WorldWideScience

Sample records for biochemical mechanisms responsible

  1. Excess boron responsive regulations of antioxidative mechanism at physio-biochemical and molecular levels in Arabidopsis thaliana.

    Science.gov (United States)

    Kayıhan, Doğa Selin; Kayıhan, Ceyhun; Çiftçi, Yelda Özden

    2016-12-01

    This work was aimed to evaluate the effect of boron (B) toxicity on oxidative damage level, non-enzymatic antioxidant accumulation such as anthocyanin, flavonoid and proline and expression levels of antioxidant enzymes including superoxide dismutase (SOD), ascorbate peroxidase (APX), catalase (CAT) and glutathione reductase (GR) and their respective activities as well as expression levels of miR398 and miR408 in Arabidopsis thaliana. Plants were germinated and grown on MS medium containing 1 mM B (1B) and 3 mM B (3B) for 14 d. Toxic B led to a decrease of photosynthetic pigments and an increase in accumulation of total soluble and insoluble sugars in accordance with phenotypically viewed chlorosis of seedlings through increasing level of B concentration. Along with these inhibitions, a corresponding increase in contents of flavonoid, anthocyanin and proline occurred that provoked oxidative stress tolerance. 3B caused a remarkable increase in total SOD activity whereas the activities of APX, GR and CAT remained unchanged as verified by expected increase in H 2 O 2 content. In contrast to GR, the coincidence was found between the expressions of SOD and APX genes and their respective activities. 1B induced mir398 expression, whereas 3B did not cause any significant change in expression of mir408 and mir398. Expression levels of GR genes were coordinately regulated with DHAR2 expression. Moreover, the changes in expression level of MDAR2 was in accordance with changes in APX6 expression and total APX activity, indicating fine-tuned regulation of ascorbate-glutathione cycle which might trigger antioxidative responses against B toxicity in Arabidopsis thaliana. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  2. Haematological and biochemical responses of starter broiler ...

    African Journals Online (AJOL)

    A study was conducted to investigate the haematological and biochemical responses of starter broiler chickens fed copper and probiotics supplemented diets. A total of 180-day old Marshal broiler chicks were randomly allotted to six treatment groups of 30 birds each. The treatments were divided into three replicates of ten ...

  3. Integrated physiological, biochemical and molecular analysis identifies important traits and mechanisms associated with differential response of rice genotypes to elevated temperature

    Directory of Open Access Journals (Sweden)

    Boghireddy eSailaja

    2015-11-01

    Full Text Available In changing climate, heat stress caused by high temperature poses a serious threat to rice cultivation. A multiple organizational analysis at physiological, biochemical and molecular level is required to fully understand the impact of elevated temperature in rice. This study was aimed at deciphering the elevated temperature response in eleven popular and mega rice cultivars widely grown in India. Physiological and biochemical traits specifically membrane thermostability (MTS, antioxidants, and photosynthesis were studied at vegetative and reproductive phases which were used to establish a correlation with grain yield under stress. Several useful traits in different genotypes were identified which will be important resource to develop high temperature tolerant rice cultivars. Interestingly, Nagina22 emerged as best performer in terms of yield as well as expression of physiological and biochemical traits at elevated temperature. It showed lesser relative injury, lesser reduction in chlorophyll content, increased super oxide dismutase, catalase and peroxidase activity, lesser reduction in net photosynthetic rate (PN, high transpiration rate (E and other photosynthetic/ fluorescence parameters contributing to least reduction in spikelet fertility and grain yield at elevated temperature. Further, expression of 14 genes including heat shock transcription factors and heat shock proteins was analyzed in Nagina22 (tolerant and Vandana (susceptible at flowering phase, strengthening the fact that N22 performs better at molecular level also during elevated temperature. This study shows that elevated temperature response is complex and involves multiple biological processes which are needed to be characterized to address the challenges of future climate extreme conditions.

  4. Polyphenol Oxidase as a Biochemical Seed Defense Mechanism

    Directory of Open Access Journals (Sweden)

    E. Patrick Fuerst

    2014-12-01

    Full Text Available Seed dormancy and resistance to decay are fundamental survival strategies, which allow a population of seeds to germinate over long periods of time. Seeds have physical, chemical, and biological defense mechanisms that protect their food reserves from decay-inducing organisms and herbivores. Here, we hypothesize that seeds also possess enzyme-based biochemical defenses, based on induction of the plant defense enzyme, polyphenol oxidase (PPO, when wild oat (Avena fatua L. caryopses and seeds were challenged with seed-decaying Fusarium fungi. These studies suggest that dormant seeds are capable of mounting a defense response to pathogens. The pathogen-induced PPO activity from wild oat was attributed to a soluble isoform of the enzyme that appeared to result, at least in part, from proteolytic activation of a latent PPO isoform. PPO activity was also induced in wild oat hulls (lemma and palea, non-living tissues that cover and protect the caryopsis. These results are consistent with the hypothesis that seeds possess inducible enzyme-based biochemical defenses arrayed on the exterior of seeds and these defenses represent a fundamental mechanism of seed survival and longevity in the soil. Enzyme-based biochemical defenses may have broader implications since they may apply to other defense enzymes as well as to a diversity of plant species and ecosystems.

  5. Dosimetric response of some biochemicals used as lyoluminescent dosimeters

    International Nuclear Information System (INIS)

    Ettinger, K.V.; Rowe, R.W.; Mallard, J.R.; Takavar, A.; Sephton, J.

    1977-01-01

    It has been found recently that a whole variety of biochemicals exhibit lyoluminescent response to ionizing and UV radiation, which can be used for the purpose of dosimetry. Among the amino acids, glutamine, glutamic acid and valine are showing good response and satisfactory stability of the stored energy i.e. stability of 'frozen' free radicals. Actually, all amino acids involved in naturally occuring proteins, which were investigated (20 compounds) show lyoluminescence to smaller or greater extent. The response is proportional to the dose in the region of 50 rad to 100 kilorad. The mechanism of lyoluminescence in amino acids is probably the same as in the saccharides; formation of free radicals in the solid, conversion to peroxy radicals and, finally generation of excited oxygen dimers on dissolution. Other categories of biochemicals which exhibit lyoluminescence (LL) are DNA, RNA and their salts, as well as some antibiotics like streptomycin, gentamycin and oxytetracycline. Those of proteins that are easily soluble in water, show a good LL response. The half-life of free radicals responsible for LL in albumins (egg, horse and human) is of an order of 24 h. However, in salmine (protamine sulphate) the decay is very slow, of an order of few month, so this material can be used as a 'protein equivalent' dosemeter. In all experiments a 60 Co source was used for irradiations. Proteins, RNA and DNA show a considerable response to UV. In experiments with UV radiation, mostly 2547 A wavelength, the response to radiation in terms of energy deposited in gramme of material was almost twice that for gamma rays of 1.33 and 1.17MeV

  6. Physiological and molecular biochemical mechanisms of bile formation

    Science.gov (United States)

    Reshetnyak, Vasiliy Ivanovich

    2013-01-01

    This review considers the physiological and molecular biochemical mechanisms of bile formation. The composition of bile and structure of a bile canaliculus, biosynthesis and conjugation of bile acids, bile phospholipids, formation of bile micellar structures, and enterohepatic circulation of bile acids are described. In general, the review focuses on the molecular physiology of the transporting systems of the hepatocyte sinusoidal and apical membranes. Knowledge of physiological and biochemical basis of bile formation has implications for understanding the mechanisms of development of pathological processes, associated with diseases of the liver and biliary tract. PMID:24259965

  7. Sucralose induces biochemical responses in Daphnia magna.

    Directory of Open Access Journals (Sweden)

    Ann-Kristin Eriksson Wiklund

    Full Text Available The intense artificial sweetener sucralose has no bioconcentration properties, and no adverse acute toxic effects have been observed in standard ecotoxicity tests, suggesting negligible environmental risk. However, significant feeding and behavioural alterations have been reported in non-standard tests using aquatic crustaceans, indicating possible sublethal effects. We hypothesized that these effects are related to alterations in acetylcholinesterase (AChE and oxidative status in the exposed animals and investigated changes in AChE and oxidative biomarkers (oxygen radical absorbing capacity, ORAC, and lipid peroxidation, TBARS in the crustacean Daphnia magna exposed to sucralose (0.0001-5 mg L(-1. The sucralose concentration was a significant positive predictor for ORAC, TBARS and AChE in the daphnids. Moreover, the AChE response was linked to both oxidative biomarkers, with positive and negative relationships for TBARS and ORAC, respectively. These joint responses support our hypothesis and suggest that exposure to sucralose may induce neurological and oxidative mechanisms with potentially important consequences for animal behaviour and physiology.

  8. Biochemical mechanisms determine the functional compatibility of heterologous genes

    DEFF Research Database (Denmark)

    Porse, Andreas; Schou, Thea S.; Munck, Christian

    2018-01-01

    -gene libraries have suggested that sequence composition is a strong barrier for the successful integration of heterologous genes. Here we sample 200 diverse genes, representing >80% of sequenced antibiotic resistance genes, to interrogate the factors governing genetic compatibility in new hosts. In contrast...... factors governing the functionality and fitness of antibiotic resistance genes. These findings emphasize the importance of biochemical mechanism for heterologous gene compatibility, and suggest physiological constraints as a pivotal feature orienting the evolution of antibiotic resistance....

  9. Combination of biochemical and mechanical cues for tendon tissue engineering.

    Science.gov (United States)

    Testa, Stefano; Costantini, Marco; Fornetti, Ersilia; Bernardini, Sergio; Trombetta, Marcella; Seliktar, Dror; Cannata, Stefano; Rainer, Alberto; Gargioli, Cesare

    2017-11-01

    Tendinopathies negatively affect the life quality of millions of people in occupational and athletic settings, as well as the general population. Tendon healing is a slow process, often with insufficient results to restore complete endurance and functionality of the tissue. Tissue engineering, using tendon progenitors, artificial matrices and bioreactors for mechanical stimulation, could be an important approach for treating rips, fraying and tissue rupture. In our work, C3H10T1/2 murine fibroblast cell line was exposed to a combination of stimuli: a biochemical stimulus provided by Transforming Growth Factor Beta (TGF-β) and Ascorbic Acid (AA); a three-dimensional environment represented by PEGylated-Fibrinogen (PEG-Fibrinogen) biomimetic matrix; and a mechanical induction exploiting a custom bioreactor applying uniaxial stretching. In vitro analyses by immunofluorescence and mechanical testing revealed that the proposed combined approach favours the organization of a three-dimensional tissue-like structure promoting a remarkable arrangement of the cells and the neo-extracellular matrix, reflecting into enhanced mechanical strength. The proposed method represents a novel approach for tendon tissue engineering, demonstrating how the combined effect of biochemical and mechanical stimuli ameliorates biological and mechanical properties of the artificial tissue compared to those obtained with single inducement. © 2017 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  10. Growth, haematological and biochemical responses of growing ...

    African Journals Online (AJOL)

    p2492989

    Abstract. Physiological and productive responses to recombinant bovine somatotropin (rbST) injection and calcium soap of fatty acids (CSFA) supplementation were studied in post-weaning male Rahmani lambs. Male lambs (n = 20) of similar initial body weight (27.9 kg) and age (162 d) were divided randomly into four.

  11. Lignin biodegradation: experimental evidence, molecular, biochemical and physiological mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Monties, B

    1985-01-01

    A critical review is presented of English, French and some German language literature, mainly from 1983 onwards. It examines experimental evidence on the behaviour as barriers to biodegradation of lignins and phenolic polymers such as tannins and suberins. The different molecular mechanisms of lignolysis by fungi (mainly), actinomycetes and bacteria are examined. A new biochemical approach to the physiological mechanism of regulation of lignolytic activities is suggested based on the discoveries of ligniolytic enzymes: effects of nitrogen, oxygen and substrate are discussed. It is concluded that a better knowledge of the structure and reactivity of phenolic barriers is needed in order to control the process of lignolysis.

  12. Physiological and biochemical responses to low temperature stress ...

    African Journals Online (AJOL)

    Cuttings of three hybrid clones of P. ussuriensis × P. deltoides were exposed to different low temperatures (cold and freezing) for 24 h, or consecutive low temperatures (5°C, 0 to 120 h), to determine physiological and biochemical responses to cold stress in these woody plants. Soluble sugar and protein contents increased ...

  13. Mechanical response of composites

    NARCIS (Netherlands)

    Camanho, Pedro P.; Dávila, C.G.; Pinho, Silvestre T.; Remmers, J.J.C.

    2008-01-01

    This book contains twelve selected papers presented at the ECCOMAS Thematic Conference ? Mechanical Response of Composites, and the papers presented by the three plenary speakers. It describes recent advances in the field of analysis models for the mechanical response of advanced composite

  14. [INVITED] Tilted fiber grating mechanical and biochemical sensors

    Science.gov (United States)

    Guo, Tuan; Liu, Fu; Guan, Bai-Ou; Albert, Jacques

    2016-04-01

    The tilted fiber Bragg grating (TFBG) is a new kind of fiber-optic sensor that possesses all the advantages of well-established Bragg grating technology in addition to being able to excite cladding modes resonantly. This device opens up a multitude of opportunities for single-point sensing in hard-to-reach spaces with very controllable cross-sensitivities, absolute and relative measurements of various parameters, and an extreme sensitivity to materials external to the fiber without requiring the fiber to be etched or tapered. Over the past five years, our research group has been developing multimodal fiber-optic sensors based on TFBG in various shapes and forms, always keeping the device itself simple to fabricate and compatible with low-cost manufacturing. This paper presents a brief review of the principle, fabrication, characterization, and implementation of TFBGs, followed by our progress in TFBG sensors for mechanical and biochemical applications, including one-dimensional TFBG vibroscopes, accelerometers and micro-displacement sensors; two-dimensional TFBG vector vibroscopes and vector rotation sensors; reflective TFBG refractometers with in-fiber and fiber-to-fiber configurations; polarimetric and plasmonic TFBG biochemical sensors for in-situ detection of cell, protein and glucose.

  15. Biochemical and cellular mechanisms of low-dose effects

    International Nuclear Information System (INIS)

    Feinendegen, L.E.; Booz, J.; Muehlensiepen, H.

    1988-01-01

    The question of health effects from small radiation doses remains open. Individual cells, when being hit by single elemental doses - in low-dose irradiation - react acutely and temporarily by altering control of enzyme activity, as is demonstrated for the case of thymidine kinase. This response is not constant in that it provides a temporary protection of enzyme activity against a second irradiation, by a mechanism likely to be via improved detoxification of intracellular radicals. It must be considered that in the low-dose region radiation may also exert protection against other challenges involving radicals, causing a net beneficial effect by temporarily shielding the hit cell against radicals produced by metabolism. Since molecular alterations leading to late effects are considered a consequence of the initial cellular response, late effects from small radiation doses do not necessarily adhere to a linear dose-effect relationship. The reality of the linear relationship between the risk of late effects from high doses to small doses is an assumption, for setting dose limits, but it must not be taken for predicting health detriment from low doses. (author)

  16. Physiological and biochemical responses of thyme plants to some antioxidants

    Directory of Open Access Journals (Sweden)

    SALWA A. ORABI

    2014-11-01

    Full Text Available Orabi SA, Talaat IM, Balbaa LK. 2014. Physiological and biochemical responses of thyme plants to some antioxidants. Nusantara Bioscience 6: 118-125. Two pot experiments were conducted to investigate the effect of tryptophan, nicotinamide and α-tocopherol (each at 50 and 100 mg/L on plant growth, essential oil yield and its main constituents. All treatments significantly promoted plant height, and increased fresh and dry mass (g/plant of thyme (Thymus vulgaris L.. The treatment with 100 mg/L nicotinamide showed increasing in total potassium mainly in the first cut. Total soluble sugars, oil percentage and oil yield and protein recorded increments with tryptophan treatments. Treatment of Thymus plants with 100 mg/L nicotinamide observed the highest percentage of thymol (67.61%. Oxygenated compounds recorded the highest value with 50 mg/L α-tocopherol treatment, while the maximum non-oxygenated ones resulted from the application of 100 mg/L nicotinamide. All treatments under study significantly affected the activity of oxidoreductase enzymes (POX and PPO. Nicotinamide at the concentration of 100 mg/L recorded the highest increments in APX and GR and the lowest values in oxidoreductase enzyme activities added to the lowest values of lipid peroxidation to enhance the best protection of thyme plants.

  17. Summary of the mechanism of U-induced renal damage and its biochemical studies

    International Nuclear Information System (INIS)

    Chen Rusong

    1994-05-01

    In China studies on the toxicology of uranium were systematically conducted from the 1960's. Among them the studies of the change of biochemical indicators of U-induced renal damage were involved. On the basis of summarizing the relevant information of our country and the study progress of biochemical methods in recent years, the mechanism of U-induced renal damage and its biochemical basis, the behavior of uranium in kidney and the recent progress to detect renal damage with several biochemical indexes (such as α 1 -or β 2 -microglobulin, N-acetyl-β-D-glucosaminidase and alanine aminopeptidase etc.) are introduced respectively. Finally, the evaluation on the biochemical basis for acquired tolerance to U in kidney is performed. It should be noted that from the clinical viewpoint the tolerance cannot be considered as a practical measure of protection

  18. Intraspecific variation in cellular and biochemical heat response strategies of Mediterranean Xeropicta derbentina [Pulmonata, Hygromiidae].

    Directory of Open Access Journals (Sweden)

    Sandra Troschinski

    Full Text Available Dry and hot environments challenge the survival of terrestrial snails. To minimize overheating and desiccation, physiological and biochemical adaptations are of high importance for these animals. In the present study, seven populations of the Mediterranean land snail species Xeropicta derbentina were sampled from their natural habitat in order to investigate the intraspecific variation of cellular and biochemical mechanisms, which are assigned to contribute to heat resistance. Furthermore, we tested whether genetic parameters are correlated with these physiological heat stress response patterns. Specimens of each population were individually exposed to elevated temperatures (25 to 52°C for 8 h in the laboratory. After exposure, the health condition of the snails' hepatopancreas was examined by means of qualitative description and semi-quantitative assessment of histopathological effects. In addition, the heat-shock protein 70 level (Hsp70 was determined. Generally, calcium cells of the hepatopancreas were more heat resistant than digestive cells - this phenomenon was associated with elevated Hsp70 levels at 40°C.We observed considerable variation in the snails' heat response strategy: Individuals from three populations invested much energy in producing a highly elevated Hsp70 level, whereas three other populations invested energy in moderate stress protein levels - both strategies were in association with cellular functionality. Furthermore, one population kept cellular condition stable despite a low Hsp70 level until 40°C exposure, whereas prominent cellular reactions were observed above this thermal limit. Genetic diversity (mitochondrial cytochrome c oxidase subunit I gene within populations was low. Nevertheless, when using genetic indices as explanatory variables in a multivariate regression tree (MRT analysis, population structure explained mean differences in cellular and biochemical heat stress responses, especially in the group

  19. Proteomic Assessment of Biochemical Pathways That Are Critical to Nickel-Induced Toxicity Responses in Human Epithelial Cells

    Science.gov (United States)

    Ge, Yue; Bruno, Maribel; Haykal-Coates, Najwa; Wallace, Kathleen; Andrews, Debora; Swank, Adam; Winnik, Witold; Ross, Jeffrey A.

    2016-01-01

    Understanding the mechanisms underlying toxicity initiated by nickel, a ubiquitous environmental contaminant and known human carcinogen is necessary for proper assessment of its risks to human and environment. Among a variety of toxic mechanisms, disruption of protein responses and protein response-based biochemical pathways represents a key mechanism through which nickel induces cytotoxicity and carcinogenesis. To identify protein responses and biochemical pathways that are critical to nickel-induced toxicity responses, we measured cytotoxicity and changes in expression and phosphorylation status of 14 critical biochemical pathway regulators in human BEAS-2B cells exposed to four concentrations of nickel using an integrated proteomic approach. A subset of the pathway regulators, including interleukin-6, and JNK, were found to be linearly correlated with cell viability, and may function as molecular determinants of cytotoxic responses of BEAS-2B cells to nickel exposures. In addition, 128 differentially expressed proteins were identified by two dimensional electrophoresis (2-DE) and mass spectrometry. Principal component analysis, hierarchical cluster analyses, and ingenuity signaling pathway analysis (IPA) identified putative nickel toxicity pathways. Some of the proteins and pathways identified have not previously been linked to nickel toxicity. Based on the consistent results obtained from both ELISA and 2-DE proteomic analysis, we propose a core signaling pathway regulating cytotoxic responses of human BEAS-2B cells to nickel exposures, which integrates a small set of proteins involved in glycolysis and gluconeogenesis pathways, apoptosis, protein degradation, and stress responses including inflammation and oxidative stress. PMID:27626938

  20. Biochemical response of ouda sheep to water contaminated with ...

    African Journals Online (AJOL)

    Also, biochemical examinations of fasting blood glucose(FBGL), total serum protein(TSP), serum albumin(S.ALB), blood urea nitrogen(BUN), serum creatinine(S.CREAT.), serum phosphate(S.PO4), aspartate ... hours of the experiment following standard procedures. The result showed that all the parameters measured were ...

  1. Biochemical response of normal albino rats to the addition of ...

    African Journals Online (AJOL)

    Experiments were conducted to determine the biochemical effect of Hibiscus cannabinus and Murraya koenigii extracts on normal albino rats using standard methods. Analyses carried out indicated that the aqueous leaf extract of H. cannabinus and M. koenigii exhibited significant hypolipideamic activity in normal rats.

  2. Differential response of biochemical parameters to EMS and MMS ...

    African Journals Online (AJOL)

    (1964) and biochemical estimations from the liver was done by the method of Sinha (1972) for catalase, Van der Vies (1954) for glycogen and Uchiyama and Mihara (1978) for MDA. Results: The study has revealed that EMS and MMS induced a dose dependent increase in chromosomal aberrations of chromatid type in the ...

  3. BIOCHEMICAL MECHANISM OF AUTOLYTIC PROCESSES OF MUSCULAR TISSUE OF FISHES

    Directory of Open Access Journals (Sweden)

    L. V. Antipova

    2015-01-01

    Full Text Available The conducted researches allowed to establish that intensive disintegration of a muscular glycogen leads to sharp decrease in size рН muscular tissue in the sour party that in turn affects a chemical composition and physic-colloidal structure of proteins therefore: resistance of meat of fish to action of putrefactive microorganisms increases; solubility of muscle proteins, level of their hydration which is water connecting abilities decreases; there is a swelling of collagen of connecting fabric; activity of the cathepsin (an optimum рН 5,3 causing hydrolysis of proteins at later stages of an autolysis increases; the bicarbonate system of muscular tissue with release of carbon dioxide collapses; predecessors of taste and aroma of meat are formed; process of oxidation of lipids becomes more active. As a result of accumulation dairy, phosphoric and other acids in meat of fish concentration of hydrogen ions of that decrease рН is result increases. Sharply shown sour environment and availability of inorganic phosphorus is considered the reason of disintegration of an actin-myosin complex on actin and a myosin which begins after 8 hours of storage, i.e. there comes the period of relaxation of muscle fibers and the period of permission of an numbness, and then the last stage of maturing of meat – deep autolysis. Thus, on the basis of classical ideas of biochemical changes of meat of land animals and summarizing the obtained data on posthumous changes in muscular tissue of fishes, it is possible to draw a conclusion that they have similar nature of regularity in comparison with muscular tissue of land animals, but their main difference is higher speed of course of autolytic transformations. It in turn leads to faster change of FTS of meat of fishes who are the defining indicators when developing assortment groups of products taking into account stages of an autolysis in meat.

  4. Biochemical mechanisms of signaling: perspectives in plants under arsenic stress.

    Science.gov (United States)

    Islam, Ejazul; Khan, Muhammad Tahir; Irem, Samra

    2015-04-01

    Plants are the ultimate food source for humans, either directly or indirectly. Being sessile in nature, they are exposed to various biotic and abiotic stresses because of changing climate that adversely effects their growth and development. Contamination of heavy metals is one of the major abiotic stresses because of anthropogenic as well as natural factors which lead to increased toxicity and accumulation in plants. Arsenic is a naturally occurring metalloid toxin present in the earth crust. Due to its presence in terrestrial and aquatic environments, it effects the growth of plants. Plants can tolerate arsenic using several mechanisms like phytochelation, vacuole sequestration and activation of antioxidant defense systems. Several signaling mechanisms have evolved in plants that involve the use of proteins, calcium ions, hormones, reactive oxygen species and nitric oxide as signaling molecules to cope with arsenic toxicity. These mechanisms facilitate plants to survive under metal stress by activating their defense systems. The pathways by which these stress signals are perceived and responded is an unexplored area of research and there are lots of gaps still to be filled. A good understanding of these signaling pathways can help in raising the plants which can perform better in arsenic contaminated soil and water. In order to increase the survival of plants in contaminated areas there is a strong need to identify suitable gene targets that can be modified according to needs of the stakeholders using various biotechnological techniques. This review focuses on the signaling mechanisms of plants grown under arsenic stress and will give an insight of the different sensory systems in plants. Furthermore, it provides the knowledge about several pathways that can be exploited to develop plant cultivars which are resistant to arsenic stress or can reduce its uptake to minimize the risk of arsenic toxicity through food chain thus ensuring food security. Copyright © 2015

  5. DMPD: The oxidation of lipoproteins by monocytes-macrophages. Biochemical andbiological mechanisms. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 10473535 The oxidation of lipoproteins by monocytes-macrophages. Biochemical andbio.... (.png) (.svg) (.html) (.csml) Show The oxidation of lipoproteins by monocytes-macrophages. Biochemical and...onocytes-macrophages. Biochemical andbiological mechanisms. Authors Chisolm GM 3rd, Hazen SL, Fox PL, Cathca

  6. Responses of physiological and biochemical components in Gossypium hirsutum L. to mutagens

    International Nuclear Information System (INIS)

    Muthusamy, A.; Vasanth, K.; Jayabalan, N.

    2003-01-01

    The two tetraploid varieties of cotton were exposed to gamma rays, EMS and SA. Chlorophyll, carotenoids, sugar, starch, free amino acids, protein, lipids, DNA and RNA were estimated quantitatively. All the physiological and biochemical components were increased in lower dose/concentration of the mutagenic treatments and they were decreased in higher dose/concentrations. The stimulation of the biochemical contents was a dose/concentration dependent response. Among the two varieties, MCU 11 was found to be responsive to mutagens than MCU 5. Based on the study the lower dose/concentration of the mutagenic treatments could enhance the biochemical components which is used for improved economic characters of cotton. (author)

  7. Fruit response to water-scarcity and biochemical changes : Water relations and biochemical changes

    NARCIS (Netherlands)

    Rodríguez, P.; Galindo Egea, Alejandro; Collado-González, J.; Medina, S.; Corell, M.; Memmi, H.; Girón, I.F.; Centeno, A.; Martín-Palomo, M.J.; Cruz, Z.N.; Carbonell-Barrachina, A.A.; Hernandez, F.; Torrecillas, A.; Moriana, A.; Pérez-López, D.; Garcia Tejero, Ivan Francisco; Duran Zuazo, Victor Hugo

    2018-01-01

    The aim of this chapter is to give a general idea of the fruit response to water-scarcity conditions, paying special attention to fruit water relations modification and fruit composition changes, which are key for fruit quality. The strengths and weaknesses of fruit water relations measurement

  8. Biochemical and immunological responses to low doses of ionizing radiation

    International Nuclear Information System (INIS)

    Shabon, M.H.; Sayed, Z.S.; Mahdy, E.M.; El-Gawish, M.A.; Shosha, W.

    2006-01-01

    Malondialdehyde, lactate dehydrogenase, iron concentration, IL-6 and IL-1b concentration, hemoglobin content, red cells, white cells and platelet counts were determined in seventy-two male albino rats divided into two main groups. The first one was subdivided into 7 subgroups; control and 6 irradiated subgroups with 0.1, 0.2, 0.3, 0.5, 0.7 and 1 Gy single dose of gamma radiation. The other was subdivided into 4 subgroups irradiated with fractionated doses of gamma radiation; three groups were irradiated with 0.3, 0.7 and 1 Gy (0.1 Gy/day) and the last subgroup with 1 Gy (0.2 Gy/day). All animals were sacrificed after three days of the last irradiation dose. The results revealed that all biochemical parameters were increased in rats exposed to fractionated doses more than the single doses. Hematological parameters were decreased in rats exposed to single doses more than the fractionated ones. In conclusion, the data of this study highlights the stimulatory effect of low ionizing radiation doses (= 1 Gy), whether single or fractionated, on some biochemical and immunological parameters

  9. Molecular and biochemical mechanisms in teratogenesis involving reactive oxygen species

    International Nuclear Information System (INIS)

    Wells, Peter G.; Bhuller, Yadvinder; Chen, Connie S.; Jeng, Winnie; Kasapinovic, Sonja; Kennedy, Julia C.; Kim, Perry M.; Laposa, Rebecca R.; McCallum, Gordon P.; Nicol, Christopher J.; Parman, Toufan; Wiley, Michael J.; Wong, Andrea W.

    2005-01-01

    Developmental pathologies may result from endogenous or xenobiotic-enhanced formation of reactive oxygen species (ROS), which oxidatively damage cellular macromolecules and/or alter signal transduction. This minireview focuses upon several model drugs (phenytoin, thalidomide, methamphetamine), environmental chemicals (benzo[a]pyrene) and gamma irradiation to examine this hypothesis in vivo and in embryo culture using mouse, rat and rabbit models. Embryonic prostaglandin H synthases (PHSs) and lipoxygenases bioactivate xenobiotics to free radical intermediates that initiate ROS formation, resulting in oxidation of proteins, lipids and DNA. Oxidative DNA damage and embryopathies are reduced in PHS knockout mice, and in mice treated with PHS inhibitors, antioxidative enzymes, antioxidants and free radical trapping agents. Thalidomide causes embryonic DNA oxidation in susceptible (rabbit) but not resistant (mouse) species. Embryopathies are increased in mutant mice deficient in the antioxidative enzyme glucose-6-phosphate dehydrogenase (G6PD), or by glutathione (GSH) depletion, or inhibition of GSH peroxidase or GSH reductase. Inducible nitric oxide synthase knockout mice are partially protected. Inhibition of Ras or NF-kB pathways reduces embryopathies, implicating ROS-mediated signal transduction. Atm and p53 knockout mice deficient in DNA damage response/repair are more susceptible to xenobiotic or radiation embryopathies, suggesting a teratological role for DNA damage, consistent with enhanced susceptibility to methamphetamine in ogg1 knockout mice with deficient repair of oxidative DNA damage. Even endogenous embryonic oxidative stress carries a risk, since untreated G6PD- or ATM-deficient mice have increased embryopathies. Thus, embryonic processes regulating the balance of ROS formation, oxidative DNA damage and repair, and ROS-mediated signal transduction may be important determinants of teratological risk

  10. Biochemical and Structural Insights into the Mechanism of DNA Recognition by Arabidopsis ETHYLENE INSENSITIVE3.

    Directory of Open Access Journals (Sweden)

    Jinghui Song

    Full Text Available Gaseous hormone ethylene regulates numerous stress responses and developmental adaptations in plants by controlling gene expression via transcription factors ETHYLENE INSENSITIVE3 (EIN3 and EIN3-Like1 (EIL1. However, our knowledge regarding to the accurate definition of DNA-binding domains (DBDs within EIN3 and also the mechanism of specific DNA recognition by EIN3 is limited. Here, we identify EIN3 82-352 and 174-306 as the optimal and core DBDs, respectively. Results from systematic biochemical analyses reveal that both the number of EIN3-binding sites (EBSs and the spacing length between two EBSs affect the binding affinity of EIN3; accordingly, a new DNA probe which has higher affinity with EIN3 than ERF1 is also designed. Furthermore, we show that palindromic repeat sequences in ERF1 promoter are not necessary for EIN3 binding. Finally, we provide, to our knowledge, the first crystal structure of EIN3 core DBD, which contains amino acid residues essential for DNA binding and signaling. Collectively, these data suggest the detailed mechanism of DNA recognition by EIN3 and provide an in-depth view at molecular level for the transcriptional regulation mediated by EIN3.

  11. Interactions of Low-Frequency, Pulsed Electromagnetic Fields with Living Tissue: Biochemical Responses and Clinical Results

    DEFF Research Database (Denmark)

    Rahbek, Ulrik L.; Tritsaris, Katerina; Dissing, Steen

    2005-01-01

    In recent years many studies have demonstrated stimulatory effects of pulsed electromagnetic fields (PEMF) on biological tissue. However, controversies have also surrounded the research often due to the lack of knowledge of the different physical consequences of static versus pulsed electromagnetic......, are still lacking. Despite the apparent success of the PEMF technology very little is known regarding the coupling between pulsed electrical fields and biochemical events leading to cellular responses. Insight into this research area is therefore of great importance. In this review we describe the physical...... properties of PEMF-induced electrical fields and explain the typical set up for coils and pulse patterns. Furthermore, we discuss possible models that can account for mechanisms by which induced electric fields are able to enhance cellular signaling. We have emphasized the currently well-documented effects...

  12. Tuning the differentiation of periosteum-derived cartilage using biochemical and mechanical stimulation

    NARCIS (Netherlands)

    Kock, L.M.; Ravetto, A.; Donkelaar, van C.C.; Foolen, J.; Emans, P.J.; Ito, K.

    2010-01-01

    OBJECTIVE: In this study, we aim at tuning the differentiation of periosteum in an organ culture model towards cartilage, rich in collagen type II, using combinations of biochemical and mechanical stimuli. We hypothesize that addition of TGF-ß will stimulate chondrogenesis, whereas sliding

  13. Biochemical Responses of Peach Leaves Infected with Taphrina Deformans Berk/Tul.

    Directory of Open Access Journals (Sweden)

    Lyubka Koleva-Valkova

    2017-01-01

    Full Text Available The phytopathogenic fungus Taphrina deformans causing the so called “leaf curl disease” in peach trees leads to severe yield losses due to the development of leaf hypertrophy and subsequent necrosis and scission. Because of its economic importance, the molecular mechanisms underlying the onset and progression of the disease are of considerable interest to the agricultural science. In this study various biochemical parameters, including the activities of the antioxidant enzymes guaiacol peroxidase, syringaldazine peroxidase and catalase, total polyphenols and anthocyanin content, concentration of free proline, antiradical activity and quantity of plastid pigments, were characterized. All these were measured in both leaves with clear symptoms and distally situated leaves from the same plant that show no signs of the infection. The results demonstrate that the pathogen induces considerable biochemical changes concerning enzymatic and non‑enzymatic elements of the plant defense and antioxidant systems. Moreover, it seems that the fungus provokes a systemic response detectable even in the tissues without observable symptoms.

  14. Trematode infection modulates cockles biochemical response to climate change.

    Science.gov (United States)

    Magalhães, Luísa; de Montaudouin, Xavier; Figueira, Etelvina; Freitas, Rosa

    2018-05-06

    Resulting mainly from atmospheric carbon dioxide (CO 2 ) build-up, seawater temperature rise is among the most important climate change related factors affecting costal marine ecosystems. Global warming will have implications on the water cycle, increasing the risk of heavy rainfalls and consequent freshwater input into the oceans but also increasing the frequency of extreme drought periods with consequent salinity increase. For Europe, by the end of the century, projections describe an increase of CO 2 concentration up to 1120 ppm (corresponding to 0.5 pH unit decrease), an increase in the water temperature up to 4 °C and a higher frequency of heavy precipitation. These changes are likely to impact many biotic interactions, including host-parasite relationships which are particularly dependent on abiotic conditions. In the present study, we tested the hypothesis that the edible cockle, Cerastoderma edule, exposed to different salinity, temperature and pH levels as proxy for climate change, modify the infection success of the trematode parasite Himasthla elongata, with consequences to cockles biochemical performance. The results showed that the cercariae infection success increased with acidification but higher biochemical alterations were observed in infected cockles exposed to all abiotic experimental stressful conditions tested. The present study suggested that changes forecasted by many models may promote the proliferation of the parasites infective stages in many ecosystems leading to enhanced transmission, especially on temperate regions, that will influence the geographical distribution of some diseases and, probably, the survival capacity of infected bivalves. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Biochemical response and the effects of bariatric surgeries on type 2 diabetes

    Science.gov (United States)

    Allen, Roland; Hughes, Tyler; Lerd Ng, Jia; Ortiz, Roberto; Abou Ghantous, Michel; Bouhali, Othmane; Arredouani, Abdelilah

    2013-03-01

    A general method is introduced for calculating the biochemical response to pharmaceuticals, surgeries, or other medical interventions. This method is then applied in a simple model of the response to Roux-en-Y gastric bypass (RYGB) surgery in obese diabetic patients. We specifically address the amazing fact that glycemia correction is usually achieved immediately after RYGB surgery, long before there is any appreciable weight loss. Many studies indicate that this result is not due merely to caloric restriction, and it is usually attributed to an increase in glucagon-like peptide 1 (GLP-1) levels observed after the surgery. However, our model indicates that this mechanism alone is not sufficient to explain either the largest declines in glucose levels or the measured declines in the homeostatic model assessment insulin resistance (HOMA-IR). The most robust additional mechanism would be production of a factor which opens an insulin-independent pathway for glucose transport into cells, perhaps related to the well-established insulin-independent pathway associated with exercise. Potential candidates include bradykinin, a 9 amino acid peptide. If such a substance were found to exist, it would offer hope for medications which mimic the immediate beneficial effect of RYGB surgery. Supported by Qatar Biomedical Research Institute and Science Program at Texas A&M University at Qatar

  16. Mechanical Response of Thermoelectric Materials

    Energy Technology Data Exchange (ETDEWEB)

    Wereszczak, Andrew A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Case, Eldon D. [Michigan State Univ., East Lansing, MI (United States)

    2015-05-01

    A sufficient mechanical response of thermoelectric materials (TEMats) to structural loadings is a prerequisite to the exploitation of any candidate TEMat's thermoelectric efficiency. If a TEMat is mechanically damaged or cracks from service-induced stresses, then its thermal and electrical functions can be compromised or even cease. Semiconductor TEMats tend to be quite brittle and have a high coefficient of thermal expansion; therefore, they can be quite susceptible to mechanical failure when subjected to operational thermal gradients. Because of this, sufficient mechanical response (vis-a-vis, mechanical properties) of any candidate TEMat must be achieved and sustained in the context of the service-induced stress state to which it is subjected. This report provides an overview of the mechanical responses of state-of-the-art TEMats; discusses the relevant properties that are associated with those responses and their measurement; and describes important, nonequilibrium phenomena that further complicate their use in thermoelectric devices. For reference purposes, the report also includes several appendixes that list published data on elastic properties and strengths of a variety of TEMats.

  17. Behavioural and biochemical responses of juvenile catfish ( Clarias ...

    African Journals Online (AJOL)

    The behavioural and serum liver enzyme responses of juvenile catfish (Clarias gariepinus) were evaluated for 72 hours. Thirty-six (36) healthy fishes with standard weight, 20 ± 1.52 g and standard length, 18.25 ± 0.50 cm were used for the experiment in non-renewable bioassay system. The test fish exhibited stressful ...

  18. Plant responses to UV and blue light: biochemical and genetic approaches

    International Nuclear Information System (INIS)

    Jenkins, G.I.; Christie, J.M.; Fuglevand, G.; Long, J.C.; Jackson, J.A.

    1995-01-01

    UV and blue light control many aspects of plant growth and development. It is evident that several different photoreceptors mediate responses to UV and blue light, and there are reports of the functional and biochemical characterisation of a putative photoreceptor for phototropism and of the functional and molecular characterisation of the CRY1 photoreceptor, encoded by the Arabidopsis HY4 gene. The CRY1 photoreceptor mediates extension growth and gene expression responses to UV-A/blue light presumably through different or branching signal transduction pathways. Progress has been made in cell physiological and biochemical studies of UV/blue light signal transduction, but much remains to be done to relate candidate UV/blue signal transduction events to particular photoreceptors and responses. The application of a genetic approach in Arabidopsis has been responsible for many advances in understanding UV/blue responses, but further UV-B, UV-A and blue light response mutants need to be isolated. (author)

  19. Physiological and biochemical responses of Chlorella vulgaris to Congo red.

    Science.gov (United States)

    Hernández-Zamora, Miriam; Perales-Vela, Hugo Virgilio; Flores-Ortíz, César Mateo; Cañizares-Villanueva, Rosa Olivia

    2014-10-01

    Extensive use of synthetic dyes in many industrial applications releases large volumes of wastewater. Wastewaters from dying industries are considered hazardous and require careful treatment prior to discharge into receiving water bodies. Dyes can affect photosynthetic activities of aquatic flora and decrease dissolved oxygen in water. The aim of this study was to evaluate the effect of Congo red on growth and metabolic activity of Chlorella vulgaris after 96h exposure. Exposure of the microalga to Congo red reduced growth rate, photosynthesis and respiration. Analysis of chlorophyll a fluorescence emission showed that the donor side of photosystem II was affected at high concentrations of Congo red. The quantum yield for electron transport (φEo), the electron transport rate (ETR) and the performance index (PI) also decreased. The reduction in the ability to absorb and use the quantum energy increased non-photochemical (NPQ) mechanisms for thermal dissipation. Overall, Congo red affects growth and metabolic activity in photosynthetic organisms in aquatic environments. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Biochemical responses to cadmium exposure in Oncorhynchus mykiss erythrocytes.

    Science.gov (United States)

    Orlando, Patrick; Silvestri, Sonia; Ferlizza, Enea; Andreani, Giulia; Carpenè, Emilio; Falcioni, Giancarlo; Tiano, Luca; Isani, Gloria

    2017-11-01

    Cd is known for its carcinogenic effects, however its mechanism of toxicity and in particular its ability to promote oxidative stress is debated. In fact, although it is considered a redox-inactive metal, at high concentration Cd was shown to promote indirectly oxidative stress. In this study we investigated metal accumulation in ex vivo exposed trout (Oncorhynchus mykiss) erythrocytes and Cd dose-dependent effect in terms of RBC viability, cytosolic and mitochondrial ROS levels as well as its effects on mitochondrial membrane depolarization, hemoglobin stability and precipitation. In the concentration range used, Cd did not affect cell viability. However, metal accumulation was associated with an increase in all oxidative indexes evaluated, except mitochondrial superoxide anion production that, on the contrary, was significantly decreased, probably due to a lowered respiration rate associated with interference of Cd with complex I, II and III, as suggested by the observed Cd-dependent mitochondrial membrane depolarization. On the other hand, hemoglobin destabilisation seems to be the major trigger of oxidative stress in this cell type. Copyright © 2017. Published by Elsevier Inc.

  1. Physiological and Biochemical Responses of Saltmarsh Plant Spartina alterniflora to Long-term Wave Exposure

    Science.gov (United States)

    Zhou, W.

    2017-12-01

    In recent years, ecosystem-based flood defence, i.e., eco-shoreline or living shoreline, that is more sustainable and cost-effective than conventional coastal engineering structures has been brought into large-scale practice. Numerous laboratory experiments have been performed to explore the wave-attenuation effects of saltmarsh plants that are widely used in eco-shoreline, and yet no study has ever been conducted on the physiological and biochemical responses of saltmarsh plants to long-term wave exposure, presumably due to the constraint that traditional wave generator fails to provide long-term stable wave conditions necessary for physiological experiments. In this study, a long-term shallow water wave environment simulator using crank-yoke mechanism was built in the laboratory to address this gap. Experiments using the wave simulator were conducted for 8 weeks in a greenhouse and the temperature was maintained at 24-30°C. 5‰ artificial sea water was filled in the test tank, and the water was changed every week. After being acclimatized, nine S. alterniflora individual plants (initial height 30 cm) were planted in each of the three streamlined cuboid containers (12cm×12cm×20cm), which were partially submerged in a test tank, and undertook horizontal sinusoidal motion imposed by the crank-yoke mechanism to mimic plants exposed to shallow water waves. The substrate filled in the containers were soils collected from the Yellow River Delta, so were the S. alterniflora plants. A realistic stem density of 400 stems/m2 was tested, which corresponded to a grid spacing of 5.0 cm. Shallow water waves with six wave heights (H: 0.041, 0.055, 0.069, 0.033, 0.044 and 0.056m), one plants submerged depth (0.1m) and two wave periods (2s and 3s) were simulated in the experiments. A no wave condition was also tested as control. Key physiological and biochemical parameters, such as stem length, peroxidase activity, catalase, superoxide dismutase, ascorbate peroxidase, etc

  2. Lipidomics: Novel insight into the biochemical mechanism of lipid metabolism and dysregulation-associated disease.

    Science.gov (United States)

    Zhao, Ying-Yong; Miao, Hua; Cheng, Xian-Long; Wei, Feng

    2015-10-05

    The application of lipidomics, after genomics, proteomics and metabolomics, offered largely opportunities to illuminate the entire spectrum of lipidome based on a quantitative or semi-quantitative level in a biological system. When combined with advances in proteomics and metabolomics high-throughput platforms, lipidomics provided the opportunity for analyzing the unique roles of specific lipids in complex cellular processes. Abnormal lipid metabolism was demonstrated to be greatly implicated in many human lifestyle-related diseases. In this review, we focused on lipidomic applications in brain injury disease, cancer, metabolic disease, cardiovascular disease, respiratory disease and infectious disease to discover disease biomarkers and illustrate biochemical metabolic pathways. We also discussed the analytical techniques, future perspectives and potential problems of lipidomic applications. The application of lipidomics in disease biomarker discovery provides the opportunity for gaining novel insights into biochemical mechanism. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  3. Biochemical response and host-pathogen relation of stalk rot fungi ...

    African Journals Online (AJOL)

    Stalk rot is a destructive disease in maize caused by Fusarium and Macrophomina species. A study was carried out to understand the mode of infection, host biochemical response and comparison of inoculation techniques in Fusarium verticillioides and Macrophomina phaseolina in maize. In seed inoculation experiment, ...

  4. Biochemical response and host-pathogen relation of stalk rot fungi ...

    African Journals Online (AJOL)

    Dr. nirupma

    photosynthesis, which are the vital processes taking place inside the plant, leading to wide fluctuations in sugars (Klement ... The suspension spray was prepared by taking. 200 ml of ..... biochemical factors due to cell response that is, defence .... by Fusarium moniliforme on corn growth and cellular morphology. Plant Dis.

  5. How the concept of biochemical response influenced the management of primary biliary cholangitis over time

    NARCIS (Netherlands)

    Lammers, W. J.; Leeman, M.; Ponsioen, C. I. J.; Boonstra, K.; van Erpecum, K. J.; Wolfhagen, F. H. J.; Kuyvenhoven, J. Ph; Vrolijk, J. M.; Drenth, J. P. H.; Witteman, E. M.; van Nieuwkerk, C. M. J.; van der Spek, B. W.; Witteman, B. J. M.; Erkelens, G. W.; Verhagen, M. A. M. T.; van Tuyl, S. A. C.; Poen, A. C.; Brouwer, J. T.; ter Borg, F.; Koek, G. H.; van Ditzhuijsen, T. J. M.; Hansen, B. E.; van Buuren, H. R.

    2016-01-01

    Criteria assessing biochemical response to ursodeoxycholic acid (UDCA) are established risk stratification tools in primary biliary cholangitis (PBC). We aimed to evaluate to what extent liver tests influenced patient management during a three decade period, and whether this changed over time. 851

  6. Cross-resistance of bisultap resistant strain of Nilaparvata lugens and its biochemical mechanism.

    Science.gov (United States)

    Ling, Shanfeng; Zhang, Runjie

    2011-02-01

    The resistant (R) strain of the planthopper Nilaparvata lugens (Stål) selected for bisultap resistance displayed 7.7-fold resistance to bisultap and also had cross-resistance to nereistoxin (monosultap, thiocyclam, and cartap), chlorpyrifos, dimethoate, and malathion but no cross-resistance to buprofezin, imidacloprid, and fipronil. To find out the biochemical mechanism of resistance to bisultap, biochemical assay was done. The results showed that cytochrome P450 monooxygenases (P450) activity in R strain was 2.71-fold that in susceptible strain (S strain), in which the changed activity for general esterase (EST) was 1.91 and for glutathione S-transferases only 1.32. Piperonyl butoxide (PBO) could significantly inhibit P450 activity (percentage of inhibition [PI]: 37.31%) in the R strain, with ESTs PI = 16.04% by triphenyl phosphate (TPP). The results also demonstrated that diethyl maleate had no synergism with bisultap. However, PBO displayed significant synergism in three different strains, and the synergism increased with resistance (S strain 1.42, Lab strain, 2.24 and R strain, 3.23). TPP also showed synergism for three strains, especially in R strain (synergistic ratio = 2.47). An in vitro biochemical study and in vivo synergistic study indicated that P450 might be play important role in the biochemical mechanism of bisultap resistance and that esterase might be the important factor of bisultap resistance. Acetylcholinesterase (AChE) insensitivity play important role in bisultap resistance. We suggest that buprofezin, imidacloprid, and fipronil could be used in resistance management programs for N. lugens via alternation and rotation with bisultap.

  7. Antifungal Activity and Biochemical Response of Cuminic Acid against Phytophthora capsici Leonian.

    Science.gov (United States)

    Wang, Yong; Sun, Yang; Zhang, Ying; Zhang, Xing; Feng, Juntao

    2016-06-11

    Phytophthora blight of pepper caused by Phytophthora capsici Leonian is a destructive disease throughout the world. Cuminic acid, extracted from the seed of Cuminum cyminum L., belongs to the benzoic acid chemical class. In this study, the sensitivity and biochemical response of P. capsici to cuminic acid was determined. The mean EC50 (50% effective concentration) values for cuminic acid in inhibiting mycelial growth and zoospore germination of the 54 studied P. capsici isolates were 14.54 ± 5.23 μg/mL and 6.97 ± 2.82 μg/mL, respectively. After treatment with cuminic acid, mycelial morphology, sporangium formation and mycelial respiration were significantly influenced; cell membrane permeability and DNA content increased markedly, but pyruvic acid content, adenosine triphosphate (ATP) content, and ATPase activity decreased compared with the untreated control. In pot experiments, cuminic acid exhibited both protective and curative activity. Importantly, POD and PAL activity of the pepper leaves increased after being treated with cuminic acid. These indicated that cuminic acid not only showed antifungal activity, but also could improve the defense capacity of the plants. All the results suggested that cuminic acid exhibits the potential to be developed as a new phytochemical fungicide, and this information increases our understanding of the mechanism of action of cuminic acid against Phytophthora capsici.

  8. Morphological, physiological and biochemical responses of camellia oleifera to low-temperature stress

    International Nuclear Information System (INIS)

    Hu, J.; Shu, Q.; Fu, S.; Wu, W.

    2016-01-01

    Camellia oleifera Abel originates from China and is high healthy effect food oil species. It is also a high additional plant in southern China and can help to keep some people of mountain area out of poverty. In recent years, climate change has been abnormal frequently. Abnormal low temperature in winter and late spring coldness may cause the hard hit to C. oleifera farmers. Freezing injury can be caused by sudden decreases in temperature in winter. However, C. oleifera varieties differ in their hardiness to low temperatures. The paper investigated cold-resistance mechanisms by determining and analyzing the morphological, physiological and biochemical characteristics of C. oleifera from eastern, western and southern Anhui, respectively. Sensitivity to low temperature was assessed via the number of leaves in spring shoots, leaf thickness, the activities of protective enzymes such as CAT, POD and SOD, and the inclusion contents of WSS, FPro, MDA, benzene-alcohol extracts and lignin. The results showed that C. oleifera varieties had different physiological and biochemical, and morphological responses to low winter temperatures. In different regions, the number of leaves, leaf thickness, WSS content, FPro content and MDA content varied from 5.2-7.8, 398.79 micro m-465.27 micro m, 23.41 mg/g-24.74 mg/g, 41.86 micro g/g-44.18 micro g/g and 10.08 micro mol/g-14.51 micro mol/g, respectively. The varieties from eastern Anhui, the leaf thickness were thicker. Meanwhile, the protective enzyme activities and inclusion contents were relatively higher. The protective enzyme activities and chemical components contents such as benzene-alcohol extract and lignin represented significantly difference (p<0.05) among three regions. In the future, for the abnormal low temperature in winter, a serious of cultivation measures such as improving the contents of WSS, FPro, benzene-alcohol extract and lignin, were taken to enhance the cold resistance of C. oleifera. The result broadens the

  9. Biochemical mechanisms of resistance to p-nitrochlorobenzene of karst caves microorganisms

    Directory of Open Access Journals (Sweden)

    O. S. Suslova

    2015-08-01

    Full Text Available The biochemical mechanisms of resistance to persistent organic xenobiotic p-nitrochlorobenzene (NCB of bacterial strains isolated from two cave clays ecosystems – Mushkarova Yama (Podolia, Ukraine and Kuybyshevskaya (Western Caucasus, Abkhazia have been established. It has been determined that chemoorganotrophic karst caves strains could interact with NCB and transform it reducing the nitro group with formation of p-chloroaniline (ClA followed by further destruction of NCB aromatic ring. This explained high resistance of caves strains to NCB. The studied strains could potentially be used in wastewater treatment from nitrochloraromatic compounds.

  10. Physiological and biochemical response to high temperature stress in Okra (Abelmoschus esculentus L. Moench)

    Science.gov (United States)

    Hayamanesh, Shahnoosh; Keitel, Claudia; Ahmad, Nabil; Trethowan, Richard

    2016-04-01

    High temperature has been shown to lower the growth and yield of Okra, an important summer vegetable crop grown in Asia, Africa, the Middle East and Australia. We aimed to characterise the physiological and biochemical response of Okra to heat stress. 150 genotypes from Pakistan and the AVRDC (The World Vegetable Centre) were screened for their physiological response (fluorescence, electrolyte leakage and yield) to heat in a greenhouse. Four genotypes (including heat tolerant and sensitive) were selected and subsequently grown in control and hot greenhouses. Daytime temperatures were on average 10°C warmer in the hot greenhouse, whereas nighttime temperatures were similar between the two temperature treatments. During a 12 week period, the physiological (assimilation rate, transpiration rate, stomatal conductance, fluorescence, electrolyte leakage, water potential) and biochemical (carbohydrates, sugar alcohols, C content) response of the four genotypes to heat stress was assessed. The effect of heat stress on the C allocation patterns and yield in Okra will be discussed.

  11. Functional and biochemical responses of cultured heart cells to angiotensin II

    International Nuclear Information System (INIS)

    Allen, I.; Gaa, S.; Rogers, T.B.

    1986-01-01

    The authors have utilized a cultured neonatal rat heart myocyte system to study the molecular mechanisms involved in the stimulation of heart cells by angiotensin II (AII). The intact cultured cells, and membranes from these cells, have specific, high affinity receptors for 125 I-AII and for an AII antagonist, 125 I-Sar 1 ,Leu 8 -AII. Binding affinity was in the nanomolar range and was inhibited by guanine nucleotides. Functional studies on intact, beating cells revealed a maximal increase in contractile frequency of 50%, observed at 5 nM AII, with half maximal effects noted at around 1 nM. These responses were reversible and specific as the antagonist, Sar 1 , Ala 8 -AII, inhibited AII-induced chronotropic stimulation. AII (100 nM) had no effect on basal adenylate cyclase activity (20 pmoles cAMP/mg prot/min at 2.5mM Mg 2+ ) in cell membranes. Further, in membranes where cyclase activity was stimulated with isoproterenol (290 pmoles cAMP/mg prot/min at 2.5mM Mg 2+ ), addition of AII had no effect. The cyclase-inhibitory muscarinic agonist, carbachol, also failed to reduce isoproterenol-stimulated activity. In preliminary work with the intact cells, AII again did not alter basal cAMP levels (3-10 pmoles cAMP/mg prot). However, the hormone increased isoproterenol-stimulated cAMP levels by almost 50%. These cells are an excellent system for correlating AII receptor binding with functional and biochemical responses

  12. Investigation of the Biochemical Mechanism for Cell-Substrate Mechanical Sensing

    Science.gov (United States)

    Ricotta, Vincent Anthony

    Advancements in stem cell biology and materials science have enabled the development of new treatments for tissue repair. Dental pulp stem cells (DPSCs), which are highly proliferative and can be induced to differentiate along several mesenchymal cell lineages, offer the possibility for pulpal regeneration and treatment of injured dentition. Polybutadiene (PB) may be used as a substrate for these cells. This elastomer can be spun casted into films of different thicknesses with different moduli. DPSCs grown on PB films, which are relatively hard (less than 1500 A thick), biomineralize depositing crystalline calcium phosphate without a requirement for the typical induction factor, dexamethasone (Dex). The moduli of cells track with the moduli of the surface suggesting that mechanics controls mineralization. The purpose of this study was to determine whether the major effect of Dex on biomineralization is the result of its ability to alter cell mechanics or its ability to induce osteogenesis/odontogenesis. DPSCs sense substrate mechanics through the focal adhesions, whose function is in part regulated by the Ras homolog gene (Rho) and its downstream effectors Rho associated kinases (ROCKs). ROCKs control actin filament polymerization and interactions with myosin light chain. Because cells sense substrate mechanics through focal adhesion proteins whose function is regulated by ROCKs, the impact of a ROCK inhibitor, Y-27632, was monitored. Blocking this pathway with Y-27632 suppressed the ability of DPSCs to sense the PB substrate. The cell modulus, plasma membrane stiffness, and cytosol stiffness were all lowered and biomineralization was suppressed in all cultures independent of substrate modulus or the presence of Dex. In other words, the inability of DPSCs to sense mechanical cues suppressed their ability to promote mineralization. On the other hand the expression of osteogenic/odontogenic markers (alkaline phosphatase and osteocalcin) was enhanced, perhaps due to Y

  13. Biochemical biomarker responses of green-lipped mussel, Perna canaliculus, to acute and subchronic waterborne cadmium toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Chandurvelan, Rathishri, E-mail: rch118@uclive.ac.nz [School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch 8140 (New Zealand); Marsden, Islay D., E-mail: islay.marsden@canterbury.ac.nz [School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch 8140 (New Zealand); Gaw, Sally, E-mail: sally.gaw@canterbury.ac.nz [Department of Chemistry, University of Canterbury, Private Bag 4800, Christchurch 8140 (New Zealand); Glover, Chris N., E-mail: chris.glover@canterbury.ac.nz [School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch 8140 (New Zealand)

    2013-09-15

    Highlights: •Biochemical biomarkers were measured to assess effects of Cd on Perna canaliculus. •Biochemical responses varied between acute and subchronic exposure to Cd. •MTLP induction correlated strongly with Cd accumulation. •Alkaline phosphatase and glycogen levels decreased during subchronic Cd exposure. •Duration of Cd exposure influenced biochemical biomarker responses in mussels. -- Abstract: The biochemical responses of the green-lipped mussel, Perna canaliculus, to waterborne cadmium (Cd) were investigated in order to delineate toxic mechanisms, and the impacts of exposure dose and duration, of this important toxicant in a potential sentinel species. Mussels were exposed for either 96 h (acute: 0, 2000, 4000 μg L{sup −1} Cd) or for 28 d (subchronic: 0, 200, 2000 μg L{sup −1} Cd), and the digestive gland, gill and haemolymph were examined for impacts. Biochemical responses measured included those associated with metal detoxification (metallothionein-like protein; MTLP), oxidative stress (catalase, lipid peroxidation), cellular homeostasis (alkaline phosphatase, Na{sup +}, K{sup +}-ATPase; NKA), and energy utilisation (glycogen, haemolymph protein). Following acute exposure, digestive gland glycogen and gill NKA activity were significantly altered by Cd exposure relative to levels in mussels exposed to Cd-free seawater. Subchronic Cd exposure resulted in a significant increase in MTLP levels in both the gill and the digestive gland. This increase was correlated strongly with the levels of Cd accumulation measured in these tissues (R = 0.957 for gill, 0.964 for digestive gland). Catalase activity followed a similar pattern, although the correlation with tissue Cd accumulation was not as strong (R = 0.907 for gill, 0.708 for digestive gland) as that for MTLP. Lipid peroxidation increased in the digestive gland at Days 7 and 14 at both subchronic Cd levels tested, but this effect had largely dissipated by Days 21 and 28 (with the exception of

  14. Clinical, haematological and biochemical responses of sheep undergoing autologous blood transfusion

    Directory of Open Access Journals (Sweden)

    Sousa Rejane

    2012-05-01

    Full Text Available Abstract Background This study aimed to evaluate the clinical, haematological and biochemical responses to autologous blood transfusion and the feasibility of this practice in sheep. Thus, we used eight male, 8 months old sheep, weighing on average 30 kg, from which 15 mL/kg of whole blood was collected and stored in CPDA-1 bags. Blood samples were refrigerated for 8 days and subsequently re-infused. The clinical, haematological and biochemical parameters were evaluated before blood collection and reinfusion, after 10 minutes of collection and reinfusion, after 3, 6, 12, 24, 48, 96 and 192 hours after collection and reinfusion. Results With respect to clinical parameters, we observed a decrease in heart rate after 24, 48 and 196 hours from reinfusion compared to basal values (p p p p  Conclusion Autologous transfusion in sheep slightly altered the physiological, biochemical and haematological responses of sheep, indicating that the technique proposed is safe and can be applied in the clinical practice of this species. The 8 d period was not sufficient for complete recovery of the haematological parameters after blood collection.

  15. Biochemical analysis of force-sensitive responses using a large-scale cell stretch device.

    Science.gov (United States)

    Renner, Derrick J; Ewald, Makena L; Kim, Timothy; Yamada, Soichiro

    2017-09-03

    Physical force has emerged as a key regulator of tissue homeostasis, and plays an important role in embryogenesis, tissue regeneration, and disease progression. Currently, the details of protein interactions under elevated physical stress are largely missing, therefore, preventing the fundamental, molecular understanding of mechano-transduction. This is in part due to the difficulty isolating large quantities of cell lysates exposed to force-bearing conditions for biochemical analysis. We designed a simple, easy-to-fabricate, large-scale cell stretch device for the analysis of force-sensitive cell responses. Using proximal biotinylation (BioID) analysis or phospho-specific antibodies, we detected force-sensitive biochemical changes in cells exposed to prolonged cyclic substrate stretch. For example, using promiscuous biotin ligase BirA* tagged α-catenin, the biotinylation of myosin IIA increased with stretch, suggesting the close proximity of myosin IIA to α-catenin under a force bearing condition. Furthermore, using phospho-specific antibodies, Akt phosphorylation was reduced upon stretch while Src phosphorylation was unchanged. Interestingly, phosphorylation of GSK3β, a downstream effector of Akt pathway, was also reduced with stretch, while the phosphorylation of other Akt effectors was unchanged. These data suggest that the Akt-GSK3β pathway is force-sensitive. This simple cell stretch device enables biochemical analysis of force-sensitive responses and has potential to uncover molecules underlying mechano-transduction.

  16. Experimental Evolution of Diverse Strains as a Method for the Determination of Biochemical Mechanisms of Action for Novel Pyrrolizidinone Antibiotics.

    Science.gov (United States)

    Beabout, Kathryn; McCurry, Megan D; Mehta, Heer; Shah, Akshay A; Pulukuri, Kiran Kumar; Rigol, Stephan; Wang, Yanping; Nicolaou, K C; Shamoo, Yousif

    2017-11-10

    The continuing rise of multidrug resistant pathogens has made it clear that in the absence of new antibiotics we are moving toward a "postantibiotic" world, in which even routine infections will become increasingly untreatable. There is a clear need for the development of new antibiotics with truly novel mechanisms of action to combat multidrug resistant pathogens. Experimental evolution to resistance can be a useful tactic for the characterization of the biochemical mechanism of action for antibiotics of interest. Herein, we demonstrate that the use of a diverse panel of strains with well-annotated reference genomes improves the success of using experimental evolution to characterize the mechanism of action of a novel pyrrolizidinone antibiotic analog. Importantly, we used experimental evolution under conditions that favor strongly polymorphic populations to adapt a panel of three substantially different Gram-positive species (lab strain Bacillus subtilis and clinical strains methicillin-resistant Staphylococcus aureus MRSA131 and Enterococcus faecalis S613) to produce a sufficiently diverse set of evolutionary outcomes. Comparative whole genome sequencing (WGS) between the susceptible starting strain and the resistant strains was then used to identify the genetic changes within each species in response to the pyrrolizidinone. Taken together, the adaptive response across a range of organisms allowed us to develop a readily testable hypothesis for the mechanism of action of the CJ-16 264 analog. In conjunction with mitochondrial inhibition studies, we were able to elucidate that this novel pyrrolizidinone antibiotic is an electron transport chain (ETC) inhibitor. By studying evolution to resistance in a panel of different species of bacteria, we have developed an enhanced method for the characterization of new lead compounds for the discovery of new mechanisms of action.

  17. Histologic and biochemical alterations predict pulmonary mechanical dysfunction in aging mice with chronic lung inflammation.

    Science.gov (United States)

    Massa, Christopher B; Groves, Angela M; Jaggernauth, Smita U; Laskin, Debra L; Gow, Andrew J

    2017-08-01

    Both aging and chronic inflammation produce complex structural and biochemical alterations to the lung known to impact work of breathing. Mice deficient in surfactant protein D (Sftpd) develop progressive age-related lung pathology characterized by tissue destruction/remodeling, accumulation of foamy macrophages and alteration in surfactant composition. This study proposes to relate changes in tissue structure seen in normal aging and in chronic inflammation to altered lung mechanics using a computational model. Alterations in lung function in aging and Sftpd -/- mice have been inferred from fitting simple mechanical models to respiratory impedance data (Zrs), however interpretation has been confounded by the simultaneous presence of multiple coexisting pathophysiologic processes. In contrast to the inverse modeling approach, this study uses simulation from experimental measurements to recapitulate how aging and inflammation alter Zrs. Histologic and mechanical measurements were made in C57BL6/J mice and congenic Sftpd-/- mice at 8, 27 and 80 weeks of age (n = 8/group). An anatomic computational model based on published airway morphometry was developed and Zrs was simulated between 0.5 and 20 Hz. End expiratory pressure dependent changes in airway caliber and recruitment were estimated from mechanical measurements. Tissue elements were simulated using the constant phase model of viscoelasticity. Baseline elastance distribution was estimated in 8-week-old wild type mice, and stochastically varied for each condition based on experimentally measured alteration in elastic fiber composition, alveolar geometry and surfactant composition. Weighing reduction in model error against increasing model complexity allowed for identification of essential features underlying mechanical pathology and their contribution to Zrs. Using a maximum likelihood approach, alteration in lung recruitment and diminished elastic fiber density were shown predictive of mechanical alteration at

  18. Histologic and biochemical alterations predict pulmonary mechanical dysfunction in aging mice with chronic lung inflammation.

    Directory of Open Access Journals (Sweden)

    Christopher B Massa

    2017-08-01

    Full Text Available Both aging and chronic inflammation produce complex structural and biochemical alterations to the lung known to impact work of breathing. Mice deficient in surfactant protein D (Sftpd develop progressive age-related lung pathology characterized by tissue destruction/remodeling, accumulation of foamy macrophages and alteration in surfactant composition. This study proposes to relate changes in tissue structure seen in normal aging and in chronic inflammation to altered lung mechanics using a computational model. Alterations in lung function in aging and Sftpd -/- mice have been inferred from fitting simple mechanical models to respiratory impedance data (Zrs, however interpretation has been confounded by the simultaneous presence of multiple coexisting pathophysiologic processes. In contrast to the inverse modeling approach, this study uses simulation from experimental measurements to recapitulate how aging and inflammation alter Zrs. Histologic and mechanical measurements were made in C57BL6/J mice and congenic Sftpd-/- mice at 8, 27 and 80 weeks of age (n = 8/group. An anatomic computational model based on published airway morphometry was developed and Zrs was simulated between 0.5 and 20 Hz. End expiratory pressure dependent changes in airway caliber and recruitment were estimated from mechanical measurements. Tissue elements were simulated using the constant phase model of viscoelasticity. Baseline elastance distribution was estimated in 8-week-old wild type mice, and stochastically varied for each condition based on experimentally measured alteration in elastic fiber composition, alveolar geometry and surfactant composition. Weighing reduction in model error against increasing model complexity allowed for identification of essential features underlying mechanical pathology and their contribution to Zrs. Using a maximum likelihood approach, alteration in lung recruitment and diminished elastic fiber density were shown predictive of mechanical

  19. BIOCHEMICAL MECHANISMS OF MIXED EFFECT OF ELECTROMAGNETIC RADIATION AND LOW POSITIVE TEMPERATURE ON ANIMALS’ ORGANISM

    Directory of Open Access Journals (Sweden)

    Litovchenko O.L.

    2015-05-01

    Full Text Available At present, biochemical mechanisms of mixed effects of electromagnetic radiation (EMR and cold on the body are not adequately studied, so this problem is urgent for modern medicine. Purpose of study. Establishing pathognomonic criteria and biochemical mechanisms of adverse effect of EMR on the organism of laboratory animals in conditions of cold stress. Materials and methods. The laboratory subacute experiment was carried out on mature white male rats of WAG line, weighing 190-220 g for 1 month. The animals were divided into 4 groups of 10 animals in each group. The first group was subjected to the isolated action of electromagnetic radiation (frequency 70 kHz, tension 600 V/m at a comfortable air temperature of 25 ± 2 ° C. The second group was subjected to the mixed action of EMR and low temperature 4 ± 2°C. The third group served as a control with regard to the first group, and the fourth group - with regard to the second, at air temperature of 25 ± 2°C. Expositions were carried out 5 times a week (for 4:00 every day. To identify changes in biochemical parameters studied during the experiments, blood sampling was performed at the stages of 5, 15, 30 days and urine sampling – at the stages of 15, 30 days in dynamics. Blood serum was used as biomaterial. It was determined the content of malondialdehyde (MDA, conjugated diene, content of SH-groups, superoxide dismutase, ceruloplasmin, cholesterol, high density lipoprotein, low density lipoprotein, very low density lipoprotein (VLDL, triglycerides, atherogenic index was determined, the level of urea, alkaline phosphatase, acid phosphatase, content of chlorides, calcium, magnesium, phosphorus, total protein, glucose, and catalase activity. Renal function was studied by the content of creatinine, cholinesterase, urea, uric acid, chlorides, potassium, sodium, calcium, phosphorus and glucose in urine. Results and discussion. The findings showed that the isolated action of EMR only led to a

  20. Neurobiological mechanisms of placebo responses.

    Science.gov (United States)

    Zubieta, Jon-Kar; Stohler, Christian S

    2009-03-01

    Expectations, positive or negative, are modulating factors influencing behavior. They are also thought to underlie placebo effects, potentially impacting perceptions and biological processes. We used sustained pain as a model to determine the neural mechanisms underlying placebo-induced analgesia and affective changes in healthy humans. Subjects were informed that they could receive either an active agent or an inactive compound, similar to routine clinical trials. Using PET and the mu-opioid selective radiotracer [(11)C]carfentanil we demonstrate placebo-induced activation of opioid neurotransmission in a number of brain regions. These include the rostral anterior cingulate, orbitofrontal and dorsolateral prefrontal cortex, anterior and posterior insula, nucleus accumbens, amygdala, thalamus, hypothalamus, and periaqueductal grey. Some of these regions overlap with those involved in pain and affective regulation but also motivated behavior. The activation of endogenous opioid neurotransmission was further associated with reductions in pain report and negative affective state. Additional studies with the radiotracer [(11)C]raclopride, studies labeling dopamine D2/3 receptors, also demonstrate the activation of nucleus accumbens dopamine during placebo administration under expectation of analgesia. Both dopamine and opioid neurotransmission were related to expectations of analgesia and deviations from those initial expectations. When the activity of the nucleus accumbens was probed with fMRI using a monetary reward expectation paradigm, its activation was correlated with both dopamine, opioid responses to placebo in this region and the formation of placebo analgesia. These data confirm that specific neural circuits and neurotransmitter systems respond to the expectation of benefit during placebo administration, inducing measurable physiological changes.

  1. Development of a pericardial acellular matrix biomaterial: biochemical and mechanical effects of cell extraction.

    Science.gov (United States)

    Courtman, D W; Pereira, C A; Kashef, V; McComb, D; Lee, J M; Wilson, G J

    1994-06-01

    There is evidence to suggest that the cellular components of homografts and bioprosthetic xenografts may contribute to calcification or immunogenic reactions. A four-step detergent and enzymatic extraction process has been developed to remove cellular components from bovine pericardial tissue. The process results in an acellular matrix material consisting primarily of elastin, insoluble collagen, and tightly bound glycosaminoglycans. Light and electron microscopy confirmed that nearly all cellular constituents are removed without ultrastructural evidence of damage to fibrous components. Collagen denaturation temperatures remained unaltered. Biochemical analysis confirmed the retention of collagen and elastin and some differential extraction of glycosaminoglycans. Low strain rate fracture testing and high strain rate viscoelastic characterization showed that, with the exception of slightly increased stress relaxation, the mechanical properties of the fresh tissue were preserved in the pericardial acellular matrix. Crosslinking of the material in glutaraldehyde or poly(glycidyl ether) produced mechanical changes consistent with the same treatments of fresh tissue. The pericardial acellular matrix is a promising approach to the production of biomaterials for heart valve or cardiovascular patching applications.

  2. Physiological and biochemical responses of Synechococcus sp. PCC7942 to Irgarol 1051 and diuron.

    Science.gov (United States)

    Deng, Xiangyuan; Gao, Kun; Sun, Junlong

    2012-10-15

    Cyanobacteria are prokaryotic algae found in oceans and freshwaters worldwide. These organisms are important primary producers in aquatic ecosystems because they can provide essential food for grazers and herbivores. In this study, the physiological and biochemical responses of the freshwater cyanobacterium Synechococcus sp. PCC7942 to two organic booster biocides Irgarol 1051 and diuron were compared and evaluated using 96 h growth tests in a batch-culture system. The 96 h median effective concentrations (EC(50)) were 0.019 and 0.097 μmol L(-1) for Irgarol 1051 and diuron, respectively, which indicate that Irgarol 1051 is about 5 times more toxic than diuron to cyanobacteria. Moreover, remarkable physiological and biochemical responses occurred in the Irgarol 1051 and diuron treatments. Irgarol 1051 and diuron stimulated cyanobacterial growth, increased the soluble protein content, and enhanced the catalase (CAT) activity at low concentrations, but inhibited them at high concentrations. However, the malondialdehyde (MDA) and polysaccharide content of the cyanobacteria were only significantly affected by Irgarol 1051. These observations suggest that Irgarol 1051 and diuron are toxic to Synechococcus sp. PCC7942, and their use should be restricted in maritime industries. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. [Resistance risk, cross-resistance and biochemical resistance mechanism of Laodelphax striatellus to buprofezin].

    Science.gov (United States)

    Mao, Xu-lian; Liu, Jin; Li, Xu-ke; Chi, Jia-jia; Liu, Yong-jie

    2016-01-01

    In order to investigate the resistance development law and biochemical resistance mechanism of Laodelphax striatellus to buprofezin, spraying rice seedlings was used to continuously screen resistant strains of L. striatellus and dipping rice seedlings was applied to determine the toxicity and cross-resistance of L. striatellus to insecticides. After 32-generation screening with buprofezin, L. striatellus developed 168.49 folds resistance and its reality heritability (h2) was 0.11. If the killing rate was 80%-90%, L. striatellus was expected to develop 10-fold resistance to buprofezin only after 5 to 6 generations breeding. Because the actual reality heritability of field populations was usually lower than that of the resistant strains, the production of field populations increasing with 10-fold resistance would need much longer time. The results of cross-resistance showed that resistant strain had high level cross-resistance with thiamethoxam and imidacloprid, low level cross-resistance with acetamiprid, and no cross-resistance with pymetrozine and chlorpyrifos. The activity of detoxification enzymes of different strains and the syergism of synergist were measured. The results showed that cytochrome P450 monooxygenase played a major role in the resistance of L. striatellus to buprofezin, the esterase played a minor role and the GSH-S-transferase had no effect. Therefore, L. striatellus would have high risk to develop resistance to buprofezin when used in the field and might be delayed by using pymetrozine and chlorpyrifos.

  4. Development of enhanced radioprotectors - Biochemical and molecular genetical approaches on the radioprotective mechanism of natural products

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jeong Hee; Lee, Eun Ju; Hong, Jung A [Kyunghee University, Seoul (Korea)

    2000-04-01

    To identify radio-protective agent candidate among medicinal plants and to elucidate the mechanism of action of the candidate material by using modern biochemical and molecular biological methods, we screened radio-protective activity among 48 medicinal plants. Seven samples showed above 20% protective activities against oxidative cell damage: Euryale ferox, Glycyrrhiza uralensis, Salvia miltiorrhiza, Eucomia ulmoides, Paeonia suffruticosa, Spirodela polyrrhiza, and Nelumbo nucifera. We also screened for oxidative stress sensitizing activity among other 51 medicinal plants. Among those samples, 11 samples showed good sensitizing effect; Melia azedarach, Agastache rugosa, Catalpa ovata, Prunus persica, Sinomenium acutum, Pulsatilla koreana, Oldenlandia diffusa, Anthriscus sylvestris, Schizandra chinensis, Gleditsia sinensis, and Cridium officinale. We also reported the radio-protective effect of DTT. The treatment of DTT increased cell survival after gamma-irradiation, decreased in the frequencies of micronucleus, and reduction in DNA fragmentation and apoptotic cells. Induction of apoptosis after UV-C irradiation was revealed by the changes in the relative cell death, increase in the relative amount of apoptotic cells, and the induction of DNA fragmentation. 165 refs., 9 figs., 8 tabs. (Author)

  5. Physiological and biochemical responses of Ricinus communis seedlings to different temperatures: a metabolomics approach.

