WorldWideScience

Sample records for biochemical network models

  1. RMBNToolbox: random models for biochemical networks

    Directory of Open Access Journals (Sweden)

    Niemi Jari

    2007-05-01

    Full Text Available Abstract Background There is an increasing interest to model biochemical and cell biological networks, as well as to the computational analysis of these models. The development of analysis methodologies and related software is rapid in the field. However, the number of available models is still relatively small and the model sizes remain limited. The lack of kinetic information is usually the limiting factor for the construction of detailed simulation models. Results We present a computational toolbox for generating random biochemical network models which mimic real biochemical networks. The toolbox is called Random Models for Biochemical Networks. The toolbox works in the Matlab environment, and it makes it possible to generate various network structures, stoichiometries, kinetic laws for reactions, and parameters therein. The generation can be based on statistical rules and distributions, and more detailed information of real biochemical networks can be used in situations where it is known. The toolbox can be easily extended. The resulting network models can be exported in the format of Systems Biology Markup Language. Conclusion While more information is accumulating on biochemical networks, random networks can be used as an intermediate step towards their better understanding. Random networks make it possible to study the effects of various network characteristics to the overall behavior of the network. Moreover, the construction of artificial network models provides the ground truth data needed in the validation of various computational methods in the fields of parameter estimation and data analysis.

  2. Modelling of biochemical reaction networks

    OpenAIRE

    Gloppen Jørgensen, Arne Gunnar

    2011-01-01

    This report investigates signalling in reaction kinetic networks. The main topic is signalling between a substance being controlled by another substance and how this can be related to control theory. Different types of so-called natural controllers are compared and certain properties are investigated. Natural controllers are models on how a catalyst enzyme controls, for example the concentration, of a substance. There are sixteen different combinations of signalling between these substanc...

  3. Biochemical Network Stochastic Simulator (BioNetS: software for stochastic modeling of biochemical networks

    Directory of Open Access Journals (Sweden)

    Elston Timothy C

    2004-03-01

    Full Text Available Abstract Background Intrinsic fluctuations due to the stochastic nature of biochemical reactions can have large effects on the response of biochemical networks. This is particularly true for pathways that involve transcriptional regulation, where generally there are two copies of each gene and the number of messenger RNA (mRNA molecules can be small. Therefore, there is a need for computational tools for developing and investigating stochastic models of biochemical networks. Results We have developed the software package Biochemical Network Stochastic Simulator (BioNetS for efficientlyand accurately simulating stochastic models of biochemical networks. BioNetS has a graphical user interface that allows models to be entered in a straightforward manner, and allows the user to specify the type of random variable (discrete or continuous for each chemical species in the network. The discrete variables are simulated using an efficient implementation of the Gillespie algorithm. For the continuous random variables, BioNetS constructs and numerically solvesthe appropriate chemical Langevin equations. The software package has been developed to scale efficiently with network size, thereby allowing large systems to be studied. BioNetS runs as a BioSpice agent and can be downloaded from http://www.biospice.org. BioNetS also can be run as a stand alone package. All the required files are accessible from http://x.amath.unc.edu/BioNetS. Conclusions We have developed BioNetS to be a reliable tool for studying the stochastic dynamics of large biochemical networks. Important features of BioNetS are its ability to handle hybrid models that consist of both continuous and discrete random variables and its ability to model cell growth and division. We have verified the accuracy and efficiency of the numerical methods by considering several test systems.

  4. Modeling stochasticity in biochemical reaction networks

    Science.gov (United States)

    Constantino, P. H.; Vlysidis, M.; Smadbeck, P.; Kaznessis, Y. N.

    2016-03-01

    Small biomolecular systems are inherently stochastic. Indeed, fluctuations of molecular species are substantial in living organisms and may result in significant variation in cellular phenotypes. The chemical master equation (CME) is the most detailed mathematical model that can describe stochastic behaviors. However, because of its complexity the CME has been solved for only few, very small reaction networks. As a result, the contribution of CME-based approaches to biology has been very limited. In this review we discuss the approach of solving CME by a set of differential equations of probability moments, called moment equations. We present different approaches to produce and to solve these equations, emphasizing the use of factorial moments and the zero information entropy closure scheme. We also provide information on the stability analysis of stochastic systems. Finally, we speculate on the utility of CME-based modeling formalisms, especially in the context of synthetic biology efforts.

  5. Modeling isotopomer distributions in biochemical networks using isotopomer mapping matrices

    DEFF Research Database (Denmark)

    Schmidt, Karsten; Carlsen, Morten; Nielsen, Jens Bredal;

    1997-01-01

    Within the last decades NMR spectroscopy has undergone tremendous development and has become a powerful analytical tool for the investigation of intracellular flux distributions in biochemical networks using C-13-labeled substrates. Not only are the experiments much easier to conduct than...... experiments employing radioactive tracer elements, but NMR spectroscopy also provides additional information on the labeling pattern of the metabolites. Whereas the maximum amount of information obtainable with C-14-labeled substrates is the fractional enrichment in the individual carbon atom positions, NMR...... spectroscopy can also provide information on the degree of labeling at neighboring carbon atom positions by analyzing multiplet patterns in NMR spectra or using 2-dimensional NMR spectra. It is possible to quantify the mole fractions of molecules that show a specific labeling pattern, i.e., information of the...

  6. A structured approach for the engineering of biochemical network models, illustrated for signalling pathways

    OpenAIRE

    Breitling, Rainer; Gilbert, David; Heiner, Monika; Orton, Richard

    2008-01-01

    Quantitative models of biochemical networks (signal transduction cascades, metabolic pathways, gene regulatory circuits) are a central component of modern systems biology. Building and managing these complex models is a major challenge that can benefit from the application of formal methods adopted from theoretical computing science. Here we provide a general introduction to the field of formal modelling, which emphasizes the intuitive biochemical basis of the modelling process, but is also a...

  7. A New Approach for Modeling Procaryotic Biochemical Networks With Differential Equations

    Science.gov (United States)

    Gebert, Jutta; Radde, Nicole

    2006-06-01

    One major challenge in Computational Biology is the simulation of the processes in a biological cell, which makes it necessary to understand the interactions between cell components. It is convenient to model the entirety of such interactions as biochemical networks. In this paper we present our novel approach to describe these biochemical networks with piecewise linear differential equations and analyze it theoretically. Then we will discuss methods for the parameter estimation from time series measurements including inference of the network topology. Finally we show an application of our model for the bacterium Corynebacterium glutamicum.

  8. CADLIVE toolbox for MATLAB: automatic dynamic modeling of biochemical networks with comprehensive system analysis.

    Science.gov (United States)

    Inoue, Kentaro; Maeda, Kazuhiro; Miyabe, Takaaki; Matsuoka, Yu; Kurata, Hiroyuki

    2014-09-01

    Mathematical modeling has become a standard technique to understand the dynamics of complex biochemical systems. To promote the modeling, we had developed the CADLIVE dynamic simulator that automatically converted a biochemical map into its associated mathematical model, simulated its dynamic behaviors and analyzed its robustness. To enhance the feasibility by CADLIVE and extend its functions, we propose the CADLIVE toolbox available for MATLAB, which implements not only the existing functions of the CADLIVE dynamic simulator, but also the latest tools including global parameter search methods with robustness analysis. The seamless, bottom-up processes consisting of biochemical network construction, automatic construction of its dynamic model, simulation, optimization, and S-system analysis greatly facilitate dynamic modeling, contributing to the research of systems biology and synthetic biology. This application can be freely downloaded from http://www.cadlive.jp/CADLIVE_MATLAB/ together with an instruction. PMID:24623466

  9. Modelling biochemical networks with intrinsic time delays: a hybrid semi-parametric approach

    Directory of Open Access Journals (Sweden)

    Oliveira Rui

    2010-09-01

    Full Text Available Abstract Background This paper presents a method for modelling dynamical biochemical networks with intrinsic time delays. Since the fundamental mechanisms leading to such delays are many times unknown, non conventional modelling approaches become necessary. Herein, a hybrid semi-parametric identification methodology is proposed in which discrete time series are incorporated into fundamental material balance models. This integration results in hybrid delay differential equations which can be applied to identify unknown cellular dynamics. Results The proposed hybrid modelling methodology was evaluated using two case studies. The first of these deals with dynamic modelling of transcriptional factor A in mammalian cells. The protein transport from the cytosol to the nucleus introduced a delay that was accounted for by discrete time series formulation. The second case study focused on a simple network with distributed time delays that demonstrated that the discrete time delay formalism has broad applicability to both discrete and distributed delay problems. Conclusions Significantly better prediction qualities of the novel hybrid model were obtained when compared to dynamical structures without time delays, being the more distinctive the more significant the underlying system delay is. The identification of the system delays by studies of different discrete modelling delays was enabled by the proposed structure. Further, it was shown that the hybrid discrete delay methodology is not limited to discrete delay systems. The proposed method is a powerful tool to identify time delays in ill-defined biochemical networks.

  10. S-system-based analysis of the robust properties common to many biochemical network models.

    Science.gov (United States)

    Matsuoka, Yu; Jahan, Nusrat; Kurata, Hiroyuki

    2016-05-01

    Robustness is a key feature to characterize the adaptation of organisms to changes in their internal and external environments. A broad range of kinetic or dynamic models of biochemical systems have been developed. Robustness analyses are attractive for exploring some common properties of many biochemical models. To reveal such features, we transform different types of mathematical equations into a standard or intelligible formula and use the multiple parameter sensitivity (MPS) to identify some factors critically responsible for the total robustness to many perturbations. The MPS would be determined by the top quarter of the highly sensitive parameters rather than the single parameter with the maximum sensitivity. The MPS did not show any correlation to the network size. The MPS is closely related to the standard deviation of the sensitivity profile. A decrease in the standard deviation enhanced the total robustness, which shows the hallmark of distributed robustness that many factors (pathways) involve the total robustness. PMID:26861555

  11. Dynamic analysis of biochemical network using complex network method

    OpenAIRE

    Wang Shuqiang; Shen Yanyan; Hu Jinxing; Li Ning; Zeng Dewei

    2015-01-01

    In this study, the stochastic biochemical reaction model is proposed based on the law of mass action and complex network theory. The dynamics of biochemical reaction system is presented as a set of non-linear differential equations and analyzed at the molecular-scale. Given the initial state and the evolution rules of the biochemical reaction system, the system can achieve homeostasis. Compared with random graph, the biochemical reaction network has larger ...

  12. Combining flux and energy balance analysis to model large-scale biochemical networks.

    Science.gov (United States)

    Heuett, William J; Qian, Hong

    2006-12-01

    Stoichiometric Network Theory is a constraints-based, optimization approach for quantitative analysis of the phenotypes of large-scale biochemical networks that avoids the use of detailed kinetics. This approach uses the reaction stoichiometric matrix in conjunction with constraints provided by flux balance and energy balance to guarantee mass conserved and thermodynamically allowable predictions. However, the flux and energy balance constraints have not been effectively applied simultaneously on the genome scale because optimization under the combined constraints is non-linear. In this paper, a sequential quadratic programming algorithm that solves the non-linear optimization problem is introduced. A simple example and the system of fermentation in Saccharomyces cerevisiae are used to illustrate the new method. The algorithm allows the use of non-linear objective functions. As a result, we suggest a novel optimization with respect to the heat dissipation rate of a system. We also emphasize the importance of incorporating interactions between a model network and its surroundings. PMID:17245812

  13. Dynamic analysis of biochemical network using complex network method

    Directory of Open Access Journals (Sweden)

    Wang Shuqiang

    2015-01-01

    Full Text Available In this study, the stochastic biochemical reaction model is proposed based on the law of mass action and complex network theory. The dynamics of biochemical reaction system is presented as a set of non-linear differential equations and analyzed at the molecular-scale. Given the initial state and the evolution rules of the biochemical reaction system, the system can achieve homeostasis. Compared with random graph, the biochemical reaction network has larger information capacity and is more efficient in information transmission. This is consistent with theory of evolution.

  14. Minimal moment equations for stochastic models of biochemical reaction networks with partially finite state space

    Science.gov (United States)

    Ruess, Jakob

    2015-12-01

    Many stochastic models of biochemical reaction networks contain some chemical species for which the number of molecules that are present in the system can only be finite (for instance due to conservation laws), but also other species that can be present in arbitrarily large amounts. The prime example of such networks are models of gene expression, which typically contain a small and finite number of possible states for the promoter but an infinite number of possible states for the amount of mRNA and protein. One of the main approaches to analyze such models is through the use of equations for the time evolution of moments of the chemical species. Recently, a new approach based on conditional moments of the species with infinite state space given all the different possible states of the finite species has been proposed. It was argued that this approach allows one to capture more details about the full underlying probability distribution with a smaller number of equations. Here, I show that the result that less moments provide more information can only stem from an unnecessarily complicated description of the system in the classical formulation. The foundation of this argument will be the derivation of moment equations that describe the complete probability distribution over the finite state space but only low-order moments over the infinite state space. I will show that the number of equations that is needed is always less than what was previously claimed and always less than the number of conditional moment equations up to the same order. To support these arguments, a symbolic algorithm is provided that can be used to derive minimal systems of unconditional moment equations for models with partially finite state space.

  15. Modeling and Robustness Analysis of Biochemical Networks of Glycerol Metabolism by Klebsiella Pneumoniae

    Science.gov (United States)

    Ye, Jianxiong; Feng, Enmin; Wang, Lei; Xiu, Zhilong; Sun, Yaqin

    Glycerol bioconversion to 1,3-propanediol (1,3-PD) by Klebsiella pneumoniae (K. pneumoniae) can be characterized by an intricate network of interactions among biochemical fluxes, metabolic compounds, key enzymes and genetic regulatory. To date, there still exist some uncertain factors in this complex network because of the limitation in bio-techniques, especially in measuring techniques for intracellular substances. In this paper, among these uncertain factors, we aim to infer the transport mechanisms of glycerol and 1,3-PD across the cell membrane, which have received intensive interest in recent years. On the basis of different inferences of the transport mechanisms, we reconstruct various metabolic networks correspondingly and subsequently develop their dynamical systems (S-systems). To determine the most reasonable metabolic network from all possible ones, we establish a quantitative definition of biological robustness and undertake parameter identification and robustness analysis for each system. Numerical results show that it is most possible that both glycerol and 1,3-PD pass the cell membrane by active transport and passive diffusion.

  16. Robust simplifications of multiscale biochemical networks

    Directory of Open Access Journals (Sweden)

    Zinovyev Andrei

    2008-10-01

    Full Text Available Abstract Background Cellular processes such as metabolism, decision making in development and differentiation, signalling, etc., can be modeled as large networks of biochemical reactions. In order to understand the functioning of these systems, there is a strong need for general model reduction techniques allowing to simplify models without loosing their main properties. In systems biology we also need to compare models or to couple them as parts of larger models. In these situations reduction to a common level of complexity is needed. Results We propose a systematic treatment of model reduction of multiscale biochemical networks. First, we consider linear kinetic models, which appear as "pseudo-monomolecular" subsystems of multiscale nonlinear reaction networks. For such linear models, we propose a reduction algorithm which is based on a generalized theory of the limiting step that we have developed in 1. Second, for non-linear systems we develop an algorithm based on dominant solutions of quasi-stationarity equations. For oscillating systems, quasi-stationarity and averaging are combined to eliminate time scales much faster and much slower than the period of the oscillations. In all cases, we obtain robust simplifications and also identify the critical parameters of the model. The methods are demonstrated for simple examples and for a more complex model of NF-κB pathway. Conclusion Our approach allows critical parameter identification and produces hierarchies of models. Hierarchical modeling is important in "middle-out" approaches when there is need to zoom in and out several levels of complexity. Critical parameter identification is an important issue in systems biology with potential applications to biological control and therapeutics. Our approach also deals naturally with the presence of multiple time scales, which is a general property of systems biology models.

  17. BNDB – The Biochemical Network Database

    Directory of Open Access Journals (Sweden)

    Kaufmann Michael

    2007-10-01

    Full Text Available Abstract Background Technological advances in high-throughput techniques and efficient data acquisition methods have resulted in a massive amount of life science data. The data is stored in numerous databases that have been established over the last decades and are essential resources for scientists nowadays. However, the diversity of the databases and the underlying data models make it difficult to combine this information for solving complex problems in systems biology. Currently, researchers typically have to browse several, often highly focused, databases to obtain the required information. Hence, there is a pressing need for more efficient systems for integrating, analyzing, and interpreting these data. The standardization and virtual consolidation of the databases is a major challenge resulting in a unified access to a variety of data sources. Description We present the Biochemical Network Database (BNDB, a powerful relational database platform, allowing a complete semantic integration of an extensive collection of external databases. BNDB is built upon a comprehensive and extensible object model called BioCore, which is powerful enough to model most known biochemical processes and at the same time easily extensible to be adapted to new biological concepts. Besides a web interface for the search and curation of the data, a Java-based viewer (BiNA provides a powerful platform-independent visualization and navigation of the data. BiNA uses sophisticated graph layout algorithms for an interactive visualization and navigation of BNDB. Conclusion BNDB allows a simple, unified access to a variety of external data sources. Its tight integration with the biochemical network library BN++ offers the possibility for import, integration, analysis, and visualization of the data. BNDB is freely accessible at http://www.bndb.org.

  18. Reduction of dynamical biochemical reactions networks in computational biology

    OpenAIRE

    Radulescu, O.; Gorban, A.N.; Zinovyev, A.; Noel, V.

    2012-01-01

    Biochemical networks are used in computational biology, to model mechanistic details of systems involved in cell signaling, metabolism, and regulation of gene expression. Parametric and structural uncertainty, as well as combinatorial explosion are strong obstacles against analyzing the dynamics of large models of this type. Multiscaleness, an important property of these networks, can be used to get past some of these obstacles. Networks with many well separated time scales, can be reduced to...

  19. Automatic Verification of Biochemical Network Using Model Checking Method%基于模型校核的生化网络自动辨别方法

    Institute of Scientific and Technical Information of China (English)

    Jinkyung Kim; Younghee Lee; Il Moon

    2008-01-01

    This study focuses on automatic searching and verifying methods for the reachability, transition logics and hierarchical structure in all possible paths of biological processes using model checking. The automatic search and verification for alternative paths within complex and large networks in biological process can provide a consid-erable amount of solutions, which is difficult to handle manually. Model checking is an automatic method for veri-fying if a circuit or a condition, expressed as a concurrent transition system, satisfies a set of properties expressed ina temporal logic, such as computational tree logic (CTL). This article represents that model checking is feasible in biochemical network verification and it shows certain advantages over simulation for querying and searching of special behavioral properties in biochemical processes.

  20. LucidDraw: Efficiently visualizing complex biochemical networks within MATLAB

    Directory of Open Access Journals (Sweden)

    Shi Guiyang

    2010-01-01

    Full Text Available Abstract Background Biochemical networks play an essential role in systems biology. Rapidly growing network data and versatile research activities call for convenient visualization tools to aid intuitively perceiving abstract structures of networks and gaining insights into the functional implications of networks. There are various kinds of network visualization software, but they are usually not adequate for visual analysis of complex biological networks mainly because of the two reasons: 1 most existing drawing methods suitable for biochemical networks have high computation loads and can hardly achieve near real-time visualization; 2 available network visualization tools are designed for working in certain network modeling platforms, so they are not convenient for general analyses due to lack of broader range of readily accessible numerical utilities. Results We present LucidDraw as a visual analysis tool, which features (a speed: typical biological networks with several hundreds of nodes can be drawn in a few seconds through a new layout algorithm; (b ease of use: working within MATLAB makes it convenient to manipulate and analyze the network data using a broad spectrum of sophisticated numerical functions; (c flexibility: layout styles and incorporation of other available information about functional modules can be controlled by users with little effort, and the output drawings are interactively modifiable. Conclusions Equipped with a new grid layout algorithm proposed here, LucidDraw serves as an auxiliary network analysis tool capable of visualizing complex biological networks in near real-time with controllable layout styles and drawing details. The framework of the algorithm enables easy incorporation of extra biological information, if available, to influence the output layouts with predefined node grouping features.

  1. The efficiency of reactant site sampling in network-free simulation of rule-based models for biochemical systems

    International Nuclear Information System (INIS)

    Rule-based models, which are typically formulated to represent cell signaling systems, can now be simulated via various network-free simulation methods. In a network-free method, reaction rates are calculated for rules that characterize molecular interactions, and these rule rates, which each correspond to the cumulative rate of all reactions implied by a rule, are used to perform a stochastic simulation of reaction kinetics. Network-free methods, which can be viewed as generalizations of Gillespie's method, are so named because these methods do not require that a list of individual reactions implied by a set of rules be explicitly generated, which is a requirement of other methods for simulating rule-based models. This requirement is impractical for rule sets that imply large reaction networks (i.e. long lists of individual reactions), as reaction network generation is expensive. Here, we compare the network-free simulation methods implemented in RuleMonkey and NFsim, general-purpose software tools for simulating rule-based models encoded in the BioNetGen language. The method implemented in NFsim uses rejection sampling to correct overestimates of rule rates, which introduces null events (i.e. time steps that do not change the state of the system being simulated). The method implemented in RuleMonkey uses iterative updates to track rule rates exactly, which avoids null events. To ensure a fair comparison of the two methods, we developed implementations of the rejection and rejection-free methods specific to a particular class of kinetic models for multivalent ligand–receptor interactions. These implementations were written with the intention of making them as much alike as possible, minimizing the contribution of irrelevant coding differences to efficiency differences. Simulation results show that performance of the rejection method is equal to or better than that of the rejection-free method over wide parameter ranges. However, when parameter values are

  2. SIMULATING BIOCHEMICAL SIGNALING NETWORKS IN COMPLEX MOVING GEOMETRIES.

    Science.gov (United States)

    Strychalski, Wanda; Adalsteinsson, David; Elston, Timothy C

    2010-01-01

    Signaling networks regulate cellular responses to environmental stimuli through cascades of protein interactions. External signals can trigger cells to polarize and move in a specific direction. During migration, spatially localized activity of proteins is maintained. To investigate the effects of morphological changes on intracellular signaling, we developed a numerical scheme consisting of a cut cell finite volume spatial discretization coupled with level set methods to simulate the resulting advection-reaction-diffusion system. We then apply the method to several biochemical reaction networks in changing geometries. We found that a Turing instability can develop exclusively by cell deformations that maintain constant area. For a Turing system with a geometry-dependent single or double peak solution, simulations in a dynamically changing geometry suggest that a single peak solution is the only stable one, independent of the oscillation frequency. The method is also applied to a model of a signaling network in a migrating fibroblast. PMID:24086102

  3. A feedback approach to bifurcation analysis in biochemical networks with many parameters

    OpenAIRE

    Waldherr, Steffen; Allgower, Frank

    2007-01-01

    Feedback circuits in biochemical networks which underly cellular signaling pathways are important elements in creating complex behavior. A specific aspect thereof is how stability of equilibrium points depends on model parameters. For biochemical networks, which are modelled using many parameters, it is typically very difficult to estimate the influence of parameters on stability. Finding parameters which result in a change in stability is a key step for a meaningful bifurcation analysis. We ...

  4. Turing-Hopf instability in biochemical reaction networks arising from pairs of subnetworks.

    Science.gov (United States)

    Mincheva, Maya; Roussel, Marc R

    2012-11-01

    Network conditions for Turing instability in biochemical systems with two biochemical species are well known and involve autocatalysis or self-activation. On the other hand general network conditions for potential Turing instabilities in large biochemical reaction networks are not well developed. A biochemical reaction network with any number of species where only one species moves is represented by a simple digraph and is modeled by a reaction-diffusion system with non-mass action kinetics. A graph-theoretic condition for potential Turing-Hopf instability that arises when a spatially homogeneous equilibrium loses its stability via a single pair of complex eigenvalues is obtained. This novel graph-theoretic condition is closely related to the negative cycle condition for oscillations in ordinary differential equation models and its generalizations, and requires the existence of a pair of subnetworks, each containing an even number of positive cycles. The technique is illustrated with a double-cycle Goodwin type model. PMID:22698892

  5. In silico evolution of biochemical networks

    Science.gov (United States)

    Francois, Paul

    2010-03-01

    We use computational evolution to select models of genetic networks that can be built from a predefined set of parts to achieve a certain behavior. Selection is made with the help of a fitness defining biological functions in a quantitative way. This fitness has to be specific to a process, but general enough to find processes common to many species. Computational evolution favors models that can be built by incremental improvements in fitness rather than via multiple neutral steps or transitions through less fit intermediates. With the help of these simulations, we propose a kinetic view of evolution, where networks are rapidly selected along a fitness gradient. This mathematics recapitulates Darwin's original insight that small changes in fitness can rapidly lead to the evolution of complex structures such as the eye, and explain the phenomenon of convergent/parallel evolution of similar structures in independent lineages. We will illustrate these ideas with networks implicated in embryonic development and patterning of vertebrates and primitive insects.

  6. Chemical reaction network approaches to Biochemical Systems Theory.

    Science.gov (United States)

    Arceo, Carlene Perpetua P; Jose, Editha C; Marin-Sanguino, Alberto; Mendoza, Eduardo R

    2015-11-01

    This paper provides a framework to represent a Biochemical Systems Theory (BST) model (in either GMA or S-system form) as a chemical reaction network with power law kinetics. Using this representation, some basic properties and the application of recent results of Chemical Reaction Network Theory regarding steady states of such systems are shown. In particular, Injectivity Theory, including network concordance [36] and the Jacobian Determinant Criterion [43], a "Lifting Theorem" for steady states [26] and the comprehensive results of Müller and Regensburger [31] on complex balanced equilibria are discussed. A partial extension of a recent Emulation Theorem of Cardelli for mass action systems [3] is derived for a subclass of power law kinetic systems. However, it is also shown that the GMA and S-system models of human purine metabolism [10] do not display the reactant-determined kinetics assumed by Müller and Regensburger and hence only a subset of BST models can be handled with their approach. Moreover, since the reaction networks underlying many BST models are not weakly reversible, results for non-complex balanced equilibria are also needed. PMID:26363083

  7. The alterations in biochemical signaling of hippocampal network activity in the autism brain The alterations in biochemical signaling of hippocampal network activity in the autism brain The alterations in biochemical signaling of hippocampal network activity in the autism brain

    Institute of Scientific and Technical Information of China (English)

    田允; 黄继云; 王锐; 陶蓉蓉; 卢应梅; 廖美华; 陆楠楠; 李静; 芦博; 韩峰

    2012-01-01

    Autism is a highly heritable neurodevelopmental condition characterized by impaired social interaction and communication. However, the role of synaptic dysfunction during development of autism remains unclear. In the present study, we address the alterations of biochemical signaling in hippocampal network following induction of the autism in experimental animals. Here, the an- imal disease model and DNA array being used to investigate the differences in transcriptome or- ganization between autistic and normal brain by gene co--expression network analysis.

  8. Insights into the organization of biochemical regulatory networks using graph theory analyses.

    Science.gov (United States)

    Ma'ayan, Avi

    2009-02-27

    Graph theory has been a valuable mathematical modeling tool to gain insights into the topological organization of biochemical networks. There are two types of insights that may be obtained by graph theory analyses. The first provides an overview of the global organization of biochemical networks; the second uses prior knowledge to place results from multivariate experiments, such as microarray data sets, in the context of known pathways and networks to infer regulation. Using graph analyses, biochemical networks are found to be scale-free and small-world, indicating that these networks contain hubs, which are proteins that interact with many other molecules. These hubs may interact with many different types of proteins at the same time and location or at different times and locations, resulting in diverse biological responses. Groups of components in networks are organized in recurring patterns termed network motifs such as feedback and feed-forward loops. Graph analysis revealed that negative feedback loops are less common and are present mostly in proximity to the membrane, whereas positive feedback loops are highly nested in an architecture that promotes dynamical stability. Cell signaling networks have multiple pathways from some input receptors and few from others. Such topology is reminiscent of a classification system. Signaling networks display a bow-tie structure indicative of funneling information from extracellular signals and then dispatching information from a few specific central intracellular signaling nexuses. These insights show that graph theory is a valuable tool for gaining an understanding of global regulatory features of biochemical networks. PMID:18940806

  9. An effective method for computing the noise in biochemical networks

    Science.gov (United States)

    Zhang, Jiajun; Nie, Qing; He, Miao; Zhou, Tianshou

    2013-02-01

    We present a simple yet effective method, which is based on power series expansion, for computing exact binomial moments that can be in turn used to compute steady-state probability distributions as well as the noise in linear or nonlinear biochemical reaction networks. When the method is applied to representative reaction networks such as the ON-OFF models of gene expression, gene models of promoter progression, gene auto-regulatory models, and common signaling motifs, the exact formulae for computing the intensities of noise in the species of interest or steady-state distributions are analytically given. Interestingly, we find that positive (negative) feedback does not enlarge (reduce) noise as claimed in previous works but has a counter-intuitive effect and that the multi-OFF (or ON) mechanism always attenuates the noise in contrast to the common ON-OFF mechanism and can modulate the noise to the lowest level independently of the mRNA mean. Except for its power in deriving analytical expressions for distributions and noise, our method is programmable and has apparent advantages in reducing computational cost.

  10. Unveiling the hidden structure of complex stochastic biochemical networks

    Science.gov (United States)

    Valleriani, Angelo; Li, Xin; Kolomeisky, Anatoly B.

    2014-02-01

    Complex Markov models are widely used and powerful predictive tools to analyze stochastic biochemical processes. However, when the network of states is unknown, it is necessary to extract information from the data to partially build the network and estimate the values of the rates. The short-time behavior of the first-passage time distributions between two states in linear chains has been shown recently to behave as a power of time with an exponent equal to the number of intermediate states. For a general Markov model we derive the complete Taylor expansion of the first-passage time distribution between two arbitrary states. By combining algebraic methods and graph theory approaches it is shown that the first term of the Taylor expansion is determined by the shortest path from the initial state to the final state. When this path is unique, we prove that the coefficient of the first term can be written in terms of the product of the transition rates along the path. It is argued that the application of our results to first-return times may be used to estimate the dependence of rates on external parameters in experimentally measured time distributions.

  11. Unveiling the hidden structure of complex stochastic biochemical networks

    International Nuclear Information System (INIS)

    Complex Markov models are widely used and powerful predictive tools to analyze stochastic biochemical processes. However, when the network of states is unknown, it is necessary to extract information from the data to partially build the network and estimate the values of the rates. The short-time behavior of the first-passage time distributions between two states in linear chains has been shown recently to behave as a power of time with an exponent equal to the number of intermediate states. For a general Markov model we derive the complete Taylor expansion of the first-passage time distribution between two arbitrary states. By combining algebraic methods and graph theory approaches it is shown that the first term of the Taylor expansion is determined by the shortest path from the initial state to the final state. When this path is unique, we prove that the coefficient of the first term can be written in terms of the product of the transition rates along the path. It is argued that the application of our results to first-return times may be used to estimate the dependence of rates on external parameters in experimentally measured time distributions

  12. Mean field interaction in biochemical reaction networks

    KAUST Repository

    Tembine, Hamidou

    2011-09-01

    In this paper we establish a relationship between chemical dynamics and mean field game dynamics. We show that chemical reaction networks can be studied using noisy mean field limits. We provide deterministic, noisy and switching mean field limits and illustrate them with numerical examples. © 2011 IEEE.

  13. Trade-Offs in Delayed Information Transmission in Biochemical Networks

    Science.gov (United States)

    Mancini, F.; Marsili, M.; Walczak, A. M.

    2016-03-01

    In order to transmit biochemical signals, biological regulatory systems dissipate energy with concomitant entropy production. Additionally, signaling often takes place in challenging environmental conditions. In a simple model regulatory circuit given by an input and a delayed output, we explore the trade-offs between information transmission and the system's energetic efficiency. We determine the maximally informative network, given a fixed amount of entropy production and a delayed response, exploring both the case with and without feedback. We find that feedback allows the circuit to overcome energy constraints and transmit close to the maximum available information even in the dissipationless limit. Negative feedback loops, characteristic of shock responses, are optimal at high dissipation. Close to equilibrium positive feedback loops, known for their stability, become more informative. Asking how the signaling network should be constructed to best function in the worst possible environment, rather than an optimally tuned one or in steady state, we discover that at large dissipation the same universal motif is optimal in all of these conditions.

  14. Transient amplification limits noise suppression in biochemical networks

    Science.gov (United States)

    Dixon, John; Lindemann, Anika; McCoy, Jonathan H.

    2016-01-01

    Cell physiology is orchestrated, on a molecular level, through complex networks of biochemical reactions. The propagation of random fluctuations through these networks can significantly impact cell behavior, raising challenging questions about how network design shapes the cell's ability to suppress or exploit these fluctuations. Here, drawing on insights from statistical physics, fluid dynamics, and systems biology, we explore how transient amplification phenomena arising from network connectivity naturally limit a biochemical system's ability to suppress small fluctuations around steady-state behaviors. We find that even a simple system consisting of two variables linked by a single interaction is capable of amplifying small fluctuations orders of magnitude beyond the levels predicted by linear stability theory. We also find that adding additional interactions can promote further amplification, even when these interactions implement classic design strategies known to suppress fluctuations. These results establish that transient amplification is an essential factor determining baseline noise levels in stable intracellular networks. Significantly, our analysis is not bound to specific systems or interaction mechanisms: we find that noise amplification is an emergent phenomenon found near steady states in any network containing sufficiently strong interactions, regardless of its form or function.

  15. Finite time thermodynamic coupling in a biochemical network

    OpenAIRE

    Dasgupta, Anjan Kr

    2014-01-01

    The paper describes some thermodynamic constrains and relations in biochemical or metabolic network and provides a basis for entropy enthalpy compensation. Conventional definition of macroscopic forces and fluxes leads to a paradox namely, non-existence of positive efficiency of a chemically driven process. This paradox is resolved by deriving an appropriate definition of macroscopic force using the local balance equations. Entropy enthalpy compensation, whose thermodynamic basis is so far un...

  16. Evolutionary origin of power-laws in Biochemical Reaction Network; embedding abundance distribution into topology

    OpenAIRE

    Furusawa, Chikara; Kaneko, Kunihiko

    2005-01-01

    The evolutionary origin of universal statistics in biochemical reaction network is studied, to explain the power-law distribution of reaction links and the power-law distributions of chemical abundances. Using cell models with catalytic reaction network, we find evidence that the power-law distribution in abundances of chemicals emerges by the selection of cells with higher growth speeds. Through the further evolution, this inhomogeneity in chemical abundances is shown to be embedded in the d...

  17. Feedback Regulation and Its Efficiency in Biochemical Networks

    Science.gov (United States)

    Kobayashi, Tetsuya J.; Yokota, Ryo; Aihara, Kazuyuki

    2016-03-01

    Intracellular biochemical networks fluctuate dynamically due to various internal and external sources of fluctuation. Dissecting the fluctuation into biologically relevant components is important for understanding how a cell controls and harnesses noise and how information is transferred over apparently noisy intracellular networks. While substantial theoretical and experimental advancement on the decomposition of fluctuation was achieved for feedforward networks without any loop, we still lack a theoretical basis that can consistently extend such advancement to feedback networks. The main obstacle that hampers is the circulative propagation of fluctuation by feedback loops. In order to define the relevant quantity for the impact of feedback loops for fluctuation, disentanglement of the causally interlocked influences between the components is required. In addition, we also lack an approach that enables us to infer non-perturbatively the influence of the feedback to fluctuation in the same way as the dual reporter system does in the feedforward networks. In this work, we address these problems by extending the work on the fluctuation decomposition and the dual reporter system. For a single-loop feedback network with two components, we define feedback loop gain as the feedback efficiency that is consistent with the fluctuation decomposition for feedforward networks. Then, we clarify the relation of the feedback efficiency with the fluctuation propagation in an open-looped FF network. Finally, by extending the dual reporter system, we propose a conjugate feedback and feedforward system for estimating the feedback efficiency non-perturbatively only from the statistics of the system.

  18. A systematic molecular circuit design method for gene networks under biochemical time delays and molecular noises

    Directory of Open Access Journals (Sweden)

    Chang Yu-Te

    2008-11-01

    Full Text Available Abstract Background Gene networks in nanoscale are of nonlinear stochastic process. Time delays are common and substantial in these biochemical processes due to gene transcription, translation, posttranslation protein modification and diffusion. Molecular noises in gene networks come from intrinsic fluctuations, transmitted noise from upstream genes, and the global noise affecting all genes. Knowledge of molecular noise filtering and biochemical process delay compensation in gene networks is crucial to understand the signal processing in gene networks and the design of noise-tolerant and delay-robust gene circuits for synthetic biology. Results A nonlinear stochastic dynamic model with multiple time delays is proposed for describing a gene network under process delays, intrinsic molecular fluctuations, and extrinsic molecular noises. Then, the stochastic biochemical processing scheme of gene regulatory networks for attenuating these molecular noises and compensating process delays is investigated from the nonlinear signal processing perspective. In order to improve the robust stability for delay toleration and noise filtering, a robust gene circuit for nonlinear stochastic time-delay gene networks is engineered based on the nonlinear robust H∞ stochastic filtering scheme. Further, in order to avoid solving these complicated noise-tolerant and delay-robust design problems, based on Takagi-Sugeno (T-S fuzzy time-delay model and linear matrix inequalities (LMIs technique, a systematic gene circuit design method is proposed to simplify the design procedure. Conclusion The proposed gene circuit design method has much potential for application to systems biology, synthetic biology and drug design when a gene regulatory network has to be designed for improving its robust stability and filtering ability of disease-perturbed gene network or when a synthetic gene network needs to perform robustly under process delays and molecular noises.

  19. Signal detection, modularity and the correlation between extrinsic and intrinsic noise in biochemical networks

    OpenAIRE

    Tanase-Nicola, Sorin; Warren, Patrick B.; Wolde, Pieter Rein ten

    2005-01-01

    Understanding cell function requires an accurate description of how noise is transmitted through biochemical networks. We present an analytical result for the power spectrum of the output signal of a biochemical network that takes into account the correlations between the noise in the input signal (the extrinsic noise) and the noise in the reactions that constitute the network (the intrinsic noise). These correlations arise from the fact that the reactions by which biochemical signals are det...

  20. Coarse-graining stochastic biochemical networks: adiabaticity and fast simulations

    Energy Technology Data Exchange (ETDEWEB)

    Nemenman, Ilya [Los Alamos National Laboratory; Sinitsyn, Nikolai [Los Alamos National Laboratory; Hengartner, Nick [Los Alamos National Laboratory

    2008-01-01

    We propose a universal approach for analysis and fast simulations of stiff stochastic biochemical kinetics networks, which rests on elimination of fast chemical species without a loss of information about mesoscoplc, non-Poissonian fluctuations of the slow ones. Our approach, which is similar to the Born-Oppenhelmer approximation in quantum mechanics, follows from the stochastic path Integral representation of the cumulant generating function of reaction events. In applications with a small number of chemIcal reactions, It produces analytical expressions for cumulants of chemical fluxes between the slow variables. This allows for a low-dimensional, Interpretable representation and can be used for coarse-grained numerical simulation schemes with a small computational complexity and yet high accuracy. As an example, we derive the coarse-grained description for a chain of biochemical reactions, and show that the coarse-grained and the microscopic simulations are in an agreement, but the coarse-gralned simulations are three orders of magnitude faster.

  1. Model-Based Design of Biochemical Microreactors.

    Science.gov (United States)

    Elbinger, Tobias; Gahn, Markus; Neuss-Radu, Maria; Hante, Falk M; Voll, Lars M; Leugering, Günter; Knabner, Peter

    2016-01-01

    Mathematical modeling of biochemical pathways is an important resource in Synthetic Biology, as the predictive power of simulating synthetic pathways represents an important step in the design of synthetic metabolons. In this paper, we are concerned with the mathematical modeling, simulation, and optimization of metabolic processes in biochemical microreactors able to carry out enzymatic reactions and to exchange metabolites with their surrounding medium. The results of the reported modeling approach are incorporated in the design of the first microreactor prototypes that are under construction. These microreactors consist of compartments separated by membranes carrying specific transporters for the input of substrates and export of products. Inside the compartments of the reactor multienzyme complexes assembled on nano-beads by peptide adapters are used to carry out metabolic reactions. The spatially resolved mathematical model describing the ongoing processes consists of a system of diffusion equations together with boundary and initial conditions. The boundary conditions model the exchange of metabolites with the neighboring compartments and the reactions at the surface of the nano-beads carrying the multienzyme complexes. Efficient and accurate approaches for numerical simulation of the mathematical model and for optimal design of the microreactor are developed. As a proof-of-concept scenario, a synthetic pathway for the conversion of sucrose to glucose-6-phosphate (G6P) was chosen. In this context, the mathematical model is employed to compute the spatio-temporal distributions of the metabolite concentrations, as well as application relevant quantities like the outflow rate of G6P. These computations are performed for different scenarios, where the number of beads as well as their loading capacity are varied. The computed metabolite distributions show spatial patterns, which differ for different experimental arrangements. Furthermore, the total output of G6P

  2. A MULTILAYER BIOCHEMICAL DRY DEPOSITION MODEL 2. MODEL EVALUATION

    Science.gov (United States)

    The multilayer biochemical dry deposition model (MLBC) described in the accompanying paper was tested against half-hourly eddy correlation data from six field sites under a wide range of climate conditions with various plant types. Modeled CO2, O3, SO2<...

  3. A MULTILAYER BIOCHEMICAL DRY DEPOSITION MODEL 1. MODEL FORMULATION

    Science.gov (United States)

    A multilayer biochemical dry deposition model has been developed based on the NOAA Multilayer Model (MLM) to study gaseous exchanges between the soil, plants, and the atmosphere. Most of the parameterizations and submodels have been updated or replaced. The numerical integration ...

  4. Collaborative networks: Reference modeling

    NARCIS (Netherlands)

    L.M. Camarinha-Matos; H. Afsarmanesh

    2008-01-01

    Collaborative Networks: Reference Modeling works to establish a theoretical foundation for Collaborative Networks. Particular emphasis is put on modeling multiple facets of collaborative networks and establishing a comprehensive modeling framework that captures and structures diverse perspectives of

  5. Exact results for noise power spectra in linear biochemical reaction networks

    OpenAIRE

    Warren, Patrick B.; Tanase-Nicola, Sorin; Wolde, Pieter Rein ten

    2005-01-01

    We present a simple method for determining the exact noise power spectra in linear chemical reaction networks. We apply the method to networks which are representative of biochemical processes such as gene expression and signal detection. Our results clarify how noise is transmitted by signal detection motifs, and indicate how to coarse-grain networks by the elimination of fast reactions.

  6. Social Network Modelling

    OpenAIRE

    Pugacheva, E

    2015-01-01

    In the offered review some key issues of social network analysis are discussed. This is a brief summary of social network characteristics, models of network formation, and the network perspective. The aim of this overview is to contribute to interdisciplinary dialogue among researchers in physics, mathematics, sociology, who share a common interest in understanding the network phenomena.

  7. Efficient Characterization of Parametric Uncertainty of Complex (Biochemical Networks.

    Directory of Open Access Journals (Sweden)

    Claudia Schillings

    2015-08-01

    Full Text Available Parametric uncertainty is a particularly challenging and relevant aspect of systems analysis in domains such as systems biology where, both for inference and for assessing prediction uncertainties, it is essential to characterize the system behavior globally in the parameter space. However, current methods based on local approximations or on Monte-Carlo sampling cope only insufficiently with high-dimensional parameter spaces associated with complex network models. Here, we propose an alternative deterministic methodology that relies on sparse polynomial approximations. We propose a deterministic computational interpolation scheme which identifies most significant expansion coefficients adaptively. We present its performance in kinetic model equations from computational systems biology with several hundred parameters and state variables, leading to numerical approximations of the parametric solution on the entire parameter space. The scheme is based on adaptive Smolyak interpolation of the parametric solution at judiciously and adaptively chosen points in parameter space. As Monte-Carlo sampling, it is "non-intrusive" and well-suited for massively parallel implementation, but affords higher convergence rates. This opens up new avenues for large-scale dynamic network analysis by enabling scaling for many applications, including parameter estimation, uncertainty quantification, and systems design.

  8. A moment-convergence method for stochastic analysis of biochemical reaction networks

    Science.gov (United States)

    Zhang, Jiajun; Nie, Qing; Zhou, Tianshou

    2016-05-01

    Traditional moment-closure methods need to assume that high-order cumulants of a probability distribution approximate to zero. However, this strong assumption is not satisfied for many biochemical reaction networks. Here, we introduce convergent moments (defined in mathematics as the coefficients in the Taylor expansion of the probability-generating function at some point) to overcome this drawback of the moment-closure methods. As such, we develop a new analysis method for stochastic chemical kinetics. This method provides an accurate approximation for the master probability equation (MPE). In particular, the connection between low-order convergent moments and rate constants can be more easily derived in terms of explicit and analytical forms, allowing insights that would be difficult to obtain through direct simulation or manipulation of the MPE. In addition, it provides an accurate and efficient way to compute steady-state or transient probability distribution, avoiding the algorithmic difficulty associated with stiffness of the MPE due to large differences in sizes of rate constants. Applications of the method to several systems reveal nontrivial stochastic mechanisms of gene expression dynamics, e.g., intrinsic fluctuations can induce transient bimodality and amplify transient signals, and slow switching between promoter states can increase fluctuations in spatially heterogeneous signals. The overall approach has broad applications in modeling, analysis, and computation of complex biochemical networks with intrinsic noise.

  9. Genetic programming-based approach to elucidate biochemical interaction networks from data.

    Science.gov (United States)

    Kandpal, Manoj; Kalyan, Chakravarthy Mynampati; Samavedham, Lakshminarayanan

    2013-02-01

    Biochemical systems are characterised by cyclic/reversible reciprocal actions, non-linear interactions and a mixed relationship structures (linear and non-linear; static and dynamic). Deciphering the architecture of such systems using measured data to provide quantitative information regarding the nature of relationships that exist between the measured variables is a challenging proposition. Causality detection is one of the methodologies that are applied to elucidate biochemical networks from such data. Autoregressive-based modelling approach such as granger causality, partial directed coherence, directed transfer function and canonical variate analysis have been applied on different systems for deciphering such interactions, but with limited success. In this study, the authors propose a genetic programming-based causality detection (GPCD) methodology which blends evolutionary computation-based procedures along with parameter estimation methods to derive a mathematical model of the system. Application of the GPCD methodology on five data sets that contained the different challenges mentioned above indicated that GPCD performs better than the other methods in uncovering the exact structure with less false positives. On a glycolysis data set, GPCD was able to fill the 'interaction gaps' which were missed by other methods. PMID:23848052

  10. Simplifying biochemical models with intermediate species

    DEFF Research Database (Denmark)

    Feliu, Elisenda; Wiuf, Carsten

    2013-01-01

    canonical model that characterizes crucial dynamical properties, such as mono- and multistationarity and stability of steady states, of all models in the class. We show that if the core model does not have conservation laws, then the introduction of intermediates does not change the steady...

  11. Distinct configurations of protein complexes and biochemical pathways revealed by epistatic interaction network motifs

    LENUS (Irish Health Repository)

    Casey, Fergal

    2011-08-22

    Abstract Background Gene and protein interactions are commonly represented as networks, with the genes or proteins comprising the nodes and the relationship between them as edges. Motifs, or small local configurations of edges and nodes that arise repeatedly, can be used to simplify the interpretation of networks. Results We examined triplet motifs in a network of quantitative epistatic genetic relationships, and found a non-random distribution of particular motif classes. Individual motif classes were found to be associated with different functional properties, suggestive of an underlying biological significance. These associations were apparent not only for motif classes, but for individual positions within the motifs. As expected, NNN (all negative) motifs were strongly associated with previously reported genetic (i.e. synthetic lethal) interactions, while PPP (all positive) motifs were associated with protein complexes. The two other motif classes (NNP: a positive interaction spanned by two negative interactions, and NPP: a negative spanned by two positives) showed very distinct functional associations, with physical interactions dominating for the former but alternative enrichments, typical of biochemical pathways, dominating for the latter. Conclusion We present a model showing how NNP motifs can be used to recognize supportive relationships between protein complexes, while NPP motifs often identify opposing or regulatory behaviour between a gene and an associated pathway. The ability to use motifs to point toward underlying biological organizational themes is likely to be increasingly important as more extensive epistasis mapping projects in higher organisms begin.

  12. A coupled mechano-biochemical model for bone adaptation

    Czech Academy of Sciences Publication Activity Database

    Klika, Václav; Pérez, M. A.; García-Aznar, J. M.; Maršík, F.; Doblaré, M.

    2014-01-01

    Roč. 69, 6-7 (2014), s. 1383-1429. ISSN 0303-6812 Institutional support: RVO:61388998 Keywords : mechano-biochemical model * bone remodelling * BMU Subject RIV: BJ - Thermodynamics Impact factor: 1.846, year: 2014 http://link.springer.com/article/10.1007%2Fs00285-013-0736-9

  13. Model Based Monitoring and Control of Chemical and Biochemical Processes

    DEFF Research Database (Denmark)

    Huusom, Jakob Kjøbsted

    This presentation will give an overview of the work performed at the department of Chemical and Biochemical Engineering related to process control. A research vision is formulated and related to a number of active projects at the department. In more detail a project describing model estimation and...

  14. ADVANCES ON BILINEAR MODELING OF BIOCHEMICAL BATCH PROCESSES

    OpenAIRE

    GONZÁLEZ MARTÍNEZ, JOSÉ MARÍA

    2015-01-01

    [EN] This thesis is aimed to study the implications of the statistical modeling approaches proposed for the bilinear modeling of batch processes, develop new techniques to overcome some of the problems that have not been yet solved and apply them to data of biochemical processes. The study, discussion and development of the new methods revolve around the four steps of the modeling cycle, from the alignment, preprocessing and calibration of batch data to the monitoring of batches trajectories....

  15. Brain Network Modelling

    DEFF Research Database (Denmark)

    Andersen, Kasper Winther

    Three main topics are presented in this thesis. The first and largest topic concerns network modelling of functional Magnetic Resonance Imaging (fMRI) and Diffusion Weighted Imaging (DWI). In particular nonparametric Bayesian methods are used to model brain networks derived from resting state f...... for their ability to reproduce node clustering and predict unseen data. Comparing the models on whole brain networks, BCD and IRM showed better reproducibility and predictability than IDM, suggesting that resting state networks exhibit community structure. This also points to the importance of using models, which...... allow for complex interactions between all pairs of clusters. In addition, it is demonstrated how the IRM can be used for segmenting brain structures into functionally coherent clusters. A new nonparametric Bayesian network model is presented. The model builds upon the IRM and can be used to infer...

  16. Biochemical correlates in an animal model of depression

    International Nuclear Information System (INIS)

    A valid animal model of depression was used to explore specific adrenergic receptor differences between rats exhibiting aberrant behavior and control groups. Preliminary experiments revealed a distinct upregulation of hippocampal beta-receptors (as compared to other brain regions) in those animals acquiring a response deficit as a result of exposure to inescapable footshock. Concurrent studies using standard receptor binding techniques showed no large changes in the density of alpha-adrenergic, serotonergic, or dopaminergic receptor densities. This led to the hypothesis that the hippocampal beta-receptor in responses deficient animals could be correlated with the behavioral changes seen after exposure to the aversive stimulus. Normalization of the behavior through the administration of antidepressants could be expected to reverse the biochemical changes if these are related to the mechanism of action of antidepressant drugs. This study makes three important points: (1) there is a relevant biochemical change in the hippocampus of response deficient rats which occurs in parallel to a well-defined behavior, (2) the biochemical and behavioral changes are normalized by antidepressant treatments exhibiting both serotonergic and adrenergic mechanisms of action, and (3) the mode of action of antidepressants in this model is probably a combination of serotonergic and adrenergic influences modulating the hippocampal beta-receptor. These results are discussed in relation to anatomical and biochemical aspects of antidepressant action

  17. Modeling Epidemic Network Failures

    DEFF Research Database (Denmark)

    Ruepp, Sarah Renée; Fagertun, Anna Manolova

    2013-01-01

    This paper presents the implementation of a failure propagation model for transport networks when multiple failures occur resulting in an epidemic. We model the Susceptible Infected Disabled (SID) epidemic model and validate it by comparing it to analytical solutions. Furthermore, we evaluate...... the SID model’s behavior and impact on the network performance, as well as the severity of the infection spreading. The simulations are carried out in OPNET Modeler. The model provides an important input to epidemic connection recovery mechanisms, and can due to its flexibility and versatility be used...... to evaluate multiple epidemic scenarios in various network types....

  18. Artificial neural network modelling

    CERN Document Server

    Samarasinghe, Sandhya

    2016-01-01

    This book covers theoretical aspects as well as recent innovative applications of Artificial Neural networks (ANNs) in natural, environmental, biological, social, industrial and automated systems. It presents recent results of ANNs in modelling small, large and complex systems under three categories, namely, 1) Networks, Structure Optimisation, Robustness and Stochasticity 2) Advances in Modelling Biological and Environmental Systems and 3) Advances in Modelling Social and Economic Systems. The book aims at serving undergraduates, postgraduates and researchers in ANN computational modelling. .

  19. Modelling biochemical reaction systems by stochastic differential equations with reflection.

    Science.gov (United States)

    Niu, Yuanling; Burrage, Kevin; Chen, Luonan

    2016-05-01

    In this paper, we gave a new framework for modelling and simulating biochemical reaction systems by stochastic differential equations with reflection not in a heuristic way but in a mathematical way. The model is computationally efficient compared with the discrete-state Markov chain approach, and it ensures that both analytic and numerical solutions remain in a biologically plausible region. Specifically, our model mathematically ensures that species numbers lie in the domain D, which is a physical constraint for biochemical reactions, in contrast to the previous models. The domain D is actually obtained according to the structure of the corresponding chemical Langevin equations, i.e., the boundary is inherent in the biochemical reaction system. A variant of projection method was employed to solve the reflected stochastic differential equation model, and it includes three simple steps, i.e., Euler-Maruyama method was applied to the equations first, and then check whether or not the point lies within the domain D, and if not perform an orthogonal projection. It is found that the projection onto the closure D¯ is the solution to a convex quadratic programming problem. Thus, existing methods for the convex quadratic programming problem can be employed for the orthogonal projection map. Numerical tests on several important problems in biological systems confirmed the efficiency and accuracy of this approach. PMID:26920245

  20. Hysteresis-driven structure formation in biochemical networks

    Science.gov (United States)

    Klein

    1998-09-21

    A mechanism of structure formation, based on hysteresis behaviour is presented. A bisubstrate kinetic system with substrate inhibition, discussed previously in the context of Turing structure formation, may show hysteresis behaviour, when embedded in a metabolic network: the system may possess multiple steady states and may be switched from one stable fixpoint to the other. When cells containing this type of system are diffusively coupled, under certain conditions patterns result, which, as is demonstrated, are not of the Turing type. The main difference to diffusion-driven (Turing) structures is the fact that the hysteresis-driven patterns emerge under diffusive conditions, under which both the homogeneous and the asymmetrical steady state is stable. The resulting special properties and biological implications are discussed.Copyright 1998 Academic Press Limited PMID:9778438

  1. Boolean network model predicts knockout mutant phenotypes of fission yeast.

    Directory of Open Access Journals (Sweden)

    Maria I Davidich

    Full Text Available BOOLEAN NETWORKS (OR: networks of switches are extremely simple mathematical models of biochemical signaling networks. Under certain circumstances, Boolean networks, despite their simplicity, are capable of predicting dynamical activation patterns of gene regulatory networks in living cells. For example, the temporal sequence of cell cycle activation patterns in yeasts S. pombe and S. cerevisiae are faithfully reproduced by Boolean network models. An interesting question is whether this simple model class could also predict a more complex cellular phenomenology as, for example, the cell cycle dynamics under various knockout mutants instead of the wild type dynamics, only. Here we show that a Boolean network model for the cell cycle control network of yeast S. pombe correctly predicts viability of a large number of known mutants. So far this had been left to the more detailed differential equation models of the biochemical kinetics of the yeast cell cycle network and was commonly thought to be out of reach for models as simplistic as Boolean networks. The new results support our vision that Boolean networks may complement other mathematical models in systems biology to a larger extent than expected so far, and may fill a gap where simplicity of the model and a preference for an overall dynamical blueprint of cellular regulation, instead of biochemical details, are in the focus.

