marine and terrestrial environments that might be affected by the oil and gas industry. The outcome of these activities is summarized in this paper. The topics covered include a survey of the marine ecosystems of the North Sea, the fishing industry, the impact of oil pollution on seabirds and fish stocks, the ecology of the Scottish coastline and the impact of the petroleum industry on a selection of particular sites. (author)

  15. GATE Monte Carlo simulation of dose distribution using MapReduce in a cloud computing environment.

    Science.gov (United States)

    Liu, Yangchuan; Tang, Yuguo; Gao, Xin

    2017-12-01

    The GATE Monte Carlo simulation platform has good application prospects of treatment planning and quality assurance. However, accurate dose calculation using GATE is time consuming. The purpose of this study is to implement a novel cloud computing method for accurate GATE Monte Carlo simulation of dose distribution using MapReduce. An Amazon Machine Image installed with Hadoop and GATE is created to set up Hadoop clusters on Amazon Elastic Compute Cloud (EC2). Macros, the input files for GATE, are split into a number of self-contained sub-macros. Through Hadoop Streaming, the sub-macros are executed by GATE in Map tasks and the sub-results are aggregated into final outputs in Reduce tasks. As an evaluation, GATE simulations were performed in a cubical water phantom for X-ray photons of 6 and 18 MeV. The parallel simulation on the cloud computing platform is as accurate as the single-threaded simulation on a local server and the simulation correctness is not affected by the failure of some worker nodes. The cloud-based simulation time is approximately inversely proportional to the number of worker nodes. For the simulation of 10 million photons on a cluster with 64 worker nodes, time decreases of 41× and 32× were achieved compared to the single worker node case and the single-threaded case, respectively. The test of Hadoop's fault tolerance showed that the simulation correctness was not affected by the failure of some worker nodes. The results verify that the proposed method provides a feasible cloud computing solution for GATE.

  16. An enriched simulation environment for evaluation of closed-loop anesthesia.

    Science.gov (United States)

    Fang, Mengqi; Tao, Yuan; Wang, Youqing

    2014-02-01

    To simulate and evaluate the administration of anesthetic agents in the clinical setting, many pharmacology models have been proposed and validated, which play important roles for in silico testing of closed-loop control methods. However, to the authors' best knowledge, there is no anesthesia simulator incorporating closed-loop feedback control of anesthetic agent administration freely available and accessible to the public. Consequently, many necessary but time consuming procedures, such as selecting models from the available literatures and establishing new simulator algorithms, will be repeated by different researchers who intend to explore a novel control algorithm for closed-loop anesthesia. To address this issue, an enriched anesthesia simulator was devised in our laboratory and made freely available to the anesthesia community. This simulator was built by using MATLAB(®) (The MathWorks, Natick, MA). The GUI technology embedded in MATLAB was chosen as the tool to develop a human-machine interface. This simulator includes four types of anesthetic models, and all have been wildly used in closed-loop anesthesia studies. For each type of model, 24 virtual patients were created with significant diversity. In addition, the platform also provides a model identification module and a control method library. For the model identification module, the least square method and particle swarm optimization were presented. In the control method library, a proportional-integral-derivative control and a model predictive control were provided. Both the model identification module and the control method library are extensive and readily accessible for users to add user-defined functions. This simulator could be a benchmark-testing platform for closed-loop control of anesthesia, which is of great value and has significant development potential. For convenience, this simulator is termed as Wang's Simulator, which can be downloaded from http://www.AutomMed.org .

  17. Simulation of creep test on 316FR stainless steel in sodium environment at 550degC

    International Nuclear Information System (INIS)