    Science.gov (United States)

    Ribeiro, Paulo Roberto; Fernandez, Luzimar Gonzaga; de Castro, Renato Delmondez; Ligterink, Wilco; Hilhorst, Henk W M

    2014-08-12

    Compared with major crops, growth and development of Ricinus communis is still poorly understood. A better understanding of the biochemical and physiological aspects of germination and seedling growth is crucial for the breeding of high yielding varieties adapted to various growing environments. In this context, we analysed the effect of temperature on growth of young R. communis seedlings and we measured primary and secondary metabolites in roots and cotyledons. Three genotypes, recommended to small family farms as cash crop, were used in this study. Seedling biomass was strongly affected by the temperature, with the lowest total biomass observed at 20°C. The response in terms of biomass production for the genotype MPA11 was clearly different from the other two genotypes: genotype MPA11 produced heavier seedlings at all temperatures but the root biomass of this genotype decreased with increasing temperature, reaching the lowest value at 35°C. In contrast, root biomass of genotypes MPB01 and IAC80 was not affected by temperature, suggesting that the roots of these genotypes are less sensitive to changes in temperature. In addition, an increasing temperature decreased the root to shoot ratio, which suggests that biomass allocation between below- and above ground parts of the plants was strongly affected by the temperature. Carbohydrate contents were reduced in response to increasing temperature in both roots and cotyledons, whereas amino acids accumulated to higher contents. Our results show that a specific balance between amino acids, carbohydrates and organic acids in the cotyledons and roots seems to be an important trait for faster and more efficient growth of genotype MPA11. An increase in temperature triggers the mobilization of carbohydrates to support the preferred growth of the aerial parts, at the expense of the roots. A shift in the carbon-nitrogen metabolism towards the accumulation of nitrogen-containing compounds seems to be the main biochemical

  6. Climate-related environmental stress in intertidal grazers: scaling-up biochemical responses to assemblage-level processes

    Directory of Open Access Journals (Sweden)

    Elena Maggi

    2016-10-01

    Full Text Available Background Organisms are facing increasing levels of environmental stress under climate change that may severely affect the functioning of biological systems at different levels of organization. Growing evidence suggests that reduction in body size is a universal response of organisms to global warming. However, a clear understanding of whether extreme climate events will impose selection directly on phenotypic plastic responses and how these responses affect ecological interactions has remained elusive. Methods We experimentally investigated the effects of extreme desiccation events on antioxidant defense mechanisms of a rocky intertidal gastropod (Patella ulyssiponensis, and evaluated how these effects scaled-up at the population and assemblage levels. Results With increasing levels of desiccation stress, limpets showed significant lower levels of total glutathione, tended to grow less and had reduced per capita interaction strength on their resources. Discussion Results suggested that phenotypic plasticity (i.e., reduction in adults’ body size allowed buffering biochemical responses to stress to scale-up at the assemblage level. Unveiling the linkages among different levels of biological organization is key to develop indicators that can anticipate large-scale ecological impacts of climate change.

  7. Non-host disease resistance response in pea (Pisum sativum) pods: Biochemical function of DRR206 and phytoalexin pathway localization.

    Science.gov (United States)

    Seneviratne, Herana Kamal; Dalisay, Doralyn S; Kim, Kye-Won; Moinuddin, Syed G A; Yang, Hong; Hartshorn, Christopher M; Davin, Laurence B; Lewis, Norman G

    2015-05-01

    Continually exposed to potential pathogens, vascular plants have evolved intricate defense mechanisms to recognize encroaching threats and defend themselves. They do so by inducing a set of defense responses that can help defeat and/or limit effects of invading pathogens, of which the non-host disease resistance response is the most common. In this regard, pea (Pisum sativum) pod tissue, when exposed to Fusarium solani f. sp. phaseoli spores, undergoes an inducible transcriptional activation of pathogenesis-related genes, and also produces (+)-pisatin, its major phytoalexin. One of the inducible pathogenesis-related genes is Disease Resistance Response-206 (DRR206), whose role in vivo was unknown. DRR206 is, however, related to the dirigent protein (DP) family. In this study, its biochemical function was investigated in planta, with the metabolite associated with its gene induction being pinoresinol monoglucoside. Interestingly, both pinoresinol monoglucoside and (+)-pisatin were co-localized in pea pod endocarp epidermal cells, as demonstrated using matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging. In addition, endocarp epidermal cells are also the site for both chalcone synthase and DRR206 gene expression. Taken together, these data indicate that both (+)-pisatin and pinoresinol monoglucoside function in the overall phytoalexin responses. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Assessment of biochemical mechanisms of tolerance to chlorpyrifos in ancient and contemporary Daphnia pulicaria genotypes.

    Science.gov (United States)

    Simpson, Adam M; Jeyasingh, Punidan D; Belden, Jason B

    2017-12-01

    The evolution of tolerance to environmental contaminants in non-target taxa has been largely studied by comparing extant populations experiencing contrasting exposure. Previous research has demonstrated that "resurrected" genotypes from a population of Daphnia pulicaria express temporal variation in sensitivity to the insecticide chlorpyrifos. Ancient genotypes (1301-1646AD.) were on average more sensitive to this chemical compared to the contemporary genotypes (1967-1977AD.). To determine the physiological mechanisms of tolerance, a series of biochemical assays was performed on three ancient and three contemporary genotypes; these six genotypes exhibited the most sensitive and most tolerant phenotypes within the population, respectively. Metabolic tolerance mechanisms were evaluated using acute toxicity testing, while target-site tolerance was assessed via in vitro acetylcholinesterase (AChE) assays. Acute toxicity tests were conducted using i) the toxic metabolite chlorpyrifos-oxon (CPF-oxon) and ii) CPF-oxon co-applied with piperonyl butoxide (PBO), a known Phase-I metabolic inhibitor. Both series of toxicity tests reduced the mean variation in sensitivity between tolerant and sensitive genotypes. Exposure to CPF-O reduced the disparity from a 4.7-fold to 1.6-fold difference in sensitivity. The addition of PBO further reduced the variation to a 1.2-fold difference in sensitivity. In vitro acetylcholinesterase assays yielded no significant differences in constitutive activity or target-site sensitivity. These findings suggest that pathways involving Phase-I detoxification and/or bioactivation of chlorpyrifos play a significant role in dictating the microevolutionary trajectories of tolerance in this population. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Beneficial effect of low ethanol intake on the cardiovascular system: possible biochemical mechanisms

    Directory of Open Access Journals (Sweden)

    Sudesh Vasdev

    2006-09-01

    Full Text Available Sudesh Vasdev1, Vicki Gill1, Pawan K Singal21Discipline of Medicine, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, Newfoundland and Labrador, Canada; 2Institute of Cardiovascular Sciences, University of Manitoba, Faculty of Medicine, Winnipeg, Manitoba, CanadaAbstract: Low ethanol intake is known to have a beneficial effect on cardiovascular disease. In cardiovascular disease, insulin resistance leads to altered glucose and lipid metabolism resulting in an increased production of aldehydes, including methylglyoxal. Aldehydes react non-enzymatically with sulfhydryl and amino groups of proteins forming advanced glycation end products (AGEs, altering protein structure and function. These alterations cause endothelial dysfunction with increased cytosolic free calcium, peripheral vascular resistance, and blood pressure. AGEs produce atherogenic effects including oxidative stress, platelet adhesion, inflammation, smooth muscle cell proliferation and modification of lipoproteins. Low ethanol intake attenuates hypertension and atherosclerosis but the mechanism of this effect is not clear. Ethanol at low concentrations is metabolized by low Km alcohol dehydrogenase and aldehyde dehydrogenase, both reactions resulting in the production of reduced nicotinamide adenine dinucleotide (NADH. This creates a reductive environment, decreasing oxidative stress and secondary production of aldehydes through lipid peroxidation. NADH may also increase the tissue levels of the antioxidants cysteine and glutathione, which bind aldehydes and stimulate methylglyoxal catabolism. Low ethanol improves insulin resistance, increases high-density lipoprotein and stimulates activity of the antioxidant enzyme, paraoxonase. In conclusion, we suggest that chronic low ethanol intake confers its beneficial effect mainly through its ability to increase antioxidant capacity and lower AGEs.Keywords: low ethanol, hypertension, cardiovascular disease, biochemical

  10. Biochemical responses and oxidative stress in Francisella tularensis infection: a European brown hare model

    Directory of Open Access Journals (Sweden)

    Treml Frantisek

    2011-01-01

    Full Text Available Abstract Background The aim of the present study was to investigate biochemical and oxidative stress responses to experimental F. tularensis infection in European brown hares, an important source of human tularemia infections. Methods For these purposes we compared the development of an array of biochemical parameters measured in blood plasma using standard procedures of dry chemistry as well as electrochemical devices following a subcutaneous infection with a wild Francisella tularensis subsp. holarctica strain (a single dose of 2.6 × 109 CFU pro toto. Results Subcutaneous inoculation of a single dose with 2.6 × 109 colony forming units of a wild F. tularensis strain pro toto resulted in the death of two out of five hares. Plasma chemistry profiles were examined on days 2 to 35 post-infection. When compared to controls, the total protein, urea, lactate dehydrogenase, aspartate aminotransferase and alanine aminotransferase were increased, while albumin, glucose and amylase were decreased. Both uric and ascorbic acids and glutathione dropped on day 2 and then increased significantly on days 6 to 12 and 6 to 14 post-inoculation, respectively. There was a two-fold increase in lipid peroxidation on days 4 to 8 post-inoculation. Conclusions Contrary to all expectations, the present study demonstrates that the European brown hare shows relatively low susceptibility to tularemia. Therefore, the circumstances of tularemia in hares under natural conditions should be further studied.

  11. Salt Stress Responses of Pigeon Pea (Cajanus Cajan) on Growth, Yield and Some Biochemical Attributes

    International Nuclear Information System (INIS)

    Tayyab, A.; Azeem, M.; Ahmad, N; Ahmad, R.; Qasim, M.

    2016-01-01

    Growth responses of leguminous plants to salinity vary considerably among species. Pigeon pea (Cajanus cajan (L.) Millsp.) is a sub-tropical crop, grown worldwide particularly in South Asia for edible and fodder purposes, while little is known about its salinity tolerance. In order to investigate the effect of salinity, plants were established at six different levels of sea salt concentrations i.e. 0.5, 1.6, 2.8, 3.5, 3.8 and 4.3 (EC/sub e/ dS.m/sup -1/). Plant growth was measured using vegetative (height, fresh and dry biomass, moisture, relative growth rate (RGR) and specific shoot length (SSL)), reproductive (number of flowers, pods, seeds and seed weight) and some biochemical parameters (chlorophylls, carotenoids, sugars and proteins). Pigeon pea showed a salt sensitive growth response, however, it survived up to 3.5 (EC/sub e/ dS.m/sup -1/) sea salt salinity. Plant height, biomass, SSL and RGR linearly decreased under saline conditions. Leaf pigments increased (chlorophylls) or maintained (carotenoids) at 1.6 dS.m/sup -1/ and subsequently decreased in higher salinity. Low moisture content and succulence along with more accumulation of soluble sugars and proteins may be attributed to leaf osmotic adjustments at low salinity. Salinity adversely affect reproductive growth of C. cajan where production of flowers, pods, number of seeds and seed weight were significantly reduced. Present study provides basic information related to plant growth, seed yield and some biochemical attributes, which suggest C. cajan as a salt sensitive leguminous crop. However, detailed information is required to understand the eco-physiological responses of this plant under field and green house conditions. (author)

  12. Mechanisms of subliminal response priming.

    Science.gov (United States)

    Kiesel, Andrea; Kunde, Wilfried; Hoffmann, Joachim

    2008-07-15

    Subliminal response priming has been considered to operate on several stages, e.g. perceptual, central or motor stages might be affected. While primes' impact on target perception has been clearly demonstrated, semantic response priming recently has been thrown into doubt (e.g. Klinger, Burton, & Pitts, 2000). Finally, LRP studies have revealed that subliminal primes evoke motor processes. Yet, the premises for such prime-evoked motor activation are not settled. A transfer of priming to stimuli that have never been presented as targets appears particularly interesting because it suggests a level of processing that goes beyond a reactivation of previously acquired S-R links. Yet, such transfer has not always withstood empirical testing. To account for these contradictory results, we proposed a two-process model (Kunde, Kiesel, & Hoffmann, 2003): First, participants build up expectations regarding imperative stimuli for the required responses according to experience and/or instructions. Second, stimuli that match these "action triggers" directly activate the corresponding motor responses irrespective of their conscious identification. In line with these assumptions, recent studies revealed that non-target primes induce priming when they fit the current task intentions and when they are expected in the experimental setting.

  13. Temporal specificity of training: intra-day effects on biochemical responses and Olympic-Weightlifting performances.

    Science.gov (United States)

    Ammar, Achraf; Chtourou, Hamdi; Trabelsi, Khaled; Padulo, Johnny; Turki, Mouna; El Abed, Kais; Hoekelmann, Anitta; Hakim, Ahmed

    2015-01-01

    The aim of this study was to investigate the performance of an Olympic-Weightlifting session training at three times of the day on the performance related to biochemical responses. Nine weightlifters (21 ± 0.5 years) performed, in randomised order, on three Olympic-Weightlifting training (snatch, clean and jerk) sessions (08:00 a.m., 02:00 p. m., 06:00 p. m.). Blood samples were collected: before, 3 min and 48 h after each training session. Haematological parameters and markers of muscle injury were assessed. Resting oral temperature and rating of perceived exertion (RPE) were also assessed during each session. ANOVA showed that the performance was better (P weightlifters. Therefore, coaches and weightlifters should be advised to schedule their training session in the afternoon hour.

  14. Integrated Stress Response Mediates Epithelial Injury in Mechanical Ventilation.

    Science.gov (United States)

    Dolinay, Tamas; Himes, Blanca E; Shumyatcher, Maya; Lawrence, Gladys Gray; Margulies, Susan S

    2017-08-01

    Ventilator-induced lung injury (VILI) is a severe complication of mechanical ventilation that can lead to acute respiratory distress syndrome. VILI is characterized by damage to the epithelial barrier with subsequent pulmonary edema and profound hypoxia. Available lung-protective ventilator strategies offer only a modest benefit in preventing VILI because they cannot impede alveolar overdistension and concomitant epithelial barrier dysfunction in the inflamed lung regions. There are currently no effective biochemical therapies to mitigate injury to the alveolar epithelium. We hypothesize that alveolar stretch activates the integrated stress response (ISR) pathway and that the chemical inhibition of this pathway mitigates alveolar barrier disruption during stretch and mechanical ventilation. Using our established rat primary type I-like alveolar epithelial cell monolayer stretch model and in vivo rat mechanical ventilation that mimics the alveolar overdistension seen in acute respiratory distress syndrome, we studied epithelial responses to mechanical stress. Our studies revealed that the ISR signaling pathway is a key modulator of epithelial permeability. We show that prolonged epithelial stretch and injurious mechanical ventilation activate the ISR, leading to increased alveolar permeability, cell death, and proinflammatory signaling. Chemical inhibition of protein kinase RNA-like endoplasmic reticulum kinase, an upstream regulator of the pathway, resulted in decreased injury signaling and improved barrier function after prolonged cyclic stretch and injurious mechanical ventilation. Our results provide new evidence that therapeutic targeting of the ISR can mitigate VILI.

  15. Ethylenediurea as a potential tool in evaluating ozone phytotoxicity: a review study on physiological, biochemical and morphological responses of plants.

    Science.gov (United States)

    Tiwari, Supriya

    2017-06-01

    Present-day climate change scenario has intensified the problem of continuously increasing ground-level ozone (O 3 ), which is responsible for causing deleterious effects on growth and development of plants. Studies involving use of ethylenediurea (EDU), a chemical with antiozonant properties, have given some promising results in evaluating O 3 injury in plants. The use of EDU is especially advantageous in developing countries which face a more severe problem of ground-level O 3 , and technical O 3 -induced yield loss assessment techniques like open-top chambers cannot be used. Recent studies have detected a hormetic response of EDU on plants; i.e. treatment with higher EDU concentrations may or may not show any adverse effect on plants depending upon the experimental conditions. Although the mode of action of EDU is still debated, it is confirmed that EDU remains confined in the apoplastic regions. Certain studies indicate that EDU significantly affects the electron transport chain and has positive impact on the antioxidant defence machinery of the plants. However, the mechanism of protecting the yield of plants without significantly affecting photosynthesis is still questionable. This review discusses in details the probable mode of action of EDU on the basis of available data along with the impact of EDU on physiological, biochemical, growth and yield response of plants under O 3 stress. Data regarding the effect of EDU on plant 'omics' is highly insufficient and can form an important aspect of future EDU research.

  16. Biochemical signatures of in vitro radiation response in human lung, breast and prostate tumour cells observed with Raman spectroscopy

    International Nuclear Information System (INIS)

    Matthews, Q; Jirasek, A; Lum, J J; Brolo, A G

    2011-01-01

    This work applies noninvasive single-cell Raman spectroscopy (RS) and principal component analysis (PCA) to analyze and correlate radiation-induced biochemical changes in a panel of human tumour cell lines that vary by tissue of origin, p53 status and intrinsic radiosensitivity. Six human tumour cell lines, derived from prostate (DU145, PC3 and LNCaP), breast (MDA-MB-231 and MCF7) and lung (H460), were irradiated in vitro with single fractions (15, 30 or 50 Gy) of 6 MV photons. Remaining live cells were harvested for RS analysis at 0, 24, 48 and 72 h post-irradiation, along with unirradiated controls. Single-cell Raman spectra were acquired from 20 cells per sample utilizing a 785 nm excitation laser. All spectra (200 per cell line) were individually post-processed using established methods and the total data set for each cell line was analyzed with PCA using standard algorithms. One radiation-induced PCA component was detected for each cell line by identification of statistically significant changes in the PCA score distributions for irradiated samples, as compared to unirradiated samples, in the first 24-72 h post-irradiation. These RS response signatures arise from radiation-induced changes in cellular concentrations of aromatic amino acids, conformational protein structures and certain nucleic acid and lipid functional groups. Correlation analysis between the radiation-induced PCA components separates the cell lines into three distinct RS response categories: R1 (H460 and MCF7), R2 (MDA-MB-231 and PC3) and R3 (DU145 and LNCaP). These RS categories partially segregate according to radiosensitivity, as the R1 and R2 cell lines are radioresistant (SF 2 > 0.6) and the R3 cell lines are radiosensitive (SF 2 < 0.5). The R1 and R2 cell lines further segregate according to p53 gene status, corroborated by cell cycle analysis post-irradiation. Potential radiation-induced biochemical response mechanisms underlying our RS observations are proposed, such as (1) the

  17. Cell response to long term mechanical interaction with nanopipettes

    Science.gov (United States)

    Orynbayeva, Zulfiya; Singhal, Riju; Vitol, Elina; Bouchard, Michael; Azizkhan-Clifford, Jane; Layton, Bradley; Friedman, Gary; Gogotsi, Yury

    2009-03-01

    Traditional microinjection into cells is performed over a relatively short term. Pipettes are typically withdrawn following any kind of injection. On the other hand, there is growing interest in using nanopipettes for cellular and subcellular probing. This interest is partly due to new developments in nanopipette technology which employ carbon nanotubes and provide robustness, flexibility, and biocompatibility. However, as far as we know, no systematic study of physiological, biochemical, and biophysical processes associated with cell response to lengthy mechanical stimulations by nanopipette probing have been performed so far. We present a detailed investigation of a wide range of effects of long term pipette insertion into a cell. Both traditional glass micropipettes and the novel carbon nanotube-tipped probes were involved in this study. The mechanism of Ca2+ response to the mechanical stimuli introduced by the nanopipette, and the role of different organelles in this mechanism were studied. We hypothesize that the calcium response is a function of cytoskeleton integrity and the mode of coupling between the cytoskeleton and the plasma membrane domains.

  18. Prioritization of Candidate Genes in QTL Regions for Physiological and Biochemical Traits Underlying Drought Response in Barley (Hordeum vulgare L.

    Directory of Open Access Journals (Sweden)

    Kornelia Gudys

    2018-06-01

    Full Text Available Drought is one of the most adverse abiotic factors limiting growth and productivity of crops. Among them is barley, ranked fourth cereal worldwide in terms of harvested acreage and production. Plants have evolved various mechanisms to cope with water deficit at different biological levels, but there is an enormous challenge to decipher genes responsible for particular complex phenotypic traits, in order to develop drought tolerant crops. This work presents a comprehensive approach for elucidation of molecular mechanisms of drought tolerance in barley at the seedling stage of development. The study includes mapping of QTLs for physiological and biochemical traits associated with drought tolerance on a high-density function map, projection of QTL confidence intervals on barley physical map, and the retrievement of positional candidate genes (CGs, followed by their prioritization based on Gene Ontology (GO enrichment analysis. A total of 64 QTLs for 25 physiological and biochemical traits that describe plant water status, photosynthetic efficiency, osmoprotectant and hormone content, as well as antioxidant activity, were positioned on a consensus map, constructed using RIL populations developed from the crosses between European and Syrian genotypes. The map contained a total of 875 SNP, SSR and CGs, spanning 941.86 cM with resolution of 1.1 cM. For the first time, QTLs for ethylene, glucose, sucrose, maltose, raffinose, α-tocopherol, γ-tocotrienol content, and catalase activity, have been mapped in barley. Based on overlapping confidence intervals of QTLs, 11 hotspots were identified that enclosed more than 60% of mapped QTLs. Genetic and physical map integration allowed the identification of 1,101 positional CGs within the confidence intervals of drought response-specific QTLs. Prioritization resulted in the designation of 143 CGs, among them were genes encoding antioxidants, carboxylic acid biosynthesis enzymes, heat shock proteins, small auxin

  19. Physiological and biochemical responses involved in water deficit tolerance of nitrogen-fixing Vicia faba

    Science.gov (United States)

    Kabbadj, Ablaa; Makoudi, Bouchra; Mouradi, Mohammed; Frendo, Pierre; Ghoulam, Cherki

    2017-01-01

    Climate change is increasingly impacting the water deficit over the world. Because of drought and the high pressure of the rising human population, water is becoming a scarce and expensive commodity, especially in developing countries. The identification of crops presenting a higher acclimation to drought stress is thus an important objective in agriculture. The present investigation aimed to assess the adaptation of three Vicia faba genotypes, Aguadulce (AD), Luz d’Otonio (LO) and Reina Mora (RM) to water deficit. Multiple physiological and biochemical parameters were used to analyse the response of the three genotypes to two soil water contents (80% and 40% of field capacity). A significant lower decrease in shoot, root and nodule dry weight was observed for AD compared to LO and RM. The better growth performance of AD was correlated to higher carbon and nitrogen content than in LO and RM under water deficit. Leaf parameters such as relative water content, mass area, efficiency of photosystem II and chlorophyll and carotenoid content were significantly less affected in AD than in LO and RM. Significantly higher accumulation of proline was correlated to the higher performance of AD compared to LO and RM. Additionally, the better growth of AD genotype was related to an important mobilisation of antioxidant enzyme activities such as ascorbate peroxidase and catalase. Taken together, these results allow us to suggest that AD is a water deficit tolerant genotype compared to LO and RM. Our multiple physiological and biochemical analyses show that nitrogen content, leaf proline accumulation, reduced leaf hydrogen peroxide accumulation and leaf antioxidant enzymatic activities (ascorbate peroxidase, guaiacol peroxidase, catalase and polyphenol oxidase) are potential biological markers useful to screen for water deficit resistant Vicia faba genotypes. PMID:29281721

  20. Physiological and biochemical responses involved in water deficit tolerance of nitrogen-fixing Vicia faba.

    Directory of Open Access Journals (Sweden)

    Ablaa Kabbadj

    Full Text Available Climate change is increasingly impacting the water deficit over the world. Because of drought and the high pressure of the rising human population, water is becoming a scarce and expensive commodity, especially in developing countries. The identification of crops presenting a higher acclimation to drought stress is thus an important objective in agriculture. The present investigation aimed to assess the adaptation of three Vicia faba genotypes, Aguadulce (AD, Luz d'Otonio (LO and Reina Mora (RM to water deficit. Multiple physiological and biochemical parameters were used to analyse the response of the three genotypes to two soil water contents (80% and 40% of field capacity. A significant lower decrease in shoot, root and nodule dry weight was observed for AD compared to LO and RM. The better growth performance of AD was correlated to higher carbon and nitrogen content than in LO and RM under water deficit. Leaf parameters such as relative water content, mass area, efficiency of photosystem II and chlorophyll and carotenoid content were significantly less affected in AD than in LO and RM. Significantly higher accumulation of proline was correlated to the higher performance of AD compared to LO and RM. Additionally, the better growth of AD genotype was related to an important mobilisation of antioxidant enzyme activities such as ascorbate peroxidase and catalase. Taken together, these results allow us to suggest that AD is a water deficit tolerant genotype compared to LO and RM. Our multiple physiological and biochemical analyses show that nitrogen content, leaf proline accumulation, reduced leaf hydrogen peroxide accumulation and leaf antioxidant enzymatic activities (ascorbate peroxidase, guaiacol peroxidase, catalase and polyphenol oxidase are potential biological markers useful to screen for water deficit resistant Vicia faba genotypes.

  1. Modeling the mechanical response of PBX 9501

    Energy Technology Data Exchange (ETDEWEB)

    Ragaswamy, Partha [Los Alamos National Laboratory; Lewis, Matthew W [Los Alamos National Laboratory; Liu, Cheng [Los Alamos National Laboratory; Thompson, Darla G [Los Alamos National Laboratory

    2010-01-01

    An engineering overview of the mechanical response of Plastic-Bonded eXplosives (PBXs), specifically PBX 9501, will be provided with emphasis on observed mechanisms associated with different types of mechanical testing. Mechanical tests in the form of uniaxial tension, compression, cyclic loading, creep (compression and tension), and Hopkinson bar show strain rate and temperature dependence. A range of mechanical behavior is observed which includes small strain recoverable response in the form of viscoelasticity; change in stiffness and softening beyond peak strength due to damage in the form microcracks, debonding, void formation and the growth of existing voids; inelastic response in the form of irrecoverable strain as shown in cyclic tests, and viscoelastic creep combined with plastic response as demonstrated in creep and recovery tests. The main focus of this paper is to elucidate the challenges and issues involved in modeling the mechanical behavior of PBXs for simulating thermo-mechanical responses in engineering components. Examples of validation of a constitutive material model based on a few of the observed mechanisms will be demonstrated against three point bending, split Hopkinson pressure bar and Brazilian disk geometry.

  2. Physiological and biochemical responses of Hibiscus sabdariffa to drought stress in the presence of salicylic acid

    Directory of Open Access Journals (Sweden)

    Marzieh Mirshekari

    2017-08-01

    Salicylic acid (SA is one of the important signal molecules, which modulates plant responses to environmental stress. In the present work, impact of exogenous SA on some physiological and biochemical traits of Hibiscus sabdariffa in response to drought stress was studied. Hibiscus sabdariffa seedlings were exposed to six drought levels (0, -0.05, -0.1, -0.5, -0.75, and 1 MPa with two SA concentrations (0 and 500 µM in 5 days intervals up to 20 days in a factorial design. During drought stress period, the root and shoot growth, relative water content, pigments content, non-reducing sugar and starch content was significantly decreased. SA treatment cause prevention of the growth reduction and improvement of relative water content. Protein concentration was roughly unchanged during drought stress with SA, while, reducing sugars accumulates and non-reducing sugars and starch significantly decreases. The results show that exogenous SA application on leaves during drought stress can ameliorate detrimental effects of stress through reducing water loss and accumulating reducing sugars, which cause preserving turgor pressure of the cells.

  3. Neurochemical mechanisms underlying responses to psychostimulants

    Energy Technology Data Exchange (ETDEWEB)

    Volkow, N.D.; Fowler, J.S.; Hitzemann, R.; Wang, G.J. [Brookhaven National Lab., Upton, NY (United States)]|[State Univ. of New York, Stony Brook, NY (United States)

    1994-11-01

    This study employed positron emission tomography (PET) to investigate biochemical and metabolic characteristics of the brain of individuals which could put them at risk for drug addiction. It takes advantage of the normal variability between individuals in response to psychoactive drugs to investigate relation between mental state, brain neurochemistry and metabolism and the behavioral response to drugs. We discuss its use to assess if there is an association between mental state and dompaminergic reactivity in response to the psychostimulant drug methylphenidate (MP). Changes in synaptic dopamine induced by MP were evaluated with PET and [11C]raclopride, a D{sub 2} receptor radioligand that is sensitive to endogenous dopamine. Methylpphenidate significantly decreased striatal [11C]raclopride binding. The study showed a correlation between the magnitude of the dopamine-induced changes by methylphenidate, and the mental state of the subjects. Subjects reporting high levels of anxiety and restlessness at baseline had larger changes in MP-induced dopamine changes than those that did not. Further investigations on the relation between an individual`s response to a drug and his/her mental state and personality as well as his neurochemical brain composition may enable to understand better differences in drug addiction vulnerability.

  4. Biochemical, physiological and molecular responses of Ricinus communis seeds and seedlings to different temperatures: a multi-omics approach

    NARCIS (Netherlands)

    Ribeiro de Jesus, P.R.

    2015-01-01

    Biochemical, physiological and molecular responses of Ricinus communis seeds and seedlings to different temperatures: a multi-omics approach

    by Paulo Roberto Ribeiro de Jesus

    The main objective of this thesis was to provide a detailed

  5. Partial response to biotin therapy in a patient with holocarboxylase synthetase deficiency: clinical, biochemical, and molecular genetic aspects

    NARCIS (Netherlands)

    Santer, R.; Muhle, H.; Suormala, T.; Baumgartner, E. R.; Duran, M.; Yang, X.; Aoki, Y.; Suzuki, Y.; Stephani, U.

    2003-01-01

    We report the clinical course and biochemical findings of a 10-year-old, mentally retarded girl with late-onset holocarboxylase synthetase (HCS, gene symbol HLCS) deficiency and only partial response to biotin. On treatment, even with an unusually high dose of 200mg/day, activities of the

  6. Impact of arbuscular mycorrhizal fungi on maize physiology and biochemical response under variable nitrogen levels

    Science.gov (United States)

    Arbuscular mycorrhizal (AM) fungi are known for colonizing plant roots, transporting water and nutrients from the soil to the plant. Therefore, environmental conditions set mainly by soil water and nutrient levels are important determinants of AM function and host plant response. Mechanisms of nitro...

  7. Biochemical and biological responses in V79 cells grown in different background radiation environment

    International Nuclear Information System (INIS)

    Amicarelli, F.; Colafarina, S.; Ara, C.; Antonelli, F.; Balata, M.; Belli, M.; Simone, G.; Satta, L.

    2003-01-01

    Full text: In order to investigate the influence of a low background radiation environment on the biochemical and biological responses of mammalian cells cultured in vitro, a cell culture laboratory has been set up at the Gran Sasso National Laboratory (LNGS) of the Istituto Nazionale di Fisica Nucleare (INFN), located under the Gran Sasso d'Italia mountain, where cosmic rays are reduced by a factor of 10 6 and neutrons by a factor of 10 3 respect to the outside environment. Chinese hamster V79 cells were grown in parallel for up to nine months at LNGS and at the Istituto Superiore di Sanita (ISS). At the LNGS the exposure due to radon was reduced by a factor of about 25 with respect to the ISS. The biological end points addressed concerned cells proliferation, the expression of enzymes specific for the reduction of superoxydes, mutation induction by gamma-rays at the hprt locus and apoptotic sensitivity. After 9 months of culture, the cells grown at the LNGS, compared to the cells grown at the ISS, exhibit: i) a significant increase of the cell density at confluence; ii) a significantly higher capacity to scavenge organic and inorganic hydroperoxydes but a reduced scavenging capacity towards superoxide anions; iii) an increase in both the basal hprt mutation frequency and the sensitivity to the mutagenic effect of gamma-rays. The cells grown at the LNGS also show greater apoptotic sensitivity at the third month of culture that is no longer detected after nine months. Overall, these data suggest that cell response to ionizing radiation may be more complex than that predicted by a linear relationship with the dose and are consistent with the occurrence of an adaptive response related to the background radiation. However, other possibilities cannot be excluded such as the selection, in the two cultures, of clones having different characteristics, independently of the different radiation background. Work is in progress to better elucidate this point

  8. Physiological and Biochemical Responses of Lavandula angustifolia to Salinity Under Mineral Foliar Application

    Science.gov (United States)

    Chrysargyris, Antonios; Michailidi, Evgenia; Tzortzakis, Nikos

    2018-01-01

    Saline water has been proposed as a solution to partially cover plant water demands due to scarcity of irrigation water in hot arid areas. Lavender (Lavandula angustifolia Mill.) plants were grown hydroponically under salinity (0–25–50–100 mM NaCl). The overcome of salinity stress was examined by K, Zn, and Si foliar application for the plant physiological and biochemical characteristics. The present study indicated that high (100 mM NaCl) salinity decreased plant growth, content of phenolics and antioxidant status and essential oil (EO) yield, while low-moderate salinity levels maintained the volatile oil profile in lavender. The integrated foliar application of K and Zn lighten the presumable detrimental effects of salinity in terms of fresh biomass, antioxidant capacity, and EO yield. Moderate salinity stress along with balanced concentration of K though foliar application changed the primary metabolites pathways in favor of major volatile oil constituents biosynthesis and therefore lavender plant has the potential for cultivation under prevalent semi-saline conditions. Zn and Si application, had lesser effects on the content of EO constituents, even though altered salinity induced changings. Our results have demonstrated that lavender growth/development and EO production may be affected by saline levels, whereas mechanisms for alteration of induced stress are of great significance considering the importance of the oil composition, as well. PMID:29731759

  9. Leaf biochemical responses and fruit oil quality parameters in olive plants subjected to airborne metal pollution.

    Science.gov (United States)

    Fourati, Radhia; Scopa, Antonio; Ben Ahmed, Chedlia; Ben Abdallah, Ferjani; Terzano, Roberto; Gattullo, Concetta Eliana; Allegretta, Ignazio; Galgano, Fernanda; Caruso, Marisa Carmela; Sofo, Adriano

    2017-02-01

    This study was carried out in two olive orchards (Olea europaea L., cv. Chemlali) located in a polluted area near a fertilizers factory and in a control unpolluted site, managed with similar cultivation techniques. The aim was to investigate the physiological and biochemical responses of polluted plants (PP), exposed to atmospheric metal contamination (Cd, Cu, Fe, Mn, Ni and Pb) as compared to control plants (CP). Leaves, roots and fruits of PP showed a depression of their non-enzymatic and enzymatic antioxidant defences and a disruption of their hormonal homeostasis. The anomalous physiological status of PP was also demonstrated by the lower values of pigments in leaves and fruits, as compared to CP. Atmospheric metals negatively affected olive oil chemical and sensory quality. However, despite metal deposition on fruit surfaces, the accumulation of potentially toxic metals in olive oil was negligible. Considering that olive oil is an important food product worldwide and that many productive olive orchards are exposed to several sources of pollution, this work could contribute to clarify the effects of atmospheric metal pollution on olive oil quality and its potential toxicity for humans. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. INFLUENCE OF 1-METHYLCYCLOPROPENE ON THE BIOCHEMICAL RESPONSE AND RIPENING OF ‘SOLO’ PAPAYAS

    Directory of Open Access Journals (Sweden)

    THAÍS LURI OHASHI

    2016-01-01

    Full Text Available ABSTRACT The market demand for tropical fruits has been growing steadily over the past two decades and global papaya production has grown significantly over the last few years. This sector, however, suffers greatly from postharvest losses due to reduced quantity and quality of fruits between harvest and consumption. The use of ethylene inhibitors after harvest could improve the final quality of the fruit to satisfy the consumer and also minimize waste. The physiological and biochemical responses of ‘Solo’ papayas treated with the ethylene inhibitor 1-methylcyclopropene (1-MCP to extend storage shelf life and maintain quality during long-term storage are deeply discussed in this study. Papaya fruits arrived at Cranfield University (CU and received a 24 h 1-MCP, being stored at 20 ºC for 10 days. The ethylene inhibitor 1-MCP application significantly delayed ‘Solo’ papaya ripeness on fruit storage by reducing respiration rate and ethylene production. There was a delay from 7 days in fruit firmness loss and the retention of green peel colour was increased. Inhibition of ethylene perception by 1-MCP did not prevent the accumulation of sugars and the mean values were similar and higher than those found for control fruits, which are possibly due to the lower reaction speed, leading to a higher accumulation.

  11. BIOCHEMICAL CHANGES AND ENDOCRINE RESPONSES IN PRE-COMPETITION TRAINING IN ELITE SWIMMERS

    Directory of Open Access Journals (Sweden)

    Yue Li

    2012-01-01

    Full Text Available The aim of this study was to describe biochemical changes and endocrine responses to low-volume pre-competition swimming training for elite swimmers. Twelve sprint swimmers (6 males and 6 females participated in 3-week pre-competition training. Measures of velocity anaerobic threshold (VAT, creatine kinase (CK, blood urea (BU, haemoglobin (Hb and testosterone/cortisol ratio (TC were obtained before and after the 1st, 2nd and 3rd week of training. The training load decreased from 27.3 to 13.7 km per week within 3 weeks. The VAT tested the load with an increased training protocol of 200 m×4 freestyle swimming and initial loads were 85, 90, 95, and 100 percent of the individual load. There were changes in the values of VAT, CK, BU, Hb and TC ratio during the training, and the changes corresponded to the changes of the training stimuli in time. There were also differences between the male and female swimmers. The most significant finding in this study was that such training stimulated the enginery of the swimmers and helped the swimmers recover enginery and indicated improved velocity in the competition with the following adjusting exercise after pre-competition training.

  12. Photosynthetic and biochemical mechanisms of an EMS-mutagenized cowpea associated with its resistance to cowpea severe mosaic virus.

    Science.gov (United States)

    Souza, Pedro F N; Silva, Fredy D A; Carvalho, Fabricio E L; Silveira, Joaquim A G; Vasconcelos, Ilka M; Oliveira, Jose T A

    2017-01-01

    The seed treatment of a CPSMV-susceptible cowpea genotype with the mutagenic agent EMS generated mutagenized resistant plantlets that respond to the virus challenge by activating biochemical and physiological defense mechanisms. Cowpea is an important crop that makes major nutritional contributions particularly to the diet of the poor population worldwide. However, its production is low, because cowpea is naturally exposed to several abiotic and biotic stresses, including viral agents. Cowpea severe mosaic virus (CPSMV) drastically affects cowpea grain production. This study was conducted to compare photosynthetic and biochemical parameters of a CPSMV-susceptible cowpea (CE-31 genotype) and its derived ethyl methanesulfonate-mutagenized resistant plantlets, both challenged with CPSMV, to shed light on the mechanisms of virus resistance. CPSMV inoculation was done in the fully expanded secondary leaves, 15 days after planting. At 7 days post-inoculation, in vivo photosynthetic parameters were measured and leaves collected for biochemical analysis. CPSMV-inoculated mutagenized-resistant cowpea plantlets (MCPI) maintained higher photosynthesis index, chlorophyll, and carotenoid contents in relation to the susceptible (CE-31) CPSMV-inoculated cowpea (CPI). Visually, the MCPI leaves did not exhibit any viral symptoms neither the presence of the virus as examined by RT-PCR. In addition, MCPI showed higher SOD, GPOX, chitinase, and phenylalanine ammonia lyase activities, H 2 O 2 , phenolic contents, and cell wall lignifications, but lower CAT and APX activities in comparison to CPI. All together, these photosynthetic and biochemical changes might have contributed for the CPSMS resistance of MCPI. Contrarily, CPI plantlets showed CPSMV accumulation, severe disease symptoms, reduction in the photosynthesis-related parameters, chlorophyll, carotenoid, phenolic compound, and H 2 O 2 contents, in addition to increased β-1,3-glucanase, and catalase activities that might have

  13. Involvement of immunologic and biochemical mechanisms in the pathogenesis of Tourette's syndrome

    Science.gov (United States)

    Landau, Yuval Eliahu; Steinberg, Tamar; Richmand, Brian; Leckman, James Frederick; Apter, Alan

    2014-01-01

    Tourette's syndrome is a neurodevelopmental disorder clinically characterized by multiple motor and phonic tics. It is likely that a neurobiological susceptibility to the disorder is established during development by the interaction of genetic, biochemical, immunological, and environmental factors. This study sought to investigate the possible correlation of several immunological and biochemical markers with Tourette's syndrome. Children with Tourette's syndrome attending a tertiary pediatric medical center from May 2008 to April 2010, and healthy age-matched control subjects underwent a comprehensive biochemical and immunological work-up. Demographic data were abstracted from the medical records. Findings were compared between the groups and analyzed statistically. Sixty-eight children with Tourette's syndrome (58 males, 85.3%) and 36 healthy children (25 males, 69.4%) were recruited. Compared with the control group, the Tourette's syndrome group had significantly higher levels of ferritin (p = 0.01) and hemoglobin (p = 0.02), a lower level of zinc (p = 0.05), and a lower percentage of non-ceruloplasmin copper (p = 0.01). Analysis of the immunological markers revealed no significant between-group differences in IgA, IgM or IgG; however, IgE and IgG-4 levels were significantly higher in the Tourette's syndrome group (p = 0.04 and p = 0.02, respectively). Children with Tourette's syndrome have high levels of biochemical indices of oxidative stress and the quantitative immunoglobulins. These findings add to the still-limited knowledge on the pathogenesis of Tourette's syndrome and may have implications for the development of novel therapeutic modalities. PMID:22139323

  14. Escherichia coli under Ionic Silver Stress: An Integrative Approach to Explore Transcriptional, Physiological and Biochemical Responses.

    Directory of Open Access Journals (Sweden)

    Claire Saulou-Bérion

    Full Text Available For a better understanding of the systemic effect of sub-lethal micromolar concentrations of ionic silver on Escherichia coli, we performed a multi-level characterization of cells under Ag+-mediated stress using an integrative biology approach combining physiological, biochemical and transcriptomic data. Physiological parameters, namely bacterial growth and survival after Ag+ exposure, were first quantified and related to the accumulation of intracellular silver, probed for the first time by nano secondary ion mass spectroscopy at sub-micrometer lateral resolution. Modifications in E. coli biochemical composition were evaluated under Ag+-mediated stress by in situ synchrotron Fourier-transform infrared microspectroscopy and a comprehensive transcriptome response was also determined. Using multivariate statistics, correlations between the physiological parameters, the extracellular concentration of AgNO3 and the intracellular silver content, gene expression profiles and micro-spectroscopic data were investigated. We identified Ag+-dependent regulation of gene expression required for growth (e.g. transporter genes, transcriptional regulators, ribosomal proteins, for ionic silver transport and detoxification (e.g. copA, cueO, mgtA, nhaR and for coping with various types of stress (dnaK, pspA, metA,R, oxidoreductase genes. The silver-induced shortening of the acyl chain of fatty acids, mostly encountered in cell membrane, was highlighted by microspectroscopy and correlated with the down-regulated expression of genes involved in fatty acid transport (fadL and synthesis/modification of lipid A (lpxA and arnA. The increase in the disordered secondary structure of proteins in the presence of Ag+ was assessed through the conformational shift shown for amides I and II, and further correlated with the up-regulated expression of peptidase (hfq and chaperone (dnaJ, and regulation of transpeptidase expression (ycfS and ycbB. Interestingly, as these

  15. Effects of ocean acidification on the swimming ability, development and biochemical responses of sand smelt larvae

    International Nuclear Information System (INIS)

    Silva, Cátia S.E.; Novais, Sara C.; Lemos, Marco F.L.; Mendes, Susana; Oliveira, Ana P.; Gonçalves, Emanuel J.; Faria, Ana M.

    2016-01-01

    Ocean acidification, recognized as a major threat to marine ecosystems, has developed into one of the fastest growing fields of research in marine sciences. Several studies on fish larval stages point to abnormal behaviours, malformations and increased mortality rates as a result of exposure to increased levels of CO_2. However, other studies fail to recognize any consequence, suggesting species-specific sensitivity to increased levels of CO_2, highlighting the need of further research. In this study we investigated the effects of exposure to elevated pCO_2 on behaviour, development, oxidative stress and energy metabolism of sand smelt larvae, Atherina presbyter. Larvae were caught at Arrábida Marine Park (Portugal) and exposed to different pCO_2 levels (control: ~ 600 μatm, pH = 8.03; medium: ~ 1000 μatm, pH = 7.85; high: ~ 1800 μatm, pH = 7.64) up to 15 days, after which critical swimming speed (U_c_r_i_t), morphometric traits and biochemical biomarkers were determined. Measured biomarkers were related with: 1) oxidative stress — superoxide dismutase and catalase enzyme activities, levels of lipid peroxidation and DNA damage, and levels of superoxide anion production; 2) energy metabolism — total carbohydrate levels, electron transport system activity, lactate dehydrogenase and isocitrate dehydrogenase enzyme activities. Swimming speed was not affected by treatment, but exposure to increasing levels of pCO_2 leads to higher energetic costs and morphometric changes, with larger larvae in high pCO_2 treatment and smaller larvae in medium pCO_2 treatment. The efficient antioxidant response capacity and increase in energetic metabolism only registered at the medium pCO_2 treatment may indicate that at higher pCO_2 levels the capacity of larvae to restore their internal balance can be impaired. Our findings illustrate the need of using multiple approaches to explore the consequences of future pCO_2 levels on organisms. - Highlights: • Exposure to high pCO_2

  16. Effects of ocean acidification on the swimming ability, development and biochemical responses of sand smelt larvae

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Cátia S.E. [MARE — Marine and Environmental Sciences Centre, ISPA − Instituto Universitário (Portugal); MARE — Marine and Environmental Sciences Centre, ESTM, Instituto Politécnico de Leiria (Portugal); Novais, Sara C.; Lemos, Marco F.L.; Mendes, Susana [MARE — Marine and Environmental Sciences Centre, ESTM, Instituto Politécnico de Leiria (Portugal); Oliveira, Ana P. [IPMA — Instituto Português do Mar e da Atmosfera, Algés (Portugal); Gonçalves, Emanuel J. [MARE — Marine and Environmental Sciences Centre, ISPA − Instituto Universitário (Portugal); Faria, Ana M., E-mail: afaria@ispa.pt [MARE — Marine and Environmental Sciences Centre, ISPA − Instituto Universitário (Portugal)

    2016-09-01

    Ocean acidification, recognized as a major threat to marine ecosystems, has developed into one of the fastest growing fields of research in marine sciences. Several studies on fish larval stages point to abnormal behaviours, malformations and increased mortality rates as a result of exposure to increased levels of CO{sub 2}. However, other studies fail to recognize any consequence, suggesting species-specific sensitivity to increased levels of CO{sub 2}, highlighting the need of further research. In this study we investigated the effects of exposure to elevated pCO{sub 2} on behaviour, development, oxidative stress and energy metabolism of sand smelt larvae, Atherina presbyter. Larvae were caught at Arrábida Marine Park (Portugal) and exposed to different pCO{sub 2} levels (control: ~ 600 μatm, pH = 8.03; medium: ~ 1000 μatm, pH = 7.85; high: ~ 1800 μatm, pH = 7.64) up to 15 days, after which critical swimming speed (U{sub crit}), morphometric traits and biochemical biomarkers were determined. Measured biomarkers were related with: 1) oxidative stress — superoxide dismutase and catalase enzyme activities, levels of lipid peroxidation and DNA damage, and levels of superoxide anion production; 2) energy metabolism — total carbohydrate levels, electron transport system activity, lactate dehydrogenase and isocitrate dehydrogenase enzyme activities. Swimming speed was not affected by treatment, but exposure to increasing levels of pCO{sub 2} leads to higher energetic costs and morphometric changes, with larger larvae in high pCO{sub 2} treatment and smaller larvae in medium pCO{sub 2} treatment. The efficient antioxidant response capacity and increase in energetic metabolism only registered at the medium pCO{sub 2} treatment may indicate that at higher pCO{sub 2} levels the capacity of larvae to restore their internal balance can be impaired. Our findings illustrate the need of using multiple approaches to explore the consequences of future pCO{sub 2} levels on

  17. Mechanical response of biopolymer double networks

    Science.gov (United States)

    Carroll, Joshua; Das, Moumita

    We investigate a double network model of articular cartilage (AC) and characterize its equilibrium mechanical response. AC has very few cells and the extracellular matrix mainly determines its mechanical response. This matrix can be thought of as a double polymer network made of collagen and aggrecan. The collagen fibers are stiff and resist tension and compression forces, while aggrecans are flexible and control swelling and hydration. We construct a microscopic model made of two interconnected disordered polymer networks, with fiber elasticity chosen to qualitatively mimic the experimental system. We study the collective mechanical response of this double network as a function of the concentration and stiffness of the individual components as well as the strength of the connection between them using rigidity percolation theory. Our results may provide a better understanding of mechanisms underlying the mechanical resilience of AC, and more broadly may also lead to new perspectives on the mechanical response of multicomponent soft materials. This work was partially supported by a Cottrell College Science Award.

  18. Cross-resistance and biochemical mechanisms of resistance to indoxacarb in the diamondback moth, Plutella xylostella.

    Science.gov (United States)

    Zhang, Shuzhen; Zhang, Xiaolei; Shen, Jun; Li, Dongyang; Wan, Hu; You, Hong; Li, Jianhong

    2017-08-01

    Indoxacarb belongs to a class of insecticides known as oxadiazines and is the first commercialized pyrazoline-type voltage-dependent sodium channel blocker. A moderate level of resistance to indoxacarb has evolved in field populations of Plutella xylostella from Central China. In the present study, cross-resistance, resistance stability and metabolic mechanisms of indoxacarb resistance were investigated in this moth species. A P. xylostella strain with a high level of resistance to indoxacarb was obtained through continuous selection in the laboratory. The strain showed cross-resistance to metaflumizone, beta-cypermethrin and chlorfenapyr, but no resistance to cyantraniliprole, chlorantraniliprole, abamectin, chlorfluazuron, spinosad and diafenthiuron compared with the susceptible strain. Synergism tests revealed that piperonyl butoxide (PBO) (synergistic ratio, SR=7.8) and diethyl maleate (DEF) (SR=3.5) had considerable synergistic effects on indoxacarb toxicity in the resistant strain (F 58 ). Enzyme activity data showed there was an approximate 5.8-fold different in glutathione S-transferase (GST) and a 6.8-fold different in cytochrome P450 monooxygenase between the resistant strain (F 58 ) and susceptible strain, suggesting that the increased activity of these two enzymes is likely the main detoxification mechanism responsible for the species' resistance to indoxacarb. These results will be helpful for insecticide resistance management strategies to delay the development of indoxacarb resistance in fields. Copyright © 2017. Published by Elsevier Inc.

  19. Mechanisms of selenium hyperaccumulation in plants: A survey of molecular, biochemical and ecological cues.

    Science.gov (United States)

    Lima, Leonardo Warzea; Pilon-Smits, Elizabeth A H; Schiavon, Michela

    2018-04-04

    Selenium (Se) is a micronutrient required for many life forms, but toxic at higher concentration. Plants do not have a Se requirement, but can benefit from Se via enhanced antioxidant activity. Some plant species can accumulate Se to concentrations above 0.1% of dry weight and seem to possess mechanisms that distinguish Se from its analog sulfur (S). Research on these so-called Se hyperaccumulators aims to identify key genes for this remarkable trait and to understand ecological implications. This review gives a broad overview of the current knowledge about Se uptake and metabolism in plants, with a special emphasis on hypothesized mechanisms of Se hyperaccumulation. The role of Se in plant defense responses and the associated ecological implications are discussed. Hyperaccumulators have enhanced expression of S transport and assimilation genes, and may possess transporters with higher specificity for selenate over sulfate. Genes involved in antioxidant reactions and biotic stress resistance are also upregulated. Key regulators in these processes appear to be the growth regulators jasmonic acid, salicylic acid and ethylene. Hyperaccumulation may have evolved owing to associated ecological benefits, particularly protection against pathogens and herbivores, and as a form of elemental allelopathy. Understanding plant Se uptake and metabolism in hyperaccumulators has broad relevance for the environment, agriculture and human and animal nutrition and may help generate crops with selenate-specific uptake and high capacity to convert selenate to less toxic, anticarcinogenic, organic Se compounds. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Physiological and biochemical responses to severe drought stress of nine Eucalyptus globulus clones: a multivariate approach.

    Science.gov (United States)

    Granda, Víctor; Delatorre, Carolina; Cuesta, Candela; Centeno, María L; Fernández, Belén; Rodríguez, Ana; Feito, Isabel

    2014-07-01

    Seasonal drought, typical of temperate and Mediterranean environments, creates problems in establishing plantations and affects development and yield, and it has been widely studied in numerous species. Forestry fast-growing species such as Eucalyptus spp. are an important resource in such environments, selected clones being generally used for production purposes in plantations in these areas. However, use of mono-specific plantations increases risk of plant loss due to abiotic stresses, making it essential to understand differences in an individual clone's physiological responses to drought stress. In order to study clonal differences in drought responses, nine Eucalyptus globulus (Labill.) clones (C14, C46, C97, C120, C222, C371, C405, C491 and C601) were gradually subjected to severe drought stress (<14% of field capacity). A total of 31 parameters, physiological (e.g., photosynthesis, gas exchange), biochemical (e.g., chlorophyll content) and hormonal (abscisic acid [ABA] content), were analysed by classic and multivariate techniques. Relationships between parameters were established, allowing related measurements to be grouped into functional units (pigment, growth, water and ABA). Differences in these units showed that there were two distinct groups of E. globulus clones on the basis of their different strategies when faced with drought stress. The C14 group (C14, C120, C405, C491 and C601) clones behave as water savers, maintaining high water content and showing high stomatal adjustment, and reducing their aerial growth to a great extent. The C46 group (C46, C97, C222 and C371) clones behave as water spenders, reducing their water content drastically and presenting osmotic adjustment. The latter maintains the highest growth rate under the conditions tested. The method presented here can be used to identify appropriate E. globulus clones for drought environments, facilitating the selection of material for production and repopulation environments. © The

  1. Biochemical responses of filamentous algae in different aquatic ecosystems in South East Turkey and associated water quality parameters.

    Science.gov (United States)

    Çelekli, Abuzer; Arslanargun, Hamdullah; Soysal, Çiğdem; Gültekin, Emine; Bozkurt, Hüseyin

    2016-11-01

    To the best of our knowledge, any study about biochemical response of filamentous algae in the complex freshwater ecosystems has not been found in the literature. This study was designed to explore biochemical response of filamentous algae in different water bodies from May 2013 to October 2014, using multivariate approach in the South East of Turkey. Environmental variables were measured in situ: water temperature, oxygen concentration, saturation, conductivity, salinity, pH, redox potential, and total dissolved solid. Chemical variables of aqueous samples and biochemical compounds of filamentous algae were also measured. It was found that geographic position and anthropogenic activities had strong effect on physico-chemical variables of water bodies. Variation in environmental conditions caused change in algal biomass composition due to the different response of filamentous species, also indicated by FTIR analysis. Biochemical responses not only changed from species to species, but also varied for the same species at different sampling time and sampling stations. Multivariate analyses showed that heavy metals, nutrients, and water hardness were found as the important variables governing the temporal and spatial succession and biochemical compounds. Nutrients, especially nitrate, could stimulate pigment and total protein production, whereas high metal content had adverse effects. Amount of malondialdehyde (MDA), H2O2, total thiol groups, total phenolic compounds, proline, total carbohydrate, and metal bioaccumulation by filamentous algae could be closely related with heavy metals in the ecosystems. Significant increase in MDA, H2O2, total thiol group, total phenolic compounds, and proline productions by filamentous algae and chlorosis phenomenon seemed to be an important strategy for alleviating environmental factors-induced oxidative stress as biomarkers. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Hemato-biochemical responses to packing in donkeys administered ascorbic acid during the harmattan season

    OpenAIRE

    OLAIFA, Folashade; AYO, Joseph Olusegun; AMBALI, Suleiman Folorunsho; REKWOT, Peter Ibrahim

    2012-01-01

    Experiments were performed to investigate the effect of ascorbic acid (AA) in reducing hemato-biochemical changes in pack donkeys during the cold-dry (harmattan) season. Six experimental donkeys administered orally AA (200 mg/kg) and six control donkeys not administered ascorbic acid were subjected to packing. Blood samples were collected from all donkeys for hematological and biochemical analyses. In the control donkeys, packed cell volume (PCV), erythrocyte count and hemoglobin concentratio...

  3. Biochemical and morphological changes in endothelial cells in response to hypoxic interstitial edema

    Directory of Open Access Journals (Sweden)

    Miserocchi Giuseppe

    2006-01-01

    decrease of caveolin-1 and AQP1 (markers of caveolae, and an increase in CD55 (marker of lipid rafts. Morphometry showed a significant decrease in endothelial cell volume, a marked increase in the cell surface/volume ratio and a decrease in caveolar density; epithelial cells did not show morphological changes. Conclusion The biochemical, signaling and morphological changes observed in lung endothelial cell exposed to hypoxia are opposite to those previously described in cardiogenic edema, suggesting a differential cellular response to either type of edema.

  4. Biochemical Analysis Reveals the Multifactorial Mechanism of Histone H3 Clipping by Chicken Liver Histone H3 Protease

    KAUST Repository

    Chauhan, Sakshi

    2016-09-02

    Proteolytic clipping of histone H3 has been identified in many organisms. Despite several studies, the mechanism of clipping, the substrate specificity, and the significance of this poorly understood epigenetic mechanism are not clear. We have previously reported histone H3 specific proteolytic clipping and a protein inhibitor in chicken liver. However, the sites of clipping are still not known very well. In this study, we attempt to identify clipping sites in histone H3 and to determine the mechanism of inhibition by stefin B protein, a cysteine protease inhibitor. By employing site-directed mutagenesis and in vitro biochemical assays, we have identified three distinct clipping sites in recombinant human histone H3 and its variants (H3.1, H3.3, and H3t). However, post-translationally modified histones isolated from chicken liver and Saccharomyces cerevisiae wild-type cells showed different clipping patterns. Clipping of histone H3 N-terminal tail at three sites occurs in a sequential manner. We have further observed that clipping sites are regulated by the structure of the N-terminal tail as well as the globular domain of histone H3. We also have identified the QVVAG region of stefin B protein to be very crucial for inhibition of the protease activity. Altogether, our comprehensive biochemical studies have revealed three distinct clipping sites in histone H3 and their regulation by the structure of histone H3, histone modifications marks, and stefin B.

  5. Anatomical, biochemical, and photosynthetic responses to recent allopolyploidy in Glycine dolichocarpa (Fabaceae).

    Science.gov (United States)

    Coate, Jeremy E; Luciano, Amelia K; Seralathan, Vasu; Minchew, Kevin J; Owens, Tom G; Doyle, Jeff J

    2012-01-01

    Previous studies have shown that polyploidy has pronounced effects on photosynthesis. Most of these studies have focused on synthetic or recently formed autopolyploids, and comparatively little is known about the integrated effects of natural allopolyploidy, which involves hybridity and genome doubling and often incorporates multiple genotypes through recurrent origins and lineage recombination. Glycine dolichocarpa (designated T2) is a natural allotetraploid with multiple origins. We quantified 21 anatomical, biochemical, and physiological phenotypes relating to photosynthesis in T2 and its diploid progenitors, G. tomentella (D3) and G. syndetika (D4). To assess how direction of cross affects these phenotypes, we included three T2 accessions having D3-like plastids (T2(D3)) and two accessions having D4-like plastids (T2(D4)). T2 accessions were transgressive (more extreme than any diploid accession) for 17 of 21 phenotypes, and species means differed significantly in T2 vs. both progenitors for four of 21 phenotypes (higher for guard cell length, electron transport capacity [J(max)] per palisade cell, and J(max) per mesophyll cell; lower for palisade cells per unit leaf area). Within T2, four of 21 parameters differed significantly between T2(D3) and T2(D4) (palisade cell volume; chloroplast number and volume per unit leaf area; and J(max) per unit leaf area). T2 is characterized by transgressive photosynthesis-related phenotypes (including an ca. 2-fold increase in J(max) per cell), as well as by significant intraspecies variation correlating with plastid type. These data indicate prominent roles for both nucleotypic effects and cytoplasmic factors in photosynthetic responses to allopolyploidy.

  6. Tularemia induces different biochemical responses in BALB/c mice and common voles

    Directory of Open Access Journals (Sweden)

    Vitula Frantisek

    2009-06-01

    Full Text Available Abstract Background Both BALB/c mice and common voles (Microtus arvalis are considered highly susceptible to tularemia. However, the common vole is reported to harbour Francisella tularensis in European habitats as well as to survive longer with chronic shedding of the bacterium. The purpose of the present study was to compare the response of these two rodents to a wild Francisella tularensis subsp. holarctica strain infection. Methods Rodents were evaluated for differences in the total antioxidant capacity derived from low-molecular-weight antioxidants, biochemistry including lipid metabolism, tissue bacterial burdens and histopathology following experimental intraperitoneal infection with 160 colony forming units (CFU pro toto. Results Bacterial burdens in common voles started to develop later post-exposure and amounted to lower levels than in BALB/c mice. Elevation of liver function enzymes was more pronounced in mice than common voles and there were marked differences in lipid metabolism in the course of tularemia in these two species. Hypertriglyceridemia and hypercholesterolemia developed in mice, while physiologically higher levels of triglycerides and cholesterol showed a decreasing tendency in common voles. On the other hand, the total plasma antioxidant capacity gradually dropped to 81.5% in mice on day 5 post-infection, while it increased to 130% on day 6 post-infection in common voles. Significant correlations between tissue bacterial burdens and several biochemical parameters were found. Conclusion As differences in lipid metabolism and the total antioxidant capacity of highly susceptible rodent species were demonstrated, the role of triglycerides, cholesterol and antioxidants in tularemic sepsis should be further investigated.

  7. Physiological and biochemical responses of Salix integra Thunb. under copper stress as affected by soil flooding.

    Science.gov (United States)

    Cao, Yini; Ma, Chuanxin; Chen, Guangcai; Zhang, Jianfeng; Xing, Baoshan

    2017-06-01

    To explore the joint effect of copper (Cu) and flooding on Salix integra Thunb. (S. integra), the physiological and biochemical parameters of the seedlings grown in Cu amended soil (50, 150, 450 mg kg -1 ) with or without the flooding for 60 days were evaluated. The results suggested that the flooding significantly inhibited the root growth in terms of root length and root tips. The Cu exposures of 50 and 150 mg kg -1 notably enhanced the root growth as compared to the control. Majority of Cu was accumulated in S. integra roots, while flooding significantly reduced the Cu content, except the 150 mg kg -1 Cu treatment, but the iron (Fe) and manganese (Mn) content on the root surface were both markedly increased relative to non-flooded control. The malonaldehyde (MDA) and glutathione (GSH) contents in leaves showed a dose-response upon Cu exposure. Soil flooding enhanced the GSH level, which displayed 4.50-49.59% increases compared to its respective non-flooded treatment, while no difference was evident on MDA contents between the flooding and the non-flooded treatments. Both superoxide dismutase (SOD) and peroxidase (POD) activities were boosted while the catalase (CAT) was suppressed with increasing Cu exposure dose, and soil flooding reduced the POD and CAT activities. The elevated Cu level caused the evident increases of root calcium (Ca), potassium (K), and sulfur (S) concentrations and decreases of root phosphorus (P), sodium (Na), and zinc (Zn) concentrations. Soil flooding increased the concentrations of Fe, S, Na, Ca, and magnesium (Mg) in S. integra root. Taken together, our results suggested S. integra has high tolerance to the joint stress from Cu and flooding. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Physio-biochemical and morphological characters of halophyte legume shrub, Acacia ampliceps seedlings in response to salt stress under greenhouse

    Directory of Open Access Journals (Sweden)

    Cattarin eTheerawitaya

    2015-08-01

    Full Text Available Acacia ampliceps (salt wattle, a leguminous shrub, has been introduced in salt-affected areas in northeast of Thailand for remediation of saline soils. However, the defense mechanisms underlying salt tolerance A. ampliceps are unknown. We investigated various physio-biochemical and morphological attributes of A. ampliceps in response to varying levels of salt treatment (200 to 600 mM NaCl. Seedlings of A. ampliceps (252 cm in plant height raised from seeds were treated with 200 mM (mild stress, 400 and 600 mM (extreme stress of salt treatment (NaCl under greenhouse conditions. Na+ and Ca2+ contents in the leaf tissues increased significantly under salt treatment, whereas K+ content declined in salt-stressed plants. Free proline and soluble sugar contents in plant grown under extreme salt stress (600 mM NaCl for 9 days significantly increased by 28.7 (53.33 mol g1 FW and 3.2 (42.11 mg g1 DW folds, respectively over the control, thereby playing a major role as osmotic adjustment. Na+ enrichment in the phyllode tissues of salt-stressed seedlings positively related to total chlorophyll degradation (R2=0.72. Photosynthetic pigments and chlorophyll fluorescence in salt-stressed plants increased under mild salt stress (200 mM NaCl. However, these declined under high level of salinity (400-600 mM NaCl, consequently resulting in reduced net photosynthetic rate (R2=0.81 and plant dry weight (R2= 0.91. The study concludes that A. ampliceps has an osmotic adjustment and Na+ compartmentation as effective salt defense mechanisms, and thus it could be an excellent species to grow in salt-affected soils.

  9. Biochemical response to ursodeoxycholic acid predicts survival in a North American cohort of primary biliary cirrhosis patients.

    Science.gov (United States)

    Lammert, Craig; Juran, Brian D; Schlicht, Erik; Chan, Landon L; Atkinson, Elizabeth J; de Andrade, Mariza; Lazaridis, Konstantinos N

    2014-10-01

    Biochemical response to ursodeoxycholic acid among patients with primary biliary cirrhosis remains variable, and there is no agreement of an ideal model. Novel assessment of response coupled to histologic progression was recently defined by the Toronto criteria. We retrospectively assessed transplant-free survival and clinical outcomes associated with ursodeoxycholic acid response to evaluate the Toronto criteria using a large North American cohort of PBC patients. Three hundred and ninety-eight PBC patients from the Mayo Clinic PBC Genetic Epidemiology Registry were assessed for ursodeoxycholic acid treatment and biochemical response per the Toronto criteria. Responders were defined by reduction in alkaline phosphatase to less than or equal to 1.67 times the upper normal limit by 2 years of treatment, whereas non-responders had alkaline phosphatase values greater than 1.67 times the upper normal limit. Probability of survival was estimated using the Kaplan-Meier method. Three hundred and two (76 %) patients were responders and 96 (24 %) were non-responders. Significantly more non-responders developed adverse events related to chronic liver disease compared to responders (hazard ratio (HR) 2.77, P = 0.001). Biochemical responders and early-stage disease at treatment start was associated with improved overall transplant-free survival compared to non-responders (HR 1.9) and patients with late-stage disease (HR 2.7) after age and sex adjustment. The Toronto criteria are capable of identifying ursodeoxycholic acid-treated primary biliary cirrhosis patients at risk of poor transplant-free survival and adverse clinical outcomes. Our data reveal that despite advanced disease at diagnosis, biochemical response per the Toronto criteria associates with improved overall transplant-free survival.

  10. Molecular and biochemical responses in the midgut of the silkworm, Bombyx mori, infected with Nosema bombycis.

    Science.gov (United States)

    Li, Zhi; Wang, Yu; Wang, Linling; Zhou, Zeyang

    2018-03-06

    Microsporidia are a group of eukaryotic intracellular parasites that infect almost all vertebrates and invertebrates. However, there is little information available of how microsporidia obtain nutrients and energy from host cells. The purpose of this study was to investigate the energy and material requirements of Nosema bombycis for the invasion procedure through analyzing the global variation of the gene expression, protein abundance, fatty acids level and ATP flux induced by the microsporidia N. bombycis infection in the midgut of the silkworm Bombyx mori. A suppression subtractive hybridization (SSH) and quantitative real-time PCR (qPCR) analysis were performed to identify the genes upregulated in the midgut of B. mori 48 h following N. bombycis infection. Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were used to annotate and summarize the differentially expressed genes, according to the categories 'molecular function', 'cellular component' and 'biological process'. To evaluate the nutrition material and energy costs in B.mori infected by N. bombycis, biochemical analysis was performed to determine the variation of protein abundance, fatty acid levels and ATP flux with or without the microsporidia N. bombycis infection in the midgut of the silkworm B. mori. A total of 744 clones were obtained, 288 clones were randomly selected for sequencing, and 110 unigenes were generated. Amongst these, 49.21%, 30.16% and 14.29% genes were involved in 19 molecular functions, 19 biological processes and nine cellular components, respectively. A total of 11 oxidative phosphorylation- and eight proton-coupled ATP synthesis-related genes were upregulated. Seven protein degradation-, three fat degradation-related genes were upregulated, and no genes related to the de novo synthesis of amino acids and fatty acids were significantly upregulated. The data from the biochemical analysis showed the contents of total protein and ATP of B. mori

  11. Variation in the biochemical response to l-thyroxine therapy and relationship with peripheral thyroid hormone conversion efficiency

    OpenAIRE

    Midgley, John E M; Larisch, Rolf; Dietrich, Johannes W; Hoermann, Rudolf

    2015-01-01

    Several influences modulate biochemical responses to a weight-adjusted levothyroxine (l-T4) replacement dose. We conducted a secondary analysis of the relationship of l-T4 dose to TSH and free T3 (FT3), using a prospective observational study examining the interacting equilibria between thyroid parameters. We studied 353 patients on steady-state l-T4 replacement for autoimmune thyroiditis or after surgery for malignant or benign thyroid disease. Peripheral deiodinase activity was calculated a...

  12. Spatial variability of biochemical responses in resident fish after the M/V Hebei Spirit Oil Spill (Taean, Korea)

    Science.gov (United States)

    Jung, Jee-Hyun; Chae, Young Sun; Kim, Ha Na; Kim, Moonkoo; Yim, Un Hyuk; Ha, Sung Yong; Han, Gi Myung; An, Joon Geon; Kim, Eunsic; Shim, Won Joon

    2012-09-01

    This study describes the spatial variation and the duration of the impacts from the Hebei Spirit oil spill using specific biochemical indices in resident benthic fish. Enzymatic activities and biliary PAHs metabolites were higher at the site closer to the spill area in four months after spill incident. Regarding our results of detoxification response, markers of Phase I followed a similar trend in accordance with levels of biliary metabolites, while markers of phase II and GST appeared relatively unchanged.

  13. Selection for chlorpyrifos resistance in Liriomyza sativae Blanchard: Cross-resistance patterns, stability and biochemical mechanisms.

    Science.gov (United States)

    Askari-Saryazdi, Ghasem; Hejazi, Mir Jalil; Ferguson, J Scott; Rashidi, Mohammad-Reza

    2015-10-01

    The vegetable leafminer (VLM), Liriomyza sativae (Diptera: Agromyzidae) is a serious pest of vegetable crops and ornamentals worldwide. In cropping systems with inappropriate management strategies, development of resistance to insecticides in leafminers is probable. Chlorpyrifos is a commonly used pesticide for controlling leafminers in Iran, but resistance to this insecticide in leafminers has not been characterized. In order to develop strategies to minimize resistance in the field and greenhouse, a laboratory selected chlorpyrifos resistant strain of L. sativae was used to characterize resistance and determine the rate of development and stability of resistance. Selecting for resistance in the laboratory after 23 generations yielded a chlorpyrifos resistant selected strain (CRSS) with a resistance ratio of 40.34, determined on the larval stage. CRSS exhibited no cross-resistance to other tested insecticides except for diazinon. Synergism and biochemical assays indicated that esterases (EST) had a key role in metabolic resistance to chlorpyrifos, but glutathione S-transferase (GST) and mixed function oxidase (MFO) were not mediators in this resistance. In CRSS acetylcholinesterase (AChE) was more active than the susceptible strain, Sharif (SH). AChE in CRSS was also less sensitive to inhibition by propoxur. The kinetics parameters (Km and Vmax) of AChE indicated that affinities and hydrolyzing efficiencies of this enzyme in CRSS were higher than SH. Susceptibility to chlorpyrifos in L. sativae was re-gained in the absence of insecticide pressure. Synergism, biochemical and cross-resistance assays revealed that overactivity of metabolic enzymes and reduction in target site sensitivity are probably joint factors in chlorpyrifos resistance. An effective insecticide resistance management program is necessary to prevent fast resistance development in crop systems. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Curcumin Stimulates Biochemical Mechanisms of Apis Mellifera Resistance and Extends the Apian Life-Span

    Directory of Open Access Journals (Sweden)

    Strachecka Aneta J.

    2015-06-01

    Full Text Available We examined the influence of curcumin-supplemented feeding on worker lifespan, Nosema resistance, key enzyme activities, metabolic compound concentrations and percentage of the global DNA methylation. Two worker groups (Apis mellifera were set up: 1 control group; workers were fed ad libitum with sucrose syrup; 2 workers were fed with the syrup with the addition of curcumin. Dead workers were removed every two days and the Nosema spp. infection levels were assessed. Hemolymph was taken from living workers for biochemical analyses. The global DNA methylation level was analysed using DNA from worker heads and thoraces. The bees that consumed curcumin lived longer and were less infested with Nosema spp. The curcumin-treated workers had higher concentrations of proteins, non-enzymatic biomarkers (triglycerides, glucose, cholesterol, Mg2+ and Ca2+, uric acid and creatinine, as well as elevated activities of antioxidant enzymes (SOD , GPx, CAT , GST , neutral proteases, protease inhibitors, enzymatic biomarkers (AST , ALT , ALP . The concentrations of albumin and urea, and the activities of acidic and alkaline proteases were higher in the control group. Curcumin decreased global DNA methylation levels especially in older bees in which the natural, age-related level increase was observed. Most of the parameters increased over the apian youth and adulthood, and decreased in older bees. The decrease was markedly delayed in the bees fed with curcumin. Curcumin appeared to be an unexpectedly effective natural bio-stimulator, improving apian health and vitality. This multifactorial effect is caused by the activation of many biochemical processes involved in the formation of apian resistance.

  15. Biomonitoring of aquatic pollution with feral eel (Anguilla anguilla). II. Biomarkers: pollution-induced biochemical responses.

    NARCIS (Netherlands)

    van der Oost, R.; Goksøyr, A.; Celander, M.; Heida, H.; Vermeulen, N.P.E.

    1996-01-01

    The primary aim of this study was to select a set of relevant biomarkers in feral eel for the biological assessment of inland water pollution. A suite of biochemical parameters in eel (hepatic biotransformation enzymes and cofactors, antioxidant enzymes, PAH metabolites, DNA adducts, serum

  16. Physiological and biochemical responses of Ricinus communis seedlings to different temperatures: a metabolomics approach

    NARCIS (Netherlands)

    Ribeiro de Jesus, P.R.; Fernandez, L.G.; Delmondez de Castro, R.; Ligterink, W.; Hilhorst, H.W.M.

    2014-01-01

    Background Compared with major crops, growth and development of Ricinus communis is still poorly understood. A better understanding of the biochemical and physiological aspects of germination and seedling growth is crucial for the breeding of high yielding varieties adapted to various growing

  17. Response And Recovery Of Sulfate-Reducing Biochemical Reactors From Aerobic Stress Events

    Science.gov (United States)

    Microbially-mediated treatment of mining-influenced water (MIW) through the implementation of sulfate-reducing biochemical reactors (BCRs) is an attractive option for passive, in situ remediation with low operating costs and reduced maintenance requirements. However, BCRs can be...

  18. Response And Recovery Of Sulfate-Reducing Biochemical Reactors From Aerobic Stress Events (Presentation)

    Science.gov (United States)

    Microbially-mediated treatment of mining-influenced water (MIW) through the implementation of sulfate-reducing biochemical reactors (BCR) is an attractive option for passive, in situ remediation with low operating costs and reduced maintenance requirements. However, BCRs can be ...

