WorldWideScience

Sample records for biochemical genetics

  1. Pheochromocytoma-paraganglioma: Biochemical and genetic diagnosis.

    Science.gov (United States)

    Cano Megías, Marta; Rodriguez Puyol, Diego; Fernández Rodríguez, Loreto; Sención Martinez, Gloria Lisette; Martínez Miguel, Patricia

    Pheochromocytomas and paragangliomas are tumours derived from neural crest cells, which can be diagnosed by biochemical measurement of metanephrine and methoxytyramine. Advances in genetic research have identified many genes involved in the pathogenesis of these tumours, suggesting that up to 35-45% may have an underlying germline mutation. These genes have a singular transcriptional signature and can be grouped into 2 clusters (or groups): cluster 1 (VHL and SHDx), involved in angiogenesis and hypoxia pathways; and cluster 2 (MEN2 and NF1), linked to the kinase signalling pathway. In turn, these genes are associated with a characteristic biochemical phenotype (noradrenergic and adrenergic), and clinical features (location, biological behaviour, age of presentation, etc.) in a large number of cases. Early diagnosis of these tumours, accompanied by a correct genetic diagnosis, should eventually become a priority to enable better treatment, early detection of complications, proper screening of family members and related tumours, as well as an improvement in the overall prognosis of these patients. Copyright © 2016 Sociedad Española de Nefrología. Published by Elsevier España, S.L.U. All rights reserved.

  2. Appraisal of biochemical and genetic diversity of mango cultivars ...

    African Journals Online (AJOL)

    Appraisal of biochemical and genetic diversity of mango cultivars using molecular markers. ... Mango (Mangifera indica L.) is one of the oldest fruit crops and is broadly cultivated worldwide. To determine the level of ... HOW TO USE AJOL.

  3. Genetic and biochemical evidences reveal novel insights into the ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Biosciences; Volume 41; Issue 4. Genetic and biochemical evidences reveal novel insights into the mechanism underlying Saccharomyces cerevisiae Sae2-mediated abrogation of DNA replication stress. INDRAJEET GHODKE K MUNIYAPPA. ARTICLE Volume 41 Issue 4 December 2016 pp ...

  4. Biochemical and genetic diagnosis of Smith-Lemli- Opitz syndrome ...

    African Journals Online (AJOL)

    The clinical spectrum of manifestations is broad, ... delay as well as selfinjurious behaviour and autism are reported. ... recessive disorder that is more common than other defects in cholesterol biosynthesis. ... To perform biochemical and genetic workups in four South African families of European ancestry with suspected ...

  5. Biochemical genetics in marine fisheries management and conservation

    Digital Repository Service at National Institute of Oceanography (India)

    Menezes, M.R.

    - 403004 NBDBlDBTSponsored Training on Taxonomy, GOIdia turd Gme Bturking o/Coastal and Marine Bloresources, CIFE, Mumbal BIOCHEMICAL GENETICS IN MARINE FISHERIES MANAGEMENT AND CONSERVATION Maria R. Menezes Introduction . Species of fish, like most... population structure may have evolved and been maintained in species of fish ofeconomic interest has led to the concept of 'stock'. The stock concept dominates much of marine fisheries management, theory and practice because the identification of discrete...

  6. Metabologenomics of Phaeochromocytoma and Paraganglioma: An Integrated Approach for Personalised Biochemical and Genetic Testing.

    Science.gov (United States)

    Eisenhofer, Graeme; Klink, Barbara; Richter, Susan; Lenders, Jacques Wm; Robledo, Mercedes

    2017-04-01

    The tremendous advances over the past two decades in both clinical genetics and biochemical testing of chromaffin cell tumours have led to new considerations about how these aspects of laboratory medicine can be integrated to improve diagnosis and management of affected patients. With germline mutations in 15 genes now identified to be responsible for over a third of all cases of phaeochromocytomas and paragangliomas, these tumours are recognised to have one of the richest hereditary backgrounds among all neoplasms. Depending on the mutation, tumours show distinct differences in metabolic pathways that relate to or even directly impact clinical presentation. At the same time, there has been improved understanding about how catecholamines are synthesised, stored, secreted and metabolised by chromaffin cell tumours. Although the tumours may not always secrete catecholamines it has become clear that almost all continuously produce and metabolise catecholamines. This has not only fuelled changes in laboratory medicine, but has also assisted in recognition of genotype-biochemical phenotype relationships important for diagnostics and clinical care. In particular, differences in catecholamine and energy pathway metabolomes can guide genetic testing, assist with test interpretation and provide predictions about the nature, behaviour and imaging characteristics of the tumours. Conversely, results of genetic testing are important for guiding how routine biochemical testing should be employed and interpreted in surveillance programmes for at-risk patients. In these ways there are emerging needs for modern laboratory medicine to seamlessly integrate biochemical and genetic testing into the diagnosis and management of patients with chromaffin cell tumours.