    Satmoko, A.; Asayama, Tai

    1999-04-01

    In sodium environment, material 316FR stainless steel risks to suffer from carburization. In this study, an analysis using a Fortran program is conducted to evaluate the carbon influence on the creep behavior of 316FR based on experimental results from uni-axial creep test that had been performed at temperature 550degC in sodium environment simulating Fast Breeder Reactor condition. As performed in experiments, two parts are distinguished. At first, elastic-plastic behavior is used to simulate the fact that just before the beginning of creep test, specimen suffers from load or stress much higher than initial yield stress. In second part, creep condition occurs in which the applied load is kept constant. The plastic component should be included, since stresses increase due to section area reduction. For this reason, elastic-plastic-creep behavior is considered. Through time carbon penetration occurs and its concentration is evaluated empirically. This carburization phenomena are assumed to affect in increasing yield stress, decreasing creep strain rate, and increasing creep rupture strength of material. The model is capable of simulating creep test in sodium environment. Material near from surface risks to be carburized. Its material properties change leading to non-uniform distribution of stresses. Those layers of material suffer from stress concentration, and are subject to damage. By introducing a damage criteria, crack initialization can thus be predicted. And even, crack growth can be evaluated. For high stress levels, tensile strength criterion is more important than creep damage criterion. But in low stress levels, the latter gives more influence in fracture. Under high stress, time to rupture of a specimen in sodium environment is shorter than in air. But for stresses lower than 26 kgf/mm 2 , the time to rupture of creep in sodium environment is the same or little longer than in air. Quantitatively, the carburization effect at 550degC is not important. This

  18. Atmospheric Corrosion Behavior and Mechanism of a Ni-Advanced Weathering Steel in Simulated Tropical Marine Environment

    Science.gov (United States)

    Wu, Wei; Zeng, Zhongping; Cheng, Xuequn; Li, Xiaogang; Liu, Bo

    2017-12-01

    Corrosion behavior of Ni-advanced weathering steel, as well as carbon steel and conventional weathering steel, in a simulated tropical marine atmosphere was studied by field exposure and indoor simulation tests. Meanwhile, morphology and composition of corrosion products formed on the exposed steels were surveyed through scanning electron microscopy, energy-dispersive x-ray spectroscopy and x-ray diffraction. Results indicated that the additive Ni in weathering steel played an important role during the corrosion process, which took part in the formation of corrosion products, enriched in the inner rust layer and promoted the transformation from loose γ-FeOOH to dense α-FeOOH. As a result, the main aggressive ion, i.e., Cl-, was effectively separated in the outer rust layer which leads to the lowest corrosion rate among these tested steels. Thus, the resistance of Ni-advanced weathering steel to atmospheric corrosion was significantly improved in a simulated tropical marine environment.

  19. Virtual Environment Computer Simulations to Support Human Factors Engineering and Operations Analysis for the RLV Program

    Science.gov (United States)

    Lunsford, Myrtis Leigh

    1998-01-01

    The Army-NASA Virtual Innovations Laboratory (ANVIL) was recently created to provide virtual reality tools for performing Human Engineering and operations analysis for both NASA and the Army. The author's summer research project consisted of developing and refining these tools for NASA's Reusable Launch Vehicle (RLV) program. Several general simulations were developed for use by the ANVIL for the evaluation of the X34 Engine Changeout procedure. These simulations were developed with the software tool dVISE 4.0.0 produced by Division Inc. All software was run on an SGI Indigo2 High Impact. This paper describes the simulations, various problems encountered with the simulations, other summer activities, and possible work for the future. We first begin with a brief description of virtual reality systems.

  20. HumMod: A Modeling Environment for the Simulation of Integrative Human Physiology

    OpenAIRE

    Hester, Robert L.; Brown, Alison J.; Husband, Leland; Iliescu, Radu; Pruett, Drew; Summers, Richard; Coleman, Thomas G.

    2011-01-01

    Mathematical models and simulations are important tools in discovering key causal relationships governing physiological processes. Simulations guide and improve outcomes of medical interventions involving complex physiology. We developed HumMod, a Windows-based model of integrative human physiology. HumMod consists of 5000 variables describing cardiovascular, respiratory, renal, neural, endocrine, skeletal muscle and metabolic physiology. The model is constructed from empirical data obtained ...

  1. Optimization of solar systems by the use of the simulation environment smile

    Energy Technology Data Exchange (ETDEWEB)

    Jochum, P. [TU-Berlin, Inst. of Energy Engineering (Germany)

    1996-12-31

    The name Smile has two different meanings: it represents a new programming language specially designed for the description of technical systems for simulation tasks, on the other hand it stands for a simulation tool for the dynamic simulation of energy systems. Smile consists mainly in an optional expansible set of components, comparable to the types in TRNSYS, and several easily exchangeable numerical solvers. The components can be classified into two groups. There are modulus describing the real technical behaviour using the numerical model it consists of. And there are components which are used to analyse and to control the simulated system, e.g. moduls for optimization. The main intention of the development of Smile was to generate an easy-to-learn simulation tool for the configuration and design of complicated energy converting systems taking advantages of modern program architecture. In addition to the aspect of the easy-to-learn language, the implemented feature of the equation orientated structure very successfully helps to simplify the translation of mathematical models in Smile and vice versa. Due to the clear and strict definitions of the interfaces between the components and the program itself the flexible combination of all components has been made possible. Today Smile can be used for the simulation of many different types of technical systems. The program is a result of a interdisciplinary project of investigation at the Technical University of Berlin; the project members are from three different faculties: computer science, mathematics and energy engineering. (orig.)