  19. Rapid Weight Loss Elicits Harmful Biochemical and Hormonal Responses in Mixed Martial Arts Athletes.

    Science.gov (United States)

    Coswig, Victor Silveira; Fukuda, David Hideyoshi; Del Vecchio, Fabrício Boscolo

    2015-10-01

    The purpose of this study was to compare biochemical and hormonal responses between mixed martial arts (MMA) competitors with minimal prefight weight loss and those undergoing rapid weight loss (RWL). Blood samples were taken from 17 MMA athletes (Mean± SD; age: 27.4 ±5.3yr; body mass: 76.2 ± 12.4kg; height: 1.71 ± 0.05m and training experience: 39.4 ± 25 months) before and after each match, according to the official events rules. The no rapid weight loss (NWL, n = 12) group weighed in on the day of the event (~30 min prior fight) and athletes declared not having used RWL strategies, while the RWL group (n = 5) weighed in 24 hr before the event and the athletes claimed to have lost 7.4 ± 1.1kg, approximately 10% of their body mass in the week preceding the event. Results showed significant (p < .05) increases following fights, regardless of group, in lactate, glucose, lactate dehydrogenase (LDH), creatinine, and cortisol for all athletes. With regard to group differences, NWL had significantly (p < .05) greater creatinine levels (Mean± SD; pre to post) (NWL= 101.6 ± 15-142.3 ± 22.9μmol/L and RWL= 68.9 ± 10.6-79.5 ± 15.9μmol/L), while RWL had higher LDH (median [interquartile range]; pre to post) (NWL= 211.5[183-236] to 231[203-258]U/L and RWL= 390[370.5-443.5] to 488[463.5-540.5]U/L) and AST (NWL= 30[22-37] to 32[22-41]U/L and 39[32.5-76.5] to 72[38.5-112.5] U/L) values (NWL versus RWL, p < .05). Post hoc analysis showed that AST significantly increased in only the RWL group, while creatinine increased in only the NWL group. The practice of rapid weight loss showed a negative impact on energy availability and increased both muscle damage markers and catabolic expression in MMA fighters.

  20. The role of biochemical variations and genotype testing in determining the virological response of patients infected with hepatitis C virus

    Directory of Open Access Journals (Sweden)

    Abid Shoukat

    2018-01-01

    Full Text Available Background: In hepatitis C virus (HCV, infection viral and IL28B genotype along with many clinical and biochemical factors can influence response rates to pegylated interferon plus ribavirin (Peg-IFN-a/R therapy and progression to chronic hepatitis C (CHC. Aims: The present study was conducted to determine the effect of biochemical and risk factors on treatment outcome in CHC patients in relation to their viral and host genotype. Settings and Design: The present study was a prospective Pe- IFN efficacy study consisting of Peg-IFN-a/R therapy for 24–48 weeks including 250 HCV infected patients. Materials and Methods: Biochemical parameters were determined by Beckman Coulter AU680 automated analyzer. HCV and Interleukin 28B (IL28B genotyping were carried out by polymerase chain reaction-restriction fragment length polymorphism and viral load was determined by quantitative real-time PCR. Results: Wild outnumbered the variant genotypes in rs 12979860, rs 12980275, and rs 8099917 SNP of IL28B gene. Sustained virological response (SVR SVR and viral genotype were significantly associated with age, hepatic steatosis, low-grade varices, and serum aspartate transaminase levels (at the end of treatment (P < 0.05. In addition, SVR was significantly influenced by body mass index (BMI, insulin resistance, serum low-density lipoprotein , and ferritin levels (P < 0.05. Viral genotype 1 infected patients had higher serum cholesterol and triglyceride levels (P < 0.05. Conclusions: Although the IL28B sequence variation is the major factor that can influence response rates to antiviral therapy, viral and biochemical factors also have a definite role to play in the diagnosis, etiology, and treatment outcome in HCV-infected patients.

  1. Salvage Radiation Therapy Dose Response for Biochemical Failure of Prostate Cancer After Prostatectomy—A Multi-Institutional Observational Study

    Energy Technology Data Exchange (ETDEWEB)

    Pisansky, Thomas M., E-mail: pisansky.thomas@mayo.edu [Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota (United States); Agrawal, Shree [Case Western Reserve University School of Medicine, Cleveland, Ohio (United States); Hamstra, Daniel A. [Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan (United States); Koontz, Bridget F. [Department of Radiation Oncology, Duke Cancer Institute, Durham, North Carolina (United States); Liauw, Stanley L. [Department of Radiation and Cellular Oncology, University of Chicago, Chicago, Illinois (United States); Efstathiou, Jason A. [Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts (United States); Michalski, Jeff M. [Department of Radiation Oncology, Washington University, St. Louis, Missouri (United States); Feng, Felix Y. [Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan (United States); Abramowitz, Matthew C.; Pollack, Alan [Department of Radiation Oncology, University of Miami, Miami, Florida (United States); Anscher, Mitchell S. [Department of Radiation Oncology, Virginia Commonwealth University, Richmond, Virginia (United States); Moghanaki, Drew [Department of Radiation Oncology, Virginia Commonwealth University, Richmond, Virginia (United States); Hunter Holmes McGuire Veterans Administration Medical Center, Richmond, Virginia (United States); Den, Robert B. [Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, Pennsylvania (United States); Stephans, Kevin L. [Department of Radiation Oncology, Cleveland Clinic, Cleveland, Ohio (United States); Zietman, Anthony L. [Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts (United States); Lee, W. Robert [Department of Radiation Oncology, Duke Cancer Institute, Durham, North Carolina (United States); Kattan, Michael W. [Department of Quantitative Health Sciences, Cleveland Clinic, Cleveland, Ohio (United States); and others

    2016-12-01

    Purpose: To determine whether a dose-response relationship exists for salvage radiation therapy (RT) of biochemical failure after prostatectomy for prostate cancer. Methods and Materials: Individual data from 1108 patients who underwent salvage RT at 10 academic centers were pooled. The cohort was enriched for selection criteria more likely associated with tumor recurrence in the prostate bed (margin positive and pre-RT prostate-specific antigen [PSA] level of ≤2.0 ng/mL) and without the confounding of planned androgen suppression. The cumulative incidence of biochemical failure and distant metastasis over time was computed, and competing risks hazard regression models were used to investigate the association between potential predictors and these outcomes. The association of radiation dose with outcomes was the primary focus. Results: With a 65.2-month follow-up duration, the 5- and 10-year estimates of freedom from post-RT biochemical failure (PSA level >0.2 ng/mL and rising) was 63.5% and 49.8%, respectively, and the cumulative incidence of distant metastasis was 12.4% by 10 years. A Gleason score of ≥7, higher pre-RT PSA level, extraprostatic tumor extension, and seminal vesicle invasion were associated with worse biochemical failure and distant metastasis outcomes. A salvage radiation dose of ≥66.0 Gy was associated with a reduced cumulative incidence of biochemical failure, but not of distant metastasis. Conclusions: The use of salvage radiation doses of ≥66.0 Gy are supported by evidence presented in the present multicenter pooled analysis of individual patient data. The observational reporting method, limited sample size, few distant metastasis events, modest follow-up duration, and elective use of salvage therapy might have diminished the opportunity to identify an association between the radiation dose and this endpoint.

  2. Salvage Radiation Therapy Dose Response for Biochemical Failure of Prostate Cancer After Prostatectomy—A Multi-Institutional Observational Study

    International Nuclear Information System (INIS)

    Pisansky, Thomas M.; Agrawal, Shree; Hamstra, Daniel A.; Koontz, Bridget F.; Liauw, Stanley L.; Efstathiou, Jason A.; Michalski, Jeff M.; Feng, Felix Y.; Abramowitz, Matthew C.; Pollack, Alan; Anscher, Mitchell S.; Moghanaki, Drew; Den, Robert B.; Stephans, Kevin L.; Zietman, Anthony L.; Lee, W. Robert; Kattan, Michael W.

    2016-01-01

    Purpose: To determine whether a dose-response relationship exists for salvage radiation therapy (RT) of biochemical failure after prostatectomy for prostate cancer. Methods and Materials: Individual data from 1108 patients who underwent salvage RT at 10 academic centers were pooled. The cohort was enriched for selection criteria more likely associated with tumor recurrence in the prostate bed (margin positive and pre-RT prostate-specific antigen [PSA] level of ≤2.0 ng/mL) and without the confounding of planned androgen suppression. The cumulative incidence of biochemical failure and distant metastasis over time was computed, and competing risks hazard regression models were used to investigate the association between potential predictors and these outcomes. The association of radiation dose with outcomes was the primary focus. Results: With a 65.2-month follow-up duration, the 5- and 10-year estimates of freedom from post-RT biochemical failure (PSA level >0.2 ng/mL and rising) was 63.5% and 49.8%, respectively, and the cumulative incidence of distant metastasis was 12.4% by 10 years. A Gleason score of ≥7, higher pre-RT PSA level, extraprostatic tumor extension, and seminal vesicle invasion were associated with worse biochemical failure and distant metastasis outcomes. A salvage radiation dose of ≥66.0 Gy was associated with a reduced cumulative incidence of biochemical failure, but not of distant metastasis. Conclusions: The use of salvage radiation doses of ≥66.0 Gy are supported by evidence presented in the present multicenter pooled analysis of individual patient data. The observational reporting method, limited sample size, few distant metastasis events, modest follow-up duration, and elective use of salvage therapy might have diminished the opportunity to identify an association between the radiation dose and this endpoint.

  3. Biochemical and molecular changes in response to aluminium-stress in highbush blueberry (Vaccinium corymbosum L.).

    Science.gov (United States)

    Inostroza-Blancheteau, Claudio; Reyes-Díaz, Marjorie; Aquea, Felipe; Nunes-Nesi, Adriano; Alberdi, Miren; Arce-Johnson, Patricio

    2011-09-01

    Aluminium (Al) stress is an important factor limiting crop yields in acid soils. Despite this, very little is known about the mechanisms of resistance to this stress in woody plants. To understand the mechanisms of Al-toxicity and response in blueberries, we compared the impact of Al-stress in Al-resistant and Al-sensitive genotypes using Vaccinium corymbosum L. (Ericaceae) as a plant model. We investigated the effect of Al-stress on the physiological performance, oxidative metabolism and expression of genes that encode antioxidant enzymes in two V. corymbosum cultivars maintained hydroponically with AlCl(3) (0 and 100 μM). Microscopic analyses of Al-treated root tips suggested a higher degree of Al-induced morphological injury in Bluegold (sensitive genotype) compared to Brigitta (resistant genotype). Furthermore, the results indicated that Brigitta had a greater ability to control oxidative stress under Al-toxicity, as reflected by enhancement of several antioxidative and physiological properties (radical scavenging activity: RSA, superoxide dismutase: SOD and catalase: CAT; maximum quantum yield: Fv/Fm, effective quantum yield: ФPSII, electron transport rate: ETR and non-photochemical quenching: NPQ). Finally, we analyzed the expression of genes homologous to GST and ALDH, which were identified in a global expression analysis. In the resistant genotype, the expression of these genes in response to Al-stress was greater in leaves than in roots. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  4. Ultraviolet Radiation–Induced Cataract in Mice: The Effect of Age and the Potential Biochemical Mechanism

    Science.gov (United States)

    Zhang, Jie; Yan, Hong; Löfgren, Stefan; Tian, Xiaoli; Lou, Marjorie F.

    2012-01-01

    Purpose. To study the effect of age on the morphologic and biochemical alterations induced by in vivo exposure of ultraviolet radiation (UV). Methods. Young and old C57BL/6 mice were exposed to broadband UVB+UVA and euthanized after 2 days. Another batch of UV-exposed young mice was monitored for changes after 1, 2, 4, and 8 days. Age-matched nonexposed mice served as controls. Lens changes were documented in vivo by slit-lamp biomicroscopy and dark field microscopy photographs ex vivo. Lens homogenates were analyzed for glutathione (GSH) level, and the activities of thioredoxin (Trx), thioltransferase (TTase), and glyceraldehyde-3-phosphate dehydrogenase (G3PD). Glutathionylated lens proteins (PSSGs) were detected by immunoblotting using GSH antibody. Western blot analysis was also done for the expression levels of TTase and Trx. Results. Both age groups developed epithelial and superficial anterior subcapsular cataract at 2 days postexposure. The lens GSH level and G3PD activity were decreased, and PSSGs were elevated in both age groups, but more prominent in the older mice. TTase and Trx activity and protein expression were elevated only in the young mice. Interestingly, lens TTase and Trx in the young mice showed a transient increase, peaking at 2 days after UV exposure and returning to baseline at day 8, corroborated by lens transparency. Conclusions. The lenses of old mice were more susceptible to UV radiation–induced cataract. The upregulated TTase and Trx likely provided oxidation damage repair in the young mice. PMID:23010639

  5. Insights into thermal stress in Japanese quail (Coturnix coturnix): dynamics of immunoendocrine and biochemical responses during and after chronic exposure.

    Science.gov (United States)

    Nazar, Franco Nicolas; Videla, Emiliano Ariel; Fernandez, Maria Emilia; Labaque, Maria Carla; Marin, Raul Hector

    2018-05-01

    Avian require comfortable temperatures for optimal development and heat stress is a high concern in warm weather countries. We aimed to assess the dynamics of immunoendocrine and biochemical variables responses of birds exposed to a heat stressor applied during daylight hours, during the chronic stress and the recovery periods. We hypothesize that variables involved in the birds response will be differentially and gradually modified during those periods. Female quail (n = 210) were housed in six rearing boxes. At 29 days of age, the temperature in three boxes was increased from 24 to 34 °C during the light period throughout the nine days (Stress Treatment). The other three boxes remained at 24 °C and were used as controls. The subsequent 12 days were considered as recovery period. Different sets of 12 birds/treatment were blood-sampled at 29 (basal), 32, 35, 38 (stress), 41, 44, 47, and 50 (recovery) days of age, respectively. Immunoendocrine (corticosterone, lymphoproliferation, heterophil/lymphocyte ratio (H/L), and antibody response) and biochemical (glucose, total proteins, globulins, and albumin) variables were assessed. During stress, progressive corticosterone and H/L increments, and antibody titers and lymphoproliferation decreases were detected. No clear pattern of changes was found in biochemical variables. During recovery, while corticosterone and lymphoproliferation had recovered three days after the stressor ended, H/L and antibody responses required respectively nine and 12 days to recover to their basal levels, respectively. Findings suggest that immunity is already threatened when heat stress is sustained for three or more days. However, the system appears resilient, needing six to 12 days to recover to their basal responses.

  6. Sub-lethal toxicity of chlorpyrifos on Common carp, Cyprinus carpio (Linnaeus, 1758: Biochemical response

    Directory of Open Access Journals (Sweden)

    Mahdi Banaee

    2014-01-01

    Full Text Available Chlorpyrifos, an organophosphate pesticide, is widely used to control pests in agriculture farms and orchards of fruit trees. In this study, the fish were exposed to sub-lethal concentrations of chlorpyrifos which were determined based on numerical value of 96 h LC50. Blood was sampled after 10, 20 and 30 days and biochemical parameters including glucose, total protein, albumin, globulin, triglyceride and cholesterol levels, and aspartate aminotransferase (AST, alanine aminotransferase (ALT, lactate dehydrogenase (LDH, creatine kinase (CK, alkaline phosphatase (ALP and acetylcholinsetrase (AChE activities were measured. Behavioral changes in the fish were also recorded during the experiment. Unbalanced swimming, swimming in the surface water and hyperglycemia, increased blood triglyceride, and increased levels of AST, LDH and CK activities as well as decreased levels of AChE activity were important changes that were observed in the specimens exposed to chlorpyrifos during experimental periods. The most important alterations in the blood biochemical parameters were measured in the specimens exposed to 40 µg/L chlorpyrifos on the 20th and 30th day of the trial. In conclusion, results of the present study indicated that exposure to sub-lethal concentrations of chlorpyrifos as low as 40 µg/L may cause biochemical and behavioral changes in Cyprinus carpio.

  7. Evaluation of physiological and biochemical responses in different seasons in Surti buffaloes

    Directory of Open Access Journals (Sweden)

    Sandhya S. Chaudhary

    2015-06-01

    Full Text Available Aim: This study was conducted to evaluate the impact of hot dry, hot humid and comfortable season on physiological, hematological, biochemical, and oxidative stress parameters in Surti buffaloes. Materials and Methods: Ten lactating Surti buffaloes of similar physiological status were selected. Based on the temperature-humidity index (THI, their natural exposure to the environment was categorized as hot dry (THI1, hot humid (THI2 and moderate winter/comfort season (THI3. Blood/serum samples were collected and analyzed for physiological, hematological, biochemical, and oxidative stress parameters. The results were analyzed using standard statistical methods. Results: With increase in THI, significant rise in physiological parameters such as respiration rate (RR, hematological parameters such as red blood cell (RBC, hematocrit, hemoglobin (Hb and mean cell Hb concentration (MCHC, biochemical parameters such as alanine aminotransferase (ALT, Na, K, creatinine, blood urea nitrogen, Mn, Cu and Zn, hormones such as cortisol and oxidative stress parameters such as glutathione peroxidase (GPx, superoxide dismutase (SOD, lipid peroxide (LPO and total antioxidant status (TAS and significant decline in glucose, cholesterol and triiodothyronine (T3 was observed. Conclusion: It was concluded that THI is a sensitive indicator of heat stress and is impacted by ambient temperature more than the relative humidity in buffaloes. Higher THI is associated with significantly increased RR, total RBC count, Hb, hematocrit, MCHC, ALT, urea, sodium, creatinine, triiodothyronine, SOD, GPx, LPO and TAS and with significant decrease in glucose, cholesterol and triiodothyronine (T3.

  8. Proteomic Assessment of Biochemical Pathways That Are Critical to Nickel-Induced Toxicity Responses in Human Epithelial Cells

    Science.gov (United States)

    Understanding the mechanisms underlying toxicity initiated by nickel, a ubiquitous environmental contaminant and known human carcinogen is necessary for proper assessment of its risks to human and environment. Among a variety of toxic mechanisms, disruption of protein responses a...

  9. Biochemical mechanisms of pallidal deep brain stimulation in X-linked dystonia parkinsonism.

    Science.gov (United States)

    Tronnier, V M; Domingo, A; Moll, C K; Rasche, D; Mohr, C; Rosales, R; Capetian, P; Jamora, R D; Lee, L V; Münchau, A; Diesta, C C; Tadic, V; Klein, C; Brüggemann, N; Moser, A

    2015-08-01

    Invasive techniques such as in-vivo microdialysis provide the opportunity to directly assess neurotransmitter levels in subcortical brain areas. Five male Filipino patients (mean age 42.4, range 34-52 years) with severe X-linked dystonia-parkinsonism underwent bilateral implantation of deep brain leads into the internal part of the globus pallidus (GPi). Intraoperative microdialysis and measurement of gamma aminobutyric acid and glutamate was performed in the GPi in three patients and globus pallidus externus (GPe) in two patients at baseline for 25/30 min and during 25/30 min of high-frequency GPi stimulation. While the gamma-aminobutyric acid concentration increased in the GPi during high frequency stimulation (231 ± 102% in comparison to baseline values), a decrease was observed in the GPe (22 ± 10%). Extracellular glutamate levels largely remained unchanged. Pallidal microdialysis is a promising intraoperative monitoring tool to better understand pathophysiological implications in movement disorders and therapeutic mechanisms of high frequency stimulation. The increased inhibitory tone of GPi neurons and the subsequent thalamic inhibition could be one of the key mechanisms of GPi deep brain stimulation in dystonia. Such a mechanism may explain how competing (dystonic) movements can be suppressed in GPi/thalamic circuits in favour of desired motor programs. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Mechanism of ascorbic acid interference in biochemical tests that use peroxide and peroxidase to generate chromophore.

    Science.gov (United States)

    Martinello, Flávia; Luiz da Silva, Edson

    2006-11-01

    Ascorbic acid interferes negatively in peroxidase-based tests (Trinder method). However, the precise mechanism remains unclear for tests that use peroxide, a phenolic compound and 4-aminophenazone (4-AP). We determined the chemical mechanism of this interference, by examining the effects of ascorbic acid in the reaction kinetics of the production and reduction of the oxidized chromophore in urate, cholesterol, triglyceride and glucose tests. Reaction of ascorbic acid with the Trinder method constituents was also verified. Ascorbic acid interfered stoichiometrically with all tests studied. However, it had two distinct effects on the reaction rate. In the urate test, ascorbic acid decreased the chromophore formation with no change in its production kinetics. In contrast, in cholesterol, triglyceride and glucose tests, an increase in the lag phase of color development occurred. Of all the Trinder constituents, only peroxide reverted the interference. In addition, ascorbic acid did not interfere with oxidase activity nor reduce significantly the chromophore formed. Peroxide depletion was the predominant chemical mechanism of ascorbic acid interference in the Trinder method with phenolics and 4-AP. Distinctive effects of ascorbic acid on the reaction kinetics of urate, cholesterol, glucose and triglyceride might be due to the rate of peroxide production by oxidases.

  11. Germination and Biochemical Responses to Alkalinity Stress in Two Sesame Cultivars

    Directory of Open Access Journals (Sweden)

    Mahdavi Batool

    2016-06-01

    Full Text Available In this study, the effect of different alkaline concentrations (0, 10, 20, 30, 40, 50, 60 mM on germination and biochemical characteristics of the two sesame (Sesamum indicum L. cultivares (Dashtestan and GL-13 which are registered cultivars of Iran were investigated. The experiment was carried out in a completely randomized design with three replications. Results showed that, germination percentage, germination rate, shoot length and dry weight, root length and dry weight and K+ content decreased, whereas, malondialdehyde (MDA, proline, total soluble sugars and Na+ contents increased with increasing alkalinity stress. GL-13 cultivar had the least root and shoot length, proline and K+ content than Dashtestan.

  12. Structure-function relationships in soft tissue mechanics: Examining how the micro-scale architecture of biochemical constituents effects health

    Science.gov (United States)

    Schultz, David Sheldon

    Countless debilitating pathologies exhibit symptoms that result from altered mechanical behavior of soft tissue. Therefore, it is of clinical and economic importance to mechanically evaluate soft tissues and attribute degenerative changes to alterations in structural constituents. The studies presented here focus on the annulus fibrosus and the sclera. Failure in these tissues is common and catastrophic. The annulus fibrosus may fail, resulting in herniation and nerve impingement, or the disc may degenerate over time, resulting in reduced mobility and pain. Similarly, the sclera may degenerate over time with intraocular pressure spurring creep behavior that distends the eye beyond its ideal shape. This causes myopic vision and puts patients at risk of macular degeneration and retinal detachment. These two tissues share a common structural role as the outer wall of a pressure vessel. Also, they are made of strikingly similar constituents, primarily consisting of water, type I collagen, glycosaminoglycans and elastin. The microstructure of these tissues, however, is very different. The annulus fibrosus is representative of an anisotropic tissue. Its well-organized fibril structure was analyzed via polarization modulated second harmonic microscopy in order to characterize fibril architecture. Structurally relevant biochemical constituents were quantified with biochemical assays. Morphologically healthy annulus tended to have a more highly organized microstructure and tended to absorb more strain energy when subject to a tensile load cycle. Given the strong correlation between fibril organization and select mechanical properties, predictive models will likely benefit from a characterization of fibril continuity and orientation coherence. The sclera is representative of an isotropic tissue. Its less-organized fibril structure has evolved to sustain biaxial plane stress. In the sclera, collagen content and associated crosslinks were primary determinants of stiffness

  13. Effects of selected metal oxide nanoparticles on Artemia salina larvae: evaluation of mortality and behavioural and biochemical responses.

    Science.gov (United States)

    Gambardella, Chiara; Mesarič, Tina; Milivojević, Tamara; Sepčić, Kristina; Gallus, Lorenzo; Carbone, Serena; Ferrando, Sara; Faimali, Marco

    2014-07-01

    The aim was to investigate the toxicity of selected metal oxide nanoparticles (MO-NPs) on the brine shrimp Artemia salina, by evaluating mortality and behavioural and biochemical responses. Larvae were exposed to tin(IV) oxide (stannic oxide (SnO2)), cerium(IV) oxide (CeO2) and iron(II, III) oxide (Fe3O4) NPs for 48 h in seawater, with MO-NP suspensions from 0.01 to 1.0 mg/mL. Mortality and behavioural responses (swimming speed alteration) and enzymatic activities of cholinesterase, glutathione-S-transferase and catalase were evaluated. Although the MO-NPs did not induce any mortality of the larvae, they caused changes in behavioural and biochemical responses. Swimming speed significantly decreased in larvae exposed to CeO2 NPs. Cholinesterase and glutathione-S-transferase activities were significantly inhibited in larvae exposed to SnO2 NPs, whereas cholinesterase activity significantly increased after CeO2 NP and Fe3O4 NP exposure. Catalase activity significantly increased in larvae exposed to Fe3O4 NPs. In conclusion, swimming alteration and cholinesterase activity represent valid endpoints for MO-NP exposure, while glutathione-S-transferase and catalase activities appear to be NP-specific.

  14. Ultrastructural and biochemical characterization of mechanically adaptable collagenous structures in the edible sea urchin Paracentrotus lividus.

    Science.gov (United States)

    Barbaglio, Alice; Tricarico, Serena; Ribeiro, Ana R; Di Benedetto, Cristiano; Barbato, Marta; Dessì, Desirèe; Fugnanesi, Valeria; Magni, Stefano; Mosca, Fabio; Sugni, Michela; Bonasoro, Francesco; Barbosa, Mario A; Wilkie, Iain C; Candia Carnevali, M Daniela

    2015-06-01

    The viscoelastic properties of vertebrate connective tissues rarely undergo significant changes within physiological timescales, the only major exception being the reversible destiffening of the mammalian uterine cervix at the end of pregnancy. In contrast to this, the connective tissues of echinoderms (sea urchins, starfish, sea cucumbers, etc.) can switch reversibly between stiff and compliant conditions in timescales of around a second to minutes. Elucidation of the molecular mechanism underlying such mutability has implications for the zoological, ecological and evolutionary field. Important information could also arise for veterinary and biomedical sciences, particularly regarding the pathological plasticization or stiffening of connective tissue structures. In the present investigation we analyzed aspects of the ultrastructure and biochemistry in two representative models, the compass depressor ligament and the peristomial membrane of the edible sea urchin Paracentrotus lividus, compared in three different mechanical states. The results provide further evidence that the mechanical adaptability of echinoderm connective tissues does not necessarily imply changes in the collagen fibrils themselves. The higher glycosaminoglycan (GAG) content registered in the peristomial membrane with respect to the compass depressor ligament suggests a diverse role of these molecules in the two mutable collagenous tissues. The possible involvement of GAG in the mutability phenomenon will need further clarification. During the shift from a compliant to a standard condition, significant changes in GAG content were detected only in the compass depressor ligament. Similarities in terms of ultrastructure (collagen fibrillar assembling) and biochemistry (two alpha chains) were found between the two models and mammalian collagen. Nevertheless, differences in collagen immunoreactivity, alpha chain migration on SDS-PAGE and BLAST alignment highlighted the uniqueness of sea urchin

  15. Biochemical responses to dietary α-linolenic acid restriction proceed differently among brain regions in mice.

    Science.gov (United States)

    Miyazawa, Daisuke; Yasui, Yuko; Yamada, Kazuyo; Ohara, Naoki; Okuyama, Harumi

    2011-08-01

    Previously, we noted that the dietary restriction of α-linolenic acid (ALA, n-3) for 4 weeks after weaning brought about significant decreases in the BDNF content and p38 MAPK activity in the striatum of mice, but not in the other regions of the brain, compared with an ALA- and linoleic acid (LNA, n-6)-adequate diet. In this study, we examined whether a prolonged dietary manipulation induces biochemical changes in other regions of the brain as well. Mice were fed a safflower oil (SAF) diet (ALA-restricted, LNA-adequate) or a perilla oil (PER) diet (containing adequate amounts of ALA and LNA) for 8 weeks from weaning. The docosahexaenoic acid (DHA, 22:6n-3) contents and p38 MAPK activities in the cerebral cortex, striatum and hippocampus were significantly lower in the SAF group. The BDNF contents and protein kinase C (PKC) activities in the cerebral cortex as well as in the striatum, but not in the hippocampus, were significantly lower in the SAF group. These data indicate that the biochemical changes induced by the dietary restriction of ALA have a time lag in the striatum and cortex, suggesting that the signal is transmitted through decreased p38 MAPK activity and BDNF content and ultimately decreased PKC activity.

  16. Hemato-biochemical responses to packing in donkeys administered ascorbic acid during the harmattan season.

    Science.gov (United States)

    Olaifa, Folashade; Ayo, Joseph Olusegun; Ambali, Suleiman Folorunsho; Rekwot, Peter Ibrahim

    2015-02-01

    Experiments were performed to investigate the effect of ascorbic acid (AA) in reducing hemato-biochemical changes in pack donkeys during the cold-dry (harmattan) season. Six experimental donkeys administered orally AA (200 mg/kg) and six control donkeys not administered ascorbic acid were subjected to packing. Blood samples were collected from all donkeys for hematological and biochemical analyses. In the control donkeys, packed cell volume (PCV), erythrocyte count and hemoglobin concentration (Hb) decreased significantly (Pdonkeys, there was no significant difference between the pre- and post-packing values of PCV, erythrocyte count and Hb. In the control donkeys, the neutrophil and neutrophil:lymphocyte ratio increased significantly (Pdonkeys, the pre- and post-packing values were not significantly different. The eosinophil count increased significantly (Pdonkeys post packing. In conclusion, packing exerted significant adverse effects on the hematological parameters ameliorated by AA administration. AA may modulate neutrophilia and induce a considerable alteration of erythroid markers in donkeys subjected to packing during the harmattan season.

  17. Effect of Low-Dose Irradiation on Biochemical and Immunological Responses

    International Nuclear Information System (INIS)

    Shabon, M.H.; Sayed, Z.S.; El-Gawish, M.A.; Mahdy, E.M.E.; Shosha, W.Gh.

    2008-01-01

    Lipid peroxidation (Malondialdehyde), Lactate dehydrogenase, Iron Concentration, IL-6 and IL-1β concentration were determined in Seventy-two male albino rats divided in two main groups. The first one was subdivided into 7 subgroups; control and 6 irradiated subgroups with 0.1, 0.2, 0.3, 0.5, 0.7, and 1 Gy single dose of gamma radiation. The other was subdivided into 4 irradiated subgroups with fractionated dose .-radiation of 0.3, 0.7 and 1 Gy with 0.1 Gy per day and the last subgroup 1 Gy with 0.2 Gy daily. All animals were sacrificed after three days of the last irradiation dose. The results revealed that all biochemical parameters were increased in rats exposed to fractionated more than single doses. In conclusion, the data of this study highlight on the beneficial and stimulatory effect of low ionizing radiation doses (≥ 1Gy) whether single or fractionated on some biochemical and immunological parameters. These findings may be fruitful for those who undergo radiotherapy as well as the dose-effect relationship

  18. Molecular Simulation and Biochemical Studies Support an Elevator-type Transport Mechanism in EIIC.

    Science.gov (United States)

    Lee, Jumin; Ren, Zhenning; Zhou, Ming; Im, Wonpil

    2017-06-06

    Enzyme IIC (EIIC) is a membrane-embedded sugar transport protein that is part of the phosphoenolpyruvate-dependent phosphotransferases. Crystal structures of two members of the glucose EIIC superfamily, bcChbC in the inward-facing conformation and bcMalT in the outward-facing conformation, were previously solved. Comparing the two structures led us to the hypothesis that sugar translocation could be achieved by an elevator-type transport mechanism in which a transport domain binds to the substrate and, through rigid body motions, transports it across the membrane. To test this hypothesis and to obtain more accurate descriptions of alternate conformations of the two proteins, we first performed collective variable-based steered molecular dynamics (CVSMD) simulations starting with the two crystal structures embedded in model lipid bilayers, and steered their transport domain toward their own alternative conformation. Our simulations show that large rigid-body motions of the transport domain (55° in rotation and 8 Å in translation) lead to access of the substrate binding site to the alternate side of the membrane. H-bonding interactions between the sugar and the protein are intact, although the side chains of the binding-site residues were not restrained in the simulation. Pairs of residues in bcMalT that are far apart in the crystal structure become close to each other in the simulated model. Some of these pairs can be cross-linked by a mercury ion when mutated to cysteines, providing further support for the CVSMD-generated model. In addition, bcMalT binds to maltose with similar affinities before and after the cross-linking, suggesting that the binding site is preserved after the conformational change. In combination, these results support an elevator-type transport mechanism in EIIC. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  19. Tension cost correlates with mechanical and biochemical parameters in different myocardial contractility conditions

    Directory of Open Access Journals (Sweden)

    Cleci M. Moreira

    2012-01-01

    Full Text Available OBJECTIVES: Tension cost, the ratio of myosin ATPase activity to tension, reflects the economy of tension development in the myocardium. To evaluate the mechanical advantage represented by the tension cost, we studied papillary muscle contractility and the activity of myosin ATPase in the left ventricles in normal and pathophysiological conditions. METHODS: Experimental protocols were performed using rat left ventricles from: (1 streptozotocin-induced diabetic and control Wistar rats; (2 N-nitro-L-arginine methyl ester (L-NAME hypertensive and untreated Wistar rats; (3 deoxycorticosterone acetate (DOCA salt-treated, nephrectomized and salt- and DOCA-treated rats; (4 spontaneous hypertensive rats (SHR and Wistar Kyoto (WKY rats; (5 rats with myocardial infarction and shamoperated rats. The isometric force, tetanic tension, and the activity of myosin ATPase were measured. RESULTS: The results obtained from infarcted, diabetic, and deoxycorticosterone acetate-salt-treated rats showed reductions in twitch and tetanic tension compared to the control and sham-operated groups. Twitch and tetanic tension increased in the N-nitro-L-arginine methyl ester-treated rats compared with the Wistar rats. Myosin ATPase activity was depressed in the infarcted, diabetic, and deoxycorticosterone acetate salt-treated rats compared with control and sham-operated rats and was increased in N-nitro-L-arginine methyl ester-treated rats. These parameters did not differ between SHR and WKY rats. In the studied conditions (e.g., post-myocardial infarction, deoxycorticosterone acetate salt-induced hypertension, chronic N-nitro-L-arginine methyl ester treatment, and streptozotocin-induced diabetes, a positive correlation between force or plateau tetanic tension and myosin ATPase activity was observed. CONCLUSION: Our results suggest that the myocardium adapts to force generation by increasing or reducing the tension cost to maintain myocardial contractility with a better

  20. The Mechanical Response of Multifunctional Battery Systems

    Science.gov (United States)

    Tsutsui, Waterloo

    The current state of the art in the field of the mechanical behavior of electric vehicle (EV) battery cells is limited to quasi-static analysis. The lack of published data in the dynamic mechanical behavior of EV battery cells blinds engineers and scientists with the uncertainty of what to expect when EVs experience such unexpected events as intrusions to their battery systems. To this end, the recent occurrences of several EVs catching fire after hitting road debris even make this topic timelier. In order to ensure the safety of EV battery, it is critical to develop quantitative understanding of battery cell mechanical behavior under dynamic compressive loadings. Specifically, the research focuses on the dynamic mechanical loading effect on the standard "18650" cylindrical lithium-ion battery cells. In the study, the force-displacement and voltage-displacement behavior of the battery cells were analyzed experimentally at two strain rates, two state-of-charges, and two unit-cell configurations. The results revealed the strain rate sensitivity of their mechanical responses with the solid sacrificial elements. When the hollow sacrificial cells are used, on the other hand, effect was negligible up to the point of densification strength. Also, the high state-of-charge appeared to increase the stiffness of the battery cells. The research also revealed the effectiveness of the sacrificial elements on the mechanical behavior of a unit cell that consists of one battery cell and six sacrificial elements. The use of the sacrificial elements resulted in the delayed initiation of electric short circuit. Based on the analysis of battery behavior at the cell level, granular battery assembly, a battery pack, was designed and fabricated. The behavior of the granular battery assembly was analyzed both quasistatically and dynamically. Building on the results of the research, various research plans were proposed. Through conducting the research, we sought to answer the following

  1. THERMO-MECHANICAL PULPING AS A PRETREATMENT FOR AGRICULTURAL BIOMASS FOR BIOCHEMICAL CONVERSION

    Directory of Open Access Journals (Sweden)

    Ronalds W. Gonzalez

    2011-03-01

    Full Text Available The use of thermo-mechanical pulping (TMP, an existing and well known technology in the pulp and paper industry, is proposed as a potential pretreatment pathway of agriculture biomass for monomeric sugar production in preparation for further fermentation into alcohol species. Three agricultural biomass types, corn stover, wheat straw, and sweet sorghum bagasse, were pretreated in a TMP unit under two temperature conditions, 160 ºC and 170 ºC, and hydrolyzed using cellulase at 5, 10, and 20 FPU/g OD biomass. Wheat straw biomass was further pretreated at different conditions including: i soaking with acetic acid, ii longer steaming residence time (15 and 30 min, and iii refined at lower disk gap (0.0508 and 0.1524 mm. Preliminary results showed that carbohydrate conversion increased from 25% to 40% when the TMP temperature was increased from 160 to 170 ºC. Carbohydrate conversion was relatively similar for the three biomasses under the same pretreatment conditions and enzyme loading. Acetic acid soaking and refining at a reduce disk gap increases carbohydrate conversion. Further studies within this technological field to identify optimum process and TMP conditions for pretreatment are suggested.

  2. Cross-resistance, inheritance and biochemical mechanisms of imidacloprid resistance in B-biotype Bemisia tabaci.

    Science.gov (United States)

    Wang, Zhenyu; Yao, Mingde; Wu, Yidong

    2009-11-01

    The B-type Bemisia tabaci (Gennadius) has become established in many regions in China, and neonicotinoids are extensively used to control this pest. Imidacloprid resistance in a laboratory-selected strain of B-type B. tabaci was characterised in order to provide the basis for recommending resistance management tactics. The NJ-Imi strain of B-type B. tabaci was selected from the NJ strain with imidacloprid for 30 generations. The NJ-Imi strain exhibited 490-fold resistance to imidacloprid, high levels of cross-resistance to three other neonicotinoids, low levels of cross-resistance to monosultap, cartap and spinosad, but no cross-resistance to abamectin and cypermethrin. Imidacloprid resistance in the NJ-Imi strain was autosomal and semi-dominant. It is shown that enhanced detoxification mediated by cytochrome-P450-dependent monooxygenases contributes to imidacloprid resistance to some extent in the NJ-Imi strain. Results from synergist bioassays and cross-resistance patterns indicated that target-site insensitivity may be involved in imidacloprid resistance in the NJ-Imi strain of B. tabaci. Although oxidative detoxification mediated by P450 monooxygenases is involved in imidacloprid resistance in the NJ-Imi strain of B-type B. tabaci, target-site modification as an additional resistance mechanism cannot be ruled out. Considering the high risk of cross-resistance, neonicotinoids should be regarded as a single group when implementing an insecticide rotation scheme in B. tabaci control. (c) 2009 Society of Chemical Industry.

  3. Behavioural and biochemical stress responses of Palinurus elephas after exposure to boat noise pollution in tank.

    Science.gov (United States)

    Filiciotto, Francesco; Vazzana, Mirella; Celi, Monica; Maccarrone, Vincenzo; Ceraulo, Maria; Buffa, Gaspare; Di Stefano, Vincenzo; Mazzola, Salvatore; Buscaino, Giuseppa

    2014-07-15

    This study examined the effects of boat noise on the behavioural and biochemical parameters of the Mediterranean spiny lobster (Palinurus elephas). The experiment was conducted in a tank equipped with a video and audio recording system. 18 experimental trials, assigned to boat noise and control conditions, were performed using lobsters in single and group of 4 specimens. After a 1h habituation period, we audio- and video-recorded the lobsters for 1h. During the experimental phase, the animals assigned to the boat groups were exposed to boat noise pollution (a random sequence of boat noises). Exposure to the noise produced significant variations in locomotor behaviours and haemolymphatic parameters. Our results indicate that the lobsters exposed to boat noises increased significantly their locomotor activities and haemolymphatic bioindicator of stressful conditions such as glucose, total proteins, Hsp70 expression and THC when tested both singly and in groups. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Computational mechanics of nonlinear response of shells

    Energy Technology Data Exchange (ETDEWEB)

    Kraetzig, W.B. (Bochum Univ. (Germany, F.R.). Inst. fuer Statik und Dynamik); Onate, E. (Universidad Politecnica de Cataluna, Barcelona (Spain). Escuela Tecnica Superior de Ingenieros de Caminos) (eds.)

    1990-01-01

    Shell structures and their components are utilized in a wide spectrum of engineering fields reaching from space and aircraft structures, pipes and pressure vessels over liquid storage tanks, off-shore installations, cooling towers and domes, to bodyworks of motor vehicles. Of continuously increasing importance is their nonlinear behavior, in which large deformations and large rotations are involved as well as nonlinear material properties. The book starts with a survey about nonlinear shell theories from the rigorous point of view of continuum mechanics, this starting point being unavoidable for modern computational concepts. There follows a series of papers on nonlinear, especially unstable shell responses, which draw computational connections to well established tools in the field of static and dynamic stability of systems. Several papers are then concerned with new finite element derivations for nonlinear shell problems, and finally a series of authors contribute to specific applications opening a small window of the above mentioned wide spectrum. (orig./HP) With 159 figs.

  5. Computational mechanics of nonlinear response of shells

    International Nuclear Information System (INIS)

    Kraetzig, W.B.; Onate, E.

    1990-01-01

    Shell structures and their components are utilized in a wide spectrum of engineering fields reaching from space and aircraft structures, pipes and pressure vessels over liquid storage tanks, off-shore installations, cooling towers and domes, to bodyworks of motor vehicles. Of continuously increasing importance is their nonlinear behavior, in which large deformations and large rotations are involved as well as nonlinear material properties. The book starts with a survey about nonlinear shell theories from the rigorous point of view of continuum mechanics, this starting point being unavoidable for modern computational concepts. There follows a series of papers on nonlinear, especially unstable shell responses, which draw computational connections to well established tools in the field of static and dynamic stability of systems. Several papers are then concerned with new finite element derivations for nonlinear shell problems, and finally a series of authors contribute to specific applications opening a small window of the above mentioned wide spectrum. (orig./HP) With 159 figs

  6. Physiological and biochemical stress responses in grassland species are influenced by both early-season ozone exposure and interspecific competition

    Energy Technology Data Exchange (ETDEWEB)

    Scebba, Francesca [Department of Agricultural Chemistry and Biotechnology, University of Pisa, Via del Borghetto 80, 56124 Pisa (Italy); Canaccini, Francesca [Department of Agricultural Chemistry and Biotechnology, University of Pisa, Via del Borghetto 80, 56124 Pisa (Italy); Castagna, Antonella [Department of Agricultural Chemistry and Biotechnology, University of Pisa, Via del Borghetto 80, 56124 Pisa (Italy); Bender, Juergen [Institute of Agroecology, FAL, Bundesallee 50, 38116 Braunschweig (Germany); Weigel, Hans-Joachim [Institute of Agroecology, FAL, Bundesallee 50, 38116 Braunschweig (Germany); Ranieri, Annamaria [Department of Agricultural Chemistry and Biotechnology, University of Pisa, Via del Borghetto 80, 56124 Pisa (Italy)]. E-mail: aranieri@agr.unipi.it

    2006-08-15

    The effects of two-year early season ozone exposure on physiological and biochemical stress response were investigated in model plant communities. Achillea millefolium and Veronica chamaedrys target plants were grown in monocultures and in mixed cultures with Poa pratensis (phytometer) and exposed in open-top chambers over two years for five weeks to charcoal-filtered (CF) air plus 25 nl l{sup -1} O{sub 3} (control) and non-filtered (NF) air plus 50 nl l{sup -1} O{sub 3}. Significant O{sub 3} effects were detected in different physiological and biochemical parameters, evidencing interspecific differences in metabolic stress responses and a strong influence of the competition factor. O{sub 3} induced strong oxidative effects in Achillea irrespective to the different growth modality. Veronica showed less O{sub 3}-induced effects in monoculture than when grown in competition with the phytometer. Poa exhibited a different behaviour against O{sub 3} depending on the species in competition, showing an overall higher sensitivity to O{sub 3} when in mixture with Achillea. - The competition between species modulates the ozone effect in a short-term.

  7. Variation in the biochemical response to l-thyroxine therapy and relationship with peripheral thyroid hormone conversion efficiency

    Science.gov (United States)

    Midgley, John E M; Larisch, Rolf; Dietrich, Johannes W; Hoermann, Rudolf

    2015-01-01

    Several influences modulate biochemical responses to a weight-adjusted levothyroxine (l-T4) replacement dose. We conducted a secondary analysis of the relationship of l-T4 dose to TSH and free T3 (FT3), using a prospective observational study examining the interacting equilibria between thyroid parameters. We studied 353 patients on steady-state l-T4 replacement for autoimmune thyroiditis or after surgery for malignant or benign thyroid disease. Peripheral deiodinase activity was calculated as a measure of T4–T3 conversion efficiency. In euthyroid subjects, the median l-T4 dose was 1.3 μg/kg per day (interquartile range (IQR) 0.94,1.60). The dose was independently associated with gender, age, aetiology and deiodinase activity (all P29 nmol/s revealed an increasing FT3–FT4 dissociation; the poorest converters showed the lowest FT3 levels in spite of the highest dose and circulating FT4 (P<0.001). An l-T4-related FT3–TSH disjoint was also apparent; some patients with fully suppressed TSH failed to raise FT3 above the median level. These findings imply that thyroid hormone conversion efficiency is an important modulator of the biochemical response to l-T4; FT3 measurement may be an additional treatment target; and l-T4 dose escalation may have limited success to raise FT3 appropriately in some cases. PMID:26335522

  8. Physiological and biochemical stress responses in grassland species are influenced by both early-season ozone exposure and interspecific competition

    International Nuclear Information System (INIS)

    Scebba, Francesca; Canaccini, Francesca; Castagna, Antonella; Bender, Juergen; Weigel, Hans-Joachim; Ranieri, Annamaria

    2006-01-01

    The effects of two-year early season ozone exposure on physiological and biochemical stress response were investigated in model plant communities. Achillea millefolium and Veronica chamaedrys target plants were grown in monocultures and in mixed cultures with Poa pratensis (phytometer) and exposed in open-top chambers over two years for five weeks to charcoal-filtered (CF) air plus 25 nl l -1 O 3 (control) and non-filtered (NF) air plus 50 nl l -1 O 3 . Significant O 3 effects were detected in different physiological and biochemical parameters, evidencing interspecific differences in metabolic stress responses and a strong influence of the competition factor. O 3 induced strong oxidative effects in Achillea irrespective to the different growth modality. Veronica showed less O 3 -induced effects in monoculture than when grown in competition with the phytometer. Poa exhibited a different behaviour against O 3 depending on the species in competition, showing an overall higher sensitivity to O 3 when in mixture with Achillea. - The competition between species modulates the ozone effect in a short-term

  9. Physiological and biochemical stress responses in grassland species are influenced by both early-season ozone exposure and interspecific competition.

    Science.gov (United States)

    Scebba, Francesca; Canaccini, Francesca; Castagna, Antonella; Bender, Jürgen; Weigel, Hans-Joachim; Ranieri, Annamaria

    2006-08-01

    The effects of two-year early season ozone exposure on physiological and biochemical stress response were investigated in model plant communities. Achillea millefolium and Veronica chamaedrys target plants were grown in monocultures and in mixed cultures with Poa pratensis (phytometer) and exposed in open-top chambers over two years for five weeks to charcoal-filtered (CF) air plus 25 nl l(-1) O3 (control) and non-filtered (NF) air plus 50 nl l(-1) O3. Significant O3 effects were detected in different physiological and biochemical parameters, evidencing interspecific differences in metabolic stress responses and a strong influence of the competition factor. O3 induced strong oxidative effects in Achillea irrespective to the different growth modality. Veronica showed less O3-induced effects in monoculture than when grown in competition with the phytometer. Poa exhibited a different behaviour against O3 depending on the species in competition, showing an overall higher sensitivity to O3 when in mixture with Achillea.

  10. Histopathologic and biochemical responses in Arctic marine bivalve molluscs exposed to experimentally spilled oil

    Energy Technology Data Exchange (ETDEWEB)

    Neff, J.M.; Hillman, R.E.; Carr, R.S.; Buhl, R.L.; Lahey, J.I.

    1987-01-01

    Following two experimental spills of chemically dispersed and undispersed crude oil in shallow bays on the northwest coast of Baffin Island bivalve molluscs accumulated significant amounts of petroleum hydrocarbons in bay receiving dispersed oil and in those receiving crude oil alone. Specimens of Mya truncata and Macoma calcarea for histopathologic examination were collected immediately before, immediately after and one year after the experimental oil spills. Immediately after there was increased gill and digestive tract necrosis in Mya from the chemically dispersed oil. After one year a few clams had granulocytomas throughout the tissues. Three clams receiving oil alone collected one year after the spill had invasive neoplasias. There were few lesions in Macoma immediatelly after or one year after the spill; animals had a high incidence of vacuolization of the digestive tubule epithelium. The incidence of parasitism and hemocytic infiltration also was higher in Maccoma. Clams Mya truncata were collected for biochemical analysis before, after and two weeks after the simulated oil spills. Concentations in the clam tissues of glucose, glycogen, trehalose, total lipid, and free amino acids were measured; free amino acids in adductor muscles were the most useful indices of pollutant stress. The results of the biochemical analyses indicate that Mya were not severely stressed by either dispersed oil or oil alone. After two weeks, clams from the dispersed oil bays were nearly normal, while those from the bay receiving oil alone appeared stressed. These results seem to corroborate results that the acute effects of dispersed oil are greater than those of undispersed oil, but effects of undispersed oil on infaunal molluscs develop more slowly and persist longer than those from dispersed oil. 43 refs., 2 figs., 6 tabs.

  11. Growth, physiological and biochemical responses of Camptotheca acuminata seedlings to different light environments

    Directory of Open Access Journals (Sweden)

    Xiaohua eMa

    2015-05-01

    Full Text Available Light intensity critically affects plant growth. Camptotheca acuminata is a light-demanding species, but its optimum light intensity is not known. To investigate the response of C. acuminata seedlings to different light intensities, specifically 100% irradiance (PAR, 1500±30 μmol m-2 s-1, 75% irradiance, 50% irradiance, and 25% irradiance, a pot experiment was conducted to analyze growth parameters, photosynthetic pigments, gas exchange, chlorophyll fluorescence, stomatal structure and density, chloroplast ultrastructure, ROS concentrations, and antioxidant activities. Plants grown under 75% irradiance had significantly higher total biomass, seedling height, ground diameter, photosynthetic capacity, photochemical efficiency and photochemical quenching than those grown under 100%, 25%, and 50% irradiance. Malondialdehyde (MDA content, relative electrolyte conductivity (REC, superoxide anion (O2.- production, and peroxide (H2O2 content were lower under 75% irradiance. The less pronounced plant growth under 100% and 25% irradiance was associated with a decline in photosynthetic capacity and photochemical efficiency, with increases in the activity of specific antioxidants (i.e., superoxidase dismutase, peroxidase, and catalase, and with increases in MDA content and REC. Lower levels of irradiance were associated with significantly higher concentrations of chlorophyll (Chl a and b and lower Chla/b ratios. Stomatal development was most pronounced under 75% irradiance. Modification of chloroplast development was found to be an important mechanism of responding to different light intensities in C. acuminata. The results indicated that 75% irradiance is optimal for the growth of C. acuminata seedlings. The improvement in C. acuminata growth under 75% irradiance was attributable to increased photosynthesis, less accumulation of ROS, and the maintenance of the stomatal and chloroplast structure.

  12. Biochemical mechanism of phytoremediation process of lead and cadmium pollution with Mucor circinelloides and Trichoderma asperellum.

    Science.gov (United States)

    Zhang, Xu; Li, Xinxin; Yang, Huanhuan; Cui, Zhaojie

    2018-08-15

    This study focused on the bioremediation mechanisms of lead (0, 100, 500, 1000 mg kg -1 ) and cadmium (0,10,50,100 mg kg -1 ) contaminated soil using two indigenous fungi selected from mine tailings as the phytostimulation of Arabidopsis thaliana. The two fungal strains were characterized as Mucor circinelloides (MC) and Trichoderma asperellum (TA) by internal transcribed spacer sequencing at the genetic levels. Our research revealed that Cadmium was more toxic to plant growth than lead and meanwhile, MC and TA can strengthen A. thaliana tolerance to cadmium and lead with 40.19-117.50% higher root length and 58.31-154.14% shoot fresh weight of plant compared to non-inoculation. In this study, TA exhibited a higher potential to the inactivation of cadmium; however, MC was more effective in lead passivation. There was a direct correlation between the type of fungi, heavy metal content, heavy metal type and oxidative damage in plant. Both lead and cadmium induced oxidative damage as indicated by increased superoxide dismutase and catalase activities, while the antioxidant levels were significantly higher in fungal inoculated plants compared with those non-inoculated. The analysis of soil enzyme activity and taxonomic richness uncovered that the dominant structures of soil microbial community were altered by exogenous microbial agents. MC enhanced higher microbial diversity and soil enzyme activity than TA. The two indigenous fungi lessened several limiting factors with respect to phytoremediation technology, such as soil chemistry, contamination level and transformation, and metal solubility. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. Combined Effects of Surface Morphology and Mechanical Straining Magnitudes on the Differentiation of Mesenchymal Stem Cells without Using Biochemical Reagents

    Directory of Open Access Journals (Sweden)

    Ji-Yeon Jang

    2011-01-01

    Full Text Available Existing studies examining the control of mesenchymal stem cell (MSC differentiation into desired cell types have used a variety of biochemical reagents such as growth factors despite possible side effects. Recently, the roles of biomimetic microphysical environments have drawn much attention in this field. We studied MSC differentiation and changes in gene expression in relation to osteoblast-like cell and smooth muscle-like cell type resulting from various microphysical environments, including differing magnitudes of tensile strain and substrate geometries for 8 days. In addition, we also investigated the residual effects of those selected microphysical environment factors on the differentiation by ceasing those factors for 3 days. The results of this study showed the effects of the strain magnitudes and surface geometries. However, the genes which are related to the same cell type showed different responses depending on the changes in strain magnitude and surface geometry. Also, different responses were observed three days after the straining was stopped. These data confirm that controlling microenvironments so that they mimic those in vivo contributes to the differentiation of MSCs into specific cell types. And duration of straining engagement was also found to play important roles along with surface geometry.

  14. Protein Tyrosine Nitration: Biochemical Mechanisms and Structural Basis of its Functional Effects

    Science.gov (United States)

    Radi, Rafael

    2012-01-01

    CONSPECTUS The nitration of protein tyrosine residues to 3-nitrotyrosine represents an oxidative postranslational modification that unveils the disruption of nitric oxide (•NO) signaling and metabolism towards pro-oxidant processes. Indeed, excess levels of reactive oxygen species in the presence of •NO or •NO-derived metabolites lead to the formation of nitrating species such as peroxynitrite. Thus, protein 3-nitrotyrosine has been established as a biomarker of cell, tissue and systemic “nitroxidative stress”. Moreover, tyrosine nitration modifies key properties of the amino acid (i.e. phenol group pKa, redox potential, hydrophobicity and volume). Thus, the incorporation of a nitro group (−NO2) to protein tyrosines can lead to profound structural and functional changes, some of which contribute to altered cell and tissue homeostasis. In this Account, I describe our current efforts to define 1) biologically-relevant mechanisms of protein tyrosine nitration and 2) how this modification can cause changes in protein structure and function at the molecular level. First, the relevance of protein tyrosine nitration via free radical-mediated reactions (in both peroxynitrite-dependent or independent pathways) involving the intermediacy of tyrosyl radical (Tyr•) will be underscored. This feature of the nitration process becomes critical as Tyr• can take variable fates, including the formation of 3-nitrotyrosine. Fast kinetic techniques, electron paramagnetic resonance (EPR) studies, bioanalytical methods and kinetic simulations have altogether assisted to characterize and fingerprint the reactions of tyrosine with peroxynitrite and one-electron oxidants and its further evolution to 3-nitrotyrosine. Recent findings show that nitration of tyrosines in proteins associated to biomembranes is linked to the lipid peroxidation process via a connecting reaction that involves the one-electron oxidation of tyrosine by lipid peroxyl radicals (LOO•). Second

  15. The mechanisms for social and environmentally responsible agricultural land use

    OpenAIRE

    Ye. Mishenin; I. Yarova

    2015-01-01

    This paper deals with arguments that the most effective mechanism for greening use of land resources is to increase the level of social and environmental responsibility. The mechanisms for social and environmentally responsible agricultural land use are formed.

  16. Hormonal, Biochemical and Haematological Changes in Response to Acute Hyperthermia in Rabbits

    International Nuclear Information System (INIS)

    Zahran, N.A.R.M.

    2004-01-01

    Today, hyperthermia plays a significant role in the evidence-based on treatment of cancer patients. Such promising endeavor is due to the fact that neoplastic cells are more heat sensitive than normal cells. the prospect of using hyperthermia alone to treat cancer tumours is appealing because hyperthermia is a physical treatment and so would have fewer side effects than chemotherapy or radiotherapy and, it could be used in combination with these therapeutic approaches. much more consistent evidence has been obtained experimentally, and continuing clinical interest has been encouraged by confirmation that, at relatively low temperature (37-41.5 C), heat enhances cell growth and may well enhance also the growth and proliferation of tumours, while above 45 C heat begins to damage both normal and malignant cells in both animal and human. So, the goal is to achieve a selective temperature elevation between 42-45 C at the tumour site while maintaining healthy tissue temperatures in a physiological save range.This study was undertaken to investigate the effect of acute whole body hyperthermia , (WBH) (rectal temperature 43 c) on biochemical , hormonal and haematological changes in normal healthy local strain (baladi) rabbits.The thermal late effects (recovery) at 24 hr-post whole body hyperthermia was also undertaken , in the attempt to evaluate the degree of safety , when hyperthermia is applied in the clinic for treating cancer and other diseases

  17. Biochemical and hematological responses of the banded knife fish Gymnotus carapo (Linnaeus, 1758 exposed to environmental hypoxia

    Directory of Open Access Journals (Sweden)

    MORAES G.

    2002-01-01

    Full Text Available Oxygen of tropical freshwater environments fluctuates drastically. Eutrophic lakes and ponds of warm waters frequently reach very low oxygen concentrations. This is the most common habitat of the banded knife fish "tuvira" Gymnotus carapo. This electric fish is reported to present bimodal breathing to cope with low environmental oxygen. Biochemical responses can be also observed in fishes facing hypoxia but none were studied in tuvira. In the present study, haematological and metabolic changes were investigated in two groups of fish exposed to hypoxia for 1 and 3 hours. Haematocrit, red blood cells and haemoglobin concentration indicated erythrocyte release from hematopoietic organs and swelling of red blood cells. Glycogen, glucose, lactate, pyruvate, and amino acids were quantified in liver, kidney and white muscle. The metabolic profile of G. carapo to cope with hypoxia suggested liver gluconeogenesis probably supported by proteolysis. The kidney and liver presented the same biochemical trend suggesting similar metabolic role for both organs. Glucogenolysis followed by glucose fermentation and protein mobilisation was observed in the white muscle. The air breathing behaviour of tuvira works in parallel with metabolism to prevent damages from hypoxia. Metabolic adjustments are observed when the air taking is avoided.

  18. Training signaling pathway maps to biochemical data with constrained fuzzy logic: quantitative analysis of liver cell responses to inflammatory stimuli.

    Directory of Open Access Journals (Sweden)

    Melody K Morris

    2011-03-01

    Full Text Available Predictive understanding of cell signaling network operation based on general prior knowledge but consistent with empirical data in a specific environmental context is a current challenge in computational biology. Recent work has demonstrated that Boolean logic can be used to create context-specific network models by training proteomic pathway maps to dedicated biochemical data; however, the Boolean formalism is restricted to characterizing protein species as either fully active or inactive. To advance beyond this limitation, we propose a novel form of fuzzy logic sufficiently flexible to model quantitative data but also sufficiently simple to efficiently construct models by training pathway maps on dedicated experimental measurements. Our new approach, termed constrained fuzzy logic (cFL, converts a prior knowledge network (obtained from literature or interactome databases into a computable model that describes graded values of protein activation across multiple pathways. We train a cFL-converted network to experimental data describing hepatocytic protein activation by inflammatory cytokines and demonstrate the application of the resultant trained models for three important purposes: (a generating experimentally testable biological hypotheses concerning pathway crosstalk, (b establishing capability for quantitative prediction of protein activity, and (c prediction and understanding of the cytokine release phenotypic response. Our methodology systematically and quantitatively trains a protein pathway map summarizing curated literature to context-specific biochemical data. This process generates a computable model yielding successful prediction of new test data and offering biological insight into complex datasets that are difficult to fully analyze by intuition alone.

  19. Biochemical and hematological responses of the banded knife fish Gymnotus carapo (Linnaeus, 1758 exposed to environmental hypoxia

    Directory of Open Access Journals (Sweden)

    G. MORAES

    Full Text Available Oxygen of tropical freshwater environments fluctuates drastically. Eutrophic lakes and ponds of warm waters frequently reach very low oxygen concentrations. This is the most common habitat of the banded knife fish "tuvira" Gymnotus carapo. This electric fish is reported to present bimodal breathing to cope with low environmental oxygen. Biochemical responses can be also observed in fishes facing hypoxia but none were studied in tuvira. In the present study, haematological and metabolic changes were investigated in two groups of fish exposed to hypoxia for 1 and 3 hours. Haematocrit, red blood cells and haemoglobin concentration indicated erythrocyte release from hematopoietic organs and swelling of red blood cells. Glycogen, glucose, lactate, pyruvate, and amino acids were quantified in liver, kidney and white muscle. The metabolic profile of G. carapo to cope with hypoxia suggested liver gluconeogenesis probably supported by proteolysis. The kidney and liver presented the same biochemical trend suggesting similar metabolic role for both organs. Glucogenolysis followed by glucose fermentation and protein mobilisation was observed in the white muscle. The air breathing behaviour of tuvira works in parallel with metabolism to prevent damages from hypoxia. Metabolic adjustments are observed when the air taking is avoided.

  20. Biochemical biomarker responses to pollution in selected sentinel organisms across the Eastern Mediterranean and the Black Sea.

    Science.gov (United States)

    Tsangaris, Catherine; Moschino, Vanessa; Strogyloudi, Evangelia; Coatu, Valentina; Ramšak, Andreja; Alhaija, Rana Abu; Carvalho, Susana; Felline, Serena; Kosyan, Alisa; Lazarou, Yiota; Hatzianestis, Ioannis; Oros, Andra; Tiganus, Daniela

    2016-01-01

    Pollution effects were assessed by means of biochemical biomarkers (catalase, glutathione S-transferase and acetylcholinesterase activities, and metallothioneins content) in five species at selected coastal sites across the Eastern Mediterranean and the Black Sea. The mussel Mytilus galloprovincialis, a well-established sentinel species, was investigated in the Adriatic Sea, Aegean Sea, and Black Sea. The mussel Brachidontes pharaonis and the striped red mullet Mullus surmuletus were used in the Levantine Sea where M. galloprovincialis is not present. The white seabream Diplodus sargus sargus and the gastropod Rapana venosa were additionally sampled in the Adriatic and the Black Sea, respectively. Mussels showed catalase, glutathione S-transferase, and acetylcholinesterase responses to pollution in most geographical areas while the response of metallothioneins was restricted to a few sites. R. venosa showed marked responses of catalase and metallothioneins whereas both fish species did not generally exhibit variations in biomarker values among sites. The approach based on the reference deviation concept using the "Integrated Biological Responses version 2" index was useful for the interpretation of overall biomarker responses.

  1. Biochemical biomarker responses to pollution in selected sentinel organisms across the Eastern Mediterranean and the Black Sea

    KAUST Repository

    Tsangaris, Catherine

    2015-09-23

    Pollution effects were assessed by means of biochemical biomarkers (catalase, glutathione S-transferase and acetylcholinesterase activities, and metallothioneins content) in five species at selected coastal sites across the Eastern Mediterranean and the Black Sea. The mussel Mytilus galloprovincialis, a well-established sentinel species, was investigated in the Adriatic Sea, Aegean Sea, and Black Sea. The mussel Brachidontes pharaonis and the striped red mullet Mullus surmuletus were used in the Levantine Sea where M. galloprovincialis is not present. The white seabream Diplodus sargus sargus and the gastropod Rapana venosa were additionally sampled in the Adriatic and the Black Sea, respectively. Mussels showed catalase, glutathione S-transferase, and acetylcholinesterase responses to pollution in most geographical areas while the response of metallothioneins was restricted to a few sites. R. venosa showed marked responses of catalase and metallothioneins whereas both fish species did not generally exhibit variations in biomarker values among sites. The approach based on the reference deviation concept using the “Integrated Biological Responses version 2” index was useful for the interpretation of overall biomarker responses.

  2. Biochemical biomarker responses to pollution in selected sentinel organisms across the Eastern Mediterranean and the Black Sea

    KAUST Repository

    Tsangaris, Catherine; Moschino, Vanessa; Strogyloudi, Evangelia; Coatu, Valentina; Ramšak, Andreja; Abu Alhaija, Rana; Carvalho, Susana; Felline, Serena; Kosyan, Alisa; Lazarou, Yiota; Hatzianestis, Ioannis; Oros, Andra; Tiganus, Daniela

    2015-01-01

    Pollution effects were assessed by means of biochemical biomarkers (catalase, glutathione S-transferase and acetylcholinesterase activities, and metallothioneins content) in five species at selected coastal sites across the Eastern Mediterranean and the Black Sea. The mussel Mytilus galloprovincialis, a well-established sentinel species, was investigated in the Adriatic Sea, Aegean Sea, and Black Sea. The mussel Brachidontes pharaonis and the striped red mullet Mullus surmuletus were used in the Levantine Sea where M. galloprovincialis is not present. The white seabream Diplodus sargus sargus and the gastropod Rapana venosa were additionally sampled in the Adriatic and the Black Sea, respectively. Mussels showed catalase, glutathione S-transferase, and acetylcholinesterase responses to pollution in most geographical areas while the response of metallothioneins was restricted to a few sites. R. venosa showed marked responses of catalase and metallothioneins whereas both fish species did not generally exhibit variations in biomarker values among sites. The approach based on the reference deviation concept using the “Integrated Biological Responses version 2” index was useful for the interpretation of overall biomarker responses.

  3. The Neuromuscular, Biochemical, and Endocrine Responses to a Single-Session Vs. Double-Session Training Day in Elite Athletes.

    Science.gov (United States)

    Johnston, Michael J; Cook, Christian J; Drake, David; Costley, Lisa; Johnston, Julie P; Kilduff, Liam P

    2016-11-01

    Johnston, MJ, Cook, CJ, Drake, D, Costley, L, Johnston, JP, and Kilduff, LP. The neuromuscular, biochemical, and endocrine responses to a single-session vs. double-session training day in elite athletes. J Strength Cond Res 30(11): 3098-3106, 2016-The aim of this study was to compare the acute neuromuscular, biochemical, and endocrine responses of a training day consisting of a speed session only with performing a speed-and-weights training session on the same day. Fifteen men who were academy-level rugby players completed 2 protocols in a randomized order. The speed-only protocol involved performing 6 maximal effort repetitions of 50-m running sprints with 5 minutes of recovery between each sprint, whereas the speed-and-weights protocol involved the same sprinting session but was followed 2 hours later by a lower-body weights session consisting of 4 sets of 5 backsquats and Romanian deadlift at 85% one repetition maximum. Testosterone, cortisol, creatine kinase, lactate, and perceived muscle soreness were determined immediately before, immediately after, 2 hours after, and 24 hours after both the protocols. Peak power, relative peak power, jump height, and average rate of force development were determined from a countermovement jump (CMJ) at the same time points. After 24-hours, muscle soreness was significantly higher after the speed-and-weights protocol compared with the speed-only protocol (effect size η = 0.253, F = 4.750, p ≤ 0.05). There was no significant difference between any of the CMJ variables at any of the posttraining time points. Likewise, creatine kinase, testosterone, and cortisol were unaffected by the addition of a weight-training session. These data indicate that the addition of a weight-training session 2 hours after a speed session, whereas increasing the perception of fatigue the next day does not result in a difference in endocrine response or in neuromuscular capability.

  4. Agro-physiological and biochemical responses of faba bean (Vicia faba L. var. 'minor' genotypes to water deficit stress

    Directory of Open Access Journals (Sweden)

    Abid, G.

    2017-01-01

    Full Text Available Description of the subject. Drought is one of the major abiotic factors affecting growth and productivity of plants by imposing certain morphological, physiological and biochemical changes at different growth stages. Objectives. The objective of this work is to study key morphological, physiological and biochemical responses of faba bean (Vicia faba L. var. 'minor' to soil water deficit stress and to assess the contribution of genetic factors in improving faba bean tolerance to water deficit. Method. Plants of 11 faba bean cultivars were grown in the greenhouse and subjected to three levels of water deficit (90, 50 and 30% of field capacity [FC] in a simple randomized design for 20 days. Water deficit effects on plant growth, relative water content (RWC, gas exchange, chlorophyll a (Chla and chlorophyll b (Chlb content, osmoprotectant accumulations (such as proline and soluble sugars, antioxidant enzyme activities and grain yield were determined. Results. Soil water deficit stress reduced growth and affected physiological parameters, especially antioxidant enzyme activities. Water deficit also increased proline, soluble sugars and protein contents. The studied cultivars significantly differed in their responses to water deficit stress. Photosynthetic parameters were less affected in the 'Hara' cultivar. Furthermore, this cultivar produced the highest value of grain yield at 30% FC, and showed higher antioxidant enzyme activities (CAT, GPX and APX, osmoprotectant accumulations, Chlb and RWC. The 'Hara' cultivar was found to be more tolerant to water deficit stress than the other cultivars. Conclusions. Our methodology can be used for assessing the response of faba bean genetic resources to soil water deficit. The identified tolerant cultivar can be utilized as a source for water stress tolerance in faba bean breeding programs aimed at improving drought tolerance.

  5. Multivariate patterns of biochemical responses of Pinus ponderosa trees at field plots in the San Bernardino Mountains, southern California.

    Science.gov (United States)

    Tausz, M; Bytnerowicz, A; Arbaugh, M J; Wonisch, A; Grill, D

    2001-03-01

    Most environmental stress conditions promote the production of potentially toxic active oxygen species in plant cells. Plants respond with changes in their antioxidant and photoprotective systems. Antioxidants and pigments have been widely used to measure these responses. Because trees are exposed to multiple man-made and natural stresses, their responses are not reflected by changes in single stress markers, but by complex biochemical changes. To evaluate such response patterns, explorative multivariate statistics have been used. In the present study, 12 biochemical variables (chloroplast pigments, state of the xanthophyll cycle, alpha-tocopherol, ascorbate and dehydroascorbate, glutathione and oxidized glutathione) were measured in previous-year needles of field-grown Pinus ponderosa Dougl. ex Laws. The trees were sampled in two consecutive years in the San Bernardino Mountains in southern California, where a pollution gradient is overlaid by gradients in natural stresses (drought, altitude). To explore irradiance effects, needle samples were taken directly in the field (sun exposed) and from detached, dark-adapted branches. A principal component analysis on this data set (n = 80) resulted in four components (Components 1-4) that explained 67% of the variance in the original data. Component 1 was positively loaded by concentrations of alpha-tocopherol, total ascorbate and xanthophyll cycle pools, as well as by the proportion of de-epoxides in the xanthophyll cycle. It was negatively loaded by the proportion of dehydroascorbate in the ascorbate pool. Component 2 was negatively loaded by chlorophyll concentrations, and positively loaded by the ratios of lutein and beta-carotene to chlorophyll and by the de-epoxidation state of the xanthophyll cycle. Component 3 was negatively loaded by GSH concentrations and positively loaded by the proportions of GSSG and tocopherol concentrations. Component 4 was positively loaded by neoxanthin and negatively loaded by beta

  6. Changes in blood glucose and insulin responses to intravenous glucose tolerance tests and blood biochemical values in adult female Japanese black bears (Ursus thibetanus japonicus).

    Science.gov (United States)

    Kamine, Akari; Shimozuru, Michito; Shibata, Haruki; Tsubota, Toshio

    2012-02-01

    The metabolic mechanisms to circannual changes in body mass of bears have yet to be elucidated. We hypothesized that the Japanese black bear (Ursus thibetanus japonicus) has a metabolic mechanism that efficiently converts carbohydrates into body fat by altering insulin sensitivity during the hyperphagic stage before hibernation. To test this hypothesis, we investigated the changes in blood biochemical values and glucose and insulin responses to intravenous glucose tolerance tests (IVGTT) during the active season (August, early and late November). Four, adult, female bears (5-17 years old) were anesthetized with 6 mg/kg TZ (tiletamine HCl and zolazepam HCl) in combination with 0.1 mg/kg acepromazine maleate. The bears were injected intravenously with glucose (0.5 g/kg of body mass), and blood samples were obtained before, at, and intermittently after glucose injection. The basal triglycerides concentration decreased significantly with increase in body mass from August to November. Basal levels of plasma glucose and serum insulin concentrations were not significantly different among groups. The results of IVGTT demonstrated the increased peripheral insulin sensitivity and glucose tolerance in early November. In contrast, peripheral insulin resistance was indicated by the exaggerated insulin response in late November. Our findings suggest that bears shift their glucose and lipid metabolism from the stage of normal activity to the hyperphagic stage in which they show lipogenic-predominant metabolism and accelerate glucose uptake by increasing the peripheral insulin sensitivity.

  7. Insights into some physiological and biochemical responses of Populus alba and Populus nigra to lead contamination

    Directory of Open Access Journals (Sweden)

    Elham Etemadi

    2016-12-01

    Full Text Available The effects of lead (PbCl2 increment, under hydroponic conditions up to 15, 45 and 90 mg/l in presence of EDTA, on some physiological and biochemical traits of one year old saplings of P. nigra and P. alba, were investigated. Six weeks after establishing in target concentration, the amount of lead, biomass, water, soluble sugars, proline, electrolyte leakage, malondialdehyde, and pigments were assessed in different organs. The results revealed that with increasing lead concentration in culture medium in the studied period, the amount of lead in saplings increased, but no effect was observed on their biomass. In both species the magnitude of lead accumulation in root was higher than leaf. P. nigra had more water and less soluble sugars than P. alba. The concentration of soluble sugars increased up to 1.5 times with lead increment in both species, but proline content increased only in P. nigra up to 2 times and remained constant in P. alba. Elevation of electrolyte leakage in saplings of P. nigra in excess lead treatment was accompanied by no change in malondialdehyde content. Concentrations of pigments were not affected by lead, and only the ratio of chlorophyll a to b in P. nigra increased in high lead concentration. In general both species accumulated high extent of lead in their organs. But it seems that P. nigra, at least with respect of enhancing plasma membrane permeability, increasing proline and the ratio of chlorophyll a to b, was more sensitive to this toxic metal in compare with P. alba.

  8. The Cytoskeleton and Force Response Mechanisms

    Science.gov (United States)

    Allen, Philip Goodwin

    2003-01-01

    The long term aim of this project was to define the mechanisms by which cells sense and respond to the physical forces experienced at 1g and missing in microgravity. Identification and characterization of the elements of the cells force response mechanism could provide pathways and molecules to serve as targets for pharmacological intervention to mitigate the pathologic effects of microgravity. Mechanical forces experienced by the organism can be transmitted to cells through molecules that allow cells to bind to the extracellular matrix and through other types of molecules which bind cells to each other. These molecules are coupled in large complexes of proteins to structural elements such as the actin cytoskeleton that give the cell the ability to sense, resist and respond to force. Application of small forces to tissue culture cells causes local elevation of intracellular calcium through stretch activated ion channels, increased tyrosine phosphorylation and a restructuring of the actin cytoskeleton. Using collagen coated iron oxide beads and strong magnets, we can apply different levels of force to cells in culture. We have found that force application causes the cells to polymerize actin at the site of mechanical deformation and unexpectedly, to depolymerize actin across the rest of the cell. Observations of GFP- actin expressing cells demonstrate that actin accumulates at the site of deformation within the first five minutes of force application and is maintained for many tens of minutes after force is removed. Consistent with the reinforcement of the cytoskeletal structures underlying the integrin-bead interaction, force also alters the motion of bound magnetic beads. This effect is seen following the removal of the magnetic field, and is only partially ablated by actin disruption with cytochalsin B. While actin is polymerizing locally at the site of force application, force also stimulates a global reduction in actin filament content within the cells. We have

  9. Growth and biochemical responses of juvenile cod to acute and chronic exposure to production water from the Hibernia oil rig

    Energy Technology Data Exchange (ETDEWEB)

    Burridge, L.; Lyons, M.; Blair, T.; Haya, K.; Lee, K. [Fisheries and Oceans Canada, Dartmouth, NS (Canada). Maritimes Region, Ocean Sciences Division

    2007-07-01

    A study was conducted in which the chemical characteristics of production water collected from the Hibernia oil production platform in June, 2006 were determined. Bioassays were also performed on juvenile cod in order to determine acute responses after 48 hour exposure to concentrations of production water ranging from 0.06 to 5 per cent. Of the 70 juvenile cod that were exposed continuously for 45 days to 0.05 per cent Hibernia production water, 8 were sacrificed and liver, gill muscle and plasma was collected for biochemical analysis at day 3, 14, 28 and 45 during the exposure. Length and weight data were also collected to compare growth rates of exposed fish with unexposed fish. Results did not reveal any difference in growth rate in cod exposed for 45 days to Hibernia production water compared to those held in untreated water under the same conditions. Tissues for mixed function oxygenase (MFO) induction are undergoing analysis.