  2. Sensitivity analysis for computational models of biochemical systems

    OpenAIRE

    Maj,

    2014-01-01

    Systems biology is an integrated area of science which aims at the analysis of biochemical systems using an holistic perspective. In this context, sensitivity analysis, a technique studying how the output variation of a computational model can be associated to its input state plays a pivotal role. In the thesis it is described how to properly apply the different sensitivity analysis techniques according to the specific case study (i.e., continuous deterministic rather than discrete stochastic...

  3. Evaluation and Development of Methods for Identification of Biochemical Networks

    OpenAIRE

    Jauhiainen, Alexandra

    2005-01-01

    Systems biology is an area concerned with understanding biology on a systems level, where structure and dynamics of the system is in focus. Knowledge about structure and dynamics of biological systems is fundamental information about cells and interactions within cells and also play an increasingly important role in medical applications. System identification deals with the problem of constructing a model of a system from data and an extensive theory of particularly identification of linear ...

  4. Biochemical Models for S-Rnase-Based Self-Incompatibility

    Institute of Scientific and Technical Information of China (English)

    Zhi-Hua Hua; Allison Fields; Teh-hui Kao

    2008-01-01

    S-RNase-based self-incompatibility (SI) is a genetically determined self/non-self-recognition process employed by many flowering plant species to prevent inbreeding and promote outcrosses.For the Plantaginaceae,Rosa-ceae and Solanaceae,it is now known that S-RNase and S-Iocu F-box(two multiple allelic genes at the S-locus)determine the female and male specificity,respectively,during SI interactions.However,how allelic products of these two genes interact inside pollen tubes to result in specific growth inhibition of self-pollen tubes remains to be investigated.Here,we review all the previously proposed biochemical models and discuss whether their predictions are consistent with all SI phenomena,including competitive jnteraction where SI breaks down in pollen that carries two different pollen 5-alleles.We also discuss these models in Iight of the recent findings of compartmentalization of S-RNases in both incompatible and compatible pollen tubes.Lastly,we summarize the results from our recent biochemical studies of PiSLF(Petunia inflata SLF)and S-RNase.and present a new model for the biochemical mechanism of SI in the Solanaceae.The tenet of this model is that a PiSLF preferentially interacts with its non-self S-RNases in the cytoplasm of a pollen tube to result in the assembly of an E3-like complex,which then mediates ubiquitination and degradation of non-self S-RNases through the ubiquitin-26S proteasome pathway.This model can explain all SI phenomena and,at the same time,has raised new questions for further study.

  5. Relationship between cellular response models and biochemical mechanisms

    International Nuclear Information System (INIS)

    In most cellular response experiments, survival reflects the kinetics of a variety of damage and repair processes. Unfortunately, biochemical studies of molecular repair deal with mechanisms which cannot be readily correlated with these kinetic observations. The difference in these approaches sometimes leads to confusion over terms such as potentially-lethal and sublethal damage. These terms were introduced with operation definitions, derived from kinetic studies of cell survival, but some researchers have since attempted to associate them with specific biochemical mechanisms. Consequently, the terms are often used in totally different ways be different investigators. The use of carefully constructed models originating either out of assumptions based on mechanisms, or on kinetics, can be used to design experiments to eliminate some alternative kinetic schemes. In turn, some mechanisms may also be eliminated, resulting in a reduction in the number of mechanisms which must be investigated biochemically. One must take advantage of a wide range of specialized radiation procedures in order to accomplish this. Examples of the use of such specialized experimental designs, which have led to a more detailed understanding of the kinetics of both algal and mammalian cell responses, are discussed

  6. Combining Flux Balance and Energy Balance Analysis for Large-Scale Metabolic Network: Biochemical Circuit Theory for Analysis of Large-Scale Metabolic Networks

    Science.gov (United States)

    Beard, Daniel A.; Liang, Shou-Dan; Qian, Hong; Biegel, Bryan (Technical Monitor)

    2001-01-01

    Predicting behavior of large-scale biochemical metabolic networks represents one of the greatest challenges of bioinformatics and computational biology. Approaches, such as flux balance analysis (FBA), that account for the known stoichiometry of the reaction network while avoiding implementation of detailed reaction kinetics are perhaps the most promising tools for the analysis of large complex networks. As a step towards building a complete theory of biochemical circuit analysis, we introduce energy balance analysis (EBA), which compliments the FBA approach by introducing fundamental constraints based on the first and second laws of thermodynamics. Fluxes obtained with EBA are thermodynamically feasible and provide valuable insight into the activation and suppression of biochemical pathways.

  7. A general method for modeling biochemical and biomedical response

    Science.gov (United States)

    Ortiz, Roberto; Lerd Ng, Jia; Hughes, Tyler; Abou Ghantous, Michel; Bouhali, Othmane; Arredouani, Abdelilah; Allen, Roland

    2012-10-01

    The impressive achievements of biomedical science have come mostly from experimental research with human subjects, animal models, and sophisticated laboratory techniques. Additionally, theoretical chemistry has been a major aid in designing new drugs. Here we introduce a method which is similar to others already well known in theoretical systems biology, but which specifically addresses biochemical changes as the human body responds to medical interventions. It is common in systems biology to use first-order differential equations to model the time evolution of various chemical concentrations, and we as physicists can make a significant impact through designing realistic models and then solving the resulting equations. Biomedical research is rapidly advancing, and the technique presented in this talk can be applied in arbitrarily large models containing tens, hundreds, or even thousands of interacting species, to determine what beneficial effects and side effects may result from pharmaceuticals or other medical interventions.

  8. The Chemical Master Equation Approach to Nonequilibrium Steady-State of Open Biochemical Systems: Linear Single-Molecule Enzyme Kinetics and Nonlinear Biochemical Reaction Networks

    Directory of Open Access Journals (Sweden)

    Lisa M. Bishop

    2010-09-01

    Full Text Available We develop the stochastic, chemical master equation as a unifying approach to the dynamics of biochemical reaction systems in a mesoscopic volume under a living environment. A living environment provides a continuous chemical energy input that sustains the reaction system in a nonequilibrium steady state with concentration fluctuations. We discuss the linear, unimolecular single-molecule enzyme kinetics, phosphorylation-dephosphorylation cycle (PdPC with bistability, and network exhibiting oscillations. Emphasis is paid to the comparison between the stochastic dynamics and the prediction based on the traditional approach based on the Law of Mass Action. We introduce the difference between nonlinear bistability and stochastic bistability, the latter has no deterministic counterpart. For systems with nonlinear bistability, there are three different time scales: (a individual biochemical reactions, (b nonlinear network dynamics approaching to attractors, and (c cellular evolution. For mesoscopic systems with size of a living cell, dynamics in (a and (c are stochastic while that with (b is dominantly deterministic. Both (b and (c are emergent properties of a dynamic biochemical network; We suggest that the (c is most relevant to major cellular biochemical processes such as epi-genetic regulation, apoptosis, and cancer immunoediting. The cellular evolution proceeds with transitions among the attractors of (b in a “punctuated equilibrium” manner.

  9. The chemical master equation approach to nonequilibrium steady-state of open biochemical systems: linear single-molecule enzyme kinetics and nonlinear biochemical reaction networks.

    Science.gov (United States)

    Qian, Hong; Bishop, Lisa M

    2010-01-01

    We develop the stochastic, chemical master equation as a unifying approach to the dynamics of biochemical reaction systems in a mesoscopic volume under a living environment. A living environment provides a continuous chemical energy input that sustains the reaction system in a nonequilibrium steady state with concentration fluctuations. We discuss the linear, unimolecular single-molecule enzyme kinetics, phosphorylation-dephosphorylation cycle (PdPC) with bistability, and network exhibiting oscillations. Emphasis is paid to the comparison between the stochastic dynamics and the prediction based on the traditional approach based on the Law of Mass Action. We introduce the difference between nonlinear bistability and stochastic bistability, the latter has no deterministic counterpart. For systems with nonlinear bistability, there are three different time scales: (a) individual biochemical reactions, (b) nonlinear network dynamics approaching to attractors, and (c) cellular evolution. For mesoscopic systems with size of a living cell, dynamics in (a) and (c) are stochastic while that with (b) is dominantly deterministic. Both (b) and (c) are emergent properties of a dynamic biochemical network; We suggest that the (c) is most relevant to major cellular biochemical processes such as epi-genetic regulation, apoptosis, and cancer immunoediting. The cellular evolution proceeds with transitions among the attractors of (b) in a "punctuated equilibrium" manner. PMID:20957107

  10. The slow-scale linear noise approximation: an accurate, reduced stochastic description of biochemical networks under timescale separation conditions

    Directory of Open Access Journals (Sweden)

    Thomas Philipp

    2012-05-01

    Full Text Available Abstract Background It is well known that the deterministic dynamics of biochemical reaction networks can be more easily studied if timescale separation conditions are invoked (the quasi-steady-state assumption. In this case the deterministic dynamics of a large network of elementary reactions are well described by the dynamics of a smaller network of effective reactions. Each of the latter represents a group of elementary reactions in the large network and has associated with it an effective macroscopic rate law. A popular method to achieve model reduction in the presence of intrinsic noise consists of using the effective macroscopic rate laws to heuristically deduce effective probabilities for the effective reactions which then enables simulation via the stochastic simulation algorithm (SSA. The validity of this heuristic SSA method is a priori doubtful because the reaction probabilities for the SSA have only been rigorously derived from microscopic physics arguments for elementary reactions. Results We here obtain, by rigorous means and in closed-form, a reduced linear Langevin equation description of the stochastic dynamics of monostable biochemical networks in conditions characterized by small intrinsic noise and timescale separation. The slow-scale linear noise approximation (ssLNA, as the new method is called, is used to calculate the intrinsic noise statistics of enzyme and gene networks. The results agree very well with SSA simulations of the non-reduced network of elementary reactions. In contrast the conventional heuristic SSA is shown to overestimate the size of noise for Michaelis-Menten kinetics, considerably under-estimate the size of noise for Hill-type kinetics and in some cases even miss the prediction of noise-induced oscillations. Conclusions A new general method, the ssLNA, is derived and shown to correctly describe the statistics of intrinsic noise about the macroscopic concentrations under timescale separation conditions

  11. Functional brain network changes associated with clinical and biochemical measures of the severity of hepatic encephalopathy.

    Science.gov (United States)

    Jao, Tun; Schröter, Manuel; Chen, Chao-Long; Cheng, Yu-Fan; Lo, Chun-Yi Zac; Chou, Kun-Hsien; Patel, Ameera X; Lin, Wei-Che; Lin, Ching-Po; Bullmore, Edward T

    2015-11-15

    Functional properties of the brain may be associated with changes in complex brain networks. However, little is known about how properties of large-scale functional brain networks may be altered stepwise in patients with disturbance of consciousness, e.g., an encephalopathy. We used resting-state fMRI data on patients suffering from various degrees of hepatic encephalopathy (HE) to explore how topological and spatial network properties of functional brain networks changed at different cognitive and consciousness states. Severity of HE was measured clinically and by neuropsychological tests. Fifty-eight non-alcoholic liver cirrhosis patients and 62 normal controls were studied. Patients were subdivided into liver cirrhosis with no outstanding HE (NoHE, n=23), minimal HE with cognitive impairment only detectable by neuropsychological tests (MHE, n=28), and clinically overt HE (OHE, n=7). From the earliest stage, the NoHE, functional brain networks were progressively more random, less clustered, and less modular. Since the intermediate stage (MHE), increased ammonia level was accompanied by concomitant exponential decay of mean connectivity strength, especially in the primary cortical areas and midline brain structures. Finally, at the OHE stage, there were radical reorganization of the topological centrality-i.e., the relative importance-of the hubs and reorientation of functional connections between nodes. In summary, this study illustrated progressively greater abnormalities in functional brain network organization in patients with clinical and biochemical evidence of more severe hepatic encephalopathy. The early-than-expected brain network dysfunction in cirrhotic patients suggests that brain functional connectivity and network analysis may provide useful and complementary biomarkers for more aggressive and earlier intervention of hepatic encephalopathy. Moreover, the stepwise deterioration of functional brain networks in HE patients may suggest that hierarchical

  12. A Network-of-Networks Model for Electrical Infrastructure Networks

    CERN Document Server

    Halappanavar, Mahantesh; Hogan, Emilie; Duncan, Daniel; Zhenyu,; Huang,; Hines, Paul D H

    2015-01-01

    Modeling power transmission networks is an important area of research with applications such as vulnerability analysis, study of cascading failures, and location of measurement devices. Graph-theoretic approaches have been widely used to solve these problems, but are subject to several limitations. One of the limitations is the ability to model a heterogeneous system in a consistent manner using the standard graph-theoretic formulation. In this paper, we propose a {\\em network-of-networks} approach for modeling power transmission networks in order to explicitly incorporate heterogeneity in the model. This model distinguishes between different components of the network that operate at different voltage ratings, and also captures the intra and inter-network connectivity patterns. By building the graph in this fashion we present a novel, and fundamentally different, perspective of power transmission networks. Consequently, this novel approach will have a significant impact on the graph-theoretic modeling of powe...

  13. Extracting protein regulatory networks with graphical models.

    Science.gov (United States)

    Grzegorczyk, Marco

    2007-09-01

    During the last decade the development of high-throughput biotechnologies has resulted in the production of exponentially expanding quantities of biological data, such as genomic and proteomic expression data. One fundamental problem in systems biology is to learn the architecture of biochemical pathways and regulatory networks in an inferential way from such postgenomic data. Along with the increasing amount of available data, a lot of novel statistical methods have been developed and proposed in the literature. This article gives a non-mathematical overview of three widely used reverse engineering methods, namely relevance networks, graphical Gaussian models, and Bayesian networks, whereby the focus is on their relative merits and shortcomings. In addition the reverse engineering results of these graphical methods on cytometric protein data from the RAF-signalling network are cross-compared via AUROC scatter plots. PMID:17893851

  14. A microfluidic platform for controlled biochemical stimulation of twin neuronal networks.

    Science.gov (United States)

    Biffi, Emilia; Piraino, Francesco; Pedrocchi, Alessandra; Fiore, Gianfranco B; Ferrigno, Giancarlo; Redaelli, Alberto; Menegon, Andrea; Rasponi, Marco

    2012-06-01

    Spatially and temporally resolved delivery of soluble factors is a key feature for pharmacological applications. In this framework, microfluidics coupled to multisite electrophysiology offers great advantages in neuropharmacology and toxicology. In this work, a microfluidic device for biochemical stimulation of neuronal networks was developed. A micro-chamber for cell culturing, previously developed and tested for long term neuronal growth by our group, was provided with a thin wall, which partially divided the cell culture region in two sub-compartments. The device was reversibly coupled to a flat micro electrode array and used to culture primary neurons in the same microenvironment. We demonstrated that the two fluidically connected compartments were able to originate two parallel neuronal networks with similar electrophysiological activity but functionally independent. Furthermore, the device allowed to connect the outlet port to a syringe pump and to transform the static culture chamber in a perfused one. At 14 days invitro, sub-networks were independently stimulated with a test molecule, tetrodotoxin, a neurotoxin known to block action potentials, by means of continuous delivery. Electrical activity recordings proved the ability of the device configuration to selectively stimulate each neuronal network individually. The proposed microfluidic approach represents an innovative methodology to perform biological, pharmacological, and electrophysiological experiments on neuronal networks. Indeed, it allows for controlled delivery of substances to cells, and it overcomes the limitations due to standard drug stimulation techniques. Finally, the twin network configuration reduces biological variability, which has important outcomes on pharmacological and drug screening. PMID:22655017

  15. Virtual NEURON: a strategy for merged biochemical and electrophysiological modeling.

    Science.gov (United States)

    Brown, Sherry-Ann; Moraru, Ion I; Schaff, James C; Loew, Leslie M

    2011-10-01

    Because of its highly branched dendrite, the Purkinje neuron requires significant computational resources if coupled electrical and biochemical activity are to be simulated. To address this challenge, we developed a scheme for reducing the geometric complexity; while preserving the essential features of activity in both the soma and a remote dendritic spine. We merged our previously published biochemical model of calcium dynamics and lipid signaling in the Purkinje neuron, developed in the Virtual Cell modeling and simulation environment, with an electrophysiological model based on a Purkinje neuron model available in NEURON. A novel reduction method was applied to the Purkinje neuron geometry to obtain a model with fewer compartments that is tractable in Virtual Cell. Most of the dendritic tree was subject to reduction, but we retained the neuron's explicit electrical and geometric features along a specified path from spine to soma. Further, unlike previous simplification methods, the dendrites that branch off along the preserved explicit path are retained as reduced branches. We conserved axial resistivity and adjusted passive properties and active channel conductances for the reduction in surface area, and cytosolic calcium for the reduction in volume. Rallpacks are used to validate the reduction algorithm and show that it can be generalized to other complex neuronal geometries. For the Purkinje cell, we found that current injections at the soma were able to produce similar trains of action potentials and membrane potential propagation in the full and reduced models in NEURON; the reduced model produces identical spiking patterns in NEURON and Virtual Cell. Importantly, our reduced model can simulate communication between the soma and a distal spine; an alpha function applied at the spine to represent synaptic stimulation gave similar results in the full and reduced models for potential changes associated with both the spine and the soma. Finally, we combined

  16. Inverse fracture network modelling

    International Nuclear Information System (INIS)

    The basic problem in analyzing flow and transport in fractured rock is that the flow may be largely governed by a poorly connected network of fractures. Flow in such a system cannot be modeled with traditional modelling techniques. Fracture network models also have a limitation, in that they are based on geological data on fracture geometry even though it is known that only a small portion of fractures observed is hydraulically active. This paper discusses a new technique developed for treating the problem as well as presents a modelling example carried out to apply it. The approach is developed in Lawrence Berkeley Laboratory and it treats the fracture zone as an 'equivalent discontinuum'. The discontinuous nature of the problem is represented through flow on a partially filled lattice. An equivalent discontinuum model is constructed by adding and removing conductive elements through a statistical inverse technique called 'simulated annealing'. The fracture network model is 'annealed' until the modified systems behaves like the observed. The further development of the approach continues at LBL and in a joint LBL/VTT collaboration project the possibilities to apply the technique in Finnish conditions are investigated

  17. Synthesis and design of optimal biorefinery using an expanded network with thermochemical and biochemical biomass conversion platforms

    DEFF Research Database (Denmark)

    Cheali, Peam; Gernaey, Krist; Sin, Gürkan

    2013-01-01

    This study presents the development of an expanded biorefinery processing network for producing biofuels that combines biochemical and thermochemical conversion platforms. The expanded network is coupled to a framework that uses a superstructure based optimization approach to generate and compare...... for identifying at early stage optimal biorefinery concept with respect to technical, economic and environmental criteria....

  18. Exact hybrid particle/population simulation of rule-based models of biochemical systems.

    Directory of Open Access Journals (Sweden)

    Justin S Hogg

    2014-04-01

    Full Text Available Detailed modeling and simulation of biochemical systems is complicated by the problem of combinatorial complexity, an explosion in the number of species and reactions due to myriad protein-protein interactions and post-translational modifications. Rule-based modeling overcomes this problem by representing molecules as structured objects and encoding their interactions as pattern-based rules. This greatly simplifies the process of model specification, avoiding the tedious and error prone task of manually enumerating all species and reactions that can potentially exist in a system. From a simulation perspective, rule-based models can be expanded algorithmically into fully-enumerated reaction networks and simulated using a variety of network-based simulation methods, such as ordinary differential equations or Gillespie's algorithm, provided that the network is not exceedingly large. Alternatively, rule-based models can be simulated directly using particle-based kinetic Monte Carlo methods. This "network-free" approach produces exact stochastic trajectories with a computational cost that is independent of network size. However, memory and run time costs increase with the number of particles, limiting the size of system that can be feasibly simulated. Here, we present a hybrid particle/population simulation method that combines the best attributes of both the network-based and network-free approaches. The method takes as input a rule-based model and a user-specified subset of species to treat as population variables rather than as particles. The model is then transformed by a process of "partial network expansion" into a dynamically equivalent form that can be simulated using a population-adapted network-free simulator. The transformation method has been implemented within the open-source rule-based modeling platform BioNetGen, and resulting hybrid models can be simulated using the particle-based simulator NFsim. Performance tests show that

  19. Exact hybrid particle/population simulation of rule-based models of biochemical systems.

    Science.gov (United States)

    Hogg, Justin S; Harris, Leonard A; Stover, Lori J; Nair, Niketh S; Faeder, James R

    2014-04-01

    Detailed modeling and simulation of biochemical systems is complicated by the problem of combinatorial complexity, an explosion in the number of species and reactions due to myriad protein-protein interactions and post-translational modifications. Rule-based modeling overcomes this problem by representing molecules as structured objects and encoding their interactions as pattern-based rules. This greatly simplifies the process of model specification, avoiding the tedious and error prone task of manually enumerating all species and reactions that can potentially exist in a system. From a simulation perspective, rule-based models can be expanded algorithmically into fully-enumerated reaction networks and simulated using a variety of network-based simulation methods, such as ordinary differential equations or Gillespie's algorithm, provided that the network is not exceedingly large. Alternatively, rule-based models can be simulated directly using particle-based kinetic Monte Carlo methods. This "network-free" approach produces exact stochastic trajectories with a computational cost that is independent of network size. However, memory and run time costs increase with the number of particles, limiting the size of system that can be feasibly simulated. Here, we present a hybrid particle/population simulation method that combines the best attributes of both the network-based and network-free approaches. The method takes as input a rule-based model and a user-specified subset of species to treat as population variables rather than as particles. The model is then transformed by a process of "partial network expansion" into a dynamically equivalent form that can be simulated using a population-adapted network-free simulator. The transformation method has been implemented within the open-source rule-based modeling platform BioNetGen, and resulting hybrid models can be simulated using the particle-based simulator NFsim. Performance tests show that significant memory savings

  20. SBMLsqueezer: A CellDesigner plug-in to generate kinetic rate equations for biochemical networks

    Directory of Open Access Journals (Sweden)

    Schröder Adrian

    2008-04-01

    Full Text Available Abstract Background The development of complex biochemical models has been facilitated through the standardization of machine-readable representations like SBML (Systems Biology Markup Language. This effort is accompanied by the ongoing development of the human-readable diagrammatic representation SBGN (Systems Biology Graphical Notation. The graphical SBML editor CellDesigner allows direct translation of SBGN into SBML, and vice versa. For the assignment of kinetic rate laws, however, this process is not straightforward, as it often requires manual assembly and specific knowledge of kinetic equations. Results SBMLsqueezer facilitates exactly this modeling step via automated equation generation, overcoming the highly error-prone and cumbersome process of manually assigning kinetic equations. For each reaction the kinetic equation is derived from the stoichiometry, the participating species (e.g., proteins, mRNA or simple molecules as well as the regulatory relations (activation, inhibition or other modulations of the SBGN diagram. Such information allows distinctions between, for example, translation, phosphorylation or state transitions. The types of kinetics considered are numerous, for instance generalized mass-action, Hill, convenience and several Michaelis-Menten-based kinetics, each including activation and inhibition. These kinetics allow SBMLsqueezer to cover metabolic, gene regulatory, signal transduction and mixed networks. Whenever multiple kinetics are applicable to one reaction, parameter settings allow for user-defined specifications. After invoking SBMLsqueezer, the kinetic formulas are generated and assigned to the model, which can then be simulated in CellDesigner or with external ODE solvers. Furthermore, the equations can be exported to SBML, LaTeX or plain text format. Conclusion SBMLsqueezer considers the annotation of all participating reactants, products and regulators when generating rate laws for reactions. Thus, for

  1. Linear analysis near a steady-state of biochemical networks: control analysis, correlation metrics and circuit theory

    Directory of Open Access Journals (Sweden)

    Qian Hong

    2008-05-01

    Full Text Available Abstract Background: Several approaches, including metabolic control analysis (MCA, flux balance analysis (FBA, correlation metric construction (CMC, and biochemical circuit theory (BCT, have been developed for the quantitative analysis of complex biochemical networks. Here, we present a comprehensive theory of linear analysis for nonequilibrium steady-state (NESS biochemical reaction networks that unites these disparate approaches in a common mathematical framework and thermodynamic basis. Results: In this theory a number of relationships between key matrices are introduced: the matrix A obtained in the standard, linear-dynamic-stability analysis of the steady-state can be decomposed as A = SRT where R and S are directly related to the elasticity-coefficient matrix for the fluxes and chemical potentials in MCA, respectively; the control-coefficients for the fluxes and chemical potentials can be written in terms of RT BS and ST BS respectively where matrix B is the inverse of A; the matrix S is precisely the stoichiometric matrix in FBA; and the matrix eAt plays a central role in CMC. Conclusion: One key finding that emerges from this analysis is that the well-known summation theorems in MCA take different forms depending on whether metabolic steady-state is maintained by flux injection or concentration clamping. We demonstrate that if rate-limiting steps exist in a biochemical pathway, they are the steps with smallest biochemical conductances and largest flux control-coefficients. We hypothesize that biochemical networks for cellular signaling have a different strategy for minimizing energy waste and being efficient than do biochemical networks for biosynthesis. We also discuss the intimate relationship between MCA and biochemical systems analysis (BSA.

  2. Coevolutionary modeling in network formation

    KAUST Repository

    Al-Shyoukh, Ibrahim

    2014-12-03

    Network coevolution, the process of network topology evolution in feedback with dynamical processes over the network nodes, is a common feature of many engineered and natural networks. In such settings, the change in network topology occurs at a comparable time scale to nodal dynamics. Coevolutionary modeling offers the possibility to better understand how and why network structures emerge. For example, social networks can exhibit a variety of structures, ranging from almost uniform to scale-free degree distributions. While current models of network formation can reproduce these structures, coevolutionary modeling can offer a better understanding of the underlying dynamics. This paper presents an overview of recent work on coevolutionary models of network formation, with an emphasis on the following three settings: (i) dynamic flow of benefits and costs, (ii) transient link establishment costs, and (iii) latent preferential attachment.

  3. Cellular automata modelling of biomolecular networks dynamics.

    Science.gov (United States)

    Bonchev, D; Thomas, S; Apte, A; Kier, L B

    2010-01-01

    The modelling of biological systems dynamics is traditionally performed by ordinary differential equations (ODEs). When dealing with intracellular networks of genes, proteins and metabolites, however, this approach is hindered by network complexity and the lack of experimental kinetic parameters. This opened the field for other modelling techniques, such as cellular automata (CA) and agent-based modelling (ABM). This article reviews this emerging field of studies on network dynamics in molecular biology. The basics of the CA technique are discussed along with an extensive list of related software and websites. The application of CA to networks of biochemical reactions is exemplified in detail by the case studies of the mitogen-activated protein kinase (MAPK) signalling pathway, the FAS-ligand (FASL)-induced and Bcl-2-related apoptosis. The potential of the CA method to model basic pathways patterns, to identify ways to control pathway dynamics and to help in generating strategies to fight with cancer is demonstrated. The different line of CA applications presented includes the search for the best-performing network motifs, an analysis of importance for effective intracellular signalling and pathway cross-talk. PMID:20373215

  4. Hierarchical graphs for rule-based modeling of biochemical systems

    Directory of Open Access Journals (Sweden)

    Hu Bin

    2011-02-01

    Full Text Available Abstract Background In rule-based modeling, graphs are used to represent molecules: a colored vertex represents a component of a molecule, a vertex attribute represents the internal state of a component, and an edge represents a bond between components. Components of a molecule share the same color. Furthermore, graph-rewriting rules are used to represent molecular interactions. A rule that specifies addition (removal of an edge represents a class of association (dissociation reactions, and a rule that specifies a change of a vertex attribute represents a class of reactions that affect the internal state of a molecular component. A set of rules comprises an executable model that can be used to determine, through various means, the system-level dynamics of molecular interactions in a biochemical system. Results For purposes of model annotation, we propose the use of hierarchical graphs to represent structural relationships among components and subcomponents of molecules. We illustrate how hierarchical graphs can be used to naturally document the structural organization of the functional components and subcomponents of two proteins: the protein tyrosine kinase Lck and the T cell receptor (TCR complex. We also show that computational methods developed for regular graphs can be applied to hierarchical graphs. In particular, we describe a generalization of Nauty, a graph isomorphism and canonical labeling algorithm. The generalized version of the Nauty procedure, which we call HNauty, can be used to assign canonical labels to hierarchical graphs or more generally to graphs with multiple edge types. The difference between the Nauty and HNauty procedures is minor, but for completeness, we provide an explanation of the entire HNauty algorithm. Conclusions Hierarchical graphs provide more intuitive formal representations of proteins and other structured molecules with multiple functional components than do the regular graphs of current languages for

  5. Modelling Citation Networks

    CERN Document Server

    Goldberg, S R; Evans, T S

    2014-01-01

    The distribution of the number of academic publications as a function of citation count for a given year is remarkably similar from year to year. We measure this similarity as a width of the distribution and find it to be approximately constant from year to year. We show that simple citation models fail to capture this behaviour. We then provide a simple three parameter citation network model using a mixture of local and global search processes which can reproduce the correct distribution over time. We use the citation network of papers from the hep-th section of arXiv to test our model. For this data, around 20% of citations use global information to reference recently published papers, while the remaining 80% are found using local searches. We note that this is consistent with other studies though our motivation is very different from previous work. Finally, we also find that the fluctuations in the size of an academic publication's bibliography is important for the model. This is not addressed in most mode...

  6. A new computational method to split large biochemical networks into coherent subnets

    Directory of Open Access Journals (Sweden)

    Verwoerd Wynand S

    2011-02-01

    Full Text Available Abstract Background Compared to more general networks, biochemical networks have some special features: while generally sparse, there are a small number of highly connected metabolite nodes; and metabolite nodes can also be divided into two classes: internal nodes with associated mass balance constraints and external ones without. Based on these features, reclassifying selected internal nodes (separators to external ones can be used to divide a large complex metabolic network into simpler subnetworks. Selection of separators based on node connectivity is commonly used but affords little detailed control and tends to produce excessive fragmentation. The method proposed here (Netsplitter allows the user to control separator selection. It combines local connection degree partitioning with global connectivity derived from random walks on the network, to produce a more even distribution of subnetwork sizes. Partitioning is performed progressively and the interactive visual matrix presentation used allows the user considerable control over the process, while incorporating special strategies to maintain the network integrity and minimise the information loss due to partitioning. Results Partitioning of a genome scale network of 1348 metabolites and 1468 reactions for Arabidopsis thaliana encapsulates 66% of the network into 10 medium sized subnets. Applied to the flavonoid subnetwork extracted in this way, it is shown that Netsplitter separates this naturally into four subnets with recognisable functionality, namely synthesis of lignin precursors, flavonoids, coumarin and benzenoids. A quantitative quality measure called efficacy is constructed and shows that the new method gives improved partitioning for several metabolic networks, including bacterial, plant and mammal species. Conclusions For the examples studied the Netsplitter method is a considerable improvement on the performance of connection degree partitioning, giving a better balance of

  7. A Network Synthesis Model for Generating Protein Interaction Network Families

    OpenAIRE

    Sayed Mohammad Ebrahim Sahraeian; Byung-Jun Yoon

    2012-01-01

    In this work, we introduce a novel network synthesis model that can generate families of evolutionarily related synthetic protein-protein interaction (PPI) networks. Given an ancestral network, the proposed model generates the network family according to a hypothetical phylogenetic tree, where the descendant networks are obtained through duplication and divergence of their ancestors, followed by network growth using network evolution models. We demonstrate that this network synthesis model ca...

  8. Network model with structured nodes

    Science.gov (United States)

    Frisco, Pierluigi

    2011-08-01

    We present a network model in which words over a specific alphabet, called structures, are associated to each node and undirected edges are added depending on some distance measure between different structures. This model shifts the underlying principle of network generation from a purely mathematical one to an information-based one. It is shown how this model differs from the Barábasi-Albert and duplication models and how it can generate networks with topological features similar to biological networks: power law degree distribution, low average path length, clustering coefficient independent from the network size, etc. Two biological networks: S. cerevisiae gene network and E. coli protein-protein interaction network, are replicated using this model.

  9. HRSSA - Efficient hybrid stochastic simulation for spatially homogeneous biochemical reaction networks

    Science.gov (United States)

    Marchetti, Luca; Priami, Corrado; Thanh, Vo Hong

    2016-07-01

    This paper introduces HRSSA (Hybrid Rejection-based Stochastic Simulation Algorithm), a new efficient hybrid stochastic simulation algorithm for spatially homogeneous biochemical reaction networks. HRSSA is built on top of RSSA, an exact stochastic simulation algorithm which relies on propensity bounds to select next reaction firings and to reduce the average number of reaction propensity updates needed during the simulation. HRSSA exploits the computational advantage of propensity bounds to manage time-varying transition propensities and to apply dynamic partitioning of reactions, which constitute the two most significant bottlenecks of hybrid simulation. A comprehensive set of simulation benchmarks is provided for evaluating performance and accuracy of HRSSA against other state of the art algorithms.

  10. Biochemical recurrence and survival prediction models for the management of clinically localized prostate cancer.

    Science.gov (United States)

    Tewari, Ashuthosh; Gamito, Eduard J; Crawford, E David; Menon, Mani

    2004-03-01

    A number of new predictive modeling techniques have emerged in the past several years. These methods, which have been developed in fields such as artificial intelligence research, engineering, and meteorology, are now being applied to problems in medicine with promising results. This review outlines our recent work with use of selected advanced techniques such as artificial neural networks, genetic algorithms, and propensity scoring to develop useful models for estimating the risk of biochemical recurrence and long-term survival in men with clinically localized prostate cancer. In addition, we include a description of our efforts to develop a comprehensive prostate cancer database that, along with these novel modeling techniques, provides a powerful research tool that allows for the stratification of risk for treatment failure and survival by such factors as age, race, and comorbidities. Clinical and pathologic data from 1400 patients were used to develop the biochemical recurrence model. The area under the receiver operating characteristic curve for this model was 0.83, with a sensitivity of 85% and specificity of 74%. For the survival model, data from 6149 men were used. Our analysis indicated that age, income, and comorbidities had a statistically significant impact on survival. The effect of race did not reach statistical significance in this regard. The C index value for the model was 0.69 for overall survival. We conclude that these methods, along with a comprehensive database, allow for the development of models that provide estimates of treatment failure risk and survival probability that are more meaningful and clinically useful than those previously developed. PMID:15072605

  11. Modeling biochemical transformation processes and information processing with Narrator

    Directory of Open Access Journals (Sweden)

    Palfreyman Niall M

    2007-03-01

    Full Text Available Abstract Background Software tools that model and simulate the dynamics of biological processes and systems are becoming increasingly important. Some of these tools offer sophisticated graphical user interfaces (GUIs, which greatly enhance their acceptance by users. Such GUIs are based on symbolic or graphical notations used to describe, interact and communicate the developed models. Typically, these graphical notations are geared towards conventional biochemical pathway diagrams. They permit the user to represent the transport and transformation of chemical species and to define inhibitory and stimulatory dependencies. A critical weakness of existing tools is their lack of supporting an integrative representation of transport, transformation as well as biological information processing. Results Narrator is a software tool facilitating the development and simulation of biological systems as Co-dependence models. The Co-dependence Methodology complements the representation of species transport and transformation together with an explicit mechanism to express biological information processing. Thus, Co-dependence models explicitly capture, for instance, signal processing structures and the influence of exogenous factors or events affecting certain parts of a biological system or process. This combined set of features provides the system biologist with a powerful tool to describe and explore the dynamics of life phenomena. Narrator's GUI is based on an expressive graphical notation which forms an integral part of the Co-dependence Methodology. Behind the user-friendly GUI, Narrator hides a flexible feature which makes it relatively easy to map models defined via the graphical notation to mathematical formalisms and languages such as ordinary differential equations, the Systems Biology Markup Language or Gillespie's direct method. This powerful feature facilitates reuse, interoperability and conceptual model development. Conclusion Narrator is a

  12. A neighbourhood evolving network model

    International Nuclear Information System (INIS)

    Many social, technological, biological and economical systems are best described by evolved network models. In this short Letter, we propose and study a new evolving network model. The model is based on the new concept of neighbourhood connectivity, which exists in many physical complex networks. The statistical properties and dynamics of the proposed model is analytically studied and compared with those of Barabasi-Albert scale-free model. Numerical simulations indicate that this network model yields a transition between power-law and exponential scaling, while the Barabasi-Albert scale-free model is only one of its special (limiting) cases. Particularly, this model can be used to enhance the evolving mechanism of complex networks in the real world, such as some social networks development

  13. Mining and modeling character networks

    CERN Document Server

    Bonato, Anthony; Elenberg, Ethan R; Gleich, David F; Hou, Yangyang

    2016-01-01

    We investigate social networks of characters found in cultural works such as novels and films. These character networks exhibit many of the properties of complex networks such as skewed degree distribution and community structure, but may be of relatively small order with a high multiplicity of edges. Building on recent work of beveridge, we consider graph extraction, visualization, and network statistics for three novels: Twilight by Stephanie Meyer, Steven King's The Stand, and J.K. Rowling's Harry Potter and the Goblet of Fire. Coupling with 800 character networks from films found in the http://moviegalaxies.com/ database, we compare the data sets to simulations from various stochastic complex networks models including random graphs with given expected degrees (also known as the Chung-Lu model), the configuration model, and the preferential attachment model. Using machine learning techniques based on motif (or small subgraph) counts, we determine that the Chung-Lu model best fits character networks and we ...

  14. Propagation of kinetic uncertainties through a canonical topology of the TLR4 signaling network in different regions of biochemical reaction space

    Directory of Open Access Journals (Sweden)

    St Laurent Georges

    2010-03-01

    Full Text Available Abstract Background Signal transduction networks represent the information processing systems that dictate which dynamical regimes of biochemical activity can be accessible to a cell under certain circumstances. One of the major concerns in molecular systems biology is centered on the elucidation of the robustness properties and information processing capabilities of signal transduction networks. Achieving this goal requires the establishment of causal relations between the design principle of biochemical reaction systems and their emergent dynamical behaviors. Methods In this study, efforts were focused in the construction of a relatively well informed, deterministic, non-linear dynamic model, accounting for reaction mechanisms grounded on standard mass action and Hill saturation kinetics, of the canonical reaction topology underlying Toll-like receptor 4 (TLR4-mediated signaling events. This signaling mechanism has been shown to be deployed in macrophages during a relatively short time window in response to lypopolysaccharyde (LPS stimulation, which leads to a rapidly mounted innate immune response. An extensive computational exploration of the biochemical reaction space inhabited by this signal transduction network was performed via local and global perturbation strategies. Importantly, a broad spectrum of biologically plausible dynamical regimes accessible to the network in widely scattered regions of parameter space was reconstructed computationally. Additionally, experimentally reported transcriptional readouts of target pro-inflammatory genes, which are actively modulated by the network in response to LPS stimulation, were also simulated. This was done with the main goal of carrying out an unbiased statistical assessment of the intrinsic robustness properties of this canonical reaction topology. Results Our simulation results provide convincing numerical evidence supporting the idea that a canonical reaction mechanism of the TLR4

  15. Application of approximate pattern matching in two dimensional spaces to grid layout for biochemical network maps.

    Directory of Open Access Journals (Sweden)

    Kentaro Inoue

    Full Text Available BACKGROUND: For visualizing large-scale biochemical network maps, it is important to calculate the coordinates of molecular nodes quickly and to enhance the understanding or traceability of them. The grid layout is effective in drawing compact, orderly, balanced network maps with node label spaces, but existing grid layout algorithms often require a high computational cost because they have to consider complicated positional constraints through the entire optimization process. RESULTS: We propose a hybrid grid layout algorithm that consists of a non-grid, fast layout (preprocessor algorithm and an approximate pattern matching algorithm that distributes the resultant preprocessed nodes on square grid points. To demonstrate the feasibility of the hybrid layout algorithm, it is characterized in terms of the calculation time, numbers of edge-edge and node-edge crossings, relative edge lengths, and F-measures. The proposed algorithm achieves outstanding performances compared with other existing grid layouts. CONCLUSIONS: Use of an approximate pattern matching algorithm quickly redistributes the laid-out nodes by fast, non-grid algorithms on the square grid points, while preserving the topological relationships among the nodes. The proposed algorithm is a novel use of the pattern matching, thereby providing a breakthrough for grid layout. This application program can be freely downloaded from http://www.cadlive.jp/hybridlayout/hybridlayout.html.

  16. Modeling Dynamics of Information Networks

    OpenAIRE

    Rosvall, Martin; Sneppen, Kim

    2003-01-01

    We propose an information-based model for network dynamics in which imperfect information leads to networks where the different vertices have widely different number of edges to other vertices, and where the topology has hierarchical features. The possibility to observe scale free networks is linked to a minimally connected system where hubs remain dynamic.

  17. Developing Personal Network Business Models

    DEFF Research Database (Denmark)

    Saugstrup, Dan; Henten, Anders

    2006-01-01

    The aim of the paper is to examine the issue of business modeling in relation to personal networks, PNs. The paper builds on research performed on business models in the EU 1ST MAGNET1 project (My personal Adaptive Global NET). The paper presents the Personal Network concept and briefly reports on...

  18. Development of a biochemical switching device: mathematical model.

    Science.gov (United States)

    Okamoto, M

    1990-01-01

    There are many examples of enzymes that share substrates or cofactors in a cyclic manner. Techniques have been developed that use cyclic enzyme systems to assay quantitatively small amounts of biochemical substances (cofactor, substrate), however, only a few studies of the control of these systems have been published. The author previously showed with computer simulations that cyclic enzyme systems have the reliability of ON-OFF types of operation (McCulloch-Pitts' neuronic equation) and the applicability for a switching circuit in a biocomputer. The switching time was inevitably determined in accordance with the difference in amount between two inputs of the system. A unique switching mechanism of cyclic enzyme systems (basic switching element) and the effects of excitatory stimuli on switching properties of the integrated biochemical switching system are demonstrated. PMID:2082931

  19. Complex Networks in Psychological Models

    Science.gov (United States)

    Wedemann, R. S.; Carvalho, L. S. A. V. D.; Donangelo, R.

    We develop schematic, self-organizing, neural-network models to describe mechanisms associated with mental processes, by a neurocomputational substrate. These models are examples of real world complex networks with interesting general topological structures. Considering dopaminergic signal-to-noise neuronal modulation in the central nervous system, we propose neural network models to explain development of cortical map structure and dynamics of memory access, and unify different mental processes into a single neurocomputational substrate. Based on our neural network models, neurotic behavior may be understood as an associative memory process in the brain, and the linguistic, symbolic associative process involved in psychoanalytic working-through can be mapped onto a corresponding process of reconfiguration of the neural network. The models are illustrated through computer simulations, where we varied dopaminergic modulation and observed the self-organizing emergent patterns at the resulting semantic map, interpreting them as different manifestations of mental functioning, from psychotic through to normal and neurotic behavior, and creativity.

  20. Internet Network Resource Information Model

    Institute of Scientific and Technical Information of China (English)

    陈传峰; 李增智; 唐亚哲; 刘康平

    2002-01-01

    The foundation of any network management systens is a database that con-tains information about the network resources relevant to the management tasks. A networkinformation model is an abstraction of network resources, including both managed resources andmanaging resources. In the SNMP-based management framework, management information isdefined almost exclusively from a "device" viewpoint, namely, managing a network is equiva-lent to managing a collection of individual nodes. Aiming at making use of recent advances indistributed computing and in object-oriented analysis and design, the Internet management ar-chitecture can also be based on the Open Distributed Processing Reference Model (RM-ODP).The purpose of this article is to provide an Internet Network Resource Information Model.First, a layered management information architecture will be discussed. Then the Internetnetwork resource information model is presented. The information model is specified usingObject-Z.

  1. Patterns of Stochastic Behavior in Dynamically Unstable High-Dimensional Biochemical Networks

    Science.gov (United States)

    Rosenfeld, Simon

    2009-01-01

    The question of dynamical stability and stochastic behavior of large biochemical networks is discussed. It is argued that stringent conditions of asymptotic stability have very little chance to materialize in a multidimensional system described by the differential equations of chemical kinetics. The reason is that the criteria of asymptotic stability (Routh-Hurwitz, Lyapunov criteria, Feinberg’s Deficiency Zero theorem) would impose the limitations of very high algebraic order on the kinetic rates and stoichiometric coefficients, and there are no natural laws that would guarantee their unconditional validity. Highly nonlinear, dynamically unstable systems, however, are not necessarily doomed to collapse, as a simple Jacobian analysis would suggest. It is possible that their dynamics may assume the form of pseudo-random fluctuations quite similar to a shot noise, and, therefore, their behavior may be described in terms of Langevin and Fokker-Plank equations. We have shown by simulation that the resulting pseudo-stochastic processes obey the heavy-tailed Generalized Pareto Distribution with temporal sequence of pulses forming the set of constituent-specific Poisson processes. Being applied to intracellular dynamics, these properties are naturally associated with burstiness, a well documented phenomenon in the biology of gene expression. PMID:19838330

  2. On the estimation of robustness and filtering ability of dynamic biochemical networks under process delays, internal parametric perturbations and external disturbances.

    Science.gov (United States)

    Chen, Bor-Sen; Chen, Po-Wei

    2009-12-01

    Inherently, biochemical regulatory networks suffer from process delays, internal parametrical perturbations as well as external disturbances. Robustness is the property to maintain the functions of intracellular biochemical regulatory networks despite these perturbations. In this study, system and signal processing theories are employed for measurement of robust stability and filtering ability of linear and nonlinear time-delay biochemical regulatory networks. First, based on Lyapunov stability theory, the robust stability of biochemical network is measured for the tolerance of additional process delays and additive internal parameter fluctuations. Then the filtering ability of attenuating additive external disturbances is estimated for time-delay biochemical regulatory networks. In order to overcome the difficulty of solving the Hamilton Jacobi inequality (HJI), the global linearization technique is employed to simplify the measurement procedure by a simple linear matrix inequality (LMI) method. Finally, an example is given in silico to illustrate how to measure the robust stability and filtering ability of a nonlinear time-delay perturbative biochemical network. This robust stability and filtering ability measurement for biochemical network has potential application to synthetic biology, gene therapy and drug design. PMID:19788895

  3. Telecommunications network modelling, planning and design

    CERN Document Server

    Evans, Sharon

    2003-01-01

    Telecommunication Network Modelling, Planning and Design addresses sophisticated modelling techniques from the perspective of the communications industry and covers some of the major issues facing telecommunications network engineers and managers today. Topics covered include network planning for transmission systems, modelling of SDH transport network structures and telecommunications network design and performance modelling, as well as network costs and ROI modelling and QoS in 3G networks.

  4. A new statistical biomechanics modeling of physical and biochemical parameters of bone strength

    Energy Technology Data Exchange (ETDEWEB)

    Soboyejo, A.B.O. [Ohio State Univ., Columbus, OH (United States). Dept. of Aerospace Engineering, Applied Mechanics and Aviation; Nestor, K.E. [Ohio State Univ., Wooster, OH (United States). Dept. of Animal Sciences

    2001-07-01

    New multiparameter biomechanics models were developed in this work for the characterization of bone strength, as functions of the major physical and biochemical parameters, which can contribute to mechanical properties of bone strength. Theoretical and experimental methods had been developed to model bone strength as functions of (a) the physical parameters and (b) the biochemical parameters, The choice of any particular methodology will depend on the availability of either the physical or biochemical parameters. Experimental data of compressive strength of tibia and femur bones of broiler chickens and turkeys together with their corresponding physical and biochemical parameters were collected and used as examples in this study. These data were used to validate the theoretical principles developed in this work. Useful practical applications of the statistical biomechanics principles developed in this study, particularly in the field of bone strength enhancement in turkeys and broiler chickens are discussed. Similar medical applications to human beings are also highlighted in the discussions. (orig.)

  5. Efficient Characterization of Parametric Uncertainty of Complex (Bio)chemical Networks.

    OpenAIRE

    Claudia Schillings; Mikael Sunnåker; Jörg Stelling; Christoph Schwab

    2015-01-01

    Parametric uncertainty is a particularly challenging and relevant aspect of systems analysis in domains such as systems biology where, both for inference and for assessing prediction uncertainties, it is essential to characterize the system behavior globally in the parameter space. However, current methods based on local approximations or on Monte-Carlo sampling cope only insufficiently with high-dimensional parameter spaces associated with complex network models. Here, we propose an alternat...

  6. Efficient Characterization of Parametric Uncertainty of Complex (Bio)chemical Networks

    OpenAIRE

    Claudia Schillings; Mikael Sunnåker; Jörg Stelling; Christoph Schwab

    2015-01-01

    Parametric uncertainty is a particularly challenging and relevant aspect of systems analysis in domains such as systems biology where, both for inference and for assessing prediction uncertainties, it is essential to characterize the system behavior globally in the parameter space. However, current methods based on local approximations or on Monte-Carlo sampling cope only insufficiently with high-dimensional parameter spaces associated with complex network models. Here, we propose an alternat...

  7. Investigating modularity in the analysis of process algebra models of biochemical systems

    CERN Document Server

    Ciocchetta, Federica; Hillston, Jane; 10.4204/EPTCS.19.4

    2010-01-01

    Compositionality is a key feature of process algebras which is often cited as one of their advantages as a modelling technique. It is certainly true that in biochemical systems, as in many other systems, model construction is made easier in a formalism which allows the problem to be tackled compositionally. In this paper we consider the extent to which the compositional structure which is inherent in process algebra models of biochemical systems can be exploited during model solution. In essence this means using the compositional structure to guide decomposed solution and analysis. Unfortunately the dynamic behaviour of biochemical systems exhibits strong interdependencies between the components of the model making decomposed solution a difficult task. Nevertheless we believe that if such decomposition based on process algebras could be established it would demonstrate substantial benefits for systems biology modelling. In this paper we present our preliminary investigations based on a case study of the phero...

  8. Modeling of fluctuating reaction networks

    International Nuclear Information System (INIS)

    Full Text:Various dynamical systems are organized as reaction networks, where the population size of one component affects the populations of all its neighbors. Such networks can be found in interstellar surface chemistry, cell biology, thin film growth and other systems. I cases where the populations of reactive species are large, the network can be modeled by rate equations which provide all reaction rates within mean field approximation. However, in small systems that are partitioned into sub-micron size, these populations strongly fluctuate. Under these conditions rate equations fail and the master equation is needed for modeling these reactions. However, the number of equations in the master equation grows exponentially with the number of reactive species, severely limiting its feasibility for complex networks. Here we present a method which dramatically reduces the number of equations, thus enabling the incorporation of the master equation in complex reaction networks. The method is examplified in the context of reaction network on dust grains. Its applicability for genetic networks will be discussed. 1. Efficient simulations of gas-grain chemistry in interstellar clouds. Azi Lipshtat and Ofer Biham, Phys. Rev. Lett. 93 (2004), 170601. 2. Modeling of negative autoregulated genetic networks in single cells. Azi Lipshtat, Hagai B. Perets, Nathalie Q. Balaban and Ofer Biham, Gene: evolutionary genomics (2004), In press

  9. Neural network modeling of emotion

    Science.gov (United States)

    Levine, Daniel S.

    2007-03-01

    This article reviews the history and development of computational neural network modeling of cognitive and behavioral processes that involve emotion. The exposition starts with models of classical conditioning dating from the early 1970s. Then it proceeds toward models of interactions between emotion and attention. Then models of emotional influences on decision making are reviewed, including some speculative (not and not yet simulated) models of the evolution of decision rules. Through the late 1980s, the neural networks developed to model emotional processes were mainly embodiments of significant functional principles motivated by psychological data. In the last two decades, network models of these processes have become much more detailed in their incorporation of known physiological properties of specific brain regions, while preserving many of the psychological principles from the earlier models. Most network models of emotional processes so far have dealt with positive and negative emotion in general, rather than specific emotions such as fear, joy, sadness, and anger. But a later section of this article reviews a few models relevant to specific emotions: one family of models of auditory fear conditioning in rats, and one model of induced pleasure enhancing creativity in humans. Then models of emotional disorders are reviewed. The article concludes with philosophical statements about the essential contributions of emotion to intelligent behavior and the importance of quantitative theories and models to the interdisciplinary enterprise of understanding the interactions of emotion, cognition, and behavior.

  10. Simplified models of biological networks.

    Science.gov (United States)

    Sneppen, Kim; Krishna, Sandeep; Semsey, Szabolcs

    2010-01-01

    The function of living cells is controlled by complex regulatory networks that are built of a wide diversity of interacting molecular components. The sheer size and intricacy of molecular networks of even the simplest organisms are obstacles toward understanding network functionality. This review discusses the achievements and promise of a bottom-up approach that uses well-characterized subnetworks as model systems for understanding larger networks. It highlights the interplay between the structure, logic, and function of various types of small regulatory circuits. The bottom-up approach advocates understanding regulatory networks as a collection of entangled motifs. We therefore emphasize the potential of negative and positive feedback, as well as their combinations, to generate robust homeostasis, epigenetics, and oscillations. PMID:20192769

  11. Advances in theoretical models of network science

    Institute of Scientific and Technical Information of China (English)

    FANG Jin-qing; BI Qiao; LI Yong

    2007-01-01

    In this review article, we will summarize the main advances in network science investigated by the CIAE Group of Complex Network in this field. Several theoretical models of network science were proposed and their topological and dynamical properties are reviewed and compared with the other models. Our models mainly include a harmonious unifying hybrid preferential model, a large unifying hybrid network model, a quantum interference network, a hexagonal nanowire network, and a small-world network with the same degree. The models above reveal some new phenomena and findings, which are useful for deeply understanding and investigating complex networks and their applications.