  2. Biochemical adaptation to ocean acidification.

    Science.gov (United States)

    Stillman, Jonathon H; Paganini, Adam W

    2015-06-01

    The change in oceanic carbonate chemistry due to increased atmospheric PCO2  has caused pH to decline in marine surface waters, a phenomenon known as ocean acidification (OA). The effects of OA on organisms have been shown to be widespread among diverse taxa from a wide range of habitats. The majority of studies of organismal response to OA are in short-term exposures to future levels of PCO2 . From such studies, much information has been gathered on plastic responses organisms may make in the future that are beneficial or harmful to fitness. Relatively few studies have examined whether organisms can adapt to negative-fitness consequences of plastic responses to OA. We outline major approaches that have been used to study the adaptive potential for organisms to OA, which include comparative studies and experimental evolution. Organisms that inhabit a range of pH environments (e.g. pH gradients at volcanic CO2 seeps or in upwelling zones) have great potential for studies that identify adaptive shifts that have occurred through evolution. Comparative studies have advanced our understanding of adaptation to OA by linking whole-organism responses with cellular mechanisms. Such optimization of function provides a link between genetic variation and adaptive evolution in tuning optimal function of rate-limiting cellular processes in different pH conditions. For example, in experimental evolution studies of organisms with short generation times (e.g. phytoplankton), hundreds of generations of growth under future conditions has resulted in fixed differences in gene expression related to acid-base regulation. However, biochemical mechanisms for adaptive responses to OA have yet to be fully characterized, and are likely to be more complex than simply changes in gene expression or protein modification. Finally, we present a hypothesis regarding an unexplored area for biochemical adaptation to ocean acidification. In this hypothesis, proteins and membranes exposed to the

  3. The influence of the physical environment on simulations of complex aquatic ecosystem dynamics

    DEFF Research Database (Denmark)

    Hu, Fenjuan

    hydrodynamics. To test the hypothesis that the physical environment may induce strong influence on ecosystem processes, we applied and compared PCLake applications, with the same standard ecosystem model parameterization, for three different physical environment representations of the same volume of water body...... or no hydrodynamic representation, in particular for ecosystem models where higher trophic levels, such as fish, are included. On the other hand, physically resolved hydrodynamic models often include none or only simple representations of ecosystem dynamics. To overcome this discrepancy in complexity between...... the ecosystem representation and the physical environment, we implemented PCLake within FABM, a Framework for Aquatic Biogeochemical Models. The framework readily enables dynamic coupling of the ecosystem processed in PCLake with a selection of physical environment representations ranging from 0D to 3D...

  4. Instant Messaging and Team Performance in a Simulated Command and Control Environment (Briefing Charts)

    National Research Council Canada - National Science Library

    Funke, Gregory J; Galster, Scott M; Nelson, W. T; Dukes, Allen W

    2006-01-01

    .... Personnel in this environment may be disparate in terms of rank, occupation, and even geographical location, yet are expected to rapidly coalesce into functioning teams in order to meet task requirements...

  5. Modelling Agent-Environment Interaction in Multi-Agent Simulations with Affordances

    Science.gov (United States)

    2010-04-01

    RI, USA, 2004. AIAA. 14. Carole Bernon, Massimo Cossentino, and Juan Pavi. An overview of current trends in European AOSE research. Informatica , 29(5...Abdelkader Gouaich and Fabien Michel. Towards a unified view of the environment(s) within multi-agent systems. Informatica , 29(4):423–432, November 2005. 59...coordination in mas. Informatica , 29(4):433–443, November 2005. 128. Michael A. Riley and Marie-Vee Santana. Mutuality relations, observations, and

  6. A high-fidelity, six-degree-of-freedom batch simulation environment for tactical guidance research and evaluation

    Science.gov (United States)

    Goodrich, Kenneth H.