  10. Some physiological and biochemical responses to copper of detached cucumber (cucumis sativus l.) cotyledons pre-floated in salicylic acid

    International Nuclear Information System (INIS)

    Gulengul, S.C.; Yildiz, T.; Deveci, D.

    2017-01-01

    Salicylic acid (SA) is a growth regulator that promotes growth of plants under stress and non-stress conditions. In the present investigation we studied the role of salicylic acid in copper induced physiological and biochemical changes and the possible induction of oxidative stress in detached cucumber cotyledons. Detached cotyledons of young cucumber seedlings were floated in 150 ppm SA. Then, the responses of these cotyledons to different concentrations (0, 10, 20 ve 50 mM) of copper (CuCl2. H2O) were investigated. In detached cucumber cotyledons exposed to increasing Cu concentrations, the fresh weight accumulation and the photosynthetic pigment content were decreased. Furthermore, the levels of some important parameters regarding oxidative stress in the cotyledons, namely lipid peroxidation (MDA), glutathione (GSH) and proline were increased. In the detached cucumber cotyledons pre-floation process with SA alleviated the negative effect of Cu ( 20 mM and 50 mM Cu) on growth parameters. (author)

  11. MECHANISMS OF IMMUNE RESPONSES IN CNIDARIANS

    Directory of Open Access Journals (Sweden)

    Iván Darío Ocampo

    2015-05-01

    Full Text Available The immune system maintains the integrity of the organisms through a complex network of molecules, cells, and tissues that recognize internal or external antigenic substances to neutralized and eliminate them. The mechanisms of immune response have evolved in a modular fashion, where members of a given module interact strongly among them, but weakly with members of other modules, providing robustness and evolvability to the immune system. Ancestral modules are the raw material for the generation of new modules through evolution. Thus, the study of immune systems in basal metazoans such as cnidarians seeks to determine the basic tool kit from which the metazoans started to construct their immune systems. In addition, understanding the immune mechanisms in cnidarians contributes to decipher the etiopathology of coral diseases of infectious nature that are affecting coral reefs worldwide. RESUMEN El sistema inmune mantiene la integridad de los organismos vivos por medio de una red compleja de moléculas, células y tejidos que reconocen sustancias antigénicas internas o externas para neutralizarlas y eliminarlas. Los mecanismos de respuesta inmune han evolucionado de una manera modular, en donde miembros de un módulo dado interactúan fuertemente entre sí, pero débilmente con componentes de otros módulos, otorgando así robustez y potencial evolutivo al sistema inmune. Módulos ancestrales representan el material básico para la generación de nuevos módulos durante el proceso evolutivo. Así, el estudio de sistemas inmunes en metazoarios basales como los cnidarios busca determinar cuales son los módulos ancestrales a partir de los cuales se constituyen los sistemas inmunes de animales derivados. Adicionalmente, el entendimiento de los mecanismos de respuesta inmune en cnidarios eventualmente contribuirá a descifrar la etiopatología de las enfermedades de corales de carácter infeccioso que está afectando los corales en el mundo.

  12. Biochemical response of hybrid black poplar tissue culture (Populus × canadensis) on water stress.

    Science.gov (United States)

    Popović, B M; Štajner, D; Ždero-Pavlović, R; Tari, I; Csiszár, J; Gallé, Á; Poór, P; Galović, V; Trudić, B; Orlović, S

    2017-05-01

    In this study, poplar tissue culture (hybrid black poplar, M1 genotype) was subjected to water stress influenced by polyethyleneglycol 6000 (100 and 200 mOsm PEG 6000). The aim of the research was to investigate the biochemical response of poplar tissue culture on water deficit regime. Antioxidant status was analyzed including antioxidant enzymes, superoxide-dismutase (SOD), catalase (CAT), guiacol-peroxidase (GPx), glutathione-peroxidase (GSH-Px), glutathione-reductase, reduced glutathione, total phenol content, Ferric reducing antioxidant power and DPPH radical antioxidant power. Polyphenol oxidase and phenylalanine-ammonium-lyase were determined as enzymatic markers of polyphenol metabolism. Among oxidative stress parameters lipid peroxidation, carbonyl-proteins, hydrogen-peroxide, reactive oxygen species, nitric-oxide and peroxynitrite were determined. Proline, proline-dehydrogenase and glycinebetaine were measured also as parameters of water stress. Cell viability is finally determined as a biological indicator of osmotic stress. It was found that water stress induced reactive oxygen and nitrogen species and lipid peroxidation in leaves of hybrid black poplar and reduced cell viability. Antioxidant enzymes including SOD, GPx, CAT and GSH-Px were induced but total phenol content and antioxidant capacity were reduced by PEG 6000 mediated osmotic stress. The highest biochemical response and adaptive reaction was the increase of proline and GB especially by 200 mOsm PEG. While long term molecular analysis will be necessary to fully address the poplar potentials for water stress adaptation, our results on hybrid black poplar suggest that glycine-betaine, proline and PDH enzyme might be the most important markers of poplar on water stress and that future efforts should be focused on these markers and strategies to enhance their concentration in poplar.

  13. RESPUESTAS BIOQUÍMICAS EN LA LOMBRIZ DE TIERRA Eisenia andrei EXPUESTA A CADMIO | BIOCHEMICAL RESPONSES IN THE EARTHWORM Eisenia andrei EXPOSED TO CADMIUM

    Directory of Open Access Journals (Sweden)

    Juanny Hernández

    2016-08-01

    Full Text Available The cadmium (Cd bioaccumulation on metallothioneins (MT, total proteins (TP, sulfhydryl groups (-SH and tiobarbituric acid reaction substances (TBARS levels were determined in medium-anterior (MA and medium-posterior (MP corporal regions of the earthworm Eisenia andrei. The organisms were exposed to concentrations of 0; 2.50 and 10.30 mg Cd/kg of substrate, during 7, 15 and 21 days. Cd levels increased in the exposed organisms proportionally to the concentrations and duration of exposure; this metal was mostly accumulated to the MP region. Cd-treatment caused increases in the MT, -SH and TP levels in both corporal regions, with the highest values in MA. TBARS concentrations increased in doses-days relationship, showed the highest levels in MA; this increment is probably associated to the Cd-bioacumulation that can affect the mechanisms of defenses against reactive oxygen species. MT concentrations in exposed organisms suggest their relevance as effective response of molecular defense against Cd toxicity. These corporal biochemical responses associated to Cd-uptake form part of the molecular defense system that avoids interferences on the reproductive tissue (clitellum, allowing to accumulate the highest quantity of Cd in the MP region. Eisenia andrei has a differential capacity along its body to modulate adjustments of molecular responses, which could allow the tolerance and effectiveness of survival in Cd-polluted soils.

  14. Tumor localization and biochemical response to cure in tumor-induced osteomalacia.

    Science.gov (United States)

    Chong, William H; Andreopoulou, Panagiota; Chen, Clara C; Reynolds, James; Guthrie, Lori; Kelly, Marilyn; Gafni, Rachel I; Bhattacharyya, Nisan; Boyce, Alison M; El-Maouche, Diala; Crespo, Diana Ovejero; Sherry, Richard; Chang, Richard; Wodajo, Felasfa M; Kletter, Gad B; Dwyer, Andrew; Collins, Michael T

    2013-06-01

    Tumor-induced osteomalacia (TIO) is a rare disorder of phosphate wasting due to fibroblast growth factor-23 (FGF23)-secreting tumors that are often difficult to locate. We present a systematic approach to tumor localization and postoperative biochemical changes in 31 subjects with TIO. All had failed either initial localization, or relocalization (in case of recurrence or metastases) at outside institutions. Functional imaging with ¹¹¹Indium-octreotide with single photon emission computed tomography (octreo-SPECT or SPECT/CT), and ¹⁸fluorodeoxyglucose positron emission tomography/CT (FDG-PET/CT) were performed, followed by anatomic imaging (CT, MRI). Selective venous sampling (VS) was performed when multiple suspicious lesions were identified or high surgical risk was a concern. Tumors were localized in 20 of 31 subjects (64.5%). Nineteen of 20 subjects underwent octreo-SPECT imaging, and 16 of 20 FDG-PET/CT imaging. Eighteen of 19 (95%) were positive on octreo-SPECT, and 14 of 16 (88%) on FDG-PET/CT. Twelve of 20 subjects underwent VS; 10 of 12 (83%) were positive. Sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) were as follows: sensitivity = 0.95, specificity = 0.64, PPV = 0.82, and NPV = 0.88 for octreo-SPECT; sensitivity = 0.88, specificity = 0.36, PPV = 0.62, and NPV = 0.50 for FDG-PET/CT. Fifteen subjects had their tumor resected at our institution, and were disease-free at last follow-up. Serum phosphorus returned to normal in all subjects within 1 to 5 days. In 10 subjects who were followed for at least 7 days postoperatively, intact FGF23 (iFGF23) decreased to near undetectable within hours and returned to the normal range within 5 days. C-terminal FGF23 (cFGF23) decreased immediately but remained elevated, yielding a markedly elevated cFGF23/iFGF23 ratio. Serum 1,25-dihydroxyvitamin D₃ (1,25D) rose and exceeded the normal range. In this systematic approach to tumor

  15. The physiological and biochemical mechanism of nitrate-nitrogen removal by water hyacinth from agriculture eutrophic wastewater

    Directory of Open Access Journals (Sweden)

    WU Wenwei

    Full Text Available ABSTRACT Large amount of agriculturl wastewater containing high level nitrate-nitrogen (NO3 --N is produced from modern intensive agricultural production management due to the excessive use of chemical fertilizers and livestock scale farming. The hydroponic experiment of water hyacinth was conducted for analyzing the content of NO3 --N, soluble sugar content, N-transported the amino acid content and growth change in water hyacinth to explore its purification ability to remove NO3 --N from agriculture eutrophic wastewater and physiological and biochemical mechanism of this plant to remove NO3 --N. The results showed that the water hyacinth could effectively utilize the NO3 --N from agriculture eutrophic wastewater. Compared with the control, the contents of NO3 -change to NO3 --N in the root, leaf petiole and leaf blade of water hyacinth after treatment in the wastewater for a week was significantly higher than that in the control plants treated with tap water, and also the biomass of water hyacinth increased significantly, indicating that the accumulation of biomass due to the rapid growth of water hyacinth could transfer some amount of NO3 --N.13C-NMR analysis confirmed that water hyacinth would convert the part nitrogen absorbed from agriculture eutrophic wastewater to ammonia nitrogen, which increased the content of aspartic acid and glutamic acid, decreased the content of soluble sugar, sucrose and fructose and the content of N-storaged asparagine and glutamine, lead to enhance the synthesis of plant amino acids and promote the growth of plants. These results indicate that the nitrate in agriculture eutrophic wastewater can be utilized by water hyacinth as nitrogen nutrition, and can promote plant growth by using soluble sugar and amide to synthesis amino acids and protein.

  16. Lead (Pb) Toxicity; Physio-Biochemical Mechanisms, Grain Yield, Quality, and Pb Distribution Proportions in Scented Rice.

    Science.gov (United States)

    Ashraf, Umair; Kanu, Adam S; Deng, Quanquan; Mo, Zhaowen; Pan, Shenggang; Tian, Hua; Tang, Xiangru

    2017-01-01

    Lead (Pb) caused interruptions with normal plant metabolism, crop yield losses and quality issues are of great concern. This study assessed the physio-biochemical responses, yield and grain quality traits and Pb distribution proportions in three different fragrant rice cultivars i.e., Meixiangzhan-2, Xinagyaxiangzhan and Basmati-385. Plants were exposed to 400, 800, and 1,200 ppm of Pb while pots without Pb were taken as control (0 ppm). Our results showed that Pb toxicity significantly ( P production of hydrogen peroxide (H 2 O 2 ), malanodialdehyde (MDA) and leaves leachates; while such effects were more apparent in Xinagyaxiangzhan than other two rice cultivars. Pb stress differentially affected the production protein, proline and soluble sugars; however the production rates were higher at heading stage (HS) than maturity stage (MS). Furthermore, Pb stress altered superoxide dismutase (SOD), peroxidases (POD), catalases (CAT) and ascorbate peroxidases (APX) activities and glutathione (GSH) and oxidized glutathione (GSSG) production in all rice cultivars at both HS and MS. All Pb levels reduced the yield and yield components of all rice cultivars; nonetheless such reductions were observed highest in Xinagyaxiangzhan (69.12%) than Meixiangzhan-2 (58.05%) and Basmati-385 (46.27%) and resulted in grain quality deterioration. Significant and positive correlations among rice yields with productive tillers/pot and grains per panicle while negative with sterility percentage were also observed. In addition, all rice cultivars readily taken up the Pb contents from soil to roots and transported upward in different proportions with maximum in roots followed by stemss, leaves, ears and grains. Higher proportions of Pb contents in above ground plant parts in Xinagyaxiangzhan possibly lead to maximum losses in this cultivar than other two cultivars; while less damage in Basmati-385 might be related to strong anti-oxidative defense system and lower proportions of Pb contents in

  17. What is the impact of inflammation on the critical interplay between mechanical signaling and biochemical changes in tendon matrix?

    DEFF Research Database (Denmark)

    Kjaer, Michael; Bayer, Monika L; Eliasson, Pernilla

    2013-01-01

    Mechanical loading can influence tendon collagen homeostasis in animal models, while the dynamics of the human adult tendon core tissue are more debatable. Currently available data indicate that human tendon adaptation to loading may happen primarily in the outer tendon region. A role of inflamma......Mechanical loading can influence tendon collagen homeostasis in animal models, while the dynamics of the human adult tendon core tissue are more debatable. Currently available data indicate that human tendon adaptation to loading may happen primarily in the outer tendon region. A role...... of inflammation in this peritendinous adaptation is supported by a rise in inflammatory mediators in the peritendinous area after physiological mechanical loading in humans. This plays a role in the exercise-induced rise in tendon blood flow and peritendinous collagen synthesis. Although inflammatory activity can...... activate proteolytic pathways in tendon, mechanical loading can protect against matrix degradation. Acute tendon injury displays an early inflammatory response that seems to be lowered when mechanical loading is applied during regeneration of tendon. Chronically overloaded tendons (tendinopathy) do neither...

  18. Physiological and biochemical responses of two keystone polychaete species: Diopatra neapolitana and Hediste diversicolor to Multi-walled carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    De Marchi, Lucia [Departamento de Biologia & CESAM, University of Aveiro, 3810-193 (Portugal); Center for Mechanical Technology and Automation (TEMA), University of Aveiro, 3810-193 (Portugal); Neto, Victor [Center for Mechanical Technology and Automation (TEMA), University of Aveiro, 3810-193 (Portugal); Pretti, Carlo [Department of Veterinary Sciences, University of Pisa, San Piero a Grado, PI 56122 (Italy); Figueira, Etelvina [Departamento de Biologia & CESAM, University of Aveiro, 3810-193 (Portugal); Chiellini, Federica [Department of Chemistry and Industrial Chemistry, University of Pisa, Pisa 56126 (Italy); Soares, Amadeu M.V.M. [Departamento de Biologia & CESAM, University of Aveiro, 3810-193 (Portugal); Freitas, Rosa, E-mail: rosafreitas@ua.pt [Departamento de Biologia & CESAM, University of Aveiro, 3810-193 (Portugal)

    2017-04-15

    Multi-walled carbon nanotubes (MWCNTs) are one of the most important carbon Nanomaterials (NMs). The production and use of these carbon NMs is increasing rapidly and, therefore, the need to assess their presence in the environment and associated risks has become increasingly important. However, limited literature is available regarding the impacts induced in aquatic organisms by this pollutant, namely in invertebrate species. Diopatra neapolitana and Hediste diversicolor are keystone polychaete species inhabiting estuaries and shallow water bodies intertidal mudflats, frequently used to evaluate the impact of environmental disturbances in these systems. To our knowledge, no information is available on physiological and biochemical alterations on these two species due to MWCNTs exposure. Thus, the present study aimed to assess the toxic effects of different MWCNTs concentrations (0.01; 0.10 and 1.00 mg/L) in both species physiological (regenerative capacity and respiration rate) and biochemical (energy reserves, metabolic activities, oxidative stress related biomarkers and neurotoxicity markers) performance, after 28 days of exposure. The results obtained revealed that exposure to MWCNTs induced negative effects on the regenerative capacity of D. neapolitana. Additionally, higher MWCNTs concentrations induced increased respiration rates in D. neapolitana. MWCNTs altered energy-related responses, with higher values of electron transport system activity, glycogen and protein concentrations in both polychaetes exposed to this contaminant. Furthermore, when exposed to MWCNTs both species showed oxidative stress with higher lipid peroxidation, lower ratio between reduced and oxidized glutathione, and higher activity of antioxidant (catalase and superoxide dismutase) and biotransformation (glutathione-S-transferases) enzymes in exposed organisms. - Highlights: • MWCNTs induced negative effects on the regenerative capacity of Diopatra neapolitana. • Diopatra

  19. Ecophysiological and biochemical strategies of response to ozone in Mediterranean evergreen broadleaf species

    Science.gov (United States)

    Nali, C.; Paoletti, E.; Marabottini, R.; Della Rocca, G.; Lorenzini, G.; Paolacci, A. R.; Ciaffi, M.; Badiani, M.

    Three Mediterranean shrubs, Phillyrea latifolia L. (phillyrea), Arbutus unedo L. (strawberry tree), and Laurus nobilis L. (laurel), differing in their morphological and ecological response to water shortage, were exposed for 90 days to 0 or 110 ppb of ozone (O 3), 5 h each day. This yielded an accumulated exposure over of a threshold of 40 ppb (AOT40) of 31.5 ppm h over the 3 months experiment. These species showed differing responses to O 3: laurel and phillyrea developed foliar chlorotic mottles on the adaxial surface of leaves, whereas strawberry tree leaves showed reddish interveinal stipple-like necrotic lesions. In all cases, however, foliar injury did not exceed 8% of the sampled leaf area. At the end of the exposure period, O 3-induced stomatal limitation caused significant decreases of net photosynthesis in strawberry tree and laurel, but not in phillyrea. The relative water content of the leaves was significantly decreased by O 3, especially in laurel and strawberry tree, suggesting the occurrence of drought stress. Electrical conductivity of leachates from foliar discs increased in response to the treatment, much more strongly in laurel and in strawberry tree than in phillyrea, suggesting an O 3-dependent alteration of the membrane retention capacity. At the end of the experimental period, the activity of superoxide dismutase and the content of reduced glutathione, but not that of reduced ascorbate, were significantly increased in the ozonated leaves of strawberry tree and phillyrea, but not in laurel. The evergreen broadleaves studied here maybe relatively tolerant to realistic O 3 levels, at least in terms of visible injury and gas exchange. Such tolerance might overlap with their level of tolerance to drought stress. High constitutive levels, and/or O 3-induced increases in antioxidants, might contribute to O 3 tolerance in these Mediterranean evergreen broadleaf species.

  20. Reproduction and biochemical responses in Enchytraeus albidus (Oligochaeta) to zinc or cadmium exposures

    International Nuclear Information System (INIS)

    Novais, Sara C.; Gomes, Susana I.L.; Gravato, Carlos; Guilhermino, Lucia; De Coen, Wim; Soares, Amadeu M.V.M.; Amorim, Monica J.B.

    2011-01-01

    To better understand chemical modes of action, emphasis has been given to stress responses at lower levels of biological organization. Cholinesterases and antioxidant defenses are among the most used biomarkers due to their crucial role in the neurocholinergic transmission and in cell homeostasis preventing DNA damage, enzymatic inactivation and lipid peroxidation. The main goal of this study was to investigate the effects of zinc and cadmium on survival and reproduction of E. albidus and to assess metals oxidative stress potential and neurotoxic effects at concentrations that affected reproduction. Both metals affected the enchytraeids' survival and reproduction and induced significant changes in the antioxidant defenses as well as increased lipid peroxidation, indicating oxidative damage. This study demonstrates that determining effects at different levels of biological organization can give better information on the physiological responses of enchytraeids in metal contamination events and further unravel the mechanistic processes dealing with metal stress. - Highlights: → Zinc and cadmium influence the survival and reproduction of Enchytraeus albidus. → Oxidative stress and membrane damage occur at reproduction effect concentrations. → Glutathione seems to be important in the antioxidant defense against metals. → Time intervals (2, 4, 8 days) allowed following the evolution of oxidative events. - Zinc and cadmium cause oxidative stress and membrane damage in Enchytraeus albidus at reproduction effect concentrations.

  1. Reproduction and biochemical responses in Enchytraeus albidus (Oligochaeta) to zinc or cadmium exposures

    Energy Technology Data Exchange (ETDEWEB)

    Novais, Sara C., E-mail: sara.novais@ua.pt [CESAM and Department of Biology, University of Aveiro, 3810-193 Aveiro (Portugal); Gomes, Susana I.L. [CESAM and Department of Biology, University of Aveiro, 3810-193 Aveiro (Portugal); Gravato, Carlos [CIIMAR-Centro Interdisciplinar de Investigacao Marinha e Ambiental, Laboratorio de Ecotoxicologia e Ecologia, Universidade do Porto, Rua dos Bragas, 289, 4050-123 Porto (Portugal); Guilhermino, Lucia [CIIMAR-Centro Interdisciplinar de Investigacao Marinha e Ambiental, Laboratorio de Ecotoxicologia e Ecologia, Universidade do Porto, Rua dos Bragas, 289, 4050-123 Porto (Portugal); ICBAS-Instituto de Ciencias Biomedicas Abel Salazar, Departamento de Estudos de Populacoes, Laboratorio de Ecotoxicologia, Universidade do Porto, Porto (Portugal); De Coen, Wim [University of Antwerp, Department of Biology - E.B.T., Groenenborgerlaan 171 - U.7., B-2020 Antwerp (Belgium); Soares, Amadeu M.V.M.; Amorim, Monica J.B. [CESAM and Department of Biology, University of Aveiro, 3810-193 Aveiro (Portugal)

    2011-07-15

    To better understand chemical modes of action, emphasis has been given to stress responses at lower levels of biological organization. Cholinesterases and antioxidant defenses are among the most used biomarkers due to their crucial role in the neurocholinergic transmission and in cell homeostasis preventing DNA damage, enzymatic inactivation and lipid peroxidation. The main goal of this study was to investigate the effects of zinc and cadmium on survival and reproduction of E. albidus and to assess metals oxidative stress potential and neurotoxic effects at concentrations that affected reproduction. Both metals affected the enchytraeids' survival and reproduction and induced significant changes in the antioxidant defenses as well as increased lipid peroxidation, indicating oxidative damage. This study demonstrates that determining effects at different levels of biological organization can give better information on the physiological responses of enchytraeids in metal contamination events and further unravel the mechanistic processes dealing with metal stress. - Highlights: > Zinc and cadmium influence the survival and reproduction of Enchytraeus albidus. > Oxidative stress and membrane damage occur at reproduction effect concentrations. > Glutathione seems to be important in the antioxidant defense against metals. > Time intervals (2, 4, 8 days) allowed following the evolution of oxidative events. - Zinc and cadmium cause oxidative stress and membrane damage in Enchytraeus albidus at reproduction effect concentrations.

  2. Physiological and Biochemical Responses in Two Ornamental Shrubs to Drought Stress.

    Science.gov (United States)

    Toscano, Stefania; Farieri, Elisa; Ferrante, Antonio; Romano, Daniela

    2016-01-01

    Drought stress is one of the most important abiotic stress limiting the plant survival and growth in the Mediterranean environment. In this work, two species typically grown in Mediterranean areas with different drought responses were used. Two shrubs, with slow (Photinia × fraseri Dress 'Red Robin') or fast (Eugenia uniflora L. 'Etna Fire') adaptation ability to drought, were subjected to three water regimes: well-watered (WW), moderate (MD), and severe (SD) drought stress conditions for 30 days. Net photosynthetic rate, stomatal conductance, maximum quantum efficiency of PSII photochemistry (Fv/Fm), relative water content (RWC), chlorophyll content, proline, malondialdehyde (MDA), and antioxidant enzyme activities (superoxide dismutase, catalase, and peroxidase) were measured. Results showed that RWC and proline were higher in Eugenia than in Photinia, demonstrating the greater tolerance of the latter to the water stress. The drought stress levels applied did not compromise photosynthetic efficiency through stomatal regulation, while a reduction of Fv/Fm ratio was observed at the end of the experimental period. MDA significantly increased after 30 days in both species. The antioxidant enzyme activities showed different responses to water stress conditions. In both species, the water stress scores showed positive, while proline content showed negative correlations with all physiological parameters.

  3. Microbiological and biochemical response of certain proteolytic bacterial isolates to varying levels of gamma irradiation

    International Nuclear Information System (INIS)

    El-Hifnawi, H.M.N.E.A.

    1997-01-01

    Amniotic membrane allo - and xeno grafts prepared from human foetal placenta, and their potential replacement of skin autotransplant, would significantly contribute to the success of clinical treatment of skin burns. Allo-and xenografts of human amniotic membrane should be ensured for their sterility, bio-mechanics and tissue antigenicity. The present study has been focused on sterilization and sterility assurance of the membrane grafts. Physico-chemical properties and antigenicity of the grafts await investigation. In the present study the isolation and identification of the bacteria contaminating the amniotic membrane allo-and xenografts prepared from human foetal placenta and the effect of gamma irradiation on it has been investigated. The proteolytic activity of these bacteria and the role of gamma irradiation in the control of bacterial activity were similarly investigated

  4. Physiological and Biochemical Responses of a Medicinal Halophyte Limonium Bicolor (Bag.) Kuntze to Salt-Stress

    International Nuclear Information System (INIS)

    Wang, L.; Li, W.; Yang, H.; Wu, W.; Ma, L.; Huang, T.; Wang, X.

    2016-01-01

    Limonium bicolor (Bag.) Kuntze is a perennial herb belonging to the Plumbaginaceae family. It is a typical recretohalophyte as well as a medicinal plant, distributing at saline soil areas in coastal areas and grasslands. In this paper,physiological mechanisms of L. bicolor to defend salt stress and effects of salinity on medicinal ingredients were investigated. The effects of different NaCl concentrations on the number of salt glands, Na/sup +/ content, dry weight and water content in tissues, gas exchange parameters involving net CO/sub 2/ assimilation rate, stomatal conductance, intercellular CO/sub 2/ concentration and transpiration rate, malondialdehyde content and electrolyte leakage, activities of superoxide dismutase, peroxidase and catalase and accumulations of secondary metabolites such as total phenolic, total flavonoid, gallic acid and myricetrin of leaves were determined. The results show that 100 and 200 mM NaCl induced facilitated effects in L. bicolor reflected in the increase in dry weight, tissue water content, net CO/sub 2/ assimilation rate, the number of salt glands, activity of superoxide dismutase, and content of gallic acid and myricetrin. The 300 mM NaCl treatment resulted in obviously decline in gas exchange parameters, and significant increases in Na/sup +/ levels, malondialdehyde level and electrolyte leakage. It was suggested that increased salt tolerance of L. bicolor was due to the corresponding resistance mechanisms involving an increased number of salt glands, enhanced activities of antioxidant enzymes, and an accelerated accumulation of secondary metabolites. What's more, the results on effects of salinity on medicinal ingredients in L. bicolor under different salt concentrations could provide theoretical basis for the standardization cultivation technique of L. bicolor. (author)

  5. Effects of BCAA, arginine and carbohydrate combined drink on post-exercise biochemical response and psychological condition.

    Science.gov (United States)

    Hsu, Mei-Chich; Chien, Kuei-Yu; Hsu, Cheng-Chen; Chung, Chia-Jung; Chan, Kuei-Hui; Su, Borcherng

    2011-04-30

    This study investigated the effects of BCAA, arginine and carbohydrate combined beverage (BCAA Drink) on biochemical responses and psychological conditions during recovery after a single bout of exhaustive exercise. Fourteen healthy males were assigned to drink either BCAA Drink (BA trial) or placebo (PL trial) on two sessions separated by 2 weeks. Blood samples of each subject were collected before exercise, 0, 10, 20, 40, 60, 120 min and 24 h after exercise. No significant differences in the levels of lactate, ammonia, creatine kinase and glycerol between the two groups were observed at any of the time points. However, the levels of glucose and insulin were significantly higher in the BA trial as compared to those in the PL trial at the 40 and 60 min recovery points. Furthermore, the testosterone-to-cortisol ratio at the 120 min recovery point was significantly higher in the BA trial as compared to that in the PL trial. The results indicate the occurrence of anabolic response during the recovery period. The benefit of BCAA Drink was also performed by Profile of Mood States to assess the psychological condition. Fatigue score increased immediately at exhaustion in both groups, but the decrease in the fatigue score at 120 min recovery point was significant only in BA trial. These data indicate that a single bout of exhaustive exercise enhanced the feeling of fatigue. The detrimental consequence was reduced by an ingestion of BCAA Drink.

  6. Iron oxide nanoparticles induced alterations in haematological, biochemical and ionoregulatory responses of an Indian major carp Labeo rohita

    Energy Technology Data Exchange (ETDEWEB)

    Saravanan, M.; Suganya, R.; Ramesh, M., E-mail: mathanramesh@yahoo.com; Poopal, R. K. [Bharathiar University, Unit of Toxicology, Department of Zoology, School of Life Sciences (India); Gopalan, N. [Bharathiar University, DRDO-BU (India); Ponpandian, N. [Bharathiar University, Department of Nanoscience and Technology (India)

    2015-06-15

    The wide use of iron oxide nanoparticles (Fe{sub 2}O{sub 3} NPs) in various applications has raised great concerns worldwide. In this work, we measured the potential harmful effects of Fe{sub 2}O{sub 3} NP (<50 nm) at concentrations of 1 and 25 mg/L on haematological, biochemical, and ionoregulatory responses in an Indian major carp, Labeo rohita for a short-term period of 96 h. The results revealed significant (P < 0.05) decreases in haemoglobin, haematocrit, mean cellular volume, mean cellular haemoglobin, protein, sodium (Na{sup +}), potassium (K{sup +}), chloride (Cl{sup −}) and gill Na{sup +}/K{sup +}-ATPase levels in both the concentrations. White blood cell, mean cellular haemoglobin concentration and glucose levels were significantly (P < 0.05) increased in response to both concentrations during the study period. However, no significant changes in red blood cell count and gill Na{sup +}/K{sup +}-ATPase (25 mg/L) activity were noticed compared to those of the respective control groups. Based on this study, it was found that the Fe{sub 2}O{sub 3} NPs do have prominent effects on freshwater fish L. rohita. Our data suggest that the alterations of these parameters can be used as nonspecific biomarkers to monitor the environmental risks arising from nanoparticles in aquatic ecosystem and also regulate the use, production and release of nanoparticles.

  7. Decisional responsibility for mechanical ventilation and weaning

    DEFF Research Database (Denmark)

    Rose, Louise; Blackwood, Bronagh; Egerod, Ingrid

    2011-01-01

    Optimal management of mechanical ventilation and weaning requires dynamic and collaborative decision making to minimize complications and avoid delays in the transition to extubation. In the absence of collaboration, ventilation decision making may be fragmented, inconsistent, and delayed. Our...

  8. Biochemical and behavioural responses of the endobenthic bivalve Scrobicularia plana to silver nanoparticles in seawater and microalgal food.

    Science.gov (United States)

    Buffet, Pierre-Emmanuel; Pan, Jin-Fen; Poirier, Laurence; Amiard-Triquet, Claude; Amiard, Jean-Claude; Gaudin, Pierre; Risso-de Faverney, Christine; Guibbolini, Marielle; Gilliland, Douglas; Valsami-Jones, Eugenia; Mouneyrac, Catherine

    2013-03-01

    Because of their bactericidal effects, Ag nanoparticles (Ag NPs) have promising industrial development but could lead to potential ecological risks. The aim of this study was to examine the uptake and effect of silver (soluble or as lactate Ag NPs of 40 nm) at low concentrations (10 μg L(-1)) in the endobenthic bivalve Scrobicularia plana exposed, for 14 days, directly (water) or via the diet (microalgae). The stability of Ag NPs in seawater was examined using dynamic light scattering. Release of soluble Ag from Ag NPs in the experimental media was quantified by using diffusive gradient in thin film. Bioaccumulation of Ag in bivalves was measured by electrothermal atomic absorption spectrometry. Behavioural and biochemical biomarkers were determined in bivalves. Aggregation of Ag NPs and the release of soluble Ag from Ag NPs were observed in the experimental media. For both forms of Ag, bioaccumulation was much more important for waterborne than for dietary exposure. The response of oxidative stress biomarkers (catalase, glutathion S-transferase, superoxide dismutase) was more important after dietary than waterborne exposure to Ag (soluble and NPs). These defences were relatively efficient since they led to a lack of response of damage biomarkers. Burrowing was not affected for bivalves exposed directly or through the diet to both Ag forms but feeding behaviour was impaired after 10 days of dietary exposure. Since no differences of responses to Ag either soluble or nanoparticulate were observed, it seems that labile Ag released from Ag NPs was mainly responsible for toxicity. Copyright © 2012 Elsevier Inc. All rights reserved.

  9. Local mechanical stimulation induces components of the pathogen defense response in parsley

    Science.gov (United States)

    Gus-Mayer, Sabine; Naton, Beatrix; Hahlbrock, Klaus; Schmelzer, Elmon

    1998-01-01

    Cell suspension cultures of parsley (Petroselinum crispum) have previously been used as a suitable system for studies of the nonhost resistance response to Phytophthora sojae. In this study, we replaced the penetrating fungus by local mechanical stimulation by using a needle of the same diameter as a fungal hypha, by local application of a structurally defined fungus-derived elicitor, or by a combination of the two stimuli. Similar to the fungal infection hypha, the local mechanical stimulus alone induced the translocation of cytoplasm and nucleus to the site of stimulation, the generation of intracellular reactive oxygen intermediates (ROI), and the expression of some, but not all, elicitor-responsive genes. When the elicitor was applied locally to the cell surface without mechanical stimulation, intracellular ROI also accumulated rapidly, but morphological changes were not detected. A combination of the mechanical stimulus with simultaneous application of low doses of elicitor closely simulated early reactions to fungal infection, including cytoplasmic aggregation, nuclear migration, and ROI accumulation. By contrast, cytoplasmic rearrangements were impaired at high elicitor concentrations. Neither papilla formation nor hypersensitive cell death occurred under the conditions tested. These results suggest that mechanical stimulation by the invading fungus is responsible for the observed intracellular rearrangements and may trigger some of the previously demonstrated changes in the activity of elicitor-responsive genes, whereas chemical stimulation is required for additional biochemical processes. As yet unidentified signals may be involved in papilla formation and hypersensitive cell death. PMID:9653198

  10. Physiological and biochemical responses of small fish exposed to Athabasca oil sands sediment

    International Nuclear Information System (INIS)

    Tetrault, G.R.; Environment Canada, Burlington, ON; McMaster, M.E.; Dixon, D.G.; Parrott, J.L.

    2002-01-01

    A study was conducted to determine the influence of naturally occurring oil sands related compounds on the reproductive function and hepatic responses of fish. Wild fish, both exposed and unexposed to the compounds in question, were collected along with sediments for laboratory testing. The study showed that in vitro gonadal incubation levels of steroid production were lower at the tributary sites within the oil sands deposits. One indicator of exposure to oil sands related compounds (hepatic 7-ethoxyresorufin-O-deethylase activity) was shown to be 5 times higher at the same sites. In addition, slimy sculpin were exposed to sediment samples from the Steepbank River site for 4 to 8 days to evaluate the absorption of the indicator. The indicator in exposed fish was found to be comparable to that measured in fish native to the oil sands area. The study was not capable of predicting an altered ability of gonadal tissue of exposed fish to produce steroid hormones in vitro. It was concluded that future development could compromise the reproductive health of fish in the area

  11. Biochemical response of Anticarsia gemmatalis fed with soybean plants pulverized with the synthetic trypsin inhibitor benzamidine

    International Nuclear Information System (INIS)

    Oliveira, M.G.A.; Pilon, A.M.; Pilon, F.M.; Ribeiro, F.R.; Silva, F.C.; Ribon, A.O.B.; Reis, A.P.; Visotto, L.E.; Guedes, R.N.C.; Oliveira, J.A.

    2008-01-01

    Full text: Insects are responsible for severe crop losses. New alternatives for pest control other than agrochemicals have been investigated. Protease inhibitors are one of the prime candidates effective against insect pests. In this work we studied the effect of the synthetic trypsin inhibitor benzamidine on the development of Anticarsia gemmatalis, an important pest of the soybean culture. Larvae were reared on soybean plants containing 0.00, 0.15, 0.30, 0.45, 0.60 and 0.75% (w/w) of benzamidine. After 6, 12, 24 and 48 h of feeding midgut extracts were prepared and assayed for enzymatic activity (proteolytic, amidasic and stearic). Benzamidine altered the activity patterns but was not able to totally abolish enzyme activity. The proteolytic, amidasic and stearic activity showed the higher time of inhibition in 48 h in concentration of 0,75%, the inhibition was the around 93%, 63.1% and 36.6%, respectively. We suggest that the presence of inhibitor has made insects to adapt and produce proteases which are insensitive to the action of benzamidine. (author)

  12. Biochemical changes in male rat serumin response to treatment with the organochlorine insecticide endrin

    International Nuclear Information System (INIS)

    Fayez, V.

    2003-01-01

    Administrations to rats of oral single doses of endrin at levels 1.1, 3.3 and 5.5 mg/kg representing 10, 30 and 50% of the LD 5 0 has been attempted to determine it;s effect on serum levels of alanine and aspartate aminotransferases, creatinine, blood urea, protein, albumin, total cholesterol, HDL-cholesterol, triglycerides and cancer embryonic antigen. Endrin induced significant elevation of serum aminotransferases at the mid-and high-doses. Blood urea was altered significantly at the three dose levels. serum creatinine was not appreciably altered. Serum albumin was lowered significantly on day 4 at the level of 1.1 mg/kg. Total cholesterol was substantially elevated on day 1, while HDL-cholesterol was lowered significantly on day 6 at the level of 5.5 mg/kg.Triglycerides and LDL-cholesterol were sporadically elevated throughout the experimental period. Cancer embryonic antigen was elevated insignificantly on day 6 and 8 at the level of 3.3 mg/kg and on day 1 and 4 at the level of 5.5 mg/kg, approaching normal values thereafter. Comparing the toxic effect of the three dose levels evidence of a strict dose-response relationship was apparent

  13. Biochemical response of Anticarsia gemmatalis fed with soybean plants pulverized with the synthetic trypsin inhibitor benzamidine

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, M.G.A.; Pilon, A.M.; Pilon, F.M.; Ribeiro, F.R.; Silva, F.C.; Ribon, A.O.B.; Reis, A.P.; Visotto, L.E. [Universidade Federal de Vicosa (UFV), Belo Horizonte, MG (Brazil). Dept. de Bioquimica e Biologia Molecular; Guedes, R.N.C. [Universidade Federal de Vicosa (UFV), Belo Horizonte, MG (Brazil). Dept. de Biologia Animal; Oliveira, J.A. [Universidade Federal de Vicosa (UFV), Belo Horizonte, MG (Brazil). Dept. de Quimica

    2008-07-01

    Full text: Insects are responsible for severe crop losses. New alternatives for pest control other than agrochemicals have been investigated. Protease inhibitors are one of the prime candidates effective against insect pests. In this work we studied the effect of the synthetic trypsin inhibitor benzamidine on the development of Anticarsia gemmatalis, an important pest of the soybean culture. Larvae were reared on soybean plants containing 0.00, 0.15, 0.30, 0.45, 0.60 and 0.75% (w/w) of benzamidine. After 6, 12, 24 and 48 h of feeding midgut extracts were prepared and assayed for enzymatic activity (proteolytic, amidasic and stearic). Benzamidine altered the activity patterns but was not able to totally abolish enzyme activity. The proteolytic, amidasic and stearic activity showed the higher time of inhibition in 48 h in concentration of 0,75%, the inhibition was the around 93%, 63.1% and 36.6%, respectively. We suggest that the presence of inhibitor has made insects to adapt and produce proteases which are insensitive to the action of benzamidine. (author)

  14. Growth, Physiological, Biochemical, and Ionic Responses of Morus alba L. Seedlings to Various Salinity Levels

    Directory of Open Access Journals (Sweden)

    Nan Lu

    2017-12-01

    Full Text Available Mulberry (Morus alba L., a moderately salt-tolerant tree species, is considered to be economically important. In this study, 1-year-old mulberry seedlings cultivated in soil under greenhouse conditions were treated with five concentrations of sodium chloride (NaCl; 0%, 0.1%, 0.2%, 0.3%, and 0.5% for 3 and 21 days. Plant growth parameters were not affected by 0.1% NaCl, but significant reductions were observed after treatment with 0.2%, 0.3%, and 0.5% NaCl. The malondialdehyde content and cell membrane stability of mulberry seedlings exposed to 0.1% NaCl did not change, indicating that mulberry is not significantly affected by low-salinity conditions. The Na contents of various organs did not increase significantly in response to 0.1% NaCl, but the K:Na, Mg:Na, and Ca:Na ratios of various organs were affected by NaCl. Marked changes in the levels of major compatible solutes (proline, soluble sugars, and soluble proteins occurred in both the leaves and roots of NaCl-treated seedlings relative to control seedlings. Under severe saline conditions (0.5% NaCl, the ability of mulberry to synthesize enzymatic antioxidants may be impaired.

  15. Toxicological and biochemical response of the entomopathogenic fungus Beauveria bassiana after exposure to deltamethrin.

    Science.gov (United States)

    Forlani, Lucas; Juárez, M Patricia; Lavarías, Sabrina; Pedrini, Nicolás

    2014-05-01

    The chemical control of the Chagas disease vector Triatoma infestans is endangered by the emergence of pyrethroid resistance. An effective alternative control tool is the use of the entomopathogenic fungus Beauveria bassiana. The effect of deltamethrin on fungal growth, gene expression and enzyme activity in relation to detoxification, antioxidant response and oxidative stress levels was studied to evaluate fungal tolerance to deltamethrin. The mean inhibitory concentration (IC50 ) was 50 µg deltamethrin/cm(2). Cytochrome P450 genes were differentially expressed; cyp52X1 and cyp617N1 transcripts were > 2-fold induced, followed by cyp655C1 (1.8-fold). Minor effects were observed on genes encoding for other P450s, epoxide hydrolase and glutathione S-transferase (GST). Superoxide dismutase (SOD) genes showed induction levels ≤ 2, catalase (CAT) and glutathione peroxidase genes were also induced ∼ 2-3-fold and < 2-fold, respectively. The activities of enzymes participating in the antioxidant defense system and phase II detoxification were also evaluated; SOD, CAT and GST activity showed significant differences with deltamethrin concentration. Lipid peroxidation levels and free proline content were also altered. Beauveria bassiana GHA can be used combined with deltamethrin without significant metabolic detrimental effects. This combination will help optimizing the benefits and increasing the efficacy of vector control tools. © 2013 Society of Chemical Industry.

  16. Some physiological and biochemical responses to nickel in salicylic acid applied chickpea (Cicer arietinum L.) seedlings.

    Science.gov (United States)

    Canakci, Songül; Dursun, Bahar

    2011-09-01

    The present study examined the effects of salicylic acid pre-application on the responses of seven-day-old chickpea (Cicer arietinum L.) seedlings to nickel. For this purpose, the plants were treated with 1 mM salicylic acid solution for 6 and 10 hours and then treated with 0.75, 1.5 and 3 mM nickel solutions for 48 hours hydroponically. Following the treatment, changes in seedling length, seedling fresh weight and leaf dry weight (after 10 hours), as well as MDA, proline, protein and pigment contents (after 6 and 10 hours) were examined. Salicylic acid pre-application was found to significantly alleviate the typical harmful effects caused by nickel and 3 mM nickel concentration in particular, on the parameters associated with toxic stress. However, pre-application of salicylic acid for 6 and 10 hours without nickel treatment did not produce any stimulatory or inhibitory effect on the seedlings as compared to the controls.

  17. Simulating carbon dioxide exchange rates of deciduous tree species: evidence for a general pattern in biochemical changes and water stress response.

    Science.gov (United States)

    Reynolds, Robert F; Bauerle, William L; Wang, Ying

    2009-09-01

    Deciduous trees have a seasonal carbon dioxide exchange pattern that is attributed to changes in leaf biochemical properties. However, it is not known if the pattern in leaf biochemical properties - maximum Rubisco carboxylation (V(cmax)) and electron transport (J(max)) - differ between species. This study explored whether a general pattern of changes in V(cmax), J(max), and a standardized soil moisture response accounted for carbon dioxide exchange of deciduous trees throughout the growing season. The model MAESTRA was used to examine V(cmax) and J(max) of leaves of five deciduous trees, Acer rubrum 'Summer Red', Betula nigra, Quercus nuttallii, Quercus phellos and Paulownia elongata, and their response to soil moisture. MAESTRA was parameterized using data from in situ measurements on organs. Linking the changes in biochemical properties of leaves to the whole tree, MAESTRA integrated the general pattern in V(cmax) and J(max) from gas exchange parameters of leaves with a standardized soil moisture response to describe carbon dioxide exchange throughout the growing season. The model estimates were tested against measurements made on the five species under both irrigated and water-stressed conditions. Measurements and modelling demonstrate that the seasonal pattern of biochemical activity in leaves and soil moisture response can be parameterized with straightforward general relationships. Over the course of the season, differences in carbon exchange between measured and modelled values were within 6-12 % under well-watered conditions and 2-25 % under water stress conditions. Hence, a generalized seasonal pattern in the leaf-level physiological change of V(cmax) and J(max), and a standardized response to soil moisture was sufficient to parameterize carbon dioxide exchange for large-scale evaluations. Simplification in parameterization of the seasonal pattern of leaf biochemical activity and soil moisture response of deciduous forest species is demonstrated. This

  18. Biochemical changes in response to intensive resistance exercise training in the elderly.

    Science.gov (United States)

    Bautmans, Ivan; Njemini, Rose; Vasseur, Sabine; Chabert, Hans; Moens, Lisa; Demanet, Christian; Mets, Tony

    2005-01-01

    It is assumed that low-grade inflammation, characterized by increased circulating IL-6 and TNF-alpha, is related to the development of sarcopenia. Physical exercise, especially high intensity resistance training, has been shown to be effective in restoring the strength deficit in the elderly. Intensive exercise is accompanied by significant release of IL-6 and TNF-alpha into the blood circulation, but does not result in muscle wasting. Exercise-induced changes in heat-shock protein (Hsp), responsible for cellular protection during stressful situations, might interfere with the acute phase reaction and muscle adaptation. To investigate if intensive strength training in elderly persons induces changes in Hsp70 expression, and if these changes are related to changes in the acute phase reaction or muscle adaptation. 31 elderly persons (aged 68.4+/-5.4 years) performed 6 weeks' intensive strength training. At baseline and after 6 weeks, muscle strength, functional performance (physical activity profile, 6-min walk, 30- second chair stand, grip strength, chair sit & reach and back scratch), linear isokinetic leg extension, circulating IL-6, TNF-alpha, IL-10 and TGF-beta, and Hsp70 in monocytes (M) and lymphocytes (L) immediately after sampling (IAS), after incubation at 37 and 42 degrees C were determined. In 12 participants, cytokines were determined in untrained and trained conditions before and after a single training session. After 6 weeks' training, muscle strength and functional performance improved significantly, together with decreased Hsp70 IAS and Hsp70 37 degrees C and increased Hsp70 42 degrees C (all p42 degrees C in M and L. In an untrained condition, training induced an increase of IL-6 (p<0.05) and a tendency of IL-10 to decrease (p=0.06). In a trained condition the decrease of IL-10 disappeared. Baseline physical activity and 6-min walk distance correlated negatively with circulating IL-6 (p<0.05); except for a negative correlation between TGF-beta and

  19. Biochemical and morphological responses to abiotc elicitor chitin in suspension-cultured sugarcane cells

    Directory of Open Access Journals (Sweden)

    Maria Izabel Gallão

    2010-04-01

    Full Text Available Cells of Saccharum officinarum submitted to hydrolyzated chitin for 1 to 8h produced phenolic compounds. These alterations were observed through cytochemical methods using Toluidine Blue and Phloroglucinol/HCl. After 4 h, besides cell wall change, there was a change in nuclear pattern of chitin treated cells. There was a 96% increase in nuclear area in 6 h chitin treated material, as observed by Feulgen reaction. The treated cells showed chromatin compacted regions and a degeneration process of nucleoli. In the outer areas of cell wall, there was a polysaccharide desagregation, confirming results obtained for different plants with the use of other elicitors. Peroxidase activity was maximal after 4 h and decreased progressively. PAL activity started to increase at 4 h of incubation. These results showed that chitin hydrolyzate stimulated a defense response in sugarcane cells.Células de Saccharum officinarum quando submetidas a quitina hidrolisada por 1 a 8h produziram material fenólico. Essas alterações foram observadas por meio de métodos citoquímicos como o Azul de Toluidina e Floroglucinol/HCl. Após 4 h, além das mudanças nas paredes celulares houve uma mudança no padrão nuclear das células tratadas com quitina. Por observação da reação de Feulgen, houve um aumento de 96% na área nuclear no material em 6h. Para as células tratadas foram observadas regiões de cromatina compactada e um processo de degeneração do nucléolo. Nas áreas externas da parede celular existia uma desagregação dos polisacarídios confirmando os resultados obtidos para diferentes plantas com o uso de outros elicitores. A atividade da peroxidase foi maxima após 4 h e então decresceu progressivamente. A atividade da PAL aumentou a partir de 4 h de incubação. Estes resultados mostram que o hidrolisado de quitina estimula as respostas de defesa em células de cana.

  20. Meso Mechanical Analysis of AC Mixture Response

    NARCIS (Netherlands)

    Woldekidan, M.F.; Huurman, M.; Vaccari, E.; Poot, M.

    2012-01-01

    Ongoing research into performance modeling of Asphalt Concrete (AC) mixtures using meso mechanics approaches is being undertaken at Delft University of Technology (TUD). The approach has already been successfully employed for evaluating the long term performance of porous asphalt concrete. The work

  1. Biochemical and cellular mechanisms responsible for effects of low doses of ionizing radiation

    International Nuclear Information System (INIS)

    Trebukhina, R.V.; Ovchinnikov, V.A.; Lashak, L.K.; Ledneva, I.O.; Petushok, V.G.; Petushok, N.E.; Motylevich, Zh.V.; Kazhyna, M.V.

    1997-01-01

    In experiments on white rats influence of small dozes of gamma-exposure on morphological structure of blood and activity of enzymes in blood and thimus was investigated. Short-term reduction of quantity of leucocytes and more long (1 month) reduction of erythrocytes was shown. Accumulation in blood of products of lipid peroxidation correlates with activity of oxidizing enzymes (catalase, lysozyme). Radiation-induced activation of pentose-phosphate pathway of carbohydrates metabolism was established. (author)

  2. Generic Primary Mechanical Response of Viscous Liquids

    Science.gov (United States)

    Bierwirth, S. Peter; Böhmer, Roland; Gainaru, Catalin

    2017-12-01

    Four decades ago a seminal review by Jonscher [Nature (London) 267, 673 (1977), 10.1038/267673a0] revealed that the dielectric response of conducting materials is characterized by a "remarkable universality". Demonstrating that the same response pattern is exhibited also by shear rheological spectra of nonpolymeric viscous liquids, the present contribution connects two branches of condensed matter physics: Concepts developed for charge transport can be employed for the description of mass flow and vice versa. Based on the virtual equivalence of the two dynamics a connection is established between microscopic and macroscopic viscoelastic characteristics of liquids, resembling the Barton-Nakajima-Namikawa relation for conductivity.

  3. Biochemical investigations of the mechanism of action of small molecules ZL006 and IC87201 as potential inhibitors of the nNOS-PDZ/PSD-95-PDZ interactions

    DEFF Research Database (Denmark)

    Bach, Anders

    2015-01-01

    ZL006 and IC87201 have been presented as efficient inhibitors of the nNOS/PSD-95 protein-protein interaction and shown great promise in cellular experiments and animal models of ischemic stroke and pain. Here, we investigate the proposed mechanism of action of ZL006 and IC87201 using biochemical...... by interacting with the β-finger of nNOS-PDZ. Our findings have implications for further medicinal chemistry efforts of ZL006, IC87201 and analogues, and challenge the general and widespread view on their mechanism of action....

  4. Molecular and biochemical responses of hypoxia exposure in Atlantic croaker collected from hypoxic regions in the northern Gulf of Mexico.

    Science.gov (United States)

    Rahman, Md Saydur; Thomas, Peter

    2017-01-01

    A major impact of global climate change has been the marked increase worldwide in the incidence of coastal hypoxia (dissolved oxygen, DOhypoxic waters as well as their molecular and physiological responses to environmental hypoxia exposure are largely unknown. A suite of potential hypoxia exposure biomarkers was evaluated in Atlantic croaker collected from hypoxic and normoxic regions in the northern Gulf of Mexico (nGOM), and in croaker after laboratory exposure to hypoxia (DO: 1.7 mg l-1). Expression of hypoxia-inducible factor-α, hif-α; neuronal nitric oxide synthase, nNOS; and insulin-like growth factor binding protein, igfbp mRNAs and protein carbonyl (PC, an oxidative stress indicator) content were elevated several-fold in brain and liver tissues of croaker collected from nGOM hypoxic sites. All of these molecular and biochemical biomarkers were also upregulated ~3-10-fold in croaker brain and liver tissues within 1-2 days of hypoxia exposure in controlled laboratory experiments. These results suggest that hif-αs, nNOS and igfbp-1 transcripts and PC contents are useful biomarkers of environmental hypoxia exposure and some of its physiological effects, making them important components for improved assessments of long-term impacts of environmental hypoxia on fish populations.

  5. Physiological and Biochemical Responses to Aluminum Stress in the Root of a Biodiesel Plant Jatropha curcas L.

    Directory of Open Access Journals (Sweden)

    RADITE TISTAMA

    2012-03-01

    Full Text Available We investigated J. curcas responses to aluminum stress, histochemically and biochemically. Histochemical stainings were observed to analysis aluminum accumulation, lipid peroxidation and the loss of plasma membrane integrity on the surface and tissue of the root apex. Enzymatic analysis was conducted to measure malate content in leaf, root and malate efflux in the medium. We used M. malabathricum as a comparison for Al-tolerance plant. J. curcas root elongation was inhibited by 0.4 mM AlCl3, while M. malabathricum root elongation was inhibited by 0.8 mM AlCl3 treatment. Inhibition of root elongation has high correlation with Al accumulation in the root apex, which caused lipid degradation and cell death. Generally, malate content in J. curcas leaf and root was higher than that in M. malabathricum. In the contrary malate efflux from the root into the medium was lower. J. curcas root has a different pattern compared to M. malabathricum in malate synthesis and malate secretion when treated with a different Al concentration. We categorized J. curcas acc IP3 as more sensitive to aluminum than M. malabathricum.

  6. Gelation And Mechanical Response of Patchy Rods

    Science.gov (United States)

    Kazem, Navid; Majidi, Carmel; Maloney, Craig

    We perform Brownian Dynamics simulations to study the gelation of suspensions of attractive, rod-like particles. We show that details of the particle-particle interactions can dramatically affect the dynamics of gelation and the structure and mechanics of the networks that form. If the attraction between the rods is perfectly smooth along their length, they will collapse into compact bundles. If the attraction is sufficiently corrugated or patchy, over time, a rigid space spanning network forms. We study the structure and mechanical properties of the networks that form as a function of the fraction of the surface that is allowed to bind. Surprisingly, the structural and mechanical properties are non-monotonic in the surface coverage. At low coverage, there are not a sufficient number of cross-linking sites to form networks. At high coverage, rods bundle and form disconnected clusters. At intermediate coverage, robust networks form. The elastic modulus and yield stress are both non-monotonic in the surface coverage. The stiffest and strongest networks show an essentially homogeneous deformation under strain with rods re-orienting along the extensional axis. Weaker, clumpy networks at high surface coverage exhibit relatively little re-orienting with strong non-affine deformation. These results suggest design strategies for tailoring surface interactions between rods to yield rigid networks with optimal properties. National Science Foundation and the Air Force Office of Scientific Research.

  7. Host response mechanisms in periodontal diseases

    Directory of Open Access Journals (Sweden)

    Nora SILVA

    2015-06-01

    Full Text Available Periodontal diseases usually refer to common inflammatory disorders known as gingivitis and periodontitis, which are caused by a pathogenic microbiota in the subgingival biofilm, including Porphyromonas gingivalis, Aggregatibacter actinomycetemcomitans, Tannerella forsythia and Treponema denticola that trigger innate, inflammatory, and adaptive immune responses. These processes result in the destruction of the tissues surrounding and supporting the teeth, and eventually in tissue, bone and finally, tooth loss. The innate immune response constitutes a homeostatic system, which is the first line of defense, and is able to recognize invading microorganisms as non-self, triggering immune responses to eliminate them. In addition to the innate immunity, adaptive immunity cells and characteristic cytokines have been described as important players in the periodontal disease pathogenesis scenario, with a special attention to CD4+ T-cells (T-helper cells. Interestingly, the T cell-mediated adaptive immunity development is highly dependent on innate immunity-associated antigen presenting cells, which after antigen capture undergo into a maturation process and migrate towards the lymph nodes, where they produce distinct patterns of cytokines that will contribute to the subsequent polarization and activation of specific T CD4+ lymphocytes. Skeletal homeostasis depends on a dynamic balance between the activities of the bone-forming osteoblasts (OBLs and bone-resorbing osteoclasts (OCLs. This balance is tightly controlled by various regulatory systems, such as the endocrine system, and is influenced by the immune system, an osteoimmunological regulation depending on lymphocyte- and macrophage-derived cytokines. All these cytokines and inflammatory mediators are capable of acting alone or in concert, to stimulate periodontal breakdown and collagen destruction via tissue-derived matrix metalloproteinases, a characterization of the progression of periodontitis as

  8. Host response mechanisms in periodontal diseases

    Science.gov (United States)

    SILVA, Nora; ABUSLEME, Loreto; BRAVO, Denisse; DUTZAN, Nicolás; GARCIA-SESNICH, Jocelyn; VERNAL, Rolando; HERNÁNDEZ, Marcela; GAMONAL, Jorge

    2015-01-01

    Periodontal diseases usually refer to common inflammatory disorders known as gingivitis and periodontitis, which are caused by a pathogenic microbiota in the subgingival biofilm, including Porphyromonas gingivalis, Aggregatibacter actinomycetemcomitans, Tannerella forsythia and Treponema denticola that trigger innate, inflammatory, and adaptive immune responses. These processes result in the destruction of the tissues surrounding and supporting the teeth, and eventually in tissue, bone and finally, tooth loss. The innate immune response constitutes a homeostatic system, which is the first line of defense, and is able to recognize invading microorganisms as non-self, triggering immune responses to eliminate them. In addition to the innate immunity, adaptive immunity cells and characteristic cytokines have been described as important players in the periodontal disease pathogenesis scenario, with a special attention to CD4+ T-cells (T-helper cells). Interestingly, the T cell-mediated adaptive immunity development is highly dependent on innate immunity-associated antigen presenting cells, which after antigen capture undergo into a maturation process and migrate towards the lymph nodes, where they produce distinct patterns of cytokines that will contribute to the subsequent polarization and activation of specific T CD4+ lymphocytes. Skeletal homeostasis depends on a dynamic balance between the activities of the bone-forming osteoblasts (OBLs) and bone-resorbing osteoclasts (OCLs). This balance is tightly controlled by various regulatory systems, such as the endocrine system, and is influenced by the immune system, an osteoimmunological regulation depending on lymphocyte- and macrophage-derived cytokines. All these cytokines and inflammatory mediators are capable of acting alone or in concert, to stimulate periodontal breakdown and collagen destruction via tissue-derived matrix metalloproteinases, a characterization of the progression of periodontitis as a stage that

  9. Dynamic response analysis as a tool for investigating transport mechanisms

    International Nuclear Information System (INIS)

    Dudok de Wit, Th.; Joye, B.; Lister, J.B.; Moret, J.M.

    1990-01-01

    Dynamic response analysis provides an attractive method for studying transport mechanisms in tokamak plasmas. The analysis of the radial response has already been widely used for heat and particle transport studies. The frequency dependence of the dynamic response, which is often omitted, reveals further properties of the dominant transport mechanisms. Extended measurements of the soft X-ray emission were carried out on the TCA tokamak in order to determine the underlying transport processes. (author) 5 refs., 2 figs

  10. Effects of nanomolar cadmium concentrations on water plants - comparison of biochemical and biophysical mechanisms of toxicity under environmentally relevant conditions

    OpenAIRE

    Andresen, Elisa

    2014-01-01

    In this thesis, the effects of the highly toxic heavy metal cadmium (Cd) on the rootless aquatic model plant Ceratophyllum demersum are investigated on the biochemical and biophysical level. The experiments were carried out using environmentally relevant conditions, i.e. light and temperature followed a sinusoidal cycle, a low biomass to water ratio resembled the situation in oligotrophic lakes and a continuous exchange of the defined nutrient solution ensured that metal uptake into the plant...

  11. Mechanisms of quinolone action and microbial response.

    Science.gov (United States)

    Hawkey, Peter M

    2003-05-01

    Over the years, chromosomal mapping of the bacterial genome of Escherichia coli has demonstrated that many loci are associated with quinolone resistance, which is mainly a result of chromosomal mutation or alteration of the quantity or type of porins in the outer membrane of Gram-negative bacteria. There has been one report of a small and confined episode of plasmid-mediated resistance to fluoroquinolones, which did not appear to persist. With the increasingly widespread use of an expanding range of fluoroquinolone antibiotics, a range and mix in individual bacterial isolates of the different mechanisms of resistance to fluoroquinolones will undoubtedly be encountered amongst clinically significant bacteria. Currently, transferable resistance is extremely rare and most resistant bacteria arise from clonal expansion of mutated strains. However, it is conceivable that in the future, horizontal gene transfer may become a more important means of conferring resistance to fluoroquinolones.

  12. Physiological and Biochemical Responses in Japanese Quail (Coturnix coturnix japonica) Fed Radiation Processed Aflatoxin-Contaminated Diet

    International Nuclear Information System (INIS)

    El-Niely, H.F.G.; Abdalla, E.A.; Abd El-Azeem, A.F.

    2008-01-01

    Aflatoxins (AFs) contamination of foods and live-stock feeds is an ongoing problem. In this research, the amelioration of aflatoxicosis in Japanese quails was examined by the radiation processing of their contaminated-diets, as a physical detoxifying method. Diets contaminated with two different levels of AFB 1 (2 or 5 mg kg -1 diet) were subjected to 10, 20, or 30 kGy and fed to growing Japanese quails for 5 weeks. The physiological and biochemical responses were evaluated for irradiation ability to reduce the deleterious effects of 2 and 5 mg AFB 1 kg -1 diet. A total of 270 seven-day-old Japanese quail chicks were assigned to 2 factorial arrangements of nine treatments (level of toxin and radiation dose) each consisted of three replicates with 10 quails per pen. The significant adverse effect of AFB 1 on the food consumption, body-weight gain, food conversion ratio, mortality rate and internal organ weights, from the first week onwards, were determined. Radiation processing reduced concentration of AFB 1 in all experimental diets and significantly reduced the deleterious effects of AFB 1 on food consumption, body-weight gain, food conversion ratio, and the relative weights of most observed organs, as a function of radiation dose. Muscles, liver, kidneys and heart tissues were analyzed for aflatoxin (AF) residues. The residual level of AFB 1 was significantly higher in liver than in kidneys, muscles or heart. The level in the observed organs and the muscles was lower in those received irradiated diet at high 30 kGy. Plasma samples were tested for glucose, triglyceride, cholesterol, aspartate transaminase (AST), alanine transaminase (ALT), alkaline phosphatase (ALP), urea and creatinine. They were significantly increased in AF treated groups in comparison with those received AF-containing diet and irradiated up to 30 kGy. Birds ate contaminated diet with both level of toxin were suffered from the lower level of total proteins, albumin, globulin, phosphorus and

  13. Performance, biochemical and haematological responses, and relative organ weights of laying hens fed diets supplemented with prebiotic, probiotic and synbiotic.

    Science.gov (United States)

    Tang, Shirley Gee Hoon; Sieo, Chin Chin; Ramasamy, Kalavathy; Saad, Wan Zuhainis; Wong, Hee Kum; Ho, Yin Wan

    2017-08-17

    The increasing trend of ban on the use of antibiotic growth promoters (AGPs) across the globe in the poultry industry has led to a growing need for alternatives to AGPs. Prebiotic, probiotic and their combination as a synbiotic have been considered as potential alternatives. This study aimed to investigate the effects of a prebiotic (isomaltooligosaccharide, IMO), a probiotic (PrimaLac®), and their combination (synbiotic) on hen performance, biochemical and haematological responses, and relative organ weights from 20 to 52 weeks of age. Supplementation of 1% IMO (PRE), 0.1% PrimaLac® (PRO) and 1% IMO + 0.1% PrimaLac® (SYN) improved (P feed intake and egg production at 20-36 weeks of age; body weight gain, feed conversion ratio and egg mass at 20-36 and 20-52 weeks of age; and egg weight at 20-36, 37-52 and 20-52 weeks of age. Compared to control-fed hens at 20-36 weeks of age, PRO- and SYN-fed hens produced less (P hens produced more large size eggs. From 37 to 52 weeks of age, PRE-, PRO- or SYN-fed hens produced less (P hens from 20 to 52 weeks of age. These results demonstrated the use of PRE, PRO and SYN as alternative feed additives to AGPs for improving the health and productivity of hens, while PRO is the best for commercial layer production to yield maximum profit.

  14. Leaf Proteome Analysis Reveals Prospective Drought and Heat Stress Response Mechanisms in Soybean

    Directory of Open Access Journals (Sweden)

    Aayudh Das

    2016-01-01

    Full Text Available Drought and heat are among the major abiotic stresses that affect soybean crops worldwide. During the current investigation, the effect of drought, heat, and drought plus heat stresses was compared in the leaves of two soybean varieties, Surge and Davison, combining 2D-DIGE proteomic data with physiology and biochemical analyses. We demonstrated how 25 differentially expressed photosynthesis-related proteins affect RuBisCO regulation, electron transport, Calvin cycle, and carbon fixation during drought and heat stress. We also observed higher abundance of heat stress-induced EF-Tu protein in Surge. It is possible that EF-Tu might have activated heat tolerance mechanisms in the soybean. Higher level expressions of heat shock-related protein seem to be regulating the heat tolerance mechanisms. This study identifies the differential expression of various abiotic stress-responsive proteins that regulate various molecular processes and signaling cascades. One inevitable outcome from the biochemical and proteomics assays of this study is that increase of ROS levels during drought stress does not show significant changes at the phenotypic level in Davison and this seems to be due to a higher amount of carbonic anhydrase accumulation in the cell which aids the cell to become more resistant to cytotoxic concentrations of H2O2.

  15. Mechanical Responses and Physical Factors of the Fingertip Pulp

    Directory of Open Access Journals (Sweden)

    N. Sakai

    2006-01-01

    Full Text Available The images of the mechanical responses were analysed when the fingertip was pressed against a plateau plate, and the influence of the contact angle on the loading pressure and the mechanical responses was investigated. As a result, as the contact angle was smaller, the change ratios due to the loading pressure were significantly larger in the contact length, the contact width and the distortion of lateral-view area. These parameters were thought to be useful in clinical medicine as indices for the degrees of mechanical responses of the fingertip. The length of the central axis and the maximum width of the fingertip were inappropriate as the parameters to represent the mechanical responses of the fingertip. The maximum width of the fingertip scarcely changed. This does not reflect the compressibility of the fingertip, and the fingertip as a whole extended along the central axis and in the vertical direction, and the change was not reflected in the maximum width.

  16. Mechanisms and pharmacogenetic signals underlying thiazide diuretics blood pressure response.

    Science.gov (United States)

    Shahin, Mohamed H; Johnson, Julie A

    2016-04-01

    Thiazide (TZD) diuretics are among the most commonly prescribed antihypertensives globally; however their chronic blood pressure (BP) lowering mechanism remains unclear. Herein we discuss the current evidence regarding specific mechanisms regulating the antihypertensive effects of TZDs, suggesting that TZDs act via multiple complex and interacting mechanisms, including natriuresis with short term use and direct vasodilatory effects chronically. Additionally, we review pharmacogenomics signals that have been associated with TZDs BP-response in several cohorts (i.e. NEDD4L, PRKCA, EDNRA-GNAS, and YEATS4) and discuss how these genes might be related to TZD BP-response mechanism. Understanding the association between these genes and TZD BP mechanism might facilitate the development of new drugs and therapeutic approaches based on a deeper understanding of the determinants of BP-response. Copyright © 2016. Published by Elsevier Ltd.

  17. Evidence for two concurrent inhibitory mechanisms during response preparation

    Science.gov (United States)

    Duque, Julie; Lew, David; Mazzocchio, Riccardo; Olivier, Etienne; Ivry, Richard B.

    2010-01-01

    Inhibitory mechanisms are critically involved in goal-directed behaviors. To gain further insight into how such mechanisms shape motor representations during response preparation, motor evoked potentials (MEPs) elicited by transcranial magnetic stimulation (TMS) and H-reflexes were recorded from left hand muscles during choice reaction time tasks. The imperative signal, which indicated the required response, was always preceded by a preparatory cue. During the post-cue delay period, left MEPs were suppressed when the left hand had been cued for the forthcoming response, suggestive of a form of inhibition specifically directed at selected response representations. H-reflexes were also suppressed on these trials, indicating that the effects of this inhibition extend to spinal circuits. In addition, left MEPs were suppressed when the right hand was cued, but only when left hand movements were a possible response option before the onset of the cue. Notably, left hand H-reflexes were not modulated on these trials, consistent with a cortical locus of inhibition that lowers the activation of task-relevant, but non-selected responses. These results suggest the concurrent operation of two inhibitory mechanisms during response preparation: one decreases the activation of selected responses at the spinal level, helping to control when selected movements should be initiated by preventing their premature release; a second, upstream mechanism helps to determine what response to make during a competitive selection process. PMID:20220014

  18. Biochemical basis for the action of radioprotective drugs

    International Nuclear Information System (INIS)

    Romantsev, E.F.; Blokhina, V.D.; Zhulanova, Z.I.; Koshcheenko, N.N.; Filippovich, I.V.

    1977-01-01

    The hypothesis of complex biochemical mechanism of action of radioprotective drugs is described. Shortly after injection of radioprotective aminothiols into animals the inhibition of radiosensitive biochemical processes: DNA and RNA synthesis, protein synthesis and oxidative phosphorylation has been observed. The molecular mechanism of these phenomena consists of radioprotectors ability to form adsorption, thioester, amide, and disulphide bonds with appropriate enzymes. The curve reflecting the formation and breakdown of mixed disulphides between radioprotectors and proteins coincides well with that reflecting the radioprotective effect dependence on time. The radiobiological significance of molecular interactions observed may be interpreted as the diminution in ''spoiled'' molecules formation (inhibition of replication) and elevation in repartion rate. The inhibition of biochemical processes has the reversible nature and last for short time. The drugs acting according to so-called oxygen effect protect also by means of biochemical mechanisms. The molecular mechanism is mediated through their ability to bind to receptors, and biologically important molecules and macromolecules. As a result the inhibition of radiosensitive processes occurs, the ''spoiled'' molecules number is diminished and reparation takes place more easily. The idea on the complex biochemical mechanism of action of radioprotectors correlates with the proposal on complex biochemical mechanism responsible for interphase death occured after irradiation

  19. A predictive control scheme for automated demand response mechanisms

    NARCIS (Netherlands)

    Lampropoulos, I.; Bosch, van den P.P.J.; Kling, W.L.

    2012-01-01

    The development of demand response mechanisms can provide a considerable option for the integration of renewable energy sources and the establishment of efficient generation and delivery of electrical power. The full potential of demand response can be significant, but its exploration still remains

  20. Biochemical Analysis Reveals the Multifactorial Mechanism of Histone H3 Clipping by Chicken Liver Histone H3 Protease

    KAUST Repository

    Chauhan, Sakshi; Mandal, Papita; Tomar, Raghuvir S.

    2016-01-01

    Proteolytic clipping of histone H3 has been identified in many organisms. Despite several studies, the mechanism of clipping, the substrate specificity, and the significance of this poorly understood epigenetic mechanism are not clear. We have

  1. A Dynamic Market Mechanism for Markets with Shiftable Demand Response

    DEFF Research Database (Denmark)

    Hansen, Jacob; Knudsen, Jesper Viese; Kiani, Arman

    2014-01-01

    renewables, this mechanism accommodates both consumers with a shiftable Demand Response and an adjustable Demand Response. The overall market mechanism is evaluated in a Day Ahead Market and is shown in a numerical example to result in a reduction of the cost of electricity for the consumer, as well......In this paper, we propose a dynamic market mechanism that converges to the desired market equilibrium. Both locational marginal prices and the schedules for generation and consumption are determined through a negotiation process between the key market players. In addition to incorporating...

  2. Elastin-like protein-hyaluronic acid (ELP-HA) hydrogels with decoupled mechanical and biochemical cues for cartilage regeneration.

    Science.gov (United States)

    Zhu, Danqing; Wang, Huiyuan; Trinh, Pavin; Heilshorn, Sarah C; Yang, Fan

    2017-05-01

    Hyaluronic acid (HA) is a major component of cartilage extracellular matrix and is an attractive material for use as 3D injectable matrices for cartilage regeneration. While previous studies have shown the promise of HA-based hydrogels to support cell-based cartilage formation, varying HA concentration generally led to simultaneous changes in both biochemical cues and stiffness. How cells respond to the change of biochemical content of HA remains largely unknown. Here we report an adaptable elastin-like protein-hyaluronic acid (ELP-HA) hydrogel platform using dynamic covalent chemistry, which allows variation of HA concentration without affecting matrix stiffness. ELP-HA hydrogels were created through dynamic hydrazone bonds via the reaction between hydrazine-modified ELP (ELP-HYD) and aldehyde-modified HA (HA-ALD). By tuning the stoichiometric ratio of aldehyde groups to hydrazine groups while maintaining ELP-HYD concentration constant, hydrogels with variable HA concentration (1.5%, 3%, or 5%) (w/v) were fabricated with comparable stiffness. To evaluate the effects of HA concentration on cell-based cartilage regeneration, chondrocytes were encapsulated within ELP-HA hydrogels with varying HA concentration. Increasing HA concentration led to a dose-dependent increase in cartilage-marker gene expression and enhanced sGAG deposition while minimizing undesirable fibrocartilage phenotype. The use of adaptable protein hydrogels formed via dynamic covalent chemistry may be broadly applicable as 3D scaffolds with decoupled niche properties to guide other desirable cell fates and tissue repair. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Morphological and biochemical mechanisms of changes in buccal epithelocytes and erythrocytes in children suffering psycho-emotional stress

    Directory of Open Access Journals (Sweden)

    R. Z. Gan

    2017-08-01

    Full Text Available The article provides experimental data on the impact of psychoemotional stress on cytological, morphometric, immunological and biochemical indicators in 7–11 year old children. We examined 100 children of primary school age, who were divided into the main group (50 children who had been resettled from the war zone in Eastern Ukraine and the control group (50 children, who live in Ivano-Frankivs’k. We used morphological (light-optical and electromicroscopic and mor phometric analysis of buccal epithelium and peripheral blood erythrocytes, biochemical methods for identifying the products of peroxidation of lipids, ceruloplasmin and ferritin according to widely used methods. Morphological methods revealed that under psychoemotional stress, the size of the nuclei and buccal epithelial cells significantly decreases, and their nucleo-cytoplasmic ratio changes towards increase in the share of cytoplasm, and the indicators of coefficient of buccal epithelial cell shape indicate significant deformation of those cells. Similar changes were observed in the erythrocytes of peripheral blood. In the blood, we observed an increase in the CD95+ concentration of lymphocytes. Clearly manifested changes in morphological and morphometric indicators of buccal epithelium and erythrocytes when there is an increase in the CD95+ level of lymphocytes indicate the development of a systematic apoptosis reaction of the studied cells in the condition of psychoemotional stress. Also we observed clearly manifested changes in the coefficient of erythrocytes’ shape, their size and perimeter, increase in the number of reversibly and irreversibly changed cells, which with increase in free radical oxidation, indicates disorders in the organism’s antioxidant protection system in general and requires a pathogenically grounded programme of treating complications related to psychoemotional stress among 7–11 year old children who were resettled fom the combat zone in Eastern

  4. Perceived decisional responsibility for mechanical ventilation and weaning

    DEFF Research Database (Denmark)

    Haugdahl, Hege S; Storli, Sissel; Rose, Louise

    2014-01-01

    AIM: To explore variability in perceptions of nurse managers and physician directors regarding roles, responsibilities and clinical-decision making related to mechanical ventilator weaning in Norwegian intensive care units (ICUs). BACKGROUND: Effective teamwork is crucial for providing optimal...... patient care in ICU. More knowledge on nurses' and physicians' perceptions of responsibility in clinical decision-making for mechanical ventilation is needed. METHODS: Self-administered survey of mechanical ventilation and weaning responsibilities was sent to nurse managers and physician directors...... of Norwegian adult ICUs. Nurses' decisional influence and autonomy were estimated on a numeric rating scale (NRS) from 0 to 10 (least to most). RESULTS: Response rate was 38/60 (63%) nurses and 38/52 (73%) physicians. On the NRS nurse managers perceived the autonomy and influence of nurses' ventilator...