  12. Security models for heterogeneous networking.

    OpenAIRE

    Mapp, Glenford E.; Aiash, Mahdi; Lasebae, Aboubaker; Phan, Raphael

    2010-01-01

    Security for Next Generation Networks (NGNs) is an attractive topic for many research groups. The Y-Comm security group believes that a new security approach is needed to address the security challenges in 4G networks. This paper sheds light on our approach of providing security for the Y-Comm architecture as an example of 4G communication frameworks. Our approach proposes a four-layer security integrated module to protect data and three targeted security models to protect different network e...

  13. A Multilayer Model of Computer Networks

    OpenAIRE

    Shchurov, Andrey A.

    2015-01-01

    The fundamental concept of applying the system methodology to network analysis declares that network architecture should take into account services and applications which this network provides and supports. This work introduces a formal model of computer networks on the basis of the hierarchical multilayer networks. In turn, individual layers are represented as multiplex networks. The concept of layered networks provides conditions of top-down consistency of the model. Next, we determined the...

  14. Efficient Characterization of Parametric Uncertainty of Complex (Bio)chemical Networks.

    Science.gov (United States)

    Schillings, Claudia; Sunnåker, Mikael; Stelling, Jörg; Schwab, Christoph

    2015-08-01

    Parametric uncertainty is a particularly challenging and relevant aspect of systems analysis in domains such as systems biology where, both for inference and for assessing prediction uncertainties, it is essential to characterize the system behavior globally in the parameter space. However, current methods based on local approximations or on Monte-Carlo sampling cope only insufficiently with high-dimensional parameter spaces associated with complex network models. Here, we propose an alternative deterministic methodology that relies on sparse polynomial approximations. We propose a deterministic computational interpolation scheme which identifies most significant expansion coefficients adaptively. We present its performance in kinetic model equations from computational systems biology with several hundred parameters and state variables, leading to numerical approximations of the parametric solution on the entire parameter space. The scheme is based on adaptive Smolyak interpolation of the parametric solution at judiciously and adaptively chosen points in parameter space. As Monte-Carlo sampling, it is "non-intrusive" and well-suited for massively parallel implementation, but affords higher convergence rates. This opens up new avenues for large-scale dynamic network analysis by enabling scaling for many applications, including parameter estimation, uncertainty quantification, and systems design. PMID:26317784

  15. SBMLsqueezer 2: context-sensitive creation of kinetic equations in biochemical networks

    DEFF Research Database (Denmark)

    Draeger, Andreas; Zielinski, Daniel C.; Keller, Roland;

    2015-01-01

    simplified the network reconstruction process, but building kinetic models for these systems is still a manually intensive task. Appropriate kinetic equations, based upon reaction rate laws, must be constructed and parameterized for each reaction. The complex test-and-evaluation cycles that can be involved...... during kinetic model construction would thus benefit from automated methods for rate law assignment. Results: We present a high-throughput algorithm to automatically suggest and create suitable rate laws based upon reaction type according to several criteria. The criteria for choices made by the...... algorithm can be influenced in order to assign the desired type of rate law to each reaction. This algorithm is implemented in the software package SBMLsqueezer 2. In addition, this program contains an integrated connection to the kinetics database SABIO-RK to obtain experimentally-derived rate laws when...

  16. Target-Centric Network Modeling

    DEFF Research Database (Denmark)

    Mitchell, Dr. William L.; Clark, Dr. Robert M.

    In Target-Centric Network Modeling: Case Studies in Analyzing Complex Intelligence Issues, authors Robert Clark and William Mitchell take an entirely new approach to teaching intelligence analysis. Unlike any other book on the market, it offers case study scenarios using actual intelligence...... reporting formats, along with a tested process that facilitates the production of a wide range of analytical products for civilian, military, and hybrid intelligence environments. Readers will learn how to perform the specific actions of problem definition modeling, target network modeling, and...... collaborative sharing in the process of creating a high-quality, actionable intelligence product. The case studies reflect the complexity of twenty-first century intelligence issues by dealing with multi-layered target networks that cut across political, economic, social, technological, and military issues...

  17. Stochastic focusing coupled with negative feedback enables robust regulation in biochemical reaction networks.

    Science.gov (United States)

    Milias-Argeitis, Andreas; Engblom, Stefan; Bauer, Pavol; Khammash, Mustafa

    2015-12-01

    Nature presents multiple intriguing examples of processes that proceed with high precision and regularity. This remarkable stability is frequently counter to modellers' experience with the inherent stochasticity of chemical reactions in the regime of low-copy numbers. Moreover, the effects of noise and nonlinearities can lead to 'counterintuitive' behaviour, as demonstrated for a basic enzymatic reaction scheme that can display stochastic focusing (SF). Under the assumption of rapid signal fluctuations, SF has been shown to convert a graded response into a threshold mechanism, thus attenuating the detrimental effects of signal noise. However, when the rapid fluctuation assumption is violated, this gain in sensitivity is generally obtained at the cost of very large product variance, and this unpredictable behaviour may be one possible explanation of why, more than a decade after its introduction, SF has still not been observed in real biochemical systems. In this work, we explore the noise properties of a simple enzymatic reaction mechanism with a small and fluctuating number of active enzymes that behaves as a high-gain, noisy amplifier due to SF caused by slow enzyme fluctuations. We then show that the inclusion of a plausible negative feedback mechanism turns the system from a noisy signal detector to a strong homeostatic mechanism by exchanging high gain with strong attenuation in output noise and robustness to parameter variations. Moreover, we observe that the discrepancy between deterministic and stochastic descriptions of stochastically focused systems in the evolution of the means almost completely disappears, despite very low molecule counts and the additional nonlinearity due to feedback. The reaction mechanism considered here can provide a possible resolution to the apparent conflict between intrinsic noise and high precision in critical intracellular processes. PMID:26609065

  18. Hydraulic Modeling: Pipe Network Analysis

    OpenAIRE

    Datwyler, Trevor T.

    2012-01-01

    Water modeling is becoming an increasingly important part of hydraulic engineering. One application of hydraulic modeling is pipe network analysis. Using programmed algorithms to repeatedly solve continuity and energy equations, computer software can greatly reduce the amount of time required to analyze a closed conduit system. Such hydraulic models can become a valuable tool for cities to maintain their water systems and plan for future growth. The Utah Division of Drinking Water regulations...

  19. Biochemical Space: A Framework for Systemic Annotation of Biological Models

    Czech Academy of Sciences Publication Activity Database

    Klement, M.; Děd, T.; Šafránek, D.; Červený, Jan; Müller, Stefan; Steuer, Ralf

    2014-01-01

    Roč. 306, JUL (2014), s. 31-44. ISSN 1571-0661 R&D Projects: GA MŠk(CZ) EE2.3.20.0256 Institutional support: RVO:67179843 Keywords : biological models * model annotation * systems biology * cyanobacteria Subject RIV: EH - Ecology, Behaviour

  20. Spatial Models for Virtual Networks

    Science.gov (United States)

    Janssen, Jeannette

    This paper discusses the use of spatial graph models for the analysis of networks that do not have a direct spatial reality, such as web graphs, on-line social networks, or citation graphs. In a spatial graph model, nodes are embedded in a metric space, and link formation depends on the relative position of nodes in the space. It is argued that spatial models form a good basis for link mining: assuming a spatial model, the link information can be used to infer the spatial position of the nodes, and this information can then be used for clustering and recognition of node similarity. This paper gives a survey of spatial graph models, and discusses their suitability for link mining.

  1. Biochemical Production of Ethanol from Corn Stover: 2007 State of Technology Model

    Energy Technology Data Exchange (ETDEWEB)

    Aden, Andy [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2008-05-01

    Since 2001, NREL has kept track of technical research progress in the biochemical process through what are known as “State of Technology” (SOT) assessments. The purpose of this report is to update the FY 2005 SOT model with the latest research results from the past two years.

  2. Gray box modeling of MSW degradation: Revealing its dominant (bio)chemical mechanism

    NARCIS (Netherlands)

    Van Turnhout, A.G.; Heimovaara, T.J.; Kleerebezem, R.

    2013-01-01

    In this paper we present an approach to describe organic degradation within immobile water regions of Municipal Solid Waste (MSW) landfills which is best described by the term “gray box” model. We use a simplified set of dominant (bio)chemical and physical reactions and realistic environmental condi

  3. Modeling photosynthesis of discontinuous plant canopies by linking Geometric Optical Radiative Transfer model with biochemical processes

    Science.gov (United States)

    Xin, Q.; Gong, P.; Li, W.

    2015-02-01

    Modeling vegetation photosynthesis is essential for understanding carbon exchanges between terrestrial ecosystems and the atmosphere. The radiative transfer process within plant canopies is one of the key drivers that regulate canopy photosynthesis. Most vegetation cover consists of discrete plant crowns, of which the physical observation departs from the underlying assumption of a homogenous and uniform medium in classic radiative transfer theory. Here we advance the Geometric Optical Radiative Transfer (GORT) model to simulate photosynthesis activities for discontinuous plant canopies. We separate radiation absorption into two components that are absorbed by sunlit and shaded leaves, and derive analytical solutions by integrating over the canopy layer. To model leaf-level and canopy-level photosynthesis, leaf light absorption is then linked to the biochemical process of gas diffusion through leaf stomata. The canopy gap probability derived from GORT differs from classic radiative transfer theory, especially when the leaf area index is high, due to leaf clumping effects. Tree characteristics such as tree density, crown shape, and canopy length affect leaf clumping and regulate radiation interception. Modeled gross primary production (GPP) for two deciduous forest stands could explain more than 80% of the variance of flux tower measurements at both near hourly and daily time scales. We also demonstrate that the ambient CO2 concentration influences daytime vegetation photosynthesis, which needs to be considered in state-of-the-art biogeochemical models. The proposed model is complementary to classic radiative transfer theory and shows promise in modeling the radiative transfer process and photosynthetic activities over discontinuous forest canopies.

  4. A novel biochemically salvageable animal model of hyperammonemia devoid of N-acetylglutamate synthase

    OpenAIRE

    Senkevitch, Emilee; Cabrera-Luque, Juan; Morizono, Hiroki; Caldovic, Ljubica; Tuchman, Mendel

    2012-01-01

    All knockout mouse models of urea cycle disorders die in the neonatal period or shortly thereafter. Since N-acetylglutamate synthase (NAGS) deficiency in humans can be effectively treated with N-carbamyl-L-glutamate (NCG), we sought to develop a mouse model of this disorder that could be rescued by biochemical intervention, reared to adulthood, reproduce, and become a novel animal model for hyperammonemia. Founder NAGS knockout heterozygous mice were obtained from the trans-NIH Knock-Out Mous...

  5. On Robustness Analysis of Stochastic Biochemical Systems by Probabilistic Model Checking

    OpenAIRE

    Brim, Lubos; Ceska, Milan; Drazan, Sven; Safranek, David

    2013-01-01

    This report proposes a novel framework for a rigorous robustness analysis of stochastic biochemical systems. The technique is based on probabilistic model checking. We adapt the general definition of robustness introduced by Kitano to the class of stochastic systems modelled as continuous time Markov Chains in order to extensively analyse and compare robustness of biological models with uncertain parameters. The framework utilises novel computational methods that enable to effectively evaluat...

  6. Osseointegration of biochemically modified implants in an osteoporosis rodent model

    OpenAIRE

    Stadlinger, B.; P Korn; Tödtmann, N; Eckelt, U; Range, U.; Bürki, A.; SJ Ferguson; Kramer, I; Kautz, A.; Schnabelrauch, M; M Kneissel; F Schlottig

    2013-01-01

    The present study examined the impact of implant surface modifications on osseointegration in an osteoporotic rodent model. Sandblasted, acid-etched titanium implants were either used directly (control) or were further modified by surface conditioning with NaOH or by coating with one of the following active agents: collagen/chondroitin sulphate, simvastatin, or zoledronic acid. Control and modified implants were inserted into the proximal tibia of aged ovariectomised (OVX) osteoporotic rats (...

  7. Molecular paleontology: a biochemical model of the ancestral ribosome

    OpenAIRE

    Hsiao, Chiaolong; Lenz, Timothy K.; Peters, Jessica K; Fang, Po-Yu; Schneider, Dana M.; Anderson, Eric J.; Preeprem, Thanawadee; Bowman, Jessica C.; O'Neill, Eric B.; Lie, Lively; Athavale, Shreyas S.; Gossett, J. Jared; Trippe, Catherine; Murray, Jason; Anton S. Petrov

    2013-01-01

    Ancient components of the ribosome, inferred from a consensus of previous work, were constructed in silico, in vitro and in vivo. The resulting model of the ancestral ribosome presented here incorporates ∼20% of the extant 23S rRNA and fragments of five ribosomal proteins. We test hypotheses that ancestral rRNA can: (i) assume canonical 23S rRNA-like secondary structure, (ii) assume canonical tertiary structure and (iii) form native complexes with ribosomal protein fragments. Footprinting exp...

  8. A review of dissolved oxygen and biochemical oxygen demand models for large rivers

    International Nuclear Information System (INIS)

    Development and modifications of mathematical models for Dissolved Oxygen (DO) are reviewed in this paper. The field and laboratory methods to estimate the kinetics of Carbonaceous Biochemical Oxygen Demand (CBOD) and Nitrogenous Biochemical Oxygen Demand (NBOD) are also presented. This review also includes recent approaches of BOD and DO modeling beside the conventional ones along with their applicability to the natural rivers. The most frequently available public domain computer models and their applications in real life projects are also briefly covered. The literature survey reveals that currently there is more emphasis on solution techniques rather than understanding the mechanisms and processes that control DO in large rivers. The DO modeling software contains inbuilt coefficients and parameters that may not reflect the specific conditions under study. It is therefore important that the selected mathematical and computer models must incorporate the relevant processes specific to the river under study and be within the available resources in term of data collection. (author)

  9. Osseointegration of biochemically modified implants in an osteoporosis rodent model

    Directory of Open Access Journals (Sweden)

    B Stadlinger

    2013-07-01

    Full Text Available The present study examined the impact of implant surface modifications on osseointegration in an osteoporotic rodent model. Sandblasted, acid-etched titanium implants were either used directly (control or were further modified by surface conditioning with NaOH or by coating with one of the following active agents: collagen/chondroitin sulphate, simvastatin, or zoledronic acid. Control and modified implants were inserted into the proximal tibia of aged ovariectomised (OVX osteoporotic rats (n = 32/group. In addition, aged oestrogen competent animals received either control or NaOH conditioned implants. Animals were sacrificed 2 and 4 weeks post-implantation. The excised tibiae were utilised for biomechanical and morphometric readouts (n = 8/group/readout. Biomechanical testing revealed at both time points dramatically reduced osseointegration in the tibia of oestrogen deprived osteoporotic animals compared to intact controls irrespective of NaOH exposure. Consistently, histomorphometric and microCT analyses demonstrated diminished bone-implant contact (BIC, peri-implant bone area (BA, bone volume/tissue volume (BV/TV and bone-mineral density (BMD in OVX animals. Surface coating with collagen/chondroitin sulphate had no detectable impact on osseointegration. Interestingly, statin coating resulted in a transient increase in BIC 2 weeks post-implantation; which, however, did not correspond to improvement of biomechanical readouts. Local exposure to zoledronic acid increased BIC, BA, BV/TV and BMD at 4 weeks. Yet this translated only into a non-significant improvement of biomechanical properties. In conclusion, this study presents a rodent model mimicking severely osteoporotic bone. Contrary to the other bioactive agents, locally released zoledronic acid had a positive impact on osseointegration albeit to a lesser extent than reported in less challenging models.

  10. Biochemical switching device: biomimetic approach and application to neural network study.

    Science.gov (United States)

    Okamoto, M

    1992-06-01

    There are many examples of enzymes that share substrates or cofactors in a cyclic manner. Techniques have been developed that use cyclic enzyme systems to assay quantitatively small amounts of biochemical substances (cofactor, substrate), however, only a few studies of the control of these systems have been published. The author previously showed with computer simulations that cyclic enzyme systems have the reliability of ON-OFF types of operation (McCulloch-Pitts' neuronic equation) capable of storing short-memory, and the applicability for a switching circuit in a biocomputer. This paper introduces a unique switching mechanism of cyclic enzyme system (basic switching element), and next, building the integrated biochemical switching system being composed of the basic switching element, shows the physiological phenomenon termed 'selective elimination of synapses' generally produced as a result of low-frequency train of electrical stimuli to the synapses (Kuroda, Y. 1989) Neurochem. Int. 14, 309-319). PMID:1368350

  11. Modelling and Analysis of Biochemical Signalling Pathway Cross-talk

    Directory of Open Access Journals (Sweden)

    Robin Donaldson

    2010-02-01

    Full Text Available Signalling pathways are abstractions that help life scientists structure the coordination of cellular activity. Cross-talk between pathways accounts for many of the complex behaviours exhibited by signalling pathways and is often critical in producing the correct signal-response relationship. Formal models of signalling pathways and cross-talk in particular can aid understanding and drive experimentation. We define an approach to modelling based on the concept that a pathway is the (synchronising parallel composition of instances of generic modules (with internal and external labels. Pathways are then composed by (synchronising parallel composition and renaming; different types of cross-talk result from different combinations of synchronisation and renaming. We define a number of generic modules in PRISM and five types of cross-talk: signal flow, substrate availability, receptor function, gene expression and intracellular communication. We show that Continuous Stochastic Logic properties can both detect and distinguish the types of cross-talk. The approach is illustrated with small examples and an analysis of the cross-talk between the TGF-b/BMP, WNT and MAPK pathways.

  12. Ising model for distribution networks

    CERN Document Server

    Hooyberghs, H; Giuraniuc, C; Van Schaeybroeck, B; Indekeu, J O

    2012-01-01

    An elementary Ising spin model is proposed for demonstrating cascading failures (break-downs, blackouts, collapses, avalanches, ...) that can occur in realistic networks for distribution and delivery by suppliers to consumers. A ferromagnetic Hamiltonian with quenched random fields results from policies that maximize the gap between demand and delivery. Such policies can arise in a competitive market where firms artificially create new demand, or in a solidary environment where too high a demand cannot reasonably be met. Network failure in the context of a policy of solidarity is possible when an initially active state becomes metastable and decays to a stable inactive state. We explore the characteristics of the demand and delivery, as well as the topological properties, which make the distribution network susceptible of failure. An effective temperature is defined, which governs the strength of the activity fluctuations which can induce a collapse. Numerical results, obtained by Monte Carlo simulations of t...

  13. Modeling integrated cellular machinery using hybrid Petri-Boolean networks.

    Directory of Open Access Journals (Sweden)

    Natalie Berestovsky

    Full Text Available The behavior and phenotypic changes of cells are governed by a cellular circuitry that represents a set of biochemical reactions. Based on biological functions, this circuitry is divided into three types of networks, each encoding for a major biological process: signal transduction, transcription regulation, and metabolism. This division has generally enabled taming computational complexity dealing with the entire system, allowed for using modeling techniques that are specific to each of the components, and achieved separation of the different time scales at which reactions in each of the three networks occur. Nonetheless, with this division comes loss of information and power needed to elucidate certain cellular phenomena. Within the cell, these three types of networks work in tandem, and each produces signals and/or substances that are used by the others to process information and operate normally. Therefore, computational techniques for modeling integrated cellular machinery are needed. In this work, we propose an integrated hybrid model (IHM that combines Petri nets and Boolean networks to model integrated cellular networks. Coupled with a stochastic simulation mechanism, the model simulates the dynamics of the integrated network, and can be perturbed to generate testable hypotheses. Our model is qualitative and is mostly built upon knowledge from the literature and requires fine-tuning of very few parameters. We validated our model on two systems: the transcriptional regulation of glucose metabolism in human cells, and cellular osmoregulation in S. cerevisiae. The model produced results that are in very good agreement with experimental data, and produces valid hypotheses. The abstract nature of our model and the ease of its construction makes it a very good candidate for modeling integrated networks from qualitative data. The results it produces can guide the practitioner to zoom into components and interconnections and investigate them

  14. Nonparametric Bayesian Modeling of Complex Networks

    DEFF Research Database (Denmark)

    Schmidt, Mikkel Nørgaard; Mørup, Morten

    2013-01-01

    Modeling structure in complex networks using Bayesian nonparametrics makes it possible to specify flexible model structures and infer the adequate model complexity from the observed data. This article provides a gentle introduction to nonparametric Bayesian modeling of complex networks: Using...... for complex networks can be derived and point out relevant literature....

  15. Research on the model of home networking

    Science.gov (United States)

    Yun, Xiang; Feng, Xiancheng

    2007-11-01

    It is the research hotspot of current broadband network to combine voice service, data service and broadband audio-video service by IP protocol to transport various real time and mutual services to terminal users (home). Home Networking is a new kind of network and application technology which can provide various services. Home networking is called as Digital Home Network. It means that PC, home entertainment equipment, home appliances, Home wirings, security, illumination system were communicated with each other by some composing network technology, constitute a networking internal home, and connect with WAN by home gateway. It is a new network technology and application technology, and can provide many kinds of services inside home or between homes. Currently, home networking can be divided into three kinds: Information equipment, Home appliances, Communication equipment. Equipment inside home networking can exchange information with outer networking by home gateway, this information communication is bidirectional, user can get information and service which provided by public networking by using home networking internal equipment through home gateway connecting public network, meantime, also can get information and resource to control the internal equipment which provided by home networking internal equipment. Based on the general network model of home networking, there are four functional entities inside home networking: HA, HB, HC, and HD. (1) HA (Home Access) - home networking connects function entity; (2) HB (Home Bridge) Home networking bridge connects function entity; (3) HC (Home Client) - Home networking client function entity; (4) HD (Home Device) - decoder function entity. There are many physical ways to implement four function entities. Based on theses four functional entities, there are reference model of physical layer, reference model of link layer, reference model of IP layer and application reference model of high layer. In the future home network

  16. Mathematical Modelling Plant Signalling Networks

    KAUST Repository

    Muraro, D.

    2013-01-01

    During the last two decades, molecular genetic studies and the completion of the sequencing of the Arabidopsis thaliana genome have increased knowledge of hormonal regulation in plants. These signal transduction pathways act in concert through gene regulatory and signalling networks whose main components have begun to be elucidated. Our understanding of the resulting cellular processes is hindered by the complex, and sometimes counter-intuitive, dynamics of the networks, which may be interconnected through feedback controls and cross-regulation. Mathematical modelling provides a valuable tool to investigate such dynamics and to perform in silico experiments that may not be easily carried out in a laboratory. In this article, we firstly review general methods for modelling gene and signalling networks and their application in plants. We then describe specific models of hormonal perception and cross-talk in plants. This mathematical analysis of sub-cellular molecular mechanisms paves the way for more comprehensive modelling studies of hormonal transport and signalling in a multi-scale setting. © EDP Sciences, 2013.

  17. The Impact of Different Sources of Fluctuations on Mutual Information in Biochemical Networks.

    Science.gov (United States)

    Chevalier, Michael; Venturelli, Ophelia; El-Samad, Hana

    2015-10-01

    Stochastic fluctuations in signaling and gene expression limit the ability of cells to sense the state of their environment, transfer this information along cellular pathways, and respond to it with high precision. Mutual information is now often used to quantify the fidelity with which information is transmitted along a cellular pathway. Mutual information calculations from experimental data have mostly generated low values, suggesting that cells might have relatively low signal transmission fidelity. In this work, we demonstrate that mutual information calculations might be artificially lowered by cell-to-cell variability in both initial conditions and slowly fluctuating global factors across the population. We carry out our analysis computationally using a simple signaling pathway and demonstrate that in the presence of slow global fluctuations, every cell might have its own high information transmission capacity but that population averaging underestimates this value. We also construct a simple synthetic transcriptional network and demonstrate using experimental measurements coupled to computational modeling that its operation is dominated by slow global variability, and hence that its mutual information is underestimated by a population averaged calculation. PMID:26484538

  18. Probabilistic logic modeling of network reliability for hybrid network architectures

    Energy Technology Data Exchange (ETDEWEB)

    Wyss, G.D.; Schriner, H.K.; Gaylor, T.R.

    1996-10-01

    Sandia National Laboratories has found that the reliability and failure modes of current-generation network technologies can be effectively modeled using fault tree-based probabilistic logic modeling (PLM) techniques. We have developed fault tree models that include various hierarchical networking technologies and classes of components interconnected in a wide variety of typical and atypical configurations. In this paper we discuss the types of results that can be obtained from PLMs and why these results are of great practical value to network designers and analysts. After providing some mathematical background, we describe the `plug-and-play` fault tree analysis methodology that we have developed for modeling connectivity and the provision of network services in several current- generation network architectures. Finally, we demonstrate the flexibility of the method by modeling the reliability of a hybrid example network that contains several interconnected ethernet, FDDI, and token ring segments. 11 refs., 3 figs., 1 tab.

  19. Energy modelling in sensor networks

    Directory of Open Access Journals (Sweden)

    D. Schmidt

    2007-06-01

    Full Text Available Wireless sensor networks are one of the key enabling technologies for the vision of ambient intelligence. Energy resources for sensor nodes are very scarce. A key challenge is the design of energy efficient communication protocols. Models of the energy consumption are needed to accurately simulate the efficiency of a protocol or application design, and can also be used for automatic energy optimizations in a model driven design process. We propose a novel methodology to create models for sensor nodes based on few simple measurements. In a case study the methodology was used to create models for MICAz nodes. The models were integrated in a simulation environment as well as in a SDL runtime framework of a model driven design process. Measurements on a test application that was created automatically from an SDL specification showed an 80% reduction in energy consumption compared to an implementation without power saving strategies.

  20. Plant Growth Models Using Artificial Neural Networks

    Science.gov (United States)

    Bubenheim, David

    1997-01-01

    In this paper, we descrive our motivation and approach to devloping models and the neural network architecture. Initial use of the artificial neural network for modeling the single plant process of transpiration is presented.

  1. Hierarchical Models for Independence Structures of Networks

    OpenAIRE

    Sadeghi, Kayvan; Rinaldo, Alessandro

    2016-01-01

    We introduce a new family of network models, called hierarchical network models, that allow to represent in an explicit manner the stochastic dependence among the edges. In particular, each member of this family can be associated with a graphical model defining conditional independence clauses among the edges of the network, called the dependency graph. Every network model of dyadic independence assumption can be generalized to construct members of this new family. Using this new framework, w...

  2. Assimilation of ocean colour data into a Biochemical Flux Model of the Eastern Mediterranean Sea

    Directory of Open Access Journals (Sweden)

    G. Triantafyllou

    2006-09-01

    Full Text Available Within the framework of the European MFSTEP project, an advanced multivariate sequential data assimilation system has been implemented to assimilate real chlorophyll data from the Sea-viewing Wide Field-of-view Sensor (SeaWiFS into a three-dimensional biochemical model of the Eastern Mediterranean. The physical ocean is described through the Princeton Ocean Model (POM while the biochemistry of the ecosystem is tackled with the Biochemical Flux Model (BFM. The assimilation scheme is based on the Singular Evolutive Extended Kalman (SEEK filter, in which the error statistics were parameterized by means of a suitable set of Empirical Orthogonal Functions (EOFs. A radius of influence was further selected around every data point to limit the range of the EOFs spatial correlations. The assimilation experiment was performed for one year over 1999 and forced with ECMWF 6 hour atmospheric fields. The accuracy of the ecological state identification by the assimilation system is assessed by the relevance of the system in fitting the data, and through the impact of the assimilation on non-observed biochemical processes. Assimilation of SeaWiFS data significantly improves the forecasting capability of the BFM model. Results, however, indicate the necessity of subsurface data to enhance the controllability of the ecosystem model in the deep layers.

  3. An evolving network model with community structure

    International Nuclear Information System (INIS)

    Many social and biological networks consist of communities-groups of nodes within which connections are dense, but between which connections are sparser. Recently, there has been considerable interest in designing algorithms for detecting community structures in real-world complex networks. In this paper, we propose an evolving network model which exhibits community structure. The network model is based on the inner-community preferential attachment and inter-community preferential attachment mechanisms. The degree distributions of this network model are analysed based on a mean-field method. Theoretical results and numerical simulations indicate that this network model has community structure and scale-free properties

  4. Brand Marketing Model on Social Networks

    Directory of Open Access Journals (Sweden)

    Jolita Jezukevičiūtė

    2014-04-01

    Full Text Available The paper analyzes the brand and its marketing solutions onsocial networks. This analysis led to the creation of improvedbrand marketing model on social networks, which will contributeto the rapid and cheap organization brand recognition, increasecompetitive advantage and enhance consumer loyalty. Therefore,the brand and a variety of social networks are becoming a hotresearch area for brand marketing model on social networks.The world‘s most successful brand marketing models exploratoryanalysis of a single case study revealed a brand marketingsocial networking tools that affect consumers the most. Basedon information analysis and methodological studies, develop abrand marketing model on social networks.

  5. Modeling the Dynamics of Compromised Networks

    Energy Technology Data Exchange (ETDEWEB)

    Soper, B; Merl, D M

    2011-09-12

    Accurate predictive models of compromised networks would contribute greatly to improving the effectiveness and efficiency of the detection and control of network attacks. Compartmental epidemiological models have been applied to modeling attack vectors such as viruses and worms. We extend the application of these models to capture a wider class of dynamics applicable to cyber security. By making basic assumptions regarding network topology we use multi-group epidemiological models and reaction rate kinetics to model the stochastic evolution of a compromised network. The Gillespie Algorithm is used to run simulations under a worst case scenario in which the intruder follows the basic connection rates of network traffic as a method of obfuscation.

  6. Information Network Model Query Processing

    Science.gov (United States)

    Song, Xiaopu

    Information Networking Model (INM) [31] is a novel database model for real world objects and relationships management. It naturally and directly supports various kinds of static and dynamic relationships between objects. In INM, objects are networked through various natural and complex relationships. INM Query Language (INM-QL) [30] is designed to explore such information network, retrieve information about schema, instance, their attributes, relationships, and context-dependent information, and process query results in the user specified form. INM database management system has been implemented using Berkeley DB, and it supports INM-QL. This thesis is mainly focused on the implementation of the subsystem that is able to effectively and efficiently process INM-QL. The subsystem provides a lexical and syntactical analyzer of INM-QL, and it is able to choose appropriate evaluation strategies and index mechanism to process queries in INM-QL without the user's intervention. It also uses intermediate result structure to hold intermediate query result and other helping structures to reduce complexity of query processing.

  7. Modified Step Variational Iteration Method for Solving Fractional Biochemical Reaction Model

    Directory of Open Access Journals (Sweden)

    R. Yulita Molliq

    2011-01-01

    Full Text Available A new method called the modification of step variational iteration method (MoSVIM is introduced and used to solve the fractional biochemical reaction model. The MoSVIM uses general Lagrange multipliers for construction of the correction functional for the problems, and it runs by step approach, which is to divide the interval into subintervals with time step, and the solutions are obtained at each subinterval as well adopting a nonzero auxiliary parameter ℏ to control the convergence region of series' solutions. The MoSVIM yields an analytical solution of a rapidly convergent infinite power series with easily computable terms and produces a good approximate solution on enlarged intervals for solving the fractional biochemical reaction model. The accuracy of the results obtained is in a excellent agreement with the Adam Bashforth Moulton method (ABMM.

  8. Multilayer weighted social network model

    Science.gov (United States)

    Murase, Yohsuke; Török, János; Jo, Hang-Hyun; Kaski, Kimmo; Kertész, János

    2014-11-01

    Recent empirical studies using large-scale data sets have validated the Granovetter hypothesis on the structure of the society in that there are strongly wired communities connected by weak ties. However, as interaction between individuals takes place in diverse contexts, these communities turn out to be overlapping. This implies that the society has a multilayered structure, where the layers represent the different contexts. To model this structure we begin with a single-layer weighted social network (WSN) model showing the Granovetterian structure. We find that when merging such WSN models, a sufficient amount of interlayer correlation is needed to maintain the relationship between topology and link weights, while these correlations destroy the enhancement in the community overlap due to multiple layers. To resolve this, we devise a geographic multilayer WSN model, where the indirect interlayer correlations due to the geographic constraints of individuals enhance the overlaps between the communities and, at the same time, the Granovetterian structure is preserved.

  9. Gray box modeling of MSW degradation: Revealing its dominant (bio)chemical mechanism

    OpenAIRE

    Van Turnhout, A.G.; Heimovaara, T.J.; Kleerebezem, R.

    2013-01-01

    In this paper we present an approach to describe organic degradation within immobile water regions of Municipal Solid Waste (MSW) landfills which is best described by the term “gray box” model. We use a simplified set of dominant (bio)chemical and physical reactions and realistic environmental conditions. All equations, relationships and inhibitions are based on semi-empirical or fundamental relationships which have proven to be applicable in the peer reviewed literature. As much as possible ...

  10. Brand Marketing Model on Social Networks

    OpenAIRE

    Jolita Jezukevičiūtė; Vida Davidavičienė

    2014-01-01

    The paper analyzes the brand and its marketing solutions onsocial networks. This analysis led to the creation of improvedbrand marketing model on social networks, which will contributeto the rapid and cheap organization brand recognition, increasecompetitive advantage and enhance consumer loyalty. Therefore,the brand and a variety of social networks are becoming a hotresearch area for brand marketing model on social networks.The world‘s most successful brand marketing models exploratoryanalys...

  11. Network Bandwidth Utilization Forecast Model on High Bandwidth Network

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Wucherl; Sim, Alex

    2014-07-07

    With the increasing number of geographically distributed scientific collaborations and the scale of the data size growth, it has become more challenging for users to achieve the best possible network performance on a shared network. We have developed a forecast model to predict expected bandwidth utilization for high-bandwidth wide area network. The forecast model can improve the efficiency of resource utilization and scheduling data movements on high-bandwidth network to accommodate ever increasing data volume for large-scale scientific data applications. Univariate model is developed with STL and ARIMA on SNMP path utilization data. Compared with traditional approach such as Box-Jenkins methodology, our forecast model reduces computation time by 83.2percent. It also shows resilience against abrupt network usage change. The accuracy of the forecast model is within the standard deviation of the monitored measurements.

  12. Multiplexing oscillatory biochemical signals.

    Science.gov (United States)

    de Ronde, Wiet; ten Wolde, Pieter Rein

    2014-04-01

    In recent years it has been increasingly recognized that biochemical signals are not necessarily constant in time and that the temporal dynamics of a signal can be the information carrier. Moreover, it is now well established that the protein signaling network of living cells has a bow-tie structure and that components are often shared between different signaling pathways. Here we show by mathematical modeling that living cells can multiplex a constant and an oscillatory signal: they can transmit these two signals simultaneously through a common signaling pathway, and yet respond to them specifically and reliably. We find that information transmission is reduced not only by noise arising from the intrinsic stochasticity of biochemical reactions, but also by crosstalk between the different channels. Yet, under biologically relevant conditions more than 2 bits of information can be transmitted per channel, even when the two signals are transmitted simultaneously. These observations suggest that oscillatory signals are ideal for multiplexing signals. PMID:24685537

  13. Modelling delay propagation within an airport network

    NARCIS (Netherlands)

    Pyrgiotis, N.; Malone, K.M.; Odoni, A.

    2013-01-01

    We describe an analytical queuing and network decomposition model developed to study the complex phenomenon of the propagation of delays within a large network of major airports. The Approximate Network Delays (AND) model computes the delays due to local congestion at individual airports and capture

  14. An acoustical model based monitoring network

    NARCIS (Netherlands)

    Wessels, P.W.; Basten, T.G.H.; Eerden, F.J.M. van der

    2010-01-01

    In this paper the approach for an acoustical model based monitoring network is demonstrated. This network is capable of reconstructing a noise map, based on the combination of measured sound levels and an acoustic model of the area. By pre-calculating the sound attenuation within the network the noi

  15. Analysis by fracture network modelling

    International Nuclear Information System (INIS)

    This report describes the Fracture Network Modelling and Performance Assessment Support performed by Golder Associates Inc. during the Heisei-11 (1999-2000) fiscal year. The primary objective of the Golder Associates work scope during HY-11 was to provide theoretical and review support to the JNC HY-12 Performance assessment effort. In addition, Golder Associates provided technical support to JNC for the Aespoe Project. Major efforts for performance assessment support included analysis of PAWorks pathways and software documentation, verification, and performance assessment visualization. Support for the Aespoe project including 'Task 4' predictive modelling of sorbing tracer transport in TRUE-1 rock block, and integrated hydrogeological and geochemical modelling of Aespoe island for 'Task 5'. Technical information about Golder Associates HY-11 support to JNC is provided in the appendices to this report. (author)

  16. An evolutionary model of social networks

    Science.gov (United States)

    Ludwig, M.; Abell, P.

    2007-07-01

    Social networks in communities, markets, and societies self-organise through the interactions of many individuals. In this paper we use a well-known mechanism of social interactions — the balance of sentiment in triadic relations — to describe the development of social networks. Our model contrasts with many existing network models, in that people not only establish but also break up relations whilst the network evolves. The procedure generates several interesting network features such as a variety of degree distributions and degree correlations. The resulting network converges under certain conditions to a steady critical state where temporal disruptions in triangles follow a power-law distribution.

  17. Introducing Synchronisation in Deterministic Network Models

    DEFF Research Database (Denmark)

    Schiøler, Henrik; Jessen, Jan Jakob; Nielsen, Jens Frederik D.;

    2006-01-01

    The paper addresses performance analysis for distributed real time systems through deterministic network modelling. Its main contribution is the introduction and analysis of models for synchronisation between tasks and/or network elements. Typical patterns of synchronisation are presented leading...... to the suggestion of suitable network models. An existing model for flow control is presented and an inherent weakness is revealed and remedied. Examples are given and numerically analysed through deterministic network modelling. Results are presented to highlight the properties of the suggested models...

  18. Graph Annotations in Modeling Complex Network Topologies

    CERN Document Server

    Dimitropoulos, Xenofontas; Vahdat, Amin; Riley, George

    2007-01-01

    The coarsest approximation of the structure of a complex network, such as the Internet, is a simple undirected unweighted graph. This approximation, however, loses too much detail. In reality, objects represented by vertices and edges in such a graph possess some non-trivial internal structure that varies across and differentiates among distinct types of links or nodes. In this work, we abstract such additional information as network annotations. We introduce a network topology modeling framework that treats annotations as an extended correlation profile of a network. Assuming we have this profile measured for a given network, we present an algorithm to rescale it in order to construct networks of varying size that still reproduce the original measured annotation profile. Using this methodology, we accurately capture the network properties essential for realistic simulations of network applications and protocols, or any other simulations involving complex network topologies, including modeling and simulation ...

  19. Hybrid modeling of communication networks using Modelica

    OpenAIRE

    Färnqvist, Daniel; Strandemar, Katrin; Johansson, Karl Henrik; Hespanha, João Pedro

    2002-01-01

    Modeling and simulation of communication networks using the modeling language Modelica are discussed. Congestion control in packet-switched networks, such as the Internet, is today mainly analyzed through time-consuming simulations of individual packets. We show, by developing a model library based on a recent hybrid systems model, that Modelica provides an efficient platform for the analysis of communication networks. As an example, a comparison between the two congestion control protocols i...

  20. Hierarchical relational models for document networks

    OpenAIRE

    Chang, Jonathan; Blei, David M.

    2009-01-01

    We develop the relational topic model (RTM), a hierarchical model of both network structure and node attributes. We focus on document networks, where the attributes of each document are its words, that is, discrete observations taken from a fixed vocabulary. For each pair of documents, the RTM models their link as a binary random variable that is conditioned on their contents. The model can be used to summarize a network of documents, predict links between them, and predi...

  1. Multiscaling in the YX model of networks

    CERN Document Server

    Holme, Petter; Minnhagen, Petter

    2009-01-01

    We investigate a Hamiltonian model of networks. The model is a mirror formulation of the XY model (hence the name) -- instead letting the XY spins vary, keeping the coupling topology static, we keep the spins conserved and sample different underlying networks. Our numerical simulations show complex scaling behaviors, but no finite-temperature critical behavior. The ground state and low-order excitations for sparse, finite graphs is a fragmented set of isolated network clusters. Configurations of higher energy are typically more connected. The connected networks of lowest energy are stretched out giving the network large average distances. For the finite sizes we investigate there are three regions -- a low-energy regime of fragmented networks, and intermediate regime of stretched-out networks, and a high-energy regime of compact, disordered topologies. Scaling up the system size, the borders between these regimes approach zero temperature algebraically, but different network structural quantities approach the...

  2. A Computational Model of Cell Migration in Response to Biochemical Diffusion

    Energy Technology Data Exchange (ETDEWEB)

    Dexter, Nicholas C [ORNL; Kruse, Kara L [ORNL; Nutaro, James J [ORNL; Ward, Richard C [ORNL

    2009-01-01

    The Computational Sciences and Engineering Division of the Oak Ridge National Laboratory is partnering with the University of Tennessee Graduate School of Medicine to design a computational model describing various factors related to the development of intimal hyperplasia (IH) in response to arterial injury. This research focuses on modeling the chemotactic and haptotactic processes that stimulate vascular smooth muscle cell migration into the intima. A hybrid discrete-continuous mathematical model of cell migration in response to biochemical diffusion was developed in C++. Chemoattractant diffusion is modeled as a continuous partial differential equation, whereas migration of the cells is modeled as a series of discrete events. Results obtained from the discrete state model for cell migration agree with those obtained from Boyden chamber experiments.

  3. Network model of bilateral power markets based on complex networks

    Science.gov (United States)

    Wu, Yang; Liu, Junyong; Li, Furong; Yan, Zhanxin; Zhang, Li

    2014-06-01

    The bilateral power transaction (BPT) mode becomes a typical market organization with the restructuring of electric power industry, the proper model which could capture its characteristics is in urgent need. However, the model is lacking because of this market organization's complexity. As a promising approach to modeling complex systems, complex networks could provide a sound theoretical framework for developing proper simulation model. In this paper, a complex network model of the BPT market is proposed. In this model, price advantage mechanism is a precondition. Unlike other general commodity transactions, both of the financial layer and the physical layer are considered in the model. Through simulation analysis, the feasibility and validity of the model are verified. At same time, some typical statistical features of BPT network are identified. Namely, the degree distribution follows the power law, the clustering coefficient is low and the average path length is a bit long. Moreover, the topological stability of the BPT network is tested. The results show that the network displays a topological robustness to random market member's failures while it is fragile against deliberate attacks, and the network could resist cascading failure to some extent. These features are helpful for making decisions and risk management in BPT markets.

  4. Localized Modeling of Biochemical and Flow Interactions during Cancer Cell Adhesion.

    Directory of Open Access Journals (Sweden)

    Julie Behr

    Full Text Available This work focuses on one component of a larger research effort to develop a simulation tool to model populations of flowing cells. Specifically, in this study a local model of the biochemical interactions between circulating melanoma tumor cells (TC and substrate adherent polymorphonuclear neutrophils (PMN is developed. This model provides realistic three-dimensional distributions of bond formation and attendant attraction and repulsion forces that are consistent with the time dependent Computational Fluid Dynamics (CFD framework of the full system model which accounts local pressure, shear and repulsion forces. The resulting full dynamics model enables exploration of TC adhesion to adherent PMNs, which is a known participating mechanism in melanoma cell metastasis. The model defines the adhesion molecules present on the TC and PMN cell surfaces, and calculates their interactions as the melanoma cell flows past the PMN. Biochemical rates of reactions between individual molecules are determined based on their local properties. The melanoma cell in the model expresses ICAM-1 molecules on its surface, and the PMN expresses the β-2 integrins LFA-1 and Mac-1. In this work the PMN is fixed to the substrate and is assumed fully rigid and of a prescribed shear-rate dependent shape obtained from micro-PIV experiments. The melanoma cell is transported with full six-degrees-of-freedom dynamics. Adhesion models, which represent the ability of molecules to bond and adhere the cells to each other, and repulsion models, which represent the various physical mechanisms of cellular repulsion, are incorporated with the CFD solver. All models are general enough to allow for future extensions, including arbitrary adhesion molecule types, and the ability to redefine the values of parameters to represent various cell types. The model presented in this study will be part of a clinical tool for development of personalized medical treatment programs.

  5. How to model wireless mesh networks topology

    International Nuclear Information System (INIS)

    The specification of network connectivity model or topology is the beginning of design and analysis in Computer Network researches. Wireless Mesh Networks is an autonomic network that is dynamically self-organised, self-configured while the mesh nodes establish automatic connectivity with the adjacent nodes in the relay network of wireless backbone routers. Researches in Wireless Mesh Networks range from node deployment to internetworking issues with sensor, Internet and cellular networks. These researches require modelling of relationships and interactions among nodes including technical characteristics of the links while satisfying the architectural requirements of the physical network. However, the existing topology generators model geographic topologies which constitute different architectures, thus may not be suitable in Wireless Mesh Networks scenarios. The existing methods of topology generation are explored, analysed and parameters for their characterisation are identified. Furthermore, an algorithm for the design of Wireless Mesh Networks topology based on square grid model is proposed in this paper. The performance of the topology generated is also evaluated. This research is particularly important in the generation of a close-to-real topology for ensuring relevance of design to the intended network and validity of results obtained in Wireless Mesh Networks researches

  6. Model Of Neural Network With Creative Dynamics

    Science.gov (United States)

    Zak, Michail; Barhen, Jacob

    1993-01-01

    Paper presents analysis of mathematical model of one-neuron/one-synapse neural network featuring coupled activation and learning dynamics and parametrical periodic excitation. Demonstrates self-programming, partly random behavior of suitable designed neural network; believed to be related to spontaneity and creativity of biological neural networks.

  7. Magneto-electric network models in electromagnetism

    OpenAIRE

    Demenko, A.; Sykulski, J. K.

    2006-01-01

    Purpose – The aim of this paper is to develop network models of an electromagnetic field containing both eddy and displacement currents. The proposed network models provide good physical insight, help understanding of complicated electromagnetic phenomena and aid explanation of methods of analysis of electromagnetic systems. Design/methodology/approach – The models consist of magnetic and electric networks coupled via sources. The analogy between the finite element method and the loop and nod...

  8. CIMS Network Protocol and Its Net Models

    Institute of Scientific and Technical Information of China (English)

    罗军舟; 顾冠群

    1997-01-01

    Computer communication network architectures for cims are based on the OSI Reference Model.In this paper,CIMS network protocol model is set up on the basis of the corresqonding service model.Then the authors present a formal specification of transport protocols by using an extended Predicate/Transition net system that is briefly introduced in the third part.Finally,the general methods for the Petri nets based formal specification of CIMS network protocols are outlined.

  9. Agent-based modeling and network dynamics

    CERN Document Server

    Namatame, Akira

    2016-01-01

    The book integrates agent-based modeling and network science. It is divided into three parts, namely, foundations, primary dynamics on and of social networks, and applications. The book begins with the network origin of agent-based models, known as cellular automata, and introduce a number of classic models, such as Schelling’s segregation model and Axelrod’s spatial game. The essence of the foundation part is the network-based agent-based models in which agents follow network-based decision rules. Under the influence of the substantial progress in network science in late 1990s, these models have been extended from using lattices into using small-world networks, scale-free networks, etc. The book also shows that the modern network science mainly driven by game-theorists and sociophysicists has inspired agent-based social scientists to develop alternative formation algorithms, known as agent-based social networks. The book reviews a number of pioneering and representative models in this family. Upon the gi...

  10. Landauer in the Age of Synthetic Biology: Energy Consumption and Information Processing in Biochemical Networks

    Science.gov (United States)

    Mehta, Pankaj; Lang, Alex H.; Schwab, David J.

    2016-03-01

    A central goal of synthetic biology is to design sophisticated synthetic cellular circuits that can perform complex computations and information processing tasks in response to specific inputs. The tremendous advances in our ability to understand and manipulate cellular information processing networks raises several fundamental physics questions: How do the molecular components of cellular circuits exploit energy consumption to improve information processing? Can one utilize ideas from thermodynamics to improve the design of synthetic cellular circuits and modules? Here, we summarize recent theoretical work addressing these questions. Energy consumption in cellular circuits serves five basic purposes: (1) increasing specificity, (2) manipulating dynamics, (3) reducing variability, (4) amplifying signal, and (5) erasing memory. We demonstrate these ideas using several simple examples and discuss the implications of these theoretical ideas for the emerging field of synthetic biology. We conclude by discussing how it may be possible to overcome these limitations using "post-translational" synthetic biology that exploits reversible protein modification.

  11. Oligopoly Model of a Debit Card Network

    OpenAIRE

    Manchev, Peter

    2006-01-01

    The paper builds an oligopoly model of a debit card network. It examines the competition between debit card issuers. We show that there is an optimal pricing for the debit card network, which maximizes all issuer's revenues. The paper also shows that establishing a link between debit card networks averages the costs provided that there is no growth in the customer's usage of the networks, resulting from the link.

  12. Edge exchangeable models for network data

    CERN Document Server

    Crane, Harry

    2016-01-01

    Exchangeable models for vertex labeled graphs cannot replicate the large sample behaviors of sparsity and power law degree distributions observed in many network datasets. Out of this mathematical impossibility emerges the question of how network data can be modeled in a way that reflects known empirical behaviors and respects basic statistical principles. We address this question by observing that edges, not vertices, act as the statistical units in most network datasets, making a theory of edge labeled networks more natural for most applications. Within this context we introduce the new invariance principle of {\\em edge exchangeability}, which unlike its vertex exchangeable counterpart can produce networks with sparse and/or power law structure. We characterize the class of all edge exchangeable network models and identify a particular two parameter family of models with suitable theoretical properties for statistical inference. We discuss issues of estimation from edge exchangeable models and compare our a...

  13. Growth of Lactobacillus paracasei ATCC 334 in a cheese model system: a biochemical approach

    OpenAIRE

    Budinich, M.; Diaz-Muniz, I.; Cai, H; Rankin, S. A.; Broadbent, Jeffery R.; Steele, J L

    2011-01-01

    Growth of Lactobacillus paracasei ATCC 334, in a cheese-ripening model system based upon a medium prepared from ripening Cheddar cheese extract (CCE) was evaluated. Lactobacillus paracasei ATCC 334 grows in CCE made from cheese ripened for 2 (2mCCE), 6 (6mCCE), and 8 (8mCCE) mo, to final cell densities of 5.9 × 108, 1.2 × 108, and 2.1 × 107 cfu/mL, respectively. Biochemical analysis and mass balance equations were used to determine substrate consumption patterns and products formed in 2mCCE. ...

  14. Modeling data throughput on communication networks

    Energy Technology Data Exchange (ETDEWEB)

    Eldridge, J.M.

    1993-11-01

    New challenges in high performance computing and communications are driving the need for fast, geographically distributed networks. Applications such as modeling physical phenomena, interactive visualization, large data set transfers, and distributed supercomputing require high performance networking [St89][Ra92][Ca92]. One measure of a communication network`s performance is the time it takes to complete a task -- such as transferring a data file or displaying a graphics image on a remote monitor. Throughput, defined as the ratio of the number of useful data bits transmitted per the time required to transmit those bits, is a useful gauge of how well a communication system meets this performance measure. This paper develops and describes an analytical model of throughput. The model is a tool network designers can use to predict network throughput. It also provides insight into those parts of the network that act as a performance bottleneck.

  15. Queuing theory models for computer networks

    Science.gov (United States)

    Galant, David C.

    1989-01-01

    A set of simple queuing theory models which can model the average response of a network of computers to a given traffic load has been implemented using a spreadsheet. The impact of variations in traffic patterns and intensities, channel capacities, and message protocols can be assessed using them because of the lack of fine detail in the network traffic rates, traffic patterns, and the hardware used to implement the networks. A sample use of the models applied to a realistic problem is included in appendix A. Appendix B provides a glossary of terms used in this paper. This Ames Research Center computer communication network is an evolving network of local area networks (LANs) connected via gateways and high-speed backbone communication channels. Intelligent planning of expansion and improvement requires understanding the behavior of the individual LANs as well as the collection of networks as a whole.

  16. A Conceptual Model of Learning Networks

    Science.gov (United States)

    Koper, Rob

    In the TENCompetence project a set of UML models (Booch et al. 1999) have been developed to specify the core concepts for Learning Networks Services that support professional competence development. The three most important, high-level models are (a) the use case model, (b) the conceptual model, and (c) the domain model. The first model identifies the primary use cases we need in order to support professional competence development. The second model describes the concept of competence and competence development from a theoretical point of view. What is a competence? How does it relate to the cognitive system of an actor? How are competences developed? The third model is a UML Domain Model that defines, among other things, the components of a Learning Network, defines the concepts and relationships between the concepts in a Learning Network and provides a starting point for the design of the overall architecture for Learning Network Services, including the data model.

  17. Risk prediction models for biochemical recurrence after radical prostatectomy using prostate-specific antigen and Gleason score

    Directory of Open Access Journals (Sweden)

    Xin-Hai Hu

    2014-12-01

    Full Text Available Many computer models for predicting the risk of prostate cancer have been developed including for prediction of biochemical recurrence (BCR. However, models for individual BCR free probability at individual time-points after a BCR free period are rare. Follow-up data from 1656 patients who underwent laparoscopic radical prostatectomy (LRP were used to develop an artificial neural network (ANN to predict BCR and to compare it with a logistic regression (LR model using clinical and pathologic parameters, prostate-specific antigen (PSA, margin status (R0/1, pathological stage (pT, and Gleason Score (GS. For individual BCR prediction at any given time after operation, additional ANN, and LR models were calculated every 6 months for up to 7.5 years of follow-up. The areas under the receiver operating characteristic (ROC curve (AUC for the ANN (0.754 and LR models (0.755 calculated immediately following LRP, were larger than that for GS (AUC: 0.715; P = 0.0015 and 0.001, pT or PSA (AUC: 0.619; P always <0.0001 alone. The GS predicted the BCR better than PSA (P = 0.0001, but there was no difference between the ANN and LR models (P = 0.39. Our ANN and LR models predicted individual BCR risk from radical prostatectomy for up to 10 years postoperative. ANN and LR models equally and significantly improved the prediction of BCR compared with PSA and GS alone. When the GS and ANN output values are combined, a more accurate BCR prediction is possible, especially in high-risk patients with GS ≥7.

  18. Risk prediction models for biochemical recurrence after radical prostatectomy using prostate-specific antigen and Gleason score.