    1993-01-01

    A batch air combat simulation environment, the tactical maneuvering simulator (TMS), is presented. The TMS is a tool for developing and evaluating tactical maneuvering logics, but it can also be used to evaluate the tactical implications of perturbations to aircraft performance or supporting systems. The TMS can simulate air combat between any number of engagement participants, with practical limits imposed by computer memory and processing power. Aircraft are modeled using equations of motion, control laws, aerodynamics, and propulsive characteristics equivalent to those used in high-fidelity piloted simulations. Data bases representative of a modern high-performance aircraft with and without thrust-vectoring capability are included. To simplify the task of developing and implementing maneuvering logics in the TMS, an outer-loop control system, the tactical autopilot (TA), is implemented in the aircraft simulation model. The TA converts guidance commands by computerized maneuvering logics from desired angle of attack and wind-axis bank-angle inputs to the inner loop control augmentation system of the aircraft. The capabilities and operation of the TMS and the TA are described.

  7. Identification of myeloproliferative neoplasm drug agents via predictive simulation modeling: assessing responsiveness with micro-environment derived cytokines.

    Science.gov (United States)

    Kobayashi, Susumu S; Vali, Shireen; Kumar, Ansu; Singh, Neeraj; Abbasi, Taher; Sayeski, Peter P

    2016-06-14

    Previous studies have shown that the bone marrow micro-environment supports the myeloproliferative neoplasms (MPN) phenotype including via the production of cytokines that can induce resistance to frontline MPN therapies. However, the mechanisms by which this occurs are poorly understood. Moreover, the ability to rapidly identify drug agents that can act as adjuvants to existing MPN frontline therapies is virtually non-existent. Here, using a novel predictive simulation approach, we sought to determine the effect of various drug agents on MPN cell lines, both with and without the micro-environment derived inflammatory cytokines. We first created individual simulation models for two representative MPN cell lines; HEL and SET-2, based on their genomic mutation and copy number variation (CNV) data. Running computational simulations on these virtual cell line models, we identified a synergistic effect of two drug agents on cell proliferation and viability; namely, the Jak2 kinase inhibitor, G6, and the Bcl-2 inhibitor, ABT737. IL-6 did not show any impact on the cells due to the predicted lack of IL-6 signaling within these cells. Interestingly, TNFα increased the sensitivity of the single drug agents and their use in combination while IFNγ decreased the sensitivity. In summary, this study predictively identified two drug agents that reduce MPN cell viability via independent mechanisms that was prospectively validated. Moreover, their efficacy is either potentiated or inhibited, by some of the micro-environment derived cytokines. Lastly, this study has validated the use of this simulation based technology to prospectively determine such responses.

  8. Fluralaner, a novel isoxazoline, prevents flea (Ctenocephalides felis) reproduction in vitro and in a simulated home environment.

    Science.gov (United States)

    Williams, Heike; Young, David R; Qureshi, Tariq; Zoller, Hartmut; Heckeroth, Anja R

    2014-06-19

    Fluralaner, a novel isoxazoline, has both acaricidal and insecticidal activity through potent blockage of GABA- and L-glutamate-gated chloride channels. This study investigated the in vitro and in vivo effects of fluralaner exposure on flea (Ctenocephalides felis) reproduction. Blood spiked with sub-insecticidal fluralaner concentrations (between 0.09 and 50.0 ng/mL) was fed to fleas for 10 days using a membrane system. Cessation of reproduction in exposed fleas was assessed using flea survival, egg hatchability, and control of oviposition, pupae, and flea emergence. Fluralaner efficacy for in vivo Ctenocephalides (C.) felis control on dogs was assessed using a simulated flea-infested home environment. During a pre-treatment period, dogs were infested twice on days -28 and -21 with 100 adult unfed fleas to establish a thriving population by day 0 of the study. On day 0, one group of dogs was treated with fluralaner (Bravecto™; n=10), while another group served as negative control (n=10). Following treatment, dogs were infested three times with 50 fleas on days 22, 50 and 78 to simulate new infestations. Live flea counts were conducted weekly on all dogs for 12 weeks starting 1 day before treatment. Fluralaner potently inhibited flea reproduction capacity in vitro. Oviposition ceased completely at concentrations as low as 25.0 ng/mL. While no ovicidal effect was observed, fluralaner exerted a larvicidal effect at exceptionally low concentrations (6.25 ng/mL). In the simulated flea-infested home environment, flea-control efficacy on fluralaner-treated dogs was >99% at every time point measured for 12 weeks. No adverse events were observed in fluralaner-treated dogs. Fluralaner completely controls egg laying, larval development and flea reproduction even at sub-insecticidal concentrations. Oral treatment of dogs with fluralaner is highly effective for eliminating fleas in a simulated flea-infested home environment.