  5. A linear chromatic mechanism drives the pupillary response.

    Science.gov (United States)

    Tsujimura, S.; Wolffsohn, J. S.; Gilmartin, B.

    2001-01-01

    Previous studies have shown that a chromatic mechanism can drive pupil responses. The aim of this research was to clarify whether a linear or nonlinear chromatic mechanism drives pupillary responses by using test stimuli of various colours that are defined in cone contrast space. The pupil and accommodation responses evoked by these test stimuli were continuously and simultaneously objectively measured by photorefraction. The results with isochromatic and isoluminant stimuli showed that the accommodative level remained approximately constant (< 0.25 D change in mean level) even when the concurrent pupillary response was large (ca. 0.30 mm). The pupillary response to an isoluminant grating was sustained, delayed (by ca. 60 ms) and larger in amplitude than that for a isochromatic uniform stimulus, which supports previous work suggesting that the chromatic mechanism contributes to the pupillary response. In a second experiment, selected chromatic test gratings were used and isoresponse contours in cone contrast space were obtained. The results showed that the isoresponse contour in cone contrast space is well described (r(2) = 0.99) by a straight line with a positive slope. The results indicate that a /L - M/ linear chromatic mechanism, whereby a signal from the long wavelength cone is subtracted from that of the middle wavelength cone and vice versa, drives pupillary responses. PMID:11674867

  6. Melatonin and schistosomal antigens ameliorate the anti-oxidative and biochemical response to Schistosoma mansoni infection in hamster

    Directory of Open Access Journals (Sweden)

    Omema SALAH

    2009-04-01

    Full Text Available The present study was designed to investigate the potential protective effect of melatonin as an antioxidant separately or in combination with antigens (cercarial; CAP or soluble worm; SWAP against Schistosoma mansoni infection in hamsters. Each hamster was sensitized with an initial immunization of 0.6 ml of the extracted antigen (30 μg protein/mL. After four days, a second injection of 0.4 mL was given (20 μg protein/mL. Then, each hamster was exposed to 260 ± 20 S.mansoni cercariae followed with melatonin treatment (3.5 mg/kg for thirty days from the 1st day of post infection. Levels of lipid peroxidation (LPO products, catalase (CAT activity, hepatic glutathione (GSH and biochemical changes in the liver and kidneys functions were investigated. The results revealed a high significant increasing of LPO and decreasing of CAT and GSH in liver of infected hamsters. Biochemical observations showed severe damage in the liver enzyme activities and increasing cholesterol level in infected animals. Melatonin co-treatment with antigen to the infected-hamster attenuated the increase of LPO and restored the activity of CAT and levels of hepatic GSH. Also, the biochemical damages in the liver and kidneys functions were reduced. The present study suggests that melatonin may be useful in combating free radical-induced damage due to infection toxicity. The immunization with previous antigens resulted in a remarkable improvement on the liver enzyme activities, which were increased after infection. Thus, vaccination of hamsters with antigens (both CAP and SWAP and melatonin treatment has more potent effect on the enhancement of antioxidant and biochemical of S. mansoni infected-hamster than each treatment separately. Immunization of the hamster with SWAP followed by melatonin was the best way among the other regime treatments to improve the biochemical and antioxidant parameters of the infected-hamsters

  7. Biochemical Factors Modulating Cellular Neurotoxicity of Methylmercury

    Directory of Open Access Journals (Sweden)

    Parvinder Kaur

    2011-01-01

    Full Text Available Methylmercury (MeHg, an environmental toxicant primarily found in fish and seafood, poses a dilemma to both consumers and regulatory authorities, given the nutritional benefits of fish consumption versus the possible adverse neurological damage. Several studies have shown that MeHg toxicity is influenced by a number of biochemical factors, such as glutathione (GSH, fatty acids, vitamins, and essential elements, but the cellular mechanisms underlying these complex interactions have not yet been fully elucidated. The objective of this paper is to outline the cellular response to dietary nutrients, as well as to describe the neurotoxic exposures to MeHg. In order to determine the cellular mechanism(s of toxicity, the effect of pretreatment with biochemical factors (e.g., N-acetyl cysteine, (NAC; diethyl maleate, (DEM; docosahexaenoic acid, (DHA; selenomethionine, SeM; Trolox and MeHg treatment on intercellular antioxidant status, MeHg content, and other endpoints was evaluated. This paper emphasizes that the protection against oxidative stress offered by these biochemical factors is among one of the major mechanisms responsible for conferring neuroprotection. It is therefore critical to ascertain the cellular mechanisms associated with various dietary nutrients as well as to determine the potential effects of neurotoxic exposures for accurately assessing the risks and benefits associated with fish consumption.

  8. Hypertensive response to exercise: mechanisms and clinical implication

    OpenAIRE

    Kim, Darae; Ha, Jong-Won

    2016-01-01

    A hypertensive response to exercise (HRE) is frequently observed in individuals without hypertension or other cardiovascular disease. However, mechanisms and clinical implication of HRE is not fully elucidated. Endothelial dysfunction and increased stiffness of large artery contribute to development of HRE. From neurohormonal aspects, excess stimulation of sympathetic nervous system and augmented rise of angiotensin II seems to be important mechanism in HRE. Increasing evidences indicates tha...

  9. Nociceptive responses to thermal and mechanical stimulations in awake pigs

    DEFF Research Database (Denmark)

    di Giminiani, Pierpaolo; Petersen, Lars Jelstrup; Herskin, Mette S.

    2013-01-01

    body sizes (30 and 60 kg) were exposed to thermal (CO(2) laser) and mechanical (pressure application measurement device) stimulations to the flank and the hind legs in a balanced order. The median response latency and the type of behavioural response were recorded. RESULTS: Small pigs exhibited...... animal studies in a large species require further examination. This manuscript describes the initial development of a porcine model of cutaneous nociception and focuses on interactions between the sensory modality, body size and the anatomical location of the stimulation site. METHODS: Pigs of different...... significantly lower pain thresholds (shorter latency to response) than large pigs to thermal and mechanical stimulations. Stimulations at the two anatomical locations elicited very distinct sets of behavioural responses, with different levels of sensitivity between the flank and the hind legs. Furthermore...

  10. Some of physiological and biochemical responses of Prunus amygdalus to air pollution of the Shazand industrial area

    Directory of Open Access Journals (Sweden)

    Mehri Askari Mehrabadi

    2016-06-01

    Full Text Available In today's world where human life is dependent on the industry, the problems impose in the human life along with theachievement of growing in the field of industrial works. One of the challenging problems is entry of pollutants into air that has the destructive effects on human life and environment especially plants. Plants show different responses against the air pollutants. Plant responses can be vary due to climate, geography and plant species. In this study, the effects of air pollutants in the Shazand industrial area (refinery, petrochemical and thermal power stationin Markazi province has been checked on almond. For this purpose, the leaves of almond in Haftadgholle (control area, Shazand (closest city to industrial zone and Kazaz (adjacent industrial zone were collected. Also, soil samples were collected from three areas to determine lead and zinc amounts in soil. Results showed that proline, sulfur, heavy metals (lead and zinc and lipid peroxidation enhanced significantly in Kazaz and Shazand in compared with Haftadgholle, while antioxidant activity of catalase, superoxide dismutase and guaicol peroxidase didn’t significant changes in three areas. The increase of sulfur amount in leaves, lead and zinc in soil of the Kazaz and Shazand regions could be one of the reasons to prove the presence of pollutants in these areas. The increase of lipid peroxidation indicative plant damage against the air pollution. The plant defense mechanism against of stress is the increase of non-enzymatic antioxidant proline. No change in chlorophylls and protein contents reflects increased resistance to the stress.

  11. The mechanism distinguishability problem in biochemical kinetics: the single-enzyme, single-substrate reaction as a case study.

    Science.gov (United States)

    Schnell, Santiago; Chappell, Michael J; Evans, Neil D; Roussel, Marc R

    2006-01-01

    A theoretical analysis of the distinguishability problem of two rival models of the single enzyme-single substrate reaction, the Michaelis-Menten and Henri mechanisms, is presented. We also outline a general approach for analysing the structural indistinguishability between two mechanisms. The approach involves constructing, if possible, a smooth mapping between the two candidate models. Evans et al. [N.D. Evans, M.J. Chappell, M.J. Chapman, K.R. Godfrey, Structural indistinguishability between uncontrolled (autonomous) nonlinear analytic systems, Automatica 40 (2004) 1947-1953] have shown that if, in addition, either of the mechanisms satisfies a particular criterion then such a transformation always exists when the models are indistinguishable from their experimentally observable outputs. The approach is applied to the single enzyme-single substrate reaction mechanism. In principle, mechanisms can be distinguished using this analysis, but we show that our ability to distinguish mechanistic models depends both on the precise measurements made, and on our knowledge of the system prior to performing the kinetics experiments.

  12. Effects of L-Carnitine Theraphy On Methabolic and Biochemical Changes Caused By Propofol Infusion in Rabbits Undergoing Mechanical Ventilation

    Directory of Open Access Journals (Sweden)

    Savaş Yılbaş

    2011-08-01

    Full Text Available Objective: Increased lipid mass in the body secondary to long term and high doses of propofol infusion may cause carnitine deficiency. In this study; we aimed to investigate the effects of carnitine, given for treatment purposes and have not been analyzed before, during high doses of propofol infusion in rabbits. Materials and Methods: Following ethical committee approval; 2500-3500 grams weight, 3-4 months-old, healthy, male, white 20 New Zealand rabbits were included in the study. The rabbits were premedicated with xsilazine and atropine. After the preparation period including tracheostomy, monitorization, catheterization of the ear arteries and veins and urinary vesical; basal blood samples for biochemical and metabolic parameters included in the study were taken and rabbits were divided into 4 groups, 5 rabbits in each,randomly (Group P, Group PC, Group S, Group SC. For sedation 20 mg/kg/h propofol infusion was given to Group P, 20 mg/kg/h propofol and 100 mg/kg L-carnitine infusions were given simultaneously to Group PC, sevoflurane for sedation was given to Group S, sevoflurane and L-carnitine infusion were given simultaneously to Group SC. Their sedation levels were evaluated every 30 minutes and their vital signs were reported every 15 minutes. Every 2 hours arterial blood gases analysis and every 12 hours electrolytes and metabolic parameters were repeated. Euthanasia with high doses (60 mg/kg of ketamin is performed for rabbits that were alive at the end of 24 hours. Results: All groups were similar in weight, vital parameters, all parameters searched in arterial blood gases, life time, liver enzymes, lactate dehydrogenase, serum electrolytes, creatine kinase and renal function tests (p>0.05. However; amylase levels before death or euthanasia were lower in Group PC compared to other groups;myoglobin and CK-MB levels in Group P were higher compared to other groups; cholesterol levels at 12th hour, before death or euthanasia were higher

  13. Response to various periods of mechanical stimuli in Physarum plasmodium

    International Nuclear Information System (INIS)

    Umedachi, Takuya; Ito, Kentaro; Kobayashi, Ryo; Ishiguro, Akio; Nakagaki, Toshiyuki

    2017-01-01

    Response to mechanical stimuli is a fundamental and critical ability for living cells to survive in hazardous conditions or to form adaptive and functional structures against force(s) from the environment. Although this ability has been extensively studied by molecular biology strategies, it is also important to investigate the ability from the viewpoint of biological rhythm phenomena so as to reveal the mechanisms that underlie these phenomena. Here, we use the plasmodium of the true slime mold Physarum polycephalum as the experimental system for investigating this ability. The plasmodium was repetitively stretched for various periods during which its locomotion speed was observed. Since the plasmodium has inherent oscillation cycles of protoplasmic streaming and thickness variation, how the plasmodium responds to various periods of external stretching stimuli can shed light on the other biological rhythm phenomena. The experimental results show that the plasmodium exhibits response to periodic mechanical stimulation and changes its locomotion speed depending on the period of the stretching stimuli. (paper)

  14. The mechanical response of lithographically defined break junctions

    International Nuclear Information System (INIS)

    Huisman, E. H.; Bakker, F. L.; Wees, B. J. van; Trouwborst, M. L.; Molen, S. J. van der

    2011-01-01

    We present an experimental study on the mechanical response of lithographically defined break junctions by measuring atomic chain formation, tunneling traces and Gundlach oscillations. The calibration factor, i.e., the ratio between the electrode movement and the bending of the substrate, is found to be 2.5 times larger than expected from a simple mechanical model. This result is consistent with previous finite-element calculations. Comparing different samples, the mechanical response is found to be similar for electrode separations >4 A. However, for smaller electrode separations significant sample-to-sample variations appear. These variations are ascribed to differences in the shape of the two electrodes on the atomic scale which cannot be controlled by the fabrication process.

  15. The prestress-dependent mechanical response of magnetorheological elastomers

    International Nuclear Information System (INIS)

    Feng, Jiabin; Xuan, Shouhu; Liu, Taixiang; Ge, Lin; Zhou, Hong; Gong, Xinglong; Yan, Lixun

    2015-01-01

    Magnetorheological elastomers (MREs) are intelligent materials consisting of a rubber matrix filled with magnetizable particles. In many engineering applications, MREs are usually pre-confined and work with constraint-induced prestress. The prestress can significantly change the mechanical properties of MREs. In this work, the influence of prestress on the mechanical response of MREs is studieds both experimentally and theoretically. The storage modulus as well as the magneto-induced modulus change non-linearly with increasing prestress and three regions can be found in the non-linear change. In the non-full contact region, the MREs present poor mechanical properties at small prestress due to the unevenness of the sample surface. In the full contact region, the MREs are under suitable prestress, thus they present good mechanical properties. In the overload region, the pre-configured microstructure of the MREs is destroyed under the large prestress. Moreover, an analytical model is proposed to study the prestress-dependent mechanical properties of MREs. It is revealed that the prestress can change the inter-particle distance, thus further affecting the mechanical response of MREs. (paper)

  16. Early plant growth and biochemical responses induced by Azospirillum brasilense Sp245 lipopolysaccharides in wheat (Triticum aestivum L.) seedlings are attenuated by procyanidin B2.

    Science.gov (United States)

    Vallejo-Ochoa, Juan; López-Marmolejo, Mariel; Hernández-Esquivel, Alma Alejandra; Méndez-Gómez, Manuel; Suárez-Soria, Laura Nicolasa; Castro-Mercado, Elda; García-Pineda, Ernesto

    2018-03-01

    This study analyzes the effects of procyanidin B2 on early wheat plant growth and plant biochemical responses promoted by lipopolysaccharides (LPS) derived from the rhizobacteria Azospirillum brasilense Sp245. Measurements of leaf, root length, fresh weight, and dry weight showed in vitro plant growth stimulation 4 days after treatment with A. brasilense as well as LPS. Superoxide anion (O 2 ·- ) and hydrogen peroxide (H 2 O 2 ) levels increased in seedling roots treated with LPS (100 μg mL -1 ). The chlorophyll content in leaf decreased while the starch content increased 24 h after treatment in seedling roots. The LPS treatment induced a high increase in total peroxidase (POX) (EC 1.11.1.7) activity and ionically bound cell wall POX content in roots, when compared to respective controls. Early plant growth and biochemical responses observed in wheat seedlings treated with LPS were inhibited by the addition of procyanidin B2 (5 μg mL -1 ), a B type proanthocyanidin (PAC), plant-derived polyphenolic compound with binding properties of LPS. All results suggest first that the ionically bound cell wall POX enzymes could be a molecular target of A. brasilense LPS, and second that the recognition or association of LPS by plant cells is required to activate plant responses. This last event could play a critical role during plant growth regulation by A. brasilense LPS.

  17. IMPROVEMENT OF THE BIOCHEMICAL AND METABOLIC BIOMARKERS IN RESPONSE TO THE THERAPEUTIC MANAGEMENT IN KETOTIC DAIRY COWS

    Directory of Open Access Journals (Sweden)

    S. Biswal

    2017-06-01

    Full Text Available The aim of this study was to investigate the changes in biochemical and metabolic biomarkers in urine, milk and blood of ketotic dairy cows in and around Bhubaneswar, Odisha, India, before and after treatment. Thirty of 100 ketotic cows identified from a population of 1014 cows were equally divided into three groups of 10 animals each while group IV selected from the population under investigation was treated as control. Following treatment in group III, the ALT, AST, ALP and LDH levels observed in ketotic animals at pre-treatment were decreased maximum at post-treatment. It can be concluded that the treatment package comprising of Dextrose (25% intravenously, sodium propionate (orally, liver extract with vitamin B complex injection intramuscularly, dexamethasone injection intravenously and insulin injection subcutaneously practiced in group III was the most efficacious and superior to group I and II in the treatment of bovine ketosis for bringing the biochemical profiles to normal. The therapeutic regimen of group III exhibited better performance than other groups might be due to the synergistic therapeutic effect of insulin in glucose metabolism.

  18. Immune and biochemical responses in skin differ between bovine hosts genetically susceptible and resistant to the cattle tick Rhipicephalus microplus.

    Science.gov (United States)

    Franzin, Alessandra Mara; Maruyama, Sandra Regina; Garcia, Gustavo Rocha; Oliveira, Rosane Pereira; Ribeiro, José Marcos Chaves; Bishop, Richard; Maia, Antônio Augusto Mendes; Moré, Daniela Dantas; Ferreira, Beatriz Rossetti; Santos, Isabel Kinney Ferreira de Miranda

    2017-01-31

    Ticks attach to and penetrate their hosts' skin and inactivate multiple components of host responses in order to acquire a blood meal. Infestation loads with the cattle tick, Rhipicephalus microplus, are heritable: some breeds carry high loads of reproductively successful ticks, whereas in others, few ticks feed and reproduce efficiently. In order to elucidate the mechanisms that result in the different outcomes of infestations with cattle ticks, we examined global gene expression and inflammation induced by tick bites in skins from one resistant and one susceptible breed of cattle that underwent primary infestations with larvae and nymphs of R. microplus. We also examined the expression profiles of genes encoding secreted tick proteins that mediate parasitism in larvae and nymphs feeding on these breeds. Functional analyses of differentially expressed genes in the skin suggest that allergic contact-like dermatitis develops with ensuing production of IL-6, CXCL-8 and CCL-2 and is sustained by HMGB1, ISG15 and PKR, leading to expression of pro-inflammatory chemokines and cytokines that recruit granulocytes and T lymphocytes. Importantly, this response is delayed in susceptible hosts. Histopathological analyses of infested skins showed inflammatory reactions surrounding tick cement cones that enable attachment in both breeds, but in genetically tick-resistant bovines they destabilized the cone. The transcription data provided insights into tick-mediated activation of basophils, which have previously been shown to be a key to host resistance in model systems. Skin from tick-susceptible bovines expressed more transcripts encoding enzymes that detoxify tissues. Interestingly, these enzymes also produce volatile odoriferous compounds and, accordingly, skin rubbings from tick-susceptible bovines attracted significantly more tick larvae than rubbings from resistant hosts. Moreover, transcripts encoding secreted modulatory molecules by the tick were significantly more

  19. Response of mechanical properties of glasses to their chemical, thermal and mechanical histories

    DEFF Research Database (Denmark)

    Yue, Yuanzheng

    , surface, thermal history or excess entropy of the final glass state. Here I review recent progresses in understanding of the responses of mechanical properties of oxide glasses to the compositional variation, thermal history and mechanical deformation. The tensile strength, elastic modulus and hardness...... of glass fibers are dependent on the thermal history (measured as fictive temperature), tension, chemical composition and redox state. However, the fictive temperature affects the hardness of bulk glass in a complicated manner, i.e., the effect does not exhibit a clear regularity in the range...... and micro-cracks occurring during indentation of a glass is discussed briefly. Finally I describe the future perspectives and challenges in understanding responses of mechanical properties of oxide glasses to compositional variation, thermal history and mechanical deformation....

  20. Molecular mechanisms of radioadaptive responses in human lymphoblastoid cells

    International Nuclear Information System (INIS)

    Kakimoto, Ayana; Taki, Keiko; Nakajima, Tetsuo

    2008-01-01

    Radioadaptive response is a biodefensive response observed in a variety of mammalian cells and animals where exposure to low dose radiation induces resistance against the subsequent high dose radiation. Elucidation of its mechanisms is important for risk estimation of low dose radiation because the radioadaptive response implies that low dose radiation affects cells/individuals in a different manner from high dose radiation. In the present study, we explored the molecular mechanisms of the radioadaptive response in human lymphoblastoid cells AHH-1 in terms of mutation at the hypoxanthine phosphoribosyltransferase (HPRT) gene locus. First we observed that preexposure to the priming dose in the range from 0.02 Gy to 0.2 Gy significantly reduced mutation frequency at HPRT gene locus after irradiation with 3 Gy of X rays. As no significant adaptive response was observed with the priming dose of 0.005 Gy, it was indicated that the lower limit of the priming dose to induce radioadaptive response may be between 0.005 Gy and 0.02 Gy. Second, we examined the effect of 3-amino-benzamide (3AB), an inhibitor of poly(ADP-ribose)polymerase1, which has been reported to inhibit the radioadaptive response in terms of chromosome aberration. However we could observe significant radioadaptive responses in terms of mutation even in the presence of 3AB. These findings suggested that molecular mechanisms of the radioadaptive response in terms of mutation may be different from that for radioadaptive responses in terms of chromosomal aberration, although we could not exclude a possibility that the differential effects of 3AB was due to cell type difference. Finally, by performing a comprehensive analysis of alterations in gene expression using high coverage expression profiling (HiCEP), we could identify 17 genes whose expressions were significantly altered 6 h after irradiation with 0.02 Gy. We also found 17 and 20 genes, the expressions of which were different with or without priming

  1. Item response theory analysis of the mechanics baseline test

    Science.gov (United States)

    Cardamone, Caroline N.; Abbott, Jonathan E.; Rayyan, Saif; Seaton, Daniel T.; Pawl, Andrew; Pritchard, David E.

    2012-02-01

    Item response theory is useful in both the development and evaluation of assessments and in computing standardized measures of student performance. In item response theory, individual parameters (difficulty, discrimination) for each item or question are fit by item response models. These parameters provide a means for evaluating a test and offer a better measure of student skill than a raw test score, because each skill calculation considers not only the number of questions answered correctly, but the individual properties of all questions answered. Here, we present the results from an analysis of the Mechanics Baseline Test given at MIT during 2005-2010. Using the item parameters, we identify questions on the Mechanics Baseline Test that are not effective in discriminating between MIT students of different abilities. We show that a limited subset of the highest quality questions on the Mechanics Baseline Test returns accurate measures of student skill. We compare student skills as determined by item response theory to the more traditional measurement of the raw score and show that a comparable measure of learning gain can be computed.

  2. Passive and active response of bacteria under mechanical compression

    Science.gov (United States)

    Garces, Renata; Miller, Samantha; Schmidt, Christoph F.; Byophysics Team; Institute of Medical Sciences Collaboration

    Bacteria display simple but fascinating cellular structures and geometries. Their shapes are the result of the interplay between osmotic pressure and cell wall construction. Typically, bacteria maintain a high difference of osmotic pressure (on the order of 1 atm) to the environment. This pressure difference (turgor pressure) is supported by the cell envelope, a composite of lipid membranes and a rigid cell wall. The response of the cell envelope to mechanical perturbations such as geometrical confinements is important for the cells survival. Another key property of bacteria is the ability to regulate turgor pressure after abrupt changes of external osmotic conditions. This response relies on the activity of mechanosensitive (MS) channels: membrane proteins that release solutes in response to excessive stress in the cell envelope. We here present experimental data on the mechanical response of the cell envelope and on turgor regulation of bacteria subjected to compressive forces. We indent living cells with micron-sized beads attached to the cantilever of an atomic force microscope (AFM). This approach ensures global deformation of the cell. We show that such mechanical loading is sufficient to gate mechanosensitive channels in isosmotic conditions.

  3. Mechanisms of the placebo response in pain in osteoarthritis.

    Science.gov (United States)

    Abhishek, A; Doherty, M

    2013-09-01

    Administration of a placebo associates with symptomatic improvement in many conditions--the so-called placebo response. In this review we explain the concept of placebo response, examine the data that supports existence in osteoarthritis (OA), and discuss its possible mechanisms and determinants. A Pubmed literature search was carried out. Key articles were identified, and their findings discussed in a narrative review. Pain, stiffness, self-reported function and physician-global assessment in OA clearly improve in response to placebo. However, more objective measures such as quadriceps strength and radiographic progression appear less responsive. Although not directly studied in OA, contextual effects, patient expectation and conditioning are believed to be the main mechanisms. Neurotransmitter changes that mediate placebo-induced analgesia include increased endogenous opioid levels, increased dopamine levels, and reduced levels of cholecystokinin. Almost all parts of the brain involved in pain processing are influenced during placebo-induced analgesia. Determinants of the magnitude of placebo response include the patient-practitioner interaction, treatment response expectancy, knowledge of being treated, patient personality traits and placebo specific factors such as the route and frequency of administration, branding, and treatment costs. Clearer understanding of the neurobiology of placebo response validates its existence as a real phenomenon. Although routine administration of placebo for symptomatic improvement is difficult to justify, contextual factors that enhance treatment response should be employed in the management of chronic painful conditions such as OA where available treatments have only modest efficacy. Copyright © 2013 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  4. Structural and biochemical changes in dermis of sea cucumber (Stichopus japonicus) during autolysis in response to cutting the body wall.

    Science.gov (United States)

    Liu, Yu-Xin; Zhou, Da-Yong; Liu, Zi-Qiang; Lu, Ting; Song, Liang; Li, Dong-Mei; Dong, Xiu-Ping; Qi, Hang; Zhu, Bei-Wei; Shahidi, Fereidoon

    2018-02-01

    The autolysis of sea cucumber body wall is caused by endogenous proteolysis of its structural elements. However, changes in collagen fibrils, collagen fibres and microfibrils, the major structural elements in sea cucumber body wall during autolysis are less clear. Autolysis of sea cucumber (S. japonicus) was induced by cutting the body wall, and the structural and biochemical changes in its dermis were investigated using electron microscopy, differential scanning calorimetry, infrared spectroscopy, electrophoresis, and chemical analysis. During autolysis, both collagen fibres and microfibrils gradually degraded. In contrast, damage to microfibrils was more pronounced. Upon massive autolysis, collagen fibres disaggregated into collagen fibril bundles and individual fibrils due to the fracture of interfibrillar bridges. Meanwhile, excessive unfolding of collagen fibrils occurred. However, there was only slight damage to collagen monomers. Therefore, structural damage in collagen fibres, collagen fibrils and microfibrils rather than monomeric collagen accounts for autolysis of S. japonicus dermis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Biochemical liver function test parameter levels in relation to treatment response in liver metastatic colorectal patients treated with FOLFOX4 with or without bevacizumab

    Directory of Open Access Journals (Sweden)

    Denić Kristina

    2016-01-01

    Full Text Available Introduction. Combined use of bevacizumab and conventional anticancer drugs leads to a significant improvement of treatment response in patients with metastatic colorectal carcinoma (CRC. Conventional treatment protocols exert undesired effects on the liver tissue. Hepatotoxic effects are manifested as a disturbance of liver function test parameters. The relation between clinical outcome and disorder of biochemical parameters has not been completely evaluated. Objective. The objective of our study was to examine whether clinical outcome in patients with liver metastatic CRC correlates with the level of liver function test parameters. Methods. The study included 96 patients with untreated liver metastatic CRC who received FOLFOX4 protocol with or without bevacizumab. Biochemical liver parameters were performed before and after the treatment completion. Treatment response was evaluated as disease regression, stable disease, and disease progression. The patients were divided into three groups according to the accomplished treatment response. Results. In the group of patients with disease regression the post-treatment levels of aspartate aminotransferase, alanine aminotransferase, and bilirubin were statistically significantly increased. In contrast to this, gamma-glutamyltransferase and protein post-treatment values were significantly lower in relation to initial values. In patients with stable disease, difference was found only in the level of proteins being lower after the treatment. In patients with disease progression, values of aspartate aminotransferase and bilirubin were significantly increased after completed treatment. Conclusion. Treatment responses are not completely associated with the level of liver function test parameters. The only parameter which correlated with treatment response is gamma-glutamyltransferase. Its decrease is accompanied with disease regression.

  6. Physiological and biochemical response to Omega-3 plus as a dietary supplement to growing goats under hot summer conditions

    Directory of Open Access Journals (Sweden)

    Fatma Edrees Ibrahim Teama

    2016-04-01

    Full Text Available ABSTRACT The objective of the present study was to assess the effect of dietary supplementation of Omega-3 plus on some the physiological and biochemical traits in growing Baladi goats under hot summer conditions. Thirty-four growing male goats (4-5 months old were randomly divided into two equal groups. Animals in group 1 were fed a concentrate feed mixture (CFM, which was the control group. Goats in group 2 (the experimental group were offered Omega-3 plus (1,000 mg/animal day-1 (30% fish oil, containing 18% eicosapentaenoic acid and 12% docosahexaenoic acid + 100 mg wheat germ oil (0.22% tocopherols daily in addition to the basal diet for four months (the experimental period during the hot summer season. Body weight (BW changes of both groups were recorded monthly during the experiment. Blood samples were collected monthly, and total protein, immunoglobulin G (IgG, total cholesterol, triglycerides, liver enzymes (AST and ALT, blood urea nitrogen, serum creatinine, and thyroid hormones (T3 and T4 were estimated. A significant increase in the live BW of growing goats was recorded as a result of dietary supplementation of Omega-3 plus. Total protein, IgG, and T3 levels were higher than those obtained with control. In contrast, total cholesterol, triglycerides, urea, ALT, and AST levels were significantly reduced. The serum concentration of creatinine and T4 levels was indistinguishable from those of control. Addition of Omega-3 plus as a dietary supplement to growing goats under hot summer conditions increases their daily weight gain and improves their general physiological and biochemical status by decreasing total cholesterol, triglycerides, urea, ALT, and AST. It is thus suggested that Omega-3 plus should be used as a supplement in the growth period of goats.

  7. Structural, Biochemical, and Computational Studies Reveal the Mechanism of Selective Aldehyde Dehydrogenase 1A1 Inhibition by Cytotoxic Duocarmycin Analogues.

    Science.gov (United States)

    Koch, Maximilian F; Harteis, Sabrina; Blank, Iris D; Pestel, Galina; Tietze, Lutz F; Ochsenfeld, Christian; Schneider, Sabine; Sieber, Stephan A

    2015-11-09

    Analogues of the natural product duocarmycin bearing an indole moiety were shown to bind aldehyde dehydrogenase 1A1 (ALDH1A1) in addition to DNA, while derivatives without the indole solely addressed the ALDH1A1 protein. The molecular mechanism of selective ALDH1A1 inhibition by duocarmycin analogues was unraveled through cocrystallization, mutational studies, and molecular dynamics simulations. The structure of the complex shows the compound embedded in a hydrophobic pocket, where it is stabilized by several crucial π-stacking and van der Waals interactions. This binding mode positions the cyclopropyl electrophile for nucleophilic attack by the noncatalytic residue Cys302, thereby resulting in covalent attachment, steric occlusion of the active site, and inhibition of catalysis. The selectivity of duocarmycin analogues for ALDH1A1 is unique, since only minor alterations in the sequence of closely related protein isoforms restrict compound accessibility. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Phenomena of synchronized response in biosystems and the possible mechanism.

    Science.gov (United States)

    Xu, Jingjing; Yang, Fan; Han, Danhong; Xu, Shengyong

    2018-02-05

    Phenomena of synchronized response is common among organs, tissues and cells in biosystems. We have analyzed and discussed three examples of synchronization in biosystems, including the direction-changing movement of paramecia, the prey behavior of flytraps, and the simultaneous discharge of electric eels. These phenomena and discussions support an electrical communication mechanism that in biosystems, the electrical signals are mainly soliton-like electromagnetic pulses, which are generated by the transient transmembrane ionic current through the ion channels and propagate along the dielectric membrane-based softmaterial waveguide network to complete synchronized responses. This transmission model implies that a uniform electrical communication mechanism might have been naturally developed in biosystem. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. Biochemical mechanisms involved in the endotoxin-induced type II cell hyperplasia in F344 rat lung

    International Nuclear Information System (INIS)

    Tesfaigzi, J.; Johnson, N.F.; Lechner, J.F.

    1994-01-01

    Proliferative lesions and pulmonary epithelial neoplasms induced in the rat by plutonium inhalation have been shown to be of type II cell origin. Defining the gene changes responsible for the development of the type II proliferative lesions would help to elucidate the genetic events involved in the expansion of initiated type II cells into fully transformed tumor cells. One problem in identifying these gene alterations is dissociating changes in gene expression linked to cell replication or repair from those involved in tumor initiation and progression. The long-term goals of these investigations are to first develop and characterize a model of transient type II cell hyperplasia. Second, changes in gene expression associated with remodeling epithelium will be compared to gene changes exhibited by the 239 Pu-induced hyperplastic lesions

  10. The Venturia Apple Pathosystem: Pathogenicity Mechanisms and Plant Defense Responses

    Directory of Open Access Journals (Sweden)

    Gopaljee Jha

    2009-01-01

    Full Text Available Venturia inaequalis is the causal agent of apple scab, a devastating disease of apple. We outline several unique features of this pathogen which are useful for molecular genetics studies intended to understand plant-pathogen interactions. The pathogenicity mechanisms of the pathogen and overview of apple defense responses, monogenic and polygenic resistance, and their utilization in scab resistance breeding programs are also reviewed.

  11. Mechanical response tissue analyzer for estimating bone strength

    Science.gov (United States)

    Arnaud, Sara B.; Steele, Charles; Mauriello, Anthony

    1991-01-01

    One of the major concerns for extended space flight is weakness of the long bones of the legs, composed primarily of cortical bone, that functions to provide mechanical support. The strength of cortical bone is due to its complex structure, described simplistically as cylinders of parallel osteons composed of layers of mineralized collagen. The reduced mechanical stresses during space flight or immobilization of bone on Earth reduces the mineral content, and changes the components of its matrix and structure so that its strength is reduced. Currently, the established clinical measures of bone strength are indirect. The measures are based on determinations of mineral density by means of radiography, photon absorptiometry, and quantitative computer tomography. While the mineral content of bone is essential to its strength, there is growing awareness of the limitations of the measurement as the sole predictor of fracture risk in metabolic bone diseases, especially limitations of the measurement as the sole predictor of fracture risk in metabolic bone diseases, especially osteoporosis. Other experimental methods in clinical trials that more directly evaluate the physical properties of bone, and do not require exposure to radiation, include ultrasound, acoustic emission, and low-frequency mechanical vibration. The last method can be considered a direct measure of the functional capacity of a long bone since it quantifies the mechanical response to a stimulus delivered directly to the bone. A low frequency vibration induces a response (impedance) curve with a minimum at the resonant frequency, that a few investigators use for the evaluation of the bone. An alternative approach, the method under consideration, is to use the response curve as the basis for determination of the bone bending stiffness EI (E is the intrinsic material property and I is the cross-sectional moment of inertia) and mass, fundamental mechanical properties of bone.

  12. Mechanical factors and vitamin D deficiency in schoolchildren with low back pain: biochemical and cross-sectional survey analysis

    Directory of Open Access Journals (Sweden)

    Alghadir AH

    2017-04-01

    Full Text Available Ahmad H Alghadir,1 Sami A Gabr,1,2 Einas S Al-Eisa1 1Rehabilitation Research Chair, College of Applied Medical Sciences, King Saud University, Riyadh, Kingdom of Saudi Arabia; 2Department of Anatomy, Faculty of Medicine, Mansoura University, Mansoura, Egypt Objective: This study was designed to evaluate the role of vitamin D, muscle fatigue ­biomarkers, and mechanical factors in the progression of low back pain (LBP in schoolchildren.Background: Children and adolescents frequently suffer from LBP with no clear clinical causes, and >71% of schoolchildren aged 12–17 years will show at least one episode of LBP.Materials and methods: A total of 250 schoolchildren aged 12–16 years were randomly enrolled in this study. For all schoolchildren height, weight, percentage of daily sun exposure and and areas of skin exposed to sun, method of carrying the bag, and bag weight and type were recorded over a typical school week. Pain scores, physical activity (PA, LBP, serum vitamin 25(OHD level, serum bone-specific alkaline phosphatase, creatine kinase (CK, and lactate dehydrogenase (LDH activities and calcium (Ca concentrations were estimated using prevalidated Pain Rating Scale, modified Oswestry Low Back Pain Disability Questionnaire, short-form PA questionnaire, and colorimetric and immunoassay techniques.Results: During the period of October 2013–May 2014, LBP was estimated in 52.2% of the schoolchildren. It was classified into moderate (34% and severe (18%. Girls showed a higher LBP (36% compared with boys (24%. In schoolchildren with moderate and severe LBP significantly higher (P=0.01 body mass index, waist, hip, and waist-to-hip ratio measurements were observed compared with normal schoolchildren. LBP significantly correlated with less sun exposure, lower PA, sedentary activity (TV/computer use, and overloaded school bags. In addition, schoolchildren with severe LBP showed lower levels of vitamin 25(OHD and Ca and higher levels of CK, LDH, and

  13. Physico-chemical protection, rather than biochemical composition, governs the responses of soil organic carbon decomposition to nitrogen addition in a temperate agroecosystem.

    Science.gov (United States)

    Tan, Wenbing; Wang, Guoan; Huang, Caihong; Gao, Rutai; Xi, Beidou; Zhu, Biao

    2017-11-15

    The heterogeneous responses of soil organic carbon (SOC) decomposition in different soil fractions to nitrogen (N) addition remain elusive. In this study, turnover rates of SOC in different aggregate fractions were quantified based on changes in δ 13 C following the conversion of C 3 to C 4 vegetation in a temperate agroecosystem. The turnover of both total organic matter and specific organic compound classes within each aggregate fraction was inhibited by N addition. Moreover, the intensity of inhibition increases with decreasing aggregate size and increasing N addition level, but does not vary among chemical compound classes within each aggregate fraction. Overall, the response of SOC decomposition to N addition is dependent on the physico-chemical protection of SOC by aggregates and minerals, rather than the biochemical composition of organic substrates. The results of this study could help to understand the fate of SOC in the context of increasing N deposition. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Mixed response in bacterial and biochemical variables to simulated sand mining in placer-rich beach sediments, Ratnagiri, West coast of India.

    Science.gov (United States)

    Fernandes, Christabelle E G; Das, Anindita; Nath, B N; Faria, Daphne G; Loka Bharathi, P A

    2012-05-01

    We investigated the influence on bacterial community and biochemical variables through mechanical disturbance of sediment-akin to small-scale mining in Kalbadevi beach, Ratnagiri, a placer-rich beach ecosystem which is a potential mining site. Changes were investigated by comparing three periods, namely phase I before disturbance, phase II just after disturbance, and phase III 24 h after disturbance as the bacterial generation time is ≤7 h. Cores from dune, berm, high-, mid-, and low-tide were examined for changes in distribution of total bacterial abundance, total direct viability (counts under aerobic and anaerobic conditions), culturability and biochemical parameters up to 40 cm depth. Results showed that bacterial abundance decreased by an order from 10(6) cells g(-1) sediment, while, viability reduced marginally. Culturability on different-strength nutrient broth increased by 155% during phase II. Changes in sedimentary proteins, carbohydrates, and lipids were marked at berm and dune and masked at other levels by tidal influence. Sedimentary ATP reduced drastically. During phase III, Pearson's correlation between these variables evolved from non-significant to significant level. Thus, simulated disturbance had a mixed effect on bacterial and biochemical variables of the sediments. It had a negative impact on bacterial abundance, viability and ATP but positive impact on culturability. Viability, culturability, and ATP could act as important indicators reflecting the disturbance in the system at short time intervals. Culturability, which improved by an order, could perhaps be a fraction that contributes to restoration of the system at bacterial level. This baseline information about the potential mining site could help in developing rational approach towards sustainable harnessing of resources with minimum damage to the ecosystem.

  15. Remediation Performance and Mechanism of Heavy Metals by a Bottom Up Activation and Extraction System Using Multiple Biochemical Materials.

    Science.gov (United States)

    Xiao, Kemeng; Li, Yunzhen; Sun, Yang; Liu, Ruyue; Li, Junjie; Zhao, Yun; Xu, Heng

    2017-09-13

    Soil contamination with heavy metals has caused serious environmental problems and increased the risks to humans and biota. Herein, we developed an effective bottom up metals removal system based on the synergy between the activation of immobilization metal-resistant bacteria and the extraction of bioaccumulator material (Stropharia rugosoannulata). In this system, the advantages of biochar produced at 400 °C and sodium alginate were integrated to immobilize bacteria. Optimized by response surface methodology, the biochar and bacterial suspension were mixed at a ratio of 1:20 (w:v) for 12 h when 2.5% sodium alginate was added to the mixture. Results demonstrated that the system significantly increased the proportion of acid soluble Cd and Cu and improved the soil microecology (microbial counts, soil respiration, and enzyme activities). The maximum extractions of Cd and Cu were 8.79 and 77.92 mg kg -1 , respectively. Moreover, details of the possible mechanistic insight into the metal removal are discussed, which indicate positive correlation with the acetic acid extractable metals and soil microecology. Meanwhile, the "dilution effect" in S. rugosoannulata probably plays an important role in the metal removal process. Furthermore, the metal-resistant bacteria in this system were successfully colonized, and the soil bacteria community were evaluated to understand the microbial diversity in metal-contaminated soil after remediation.

  16. Thermodynamical aspects of modeling the mechanical response of granular materials

    International Nuclear Information System (INIS)

    Elata, D.

    1995-01-01

    In many applications in rock physics, the material is treated as a continuum. By supplementing the related conservation laws with constitutive equations such as stress-strain relations, a well-posed problem can be formulated and solved. The stress-strain relations may be based on a combination of experimental data and a phenomenological or micromechanical model. If the model is physically sound and its parameters have a physical meaning, it can serve to predict the stress response of the material to unmeasured deformations, predict the stress response of other materials, and perhaps predict other categories of the mechanical response such as failure, permeability, and conductivity. However, it is essential that the model be consistent with all conservation laws and consistent with the second law of thermodynamics. Specifically, some models of the mechanical response of granular materials proposed in literature, are based on intergranular contact force-displacement laws that violate the second law of thermodynamics by permitting energy generation at no cost. This diminishes the usefulness of these models as it invalidates their predictive capabilities. [This work was performed under the auspices of the U.S. DOE by Lawrence Livermore National Laboratory under Contract No. W-7405-ENG-48.

  17. Mechanical response of wall-patterned GaAs surface

    International Nuclear Information System (INIS)

    Le Bourhis, E.; Patriarche, G.

    2005-01-01

    Wall-patterned GaAs surfaces have been elaborated by photolithography and dry etching. Different surfaces were produced in order to change the aspect ratio of the walls formed at the substrate surface. The mechanical behaviour of individual walls was investigated by nanoindentation and the responses were compared to that of a standard bulk reference (flat surface). Deviation from the bulk response is detected in a load range of 1-25 mN depending on the aspect ratio of the walls. A central plastic zone criterion is proposed in view of transmission electron microscopy images of indented walls and allows the prediction of the response deviation of a given wall if its width is known. The mechanical response of the different types of walls is further investigated in terms of stiffness, total penetration of indenter and apparent hardness, and is scanned in relation to the proximity of a wall side. Overall results show that contact stiffness remains almost unaffected by aspect ratio, while penetration drastically increases because of the free sides of the wall as compared to a flat surface (bulk substrate). The application of substrate patterning for optoelectronic devices is discussed in the perspective of eliminating residual dislocations appearing in mismatched structures

  18. High seeding density of human chondrocytes in agarose produces tissue-engineered cartilage approaching native mechanical and biochemical properties.

    Science.gov (United States)

    Cigan, Alexander D; Roach, Brendan L; Nims, Robert J; Tan, Andrea R; Albro, Michael B; Stoker, Aaron M; Cook, James L; Vunjak-Novakovic, Gordana; Hung, Clark T; Ateshian, Gerard A

    2016-06-14

    Animal cells have served as highly controllable model systems for furthering cartilage tissue engineering practices in pursuit of treating osteoarthritis. Although successful strategies for animal cells must ultimately be adapted to human cells to be clinically relevant, human chondrocytes are rarely employed in such studies. In this study, we evaluated the applicability of culture techniques established for juvenile bovine and adult canine chondrocytes to human chondrocytes obtained from fresh or expired osteochondral allografts. Human chondrocytes were expanded and encapsulated in 2% agarose scaffolds measuring ∅3-4mm×2.3mm, with cell seeding densities ranging from 15 to 90×10(6)cells/mL. Subsets of constructs were subjected to transient or sustained TGF-β treatment, or provided channels to enhance nutrient transport. Human cartilaginous constructs physically resembled native human cartilage, and reached compressive Young's moduli of up to ~250kPa (corresponding to the low end of ranges reported for native knee cartilage), dynamic moduli of ~950kPa (0.01Hz), and contained 5.7% wet weight (%/ww) of glycosaminoglycans (≥ native levels) and 1.5%/ww collagen. We found that the initial seeding density had pronounced effects on tissue outcomes, with high cell seeding densities significantly increasing nearly all measured properties. Transient TGF-β treatment was ineffective for adult human cells, and tissue construct properties plateaued or declined beyond 28 days of culture. Finally, nutrient channels improved construct mechanical properties, presumably due to enhanced rates of mass transport. These results demonstrate that our previously established culture system can be successfully translated to human chondrocytes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Biochemical mechanisms of imidacloprid resistance in Nilaparvata lugens: over-expression of cytochrome P450 CYP6AY1.

    Science.gov (United States)

    Ding, Zhiping; Wen, Yucong; Yang, Baojun; Zhang, Yixi; Liu, Shuhua; Liu, Zewen; Han, Zhaojun

    2013-11-01

    Imidacloprid is a key insecticide extensively used for control of Nilaparvata lugens, and its resistance had been reported both in the laboratory selected strains and field populations. A target site mutation Y151S in two nicotinic acetylcholine receptor subunits and enhanced oxidative detoxification have been identified in the laboratory resistant strain, contributing importantly to imidacloprid resistance in N. lugens. To date, however, imidacloprid resistance in field population is primarily attributable to enhanced oxidative detoxification by over-expressed P450 monooxygenases. A resistant strain (Res), originally collected from a field population and continuously selected in laboratory with imidacloprid for more than 40 generations, had 180.8-fold resistance to imidacloprid, compared to a susceptible strain (Sus). Expression of different putative P450 genes at mRNA levels was detected and compared between Res and Sus strains, and six genes were found expressed significantly higher in Res strain than in Sus strain. CYP6AY1 was found to be the most different expressed P450 gene and its mRNA level in Res strain was 17.9 times of that in Sus strain. By expressing in E. coli cells, CYP6AY1 was found to metabolize imidacloprid efficiently with initial velocity calculated of 0.851 ± 0.073 pmol/min/pmol P450. When CYP6AY1 mRNA levels in Res strain was reduced by RNA interference, imidacloprid susceptibility was recovered. In four field populations with different resistance levels, high levels of CYP6AY1 transcript were also found. In vitro and in vivo studies provided evidences that the over-expression of CYP6AY1 was one of the key factors contributing to imidacloprid resistance in the laboratory selected strain Res, which might also be the important mechanism for imidacloprid resistance in field populations, when the target site mutation was not prevalent at present. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Mechanisms regulating osteoblast response to surface microtopography and vitamin D

    Science.gov (United States)

    Bell, Bryan Frederick, Jr.

    A comprehensive understanding of the interactions between orthopaedic and dental implant surfaces with the surrounding host tissue is essential in the design of advanced biomaterials that better promote bone growth and osseointegration of implants. Dental implants with roughened surfaces and high surface energy are well known to promote osteoblast differentiation in vitro and promote increased bone-to-implant contact in vivo. In addition, increased surface roughness increases osteoblasts response to the vitamin D metabolite 1alpha,25(OH)2D3. However, the exact mechanisms mediating cell response to surface properties and 1alpha,25(OH)2D3 are still being elucidated. The central aim of the thesis is to investigate whether integrin signaling in response to rough surface microtopography enhances osteoblast differentiation and responsiveness to 1alpha,25(OH)2D3. The hypothesis is that the integrin alpha5beta1 plays a role in osteoblast response to surface microtopography and that 1alpha,25(OH) 2D3 acts through VDR-independent pathways involving caveolae to synergistically enhance osteoblast response to surface roughness and 1alpha,25(OH) 2D3. To test this hypothesis the objectives of the studies performed in this thesis were: (1) to determine if alpha5beta 1 signaling is required for osteoblast response to surface microstructure; (2) to determine if increased responsiveness to 1alpha,25(OH)2D 3 requires the vitamin D receptor, (3) to determine if rough titanium surfaces functionalized with the peptides targeting integrins (RGD) and transmembrane proteoglycans (KRSR) will enhance both osteoblast proliferation and differentiation, and (4) to determine whether caveolae, which are associated with integrin and 1alpha,25(OH)2D3 signaling, are required for enhance osteogenic response to surface microstructure and 1alpha,25(OH)2D 3. The results demonstrate that integrins, VDR, and caveolae play important roles in mediating osteoblast response to surface properties and 1alpha,25

  1. Genomic interrogation of mechanism(s) underlying cellular responses to toxicants

    International Nuclear Information System (INIS)

    Amin, Rupesh P.; Hamadeh, Hisham K.; Bushel, Pierre R.; Bennett, Lee; Afshari, Cynthia A.; Paules, Richard S.

    2002-01-01

    Assessment of the impact of xenobiotic exposure on human health and disease progression is complex. Knowledge of mode(s) of action, including mechanism(s) contributing to toxicity and disease progression, is valuable for evaluating compounds. Toxicogenomics, the subdiscipline which merges genomics with toxicology, holds the promise to contributing significantly toward the goal of elucidating mechanism(s) by studying genome-wide effects of xenobiotics. Global gene expression profiling, revolutionized by microarray technology and a crucial aspect of a toxicogenomic study, allows measuring transcriptional modulation of thousands of genes following exposure to a xenobiotic. We use our results from previous studies on compounds representing two different classes of xenobiotics (barbiturate and peroxisome proliferator) to discuss the application of computational approaches for analyzing microarray data to elucidate mechanism(s) underlying cellular responses to toxicants. In particular, our laboratory demonstrated that chemical-specific patterns of gene expression can be revealed using cDNA microarrays. Transcript profiling provides discrimination between classes of toxicants, as well as, genome-wide insight into mechanism(s) of toxicity and disease progression. Ultimately, the expectation is that novel approaches for predicting xenobiotic toxicity in humans will emerge from such information

  2. Mechanics of responsive polymers via conformationally switchable molecules

    Science.gov (United States)

    Brighenti, Roberto; Artoni, Federico; Vernerey, Franck; Torelli, Martina; Pedrini, Alessandro; Domenichelli, Ilaria; Dalcanale, Enrico

    2018-04-01

    Active materials are those capable of giving some physical reaction under external stimuli coming from the environment such as temperature, pH, light, mechanical stress, etc. Reactive polymeric materials can be obtained through the introduction of switchable molecules in their network, i.e. molecules having two distinct stable conformations: if properly linked to the hosting polymer chains, the switching from one state to the other can promote a mechanical reaction of the material, detectable at the macroscale, and thus enables us to tune the response according to a desired functionality. In the present paper, the main aspects of the mechanical behavior of polymeric materials with embedded switchable molecules-properly linked to the polymer's chains-are presented and discussed. Starting from the micro mechanisms occurring in such active material, a continuum model is developed, providing a straightforward implementation in computational approaches. Finally, some experimental outcomes related to a switchable molecules (known as quinoxaline cavitands) added to an elastomeric PDMS under chemical stimuli, are presented and quantitatively discussed through the use of the developed mechanical framework.

  3. Enhanced response of microbial fuel cell using sulfonated poly ether ether ketone membrane as a biochemical oxygen demand sensor

    Energy Technology Data Exchange (ETDEWEB)

    Ayyaru, Sivasankaran; Dharmalingam, Sangeetha, E-mail: sangeetha@annauniv.edu

    2014-03-01

    Graphical abstract: - Highlights: • Sulfonated poly ether ether ketone (SPEEK) membrane in SCMFC used to determine the BOD. • The biosensor produces a good linear relationship with the BOD concentration up to 650 ppm. • This sensing range was 62.5% higher than that of Nafion{sup ®}. • SPEEK exhibited one order lesser oxygen permeability than Nafion{sup ®}. • Nafion{sup ®} shows high anodic internal resistance (67 Ω) than the SPEEK (39 Ω). - Abstract: The present study is focused on the development of single chamber microbial fuel cell (SCMFC) using sulfonated poly ether ether ketone (SPEEK) membrane to determine the biochemical oxygen demand (BOD) matter present in artificial wastewater (AW). The biosensor produces a good linear relationship with the BOD concentration up to 650 ppm when using artificial wastewater. This sensing range was 62.5% higher than that of Nafion{sup ®}. The most serious problem in using MFC as a BOD sensor is the oxygen diffusion into the anode compartment, which consumes electrons in the anode compartment, thereby reducing the coulomb yield and reducing the electrical signal from the MFC. SPEEK exhibited one order lesser oxygen permeability than Nafion{sup ®}, resulting in low internal resistance and substrate loss, thus improving the sensing range of BOD. The system was further improved by making a double membrane electrode assembly (MEA) with an increased electrode surface area which provide high surface area for electrically active bacteria.

  4. The dtudy of physiological and biochemical responses of Agrostis stolonifera and Festuca arundinacea Schreb. under drought stress

    Directory of Open Access Journals (Sweden)

    Mohammad Hassan Alibiglouei

    2014-12-01

    Full Text Available Drought stress is a main limiting factor of turfgrass growth in arid and semi-arid regions. Therefore, in this study, the physiological and biochemical changes in two turfgrass species Agrostis stolonifera and Festuca arundinacea schreb during drought stress (70-75 centibar in a 40-day period and recovery were investigated. Control plants during drought stress were regularly irrigated at soil field capacity (20-25 centibar. The results showed that leaf relative water content and leaf chlorophyll content with long-term stress decreased. Electrolyte leakage and proline during drought stress significantly increased and in recovery stage, the level of electrolyte leakage and proline reached to the control. The activity of peroxidase and superoxide dismutase in two turfgrass significantly increased after 30 days and then significantly reduced. In F. arundinacea schreb the activity of ascorbat peroxidase after 20 days significantly increased and then significantly reduced. Also, in F. arundinacea schreb species the activity of catalase increased during drought stress and in recovery stage the activity of catalase reduced. In studied species during drought stress and recovery stage, the activity of ascorbat peroxidase and catalase significantly increased compared to the control. These results suggested that the resistant species F. arundinacea schreb, under drought stress had a low level of electrolyte leakage, higher level of relative water content and chlorophyll destruction was less than A. stolonifera.

  5. Ecotoxicological impacts of clofibric acid and diclofenac in common carp (Cyprinus carpio) fingerlings: hematological, biochemical, ionoregulatory and enzymological responses.

    Science.gov (United States)

    Saravanan, Manoharan; Karthika, Subramanian; Malarvizhi, Annamalai; Ramesh, Mathan

    2011-11-15

    Investigation on the toxic effects of pharmaceutical drugs namely clofibric acid (CA) and diclofenac (DCF) were studied in a common carp Cyprinus carpio at different concentrations such as 1, 10 and 100 μg L(-1) for a short-term period of 96 h under static bioassay method. At all concentrations, red blood cell (RBC), plasma sodium (Na(+)), potassium (K(+)), and glutamate oxaloacetate transaminase (GOT) levels were decreased in fish treated with CA and DCF. Contrastingly, white blood cell (WBC), plasma glucose, protein, lactate dehydrogenase (LDH) and gill Na(+)/K(+)-ATPase level were increased. However, a mixed trend was observed in hemoglobin (Hb), hematocrit (Hct), plasma chloride (Cl(-)), mean cellular volume (MCV), mean cellular hemoglobin (MCH), mean cellular hemoglobin concentration (MCHC) and glutamate pyruvate transaminase (GPT) levels. There was a significant (P<0.01 and P<0.05) change in all parameters measured in fish exposed to different concentrations of CA and DCF. In summary, the alterations in hematological, biochemical, ionoregulatory and enzymological parameters can be used as biomarkers in monitoring the toxicity of CA and DCF in aquatic environment. However, more detailed studies on using of specific biomarkers to monitor the human pharmaceuticals are needed. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. Characterizing the Biochemical Response to Schistosoma mansoni Infection and Treatment with Praziquantel in Preschool and School Aged Children.

    Science.gov (United States)

    Panic, Gordana; Coulibaly, Jean T; Harvey, Nikita; Keiser, Jennifer; Swann, Jonathan

    2018-05-21

    Schistosomiasis is a widespread chronic neglected tropical disease prevalent mostly in children in under-resourced rural areas. Its pathological effects have been clinically characterized, yet the molecular-level effects are understudied. In this study, the biochemical effects of Schistosoma mansoni infection and praziquantel treatment were studied in 130 preschool aged and 159 school aged infected children and 11 noninfected children in Azaguié, Côte d'Ivoire. Urine samples were collected prior to receiving 20, 40, or 60 mg/kg of praziquantel or a placebo, as well as 24 h post-treatment, and at the 3-week follow up. Urinary metabolic phenotypes were measured using 1 H NMR spectroscopy, and metabolic variation associated with S. mansoni infection and praziquantel administration was identified using multivariate statistical techniques. Discriminatory metabolic signatures were detected between heavily infected and noninfected children at baseline as well as according to the dose of praziquantel administered 24 h post treatment. These signatures were primarily associated with the metabolic activity of the gut microbiota, gut health and growth biomarkers and energy and liver metabolism. These analyses provide insights into the metabolic phenotype of schistosomiasis and treatment with praziquantel in two important demographics.

  7. Evidence for the association between IgG-antimitochondrial antibody and biochemical response to ursodeoxycholic acid treatment in primary biliary cholangitis.

    Science.gov (United States)

    Tang, Libo; Zhong, Ruihua; He, Xuanqiu; Wang, Weibin; Liu, Jinhong; Zhu, Youfu; Li, Yongyin; Hou, Jinlin

    2017-03-01

    Antimitochondrial antibody (AMA) is considered the serological hallmark of primary biliary cholangitis (PBC), while data regarding the profile of AMA during ursodeoxycholic acid (UDCA) treatment are scarce. Here, we assessed the influence of UDCA treatment on titers of AMA and factors relevant to its production. Serum IgA-AMA, IgM-AMA, IgG-AMA, B cell-activating factor of the tumor necrosis factor family (BAFF), and the frequency of circulating plasmablasts were detected in PBC patients, including those who received UDCA therapy for 24 weeks, healthy controls, chronic hepatitis B patients, and autoimmune hepatitis patients. Consecutive liver sections from controls and PBC patients were stained by immunohistochemistry for detection of intrahepatic CD38 + , IgA + , IgM + , and IgG + cells. Significant decrease in titers of IgG-AMA was found only confined to PBC patients with biochemical response to UDCA treatment (P = 0.005), and similar pattern was also observed at week 24 in quantifying circulating plasmablasts (P = 0.025) and serum BAFF (P = 0.013). Notably, positive correlation between serum BAFF levels and titers of IgG-AMA, and the frequency of circulating plasmablasts were observed in PBC patients (r = 0.464, P = 0.034 and r = 0.700, P < 0.001, respectively). Additionally, in situ staining revealed significant accumulation of CD38 + and IgG + cells within the portal tracts of PBC liver. Decreased titers of serum IgG-AMA are associated with biochemical response to UDCA treatment, implicating the potentiality of this hallmark in therapeutic response evaluation and the beneficial effect of UDCA on humoral immunity in PBC patients. © 2016 Journal of Gastroenterology and Hepatology Foundation and John Wiley & Sons Australia, Ltd.

  8. Inhibition of the Unfolded Protein Response Mechanism Prevents Cardiac Fibrosis.

    Directory of Open Access Journals (Sweden)

    Jody Groenendyk

    Full Text Available Cardiac fibrosis attributed to excessive deposition of extracellular matrix proteins is a major cause of heart failure and death. Cardiac fibrosis is extremely difficult and challenging to treat in a clinical setting due to lack of understanding of molecular mechanisms leading to cardiac fibrosis and effective anti-fibrotic therapies. The objective in this study was to examine whether unfolded protein response (UPR pathway mediates cardiac fibrosis and whether a pharmacological intervention to modulate UPR can prevent cardiac fibrosis and preserve heart function.We demonstrate here that the mechanism leading to development of fibrosis in a mouse with increased expression of calreticulin, a model of heart failure, stems from impairment of endoplasmic reticulum (ER homeostasis, transient activation of the unfolded protein response (UPR pathway and stimulation of the TGFβ1/Smad2/3 signaling pathway. Remarkably, sustained pharmacologic inhibition of the UPR pathway by tauroursodeoxycholic acid (TUDCA is sufficient to prevent cardiac fibrosis, and improved exercise tolerance.We show that the mechanism leading to development of fibrosis in a mouse model of heart failure stems from transient activation of UPR pathway leading to persistent remodelling of cardiac tissue. Blocking the activation of the transiently activated UPR pathway by TUDCA prevented cardiac fibrosis, and improved prognosis. These findings offer a window for additional interventions that can preserve heart function.

  9. Response mechanisms of attached premixed flames subjected to harmonic forcing

    Science.gov (United States)

    Shreekrishna

    vicinity of typical screech frequencies in gas turbine combustors. The nonlinear response problem is exclusively studied in the case of equivalence ratio coupling. Various nonlinearity mechanisms are identified, amongst which the crossover mechanisms, viz., stoichiometric and flammability crossovers, are seen to be responsible in causing saturation in the overall heat release magnitude of the flame. The response physics remain the same across various preheat temperatures and reactant pressures. Finally, comparisons between the chemiluminescence transfer function obtained experimentally and the heat release transfer functions obtained from the reduced order model (ROM) are performed for lean, CH4/Air swirl-stabilized, axisymmetric V-flames. While the comparison between the phases of the experimental and theoretical transfer functions are encouraging, their magnitudes show disagreement at lower Strouhal number gains show disagreement.

  10. FAMREC, PWR Lateral Mechanical Fuel Rod Assembly Response

    International Nuclear Information System (INIS)

    Guenzler, R.C.

    1995-01-01

    1 - Description of program or function: The Fuel Assembly Mechanical Response Code (FAMREC) calculates the lateral mechanical response of a row of fuel assemblies while allowing for two types of nonlinearities. The first type is a geometric nonlinearity in the form of gaps between individual assemblies and between peripheral assemblies and a boundary wall. Impacting is monitored across the gaps. The second nonlinearity is the permanent deformation of the fuel assembly spacer grid to compressive loading. 2 - Method of solution: The response is calculated in the modal plane. The coupled differential equations are solved in closed form using Laplace transformations. The discrete displacements and velocities are then calculated and the gaps in the system monitored at each axial elevation for impacting. These impact forces are then applied statistically at a given time-step, and equilibrium is found using a Gaussian elimination technique. Three impact force calculation methods are available: 1- a linear impact force and crushing load audit calculation, 2- a more detailed linear impact force and crushing load calculation, and 3- a non-linear grid calculation which allows for plastic deformation of the fuel assembly spacer grids. 3 - Restrictions on the complexity of the problem: Maxima of: 3601 time-steps and forces; 80 modes; 30 applied forces; 15 fuel assemblies; and 5 impact grids per assembly

  11. Radiation-Induced Bystander Response: Mechanism and Clinical Implications

    Science.gov (United States)

    Suzuki, Keiji; Yamashita, Shunichi

    2014-01-01

    Significance: Absorption of energy from ionizing radiation (IR) to the genetic material in the cell gives rise to damage to DNA in a dose-dependent manner. There are two types of DNA damage; by a high dose (causing acute or deterministic effects) and by a low dose (related to chronic or stochastic effects), both of which induce different health effects. Among radiation effects, acute cutaneous radiation syndrome results from cell killing as a consequence of high-dose exposure. Recent advances: Recent advances in radiation biology and oncology have demonstrated that bystander effects, which are emerged in cells that have never been exposed, but neighboring irradiated cells, are also involved in radiation effects. Bystander effects are now recognized as an indispensable component of tissue response related to deleterious effects of IR. Critical issues: Evidence has indicated that nonapoptotic premature senescence is commonly observed in various tissues and organs. Senesced cells were found to secrete various proteins, including cytokines, chemokines, and growth factors, most of which are equivalent to those identified as bystander factors. Secreted factors could trigger cell proliferation, angiogenesis, cell migration, inflammatory response, etc., which provide a tissue microenvironment assisting tissue repair and remodeling. Future directions: Understandings of the mechanisms and physiological relevance of radiation-induced bystander effects are quite essential for the beneficial control of wound healing and care. Further studies should extend our knowledge of the mechanisms of bystander effects and mode of cell death in response to IR. PMID:24761341

  12. Mechanisms Underlying the Antidepressant Response and Treatment Resistance

    Directory of Open Access Journals (Sweden)

    Marjorie Rose Levinstein

    2014-06-01

    Full Text Available Depression is a complex and heterogeneous disorder affecting millions of Americans. There are several different medications and other treatments that are available and effective for many patients with depression. However, a substantial percentage of patients fail to achieve remission with these currently available interventions, and relapse rates are high. Therefore, it is necessary to determine both the mechanisms underlying the antidepressant response and the differences between responders and non-responders to treatment. Delineation of these mechanisms largely relies on experiments that utilize animal models. Therefore, this review provides an overview of the various mouse models that are currently used to assess the antidepressant response, such as chronic mild stress, social defeat, and chronic corticosterone. We discuss how these mouse models can be used to advance our understanding of the differences between responders and non-responders to antidepressant treatment. We also provide an overview of experimental treatment modalities that are used for treatment-resistant depression, such as deep brain stimulation and ketamine administration. We will then review the various genetic polymorphisms and transgenic mice that display resistance to antidepressant treatment. Finally, we synthesize the published data to describe a potential neural circuit underlying the antidepressant response and treatment resistance.

  13. Studies on Impact of Irradiation Treatment on Certain Pharmacological and Biochemical Responses of Naja nigricollis Snake Venom

    International Nuclear Information System (INIS)

    Abd El Hamid, F.Y.A.

    2015-01-01

    Snakebite is a serious medical problem worldwide, especially in the tropics. In Egypt, the Black-neck Spitting Cobra; Naja nigricollis is one of the most venomous snakes distributed in the south part of Egypt. The lethality as well as the immunological, biochemical and histological effects of Naja nigricollis venom at a sublethal dose has been investigated before and after exposure to gamma radiation (1.5 KGy and 3 KGy). The toxicity of irradiated venom decreased as compared to that of the native one. There was no change in the antigenic reactivity between both native and irradiated venom. The effect of ½ LD 50 of native or irradiated (1.5 KGy) was studied on the activities of heart enzymes: CPK, CK-MB, LDH and AST after (1, 2, 4, 24 hours) of envenomation. The present study showed that snake venom envenomation caused significant (p ≤ 0.05) elevation in serum CPK, CK-MB, LDH and AST levels. In contrast, the 1.5 KGy gamma-irradiated venom recorded no significant changes compared to that of normal rats. Histopathological study of heart confirmed these findings. The 1.5 KGy and 3 KGy gamma irradiation decrease the phospholipase activity of the venom. Anticoagulant activity was prominent when re calcification time was tested on human plasma using each venom (native, γ- irradiated venoms) as a test solution. Naja nigricollis venom detoxified by gamma irradiation (1.5 KGy or 3 KGy) was used as toxoid for active immunization of rabbits following a short schedule of immunization with complete Freund's adjuvant. Effective neutralization of venom toxin by immune sera of rabbits was observed.

  14. Cellular and biochemical responses of the oyster Crassostrea gigas to controlled exposures to metals and Alexandrium minutum

    Energy Technology Data Exchange (ETDEWEB)

    Haberkorn, Hansy; Lambert, Christophe; Le Goïc, Nelly [Laboratoire des Sciences de l‘Environnement Marin, UMR 6539, Institut Universitaire Européen de la Mer, Université de Bretagne Occidentale, Place Copernic, Technopôle Brest-Iroise, 29280 Plouzané (France); Quéré, Claudie [IFREMER Centre de Brest, Laboratoire de Physiologie des Invertébrés, Unité Physiologie Fonctionnelle des Organismes Marins, BP 70, 29280 Plouzané (France); Bruneau, Audrey; Riso, Ricardo; Auffret, Michel [Laboratoire des Sciences de l‘Environnement Marin, UMR 6539, Institut Universitaire Européen de la Mer, Université de Bretagne Occidentale, Place Copernic, Technopôle Brest-Iroise, 29280 Plouzané (France); Soudant, Philippe, E-mail: Philippe.Soudant@univ-brest.fr [Laboratoire des Sciences de l‘Environnement Marin, UMR 6539, Institut Universitaire Européen de la Mer, Université de Bretagne Occidentale, Place Copernic, Technopôle Brest-Iroise, 29280 Plouzané (France)

    2014-02-15

    Highlights: •Oysters, C. gigas, were exposed to both metals and PST-producer A. minutum. •Oysters exposed to metals accumulated about thirty-six times less PSTs. •Exposure to both metals and A. minutum induced antagonistic or synergetic effects. -- Abstract: Effects of simultaneous exposure of Pacific oyster, Crassostrea gigas, to both a harmful dinoflagellate that produces Paralytic Shellfish Toxins (PST), Alexandrium minutum, and cadmium (Cd) and copper (Cu), were assessed. Oysters were exposed to a mix of Cd–Cu with two different diets (i.e. A. minutum or Tisochrysis lutea) and compared to control oysters fed A. minutum or T. lutea, respectively, without metal addition. Metals and PST accumulations, digestive gland lipid composition, and cellular and biochemical hemolymph variables were measured after 4 days of exposure. Oysters exposed to Cd–Cu accumulated about thirty-six times less PSTs than oysters exposed to A. minutum alone. Exposure to Cd–Cu induced significant changes in neutral lipids (increase in diacylglycerol – DAG – and decrease in sterols) and phospholipids (decreases in phosphatidylcholine, phosphatidylethanolamine, cardiolipin and ceramide aminoethylphosphonate) of digestive gland suggesting that lipid metabolism disruptions and/or lipid peroxidation have occurred. Simultaneously, concentrations, percentages of dead cells and phenoloxidase activity of hemocytes increased in oysters exposed to metals while reactive oxygen species production of hemocytes decreased. Feeding on the harmful dinoflagellate A. minutum resulted in significant decreases in monoacylglycerol (MAG) and DAG and ether glycerides (EG), as well as significant increases in hemocyte concentration and phagocytic activity as compared to oysters fed T. lutea. Finally, the present study revealed that short-term, simultaneous exposure to Cd–Cu and A. minutum may induce antagonistic (i.e. hemocyte concentration and phagocytosis) or synergic (i.e. DAG content in

  15. Morphological, physiological and biochemical responses to soil water deficit in seedlings of three populations of wild pear tree (Pyrus boisseriana

    Directory of Open Access Journals (Sweden)

    Zarafshar, M.

    2014-01-01

    Full Text Available Water shortage limits the production of fruit orchards, such as pear, in arid and semi-arid regions. The identification of wild pear germplasm for potential use as rootstock would be valuable for pear cultivation in semi-arid regions. The relative drought tolerance of wild pear germplasm (Pyrus boisseriana from three different populations distributed along an elevational gradient ('semi-arid 1,000', 'semi-wet 1,350' and 'semi-wet 1,600' populations was evaluated in a greenhouse trial. Established container-grown seedlings were exposed to 18 days of simulated drought, or not, followed by a seven day recovery period. Biomass allocation and accumulation, physiological (stomatal conductance, photosynthesis, transpiration, xylem water potential and biochemical parameters (leaf pigments, free proline, malondialdehyde and hydrogen peroxide production were evaluated. Although all populations were able to recover from water shortage, thereby proving to be relatively drought tolerant, some differences between populations were detected for gas exchange parameters, biomass accumulation and proline concentration in favor of the 'semi-arid 1,000' elevation population, which was more drought tolerant. This population showed the most rapid and complete recovery of physiological activity (stomatal conductance and carbon fixation. In addition, all populations showed an increase in carotenoid content in the leaves. Overall, we showed that plants from the 'semi-arid 1,000' elevation had greater tolerance to drought than those from the higher elevations (semi-wet populations. It therefore appears that plants from the 'semi-arid 1,000' elevation represent a promising source of material to be tested as rootstock for commercial scions of pear in field conditions in areas prone to suffer from water deficit.

  16. Toxicity of furadan (carbofuran 3% g in Cyprinus carpio: Haematological, biochemical and enzymological alterations and recovery response

    Directory of Open Access Journals (Sweden)

    Mathan Ramesh

    2015-12-01

    Full Text Available Furadan, a carbamate pesticide is widely used in paddy fields and it has been detected in ground, surface and rain waters. In this study, fingerlings of Cyprinus carpio were exposed to different concentrations of furadan ranging from 25 to 50 mg L−1 for 96 h and the acute toxicity was calculated as 43.651 mg L−1. To assess the effect of furadan, fish were exposed to two concentrations of furadan (8.730 mg L−1, Treatment I and 4.365 mg L−1, Treatment II and certain haematological, biochemical and enzymological parameters were evaluated at the end of 24, 48, 72 and 96 h exposure periods with a recovery period of 96 h. A significant (p < 0.05 decrease in haemoglobin (Hb, haematocrit (Hct, red blood cells (RBC, plasma protein and glutamate oxaloacetate transaminase (GOT activity in gill, liver and kidney (except at the end of 96 h in Treatment I were noted in both the concentrations tested while white blood cells (WBC and glucose level were significantly increased after 24, 48, 72 and 96 h exposure periods when compared to untreated groups. A mixed trend in mean corpuscular volume (MCV, mean corpuscular haemoglobin (MCH and mean corpuscular haemoglobin concentration (MCHC and glutamate pyruvate transaminase (GPT activity in gill, liver and kidney was noted. During the recovery study period (96 h MCHC and plasma glucose level was recovered to some extent whereas the other parameters remain altered. The alterations of these parameters can be used to assess the toxic levels of the pesticide furadan on aquatic biota.

  17. Sex-dependent response of some rat biochemical, histological and embryological features to Squalene administration or/ and gamma radiation exposure

    International Nuclear Information System (INIS)

    Ibrahim, M.F.; Abo-Zid, N.M.; Ahmed, A.G.

    2012-01-01

    Squalene, an intermediate of cholesterol biosynthesis, is known to possess potent antioxidant properties. The objective of the current study was to evaluate the influence of Squalene on some radiation-induced biochemical, histological and embryological changes in Sprague Dawley rats. Squalene was orally administered to rats (5 ml/kg/day) throughout 60 days before whole body gamma irradiation with 4 Gy. In adult male and female rats, the results revealed that Squalene has modulated the radiation produced abrupt elevation of total cholesterol (TC), triglycerides (TG) and and low density lipoprotein-cholesterol (LDL-C) levels and reduction of high density lipoprotein-cholesterol (HDL-C) ones in both male and female serum and male liver samples whereas it could not control the abrupt increase of HDL-C and decline of LDL-C in female liver values. Also Squalene has modified the histopathological acquired radiation lesions of both male and female colonic and hepatic tissues yet the female tested colonic sections showed moderate regeneration of crypts and villi layers whereas the hepatic sections yet displayed apparent hemorrhage and fatty liver infiltration of inflammatory cells. However, in the mated male rats and their pregnant counterparts, Squalene considerably restored the radiation induced male and female sex hormonal abrupt changes especially in female rats. Squalene administration to pergnant rats before irradiation at gestational day 17 improved the fetal survival ability as identified by the disappearance of resorption sites in the tested maternal uteri. Hence, it could be concluded that Squalene radioprotective capability surpassed the adult male rats than the female ones though it specified the pregnant females by protecting their growing embryos against radiation induced intrauterine fatal effect

  18. The evolution of cognitive mechanisms in response to cultural innovations.

    Science.gov (United States)

    Lotem, Arnon; Halpern, Joseph Y; Edelman, Shimon; Kolodny, Oren

    2017-07-24

    When humans and other animals make cultural innovations, they also change their environment, thereby imposing new selective pressures that can modify their biological traits. For example, there is evidence that dairy farming by humans favored alleles for adult lactose tolerance. Similarly, the invention of cooking possibly affected the evolution of jaw and tooth morphology. However, when it comes to cognitive traits and learning mechanisms, it is much more difficult to determine whether and how their evolution was affected by culture or by their use in cultural transmission. Here we argue that, excluding very recent cultural innovations, the assumption that culture shaped the evolution of cognition is both more parsimonious and more productive than assuming the opposite. In considering how culture shapes cognition, we suggest that a process-level model of cognitive evolution is necessary and offer such a model. The model employs relatively simple coevolving mechanisms of learning and data acquisition that jointly construct a complex network of a type previously shown to be capable of supporting a range of cognitive abilities. The evolution of cognition, and thus the effect of culture on cognitive evolution, is captured through small modifications of these coevolving learning and data-acquisition mechanisms, whose coordinated action is critical for building an effective network. We use the model to show how these mechanisms are likely to evolve in response to cultural phenomena, such as language and tool-making, which are associated with major changes in data patterns and with new computational and statistical challenges.