    Science.gov (United States)

    Hu, Xin-Hai; Cammann, Henning; Meyer, Hellmuth-A; Jung, Klaus; Lu, Hong-Biao; Leva, Natalia; Magheli, Ahmed; Stephan, Carsten; Busch, Jonas

    2014-01-01

    Many computer models for predicting the risk of prostate cancer have been developed including for prediction of biochemical recurrence (BCR). However, models for individual BCR free probability at individual time-points after a BCR free period are rare. Follow-up data from 1656 patients who underwent laparoscopic radical prostatectomy (LRP) were used to develop an artificial neural network (ANN) to predict BCR and to compare it with a logistic regression (LR) model using clinical and pathologic parameters, prostate-specific antigen (PSA), margin status (R0/1), pathological stage (pT), and Gleason Score (GS). For individual BCR prediction at any given time after operation, additional ANN, and LR models were calculated every 6 months for up to 7.5 years of follow-up. The areas under the receiver operating characteristic (ROC) curve (AUC) for the ANN (0.754) and LR models (0.755) calculated immediately following LRP, were larger than that for GS (AUC: 0.715; P = 0.0015 and 0.001), pT or PSA (AUC: 0.619; P always <0.0001) alone. The GS predicted the BCR better than PSA (P = 0.0001), but there was no difference between the ANN and LR models (P = 0.39). Our ANN and LR models predicted individual BCR risk from radical prostatectomy for up to 10 years postoperative. ANN and LR models equally and significantly improved the prediction of BCR compared with PSA and GS alone. When the GS and ANN output values are combined, a more accurate BCR prediction is possible, especially in high-risk patients with GS ≥7. PMID:25130472

  19. Random graph models for dynamic networks

    CERN Document Server

    Zhang, Xiao; Newman, M E J

    2016-01-01

    We propose generalizations of a number of standard network models, including the classic random graph, the configuration model, and the stochastic block model, to the case of time-varying networks. We assume that the presence and absence of edges are governed by continuous-time Markov processes with rate parameters that can depend on properties of the nodes. In addition to computing equilibrium properties of these models, we demonstrate their use in data analysis and statistical inference, giving efficient algorithms for fitting them to observed network data. This allows us, for instance, to estimate the time constants of network evolution or infer community structure from temporal network data using cues embedded both in the probabilities over time that node pairs are connected by edges and in the characteristic dynamics of edge appearance and disappearance. We illustrate our methods with a selection of applications, both to computer-generated test networks and real-world examples.

  20. Exponential-family Random Network Models

    OpenAIRE

    Fellows, I; Handcock, MS

    2012-01-01

    Random graphs, where the connections between nodes are considered random variables, have wide applicability in the social sciences. Exponential-family Random Graph Models (ERGM) have shown themselves to be a useful class of models for representing com- plex social phenomena. We generalize ERGM by also modeling nodal attributes as random variates, thus creating a random model of the full network, which we call Exponential-family Random Network Models (ERNM). We demonstrate how this framework a...

  1. Multivariate modeling of chromium-induced oxidative stress and biochemical changes in plants of Pistia stratiotes L.

    OpenAIRE

    Sinha, Sarita; Basant, Ankita; Malik, Amrita; Singh, Kunwar P.

    2009-01-01

    Biochemical changes in the plants of Pistia stratiotes L., a free floating macrophyte exposed to different concentrations of hexavalent chromium (0, 10, 40, 60, 80 and 160 μM) for 48, 96 and 144 h were studied. Chromium-induced oxidative stress in macrophyte was investigated using the multivariate modeling approaches. Cluster analysis rendered two fairly distinct clusters (roots and shoots) of similar characteristics in terms of their biochemical responses. Discriminant analysis identified as...

  2. Diverse Embedding Neural Network Language Models

    OpenAIRE

    Audhkhasi, Kartik; Sethy, Abhinav; Ramabhadran, Bhuvana

    2014-01-01

    We propose Diverse Embedding Neural Network (DENN), a novel architecture for language models (LMs). A DENNLM projects the input word history vector onto multiple diverse low-dimensional sub-spaces instead of a single higher-dimensional sub-space as in conventional feed-forward neural network LMs. We encourage these sub-spaces to be diverse during network training through an augmented loss function. Our language modeling experiments on the Penn Treebank data set show the performance benefit of...

  3. Monochromaticity in Neutral Evolutionary Network Models

    OpenAIRE

    Halu, Arda; Bianconi, Ginestra

    2012-01-01

    Recent studies on epistatic networks of model organisms have unveiled a certain type of modular property called monochromaticity in which the networks are clusterable into functional modules that interact with each other through the same type of epistasis. Here we propose and study three epistatic network models that are inspired by the Duplication-Divergence mechanism to gain insight into the evolutionary basis of monochromaticity and to test if it can be explained as the outcome of a neutra...

  4. A novel biochemically salvageable animal model of hyperammonemia devoid of N-acetylglutamate synthase.

    Science.gov (United States)

    Senkevitch, Emilee; Cabrera-Luque, Juan; Morizono, Hiroki; Caldovic, Ljubica; Tuchman, Mendel

    2012-06-01

    All knockout mouse models of urea cycle disorders die in the neonatal period or shortly thereafter. Since N-acetylglutamate synthase (NAGS) deficiency in humans can be effectively treated with N-carbamyl-l-glutamate (NCG), we sought to develop a mouse model of this disorder that could be rescued by biochemical intervention, reared to adulthood, reproduce, and become a novel animal model for hyperammonemia. Founder NAGS knockout heterozygous mice were obtained from the trans-NIH Knock-Out Mouse Project. Genotyping of the mice was performed by PCR and confirmed by Western blotting of liver and intestine. NCG and L-citrulline (Cit) were used to rescue the NAGS knockout homozygous (Nags(-/-)) pups and the rescued animals were characterized. We observed an 85% survival rate of Nags(-/-) mice when they were given intraperitoneal injections with NCG and Cit during the newborn period until weaning and supplemented subsequently with both compounds in their drinking water. This regimen has allowed for normal development, apparent health, and reproduction. Interruption of this rescue intervention resulted in the development of severe hyperammonemia and death within 48 h. In addition to hyperammonemia, interruption of rescue supplementation was associated with elevated plasma glutamine, glutamate, and lysine, and reduced citrulline, arginine, ornithine and proline levels. We conclude that NAGS deprived mouse model has been developed which can be rescued by NCG and Cit and reared to reproduction and beyond. This biochemically salvageable mouse model recapitulates the clinical phenotype of proximal urea cycle disorders and can be used as a reliable model of induced hyperammonemia by manipulating the administration of the rescue compounds. PMID:22503289

  5. Modelling pollutant deposition to vegetation: scaling down from the canopy to the biochemical level

    International Nuclear Information System (INIS)

    In the atmosphere, pollutants exist in either the gas, particle or liquid (rain and cloud water) phase. The most important gas-phase pollutants from a biological or ecological perspective are oxides of nitrogen (nitrogen dioxide, nitric acid vapor), oxides of sulfur (sulfur dioxide), ammonia, tropospheric ozone and mercury vapor. For liquid or particle phase pollutants, the suite of pollutants is varied and includes hydrogen ion, multiple heavy metals, and select anions. For many of these pollutants, plant canopies are a major sink within continental landscapes, and deposition is highly dependent on the (i) physical form or phase of the pollutant, (ii) meteorological conditions above and within the plant canopy, and (iii) physiological or biochemical properties of the leaf, both on the leaf surface and within the leaf interior. In large measure, the physical and chemical processes controlling deposition at the meteorological and whole-canopy levels are well characterized and have been mathematically modelled. In contrast, the processes operating on the leaf surface and within the leaf interior are not well understood and are largely specific for individual pollutants. The availability of process-level models to estimate deposition is discussed briefly at the canopy and leaf level; however, the majority of effort is devoted to modelling deposition at the leaf surface and leaf interior using the two-layer stagnant film model. This model places a premium on information of a physiological and biochemical nature, and highlights the need to distinguish clearly between the measurements of atmospheric chemistry and the physiologically effective exposure since the two may be very dissimilar. A case study of deposition in the Los Angeles Basin is used to demonstrate the modelling approach, to present the concept of exposure dynamics in the atmosphere versus that in the leaf interior, and to document the principle that most forest canopies are exposed to multiple chemical

  6. Performance modeling of network data services

    Energy Technology Data Exchange (ETDEWEB)

    Haynes, R.A.; Pierson, L.G.

    1997-01-01

    Networks at major computational organizations are becoming increasingly complex. The introduction of large massively parallel computers and supercomputers with gigabyte memories are requiring greater and greater bandwidth for network data transfers to widely dispersed clients. For networks to provide adequate data transfer services to high performance computers and remote users connected to them, the networking components must be optimized from a combination of internal and external performance criteria. This paper describes research done at Sandia National Laboratories to model network data services and to visualize the flow of data from source to sink when using the data services.

  7. Unified Hybrid Network Theoretical Model Trilogy

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    The first of the unified hybrid network theoretical model trilogy (UHNTF) is the harmonious unification hybrid preferential model (HUHPM), seen in the inner loop of Fig. 1, the unified hybrid ratio is defined.

  8. Modeling information flow in biological networks

    International Nuclear Information System (INIS)

    Large-scale molecular interaction networks are being increasingly used to provide a system level view of cellular processes. Modeling communications between nodes in such huge networks as information flows is useful for dissecting dynamical dependences between individual network components. In the information flow model, individual nodes are assumed to communicate with each other by propagating the signals through intermediate nodes in the network. In this paper, we first provide an overview of the state of the art of research in the network analysis based on information flow models. In the second part, we describe our computational method underlying our recent work on discovering dysregulated pathways in glioma. Motivated by applications to inferring information flow from genotype to phenotype in a very large human interaction network, we generalized previous approaches to compute information flows for a large number of instances and also provided a formal proof for the method

  9. Network models in economics and finance

    CERN Document Server

    Pardalos, Panos; Rassias, Themistocles

    2014-01-01

    Using network models to investigate the interconnectivity in modern economic systems allows researchers to better understand and explain some economic phenomena. This volume presents contributions by known experts and active researchers in economic and financial network modeling. Readers are provided with an understanding of the latest advances in network analysis as applied to economics, finance, corporate governance, and investments. Moreover, recent advances in market network analysis  that focus on influential techniques for market graph analysis are also examined. Young researchers will find this volume particularly useful in facilitating their introduction to this new and fascinating field. Professionals in economics, financial management, various technologies, and network analysis, will find the network models presented in this book beneficial in analyzing the interconnectivity in modern economic systems.

  10. Strategic games on a hierarchical network model

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Among complex network models, the hierarchical network model is the one most close to such real networks as world trade web, metabolic network, WWW, actor network, and so on. It has not only the property of power-law degree distribution, but growth based on growth and preferential attachment, showing the scale-free degree distribution property. In this paper, we study the evolution of cooperation on a hierarchical network model, adopting the prisoner's dilemma (PD) game and snowdrift game (SG) as metaphors of the interplay between connected nodes. BA model provides a unifying framework for the emergence of cooperation. But interestingly, we found that on hierarchical model, there is no sign of cooperation for PD game, while the frequency of cooperation decreases as the common benefit decreases for SG. By comparing the scaling clustering coefficient properties of the hierarchical network model with that of BA model, we found that the former amplifies the effect of hubs. Considering different performances of PD game and SG on complex network, we also found that common benefit leads to cooperation in the evolution. Thus our study may shed light on the emergence of cooperation in both natural and social environments.

  11. Evaluation of EOR Processes Using Network Models

    DEFF Research Database (Denmark)

    Larsen, Jens Kjell; Krogsbøll, Anette

    1998-01-01

    The report consists of the following parts: 1) Studies of wetting properties of model fluids and fluid mixtures aimed at an optimal selection of candidates for micromodel experiments. 2) Experimental studies of multiphase transport properties using physical models of porous networks (micromodels......) including estimation of their "petrophysical" properties (e.g. absolute permeability). 3) Mathematical modelling and computer studies of multiphase transport through pore space using mathematical network models. 4) Investigation of link between pore-scale and macroscopic recovery mechanisms....

  12. Modelling the structure of complex networks

    DEFF Research Database (Denmark)

    Herlau, Tue

    A complex network is a systems in which a discrete set of units interact in a quantifiable manner. Representing systems as complex networks have become increasingly popular in a variety of scientific fields including biology, social sciences and economics. Parallel to this development complex...... next chapters will treat some of the various symmetries, representer theorems and probabilistic structures often deployed in the modelling complex networks, the construction of sampling methods and various network models. The introductory chapters will serve to provide context for the included written...

  13. Towards reproducible descriptions of neuronal network models.

    Directory of Open Access Journals (Sweden)

    Eilen Nordlie

    2009-08-01

    Full Text Available Progress in science depends on the effective exchange of ideas among scientists. New ideas can be assessed and criticized in a meaningful manner only if they are formulated precisely. This applies to simulation studies as well as to experiments and theories. But after more than 50 years of neuronal network simulations, we still lack a clear and common understanding of the role of computational models in neuroscience as well as established practices for describing network models in publications. This hinders the critical evaluation of network models as well as their re-use. We analyze here 14 research papers proposing neuronal network models of different complexity and find widely varying approaches to model descriptions, with regard to both the means of description and the ordering and placement of material. We further observe great variation in the graphical representation of networks and the notation used in equations. Based on our observations, we propose a good model description practice, composed of guidelines for the organization of publications, a checklist for model descriptions, templates for tables presenting model structure, and guidelines for diagrams of networks. The main purpose of this good practice is to trigger a debate about the communication of neuronal network models in a manner comprehensible to humans, as opposed to machine-readable model description languages. We believe that the good model description practice proposed here, together with a number of other recent initiatives on data-, model-, and software-sharing, may lead to a deeper and more fruitful exchange of ideas among computational neuroscientists in years to come. We further hope that work on standardized ways of describing--and thinking about--complex neuronal networks will lead the scientific community to a clearer understanding of high-level concepts in network dynamics, and will thus lead to deeper insights into the function of the brain.

  14. Symbolic regression of generative network models

    CERN Document Server

    Menezes, Telmo

    2014-01-01

    Networks are a powerful abstraction with applicability to a variety of scientific fields. Models explaining their morphology and growth processes permit a wide range of phenomena to be more systematically analysed and understood. At the same time, creating such models is often challenging and requires insights that may be counter-intuitive. Yet there currently exists no general method to arrive at better models. We have developed an approach to automatically detect realistic decentralised network growth models from empirical data, employing a machine learning technique inspired by natural selection and defining a unified formalism to describe such models as computer programs. As the proposed method is completely general and does not assume any pre-existing models, it can be applied "out of the box" to any given network. To validate our approach empirically, we systematically rediscover pre-defined growth laws underlying several canonical network generation models and credible laws for diverse real-world netwo...

  15. Complex networks analysis in socioeconomic models

    CERN Document Server

    Varela, Luis M; Ausloos, Marcel; Carrete, Jesus

    2014-01-01

    This chapter aims at reviewing complex networks models and methods that were either developed for or applied to socioeconomic issues, and pertinent to the theme of New Economic Geography. After an introduction to the foundations of the field of complex networks, the present summary adds insights on the statistical mechanical approach, and on the most relevant computational aspects for the treatment of these systems. As the most frequently used model for interacting agent-based systems, a brief description of the statistical mechanics of the classical Ising model on regular lattices, together with recent extensions of the same model on small-world Watts-Strogatz and scale-free Albert-Barabasi complex networks is included. Other sections of the chapter are devoted to applications of complex networks to economics, finance, spreading of innovations, and regional trade and developments. The chapter also reviews results involving applications of complex networks to other relevant socioeconomic issues, including res...

  16. Reduced models of networks of coupled enzymatic reactions

    CERN Document Server

    Kumar, Ajit

    2011-01-01

    The Michaelis-Menten equation has played a central role in our understanding of biochemical processes. It has long been understood how this equation approximates the dynamics of irreversible enzymatic reactions. However, a similar approximation in the case of networks, where the product of one reaction can act as an enzyme in another, has not been fully developed. Here we rigorously derive such an approximation in a class of coupled enzymatic networks where the individual interactions are of Michaelis-Menten type. We show that the sufficient conditions for the validity of the total quasi steady state assumption (tQSSA), obtained in a single protein case by Borghans, de Boer and Segel can be extended to sufficient conditions for the validity of the tQSSA in a large class of enzymatic networks. Secondly, we derive reduced equations that approximate the network's dynamics and involve only protein concentrations. This significantly reduces the number of equations necessary to model such systems. We prove the vali...

  17. Boolean networks as modelling framework

    Directory of Open Access Journals (Sweden)

    Florian eGreil

    2012-08-01

    Full Text Available In a network, the components of a given system are represented as nodes, the interactions are abstracted as links between the nodes. Boolean networks refer to a class of dynamics on networks, in fact it is the simplest possible dynamics where each node has a value 0 or 1. This allows to investigate extensively the dynamics both analytically and by numerical experiments. The present article focuses on the theoretical concept of relevant components and the immediate application in plant biology, references for more in-depths treatment of the mathematical details are also given.

  18. Implementing network constraints in the EMPS model

    Energy Technology Data Exchange (ETDEWEB)

    Helseth, Arild; Warland, Geir; Mo, Birger; Fosso, Olav B.

    2010-02-15

    This report concerns the coupling of detailed market and network models for long-term hydro-thermal scheduling. Currently, the EPF model (Samlast) is the only tool available for this task for actors in the Nordic market. A new prototype for solving the coupled market and network problem has been developed. The prototype is based on the EMPS model (Samkjoeringsmodellen). Results from the market model are distributed to a detailed network model, where a DC load flow detects if there are overloads on monitored lines or intersections. In case of overloads, network constraints are generated and added to the market problem. Theoretical and implementation details for the new prototype are elaborated in this report. The performance of the prototype is tested against the EPF model on a 20-area Nordic dataset. (Author)

  19. Modelling and control of road traffic networks

    OpenAIRE

    Haut, Bertrand

    2007-01-01

    Road traffic networks offer a particularly challenging research subject to the control community. The traffic congestion around big cities is constantly increasing and is now becoming a major problem. However, the dynamics of a road network exhibit some complex behaviours such as nonlinearities, delays and saturation effects that prevent the use of some classical control algorithms. This thesis presents different models and control algorithms used for road traffic networks. The dynamics ar...

  20. Delivery Time Reliability Model of Logistics Network

    OpenAIRE

    Liusan Wu; Qingmei Tan; Yuehui Zhang

    2013-01-01

    Natural disasters like earthquake and flood will surely destroy the existing traffic network, usually accompanied by delivery delay or even network collapse. A logistics-network-related delivery time reliability model defined by a shortest-time entropy is proposed as a means to estimate the actual delivery time reliability. The less the entropy is, the stronger the delivery time reliability remains, and vice versa. The shortest delivery time is computed separately based on two different assum...

  1. Modelling Microwave Devices Using Artificial Neural Networks

    Directory of Open Access Journals (Sweden)

    Andrius Katkevičius

    2012-04-01

    Full Text Available Artificial neural networks (ANN have recently gained attention as fast and flexible equipment for modelling and designing microwave devices. The paper reviews the opportunities to use them for undertaking the tasks on the analysis and synthesis. The article focuses on what tasks might be solved using neural networks, what challenges might rise when using artificial neural networks for carrying out tasks on microwave devices and discusses problem-solving techniques for microwave devices with intermittent characteristics.Article in Lithuanian

  2. Measuring and modeling switched Ethernet networks

    OpenAIRE

    2003-01-01

    Switched Ethernet is a dominating technology in local area networks, and a strong contender in system area networks. This thesis describes measurements on switched Ethernets, in the context of high speed system area networks with real time requirements. One such system is the ATLAS level 2 trigger, which formed the basis of the measurements. Further on the thesis describes the design, implementation and results from a simulation model of the measured devic...

  3. Modeling Evolution of Weighted Clique Networks

    International Nuclear Information System (INIS)

    We propose a weighted clique network evolution model, which expands continuously by the addition of a new clique (maximal complete sub-graph) at each time step. And the cliques in the network overlap with each other. The structural expansion of the weighted clique network is combined with the edges' weight and vertices' strengths dynamical evolution. The model is based on a weight-driven dynamics and a weights' enhancement mechanism combining with the network growth. We study the network properties, which include the distribution of vertices' strength and the distribution of edges' weight, and find that both the distributions follow the scale-free distribution. At the same time, we also find that the relationship between strength and degree of a vertex are linear correlation during the growth of the network. On the basis of mean-field theory, we study the weighted network model and prove that both vertices' strength and edges' weight of this model follow the scale-free distribution. And we exploit an algorithm to forecast the network dynamics, which can be used to reckon the distributions and the corresponding scaling exponents. Furthermore, we observe that mean-field based theoretic results are consistent with the statistical data of the model, which denotes the theoretical result in this paper is effective. (interdisciplinary physics and related areas of science and technology)

  4. Modeling Evolution of Weighted Clique Networks

    Science.gov (United States)

    Yang, Xu-Hua; Jiang, Feng-Ling; Chen, Sheng-Yong; Wang, Wan-Liang

    2011-11-01

    We propose a weighted clique network evolution model, which expands continuously by the addition of a new clique (maximal complete sub-graph) at each time step. And the cliques in the network overlap with each other. The structural expansion of the weighted clique network is combined with the edges' weight and vertices' strengths dynamical evolution. The model is based on a weight-driven dynamics and a weights' enhancement mechanism combining with the network growth. We study the network properties, which include the distribution of vertices' strength and the distribution of edges' weight, and find that both the distributions follow the scale-free distribution. At the same time, we also find that the relationship between strength and degree of a vertex are linear correlation during the growth of the network. On the basis of mean-field theory, we study the weighted network model and prove that both vertices' strength and edges' weight of this model follow the scale-free distribution. And we exploit an algorithm to forecast the network dynamics, which can be used to reckon the distributions and the corresponding scaling exponents. Furthermore, we observe that mean-field based theoretic results are consistent with the statistical data of the model, which denotes the theoretical result in this paper is effective.

  5. Homophyly/Kinship Model: Naturally Evolving Networks

    Science.gov (United States)

    Li, Angsheng; Li, Jiankou; Pan, Yicheng; Yin, Xianchen; Yong, Xi

    2015-10-01

    It has been a challenge to understand the formation and roles of social groups or natural communities in the evolution of species, societies and real world networks. Here, we propose the hypothesis that homophyly/kinship is the intrinsic mechanism of natural communities, introduce the notion of the affinity exponent and propose the homophyly/kinship model of networks. We demonstrate that the networks of our model satisfy a number of topological, probabilistic and combinatorial properties and, in particular, that the robustness and stability of natural communities increase as the affinity exponent increases and that the reciprocity of the networks in our model decreases as the affinity exponent increases. We show that both homophyly/kinship and reciprocity are essential to the emergence of cooperation in evolutionary games and that the homophyly/kinship and reciprocity determined by the appropriate affinity exponent guarantee the emergence of cooperation in evolutionary games, verifying Darwin’s proposal that kinship and reciprocity are the means of individual fitness. We propose the new principle of structure entropy minimisation for detecting natural communities of networks and verify the functional module property and characteristic properties by a healthy tissue cell network, a citation network, some metabolic networks and a protein interaction network.

  6. Network Development And Mobilisation Through 'Network Latency' - An Alternative To Stage Models Of Network Developments

    OpenAIRE

    Fairhead, J.; O'Sullivan, D.

    1996-01-01

    How and why do some networks develop rapidly and effectively, and others not? This paper draws from two contrasting project case-studies to help us discuss this question. The first case shows a pattern of network development that is highly projectspecific and can best be described by a conventional, essentially linear, 'stages' development model. In such a model, network effectiveness is believed to be a product of repeated social interactions that ultimately result in a high degree of social...

  7. Evaluating Network Models: A Likelihood Analysis

    CERN Document Server

    Wang, Wen-Qiang; Zhou, Tao

    2011-01-01

    Many models are put forward to mimic the evolution of real networked systems. A well-accepted way to judge the validity is to compare the modeling results with real networks subject to several structural features. Even for a specific real network, we cannot fairly evaluate the goodness of different models since there are too many structural features while there is no criterion to select and assign weights on them. Motivated by the studies on link prediction algorithms, we propose a unified method to evaluate the network models via the comparison of the likelihoods of the currently observed network driven by different models, with an assumption that the higher the likelihood is, the better the model is. We test our method on the real Internet at the Autonomous System (AS) level, and the results suggest that the Generalized Linear Preferential (GLP) model outperforms the Tel Aviv Network Generator (Tang), while both two models are better than the Barab\\'asi-Albert (BA) and Erd\\"os-R\\'enyi (ER) models. Our metho...

  8. Designing Network-based Business Model Ontology

    DEFF Research Database (Denmark)

    Hashemi Nekoo, Ali Reza; Ashourizadeh, Shayegheh; Zarei, Behrouz

    2015-01-01

    is going to propose e-business model ontology from the network point of view and its application in real world. The suggested ontology for network-based businesses is composed of individuals` characteristics and what kind of resources they own. also, their connections and pre-conceptions of connections...... such as shared-mental model and trust. However, it mostly covers previous business model elements. To confirm the applicability of this ontology, it has been implemented in business angel network and showed how it works....

  9. An endogenous model of the credit network

    Science.gov (United States)

    He, Jianmin; Sui, Xin; Li, Shouwei

    2016-01-01

    In this paper, an endogenous credit network model of firm-bank agents is constructed. The model describes the endogenous formation of firm-firm, firm-bank and bank-bank credit relationships. By means of simulations, the model is capable of showing some obvious similarities with empirical evidence found by other scholars: the upper-tail of firm size distribution can be well fitted with a power-law; the bank size distribution can be lognormally distributed with a power-law tail; the bank in-degrees of the interbank credit network as well as the firm-bank credit network fall into two-power-law distributions.

  10. Modelling and designing electric energy networks

    International Nuclear Information System (INIS)

    The author gives an overview of his research works in the field of electric network modelling. After a brief overview of technological evolutions from the telegraph to the all-electric fly-by-wire aircraft, he reports and describes various works dealing with a simplified modelling of electric systems and with fractal simulation. Then, he outlines the challenges for the design of electric networks, proposes a design process, gives an overview of various design models, methods and tools, and reports an application in the design of electric networks for future jumbo jets

  11. Characterization and Modeling of Network Traffic

    DEFF Research Database (Denmark)

    Shawky, Ahmed; Bergheim, Hans; Ragnarsson, Olafur;

    2011-01-01

    This paper attempts to characterize and model backbone network traffic, using a small number of statistics. In order to reduce cost and processing power associated with traffic analysis. The parameters affecting the behaviour of network traffic are investigated and the choice is that inter......-arrival time, IP addresses, port numbers and transport protocol are the only necessary parameters to model network traffic behaviour. In order to recreate this behaviour, a complex model is needed which is able to recreate traffic behaviour based on a set of statistics calculated from the parameters values...

  12. Modelling of Mass Transfer Phenomena in Chemical and Biochemical Reactor Systems using Computational Fluid Dynamics

    DEFF Research Database (Denmark)

    Larsson, Hilde Kristina

    Computational fluid dynamics (CFD) is the application of numerical methods to solve systems of partial differential equations related to fluid dynamics. The continuity and the momentum equations are the most commonly applied equations within CFD, and together they can be used to calculate the...... velocity and pressure distributions in a fluid. CFD also enables the modelling of several fluids simultaneously, e.g. gas bubbles in a liquid, as well as the presence of turbulence and dissolved chemicals in a fluid, and many other phenomena. This makes CFD an appreciated tool for studying flow structures......, mixing, and other mass transfer phenomena in chemical and biochemical reactor systems. In this project, four selected case studies are investigated in order to explore the capabilities of CFD. The selected cases are a 1 ml stirred microbioreactor, an 8 ml magnetically stirred reactor, a Rushton impeller...

  13. Multiscaling in an YX model of networks

    Science.gov (United States)

    Holme, Petter; Wu, Zhi-Xi; Minnhagen, Petter

    2009-09-01

    We investigate a Hamiltonian model of networks. The model is a mirror formulation of the XY model (hence the name)—instead of letting the XY spins vary, keeping the coupling topology static, we keep the spins conserved and sample different underlying networks. Our numerical simulations show complex scaling behaviors with various exponents as the system grows and temperature approaches zero, but no finite-temperature universal critical behavior. The ground-state and low-order excitations for sparse, finite graphs are a fragmented set of isolated network clusters. Configurations of higher energy are typically more connected. The connected networks of lowest energy are stretched out giving the network large average distances. For the finite sizes we investigate, there are three regions—a low-energy regime of fragmented networks, an intermediate regime of stretched-out networks, and a high-energy regime of compact, disordered topologies. Scaling up the system size, the borders between these regimes approach zero temperature algebraically, but different network-structural quantities approach their T=0 values with different exponents. We argue this is a, perhaps rare, example of a statistical-physics model where finite sizes show a more interesting behavior than the thermodynamic limit.

  14. Cyber threat model for tactical radio networks

    Science.gov (United States)

    Kurdziel, Michael T.

    2014-05-01

    The shift to a full information-centric paradigm in the battlefield has allowed ConOps to be developed that are only possible using modern network communications systems. Securing these Tactical Networks without impacting their capabilities has been a challenge. Tactical networks with fixed infrastructure have similar vulnerabilities to their commercial counterparts (although they need to be secure against adversaries with greater capabilities, resources and motivation). However, networks with mobile infrastructure components and Mobile Ad hoc Networks (MANets) have additional unique vulnerabilities that must be considered. It is useful to examine Tactical Network based ConOps and use them to construct a threat model and baseline cyber security requirements for Tactical Networks with fixed infrastructure, mobile infrastructure and/or ad hoc modes of operation. This paper will present an introduction to threat model assessment. A definition and detailed discussion of a Tactical Network threat model is also presented. Finally, the model is used to derive baseline requirements that can be used to design or evaluate a cyber security solution that can be scaled and adapted to the needs of specific deployments.

  15. Modeling GMPLS and Optical MPLS Networks

    DEFF Research Database (Denmark)

    Christiansen, Henrik Lehrmann; Wessing, Henrik

    2003-01-01

    . The MPLS concept is attractive because it can work as a unifying control structure. covering all technologies. This paper describes how a novel scheme for optical MPLS and circuit switched GMPLS based networks can incorporated in such multi-domain, MPLS-based scenarios and how it could be modeled. Network...

  16. Stochastic discrete model of karstic networks

    Science.gov (United States)

    Jaquet, O.; Siegel, P.; Klubertanz, G.; Benabderrhamane, H.

    Karst aquifers are characterised by an extreme spatial heterogeneity that strongly influences their hydraulic behaviour and the transport of pollutants. These aquifers are particularly vulnerable to contamination because of their highly permeable networks of conduits. A stochastic model is proposed for the simulation of the geometry of karstic networks at a regional scale. The model integrates the relevant physical processes governing the formation of karstic networks. The discrete simulation of karstic networks is performed with a modified lattice-gas cellular automaton for a representative description of the karstic aquifer geometry. Consequently, more reliable modelling results can be obtained for the management and the protection of karst aquifers. The stochastic model was applied jointly with groundwater modelling techniques to a regional karst aquifer in France for the purpose of resolving surface pollution issues.

  17. Histological and biochemical analysis of DNA damage after BNCT in rat model

    International Nuclear Information System (INIS)

    To understand the mechanism of tumor cell death induced by boron neutron capture therapy (BNCT) and to optimize BNCT condition, we used rat tumor graft models and histological and biochemical analyses were carried out focusing on DNA damage response. Rat lymphosarcoma cells were grafted subcutaneously into male Wister rats. The rats with developed tumors were then treated with neutron beam irradiation 45 min after injection of 330 mg/kg bodyweight boronophenylalanine (10BPA) (+BPA) or saline control (–BPA). BNCT was carried out in the National Nuclear Center of the Republic of Kazakhstan (neutron flux: 1×109 nvt/s, fluence: 6×1011 nvt) with the presence of background γ-irradiation of 33 Gy. 6 and 20 h after BNCT treatment, tumors were resected, fixed and subjected to immunohistochemistry and biochemical analyses. Immunostaining of nuclei showed that double strand break (DSB) marker gamma H2AX staining was high in 20 h/+BPA sample but not in 20 h/–BPA samples. Poly(ADP-ribose), DSB and single strand break markers of DNA, also demonstrated this tendency. These two markers were observed at low levels in unirradiated tissues or 6 h after BNCT either under −BPA and +BPA conditions. HMGB1 level increased in 6 h/+BPA but not in 6 h/−BPA or 20 h/+BPA samples. The persistent staining of γH2AX and poly(ADP-ribose) in +BPA group suggests accumulated DSB damage after BNCT. The early HMGB1 upregulation and γH2AX and poly(ADP-ribose) observed later might be the markers for monitoring the DNA damage induced by BNCT. - Highlights: • We used rat tumor graft models and DNA damage response in BNCT was analyzed. • HMGB1 upregulation was suggested to be an early marker for BNCT. • The persistent presence of γH2AX and PAR in the nuclei might serve as late markers

  18. Model-based control of networked systems

    CERN Document Server

    Garcia, Eloy; Montestruque, Luis A

    2014-01-01

    This monograph introduces a class of networked control systems (NCS) called model-based networked control systems (MB-NCS) and presents various architectures and control strategies designed to improve the performance of NCS. The overall performance of NCS considers the appropriate use of network resources, particularly network bandwidth, in conjunction with the desired response of the system being controlled.   The book begins with a detailed description of the basic MB-NCS architecture that provides stability conditions in terms of state feedback updates . It also covers typical problems in NCS such as network delays, network scheduling, and data quantization, as well as more general control problems such as output feedback control, nonlinear systems stabilization, and tracking control.   Key features and topics include: Time-triggered and event-triggered feedback updates Stabilization of uncertain systems subject to time delays, quantization, and extended absence of feedback Optimal control analysis and ...

  19. Modeling trust context in networks

    CERN Document Server

    Adali, Sibel

    2013-01-01

    We make complex decisions every day, requiring trust in many different entities for different reasons. These decisions are not made by combining many isolated trust evaluations. Many interlocking factors play a role, each dynamically impacting the others.? In this brief, 'trust context' is defined as the system level description of how the trust evaluation process unfolds.Networks today are part of almost all human activity, supporting and shaping it. Applications increasingly incorporate new interdependencies and new trust contexts. Social networks connect people and organizations throughout

  20. Graphical Model Theory for Wireless Sensor Networks

    International Nuclear Information System (INIS)

    Information processing in sensor networks, with many small processors, demands a theory of computation that allows the minimization of processing effort, and the distribution of this effort throughout the network. Graphical model theory provides a probabilistic theory of computation that explicitly addresses complexity and decentralization for optimizing network computation. The junction tree algorithm, for decentralized inference on graphical probability models, can be instantiated in a variety of applications useful for wireless sensor networks, including: sensor validation and fusion; data compression and channel coding; expert systems, with decentralized data structures, and efficient local queries; pattern classification, and machine learning. Graphical models for these applications are sketched, and a model of dynamic sensor validation and fusion is presented in more depth, to illustrate the junction tree algorithm

  1. Graphical Model Theory for Wireless Sensor Networks

    Energy Technology Data Exchange (ETDEWEB)

    Davis, William B.

    2002-12-08

    Information processing in sensor networks, with many small processors, demands a theory of computation that allows the minimization of processing effort, and the distribution of this effort throughout the network. Graphical model theory provides a probabilistic theory of computation that explicitly addresses complexity and decentralization for optimizing network computation. The junction tree algorithm, for decentralized inference on graphical probability models, can be instantiated in a variety of applications useful for wireless sensor networks, including: sensor validation and fusion; data compression and channel coding; expert systems, with decentralized data structures, and efficient local queries; pattern classification, and machine learning. Graphical models for these applications are sketched, and a model of dynamic sensor validation and fusion is presented in more depth, to illustrate the junction tree algorithm.

  2. Monochromaticity in neutral evolutionary network models.

    Science.gov (United States)

    Halu, Arda; Bianconi, Ginestra

    2012-12-01

    Recent studies on epistatic networks of model organisms have unveiled a certain type of modular property called monochromaticity in which the networks are clustered into functional modules that interact with each other through the same type of epistasis. Here, we propose and study three epistatic network models that are inspired by the duplication-divergence mechanism to gain insight into the evolutionary basis of monochromaticity and to test if it can be explained as the outcome of a neutral evolutionary hypothesis. We show that the epistatic networks formed by these stochastic evolutionary models have monochromaticity conflict distributions that are centered close to zero and are statistically significantly different from their randomized counterparts. In particular, the last model we propose yields a strictly monochromatic solution. Our results agree with the monochromaticity findings in real organisms and point toward the possible role of a neutral mechanism in the evolution of this phenomenon. PMID:23367998

  3. Modeling Network Traffic in Wavelet Domain

    Directory of Open Access Journals (Sweden)

    Sheng Ma

    2004-12-01

    Full Text Available This work discovers that although network traffic has the complicated short- and long-range temporal dependence, the corresponding wavelet coefficients are no longer long-range dependent. Therefore, a "short-range" dependent process can be used to model network traffic in the wavelet domain. Both independent and Markov models are investigated. Theoretical analysis shows that the independent wavelet model is sufficiently accurate in terms of the buffer overflow probability for Fractional Gaussian Noise traffic. Any model, which captures additional correlations in the wavelet domain, only improves the performance marginally. The independent wavelet model is then used as a unified approach to model network traffic including VBR MPEG video and Ethernet data. The computational complexity is O(N for developing such wavelet models and generating synthesized traffic of length N, which is among the lowest attained.

  4. Fracture network modelling and performance assessment support

    International Nuclear Information System (INIS)

    This report describes the Fracture Network Modelling and Performance Assessment Support performed by Golder Associates Inc. during the Heisei-12 (2000-2001) fiscal year. The primary objective of the work described in this report was to assist JNC in research related to characterization of solute transport pathways in fracture networks by the discrete fracture network (DFN) and channel network (CN) approaches. In addition, Golder supported JNC participation in the Aespoe Modeling Task Force on of Groundwater Flow and Transport (AMTF). Golder carried out extensive analyses of flow and transport for a 5 meter scale fracture network pathway for AMTF Task 4, and assisted in development of AMTF Task 6 which will address the integration of site characterization and repository safety assessment. Technical information about Golder Associates HY-12 support to JNC/Tokai is provided in the appendices to this report. (author)

  5. Modelling subtle growth of linguistic networks

    CERN Document Server

    Kulig, Andrzej; Kwapien, Jaroslaw; Oswiecimka, Pawel

    2014-01-01

    We investigate properties of evolving linguistic networks defined by the word-adjacency relation. Such networks belong to the category of networks with accelerated growth but their shortest path length appears to reveal the network size dependence of different functional form than the ones known so far. We thus compare the networks created from literary texts with their artificial substitutes based on different variants of the Dorogovtsev-Mendes model and observe that none of them is able to properly simulate the novel asymptotics of the shortest path length. Then, we identify grammar induced local chain-like linear growth as a missing element in this model and extend it by incorporating such effects. It is in this way that a satisfactory agreement with the empirical result is obtained.

  6. Sparsity in Model Gene Regulatory Networks

    International Nuclear Information System (INIS)

    We propose a gene regulatory network model which incorporates the microscopic interactions between genes and transcription factors. In particular the gene's expression level is determined by deterministic synchronous dynamics with contribution from excitatory interactions. We study the structure of networks that have a particular '' function '' and are subject to the natural selection pressure. The question of network robustness against point mutations is addressed, and we conclude that only a small part of connections defined as '' essential '' for cell's existence is fragile. Additionally, the obtained networks are sparse with narrow in-degree and broad out-degree, properties well known from experimental study of biological regulatory networks. Furthermore, during sampling procedure we observe that significantly different genotypes can emerge under mutation-selection balance. All the preceding features hold for the model parameters which lay in the experimentally relevant range. (author)

  7. Invariants and Other Structural Properties of Biochemical Models as a Constraint Satisfaction Problem

    Directory of Open Access Journals (Sweden)

    Soliman Sylvain

    2012-05-01

    Full Text Available Abstract Background We present a way to compute the minimal semi-positive invariants of a Petri net representing a biological reaction system, as resolution of a Constraint Satisfaction Problem. The use of Petri nets to manipulate Systems Biology models and make available a variety of tools is quite old, and recently analyses based on invariant computation for biological models have become more and more frequent, for instance in the context of module decomposition. Results In our case, this analysis brings both qualitative and quantitative information on the models, in the form of conservation laws, consistency checking, etc. thanks to finite domain constraint programming. It is noticeable that some of the most recent optimizations of standard invariant computation techniques in Petri nets correspond to well-known techniques in constraint solving, like symmetry-breaking. Moreover, we show that the simple and natural encoding proposed is not only efficient but also flexible enough to encompass sub/sur-invariants, siphons/traps, etc., i.e., other Petri net structural properties that lead to supplementary insight on the dynamics of the biochemical system under study. Conclusions A simple implementation based on GNU-Prolog's finite domain solver, and including symmetry detection and breaking, was incorporated into the BIOCHAM modelling environment and in the independent tool Nicotine. Some illustrative examples and benchmarks are provided.

  8. Energy-oriented models for WDM networks

    OpenAIRE

    Ricciardi, Sergio; Careglio, Davide; Palmieri, Francesco; Fiore, Ugo; Santos Boada, Germán; Solé Pareta, Josep

    2010-01-01

    A realistic energy-oriented model is necessary to formally characterize the energy consumption and the consequent carbon footprint of actual and future high-capacity WDM networks. The energy model describes the energy consumption of the various network elements (NE) and predicts their energy consumption behavior under different traffic loads and for the diverse traffic types, including all optical and electronic traffic, O/E/O conversions, 3R regenerations, add/drop multiplexing, etc. Besi...

  9. Survey of propagation Model in wireless Network

    OpenAIRE

    Hemant Kumar Sharma; Sanjeev Sharma; Krishna Kumar Pandey

    2011-01-01

    To implementation of mobile ad hoc network wave propagation models are necessary to determine propagation characteristic through a medium. Wireless mobile ad hoc networks are self creating and self organizing entity. Propagation study provides an estimation of signal characteristics. Accurate prediction of radio propagation behaviour for MANET is becoming a difficult task. This paper presents investigation of propagation model. Radio wave propagation mechanisms are absorption, reflection, ref...

  10. Clustered model reduction of positive directed networks

    OpenAIRE

    Ishizaki, Takayuki; Kashima, Kenji; Girard, Antoine; Imura, Jun-ichi; Chen, Luonan; Aihara, Kazuyuki

    2015-01-01

    This paper proposes a clustered model reduction method for semistable positive linear systems evolving over directed networks. In this method, we construct a set of clusters, i.e., disjoint sets of state variables, based on a notion of cluster reducibility, defined as the uncontrollability of local states. By aggregating the reducible clusters with aggregation coefficients associated with the Frobenius eigenvector, we obtain an approximate model that preserves not only a network structure amo...

  11. IP Network Management Model Based on NGOSS

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jin-yu; LI Hong-hui; LIU Feng

    2004-01-01

    This paper addresses a management model for IP network based on Next Generation Operation Support System (NGOSS). It makes the network management on the base of all the operation actions of ISP, It provides QoS to user service through the whole path by providing end-to-end Service Level Agreements (SLA) management through whole path. Based on web and coordination technology, this paper gives an implement architecture of this model.

  12. Model-Based Clustering of Large Networks

    CERN Document Server

    Vu, Duy Quang; Schweinberger, Michael

    2012-01-01

    We describe a network clustering framework, based on finite mixture models, that can be applied to discrete-valued networks with hundreds of thousands of nodes and billions of edge variables. Relative to other recent model-based clustering work for networks, we introduce a more flexible modeling framework, improve the variational-approximation estimation algorithm, discuss and implement standard error estimation via a parametric bootstrap approach, and apply these methods to much larger datasets than those seen elsewhere in the literature. The more flexible modeling framework is achieved through introducing novel parameterizations of the model, giving varying degrees of parsimony, using exponential family models whose structure may be exploited in various theoretical and algorithmic ways. The algorithms, which we show how to adapt to the more complicated optimization requirements introduced by the constraints imposed by the novel parameterizations we propose, are based on variational generalized EM algorithms...

  13. A simple model for studying interacting networks

    Science.gov (United States)

    Liu, Wenjia; Jolad, Shivakumar; Schmittmann, Beate; Zia, R. K. P.

    2011-03-01

    Many specific physical networks (e.g., internet, power grid, interstates), have been characterized in considerable detail, but in isolation from each other. Yet, each of these networks supports the functions of the others, and so far, little is known about how their interactions affect their structure and functionality. To address this issue, we consider two coupled model networks. Each network is relatively simple, with a fixed set of nodes, but dynamically generated set of links which has a preferred degree, κ . In the stationary state, the degree distribution has exponential tails (far from κ), an attribute which we can explain. Next, we consider two such networks with different κ 's, reminiscent of two social groups, e.g., extroverts and introverts. Finally, we let these networks interact by establishing a controllable fraction of cross links. The resulting distribution of links, both within and across the two model networks, is investigated and discussed, along with some potential consequences for real networks. Supported in part by NSF-DMR-0705152 and 1005417.

  14. A survey of statistical network models

    CERN Document Server

    Goldenberg, Anna; Fienberg, Stephen E; Airoldi, Edoardo M

    2009-01-01

    Networks are ubiquitous in science and have become a focal point for discussion in everyday life. Formal statistical models for the analysis of network data have emerged as a major topic of interest in diverse areas of study, and most of these involve a form of graphical representation. Probability models on graphs date back to 1959. Along with empirical studies in social psychology and sociology from the 1960s, these early works generated an active network community and a substantial literature in the 1970s. This effort moved into the statistical literature in the late 1970s and 1980s, and the past decade has seen a burgeoning network literature in statistical physics and computer science. The growth of the World Wide Web and the emergence of online networking communities such as Facebook, MySpace, and LinkedIn, and a host of more specialized professional network communities has intensified interest in the study of networks and network data. Our goal in this review is to provide the reader with an entry poin...

  15. The Network Performance Assessment Model - Regulation with a Reference Network

    International Nuclear Information System (INIS)

    A new model - the Network Performance Assessment Model - has been developed gradually since 1998, in order to evaluate and benchmark local electricity grids. The model is intended to be a regulation tool for the Swedish local electricity networks, used by the Swedish Energy Agency. At spring 2004 the Network Performance Assessment Model will run into operation, based on the companies' results for 2003. The mission of the Network Performance Assessment Model is to evaluate the networks from a costumers' point of view and establish a fair price level. In order to do that, the performance of the operator is evaluated. The performances are assessed in correspondence to a price level that the consumer is considered to accept, can agree to as fair and is prepared to pay. This price level is based on an average cost, based on the cost of an efficient grid that will be built today, with already known technology. The performances are accounted in Customer Values. Those Customer Values are what can be created by someone but can't be created better by someone else. The starting point is to look upon the companies from a customers' point of view. The factors that can't be influenced by the companies are evaluated by fixed rules, valid to all companies. The rules reflect the differences. The cost for a connection is evaluated from the actual facts, i.e. the distances between the subscribers and the demanded capacity by the subscriber. This is done by the creation of a reference network, with a capacity to fulfill the demand from the subscriber. This is an efficient grid with no spare capacity and no excess capacity. The companies' existing grid are without importance, as well as holds for dimensioning as technology. Those factors which the company can influence, for an example connection reliability, are evaluated from a customer perspective by measuring the actual reliability, measured as the number and length of the interruption. When implemented to the regulation the Network

  16. MODEL FOR NETWORKED BUSINESS: Case study of Application Service Provider's network

    OpenAIRE

    Pesonen, Tero

    2011-01-01

    MODEL FOR NETWORKED BUSINESS Case study of Application Service Provider's network The aim of the research was to create a network business model to optimise benefits for a business network in the area of software industry. The main research questions were: ? What kind of network business models can be found? ? What are the value creation mechanisms as well as advantages and disadvantages of different models? ? How to use former frameworks to develop a network business mode...

  17. Research on Context Aware Network Security Model

    Directory of Open Access Journals (Sweden)

    XiaoHui Guo

    2013-08-01

    Full Text Available According to high development of internet and mobile internet technologies, more and more services and applications are researched and are becoming more and more important in people’s life. At the same time, there are still many risks that virus attack from internet. Network security is facing more challenges than before, such as attack method becoming more diversify, attack times are increasing rapidly, and attack behavior are becoming a system to damage network security. What’s more, application data is more changeable that before, which makes it more difficult to judge which behavior is attack and response to the attack. Current network security system can’t prevent a system level attack, what’s more, can’t response to the attack quickly and effectively. Therefore, this paper designed a new context aware network security model to prevent various attack effectively, present the context declaim algorithm to judge network attack, and then designed a data share mechanism to share attack information with peer machine, which can decrease the response time deeply. Finally, this paper designed a set experiment to validate the quality and performance of context based network security model, the result shows this model can prevent network attack effectively and more memory saving in changeable application.

  18. Performance modeling, stochastic networks, and statistical multiplexing

    CERN Document Server

    Mazumdar, Ravi R

    2013-01-01

    This monograph presents a concise mathematical approach for modeling and analyzing the performance of communication networks with the aim of introducing an appropriate mathematical framework for modeling and analysis as well as understanding the phenomenon of statistical multiplexing. The models, techniques, and results presented form the core of traffic engineering methods used to design, control and allocate resources in communication networks.The novelty of the monograph is the fresh approach and insights provided by a sample-path methodology for queueing models that highlights the importan

  19. Modeling, Optimization & Control of Hydraulic Networks

    DEFF Research Database (Denmark)

    Tahavori, Maryamsadat

    2014-01-01

    . The nonlinear network model is derived based on the circuit theory. A suitable projection is used to reduce the state vector and to express the model in standard state-space form. Then, the controllability of nonlinear nonaffine hydraulic networks is studied. The Lie algebra-based controllability matrix is used...... to solve nonlinear optimal control problems. In the water supply system model, the hydraulic resistance of the valve is estimated by real data and it is considered to be a disturbance. The disturbance in our system is updated every 24 hours based on the amount of water usage by consumers every day. Model...

  20. 'Enzyme Test Bench': A biochemical application of the multi-rate modeling

    Energy Technology Data Exchange (ETDEWEB)

    Rachinskiy, K; Buechs, J [Department of Biochemical Engineering, Sammelbau Biologie, RWTH-Aachen University, D-52074 Aachen (Germany); Schultze, H; Boy, M [BASF Aktiengesellschaft, Ludwigshafen (Germany)], E-mail: buechs@biovt.rwth-aachen.de

    2008-11-01

    In the expanding field of 'white biotechnology' enzymes are frequently applied to catalyze the biochemical reaction from a resource material to a valuable product. Evolutionary designed to catalyze the metabolism in any life form, they selectively accelerate complex reactions under physiological conditions. Modern techniques, such as directed evolution, have been developed to satisfy the increasing demand on enzymes. Applying these techniques together with rational protein design, we aim at improving of enzymes' activity, selectivity and stability. To tap the full potential of these techniques, it is essential to combine them with adequate screening methods. Nowadays a great number of high throughput colorimetric and fluorescent enzyme assays are applied to measure the initial enzyme activity with high throughput. However, the prediction of enzyme long term stability within short experiments is still a challenge. A new high throughput technique for enzyme characterization with specific attention to the long term stability, called 'Enzyme Test Bench', is presented. The concept of the Enzyme Test Bench consists of short term enzyme tests conducted under partly extreme conditions to predict the enzyme long term stability under moderate conditions. The technique is based on the mathematical modeling of temperature dependent enzyme activation and deactivation. Adapting the temperature profiles in sequential experiments by optimum non-linear experimental design, the long term deactivation effects can be purposefully accelerated and detected within hours. During the experiment the enzyme activity is measured online to estimate the model parameters from the obtained data. Thus, the enzyme activity and long term stability can be calculated as a function of temperature. The results of the characterization, based on micro liter format experiments of hours, are in good agreement with the results of long term experiments in 1L format. Thus, the new

  1. 'Enzyme Test Bench': A biochemical application of the multi-rate modeling

    International Nuclear Information System (INIS)

    In the expanding field of 'white biotechnology' enzymes are frequently applied to catalyze the biochemical reaction from a resource material to a valuable product. Evolutionary designed to catalyze the metabolism in any life form, they selectively accelerate complex reactions under physiological conditions. Modern techniques, such as directed evolution, have been developed to satisfy the increasing demand on enzymes. Applying these techniques together with rational protein design, we aim at improving of enzymes' activity, selectivity and stability. To tap the full potential of these techniques, it is essential to combine them with adequate screening methods. Nowadays a great number of high throughput colorimetric and fluorescent enzyme assays are applied to measure the initial enzyme activity with high throughput. However, the prediction of enzyme long term stability within short experiments is still a challenge. A new high throughput technique for enzyme characterization with specific attention to the long term stability, called 'Enzyme Test Bench', is presented. The concept of the Enzyme Test Bench consists of short term enzyme tests conducted under partly extreme conditions to predict the enzyme long term stability under moderate conditions. The technique is based on the mathematical modeling of temperature dependent enzyme activation and deactivation. Adapting the temperature profiles in sequential experiments by optimum non-linear experimental design, the long term deactivation effects can be purposefully accelerated and detected within hours. During the experiment the enzyme activity is measured online to estimate the model parameters from the obtained data. Thus, the enzyme activity and long term stability can be calculated as a function of temperature. The results of the characterization, based on micro liter format experiments of hours, are in good agreement with the results of long term experiments in 1L format. Thus, the new technique allows for both

  2. 'Enzyme Test Bench': A biochemical application of the multi-rate modeling

    Science.gov (United States)

    Rachinskiy, K.; Schultze, H.; Boy, M.; Büchs, J.

    2008-11-01

    In the expanding field of 'white biotechnology' enzymes are frequently applied to catalyze the biochemical reaction from a resource material to a valuable product. Evolutionary designed to catalyze the metabolism in any life form, they selectively accelerate complex reactions under physiological conditions. Modern techniques, such as directed evolution, have been developed to satisfy the increasing demand on enzymes. Applying these techniques together with rational protein design, we aim at improving of enzymes' activity, selectivity and stability. To tap the full potential of these techniques, it is essential to combine them with adequate screening methods. Nowadays a great number of high throughput colorimetric and fluorescent enzyme assays are applied to measure the initial enzyme activity with high throughput. However, the prediction of enzyme long term stability within short experiments is still a challenge. A new high throughput technique for enzyme characterization with specific attention to the long term stability, called 'Enzyme Test Bench', is presented. The concept of the Enzyme Test Bench consists of short term enzyme tests conducted under partly extreme conditions to predict the enzyme long term stability under moderate conditions. The technique is based on the mathematical modeling of temperature dependent enzyme activation and deactivation. Adapting the temperature profiles in sequential experiments by optimum non-linear experimental design, the long term deactivation effects can be purposefully accelerated and detected within hours. During the experiment the enzyme activity is measured online to estimate the model parameters from the obtained data. Thus, the enzyme activity and long term stability can be calculated as a function of temperature. The results of the characterization, based on micro liter format experiments of hours, are in good agreement with the results of long term experiments in 1L format. Thus, the new technique allows for both

  3. Modeling acquaintance networks based on balance theory

    Directory of Open Access Journals (Sweden)

    Vukašinović Vida

    2014-09-01

    Full Text Available An acquaintance network is a social structure made up of a set of actors and the ties between them. These ties change dynamically as a consequence of incessant interactions between the actors. In this paper we introduce a social network model called the Interaction-Based (IB model that involves well-known sociological principles. The connections between the actors and the strength of the connections are influenced by the continuous positive and negative interactions between the actors and, vice versa, the future interactions are more likely to happen between the actors that are connected with stronger ties. The model is also inspired by the social behavior of animal species, particularly that of ants in their colony. A model evaluation showed that the IB model turned out to be sparse. The model has a small diameter and an average path length that grows in proportion to the logarithm of the number of vertices. The clustering coefficient is relatively high, and its value stabilizes in larger networks. The degree distributions are slightly right-skewed. In the mature phase of the IB model, i.e., when the number of edges does not change significantly, most of the network properties do not change significantly either. The IB model was found to be the best of all the compared models in simulating the e-mail URV (University Rovira i Virgili of Tarragona network because the properties of the IB model more closely matched those of the e-mail URV network than the other models

  4. Toward an Animal Model of the Human Tear Film: Biochemical Comparison of the Mouse, Canine, Rabbit, and Human Meibomian Lipidomes

    OpenAIRE

    Butovich, Igor A.; Lu, Hua; McMahon, Anne; Eule, J Corinna

    2012-01-01

    A side by side comparison of the rabbit and the human meibum demonstrated their vast biochemical differences. Thus, the rabbit seems to be a poor animal model of the human tear film studies. Mice and canines, on the other hand, were found to be very similar to humans and should be considered instead.