  9. Cosimo: a cognitive simulation model of human decision making and behaviour in complex work environments

    International Nuclear Information System (INIS)

    Cacciabue, P.C.; Decortis, F.; Nordvik, J.P.; Drozdowicz, B.; Masson, M.

    1992-01-01

    In this paper the Cognitive Simulation Model (COSIMO), currently implemented at the Ispra JRC, is described, with particular emphasis on its theoretical foundations, on its computational implementation and on a number of simulations cases of man-machine system interactions. COSIMO runs on a lisp machine and it interacts with the simulation of the physical system implemented on a Sun computer. In our case the physical system is a typical Nuclear Power Plant subsystem - the Auxiliary Feed-Water System (AFWS). One basic application is to explore human behaviour in simulated accident situations in order to identify suitable safety recommendations. To be more specific, COSIMO can be used to: - analyse how operators are likely to act given a particular context, - identify difficult problem solving situations, given problem solving resources and constraints (operator knowledge, man-machine interfaces, procedures), - identify situations that can lead to human errors and evaluate their consequences, - identify and test conditions for error recovery, - investigate the effects of changes in the man-machine system. Since the modelling of the AFWS, its control system and procedures have also been the object of a detailed description (Cacciabue et al., 1990a), the objective of this paper is the presentation of the state of the art of the COSIMO simulation

  10. Changes in the convective population and thermodynamic environments in convection-permitting regional climate simulations over the United States

    Science.gov (United States)

    Rasmussen, K. L.; Prein, A. F.; Rasmussen, R. M.; Ikeda, K.; Liu, C.

    2017-11-01

    Novel high-resolution convection-permitting regional climate simulations over the US employing the pseudo-global warming approach are used to investigate changes in the convective population and thermodynamic environments in a future climate. Two continuous 13-year simulations were conducted using (1) ERA-Interim reanalysis and (2) ERA-Interim reanalysis plus a climate perturbation for the RCP8.5 scenario. The simulations adequately reproduce the observed precipitation diurnal cycle, indicating that they capture organized and propagating convection that most climate models cannot adequately represent. This study shows that weak to moderate convection will decrease and strong convection will increase in frequency in a future climate. Analysis of the thermodynamic environments supporting convection shows that both convective available potential energy (CAPE) and convective inhibition (CIN) increase downstream of the Rockies in a future climate. Previous studies suggest that CAPE will increase in a warming climate, however a corresponding increase in CIN acts as a balancing force to shift the convective population by suppressing weak to moderate convection and provides an environment where CAPE can build to extreme levels that may result in more frequent severe convection. An idealized investigation of fundamental changes in the thermodynamic environment was conducted by shifting a standard atmospheric profile by ± 5 °C. When temperature is increased, both CAPE and CIN increase in magnitude, while the opposite is true for decreased temperatures. Thus, even in the absence of synoptic and mesoscale variations, a warmer climate will provide more CAPE and CIN that will shift the convective population, likely impacting water and energy budgets on Earth.

  11. Optimal design of supply chain network under uncertainty environment using hybrid analytical and simulation modeling approach

    Science.gov (United States)

    Chiadamrong, N.; Piyathanavong, V.

    2017-12-01

    Models that aim to optimize the design of supply chain networks have gained more interest in the supply chain literature. Mixed-integer linear programming and discrete-event simulation are widely used for such an optimization problem. We present a hybrid approach to support decisions for supply chain network design using a combination of analytical and discrete-event simulation models. The proposed approach is based on iterative procedures until the difference between subsequent solutions satisfies the pre-determined termination criteria. The effectiveness of proposed approach is illustrated by an example, which shows closer to optimal results with much faster solving time than the results obtained from the conventional simulation-based optimization model. The efficacy of this proposed hybrid approach is promising and can be applied as a powerful tool in designing a real supply chain network. It also provides the possibility to model and solve more realistic problems, which incorporate dynamism and uncertainty.