  19. Mechanical response of human female breast skin under uniaxial stretching.

    Science.gov (United States)

    Kumaraswamy, N; Khatam, Hamed; Reece, Gregory P; Fingeret, Michelle C; Markey, Mia K; Ravi-Chandar, Krishnaswamy

    2017-10-01

    Skin is a complex material covering the entire surface of the human body. Studying the mechanical properties of skin to calibrate a constitutive model is of great importance to many applications such as plastic or cosmetic surgery and treatment of skin-based diseases like decubitus ulcers. The main objective of the present study was to identify and calibrate an appropriate material constitutive model for skin and establish certain universal properties that are independent of patient-specific variability. We performed uniaxial tests performed on breast skin specimens freshly harvested during mastectomy. Two different constitutive models - one phenomenological and another microstructurally inspired - were used to interpret the mechanical responses observed in the experiments. Remarkably, we found that the model parameters that characterize dependence on previous maximum stretch (or preconditioning) exhibited specimen-independent universal behavior. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. The response of an individual vortex to local mechanical contact

    Science.gov (United States)

    Kremen, Anna; Wissberg, Shai; Shperber, Yishai; Kalisky, Beena

    2016-05-01

    Recently we reported a new way to manipulate vortices in thin superconducting films by local mechanical contact without magnetic field, current or altering the pinning landscape [1]. We use scanning superconducting interference device (SQUID) microscopy to image the vortices, and a piezo element to push the tip of a silicon chip into contact with the sample. As a result of the stress applied at the contact point, vortices in the proximity of the contact point change their location. Here we study the characteristics of this vortex manipulation, by following the response of individual vortices to single contact events. Mechanical manipulation of vortices provides local view of the interaction between strain and nanomagnetic objects, as well as controllable, effective, localized, and reproducible manipulation technique.

  1. Microtubules self-repair in response to mechanical stress

    Science.gov (United States)

    Schaedel, Laura; John, Karin; Gaillard, Jérémie; Nachury, Maxence V.; Blanchoin, Laurent; Théry, Manuel

    2015-11-01

    Microtubules--which define the shape of axons, cilia and flagella, and provide tracks for intracellular transport--can be highly bent by intracellular forces, and microtubule structure and stiffness are thought to be affected by physical constraints. Yet how microtubules tolerate the vast forces exerted on them remains unknown. Here, by using a microfluidic device, we show that microtubule stiffness decreases incrementally with each cycle of bending and release. Similar to other cases of material fatigue, the concentration of mechanical stresses on pre-existing defects in the microtubule lattice is responsible for the generation of more extensive damage, which further decreases microtubule stiffness. Strikingly, damaged microtubules were able to incorporate new tubulin dimers into their lattice and recover their initial stiffness. Our findings demonstrate that microtubules are ductile materials with self-healing properties, that their dynamics does not exclusively occur at their ends, and that their lattice plasticity enables the microtubules' adaptation to mechanical stresses.

  2. Airway Humidification Reduces the Inflammatory Response During Mechanical Ventilation.

    Science.gov (United States)

    Jiang, Min; Song, Jun-Jie; Guo, Xiao-Li; Tang, Yong-Lin; Li, Hai-Bo

    2015-12-01

    Currently, no clinical or animal studies have been performed to establish the relationship between airway humidification and mechanical ventilation-induced lung inflammatory responses. Therefore, an animal model was established to better define this relationship. Rabbits (n = 40) were randomly divided into 6 groups: control animals, sacrificed immediately after anesthesia (n = 2); dry gas group animals, subjected to mechanical ventilation for 8 h without humidification (n = 6); and experimental animals, subjected to mechanical ventilation for 8 h under humidification at 30, 35, 40, and 45°C, respectively (n = 8). Inflammatory cytokines in the bronchi alveolar lavage fluid (BALF) were measured. The integrity of the airway cilia and the tracheal epithelium was examined by scanning and transmission electron microscopy, respectively. Peripheral blood white blood cell counts and the wet to dry ratio and lung pathology were determined. Dry gas group animals showed increased tumor necrosis factor alpha levels in BALF compared with control animals (P humidification temperature was increased to 40°C. Scanning and transmission electron microscopy analysis revealed that cilia integrity was maintained in the 40°C groups. Peripheral white blood cell counts were not different among those groups. Compared with control animals, the wet to dry ratio was significantly elevated in the dry gas group (P humidification at 40°C resulted in reduced pathologic injury compared with the other groups based on the histologic score. Pathology and reduced inflammation observed in animals treated at 40°C was similar to that observed in the control animals, suggesting that appropriate humidification reduced inflammatory responses elicited as a consequence of mechanical ventilation, in addition to reducing damage to the cilia and reducing water loss in the airway. Copyright © 2015 by Daedalus Enterprises.

  3. Evaluation of the sheet mechanical response to laser welding processes

    International Nuclear Information System (INIS)

    Carmignani, B.; Daneri, A.; Toselli, G.; Bellei, M.

    1995-07-01

    The simulation of the mechanical response of steel sheets, due to the heating during welding processes by a laser source beam, obtained by Abaqus standard code, is discussed. Different hypotheses for the material behaviour at temperatures greater than the fusion one have been tested and compared; in particular, some tests have been made taking the annealing effect into account by means of an user routine UMAT developed ad hoc. This work was presented at the 8th international Abaqus Users' conference at Paris, 31 May - 2 June 1995

  4. Neural responses to macronutrients: hedonic and homeostatic mechanisms.

    Science.gov (United States)

    Tulloch, Alastair J; Murray, Susan; Vaicekonyte, Regina; Avena, Nicole M

    2015-05-01

    The brain responds to macronutrients via intricate mechanisms. We review how the brain's neural systems implicated in homeostatic control of feeding and hedonic responses are influenced by the ingestion of specific types of food. We discuss how these neural systems are dysregulated in preclinical models of obesity. Findings from these studies can increase our understanding of overeating and, perhaps in some cases, the development of obesity. In addition, a greater understanding of the neural circuits affected by the consumption of specific macronutrients, and by obesity, might lead to new treatments and strategies for preventing unhealthy weight gain. Copyright © 2015 AGA Institute. Published by Elsevier Inc. All rights reserved.

  5. Earthquake responses of a beam supported by a mechanical snubber

    International Nuclear Information System (INIS)

    Ohmata, Kenichiro; Ishizu, Seiji.

    1989-01-01

    The mechanical snubber is an earthquakeproof device for piping systems under particular circumstances such as high temperature and radioactivity. It has nonlinearities in both load and frequency response. In this report, the resisting force characteristics of the snubber and earthquake responses of piping (a simply supported beam) which is supported by the snubber are simulated using Continuous System Simulation Language (CSSL). Digital simulations are carried out for various kinds of physical properties of the snubber. The restraint effect and the maximum resisting force of the snubber during earthquakes are discussed and compared with the case of an oil damper. The earthquake waves used here are E1 Centro N-S and Akita Harbour N-S (Nihonkai-Chubu earthquake). (author)

  6. Escape response of planktonic protists to fluid mechanical signals

    DEFF Research Database (Denmark)

    Jakobsen, Hans Henrik

    2001-01-01

    The escape response to fluid mechanical signals was examined in 6 protists, 4 ciliates and 2 dinoflagellates. When exposed to a siphon flow. 3 species of ciliates, Balanion comatum, Strobilidium sp., and Mesodinium pulex, responded with escape jumps. The threshold deformation rates required...... times lower than that of a non-jumping similar sized protist when the predator was Temora longicornis, which captures prey entrained in a feeding current. However, when the predator was the ambush- feeding copepod Acartia tonsa, the predation mortalities of jumping and non-jumping protists were...... of similar magnitude. Escape responses may thus be advantageous in some situations. However, jumping behaviour may also enhance susceptibility to some predators, explaining the different predator avoidance strategies (jumping or not) that have evolved in planktonic protists....

  7. Effect of linear alkylbenzene mixtures and sanitary sewage in biochemical and molecular responses in pacific oyster Crassostrea gigas.

    Science.gov (United States)

    Flores-Nunes, Fabrício; Mattos, Jacó J; Zacchi, Flávia L; Serrano, Miguel A S; Piazza, Clei E; Sasaki, Silvio T; Taniguchi, Satie; Bicego, Márcia C; Melo, Cláudio M R; Bainy, Afonso C D

    2015-11-01

    Urban effluents are rich in nutrients, organic matter, pharmaceuticals and personal care products (PPCPs), pesticides, hydrocarbons, surfactants, and others. Previous studies have shown that oysters Crassostrea gigas accumulate significant levels of linear alkylbenzenes (LABs) in sanitary sewage contaminated sites, but there is little information about its toxicological effects in marine bivalves. The aim of this study was to analyze the transcription of genes in two tissues of C. gigas exposed for 12, 24, and 36 h to LABs or sanitary sewage. Likewise, the activity of antioxidant and biotransformation enzymes was measured in oysters exposed for 36 h in all groups. Oysters exposed to LABs and oysters exposed to sanitary sewage showed different patterns of transcriptional responses. LAB-exposed oysters showed lower level of biological responses than the oysters exposed to sanitary sewage. Despite the ability of the oyster C. gigas to accumulate LABs (28-fold), the data indicate that these contaminants are not the cause for the transcriptional responses observed in oysters exposed to sanitary sewage. Possibly, the biological changes observed in the sanitary sewage-exposed oysters are associated with the presence of other contaminants, which might have caused synergistic, additive, or antagonistic effects. The results show that FABP-like and GST-ω-like messenger RNAs (mRNAs) have a rapid response in tissues of oyster C. gigas exposed to sanitary sewage, suggesting a possible protective response and a role in maintaining homeostasis of these organisms.

  8. Electrocardiographic, hemodynamic, and biochemical responses to acute particulate matter (PM) exposure in aged heart failure-prone rats

    Science.gov (United States)

    Human exposure to ambient PM from fossil-fuel emissions is linked to cardiovascular disease and death. This association strengthens in people with preexisting cardiac disease-especially heart failure (HF). The mechanisms explaining PM-induced exacerbation ofHF are unclear. Some o...

  9. Adsorption effect on the dynamic response of a biochemical reaction in a biofilm reactor for wastewater treatment

    Energy Technology Data Exchange (ETDEWEB)

    Tsuneda, S.; Inoue, Y.; Auresenia, J.; Hirata, A. [Department of Chemical Engineering, Waseda University, 3-4-1 Ohkubo, Shinjuku-ku, Tokyo 169-8555 (Japan)

    2003-09-01

    The dynamic behavior of a completely mixed, three-phase, fluidized bed biofilm reactor treating simulated domestic wastewater was studied with step changes in inlet concentration. It was found that the response curves showed second order characteristics, i.e., as the inlet concentration was increased, the outlet concentration also increased, reached a peak value and then decreased until it leveled to a new steady-state value corresponding to the new inlet concentration level. Nonlinear regression analysis was performed using Monod-type rate equations with and without an adsorption term. As a result, the theoretical curve of the kinetic model that incorporates the adsorption term has best fit to the actual response in most cases. Thus, it was concluded that the adsorption of a substrate onto the biofilm and carrier particles has a significant effect on the dynamic response in biofilm processes. (Abstract Copyright [2003], Wiley Periodicals, Inc.)

  10. Hypertensive response to exercise: mechanisms and clinical implication.

    Science.gov (United States)

    Kim, Darae; Ha, Jong-Won

    2016-01-01

    A hypertensive response to exercise (HRE) is frequently observed in individuals without hypertension or other cardiovascular disease. However, mechanisms and clinical implication of HRE is not fully elucidated. Endothelial dysfunction and increased stiffness of large artery contribute to development of HRE. From neurohormonal aspects, excess stimulation of sympathetic nervous system and augmented rise of angiotensin II seems to be important mechanism in HRE. Increasing evidences indicates that a HRE is associated with functional and structural abnormalities of left ventricle, especially when accompanied by increased central blood pressure. A HRE harbors prognostic significance in future development of hypertension and increased cardiovascular events, particularly if a HRE is documented in moderate intensity of exercise. As supported by previous studies, a HRE is not a benign phenomenon, however, currently, whether to treat a HRE is controversial with uncertain treatment strategy. Considering underlying mechanisms, angiotensin receptor blockers and beta blockers can be suggested in individuals with HRE, however, evidences for efficacy and outcomes of treatment of HRE in individuals without hypertension is scarce and therefore warrants further studies.

  11. Effects of time-of-day on oxidative stress, cardiovascular parameters, biochemical markers, and hormonal response following level-1 Yo-Yo intermittent recovery test.

    Science.gov (United States)

    Aloui, K; Abedelmalek, S; Chtourou, H; Wong, D P; Boussetta, N; Souissi, N

    2017-03-01

    The aim of this study was to investigate the effect of time-of-day on oxidative stress, cardiovascular parameters, muscle damage parameters, and hormonal responses following the level-1 Yo-Yo intermittent recovery test (YYIRT). A total of 11 healthy subjects performed an intermittent test (YYIRT) at two times-of-day (i.e., 07:00 h and 17:00 h), with a recovery period of ≥36 h in-between, in a randomized order. Blood samples were taken at the rest (baseline) and immediately (post-YYIRT) after the YYIRT for measuring oxidative stress, biochemical markers, and hormonal response. Data were statistically analyzed using one-way and two-way repeated measures ANOVA and Bonferroni test at p creatine kinase (p  0.05) were similar for the morning and evening test. In conclusion, our findings suggest that aerobic performance presents diurnal variation with great result observed in the evening accompanied by an improvement of hormonal, metabolic, and oxidative responses. These data may help to guide athletes and coaches and contribute to public health recommendations on exercise and muscle damage particularly in the competitive periods.

  12. [Effect of consumption of bread with amaranth (Amaranthus dubius Mart. ex Thell.) on glycemic response and biochemical parameters in Sprague dawley rats].

    Science.gov (United States)

    Montero-Quintero, Keyla Carolina; Moreno-Rojas, Rafael; Molina, Edgar Alí; Colina-Barriga, Máximo Segundo; Sánchez-Urdaneta, Adriana Beatriz

    2014-11-01

    The incorporation of functional ingredients like amaranth (Amaranthus dubius Mart. ex Thell.) in bread making is a strategy to increase fiber intake, which is associated with beneficial health effects, improving glycemic response and lipid profile. Thirty male Sprague dawley rats were randomized into three groups: diet of bread with 0% amaranth (PA0, control), diet of bread with 10% amaranth (PA10) and bread diet with 20% amaranth (PA20) for determining the feed intake, weight gain, triglyceride, total cholesterol, VLDL-C, LDL-C, HDL-C, protein and postprandial glycemic response. Data were analyzed using a completely randomized with 10 replications analysis, using the comparison test of Tukey for biochemical parameters. Postprandial glycemic response was analyzed by the method of repeated measures over time. The daily intake and weight gain was not affected (P>0.05) in the groups with PA10 and PA20. The concentration of glucose, triglycerides and protein showed statistically significant differences (P>0.05) by the difference in content of amaranth diets. The values of total cholesterol, LDL-C, and atherogenic risk factor index were statistically significant (P. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.

  13. Are Mussels Always the Best Bioindicators? Comparative Study on Biochemical Responses of Three Marine Invertebrate Species to Chronic Port Pollution.

    Science.gov (United States)

    Laitano, María V; Fernández-Gimenez, Analía V

    2016-07-01

    Bivalves have traditionally been considered good bioindicators due to their sensitivity to pollution, among other features. This characteristic is shared by several other non-bivalve species as well, though studies in this respect remain scarce. This work aims to compare biomarker sensitivity to chronic port pollution among three intertidal invertebrate species with good bioindicator characteristics. Mussels' immunological (phenoloxidase and peroxidases) and biotransformation (glutathione-S-transferase) responses were contrasted against those of limpets and barnacles. The three species under study evidenced activity of all the enzymes measured, although with differences. Barnacle Balanus glandula was the most sensitive species showing pollution modulation of the three enzymes, which suggests that mussels would not always be the best bioindicator species among marine invertebrates depending on the responses that are assessed.

  14. Features of legal mechanism environmental responsibility of citizens in Ukraine

    Directory of Open Access Journals (Sweden)

    О. О. Шинкарьов

    2015-05-01

    Full Text Available Problem setting. In this article it is examined the main conceptual approaches to understanding the legal arrangement for implementing citizens' environmental obligations. It is noted that despite the diversity of approaches to understanding the arrangement for implementing citizens' environmental responsibilities, most scientists include the concepts of: a a legal implementation arrangement, b the process of practical implementation, c the conditions and factors that influence it.  It is defined that the legal arrangement for implementing environmental obligations is guaranteed by prohibitions and legal regulations. In this case the regulatory legal act has two main functions:    1 prescribes the need to implement the legal obligation, determines it; 2 prescribes a result of the legal obligation implementation. Recent research and publications analysis. Particular attention is paid to the work of scientists in environmental law, including VI Andryeytseva, G. Anisimova, GI Baluk, AP Hetman M. Krasnov, II Karakash, V. Kostytsky, VV Nosik, M. Shulga, S. Shemshuchenko and others. However, most of them concerning coverage of only certain aspects, is a comprehensive analysis of the legal implementation mechanism is still lacking. It's analyzed the characteristics of the legal enforcement for implementing environmental responsibilities by citizens. It is determined that the legal arrangement for the implementation of environmental responsibilities is a part of a general arrangement of the law implementation. Ecological and legal arrangement for the implementation of environmental obligations is defined as a system of legal norms and legal relations by which the State provides the accomplishment of ecological  and legal regulations. Implementation of the constitutional obligations by the citizens is a process that is inherent in environmental responsibilities, in which there are several stages: 1 the ability to execute the obligations which are

  15. Copper and hypoxia modulate transcriptional and mitochondrial functional-biochemical responses in warm acclimated rainbow trout (Oncorhynchus mykiss)

    International Nuclear Information System (INIS)

    Sappal, Ravinder; Fast, Mark; Purcell, Sara; MacDonald, Nicole; Stevens, Don; Kibenge, Fred; Siah, Ahmed; Kamunde, Collins

    2016-01-01

    To survive in changing environments fish utilize a wide range of biological responses that require energy. We examined the effect of warm acclimation on the electron transport system (ETS) enzymes and transcriptional responses to hypoxia and copper (Cu) exposure in fish. Rainbow trout (Oncorhynchus mykiss) were acclimated to cold (11 °C; control) and warm (20 °C) temperatures for 3 weeks followed by exposure to Cu, hypoxia or both for 24 h. Activities of ETS enzyme complexes I-IV (CI–CIV) were measured in liver and gill mitochondria. Analyses of transcripts encoding for proteins involved in mitochondrial respiration (cytochrome c oxidase subunits 4-1 and 2: COX4-1 and COX4-2), metal detoxification/stress response (metallothioneins A and B: MT-A and MT-B) and energy sensing (AMP-activated protein kinase α1: AMPKα1) were done in liver mitochondria, and in whole liver and gill tissues by RT-qPCR. Warm acclimation inhibited activities of ETS enzymes while effects of Cu and hypoxia depended on the enzyme and thermal acclimation status. The genes encoding for COX4-1, COX4-2, MT-A, MT-B and AMPKα1 were strongly and tissue-dependently altered by warm acclimation. While Cu and hypoxia clearly increased MT-A and MT-B transcript levels in all tissues, their effects on COX4-1, COX4-2 and AMPKα1 mRNA levels were less pronounced. Importantly, warm acclimation differentially altered COX4-2/COX4-1 ratio in liver mitochondria and gill tissue. The three stressors showed both independent and joint actions on activities of ETS enzymes and transcription of genes involved in energy metabolism, stress response and metals homeostasis. Overall, we unveiled novel interactive effects that should not be overlooked in real world situations wherein fish normally encounter multiple stress factors. - Highlights: • Joint and individual effects of copper, hypoxia and warm acclimation differ quantitatively. • Energy metabolism genes are differentially altered by multiple stressors.

  16. Structural, biochemical, cellular, and functional changes in skeletal muscle extracellular matrix with aging

    DEFF Research Database (Denmark)

    Kragstrup, T W; Kjaer, M; Mackey, A L

    2011-01-01

    The extracellular matrix (ECM) of skeletal muscle is critical for force transmission and for the passive elastic response of skeletal muscle. Structural, biochemical, cellular, and functional changes in skeletal muscle ECM contribute to the deterioration in muscle mechanical properties with aging....... Structural changes include an increase in the collagen concentration, a change in the elastic fiber system, and an increase in fat infiltration of skeletal muscle. Biochemical changes include a decreased turnover of collagen with potential accumulation of enzymatically mediated collagen cross...

  17. Effects of progressive soil water deficit on growth, and physiological and biochemical responses of populus euphratica in arid area: a case study in China

    International Nuclear Information System (INIS)

    Yang, Y.; Chen, Y.; Li, W.; Zhu, C.

    2015-01-01

    The aim of this study was to investigate the responses of Populus euphratica seedlings under a short-term soil water deficit. To mimic natural conditions in which drought stress develops gradually, stress was imposed by subjecting plants to a gradual decrease of soil water content for a period of 21 d. We studied growth, physiological and biochemical responses to progressive soil water deficit of potted Populus euphratica seedlings at outdoors. Results showed that, in 6 d of water withholding, the soil moisture content decreased to a slight drought stress level, and it reached a severe drought stress level after 15 d of water withholding in July. In the process of soil water declining from saturated to severe drought levels, the increasing soil water deficit resulted in decreases in the height, stem base diameter, number of lateral branches. Leaf predawn water potential decreased after 15 d of withholding irrigation. After 21 d of withholding irrigation, actual photochemical efficiency of photosystem II (PSII) in light-adapted leaves and photochemical quenching coefficient decreased, respectively; the peroxidase activity, the content of chlorophyll a and chlorophyll b decreased. There were no significant changes in proline, malondialdehyde content, chlorophyll a/b value and superoxide dismutase activity. (author)

  18. Tumour cell lysate-loaded dendritic cell vaccine induces biochemical and memory immune response in castration-resistant prostate cancer patients.

    Science.gov (United States)

    Reyes, D; Salazar, L; Espinoza, E; Pereda, C; Castellón, E; Valdevenito, R; Huidobro, C; Inés Becker, M; Lladser, A; López, M N; Salazar-Onfray, F

    2013-09-17

    Recently, we produced a tumour antigen-presenting cells (TAPCells) vaccine using a melanoma cell lysate, called TRIMEL, as an antigen source and an activation factor. Tumour antigen-presenting cells induced immunological responses and increased melanoma patient survival. Herein, we investigated the effect of TAPCells loaded with prostate cancer cell lysates (PCCL) as an antigen source, and TRIMEL as a dendritic cell (DC) activation factor; which were co-injected with the Concholepas concholepas haemocyanin (CCH) as an adjuvant on castration-resistant prostate cancer (CRPC) patients. The lysate mix capacity, for inducing T-cell activation, was analysed by flow cytometry and Elispot. Delayed-type hypersensitivity (DTH) reaction against PCCL, frequency of CD8(+) memory T cells (Tm) in blood and prostate-specific antigen (PSA) levels in serum were measured in treated patients. The lysate mix induced functional mature DCs that were capable of activating PCCL-specific T cells. No relevant adverse reactions were observed. Six out of 14 patients showed a significant decrease in levels of PSA. DTH(+) patients showed a prolonged PSA doubling-time after treatment. Expansion of functional central and effector CD8(+) Tm were detected. Treatment of CRPC patients with lysate-loaded TAPCells and CCH as an adjuvant is safe: generating biochemical and memory immune responses. However, the limited number of cases requires confirmation in a phase II clinical trial.

  19. Biochemical responses and ultrastructural changes in ethylene insensitive mutants of Arabidopsis thialiana subjected to bisphenol A exposure.

    Science.gov (United States)

    Ali, Imran; Jan, Mehmood; Wakeel, Abdul; Azizullah, Azizullah; Liu, Bohan; Islam, Faisal; Ali, Abid; Daud, M K; Liu, Yihua; Gan, Yinbo

    2017-10-01

    Bisphenol A (BPA), an important raw material in plastic industry, has become a serious environmental contaminant due to its wide spread use in different products and increasing release into the environment. BPA is known to cause adverse effects in living organisms including plants. Several studies reported that BPA affects growth and development in plants, mainly through oxidative stress. Plants are known to generally cope with stress mainly through hormonal regulation and adaptation, but little is known about the role of plant hormones in plants under BPA stress. The present study was conducted to investigate the role of ethylene in BPA induced oxidative stress in plants using Arabidopsis thaliana as a test plant. The response of ethylene insensitive mutants of Arabidopsis (ein2-1 and etr1-3) to BPA exposure was studied in comparison to the wild type Arabidopsis (WT). In all three genotypes, exposure to BPA adversely affected cellular structures, stomata and light-harvesting pigments. An increase in reactive oxygen species (ROS) lipid peroxidation and other oxidative stress markers indicated that BPA induced toxicity through oxidative stress. However, the overall results revealed that WT Arabidopsis had more pronounced BPA induced damages while ein2-1 and etr1-3 mutants withstood the BPA induced stress more efficiently. The activity of antioxidant enzymes and expression of antioxidants related genes revealed that the antioxidant defense system in both mutants was more efficiently activated than in WT against BPA induced oxidative stress, which further evidenced the involvement of ethylene in regulating BPA induced oxidative stress. It is concluded that ethylene perception and signaling may be involved in BPA induced oxidative stress responses in plants. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Collecting response times using Amazon Mechanical Turk and Adobe Flash.

    Science.gov (United States)

    Simcox, Travis; Fiez, Julie A

    2014-03-01

    Crowdsourcing systems like Amazon's Mechanical Turk (AMT) allow data to be collected from a large sample of people in a short amount of time. This use has garnered considerable interest from behavioral scientists. So far, most experiments conducted on AMT have focused on survey-type instruments because of difficulties inherent in running many experimental paradigms over the Internet. This study investigated the viability of presenting stimuli and collecting response times using Adobe Flash to run ActionScript 3 code in conjunction with AMT. First, the timing properties of Adobe Flash were investigated using a phototransistor and two desktop computers running under several conditions mimicking those that may be present in research using AMT. This experiment revealed some strengths and weaknesses of the timing capabilities of this method. Next, a flanker task and a lexical decision task implemented in Adobe Flash were administered to participants recruited with AMT. The expected effects in these tasks were replicated. Power analyses were conducted to describe the number of participants needed to replicate these effects. A questionnaire was used to investigate previously undescribed computer use habits of 100 participants on AMT. We conclude that a Flash program in conjunction with AMT can be successfully used for running many experimental paradigms that rely on response times, although experimenters must understand the limitations of the method.

  1. Biochemical correlates in an animal model of depression

    International Nuclear Information System (INIS)

    Johnson, J.O.

    1986-01-01

    A valid animal model of depression was used to explore specific adrenergic receptor differences between rats exhibiting aberrant behavior and control groups. Preliminary experiments revealed a distinct upregulation of hippocampal beta-receptors (as compared to other brain regions) in those animals acquiring a response deficit as a result of exposure to inescapable footshock. Concurrent studies using standard receptor binding techniques showed no large changes in the density of alpha-adrenergic, serotonergic, or dopaminergic receptor densities. This led to the hypothesis that the hippocampal beta-receptor in responses deficient animals could be correlated with the behavioral changes seen after exposure to the aversive stimulus. Normalization of the behavior through the administration of antidepressants could be expected to reverse the biochemical changes if these are related to the mechanism of action of antidepressant drugs. This study makes three important points: (1) there is a relevant biochemical change in the hippocampus of response deficient rats which occurs in parallel to a well-defined behavior, (2) the biochemical and behavioral changes are normalized by antidepressant treatments exhibiting both serotonergic and adrenergic mechanisms of action, and (3) the mode of action of antidepressants in this model is probably a combination of serotonergic and adrenergic influences modulating the hippocampal beta-receptor. These results are discussed in relation to anatomical and biochemical aspects of antidepressant action

  2. Physiological and biochemical responses of wheat (Triticum aestivum L.) seedlings to three imidazolium-based ionic liquids in soil.

    Science.gov (United States)

    Xu, Yaqi; Wang, Jun; Zhu, Lusheng; Du, Zhongkun; Wang, Jinhua; Wei, Kai

    2018-01-01

    Ionic liquids (ILs) are considered environmentally friendly solvents and are widely applied in various fields; however, some researchers have noted the toxicity of ILs to plants cultivated in nutrient solution. To evaluate the toxicities of ILs to wheat seedlings in soil, the natural growth environment of plants, a study was performed using three imidazolium-based ionic liquids with different anions: 1-octyl-3-methylimidazolium chloride ([C 8 mim]Cl), 1-octyl-3-methylimidazolium bromide ([C 8 mim]Br) and 1-octyl-3-methylimidazolium tetrafluoroborate ([C 8 mim]BF 4 ). After 13 d of exposure to these three ILs at 0, 100, 200, 400, 600 and 800 mg kg -1 in brown soil, wheat seedlings were randomly sampled to evaluate growth (shoot length, root length, pigment content and proline content), lipid peroxidation, oxygen species (H 2 O 2 and O 2 - ) and activities of the detoxification enzyme glutathione-s-transferase and other antioxidant enzymes, including superoxide dismutase, catalase and peroxidase. The experimental results showed that all three ILs had inhibitory effects on the growth of wheat seedlings and induced the generation of reactive oxygen species, which indicated that the wheat seedlings suffered oxidative stress. Moreover, antioxidant enzyme activity was enhanced after exposure to [C 8 mim]Cl, [C 8 mim]Br and [C 8 mim]BF 4 , demonstrating that oxidative damage may be the primary underlying mechanism of IL toxicity in wheat. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Modulatory effects of levamisole and garlic oil on the immune response of Wistar rats: Biochemical, immunohistochemical, molecular and immunological study.

    Science.gov (United States)

    Mohamed, Essam Hassan; Baiomy, Ahmed Abdel-Aziz; Ibrahim, Zein Shaban; Soliman, Mohamed Mohamed

    2016-09-01

    Levamisole (LEVA) and garlic are prevalent immunomodulators in humans and animals. Therefore, the present study aimed to examine the immunomodulatory effects of LEVA and garlic oil (GO) alone or in combination on the immune response of Wistar rats. A total of 24 male Wistar rats were allocated into four equal groups: Control group, which was given ad libitum access to food and water; and groups 2‑4, which were orally administered LEVA [2.5 mg/kg body weight (BW) every 2 days], GO, (5 ml/kg BW daily), or LEVA plus GO, respectively for 4 consecutive weeks. Serum immunoglobulin (Ig)G and IgM levels were measured using a radial immunodiffusion assay. Serum cytokine levels, including interferon (IFN)-γ, interleukin (IL)-5 and tumor necrosis factor (TNF)-α, were measured using enzyme‑linked immunosorbent assay kits. Total blood counts were measured automatically using a cell counter. Serum lysozyme enzymatic activity was determined by measuring the diameters of the zones of clearance relative to lysozyme. Immunohistochemical detection of CD4 and CD8 was carried out using the streptavidin-biotin-peroxidase method. Furthermore, the mRNA expression levels of IL‑4, IL‑5 and IL‑12 were measured in the leukocytes and thymus gland by semi-quantitative polymerase chain reaction. The results revealed that LEVA increased serum levels of IFN‑γ, IL‑5 and TNF‑α cytokines, whereas co‑administration of LEVA and GO decreased the stimulatory action of LEVA alone. LEVA and GO alone increased the serum levels of IgG, IgM and total blood cell counts, and co‑administration of GO and LEVA inhibited the effects of LEVA. At the cellular level, in the spleen, LEVA increased immunoreactivity of CD4 and CD8, whereas co‑administration of GO with LEVA decreased this strong expression. At the molecular level, in leukocytes, LEVA upregulated the mRNA expression levels of IL‑2, IL‑4 and IL‑5, whereas GO alone downregulated mRNA expression. Co‑administration of

  4. Differential physiological and biochemical responses of two cyanobacteria Nostoc muscorum and Phormidium foveolarum against oxyfluorfen and UV-B radiation.

    Science.gov (United States)

    Sheeba; Pratap Singh, Vijay; Kumar Srivastava, Prabhat; Mohan Prasad, Sheo

    2011-10-01

    In the present study, degree of tolerance and tolerance strategies of two paddy field cyanobacteria viz. Nostoc muscorum and Phormidium foveolarum against oxyfluorfen (10 and 20 μg ml(-1)) and UV-B (7.2 kJ m(-2)d(-1)) stress were investigated. Oxyfluorfen and UV-B decreased growth, photosynthesis, nutrient uptake, nitrate reductase, acid and alkaline phosphatase activities, which accompanied with the increase in the level of oxidative stress. However, growth was more affected in N. muscorum than P. foveolarum. Antioxidants exhibited differential responses against oxyfluorfen and UV-B stress. Ascorbate and proline levels were higher in P. foveolarum. A protein of 66 kDa was expressed in N. muscorum, however, it was absent in P. foveolarum than those of N. muscorum. Besides this, a protein of 29 kDa appeared in P. foveolarum under all the treatments, but it was present only in control cells of N. muscorum cells. Overall results indicated resistant nature of P. foveolarum against oxyfluorfen and UV-B stress in comparison to N. muscorum. Copyright © 2011 Elsevier Inc. All rights reserved.

  5. Influence of different types of bedding materials on immune response and serum biochemical profile of caged mice

    Directory of Open Access Journals (Sweden)

    Vijayakumar . R

    Full Text Available Contact bedding material is an important environmental factor and welfare creator for laboratory mice. It can alter important physiological process and create potential chance for experimental variation which puts hurdle for comparability. The present experiment was conducted to assess the possible impact of different types of bedding material viz CPS, NWS and PH with fifty one albino mice for a period of fifteen weeks in Laboratory Animal Facility. It was observed that local immunity in mice was enhanced in NWS. During in vitro immune assays, mice from NWS showed higher OD value for reactive oxygen radical, produced more NO2 and higher stimulation index i.e. 0.71 ± 0.01, 30.67 ± 0.88 μM and 7.90 ± 0.17, respectively than PH (0.23 ± 0.01, 17.0 ± 1.15 μM and 6.33 ± 0.21 and CPS (0.33 ± 0.03, 15.67 ± 1.20 μM and 6.46 ± 0.27. There was no influence of bedding type on systemic response. Reduced glutathione value in liver was higher in NWS than PH and CPS i.e. 8.54 ± 0.2, 7.09 ± 0.18 and 6.96 ± 0.14 μmole/ gm of tissue. But heart reduced glutathione showed no variation among different types of bedding materials. Serum analysis showed significantly (p<0.05 higher total protein and albumin value for enriched groups. But globulin value was not significantly differing for enriched and non-enriched groups. [Veterinary World 2010; 3(9.000: 417-420

  6. Plasticity of the MAPK signaling network in response to mechanical stress

    NARCIS (Netherlands)

    Pereira, Andrea M; Tudor, Cicerone; Pouille, Philippe-Alexandre; Shekhar, Shashank; Kanger, Johannes S; Subramaniam, Vinod; Martín-Blanco, Enrique

    2014-01-01

    Cells display versatile responses to mechanical inputs and recent studies have identified the mitogen-activated protein kinase (MAPK) cascades mediating the biological effects observed upon mechanical stimulation. Although, MAPK pathways can act insulated from each other, several mechanisms

  7. Biochemical Stability and Molecular Dynamic Characterization of Aspergillus fumigatus Cystathionine γ-Lyase in Response to Various Reaction Effectors

    KAUST Repository

    El-Sayed, Ashraf S.A.; Abdel-Azeim, Safwat; Ibrahim, Hend M.; Yassin, Marwa A.; Abdel-Ghany, Salah E.; Esener, Sadik; Ali, Gul Shad

    2015-01-01

    Cystathionine γ-lyase (CGL) is a key enzyme in the methionine-cysteine cycle in all living organisms forming cysteine, α-ketobutyrate and ammonia via homocysteine and cystathionine intermediates. Although, human and plant CGLs have been extensively studied at the molecular and mechanistic levels, there has been little work on the molecular and catalytic properties of fungal CGL. Herein, we studied in detail for the first time the molecular and catalytic stability of Aspergillus fumigatus CGL, since conformational instability, inactivation and structural antigenicity are the main limitations of the PLP-dependent enzymes on various therapeutic uses. We examined these properties in response to buffer compositions, stabilizing and destabilizing agents using Differential Scanning Fluorometery (DSF), steady state and gel-based fluorescence of the intrinsic hydrophobic core, stability of internal aldimine linkage and catalytic properties. The activity of the recombinant A. fumigatus CGL was 13.8 U/mg. The melting temperature (Tm) of CGL in potassium phosphate buffer (pH 7.0-8.0) was 73.3 °C, with ∼3 °C upshifting in MES and sodium phosphate buffers (pH 7.0). The conformational thermal stability was increased in potassium phosphate, sodium phosphate and MES buffers, in contrast to Tris-HCl, HEPES (pH 7.0) and CAPS (pH 9.0-10.0). The thermal stability and activity of CGL was slightly increased in the presence of trehalose and glycerol that might be due to hydration of the enzyme backbone, unlike the denaturing effect of GdmCl and urea. Modification of surface CGL glutamic and aspartic acids had no significant effect on the enzyme conformational and catalytic stability. Molecular modeling and dynamics simulations unveil the high conformational stability of the overall scaffold of CGL with high flexibility at the non-structural regions. CGL structure has eight buried Trp residues, which are reoriented to the enzyme surface and get exposed to the solvent under

  8. Biochemical Stability and Molecular Dynamic Characterization of Aspergillus fumigatus Cystathionine γ-Lyase in Response to Various Reaction Effectors

    KAUST Repository

    El-Sayed, Ashraf S.A.

    2015-08-11

    Cystathionine γ-lyase (CGL) is a key enzyme in the methionine-cysteine cycle in all living organisms forming cysteine, α-ketobutyrate and ammonia via homocysteine and cystathionine intermediates. Although, human and plant CGLs have been extensively studied at the molecular and mechanistic levels, there has been little work on the molecular and catalytic properties of fungal CGL. Herein, we studied in detail for the first time the molecular and catalytic stability of Aspergillus fumigatus CGL, since conformational instability, inactivation and structural antigenicity are the main limitations of the PLP-dependent enzymes on various therapeutic uses. We examined these properties in response to buffer compositions, stabilizing and destabilizing agents using Differential Scanning Fluorometery (DSF), steady state and gel-based fluorescence of the intrinsic hydrophobic core, stability of internal aldimine linkage and catalytic properties. The activity of the recombinant A. fumigatus CGL was 13.8 U/mg. The melting temperature (Tm) of CGL in potassium phosphate buffer (pH 7.0-8.0) was 73.3 °C, with ∼3 °C upshifting in MES and sodium phosphate buffers (pH 7.0). The conformational thermal stability was increased in potassium phosphate, sodium phosphate and MES buffers, in contrast to Tris-HCl, HEPES (pH 7.0) and CAPS (pH 9.0-10.0). The thermal stability and activity of CGL was slightly increased in the presence of trehalose and glycerol that might be due to hydration of the enzyme backbone, unlike the denaturing effect of GdmCl and urea. Modification of surface CGL glutamic and aspartic acids had no significant effect on the enzyme conformational and catalytic stability. Molecular modeling and dynamics simulations unveil the high conformational stability of the overall scaffold of CGL with high flexibility at the non-structural regions. CGL structure has eight buried Trp residues, which are reoriented to the enzyme surface and get exposed to the solvent under

  9. Randomized comparison of the effects of the vitamin D3 adequate intake versus 100 mcg (4000 IU per day on biochemical responses and the wellbeing of patients

    Directory of Open Access Journals (Sweden)

    Hu Amanda

    2004-07-01

    Full Text Available Abstract Background For adults, vitamin D intake of 100 mcg (4000 IU/day is physiologic and safe. The adequate intake (AI for older adults is 15 mcg (600 IU/day, but there has been no report focusing on use of this dose. Methods We compared effects of these doses on biochemical responses and sense of wellbeing in a blinded, randomized trial. In Study 1, 64 outpatients (recruited if summer 2001 25(OHD Results In Study 1, basal summer 25-hydroxyvitamin D [25(OHD] averaged 48 ± 9 (SD nmol/L. Supplementation for more than 6 months produced mean 25(OHD levels of 79 ± 30 nmol/L for the 15 mcg/day group, and 112 ± 41 nmol/L for the 100 mcg/day group. Both doses lowered plasma parathyroid hormone with no effect on plasma calcium. Between December and February, wellbeing score improved more for the 100-mcg/day group than for the lower-dosed group (1-tail Mann-Whitney p = 0.036. In Study 2, 25(OHD averaged 39 ± 9 nmol/L, and winter wellbeing scores improved with both doses of vitamin D (two-tail p Conclusion The highest AI for vitamin D brought summertime 25(OHD to >40 nmol/L, lowered PTH, and its use was associated with improved wellbeing. The 100 mcg/day dose produced greater responses. Since it was ethically necessary to provide a meaningful dose of vitamin D to these insufficient patients, we cannot rule out a placebo wellbeing response, particularly for those on the lower dose. This work confirms the safety and efficacy of both 15 and 100 mcg/day vitamin D3 in patients who needed additional vitamin D.

  10. Carbonitriding of low alloy steels: Mechanical and metallurgical responses

    Energy Technology Data Exchange (ETDEWEB)

    Dal' Maz Silva, W., E-mail: waltermateriais@me.com [Institut Jean Lamour – UMR CNRS–Université de Lorraine, 7198, Parc de Saurupt, Nancy 54011 (France); Institut de Recherche Technologique M2P, Metz 57070 (France); Dulcy, J., E-mail: jacky.dulcy@univ-lorraine.fr [Institut Jean Lamour – UMR CNRS–Université de Lorraine, 7198, Parc de Saurupt, Nancy 54011 (France); Ghanbaja, J., E-mail: jaafar.ghanbaja@univ-lorraine.fr [Institut Jean Lamour – UMR CNRS–Université de Lorraine, 7198, Parc de Saurupt, Nancy 54011 (France); Redjaïmia, A., E-mail: abdelkrim.redjaimia@univ-lorraine.fr [Institut Jean Lamour – UMR CNRS–Université de Lorraine, 7198, Parc de Saurupt, Nancy 54011 (France); Michel, G., E-mail: gregory.michel@irt-m2p.fr [Institut de Recherche Technologique M2P, Metz 57070 (France); Thibault, S., E-mail: simon.thibault@safran.fr [Safran Tech, Magny les Hameaux (France); Belmonte, T., E-mail: thierry.belmonte@univ-lorraine.fr [Institut Jean Lamour – UMR CNRS–Université de Lorraine, 7198, Parc de Saurupt, Nancy 54011 (France)

    2017-05-02

    Metallurgical and mechanical responses of alloys 16NiCrMo13 and 23MnCrMo5 to the addition of carbon and/or nitrogen were investigated. Diffusion profiles of these interstitial elements were established by atmospheric pressure carburizing, austenitic nitriding, and a sequence of carburizing and nitriding – the carbonitriding. All treatments were performed at 1173 K under CO-H{sub 2} and/or NH{sub 3} based atmospheres. After enrichment, each sample was (i) room-temperature oil-quenched and (ii) immersed in boiling nitrogen prior to (iii) the stress relief treatment. Cross-section hardness profiles were evaluated after each of these steps. Electron probe microanalysis (EPMA) allowed for the determination of both carbon and nitrogen diffusion profiles after quenching. In order to estimate the fraction of nitrides formed during the enrichment of the alloys, these measured profiles were employed in the simulation of local equilibrium at each evaluated position. This allowed for the computation of total solid solution interstitial content, which was expressed in atomic fraction. Plots of as-quenched hardness against the square root of the computed interstitial content, i.e. the sum of solution carbon and the remaining nitrogen, show the complementary character of these elements in determining the mechanical properties of the materials prior to stress relief treatment. Tempering of carbon-nitrogen martensite resulted in hardness drop to a lesser degree than the one measured on carbon martensite with equivalent interstitial content. In order to investigate this behavior, transmission electron microscopy (TEM) analyses were performed. Results showed the precipitation of two morphologies of Fe{sub 16}N{sub 2} in the nitrogen-rich case and image analysis confirmed the simulated fraction of nitrides.

  11. Microglial inhibitory mechanism of Coenzyme Q10 against Aβ (1-42 induced cognitive dysfunctions: possible behavioral, biochemical, cellular and histopathological alterations

    Directory of Open Access Journals (Sweden)

    Arti eSingh

    2015-11-01

    Full Text Available Rationale: Alzheimer’s disease (AD is a debilitating disease with complex pathophysiology. Amyloid beta (Aβ (1-42 is a reliable model of AD that recapitulates many aspects of human AD. Objective: The present study has been designed to investigate the neuroprotective potential of Coenzyme Q10 (CoQ10 and its modulation with minocycline (microglial inhibitor against Aβ (1-42 induced cognitive dysfunction in rats. Method: Intrahippocampal (i.h. Aβ (1-42 (1µg/µl; 4µl/site were administered followed by drug treatment with galantamine (2 mg/kg, CoQ10 (20 and 40 mg/kg, minocycline (50 and 100 mg/kg and their combinations for a period of 21 days. Various neurobehavioral parameters followed by biochemical, acetylcholinesterase (AChE level, proinflammatory markers (TNF-α, mitochondrial respiratory enzyme complexes (I-IV and histopathological examinations were assessed.Results: Aβ (1-42 administration significantly impaired cognitive performance in Morris water maze (MWM performance test, causes oxidative stress, raised AChE level, caused neuroinflammation, mitochondrial dysfunction and histopathological alterations as compared to sham treatment. Treatment with CoQ10 (20 and 40 mg/kg and minocycline (50 and 100 mg/kg alone for 21days significantly improved cognitive performance as evidenced by reduced transfer latency and increased time spent in target quadrant (TSTQ, reduced AChE activity, oxidative damage (reduced LPO, nitrite level and restored SOD, catalase and GHS levels, TNF-α level, restored mitochondrial respiratory enzyme complex (I, II, III, IV activities and histopathological alterations as compared to control (Aβ (1-42 treated animals group. Further, combination of minocycline (50 and 100 mg/kg with CoQ10 (20 and 40 mg/kg significantly modulate the protective effect of CoQ10 as compared to their effect alone. Conclusion: The present study suggests that the neuroprotective effect of CoQ10 could be due to its microglia inhibitory

  12. Adaptive capability as indicated by endocrine and biochemical responses of Malpura ewes subjected to combined stresses (thermal and nutritional) in a semi-arid tropical environment

    Science.gov (United States)

    Sejian, Veerasamy; Maurya, Vijai P.; Naqvi, Sayeed M. K.

    2010-11-01

    A study was conducted to assess the effect of combined stresses (thermal and nutritional) on endocrine and biochemical responses in Malpura ewes. Twenty eight adult Malpura ewes (average body weight 33.56 kg) were used in the present study. The ewes were divided into four groups viz., GI ( n = 7; control), GII ( n = 7; thermal stress), GIII ( n = 7; nutritional stress) and GIV ( n = 7; combined stress). The animals were stall fed with a diet consisting of 60% roughage and 40% concentrate. GI and GII ewes were provided with ad libitum feeding while GIII and GIV ewes were provided with restricted feed (30% intake of GI ewes) to induce nutritional stress. GII and GIV ewes were kept in climatic chamber at 40°C and 55% RH for 6 h a day between 1000 hours and 1600 hours to induce thermal stress. The study was conducted for a period of two estrus cycles. The parameters studied were Hb, PCV, glucose, total protein, total cholesterol, ACP, ALP, cortisol, T4, T3, and insulin. Combined stress significantly ( P ewes. It can be concluded from this study that two stressors occurring simultaneously may impact severely on the biological functions necessary to maintain homeostasis in sheep.

  13. Molecular Cloning and Biochemical Characterization of the Iron Superoxide Dismutase from the Cyanobacterium Nostoc punctiforme ATCC 29133 and Its Response to Methyl Viologen-Induced Oxidative Stress.

    Science.gov (United States)

    Moirangthem, Lakshmipyari Devi; Ibrahim, Kalibulla Syed; Vanlalsangi, Rebecca; Stensjö, Karin; Lindblad, Peter; Bhattacharya, Jyotirmoy

    2015-12-01

    Superoxide dismutase (SOD) detoxifies cell-toxic superoxide radicals and constitutes an important component of antioxidant machinery in aerobic organisms, including cyanobacteria. The iron-containing SOD (SodB) is one of the most abundant soluble proteins in the cytosol of the nitrogen-fixing cyanobacterium Nostoc punctiforme ATCC 29133, and therefore, we investigated its biochemical properties and response to oxidative stress. The putative SodB-encoding open reading frame Npun_R6491 was cloned and overexpressed in Escherichia coli as a C-terminally hexahistidine-tagged protein. The purified recombinant protein had a SodB specific activity of 2560 ± 48 U/mg protein at pH 7.8 and was highly thermostable. The presence of a characteristic iron absorption peak at 350 nm, and its sensitivity to H2O2 and azide, confirmed that the SodB is an iron-containing SOD. Transcript level of SodB in nitrogen-fixing cultures of N. punctiforme decreased considerably (threefold) after exposure to an oxidative stress-generating herbicide methyl viologen for 4 h. Furthermore, in-gel SOD activity analysis of such cultures grown at increasing concentrations of methyl viologen also showed a loss of SodB activity. These results suggest that SodB is not the primary scavenger of superoxide radicals induced by methyl viologen in N. punctiforme.

  14. Effects of dietary dandelion extracts on growth performance, body composition, plasma biochemical parameters, immune responses and disease resistance of juvenile golden pompano Trachinotus ovatus.

    Science.gov (United States)

    Tan, Xiaohong; Sun, Zhenzhu; Chen, Shu; Chen, Silin; Huang, Zhong; Zhou, Chuanpeng; Zou, Cuiyun; Liu, Qingying; Ye, Huaqun; Lin, Heizhao; Ye, Chaoxia; Wang, Anli

    2017-07-01

    The present study was conducted to investigate the effects of dietary dandelion extracts (DE) supplementation on growth performance, feed utilization, body composition, plasma biochemical indices, immune responses, hepatic antioxidant abilities, and resistance to the pathogen Vibrio harveyi in Trachinotus ovatus. A basal diet supplemented with DE at 0, 0.50, 1.00, 2.00, 4.00 and 10.00 g kg -1 were fed to golden pompano for 8 weeks. The study indicated that dietary supplementation with DE could significantly improve final body weight (FBW), weight gain rate (WGR), specific growth rate (SGR), feed efficiency ratio (FER), feed intake (FI), protein efficiency ratio (PER) and protein deposit rate (PDR) (P Vibrio harveyi, significant higher post-challenge survival was observed in fish fed DE supplement (P growth performance, feed utilization, body protein deposit, immune ability, hepatic and plasma antioxidative enzyme activities and improve its resistance to infection by Vibrio harveyi. Copyright © 2017. Published by Elsevier Ltd.

  15. Biochemical and ultrastructural changes in the liver of European perch (Perca fluviatilis L. in response to cyanobacterial bloom in the Gruža reservoir

    Directory of Open Access Journals (Sweden)

    Perendija Branka R.

    2011-01-01

    Full Text Available We investigated the biochemical and ultrastructural changes in the liver of the freshwater fish, European perch (Perca fluviatilis, in response to Aphanizomenon flos-aquae bloom in the Gruža Reservoir, Serbia. The activities of total manganese- and copper zinc-containing superoxide dismutase (Tot SOD, Mn-SOD, Cu/Zn-SOD, catalase (CAT, glutathione peroxidase (GSH-Px, glutathione reductase (GR and biotransformation phase II enzyme glutathione-S-transferase (GST, as well as concentrations of total glutathione (GSH and sulfhydryl (-SH groups were examined before and during the bloom period. Mn-SOD activity was significantly higher, while the activities of Cu/Zn-SOD, CAT and GSH-Px and the concentration of the -SH groups were significantly lower during the bloom. The ultrastructure of the liver revealed necrotic and apoptotic damage to the hepatocytes during the bloom period. Our work represents the first study to report the influences of an Aphanizomenon flos-aquae bloom in the Gruža Reservoir on antioxidant biomarkers and on histopathological alterations in the liver of the freshwater fish European perch (Perca fluviatilis.

  16. Acid Stress Response Mechanisms of Group B Streptococci

    Directory of Open Access Journals (Sweden)

    Sarah Shabayek

    2017-09-01

    Full Text Available Group B streptococcus (GBS is a leading cause of neonatal mortality and morbidity in the United States and Europe. It is part of the vaginal microbiota in up to 30% of pregnant women and can be passed on to the newborn through perinatal transmission. GBS has the ability to survive in multiple different host niches. The pathophysiology of this bacterium reveals an outstanding ability to withstand varying pH fluctuations of the surrounding environments inside the human host. GBS host pathogen interations include colonization of the acidic vaginal mucosa, invasion of the neutral human blood or amniotic fluid, breaching of the blood brain barrier as well as survival within the acidic phagolysosomal compartment of macrophages. However, investigations on GBS responses to acid stress are limited. Technologies, such as whole genome sequencing, genome-wide transcription and proteome mapping facilitate large scale identification of genes and proteins. Mechanisms enabling GBS to cope with acid stress have mainly been studied through these techniques and are summarized in the current review

  17. Fast-Response electric drives of Mechanical Engineering objects

    Science.gov (United States)

    Doykina, L. A.; Bukhanov, S. S.; Gryzlov, A. A.

    2018-03-01

    The article gives a solution to the problem of increasing the speed in the electrical drives of machine-building enterprises due to the application of a structure with ISC control. In this case, it is possible to get rid of the speed sensors. It is noted that in this case no circulating pulsations are applied to the input of the control system, caused by a non-identical interface between the sensor and the shaft of the operating mechanism. For detailed modeling, a mathematical model of an electric drive with distributed parameters was proposed. The calculation of such system was carried out by the finite element method. Taking into account the distributed characteristic of the system parameters allowed one to take into account the discrete nature of the electric machine’s work. The simulation results showed that the response time in the control circuit is estimated at a time constant of 0.0015, which is about twice as fast as in traditional vector control schemes.

  18. Oxidative and biochemical responses in Brycon amazonicus anesthetized and sedated with Myrcia sylvatica (G. Mey.) DC. and Curcuma longa L. essential oils.

    Science.gov (United States)

    Saccol, Etiane M H; Londero, Érika P; Bressan, Caroline A; Salbego, Joseânia; Gressler, Luciane T; Silva, Lenise V F; Mourão, Rosa H V; Oliveira, Ricardo B; Llesuy, Susana F; Baldisserotto, Bernardo; Pavanato, Maria A

    2017-05-01

    To investigate the effects of rapid anesthesia and long-term sedation with the essential oils (EOs) of Myrcia sylvatica (EOMS) and Curcuma longa (EOCL) on biochemical and oxidative parameters in matrinxã. Prospective, randomized, laboratory experiment. A total of 72 matrinxã (Brycon amazonicus) adults weighing 404.8 ± 27.9 g were divided into eight groups of nine fish. Biochemical and oxidative effects were investigated in plasma and tissues of matrinxã subjected to rapid anesthesia (5 minutes) or long-term sedation (360 minutes, simulating the practice of transport) with EOMS (200 μL L -1 and 10 μL L -1 , respectively) and EOCL (500 μL L -1 and 40 μL L -1 , respectively). Transport simulation without sedation or anesthesia increased lipid peroxidation levels in the gills and kidney of fish in the control group. Anesthesia and sedation with EOs decreased cortisol concentrations and increased lactate concentrations compared with controls. Lipid peroxidation was lower in the brain, gills, liver and kidney of sedated and anesthetized fish, than in the control group. Anesthesia with EOs increased the activity of superoxide dismutase and glutathione-S-transferase in the brain, and catalase in the liver and gills, compared with controls. Long-term sedation with EOs increased superoxide dismutase, glutathione peroxidase and glutathione reductase activities in the brain, catalase in the liver, glutathione peroxidase and glutathione reductase in the gills and superoxide dismutase in the kidney. In general, nonprotein thiols content and total reactive antioxidant potential of tissues were higher after anesthesia and sedation with EOs compared with the control group. The concentrations of EOMS and EOCL used were effective at preventing a stress response and excess of reactive oxygen species formation. For these reasons, these substances may be recommended for use in the transportation of fish to improve survival and animal welfare. Copyright © 2017

  19. Target or barrier? The cell wall of early- and later- diverging plants vs cadmium toxicity: differences in the response mechanisms

    Directory of Open Access Journals (Sweden)

    Luigi eParrotta

    2015-03-01

    Full Text Available Increasing industrialization and urbanization result in emission of pollutants in the environment including toxic heavy metals, as cadmium and lead. Among the different heavy metals contaminating the environment, cadmium raises great concern, as it is ecotoxic and as such can heavily impact ecosystems. The cell wall is the first structure of plant cells to come in contact with heavy metals. Its composition, characterized by proteins, polysaccharides and in some instances lignin and other phenolic compounds, confers the ability to bind non-covalently and/or covalently heavy metals via functional groups. A strong body of evidence in the literature has shown the role of the cell wall in heavy metal response: it sequesters heavy metals, but at the same time its synthesis and composition can be severely affected. The present review analyzes the dual property of plant cell walls, i.e. barrier and target of heavy metals, by taking Cd toxicity as example. Following a summary of the known physiological and biochemical responses of plants to Cd, the review compares the wall-related mechanisms in early- and later-diverging land plants, by considering the diversity in cell wall composition. By doing so, common as well as unique response mechanisms to metal/cadmium toxicity are identified among plant phyla and discussed. After discussing the role of hyperaccumulators’ cell walls as a particular case, the review concludes by considering important aspects for plant engineering.

  20. The physiological and biochemical responses of a medicinal plant (Salvia miltiorrhiza L. to stress caused by various concentrations of NaCl.

    Directory of Open Access Journals (Sweden)

    Zhao Gengmao

    Full Text Available Salvia miltiorrhiza, which is commonly known as Danshen, is a traditional Chinese herbal medicine. To illustrate its physiological and biochemical responses to salt stress and to evaluate the feasibility of cultivating this plant in saline coastal soils, a factorial experiment under hydroponic conditions was arranged on the basis of a completely randomised design with three replications. Five salinity treatments (0, 25, 50, 75 and 100 mM NaCl were employed in this experiment. The results showed that salinity treatments of <100 mM NaCl did not affect the growth of Salvia miltiorrhiza in a morphological sense, but significantly inhibit the accumulation of dry matter. Salinity treatments significantly decreased the Chl-b content but caused a negligible change in the Chl-a content, leading to a conspicuous overall decrease in the T-Chl content. The Na(+ content significantly increased with increasing hydroponic salinity but the K(+ and Ca(2+ contents were reversed, indicating that a high level of external Na(+ resulted in a decrease in both K(+ and Ca(2+ concentrations in the organs of Salvia miltiorrhiza. Salt stress significantly decreased the superoxide dismutase (SOD activity of Salvia miltiorrhiza leaves in comparison with that of the control. On the contrary, the catalase (CAT activity in the leaves markedly increased with the increasing salinity of the hydroponic solution. Moreover, the soluble sugar and protein contents in Salvia miltiorrhiza leaves dramatically increased with the increasing salinity of the hydroponic solution. These results suggested that antioxidant enzymes and osmolytes are partially involved in the adaptive response to salt stress in Salvia miltiorrhiza, thereby maintaining better plant growth under saline conditions.

  1. Photosynthesis and biochemical responses to elevated O3 in Plantago major and Sonchus oleraceus growing in a lowland habitat of northern China.

    Science.gov (United States)

    Su, Benying; Zhou, Meihua; Xu, Hong; Zhang, Xiujie; Li, Yonggeng; Su, Hua; Xiang, Bao

    2017-03-01

    A field experiment was carried out to compare the responses to ozone (O 3 ) in two common herbaceous plant species, Plantago major L. and Sonchus oleraceus L., by building open-top growth chambers in situ to simulate O 3 stress (+O 3 , 85±5ppb, 9hr/day for 30days) in a lowland habitat in Inner Mongolia, Northern China. Responses to O 3 of gas exchange, chlorophyll a fluorescence, leaf pigment content, antioxidant capability, soluble protein content, membrane lipid peroxidation and dark respiration (R d ) were analyzed. Results showed that elevated O 3 exposure significantly reduced the light-saturated net photosynthesis (P Nsat ), stomatal conductance (g s ) and transpiration rate (E) in both species. Although non-significant interactive effect between species and O 3 on P Nsat was analyzed, the reduction in P Nsat in S. oleraceus might be due primarily to the higher fraction of close PSII reaction centers and impaired activities of plant mesophyll cells as evidences by decreased maximum efficiency of PSII photochemistry after dark adapted state (F v /F m ) and unchanged intercellular CO 2 concentration (C i ). Besides, biochemical analysis showed that S. oleraceus had lower antioxidant ability compared to P. major. As a result, S. oleraceus was damaged to the larger extent in terms of lipid peroxidation and visible O 3 injury, indicating that S. oleraceus was more sensitive to O 3 than P. major. Our results indicated that wild herbaceous plant species growing in a lowland habitat in sandy grassland were sensitive to O 3 stress and S. oleraceus can be considered as one of the bio-indicators for high O 3 concentration in semi-arid grassland of northern China. Copyright © 2016. Published by Elsevier B.V.

  2. Conceptual approaches to the formation the mechanism of enterprises social responsibility stimulation

    OpenAIRE

    Ohorodnikova, Natalia

    2014-01-01

    The article defines the economic content of the enterprise social responsibility incentive mechanism, the concept of its perfection. There are formulated the purpose and objectives of the proposed mechanisms, sounded principles of its formation. As tools of the enterprise social responsibility incentive mechanism, it is advised to use: methods of corporate social responsibility stimulating, a model of corporate strategy in the context of implementing the practice of social responsibility in t...

  3. BISEN: Biochemical simulation environment

    NARCIS (Netherlands)

    Vanlier, J.; Wu, F.; Qi, F.; Vinnakota, K.C.; Han, Y.; Dash, R.K.; Yang, F.; Beard, D.A.

    2009-01-01

    The Biochemical Simulation Environment (BISEN) is a suite of tools for generating equations and associated computer programs for simulating biochemical systems in the MATLAB® computing environment. This is the first package that can generate appropriate systems of differential equations for

  4. Biochemical Hypermedia: Galactose Metabolism.

    Directory of Open Access Journals (Sweden)

    J.K. Sugai

    2013-05-01

    Full Text Available Introduction: Animations of biochemical processes and virtual laboratory environments lead to true molecular simulations. The use of interactive software’s in education can improve cognitive capacity, better learning and, mainly, it makes information acquisition easier. Material and Methods: This work presents the development of a biochemical hypermedia to understanding of the galactose metabolism. It was developed with the help of concept maps, ISIS Draw, ADOBE Photoshop and FLASH MX Program. Results and Discussion: A step by step animation process shows the enzymatic reactions of galactose conversion to glucose-1-phosphate (to glycogen synthesis, glucose-6-phosphate (glycolysis intermediary, UDP-galactose (substrate to mucopolysaccharides synthesis and collagen’s glycosylation. There are navigation guide that allow scrolling the mouse over the names of the components of enzymatic reactions of via the metabolism of galactose. Thus, explanatory text box, chemical structures and animation of the actions of enzymes appear to navigator. Upon completion of the module, the user’s response to the proposed exercise can be checked immediately through text box with interactive content of the answer. Conclusion: This hypermedia was presented for undergraduate students (UFSC who revealed that it was extremely effective in promoting the understanding of the theme.

  5. High surface adsorption properties of carbon-based nanomaterials are responsible for mortality, swimming inhibition, and biochemical responses in Artemia salina larvae.

    Science.gov (United States)

    Mesarič, Tina; Gambardella, Chiara; Milivojević, Tamara; Faimali, Marco; Drobne, Damjana; Falugi, Carla; Makovec, Darko; Jemec, Anita; Sepčić, Kristina

    2015-06-01

    We investigated the effects of three different carbon-based nanomaterials on brine shrimp (Artemia salina) larvae. The larvae were exposed to different concentrations of carbon black, graphene oxide, and multiwall carbon nanotubes for 48 h, and observed using phase contrast and scanning electron microscopy. Acute (mortality) and behavioural (swimming speed alteration) responses and cholinesterase, glutathione-S-transferase and catalase enzyme activities were evaluated. These nanomaterials were ingested and concentrated in the gut, and attached onto the body surface of the A. salina larvae. This attachment was responsible for concentration-dependent inhibition of larval swimming, and partly for alterations in the enzyme activities, that differed according to the type of tested nanomaterials. No lethal effects were observed up to 0.5mg/mL carbon black and 0.1mg/mL multiwall carbon nanotubes, while graphene oxide showed a threshold whereby it had no effects at 0.6 mg/mL, and more than 90% mortality at 0.7 mg/mL. Risk quotients calculated on the basis of predicted environmental concentrations indicate that carbon black and multiwall carbon nanotubes currently do not pose a serious risk to the marine environment, however if uncontrolled release of nanomaterials continues, this scenario can rapidly change. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. High surface adsorption properties of carbon-based nanomaterials are responsible for mortality, swimming inhibition, and biochemical responses in Artemia salina larvae

    International Nuclear Information System (INIS)

    Mesarič, Tina; Gambardella, Chiara; Milivojević, Tamara; Faimali, Marco; Drobne, Damjana; Falugi, Carla; Makovec, Darko; Jemec, Anita; Sepčić, Kristina

    2015-01-01

    Highlights: • Carbon-based nanomaterials adsorb onto the body surface of A. salina larvae. • Surface adsorption results in concentration–dependent inhibition of larval swimming. • Carbon-based nanomaterials induce no significant mortality of A. salina larvae. - Abstract: We investigated the effects of three different carbon-based nanomaterials on brine shrimp (Artemia salina) larvae. The larvae were exposed to different concentrations of carbon black, graphene oxide, and multiwall carbon nanotubes for 48 h, and observed using phase contrast and scanning electron microscopy. Acute (mortality) and behavioural (swimming speed alteration) responses and cholinesterase, glutathione-S-transferase and catalase enzyme activities were evaluated. These nanomaterials were ingested and concentrated in the gut, and attached onto the body surface of the A. salina larvae. This attachment was responsible for concentration–dependent inhibition of larval swimming, and partly for alterations in the enzyme activities, that differed according to the type of tested nanomaterials. No lethal effects were observed up to 0.5 mg/mL carbon black and 0.1 mg/mL multiwall carbon nanotubes, while graphene oxide showed a threshold whereby it had no effects at 0.6 mg/mL, and more than 90% mortality at 0.7 mg/mL. Risk quotients calculated on the basis of predicted environmental concentrations indicate that carbon black and multiwall carbon nanotubes currently do not pose a serious risk to the marine environment, however if uncontrolled release of nanomaterials continues, this scenario can rapidly change

  7. High surface adsorption properties of carbon-based nanomaterials are responsible for mortality, swimming inhibition, and biochemical responses in Artemia salina larvae

    Energy Technology Data Exchange (ETDEWEB)

    Mesarič, Tina, E-mail: tina.mesaric84@gmail.com [Department of Biology, Biotechnical Faculty, University of Ljubljana (Slovenia); Gambardella, Chiara, E-mail: chiara.gambardella@ge.ismar.cnr.it [Institute of Marine Sciences, National Research Council, Genova (Italy); Milivojević, Tamara, E-mail: milivojevictamara@gmail.com [Department of Biology, Biotechnical Faculty, University of Ljubljana (Slovenia); Faimali, Marco, E-mail: marco.faimali@ismar.cnr.it [Institute of Marine Sciences, National Research Council, Genova (Italy); Drobne, Damjana, E-mail: damjana.drobne@bf.uni-lj.si [Department of Biology, Biotechnical Faculty, University of Ljubljana (Slovenia); Centre of Excellence in Nanoscience and Nanotechnology (CO Nanocentre), Ljubljana (Slovenia); Centre of Excellence in Advanced Materials and Technologies for the Future (CO NAMASTE), Ljubljana (Slovenia); Falugi, Carla, E-mail: carlafalugi@hotmail.it [Department of Earth, Environment and Life Sciences, University of Genova, Genova (Italy); Makovec, Darko, E-mail: darko.makovec@ijs.si [Jožef Stefan Institute, Jamova 39, 1000 Ljubljana (Slovenia); Jemec, Anita, E-mail: anita.jemec@bf.uni-lj.si [Department of Biology, Biotechnical Faculty, University of Ljubljana (Slovenia); Sepčić, Kristina, E-mail: kristina.sepcic@bf.uni-lj.si [Department of Biology, Biotechnical Faculty, University of Ljubljana (Slovenia)

    2015-06-15

    Highlights: • Carbon-based nanomaterials adsorb onto the body surface of A. salina larvae. • Surface adsorption results in concentration–dependent inhibition of larval swimming. • Carbon-based nanomaterials induce no significant mortality of A. salina larvae. - Abstract: We investigated the effects of three different carbon-based nanomaterials on brine shrimp (Artemia salina) larvae. The larvae were exposed to different concentrations of carbon black, graphene oxide, and multiwall carbon nanotubes for 48 h, and observed using phase contrast and scanning electron microscopy. Acute (mortality) and behavioural (swimming speed alteration) responses and cholinesterase, glutathione-S-transferase and catalase enzyme activities were evaluated. These nanomaterials were ingested and concentrated in the gut, and attached onto the body surface of the A. salina larvae. This attachment was responsible for concentration–dependent inhibition of larval swimming, and partly for alterations in the enzyme activities, that differed according to the type of tested nanomaterials. No lethal effects were observed up to 0.5 mg/mL carbon black and 0.1 mg/mL multiwall carbon nanotubes, while graphene oxide showed a threshold whereby it had no effects at 0.6 mg/mL, and more than 90% mortality at 0.7 mg/mL. Risk quotients calculated on the basis of predicted environmental concentrations indicate that carbon black and multiwall carbon nanotubes currently do not pose a serious risk to the marine environment, however if uncontrolled release of nanomaterials continues, this scenario can rapidly change.

  8. Understanding abiotic stress tolerance mechanisms in soybean: a comparative evaluation of soybean response to drought and flooding stress.

    Science.gov (United States)

    Mutava, Raymond N; Prince, Silvas Jebakumar K; Syed, Naeem Hasan; Song, Li; Valliyodan, Babu; Chen, Wei; Nguyen, Henry T

    2015-01-01

    Many sources of drought and flooding tolerance have been identified in soybean, however underlying molecular and physiological mechanisms are poorly understood. Therefore, it is important to illuminate different plant responses to these abiotic stresses and understand the mechanisms that confer tolerance. Towards this goal we used four contrasting soybean (Glycine max) genotypes (PI 567690--drought tolerant, Pana--drought susceptible, PI 408105A--flooding tolerant, S99-2281--flooding susceptible) grown under greenhouse conditions and compared genotypic responses to drought and flooding at the physiological, biochemical, and cellular level. We also quantified these variations and tried to infer their role in drought and flooding tolerance in soybean. Our results revealed that different mechanisms contribute to reduction in net photosynthesis under drought and flooding stress. Under drought stress, ABA and stomatal conductance are responsible for reduced photosynthetic rate; while under flooding stress, accumulation of starch granules played a major role. Drought tolerant genotypes PI 567690 and PI 408105A had higher plastoglobule numbers than the susceptible Pana and S99-2281. Drought stress increased the number and size of plastoglobules in most of the genotypes pointing to a possible role in stress tolerance. Interestingly, there were seven fibrillin proteins localized within the plastoglobules that were up-regulated in the drought and flooding tolerant genotypes PI 567690 and PI 408105A, respectively, but down-regulated in the drought susceptible genotype Pana. These results suggest a potential role of Fibrillin proteins, FBN1a, 1b and 7a in soybean response to drought and flooding stress. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  9. Temperature extremes in Europe: mechanisms and responses to climatic change

    International Nuclear Information System (INIS)

    Cattiaux, Julien

    2010-01-01

    Europe witnessed a spate of record-breaking warm seasons during the 2000's. As illustrated by the devastating heat-wave of the summer 2003, these episodes induced strong societal and environmental impacts. Such occurrence of exceptional events over a relatively short time period raised up many questionings in the present context of climate change. In particular, can recent temperature extremes be considered as 'previews' of future climate conditions? Do they result from an increasing temperature variability? These questions constitute the main motivations of this thesis. Thus, our work aims to contribute to the understanding of physical mechanisms responsible for seasonal temperature extremes in Europe, in order to anticipate their future statistical characteristics. Involved processes are assessed by both statistical data-analysis of observations and climate projections and regional modeling experiments. First we show that while the inter-annual European temperature variability appears driven by disturbances in the North-Atlantic dynamics, the recent warming is likely to be dissociated with potential circulation changes. This inconsistency climaxes during the exceptionally mild autumn of 2006, whose temperature anomaly is only half explained by the atmospheric flow. Recent warm surface conditions in the North-Atlantic ocean seem to substantially contribute to the European warming in autumn-winter, through the establishment of advective and radiative processes. In spring-summer, since both advection by the westerlies and Atlantic warming are reduced, more local processes appear predominant (e.g. soil moisture, clouds, aerosols). Then the issue of future evolution of the relationship between North-Atlantic dynamics and European temperatures is addressed, based on climate projections of the International Panel on Climate Change. Multi-model analysis, using both flow-analogues and weather regimes methods, show that the inconsistency noticed over recent decades is

  10. Dynamic compressive mechanical response of a soft polymer material

    NARCIS (Netherlands)

    Fan, J.T.; Weerheijm, J.; Sluys, L.J.

    2015-01-01

    The dynamic mechanical behaviour of a soft polymer material (Clear Flex 75) was studied using a split Hopkinson pressure bar (SHPB) apparatus. Mechanical properties have been determined at moderate to high strain rates. Real time deformation and fracture were recorded using a high-speed camera.

  11. Conventional estimating method of earthquake response of mechanical appendage system

    International Nuclear Information System (INIS)

    Aoki, Shigeru; Suzuki, Kohei

    1981-01-01

    Generally, for the estimation of the earthquake response of appendage structure system installed in main structure system, the method of floor response analysis using the response spectra at the point of installing the appendage system has been used. On the other hand, the research on the estimation of the earthquake response of appendage system by the statistical procedure based on probability process theory has been reported. The development of a practical method for simply estimating the response is an important subject in aseismatic engineering. In this study, the method of estimating the earthquake response of appendage system in the general case that the natural frequencies of both structure systems were different was investigated. First, it was shown that floor response amplification factor was able to be estimated simply by giving the ratio of the natural frequencies of both structure systems, and its statistical property was clarified. Next, it was elucidated that the procedure of expressing acceleration, velocity and displacement responses with tri-axial response spectra simultaneously was able to be applied to the expression of FRAF. The applicability of this procedure to nonlinear system was examined. (Kako, I.)

  12. Biochemical analysis of reactive oxygen species production and antioxidative responses in unripe avocado (Persea americana Mill var Hass) fruits in response to wounding.

    Science.gov (United States)

    Castro-Mercado, E; Martinez-Diaz, Y; Roman-Tehandon, N; Garcia-Pineda, E

    2009-03-01

    We analyzed the production of reactive oxygen species (ROS) and of detoxifying enzymes and enzymes of the ascorbate (ASC) acid cycle in avocado fruit (Pesea Americana Mill cv Hass) in response to wounding. The levels of superoxide anion (O(2-), hydroxyl radicals (OH.) and hydrogen peroxide (H(2)O(2)) increased at 15 min and 2 and 15 h post-wounding. Peroxidase (POD) activity had increased to high levels 24 h after wounding; in contrast, catalase and superoxide dismutase (SOD) levels hat decreased significantly at 24 h post-treatment. Basic POD was the major POD form induced, and the levels of at least three apoplastic POD isozymes -increased following wounding. Using specific inhibitors, we characterized one MnSOD and two CuZnSOD isozymes. CuZnSOD activities decreased notably 12 h after treatment. The activities of dehydroascorbate reductase and glutathione reductase increased dramatically following the wounding treatment, possibly as a means to compensate for the redox changes due to ROS production.