  7. Good laboratory practices for biochemical genetic testing and newborn screening for inherited metabolic disorders.

    Science.gov (United States)

    2012-04-06

    Biochemical genetic testing and newborn screening are essential laboratory services for the screening, detection, diagnosis, and monitoring of inborn errors of metabolism or inherited metabolic disorders. Under the Clinical Laboratory Improvement Amendments of 1988 (CLIA) regulations, laboratory testing is categorized on the basis of the level of testing complexity as either waived (i.e., from routine regulatory oversight) or nonwaived testing (which includes tests of moderate and high complexity). Laboratories that perform biochemical genetic testing are required by CLIA regulations to meet the general quality systems requirements for nonwaived testing and the personnel requirements for high-complexity testing. Laboratories that perform public health newborn screening are subject to the same CLIA regulations and applicable state requirements. As the number of inherited metabolic diseases that are included in state-based newborn screening programs continues to increase, ensuring the quality of performance and delivery of testing services remains a continuous challenge not only for public health laboratories and other newborn screening facilities but also for biochemical genetic testing laboratories. To help ensure the quality of laboratory testing, CDC collaborated with the Centers for Medicare & Medicaid Services, the Food and Drug Administration, the Health Resources and Services Administration, and the National Institutes of Health to develop guidelines for laboratories to meet CLIA requirements and apply additional quality assurance measures for these areas of genetic testing. This report provides recommendations for good laboratory practices that were developed based on recommendations from the Clinical Laboratory Improvement Advisory Committee, with additional input from the Secretary's Advisory Committee on Genetics, Health, and Society; the Secretary's Advisory Committee on Heritable Disorders in Newborns and Children; and representatives of newborn

  8. Biochemical and genetic improvement of Zymomonas mobilis

    Energy Technology Data Exchange (ETDEWEB)

    Ingram, L O; Carey, V C; Dombek, K M; Holt, A S; Holt, W A; Osman, Y A; Walia, S K

    1984-01-01

    Zymomonas mobilis offers many advantages for alcohol production including three- to five-fold higher rates of substrate conversion. Current progress and approaches are discussed for the biochemical and genetic improvement of this organism. These include the isolation of salt-resistant mutants and low pH-tolerant mutants. Gene banks of Lactobacillus heterohiochi are being screened for genes encoding alcohol resistance which can be subsequently introduced into Zymomonas mobilis. In addition, an enteric lactose operon has been inserted into Zymomonas mobilis and is expressed. These new strains are being further modified to increase the substrate range of Zymomonas mobilis to include lactose. This lactose operon serves as a model system to investigate the expression of foreign genes in Zymomonas mobilis. 25 references.

  9. The clinical, biochemical and genetic features associated with RMND1-related mitochondrial disease

    DEFF Research Database (Denmark)

    Ng, Yi Shiau; Alston, Charlotte L; Diodato, Daria

    2016-01-01

    BACKGROUND: Mutations in the RMND1 (Required for Meiotic Nuclear Division protein 1) gene have recently been linked to infantile onset mitochondrial disease characterised by multiple mitochondrial respiratory chain defects. METHODS: We summarised the clinical, biochemical and molecular genetic in...

  10. The importance of biochemical and genetic findings in the diagnosis of atypical Norrie disease.

    Science.gov (United States)

    Rodríguez-Muñoz, Ana; García-García, Gema; Menor, Francisco; Millán, José M; Tomás-Vila, Miguel; Jaijo, Teresa

    2018-01-26

    Norrie disease (ND) is a rare X-linked disorder characterized by bilateral congenital blindness. ND is caused by a mutation in the Norrie disease pseudoglioma (NDP) gene, which encodes a 133-amino acid protein called norrin. Intragenic deletions including NDP and adjacent genes have been identified in ND patients with a more severe neurologic phenotype. We report the biochemical, molecular, clinical and radiological features of two unrelated affected males with a deletion including NDP and MAO genes. Biochemical and genetic analyses were performed to understand the atypical phenotype and radiological findings. Biogenic amines in cerebrospinal fluid (CSF) were measured by high-performance liquid chromatography. The coding exons of NDP gene were amplified by polymerase chain reaction. Multiplex ligation-dependent probe amplification and chromosomal microarray were carried out on both affected males. Computed tomography and magnetic resonance imaging were performed on the two patients. In one patient, the serotonin and catecholamine metabolite levels in CSF were virtually undetectable. In both patients, genetic studies revealed microdeletions in the Xp11.3 region, involving the NDP, MAOA and MAOB genes. Radiological examination demonstrated brain and cerebellar atrophy. We suggest that alterations caused by MAO deficit may remain during the first years of life. Clinical phenotype, biochemical findings and neuroimaging can guide the genetic study in patients with atypical ND and help us to a better understanding of this disease.