  12. Physical robustness of canopy temperature models for crop heat stress simulation across environments and production conditions

    DEFF Research Database (Denmark)

    Webber, Heidi; White, Jeffrey W; Kimball, Bruce

    2018-01-01

    Despite widespread application in studying climate change impacts, most crop models ignore complex interactions among air temperature, crop and soil water status, CO2 concentration and atmospheric conditions that influence crop canopy temperature. The current study extended previous studies...... between modeling approaches. More accurate simulation of heat stress will likely require use of energy balance approaches that consider atmospheric stability conditions....... by evaluating Tc simulations from nine crop models at six locations across environmental and production conditions. Each crop model implemented one of an empirical (EMP), an energy balance assuming neutral stability (EBN) or an energy balance correcting for atmospheric stability conditions (EBSC) approach...

  13. Corrosion Behavior of Low-C Medium-Mn Steel in Simulated Marine Immersion and Splash Zone Environment

    Science.gov (United States)

    Zhang, Dazheng; Gao, Xiuhua; Su, Guanqiao; Du, Linxiu; Liu, Zhenguang; Hu, Jun

    2017-05-01

    The corrosion behavior of low-C medium-Mn steel in simulated marine immersion and splash zone environment was studied by static immersion corrosion experiment and wet-dry cyclic corrosion experiment, respectively. Corrosion rate, corrosion products, surface morphology, cross-sectional morphology, elemental distribution, potentiodynamic polarization curves and electrochemical impedance spectra were used to elucidate the corrosion behavior of low-C medium-Mn steel. The results show that corrosion rate in immersion zone is much less than that in splash zone owing to its relatively mild environment. Manganese compounds are detected in the corrosion products and only appeared in splash zone environment, which can deteriorate the protective effect of rust layer. With the extension of exposure time, corrosion products are gradually transformed into dense and thick corrosion rust from the loose and porous one in these two environments. But in splash zone environment, alloying elements of Mn appear significant enrichment in the rust layer, which decrease the corrosion resistance of the steel.

  14. Measuring sense of presence and user characteristics to predict effective training in an online simulated virtual environment.

    Science.gov (United States)

    De Leo, Gianluca; Diggs, Leigh A; Radici, Elena; Mastaglio, Thomas W

    2014-02-01

    Virtual-reality solutions have successfully been used to train distributed teams. This study aimed to investigate the correlation between user characteristics and sense of presence in an online virtual-reality environment where distributed teams are trained. A greater sense of presence has the potential to make training in the virtual environment more effective, leading to the formation of teams that perform better in a real environment. Being able to identify, before starting online training, those user characteristics that are predictors of a greater sense of presence can lead to the selection of trainees who would benefit most from the online simulated training. This is an observational study with a retrospective postsurvey of participants' user characteristics and degree of sense of presence. Twenty-nine members from 3 Air Force National Guard Medical Service expeditionary medical support teams participated in an online virtual environment training exercise and completed the Independent Television Commission-Sense of Presence Inventory survey, which measures sense of presence and user characteristics. Nonparametric statistics were applied to determine the statistical significance of user characteristics to sense of presence. Comparing user characteristics to the 4 scales of the Independent Television Commission-Sense of Presence Inventory using Kendall τ test gave the following results: the user characteristics "how often you play video games" (τ(26)=-0.458, Pbenefit more from online virtual training. Future research studies could include a larger population of expeditionary medical support, and the results obtained could be used to create a model that predicts the level of presence based on the user characteristics. To maximize results and minimize costs, only those individuals who, based on their characteristics, are supposed to have a higher sense of presence and less negative effects could be selected for online simulated virtual environment training.

  15. A simulation environment for validating ultrasonic blood flow and vessel wall imaging based on fluid-structure interaction simulations: ultrasonic assessment of arterial distension and wall shear rate.