  5. Optimal transportation networks models and theory

    CERN Document Server

    Bernot, Marc; Morel, Jean-Michel

    2009-01-01

    The transportation problem can be formalized as the problem of finding the optimal way to transport a given measure into another with the same mass. In contrast to the Monge-Kantorovitch problem, recent approaches model the branched structure of such supply networks as minima of an energy functional whose essential feature is to favour wide roads. Such a branched structure is observable in ground transportation networks, in draining and irrigation systems, in electrical power supply systems and in natural counterparts such as blood vessels or the branches of trees. These lectures provide mathematical proof of several existence, structure and regularity properties empirically observed in transportation networks. The link with previous discrete physical models of irrigation and erosion models in geomorphology and with discrete telecommunication and transportation models is discussed. It will be mathematically proven that the majority fit in the simple model sketched in this volume.

  6. Modeling Emergence in Neuroprotective Regulatory Networks

    Energy Technology Data Exchange (ETDEWEB)

    Sanfilippo, Antonio P.; Haack, Jereme N.; McDermott, Jason E.; Stevens, S.L.; Stenzel-Poore, Mary

    2013-01-05

    The use of predictive modeling in the analysis of gene expression data can greatly accelerate the pace of scientific discovery in biomedical research by enabling in silico experimentation to test disease triggers and potential drug therapies. Techniques that focus on modeling emergence, such as agent-based modeling and multi-agent simulations, are of particular interest as they support the discovery of pathways that may have never been observed in the past. Thus far, these techniques have been primarily applied at the multi-cellular level, or have focused on signaling and metabolic networks. We present an approach where emergence modeling is extended to regulatory networks and demonstrate its application to the discovery of neuroprotective pathways. An initial evaluation of the approach indicates that emergence modeling provides novel insights for the analysis of regulatory networks that can advance the discovery of acute treatments for stroke and other diseases.

  7. International migration network: Topology and modeling

    Science.gov (United States)

    Fagiolo, Giorgio; Mastrorillo, Marina

    2013-07-01

    This paper studies international migration from a complex-network perspective. We define the international migration network (IMN) as the weighted-directed graph where nodes are world countries and links account for the stock of migrants originated in a given country and living in another country at a given point in time. We characterize the binary and weighted architecture of the network and its evolution over time in the period 1960-2000. We find that the IMN is organized around a modular structure with a small-world binary pattern displaying disassortativity and high clustering, with power-law distributed weighted-network statistics. We also show that a parsimonious gravity model of migration can account for most of observed IMN topological structure. Overall, our results suggest that socioeconomic, geographical, and political factors are more important than local-network properties in shaping the structure of the IMN.

  8. Gene network inference and biochemical assessment delineates GPCR pathways and CREB targets in small intestinal neuroendocrine neoplasia.

    Directory of Open Access Journals (Sweden)

    Ignat Drozdov

    Full Text Available Small intestinal (SI neuroendocrine tumors (NET are increasing in incidence, however little is known about their biology. High throughput techniques such as inference of gene regulatory networks from microarray experiments can objectively define signaling machinery in this disease. Genome-wide co-expression analysis was used to infer gene relevance network in SI-NETs. The network was confirmed to be non-random, scale-free, and highly modular. Functional analysis of gene co-expression modules revealed processes including 'Nervous system development', 'Immune response', and 'Cell-cycle'. Importantly, gene network topology and differential expression analysis identified over-expression of the GPCR signaling regulators, the cAMP synthetase, ADCY2, and the protein kinase A, PRKAR1A. Seven CREB response element (CRE transcripts associated with proliferation and secretion: BEX1, BICD1, CHGB, CPE, GABRB3, SCG2 and SCG3 as well as ADCY2 and PRKAR1A were measured in an independent SI dataset (n = 10 NETs; n = 8 normal preparations. All were up-regulated (p<0.035 with the exception of SCG3 which was not differently expressed. Forskolin (a direct cAMP activator, 10(-5 M significantly stimulated transcription of pCREB and 3/7 CREB targets, isoproterenol (a selective ß-adrenergic receptor agonist and cAMP activator, 10(-5 M stimulated pCREB and 4/7 targets while BIM-53061 (a dopamine D(2 and Serotonin [5-HT(2] receptor agonist, 10(-6 M stimulated 100% of targets as well as pCREB; CRE transcription correlated with the levels of cAMP accumulation and PKA activity; BIM-53061 stimulated the highest levels of cAMP and PKA (2.8-fold and 2.5-fold vs. 1.8-2-fold for isoproterenol and forskolin. Gene network inference and graph topology analysis in SI NETs suggests that SI NETs express neural GPCRs that activate different CRE targets associated with proliferation and secretion. In vitro studies, in a model NET cell system, confirmed that transcriptional

  9. Knowledge Transposition from Tropical Fish Serum Proteins to Fundamental Education Students Through Biochemical Models

    Directory of Open Access Journals (Sweden)

    E.V.M. Maciel de Carvalho

    2010-05-01

    Full Text Available The subject was represented and discussed at The National Week of Science and Technology, UFPE, an initiative from The Ministry of Science and Technology to encourage children and people in science and technology activities. The work aimed to renew the importance to transmit knowledge from simple, imaginative, biochemical models and interactive teaching. The stand tool contained an aquarium with fishes, five scale models showing peptide bond, carbohydrate inhibited lectin molecule, hemagglutination reaction, lectin-bacterium surface interaction and enzyme-substract-inhibitor. Posters described tropical fish importance and methods applied to obtain fish serum and organs to purify lectins and protein inhibitors as well as to extract tissue DNA; notions were transmitted on fish immunology and diseases. The students were attracted and impressed with the exotic fishes most cultivated in Brazil; they asked if it is necessary to kill the fish to extract lectin and about lectin importance. Students were also interested to know if all fish enzyme/inhibitors are favorable to the own fish organism. The work succeeded to inform and stimulate future scientists in the field and to awake their scientific curiosity.

  10. Modeling of urban traffic networks with lattice Boltzmann model

    Science.gov (United States)

    Meng, Jian-ping; Qian, Yue-hong; Dai, Shi-qiang

    2008-02-01

    It is of great importance to uncover the characteristics of traffic networks. However, there have been few researches concerning kinetics models for urban traffic networks. In this work, a lattice Boltzmann model (LBM) for urban traffic networks is proposed by incorporating the ideas of the Biham-Middleton-Levine (BML) model into the LBM for road traffic. In the present model, situations at intersections with the red and green traffic signals are treated as a kind of boundary conditions varying with time. Thus, the urban traffic network could be described in the mesoscopic level. By performing numerical simulations under the periodic boundary conditions, the behavior of average velocity is investigated in detail. The numerical results agree quite well with those given by the Chowdhury-Schadschneider (ChSch) model (Chowdhury D. and Schadschneider A., Phys. Rev. E, 59 (1999) R1311). Furthermore, the statistical noise is reduced in this discrete kinetics model, thus, the present model has considerably high computational efficiency.

  11. An evolving network model with modular growth

    Institute of Scientific and Technical Information of China (English)

    Zou Zhi-Yun; Liu Peng; Lei Li; Gao Jian-Zhi

    2012-01-01

    In this paper,we propose an evolving network model growing fast in units of module,according to the analysis of the evolution characteristics in real complex networks.Each module is a small-world network containing several interconnected nodes and the nodes between the modules are linked by preferential attachment on degree of nodes.We study the modularity measure of the proposed model,which can be adjusted by changing the ratio of the number of innermodule edges and the number of inter-module edges.In view of the mean-field theory,we develop an analytical function of the degree distribution,which is verified by a numerical example and indicates that the degree distribution shows characteristics of the small-world network and the scale-free network distinctly at different segments.The clustering coefficient and the average path length of the network are simulated numerically,indicating that the network shows the small-world property and is affected little by the randomness of the new module.

  12. An evolving network model with modular growth

    International Nuclear Information System (INIS)

    In this paper, we propose an evolving network model growing fast in units of module, according to the analysis of the evolution characteristics in real complex networks. Each module is a small-world network containing several interconnected nodes and the nodes between the modules are linked by preferential attachment on degree of nodes. We study the modularity measure of the proposed model, which can be adjusted by changing the ratio of the number of inner-module edges and the number of inter-module edges. In view of the mean-field theory, we develop an analytical function of the degree distribution, which is verified by a numerical example and indicates that the degree distribution shows characteristics of the small-world network and the scale-free network distinctly at different segments. The clustering coefficient and the average path length of the network are simulated numerically, indicating that the network shows the small-world property and is affected little by the randomness of the new module. (interdisciplinary physics and related areas of science and technology)

  13. Hybrid neural network models of transducers

    International Nuclear Information System (INIS)

    A hybrid neural network (NN) approach is proposed and applied to modeling of transducers in the paper. The modeling procedures are also presented in detail. First, the simulated studies on the modeling of single input–single output and multi input–multi output transducers are conducted respectively by use of the developed hybrid NN scheme. Secondly, the hybrid NN modeling approach is utilized to characterize a six-axis force sensor prototype based on the measured data. The results show that the hybrid NN approach can significantly improve modeling precision in comparison with the conventional modeling method. In addition, the method is superior to NN black-box modeling because the former possesses smaller network scale, higher convergence speed, higher model precision and better generalization performance

  14. Modelling complex networks by random hierarchical graphs

    Directory of Open Access Journals (Sweden)

    M.Wróbel

    2008-06-01

    Full Text Available Numerous complex networks contain special patterns, called network motifs. These are specific subgraphs, which occur oftener than in randomized networks of Erdős-Rényi type. We choose one of them, the triangle, and build a family of random hierarchical graphs, being Sierpiński gasket-based graphs with random "decorations". We calculate the important characteristics of these graphs - average degree, average shortest path length, small-world graph family characteristics. They depend on probability of decorations. We analyze the Ising model on our graphs and describe its critical properties using a renormalization-group technique.

  15. Grid architecture model of network centric warfare

    Institute of Scientific and Technical Information of China (English)

    Yan Tihua; Wang Baoshu

    2006-01-01

    NCW(network centric warfare) is an information warfare concentrating on network. A global network-centric warfare architecture with OGSA grid technology is put forward, which is a four levels system including the user level, the application level, the grid middleware layer and the resource level. In grid middleware layer, based on virtual hosting environment, a BEPL4WS grid service composition method is introduced. In addition, the NCW grid service model is built with the help of Eclipse-SDK-3.0.1 and Bpws4j.

  16. Enhanced Gravity Model of trade: reconciling macroeconomic and network models

    CERN Document Server

    Almog, Assaf; Garlaschelli, Diego

    2015-01-01

    The bilateral trade relations between world countries form a complex network, the International Trade Network (ITN), which is involved in an increasing number of worldwide economic processes, including globalization, integration, industrial production, and the propagation of shocks and instabilities. Characterizing the ITN via a simple yet accurate model is an open problem. The classical Gravity Model of trade successfully reproduces the volume of trade between two connected countries using known macroeconomic properties such as GDP and geographic distance. However, it generates a network with an unrealistically homogeneous topology, thus failing to reproduce the highly heterogeneous structure of the real ITN. On the other hand, network models successfully reproduce the complex topology of the ITN, but provide no information about trade volumes. Therefore macroeconomic and network models of trade suffer from complementary limitations but are still largely incompatible. Here, we make an important step forward ...

  17. The International Trade Network: weighted network analysis and modelling

    International Nuclear Information System (INIS)

    Tools of the theory of critical phenomena, namely the scaling analysis and universality, are argued to be applicable to large complex web-like network structures. Using a detailed analysis of the real data of the International Trade Network we argue that the scaled link weight distribution has an approximate log-normal distribution which remains robust over a period of 53 years. Another universal feature is observed in the power-law growth of the trade strength with gross domestic product, the exponent being similar for all countries. Using the 'rich-club' coefficient measure of the weighted networks it has been shown that the size of the rich-club controlling half of the world's trade is actually shrinking. While the gravity law is known to describe well the social interactions in the static networks of population migration, international trade, etc, here for the first time we studied a non-conservative dynamical model based on the gravity law which excellently reproduced many empirical features of the ITN

  18. A Network Model of Credit Risk Contagion

    OpenAIRE

    Ting-Qiang Chen; Jian-Min He

    2012-01-01

    A network model of credit risk contagion is presented, in which the effect of behaviors of credit risk holders and the financial market regulators and the network structure are considered. By introducing the stochastic dominance theory, we discussed, respectively, the effect mechanisms of the degree of individual relationship, individual attitude to credit risk contagion, the individual ability to resist credit risk contagion, the monitoring strength of the financial market regulators, and th...

  19. Non-nequilibrium model on Apollonian networks

    CERN Document Server

    Lima, F W S; Araújo, Ascânio D

    2012-01-01

    We investigate the Majority-Vote Model with two states ($-1,+1$) and a noise $q$ on Apollonian networks. The main result found here is the presence of the phase transition as a function of the noise parameter $q$. We also studies de effect of redirecting a fraction $p$ of the links of the network. By means of Monte Carlo simulations, we obtained the exponent ratio $\\gamma/\

  20. Stochastic modeling and analysis of telecoms networks

    CERN Document Server

    Decreusefond, Laurent

    2012-01-01

    This book addresses the stochastic modeling of telecommunication networks, introducing the main mathematical tools for that purpose, such as Markov processes, real and spatial point processes and stochastic recursions, and presenting a wide list of results on stability, performances and comparison of systems.The authors propose a comprehensive mathematical construction of the foundations of stochastic network theory: Markov chains, continuous time Markov chains are extensively studied using an original martingale-based approach. A complete presentation of stochastic recursions from an

  1. Keystone Business Models for Network Security Processors

    OpenAIRE

    Arthur Low; Steven Muegge

    2013-01-01

    Network security processors are critical components of high-performance systems built for cybersecurity. Development of a network security processor requires multi-domain experience in semiconductors and complex software security applications, and multiple iterations of both software and hardware implementations. Limited by the business models in use today, such an arduous task can be undertaken only by large incumbent companies and government organizations. Neither the “fabless semiconductor...

  2. Decomposed Implicit Models of Piecewise - Linear Networks

    Directory of Open Access Journals (Sweden)

    J. Brzobohaty

    1992-05-01

    Full Text Available The general matrix form of the implicit description of a piecewise-linear (PWL network and the symbolic block diagram of the corresponding circuit model are proposed. Their decomposed forms enable us to determine quite separately the existence of the individual breakpoints of the resultant PWL characteristic and their coordinates using independent network parameters. For the two-diode and three-diode cases all the attainable types of the PWL characteristic are introduced.

  3. Bus Network Modeling Using Ant Algorithms

    OpenAIRE

    Sepideh Eshragh; Shahriar Afandizadeh Zargari; Ardeshir Faghri; Earl Rusty Lee

    2010-01-01

    Bus transit network modeling is a complex and combinatorial problem. The main purpose of this paper is to apply a contemporary method for designing a bus transit network with the objective of achieving optimum results. The method is called Ant Algorithms, a Meta Heuristic method, which has been applied to optimization problems in transportation with noticeable success. The description of the algorithm, as well as the main methodology and computations, is presented in this paper. Furthermore, ...

  4. Dynamic Modeling of the Electric Transportation Network

    CERN Document Server

    Scir`e, A; Eguiluz, V M; Scir\\`{e}, Alessandro; Tuval, Id\\'an

    2005-01-01

    We introduce a model for the dynamic self-organization of the electric grid. The model is characterized by a conserved magnitude, energy, that can travel following the links of the network to satisfy nodes' load. The load fluctuates in time causing local overloads that drive the dynamic evolution of the network topology. Our model displays a transition from a fully connected network to a configuration with a non-trivial topology and where global failures are suppressed. The most efficient topology is characterized by an exponential degree distribution, in agreement with the topology of the real electric grid. The model intrinsically presents self-induced break-down events, which can be thought as representative of real black-outs.

  5. Modeling Computations in a Semantic Network

    CERN Document Server

    Rodriguez, Marko A

    2007-01-01

    Semantic network research has seen a resurgence from its early history in the cognitive sciences with the inception of the Semantic Web initiative. The Semantic Web effort has brought forth an array of technologies that support the encoding, storage, and querying of the semantic network data structure at the world stage. Currently, the popular conception of the Semantic Web is that of a data modeling medium where real and conceptual entities are related in semantically meaningful ways. However, new models have emerged that explicitly encode procedural information within the semantic network substrate. With these new technologies, the Semantic Web has evolved from a data modeling medium to a computational medium. This article provides a classification of existing computational modeling efforts and the requirements of supporting technologies that will aid in the further growth of this burgeoning domain.

  6. Network Design Models for Container Shipping

    DEFF Research Database (Denmark)

    Reinhardt, Line Blander; Kallehauge, Brian; Nielsen, Anders Nørrelund;

    included in the calculation of the capacity and that a inhomogeneous fleet is modeled. The model also includes the cost of transshipment which is one of the major cost for the shipping companies. The concept of pseudo simple routes is introduced to expand the set of feasible routes. The linearization of......This paper presents a study of the network design problem in container shipping. The paper combines the network design and fleet assignment problem into a mixed integer linear programming model minimizing the overall cost. The major contributions of this paper is that the time of a vessel route is...

  7. Empirical generalization assessment of neural network models

    DEFF Research Database (Denmark)

    Larsen, Jan; Hansen, Lars Kai

    1995-01-01

    This paper addresses the assessment of generalization performance of neural network models by use of empirical techniques. We suggest to use the cross-validation scheme combined with a resampling technique to obtain an estimate of the generalization performance distribution of a specific model...

  8. Nonconsensus opinion model on directed networks

    Science.gov (United States)

    Qu, Bo; Li, Qian; Havlin, Shlomo; Stanley, H. Eugene; Wang, Huijuan

    2014-11-01

    Dynamic social opinion models have been widely studied on undirected networks, and most of them are based on spin interaction models that produce a consensus. In reality, however, many networks such as Twitter and the World Wide Web are directed and are composed of both unidirectional and bidirectional links. Moreover, from choosing a coffee brand to deciding who to vote for in an election, two or more competing opinions often coexist. In response to this ubiquity of directed networks and the coexistence of two or more opinions in decision-making situations, we study a nonconsensus opinion model introduced by Shao et al. [Phys. Rev. Lett. 103, 018701 (2009), 10.1103/PhysRevLett.103.018701] on directed networks. We define directionality ξ as the percentage of unidirectional links in a network, and we use the linear correlation coefficient ρ between the in-degree and out-degree of a node to quantify the relation between the in-degree and out-degree. We introduce two degree-preserving rewiring approaches which allow us to construct directed networks that can have a broad range of possible combinations of directionality ξ and linear correlation coefficient ρ and to study how ξ and ρ impact opinion competitions. We find that, as the directionality ξ or the in-degree and out-degree correlation ρ increases, the majority opinion becomes more dominant and the minority opinion's ability to survive is lowered.

  9. Dual modeling of political opinion networks

    Science.gov (United States)

    Wang, R.; A. Wang, Q.

    2011-09-01

    We present the result of a dual modeling of opinion networks. The model complements the agent-based opinion models by attaching to the social agent (voters) network a political opinion (party) network having its own intrinsic mechanisms of evolution. These two subnetworks form a global network, which can be either isolated from, or dependent on, the external influence. Basically, the evolution of the agent network includes link adding and deleting, with the opinion changes influenced by social validation, the political climate, the attractivity of the parties, and the interaction between them. The opinion network is initially composed of numerous nodes representing opinions or parties that are located on a one dimensional axis according to their political positions. The mechanism of evolution includes union, splitting, change of position, and attractivity, taking into account the pairwise node interaction decaying with node distance in power law. The global evolution ends in a stable distribution of the social agents over a quasistable and fluctuating stationary number of remaining parties. Empirical study on the lifetime distribution of numerous parties and vote results is carried out to verify numerical results.

  10. Modeling photosynthesis of discontinuous plant canopies by linking the Geometric Optical Radiative Transfer model with biochemical processes

    Science.gov (United States)

    Xin, Q.; Gong, P.; Li, W.

    2015-06-01

    Modeling vegetation photosynthesis is essential for understanding carbon exchanges between terrestrial ecosystems and the atmosphere. The radiative transfer process within plant canopies is one of the key drivers that regulate canopy photosynthesis. Most vegetation cover consists of discrete plant crowns, of which the physical observation departs from the underlying assumption of a homogenous and uniform medium in classic radiative transfer theory. Here we advance the Geometric Optical Radiative Transfer (GORT) model to simulate photosynthesis activities for discontinuous plant canopies. We separate radiation absorption into two components that are absorbed by sunlit and shaded leaves, and derive analytical solutions by integrating over the canopy layer. To model leaf-level and canopy-level photosynthesis, leaf light absorption is then linked to the biochemical process of gas diffusion through leaf stomata. The canopy gap probability derived from GORT differs from classic radiative transfer theory, especially when the leaf area index is high, due to leaf clumping effects. Tree characteristics such as tree density, crown shape, and canopy length affect leaf clumping and regulate radiation interception. Modeled gross primary production (GPP) for two deciduous forest stands could explain more than 80% of the variance of flux tower measurements at both near hourly and daily timescales. We demonstrate that ambient CO2 concentrations influence daytime vegetation photosynthesis, which needs to be considered in biogeochemical models. The proposed model is complementary to classic radiative transfer theory and shows promise in modeling the radiative transfer process and photosynthetic activities over discontinuous forest canopies.

  11. Behavioral and biochemical characterization of elevated “I-maze” as animal model of anxiety

    Directory of Open Access Journals (Sweden)

    Ritu Gilhotra

    2015-09-01

    Full Text Available The elevated I-maze is a modification of the elevated plus-maze model of anxiety in mice. The design of I-maze comprises a straight wooden passage, resembling the English letter “I,” divided equally into three areas; two enclosed areas (close arms at both ends of the “maze” and an open area in the center of two enclosed areas. The I-maze completely avoids the central platform of elevated plus-maze, removing any ambiguity in time spent on central platform and allowing uninterrupted animal exploration. In this model, diazepam (1 mg/kg and gabapentin (10 mg/kg significantly increased the percentage of time spent in the open areas (%TO and the number of unprotected head dips (uHDIPS, and reduced the number of protected head dips (pHDIPS and stretch attend postures (SAP from close to open arm. Similarly, fluoxetine (5 mg/kg significantly increased %TO and uHDIPS, and significantly decreased SAP from close to open arm, but it did not have any significant effect on pHDIPS. The 5-HT3 receptor antagonist, ondansetron (0.1 mg/kg, did not produce any significant change in all the behaviors, observed, as compared to vehicle-treated control mice. On the other hand, the anxiogenic agent, caffeine (15 mg/kg, did produce a significant decrease in %TO and uHDIPS, and significantly increased pHDIPS and SAP from close to open arm. Mice confined in open area of I-maze bring the relevant biochemical changes associated with anxiety behavior, showing significant increase in the levels of plasma nitrate and plasma corticosterone. These data indicate that a combination of novel design of elevated I-maze and a detailed behavioral analysis provides a sensitive model for the measurement of anxiety.

  12. Modeling the emergence of circadian rhythms in a clock neuron network.

    Directory of Open Access Journals (Sweden)

    Luis Diambra

    Full Text Available Circadian rhythms in pacemaker cells persist for weeks in constant darkness, while in other types of cells the molecular oscillations that underlie circadian rhythms damp rapidly under the same conditions. Although much progress has been made in understanding the biochemical and cellular basis of circadian rhythms, the mechanisms leading to damped or self-sustained oscillations remain largely unknown. There exist many mathematical models that reproduce the circadian rhythms in the case of a single cell of the Drosophila fly. However, not much is known about the mechanisms leading to coherent circadian oscillation in clock neuron networks. In this work we have implemented a model for a network of interacting clock neurons to describe the emergence (or damping of circadian rhythms in Drosophila fly, in the absence of zeitgebers. Our model consists of an array of pacemakers that interact through the modulation of some parameters by a network feedback. The individual pacemakers are described by a well-known biochemical model for circadian oscillation, to which we have added degradation of PER protein by light and multiplicative noise. The network feedback is the PER protein level averaged over the whole network. In particular, we have investigated the effect of modulation of the parameters associated with (i the control of net entrance of PER into the nucleus and (ii the non-photic degradation of PER. Our results indicate that the modulation of PER entrance into the nucleus allows the synchronization of clock neurons, leading to coherent circadian oscillations under constant dark condition. On the other hand, the modulation of non-photic degradation cannot reset the phases of individual clocks subjected to intrinsic biochemical noise.

  13. Physical and bio-chemical mass-balance model around seafloor cold seepages

    Science.gov (United States)

    Yamazaki, T.; Takeuchi, R.; Monoe, D.; Oomi, T.; Nakata, K.; Fukushima, T.

    2007-12-01

    Natural cold seepages are characterized as rapid upward transports of methane from deeper part of geological structures to the seafloors. Prior to reach the seafloors, when methane meets downwards diffusing seawater sulfate, it is oxidized anaerobically by a consortium of microorganisms that use sulfate as an oxidant, producing sulfide. The anaerobic oxidation of methane and anaerobic sulfate reduction are clarified as a coupled biological activity. A significant portion of the bicarbonate produced after the sulfate reduction as authigenic carbonate, mainly aragonite and high-Mg calcite, near the seafloor. Where the methane fluxes are much, these anaerobic reactions occur just beneath the seafloor. There, usually sulfur oxidizing microorganisms are visible on the seafloor just above the coupled consortium of microorganisms. They are called bacterial mats. When the fluxes too much, direct methane bubbling occurs and chemosynthesis-immobilization communities such as tubeworms and clams distribute around the bubbling locations with the bacterial mats. The physical and bio-chemical mass-balance model around cold seepages on seafloor and in water column has been studied by the authors and some preliminary results were reported (Yamazaki et al., 2005 and 2006; Takeuchi et al., 2007). The approach is to analyze the existing field observation and numerical modeling studies of cold seepages and to create a new physical and bio-chemical mass-balance model in the environment. The model is separated into three parts. They are methane supply, seafloor ecosystem, and water column units. The seafloor ecosystem unit has been improved to analyze the unsteady formation processes of the ecosystem. The time dependencies of formations of the consortium of microorganisms (AOM), the chemosynthetic community, and bicarbonates examined with the improved model are introduced. After the bubbling from seafloor, the methane bubble jet blows up in the water column due to the buoyancy. Then the

  14. Modelling Users` Trust in Online Social Networks

    Directory of Open Access Journals (Sweden)

    Iacob Cătoiu

    2014-02-01

    Full Text Available Previous studies (McKnight, Lankton and Tripp, 2011; Liao, Lui and Chen, 2011 have shown the crucial role of trust when choosing to disclose sensitive information online. This is the case of online social networks users, who must disclose a certain amount of personal data in order to gain access to these online services. Taking into account privacy calculus model and the risk/benefit ratio, we propose a model of users’ trust in online social networks with four variables. We have adapted metrics for the purpose of our study and we have assessed their reliability and validity. We use a Partial Least Squares (PLS based structural equation modelling analysis, which validated all our initial assumptions, indicating that our three predictors (privacy concerns, perceived benefits and perceived risks explain 48% of the variation of users’ trust in online social networks, the resulting variable of our study. We also discuss the implications and further research opportunities of our study.

  15. The Kuramoto model in complex networks

    CERN Document Server

    Rodrigues, Francisco A; Ji, Peng; Kurths, Jürgen

    2016-01-01

    Synchronization of an ensemble of oscillators is an emergent phenomenon present in several complex systems, ranging from social and physical to biological and technological systems. The most successful approach to describe how coherent behavior emerges in these complex systems is given by the paradigmatic Kuramoto model. This model has been traditionally studied in complete graphs. However, besides being intrinsically dynamical, complex systems present very heterogeneous structure, which can be represented as complex networks. This report is dedicated to review main contributions in the field of synchronization in networks of Kuramoto oscillators. In particular, we provide an overview of the impact of network patterns on the local and global dynamics of coupled phase oscillators. We cover many relevant topics, which encompass a description of the most used analytical approaches and the analysis of several numerical results. Furthermore, we discuss recent developments on variations of the Kuramoto model in net...

  16. Ripple-Spreading Network Model Optimization by Genetic Algorithm

    OpenAIRE

    Xiao-Bing Hu; Ming Wang; Mark S. Leeson

    2013-01-01

    Small-world and scale-free properties are widely acknowledged in many real-world complex network systems, and many network models have been developed to capture these network properties. The ripple-spreading network model (RSNM) is a newly reported complex network model, which is inspired by the natural ripple-spreading phenomenon on clam water surface. The RSNM exhibits good potential for describing both spatial and temporal features in the development of many real-world networks where the i...

  17. Features and heterogeneities in growing network models

    Science.gov (United States)

    Ferretti, Luca; Cortelezzi, Michele; Yang, Bin; Marmorini, Giacomo; Bianconi, Ginestra

    2012-06-01

    Many complex networks from the World Wide Web to biological networks grow taking into account the heterogeneous features of the nodes. The feature of a node might be a discrete quantity such as a classification of a URL document such as personal page, thematic website, news, blog, search engine, social network, etc., or the classification of a gene in a functional module. Moreover the feature of a node can be a continuous variable such as the position of a node in the embedding space. In order to account for these properties, in this paper we provide a generalization of growing network models with preferential attachment that includes the effect of heterogeneous features of the nodes. The main effect of heterogeneity is the emergence of an “effective fitness” for each class of nodes, determining the rate at which nodes acquire new links. The degree distribution exhibits a multiscaling behavior analogous to the the fitness model. This property is robust with respect to variations in the model, as long as links are assigned through effective preferential attachment. Beyond the degree distribution, in this paper we give a full characterization of the other relevant properties of the model. We evaluate the clustering coefficient and show that it disappears for large network size, a property shared with the Barabási-Albert model. Negative degree correlations are also present in this class of models, along with nontrivial mixing patterns among features. We therefore conclude that both small clustering coefficients and disassortative mixing are outcomes of the preferential attachment mechanism in general growing networks.

  18. String networks with junctions in competition models

    CERN Document Server

    Avelino, P P; Losano, L; Menezes, J; de Oliveira, B F

    2016-01-01

    In this work we give specific examples of competition models, with six and eight species, whose three-dimensional dynamics naturally leads to the formation of string networks with junctions, associated with regions that have a high concentration of enemy species. We study the two- and three-dimensional evolution of such networks, both using stochastic network and mean field theory simulations. If the predation, reproduction and mobility probabilities do not vary in space and time, we find that the networks attain scaling regimes with a characteristic length roughly proportional to $t^{1/2}$, where $t$ is the physical time, thus showing that the presence of junctions, on its own, does not have a significant impact on their scaling properties.

  19. Mobility Models for Next Generation Wireless Networks Ad Hoc, Vehicular and Mesh Networks

    CERN Document Server

    Santi, Paolo

    2012-01-01

    Mobility Models for Next Generation Wireless Networks: Ad Hoc, Vehicular and Mesh Networks provides the reader with an overview of mobility modelling, encompassing both theoretical and practical aspects related to the challenging mobility modelling task. It also: Provides up-to-date coverage of mobility models for next generation wireless networksOffers an in-depth discussion of the most representative mobility models for major next generation wireless network application scenarios, including WLAN/mesh networks, vehicular networks, wireless sensor networks, and

  20. Unsupervised model compression for multilayer bootstrap networks

    OpenAIRE

    ZHANG, XIAO-LEI

    2015-01-01

    Recently, multilayer bootstrap network (MBN) has demonstrated promising performance in unsupervised dimensionality reduction. It can learn compact representations in standard data sets, i.e. MNIST and RCV1. However, as a bootstrap method, the prediction complexity of MBN is high. In this paper, we propose an unsupervised model compression framework for this general problem of unsupervised bootstrap methods. The framework compresses a large unsupervised bootstrap model into a small model by ta...

  1. A Model for Telestrok Network Evaluation

    DEFF Research Database (Denmark)

    Storm, Anna; Günzel, Franziska; Theiss, Stephan

    2011-01-01

    analysis lacking, current telestroke reimbursement by third-party payers is limited to special contracts and not included in the regular billing system. Based on a systematic literature review and expert interviews with health care economists, third-party payers and neurologists, a Markov model was...... developed from the third-party payer perspective. In principle, it enables telestroke networks to conduct cost-effectiveness studies, because the majority of the required data can be extracted from health insurance companies’ databases and the telestroke network itself. The model presents a basis for...

  2. Mathematical Modelling of Network Traffic

    OpenAIRE

    Li, Yu

    2015-01-01

    ncreasing access to the Internet is producing profound influence around the World. More and more people are taking advantage of the Internet to obtain information, communicate with each other far away and enjoy various recreations. This largely increased demand for the Internet requires better and more effective models. During the 1990s, a number of studies show that due to a different nature from telephonic traffic, in particular a bursty nature, traditional queuing models are not applicable...

  3. Grape powder prevents cognitive, behavioral and biochemical impairments in a rat model of posttraumatic stress disorder

    Science.gov (United States)

    Solanki, Naimesh; Alkadhi, Isam; Atrooz, Fatin; Patki, Gaurav; Salim, Samina

    2015-01-01

    Previously, using the single-prolonged stress (SPS) rat model of post-traumatic stress disorder, we reported that moderate treadmill exercise, via modulation of oxidative stress related mechanisms, rescued anxiety and depression-like behaviors and reversed SPS-induced memory impairment. In this study using the SPS model (2 h restrain, 20 min forced swimming, 15 min rest, and 1–2 min diethyl ether exposure), we hypothesized that antioxidant rich grape powder (GP) prevents SPS-induced behavioral and memory impairment in rats. Male Sprague Dawley rats were randomly assigned into: Control (CON; provided tap water), SPS (provided tap water), GP-SPS (provided 15 g/L GP in tap water for 3 wk followed by SPS), or GP-CON (3 wk of GP followed by control exposure). Anxiety and depression-like behaviors were significantly greater in SPS rats when compared to CON or GP treated rats and GP reversed these behavioral deficits. SPS rats made significantly more errors in both short- and long-term memory tests compared to CON or GP treated rats, which were prevented in GP-SPS rats. GP prevented SPS-induced increase in plasma corticosterone level. Furthermore, brain derived neurotrophic factor (BDNF) levels were significantly decreased in amygdala of SPS rats but not in GP-SPS rats compared to CON or GP-CON rats. Additionally, GP significantly increased acetylated Histone3, Histone deacetylase 5 (HDAC 5) in hippocampus and amygdala of SPS rats as compared to CON or GP-CON rats. In conclusion, we suggest protective role of GP in SPS-induced behavioral, cognitive and biochemical impairments in rats. Perhaps, epigenetic regulation of BDNF enables GP-mediated prevention of SPS-induced deficits in rats. PMID:25533441

  4. Hierarchical graphs for better annotations of rule-based models of biochemical systems

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Bin [Los Alamos National Laboratory; Hlavacek, William [Los Alamos National Laboratory

    2009-01-01

    In the graph-based formalism of the BioNetGen language (BNGL), graphs are used to represent molecules, with a colored vertex representing a component of a molecule, a vertex label representing the internal state of a component, and an edge representing a bond between components. Components of a molecule share the same color. Furthermore, graph-rewriting rules are used to represent molecular interactions, with a rule that specifies addition (removal) of an edge representing a class of association (dissociation) reactions and with a rule that specifies a change of vertex label representing a class of reactions that affect the internal state of a molecular component. A set of rules comprises a mathematical/computational model that can be used to determine, through various means, the system-level dynamics of molecular interactions in a biochemical system. Here, for purposes of model annotation, we propose an extension of BNGL that involves the use of hierarchical graphs to represent (1) relationships among components and subcomponents of molecules and (2) relationships among classes of reactions defined by rules. We illustrate how hierarchical graphs can be used to naturally document the structural organization of the functional components and subcomponents of two proteins: the protein tyrosine kinase Lck and the T cell receptor (TCR)/CD3 complex. Likewise, we illustrate how hierarchical graphs can be used to document the similarity of two related rules for kinase-catalyzed phosphorylation of a protein substrate. We also demonstrate how a hierarchical graph representing a protein can be encoded in an XML-based format.

  5. Validation of MIKE 11 Model Simulated Data for Biochemical and Chemical Oxygen Demands Transport

    Directory of Open Access Journals (Sweden)

    Mahdieh Eisakhani

    2012-01-01

    Full Text Available Problem statement: The aim of the study was to model the discharge, biochemical and chemical oxygen demands (BOD and COD loads in each cross section of Bertam River in Cameron Highlands, Malaysia. Cameron Highlands form the headwater catchment for two major rivers of the lowlands; Pahang River and Perak River. On the other hand, Cameron Highlands is undergoing rapid development as a popular tourist destination and an area exploited for growing of temperature vegetables, fruits and flowers. It is also a mountainous area subjected to torrential tropical showers. The condition of Bertam River as one of the main rivers in Cameron Highlands has degraded over the years in terms of water pollution and river environment. Approach: Therefore, MIKE 11 a one-dimensional hydrodynamic simulation program was utilized to model stream flow transport and water quality processing in the river system. The model was used to generate the river outflow and simulate BOD and COD concentrations in each cross section of Bertam River. Hydrodynamic Module (HD which uses an implicit, finite difference solver was applied to calculate water level and flow for the river. Next, Rainfall-Runoff Module (RR which is include unit hydrograph method and lumped conceptual continuous hydrological model was used to combine the meteorological data of the study area to MIKE 11 simulation system. Finally, Advection-Dispersion Module (AD was used for transported BOD and COD concentrations calculation. Results: Water quality results show the BOD5 varies from 1-2 mg L-1 during pre-monsoon and from 4-10 mg L-1 during post-monsoon. The COD between 39-49 mg L-1 was observed during High Water Flow (HWF. Much lower concentration was detected during Average Water Flow (AWF which was between 10-14 mg L-1. The comparative analysis between measured and simulated data showed that MIKE 11 is able to predict sufficiently accurate BOD and COD loads at the catchment outlet especially during AWF. Conclusion

  6. Assessing seasonality of biochemical CO2 exchange model parameters from micrometeorological flux observations at boreal coniferous forest

    Directory of Open Access Journals (Sweden)

    T. Vesala

    2008-12-01

    Full Text Available The seasonality of the NEE of the northern boreal coniferous forests was investigated by means of inversion modelling using eddy covariance data. Eddy covariance data was used to optimize the biochemical model parameters. Our study sites consisted of three Scots pine (l. Pinus sylvestris forests and one Norway spruce (l. Picea abies forest that were located in Finland and Sweden. We obtained temperature and seasonal dependence for the biochemical model parameters: the maximum rate of carboxylation (Vc(max and the maximum rate of electron transport (Jmax. Both of the parameters were optimized without assumptions about their mutual magnitude. The values obtained for the biochemical model parameters were similar at all the sites during summer time. To describe seasonality, different temperature fits were made for the spring, summer and autumn periods. During summer, average Jmax across the sites was 54.0 μmol m−2 s−1 (variance 31.2 μmol m−2 s−1 and Vc(max was 12.0 μmol m−2 s−1 (variance 6.6 μmol m−2 s−1 at 17°C. The sensitivity of the model to LAI and atmospheric soil water stress was also studied. The impact of seasonality on annual GPP was 17% when only summertime parameterization was used throughout the year compared to seasonally changing parameterizations.

  7. In vivo diagnosis of colonic precancer and cancer using near-infrared autofluorescence spectroscopy and biochemical modeling

    Science.gov (United States)

    Shao, Xiaozhuo; Zheng, Wei; Huang, Zhiwei

    2011-06-01

    The aim of this study is to evaluate the biochemical foundation and clinical capability of an image-guided near-infrared (NIR) autofluorescence (AF) spectroscopy technique for in vivo diagnosis of colonic malignancies during clinical colonoscopy. A novel endoscopic fiber-optic AF system was utilized for in vivo NIR AF measurements at 785 nm excitation. A total of 263 in vivo NIR AF spectra of colonic tissues were measured from 100 patients, in which 164 spectra were from benign tissue (116 normal and 48 hyperplastic polyps), 34 spectra were from precancer (adenomatous polyps), and 65 spectra were from cancer. The non-negativity constrained least squares minimization biochemical modeling was explored to estimate the biochemical compositions of colonic tissue using nine basis reference spectra from the representative biochemicals (i.e., collagen I, elastin, β-nicotinamide adenine dinucleotide, flavin adenine dinucleotide, L-tryptophan, hematoporphyrin, 4-pyridoxic acid, pyridoxal 5'-phosphate, and water) associated with structural or cellular metabolic progression in colonic precancer and cancer. High-quality in vivo NIR AF spectra in the spectral range of 810 to 1000 nm were acquired from colonic benign, precancerous, and cancerous mucosa under white-light reflectance endoscopic imaging guidance. Partial least squares discriminant analysis, together with the leave-one tissue site-out, cross validation on in vivo NIR AF spectra yields diagnostic sensitivities of 85.4%, 76.5%, and 84.6%, and specificities of 89.9%, 93.4%, and 91.4%, respectively, for classification of benign, precancer, and cancer in the colon. This work demonstrates that image-guided NIR AF spectroscopy in conjunction with biochemical modeling has promising potential for improving in vivo detection and diagnosis of colonic precancer and cancer during clinical colonoscopic screening.

  8. The noisy voter model on complex networks

    Science.gov (United States)

    Carro, Adrián; Toral, Raúl; San Miguel, Maxi

    2016-04-01

    We propose a new analytical method to study stochastic, binary-state models on complex networks. Moving beyond the usual mean-field theories, this alternative approach is based on the introduction of an annealed approximation for uncorrelated networks, allowing to deal with the network structure as parametric heterogeneity. As an illustration, we study the noisy voter model, a modification of the original voter model including random changes of state. The proposed method is able to unfold the dependence of the model not only on the mean degree (the mean-field prediction) but also on more complex averages over the degree distribution. In particular, we find that the degree heterogeneity—variance of the underlying degree distribution—has a strong influence on the location of the critical point of a noise-induced, finite-size transition occurring in the model, on the local ordering of the system, and on the functional form of its temporal correlations. Finally, we show how this latter point opens the possibility of inferring the degree heterogeneity of the underlying network by observing only the aggregate behavior of the system as a whole, an issue of interest for systems where only macroscopic, population level variables can be measured.

  9. An evolving model of online bipartite networks

    Science.gov (United States)

    Zhang, Chu-Xu; Zhang, Zi-Ke; Liu, Chuang

    2013-12-01

    Understanding the structure and evolution of online bipartite networks is a significant task since they play a crucial role in various e-commerce services nowadays. Recently, various attempts have been tried to propose different models, resulting in either power-law or exponential degree distributions. However, many empirical results show that the user degree distribution actually follows a shifted power-law distribution, the so-called Mandelbrot’s law, which cannot be fully described by previous models. In this paper, we propose an evolving model, considering two different user behaviors: random and preferential attachment. Extensive empirical results on two real bipartite networks, Delicious and CiteULike, show that the theoretical model can well characterize the structure of real networks for both user and object degree distributions. In addition, we introduce a structural parameter p, to demonstrate that the hybrid user behavior leads to the shifted power-law degree distribution, and the region of power-law tail will increase with the increment of p. The proposed model might shed some lights in understanding the underlying laws governing the structure of real online bipartite networks.

  10. Broadband model of the distribution network

    DEFF Research Database (Denmark)

    Jensen, Martin Høgdahl

    Due to increased interest in the power quality of the distribution network, it is necessary to have an accurate model of the distribution network. One of the commonly used components in the distribution, is the low-voltage four-wire PEX-M-AL distribution cable. There exists no model...... of this component, and it is chosen to focus on the development of such a model. Based on the electromagnetic field equations, the shunt admittance and series impedance parameters of the four-wire cable are derived. The influence of the conductance is considered negligible and is not included in the shunt...... is measured. The measurement are performed with and without the four-wire cable inserted between the transformer and load. The 10 kV test-site is modelled in EMTDC with standard components. Similarly, the non-linear load is modelled as a six-pulse diode bridge loaded with a resistor on the DC...

  11. Ising model on random networks and the canonical tensor model

    International Nuclear Information System (INIS)

    We introduce a statistical system on random networks of trivalent vertices for the purpose of studying the canonical tensor model, which is a rank-three tensor model in the canonical formalism. The partition function of the statistical system has a concise expression in terms of integrals, and has the same symmetries as the kinematical ones of the canonical tensor model. We consider the simplest non-trivial case of the statistical system corresponding to the Ising model on random networks, and find that its phase diagram agrees with what is implied by regrading the Hamiltonian vector field of the canonical tensor model with N=2 as a renormalization group flow. Along the way, we obtain an explicit exact expression of the free energy of the Ising model on random networks in the thermodynamic limit by the Laplace method. This paper provides a new example connecting a model of quantum gravity and a random statistical system

  12. Multivariate modeling of chromium-induced oxidative stress and biochemical changes in plants of Pistia stratiotes L.

    Science.gov (United States)

    Sinha, Sarita; Basant, Ankita; Malik, Amrita; Singh, Kunwar P

    2009-07-01

    Biochemical changes in the plants of Pistia stratiotes L., a free floating macrophyte exposed to different concentrations of hexavalent chromium (0, 10, 40, 60, 80 and 160 microM) for 48, 96 and 144 h were studied. Chromium-induced oxidative stress in macrophyte was investigated using the multivariate modeling approaches. Cluster analysis rendered two fairly distinct clusters (roots and shoots) of similar characteristics in terms of their biochemical responses. Discriminant analysis identified ascorbate peroxidase (APX) as discriminating variable between the root and shoot tissues. Principal components analysis results suggested that malondialdehyde (MDA), superoxide dismutase (SOD), APX, non-protein thiols (NP-SH), cysteine, ascorbic acid, and Cr-accumulation are dominant in root tissues, whereas, protein and guaiacol peroxidase (GPX) in shoots of the plant. Discriminant partial least squares analysis results further confirmed that MDA, SOD, NP-SH, cysteine, GPX, APX, ascorbic acid and Cr-accumulation dominated in the root tissues, while protein in the shoot. Three-way analysis helped in visualizing simultaneous influence of metal concentration and exposure duration on biochemical variables in plant tissues. The multivariate approaches, thus, allowed for the interpretation of the induced biochemical changes in the plant tissues exposed to chromium, which otherwise using the conventional approaches is difficult. PMID:19396544

  13. Network Reconstruction with Realistic Models

    OpenAIRE

    Grzegorczyk, Marco; Aderhold, Andrej; Husmeier, Dirk

    2015-01-01

    We extend a recently proposed gradient-matching method for inferring interactions in complex systems described by differential equations in various respects: improved gradient inference, evaluation of the influence of the prior on kinetic parameters, comparative evaluation of two model selection paradigms: marginal likelihood versus DIC (divergence information criterion), comparative evaluation of different numerical procedures for computing the marginal likelihood, extension of the methodolo...

  14. International Trade: a Reinforced Urn Network Model

    CERN Document Server

    Peluso, Stefano; Muliere, Pietro; Lomi, Alessandro

    2016-01-01

    We propose a unified modelling framework that theoretically justifies the main empirical regularities characterizing the international trade network. Each country is associated to a Polya urn whose composition controls the propensity of the country to trade with other countries. The urn composition is updated through the walk of the Reinforced Urn Process of Muliere et al. (2000). The model implies a local preferential attachment scheme and a power law right tail behaviour of bilateral trade flows. Different assumptions on the urns' reinforcement parameters account for local clustering, path-shortening and sparsity. Likelihood-based estimation approaches are facilitated by feasible likelihood analytical derivation in various network settings. A simulated example and the empirical results on the international trade network are discussed.

  15. Delivery Time Reliability Model of Logistics Network

    Directory of Open Access Journals (Sweden)

    Liusan Wu

    2013-01-01

    Full Text Available Natural disasters like earthquake and flood will surely destroy the existing traffic network, usually accompanied by delivery delay or even network collapse. A logistics-network-related delivery time reliability model defined by a shortest-time entropy is proposed as a means to estimate the actual delivery time reliability. The less the entropy is, the stronger the delivery time reliability remains, and vice versa. The shortest delivery time is computed separately based on two different assumptions. If a path is concerned without capacity restriction, the shortest delivery time is positively related to the length of the shortest path, and if a path is concerned with capacity restriction, a minimax programming model is built to figure up the shortest delivery time. Finally, an example is utilized to confirm the validity and practicality of the proposed approach.

  16. An autocatalytic network model for stock markets

    Science.gov (United States)

    Caetano, Marco Antonio Leonel; Yoneyama, Takashi

    2015-02-01

    The stock prices of companies with businesses that are closely related within a specific sector of economy might exhibit movement patterns and correlations in their dynamics. The idea in this work is to use the concept of autocatalytic network to model such correlations and patterns in the trends exhibited by the expected returns. The trends are expressed in terms of positive or negative returns within each fixed time interval. The time series derived from these trends is then used to represent the movement patterns by a probabilistic boolean network with transitions modeled as an autocatalytic network. The proposed method might be of value in short term forecasting and identification of dependencies. The method is illustrated with a case study based on four stocks of companies in the field of natural resource and technology.

  17. Bayesian Network Based XP Process Modelling

    Directory of Open Access Journals (Sweden)

    Mohamed Abouelela

    2010-07-01

    Full Text Available A Bayesian Network based mathematical model has been used for modelling Extreme Programmingsoftware development process. The model is capable of predicting the expected finish time and theexpected defect rate for each XP release. Therefore, it can be used to determine the success/failure of anyXP Project. The model takes into account the effect of three XP practices, namely: Pair Programming,Test Driven Development and Onsite Customer practices. The model’s predictions were validated againsttwo case studies. Results show the precision of our model especially in predicting the project finish time.

  18. Modeling photosynthesis of discontinuous plant canopies by linking Geometric Optical Radiative Transfer model with biochemical processes

    OpenAIRE

    Xin, Q; P. Gong; Li, W.

    2015-01-01

    Modeling vegetation photosynthesis is essential for understanding carbon exchanges between terrestrial ecosystems and the atmosphere. The radiative transfer process within plant canopies is one of the key drivers that regulate canopy photosynthesis. Most vegetation cover consists of discrete plant crowns, of which the physical observation departs from the underlying assumption of a homogenous and uniform medium in classic radiative transfer theory. Here we a...

  19. Keystone Business Models for Network Security Processors

    Directory of Open Access Journals (Sweden)

    Arthur Low

    2013-07-01

    Full Text Available Network security processors are critical components of high-performance systems built for cybersecurity. Development of a network security processor requires multi-domain experience in semiconductors and complex software security applications, and multiple iterations of both software and hardware implementations. Limited by the business models in use today, such an arduous task can be undertaken only by large incumbent companies and government organizations. Neither the “fabless semiconductor” models nor the silicon intellectual-property licensing (“IP-licensing” models allow small technology companies to successfully compete. This article describes an alternative approach that produces an ongoing stream of novel network security processors for niche markets through continuous innovation by both large and small companies. This approach, referred to here as the "business ecosystem model for network security processors", includes a flexible and reconfigurable technology platform, a “keystone” business model for the company that maintains the platform architecture, and an extended ecosystem of companies that both contribute and share in the value created by innovation. New opportunities for business model innovation by participating companies are made possible by the ecosystem model. This ecosystem model builds on: i the lessons learned from the experience of the first author as a senior integrated circuit architect for providers of public-key cryptography solutions and as the owner of a semiconductor startup, and ii the latest scholarly research on technology entrepreneurship, business models, platforms, and business ecosystems. This article will be of interest to all technology entrepreneurs, but it will be of particular interest to owners of small companies that provide security solutions and to specialized security professionals seeking to launch their own companies.

  20. Psychometric Measurement Models and Artificial Neural Networks

    Science.gov (United States)

    Sese, Albert; Palmer, Alfonso L.; Montano, Juan J.

    2004-01-01

    The study of measurement models in psychometrics by means of dimensionality reduction techniques such as Principal Components Analysis (PCA) is a very common practice. In recent times, an upsurge of interest in the study of artificial neural networks apt to computing a principal component extraction has been observed. Despite this interest, the…

  1. The Kuramoto model in complex networks

    Science.gov (United States)

    Rodrigues, Francisco A.; Peron, Thomas K. DM.; Ji, Peng; Kurths, Jürgen

    2016-01-01

    Synchronization of an ensemble of oscillators is an emergent phenomenon present in several complex systems, ranging from social and physical to biological and technological systems. The most successful approach to describe how coherent behavior emerges in these complex systems is given by the paradigmatic Kuramoto model. This model has been traditionally studied in complete graphs. However, besides being intrinsically dynamical, complex systems present very heterogeneous structure, which can be represented as complex networks. This report is dedicated to review main contributions in the field of synchronization in networks of Kuramoto oscillators. In particular, we provide an overview of the impact of network patterns on the local and global dynamics of coupled phase oscillators. We cover many relevant topics, which encompass a description of the most used analytical approaches and the analysis of several numerical results. Furthermore, we discuss recent developments on variations of the Kuramoto model in networks, including the presence of noise and inertia. The rich potential for applications is discussed for special fields in engineering, neuroscience, physics and Earth science. Finally, we conclude by discussing problems that remain open after the last decade of intensive research on the Kuramoto model and point out some promising directions for future research.

  2. Green Network Planning Model for Optical Backbones

    DEFF Research Database (Denmark)

    Gutierrez Lopez, Jose Manuel; Riaz, M. Tahir; Jensen, Michael;

    2010-01-01

    Communication networks are becoming more essential for our daily lives and critically important for industry and governments. The intense growth in the backbone traffic implies an increment of the power demands of the transmission systems. This power usage might have a significant negative effect...... an analytical model to consider environmental aspects in the planning stage of backbones design....

  3. A spatial model for social networks

    OpenAIRE

    Wong, Ling Heng; Pattison, Philippa; Robins, Garry

    2005-01-01

    We study spatial embeddings of random graphs in which nodes are randomly distributed in geographical space. We let the edge probability between any two nodes to be dependent on the spatial distance between them and demonstrate that this model captures many generic properties of social networks, including the ``small-world'' properties, skewed degree distribution, and most distinctively the existence of community structures.

  4. A Model of Mental State Transition Network

    Science.gov (United States)

    Xiang, Hua; Jiang, Peilin; Xiao, Shuang; Ren, Fuji; Kuroiwa, Shingo

    Emotion is one of the most essential and basic attributes of human intelligence. Current AI (Artificial Intelligence) research is concentrating on physical components of emotion, rarely is it carried out from the view of psychology directly(1). Study on the model of artificial psychology is the first step in the development of human-computer interaction. As affective computing remains unpredictable, creating a reasonable mental model becomes the primary task for building a hybrid system. A pragmatic mental model is also the fundament of some key topics such as recognition and synthesis of emotions. In this paper a Mental State Transition Network Model(2) is proposed to detect human emotions. By a series of psychological experiments, we present a new way to predict coming human's emotions depending on the various current emotional states under various stimuli. Besides, people in different genders and characters are taken into consideration in our investigation. According to the psychological experiments data derived from 200 questionnaires, a Mental State Transition Network Model for describing the transitions in distribution among the emotions and relationships between internal mental situations and external are concluded. Further more the coefficients of the mental transition network model were achieved. Comparing seven relative evaluating experiments, an average precision rate of 0.843 is achieved using a set of samples for the proposed model.