  13. Mechanical response of collagen molecule under hydrostatic compression

    International Nuclear Information System (INIS)

    Saini, Karanvir; Kumar, Navin

    2015-01-01

    Proteins like collagen are the basic building blocks of various body tissues (soft and hard). Collagen molecules find their presence in the skeletal system of the body where they bear mechanical loads from different directions, either individually or along with hydroxy-apatite crystals. Therefore, it is very important to understand the mechanical behavior of the collagen molecule which is subjected to multi-axial state of loading. The estimation of strains of collagen molecule along different directions resulting from the changes in hydrostatic pressure magnitude, can provide us new insights into its mechanical behavior. In the present work, full atomistic simulations have been used to study global (volumetric) as well as local (along different directions) mechanical properties of the hydrated collagen molecule which is subjected to different hydrostatic pressure magnitudes. To estimate the local mechanical properties, the strains of collagen molecule along its longitudinal and transverse directions have been acquired at different hydrostatic pressure magnitudes. In spite of non-homogeneous distribution of atoms within the collagen molecule, the calculated values of local mechanical properties have been found to carry the same order of magnitude along the longitudinal and transverse directions. It has been demonstrated that the values of global mechanical properties like compressibility, bulk modulus, etc. as well as local mechanical properties like linear compressibility, linear elastic modulus, etc. are functions of magnitudes of applied hydrostatic pressures. The mechanical characteristics of collagen molecule based on the atomistic model have also been compared with that of the continuum model in the present work. The comparison showed up orthotropic material behavior for the collagen molecule. The information on collagen molecule provided in the present study can be very helpful in designing the future bio-materials.

  14. Mechanical response of collagen molecule under hydrostatic compression.

    Science.gov (United States)

    Saini, Karanvir; Kumar, Navin

    2015-04-01

    Proteins like collagen are the basic building blocks of various body tissues (soft and hard). Collagen molecules find their presence in the skeletal system of the body where they bear mechanical loads from different directions, either individually or along with hydroxy-apatite crystals. Therefore, it is very important to understand the mechanical behavior of the collagen molecule which is subjected to multi-axial state of loading. The estimation of strains of collagen molecule along different directions resulting from the changes in hydrostatic pressure magnitude, can provide us new insights into its mechanical behavior. In the present work, full atomistic simulations have been used to study global (volumetric) as well as local (along different directions) mechanical properties of the hydrated collagen molecule which is subjected to different hydrostatic pressure magnitudes. To estimate the local mechanical properties, the strains of collagen molecule along its longitudinal and transverse directions have been acquired at different hydrostatic pressure magnitudes. In spite of non-homogeneous distribution of atoms within the collagen molecule, the calculated values of local mechanical properties have been found to carry the same order of magnitude along the longitudinal and transverse directions. It has been demonstrated that the values of global mechanical properties like compressibility, bulk modulus, etc. as well as local mechanical properties like linear compressibility, linear elastic modulus, etc. are functions of magnitudes of applied hydrostatic pressures. The mechanical characteristics of collagen molecule based on the atomistic model have also been compared with that of the continuum model in the present work. The comparison showed up orthotropic material behavior for the collagen molecule. The information on collagen molecule provided in the present study can be very helpful in designing the future bio-materials. Copyright © 2015 Elsevier B.V. All rights

  15. Mechanical response of collagen molecule under hydrostatic compression

    Energy Technology Data Exchange (ETDEWEB)

    Saini, Karanvir, E-mail: karans@iitrpr.ac.in; Kumar, Navin

    2015-04-01

    Proteins like collagen are the basic building blocks of various body tissues (soft and hard). Collagen molecules find their presence in the skeletal system of the body where they bear mechanical loads from different directions, either individually or along with hydroxy-apatite crystals. Therefore, it is very important to understand the mechanical behavior of the collagen molecule which is subjected to multi-axial state of loading. The estimation of strains of collagen molecule along different directions resulting from the changes in hydrostatic pressure magnitude, can provide us new insights into its mechanical behavior. In the present work, full atomistic simulations have been used to study global (volumetric) as well as local (along different directions) mechanical properties of the hydrated collagen molecule which is subjected to different hydrostatic pressure magnitudes. To estimate the local mechanical properties, the strains of collagen molecule along its longitudinal and transverse directions have been acquired at different hydrostatic pressure magnitudes. In spite of non-homogeneous distribution of atoms within the collagen molecule, the calculated values of local mechanical properties have been found to carry the same order of magnitude along the longitudinal and transverse directions. It has been demonstrated that the values of global mechanical properties like compressibility, bulk modulus, etc. as well as local mechanical properties like linear compressibility, linear elastic modulus, etc. are functions of magnitudes of applied hydrostatic pressures. The mechanical characteristics of collagen molecule based on the atomistic model have also been compared with that of the continuum model in the present work. The comparison showed up orthotropic material behavior for the collagen molecule. The information on collagen molecule provided in the present study can be very helpful in designing the future bio-materials.

  16. Mechanical and rheological response of polypropylene/boehmite nanocomposites

    CSIR Research Space (South Africa)

    Pedrazzoli, D

    2014-01-01

    Full Text Available In this work the influence of synthetic boehmite alumina (BA) nanoparticles with various surface treatments on the morphology, crystallization behavior and mechanical properties of polypropylene copolymer (PP) nanocomposites was studied...

  17. Molecular mechanisms of plant competition: neighbour detection and response strategies

    NARCIS (Netherlands)

    Pierik, R.; Mommer, L.; Voesenek, L.A.C.J.

    2013-01-01

    Plant competition determines the diversity and species abundance of natural communities as well as potential yields in agricultural systems. Understanding the mechanisms of plant competition is instrumental to understanding plant performance in true vegetations. In this review, we will address

  18. The Role of Instabilities on the Mechanical Response of Cellular Solids and Structures

    National Research Council Canada - National Science Library

    Kyriakides, S

    1997-01-01

    .... The relatively regular and periodic microstructure of these two-dimensional materials makes them excellent models for studying the mechanisms that govern the compressive response of cellular materials...

  19. Functional indicators of response mechanisms to nitrogen deposition, ozone, and their interaction in two Mediterranean tree species.

    Directory of Open Access Journals (Sweden)

    Lina Fusaro

    Full Text Available The effects of nitrogen (N deposition, tropospheric ozone (O3 and their interaction were investigated in two Mediterranean tree species, Fraxinus ornus L. (deciduous and Quercus ilex L. (evergreen, having different leaf habits and resource use strategies. An experiment was conducted under controlled condition to analyse how nitrogen deposition affects the ecophysiological and biochemical traits, and to explore how the nitrogen-induced changes influence the response to O3. For both factors we selected realistic exposures (20 kg N ha-1 yr-1 and 80 ppb h for nitrogen and O3, respectively, in order to elucidate the mechanisms implemented by the plants. Nitrogen addition resulted in higher nitrogen concentration at the leaf level in F. ornus, whereas a slight increase was detected in Q. ilex. Nitrogen enhanced the maximum rate of assimilation and ribulose 1,5-bisphosphate regeneration in both species, whereas it influenced the light harvesting complex only in the deciduous F. ornus that was also affected by O3 (reduced assimilation rate and accelerated senescence-related processes. Conversely, Q. ilex developed an avoidance mechanism to cope with O3, confirming a substantial O3 tolerance of this species. Nitrogen seemed to ameliorate the harmful effects of O3 in F. ornus: the hypothesized mechanism of action involved the production of nitrogen oxide as the first antioxidant barrier, followed by enzymatic antioxidant response. In Q. ilex, the interaction was not detected on gas exchange and photosystem functionality; however, in this species, nitrogen might stimulate an alternative antioxidant response such as the emission of volatile organic compounds. Antioxidant enzyme activity was lower in plants treated with both O3 and nitrogen even though reactive oxygen species production did not differ between the treatments.

  20. Hybrid Polymer-Network Hydrogels with Tunable Mechanical Response

    Directory of Open Access Journals (Sweden)

    Sebastian Czarnecki

    2016-03-01

    Full Text Available Hybrid polymer-network gels built by both physical and covalent polymer crosslinking combine the advantages of both these crosslinking types: they exhibit high mechanical strength along with excellent fracture toughness and extensibility. If these materials are extensively deformed, their physical crosslinks can break such that strain energy is dissipated and irreversible fracturing is restricted to high strain only. This mechanism of energy dissipation is determined by the kinetics and thermodynamics of the physical crosslinking contribution. In this paper, we present a poly(ethylene glycol (PEG based material toolkit to control these contributions in a rational and custom fashion. We form well-defined covalent polymer-network gels with regularly distributed additional supramolecular mechanical fuse links, whose strength of connectivity can be tuned without affecting the primary polymer-network composition. This is possible because the supramolecular fuse links are based on terpyridine–metal complexation, such that the mere choice of the fuse-linking metal ion adjusts their kinetics and thermodynamics of complexation–decomplexation, which directly affects the mechanical properties of the hybrid gels. We use oscillatory shear rheology to demonstrate this rational control and enhancement of the mechanical properties of the hybrid gels. In addition, static light scattering reveals their highly regular and well-defined polymer-network structures. As a result of both, the present approach provides an easy and reliable concept for preparing hybrid polymer-network gels with rationally designed properties.

  1. Structural and biochemical characterization of phage λ FI protein (gpFI) reveals a novel mechanism of DNA packaging chaperone activity.

    Science.gov (United States)

    Popovic, Ana; Wu, Bin; Arrowsmith, Cheryl H; Edwards, Aled M; Davidson, Alan R; Maxwell, Karen L

    2012-09-14

    One of the final steps in the morphogenetic pathway of phage λ is the packaging of a single genome into a preformed empty head structure. In addition to the terminase enzyme, the packaging chaperone, FI protein (gpFI), is required for efficient DNA packaging. In this study, we demonstrate an interaction between gpFI and the major head protein, gpE. Amino acid substitutions in gpFI that reduced the strength of this interaction also decreased the biological activity of gpFI, implying that this head binding activity is essential for the function of gpFI. We also show that gpFI is a two-domain protein, and the C-terminal domain is responsible for the head binding activity. Using nuclear magnetic resonance spectroscopy, we determined the three-dimensional structure of the C-terminal domain and characterized the helical nature of the N-terminal domain. Through structural comparisons, we were able to identify two previously unannotated prophage-encoded proteins with tertiary structures similar to gpFI, although they lack significant pairwise sequence identity. Sequence analysis of these diverse homologues led us to identify related proteins in a variety of myo- and siphophages, revealing that gpFI function has a more highly conserved role in phage morphogenesis than was previously appreciated. Finally, we present a novel model for the mechanism of gpFI chaperone activity in the DNA packaging reaction of phage λ.

  2. Features of structural response of mechanically loaded crystallites to irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Korchuganov, Aleksandr V., E-mail: avkor@ispms.ru [Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055 (Russian Federation); National Research Tomsk State University, Tomsk, 634050 (Russian Federation)

    2015-10-27

    A molecular dynamics method is employed to investigate the origin and evolution of plastic deformation in elastically deformed iron and vanadium crystallites due to atomic displacement cascades. Elastic stress states of crystallites result from different degrees of specimen deformation. Crystallites are deformed under constant-volume conditions. Atomic displacement cascades with the primary knock-on atom energy up to 50 keV are generated in loaded specimens. It is shown that irradiation may cause not only the Frenkel pair formation but also large-scale structural rearrangements outside the irradiated area, which prove to be similar to rearrangements proceeding by the twinning mechanism in mechanically loaded specimens.

  3. Differential response of biochemical parameters to EMS and MMS treatments and their dose effect relationship on chromosomes in induced diabetic mouse

    Directory of Open Access Journals (Sweden)

    B.B.D. Khalandar

    2015-10-01

    Conclusion: (1 Even though alkylating agents induce chromosomal aberrations in diabetic mice, MMS, a methylating agent is a more potent inducer of chromatid type of aberrations than EMS, an ethylating agent. (2 Diabetic mouse is more resistant than the non diabetic to alkylating agents and (3 the tested agents altered the analyzed biochemical parameters.

  4. Hydrologic response of mechanical mastication in juniper woodland in Utah

    Science.gov (United States)

    Various vegetation control methods have been used to reduce juniper (Juniperus ssp.) woodland encroachment. Mechanical mastication (reducing trees to a mulch residue) has recently been used in some western states. We investigated the hydrologic impacts of rubber tire tracks from the masticating vehi...

  5. Thermo-Mechanical Methodology for Stabilizing Shape Memory Alloy Response

    Science.gov (United States)

    Padula, Santo

    2013-01-01

    This innovation is capable of significantly reducing the amount of time required to stabilize the strain-temperature response of a shape memory alloy (SMA). Unlike traditional stabilization processes that take days to weeks to achieve stabilized response, this innovation accomplishes stabilization in a matter of minutes, thus making it highly useful for the successful and practical implementation of SMA-based technologies in real-world applications. The innovation can also be applied to complex geometry components, not just simple geometries like wires or rods.

  6. Analysis of Factors Responsible for Low Utilization of Mechanical ...

    African Journals Online (AJOL)

    The study is concerned with identifying the problems of low utilization of plant and equipment by the indigenous building construction firms in Nigeria. The methodology involved the use of a well structured questionnaire complemented with an oral interview. The results revealed that (15) factors were responsible for low ...

  7. Mechanisms of the training response in patients with peripheral ...

    African Journals Online (AJOL)

    by Gardner et al.18 of 21 studies on exercise training in patients with PAD, PFWD increased 179% and the .... causes an inequality in the supply of and demand for oxygen. Aerobic generation of ATP becomes .... Pohl U, Holtz J, Busse R, Bassenge E. Crucial role of endothelium in the vasodilator response to increased flow ...

  8. Tensile mechanical response of polyethylene – clay nanocomposites.

    Directory of Open Access Journals (Sweden)

    2007-03-01

    Full Text Available In this work we report on the microstructural and the mechanical characteristics of high density polyethylene (HDPE-clay nanocomposites, with particular attention to the creep behaviour. The samples were prepared through melt compounding, using two high-density polyethylenes with different melt flow rate (MFR, two different organo-modified clays, and changing the relative amount of a polyethylene grafted with maleic anhydride (PEgMA compatibilizer. The intercalation process is more effective as the matrix melt viscosity decreases (higher MFR, while the clay interlamellar spacing increases as the compatibilizer amount increases. The relative stiffness of the nanocomposites increases with the addition of clay, with a limited enhancement of the relative yield stress. The better intercalation obtained by the addition of the compatibilizer is not accompanied by a concurrent improvement of the tensile mechanical properties. The creep resistance is enhanced by the introduction of clay, with an appreciable dependence on both the polyethylene and the clay type.

  9. Mechanical response of shock conditioned HPNS-5 (R-1) grout

    International Nuclear Information System (INIS)

    Plannerer, H.N.

    1997-01-01

    HPNS-5 (R-1) grout is a portland cement formulated mix designed for use as a rigid containment plug in vertical boreholes at the Nevada Test Site. Coincident with field testing of this grout in 1991 and 1992 , two arums of the grout mix were collected and positioned in the by pass drift of the DISTANT ZENITH event to expose the grout to passage of a nuclear driven stress wave. The drums were later retrieved to determine the mechanical behavior of the shock conditioned grout. Sealed hollow tubes positioned within the grout-filled drums to detect ductile flow on passage of the stress wave were found partially to completely filled with HPNS-5 grout following the experiment. Static mechanical tests support the evidence for ductile flow and place the transition from brittle fracture failure to ductile behavior in the shock conditioned grout at a confining stress between ambient and 5 MPa (725 psi). Uniaxial and triaxial tests delineated a stress-strain field for interstice collapse that interposes between the mechanics of linear elastic deformation and dilatancy. Hydrostatic stress loading between 25 MPa (3.6 ksi) and 60 MPa (8.7 ksi) results in a significant change of permanent set from 1% to greater than 15% volume strain

  10. Fluid mechanical responses to nutrient depletion in fungi and biofilmsa)

    Science.gov (United States)

    Brenner, Michael P.

    2014-10-01

    In both fungi and bacterial biofilms, when nutrients are depleted, the organisms cannot physically migrate to find a new source, but instead must develop adaptations that allow them to survive. This paper reviews our work attempting to discover design principles for these adaptations. We develop fluid mechanical models, and aim to understand whether these suggest organizing principles for the observed morphological diversity. Determining whether a proposed organizing principle explains extant biological designs is fraught with difficulty: simply because a design principle predicts characteristics similar to an organism's morphology could just as well be accidental as revealing. In each of the two sets of examples, we adopt different strategies to develop understanding in spite of this difficulty. Within the fungal phylum Ascomycota, we use the large observed diversity of different morphological solutions to the fundamental fluid mechanical problem to measure how far each solution is from a design optimum, thereby measuring how far the extant designs deviate from the hypothesized optimum. This allows comparing different design principles to each other. For biofilms, we use engineering principles to make qualitative predictions of what types of adaptations might exist given the physicochemical properties of the repertoire of proteins that bacteria can create, and then find evidence for these adaptations in experiments. While on the surface this paper addresses the particular adaptations used by the fungal phylum Ascomycota and bacterial biofilms, we also aim to motivate discussion of different approaches to using design principles, fluid mechanical or otherwise, to rationalize observed engineering solutions in biology.

  11. DNA Damage Response and Immune Defence: Links and Mechanisms

    Directory of Open Access Journals (Sweden)

    Björn Schumacher

    2016-08-01

    Full Text Available DNA damage plays a causal role in numerous human pathologies including cancer, premature aging and chronic inflammatory conditions. In response to genotoxic insults, the DNA damage response (DDR orchestrates DNA damage checkpoint activation and facilitates the removal of DNA lesions. The DDR can also arouse the immune system by for example inducing the expression of antimicrobial peptides as well as ligands for receptors found on immune cells. The activation of immune signalling is triggered by different components of the DDR including DNA damage sensors, transducer kinases, and effectors. In this review, we describe recent advances on the understanding of the role of DDR in activating immune signalling. We highlight evidence gained into (i which molecular and cellular pathways of DDR activate immune signalling, (ii how DNA damage drives chronic inflammation, and (iii how chronic inflammation causes DNA damage and pathology in humans.

  12. Piezoelectric Response of Ferroelectric Ceramics Under Mechanical Stress

    Science.gov (United States)

    2015-09-17

    response of the bulk Barium Titanate-based dielectric in such capacitors has not yet been addressed for shocks above 3,000 g. Thus, the current research...3.15 Low Voltage Capacitor Dielectric Volume Sections . . . . . . . . . . . . . . . 81 3.16 Electrodes, Terminals and Boundary Condition Surfaces...Final Separation from the Flexing Board of 1812 Capacitor after 36-inch Drop . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 4.21 Dielectric

  13. Modeling of uncertainties in biochemical reactions.

    Science.gov (United States)

    Mišković, Ljubiša; Hatzimanikatis, Vassily

    2011-02-01

    Mathematical modeling is an indispensable tool for research and development in biotechnology and bioengineering. The formulation of kinetic models of biochemical networks depends on knowledge of the kinetic properties of the enzymes of the individual reactions. However, kinetic data acquired from experimental observations bring along uncertainties due to various experimental conditions and measurement methods. In this contribution, we propose a novel way to model the uncertainty in the enzyme kinetics and to predict quantitatively the responses of metabolic reactions to the changes in enzyme activities under uncertainty. The proposed methodology accounts explicitly for mechanistic properties of enzymes and physico-chemical and thermodynamic constraints, and is based on formalism from systems theory and metabolic control analysis. We achieve this by observing that kinetic responses of metabolic reactions depend: (i) on the distribution of the enzymes among their free form and all reactive states; (ii) on the equilibrium displacements of the overall reaction and that of the individual enzymatic steps; and (iii) on the net fluxes through the enzyme. Relying on this observation, we develop a novel, efficient Monte Carlo sampling procedure to generate all states within a metabolic reaction that satisfy imposed constrains. Thus, we derive the statistics of the expected responses of the metabolic reactions to changes in enzyme levels and activities, in the levels of metabolites, and in the values of the kinetic parameters. We present aspects of the proposed framework through an example of the fundamental three-step reversible enzymatic reaction mechanism. We demonstrate that the equilibrium displacements of the individual enzymatic steps have an important influence on kinetic responses of the enzyme. Furthermore, we derive the conditions that must be satisfied by a reversible three-step enzymatic reaction operating far away from the equilibrium in order to respond to

  14. Semantic mechanisms may be responsible for developing synesthesia

    Directory of Open Access Journals (Sweden)

    Aleksandra eMroczko-Wąsowicz

    2014-08-01

    Full Text Available Currently, little is known about how synesthesia develops and which aspects of synesthesia can be acquired through a learning process. We review the increasing evidence for the role of semantic representations in the induction of synesthesia, and argue for the thesis that synesthetic abilities are developed and modified by semantic mechanisms. That is, in certain people semantic mechanisms associate concepts with perception-like experiences—and this association occurs in an extraordinary way. This phenomenon can be referred to as higher synesthesia or ideasthesia. The present analysis suggests that synesthesia develops during childhood and is being enriched further throughout the synesthetes’ lifetime; for example, the already existing concurrents may be adopted by novel inducers or new concurrents may be formed. For a deeper understanding of the origin and nature of synesthesia we propose to focus future research on two aspects: i the similarities between synesthesia and ordinary phenomenal experiences based on concepts, and ii the tight entanglement of perception, cognition and the conceptualization of the world. Most importantly, an explanation of how biological systems get to generate experiences, synesthetic or not, may have to involve an explanation of how we form semantic networks in general and what their role is in our ability to be aware of the surrounding world.

  15. Identifying optimal models to represent biochemical systems.

    Directory of Open Access Journals (Sweden)

    Mochamad Apri

    Full Text Available Biochemical systems involving a high number of components with intricate interactions often lead to complex models containing a large number of parameters. Although a large model could describe in detail the mechanisms that underlie the system, its very large size may hinder us in understanding the key elements of the system. Also in terms of parameter identification, large models are often problematic. Therefore, a reduced model may be preferred to represent the system. Yet, in order to efficaciously replace the large model, the reduced model should have the same ability as the large model to produce reliable predictions for a broad set of testable experimental conditions. We present a novel method to extract an "optimal" reduced model from a large model to represent biochemical systems by combining a reduction method and a model discrimination method. The former assures that the reduced model contains only those components that are important to produce the dynamics observed in given experiments, whereas the latter ensures that the reduced model gives a good prediction for any feasible experimental conditions that are relevant to answer questions at hand. These two techniques are applied iteratively. The method reveals the biological core of a model mathematically, indicating the processes that are likely to be responsible for certain behavior. We demonstrate the algorithm on two realistic model examples. We show that in both cases the core is substantially smaller than the full model.

  16. Mechanical response of spiral interconnect arrays for highly stretchable electronics

    KAUST Repository

    Qaiser, Nadeem

    2017-11-21

    A spiral interconnect array is a commonly used architecture for stretchable electronics, which accommodates large deformations during stretching. Here, we show the effect of different geometrical morphologies on the deformation behavior of the spiral island network. We use numerical modeling to calculate the stresses and strains in the spiral interconnects under the prescribed displacement of 1000 μm. Our result shows that spiral arm elongation depends on the angular position of that particular spiral in the array. We also introduce the concept of a unit-cell, which fairly replicates the deformation mechanism for full complex hexagon, diamond, and square shaped arrays. The spiral interconnects which are axially connected between displaced and fixed islands attain higher stretchability and thus experience the maximum deformations. We perform tensile testing of 3D printed replica and find that experimental observations corroborate with theoretical study.

  17. Mechanical response of spiral interconnect arrays for highly stretchable electronics

    KAUST Repository

    Qaiser, Nadeem; Khan, S. M.; Nour, Maha A.; Rehman, M. U.; Rojas, J. P.; Hussain, Muhammad Mustafa

    2017-01-01

    A spiral interconnect array is a commonly used architecture for stretchable electronics, which accommodates large deformations during stretching. Here, we show the effect of different geometrical morphologies on the deformation behavior of the spiral island network. We use numerical modeling to calculate the stresses and strains in the spiral interconnects under the prescribed displacement of 1000 μm. Our result shows that spiral arm elongation depends on the angular position of that particular spiral in the array. We also introduce the concept of a unit-cell, which fairly replicates the deformation mechanism for full complex hexagon, diamond, and square shaped arrays. The spiral interconnects which are axially connected between displaced and fixed islands attain higher stretchability and thus experience the maximum deformations. We perform tensile testing of 3D printed replica and find that experimental observations corroborate with theoretical study.

  18. Phosphorene under strain:electronic, mechanical and piezoelectric responses

    Science.gov (United States)

    Drissi, L. B.; Sadki, S.; Sadki, K.

    2018-01-01

    Structural, electronic, elastic and piezoelectric properties of pure phosphorene under in-plane strain are investigated using first-principles calculations based on density functional theory. The two critical yielding points are determined along armchair and zigzag directions. It is shown that the buckling, the band gap and the charge transfer can be controlled under strains. A semiconductor to metallic transition is observed in metastable region. Polar plots of Young's modulus, Poisson ratio, sound velocities and Debye temperature exhibit evident anisotropic feature of phosphorene and indicate auxetic behavior for some angles θ. Our calculations show also that phosphorene has both in-plane and out-of-plane piezoelectric responses comparable to known 2D materials. The findings of this work reveal the great potential of pure phosphorene in nanomechanical applications.

  19. Hydro-thermo-mechanical response of a fractured rock block

    International Nuclear Information System (INIS)

    Kelkar, S.; Zyvoloski, G.

    1990-01-01

    Hydro-thermo-mechanical effects in fractured rocks are important in many engineering applications and geophysical processes. Modeling these effects is made difficult by the fact that the governing equations are nonlinear and coupled, and the problems to be solved are three dimensional. In this paper we describe a numerical code developed for this purpose. The code is finite element based to allow for complicated geometries, and the time differencing is implicit, allowing for large time steps. The use of state-of-the-art equation solvers has resulted in a practical code. The code is capable of fully three dimensional simulations, however, in this paper we consider only the case of two dimensional heat and mass flow coupled to one dimensional deformation. Partial verification of the code is obtained by comparison with published semianalytical results. Several examples are presented to demonstrate the effects of matrix expansion, due to pore pressure and heating, on fracture opening due to fluid injection. 16 refs., 11 figs

  20. Molecular mechanisms of responses to radiation through protein kinase C

    International Nuclear Information System (INIS)

    Nakajima, Tetsuo

    2005-01-01

    Described are the activation and cascade of the protein kinase C (PKC) which mediating the control of radiation-induced apoptosis. PKC is a family of c-, n- and a-subtypes and plays a major role in responding to the radiation exposure for DNA repair, cell cycle arrest and apoptosis. The author has conducted studies of mouse thymic lymphoma cells which have a property to respond even to low dose radiation, and has showed that, in the highly radiosensitive cell strain, 3SBH5 where apoptosis occurs in 50 and 90% post 0.5 and 2 Gy exposure, respectively, cPKC works as a surviving signal without intracellular movement after irradiation. In contrast, PKC has been alternatively shown to participate in apoptosis induction, showing that different enzyme species in the subtypes work specifically depending on passing time. Comparison with the radio-resistant cell strain, XR223, has revealed that the difference in the localization controls of PKCδ in the cell determines the radiosensitivity, however, the control mechanism is found to be separate from Atm pathway by which PKCδ is usually regulated. Recent studies have revealed that PKC performs the intracellular cross-talk in various phosphorylation cascades. Studies of PKC can be toward their uses for radiation effect assessment, radiotherapy and medicare for urgent exposure. (S.I.)

  1. The stress response to surgery: release mechanisms and the modifying effect of pain relief

    DEFF Research Database (Denmark)

    Kehlet, H

    1989-01-01

    This short review updates information on the release mechanisms of the systemic response to surgical injury and the modifying effect of pain relief. Initiation of the response is primarily due to afferent nerve impulses combined with release of humoral substances (such as prostaglandins, kinins...... in releasing the classical endocrine catabolic response, while humoral factors are important for the hyperthermic response, changes in coagulation and fibrinolysis immunofunction, and capillary permeability. The modifying effect of pain relief on the surgical stress response is dependent upon the technique...... on the stress response. In summary, pain alleviation itself may not necessarily lead to an important modification of the stress response, and a combined approach with inhibition of the neural and humoral release mechanisms is necessary for a pronounced inhibition or prevention of the response to surgical injury....

  2. Mechanisms governing the responses to anthracnose pathogen in Juglans spp.

    Science.gov (United States)

    Pollegioni, P; Van der Linden, G; Belisario, A; Gras, M; Anselmi, N; Olimpieri, I; Luongo, L; Santini, A; Turco, E; Scarascia Mugnozza, G; Malvolti, M E

    2012-06-30

    Juglans nigra and Juglans regia are two highly economically important species for wood and fruit production that are susceptible to anthracnose caused by Gnomonia leptostyla. The identification of genotypes resistant to anthracnose could represent a valid alternative to agronomic and chemical management. In this study, we analyzed 72 walnut genotypes that showed a variety of resistance phenotypes in response to natural infection. According to the disease severity rating and microsatellite fingerprinting analysis, these genotypes were divided into three main groups: (40) J. nigra resistant, (1) J. nigra susceptible, and (31) J. regia susceptible. Data on leaf emergence rates and analysis of in vivo pathogenicity indicated that the incidence of anthracnose disease in the field might be partially conditioned by two key factors: the age and/or availability of susceptible leaves during the primary infection of fungus (avoidance by late flushing) and partial host resistance. NBS profiling approach, based on PCR amplification with an adapter primer for an adapter matching a restriction enzyme site and a degenerate primer targeting the conserved motifs present in the NBS domain of NBS-LRR genes, was applied. The results revealed the presence of a candidate marker that correlated to a reduction in anthracnose incidence in 72 walnut genotypes. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. A Dose–Response Analysis of Biochemical Control Outcomes After {sup 125}I Monotherapy for Patients With Favorable-Risk Prostate Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Shiraishi, Yutaka, E-mail: shiraishi@rad.med.keio.ac.jp [Department of Radiology, Keio University School of Medicine, Tokyo (Japan); Department of Radiology, National Hospital Organization Tokyo Medical Center, Tokyo (Japan); Yorozu, Atsunori [Department of Radiology, National Hospital Organization Tokyo Medical Center, Tokyo (Japan); Ohashi, Toshio [Department of Radiology, Keio University School of Medicine, Tokyo (Japan); Toya, Kazuhito [Department of Radiology, National Hospital Organization Tokyo Medical Center, Tokyo (Japan); Saito, Shiro; Nishiyama, Toru; Yagi, Yasuto [Department of Urology, National Hospital Organization Tokyo Medical Center, Tokyo (Japan); Shigematsu, Naoyuki [Department of Radiology, Keio University School of Medicine, Tokyo (Japan)

    2014-12-01

    Purpose: To define the optimal dose for {sup 125}I prostate implants by correlating postimplantation dosimetry findings with biochemical failure and toxicity. Methods and Materials: Between 2003 and 2009, 683 patients with prostate cancer were treated with {sup 125}I prostate brachytherapy without supplemental external beam radiation therapy and were followed up for a median time of 80 months. Implant dose was defined as the D90 (the minimal dose received by 90% of the prostate) on postoperative day 1 and 1 month after implantation. Therefore, 2 dosimetric variables (day 1 D90 and day 30 D90) were analyzed for each patient. We investigated the dose effects on biochemical control and toxicity. Results: The 7-year biochemical failure-free survival (BFFS) rate for the group overall was 96.4% according to the Phoenix definition. A multivariate analysis found day 1 D90 and day 30 D90 to be the most significant factors affecting BFFS. The cutoff points for day 1 D90 and day 30 D90, calculated from ROC curves, were 163 Gy and 175 Gy, respectively. By use of univariate analysis, various dosimetric cutoff points for day 30 D90 were tested. We found that day 30 D90 cutoff points from 130 to 180 Gy appeared to be good for the entire cohort. Greater D90s were associated with an increase in late genitourinary or gastrointestinal toxicity ≥ grade 2, but the increase was not statistically significant. Conclusions: Improvements in BFFS rates were seen with increasing D90 levels. Day 30 D90 doses of 130 to 180 Gy were found to serve as cutoff levels. For low-risk and low-tier intermediate-risk prostate cancer patients, high prostate D90s, even with doses exceeding 180 Gy, achieve better treatment results and are feasible.

  4. Elucidating the molecular mechanisms underlying cellular response to biophysical cues using synthetic biology approaches

    NARCIS (Netherlands)

    Denning, Denise; Roos, Wouter H

    2016-01-01

    The use of synthetic surfaces and materials to influence and study cell behavior has vastly progressed our understanding of the underlying molecular mechanisms involved in cellular response to physicochemical and biophysical cues. Reconstituting cytoskeletal proteins and interfacing them with a

  5. The microtubule associated protein END BINDING 1 represses root responses to mechanical cues.

    Science.gov (United States)

    Gleeson, Laura; Squires, Shannon; Bisgrove, Sherryl R

    2012-05-01

    The ability of roots to navigate around rocks and other debris as they grow through the soil requires a mechanism for detecting and responding to input from both touch and gravity sensing systems. The microtubule associated protein END BINDING 1b (EB1b) is involved in this process as mutants have defects responding to combinations of touch and gravity cues. This study investigates the role of EB1b in root responses to mechanical cues. We find that eb1b-1 mutant roots exhibit an increase over wild type in their response to touch and that the expression of EB1b genes in transgenic mutants restores the response to wild type levels, indicating that EB1b is an inhibitor of the response. Mutant roots are also hypersensitive to increased levels of mechanical stimulation, revealing the presence of another process that activates the response. These findings are supported by analyses of double mutants between eb1b-1 and seedlings carrying mutations in PHOSPHOGLUCOMUTASE (PGM), ALTERED RESPONSE TO GRAVITY1 (ARG1), or TOUCH3 (TCH3), genes that encode proteins involved in gravity sensing, signaling, or touch responses, respectively. A model is proposed in which root responses to mechanical cues are modulated by at least two competing regulatory processes, one that promotes touch-mediated growth and another, regulated by EB1b, which dampens root responses to touch and enhances gravitropism. © 2012. Published by Elsevier Ireland Ltd. All rights reserved.

  6. Humidity Responsive Photonic Sensor based on a Carboxymethyl Cellulose Mechanical Actuator

    OpenAIRE

    Hartings, Matthew; Douglass, Kevin O.; Neice, Claire; Ahmed, Zeeshan

    2017-01-01

    We describe an intuitive and simple method for exploiting humidity-driven volume changes in carboxymethyl cellulose (CMC) to fabricate a humidity responsive actuator on a glass fiber substrate. We optimize this platform to generate a photonic-based humidity sensor where CMC coated on a fiber optic containing a fiber Bragg grating (FBG) actuates a mechanical strain in response to humidity changes. The humidity-driven mechanical deformation of the FBG results in a large lin...

  7. Equivalent intraperitoneal doses of ibuprofen supplemented in drinking water or in diet: a behavioral and biochemical assay using antinociceptive and thromboxane inhibitory dose–response curves in mice

    Directory of Open Access Journals (Sweden)

    Raghda A.M. Salama

    2016-07-01

    Full Text Available Background. Ibuprofen is used chronically in different animal models of inflammation by administration in drinking water or in diet due to its short half-life. Though this practice has been used for years, ibuprofen doses were never assayed against parenteral dose–response curves. This study aims at identifying the equivalent intraperitoneal (i.p. doses of ibuprofen, when it is administered in drinking water or in diet. Methods. Bioassays were performed using formalin test and incisional pain model for antinociceptive efficacy and serum TXB2 for eicosanoid inhibitory activity. The dose–response curve of i.p. administered ibuprofen was constructed for each test using 50, 75, 100 and 200 mg/kg body weight (b.w.. The dose–response curves were constructed of phase 2a of the formalin test (the most sensitive phase to COX inhibitory agents, the area under the ‘change in mechanical threshold’-time curve in the incisional pain model and serum TXB2 levels. The assayed ibuprofen concentrations administered in drinking water were 0.2, 0.35, 0.6 mg/ml and those administered in diet were 82, 263, 375 mg/kg diet. Results. The 3 concentrations applied in drinking water lay between 73.6 and 85.5 mg/kg b.w., i.p., in case of the formalin test; between 58.9 and 77.8 mg/kg b.w., i.p., in case of the incisional pain model; and between 71.8 and 125.8 mg/kg b.w., i.p., in case of serum TXB2 levels. The 3 concentrations administered in diet lay between 67.6 and 83.8 mg/kg b.w., i.p., in case of the formalin test; between 52.7 and 68.6 mg/kg b.w., i.p., in case of the incisional pain model; and between 63.6 and 92.5 mg/kg b.w., i.p., in case of serum TXB2 levels. Discussion. The increment in pharmacological effects of different doses of continuously administered ibuprofen in drinking water or diet do not parallel those of i.p. administered ibuprofen. It is therefore difficult to assume the equivalent parenteral daily doses based on mathematical calculations.

  8. Structure, computational and biochemical analysis of PcCel45A endoglucanase from Phanerochaete chrysosporium and catalytic mechanisms of GH45 subfamily C members

    DEFF Research Database (Denmark)

    Godoy, Andre S.; Pereira, Caroline S.; Ramia, Marina Paglione

    2018-01-01

    The glycoside hydrolase family 45 (GH45) of carbohydrate modifying enzymes is mostly comprised of ß-1,4-endoglucanases. Significant diversity between the GH45 members has prompted the division of this family into three subfamilies: A, B and C, which may differ in terms of the mechanism, general a...

  9. Ekman pumping mechanism driving precipitation anomalies in response to equatorial heating

    Science.gov (United States)

    Hamouda, Mostafa E.; Kucharski, Fred

    2018-03-01

    In this paper some basic mechanisms for rainfall teleconnections to a localized tropical sea surface temperature anomaly are re-visited using idealized AGCM aqua-planet simulations. The dynamical response is generally in good agreement with the Gill-Matsuno theory. The mechanisms analyzed are (1) the stabilization of the tropical troposphere outside the heating region, (2) the Walker circulation modification and (3) Ekman pumping induced by the low-level circulation responses. It is demonstrated that all three mechanisms, and in particular (2) and (3), contribute to the remote rainfall teleconnections. However, mechanism (3) best coincides with the overall horizontal structure of rainfall responses. It is shown by using the models boundary layer parameterization that low-level vertical velocities are indeed caused by Ekman pumping and that this induces vertical velocities in the whole tropospheric column through convective feedbacks. Also the modification of the responses due to the presence of idealized warm pools is investigated. It is shown that warm pools modify the speed of the tropical waves, consistent with Doppler shifts and are thus able to modify the Walker circulation adjustments and remote rainfall responses. The sensitivity of the responses, and in particular the importance of the Ekman pumping mechanism, to large variations in the drag coefficient is also tested, and it is shown that the Ekman pumping mechanism is robust for a wide range of values.

  10. Biophysical response of living cells to boron nitride nanoparticles: uptake mechanism and bio-mechanical characterization

    Energy Technology Data Exchange (ETDEWEB)

    Rasel, Md. Alim Iftekhar; Li, Tong; Nguyen, Trung Dung; Singh, Sanjleena [Queensland University of Technology (QUT), School of Chemistry, Physics and Mechanical Engineering (Australia); Zhou, Yinghong; Xiao, Yin [Queensland University of Technology (QUT), Institute of Health and Biomedical Innovation (Australia); Gu, YuanTong, E-mail: yuantong.gu@qut.edu.au [Queensland University of Technology (QUT), School of Chemistry, Physics and Mechanical Engineering (Australia)

    2015-11-15

    Boron nitride nanomaterials have attracted significant interest due to their superior chemical and physical properties. Despite these novel properties, investigation on the interaction between boron nitride nanoparticle (BN NP) and living systems has been limited. In this study, BN NP (100–250 nm) is assessed as a promising biomaterial for medical applications. The toxicity of BN NP is evaluated by assessing the cells behaviours both biologically (MTT assay, ROS detection etc.) and physically (atomic force microscopy). The uptake mechanism of BN NP is studied by analysing the alternations in cellular morphology based on cell imaging techniques. The results demonstrate in vitro cytocompatibility of BN NP with immense potential for use as an effective nanoparticle for various bio-medical applications.

  11. A quantum-mechanical perspective on linear response theory within polarizable embedding

    DEFF Research Database (Denmark)

    List, Nanna Holmgaard; Norman, Patrick; Kongsted, Jacob

    2017-01-01

    We present a derivation of linear response theory within polarizable embedding starting from a rigorous quantum-mechanical treatment of a composite system. To this aim, two different subsystem decompositions (symmetric and nonsymmetric) of the linear response function are introduced and the pole...

  12. Genetics of mechanisms controlling responses to two major pathogens in broiler and layer chickens

    DEFF Research Database (Denmark)

    Hamzic, Edin

    The objective of this thesis was to improve the understanding of molecular mechanisms controlling the response to two major pathogens, Eimeria maxima (coccidiosis) and infectious bronchitis virus (IBV), in broiler and layer chickens, respectively. Breeding for the improved response to the two...

  13. Androgen receptor disruption increases the osteogenic response to mechanical loading in male mice

    NARCIS (Netherlands)

    Callewaert, F.; Bakker, A.; Schrooten, J.; Van Meerbeek, B.; Verhoeven, G.; Boonen, S.; Vanderschueren, D.

    2010-01-01

    In female mice, estrogen receptor-alpha (ERα) mediates the anabolic response of bone to mechanical loading. Whether ERα plays a similar role in the male skeleton and to what extent androgens and androgen receptor (AR) affect this response in males remain unaddressed. Therefore, we studied the

  14. A novel approach using metabolomics coupled with hematological and biochemical parameters to explain the enriching-blood effect and mechanism of unprocessed Angelica sinensis and its 4 kinds of processed products.

    Science.gov (United States)

    Ji, Peng; Wei, Yanming; Hua, Yongli; Zhang, Xiaosong; Yao, Wanling; Ma, Qi; Yuan, Ziwen; Wen, Yanqiao; Yang, Chaoxue

    2018-01-30

    Angelica sinensis (AS), root of Angelica sinensis (Oliv.) Diels, an important kind of Chinese traditional herbal medicine, has been used for women to enrich the blood for thousands of years. It is mainly distributed in Gansu province of China. According to Traditional Chinese medicine usage, unprocessed AS (UAS) and its 4 kinds of processed products (ASs) are all used to treat different diseases or syndromes. The difference among the enriching-blood effects of ASs is unclear. And their exact mechanisms of enriching the blood are not fully understood. In this study, our aim is to compare the enriching-blood effect and explain the related mechanism of ASs, to lay the foundation for the blood deficiency diagnosis and the rational use of ASs in the clinic. ASs were used to intervene the blood deficiency syndrome model mice induced by acetyl phenylhydrazine (APH) and cyclophosphamide (CTX). A novel approach using metabolomics coupled with hematological and biochemical parameters to explain the enriching-blood effect and mechanism of ASs was established. The blood routine examination, ATPase, glucose-6-phosphate dehydrogenase, methemoglobin, glutathion peroxidase, glutathione reductase, and erythropoietin were measured. Two biofluids (plasma and urine) obtained from mice were analyzed with GC-MS. Distinct changes in metabolite patterns of the two biofluids after mice were induced by APH and CTX, and mice were intervened with ASs were analyzed using partial least squares-discriminant analysis. Potential biomarkers were found using a novel method including variable importance in the projection (VIP) >1.0, volcano plot analysis, and significance analysis of microarray. The results of hematological, biochemical parameters and the integrated metabolomics all showed the blood deficiency syndrome model was built successfully, ASs exhibited different degree of enriching-blood effect, and AS pached with alcohol (AAS) exhibited the best enriching-blood effect. 16 metabolites in

  15. On the Adaptive Design Rules of Biochemical Networks in Evolution

    Directory of Open Access Journals (Sweden)

    Bor-Sen Chen

    2007-01-01

    Full Text Available Biochemical networks are the backbones of physiological systems of organisms. Therefore, a biochemical network should be sufficiently robust (not sensitive to tolerate genetic mutations and environmental changes in the evolutionary process. In this study, based on the robustness and sensitivity criteria of biochemical networks, the adaptive design rules are developed for natural selection in the evolutionary process. This will provide insights into the robust adaptive mechanism of biochemical networks in the evolutionary process. We find that if a mutated biochemical network satisfies the robustness and sensitivity criteria of natural selection, there is a high probability for the biochemical network to prevail during natural selection in the evolutionary process. Since there are various mutated biochemical networks that can satisfy these criteria but have some differences in phenotype, the biochemical networks increase their diversities in the evolutionary process. The robustness of a biochemical network enables co-option so that new phenotypes can be generated in evolution. The proposed robust adaptive design rules of natural selection gain much insight into the evolutionary mechanism and provide a systematic robust biochemical circuit design method of biochemical networks for biotechnological and therapeutic purposes in the future.

  16. Mechanical and thermo-mechanical response of a lead-core bearing device subjected to different loading conditions

    Directory of Open Access Journals (Sweden)

    Zhelyazov Todor

    2018-01-01

    Full Text Available The contribution is focused on the numerical modelling, simulation and analysis of a lead-core bearing device for passive seismic isolation. An accurate finite element model of a lead-core bearing device is presented. The model is designed to analyse both mechanical and thermo-mechanical responses of the seismic isolator to different loading conditions. Specifically, the mechanical behaviour in a typical identification test is simulated. The response of the lead-core bearing device to circular sinusoidal paths is analysed. The obtained shear displacement – shear force relationship is compared to experimental data found in literature sources. The hypothesis that heating of the lead-core during cyclic loading affects the degrading phenomena in the bearing device is taken into account. Constitutive laws are defined for each material: lead, rubber and steel. Both predefined constitutive laws (in the used general–purpose finite element code and semi-analytical procedures aimed at a more accurate modelling of the constitutive relations are tested. The results obtained by finite element analysis are to be further used to calibrate a macroscopic model of the lead-core bearing device seen as a single-degree-of-freedom mechanical system.

  17. Response of Some Biochemical and Mineral Constituents of the Postharvest Mango (Mangifera indica L. Influenced by Different Levels of Bavistin DF

    Directory of Open Access Journals (Sweden)

    M. Khairul Islam

    2013-08-01

    Full Text Available An investigation was carried out with the postharvest mangoes (viz., the Langra and the Khirshapat treating with different levels of Bavistin DF solution (namely, 250, 500, and 750 PPM for obtaining results on the biochemical and mineral content changes as well as storability of postharvest mango. The results of the experiments exhibited that only the single effect of varieties was found to be significant in most of the parameters studied. The Langra enriched a greater quantity of crude fiber, lipid, water-soluble protein, phosphorus, and potassium constituents over the Khirshapat. It is revealed that the expansion of mineral contents in the mango was intimately associated with ripening during storage. The results also noticed to be an increasing trend of lipid and protein content in mango pulp with the advance of storage period using Bavistin DF.

  18. Characterization of mechanical behavior of an epithelial monolayer in response to epidermal growth factor stimulation

    International Nuclear Information System (INIS)

    Yang, Ruiguo; Chen, Jennifer Y.; Xi, Ning; Lai, King Wai Chiu; Qu, Chengeng; Fung, Carmen Kar Man; Penn, Lynn S.; Xi, Jun

    2012-01-01

    Cell signaling often causes changes in cellular mechanical properties. Knowledge of such changes can ultimately lead to insight into the complex network of cell signaling. In the current study, we employed a combination of atomic force microscopy (AFM) and quartz crystal microbalance with dissipation monitoring (QCM-D) to characterize the mechanical behavior of A431 cells in response to epidermal growth factor receptor (EGFR) signaling. From AFM, which probes the upper portion of an individual cell in a monolayer of cells, we observed increases in energy dissipation, Young's modulus, and hysteresivity. Increases in hysteresivity imply a shift toward a more fluid-like mechanical ordering state in the bodies of the cells. From QCM-D, which probes the basal area of the monolayer of cells collectively, we observed decreases in energy dissipation factor. This result suggests a shift toward a more solid-like state in the basal areas of the cells. The comparative analysis of these results indicates a regionally specific mechanical behavior of the cell in response to EGFR signaling and suggests a correlation between the time-dependent mechanical responses and the dynamic process of EGFR signaling. This study also demonstrates that a combination of AFM and QCM-D is able to provide a more complete and refined mechanical profile of the cells during cell signaling. -- Highlights: ► The EGF-induced cellular mechanical response is regionally specific. ► The EGF-induced cellular mechanical response is time and dose dependent. ► A combination of AFM and QCM-D provides a more complete mechanical profile of cells.

  19. Food crops face rising temperatures: An overview of responses, adaptive mechanisms, and approaches to improve heat tolerance

    Directory of Open Access Journals (Sweden)

    Neeru Kaushal

    2016-12-01

    Full Text Available The rising temperatures are resulting in heat stress for various agricultural crops to limit their growth, metabolism, and leading to significant loss of yield potential worldwide. Heat stress adversely affects normal plant growth and development depending on the sensitivity of each crop species. Each crop species has its own range of temperature maxima and minima at different developmental stages beyond which all these processes get inhibited. The reproductive stage is on the whole more sensitive to heat stress, resulting in impaired fertilization to cause abortion of flowers. During seed filling, heat stress retards seed growth by affecting all the biochemical events to reduce seed size. Unfavorable temperature may significantly affect photosynthesis, respiration, water balance, and membrane stability of leaves. To combat heat stress, plants acquire various defense mechanisms for their survival such as maintaining membrane stability, and scavenging reactive oxygen species by generating antioxidants and stress proteins. Thermo-tolerance can be improved by the accumulation of various compounds of low molecular mass known as thermo-protectants as well as phyto-hormones. Exogenous application of these molecules has benefited plants growing under heat stress. Alternatively, transgenic plants over-expressing the enzymes catalyzing the synthesis of these molecules may be raised to increase their endogenous levels to improve heat tolerance. In recent times, various transgenics have been developed with improved thermo-tolerance having potential benefits for inducing heat tolerance in food crops. Updated information about of the effects of heat stress on various food crops and their responses as well as adaptive mechanisms is reviewed here.

  20. Experimental studies of the dynamic mechanical response of a single polymer chain

    DEFF Research Database (Denmark)

    Thormann, Esben; Evans, Drew R.; Craig, Vincent S. J.

    2006-01-01

    The high-frequency and low-amplitude dynamic mechanical response from a single poly(vinyl alcohol) chain was investigated. Modification of a commercial atomic force microscope enabled high-frequency and low-amplitude periodic deformations of polymer chains during extension to be performed...... mechanical response from poly(vinyl alcohol) does not differ from its static response. This result is not unexpected as poly(vinyl alcohol) is a highly flexible polymer with intramolecular relaxation processes taking place on a short time scale. The choice of a polymer with a fast relaxation allows its...... static properties to be recovered from the dynamic measurements and enables the method suggested in this paper for decoupling the polymer response from the hydrodynamic response to be validated....

  1. Effects of nanomolar copper on water plants—Comparison of biochemical and biophysical mechanisms of deficiency and sublethal toxicity under environmentally relevant conditions

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, George, E-mail: george.thomas@uni.kn [Universität Konstanz, Mathematisch-Naturwissenschaftliche Sektion, Fachbereich Biologie, D-78457 Konstanz (Germany); Stärk, Hans-Joachim, E-mail: ha-jo.staerk@ufz.de [UFZ – Helmholtz Centre for Environmental Research, Department of Analytical Chemistry, Permoserstr. 15, D-04318 Leipzig (Germany); Wellenreuther, Gerd, E-mail: Gerd.wellenreuther@desy.de [HASYLAB at DESY, Notkestr. 85, 22603 Hamburg (Germany); Dickinson, Bryan C., E-mail: bryan.dickinson@gmail.com [Harvard University, Department of Chemistry and Chemical Biology, 12 Oxford Street, Cambridge, MA 02138 (United States); Küpper, Hendrik, E-mail: hendrik.kuepper@uni-konstanz.de [Universität Konstanz, Mathematisch-Naturwissenschaftliche Sektion, Fachbereich Biologie, D-78457 Konstanz (Germany); University of South Bohemia, Faculty of Biological Sciences and Institute of Physical Biology, Branišovská 31, CZ-370 05 České Budejovice (Czech Republic)

    2013-09-15

    Highlights: •We found different optimal Cu requirement for different physiological mechanisms. •Kinetics and concentration thresholds of damage mechanisms were established. •Cu toxicity caused internal Cu re-distribution and inhibition of Zn uptake. •Cu deficient plants released Cu, indicating lack of high-affinity Cu transporters. •Cu deficiency caused re-distribution of zinc in the plant. -- Abstract: Toxicity and deficiency of essential trace elements like Cu are major global problems. Here, environmentally relevant sub-micromolar concentrations of Cu (supplied as CuSO{sub 4}) and simulations of natural light- and temperature cycles were applied to the aquatic macrophyte Ceratophyllum demersum. Growth was optimal at 10 nM Cu, while PSII activity (F{sub v}/F{sub m}) was maximal around 2 nM Cu. Damage to the PSII reaction centre was the first target of Cu toxicity, followed by disturbed regulation of heat dissipation (NPQ). Only after that, electron transport through PSII (Φ{sub PSII}) was inhibited, and finally chlorophylls decreased. Copper accumulation in the plants was stable until 10 nM Cu in solution, but strongly increased at higher concentrations. The vein was the main storage site for Cu up to physiological concentrations (10 nM). At toxic levels it was also sequestered to the epidermis and mesophyll until export from the vein became inhibited, accompanied by inhibition of Zn uptake. Copper deficiency led to a complete stop of growth at “0” nM Cu after 6 weeks. This was accompanied by high starch accumulation although electron flow through PSII (Φ{sub PSII}) decreased from 2 weeks, followed by decrease in pigments and increase of non photochemical quenching (NPQ). Release of Cu from the plants below 10 nM Cu supply in the nutrient solution indicated lack of high-affinity Cu transporters, and on the tissue level copper deficiency led to a re-distribution of zinc.

  2. Soil Selenium (Se) Biofortification Changes the Physiological, Biochemical and Epigenetic Responses to Water Stress in Zea mays L. by Inducing a Higher Drought Tolerance

    Science.gov (United States)

    Bocchini, Marika; D’Amato, Roberto; Ciancaleoni, Simona; Fontanella, Maria C.; Palmerini, Carlo A.; Beone, Gian M.; Onofri, Andrea; Negri, Valeria; Marconi, Gianpiero; Albertini, Emidio; Businelli, Daniela

    2018-01-01

    Requiring water and minerals to grow and to develop its organs, Maize (Zea mays L.) production and distribution is highly rainfall-dependent. Current global climatic changes reveal irregular rainfall patterns and this could represent for maize a stressing condition resulting in yield and productivity loss around the world. It is well known that low water availability leads the plant to adopt a number of metabolic alterations to overcome stress or reduce its effects. In this regard, selenium (Se), a trace element, can help reduce water damage caused by the overproduction of reactive oxygen species (ROS). Here we report the effects of exogenous Se supply on physiological and biochemical processes that may influence yield and quality of maize under drought stress conditions. Plants were grown in soil fertilized by adding 150 mg of Se (sodium selenite). We verified the effects of drought stress and Se treatment. Selenium biofortification proved more beneficial for maize plants when supplied at higher Se concentrations. The increase in proline, K concentrations and nitrogen metabolism in aerial parts of plants grown in Se-rich substrates, seems to prove that Se-biofortification increased plant resistance to water shortage conditions. Moreover, the increase of SeMeSeCys and SeCys2 forms in roots and aerial parts of Se-treated plants suggest resistance strategies to Se similar to those existing in Se-hyperaccumulator species. In addition, epigenetic changes in DNA methylation due to water stress and Se treatment were also investigated using methylation sensitive amplified polymorphism (MSAP). Results suggest that Se may be an activator of particular classes of genes that are involved in tolerance to abiotic stresses. In particular, PSY (phytoene synthase) gene, essential for maintaining leaf carotenoid contents, SDH (sorbitol dehydrogenase), whose activity regulates the level of important osmolytes during drought stress and ADH (alcohol dehydrogenase), whose activity

  3. Soil Selenium (Se) Biofortification Changes the Physiological, Biochemical and Epigenetic Responses to Water Stress in Zea mays L. by Inducing a Higher Drought Tolerance.

    Science.gov (United States)

    Bocchini, Marika; D'Amato, Roberto; Ciancaleoni, Simona; Fontanella, Maria C; Palmerini, Carlo A; Beone, Gian M; Onofri, Andrea; Negri, Valeria; Marconi, Gianpiero; Albertini, Emidio; Businelli, Daniela

    2018-01-01

    Requiring water and minerals to grow and to develop its organs, Maize ( Zea mays L.) production and distribution is highly rainfall-dependent. Current global climatic changes reveal irregular rainfall patterns and this could represent for maize a stressing condition resulting in yield and productivity loss around the world. It is well known that low water availability leads the plant to adopt a number of metabolic alterations to overcome stress or reduce its effects. In this regard, selenium (Se), a trace element, can help reduce water damage caused by the overproduction of reactive oxygen species (ROS). Here we report the effects of exogenous Se supply on physiological and biochemical processes that may influence yield and quality of maize under drought stress conditions. Plants were grown in soil fertilized by adding 150 mg of Se (sodium selenite). We verified the effects of drought stress and Se treatment. Selenium biofortification proved more beneficial for maize plants when supplied at higher Se concentrations. The increase in proline, K concentrations and nitrogen metabolism in aerial parts of plants grown in Se-rich substrates, seems to prove that Se-biofortification increased plant resistance to water shortage conditions. Moreover, the increase of SeMeSeCys and SeCys2 forms in roots and aerial parts of Se-treated plants suggest resistance strategies to Se similar to those existing in Se-hyperaccumulator species. In addition, epigenetic changes in DNA methylation due to water stress and Se treatment were also investigated using methylation sensitive amplified polymorphism (MSAP). Results suggest that Se may be an activator of particular classes of genes that are involved in tolerance to abiotic stresses. In particular, PSY (phytoene synthase) gene, essential for maintaining leaf carotenoid contents, SDH (sorbitol dehydrogenase), whose activity regulates the level of important osmolytes during drought stress and ADH (alcohol dehydrogenase), whose activity

  4. Soil Selenium (Se Biofortification Changes the Physiological, Biochemical and Epigenetic Responses to Water Stress in Zea mays L. by Inducing a Higher Drought Tolerance

    Directory of Open Access Journals (Sweden)

    Marika Bocchini

    2018-03-01

    Full Text Available Requiring water and minerals to grow and to develop its organs, Maize (Zea mays L. production and distribution is highly rainfall-dependent. Current global climatic changes reveal irregular rainfall patterns and this could represent for maize a stressing condition resulting in yield and productivity loss around the world. It is well known that low water availability leads the plant to adopt a number of metabolic alterations to overcome stress or reduce its effects. In this regard, selenium (Se, a trace element, can help reduce water damage caused by the overproduction of reactive oxygen species (ROS. Here we report the effects of exogenous Se supply on physiological and biochemical processes that may influence yield and quality of maize under drought stress conditions. Plants were grown in soil fertilized by adding 150 mg of Se (sodium selenite. We verified the effects of drought stress and Se treatment. Selenium biofortification proved more beneficial for maize plants when supplied at higher Se concentrations. The increase in proline, K concentrations and nitrogen metabolism in aerial parts of plants grown in Se-rich substrates, seems to prove that Se-biofortification increased plant resistance to water shortage conditions. Moreover, the increase of SeMeSeCys and SeCys2 forms in roots and aerial parts of Se-treated plants suggest resistance strategies to Se similar to those existing in Se-hyperaccumulator species. In addition, epigenetic changes in DNA methylation due to water stress and Se treatment were also investigated using methylation sensitive amplified polymorphism (MSAP. Results suggest that Se may be an activator of particular classes of genes that are involved in tolerance to abiotic stresses. In particular, PSY (phytoene synthase gene, essential for maintaining leaf carotenoid contents, SDH (sorbitol dehydrogenase, whose activity regulates the level of important osmolytes during drought stress and ADH (alcohol dehydrogenase, whose

  5. Insights into the mechanisms underlying mercury-induced oxidative stress in gills of wild fish (Liza aurata) combining "1H NMR metabolomics and conventional biochemical assays

    International Nuclear Information System (INIS)

    Cappello, Tiziana; Brandão, Fátima; Guilherme, Sofia; Santos, Maria Ana; Maisano, Maria; Mauceri, Angela; Canário, João; Pacheco, Mário; Pereira, Patrícia

    2016-01-01

    Oxidative stress has been described as a key pathway to initiate mercury (Hg) toxicity in fish. However, the mechanisms underlying Hg-induced oxidative stress in fish still need to be clarified. To this aim, environmental metabolomics in combination with a battery of conventional oxidative stress biomarkers were applied to the gills of golden grey mullet (Liza aurata) collected from Largo do Laranjo (LAR), a confined Hg contaminated area, and São Jacinto (SJ), selected as reference site (Aveiro Lagoon, Portugal). Higher accumulation of inorganic Hg and methylmercury was found in gills of fish from LAR relative to SJ. Nuclear magnetic resonance (NMR)-based metabolomics revealed changes in metabolites related to antioxidant protection, namely depletion of reduced glutathione (GSH) and its constituent amino acids, glutamate and glycine. The interference of Hg with the antioxidant protection of gills was corroborated through oxidative stress endpoints, namely the depletion of glutathione peroxidase and superoxide dismutase activities at LAR. The increase of total glutathione content (reduced glutathione + oxidized glutathione) at LAR, in parallel with GSH depletion aforementioned, indicates the occurrence of massive GSH oxidation under Hg stress, and an inability to carry out its regeneration (glutathione reductase activity was unaltered) or de novo synthesis. Nevertheless, the results suggest the occurrence of alternative mechanisms for preventing lipid peroxidative damage, which may be associated with the enhancement of membrane stabilization/repair processes resulting from depletion in the precursors of phosphatidylcholine (phosphocholine and glycerophosphocholine), as highlighted by NMR spectroscopy. However, the observed decrease in taurine may be attributable to alterations in the structure of cell membranes or interference in osmoregulatory processes. Overall, the novel concurrent use of metabolomics and conventional oxidative stress endpoints demonstrated to

  6. Insights into the mechanisms underlying mercury-induced oxidative stress in gills of wild fish (Liza aurata) combining {sup 1}H NMR metabolomics and conventional biochemical assays

    Energy Technology Data Exchange (ETDEWEB)

    Cappello, Tiziana, E-mail: tcappello@unime.it [Department of Biological and Environmental Sciences, University of Messina, 98166 Messina (Italy); Brandão, Fátima, E-mail: fatimabrandao@ua.pt [Department of Biology and CESAM, University of Aveiro, 3810-193 Aveiro (Portugal); Guilherme, Sofia; Santos, Maria Ana [Department of Biology and CESAM, University of Aveiro, 3810-193 Aveiro (Portugal); Maisano, Maria; Mauceri, Angela [Department of Biological and Environmental Sciences, University of Messina, 98166 Messina (Italy); Canário, João [Centro de Química Estrutural, Instítuto Superíor Técnico, Universidade de Lisboa, 1049-001 Lisbon (Portugal); Pacheco, Mário; Pereira, Patrícia [Department of Biology and CESAM, University of Aveiro, 3810-193 Aveiro (Portugal)

    2016-04-01

    Oxidative stress has been described as a key pathway to initiate mercury (Hg) toxicity in fish. However, the mechanisms underlying Hg-induced oxidative stress in fish still need to be clarified. To this aim, environmental metabolomics in combination with a battery of conventional oxidative stress biomarkers were applied to the gills of golden grey mullet (Liza aurata) collected from Largo do Laranjo (LAR), a confined Hg contaminated area, and São Jacinto (SJ), selected as reference site (Aveiro Lagoon, Portugal). Higher accumulation of inorganic Hg and methylmercury was found in gills of fish from LAR relative to SJ. Nuclear magnetic resonance (NMR)-based metabolomics revealed changes in metabolites related to antioxidant protection, namely depletion of reduced glutathione (GSH) and its constituent amino acids, glutamate and glycine. The interference of Hg with the antioxidant protection of gills was corroborated through oxidative stress endpoints, namely the depletion of glutathione peroxidase and superoxide dismutase activities at LAR. The increase of total glutathione content (reduced glutathione + oxidized glutathione) at LAR, in parallel with GSH depletion aforementioned, indicates the occurrence of massive GSH oxidation under Hg stress, and an inability to carry out its regeneration (glutathione reductase activity was unaltered) or de novo synthesis. Nevertheless, the results suggest the occurrence of alternative mechanisms for preventing lipid peroxidative damage, which may be associated with the enhancement of membrane stabilization/repair processes resulting from depletion in the precursors of phosphatidylcholine (phosphocholine and glycerophosphocholine), as highlighted by NMR spectroscopy. However, the observed decrease in taurine may be attributable to alterations in the structure of cell membranes or interference in osmoregulatory processes. Overall, the novel concurrent use of metabolomics and conventional oxidative stress endpoints demonstrated to

  7. The Physiological and Biochemical Mechanisms Providing the Increased Constitutive Cold Resistance in the Potato Plants, Expressing the Yeast SUC2 Gene Encoding Apoplastic Invertase

    Directory of Open Access Journals (Sweden)

    A.N. Deryabin

    2016-05-01

    Full Text Available The expression of heterologous genes in plants is an effective method to improve our understanding of plant resistance mechanisms. The purpose of this work was to investigate the involvement of cell-wall invertase and apoplastic sugars into constitutive cold resistance of potato (Solanum tuberosum L., cv. Dйsirйe plants, which expressed the yeast SUC2 gene encoding apoplastic invertase. WT-plants of a potato served as the control. The increase in the essential cell-wall invertase activity in the leaves of transformed plants indicates significant changes in the cellular carbohydrate metabolism and regulatory function of this enzyme. The activity of yeast invertase changed the composition of intracellular sugars in the leaves of the transformed potato plant. The total content of sugars (sucrose, glucose, fructose in the leaves and apoplast was higher in the transformants, in comparison by WT-plants. Our data indicate higher constitutive resistance of transformants to severe hypothermia conditions compared to WT-plants. This fact allows us to consider cell-wall invertase as a enzyme of carbohydrate metabolism playing an important regulatory role in the metabolic signaling upon forming increased plant resistance to low temperature. Thus, the potato line with the integrated SUC2 gene is a convenient tool to study the role of the apoplastic invertase and the products of its activity during growth, development and formation constitutive resistance to hypothermia.

  8. Biochemical and physiological responses of lycoris sprengeri bulblets (amaryllidaceae) to exogenously applied N-(2-Chloro-4-Pyridyl)-N1-Phenylurea (CPPU)

    International Nuclear Information System (INIS)

    Ren, Z.; Xia, Y.; Xiao, Y.; Zhang, D.; Lv, X.

    2017-01-01

    Bulblets of Lycoris sprengeri (Amaryllidaceae) were obtained by cutting. Six concentrations of N-(2-chloro-4-pyridyl)-N1-phenylurea (CPPU) solutions were sprayed on leaves from one-year-old bulblets during their green period. Fresh weight, diameter,carbohydrate content, activity of starch metabolism-related enzymes and levels of endogenous hormones of bulblets were determined. The effects of CPPU treatment on bulblet development and biochemical and physiological indices of L. sprengeri were analyzed using the determined values. The results showed that CPPU treatment at an appropriate concentration promoted the enlargement of L. sprengeri bulblets; the optimal concentration was 7.5 mg L-1. Bulblet growth showed a significant positive correlation with starch content and the activities of soluble starch synthase (SSS) and starch-bound starch synthase (GBSS). Bulblet growth showed anextremely significant positive correlation with the ratio of endogenous gibberellic acid/abscisic acid (GA/ABA). The GA/ABA ratio showed a significant positive correlation with the activities of (a+beta)-amylase and GBSS. The exogenous application of CPPU promoted the synthesis and accumulation of starch in the bulblets of L. sprengeri and the activities of starch metabolism-related enzymes; an increase in the endogenous GA/ABA ratio had a synergistic effect. (author)

  9. Physiological And Blood Biochemical Responses To Dried Live Yeast Plus Vitamin E As A Dietary Supplement To Bovine Baladi Calves Under Hot Summer Conditions

    International Nuclear Information System (INIS)

    ABDALLA, E.B.; EL-MASRY, K.A.; TEAMA, F.E.; EMARA, S.S.

    2009-01-01

    The experiment was designed to study the effect of supplemented dried live yeast (DLY) + vitamin E to the diet of growing calves under hot summer conditions in Egypt. Six bovine Baladi calves with 115 kg initial body weight and 8-10 months old were used during two periods. In the first period, the calves were offered the concentrated basal diet only for one month and considered as a control period. In the second period, the calves were fed the same basal diet which supplemented with 15 g dried live yeast (Saccharomyces cerevisiae) + 600 IU vitamin E (alpha- tocopherol) per calf daily for one month and considered as a treated period. Body weight was recorded at the beginning and the end of each period, and daily gain was calculated for each animal. Blood samples were collected from each animal at the end of each period to determine some blood biochemical parameters and T 3 and T 4 concentrations as well as some immunological indices.The results showed that supplementation of DLY + 600 IU vitamin E to the diet of calves reduced significantly (P 3 and T 4 levels and improved feed efficiency and daily gain. It is concluded that supplementation of growing calves with 15 g DLY + 600 IU vitamin E / calf / day under Egyptian hot summer conditions reduced the effect of heat stress as shown by a decline in RT and modified most blood constituents and thyroid function which leads to an improvement in growing calves

  10. Experimental investigation on local mechanical response of superelastic NiTi shape memory alloy

    International Nuclear Information System (INIS)

    Xiao, Yao; Zeng, Pan; Lei, Liping

    2016-01-01

    In this paper, primary attention is paid to the local mechanical response of NiTi shape memory alloy (SMA) under uniaxial tension. With the help of in situ digital image correlation, sets of experiments are conducted to measure the local strain field at various thermomechanical conditions. Two types of mechanical responses of NiTi SMA are identified. The residual strain localization phenomena are observed, which can be attributed to the localized phase transformation (PT) and we affirm that most of the irreversibility is accumulated simultaneously during PT. It is found that temperature and PT play important roles in inducing delocalization of the reverse transformation. We conclude that forward transformation has more influence on the transition of mechanical response in NiTi SMA than reverse transformation in terms of the critical transition temperature for inducing delocalized reverse transformation. (technical note)

  11. Structure and biochemical characterization of proliferating cellular nuclear antigen from a parasitic protozoon

    Energy Technology Data Exchange (ETDEWEB)

    Cardona-Felix, Cesar S.; Lara-Gonzalez, Samuel; Brieba, Luis G. (LNLS)

    2012-02-08

    Proliferating cellular nuclear antigen (PCNA) is a toroidal-shaped protein that is involved in cell-cycle control, DNA replication and DNA repair. Parasitic protozoa are early-diverged eukaryotes that are responsible for neglected diseases. In this work, a PCNA from a parasitic protozoon was identified, cloned and biochemically characterized and its crystal structure was determined. Structural and biochemical studies demonstrate that PCNA from Entamoeba histolytica assembles as a homotrimer that is able to interact with and stimulate the activity of a PCNA-interacting peptide-motif protein from E. histolytica, EhDNAligI. The data indicate a conservation of the biochemical mechanisms of PCNA-mediated interactions between metazoa, yeast and parasitic protozoa.

  12. Molecular analysis of Hsp70 mechanisms in plants and their function in response to stress.

    Science.gov (United States)

    Usman, Magaji G; Rafii, Mohd Y; Martini, Mohammad Y; Yusuff, Oladosu A; Ismail, Mohd R; Miah, Gous

    2017-04-01

    Studying the strategies of improving abiotic stress tolerance is quite imperative and research under this field will increase our understanding of response mechanisms to abiotic stress such as heat. The Hsp70 is an essential regulator of protein having the tendency to maintain internal cell stability like proper folding protein and breakdown of unfolded proteins. Hsp70 holds together protein substrates to help in movement, regulation, and prevent aggregation under physical and or chemical pressure. However, this review reports the molecular mechanism of heat shock protein 70 kDa (Hsp70) action and its structural and functional analysis, research progress on the interaction of Hsp70 with other proteins and their interaction mechanisms as well as the involvement of Hsp70 in abiotic stress responses as an adaptive defense mechanism.

  13. Physical Mechanisms Responsible for Electrical Conduction in Pt/GaN Schottky Diodes

    OpenAIRE

    H. MAZARI; K. AMEUR; N. BENSEDDIK; Z. BENAMARA; R. KHELIFI; M. MOSTEFAOUI; N. ZOUGAGH; N. BENYAHYA; R. BECHAREF; G. BASSOU; B. GRUZZA; J. M. BLUET; C. BRU-CHEVALLIER

    2014-01-01

    The current-voltage (I-V) characteristics of Pt/(n.u.d)-GaN and Pt/Si-doped-GaN diodes Schottky are investigated. Based on these measurements, physical mechanisms responsible for electrical conduction have been suggested. The contribution of thermionic-emission current and various other current transport mechanisms were assumed when evaluating the Schottky barrier height. Thus the generation-recombination, tunneling and leakage currents caused by inhomogeneities and defects at metal-semicondu...

  14. Biochemical mechanisms of skin radiation burns inhibition and healing by the volumetric autotransplantation of fibroblasts and of keratinocytes with fibroblasts composition

    Directory of Open Access Journals (Sweden)

    L. V. Altukhova

    2015-09-01

    Full Text Available Mechanisms of influence of volumetric autotransplantation of fibroblasts and of the mixture of fibroblasts and keratinocytes on the development of the local 3rd degree X-ray burn and the radiation skin ulcer in guinea pigs were investigated. We used deepadministration into the irradiation zone on its perimeter of 6 doses, which contained (150–160×103 fibroblasts and (130–140×103 keratinocytes in 100 µl. It is shown that this autotransplantation carried out 1 hour after the irradiation, and then every 24 hours, reduces the area of burn on the 35th day, compared to the control by 63%. Radiation ulcer appears on the 10th day after irradiation and is completely healed on the 25th day. With the same regimen of administration of only fibroblasts containing (200–210×103 cells in 100 µl, these parameters of treatment were equal to 31% on 4th and 35th day, respectively. It is shown that as a result of radiation in the area of burn the level of gene expression of collagen types I and III, elastin, fibronectin, vinculin, decorin, hyaluronansynthases 1, 2, 3, matrix metalloproteinases 1, 2, 3, 7, 9 and hyaluronidase is reduced. Besides, in the burn area the level of gene expression of transforming growth factor α, fibroblast growth factors 1, 2, 8 and anti-inflammatory cytokines – interleukin 10 and transforming growth factor-β1 – is reduced, while the level of gene expression of proinflammatory cytokine (interleykin1β increases. Both types of autotransplantation cause the growth of the expression level of all the structural genes and regulatory proteins of biopolymers and decrease in the expression level of interleukin 1β, which leads to activation of tissue regeneration and healing of the burn wound. Reasonsfor the higher efficiency of autotransplantation using the mixture of fibroblasts and keratinocytes compared to autotransplantation by fibroblasts only are both the larger total number of live cells regularly replacing dead cells in

  15. Plasticity of the MAPK signaling network in response to mechanical stress.

    Directory of Open Access Journals (Sweden)

    Andrea M Pereira

    Full Text Available Cells display versatile responses to mechanical inputs and recent studies have identified the mitogen-activated protein kinase (MAPK cascades mediating the biological effects observed upon mechanical stimulation. Although, MAPK pathways can act insulated from each other, several mechanisms facilitate the crosstalk between the components of these cascades. Yet, the combinatorial complexity of potential molecular interactions between these elements have prevented the understanding of their concerted functions. To analyze the plasticity of the MAPK signaling network in response to mechanical stress we performed a non-saturating epistatic screen in resting and stretched conditions employing as readout a JNK responsive dJun-FRET biosensor. By knocking down MAPKs, and JNK pathway regulators, singly or in pairs in Drosophila S2R+ cells, we have uncovered unexpected regulatory links between JNK cascade kinases, Rho GTPases, MAPKs and the JNK phosphatase Puc. These relationships have been integrated in a system network model at equilibrium accounting for all experimentally validated interactions. This model allows predicting the global reaction of the network to its modulation in response to mechanical stress. It also highlights its context-dependent sensitivity.

  16. Difference between electrostriction kinetics, and mechanical response of segmented polyurethane-based EAP

    Science.gov (United States)

    Jomaa, M. H.; Seveyrat, L.; Perrin, V.; Lebrun, L.; Masenelli-Varlot, K.; Diguet, Gildas; Cavaille, J. Y.

    2017-03-01

    Among the key parameters, which must be taken into account for the choice of actuators used as electrical to mechanical energy converters, the response to a step function and/or the frequency dependence of this response is extremely important. For polymeric actuators and more generally for electroactive polymers, three mechanisms can be at the origin of energy losses, namely dielectric relaxations, viscoelastic relaxations and possible electrical conductivity. In a previous paper, we studied the electrical behavior of segmented polyurethanes with different weight fractions of hard (MDI-BDO) and soft (PTMO) segments. They were shown to exhibit three main mechanisms, namely, from the fastest to the slowest, a secondary or β-relaxation, the main or α-relaxation associated with the glass-rubber transition of the soft phase, and finally, their electrical conductivity. In the present work, we present the general viscoelastic response (as measured through mechanical spectrometry) of the same polyurethanes and their respective time dependent electrostriction responses, and compare it with the relaxation characteristic times of electrical and mechanical spectroscopy data.