    Science.gov (United States)

    Swillens, Abigail; Degroote, Joris; Vierendeels, Jan; Lovstakken, Lasse; Segers, Patrick

    2010-08-01

    Ultrasound (US) is a commonly used vascular imaging tool when screening for patients at high cardiovascular risk. However, current blood flow and vessel wall imaging methods are hampered by several limitations. When optimizing and developing new ultrasound modalities, proper validation is required before clinical implementation. Therefore, the authors present a simulation environment integrating ultrasound and fluid-structure interaction (FSI) simulations, allowing construction of synthetic ultrasound images based on physiologically realistic behavior of an artery. To demonstrate the potential of the model for vascular ultrasound research, the authors studied clinically relevant imaging modalities of arterial function related to both vessel wall deformation and arterial hemodynamics: Arterial distension (related to arterial stiffness) and wall shear rate (related to the development of atherosclerosis) imaging. An in-house code ("TANGO") was developed to strongly couple the flow solver FLUENT and structural solver ABAQUS using an interface quasi-Newton technique. FIELD II was used to model realistic transducer and scan settings. The input to the FSI-US model is a scatterer phantom on which the US waves reflect, with the scatterer displacement derived from the FSI flow and displacement fields. The authors applied the simulation tool to a 3D straight tube, representative of the common carotid artery (length: 5 cm; and inner and outer radius: 3 and 4 mm). A mass flow inlet boundary condition, based on flow measured in a healthy subject, was applied. A downstream pressure condition, based on a noninvasively measured pressure waveform, was chosen and scaled to simulate three different degrees of arterial distension (1%, 4%, and 9%). The RF data from the FSI-US coupling were further processed for arterial wall and flow imaging. Using an available wall tracking algorithm, arterial distensibility was assessed. Using an autocorrelation estimator, blood velocity and shear

  16. Characterisation of CIME, an experimental chamber for simulating interactions between materials of the cultural heritage and the environment.

    Science.gov (United States)

    Chabas, A; Fouqueau, A; Attoui, M; Alfaro, S C; Petitmangin, A; Bouilloux, A; Saheb, M; Coman, A; Lombardo, T; Grand, N; Zapf, P; Berardo, R; Duranton, M; Durand-Jolibois, R; Jerome, M; Pangui, E; Correia, J J; Guillot, I; Nowak, S

    2015-12-01

    An approach consisting in combining in situ and laboratory experiments is often favoured for investigating the mechanisms involved in the weathering of the materials of the cultural heritage. However, the realistic simulation in the laboratory of the environmental conditions ruling the interactions of atmospheric compounds with materials is a very complex task. The aim of this work is to characterise CIME, a new chamber specially built to simulate the interactions between materials of the cultural heritage and the environment. The originality of this instrument is that beside the usual climatic parameters (temperature, relative humidity, solar radiation) and gaseous pollutants, it also allows the controlled injection of different types of particulate matter such as terrigenous, marine and anthropogenic. Therefore, varied realistic atmospheric environments (marine or urban) can be easily simulated within CIME. In addition to the technical description of CIME, this paper shows the first results obtained by the impact of gaseous pollutants on non-durable glass, bronze and limestone. The first experiments for the deposition of different particles (calcite, clays, soot and halite) are also presented.

  17. Analysis of human factors on urban heat island and simulation of urban thermal environment in Lanzhou city, China

    Science.gov (United States)

    Pan, Jinghu

    2015-01-01

    Urban heat island (UHI) effect is a global phenomenon caused by urbanization. Because of the number and complexity of factors contributing to the urban thermal environment, traditional statistical methods are insufficient for acquiring data and analyzing the impact of human activities on the thermal environment, especially for identifying which factors are dominant. The UHI elements were extracted using thermal infrared remote sensing data to retrieve the land surface temperatures of Lanzhou city, and then adopting an object-oriented fractal net evolution approach to create an image segmentation of the land surface temperature (LST). The effects of urban expansion on the urban thermal environment were quantitatively analyzed. A comprehensive evaluation system of the urban thermal environment was constructed, the spatial pattern of the urban thermal environment in Lanzhou was assessed, and principal influencing factors were identified using spatial principal component analysis (SPCA) and multisource spatial data. We found that in the last 20 years, the UHI effect in Lanzhou city has been strengthened, as the UHI ratio index has increased from 0.385 in 1993 to 0.579 in 2001 and to 0.653 in 2011. The UHI expansion had a spatiotemporal consistency with the urban expansion. The four major factors that affect the spatial pattern of the urban thermal environment in Lanzhou can be ranked in the following order: landscape configuration, anthropogenic heat release, urban construction, and gradient from man-made to natural land cover. These four together accounted for 91.27% of the variance. A linear model was thus successfully constructed, implying that SPCA is helpful in identifying major contributors to UHI. Regression analysis indicated that the instantaneous LST and the simulated thermal environment have a good linear relationship, the correlation coefficient between the two reached 0.8011, highly significant at a confidence level of 0.001.