  5. Unified Model for Generation Complex Networks with Utility Preferential Attachment

    Institute of Scientific and Technical Information of China (English)

    WU Jian-Jun; GAO Zi-You; SUN Hui-Jun

    2006-01-01

    In this paper, based on the utility preferential attachment, we propose a new unified model to generate different network topologies such as scale-free, small-world and random networks. Moreover, a new network structure named super scale network is found, which has monopoly characteristic in our simulation experiments. Finally, the characteristics ofthis new network are given.

  6. Network Coding Capacity of Random Wireless Networks under a SINR Model

    OpenAIRE

    Kong, Zhenning; Aly, Salah A.; Soljanin, Emina; Yeh, Edmund M.; Klappenecker, Andreas

    2008-01-01

    Previous work on network coding capacity for random wired and wireless networks have focused on the case where the capacities of links in the network are independent. In this paper, we consider a more realistic model, where wireless networks are modelled by random geometric graphs with interference and noise. In this model, the capacities of links are not independent. By employing coupling and martingale methods, we show that, under mild conditions, the network coding capacity for random wire...

  7. Distributed Bayesian Networks for User Modeling

    DEFF Research Database (Denmark)

    Tedesco, Roberto; Dolog, Peter; Nejdl, Wolfgang;

    2006-01-01

    The World Wide Web is a popular platform for providing eLearning applications to a wide spectrum of users. However – as users differ in their preferences, background, requirements, and goals – applications should provide personalization mechanisms. In the Web context, user models used by such...... adaptive applications are often partial fragments of an overall user model. The fragments have then to be collected and merged into a global user profile. In this paper we investigate and present algorithms able to cope with distributed, fragmented user models – based on Bayesian Networks – in the context...... mechanism efficiently combines distributed learner models without the need to exchange internal structure of local Bayesian networks, nor local evidence between the involved platforms....

  8. Hybrid simulation models of production networks

    CERN Document Server

    Kouikoglou, Vassilis S

    2001-01-01

    This book is concerned with a most important area of industrial production, that of analysis and optimization of production lines and networks using discrete-event models and simulation. The book introduces a novel approach that combines analytic models and discrete-event simulation. Unlike conventional piece-by-piece simulation, this method observes a reduced number of events between which the evolution of the system is tracked analytically. Using this hybrid approach, several models are developed for the analysis of production lines and networks. The hybrid approach combines speed and accuracy for exceptional analysis of most practical situations. A number of optimization problems, involving buffer design, workforce planning, and production control, are solved through the use of hybrid models.

  9. Comparison of two different stochastic models for extracting protein regulatory pathways using Bayesian networks.

    Science.gov (United States)

    Grzegorczyk, Marco

    2008-01-01

    Toxicoproteomics integrates traditional toxicology and systems biology and seeks to infer the architecture of biochemical pathways in biological systems that are affected by and respond to chemical and environmental exposures. Different reverse engineering methods for extracting biochemical regulatory networks from data have been proposed and it is important to understand their relative strengths and weaknesses. To shed some light onto this problem, Werhli et al. (2006) cross-compared three widely used methodologies, relevance networks, graphical Gaussian models, and Bayesian networks (BN), on real cytometric and synthetic expression data. This study continues with the evaluation and compares the learning performances of two different stochastic models (BGe and BDe) for BN. Cytometric protein expression data from the RAF-signaling pathway were used for the cross-method comparison. Understanding this pathway is an important task, as it is known that RAF is a critical signaling protein whose deregulation leads to carcinogenesis. When the more flexible BDe model is employed, a data discretization, which usually incurs an inevitable information loss, is needed. However, the results of the study reveal that the BDe model is preferable to the BGe model when a sufficiently large number of observations from the pathway are available. PMID:18569581

  10. Dynamical modeling of the cholesterol regulatory pathway with Boolean networks

    Directory of Open Access Journals (Sweden)

    Corcos Laurent

    2008-11-01

    Full Text Available Abstract Background Qualitative dynamics of small gene regulatory networks have been studied in quite some details both with synchronous and asynchronous analysis. However, both methods have their drawbacks: synchronous analysis leads to spurious attractors and asynchronous analysis lacks computational efficiency, which is a problem to simulate large networks. We addressed this question through the analysis of a major biosynthesis pathway. Indeed the cholesterol synthesis pathway plays a pivotal role in dislypidemia and, ultimately, in cancer through intermediates such as mevalonate, farnesyl pyrophosphate and geranyl geranyl pyrophosphate, but no dynamic model of this pathway has been proposed until now. Results We set up a computational framework to dynamically analyze large biological networks. This framework associates a classical and computationally efficient synchronous Boolean analysis with a newly introduced method based on Markov chains, which identifies spurious cycles among the results of the synchronous simulation. Based on this method, we present here the results of the analysis of the cholesterol biosynthesis pathway and its physiological regulation by the Sterol Response Element Binding Proteins (SREBPs, as well as the modeling of the action of statins, inhibitor drugs, on this pathway. The in silico experiments show the blockade of the cholesterol endogenous synthesis by statins and its regulation by SREPBs, in full agreement with the known biochemical features of the pathway. Conclusion We believe that the method described here to identify spurious cycles opens new routes to compute large and biologically relevant models, thanks to the computational efficiency of synchronous simulation. Furthermore, to the best of our knowledge, we present here the first dynamic systems biology model of the human cholesterol pathway and several of its key regulatory control elements, hoping it would provide a good basis to perform in silico

  11. XY model in small-world networks

    OpenAIRE

    Kim, Beom Jun; Hong, H.; Holme, Petter; Jeon, Gun Sang; Minnhagen, Petter; Choi, M. Y.

    2001-01-01

    The phase transition in the XY model on one-dimensional small-world networks is investigated by means of Monte-Carlo simulations. It is found that long-range order is present at finite temperatures, even for very small values of the rewiring probability, suggesting a finite-temperature transition for any nonzero rewiring probability. Nature of the phase transition is discussed in comparison with the globally-coupled XY model.

  12. Modeling Multistandard Wireless Networks in OPNET

    DEFF Research Database (Denmark)

    Zakrzewska, Anna; Berger, Michael Stübert; Ruepp, Sarah Renée

    2011-01-01

    Future wireless communication is emerging towards one heterogeneous platform. In this new environment wireless access will be provided by multiple radio technologies that are cooperating and complementing one another. The paper investigates the possibilities of developing such a multistandard...... system using OPNET Modeler. A network model consisting of LTE interworking with WLAN and WiMAX is considered from the radio resource management perspective. In particular, implementing a joint packet scheduler across multiple systems is discussed more in detail....

  13. Constructing a fish metabolic network model

    OpenAIRE

    Li, S.; Pozhitkov, A.; R. Ryan; Manning, C; Brown-Peterson, N.; Brouwer, M

    2010-01-01

    We report the construction of a genome-wide fish metabolic network model, MetaFishNet, and its application to analyzing high throughput gene expression data. This model is a stepping stone to broader applications of fish systems biology, for example by guiding study design through comparison with human metabolism and the integration of multiple data types. MetaFishNet resources, including a pathway enrichment analysis tool, are accessible at http://metafishnet.appspot.com.

  14. Distance distribution in configuration-model networks

    Science.gov (United States)

    Nitzan, Mor; Katzav, Eytan; Kühn, Reimer; Biham, Ofer

    2016-06-01

    We present analytical results for the distribution of shortest path lengths between random pairs of nodes in configuration model networks. The results, which are based on recursion equations, are shown to be in good agreement with numerical simulations for networks with degenerate, binomial, and power-law degree distributions. The mean, mode, and variance of the distribution of shortest path lengths are also evaluated. These results provide expressions for central measures and dispersion measures of the distribution of shortest path lengths in terms of moments of the degree distribution, illuminating the connection between the two distributions.

  15. Bus Network Modeling Using Ant Algorithms

    Directory of Open Access Journals (Sweden)

    Sepideh Eshragh

    2010-02-01

    Full Text Available Bus transit network modeling is a complex and combinatorial problem. The main purpose of this paper is to apply a contemporary method for designing a bus transit network with the objective of achieving optimum results. The method is called Ant Algorithms, a Meta Heuristic method, which has been applied to optimization problems in transportation with noticeable success. The description of the algorithm, as well as the main methodology and computations, is presented in this paper. Furthermore, a case study using Ant Algorithms applied to the city of Ghazvin, one of the most important suburbs of Tehran, Iran, is presented.

  16. Adaptive-network models of swarm dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Huepe, Cristian [614 N Paulina Street, Chicago, IL 60622-6062 (United States); Zschaler, Gerd; Do, Anne-Ly; Gross, Thilo, E-mail: cristian@northwestern.edu [Max-Planck-Institut fuer Physik komplexer Systeme, Noethnitzer Strasse 38, 01187 Dresden (Germany)

    2011-07-15

    We propose a simple adaptive-network model describing recent swarming experiments. Exploiting an analogy with human decision making, we capture the dynamics of the model using a low-dimensional system of equations permitting analytical investigation. We find that the model reproduces several characteristic features of swarms, including spontaneous symmetry breaking, noise- and density-driven order-disorder transitions that can be of first or second order, and intermittency. Reproducing these experimental observations using a non-spatial model suggests that spatial geometry may have less of an impact on collective motion than previously thought.

  17. Adaptive-network models of swarm dynamics

    International Nuclear Information System (INIS)

    We propose a simple adaptive-network model describing recent swarming experiments. Exploiting an analogy with human decision making, we capture the dynamics of the model using a low-dimensional system of equations permitting analytical investigation. We find that the model reproduces several characteristic features of swarms, including spontaneous symmetry breaking, noise- and density-driven order-disorder transitions that can be of first or second order, and intermittency. Reproducing these experimental observations using a non-spatial model suggests that spatial geometry may have less of an impact on collective motion than previously thought.

  18. Discriminating model for diagnosis of basal cell carcinoma and melanoma in vitro based on the Raman spectra of selected biochemicals

    Science.gov (United States)

    Silveira, Landulfo; Silveira, Fabrício Luiz; Bodanese, Benito; Zângaro, Renato Amaro; Pacheco, Marcos Tadeu T.

    2012-07-01

    Raman spectroscopy has been employed to identify differences in the biochemical constitution of malignant [basal cell carcinoma (BCC) and melanoma (MEL)] cells compared to normal skin tissues, with the goal of skin cancer diagnosis. We collected Raman spectra from compounds such as proteins, lipids, and nucleic acids, which are expected to be represented in human skin spectra, and developed a linear least-squares fitting model to estimate the contributions of these compounds to the tissue spectra. We used a set of 145 spectra from biopsy fragments of normal (30 spectra), BCC (96 spectra), and MEL (19 spectra) skin tissues, collected using a near-infrared Raman spectrometer (830 nm, 50 to 200 mW, and 20 s exposure time) coupled to a Raman probe. We applied the best-fitting model to the spectra of biochemicals and tissues, hypothesizing that the relative spectral contribution of each compound to the tissue Raman spectrum changes according to the disease. We verified that actin, collagen, elastin, and triolein were the most important biochemicals representing the spectral features of skin tissues. A classification model applied to the relative contribution of collagen III, elastin, and melanin using Euclidean distance as a discriminator could differentiate normal from BCC and MEL.

  19. Channel models for wireless body area networks.

    Science.gov (United States)

    Takizawa, Kenichi; Aoyagi, Akahiro; Takada, Jun-Ichi; Katayama, Norihiko; Yekeh, Kamya; Takehiko, Yazdandoost; Kohno, Kobayashi Ryuji

    2008-01-01

    Wireless patient monitoring using wearable sensors is a promising application. This paper provides stochastic channel models for wireless body area network (WBAN) on the human body. Parameters of the channel models are extracted from measured channel transfer functions (CTFs) in a hospital room. Measured frequency bands are selected so as to include permissible bands for WBAN; ultra wideband (UWB), the industry, science and medical (ISM) bands, and wireless medical telemetry system (WMTS) bands. As channel models, both a path loss model and a power delay profile (PDP) model are considered. But, even though path loss models are derived for the all frequency bands, PDP model is only for the UWB band due to the highly frequency selectiveness of UWB channels. The parameters extracted from the measurement results are summarized for each channel model. PMID:19162968

  20. Modeling the two-hybrid detector: experimental bias on protein interaction networks.

    Science.gov (United States)

    Stibius, Karin B; Sneppen, Kim

    2007-10-01

    This work was done to investigate the two-hybrid experiment for finding protein-protein interactions to explain the asymmetry found in the experimental data, and to help screen the data for high confidence interactions. By looking at the bait-prey experimental setup the resulting protein interaction network can be examined as a directed network (bait --> prey). We have investigated two possible scenarios for the asymmetry in the directed network by developing a biochemical model for the protein-DNA and protein-protein bindings inside the living yeast. One scenario assumes a background activity of bait proteins acting even without the prey, the other scenario explores the asymmetry in the chemistry associated with the bait being automatically located in the right position on the DNA. We conclude that the latter model gives the best description of the observed asymmetry. PMID:17557786

  1. Spatial Models and Networks of Living Systems

    DEFF Research Database (Denmark)

    Juul, Jeppe Søgaard

    When studying the dynamics of living systems, insight can often be gained by developing a mathematical model that can predict future behaviour of the system or help classify system characteristics. However, in living cells, organisms, and especially groups of interacting individuals, a large number...... species. Such systems are known to be stabilized by spatial structure. Finally, I analyse data from a large mobile phone network and show that people who are topologically close in the network have similar communication patterns. This main part of the thesis is based on six different articles, which I...... have co-authored during my three year PhD at the Center for Models of Life. Apart from these, I have co-authored another six articles, which also relate to spatial models of living systems. These are included as appendixes, but not described in detail in the thesis....

  2. Higher-dimensional models of networks

    CERN Document Server

    Spivak, David I

    2009-01-01

    Networks are often studied as graphs, where the vertices stand for entities in the world and the edges stand for connections between them. While relatively easy to study, graphs are often inadequate for modeling real-world situations, especially those that include contexts of more than two entities. For these situations, one typically uses hypergraphs or simplicial complexes. In this paper, we provide a precise framework in which graphs, hypergraphs, simplicial complexes, and many other categories, all of which model higher graphs, can be studied side-by-side. We show how to transform a hypergraph into its nearest simplicial analogue, for example. Our framework includes many new categories as well, such as one that models broadcasting networks. We give several examples and applications of these ideas.

  3. KSC Centralized Index Model in Complex Network

    Directory of Open Access Journals (Sweden)

    Jian Xu

    2014-05-01

    Full Text Available To dig potential spread nodes in a complex network mainly relies on using centralized indicators such as the node degree, closeness, betweenness and K-shell to evaluate spread node, which causes that the excavation accuracy is not high and adaptability not strong and induces other shortcomings, therefore this paper proposes KSC of centering indicator model. This model not only considers the internal attributes of nodes, but also takes the external attributes of nodes into account, and it finally conducts simulation experiments on propagation through the use of SIR model. The experimental results show that: The proposed algorithm is suitable for a variety of complex networks and it finds better, more promising and more influential dissemination nodes.

  4. Design and Implementation of a Network Security Model for Cooperative Network

    OpenAIRE

    Salah Alabady

    2009-01-01

    In this paper a design and implementation of a network security model was presented, using routers and firewall.Also this paper was conducted the network security weakness in router and firewall network devices, type of threats andresponses to those threats, and the method to prevent the attacks and hackers to access the network. Also this paper provides achecklist to use in evaluating whether a network is adhering to best practices in network security and data confidentiality. Themain aim of...

  5. The noisy voter model on complex networks

    CERN Document Server

    Carro, Adrián; Miguel, Maxi San

    2016-01-01

    We propose a new analytical method to study stochastic, binary-state models on complex networks. Moving beyond the usual mean-field theories, this alternative approach is based on the introduction of an uncorrelated network approximation, allowing to deal with the network structure as parametric heterogeneity. As an illustration, we study the noisy voter model, a modification of the original voter model including random changes of state. The proposed method is able to unfold the dependence of the model not only on the mean degree (the mean-field prediction) but also on more complex averages over the degree distribution. In particular, we find that the degree heterogeneity ---variance of the underlying degree distribution--- has a strong influence on the location of the critical point of a noise-induced, finite-size transition occurring in the model, on the local ordering of the system, and on the functional form of its temporal correlations. Finally, we show how this latter point opens the possibility of infe...

  6. Features and heterogeneities in growing network models

    CERN Document Server

    Ferretti, Luca; Yang, Bin; Marmorini, Giacomo; Bianconi, Ginestra

    2011-01-01

    Many complex networks from the World-Wide-Web to biological networks are growing taking into account the heterogeneous features of the nodes. The feature of a node might be a discrete quantity such as a classification of a URL document as personal page, thematic website, news, blog, search engine, social network, ect. or the classification of a gene in a functional module. Moreover the feature of a node can be a continuous variable such as the position of a node in the embedding space. In order to account for these properties, in this paper we provide a generalization of growing network models with preferential attachment that includes the effect of heterogeneous features of the nodes. The main effect of heterogeneity is the emergence of an "effective fitness" for each class of nodes, determining the rate at which nodes acquire new links. Beyond the degree distribution, in this paper we give a full characterization of the other relevant properties of the model. We evaluate the clustering coefficient and show ...

  7. Performance modeling, loss networks, and statistical multiplexing

    CERN Document Server

    Mazumdar, Ravi

    2009-01-01

    This monograph presents a concise mathematical approach for modeling and analyzing the performance of communication networks with the aim of understanding the phenomenon of statistical multiplexing. The novelty of the monograph is the fresh approach and insights provided by a sample-path methodology for queueing models that highlights the important ideas of Palm distributions associated with traffic models and their role in performance measures. Also presented are recent ideas of large buffer, and many sources asymptotics that play an important role in understanding statistical multiplexing. I

  8. Relativistic Computing Model Applied in Corporate Networks

    Directory of Open Access Journals (Sweden)

    Chau Sen Shia*1,

    2014-05-01

    Full Text Available Environmental computing information technology (it is one of the subjects of interest for organizations when the subject covers financial economics and return on investment for companies. This work aims to present as a contribution proposing a relativistic model of computation using the relativistic physics concepts and foundations of quantum mechanics to propose a new vision in the use of virtualization environment in corporate networks. The model was based on simulation and testing of connection with providers in virtualization environments with Datacenters and implementing the basics of relativity and quantum mechanics in communication with networks of companies, to establish alliances and resource sharing between organizations. The data were collected and then were performed calculations that demonstrate and identify connections and integrations that establish relations of cloud computing with the relativistic vision, in such a way that complement the approaches of physics and computing with the theories of the magnetic field and the propagation of light. The research is characterized as exploratory, because searches check physical connections with cloud computing, the network of companies and the adhesion of the proposed model. Were presented the relationship between the proposal and the practical application that makes it possible to describe the results of the main features, demonstrating the relativistic model integration with new technologies of virtualization of Datacenters, and optimize the resource with the propagation of light, electromagnetic waves, simultaneity, length contraction and time dilation

  9. Artificial Neural Network Model for Predicting Compressive

    Directory of Open Access Journals (Sweden)

    Salim T. Yousif

    2013-05-01

    Full Text Available   Compressive strength of concrete is a commonly used criterion in evaluating concrete. Although testing of the compressive strength of concrete specimens is done routinely, it is performed on the 28th day after concrete placement. Therefore, strength estimation of concrete at early time is highly desirable. This study presents the effort in applying neural network-based system identification techniques to predict the compressive strength of concrete based on concrete mix proportions, maximum aggregate size (MAS, and slump of fresh concrete. Back-propagation neural networks model is successively developed, trained, and tested using actual data sets of concrete mix proportions gathered from literature.    The test of the model by un-used data within the range of input parameters shows that the maximum absolute error for model is about 20% and 88% of the output results has absolute errors less than 10%. The parametric study shows that water/cement ratio (w/c is the most significant factor  affecting the output of the model.     The results showed that neural networks has strong potential as a feasible tool for predicting compressive strength of concrete.

  10. Networks in Cell Biology = Modelling cell biology with networks

    OpenAIRE

    Buchanan, Mark; Caldarelli, Guido; De Los Rios, Paolo; Rao, Francesco; Vendruscolo, M.

    2010-01-01

    The science of complex biological networks is transforming research in areas ranging from evolutionary biology to medicine. This is the first book on the subject, providing a comprehensive introduction to complex network science and its biological applications. With contributions from key leaders in both network theory and modern cell biology, this book discusses the network science that is increasingly foundational for systems biology and the quantitative understanding of living systems. It ...

  11. Air pollution model and neural network: an integrated modelling system

    International Nuclear Information System (INIS)

    It is well known that neural networks can work as universal approximators of non-linear functions and they have become a useful tool either where any precise phenomenological model is available or when uncertainty complicates the application of deterministic modelling as, for example, in environmental systems. Usually, N N models are using as regression tool. We have developed an integrated modelling system coupling an air dispersion model with a neural network method both to simulate the influence of important parameters on air pollution models and to minimize the input neural net variables. In our approach, an optimised 3-Layer Perception is used to filter the air pollution concentrations evaluated by means of the non-Gaussian analytical model ADMD. We applied this methodology to the well known Indianapolis urban data set which deals with a release of pollutants from an elevated emission source.

  12. New Federated Collaborative Networked Organization Model (FCNOM

    Directory of Open Access Journals (Sweden)

    Morcous M. Yassa

    2012-01-01

    Full Text Available Formation of Collaborative Networked Organization (CNO usually comes upon expected business opportunities and needs huge of negotiation during its lifecycle, especially to increase the Dynamic Virtual Organization (DVO configuration automation. Decision makers need more comprehensive information about CNO system to support their decisions. Unfortunately, there is no single formal modeling, tool, approach or any comprehensive methodology that covers all perspectives. In spite of there are some approaches to model CNO have been existed, these approaches model the CNO either with respect to the technology, or business without considering organizational behavior, federation modeling, and external environments. The aim of this paper is to propose an integrated framework that combines the existed modeling perspectives, as well as, proposes new ones. Also, it provides clear CNO boundaries. By using this approach the view of CNO environment becomes clear and unified. Also, it minimizes the negotiations within CNO components during its life cycle, supports DVO configuration automation, as well as, helps decision making for DVO, and achieves harmonization between CNO partners. The proposed FCNOM utilizes CommonKADS methodology organization model for describing CNO components. Insurance Collaborative Network has been used as an example to proof the proposed FCNOM model.

  13. Modeling In-Network Aggregation in VANETs

    NARCIS (Netherlands)

    Dietzel, Stefan; Kargl, Frank; Heijenk, Geert; Schaub, Florian

    2011-01-01

    The multitude of applications envisioned for vehicular ad hoc networks requires efficient communication and dissemination mechanisms to prevent network congestion. In-network data aggregation promises to reduce bandwidth requirements and enable scalability in large vehicular networks. However, most

  14. Reliable Communication Models in Interdependent Critical Infrastructure Networks

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sangkeun (Matt) [ORNL; Chinthavali, Supriya [ORNL; Shankar, Mallikarjun [ORNL

    2016-01-01

    Modern critical infrastructure networks are becoming increasingly interdependent where the failures in one network may cascade to other dependent networks, causing severe widespread national-scale failures. A number of previous efforts have been made to analyze the resiliency and robustness of interdependent networks based on different models. However, communication network, which plays an important role in today's infrastructures to detect and handle failures, has attracted little attention in the interdependency studies, and no previous models have captured enough practical features in the critical infrastructure networks. In this paper, we study the interdependencies between communication network and other kinds of critical infrastructure networks with an aim to identify vulnerable components and design resilient communication networks. We propose several interdependency models that systematically capture various features and dynamics of failures spreading in critical infrastructure networks. We also discuss several research challenges in building reliable communication solutions to handle failures in these models.

  15. Effect of taking dietary supplement on hematological and biochemical parameters in male bodybuilders an equation model

    OpenAIRE

    Meamar, Rokhsareh; Maracy, Mohammad; Nematollahi, Shahrzad; Yeroshalmi, Shemouil; Zamani-Moghaddam, Ali; Ghazvini, Mohammad Reza Aghaye

    2015-01-01

    Background: The improved physical action following administration of supplements to bodybuilders was supported by changes in laboratory parameters. Despite the fact that these supplements are sometimes associated both advantage and side effects, this study were conducted for the purpose of evaluating the possible effects of some commonly used supplements in bodybuilders on the hematological and biochemical parameters. Materials and Methods: In this study, we included 40 male bodybuilders as c...

  16. Centralized Bayesian reliability modelling with sensor networks

    Czech Academy of Sciences Publication Activity Database

    Dedecius, Kamil; Sečkárová, Vladimíra

    2013-01-01

    Roč. 19, č. 5 (2013), s. 471-482. ISSN 1387-3954 R&D Projects: GA MŠk 7D12004 Grant ostatní: GA MŠk(CZ) SVV-265315 Keywords : Bayesian modelling * Sensor network * Reliability Subject RIV: BD - Theory of Information Impact factor: 0.984, year: 2013 http://library.utia.cas.cz/separaty/2013/AS/dedecius-0392551.pdf

  17. Bayesian Network Models for Adaptive Testing

    Czech Academy of Sciences Publication Activity Database

    Plajner, Martin; Vomlel, Jiří

    Achen: Sun SITE Central Europe, 2016 - (Agosta, J.; Carvalho, R.), s. 24-33. (CEUR Workshop Proceedings. Vol 1565). ISSN 1613-0073. [The Twelfth UAI Bayesian Modeling Applications Workshop (BMAW 2015). Amsterdam (NL), 16.07.2015] R&D Projects: GA ČR GA13-20012S Institutional support: RVO:67985556 Keywords : Bayesian networks * Computerized adaptive testing Subject RIV: JD - Computer Applications, Robotics http://library.utia.cas.cz/separaty/2016/MTR/plajner-0458062.pdf

  18. The Channel Network model and field applications

    International Nuclear Information System (INIS)

    The Channel Network model describes the fluid flow and solute transport in fractured media. The model is based on field observations, which indicate that flow and transport take place in a three-dimensional network of connected channels. The channels are generated in the model from observed stochastic distributions and solute transport is modeled taking into account advection and rock interactions, such as matrix diffusion and sorption within the rock. The most important site-specific data for the Channel Network model are the conductance distribution of the channels and the flow-wetted surface. The latter is the surface area of the rock in contact with the flowing water. These parameters may be estimated from hydraulic measurements. For the Aespoe site, several borehole data sets are available, where a packer distance of 3 meters was used. Numerical experiments were performed in order to study the uncertainties in the determination of the flow-wetted surface and conductance distribution. Synthetic data were generated along a borehole and hydraulic tests with different packer distances were simulated. The model has previously been used to study the Long-term Pumping and Tracer Test (LPT2) carried out in the Aespoe Hard Rock Laboratory (HRL) in Sweden, where the distance travelled by the tracers was of the order hundreds of meters. Recently, the model has been used to simulate the tracer tests performed in the TRUE experiment at HRL, with travel distance of the order of tens of meters. Several tracer tests with non-sorbing and sorbing species have been performed

  19. A proposed "osi based" network troubles identification model

    OpenAIRE

    Murat Kayri; Ismail Kayri

    2010-01-01

    The OSI model, developed by ISO in 1984, attempts to summarize complicated network cases on layers. Moreover, network troubles are expressed by taking the model into account. However, there has been no standardization for network troubles up to now. Network troubles have only been expressed by the name of the related layer. In this paper, it is pointed out that possible troubles on the related layer vary and possible troubles on each layer are categorized for functional network administration...

  20. Decoupling MSW settlement into mechanical and biochemical processes--modelling and validation on large-scale setups.

    Science.gov (United States)

    Gourc, J-P; Staub, M J; Conte, M

    2010-01-01

    Forecasting settlements of non-hazardous waste is essential to ensure the integrity and durability of landfill covers over time. Over a short time span, the survey of settlements may also contribute to the investigation of the biodegradation processes. This paper addresses secondary settlements of Municipal Solid Waste (MSW), a heterogeneous and time-evolving material. An analysis of available experimental data from different pilots and the literature was conducted to quantify the influence of biodegradation on MSW secondary settlements. After making assumptions about the various features of the waste and their constitutive relationships, a one-dimensional biomechanical model to predict the secondary settlement has been developed. The determination of the total secondary settlement was obtained by the addition of two separate parts, the mechanical settlement, due to creep, and the biochemical settlement, due to the degradation of the organic matter. The latter has been evaluated based on the observed biogas production. Using the data from different recent large-scale experiments that provide a monitoring of biogas production, a method for predicting the biochemically-induced settlements is proposed and validated on these tests. The relative contributions of mechanical and biochemical settlements are also calculated and discussed as a function of waste pre-treatment and operation conditions (biological pre-treatment, shredding, leachate injection). Finally, settlement may be considered as a relevant indicator for the state of biodegradation. PMID:20381332

  1. A proposed "osi based" network troubles identification model

    CERN Document Server

    Kayri, Murat; 10.5121/ijngn.2010.2302

    2010-01-01

    The OSI model, developed by ISO in 1984, attempts to summarize complicated network cases on layers. Moreover, network troubles are expressed by taking the model into account. However, there has been no standardization for network troubles up to now. Network troubles have only been expressed by the name of the related layer. In this paper, it is pointed out that possible troubles on the related layer vary and possible troubles on each layer are categorized for functional network administration and they are standardized in an eligible way. The proposed model for network trouble shooting was developed considering the OSI model.

  2. Nonequilibrium Zaklan model on Apollonian Networks

    CERN Document Server

    Lima, F W S

    2012-01-01

    The Zaklan model had been proposed and studied recently using the equilibrium Ising model on Square Lattices (SL) by Zaklan et al (2008), near the critical temperature of the Ising model presenting a well-defined phase transition; but on normal and modified Apollonian networks (ANs), Andrade et al. (2005, 2009) studied the equilibrium Ising model. They showed the equilibrium Ising model not to present on ANs a phase transition of the type for the 2D Ising model. Here, within the context of agent-based Monte-Carlo simulations, we study the Zaklan model using the well-known majority-vote model (MVM) with noise and apply it to tax evasion on ANs, to show that differently from the Ising model the MVM on ANs presents a well defined phase transition. To control the tax evasion in the economics model proposed by Zaklan et al, MVM is applied in the neighborhood of the critical noise $q_{c}$ to the Zaklan model. Here we show that the Zaklan model is robust because this can be studied besides using equilibrium dynamics...

  3. Electronic circuits modeling using artificial neural networks

    Directory of Open Access Journals (Sweden)

    Andrejević Miona V.

    2003-01-01

    Full Text Available In this paper artificial neural networks (ANN are applied to modeling of electronic circuits. ANNs are used for application of the black-box modeling concept in the time domain. Modeling process is described, so the topology of the ANN, the testing signal used for excitation, together with the complexity of ANN are considered. The procedure is first exemplified in modeling of resistive circuits. MOS transistor, as a four-terminal device, is modeled. Then nonlinear negative resistive characteristic is modeled in order to be used as a piece-wise linear resistor in Chua's circuit. Examples of modeling nonlinear dynamic circuits are given encompassing a variety of modeling problems. A nonlinear circuit containing quartz oscillator is considered for modeling. Verification of the concept is performed by verifying the ability of the model to generalize i.e. to create acceptable responses to excitations not used during training. Implementation of these models within a behavioral simulator is exemplified. Every model is implemented in realistic surrounding in order to show its interaction, and of course, its usage and purpose.

  4. Mathematical model for spreading dynamics of social network worms

    International Nuclear Information System (INIS)

    In this paper, a mathematical model for social network worm spreading is presented from the viewpoint of social engineering. This model consists of two submodels. Firstly, a human behavior model based on game theory is suggested for modeling and predicting the expected behaviors of a network user encountering malicious messages. The game situation models the actions of a user under the condition that the system may be infected at the time of opening a malicious message. Secondly, a social network accessing model is proposed to characterize the dynamics of network users, by which the number of online susceptible users can be determined at each time step. Several simulation experiments are carried out on artificial social networks. The results show that (1) the proposed mathematical model can well describe the spreading dynamics of social network worms; (2) weighted network topology greatly affects the spread of worms; (3) worms spread even faster on hybrid social networks

  5. Some applications of neural networks in microwave modeling

    Directory of Open Access Journals (Sweden)

    Milovanović Bratislav D.

    2003-01-01

    Full Text Available This paper presents some applications of neural networks in the microwave modeling. The applications are related to modeling of either passive or active structures and devices. Modeling is performed using not only simple multilayer perception network (MLP but also advanced knowledge based neural network (KBNN structures.

  6. Complex networks-based energy-efficient evolution model for wireless sensor networks

    International Nuclear Information System (INIS)

    Based on complex networks theory, we present two self-organized energy-efficient models for wireless sensor networks in this paper. The first model constructs the wireless sensor networks according to the connectivity and remaining energy of each sensor node, thus it can produce scale-free networks which have a performance of random error tolerance. In the second model, we not only consider the remaining energy, but also introduce the constraint of links to each node. This model can make the energy consumption of the whole network more balanced. Finally, we present the numerical experiments of the two models.

  7. A limit cycle oscillator model for cycling mood variations of bipolar disorder patients derived from cellular biochemical reaction equations

    Science.gov (United States)

    Frank, T. D.

    2013-08-01

    We derive a nonlinear limit cycle model for oscillatory mood variations as observed in patients with cycling bipolar disorder. To this end, we consider two signaling pathways leading to the activation of two enzymes that play a key role for cellular and neural processes. We model pathway cross-talk in terms of an inhibitory impact of the first pathway on the second and an excitatory impact of the second on the first. The model also involves a negative feedback loop (inhibitory self-regulation) for the first pathway and a positive feedback loop (excitatory self-regulation) for the second pathway. We demonstrate that due to the cross-talk the biochemical dynamics is described by an oscillator equation. Under disease-free conditions the oscillatory system exhibits a stable fixed point. The breakdown of the self-inhibition of the first pathway at higher concentration levels is studied by means of a scalar control parameter ξ, where ξ equal to zero refers to intact self-inhibition at all concentration levels. Under certain conditions, stable limit cycle solutions emerge at critical parameter values of ξ larger than zero. These oscillations mimic pathological cycling mood variations that emerge due to a disease-induced bifurcation. Consequently, our modeling analysis supports the notion of bipolar disorder as a dynamical disease. In addition, our study establishes a connection between mechanistic biochemical modeling of bipolar disorder and phenomenological nonlinear oscillator approaches to bipolar disorder suggested in the literature.

  8. A network model for Ebola spreading.

    Science.gov (United States)

    Rizzo, Alessandro; Pedalino, Biagio; Porfiri, Maurizio

    2016-04-01

    The availability of accurate models for the spreading of infectious diseases has opened a new era in management and containment of epidemics. Models are extensively used to plan for and execute vaccination campaigns, to evaluate the risk of international spreadings and the feasibility of travel bans, and to inform prophylaxis campaigns. Even when no specific therapeutical protocol is available, as for the Ebola Virus Disease (EVD), models of epidemic spreading can provide useful insight to steer interventions in the field and to forecast the trend of the epidemic. Here, we propose a novel mathematical model to describe EVD spreading based on activity driven networks (ADNs). Our approach overcomes the simplifying assumption of homogeneous mixing, which is central to most of the mathematically tractable models of EVD spreading. In our ADN-based model, each individual is not bound to contact every other, and its network of contacts varies in time as a function of an activity potential. Our model contemplates the possibility of non-ideal and time-varying intervention policies, which are critical to accurately describe EVD spreading in afflicted countries. The model is calibrated from field data of the 2014 April-to-December spreading in Liberia. We use the model as a predictive tool, to emulate the dynamics of EVD in Liberia and offer a one-year projection, until December 2015. Our predictions agree with the current vision expressed by professionals in the field, who consider EVD in Liberia at its final stage. The model is also used to perform a what-if analysis to assess the efficacy of timely intervention policies. In particular, we show that an earlier application of the same intervention policy would have greatly reduced the number of EVD cases, the duration of the outbreak, and the infrastructures needed for the implementation of the intervention. PMID:26804645

  9. Modeling online social networks based on preferential linking

    Institute of Scientific and Technical Information of China (English)

    Hu Hai-Bo; Guo Jin-Li; Chen Jun

    2012-01-01

    We study the phenomena of preferential linking in a large-scale evolving online social network and find that the linear preference holds for preferential creation,preferential acceptance,and preferential attachment.Based on the linear preference,we propose an analyzable model,which illustrates the mechanism of network growth and reproduces the process of network evolution.Our simulations demonstrate that the degree distribution of the network produced by the model is in good agreement with that of the real network.This work provides a possible bridge between the micro-mechanisms of network growth and the macrostructures of online social networks.

  10. Modeling online social networks based on preferential linking

    International Nuclear Information System (INIS)

    We study the phenomena of preferential linking in a large-scale evolving online social network and find that the linear preference holds for preferential creation, preferential acceptance, and preferential attachment. Based on the linear preference, we propose an analyzable model, which illustrates the mechanism of network growth and reproduces the process of network evolution. Our simulations demonstrate that the degree distribution of the network produced by the model is in good agreement with that of the real network. This work provides a possible bridge between the micro-mechanisms of network growth and the macrostructures of online social networks

  11. Modeling GSM Based Network Communication in Vehicular Network

    OpenAIRE

    M. Milton Joe; Ramakrishnan, B.; R. S. Shaji

    2014-01-01

    Obviously fair communication establishment in every technology increases the efficiency. As we know well, vehicles are used in day to day life of every human being to move from one location to another location. If network communication is formed between vehicles, mobile phones and home based telephones, it will increase the safety of the passengers by communicating with one another. In this paper, we propose GSM based network communication in vehicles, which will develop reliable network comm...

  12. Towards a Realistic Model for Failure Propagation in Interdependent Networks

    CERN Document Server

    Sturaro, Agostino; Conti, Mauro; Das, Sajal K

    2015-01-01

    Modern networks are becoming increasingly interdependent. As a prominent example, the smart grid is an electrical grid controlled through a communications network, which in turn is powered by the electrical grid. Such interdependencies create new vulnerabilities and make these networks more susceptible to failures. In particular, failures can easily spread across these networks due to their interdependencies, possibly causing cascade effects with a devastating impact on their functionalities. In this paper we focus on the interdependence between the power grid and the communications network, and propose a novel realistic model, HINT (Heterogeneous Interdependent NeTworks), to study the evolution of cascading failures. Our model takes into account the heterogeneity of such networks as well as their complex interdependencies. We compare HINT with previously proposed models both on synthetic and real network topologies. Experimental results show that existing models oversimplify the failure evolution and network...

  13. An Anti-attack Model Based on Complex Network Theory in P2P networks

    CERN Document Server

    Peng, Hao; Zhao, Dandan; Zhang, Aixin; Li, Jianhua

    2011-01-01

    Complex network theory is a useful way to study many real systems. In this paper, an anti-attack model based on complex network theory is introduced. The mechanism of this model is based on dynamic compensation process and reverse percolation process in P2P networks. The main purpose of the paper is: (i) a dynamic compensation process can turn an attacked P2P network into a power-law (PL) network with exponential cutoff; (ii) a local healing process can restore the maximum degree of peers in an attacked P2P network to a normal level; (iii) a restoring process based on reverse percolation theory connects the fragmentary peers of an attacked P2P network together into a giant connected component. In this way, the model based on complex network theory can be effectively utilized for anti-attack and protection purposes in P2P networks.

  14. A hybrid neural network model for consciousness

    Institute of Scientific and Technical Information of China (English)

    蔺杰; 金小刚; 杨建刚

    2004-01-01

    A new framework for consciousness is introduced based upon traditional artificial neural network models. This framework reflects explicit connections between two parts of the brain: one global working memory and distributed modular cerebral networks relating to specific brain functions. Accordingly this framework is composed of three layers,physical mnemonic layer and abstract thinking layer,which cooperate together through a recognition layer to accomplish information storage and cognition using algorithms of how these interactions contribute to consciousness:(1)the reception process whereby cerebral subsystems group distributed signals into coherent object patterns;(2)the partial recognition process whereby patterns from particular subsystems are compared or stored as knowledge; and(3)the resonant learning process whereby global workspace stably adjusts its structure to adapt to patterns' changes. Using this framework,various sorts of human actions can be explained,leading to a general approach for analyzing brain functions.

  15. Modelling Traffic in IMS Network Nodes

    Directory of Open Access Journals (Sweden)

    BA Alassane

    2013-07-01

    Full Text Available IMS is well integrated with existing voice and data networks, while adopting many of their keycharacteristics.The Call Session Control Functions (CSCFs servers are the key part of the IMS structure. They are themain components responsible for processing and routing signalling messages.When CSCFs servers (P-CSCF, I-CSCF, S-CSCF are running on the same host, the SIP message can beinternally passed between SIP servers using a single operating system mechanism like a queue. It increasesthe reliability of the network [5], [6]. We have proposed in a last work for each type of service (between ICSCFand S-CSCF (call, data, multimedia.[23], to use less than two servers well dimensioned andrunning on the same operating system.Instead dimensioning servers, in order to increase performance, we try to model traffic on IMS nodes,particularly on entries nodes; it will provide results on separation of incoming flows, and then offer moresatisfactory service.

  16. A hybrid neural network model for consciousness

    Institute of Scientific and Technical Information of China (English)

    蔺杰; 金小刚; 杨建刚

    2004-01-01

    A new framework for consciousness is introduced based upon traditional artificial neural network models. This framework reflects explicit connections between two parts of the brain: one global working memory and distributed modular cerebral networks relating to specific brain functions. Accordingly this framework is composed of three layers, physical mnemonic layer and abstract thinking layer, which cooperate together through a recognition layer to accomplish information storage and cognition using algorithms of how these interactions contribute to consciousness: (l) the reception process whereby cerebral subsystems group distributed signals into coherent object patterns; (2) the partial recognition process whereby patterns from particular subsystems are compared or stored as knowledge; and (3) the resonant learning process whereby global workspace stably adjusts its structure to adapt to patterns' changes. Using this framework, various sorts of human actions can be explained, leading to a general approach for analyzing brain functions.

  17. BioJazz: in silico evolution of cellular networks with unbounded complexity using rule-based modeling.

    Science.gov (United States)

    Feng, Song; Ollivier, Julien F; Swain, Peter S; Soyer, Orkun S

    2015-10-30

    Systems biologists aim to decipher the structure and dynamics of signaling and regulatory networks underpinning cellular responses; synthetic biologists can use this insight to alter existing networks or engineer de novo ones. Both tasks will benefit from an understanding of which structural and dynamic features of networks can emerge from evolutionary processes, through which intermediary steps these arise, and whether they embody general design principles. As natural evolution at the level of network dynamics is difficult to study, in silico evolution of network models can provide important insights. However, current tools used for in silico evolution of network dynamics are limited to ad hoc computer simulations and models. Here we introduce BioJazz, an extendable, user-friendly tool for simulating the evolution of dynamic biochemical networks. Unlike previous tools for in silico evolution, BioJazz allows for the evolution of cellular networks with unbounded complexity by combining rule-based modeling with an encoding of networks that is akin to a genome. We show that BioJazz can be used to implement biologically realistic selective pressures and allows exploration of the space of network architectures and dynamics that implement prescribed physiological functions. BioJazz is provided as an open-source tool to facilitate its further development and use. Source code and user manuals are available at: http://oss-lab.github.io/biojazz and http://osslab.lifesci.warwick.ac.uk/BioJazz.aspx. PMID:26101250

  18. Predictive Modeling of Opinion and Connectivity Dynamics in Social Networks

    OpenAIRE

    Saini, Ajay; Markuzon, Natasha

    2016-01-01

    Recent years saw an increased interest in modeling and understanding the mechanisms of opinion and innovation spread through human networks. Using analysis of real-world social data, researchers are able to gain a better understanding of the dynamics of social networks and subsequently model the changes in such networks over time. We developed a social network model that both utilizes an agent-based approach with a dynamic update of opinions and connections between agents and reflects opinion...

  19. A Proposed "OSI Based" Network Troubles Identification Model

    Directory of Open Access Journals (Sweden)

    Murat Kayri

    2010-09-01

    Full Text Available The OSI model, developed by ISO in 1984, attempts to summarize complicated network cases on layers.Moreover, network troubles are expressed by taking the model into account. However, there has been nostandardization for network troubles up to now. Network troubles have only been expressed by the name ofthe related layer. In this paper, it is pointed out that possible troubles on the related layer vary and possibletroubles on each layer are categorized for functional network administration and they are standardized inan eligible way. The proposed model for network trouble shooting was developed considering the OSImodel

  20. Towards an evolutionary model of transcription networks.

    Directory of Open Access Journals (Sweden)

    Dan Xie

    2011-06-01

    Full Text Available DNA evolution models made invaluable contributions to comparative genomics, although it seemed formidable to include non-genomic features into these models. In order to build an evolutionary model of transcription networks (TNs, we had to forfeit the substitution model used in DNA evolution and to start from modeling the evolution of the regulatory relationships. We present a quantitative evolutionary model of TNs, subjecting the phylogenetic distance and the evolutionary changes of cis-regulatory sequence, gene expression and network structure to one probabilistic framework. Using the genome sequences and gene expression data from multiple species, this model can predict regulatory relationships between a transcription factor (TF and its target genes in all species, and thus identify TN re-wiring events. Applying this model to analyze the pre-implantation development of three mammalian species, we identified the conserved and re-wired components of the TNs downstream to a set of TFs including Oct4, Gata3/4/6, cMyc and nMyc. Evolutionary events on the DNA sequence that led to turnover of TF binding sites were identified, including a birth of an Oct4 binding site by a 2nt deletion. In contrast to recent reports of large interspecies differences of TF binding sites and gene expression patterns, the interspecies difference in TF-target relationship is much smaller. The data showed increasing conservation levels from genomic sequences to TF-DNA interaction, gene expression, TN, and finally to morphology, suggesting that evolutionary changes are larger at molecular levels and smaller at functional levels. The data also showed that evolutionarily older TFs are more likely to have conserved target genes, whereas younger TFs tend to have larger re-wiring rates.

  1. Evaluation and modeling of biochemical methane potential (BMP) of landfilled solid waste: a pilot scale study

    DEFF Research Database (Denmark)

    Bilgili, M Sinan; Demir, Ahmet; Varank, Gamze

    2009-01-01

    The main goal of this study was to present a comparison of landfill performance with respect to solids decomposition. Biochemical methane potential (BMP) test was used to determine the initial and the remaining CH(4) potentials of solid wastes during 27 months of landfilling operation in two pilot...... scale landfill reactors. The initial methane potential of solid wastes filled to the reactors was around 0.347 L/CH(4)/g dry waste, which decreased with operational time of landfill reactors to values of 0.117 and 0.154 L/CH(4)/g dry waste for leachate recirculated (R1) and non-recirculated (R2...

  2. Epidemic model with isolation in multilayer networks

    CERN Document Server

    Zuzek, L G Alvarez; Braunstein, L A

    2014-01-01

    The Susceptible-Infected-Recovered (SIR) model has successfully mimicked the propagation of such airborne diseases as influenza A (H1N1). Although the SIR model has recently been studied in a multilayer networks configuration, in almost all the research the dynamic movement of infected individuals, e.g., how they are often kept in isolation, is disregarded. We study the SIR model in two multilayer networks and use an isolation parameter, indicating time period, to measure the effect of isolating infected individuals from both layers. This isolation reduces the transmission of the disease because the time in which infection can spread is reduced. In this scenario we find that the epidemic threshold increases with the isolation time and the isolation parameter and the impact of the propagation is reduced. We also find that when isolation is total there is a threshold for the isolation parameter above which the disease never becomes an epidemic. We also find that regular epidemic models always overestimate the e...

  3. Social network models predict movement and connectivity in ecological landscapes

    Science.gov (United States)

    Fletcher, R.J., Jr.; Acevedo, M.A.; Reichert, Brian E.; Pias, Kyle E.; Kitchens, W.M.

    2011-01-01

    Network analysis is on the rise across scientific disciplines because of its ability to reveal complex, and often emergent, patterns and dynamics. Nonetheless, a growing concern in network analysis is the use of limited data for constructing networks. This concern is strikingly relevant to ecology and conservation biology, where network analysis is used to infer connectivity across landscapes. In this context, movement among patches is the crucial parameter for interpreting connectivity but because of the difficulty of collecting reliable movement data, most network analysis proceeds with only indirect information on movement across landscapes rather than using observed movement to construct networks. Statistical models developed for social networks provide promising alternatives for landscape network construction because they can leverage limited movement information to predict linkages. Using two mark-recapture datasets on individual movement and connectivity across landscapes, we test whether commonly used network constructions for interpreting connectivity can predict actual linkages and network structure, and we contrast these approaches to social network models. We find that currently applied network constructions for assessing connectivity consistently, and substantially, overpredict actual connectivity, resulting in considerable overestimation of metapopulation lifetime. Furthermore, social network models provide accurate predictions of network structure, and can do so with remarkably limited data on movement. Social network models offer a flexible and powerful way for not only understanding the factors influencing connectivity but also for providing more reliable estimates of connectivity and metapopulation persistence in the face of limited data.

  4. Inferring gene regression networks with model trees

    Directory of Open Access Journals (Sweden)

    Aguilar-Ruiz Jesus S

    2010-10-01

    Full Text Available Abstract Background Novel strategies are required in order to handle the huge amount of data produced by microarray technologies. To infer gene regulatory networks, the first step is to find direct regulatory relationships between genes building the so-called gene co-expression networks. They are typically generated using correlation statistics as pairwise similarity measures. Correlation-based methods are very useful in order to determine whether two genes have a strong global similarity but do not detect local similarities. Results We propose model trees as a method to identify gene interaction networks. While correlation-based methods analyze each pair of genes, in our approach we generate a single regression tree for each gene from the remaining genes. Finally, a graph from all the relationships among output and input genes is built taking into account whether the pair of genes is statistically significant. For this reason we apply a statistical procedure to control the false discovery rate. The performance of our approach, named REGNET, is experimentally tested on two well-known data sets: Saccharomyces Cerevisiae and E.coli data set. First, the biological coherence of the results are tested. Second the E.coli transcriptional network (in the Regulon database is used as control to compare the results to that of a correlation-based method. This experiment shows that REGNET performs more accurately at detecting true gene associations than the Pearson and Spearman zeroth and first-order correlation-based methods. Conclusions REGNET generates gene association networks from gene expression data, and differs from correlation-based methods in that the relationship between one gene and others is calculated simultaneously. Model trees are very useful techniques to estimate the numerical values for the target genes by linear regression functions. They are very often more precise than linear regression models because they can add just different linear

  5. Improved simultaneous estimation of tracer kinetic models with artificial immune network based optimization method.

    Science.gov (United States)

    Liu, L; Ding, H; Huang, H B

    2016-01-01

    Tracer kinetic modeling (TKM) is a promising quantitative method for physiological and biochemical processes in vivo. In this paper, we investigated the applications of an immune-inspired method to better address the issues of Simultaneous Estimation (SIME) of TKM with multimodal optimization. Experiments of dynamic FDG PET imaging experiments and simulation studies were carried out. The proposed artificial immune network (TKM_AIN) shows more scalable and effective when compared with the gradient-based Marquardt-Levenberg algorithm and the scholastic-based simulated annealing method. PMID:26433131

  6. Modeling GSM Based Network Communication in Vehicular Network

    Directory of Open Access Journals (Sweden)

    M. Milton Joe

    2014-02-01

    Full Text Available Obviously fair communication establishment in every technology increases the efficiency. As we know well, vehicles are used in day to day life of every human being to move from one location to another location. If network communication is formed between vehicles, mobile phones and home based telephones, it will increase the safety of the passengers by communicating with one another. In this paper, we propose GSM based network communication in vehicles, which will develop reliable network communication between vehicles, mobile phones and home based telephones. The added advantage GSM based network communication among vehicles will lead to safety of travel by tracking the vehicle's location, since GSM based network communication is established in vehicles.

  7. A model of chlorpyrifos distribution and its biochemical effects on the liver and kidneys of rats.

    Science.gov (United States)

    Tanvir, E M; Afroz, R; Chowdhury, Maz; Gan, S H; Karim, N; Islam, M N; Khalil, M I

    2016-09-01

    This study investigated the main target sites of chlorpyrifos (CPF), its effect on biochemical indices, and the pathological changes observed in rat liver and kidney function using gas chromatography/mass spectrometry. Adult female Wistar rats (n = 12) were randomly assigned into two groups (one control and one test group; n = 6 each). The test group received CPF via oral gavage for 21 days at 5 mg/kg daily. The distribution of CPF was determined in various organs (liver, brain, heart, lung, kidney, ovary, adipose tissue, and skeletal muscle), urine and stool samples using GCMS. Approximately 6.18% of CPF was distributed in the body tissues, and the highest CPF concentration (3.80%) was found in adipose tissue. CPF also accumulated in the liver (0.29%), brain (0.22%), kidney (0.10%), and ovary (0.03%). Approximately 83.60% of CPF was detected in the urine. CPF exposure resulted in a significant increase in plasma transaminases, alkaline phosphatase, and total bilirubin levels, a significant reduction in total protein levels and an altered lipid profile. Oxidative stress due to CPF administration was also evidenced by a significant increase in liver malondialdehyde levels. The detrimental effects of CPF on kidney function consisted of a significant increase in plasma urea and creatinine levels. Liver and kidney histology confirmed the observed biochemical changes. In conclusion, CPF bioaccumulates over time and exerts toxic effects on animals. PMID:26519480

  8. Neural Networks For Electrohydrodynamic Effect Modelling

    Directory of Open Access Journals (Sweden)

    Wiesław Wajs

    2004-01-01

    Full Text Available This paper presents currently achieved results concerning methods of electrohydrodynamiceffect used in geophysics simulated with feedforward networks trained with backpropagation algorithm, radial basis function networks and generalized regression networks.

  9. Modeling and Robustness of Knowledge Network in Supply Chain

    Institute of Scientific and Technical Information of China (English)

    王道平; 沈睿芳

    2014-01-01

    The growth and evolution of the knowledge network in supply chain can be characterized by dynamic growth clustering and non-homogeneous degree distribution. The networks with the above characteristics are also known as scale-free networks. In this paper, the knowledge network model in supply chain is established, in which the preferential attachment mechanism based on the node strength is adopted to simulate the growth and evolution of the network. The nodes in the network have a certain preference in the choice of a knowledge partner. On the basis of the network model, the robustness of the three network models based on different preferential attachment strategies is in-vestigated. The robustness is also referred to as tolerances when the nodes are subjected to random destruction and malicious damage. The simulation results of this study show that the improved network has higher connectivity and stability.