  17. Evaluating the Mechanism of Oil Price Shocks and Fiscal Policy Responses in the Malaysian Economy

    International Nuclear Information System (INIS)

    Bekhet, Hussain A; Yusoff, Nora Yusma Mohamed

    2013-01-01

    The paper aims to explore the symmetric impact of oil price shock on economy, to understand its mechanism channel and how fiscal policy response towards it. The Generalized Impulse Response Function and Variance Decomposition under the VAR methodology were employed. The empirical findings suggest that symmetric oil price shock has a positive and direct impact on oil revenue and government expenditure. However, the real GDP is vulnerable in a short-term but not in the long term period. These results would confirm that fiscal policy is the main mechanism channel that mitigates the adverse effects oil price shocks to the economy.

  18. Evaluating the Mechanism of Oil Price Shocks and Fiscal Policy Responses in the Malaysian Economy

    Science.gov (United States)

    Bekhet, Hussain A.; Yusoff, Nora Yusma Mohamed

    2013-06-01

    The paper aims to explore the symmetric impact of oil price shock on economy, to understand its mechanism channel and how fiscal policy response towards it. The Generalized Impulse Response Function and Variance Decomposition under the VAR methodology were employed. The empirical findings suggest that symmetric oil price shock has a positive and direct impact on oil revenue and government expenditure. However, the real GDP is vulnerable in a short-term but not in the long term period. These results would confirm that fiscal policy is the main mechanism channel that mitigates the adverse effects oil price shocks to the economy.

  19. A noise level prediction method based on electro-mechanical frequency response function for capacitors.

    Science.gov (United States)

    Zhu, Lingyu; Ji, Shengchang; Shen, Qi; Liu, Yuan; Li, Jinyu; Liu, Hao

    2013-01-01

    The capacitors in high-voltage direct-current (HVDC) converter stations radiate a lot of audible noise which can reach higher than 100 dB. The existing noise level prediction methods are not satisfying enough. In this paper, a new noise level prediction method is proposed based on a frequency response function considering both electrical and mechanical characteristics of capacitors. The electro-mechanical frequency response function (EMFRF) is defined as the frequency domain quotient of the vibration response and the squared capacitor voltage, and it is obtained from impulse current experiment. Under given excitations, the vibration response of the capacitor tank is the product of EMFRF and the square of the given capacitor voltage in frequency domain, and the radiated audible noise is calculated by structure acoustic coupling formulas. The noise level under the same excitations is also measured in laboratory, and the results are compared with the prediction. The comparison proves that the noise prediction method is effective.

  20. Measures of Biochemical Sociology

    Science.gov (United States)

    Snell, Joel; Marsh, Mitchell

    2008-01-01

    In a previous article, the authors introduced a new sub field in sociology that we labeled "biochemical sociology." We introduced the definition of a sociology that encompasses sociological measures, psychological measures, and biological indicators Snell & Marsh (2003). In this article, we want to demonstrate a research strategy that would assess…

  1. Integrin αv in the mechanical response of osteoblast lineage cells

    Energy Technology Data Exchange (ETDEWEB)

    Kaneko, Keiko [Department of Bone and Joint Disease, National Center for Geriatrics and Gerontology, Obu, Aichi 474-8511 (Japan); Ito, Masako [Medical Work-Life-Balance Center, Nagasaki University Hospital, Nagasaki 852-8501 (Japan); Naoe, Yoshinori [Department of Mechanism of Aging, National Center for Geriatrics and Gerontology, Obu, Aichi 474-8511 (Japan); Lacy-Hulbert, Adam [Department of Pediatrics, Massachusetts General Hospital, Boston, MA 02114 (United States); Ikeda, Kyoji, E-mail: kikeda@ncgg.go.jp [Department of Bone and Joint Disease, National Center for Geriatrics and Gerontology, Obu, Aichi 474-8511 (Japan)

    2014-05-02

    Highlights: • Deletion of integrin αv in osteoblast lineage results in an impaired SOST response to loading in vivo. • c-Src–p130Cas–JNK–YAP/TAZ is activated via integrin αv on osteoblasts in response to FSS. • Deletion of integrin αv in osteoblasts results in impaired responses to mechanical stimulation. • Integrin αv is a key component of the mechanosensing machinery in bone. - Abstract: Although osteoblast lineage cells, especially osteocytes, are thought to be a primary mechanosensory cell in bone, the identity of the mechano-receptor and downstream mechano-signaling pathways remain largely unknown. Here we show using osteoblastic cell model of mechanical stimulation with fluid shear stress that in the absence of integrin αv, phosphorylation of the Src substrate p130Cas and JNK was impaired, culminating in an inhibition of nuclear translocation of YAP/TAZ and subsequent transcriptional activation of target genes. Targeted deletion of the integrin αv in osteoblast lineage cells results in an attenuated response to mechanical loading in terms of Sost gene expression, indicative of a role for integrin αv in mechanoreception in vivo. Thus, integrin αv may be integral to a mechanosensing machinery in osteoblastic cells and involved in activation of a Src–JNK–YAP/TAZ pathway in response to mechanical stimulation.

  2. Development of visible-light responsive and mechanically enhanced "smart" UCST interpenetrating network hydrogels.

    Science.gov (United States)

    Xu, Yifei; Ghag, Onkar; Reimann, Morgan; Sitterle, Philip; Chatterjee, Prithwish; Nofen, Elizabeth; Yu, Hongyu; Jiang, Hanqing; Dai, Lenore L

    2017-12-20

    An interpenetrating polymer network (IPN), chlorophyllin-incorporated environmentally responsive hydrogel was synthesized and exhibited the following features: enhanced mechanical properties, upper critical solution temperature (UCST) swelling behavior, and promising visible-light responsiveness. Poor mechanical properties are known challenges for hydrogel-based materials. By forming an interpenetrating network between polyacrylamide (PAAm) and poly(acrylic acid) (PAAc) polymer networks, the mechanical properties of the synthesized IPN hydrogels were significantly improved compared to hydrogels made of a single network of each polymer. The formation of the interpenetrating network was confirmed by Fourier Transform Infrared Spectroscopy (FTIR), the analysis of glass transition temperature, and a unique UCST responsive swelling behavior, which is in contrast to the more prevalent lower critical solution temperature (LCST) behaviour of environmentally responsive hydrogels. The visible-light responsiveness of the synthesized hydrogel also demonstrated a positive swelling behavior, and the effect of incorporating chlorophyllin as the chromophore unit was observed to reduce the average pore size and further enhance the mechanical properties of the hydrogel. This interpenetrating network system shows potential to serve as a new route in developing "smart" hydrogels using visible-light as a simple, inexpensive, and remotely controllable stimulus.

  3. Integrin αv in the mechanical response of osteoblast lineage cells

    International Nuclear Information System (INIS)

    Kaneko, Keiko; Ito, Masako; Naoe, Yoshinori; Lacy-Hulbert, Adam; Ikeda, Kyoji

    2014-01-01

    Highlights: • Deletion of integrin αv in osteoblast lineage results in an impaired SOST response to loading in vivo. • c-Src–p130Cas–JNK–YAP/TAZ is activated via integrin αv on osteoblasts in response to FSS. • Deletion of integrin αv in osteoblasts results in impaired responses to mechanical stimulation. • Integrin αv is a key component of the mechanosensing machinery in bone. - Abstract: Although osteoblast lineage cells, especially osteocytes, are thought to be a primary mechanosensory cell in bone, the identity of the mechano-receptor and downstream mechano-signaling pathways remain largely unknown. Here we show using osteoblastic cell model of mechanical stimulation with fluid shear stress that in the absence of integrin αv, phosphorylation of the Src substrate p130Cas and JNK was impaired, culminating in an inhibition of nuclear translocation of YAP/TAZ and subsequent transcriptional activation of target genes. Targeted deletion of the integrin αv in osteoblast lineage cells results in an attenuated response to mechanical loading in terms of Sost gene expression, indicative of a role for integrin αv in mechanoreception in vivo. Thus, integrin αv may be integral to a mechanosensing machinery in osteoblastic cells and involved in activation of a Src–JNK–YAP/TAZ pathway in response to mechanical stimulation

  4. Calmodulin Gene Expression in Response to Mechanical Wounding and Botrytis cinerea Infection in Tomato Fruit

    OpenAIRE

    Peng, Hui; Yang, Tianbao; Jurick, Wayne M.

    2014-01-01

    Calmodulin, a ubiquitous calcium sensor, plays an important role in decoding stress-triggered intracellular calcium changes and regulates the functions of numerous target proteins involved in various plant physiological responses. To determine the functions of calmodulin in fleshy fruit, expression studies were performed on a family of six calmodulin genes (SlCaMs) in mature-green stage tomato fruit in response to mechanical injury and Botrytis cinerea infection. Both wounding and pathogen in...

  5. Structural, biochemical, cellular, and functional changes in skeletal muscle extracellular matrix with aging

    DEFF Research Database (Denmark)

    Kragstrup, Tue Wenzel; Kjaer, M; Mackey, A L

    2011-01-01

    The extracellular matrix (ECM) of skeletal muscle is critical for force transmission and for the passive elastic response of skeletal muscle. Structural, biochemical, cellular, and functional changes in skeletal muscle ECM contribute to the deterioration in muscle mechanical properties with aging......-links and a buildup of advanced glycation end-product cross-links. Altered mechanotransduction, poorer activation of satellite cells, poorer chemotactic and delayed inflammatory responses, and a change in modulators of the ECM are important cellular changes. It is possible that the structural and biochemical changes...... in skeletal muscle ECM contribute to the increased stiffness and impairment in force generated by the contracting muscle fibers seen with aging. The cellular interactions provide and potentially coordinate an adaptation to mechanical loading and ensure successful regeneration after muscle injury. Some...

  6. Natural variation in germination responses of Arabidopsis to seasonal cues and their associated physiological mechanisms

    Science.gov (United States)

    Barua, Deepak; Butler, Colleen; Tisdale, Tracy E.; Donohue, Kathleen

    2012-01-01

    Background and Aims Despite the intense interest in phenological adaptation to environmental change, the fundamental character of natural variation in germination is almost entirely unknown. Specifically, it is not known whether different genotypes within a species are germination specialists to particular conditions, nor is it known what physiological mechanisms of germination regulation vary in natural populations and how they are associated with responses to particular environmental factors. Methods We used a set of recombinant inbred genotypes of Arabidopsis thaliana, in which linkage disequilibrium has been disrupted over seven generations, to test for genetic variation and covariation in germination responses to distinct environmental factors. We then examined physiological mechanisms associated with those responses, including seed-coat permeability and sensitivity to the phytohormones gibberellic acid (GA) and abscisic acid (ABA). Key Results Genetic variation for germination was environment-dependent, but no evidence for specialization of germination to different conditions was found. Hormonal sensitivities also exhibited significant genetic variation, but seed-coat properties did not. GA sensitivity was associated with germination responses to multiple environmental factors, but seed-coat permeability and ABA sensitivity were associated with specific germination responses, suggesting that an evolutionary change in GA sensitivity could affect germination in multiple environments, but that of ABA sensitivity may affect germination under more restricted conditions. Conclusions The physiological mechanisms of germination responses to specific environmental factors therefore can influence the ability to adapt to diverse seasonal environments encountered during colonization of new habitats or with future predicted climate change. PMID:22012958

  7. Response of the human tympanic membrane to transient acoustic and mechanical stimuli: Preliminary results

    Science.gov (United States)

    Razavi, Payam; Ravicz, Michael E.; Dobrev, Ivo; Cheng, Jeffrey Tao; Furlong, Cosme; Rosowski, John J.

    2016-01-01

    The response of the tympanic membrane (TM) to transient environmental sounds and the contributions of different parts of the TM to middle-ear sound transmission were investigated by measuring the TM response to global transients (acoustic clicks) and to local transients (mechanical impulses) applied to the umbo and various locations on the TM. A lightly-fixed human temporal bone was prepared by removing the ear canal, inner ear, and stapes, leaving the incus, malleus, and TM intact. Motion of nearly the entire TM was measured by a digital holography system with a high speed camera at a rate of 42 000 frames per second, giving a temporal resolution of <24 μs for the duration of the TM response. The entire TM responded nearly instantaneously to acoustic transient stimuli, though the peak displacement and decay time constant varied with location. With local mechanical transients, the TM responded first locally at the site of stimulation, and the response spread approximately symmetrically and circumferentially around the umbo and manubrium. Acoustic and mechanical transients provide distinct and complementary stimuli for the study of TM response. Spatial variations in decay and rate of spread of response imply local variations in TM stiffness, mass, and damping. PMID:26880098

  8. Mechanical response and buckling of a polymer simulation model of the cell nucleus

    Science.gov (United States)

    Banigan, Edward; Stephens, Andrew; Marko, John

    The cell nucleus must robustly resist extra- and intracellular forces to maintain genome architecture. Micromanipulation experiments measuring nuclear mechanical response reveal that the nucleus has two force response regimes: a linear short-extension response due to the chromatin interior and a stiffer long-extension response from lamin A, comprising the intermediate filament protein shell. To explain these results, we developed a quantitative simulation model with realistic parameters for chromatin and the lamina. Our model predicts that crosslinking between chromatin and the lamina is essential for responding to small strains and that changes to the interior topological organization can alter the mechanical response of the whole nucleus. Thus, chromatin polymer elasticity, not osmotic pressure, is the dominant regulator of this force response. Our model reveals a novel buckling transition for polymer shells: as force increases, the shell buckles transverse to the applied force. This transition, which arises from topological constrains in the lamina, can be mitigated by tuning the properties of the chromatin interior. Thus, we find that the genome is a resistive mechanical element that can be tuned by its organization and connectivity to the lamina.

  9. Electro-chemo-mechanical response of a free-standing polypyrrole strip

    International Nuclear Information System (INIS)

    Vazquez, G; Otero, T F; Cascales, J J L

    2008-01-01

    Further development of mechanical devices based on conducting polymers; require a precise understanding of their mechanical response, i.e. their control, under a controlled external current. In this work, we show some results for the relation between the electrical current consumed in the electrochemical process and the mechanical work developed by a freestanding polypyrrole strip, when it is subjected to a stretching force (stress). Under these conditions, from the results obtained in this work, we observe how it results almost impossible to predict a straight relationship between mechanical work and current consumed in the electrochemical process. In addition, we will quantify the variation of the mechanical properties of the free standing polypyrrole strip associated with the oxidation state of the polymer by measuring its Young's modulus.

  10. Electro-chemo-mechanical response of a free-standing polypyrrole strip

    Energy Technology Data Exchange (ETDEWEB)

    Vazquez, G; Otero, T F; Cascales, J J L [Centra de ElectroquImica y Materiales Inteligentes (CEMI), Universidad Politecnica de Cartagena, Cartagena 30203, Murcia (Spain)], E-mail: javier.lopez@upct.es

    2008-08-15

    Further development of mechanical devices based on conducting polymers; require a precise understanding of their mechanical response, i.e. their control, under a controlled external current. In this work, we show some results for the relation between the electrical current consumed in the electrochemical process and the mechanical work developed by a freestanding polypyrrole strip, when it is subjected to a stretching force (stress). Under these conditions, from the results obtained in this work, we observe how it results almost impossible to predict a straight relationship between mechanical work and current consumed in the electrochemical process. In addition, we will quantify the variation of the mechanical properties of the free standing polypyrrole strip associated with the oxidation state of the polymer by measuring its Young's modulus.

  11. High fidelity computational characterization of the mechanical response of thermally aged polycarbonate

    Science.gov (United States)

    Zhang, Zesheng; Zhang, Lili; Jasa, John; Li, Wenlong; Gazonas, George; Negahban, Mehrdad

    2017-07-01

    A representative all-atom molecular dynamics (MD) system of polycarbonate (PC) is built and conditioned to capture and predict the behaviours of PC in response to a broad range of thermo-mechanical loadings for various thermal aging. The PC system is constructed to have a distribution of molecular weights comparable to a widely used commercial PC (LEXAN 9034), and thermally conditioned to produce models for aged and unaged PC. The MD responses of these models are evaluated through comparisons to existing experimental results carried out at much lower loading rates, but done over a broad range of temperatures and loading modes. These experiments include monotonic extension/compression/shear, unilaterally and bilaterally confined compression, and load-reversal during shear. It is shown that the MD simulations show both qualitative and quantitative similarity with the experimental response. The quantitative similarity is evaluated by comparing the dilatational response under bilaterally confined compression, the shear flow viscosity and the equivalent yield stress. The consistency of the in silico response to real laboratory experiments strongly suggests that the current PC models are physically and mechanically relevant and potentially can be used to investigate thermo-mechanical response to loading conditions that would not easily be possible. These MD models may provide valuable insight into the molecular sources of certain observations, and could possibly offer new perspectives on how to develop constitutive models that are based on better understanding the response of PC under complex loadings. To this latter end, the models are used to predict the response of PC to complex loading modes that would normally be difficult to do or that include characteristics that would be difficult to measure. These include the responses of unaged and aged PC to unilaterally confined extension/compression, cyclic uniaxial/shear loadings, and saw-tooth extension/compression/shear.

  12. The osteogenic response of undifferentiated human mesenchymal stem cells (hMSCs) to mechanical strain is inversely related to body mass index of the donor.

    Science.gov (United States)

    Friedl, Gerald; Windhager, Reinhard; Schmidt, Helena; Aigner, Reingard

    2009-08-01

    While the importance of physical factors in the maintenance and regeneration of bone tissue has been recognized for many years and the mechano-sensitivity of bone cells is well established, there is increasing evidence that body fat constitutes an independent risk factor for complications in bone fracture healing and aseptic loosening of implants. Although mechanical causes have been widely suggested, we hypothesized that the osteogenic mechano-response of human mesenchymal stem cells (hMSCs) may be altered in obese patients. We determined the phenotypic and genotypic response of undifferentiated hMSCs of 10 donors to cyclic tensile strain (CTS) under controlled in vitro conditions and analyzed the potential relationship relevant to the donor's anthropomorphometric and biochemical parameters related to donor's fat and bone metabolism. The osteogenic marker genes were all statistically significantly upregulated by CTS, which was accompanied by a significant increase in cell-based ALP activity. Linear correlation analysis revealed that there was a significant correlation between phenotypic CTS response and the body mass index of the donor (r = -0.91, p < 0.001) and phenotypic CTS response was also significantly related to leptin levels (r = -0.68) and estradiol levels (r = 0.67) within the bone marrow microenvironment of the donor. Such an upstream imprinting process mediated by factors tightly related to the donor's fat metabolism, which hampers the mechanosensitivity of hMSCs in obese patients, may be of pathogenetic relevance for the complications associated with obesity that are seen in orthopedic surgery.

  13. Mechanisms underlying electrical and mechanical responses of the bovine retractor penis to inhibitory nerve stimulation and to an inhibitory extract.

    Science.gov (United States)

    Byrne, N. G.; Muir, T. C.

    1985-01-01

    The response of the bovine retractor penis (BRP) to stimulation of non-adrenergic, non-cholinergic (NANC) inhibitory nerves and to an inhibitory extract prepared from this muscle have been studied using intracellular microelectrode, sucrose gap and conventional mechanical recording techniques. Both inhibitory nerve stimulation and inhibitory extract hyperpolarized the membrane potential and relaxed spontaneous or guanethidine (3 X 10(-5) M)-induced tone. These effects were accompanied by an increase in membrane resistance. Following membrane potential displacement from an average value of -53 +/- 7 mV (n = 184; Byrne & Muir, 1984) inhibitory potentials to nerve stimulation were abolished at approximately -30 mV; there was no evidence of reversal. Displacement by inward hyperpolarizing current over the range -45 to -60 mV increased the inhibitory response to nerve stimulation and to inhibitory extract; at more negative potential values (above approximately -60 mV) the inhibitory potential decreased and was abolished (approximately -103 mV). There was no evidence of reversal. Removal of [K+]o reversibly reduced hyperpolarization to nerve stimulation and inhibitory extract. No enhancement was observed. Increasing the [K+]o to 20 mM reduced the inhibitory potential to nerve stimulation but this was restored by passive membrane hyperpolarization. Inhibitory potentials were obtained at membrane potential values exceeding that of the estimated EK (-49 mV). [Cl-]o-free or [Cl-]o-deficient solutions reduced and abolished (after some 20-25 min) the hyperpolarization produced by inhibitory nerve stimulation or inhibitory extract. The inhibitory potential amplitude following nerve stimulation was not restored by passive displacement of the membrane potential from -26 to -104 mV approximately. Ouabain (1-5 X 10(-5) M) reduced then (45-60 min later) abolished the inhibitory potential to nerve stimulation. The effects of this drug on the extract were not investigated. It is

  14. Understory vegetation response to mechanical mastication and other fuels treatments in a ponderosa pine forest

    Science.gov (United States)

    Jeffrey M. Kane; J. Morgan Varner; Eric E. Knapp

    2010-01-01

    Questions: What influence does mechanical mastication and other fuel treatments have on: (1) canopy and forest floor response variables that influence understory plant development; (2) initial understory vegetation cover, diversity, and composition; and (3) shrub and non-native species density in a secondgrowth ponderosa pine forest....

  15. Sensory-motor responses to mechanical stimulation of the esophagus after sensitization with acid

    OpenAIRE

    Drewes, Asbjorn Mohr; Reddy, Hariprasad; Staahl, Camilla; Pedersen, Jan; Funch-Jensen, Peter; Arendt-Nielsen, Lars; Gregersen, Hans

    2005-01-01

    AIM: Sensitization most likely plays an important role in chronic pain disorders, and such sensitization can be mimicked by experimental acid perfusion of the esophagus. The current study systematically investigated the sensory and motor responses of the esophagus to controlled mechanical stimuli before and after sensitization.

  16. Reactive Molecular Dynamics Simulations to Understand Mechanical Response of Thaumasite under Temperature and Strain Rate Effects.

    Science.gov (United States)

    Hajilar, Shahin; Shafei, Behrouz; Cheng, Tao; Jaramillo-Botero, Andres

    2017-06-22

    Understanding the structural, thermal, and mechanical properties of thaumasite is of great interest to the cement industry, mainly because it is the phase responsible for the aging and deterioration of civil infrastructures made of cementitious materials attacked by external sources of sulfate. Despite the importance, effects of temperature and strain rate on the mechanical response of thaumasite had remained unexplored prior to the current study, in which the mechanical properties of thaumasite are fully characterized using the reactive molecular dynamics (RMD) method. With employing a first-principles based reactive force field, the RMD simulations enable the description of bond dissociation and formation under realistic conditions. From the stress-strain curves of thaumasite generated in the x, y, and z directions, the tensile strength, Young's modulus, and fracture strain are determined for the three orthogonal directions. During the course of each simulation, the chemical bonds undergoing tensile deformations are monitored to reveal the bonds responsible for the mechanical strength of thaumasite. The temperature increase is found to accelerate the bond breaking rate and consequently the degradation of mechanical properties of thaumasite, while the strain rate only leads to a slight enhancement of them for the ranges considered in this study.

  17. Computational methods for describing the laser-induced mechanical response of tissue

    Energy Technology Data Exchange (ETDEWEB)

    Trucano, T.; McGlaun, J.M.; Farnsworth, A.

    1994-02-01

    Detailed computational modeling of laser surgery requires treatment of the photoablation of human tissue by high intensity pulses of laser light and the subsequent thermomechanical response of the tissue. Three distinct physical regimes must be considered to accomplish this: (1) the immediate absorption of the laser pulse by the tissue and following tissue ablation, which is dependent upon tissue light absorption characteristics; (2) the near field thermal and mechanical response of the tissue to this laser pulse, and (3) the potential far field (and longer time) mechanical response of witness tissue. Both (2) and (3) are dependent upon accurate constitutive descriptions of the tissue. We will briefly review tissue absorptivity and mechanical behavior, with an emphasis on dynamic loads characteristic of the photoablation process. In this paper our focus will center on the requirements of numerical modeling and the uncertainties of mechanical tissue behavior under photoablation. We will also discuss potential contributions that computational simulations can make in the design of surgical protocols which utilize lasers, for example, in assessing the potential for collateral mechanical damage by laser pulses.

  18. Selection for Cd Pollution-Safe Cultivars of Chinese Kale (Brassica alboglabra L. H. Bailey) and Biochemical Mechanisms of the Cultivar-Dependent Cd Accumulation Involving in Cd Subcellular Distribution.

    Science.gov (United States)

    Guo, Jing-Jie; Tan, Xiao; Fu, Hui-Ling; Chen, Jing-Xin; Lin, Xiao-Xia; Ma, Yuan; Yang, Zhong-Yi

    2018-02-28

    Two pot experiments were conducted to compare and verify Cd accumulation capacities of different cultivars under Cd exposures (0.215, 0.543, and 0.925 mg kg -1 in Exp-1 and 0.143, 0.619, and 1.407 mg kg -1 in Exp-2) and Cd subcellular distributions between low- and high-Cd cultivars. Shoot Cd concentrations between the selected low- and high-Cd cultivars were 1.4-fold different and the results were reproducible. The proportions of Cd-in-cell-wall of shoots and roots were all higher in a typical low-Cd cultivar (DX102) than in a typical high-Cd cultivar (HJK), while those of Cd-in-chloroplast or Cd-in-trophoplast and Cd-in-membrane-and-organelle were opposite. The proportions of Cd-in-vacuoles-and-cytoplasm of roots in DX102 were always higher than in HJK under Cd stresses, while there was no clear pattern in those of shoots. These findings may help to reduce health risk of Cd from Chinese kale consumption and explained biochemical mechanisms of cultivar-dependent Cd accumulation among the species.

  19. Molecular mechanisms involved in adaptive responses to radiation, UV light, and heat

    International Nuclear Information System (INIS)

    Takahashi, Akihisa; Ohnishi, Takeo

    2009-01-01

    Viable organisms recognize and respond to environmental changes or stresses. When these environmental changes and their responses by organisms are extreme, they can limit viability. However, organisms can adapt to these different stresses by utilizing different possible responses via signal transduction pathways when the stress is not lethal. In particular, prior mild stresses can provide some aid to prepare organisms for subsequent more severe stresses. These adjustments or adaptations for future stresses have been called adaptive responses. These responses are present in bacteria, plants and animals. The following review covers recent research which can help describe or postulate possible mechanisms which may be active in producing adaptive responses to radiation, ultraviolet light, and heat. (author)

  20. Nonlinear mechanical response of the extracellular matrix: learning from articular cartilage

    Science.gov (United States)

    Kearns, Sarah; Das, Moumita

    2015-03-01

    We study the mechanical structure-function relations in the extracellular matrix (ECM) with focus on nonlinear shear and compression response. As a model system, our study focuses on the ECM in articular cartilage tissue which has two major mechanobiological components: a network of the biopolymer collagen that acts as a stiff, reinforcing matrix, and a flexible aggrecan network that facilitates deformability. We model this system as a double network hydrogel made of interpenetrating networks of stiff and flexible biopolymers respectively. We study the linear and nonlinear mechanical response of the model ECM to shear and compression forces using a combination of rigidity percolation theory and energy minimization approaches. Our results may provide useful insights into the design principles of the ECM as well as biomimetic hydrogels that are mechanically robust and can, at the same time, easily adapt to cues in their surroundings.

  1. Transcriptomic responses to darkness stress point to common coral bleaching mechanisms

    Science.gov (United States)

    Desalvo, M. K.; Estrada, A.; Sunagawa, S.; Medina, Mónica

    2012-03-01

    Coral bleaching occurs in response to numerous abiotic stressors, the ecologically most relevant of which is hyperthermic stress due to increasing seawater temperatures. Bleaching events can span large geographic areas and are currently a salient threat to coral reefs worldwide. Much effort has been focused on understanding the molecular and cellular events underlying bleaching, and these studies have mainly utilized heat and light stress regimes. In an effort to determine whether different stressors share common bleaching mechanisms, we used complementary DNA (cDNA) microarrays for the corals Acropora palmata and Montastraea faveolata (containing >10,000 features) to measure differential gene expression during darkness stress. Our results reveal a striking transcriptomic response to darkness in A. palmata involving chaperone and antioxidant up-regulation, growth arrest, and metabolic modifications. As these responses were previously measured during thermal stress, our results suggest that different stressors may share common bleaching mechanisms. Furthermore, our results point to hypoxia and endoplasmic reticulum stress as critical cellular events involved in molecular bleaching mechanisms. On the other hand, we identified a meager transcriptomic response to darkness in M. faveolata where gene expression differences between host colonies and sampling locations were greater than differences between control and stressed fragments. This and previous coral microarray studies reveal the immense range of transcriptomic responses that are possible when studying two coral species that differ greatly in their ecophysiology, thus pointing to the importance of comparative approaches in forecasting how corals will respond to future environmental change.

  2. New Insight in Understanding the mechanical responses of polymer glasses using molecular dynamic simulation

    Science.gov (United States)

    Zheng, Yexin; Wang, Shi-Qing; Tsige, Mesfin

    The Kremer-Grest bead-spring model has been the standard model in molecular dynamics simulation of polymer glasses. However, due to current computational limitations in accessing relevant time scales in polymer glasses in a reasonable amount of CPU time, simulation of mechanical response of polymer glasses in molecular dynamic simulations requires a much higher quenching rate and deformation rate than used in experiments. Despite several orders of magnitude difference in time scale between simulation and experiment, previous studies have shown that simulations can produce meaningful results that can be directly compared with experimental results. In this work we show that by tuning the quenching rate and deformation rate relative to the segmental relaxation times, a reasonable mechanical response shows up in the glassy state. Specifically, we show a younger glass prepared with a faster quenching rate shows glassy responses only when the imposed deformation rate is proportionally higher. the National Science Foundation (DMR-1444859 and DMR-1609977).

  3. Nonlinear dynamic response of electro-thermo-mechanically loaded piezoelectric cylindrical shell reinforced with BNNTs

    International Nuclear Information System (INIS)

    Yang, J H; Yang, J; Kitipornchai, S

    2012-01-01

    This paper presents an investigation on the nonlinear dynamic response of piezoelectric cylindrical shells reinforced with boron nitride nanotubes (BNNTs) under a combined axisymmetric electro-thermo-mechanical loading. By employing the classical Donnell shell theory, the von Kármán–Donnell kinematic relationship, and a piezo-elastic constitutive law including thermal effects, the nonlinear governing equations of motion of the shell are derived through the Reissner variational principle. The finite difference method and a time-integration scheme are used to obtain the nonlinear dynamic response of the BNNT-reinforced piezoelectric shell. A parametric study is conducted, showing the effects of geometrically nonlinear deformation, applied voltage, temperature change, mechanical load, BNNT volume fraction and boundary conditions on the nonlinear dynamic response. (paper)

  4. Perspectives on deciphering mechanisms underlying plant heat stress response and thermotolerance

    Directory of Open Access Journals (Sweden)

    Kamila Lucia Bokszczanin

    2013-08-01

    Full Text Available Global warming is a major threat for agriculture and food safety and in many cases the negative effects are already apparent. The current challenge of basic and applied plant science is to decipher the molecular mechanisms of heat stress response and thermotolerance in detail and use this information to identify genotypes that will withstand unfavorable environmental conditions. Nowadays X-omics approaches complement the findings of previous targeted studies and highlight the complexity of heat stress response mechanisms giving information for so far unrecognized genes, proteins and metabolites as potential key players of thermotolerance. Even more, roles of epigenetic mechanisms and the involvement of small RNAs in thermotolerance are currently emerging and thus open new directions of yet unexplored areas of plant heat stress response. In parallel it is emerging that although the whole plant is vulnerable to heat, specific organs are particularly sensitive to elevated temperatures. This has redirected research from the vegetative to generative tissues. The sexual reproduction phase is considered as the most sensitive to heat and specifically pollen exhibits the highest sensitivity and frequently an elevation of the temperature just a few degrees above the optimum during pollen development can have detrimental effects for crop production. Compared to our knowledge on heat stress response of vegetative tissues, the information on pollen is still scarce. Nowadays, several techniques for high-throughput X-omics approaches provide major tools to explore the principles of pollen heat stress response and thermotolerance mechanisms in specific genotypes. The collection of such information will provide an excellent support for improvement of breeding programs to facilitate the development of tolerant cultivars. The review aims at describing the current knowledge of thermotolerance mechanisms and the technical advances which will foster new insights into

  5. Role of contact inhibition of locomotion and junctional mechanics in epithelial collective responses to injury

    Science.gov (United States)

    Coburn, Luke; Lopez, Hender; Schouwenaar, Irin-Maya; Yap, Alpha S.; Lobaskin, Vladimir; Gomez, Guillermo A.

    2018-03-01

    Epithelial tissues form physically integrated barriers against the external environment protecting organs from infection and invasion. Within each tissue, epithelial cells respond to different challenges that can potentially compromise tissue integrity. In particular, cells collectively respond to injuries by reorganizing their cell-cell junctions and migrating directionally towards the sites of damage. Notwithstanding, the mechanisms that drive collective responses in epithelial aggregates remain poorly understood. In this work, we develop a minimal mechanistic model that is able to capture the essential features of epithelial collective responses to injuries. We show that a model that integrates the mechanics of cells at the cell-cell and cell-substrate interfaces as well as contact inhibition of locomotion (CIL) correctly predicts two key properties of epithelial response to injury as: (1) local relaxation of the tissue and (2) collective reorganization involving the extension of cryptic lamellipodia that extend, on average, up to 3 cell diameters from the site of injury and morphometric changes in the basal regions. Our model also suggests that active responses (like the actomyosin purse string and softening of cell-cell junctions) are needed to drive morphometric changes in the apical region. Therefore, our results highlight the importance of the crosstalk between junctional biomechanics, cell substrate adhesion, and CIL, as well as active responses, in guiding the collective rearrangements that are required to preserve the epithelial barrier in response to injury.

  6. Temperature Dependences of Mechanisms Responsible for the Water-Vapor Continuum Absorption

    Science.gov (United States)

    Ma, Qiancheng

    2014-01-01

    The water-vapor continuum absorption plays an important role in the radiative balance in the Earth's atmosphere. It has been experimentally shown that for ambient atmospheric conditions, the continuum absorption scales quadratically with the H2O number density and has a strong, negative temperature dependence (T dependence). Over the years, there have been three different theoretical mechanisms postulated: far-wings of allowed transition lines, water dimers, and collision-induced absorption. The first mechanism proposed was the accumulation of absorptions from the far-wings of the strong allowed transition lines. Later, absorption by water dimers was proposed, and this mechanism provides a qualitative explanation for the continuum characters mentioned above. Despite the improvements in experimental data, at present there is no consensus on which mechanism is primarily responsible for the continuum absorption.

  7. Multi-scale mechanical response of freeze-dried collagen scaffolds for tissue engineering applications.

    Science.gov (United States)

    Offeddu, Giovanni S; Ashworth, Jennifer C; Cameron, Ruth E; Oyen, Michelle L

    2015-02-01

    Tissue engineering has grown in the past two decades as a promising solution to unresolved clinical problems such as osteoarthritis. The mechanical response of tissue engineering scaffolds is one of the factors determining their use in applications such as cartilage and bone repair. The relationship between the structural and intrinsic mechanical properties of the scaffolds was the object of this study, with the ultimate aim of understanding the stiffness of the substrate that adhered cells experience, and its link to the bulk mechanical properties. Freeze-dried type I collagen porous scaffolds made with varying slurry concentrations and pore sizes were tested in a viscoelastic framework by macroindentation. Membranes made up of stacks of pore walls were indented using colloidal probe atomic force microscopy. It was found that the bulk scaffold mechanical response varied with collagen concentration in the slurry consistent with previous studies on these materials. Hydration of the scaffolds resulted in a more compliant response, yet lesser viscoelastic relaxation. Indentation of the membranes suggested that the material making up the pore walls remains unchanged between conditions, so that the stiffness of the scaffolds at the scale of seeded cells is unchanged; rather, it is suggested that thicker pore walls or more of these result in the increased moduli for the greater slurry concentration conditions. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  8. Responses of Phospholipase D and Antioxidant System to Mechanical Wounding in Postharvest Banana Fruits

    Directory of Open Access Journals (Sweden)

    Li Li

    2017-01-01

    Full Text Available Banana fruits are susceptible to mechanical damage. The present study was to investigate the responses of phospholipase D (PLD and antioxidant system to mechanical wounding in postharvest banana fruits. During 16 d storage at 25°C and 90% relative humidity, PLD activity in wounded fruits was significantly higher than that in control (without artificial wounding fruits. The higher value of PLD mRNA was found in wounded fruits than in control. PLD mRNA expression reached the highest peak on day 4 in both groups, but it was 2.67 times in wounded fruits compared to control at that time, indicating that PLD gene expression was activated in response to wounding stress. In response to wounding stress, the higher lipoxygenase (LOX activity was observed and malondialdehyde (MDA production was accelerated. The activities of antioxidant enzymes such as superoxide dismutase (SOD, catalase (CAT, peroxidase (POD, and ascorbate peroxidase (APX in wounded fruits were significantly higher than those in control. The concentrations of reactive oxygen species (ROS such as superoxide anion (O2•- and hydrogen peroxide (H2O2 in fruits increased under mechanical wounding. The above results provided a basis for further investigating the mechanism of postharvest banana fruits adapting to environmental stress.

  9. Bistable responses in bacterial genetic networks: Designs and dynamical consequences

    Science.gov (United States)

    Tiwari, Abhinav; Ray, J. Christian J.; Narula, Jatin; Igoshin, Oleg A.

    2011-01-01

    A key property of living cells is their ability to react to stimuli with specific biochemical responses. These responses can be understood through the dynamics of underlying biochemical and genetic networks. Evolutionary design principles have been well studied in networks that display graded responses, with a continuous relationship between input signal and system output. Alternatively, biochemical networks can exhibit bistable responses so that over a range of signals the network possesses two stable steady states. In this review, we discuss several conceptual examples illustrating network designs that can result in a bistable response of the biochemical network. Next, we examine manifestations of these designs in bacterial master-regulatory genetic circuits. In particular, we discuss mechanisms and dynamic consequences of bistability in three circuits: two-component systems, sigma-factor networks, and a multistep phosphorelay. Analyzing these examples allows us to expand our knowledge of evolutionary design principles for networks with bistable responses. PMID:21385588

  10. Biochemical responses and physiological status in the crab Hemigrapsus crenulatus (Crustacea, Varunidae) from high anthropogenically-impacted estuary (Lenga, south-central Chile).

    Science.gov (United States)

    Díaz-Jaramillo, M; Socowsky, R; Pardo, L M; Monserrat, J M; Barra, R

    2013-02-01

    Estuarine environmental assessment by sub-individual responses is important in order to understand contaminant effects and to find suitable estuarine biomonitor species. Our study aimed to analyze oxidative stress responses, including glutathione-S-transferase (GST) activity, total antioxidant capacity (ACAP) and lipid peroxidation levels (TBARS) in estuarine crabs Hemigrapsus crenulatus from a high anthropogenically-impacted estuary (Lenga) compared to low and non-polluted estuaries (Tubul and Raqui), in a seasonal scale (winter-summer), tissue specific (hepatopancreas and gills) and sex related responses. Results showed that hepatopancreas in male crabs better reflected inter-estuary differences. Morpho-condition traits as Cephalothorax hepatopancreas index (CHI) could be used as an indicator of physiological status of estuarine crabs. Discriminant analysis also showed that GST and TBARS levels in summer are more suitable endpoints for establishing differences between polluted and non-polluted sites. These results suggest the importance of seasonality, target tissue, sex and physiological status of brachyuran crabs for estuarine biomonitoring assessment. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Chromatin and lamin A determine two different mechanical response regimes of the cell nucleus.

    Science.gov (United States)

    Stephens, Andrew D; Banigan, Edward J; Adam, Stephen A; Goldman, Robert D; Marko, John F

    2017-07-07

    The cell nucleus must continually resist and respond to intercellular and intracellular mechanical forces to transduce mechanical signals and maintain proper genome organization and expression. Altered nuclear mechanics is associated with many human diseases, including heart disease, progeria, and cancer. Chromatin and nuclear envelope A-type lamin proteins are known to be key nuclear mechanical components perturbed in these diseases, but their distinct mechanical contributions are not known. Here we directly establish the separate roles of chromatin and lamin A/C and show that they determine two distinct mechanical regimes via micromanipulation of single isolated nuclei. Chromatin governs response to small extensions (<3 μm), and euchromatin/heterochromatin levels modulate the stiffness. In contrast, lamin A/C levels control nuclear strain stiffening at large extensions. These results can be understood through simulations of a polymeric shell and cross-linked polymer interior. Our results provide a framework for understanding the differential effects of chromatin and lamin A/C in cell nuclear mechanics and their alterations in disease. © 2017 Stephens et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  12. Modeling for mechanical response of CICC by hierarchical approach and ABAQUS simulation

    Energy Technology Data Exchange (ETDEWEB)

    Li, Y.X.; Wang, X.; Gao, Y.W., E-mail: ywgao@lzu.edu.cn; Zhou, Y.H.

    2013-11-15

    Highlights: • We develop an analytical model based on the hierarchical approach of classical wire rope theory. • The numerical model is set up through ABAQUS to verify and enhance the theoretical model. • We calculate two concerned mechanical response: global displacement–load curve and local axial strain distribution. • Elastic–plasticity is the main character in loading curve, and the friction between adjacent strands plays a significant role in the distribution map. -- Abstract: An unexpected degradation frequently occurs in superconducting cable (CICC) due to the mechanical response (deformation) when suffering from electromagnetic load and thermal load during operation. Because of the cable's hierarchical twisted configuration, it is difficult to quantitatively model the mechanical response. In addition, the local mechanical characteristics such as strain distribution could be hardly monitored via experimental method. To address this issue, we develop an analytical model based on the hierarchical approach of classical wire rope theory. This approach follows the algorithm advancing successively from n + 1 stage (e.g. 3 × 3 × 5 subcable) to n stage (e.g. 3 × 3 subcable). There are no complicated numerical procedures required in this model. Meanwhile, the numerical model is set up through ABAQUS to verify and enhance the theoretical model. Subsequently, we calculate two concerned mechanical responses: global displacement–load curve and local axial strain distribution. We find that in the global displacement–load curve, the elastic–plasticity is the main character, and the higher-level cable shows enhanced nonlinear characteristics. As for the local distribution, the friction among adjacent strands plays a significant role in this map. The magnitude of friction strongly influences the regularity of the distribution at different twisted stages. More detailed results are presented in this paper.

  13. Modeling for mechanical response of CICC by hierarchical approach and ABAQUS simulation

    International Nuclear Information System (INIS)

    Li, Y.X.; Wang, X.; Gao, Y.W.; Zhou, Y.H.

    2013-01-01

    Highlights: • We develop an analytical model based on the hierarchical approach of classical wire rope theory. • The numerical model is set up through ABAQUS to verify and enhance the theoretical model. • We calculate two concerned mechanical response: global displacement–load curve and local axial strain distribution. • Elastic–plasticity is the main character in loading curve, and the friction between adjacent strands plays a significant role in the distribution map. -- Abstract: An unexpected degradation frequently occurs in superconducting cable (CICC) due to the mechanical response (deformation) when suffering from electromagnetic load and thermal load during operation. Because of the cable's hierarchical twisted configuration, it is difficult to quantitatively model the mechanical response. In addition, the local mechanical characteristics such as strain distribution could be hardly monitored via experimental method. To address this issue, we develop an analytical model based on the hierarchical approach of classical wire rope theory. This approach follows the algorithm advancing successively from n + 1 stage (e.g. 3 × 3 × 5 subcable) to n stage (e.g. 3 × 3 subcable). There are no complicated numerical procedures required in this model. Meanwhile, the numerical model is set up through ABAQUS to verify and enhance the theoretical model. Subsequently, we calculate two concerned mechanical responses: global displacement–load curve and local axial strain distribution. We find that in the global displacement–load curve, the elastic–plasticity is the main character, and the higher-level cable shows enhanced nonlinear characteristics. As for the local distribution, the friction among adjacent strands plays a significant role in this map. The magnitude of friction strongly influences the regularity of the distribution at different twisted stages. More detailed results are presented in this paper

  14. Molecular mechanism of radioadaptive response: A cross-adaptive response for enhanced repair of DNA damage in adapted cells

    International Nuclear Information System (INIS)

    Takaji Ikushima

    1997-01-01

    The radioadaptive response (RAR) has been attributed to the induction of a repair mechanism by low doses of ionizing radiation, but the molecular nature of the mechanism is not yet elucidated. We have characterized RAR in a series of experiments in cultured Chinese hamster V79 cells. A 4-h interval is required for the full expression of RAR, which decays with the progression of cell proliferation. Treatments with inhibitors of poly(ADP-ribose) polymerase, protein- or RNA synthesis, and protein kinase C suppress the RAR expression. The RAR cross-reacts on clastogenic lesions induced by other physical and chemical DNA-damaging agents. The presence of newly synthesised proteins has been detected during the expression period. Experiments performed using single-cell gel electrophoresis provided more direct evidence for a faster and enhaced DNA repair rate in adapted cells. Here, using single-cell gel electrophoresis, a cross-adaptive response has been demonstrated for enhanced repair of DNA damage induced by neocarzinostatin in radio-adapted cells. (author)

  15. Evasion of adaptive and innate immune response mechanisms by γ-herpesviruses

    Science.gov (United States)

    Feng, Pinghui; Moses, Ashlee; Früh, Klaus

    2015-01-01

    γ-Herpesviral immune evasion mechanisms are optimized to support the acute, lytic and the longterm, latent phase of infection. During acute infection, specific immune modulatory proteins limit, but also exploit, the antiviral activities of cell intrinsic innate immune responses as well as those of innate and adaptive immune cells. During latent infection, a restricted gene expression program limits immune targeting and cis-acting mechanisms to reduce the antigen presentation as well as antigenicity of latency-associated proteins. Here, we will review recent progress in our understanding of γ-herpesviral immune evasion strategies. PMID:23735334

  16. MECHANISM OF INTRODUCTION SOCIALLY-RESPONSIBLE MARKETING IN SYSTEM MANAGEMENTS BY TRADE ENTERPRISE

    Directory of Open Access Journals (Sweden)

    Victoria Gladkaya

    2015-12-01

    Full Text Available In the article the mechanism of introduction of the socially-responsible marketing is offered in control system. At his description an author the specific of activity of trade enterprises is taken into account; the best home and foreign works are investigational in the field of the social marketing; the requirement of relatively compatible approach is observed; possibility of further improvement is taken into account, estimations of quality of every stage of mechanism of introduction and on the whole through establishment of key indicators of quality.

  17. Physical Mechanisms Responsible for Electrical Conduction in Pt/GaN Schottky Diodes

    Directory of Open Access Journals (Sweden)

    H. MAZARI

    2014-05-01

    Full Text Available The current-voltage (I-V characteristics of Pt/(n.u.d-GaN and Pt/Si-doped-GaN diodes Schottky are investigated. Based on these measurements, physical mechanisms responsible for electrical conduction have been suggested. The contribution of thermionic-emission current and various other current transport mechanisms were assumed when evaluating the Schottky barrier height. Thus the generation-recombination, tunneling and leakage currents caused by inhomogeneities and defects at metal-semiconductor interface were taken into account.

  18. The effect of grain size on the mechanical response of a metastable austenitic stainless steel

    Directory of Open Access Journals (Sweden)

    Sinclair C.W.

    2013-11-01

    Full Text Available The combination of high environmental resistance and excellent strength, elongation and energy absorption make austenitic stainless steels potentially attractive for transportation applications. In the case of metastable grades that undergo a strain induced martensitic transformation it is possible to significantly change the mechanical properties simply by changing the austenite grain size. Predicting such behaviour using physically based models is, however, extremely challenging. Here, some recent work on the coupling between grain size and mechanical response will be presented for a metastable AISI 301 LN stainless steel. Successes and continuing challenges will be highlighted.

  19. Transcriptional regulatory network triggered by oxidative signals configures the early response mechanisms of japonica rice to chilling stress

    KAUST Repository

    Yun, Kil-Young; Park, Myoung Ryoul; Mohanty, Bijayalaxmi; Herath, Venura; Xu, Fuyu; Mauleon, Ramil; Wijaya, Edward; Bajic, Vladimir B.; Bruskiewich, Richard; de los Reyes, Benildo G

    2010-01-01

    -plant level analyses established a holistic view of chilling stress response mechanism of japonica rice. Early response regulatory network triggered by oxidative signals is critical for prolonged survival under sub-optimal temperature. Integration of stress

  20. Electrophysiological and biochemical studies of slow responses to serotonin and dopamine of snail identified neurons. Mediating role of the cyclic AMP

    International Nuclear Information System (INIS)

    Deterre, Philippe

    1983-01-01

    In this research thesis, the electrophysiological study of slow incoming currents induced in some identified neurons of the Helix aspersa snail by serotonin and dopamine shows that they are associated with a decrease of a potassium conductance involved in the modulation of the action potential duration. By means of enzymatic tests performed on a single cell, and of electrophysiological experiments, the author shows that the cyclic AMP is an intracellular mediator involved in the genesis of these slow responses. Moreover, the obtained results show that serotonin and dopamine act by binding to specific receptors, and that these receptors activate the adenylate-cyclase through a GTP binding protein [fr

  1. Vinegar residue compost as a growth substrate enhances cucumber resistance against the Fusarium wilt pathogen Fusarium oxysporum by regulating physiological and biochemical responses.

    Science.gov (United States)

    Shi, Lu; Du, Nanshan; Yuan, Yinghui; Shu, Sheng; Sun, Jin; Guo, Shirong

    2016-09-01

    Fusarium wilt caused by the fungus Fusarium oxysporum f. sp. cucumerinum (FOC) is the most severe soil-borne disease attacking cucumber. To assess the positive effects of vinegar residue substrate (VRS) on the growth and incidence of Fusarium wilt on cucumber, we determined the cucumber growth parameters, disease severity, defense-related enzyme and pathogenesis-related (PR) protein activities, and stress-related gene expression levels. In in vitro and pot experiments, we demonstrated the following results: (i) the VRS extract exhibited a higher biocontrol activity than that of peat against FOC, and significantly improved the growth inhibition of FOC, with values of 48.3 %; (ii) in response to a FOC challenge, antioxidant enzymes and the key enzymes of phenylpropanoid metabolic activities, as well as the PR protein activities in the roots of cucumber, were significantly increased. Moreover, the activities of these proteins were higher in VRS than in peat; (iii) the expression levels of stress-related genes (including glu, pal, and ethylene receptor) elicited responses to the pathogens inoculated in cucumber leaves; and (iv) the FOC treatment significantly inhibited the growth of cucumber seedlings. Moreover, all of the growth indices of plants grown in VRS were significantly higher than those grown in peat. These results offer a new strategy to control cucumber Fusarium wilt, by upregulating the activity levels of defense-related enzymes and PR proteins and adjusting gene expression levels. They also provide a theoretical basis for VRS applications.

  2. Micromechanical Models of Mechanical Response of High Performance Fibre Reinforced Cement Composites

    DEFF Research Database (Denmark)

    Li, V. C.; Mihashi, H.; Alwan, J.

    1996-01-01

    generation of FRC with high performance and economical viability, is in sight. However, utilization of micromechanical models for a more comprehensive set of important HPFRCC properties awaits further investigations into fundamental mechanisms governing composite properties, as well as intergrative efforts......The state-of-the-art in micromechanical modeling of the mechanical response of HPFRCC is reviewed. Much advances in modeling has been made over the last decade to the point that certain properties of composites can be carefully designed using the models as analytic tools. As a result, a new...... across responses to different load types. Further, micromechanical models for HPFRCC behavior under complex loading histories, including those in fracture, fatigue and multuaxial loading are urgently needed in order to optimize HPFRCC microstrcuctures and enable predictions of such material in structures...

  3. Response mechanism for surface acoustic wave gas sensors based on surface-adsorption.

    Science.gov (United States)

    Liu, Jiansheng; Lu, Yanyan

    2014-04-16

    A theoretical model is established to describe the response mechanism of surface acoustic wave (SAW) gas sensors based on physical adsorption on the detector surface. Wohljent's method is utilized to describe the relationship of sensor output (frequency shift of SAW oscillator) and the mass loaded on the detector surface. The Brunauer-Emmett-Teller (BET) formula and its improved form are introduced to depict the adsorption behavior of gas on the detector surface. By combining the two methods, we obtain a theoretical model for the response mechanism of SAW gas sensors. By using a commercial SAW gas chromatography (GC) analyzer, an experiment is performed to measure the frequency shifts caused by different concentration of dimethyl methylphosphonate (DMMP). The parameters in the model are given by fitting the experimental results and the theoretical curve agrees well with the experimental data.

  4. Fatigue responses of lead zirconate titanate stacks under semibipolar electric cycling with mechanical preload

    Science.gov (United States)

    Wang, Hong; Cooper, Thomas A.; Lin, Hua-Tay; Wereszczak, Andrew A.

    2010-10-01

    Lead zirconate titanate (PZT) stacks that had an interdigital internal electrode configuration were tested to more than 108 cycles. A 100 Hz semibipolar sine wave with a field range of +4.5/-0.9 kV/mm was used in cycling with a concurrently-applied 20 MPa preload. Significant reductions in piezoelectric and dielectric responses were observed during the cycling depending on the measuring condition. Extensive partial discharges were also observed. These surface events resulted in the erosion of external electrode and the exposure of internal electrodes. Sections prepared by sequential polishing technique revealed a variety of damage mechanisms including delaminations, pores, and etch grooves. The scale of damage was correlated with the degree of fatigue-induced reduction in piezoelectric and dielectric responses. The results from this study demonstrate the feasibility of using a semibipolar mode to drive a PZT stack under a mechanical preload and illustrate the potential fatigue and damages of the stack in service.

  5. Improvement of Soybean Products Through the Response Mechanism Analysis Using Proteomic Technique.

    Science.gov (United States)

    Wang, Xin; Komatsu, Setsuko

    Soybean is rich in protein/vegetable oil and contains several phytochemicals such as isoflavones and phenolic compounds. Because of the predominated nutritional values, soybean is considered as traditional health benefit food. Soybean is a widely cultivated crop; however, its growth and yield are markedly affected by adverse environmental conditions. Proteomic techniques make it feasible to map protein profiles both during soybean growth and under unfavorable conditions. The stress-responsive mechanisms during soybean growth have been uncovered with the help of proteomic studies. In this review, the history of soybean as food and the morphology/physiology of soybean are described. The utilization of proteomics during soybean germination and development is summarized. In addition, the stress-responsive mechanisms explored using proteomic techniques are reviewed in soybean. © 2017 Elsevier Inc. All rights reserved.

  6. Compressive response and deformation mechanisms of vertically aligned helical carbon nanotube forests

    Science.gov (United States)

    Scheffer, V. C.; Thevamaran, R.; Coluci, V. R.

    2018-01-01

    We study the dynamic compressive response of vertically aligned helical carbon nanotube forests using a mesoscale model. To describe the compressive response, the model includes the helical geometry of the constituent coils, the entanglement between neighboring coils, and the sideway interactions among coils. Coarse-grained simulations show forest densification and stress localization, which are caused by different deformation mechanisms such as coil packing, buckling, and crushing. We find that these mechanisms depend on the initial overlap between coils and lead to a nonlinear stress-strain behavior that agrees with recent impact experiments. The nonlinear stress-strain behavior was shown to be composed of an initial linear increase of stress in strain followed by an exponential growth. These regimes are an outcome of the characteristics of both the individual coils and the entangled morphology of the forests.

  7. Mechanism-Based Modeling of Gastric Emptying Rate and Gallbladder Emptying in Response to Caloric Intake

    DEFF Research Database (Denmark)

    Guiastrennec, B; Sonne, David Peick; Hansen, M

    2016-01-01

    Bile acids released postprandially modify the rate and extent of absorption of lipophilic compounds. The present study aimed to predict gastric emptying (GE) rate and gallbladder emptying (GBE) patterns in response to caloric intake. A mechanism-based model for GE, cholecystokinin plasma concentr......Bile acids released postprandially modify the rate and extent of absorption of lipophilic compounds. The present study aimed to predict gastric emptying (GE) rate and gallbladder emptying (GBE) patterns in response to caloric intake. A mechanism-based model for GE, cholecystokinin plasma...... concentrations, and GBE was developed on data from 33 patients with type 2 diabetes and 33 matched nondiabetic individuals who were administered various test drinks. A feedback action of the caloric content entering the proximal small intestine was identified for the rate of GE. The cholecystokinin...

  8. Mechanical response of CH3NH3PbI3 nanowires

    Science.gov (United States)

    Ćirić, L.; Ashby, K.; Abadie, T.; Spina, M.; Duchamp, M.; Náfrádi, B.; Kollár, M.; Forró, L.; Horváth, E.

    2018-03-01

    We report a systematic study of the mechanical response of methylammonium lead triiodide CH3NH3PbI3 nanowires by employing bending measurements using atomic force microscope on suspended wires over photo-lithographically patterned channels. Force-deflection curves measured at room temperature give a Young's modulus between 2 and 14 GPa. This broad range of values is attributed to the variations in the microcrystalline texture of halide perovskite nanowires. The mechanical response of a highly crystalline nanowire is linear with force and has a brittle character. The braking modulus of 48 ± 20 MPa corresponds to 100 μm of radius of curvature of the nanowires, rendering them much better structures for flexible devices than spin coated films. The measured moduli decrease rapidly if the NW is exposed to water vapor.

  9. Pavement mechanic response of sulfate saline soil subgrade section based on fluid–structure interaction model

    OpenAIRE

    Xueying Zhao; Aiqin Shen; Yinchuang Guo; Peng Li; Zhenhua Lv

    2017-01-01

    It is a consensus that salt heaving and frost heaving are urgent and typical distress in the sulfate saline soil area. To further investigate the microscopic performance of pavement structure in this special area, Jinan-Dongying Freeway in Shandong Province is selected as a case study engineering and the mechanic responses under salt heaving, frost heaving and traffic loads were analyzed through the finite element (FE) Program (ANSYS). In this paper, the process of salt heaving and frost heav...

  10. Potential risks of nanotechnology to humans and environment: implications and response mechanisms in Africa

    CSIR Research Space (South Africa)

    Musee, N

    2011-11-01

    Full Text Available and Nanotechnology Summer School Pretoria, South Africa, 22nd NOV? 2nd DEC 2009 Potential risks of nanotechnology to humans and the environment: implications and response mechanisms in Africa Ndeke Musee, Lucky Sikhwivhilu, Nomakhwezi Nota, Lisa Schaefer... COVISET Conference, Johannesburg, South Africa, 22-25 Nov 2011? CSIR 2006 www.csir.co.za Effect of SWCNT on Eschericia coli (a) SEM image of E. Coli incubated without SWCNTs for 60 min. [Source: Kang et al. / Langmuir 2007, 23...

  11. Gustatory tissue injury in man: radiation dose response relationships and mechanisms of taste loss

    International Nuclear Information System (INIS)

    Mossman, K.L.

    1986-01-01

    In this report dose response data for gustatory tissue damage in patients given total radiation doses ranging from 3000 to 6000 cGy are presented. In order to evaluate direct radiation injury to gustatory tissues as a mechanism of taste loss, measurements of damage to specific taste structures in bovine and murine systems following radiation exposure in the clinical range are correlated to taste impairment observed in radiotherapy patients. (author)

  12. Improved phytoaccumulation of cadmium by genetically modified tobacco plants (Nicotiana tabacum L.). Physiological and biochemical response of the transformants to cadmium toxicity

    International Nuclear Information System (INIS)

    Gorinova, N.; Nedkovska, M.; Todorovska, E.; Simova-Stoilova, L.; Stoyanova, Z.; Georgieva, K.; Demirevska-Kepova, K.; Atanassov, A.; Herzig, R.

    2007-01-01

    The response of tobacco plants (Nicotiana tabacum L.)-non-transformed and transformed with a metallothionein gene MThis from Silene vulgaris L. - to increase cadmium supply in the nutrient solution was compared. The transgenic plants accumulated significantly more Cd both in the roots and the leaves. Visual toxicity symptoms and disturbance in water balance were correlated with Cd tissue content. Treatment with 300 μM CdCl 2 resulted in inhibition of photosynthesis and mobilization of the ascorbate-glutathione cycle. Treatment with 500 μM CdCl 2 led to irreversible damage of photosynthesis and oxidative stress. An appearance of a new peroxidase isoform and changes in the leaf polypeptide pattern were observed at the highest Cd concentration. The level of non-protein thiols gradually increased following the Cd treatment both in transgenic and non-transformed plants. - Genetic transformation of Nicotiana tabacum L. by metallothionein gene improved phytoaccumulation of cadmium

  13. Computational modeling predicts the ionic mechanism of late-onset responses in Unipolar Brush Cells

    Directory of Open Access Journals (Sweden)

    Sathyaa eSubramaniyam

    2014-08-01

    Full Text Available Unipolar Brush Cells (UBCs have been suggested to have a strong impact on cerebellar granular layer functioning, yet the corresponding cellular mechanisms remain poorly understood. UBCs have recently been reported to generate, in addition to early-onset glutamatergic synaptic responses, a late-onset response (LOR composed of a slow depolarizing ramp followed by a spike burst (Locatelli et al., 2013. The LOR activates as a consequence of synaptic activity and involves an intracellular cascade modulating H- and TRP-current gating. In order to assess the LOR mechanisms, we have developed a UBC multi-compartmental model (including soma, dendrite, initial segment and axon incorporating biologically realistic representations of ionic currents and a generic coupling mechanism regulating TRP and H channel gating. The model finely reproduced UBC responses to current injection, including a low-threshold spike sustained by CaLVA currents, a persistent discharge sustained by CaHVA currents, and a rebound burst following hyperpolarization sustained by H- and CaLVA-currents. Moreover, the model predicted that H- and TRP-current regulation was necessary and sufficient to generate the LOR and its dependence on the intensity and duration of mossy fiber activity. Therefore, the model showed that, using a basic set of ionic channels, UBCs generate a rich repertoire of delayed bursts, which could take part to the formation of tunable delay-lines in the local microcircuit.

  14. Computational modeling predicts the ionic mechanism of late-onset responses in unipolar brush cells.

    Science.gov (United States)

    Subramaniyam, Sathyaa; Solinas, Sergio; Perin, Paola; Locatelli, Francesca; Masetto, Sergio; D'Angelo, Egidio

    2014-01-01

    Unipolar Brush Cells (UBCs) have been suggested to play a critical role in cerebellar functioning, yet the corresponding cellular mechanisms remain poorly understood. UBCs have recently been reported to generate, in addition to early-onset glutamate receptor-dependent synaptic responses, a late-onset response (LOR) composed of a slow depolarizing ramp followed by a spike burst (Locatelli et al., 2013). The LOR activates as a consequence of synaptic activity and involves an intracellular cascade modulating H- and TRP-current gating. In order to assess the LOR mechanisms, we have developed a UBC multi-compartmental model (including soma, dendrite, initial segment, and axon) incorporating biologically realistic representations of ionic currents and a cytoplasmic coupling mechanism regulating TRP and H channel gating. The model finely reproduced UBC responses to current injection, including a burst triggered by a low-threshold spike (LTS) sustained by CaLVA currents, a persistent discharge sustained by CaHVA currents, and a rebound burst following hyperpolarization sustained by H- and CaLVA-currents. Moreover, the model predicted that H- and TRP-current regulation was necessary and sufficient to generate the LOR and its dependence on the intensity and duration of mossy fiber activity. Therefore, the model showed that, using a basic set of ionic channels, UBCs generate a rich repertoire of bursts, which could effectively implement tunable delay-lines in the local microcircuit.

  15. Mechanical response of common millet (Panicum miliaceum) seeds under quasi-static compression: Experiments and modeling.

    Science.gov (United States)

    Hasseldine, Benjamin P J; Gao, Chao; Collins, Joseph M; Jung, Hyun-Do; Jang, Tae-Sik; Song, Juha; Li, Yaning

    2017-09-01

    The common millet (Panicum miliaceum) seedcoat has a fascinating complex microstructure, with jigsaw puzzle-like epidermis cells articulated via wavy intercellular sutures to form a compact layer to protect the kernel inside. However, little research has been conducted on linking the microstructure details with the overall mechanical response of this interesting biological composite. To this end, an integrated experimental-numerical-analytical investigation was conducted to both characterize the microstructure and ascertain the microscale mechanical properties and to test the overall response of kernels and full seeds under macroscale quasi-static compression. Scanning electron microscopy (SEM) was utilized to examine the microstructure of the outer seedcoat and nanoindentation was performed to obtain the material properties of the seedcoat hard phase material. A multiscale computational strategy was applied to link the microstructure to the macroscale response of the seed. First, the effective anisotropic mechanical properties of the seedcoat were obtained from finite element (FE) simulations of a microscale representative volume element (RVE), which were further verified from sophisticated analytical models. Then, macroscale FE models of the individual kernel and full seed were developed. Good agreement between the compression experiments and FE simulations were obtained for both the kernel and the full seed. The results revealed the anisotropic property and the protective function of the seedcoat, and showed that the sutures of the seedcoat play an important role in transmitting and distributing loads in responding to external compression. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Mechanical Adaptability of the MMP-Responsive Film Improves the Functionality of Endothelial Cell Monolayer.

    Science.gov (United States)

    Hu, Mi; Chang, Hao; Zhang, He; Wang, Jing; Lei, Wen-Xi; Li, Bo-Chao; Ren, Ke-Feng; Ji, Jian

    2017-07-01

    Extracellular matrix and cells are inherent in coordinating and adapting to each other during all physiological and pathological processes. Synthetic materials, however, show rarely reciprocal and spatiotemporal responses to cells, and lacking self-adapting properties as well. Here, a mechanical adaptability based on the matrix metalloproteinase (MMPs) sensitive polyelectrolyte film is reported. Poly-lysine (PLL) and methacrylated hyaluronic acid (HA-MA) nanolayers are employed to build the thin film through the layer-by-layer assembly, and it is further crosslinked using MMP sensitive peptides, which endows the films with changeable mechanical properties in response to MMPs. It is demonstrated that stiffness of the (PLL/HA-MA) films increases with the crosslinking, and then decreases in response to a treatment of enzyme. Consequently, the crosslinked (PLL/HA-MA) films reveal effective growth of endothelial cells (ECs), leading to fast formation of EC monolayer. Importantly, significantly improved endothelial function of the EC monolayer, which is characterized by integrity, biomolecules release, expression of function related gene, and antithrombotic properties, is achieved along with the decrosslinking of the film because of EC-secreted MMPs. These results suggest that mechanical adaptability of substrate in Young's modulus plays a significant role in endothelial progression, which shows great application potential in tissue engineering, regenerative medicine, and organ-on-a-chip. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Dynamical mechanisms for sensitive response of aperiodic firing cells to external stimulation

    International Nuclear Information System (INIS)

    Xie Yong; Xu Jianxue; Hu Sanjue; Kang Yanmei; Yang Hongjun; Duan Yubin

    2004-01-01

    An interesting phenomenon that aperiodic firing neurons have a higher sensitivity to drugs than periodic firing neurons have been reported for the chronically compressed dorsal root ganglion neurons in rats. In this study, the dynamical mechanisms for such a phenomenon are uncovered from the viewpoint of dynamical systems theory. We use the Rose-Hindmarsh neuron model to illustrate our opinions. Periodic orbit theory is introduced to characterize the dynamical behavior of aperiodic firing neurons. It is considered that bifurcations, crises and sensitive dependence of chaotic motions on control parameters can be the underlying mechanisms. And then, a similar analysis is applied to the modified Chay model describing the firing behavior of pancreatic beta cells. The same dynamical mechanisms can be obtained underlying that aperiodic firing cells are more sensitive to external stimulation than periodic firing ones. As a result, we conjecture that sensitive response of aperiodic firing cells to external stimulation is a universal property of excitable cells

  18. Interactive relationship between the mechanical properties of food and the human response during the first bite.

    Science.gov (United States)

    Dan, Haruka; Kohyama, Kaoru

    2007-05-01

    Biting is an action that results from interplay between food properties and the masticatory system. The mechanical factors of food that cause biting adaptation and the recursive effects of modified biting on the mechanical phenomena of food are largely unknown. We examined the complex interaction between the bite system and the mechanical properties. Nine subjects were each given a cheese sample and instructed to bite it once with their molar teeth. An intra-oral bite force-time profile was measured using a tactile pressure-measurement system with a sheet sensor inserted between the molars. Time, force, and impulse for the first peak were specified as intra-oral parameters of the sample fracture. Mechanical properties of the samples were also examined using a universal testing machine at various test speeds. Besides fracture parameters, initial slope was also determined as a mechanical property possibly sensed shortly after bite onset. The bite profile was then examined based on the mechanical parameters. Sample-specific bite velocities were identified as characteristic responses of a human bite. A negative correlation was found between bite velocity and initial slope of the sample, suggesting that the initial slope is the mechanical factor that modifies the consequent bite velocity. The sample-specific bite velocity had recursive effects on the following fracture event, such that a slow velocity induced a low bite force and high impulse for the intra-oral fracture event. We demonstrated that examination of the physiological and mechanical factors during the first bite can provide valuable information about the food-oral interaction.

  19. Biochemical reasoning for radiation protection and screening methods for radiation sensitivity and potential carcinogenicity

    International Nuclear Information System (INIS)

    Riklis, Emanuel; Emerit, Ingrid

    1994-01-01

    Cells of different genetic characteristics respond differently to agents that modify radiation effects. When the modification is a result of chemical repair, reduction of the amount of damage by radical scavenging, production of hypoxia, or any other such mechanism, then the modification of the response will be the same for all types of cells, but not the same when biological or biochemical parameters are involved, because the differences between the cells affect the final outcome, and the genetic traits obviously become affected by chemical modifying agents. Some of these agents directly affect the repair of deoxyribonucleic acid (DNA) by mechanisms not yet understood. Another agent nicotinamide (NA), is directly linked to a repair pathway. Thus, a system that uses NA as a precursor of nicotinamide adenine dinucleotide (NAD) + , and uses NAD + to produce the polymer polyadenosine diphosphate ribose (PADPR) appears to be an interesting and important factor in the biochemical events that may be linked to improved radioprotection. (author). 36 refs., 5 figs

  20. Mechanisms Underlying the Antidepressant Response of Acupuncture via PKA/CREB Signaling Pathway.

    Science.gov (United States)

    Jiang, Huili; Zhang, Xuhui; Wang, Yu; Zhang, Huimin; Li, Jing; Yang, Xinjing; Zhao, Bingcong; Zhang, Chuntao; Yu, Miao; Xu, Mingmin; Yu, Qiuyun; Liang, Xingchen; Li, Xiang; Shi, Peng; Bao, Tuya

    2017-01-01

    Protein kinase A (PKA)/cAMP response element-binding (CREB) protein signaling pathway, contributing to impaired neurogenesis parallel to depressive-like behaviors, has been identified as the crucial factor involved in the antidepressant response of acupuncture. However, the molecular mechanisms associated with antidepressant response of acupuncture, neurogenesis, and depressive-like behaviors ameliorating remain unexplored. The objective was to identify the mechanisms underlying the antidepressant response of acupuncture through PKA signaling pathway in depression rats by employing the PKA signaling pathway inhibitor H89 in in vivo experiments. Our results indicated that the expression of hippocampal PKA- α and p-CREB was significantly downregulated by chronic unpredicted mild stress (CUMS) procedures. Importantly, acupuncture reversed the downregulation of PKA- α and p-CREB. The expression of PKA- α was upregulated by fluoxetine, but not p-CREB. No significant difference was found between Acu and FLX groups on the expression of PKA- α and p-CREB. Interestingly, H89 inhibited the effects of acupuncture or fluoxetine on upregulating the expression of p-CREB, but not PKA- α . There was no significant difference in expression of CREB among the groups. Conclusively, our findings further support the hypothesis that acupuncture could ameliorate depressive-like behaviors by regulating PKA/CREB signaling pathway, which might be mainly mediated by regulating the phosphorylation level of CREB.

  1. Calmodulin Gene Expression in Response to Mechanical Wounding and Botrytis cinerea Infection in Tomato Fruit

    Directory of Open Access Journals (Sweden)

    Hui Peng

    2014-08-01

    Full Text Available Calmodulin, a ubiquitous calcium sensor, plays an important role in decoding stress-triggered intracellular calcium changes and regulates the functions of numerous target proteins involved in various plant physiological responses. To determine the functions of calmodulin in fleshy fruit, expression studies were performed on a family of six calmodulin genes (SlCaMs in mature-green stage tomato fruit in response to mechanical injury and Botrytis cinerea infection. Both wounding and pathogen inoculation triggered expression of all those genes, with SlCaM2 being the most responsive one to both treatments. Furthermore, all calmodulin genes were upregulated by salicylic acid and methyl jasmonate, two signaling molecules involved in plant immunity. In addition to SlCaM2, SlCaM1 was highly responsive to salicylic acid and methyl jasmonate. However, SlCaM2 exhibited a more rapid and stronger response than SlCaM1. Overexpression of SlCaM2 in tomato fruit enhanced resistance to Botrytis-induced decay, whereas reducing its expression resulted in increased lesion development. These results indicate that calmodulin is a positive regulator of plant defense in fruit by activating defense pathways including salicylate- and jasmonate-signaling pathways, and SlCaM2 is the major calmodulin gene responsible for this event.

  2. Common and distinct neural mechanisms of attentional switching and response conflict.

    Science.gov (United States)

    Kim, Chobok; Johnson, Nathan F; Gold, Brian T

    2012-08-21

    The human capacities for overcoming prepotent actions and flexibly switching between tasks represent cornerstones of cognitive control. Functional neuroimaging has implicated a diverse set of brain regions contributing to each of these cognitive control processes. However, the extent to which attentional switching and response conflict draw on shared or distinct neural mechanisms remains unclear. The current study examined the neural correlates of response conflict and attentional switching using event-related functional magnetic resonance imaging (fMRI) and a fully randomized 2×2 design. We manipulated an arrow-word version of the Stroop task to measure conflict and switching in the context of a single task decision, in response to a common set of stimuli. Under these common conditions, both behavioral and imaging data showed significant main effects of conflict and switching but no interaction. However, conjunction analyses identified frontal regions involved in both switching and response conflict, including the dorsal anterior cingulate cortex (dACC) and left inferior frontal junction. In addition, connectivity analyses demonstrated task-dependent functional connectivity patterns between dACC and inferior temporal cortex for attentional switching and between dACC and posterior parietal cortex for response conflict. These results suggest that the brain makes use of shared frontal regions, but can dynamically modulate the connectivity patterns of some of those regions, to deal with attentional switching and response conflict. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Molecular Mechanisms of Foot-and-Mouth Disease Virus Targeting the Host Antiviral Response.

    Science.gov (United States)

    Rodríguez Pulido, Miguel; Sáiz, Margarita

    2017-01-01

    Foot-and-mouth disease virus (FMDV) is the causative agent of an acute vesicular disease affecting pigs, cattle and other domestic, and wild animals worldwide. The aim of the host interferon (IFN) response is to limit viral replication and spread. Detection of the viral genome and products by specialized cellular sensors initiates a signaling cascade that leads to a rapid antiviral response involving the secretion of type I- and type III-IFNs and other antiviral cytokines with antiproliferative and immunomodulatory functions. During co-evolution with their hosts, viruses have acquired strategies to actively counteract host antiviral responses and the balance between innate response and viral antagonism may determine the outcome of disease and pathogenesis. FMDV proteases Lpro and 3C have been found to antagonize the host IFN response by a repertoire of mechanisms. Moreover, the putative role of other viral proteins in IFN antagonism is being recently unveiled, uncovering sophisticated immune evasion strategies different to those reported to date for other members of the Picornaviridae family. Here, we review the interplay between antiviral responses induced by FMDV infection and viral countermeasures to block them. Research on strategies used by viruses to modulate immunity will provide insights into the function of host pathways involved in defense against pathogens and will also lead to development of new therapeutic strategies to fight virus infections.

  4. Ecological mechanisms underlying soil bacterial responses to rainfall along a steep natural precipitation gradient.

    Science.gov (United States)

    Waring, Bonnie; Hawkes, Christine V

    2018-02-01

    Changes in the structure and function of soil microbial communities can drive substantial ecosystem feedbacks to altered precipitation. However, the ecological mechanisms underlying community responses to environmental change are not well understood. We used an 18-month soil reciprocal transplant experiment along a steep precipitation gradient to quantify how changes in rainfall affected bacterial community structure. We also conducted an enhanced dispersal treatment to ask whether higher immigration rates of taxa from the surrounding environment would accelerate community responses to climate change. Finally, we addressed how the composition of soil bacteria communities was related to the functional response of soil respiration to moisture in these treatments. Bacterial community structure (OTU abundance) and function (respiration rates) changed little in response to manipulation of either rainfall environment or dispersal rates. Although most bacteria were ecological generali