  18. Developing adaptive user interfaces using a game-based simulation environment

    NARCIS (Netherlands)

    Brake, G.M. te; Greef, T.E. de; Lindenberg, J.; Rypkema, J.A.; Smets-Noor, N.J.J.M.

    2006-01-01

    In dynamic settings, user interfaces can provide more optimal support if they adapt to the context of use. Providing adaptive user interfaces to first responders may therefore be fruitful. A cognitive engineering method that incorporates development iterations in both a simulated and a real-world

  19. A simulation environment for the design of food supply chain networks: modeling quality controlled logistics

    NARCIS (Netherlands)

    Vorst, van der J.G.A.J.; Tromp, S.; Zee, van der D.J.

    2005-01-01

    Nowadays, many industries are confronted with intensified global competition as well as advances in information and process technology. They create both the need and opportunity for a coordinated approach of industrial partners to establish effective and efficient supply chains. Simulation tools are

  20. Evaluation of aqua crop simulation of early season evaporation and water flux in a semiarid environment

    Science.gov (United States)

    The AquaCrop model of crop growth, water use, yield and water use efficiency (WUE) is intended for use by extension personnel, farm and irrigation managers, planners and other less advanced users of simulation models in irrigation planning and scheduling. It could be useful in estimating changes in ...

  1. The Atomic Simulation Environment - A Python library for working with atoms

    DEFF Research Database (Denmark)

    Larsen, Ask Hjorth; Mortensen, Jens Jørgen; Blomqvist, Jakob

    2017-01-01

    it possible to perform very complex simulation tasks. For example, a sequence of calculations may be performed with the use of a simple "for-loop" construction. Calculations of energy, forces, stresses and other quantities are performed through interfaces to many external electronic structure codes or force...

  2. The Use of a Real Life Simulated Problem Based Learning Activity in a Corporate Environment

    Science.gov (United States)

    Laurent, Mark A.

    2013-01-01

    This narrative study examines using a real life simulated problem base learning activity during education of clinical staff, which is expected to design and develop clinically correct electronic charting systems. Expertise in healthcare does not readily transcend to the realm of manipulating software to collect patient data that is pertinent to…

  3. Making It Realtime: Exploring the Use of Optimized Realtime Environments for Historical Simulation and Education.

    Science.gov (United States)

    Calef, Chris; Vilbrandt, Turlif; Vilbrandt, Carl; Goodwin, Janet; Goodwin, James

    As museums and educators struggle with the challenges of presenting their material in a digital format, many overlook the application that has spearheaded the development of virtual reality for the average consumer: 3D realtime game engines. These 3D game engines offer greater versatility, usability, maturity, simulation, and codebase than most…

  4. An Environment for Hardware-in-the-Loop Formation Navigation and Control Simulation

    Science.gov (United States)

    Burns, Rich

    2004-01-01

    Recent interest in formation flying satellite systems has spurred a considerable amount of research in the relative navigation and control of satellites. Development in this area has included new estimation and control algorithms as well as sensor and actuator development specifically geared toward the relative control problem. This paper describes a simulation facility, the Formation Flying Testbed (FFTB) at NASA's Goddard Space Flight Center, which allows engineers to test new algorithms for the formation flying problem with relevant GN&C hardware in a closed loop simulation. The FFTB currently supports the injection of GPS receiver hardware into the simulation loop, and support for satellite crosslink ranging technology is at a prototype stage. This closed-loop, hardware inclusive simulation capability permits testing of navigation and control software in the presence of the actual hardware with which the algorithms must interact. This capability provides the navigation or control developer with a perspective on how the algorithms perform as part of the closed-loop system. In this paper, the overall design and evolution of the FFTB are presented. Each component of the FFTB is then described in detail. Interfaces between the components of the FFTB are shown and the interfaces to and between navigation and control software are described in detail. Finally, an example of closed-loop formation control with GPS receivers in the loop is presented and results are analyzed.

  5. Assessment of the thermal environment in a simulated aircraft cabin using thermal manikin exposure

    DEFF Research Database (Denmark)

    Strøm-Tejsen, Peter; Zukowska, Daria; Jama, Agnieszka

    2007-01-01

    investigation in