  10. Fundamentals of complex networks models, structures and dynamics

    CERN Document Server

    Chen, Guanrong; Li, Xiang

    2014-01-01

    Complex networks such as the Internet, WWW, transportationnetworks, power grids, biological neural networks, and scientificcooperation networks of all kinds provide challenges for futuretechnological development. In particular, advanced societies havebecome dependent on large infrastructural networks to an extentbeyond our capability to plan (modeling) and to operate (control).The recent spate of collapses in power grids and ongoing virusattacks on the Internet illustrate the need for knowledge aboutmodeling, analysis of behaviors, optimized planning and performancecontrol in such networks. F

  11. Modeling management of research and education networks

    OpenAIRE

    Galagan, D.V.

    2004-01-01

    Computer networks and their services have become an essential part of research and education. Nowadays every modern R&E institution must have a computer network and provide network services to its students and staff. In addition to its internal computer network, every R&E institution must have a connection with the computer networks of other institutions, and the Internet. Such connectivity is no longer a luxury, but a necessity. This is where the computer networks among the R&E organizations...

  12. New generation of elastic network models.

    Science.gov (United States)

    López-Blanco, José Ramón; Chacón, Pablo

    2016-04-01

    The intrinsic flexibility of proteins and nucleic acids can be grasped from remarkably simple mechanical models of particles connected by springs. In recent decades, Elastic Network Models (ENMs) combined with Normal Model Analysis widely confirmed their ability to predict biologically relevant motions of biomolecules and soon became a popular methodology to reveal large-scale dynamics in multiple structural biology scenarios. The simplicity, robustness, low computational cost, and relatively high accuracy are the reasons behind the success of ENMs. This review focuses on recent advances in the development and application of ENMs, paying particular attention to combinations with experimental data. Successful application scenarios include large macromolecular machines, structural refinement, docking, and evolutionary conservation. PMID:26716577

  13. Modeling Transmission Line Networks Using Quantum Graphs

    Science.gov (United States)

    Koch, Trystan; Antonsen, Thomas

    Quantum graphs--one dimensional edges, connecting nodes, that support propagating Schrödinger wavefunctions--have been studied extensively as tractable models of wave chaotic behavior (Smilansky and Gnutzmann 2006, Berkolaiko and Kuchment 2013). Here we consider the electrical analog, in which the graph represents an electrical network where the edges are transmission lines (Hul et. al. 2004) and the nodes contain either discrete circuit elements or intricate circuit elements best represented by arbitrary scattering matrices. Including these extra degrees of freedom at the nodes leads to phenomena that do not arise in simpler graph models. We investigate the properties of eigenfrequencies and eigenfunctions on these graphs, and relate these to the statistical description of voltages on the transmission lines when driving the network externally. The study of electromagnetic compatibility, the effect of external radiation on complicated systems with numerous interconnected cables, motivates our research into this extension of the graph model. Work supported by the Office of Naval Research (N0014130474) and the Air Force Office of Scientific Research.

  14. Networks model of the East Turkistan terrorism

    Science.gov (United States)

    Li, Ben-xian; Zhu, Jun-fang; Wang, Shun-guo

    2015-02-01

    The presence of the East Turkistan terrorist network in China can be traced back to the rebellions on the BAREN region in Xinjiang in April 1990. This article intends to research the East Turkistan networks in China and offer a panoramic view. The events, terrorists and their relationship are described using matrices. Then social network analysis is adopted to reveal the network type and the network structure characteristics. We also find the crucial terrorist leader. Ultimately, some results show that the East Turkistan network has big hub nodes and small shortest path, and that the network follows a pattern of small world network with hierarchical structure.

  15. Modeling a network of brane worlds

    International Nuclear Information System (INIS)

    We study junctions of supersymmetric domain walls in N=1 supergravity theories in four dimensions, coupled to a chiral superfield with quartic superpotential having Z3 symmetry. After deriving a BPS equation of the domain wall junction, we consider a stable hexagonal configuration of network of brane junctions, which are only approximately locally BPS. We propose a model for a mechanism of supersymmetry breaking without loss of stability, where a messenger for the SUSY breaking comes from the neighboring anti-BPS junction world, propagating along the domain walls connection them. (author)

  16. Compartmentalization analysis using discrete fracture network models

    Energy Technology Data Exchange (ETDEWEB)

    La Pointe, P.R.; Eiben, T.; Dershowitz, W. [Golder Associates, Redmond, VA (United States); Wadleigh, E. [Marathon Oil Co., Midland, TX (United States)

    1997-08-01

    This paper illustrates how Discrete Fracture Network (DFN) technology can serve as a basis for the calculation of reservoir engineering parameters for the development of fractured reservoirs. It describes the development of quantitative techniques for defining the geometry and volume of structurally controlled compartments. These techniques are based on a combination of stochastic geometry, computational geometry, and graph the theory. The parameters addressed are compartment size, matrix block size and tributary drainage volume. The concept of DFN models is explained and methodologies to compute these parameters are demonstrated.

  17. Some queuing network models of computer systems

    Science.gov (United States)

    Herndon, E. S.

    1980-01-01

    Queuing network models of a computer system operating with a single workload type are presented. Program algorithms are adapted for use on the Texas Instruments SR-52 programmable calculator. By slightly altering the algorithm to process the G and H matrices row by row instead of column by column, six devices and an unlimited job/terminal population could be handled on the SR-52. Techniques are also introduced for handling a simple load dependent server and for studying interactive systems with fixed multiprogramming limits.

  18. Fluctuation preserving coarse graining for biochemical systems

    CERN Document Server

    Altaner, Bernhard

    2011-01-01

    Finite stochastic Markov models play a major role for modelling biochemical pathways. Such models are a coarse-grained description of the underlying microscopic dynamics and can be considered mesoscopic. The level of coarse-graining is to a certain extend arbitrary since it depends on the resolution of accomodating measurements. Here, we present a way to simplify such stochastic descriptions, which preserves both the meso-micro and the meso-macro connection. The former is achieved by demanding locality, the latter by considering cycles on the network of states. Using single- and multicycle examples we demonstrate how our new method preserves fluctuations of observables much better than na\\"ive approaches.

  19. Traffic chaotic dynamics modeling and analysis of deterministic network

    Science.gov (United States)

    Wu, Weiqiang; Huang, Ning; Wu, Zhitao

    2016-07-01

    Network traffic is an important and direct acting factor of network reliability and performance. To understand the behaviors of network traffic, chaotic dynamics models were proposed and helped to analyze nondeterministic network a lot. The previous research thought that the chaotic dynamics behavior was caused by random factors, and the deterministic networks would not exhibit chaotic dynamics behavior because of lacking of random factors. In this paper, we first adopted chaos theory to analyze traffic data collected from a typical deterministic network testbed — avionics full duplex switched Ethernet (AFDX, a typical deterministic network) testbed, and found that the chaotic dynamics behavior also existed in deterministic network. Then in order to explore the chaos generating mechanism, we applied the mean field theory to construct the traffic dynamics equation (TDE) for deterministic network traffic modeling without any network random factors. Through studying the derived TDE, we proposed that chaotic dynamics was one of the nature properties of network traffic, and it also could be looked as the action effect of TDE control parameters. A network simulation was performed and the results verified that the network congestion resulted in the chaotic dynamics for a deterministic network, which was identical with expectation of TDE. Our research will be helpful to analyze the traffic complicated dynamics behavior for deterministic network and contribute to network reliability designing and analysis.

  20. Artificial neural network models for image understanding

    Science.gov (United States)

    Kulkarni, Arun D.; Byars, P.

    1991-06-01

    In this paper we introduce a new class of artificial neural network (ANN) models based on transformed domain feature extraction. Many optical and/or digital recognition systems based on transformed domain feature extraction are available in practice. Optical systems are inherently parallel in nature and are preferred for real time applications, whereas digital systems are more suitable for nonlinear operations. In our ANN models we combine advantages of both digital and optical systems. Many transformed domain feature extraction techniques have been developed during the last three decades. They include: the Fourier transform (FT), the Walsh Hadamard transform (WHT), the discrete cosine transform (DCT), etc. As an example, we have developed ANN models using the FT and WHT domain features. The models consist of two stages, the feature extraction stage and the recognition stage. We have used back-propagation and competitive learning algorithms in the recognition stage. We have used these ANN models for invariant object recognition. The models have been used successfully to recognize various types of aircraft, and also have been tested with test patterns. ANN models based on other transforms can be developed in a similar fashion.

  1. A Time Series Modeling and Prediction of Wireless Network Traffic

    Directory of Open Access Journals (Sweden)

    S. Gowrishankar

    2009-01-01

    Full Text Available The number of users and their network utilization will enumerate the traffic of the network. The accurate and timely estimation of network traffic is increasingly becoming important in achieving guaranteed Quality of Service (QoS in a wireless network. The better QoS can be maintained in the network by admission control, inter or intra network handovers by knowing the network traffic in advance. Here wireless network traffic is modeled as a nonlinear and nonstationary time series. In this framework, network traffic is predicted using neural network and statistical methods. The results of both the methods are compared on different time scales or time granularity. The Neural Network(NN architectures used in this study are Recurrent Radial Basis Function Network (RRBFN and Echo state network (ESN.The statistical model used here in this work is Fractional Auto Regressive Integrated Moving Average (FARIMA model. The traffic prediction accuracy of neural network and statistical models are in the range of 96.4% to 98.3% and 78.5% to 80.2% respectively.

  2. Sparse matrix-variate Gaussian process blockmodels for network modeling

    CERN Document Server

    Yan, Feng; Yuan,; Qi,

    2012-01-01

    We face network data from various sources, such as protein interactions and online social networks. A critical problem is to model network interactions and identify latent groups of network nodes. This problem is challenging due to many reasons. For example, the network nodes are interdependent instead of independent of each other, and the data are known to be very noisy (e.g., missing edges). To address these challenges, we propose a new relational model for network data, Sparse Matrix-variate Gaussian process Blockmodel (SMGB). Our model generalizes popular bilinear generative models and captures nonlinear network interactions using a matrix-variate Gaussian process with latent membership variables. We also assign sparse prior distributions on the latent membership variables to learn sparse group assignments for individual network nodes. To estimate the latent variables efficiently from data, we develop an efficient variational expectation maximization method. We compared our approaches with several state-o...

  3. A Model of Genetic Variation in Human Social Networks

    CERN Document Server

    Fowler, James H; Christakis, Nicholas A

    2008-01-01

    Social networks influence the evolution of cooperation and they exhibit strikingly systematic patterns across a wide range of human contexts. Both of these facts suggest that variation in the topological attributes of human social networks might have a genetic basis. While genetic variation accounts for a significant portion of the variation in many complex social behaviors, the heritability of egocentric social network attributes is unknown. Here we show that three of these attributes (in-degree, transitivity, and centrality) are heritable. We then develop a "mirror network" method to test extant network models and show that none accounts for observed genetic variation in human social networks. We propose an alternative "attract and introduce" model that generates significant heritability as well as other important network features, and we show that this model with two simple forms of heterogeneity is well suited to the modeling of real social networks in humans. These results suggest that natural selection ...

  4. Bus transport network model with ideal n-depth clique network topology

    Science.gov (United States)

    Yang, Xu-Hua; Chen, Guang; Sun, Bao; Chen, Sheng-Yong; Wang, Wan-Liang

    2011-11-01

    We propose an ideal n-depth clique network model. In this model, the original network is composed of cliques (maximal complete subgraphs) that overlap with each other. The network expands continuously by the addition of new cliques. The final diameter of the network can be set in advance, namely, it is controllable. Assuming that the diameter of the network is n, the network exhibits a logistic structure with (n+1) layers. In this structure, the 0th layer represents the original network and each node of the (m)th layer (1≤m≤n) corresponds to a clique in the (m-1)th layer. In the growth process of the network, we ensure that any (m)th layer network is composed of overlapping cliques. Any node in an (m)th layer network corresponds to an m-depth community in the original network, and the diameter of an m-depth community is m. Therefore, the (n-1)th layer network will contain only one clique, the (n)th layer network will contain only one node, and the diameter of the corresponding original network is n. Then an ideal n-depth clique network will be obtained. Based on the ideal n-depth clique network model, we construct a bus transport network model with an ideal n-depth clique network topology (ICNBTN). Moreover, our study compares this model with the real bus transport network (RealBTN) of three major cities in China and a recently introduced bus transport network model (BTN) whose network properties correspond well with those of real BTNs. The network properties of the ICNBTN are much closer to those of the RealBTN than those of the BTN are. At the same time, the ICNBTN has higher clustering extent of bus routes, smaller network diameter, which corresponds to shorter maximum transfer times in a bus network, and lower average shortest path time coefficient than the BTN and the RealBTN. Therefore, the ICNBTN can achieve higher transfer efficiency for a bus transport system.

  5. Echo state networks as an alternative to traditional artificial neural networks in rainfall–runoff modelling

    Directory of Open Access Journals (Sweden)

    N. J. de Vos

    2013-01-01

    Full Text Available Despite theoretical benefits of recurrent artificial neural networks over their feedforward counterparts, it is still unclear whether the former offer practical advantages as rainfall–runoff models. The main drawback of recurrent networks is the increased complexity of the training procedure due to their architecture. This work uses the recently introduced and conceptually simple echo state networks for streamflow forecasts on twelve river basins in the Eastern United States, and compares them to a variety of traditional feedforward and recurrent approaches. Two modifications on the echo state network models are made that increase the hydrologically relevant information content of their internal state. The results show that the echo state networks outperform feedforward networks and are competitive with state-of-the-art recurrent networks, across a range of performance measures. This, along with their simplicity and ease of training, suggests that they can be considered promising alternatives to traditional artificial neural networks in rainfall–runoff modelling.

  6. Echo state networks as an alternative to traditional artificial neural networks in rainfall-runoff modelling

    Science.gov (United States)

    de Vos, N. J.

    2013-01-01

    Despite theoretical benefits of recurrent artificial neural networks over their feedforward counterparts, it is still unclear whether the former offer practical advantages as rainfall-runoff models. The main drawback of recurrent networks is the increased complexity of the training procedure due to their architecture. This work uses the recently introduced and conceptually simple echo state networks for streamflow forecasts on twelve river basins in the Eastern United States, and compares them to a variety of traditional feedforward and recurrent approaches. Two modifications on the echo state network models are made that increase the hydrologically relevant information content of their internal state. The results show that the echo state networks outperform feedforward networks and are competitive with state-of-the-art recurrent networks, across a range of performance measures. This, along with their simplicity and ease of training, suggests that they can be considered promising alternatives to traditional artificial neural networks in rainfall-runoff modelling.

  7. An Improved Car-Following Model in Vehicle Networking Based on Network Control

    Directory of Open Access Journals (Sweden)

    D. Y. Kong

    2014-01-01

    Full Text Available Vehicle networking is a system to realize information interoperability between vehicles and people, vehicles and roads, vehicles and vehicles, and cars and transport facilities, through the network information exchange, in order to achieve the effective monitoring of the vehicle and traffic flow. Realizing information interoperability between vehicles and vehicles, which can affect the traffic flow, is an important application of network control system (NCS. In this paper, a car-following model using vehicle networking theory is established, based on network control principle. The car-following model, which is an improvement of the traditional traffic model, describes the traffic in vehicle networking condition. The impact that vehicle networking has on the traffic flow is quantitatively assessed in a particular scene of one-way, no lane changing highway. The examples show that the capacity of the road is effectively enhanced by using vehicle networking.

  8. Surviving opinions in Sznajd models on complex networks

    CERN Document Server

    Rodrigues, F A; Rodrigues, Francisco A.; Costa, Luciano da F.

    2005-01-01

    The Sznajd model has been largely applied to simulate many sociophysical phenomena. In this paper we applied the Sznajd model with more than two opinions on three different network topologies and observed the evolution of surviving opinions after many interactions among the nodes. As result, we obtained a scaling law which depends of the network size and the number of possible opinions. We also observed that this scaling law is not the same for all network topologies, being quite similar between scale-free networks and Sznajd networks but different for random networks.

  9. A novel mathematical model for coverage in wireless sensor network

    Institute of Scientific and Technical Information of China (English)

    YAN Zhen-ya; ZHENG Bao-yu

    2006-01-01

    Coverage problem is one of the fundamental issues in the design of wireless sensor network, which has a great impact on the performance of sensor network. In this article,coverage problem was investigated using a mathematical model named Birth-death process. In this model, sensor nodes joining into networks at every period of time is considered as the rebirth of network and the quitting of sensor nodes from the networks is considered as the death of the network. In the end, an analytical solution is used to investigate the appropriate rate to meet the coverage requirement.

  10. A scale-free neural network for modelling neurogenesis

    Science.gov (United States)

    Perotti, Juan I.; Tamarit, Francisco A.; Cannas, Sergio A.

    2006-11-01

    In this work we introduce a neural network model for associative memory based on a diluted Hopfield model, which grows through a neurogenesis algorithm that guarantees that the final network is a small-world and scale-free one. We also analyze the storage capacity of the network and prove that its performance is larger than that measured in a randomly dilute network with the same connectivity.

  11. A cellular network model with Ginibre configured base stations

    OpenAIRE

    Miyoshi, Naoto; Shirai, Tomoyuki

    2014-01-01

    Stochastic geometry models for wireless communication networks have recently attracted much attention. This is because the performance of such networks critically depends on the spatial configuration of wireless nodes and the irregularity of the node configuration in a real network can be captured by a spatial point process. However, most analysis of such stochastic geometry models for wireless networks assumes, owing to its tractability, that the wireless nodes are deployed...

  12. Runoff Modelling in Urban Storm Drainage by Neural Networks

    DEFF Research Database (Denmark)

    Rasmussen, Michael R.; Brorsen, Michael; Schaarup-Jensen, Kjeld

    A neural network is used to simulate folw and water levels in a sewer system. The calibration of th neural network is based on a few measured events and the network is validated against measureed events as well as flow simulated with the MOUSE model (Lindberg and Joergensen, 1986). The neural net...... knowledge of the runoff process. The neural network was found to simulate 150 times faster than e.g. the MOUSE model....

  13. Performance of an integrated network model

    Science.gov (United States)

    Lehmann, François; Dunn, David; Beaulieu, Marie-Dominique; Brophy, James

    2016-01-01

    Objective To evaluate the changes in accessibility, patients’ care experiences, and quality-of-care indicators following a clinic’s transformation into a fully integrated network clinic. Design Mixed-methods study. Setting Verdun, Que. Participants Data on all patient visits were used, in addition to 2 distinct patient cohorts: 134 patients with chronic illness (ie, diabetes, arteriosclerotic heart disease, or both); and 450 women between the ages of 20 and 70 years. Main outcome measures Accessibility was measured by the number of walk-in visits, scheduled visits, and new patient enrolments. With the first cohort, patients’ care experiences were measured using validated serial questionnaires; and quality-of-care indicators were measured using biologic data. With the second cohort, quality of preventive care was measured using the number of Papanicolaou tests performed as a surrogate marker. Results Despite a negligible increase in the number of physicians, there was an increase in accessibility after the clinic’s transition to an integrated network model. During the first 4 years of operation, the number of scheduled visits more than doubled, nonscheduled visits (walk-in visits) increased by 29%, and enrolment of vulnerable patients (those with chronic illnesses) at the clinic remained high. Patient satisfaction with doctors was rated very highly at all points of time that were evaluated. While the number of Pap tests done did not increase with time, the proportion of patients meeting hemoglobin A1c and low-density lipoprotein guideline target levels increased, as did the number of patients tested for microalbuminuria. Conclusion Transformation to an integrated network model of care led to increased efficiency and enhanced accessibility with no negative effects on the doctor-patient relationship. Improvements in biologic data also suggested better quality of care. PMID:27521410

  14. An Adaptive Complex Network Model for Brain Functional Networks

    OpenAIRE

    Gomez Portillo, Ignacio J.; Gleiser, Pablo M.

    2009-01-01

    Brain functional networks are graph representations of activity in the brain, where the vertices represent anatomical regions and the edges their functional connectivity. These networks present a robust small world topological structure, characterized by highly integrated modules connected sparsely by long range links. Recent studies showed that other topological properties such as the degree distribution and the presence (or absence) of a hierarchical structure are not robust, and show diffe...

  15. Modeling delay in genetic networks: From delay birth-death processes to delay stochastic differential equations

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Chinmaya; López, José Manuel; Azencott, Robert; Ott, William [Department of Mathematics, University of Houston, Houston, Texas 77004 (United States); Bennett, Matthew R. [Department of Biochemistry and Cell Biology, Rice University, Houston, Texas 77204, USA and Institute of Biosciences and Bioengineering, Rice University, Houston, Texas 77005 (United States); Josić, Krešimir [Department of Mathematics, University of Houston, Houston, Texas 77004 (United States); Department of Biology and Biochemistry, University of Houston, Houston, Texas 77204 (United States)

    2014-05-28

    Delay is an important and ubiquitous aspect of many biochemical processes. For example, delay plays a central role in the dynamics of genetic regulatory networks as it stems from the sequential assembly of first mRNA and then protein. Genetic regulatory networks are therefore frequently modeled as stochastic birth-death processes with delay. Here, we examine the relationship between delay birth-death processes and their appropriate approximating delay chemical Langevin equations. We prove a quantitative bound on the error between the pathwise realizations of these two processes. Our results hold for both fixed delay and distributed delay. Simulations demonstrate that the delay chemical Langevin approximation is accurate even at moderate system sizes. It captures dynamical features such as the oscillatory behavior in negative feedback circuits, cross-correlations between nodes in a network, and spatial and temporal information in two commonly studied motifs of metastability in biochemical systems. Overall, these results provide a foundation for using delay stochastic differential equations to approximate the dynamics of birth-death processes with delay.

  16. Modeling management of research and education networks

    NARCIS (Netherlands)

    Galagan, D.V.

    2004-01-01

    Computer networks and their services have become an essential part of research and education. Nowadays every modern R&E institution must have a computer network and provide network services to its students and staff. In addition to its internal computer network, every R&E institution must have a con

  17. Marketing communications model for innovation networks

    Directory of Open Access Journals (Sweden)

    Tiago João Freitas Correia

    2015-10-01

    Full Text Available Innovation is an increasingly relevant concept for the success of any organization, but it also represents a set of internal and external considerations, barriers and challenges to overcome. Along the concept of innovation, new paradigms emerge such as open innovation and co-creation that are simultaneously innovation modifiers and intensifiers in organizations, promoting organizational openness and stakeholder integration within the value creation process. Innovation networks composed by a multiplicity of agents in co-creative work perform as innovation mechanisms to face the increasingly complexity of products, services and markets. Technology, especially the Internet, is an enabler of all process among organizations supported by co-creative platforms for innovation. The definition of marketing communication strategies that promote motivation and involvement of all stakeholders in synergic creation and external promotion is the central aspect of this research. The implementation of the projects is performed by participative workshops with stakeholders from Madan Parque through IDEAS(REVOLUTION methodology and the operational model LinkUp parameterized for the project. The project is divided into the first part, the theoretical framework, and the second part where a model is developed for the marketing communication strategies that appeal to the Madan Parque case study. Keywords: Marketing Communication; Open Innovation, Technology; Innovation Networks; Incubator; Co-Creation.

  18. Determining Application Runtimes Using Queueing Network Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, M

    2007-03-15

    Determination of application times-to-solution for large-scale clustered computers continues to be a difficult problem in high-end computing, which will only become more challenging as multi-core consumer machines become more prevalent in the market. Both researchers and consumers of these multi-core systems desire reasonable estimates of how long their programs will take to run (time-to-solution, or TTS), and how many resources will be consumed in the execution. Currently there are few methods of determining these values, and those that do exist are either overly simplistic in their assumptions or require great amounts of effort to parameterize and understand. One previously untried method is queuing network modeling (QNM), which is easy to parameterize and solve, and produces results that typically fall within 10 to 30% of the actual TTS for our test cases. Using characteristics of the computer network (bandwidth, latency) and communication patterns (number of messages, message length, time spent in communication), the QNM model of the NAS-PB CG application was applied to MCR and ALC, supercomputers at LLNL, and the Keck Cluster at USF, with average errors of 2.41%, 3.61%, and -10.73%, respectively, compared to the actual TTS observed. While additional work is necessary to improve the predictive capabilities of QNM, current results show that QNM has a great deal of promise for determining application TTS for multi-processor computer systems.

  19. Formation of Modularity in a Model of Evolving Networks

    CERN Document Server

    Li, Menghui; Lai, Choy-Heng

    2011-01-01

    Modularity structures are common in various social and biological networks. However, its dynamical origin remains an open question. In this work, we set up a toy dynamical model describing the evolution of a social network. Based on the observations of real social networks, we introduced a strategy of link-creating/deleting according to the local dynamics in the model. Thus the coevolution of the dynamics and topology naturally determines the network properties. It is found that for a small coupling strength, the networked system cannot reach any synchronization and the network topology is homogeneous. Interestingly, when the coupling strength is large enough, the networked system spontaneously forms communities with different dynamical states. Meanwhile, the network topology becomes heterogeneous with modular structures. It is further shown that in certain parameter regime, both the degree and the community size in the formed network follow power-law distribution. These results are consistent with the charac...

  20. Neural Networks in Economic Modelling: An Empirical Study.

    OpenAIRE

    Verkooijen, W.J.H.

    1996-01-01

    Abstract: This dissertation addresses the statistical aspects of neural networks and their usability for solving problems in economics and finance. Neural networks are discussed in a framework of modelling which is generally accepted in econometrics. Within this framework a neural network is regarded as a statistical technique that implements a model-free regression strategy. Model-free regression seems particularly useful in situations where economic theory cannot provide sensible model spec...

  1. Random Network Models and Quantum Phase Transitions in Two Dimensions

    OpenAIRE

    Kramer, B.; Ohtsuki, T.; Kettemann, S.

    2004-01-01

    An overview of the random network model invented by Chalker and Coddington, and its generalizations, is provided. After a short introduction into the physics of the Integer Quantum Hall Effect, which historically has been the motivation for introducing the network model, the percolation model for electrons in spatial dimension 2 in a strong perpendicular magnetic field and a spatially correlated random potential is described. Based on this, the network model is established, using the concepts...

  2. Importance of realistic mobility models for vanet network simulation

    OpenAIRE

    Boukenadil, Bahidja

    2014-01-01

    In the performance evaluation of a protocol for a vehicular ad hoc network, the protocol should be tested under a realistic conditions including, representative data traffic models, and realistic movements of the mobile nodes which are the vehicles (i.e., a mobility model). This work is a comparative study between two mobility models that are used in the simulations of vehicular networks, i.e., MOVE (MObility model generator for VEhicular networks) and CityMob, a mobility pattern generator fo...

  3. Multilevel method for modeling large-scale networks.

    Energy Technology Data Exchange (ETDEWEB)

    Safro, I. M. (Mathematics and Computer Science)

    2012-02-24

    Understanding the behavior of real complex networks is of great theoretical and practical significance. It includes developing accurate artificial models whose topological properties are similar to the real networks, generating the artificial networks at different scales under special conditions, investigating a network dynamics, reconstructing missing data, predicting network response, detecting anomalies and other tasks. Network generation, reconstruction, and prediction of its future topology are central issues of this field. In this project, we address the questions related to the understanding of the network modeling, investigating its structure and properties, and generating artificial networks. Most of the modern network generation methods are based either on various random graph models (reinforced by a set of properties such as power law distribution of node degrees, graph diameter, and number of triangles) or on the principle of replicating an existing model with elements of randomization such as R-MAT generator and Kronecker product modeling. Hierarchical models operate at different levels of network hierarchy but with the same finest elements of the network. However, in many cases the methods that include randomization and replication elements on the finest relationships between network nodes and modeling that addresses the problem of preserving a set of simplified properties do not fit accurately enough the real networks. Among the unsatisfactory features are numerically inadequate results, non-stability of algorithms on real (artificial) data, that have been tested on artificial (real) data, and incorrect behavior at different scales. One reason is that randomization and replication of existing structures can create conflicts between fine and coarse scales of the real network geometry. Moreover, the randomization and satisfying of some attribute at the same time can abolish those topological attributes that have been undefined or hidden from

  4. A fusion networking model for smart grid power distribution backbone communication network based on PTN

    Directory of Open Access Journals (Sweden)

    Wang Hao

    2016-01-01

    Full Text Available In current communication network for distribution in Chinese power grid systems, the fiber communication backbone network for distribution and TD-LTE power private wireless backhaul network of power grid are both bearing by the SDH optical transmission network, which also carries the communication network of transformer substation and main electric. As the data traffic of the distribution communication and TD-LTE power private wireless network grow rapidly in recent years, it will have a big impact with the SDH network’s bearing capacity which is mainly used for main electric communication in high security level. This paper presents a fusion networking model which use a multiple-layer PTN network as the unified bearing of the TD-LTE power private wireless backhaul network and fiber communication backbone network for distribution. Network dataflow analysis shows that this model can greatly reduce the capacity pressure of the traditional SDH network as well as ensure the reliability of the transmission of the communication network for distribution and TD-LTE power private wireless network.

  5. Road network safety evaluation using Bayesian hierarchical joint model.

    Science.gov (United States)

    Wang, Jie; Huang, Helai

    2016-05-01

    Safety and efficiency are commonly regarded as two significant performance indicators of transportation systems. In practice, road network planning has focused on road capacity and transport efficiency whereas the safety level of a road network has received little attention in the planning stage. This study develops a Bayesian hierarchical joint model for road network safety evaluation to help planners take traffic safety into account when planning a road network. The proposed model establishes relationships between road network risk and micro-level variables related to road entities and traffic volume, as well as socioeconomic, trip generation and network density variables at macro level which are generally used for long term transportation plans. In addition, network spatial correlation between intersections and their connected road segments is also considered in the model. A road network is elaborately selected in order to compare the proposed hierarchical joint model with a previous joint model and a negative binomial model. According to the results of the model comparison, the hierarchical joint model outperforms the joint model and negative binomial model in terms of the goodness-of-fit and predictive performance, which indicates the reasonableness of considering the hierarchical data structure in crash prediction and analysis. Moreover, both random effects at the TAZ level and the spatial correlation between intersections and their adjacent segments are found to be significant, supporting the employment of the hierarchical joint model as an alternative in road-network-level safety modeling as well. PMID:26945109

  6. Network of vascular diseases, death and biochemical characteristics in a set of 4,197 patients with type 1 diabetes (The FinnDiane Study

    Directory of Open Access Journals (Sweden)

    Wadén Johan

    2009-10-01

    Full Text Available Background Cardiovascular disease is the main cause of premature death in patients with type 1 diabetes. Patients with diabetic kidney disease have an increased risk of heart attack or stroke. Accurate knowledge of the complex inter-dependencies between the risk factors is critical for pinpointing the best targets for research and treatment. Therefore, the aim of this study was to describe the association patterns between clinical and biochemical features of diabetic complications. Methods Medical records and serum and urine samples of 4,197 patients with type 1 diabetes were collected from health care centers in Finland. At baseline, the mean diabetes duration was 22 years, 52% were male, 23% had kidney disease (urine albumin excretion over 300 mg/24 h or end-stage renal disease and 8% had a history of macrovascular events. All-cause mortality was evaluated after an average of 6.5 years of follow-up (25,714 patient years. The dataset comprised 28 clinical and 25 biochemical variables that were regarded as the nodes of a network to assess their mutual relationships. Results The networks contained cliques that were densely inter-connected (r > 0.6, including cliques for high-density lipoprotein (HDL markers, for triglycerides and cholesterol, for urinary excretion and for indices of body mass. The links between the cliques showed biologically relevant interactions: an inverse relationship between HDL cholesterol and the triglyceride clique (r P -16, a connection between triglycerides and body mass via C-reactive protein (r > 0.3, P -16 and intermediate-density cholesterol as the connector between lipoprotein metabolism and albuminuria (r > 0.3, P -16. Aging and macrovascular disease were linked to death via working ability and retinopathy. Diabetic kidney disease, serum creatinine and potassium, retinopathy and blood pressure were inter-connected. Blood pressure correlations indicated accelerated vascular aging in individuals with kidney disease

  7. Vehicle Scheduling with Network Flow Models

    Directory of Open Access Journals (Sweden)

    Gustavo P. Silva

    2010-04-01

    Full Text Available

    Este trabalho retrata a primeira fase de uma pesquisa de doutorado voltada para a utilização de modelos de fluxo em redes para programação de veículos (de ônibus, em particular. A utilização de modelos deste tipo ainda e muito pouco explorada na literatura, principalmente pela dificuldade imposta pelo grande numero de variáveis resultante. Neste trabalho são apresentadas formulações para tratamento do problema de programação de veículos associados a um único depósito (ou garagem como problema de fluxo em redes, incluindo duas técnicas para reduzir o numero de arcos na rede criada e, conseqüentemente, o numero de variáveis a tratar. Uma destas técnicas de redução de arcos foi implementada e o problema de fluxo resultante foi direcionado para ser resolvido, nesta fase da pesquisa, por uma versão disponível do algoritmo Simplex para redes. Problemas teste baseados em dados reais da cidade de Reading, UK, foram resolvidos com a utilização da formulação de fluxo em redes adotada, e os resultados comparados com aqueles obtidos pelo método heurístico BOOST, o qual tem sido largamente testado e comercializado pela School of Computer Studies da Universidade de Leeds, UK. Os resultados alcançados demonstram a possibilidade de tratamento de problemas reais com a técnica de redução de arcos.

    ABSTRACT

    This paper presents the successful results of a first phase of a doctoral research addressed to solving vehicle (bus, in particular scheduling problems through network flow formulations. Network flow modeling for this kind of problem is a promising, but not a well explored approach, mainly because of the large number of variables related to number of arcs of real case networks. The paper presents and discusses some network flow formulations for the single depot bus vehicle scheduling problem, along with two techniques of arc reduction. One of these arc reduction techniques has been implemented and the underlying

  8. Resolving structural variability in network models and the brain.

    Directory of Open Access Journals (Sweden)

    Florian Klimm

    2014-03-01

    Full Text Available Large-scale white matter pathways crisscrossing the cortex create a complex pattern of connectivity that underlies human cognitive function. Generative mechanisms for this architecture have been difficult to identify in part because little is known in general about mechanistic drivers of structured networks. Here we contrast network properties derived from diffusion spectrum imaging data of the human brain with 13 synthetic network models chosen to probe the roles of physical network embedding and temporal network growth. We characterize both the empirical and synthetic networks using familiar graph metrics, but presented here in a more complete statistical form, as scatter plots and distributions, to reveal the full range of variability of each measure across scales in the network. We focus specifically on the degree distribution, degree assortativity, hierarchy, topological Rentian scaling, and topological fractal scaling--in addition to several summary statistics, including the mean clustering coefficient, the shortest path-length, and the network diameter. The models are investigated in a progressive, branching sequence, aimed at capturing different elements thought to be important in the brain, and range from simple random and regular networks, to models that incorporate specific growth rules and constraints. We find that synthetic models that constrain the network nodes to be physically embedded in anatomical brain regions tend to produce distributions that are most similar to the corresponding measurements for the brain. We also find that network models hardcoded to display one network property (e.g., assortativity do not in general simultaneously display a second (e.g., hierarchy. This relative independence of network properties suggests that multiple neurobiological mechanisms might be at play in the development of human brain network architecture. Together, the network models that we develop and employ provide a potentially useful

  9. Performance Model of Key Points At the IPTV Networks

    OpenAIRE

    Snezana Tilovska; Aristotel Tentov

    2011-01-01

    In this paper we propose a new analytical model for modeling of the key points at the IPTVnetworks. This model uses Gamma distribution with Intergroup Characteristics for modeling selfsimilar nature of processes in key points of IPTV network.Enclosed Gamma Distribution results are compared with results from real measurements.Calculated discrepancies confirm that enclosed analytical model is optimal estimation model forprocess modeling of the key points at the IPTV network.The used methodology...

  10. A last updating evolution model for online social networks

    Science.gov (United States)

    Bu, Zhan; Xia, Zhengyou; Wang, Jiandong; Zhang, Chengcui

    2013-05-01

    As information technology has advanced, people are turning to electronic media more frequently for communication, and social relationships are increasingly found on online channels. However, there is very limited knowledge about the actual evolution of the online social networks. In this paper, we propose and study a novel evolution network model with the new concept of “last updating time”, which exists in many real-life online social networks. The last updating evolution network model can maintain the robustness of scale-free networks and can improve the network reliance against intentional attacks. What is more, we also found that it has the “small-world effect”, which is the inherent property of most social networks. Simulation experiment based on this model show that the results and the real-life data are consistent, which means that our model is valid.

  11. A random spatial network model based on elementary postulates

    Science.gov (United States)

    Karlinger, M.R.; Troutman, B.M.

    1989-01-01

    In contrast to the random topology model, this model ascribes a unique spatial specification to generated drainage networks, a distinguishing property of some network growth models. The simplicity of the postulates creates an opportunity for potential analytic investigations of the probabilistic structure of the drainage networks, while the spatial specification enables analyses of spatially dependent network properties. In the random topology model all drainage networks, conditioned on magnitude (number of first-order streams), are equally likely, whereas in this model all spanning trees of a grid, conditioned on area and drainage density, are equally likely. As a result, link lengths in the generated networks are not independent, as usually assumed in the random topology model. -from Authors

  12. Natural Models for Evolution on Networks

    CERN Document Server

    Mertzios, George B; Raptopoulos, Christoforos; Spirakis, Paul G

    2011-01-01

    Evolutionary dynamics have been traditionally studied in the context of homogeneous populations, mainly described my the Moran process. Recently, this approach has been generalized in \\cite{LHN} by arranging individuals on the nodes of a network. Undirected networks seem to have a smoother behavior than directed ones, and thus it is more challenging to find suppressors/amplifiers of selection. In this paper we present the first class of undirected graphs which act as suppressors of selection, by achieving a fixation probability that is at most one half of that of the complete graph, as the number of vertices increases. Moreover, we provide some generic upper and lower bounds for the fixation probability of general undirected graphs. As our main contribution, we introduce the natural alternative of the model proposed in \\cite{LHN}, where all individuals interact simultaneously and the result is a compromise between aggressive and non-aggressive individuals. That is, the behavior of the individuals in our new m...

  13. Biochemical, histopathological and morphological profiling of a rat model of early immune stimulation: relation to psychopathology.

    Directory of Open Access Journals (Sweden)

    Anna Kubesova

    Full Text Available Perinatal immune challenge leads to neurodevelopmental dysfunction, permanent immune dysregulation and abnormal behaviour, which have been shown to have translational validity to findings in human neuropsychiatric disorders (e.g. schizophrenia, mood and anxiety disorders, autism, Parkinson's disease and Alzheimer's disease. The aim of this animal study was to elucidate the influence of early immune stimulation triggered by systemic postnatal lipopolysaccharide administration on biochemical, histopathological and morphological measures, which may be relevant to the neurobiology of human psychopathology. In the present study of adult male Wistar rats we examined the brain and plasma levels of monoamines (dopamine, serotonin, their metabolites, the levels of the main excitatory and inhibitory neurotransmitters glutamate and γ-aminobutyric acid and the levels of tryptophan and its metabolites from the kynurenine catabolic pathway. Further, we focused on histopathological and morphological markers related to pathogenesis of brain diseases--glial cell activation, neurodegeneration, hippocampal volume reduction and dopaminergic synthesis in the substantia nigra. Our results show that early immune stimulation in adult animals alters the levels of neurotransmitters and their metabolites, activates the kynurenine pathway of tryptophan metabolism and leads to astrogliosis, hippocampal volume reduction and a decrease of tyrosine hydroxylase immunoreactivity in the substantia nigra. These findings support the crucial pathophysiological role of early immune stimulation in the above mentioned neuropsychiatric disorders.

  14. Supplier Selection in Virtual Enterprise Model of Manufacturing Supply Network

    Science.gov (United States)

    Kaihara, Toshiya; Opadiji, Jayeola F.

    The market-based approach to manufacturing supply network planning focuses on the competitive attitudes of various enterprises in the network to generate plans that seek to maximize the throughput of the network. It is this competitive behaviour of the member units that we explore in proposing a solution model for a supplier selection problem in convergent manufacturing supply networks. We present a formulation of autonomous units of the network as trading agents in a virtual enterprise network interacting to deliver value to market consumers and discuss the effect of internal and external trading parameters on the selection of suppliers by enterprise units.

  15. A game theory model of urban public traffic networks

    Science.gov (United States)

    Su, B. B.; Chang, H.; Chen, Y.-Z.; He, D. R.

    2007-06-01

    We have studied urban public traffic networks from the viewpoint of complex networks and game theory. Firstly, we have empirically investigated an urban public traffic network in Beijing in 2003, and obtained its statistical properties. Then a simplified game theory model is proposed for simulating the evolution of the traffic network. The basic idea is that three network manipulators, passengers, an urban public traffic company, and a government traffic management agency, play games in a network evolution process. Each manipulator tries to build the traffic lines to magnify its “benefit”. Simulation results show a good qualitative agreement with the empirical results.

  16. Research on Remote Network Bidirectional Detect and Control Model

    Directory of Open Access Journals (Sweden)

    Hongyao Ju

    2013-09-01

    Full Text Available Remote network bidirectional detect and control technologies are the key factors to solve local network allopatry expansibility and management. With studying gateway integration technology, bidirectional VPN technology, identity authentication technology and dynamic host management technology can be integrated into gateway. Thus, bidirectional connect and control among allopatry local networks based on Internet can be solved. Whole area expansibility of local network is realized. With experiment, the model is proved to finish remote bidirectional interconnection of local network automatically and to obtain allopatry local users authority. The equipment detecting and controlling in remote local networks are realized.  

  17. Computational Data Modeling for Network-Constrained Moving Objects

    DEFF Research Database (Denmark)

    Jensen, Christian Søndergaard; Speicys, L.; Kligys, A.

    2003-01-01

    users are constrained to a transportation network, this paper develops data structures that model road networks, the mobile users, and stationary objects of interest. The proposed framework encompasses two supplementary road network representations, namely a two-dimensional representation and a graph...

  18. Agent Based Modeling on Organizational Dynamics of Terrorist Network

    OpenAIRE

    Bo Li; Duoyong Sun; Renqi Zhu; Ze Li

    2015-01-01

    Modeling organizational dynamics of terrorist network is a critical issue in computational analysis of terrorism research. The first step for effective counterterrorism and strategic intervention is to investigate how the terrorists operate with the relational network and what affects the performance. In this paper, we investigate the organizational dynamics by employing a computational experimentation methodology. The hierarchical cellular network model and the organizational dynamics model ...

  19. Model for the growth of the World Airline Network

    CERN Document Server

    Verma, T; Nagler, J; Andrade, J S; Herrmann, H J

    2016-01-01

    We propose a probabilistic growth model for transport networks which employs a balance between popularity of nodes and the physical distance between nodes. By comparing the degree of each node in the model network and the WAN, we observe that the difference between the two is minimized for $\\alpha\\approx 2$. Interestingly, this is the value obtained for the node-node correlation function in the WAN. This suggests that our model explains quite well the growth of airline networks.

  20. Infinite Multiple Membership Relational Modeling for Complex Networks

    OpenAIRE

    Mørup, Morten; Schmidt, Mikkel Nørgaard; Hansen, Lars Kai

    2011-01-01

    Learning latent structure in complex networks has become an important problem fueled by many types of networked data originating from practically all fields of science. In this paper, we propose a new non-parametric Bayesian multiple-membership latent feature model for networks. Contrary to existing multiple-membership models that scale quadratically in the number of vertices the proposed model scales linearly in the number of links admitting multiple-membership analysis in large scale networ...

  1. Adaptive Networks Theory, Models and Applications

    CERN Document Server

    Gross, Thilo

    2009-01-01

    With adaptive, complex networks, the evolution of the network topology and the dynamical processes on the network are equally important and often fundamentally entangled. Recent research has shown that such networks can exhibit a plethora of new phenomena which are ultimately required to describe many real-world networks. Some of those phenomena include robust self-organization towards dynamical criticality, formation of complex global topologies based on simple, local rules, and the spontaneous division of "labor" in which an initially homogenous population of network nodes self-organizes into functionally distinct classes. These are just a few. This book is a state-of-the-art survey of those unique networks. In it, leading researchers set out to define the future scope and direction of some of the most advanced developments in the vast field of complex network science and its applications.

  2. Numerical modeling of gas mixing and bio-chemical transformations during underground hydrogen storage within the project H2STORE

    Science.gov (United States)

    Hagemann, B.; Feldmann, F.; Panfilov, M.; Ganzer, L.

    2015-12-01

    The change from fossil to renewable energy sources is demanding an increasing amount of storage capacities for electrical energy. A promising technological solution is the storage of hydrogen in the subsurface. Hydrogen can be produced by electrolysis using excessive electrical energy and subsequently converted back into electricity by fuel cells or engine generators. The development of this technology starts with adding small amounts of hydrogen to the high pressure natural gas grid and continues with the creation of pure underground hydrogen storages. The feasibility of hydrogen storage in depleted gas reservoirs is investigated in the lighthouse project H2STORE financed by the German Ministry for Education and Research. The joint research project has project members from the University of Jena, the Clausthal University of Technology, the GFZ Potsdam and the French National Center for Scientic Research in Nancy. The six sub projects are based on laboratory experiments, numerical simulations and analytical work which cover the investigation of mineralogical, geochemical, physio-chemical, sedimentological, microbiological and gas mixing processes in reservoir and cap rocks. The focus in this presentation is on the numerical modeling of underground hydrogen storage. A mathematical model was developed which describes the involved coupled hydrodynamic and microbiological effects. Thereby, the bio-chemical reaction rates depend on the kinetics of microbial growth which is induced by the injection of hydrogen. The model has been numerically implemented on the basis of the open source code DuMuX. A field case study based on a real German gas reservoir was performed to investigate the mixing of hydrogen with residual gases and to discover the consequences of bio-chemical reactions.

  3. Structural equation models from paths to networks

    CERN Document Server

    Westland, J Christopher

    2015-01-01

    This compact reference surveys the full range of available structural equation modeling (SEM) methodologies.  It reviews applications in a broad range of disciplines, particularly in the social sciences where many key concepts are not directly observable.  This is the first book to present SEM’s development in its proper historical context–essential to understanding the application, strengths and weaknesses of each particular method.  This book also surveys the emerging path and network approaches that complement and enhance SEM, and that will grow in importance in the near future.  SEM’s ability to accommodate unobservable theory constructs through latent variables is of significant importance to social scientists.  Latent variable theory and application are comprehensively explained, and methods are presented for extending their power, including guidelines for data preparation, sample size calculation, and the special treatment of Likert scale data.  Tables of software, methodologies and fit st...

  4. Credal networks and compositional models: preliminary considerations

    Czech Academy of Sciences Publication Activity Database

    Vejnarová, Jiřina

    Jindřichův Hradec : Faculty of Management , University of Economics, Jindřichův Hradec, 2013 - (Kratochvíl, V.; Vejnarová, J.), s. 119-128 ISBN 978-80-245-1950-0. [Czech-Japan Seminar on Data Analysis and Decision Making under Uncertainty (CJS-2013) /16./. Mariánské Lázně (CZ), 19.09.2013-22.09.2013] R&D Projects: GA ČR GAP402/11/0378 Institutional support: RVO:67985556 Keywords : credal sets * credal networks * compositional models * strong independence Subject RIV: BA - General Mathematics http://library.utia.cas.cz/separaty/2014/MTR/vejnarova-0424545.pdf

  5. A new local-world evolving network model

    Institute of Scientific and Technical Information of China (English)

    Qin Sen; Dai Guan-Zhong

    2009-01-01

    In some real complex networks, only a few nodes can obtain the global information about the entire networks, but most of the nodes own only local connections therefore own only local information of the networks. A new local-world evolving network model is proposed in this paper. In the model, not all the nodes obtain local network information, which is different from the local world network model proposed by Li and Chen (LC model). In the LC model, each node has only the local connections therefore owns only local information about the entire networks. Theoretical analysis and numerical simulation show that adjusting the ratio of the number of nodes obtaining the global information of the network to the total number of nodes can effectively control the valuing range for the power-law exponent of the new network. Therefore, if the topological structure of a complex network, especially its exponent of power-law degree distribution, needs controlling, we just add or take away a few nodes which own the global information of the network.

  6. Image-Based Structural Modeling of the Cardiac Purkinje Network

    Directory of Open Access Journals (Sweden)

    Benjamin R. Liu

    2015-01-01

    Full Text Available The Purkinje network is a specialized conduction system within the heart that ensures the proper activation of the ventricles to produce effective contraction. Its role during ventricular arrhythmias is less clear, but some experimental studies have suggested that the Purkinje network may significantly affect the genesis and maintenance of ventricular arrhythmias. Despite its importance, few structural models of the Purkinje network have been developed, primarily because current physical limitations prevent examination of the intact Purkinje network. In previous modeling efforts Purkinje-like structures have been developed through either automated or hand-drawn procedures, but these networks have been created according to general principles rather than based on real networks. To allow for greater realism in Purkinje structural models, we present a method for creating three-dimensional Purkinje networks based directly on imaging data. Our approach uses Purkinje network structures extracted from photographs of dissected ventricles and projects these flat networks onto realistic endocardial surfaces. Using this method, we create models for the combined ventricle-Purkinje system that can fully activate the ventricles through a stimulus delivered to the Purkinje network and can produce simulated activation sequences that match experimental observations. The combined models have the potential to help elucidate Purkinje network contributions during ventricular arrhythmias.

  7. An Improved Walk Model for Train Movement on Railway Network

    International Nuclear Information System (INIS)

    In this paper, we propose an improved walk model for simulating the train movement on railway network. In the proposed method, walkers represent trains. The improved walk model is a kind of the network-based simulation analysis model. Using some management rules for walker movement, walker can dynamically determine its departure and arrival times at stations. In order to test the proposed method, we simulate the train movement on a part of railway network. The numerical simulation and analytical results demonstrate that the improved model is an effective tool for simulating the train movement on railway network. Moreover, it can well capture the characteristic behaviors of train scheduling in railway traffic. (general)

  8. An Improved Walk Model for Train Movement on Railway Network

    Institute of Scientific and Technical Information of China (English)

    LI Ke-Ping; MAO Bo-Hua; GAO Zi-You

    2009-01-01

    In this paper, we propose an improved walk model for simulating the train movement on railway network. In the proposed method, walkers represent trains. The improved walk model is a kind of the network-based simulation analysis model. Using some management rules for walker movement, walker can dynamically determine its departure and arrival times at stations. In order to test the proposed method, we simulate the train movement on a part of railway network. The numerical simulation and analytical results demonstrate that the improved model is an effective tool for simulating the train movement on railway network. Moreover, it can well capture the characteristic behaviors of train scheduling in railway traffic.

  9. Infinite multiple membership relational modeling for complex networks

    DEFF Research Database (Denmark)

    Mørup, Morten; Schmidt, Mikkel Nørgaard; Hansen, Lars Kai

    2011-01-01

    Learning latent structure in complex networks has become an important problem fueled by many types of networked data originating from practically all fields of science. In this paper, we propose a new non-parametric Bayesian multiple-membership latent feature model for networks. Contrary to...... existing multiplemembership models that scale quadratically in the number of vertices the proposed model scales linearly in the number of links admitting multiple-membership analysis in large scale networks. We demonstrate a connection between the single membership relational model and multiple membership...

  10. Infinite Multiple Membership Relational Modeling for Complex Networks

    DEFF Research Database (Denmark)

    Mørup, Morten; Schmidt, Mikkel Nørgaard; Hansen, Lars Kai

    Learning latent structure in complex networks has become an important problem fueled by many types of networked data originating from practically all fields of science. In this paper, we propose a new non-parametric Bayesian multiplemembership latent feature model for networks. Contrary to existing...... multiplemembership models that scale quadratically in the number of vertices the proposedmodel scales linearly in the number of links admittingmultiple-membership analysis in large scale networks. We demonstrate a connection between the single membership relational model and multiple membership models and show on...

  11. Performance Model of Key Points At the IPTV Networks

    Directory of Open Access Journals (Sweden)

    Snezana Tilovska

    2011-05-01

    Full Text Available In this paper we propose a new analytical model for modeling of the key points at the IPTVnetworks. This model uses Gamma distribution with Intergroup Characteristics for modeling selfsimilar nature of processes in key points of IPTV network.Enclosed Gamma Distribution results are compared with results from real measurements.Calculated discrepancies confirm that enclosed analytical model is optimal estimation model forprocess modeling of the key points at the IPTV network.The used methodology for real-time analyses of the key points at the IPTV Network is veryimportant for achieving IPTV service best performance.

  12. Transmission network expansion planning based on hybridization model of neural networks and harmony search algorithm

    Directory of Open Access Journals (Sweden)

    Mohammad Taghi Ameli

    2012-01-01

    Full Text Available Transmission Network Expansion Planning (TNEP is a basic part of power network planning that determines where, when and how many new transmission lines should be added to the network. So, the TNEP is an optimization problem in which the expansion purposes are optimized. Artificial Intelligence (AI tools such as Genetic Algorithm (GA, Simulated Annealing (SA, Tabu Search (TS and Artificial Neural Networks (ANNs are methods used for solving the TNEP problem. Today, by using the hybridization models of AI tools, we can solve the TNEP problem for large-scale systems, which shows the effectiveness of utilizing such models. In this paper, a new approach to the hybridization model of Probabilistic Neural Networks (PNNs and Harmony Search Algorithm (HSA was used to solve the TNEP problem. Finally, by considering the uncertain role of the load based on a scenario technique, this proposed model was tested on the Garver’s 6-bus network.

  13. Mutual Interference Models for CDMA Mobile Communication Networks

    OpenAIRE

    Hrudkay, K.; V. Wieser

    2002-01-01

    Nowadays we are witnesses of a huge development one of the most progressive communication technology - mobile networks. The main problem in these networks is an elimination of the mutual interference, which, mainly in non-orthogonal CDMA networks, is the principal obstacle for reaching high transmission rates The aim of this contribution is to give simplified view to mutual interference models for orthogonal and non-orthogonal CDMA networks. The contribution is intended mainly for PhD. studen...

  14. Turing instability in reaction-diffusion models on complex networks

    Science.gov (United States)

    Ide, Yusuke; Izuhara, Hirofumi; Machida, Takuya

    2016-09-01

    In this paper, the Turing instability in reaction-diffusion models defined on complex networks is studied. Here, we focus on three types of models which generate complex networks, i.e. the Erdős-Rényi, the Watts-Strogatz, and the threshold network models. From analysis of the Laplacian matrices of graphs generated by these models, we numerically reveal that stable and unstable regions of a homogeneous steady state on the parameter space of two diffusion coefficients completely differ, depending on the network architecture. In addition, we theoretically discuss the stable and unstable regions in the cases of regular enhanced ring lattices which include regular circles, and networks generated by the threshold network model when the number of vertices is large enough.

  15. A dual modelling of evolving political opinion networks

    CERN Document Server

    Wang, Ru

    2012-01-01

    We present the result of a dual modeling of opinion network. The model complements the agent-based opinion models by attaching to the social agent (voters) network a political opinion (party) network having its own intrinsic mechanisms of evolution. These two sub-networks form a global network which can be either isolated from or dependent on the external influence. Basically, the evolution of the agent network includes link adding and deleting, the opinion changes influenced by social validation, the political climate, the attractivity of the parties and the interaction between them. The opinion network is initially composed of numerous nodes representing opinions or parties which are located on a one dimensional axis according to their political positions. The mechanism of evolution includes union, splitting, change of position and of attractivity, taken into account the pairwise node interaction decaying with node distance in power law. The global evolution ends in a stable distribution of the social agent...

  16. Model of Controlling the Hubs in P2P Networks

    Directory of Open Access Journals (Sweden)

    Yuhua Liu

    2009-06-01

    Full Text Available Research into the hubs in Peer-to-Peer (P2P networks, and present a new method to avoid generating the hubs in the networks by controlling the logical topology structure of P2P networks. We firstly introduce the controlling ideas about hierarchizing the hubs. Then, we disclose and interpret the controlling model, and give out the concrete method to carry it out. Finally, we validate our controlling model via simulations and the simulation results demonstrate that our work is effective to control the hubs in P2P networks. Thus, this model can improve the network competence to defend against coordinated attacks, promote the network robustness, and ensure the network would develop continually and healthily.

  17. Assessment of hemato-biochemical parameters on exposure to low level of deltamethrin in mouse model

    Directory of Open Access Journals (Sweden)

    Anita Tewari

    2014-03-01

    Full Text Available Aim: In this study, sub-acute toxicity of deltamethrin on hematological and biochemical blood parameters of male albino Swiss mice was evaluated. Materials and Methods: Generally, the maximum permissible residue level (MRL of deltamethrin for food products lies between 0.01 to 0.5 mg/kg body weight. So the mice were exposed orally with two doses of pesticide i.e. 0.1 and 0.5 mg/kg body weight. The doses were given on a daily basis for a period of 15 days and 30 days respectively. Ground nut oil was used as control treatment. Samples of blood were collected at the end of the treatment. Hepatotoxicity was evaluated by quantitative analysis of the serum enzymes alanine transaminase (ALT, aspartate transaminase (AST, alkaline phosphatase (ALKP, total bilirubin (TBIL and serum urea. Alterations of hematological parameters were analysed by total leukocyte, differential leukocyte count and hemoglobin levels. Results: Significant increase in the levels of hepatic enzymes (ALT, AST, ALKP were observed for both doses, but no considerable differences were found by histological analysis. The hematological parameters showed significant alterations for 0.5 mg/kg body weight dose which is indicated by leukocytosis, lymphocytosis and neutropenia in long duration study. Conclusions: The results indicated that even very low dose of deltamethrin can promote hematological and hepatic alterations. Thus it is imperative to do further studies on the detrimental effect of the low levels of pyrethroid commonly present in our food, which further necessitate the reduction of maximum permissible levels of residual synthetic pyrethroid levels in foods and feed.

  18. EURASIAN MINERAL WATER: MATHEMATICAL MODELING, CLASSIFICATION AND ASSESSMENT OF THEIR IMPACT ON THE BIOCHEMICAL COMPOSITION OF HUMAN BLOOD

    Directory of Open Access Journals (Sweden)

    Nikolay Kornilov

    2014-06-01

    Full Text Available In the article the results of comparative analysis of the composition of the Eurasian hydromineral resources and the assessment of their impact on the physiological condition of a human organism according to biochemical studies of venous blood are presented. Processing of initial data on the composition and properties of mineral waters chloride-hydrocarbonate, sulphate- hydrocarbonate and chloride-sulphate types and venous blood are made using the method of mathematical modeling, developed by the authors of this article. It is shown that in the balneological impact of hydromineral resources on the body in the blood increases the hemoglobin and oxygen, decreases glucose, and acid-base pH shifted to high alkalinity.

  19. Network games theory, models, and dynamics

    CERN Document Server

    Ozdaglar, Asu

    2011-01-01

    Traditional network optimization focuses on a single control objective in a network populated by obedient users and limited dispersion of information. However, most of today's networks are large-scale with lack of access to centralized information, consist of users with diverse requirements, and are subject to dynamic changes. These factors naturally motivate a new distributed control paradigm, where the network infrastructure is kept simple and the network control functions are delegated to individual agents which make their decisions independently (""selfishly""). The interaction of multiple

  20. Mixed-Membership Stochastic Block-Models for Transactional Networks

    CERN Document Server

    Shafiei, Mahdi

    2010-01-01

    Transactional network data can be thought of as a list of one-to-many communications(e.g., email) between nodes in a social network. Most social network models convert this type of data into binary relations between pairs of nodes. We develop a latent mixed membership model capable of modeling richer forms of transactional network data, including relations between more than two nodes. The model can cluster nodes and predict transactions. The block-model nature of the model implies that groups can be characterized in very general ways. This flexible notion of group structure enables discovery of rich structure in transactional networks. Estimation and inference are accomplished via a variational EM algorithm. Simulations indicate that the learning algorithm can recover the correct generative model. Interesting structure is discovered in the Enron email dataset and another dataset extracted from the Reddit website. Analysis of the Reddit data is facilitated by a novel performance measure for comparing two soft ...

  1. Impact of chemically-modified tetracycline 3 on intertwined physiological, biochemical, and inflammatory networks in porcine sepsis/ARDS

    OpenAIRE

    Sadowsky, David; Nieman, Gary; Barclay, Derek; Mi, Qi; Zamora, Ruben; Constantine, Gregory; Golub, Lorne; Lee, Hsi-Ming; Roy, Shreyas; Gatto, Louis A; Vodovotz, Yoram

    2015-01-01

    Sepsis can lead to multiple organ dysfunction, including the Acute Respiratory Distress Syndrome (ARDS), due to intertwined, dynamic changes in inflammation and organ physiology. We have demonstrated the efficacy of Chemically-Modified Tetracycline 3 (CMT-3) at reducing inflammation and ameliorating pathophysiology in the setting of a clinically realistic porcine model of ARDS. Here, we sought to gain insights into the derangements that characterize sepsis/ARDS and the possible impact of CMT-...

  2. Ripple-Spreading Network Model Optimization by Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Xiao-Bing Hu

    2013-01-01

    Full Text Available Small-world and scale-free properties are widely acknowledged in many real-world complex network systems, and many network models have been developed to capture these network properties. The ripple-spreading network model (RSNM is a newly reported complex network model, which is inspired by the natural ripple-spreading phenomenon on clam water surface. The RSNM exhibits good potential for describing both spatial and temporal features in the development of many real-world networks where the influence of a few local events spreads out through nodes and then largely determines the final network topology. However, the relationships between ripple-spreading related parameters (RSRPs of RSNM and small-world and scale-free topologies are not as obvious or straightforward as in many other network models. This paper attempts to apply genetic algorithm (GA to tune the values of RSRPs, so that the RSNM may generate these two most important network topologies. The study demonstrates that, once RSRPs are properly tuned by GA, the RSNM is capable of generating both network topologies and therefore has a great flexibility to study many real-world complex network systems.

  3. A Survey on the Common Network Traffic Sources Models

    Directory of Open Access Journals (Sweden)

    Ahmed M. Mohammed

    2011-05-01

    Full Text Available Selecting the appropriate traffic model can lead to successful design of computer networks. Themore accurate the traffic model is the better the system quantified in terms of its performance.Successful design leads to enhancement the overall performance of the whole of network. Inliterature, there is innumerous traffic models proposed for understanding and analyzing the trafficcharacteristics of computer networks. Consequently, the study of traffic models to understand thefeatures of the models and identify eventually the best traffic model, for a concerned environmenthas become a crucial and lucrative task. Good traffic modeling is also a basic requirement foraccurate capacity planning. This paper provides an overview of some of the widely used networktraffic models, highlighting the core features of these models and traffic characteristics. Finally wefound that the N_BURST traffic model can capture the traffic characteristics of most types ofcomputer networks.

  4. Network Modeling and Energy-Efficiency Optimization for Advanced Machine-to-Machine Sensor Networks

    Directory of Open Access Journals (Sweden)

    Seoksoo Kim

    2012-11-01

    Full Text Available Wireless machine-to-machine sensor networks with multiple radio interfaces are expected to have several advantages, including high spatial scalability, low event detection latency, and low energy consumption. Here, we propose a network model design method involving network approximation and an optimized multi-tiered clustering algorithm that maximizes node lifespan by minimizing energy consumption in a non-uniformly distributed network. Simulation results show that the cluster scales and network parameters determined with the proposed method facilitate a more efficient performance compared to existing methods.

  5. A Generalized Loss Network Model with Overflow for Capacity Planning of a Perinatal Network

    CERN Document Server

    Asaduzzaman, Md

    2011-01-01

    We develop a generalized loss network framework for capacity planning of a perinatal network in the UK. Decomposing the network by hospitals, each unit is analyzed with a GI/G/c/0 overflow loss network model. A two-moment approximation is performed to obtain the steady state solution of the GI/G/c/0 loss systems, and expressions for rejection probability and overflow probability have been derived. Using the model framework, the number of required cots can be estimated based on the rejection probability at each level of care of the neonatal units in a network. The generalization ensures that the model can be applied to any perinatal network for renewal arrival and discharge processes.

  6. Network models of frugivory and seed dispersal: Challenges and opportunities

    Science.gov (United States)

    Carlo, Tomás A.; Yang, Suann

    2011-11-01

    Network analyses have emerged as a new tool to study frugivory and seed dispersal (FSD) mutualisms because networks can model and simplify the complexity of multiple community-wide species interactions. Moreover, network theory suggests that structural properties, such as the presence of highly generalist species, are linked to the stability of mutualistic communities. However, we still lack empirical validation of network model predictions. Here we outline new research avenues to connect network models to FSD processes, and illustrate the challenges and opportunities of this tool with a field study. We hypothesized that generalist frugivores would be important for forest stability by dispersing seeds into deforested areas and initiating reforestation. We then constructed a network of plant-frugivore interactions using published data and identified the most generalist frugivores. To test the importance of generalists we measured: 1) the frequency with which frugivores moved between pasture and forest, 2) the bird-generated seed rain under perches in the pasture, and 3) the perching frequency of birds above seed traps. The generalist frugivores in the forest network were not important for seed dispersal into pastures, and thus for forest recovery, because the forest network excluded habitat heterogeneities, frugivore behavior, and movements. More research is needed to develop ways to incorporate relevant FSD processes into network models in order for these models to be more useful to community ecology and conservation. The network framework can serve to spark and renew interest in FSD and further our understanding of plant-animal communities.

  7. Hybrid neural network bushing model for vehicle dynamics simulation

    International Nuclear Information System (INIS)

    Although the linear model was widely used for the bushing model in vehicle suspension systems, it could not express the nonlinear characteristics of bushing in terms of the amplitude and the frequency. An artificial neural network model was suggested to consider the hysteretic responses of bushings. This model, however, often diverges due to the uncertainties of the neural network under the unexpected excitation inputs. In this paper, a hybrid neural network bushing model combining linear and neural network is suggested. A linear model was employed to represent linear stiffness and damping effects, and the artificial neural network algorithm was adopted to take into account the hysteretic responses. A rubber test was performed to capture bushing characteristics, where sine excitation with different frequencies and amplitudes is applied. Random test results were used to update the weighting factors of the neural network model. It is proven that the proposed model has more robust characteristics than a simple neural network model under step excitation input. A full car simulation was carried out to verify the proposed bushing models. It was shown that the hybrid model results are almost identical to the linear model under several maneuvers

  8. Analytical Modeling of Uplink Cellular Networks

    CERN Document Server

    Novlan, Thomas D; Andrews, Jeffrey G

    2012-01-01

    Cellular uplink analysis has typically been undertaken by either a simple approach that lumps all interference into a single deterministic or random parameter in a Wyner-type model, or via complex system level simulations that often do not provide insight into why various trends are observed. This paper proposes a novel middle way that is both accurate and also results in easy-to-evaluate integral expressions based on the Laplace transform of the interference. We assume mobiles and base stations are randomly placed in the network with each mobile pairing up to its closest base station. The model requires two important changes compared to related recent work on the downlink. First, dependence is introduced between the user and base station point processes to make sure each base station serves a single mobile in the given resource block. Second, per-mobile power control is included, which further couples the locations of the mobiles and their receiving base stations. Nevertheless, we succeed in deriving the cov...

  9. Small is beautiful: models of small neuronal networks

    Science.gov (United States)

    Lamb, Damon G; Calabrese, Ronald L

    2013-01-01

    Modeling has contributed a great deal to our understanding of how individual neurons and neuronal networks function. In this review, we focus on models of the small neuronal networks of invertebrates, especially rhythmically active CPG networks. Models have elucidated many aspects of these networks, from identifying key interacting membrane properties to pointing out gaps in our understanding, for example missing neurons. Even the complex CPGs of vertebrates, such as those that underlie respiration, have been reduced to small network models to great effect. Modeling of these networks spans from simplified models, which are amenable to mathematical analyses, to very complicated biophysical models. Some researchers have now adopted a population approach, where they generate and analyze many related models that differ in a few to several judiciously chosen free parameters; often these parameters show variability across animals and thus justify the approach. Models of small neuronal networks will continue to expand and refine our understanding of how neuronal networks in all animals program motor output, process sensory information and learn. PMID:22364687

  10. Modelling the Energy Efficient Sensor Nodes for Wireless Sensor Networks

    Science.gov (United States)

    Dahiya, R.; Arora, A. K.; Singh, V. R.

    2015-09-01

    Energy is an important requirement of wireless sensor networks for better performance. A widely employed energy-saving technique is to place nodes in sleep mode, corresponding to low-power consumption as well as to reduce operational capabilities. In this paper, Markov model of a sensor network is developed. The node is considered to enter a sleep mode. This model is used to investigate the system performance in terms of energy consumption, network capacity and data delivery delay.

  11. Metabolic robustness and network modularity: A model study

    OpenAIRE

    Holme, Petter

    2010-01-01

    [Background] Several studies have mentioned network modularity -- that a network can easily be decomposed into subgraphs that are densely connected within and weakly connected between each other -- as a factor affecting metabolic robustness. In this paper we measure the relation between network modularity and several aspects of robustness directly in a model system of metabolism. [Methodology/Principal Findings] By using a model for generating chemical reaction systems where one can tune the ...

  12. MODEL OF INFORMATION SECURITY FOR CONTROL PROCESSES OF COMPUTER NETWORKS

    Directory of Open Access Journals (Sweden)

    Kucher V. A.

    2015-06-01

    Full Text Available In order to improve the security of information transfer we have offered one of the possible approaches to modeling process control computer networks with elements of intelligent decision support. We proceed from the graph model of network nodes which are network devices with software control agents, and arcs are logical channels of information exchange between the equipment computer systems. We built an addressless sensing technology which ensures the completeness of monitoring of all network equipment. To classify the computer networks state we provided a method for calculating the values of reliability. Development of signal mismatch triggers the control cycle as a result of which the adjustment of the state of network equipment. For existing tools we proposed adding network control expert system consists of a knowledge base, inference mechanism and means of description and fill in the knowledge base

  13. Polynomial harmonic GMDH learning networks for time series modeling.

    Science.gov (United States)

    Nikolaev, Nikolay Y; Iba, Hitoshi

    2003-12-01

    This paper presents a constructive approach to neural network modeling of polynomial harmonic functions. This is an approach to growing higher-order networks like these build by the multilayer GMDH algorithm using activation polynomials. Two contributions for enhancement of the neural network learning are offered: (1) extending the expressive power of the network representation with another compositional scheme for combining polynomial terms and harmonics obtained analytically from the data; (2) space improving the higher-order network performance with a backpropagation algorithm for further gradient descent learning of the weights, initialized by least squares fitting during the growing phase. Empirical results show that the polynomial harmonic version phGMDH outperforms the previous GMDH, a Neurofuzzy GMDH and traditional MLP neural networks on time series modeling tasks. Applying next backpropagation training helps to achieve superior polynomial network performances. PMID:14622880

  14. Performance Modeling and Evaluation for Information-Driven Networks

    CERN Document Server

    Wu, Kui; Hu, Guoqiang

    2008-01-01

    Information-driven networks include a large category of networking systems, where network nodes are aware of information delivered and thus can not only forward data packets but may also perform information processing. In many situations, the quality of service (QoS) in information-driven networks is provisioned with the redundancy in information. Traditional performance models generally adopt evaluation measures suitable for packet-oriented service guarantee, such as packet delay, throughput, and packet loss rate. These performance measures, however, do not align well with the actual need of information-driven networks. New performance measures and models for information-driven networks, despite their importance, have been mainly blank, largely because information processing is clearly application dependent and cannot be easily captured within a generic framework. To fill the vacancy, we present a new performance evaluation framework particularly tailored for information-driven networks, based on the recent ...

  15. Interdependent multi-layer networks: modeling and survivability analysis with applications to space-based networks.

    Directory of Open Access Journals (Sweden)

    Jean-Francois Castet

    Full Text Available This article develops a novel approach and algorithmic tools for the modeling and survivability analysis of networks with heterogeneous nodes, and examines their application to space-based networks. Space-based networks (SBNs allow the sharing of spacecraft on-orbit resources, such as data storage, processing, and downlink. Each spacecraft in the network can have different subsystem composition and functionality, thus resulting in node heterogeneity. Most traditional survivability analyses of networks assume node homogeneity and as a result, are not suited for the analysis of SBNs. This work proposes that heterogeneous networks can be modeled as interdependent multi-layer networks, which enables their survivability analysis. The multi-layer aspect captures the breakdown of the network according to common functionalities across the different nodes, and it allows the emergence of homogeneous sub-networks, while the interdependency aspect constrains the network to capture the physical characteristics of each node. Definitions of primitives of failure propagation are devised. Formal characterization of interdependent multi-layer networks, as well as algorithmic tools for the analysis of failure propagation across the network are developed and illustrated with space applications. The SBN applications considered consist of several networked spacecraft that can tap into each other's Command and Data Handling subsystem, in case of failure of its own, including the Telemetry, Tracking and Command, the Control Processor, and the Data Handling sub-subsystems. Various design insights are derived and discussed, and the capability to perform trade-space analysis with the proposed approach for various network characteristics is indicated. The select results here shown quantify the incremental survivability gains (with respect to a particular class of threats of the SBN over the traditional monolith spacecraft. Failure of the connectivity between nodes is also

  16. Attack robustness of cascading load model in interdependent networks

    Science.gov (United States)

    Wang, Jianwei; Wu, Yuedan; Li, Yun

    2015-08-01

    Considering the weight of a node and the coupled strength of two interdependent nodes in the different networks, we propose a method to assign the initial load of a node and construct a new cascading load model in the interdependent networks. Assuming that a node in one network will fail if its degree is 0 or its dependent node in the other network is removed from the network or the load on it exceeds its capacity, we study the influences of the assortative link (AL) and the disassortative link (DL) patterns between two networks on the robustness of the interdependent networks against cascading failures. For better evaluating the network robustness, from the local perspective of a node we present a new measure to qualify the network resiliency after targeted attacks. We show that the AL patterns between two networks can improve the robust level of the entire interdependent networks. Moreover, we obtain how to efficiently allocate the initial load and select some nodes to be protected so as to maximize the network robustness against cascading failures. In addition, we find that some nodes with the lower load are more likely to trigger the cascading propagation when the distribution of the load is more even, and also give the reasonable explanation. Our findings can help to design the robust interdependent networks and give the reasonable suggestion to optimize the allocation of the protection resources.

  17. Agent-based model of information spread in social networks

    CERN Document Server

    Lande, D V; Berezin, B O

    2016-01-01

    We propose evolution rules of the multiagent network and determine statistical patterns in life cycle of agents - information messages. The main discussed statistical pattern is connected with the number of likes and reposts for a message. This distribution corresponds to Weibull distribution according to modeling results. We examine proposed model using the data from Twitter, an online social networking service.

  18. Deterministic ripple-spreading model for complex networks.

    Science.gov (United States)

    Hu, Xiao-Bing; Wang, Ming; Leeson, Mark S; Hines, Evor L; Di Paolo, Ezequiel

    2011-04-01

    This paper proposes a deterministic complex network model, which is inspired by the natural ripple-spreading phenomenon. The motivations and main advantages of the model are the following: (i) The establishment of many real-world networks is a dynamic process, where it is often observed that the influence of a few local events spreads out through nodes, and then largely determines the final network topology. Obviously, this dynamic process involves many spatial and temporal factors. By simulating the natural ripple-spreading process, this paper reports a very natural way to set up a spatial and temporal model for such complex networks. (ii) Existing relevant network models are all stochastic models, i.e., with a given input, they cannot output a unique topology. Differently, the proposed ripple-spreading model can uniquely determine the final network topology, and at the same time, the stochastic feature of complex networks is captured by randomly initializing ripple-spreading related parameters. (iii) The proposed model can use an easily manageable number of ripple-spreading related parameters to precisely describe a network topology, which is more memory efficient when compared with traditional adjacency matrix or similar memory-expensive data structures. (iv) The ripple-spreading model has a very good potential for both extensions and applications. PMID:21599256

  19. Optimization model for the design of distributed wastewater treatment networks

    OpenAIRE

    Ibrić Nidret; Ahmetović Elvis; Suljkanović Midhat

    2012-01-01

    In this paper we address the synthesis problem of distributed wastewater networks using mathematical programming approach based on the superstructure optimization. We present a generalized superstructure and optimization model for the design of the distributed wastewater treatment networks. The superstructure includes splitters, treatment units, mixers, with all feasible interconnections including water recirculation. Based on the superstructure the optimization model is presented. The ...

  20. A small-world network model of facial emotion recognition.

    Science.gov (United States)

    Takehara, Takuma; Ochiai, Fumio; Suzuki, Naoto

    2016-01-01

    Various models have been proposed to increase understanding of the cognitive basis of facial emotions. Despite those efforts, interactions between facial emotions have received minimal attention. If collective behaviours relating to each facial emotion in the comprehensive cognitive system could be assumed, specific facial emotion relationship patterns might emerge. In this study, we demonstrate that the frameworks of complex networks can effectively capture those patterns. We generate 81 facial emotion images (6 prototypes and 75 morphs) and then ask participants to rate degrees of similarity in 3240 facial emotion pairs in a paired comparison task. A facial emotion network constructed on the basis of similarity clearly forms a small-world network, which features an extremely short average network distance and close connectivity. Further, even if two facial emotions have opposing valences, they are connected within only two steps. In addition, we show that intermediary morphs are crucial for maintaining full network integration, whereas prototypes are not at all important. These results suggest the existence of collective behaviours in the cognitive systems of facial emotions and also describe why people can efficiently recognize facial emotions in terms of information transmission and propagation. For comparison, we construct three simulated networks--one based on the categorical model, one based on the dimensional model, and one random network. The results reveal that small-world connectivity in facial emotion networks is apparently different from those networks, suggesting that a small-world network is the most suitable model for capturing the cognitive basis of facial emotions. PMID:26315136

  1. Mathematical modelling of complex contagion on clustered networks

    Science.gov (United States)

    O'sullivan, David J.; O'Keeffe, Gary; Fennell, Peter; Gleeson, James

    2015-09-01

    The spreading of behavior, such as the adoption of a new innovation, is influenced bythe structure of social networks that interconnect the population. In the experiments of Centola (Science, 2010), adoption of new behavior was shown to spread further and faster across clustered-lattice networks than across corresponding random networks. This implies that the “complex contagion” effects of social reinforcement are important in such diffusion, in contrast to “simple” contagion models of disease-spread which predict that epidemics would grow more efficiently on random networks than on clustered networks. To accurately model complex contagion on clustered networks remains a challenge because the usual assumptions (e.g. of mean-field theory) regarding tree-like networks are invalidated by the presence of triangles in the network; the triangles are, however, crucial to the social reinforcement mechanism, which posits an increased probability of a person adopting behavior that has been adopted by two or more neighbors. In this paper we modify the analytical approach that was introduced by Hebert-Dufresne et al. (Phys. Rev. E, 2010), to study disease-spread on clustered networks. We show how the approximation method can be adapted to a complex contagion model, and confirm the accuracy of the method with numerical simulations. The analytical results of the model enable us to quantify the level of social reinforcement that is required to observe—as in Centola’s experiments—faster diffusion on clustered topologies than on random networks.

  2. Neural Network Model for the Constitutive Relations of Soil

    Institute of Scientific and Technical Information of China (English)

    Zeng Jing; Wang Jing-tao

    2003-01-01

    The soil constitutive relation is one of the important issues in soil mechanics. It is very difficult to establish mathematical models because of the complexity of soil mechanical behavior. We propose a new method of neural network analysis for establishing soil constitutive models. Based on triaxial experiments of sand in the laboratory, the nonlinear constitutive models of sand expressed by the neural network were set up. In comparison with Duncan-Chang's model, the neural network method for sand modeling has been proved to be more convenient, accurate and it has a strong fault-tolerance function.

  3. Systems and methods for modeling and analyzing networks

    Science.gov (United States)

    Hill, Colin C; Church, Bruce W; McDonagh, Paul D; Khalil, Iya G; Neyarapally, Thomas A; Pitluk, Zachary W

    2013-10-29

    The systems and methods described herein utilize a probabilistic modeling framework for reverse engineering an ensemble of causal models, from data and then forward simulating the ensemble of models to analyze and predict the behavior of the network. In certain embodiments, the systems and methods described herein include data-driven techniques for developing causal models for biological networks. Causal network models include computational representations of the causal relationships between independent variables such as a compound of interest and dependent variables such as measured DNA alterations, changes in mRNA, protein, and metabolites to phenotypic readouts of efficacy and toxicity.

  4. Model framework for describing the dynamics of evolving networks

    Science.gov (United States)

    Tobochnik, Jan; Strandburg, Katherine; Csardi, Gabor; Erdi, Peter

    2007-03-01

    We present a model framework for describing the dynamics of evolving networks. In this framework the addition of edges is stochastically governed by some important intrinsic and structural properties of network vertices through an attractiveness function. We discuss the solution of the inverse problem: determining the attractiveness function from the network evolution data. We also present a number of example applications: the description of the US patent citation network using vertex degree, patent age and patent category variables, and we show how the time-dependent version of the method can be used to find and describe important changes in the internal dynamics. We also compare our results to scientific citation networks.

  5. New Model of Network- a Future Aspect of the Computer Networks

    CERN Document Server

    Singh, Ram Kumar

    2009-01-01

    As the number and size of the Network increases, the deficiencies persist, including network security problems. But there is no shortage of technologies offered as universal remedy - EIGRP,BGP, OSPF, VoIP, IPv6, IPTV, MPLS, WiFi, to name a few. There are multiple factors for the current situation. Now a day during emergent and blossoming stages of network development is no longer sufficient when the networks are mature and have become everyday tool for social and business interactions. A new model of network is necessary to find solutions for today's pressing problems, especially those related to network security. In this paper out factors leading to current stagnation discusses critical assumptions behind current networks, how many of them are no longer valid and have become barriers for implementing real solutions. The paper concludes by offering new directions for future needs and solving current challenges.

  6. Self-training neural network model for tomography data processing

    Science.gov (United States)

    Kulchin, Yuri N.; Vitrik, Oleg B.; Kamenev, Oleg T.; Kirichenko, Oleg V.; Petrov, Yuri S.; Maksayev, Oleg G.

    1995-04-01

    In this paper we present self-training two-layer neural network model for tomography data processing. This model allows us to reconstruct physical field parameters distribution by use of tomography integral data.

  7. Concepts of the neural network model for tomography data processing

    Science.gov (United States)

    Kulchin, Yuri N.; Vitrik, Oleg B.; Kamenev, Oleg T.; Kirichenko, Oleg V.; Petrov, Yuri S.; Maksayev, Oleg G.

    1995-11-01

    In this paper we present a self-training two-layer neural network model for tomography data processing. This model allows us to reconstruct physical field parameters distribution by use of tomography integral data.

  8. Artificial Immune Danger Theory Based Model for Network Security Evaluation

    Directory of Open Access Journals (Sweden)

    Feixian Sun

    2011-02-01

    Full Text Available Inspired by the principles of immune danger theory, a danger theory based model for network security risk assessment is presented in this paper. Firstly, the principle of the danger theory is introduced. And then, with the improved concepts and formal definitions of antigen, antibody, danger signal, and detection lymphocyte for network security risk assessment presented, the distributed architecture of the proposed model is described. Following that, the principle of network intrusion detection is expounded. Finally, the method of network security risk assessment is given. Theoretical analysis and simulation results show that the proposed model can evaluate the network attack threats in real time. Thus, it provides an effective risk evaluation solution to network security.

  9. Energy Consumption Model in Ad Hoc Mobile Network

    Directory of Open Access Journals (Sweden)

    Maher HENI

    2012-06-01

    Full Text Available The aim of this work is to model the nodes battery discharge in wireless ad hoc networks. Many work focus on the energy consumption in such networks. Even, the research in the highest layers of the ISO model, takes into account the energy consumption and efficiency. Indeed, thenodes that form such network are mobiles, so no instant recharge of battery. Also with special type of ad hoc networks are wireless sensors networks using non-rechargeable batteries. All nodes with an exhausted battery are considered death and left the network. To consider the energy consumption, in this work we model using a Markov chain, the discharge of the battery considering of instant activation and deactivation distribution function of these nodes.

  10. Dynamic Pathloss Model for Future Mobile Communication Networks

    DEFF Research Database (Denmark)

    Kumar, Ambuj; Mihovska, Albena Dimitrova; Prasad, Ramjee

    2016-01-01

    — Future mobile communication networks (MCNs) are expected to be more intelligent and proactive based on new capabilities that increase agility and performance. However, for any successful mobile network service, the dexterity in network deployment is a key factor. The efficiency of the network...... planning depends on how congruent the chosen path loss model and real propagation are. Various path loss models have been developed that predict the signal propagation in various morphological and climatic environments; however they consider only those physical parameters of the network environment that...... are essentially static. Therefore, once the signal level drops beyond the predicted values due to any variance in the environmental conditions, very crowded areas may not be catered well enough by the deployed network that had been designed with the static path loss model. This paper proposes an...

  11. Impulsive Neural Networks Algorithm Based on the Artificial Genome Model

    Directory of Open Access Journals (Sweden)

    Yuan Gao

    2014-05-01

    Full Text Available To describe gene regulatory networks, this article takes the framework of the artificial genome model and proposes impulsive neural networks algorithm based on the artificial genome model. Firstly, the gene expression and the cell division tree are applied to generate spiking neurons with specific attributes, neural network structure, connection weights and specific learning rules of each neuron. Next, the gene segment duplications and divergence model are applied to design the evolutionary algorithm of impulsive neural networks at the level of the artificial genome. The dynamic changes of developmental gene regulatory networks are controlled during the whole evolutionary process. Finally, the behavior of collecting food for autonomous intelligent agent is simulated, which is driven by nerves. Experimental results demonstrate that the algorithm in this article has the evolutionary ability on large-scale impulsive neural networks

  12. Radionuclide migration analysis using a discrete fracture network model

    International Nuclear Information System (INIS)

    This paper describes an approach for assessing the geosphere performance of nuclear waste disposal in fractured rock. In this approach, a three-dimensional heterogeneous channel-network model is constructed using a stochastic discrete fracture network (DFN) code. Radionuclide migration in the channel-network model is solved using the Laplace transform Galerkin finite element method, taking into account advection-dispersion in a fracture network, matrix diffusion, sorption in the rock matrix as well as radioactive chain decay. Preliminary radionuclide migration analysis was performed for fifty realizations of a synthetic block-scale DFN model. The total radionuclide release from all packages in the repository was estimated from the statistics of the results of fifty realizations under the hypothesis of ergodicity. The interpretation of the result of the three-dimensional network model by a combination of simpler one-dimensional parallel plate models is also discussed

  13. Role of neural network models for developing speech systems

    Indian Academy of Sciences (India)

    K Sreenivasa Rao

    2011-10-01

    This paper discusses the application of neural networks for developing different speech systems. Prosodic parameters of speech at syllable level depend on positional, contextual and phonological features of the syllables. In this paper, neural networks are explored to model the prosodic parameters of the syllables from their positional, contextual and phonological features. The prosodic parameters considered in this work are duration and sequence of pitch $(F_0)$ values of the syllables. These prosody models are further examined for applications such as text to speech synthesis, speech recognition, speaker recognition and language identification. Neural network models in voice conversion system are explored for capturing the mapping functions between source and target speakers at source, system and prosodic levels. We have also used neural network models for characterizing the emotions present in speech. For identification of dialects in Hindi, neural network models are used to capture the dialect specific information from spectral and prosodic features of speech.

  14. A Network Contention Model for the Extreme-scale Simulator

    Energy Technology Data Exchange (ETDEWEB)

    Engelmann, Christian [ORNL; Naughton III, Thomas J [ORNL

    2015-01-01

    The Extreme-scale Simulator (xSim) is a performance investigation toolkit for high-performance computing (HPC) hardware/software co-design. It permits running a HPC application with millions of concurrent execution threads, while observing its performance in a simulated extreme-scale system. This paper details a newly developed network modeling feature for xSim, eliminating the shortcomings of the existing network modeling capabilities. The approach takes a different path for implementing network contention and bandwidth capacity modeling using a less synchronous and accurate enough model design. With the new network modeling feature, xSim is able to simulate on-chip and on-node networks with reasonable accuracy and overheads.

  15. A Mathematical Model to Improve the Performance of Logistics Network

    Directory of Open Access Journals (Sweden)

    Muhammad Izman Herdiansyah

    2012-01-01

    Full Text Available The role of logistics nowadays is expanding from just providing transportation and warehousing to offering total integrated logistics. To remain competitive in the global market environment, business enterprises need to improve their logistics operations performance. The improvement will be achieved when we can provide a comprehensive analysis and optimize its network performances. In this paper, a mixed integer linier model for optimizing logistics network performance is developed. It provides a single-product multi-period multi-facilities model, as well as the multi-product concept. The problem is modeled in form of a network flow problem with the main objective to minimize total logistics cost. The problem can be solved using commercial linear programming package like CPLEX or LINDO. Even in small case, the solver in Excel may also be used to solve such model.Keywords: logistics network, integrated model, mathematical programming, network optimization

  16. Behavioural and biochemical profiles in rats infected with Toxoplasma gondii or lipopolysaccharide: animal models of schizophrenia

    Czech Academy of Sciences Publication Activity Database

    Tejkalová, H.; Kodym, P.; Kačer, P.; Klaschka, Jan; Horáček, J.

    EBPS, 2013. s. 34-34. [Biennal meeting of the EBPS /15./. 06.09.2013-09.09.2013, La Rochelle] Institutional support: RVO:67985807 Keywords : animal models * schizophrenia * behaviour * LPS * Toxoplasma gondii Subject RIV: FH - Neurology

  17. A comprehensive multi-local-world model for complex networks

    International Nuclear Information System (INIS)

    The nodes in a community within a network are much more connected to each other than to the others outside the community in the same network. This phenomenon has been commonly observed from many real-world networks, ranging from social to biological even to technical networks. Meanwhile, the number of communities in some real-world networks, such as the Internet and most social networks, are evolving with time. To model this kind of networks, the present Letter proposes a multi-local-world (MLW) model to capture and describe their essential topological properties. Based on the mean-field theory, the degree distribution of this model is obtained analytically, showing that the generated network has a novel topological feature as being not completely random nor completely scale-free but behaving somewhere between them. As a typical application, the MLW model is applied to characterize the Internet against some other models such as the BA, GBA, Fitness and HOT models, demonstrating the superiority of the new model.

  18. Towards a Semantic Modeling of Learners for Social Networks

    OpenAIRE

    Ounnas, Asma; Liccardi, Ilaria; Davis, Hugh C.; Millard, David E.; White, Su / A

    2006-01-01

    The Friend of a Friend (FOAF) ontology is a vocabulary for mapping social networks. In this paper we propose an extension to FOAF in order to allow it to model learners and their social networks. We analyse FOAF alongside different learner modeling standards and specifications, and based on this analysis we introduce a taxonomy of the different features found in those models. We then compare the learner models and FOAF against the taxonomy to see how their characteristics have been shaped by ...

  19. Programming Sensor Networks Using Remora Component Model

    Science.gov (United States)

    Taherkordi, Amirhosein; Loiret, Frédéric; Abdolrazaghi, Azadeh; Rouvoy, Romain; Le-Trung, Quan; Eliassen, Frank

    The success of high-level programming models in Wireless Sensor Networks (WSNs) is heavily dependent on factors such as ease of programming, code well-structuring, degree of code reusability, and required software development effort. Component-based programming has been recognized as an effective approach to meet such requirements. Most of componentization efforts in WSNs were ineffective due to various reasons, such as high resource demand or limited scope of use. In this paper, we present Remora, a new approach to practical and efficient component-based programming in WSNs. Remora offers a well-structured programming paradigm that fits very well with resource limitations of embedded systems, including WSNs. Furthermore, the special attention to event handling in Remora makes our proposal more practical for WSN applications, which are inherently event-driven. More importantly, the mutualism between Remora and underlying system software promises a new direction towards separation of concerns in WSNs. Our evaluation results show that a well-configured Remora application has an acceptable memory overhead and a negligible CPU cost.

  20. Rainfall-runoff modelling using artificial neural networks: comparison of network types

    Science.gov (United States)

    Senthil Kumar, A. R.; Sudheer, K. P.; Jain, S. K.; Agarwal, P. K.

    2005-04-01

    Growing interest in the use of artificial neural networks (ANNs) in rainfall-runoff modelling has suggested certain issues that are still not addressed properly. One such concern is the use of network type, as theoretical studies on a multi-layer perceptron (MLP) with a sigmoid transfer function enlightens certain limitations for its use. Alternatively, there is a strong belief in the general ANN user community that a radial basis function (RBF) network performs better than an MLP, as the former bases its nonlinearities on the training data set. This argument is not yet substantiated by applications in hydrology. This paper presents a comprehensive evaluation of the performance of MLP- and RBF-type neural network models developed for rainfall-runoff modelling of two Indian river basins. The performance of both the MLP and RBF network models were comprehensively evaluated in terms of their generalization properties, predicted hydrograph characteristics, and predictive uncertainty. The results of the study indicate that the choice of the network type certainly has an impact on the model prediction accuracy. The study suggests that both the networks have merits and limitations. For instance, the MLP requires a long trial-and-error procedure to fix the optimal number of hidden nodes, whereas for an RBF the structure of the network can be fixed using an appropriate training algorithm. However, a judgment on which is superior is not clearly possible from this study.

  1. Simulation Model of Magnetic Levitation Based on NARX Neural Networks

    Directory of Open Access Journals (Sweden)

    Dragan Antić

    2013-04-01

    Full Text Available In this paper, we present analysis of different training types for nonlinear autoregressive neural network, used for simulation of magnetic levitation system. First, the model of this highly nonlinear system is described and after that the Nonlinear Auto Regressive eXogenous (NARX of neural network model is given. Also, numerical optimization techniques for improved network training are described. It is verified that NARX neural network can be successfully used to simulate real magnetic levitation system if suitable training procedure is chosen, and the best two training types, obtained from experimental results, are described in details.

  2. An Extended Hierarchical Trusted Model for Wireless Sensor Networks

    Institute of Scientific and Technical Information of China (English)

    DU Ruiying; XU Mingdi; ZHANG Huanguo

    2006-01-01

    Cryptography and authentication are traditional approach for providing network security. However, they are not sufficient for solving the problems which malicious nodes compromise whole wireless sensor network leading to invalid data transmission and wasting resource by using vicious behaviors. This paper puts forward an extended hierarchical trusted architecture for wireless sensor network, and establishes trusted congregations by three-tier framework. The method combines statistics, economics with encrypt mechanism for developing two trusted models which evaluate cluster head nodes and common sensor nodes respectively. The models form logical trusted-link from command node to common sensor nodes and guarantees the network can run in secure and reliable circumstance.

  3. Wavelet Based Analytical Expressions to Steady State Biofilm Model Arising in Biochemical Engineering.

    Science.gov (United States)

    Padma, S; Hariharan, G

    2016-06-01

    In this paper, we have developed an efficient wavelet based approximation method to biofilm model under steady state arising in enzyme kinetics. Chebyshev wavelet based approximation method is successfully introduced in solving nonlinear steady state biofilm reaction model. To the best of our knowledge, until now there is no rigorous wavelet based solution has been addressed for the proposed model. Analytical solutions for substrate concentration have been derived for all values of the parameters δ and SL. The power of the manageable method is confirmed. Some numerical examples are presented to demonstrate the validity and applicability of the wavelet method. Moreover the use of Chebyshev wavelets is found to be simple, efficient, flexible, convenient, small computation costs and computationally attractive. PMID:26661721

  4. Current advances in molecular, biochemical, and computational modeling analysis of microalgal triacylglycerol biosynthesis.

    Science.gov (United States)

    Lenka, Sangram K; Carbonaro, Nicole; Park, Rudolph; Miller, Stephen M; Thorpe, Ian; Li, Yantao

    2016-01-01

    Triacylglycerols (TAGs) are highly reduced energy storage molecules ideal for biodiesel production. Microalgal TAG biosynthesis has been studied extensively in recent years, both at the molecular level and systems level through experimental studies and computational modeling. However, discussions of the strategies and products of the experimental and modeling approaches are rarely integrated and summarized together in a way that promotes collaboration among modelers and biologists in this field. In this review, we outline advances toward understanding the cellular and molecular factors regulating TAG biosynthesis in unicellular microalgae with an emphasis on recent studies on rate-limiting steps in fatty acid and TAG synthesis, while also highlighting new insights obtained from the integration of multi-omics datasets with mathematical models. Computational methodologies such as kinetic modeling, metabolic flux analysis, and new variants of flux balance analysis are explained in detail. We discuss how these methods have been used to simulate algae growth and lipid metabolism in response to changing culture conditions and how they have been used in conjunction with experimental validations. Since emerging evidence indicates that TAG synthesis in microalgae operates through coordinated crosstalk between multiple pathways in diverse subcellular destinations including the endoplasmic reticulum and plastids, we discuss new experimental studies and models that incorporate these findings for discovering key regulatory checkpoints. Finally, we describe tools for genetic manipulation of microalgae and their potential for future rational algal strain design. This comprehensive review explores the potential synergistic impact of pathway analysis, computational approaches, and molecular genetic manipulation strategies on improving TAG production in microalgae. PMID:27321475

  5. Network Statistical Models for Language Learning Contexts: Exponential Random Graph Models and Willingness to Communicate

    Science.gov (United States)

    Gallagher, H. Colin; Robins, Garry

    2015-01-01

    As part of the shift within second language acquisition (SLA) research toward complex systems thinking, researchers have called for investigations of social network structure. One strand of social network analysis yet to receive attention in SLA is network statistical models, whereby networks are explained in terms of smaller substructures of…

  6. Modeling Temporal Evolution and Multiscale Structure in Networks

    DEFF Research Database (Denmark)

    Herlau, Tue; Mørup, Morten; Schmidt, Mikkel Nørgaard

    Many real-world networks exhibit both temporal evolution and multiscale structure. We propose a model for temporally correlated multifurcating hierarchies in complex networks which jointly capture both effects. We use the Gibbs fragmentation tree as prior over multifurcating trees and a change......-point model to account for the temporal evolution of each vertex. We demonstrate that our model is able to infer time-varying multiscale structure in synthetic as well as three real world time-evolving complex networks. Our modeling of the temporal evolution of hierarchies brings new insights into the...

  7. BP Network Based Users' Interest Model in Mining WWW Cache

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    By analyzing the WWW Cache model, we bring forward a user-interest description method based on the fuzzy theory and user-interest inferential relations based on BP(back propagation) neural network. By this method, the users' interest in the WWW cache can be described and the neural network of users' interest can be constructed by positive spread of interest and the negative spread of errors. This neural network can infer the users' interest. This model is not the simple extension of the simple interest model, but the round improvement of the model and its related algorithm.

  8. Dissipative electro-elastic network model of protein electrostatics

    International Nuclear Information System (INIS)

    We propose a dissipative electro-elastic network model to describe the dynamics and statistics of electrostatic fluctuations at active sites of proteins. The model combines the harmonic network of residue beads with overdamped dynamics of the normal modes of the network characterized by two friction coefficients. The electrostatic component is introduced to the model through atomic charges of the protein force field. The overall effect of the electrostatic fluctuations of the network is recorded through the frequency-dependent response functions of the electrostatic potential and electric field at the protein active site. We also consider the dynamics of displacements of individual residues in the network and the dynamics of distances between pairs of residues. The model is tested against loss spectra of residue displacements and the electrostatic potential and electric field at the heme's iron from all-atom molecular dynamics simulations of three hydrated globular proteins. (paper)

  9. Dissipative electro-elastic network model of protein electrostatics

    CERN Document Server

    Martin, Daniel R; Matyushov, Dmitry V

    2011-01-01

    We propose a dissipative electro-elastic network model (DENM) to describe the dynamics and statistics of electrostatic fluctuations at active sites of proteins. The model combines the harmonic network of residue beads with overdamped dynamics of the normal modes of the network characterized by two friction coefficients. The electrostatic component is introduced to the model through atomic charges of the protein force field. The overall effect of the electrostatic fluctuations of the network is recorded through the frequency-dependent response functions of the electrostatic potential and electric field at the active site. We also consider the dynamics of displacements of individual residues in the network and the dynamics of distances between pairs of residues. The model is tested against loss spectra of residue displacements and the electrostatic potential and electric field at the heme's iron from all-atom molecular dynamics simulations of three hydrated globular proteins.

  10. Modeling the propagation of mobile malware on complex networks

    Science.gov (United States)

    Liu, Wanping; Liu, Chao; Yang, Zheng; Liu, Xiaoyang; Zhang, Yihao; Wei, Zuxue

    2016-08-01

    In this paper, the spreading behavior of malware across mobile devices is addressed. By introducing complex networks to model mobile networks, which follows the power-law degree distribution, a novel epidemic model for mobile malware propagation is proposed. The spreading threshold that guarantees the dynamics of the model is calculated. Theoretically, the asymptotic stability of the malware-free equilibrium is confirmed when the threshold is below the unity, and the global stability is further proved under some sufficient conditions. The influences of different model parameters as well as the network topology on malware propagation are also analyzed. Our theoretical studies and numerical simulations show that networks with higher heterogeneity conduce to the diffusion of malware, and complex networks with lower power-law exponents benefit malware spreading.

  11. Network Inoculation: Heteroclinics and phase transitions in an epidemic model

    CERN Document Server

    Yang, Hui; Gross, Thilo

    2016-01-01

    In epidemiological modelling, dynamics on networks, and in particular adaptive and heterogeneous networks have recently received much interest. Here we present a detailed analysis of a previously proposed model that combines heterogeneity in the individuals with adaptive rewiring of the network structure in response to a disease. We show that in this model qualitative changes in the dynamics occur in two phase transitions. In a macroscopic description one of these corresponds to a local bifurcation whereas the other one corresponds to a non-local heteroclinic bifurcation. This model thus provides a rare example of a system where a phase transition is caused by a non-local bifurcation, while both micro- and macro-level dynamics are accessible to mathematical analysis. The bifurcation points mark the onset of a behaviour that we call network inoculation. In the respective parameter region exposure of the system to a pathogen will lead to an outbreak that collapses, but leaves the network in a configuration wher...

  12. SPLAI: Computational Finite Element Model for Sensor Networks

    Directory of Open Access Journals (Sweden)

    Ruzana Ishak

    2006-01-01

    Full Text Available Wireless sensor network refers to a group of sensors, linked by a wireless medium to perform distributed sensing task. The primary interest is their capability in monitoring the physical environment through the deployment of numerous tiny, intelligent, wireless networked sensor nodes. Our interest consists of a sensor network, which includes a few specialized nodes called processing elements that can perform some limited computational capabilities. In this paper, we propose a model called SPLAI that allows the network to compute a finite element problem where the processing elements are modeled as the nodes in the linear triangular approximation problem. Our model also considers the case of some failures of the sensors. A simulation model to visualize this network has been developed using C++ on the Windows environment.

  13. A novel interacting multiple model based network intrusion detection scheme

    Science.gov (United States)

    Xin, Ruichi; Venkatasubramanian, Vijay; Leung, Henry

    2006-04-01

    In today's information age, information and network security are of primary importance to any organization. Network intrusion is a serious threat to security of computers and data networks. In internet protocol (IP) based network, intrusions originate in different kinds of packets/messages contained in the open system interconnection (OSI) layer 3 or higher layers. Network intrusion detection and prevention systems observe the layer 3 packets (or layer 4 to 7 messages) to screen for intrusions and security threats. Signature based methods use a pre-existing database that document intrusion patterns as perceived in the layer 3 to 7 protocol traffics and match the incoming traffic for potential intrusion attacks. Alternately, network traffic data can be modeled and any huge anomaly from the established traffic pattern can be detected as network intrusion. The latter method, also known as anomaly based detection is gaining popularity for its versatility in learning new patterns and discovering new attacks. It is apparent that for a reliable performance, an accurate model of the network data needs to be established. In this paper, we illustrate using collected data that network traffic is seldom stationary. We propose the use of multiple models to accurately represent the traffic data. The improvement in reliability of the proposed model is verified by measuring the detection and false alarm rates on several datasets.

  14. Stochastic modeling of biochemical systems with multistep reactions using state-dependent time delay.

    Science.gov (United States)

    Wu, Qianqian; Tian, Tianhai

    2016-01-01

    To deal with the growing scale of molecular systems, sophisticated modelling techniques have been designed in recent years to reduce the complexity of mathematical models. Among them, a widely used approach is delayed reaction for simplifying multistep reactions. However, recent research results suggest that a delayed reaction with constant time delay is unable to describe multistep reactions accurately. To address this issue, we propose a novel approach using state-dependent time delay to approximate multistep reactions. We first use stochastic simulations to calculate time delay arising from multistep reactions exactly. Then we design algorithms to calculate time delay based on system dynamics precisely. To demonstrate the power of proposed method, two processes of mRNA degradation are used to investigate the function of time delay in determining system dynamics. In addition, a multistep pathway of metabolic synthesis is used to explore the potential of the proposed method to simplify multistep reactions with nonlinear reaction rates. Simulation results suggest that the state-dependent time delay is a promising and accurate approach to reduce model complexity and decrease the number of unknown parameters in the models. PMID:27553753

  15. Incorporation of leaf nitrogen observations for biochemical and environmental modeling of photosynthesis and evapotranspiration

    DEFF Research Database (Denmark)

    Boegh, E; Gjetterman, B; Abrahamsen, P;

    2007-01-01

    . While most canopy photosynthesis models assume an exponential vertical profile of leaf N contents in the canopy, the field measurements showed that well-fertilized fields may have a uniform or exponential profile, and senescent canopies have reduced levels of N contents in upper leaves. The sensitivity...

  16. Behavioural and biochemical profiles in rats infected with Toxoplasma gondii or lipopolysaccharide: animal models of schizophrenia

    Czech Academy of Sciences Publication Activity Database

    Tejkalová, H.; Kodym, P.; Kačer, P.; Klaschka, Jan; Horáček, J.

    2013-01-01

    Roč. 24, e-Suppl. 1 (2013), e22. ISSN 0955-8810. [Biennal meeting of the EBPS /15./. 06.09.2013-09.09.2013, La Rochelle] Institutional support: RVO:67985807 Keywords : animal models * schizophrenia * behaviour * LPS * Toxoplasma gondii Subject RIV: FH - Neurology

  17. A mixing evolution model for bidirectional microblog user networks

    Science.gov (United States)

    Yuan, Wei-Guo; Liu, Yun

    2015-08-01

    Microblogs have been widely used as a new form of online social networking. Based on the user profile data collected from Sina Weibo, we find that the number of microblog user bidirectional friends approximately corresponds with the lognormal distribution. We then build two microblog user networks with real bidirectional relationships, both of which have not only small-world and scale-free but also some special properties, such as double power-law degree distribution, disassortative network, hierarchical and rich-club structure. Moreover, by detecting the community structures of the two real networks, we find both of their community scales follow an exponential distribution. Based on the empirical analysis, we present a novel evolution network model with mixed connection rules, including lognormal fitness preferential and random attachment, nearest neighbor interconnected in the same community, and global random associations in different communities. The simulation results show that our model is consistent with real network in many topology features.

  18. Uniformed model of networked control systems with long time delay

    Institute of Scientific and Technical Information of China (English)

    Zhu Qixin; Liu Hongli; Hu Shousong

    2008-01-01

    Feedback control systems wherein the control loops are closed through a real-time network are called networked control systems (NCS). The defining feature of an NCS is that information is exchanged using a network among control system components. Two new concepts including long time delay and short time delay are proposed.The sensor is almost always clock driven. The controller or the actuator is either clock driven or event driven. Four possible driving modes of networked control systems are presented. The open loop mathematic models of networked control systems with long time delay are developed when the system is driven by anyone of the four different modes.The uniformed modeling method of networked control systems with long time delay is proposed. The simulation results are given in the end.

  19. Social networks: modeling structure and dynamics

    OpenAIRE

    Toivonen, Riitta

    2009-01-01

    The study of networks of social interaction can be seen to originate from the work of Jacob Moreno in the 1920's. At the turn of the millennium new actors entered the field, researchers with a background in physics and computer science, who brought with them a new set of tools that could be used to collect and analyse large sets of data. Analysis of large scale social network data from various sources has increased our knowledge of the common features of various social networks, observed in n...

  20. Multiscale Gaussian network model (mGNM) and multiscale anisotropic network model (mANM).

    Science.gov (United States)

    Xia, Kelin; Opron, Kristopher; Wei, Guo-Wei

    2015-11-28

    Gaussian network model (GNM) and anisotropic network model (ANM) are some of the most popular methods for the study of protein flexibility and related functions. In this work, we propose generalized GNM (gGNM) and ANM methods and show that the GNM Kirchhoff matrix can be built from the ideal low-pass filter, which is a special case of a wide class of correlation functions underpinning the linear scaling flexibility-rigidity index (FRI) method. Based on the mathematical structure of correlation functions, we propose a unified framework to construct generalized Kirchhoff matrices whose matrix inverse leads to gGNMs, whereas, the direct inverse of its diagonal elements gives rise to FRI method. With this connection, we further introduce two multiscale elastic network models, namely, multiscale GNM (mGNM) and multiscale ANM (mANM), which are able to incorporate different scales into the generalized Kirchhoff matrices or generalized Hessian matrices. We validate our new multiscale methods with extensive numerical experiments. We illustrate that gGNMs outperform the original GNM method in the B-factor prediction of a set of 364 proteins. We demonstrate that for a given correlation function, FRI and gGNM methods provide essentially identical B-factor predictions when the scale value in the correlation function is sufficiently large. More importantly, we reveal intrinsic multiscale behavior in protein structures. The proposed mGNM and mANM are able to capture this multiscale behavior and thus give rise to a significant improvement of more than 11% in B-factor predictions over the original GNM and ANM methods. We further demonstrate the benefits of our mGNM through the B-factor predictions of many proteins that fail the original GNM method. We show that the proposed mGNM can also be used to analyze protein domain separations. Finally, we showcase the ability of our mANM for the analysis of protein collective motions. PMID:26627949