  11. Genetic Investigations Using Immuno-biochemical Markers in a Maramureş Brown Cattle Population

    Directory of Open Access Journals (Sweden)

    Nicoleta Isfan

    2011-05-01

    Full Text Available The study of the genetic markers and identifying new markers involves an increasing number of research projects in the fields of genetics of immunology, biochemical genetics, molecular genetics, quantity genetics and the genetic improvement of animals. Some studies on genes frequency determining the red cells specificity and for whey hemoglobin are approached in the present report. In this way, some blood factors, most of them belonging to B system (the most complex system in cattle have been evidenced. The lowest gene frequency was present in K factor (7%, and highest one in, O1, G’ , W and F1 (100%. In addition to basic importance on knowledge and determination of cattle population genetic structure for studied protein loci, another theme proposed to correlate hemoglobin type with some traits of economical importance: milk yield, fat and protein content, fat and protein yield. Higher performance was recorded by HbA/HbA individuals.

  12. ASSOCIATION OF SOME BIOCHEMICAL-GENETIC MARKERS WITH THE REPRODUCTION PARAMETERS OF THE BOTOSANI KARAKUL EWES

    Directory of Open Access Journals (Sweden)

    GH. HRINCĂ

    2008-10-01

    Full Text Available The paper describes some associative aspects of various biochemical-genetic markers with the reproduction activity in ewes of the Botosani Karakul breed. The two most important reproduction parameters (fecundity and prolificacy were analyzed according to the genotypes or phenotypes of polymorph systems (haemoglobin, transferrin, albumin and blood potassium of females. The relationship between reproduction data and genetic markers in ewes was quantified both for each genotype (phenotype and for each mating couple type made up depending on the genotype (phenotype of the couple partners (homozygous x homozygous, homozygous x heterozygous or heterozygous x heterozygous. All these associative aspects and their results are discussed for each polymorph genetic system. The ewes which are heterozygous at different genetic marker loci are more fertile and more prolific than the ewes which are homozygous at the levels of these loci. The highest conception and lambing rates resulted from the mating couples in which both partners were heterozygous and the least lambs were obtained from the mating couples in which both partners were homozygous; the fertility and prolificacy had intermediate values in heterogeneous mating couples (heterozygotes x homozygotes but they were nearer to the case in which both mating couple partners were heterozygous. The sheep breeding field can benefit by the contribution of biochemical-genetic markers to optimize the selection criteria with a view to increasing the reproduction capacity of this species.

  13. Biochemical and genetic analysis of the role of the viral polymerase in enterovirus recombination.

    Science.gov (United States)

    Woodman, Andrew; Arnold, Jamie J; Cameron, Craig E; Evans, David J

    2016-08-19

    Genetic recombination in single-strand, positive-sense RNA viruses is a poorly understand mechanism responsible for generating extensive genetic change and novel phenotypes. By moving a critical cis-acting replication element (CRE) from the polyprotein coding region to the 3' non-coding region we have further developed a cell-based assay (the 3'CRE-REP assay) to yield recombinants throughout the non-structural coding region of poliovirus from dually transfected cells. We have additionally developed a defined biochemical assay in which the only protein present is the poliovirus RNA dependent RNA polymerase (RdRp), which recapitulates the strand transfer events of the recombination process. We have used both assays to investigate the role of the polymerase fidelity and nucleotide turnover rates in recombination. Our results, of both poliovirus intertypic and intratypic recombination in the CRE-REP assay and using a range of polymerase variants in the biochemical assay, demonstrate that RdRp fidelity is a fundamental determinant of recombination frequency. High fidelity polymerases exhibit reduced recombination and low fidelity polymerases exhibit increased recombination in both assays. These studies provide the basis for the analysis of poliovirus recombination throughout the non-structural region of the virus genome and provide a defined biochemical assay to further dissect this important evolutionary process. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  14. Plant responses to UV and blue light: biochemical and genetic approaches

    International Nuclear Information System (INIS)

    Jenkins, G.I.; Christie, J.M.; Fuglevand, G.; Long, J.C.; Jackson, J.A.

    1995-01-01

    UV and blue light control many aspects of plant growth and development. It is evident that several different photoreceptors mediate responses to UV and blue light, and there are reports of the functional and biochemical characterisation of a putative photoreceptor for phototropism and of the functional and molecular characterisation of the CRY1 photoreceptor, encoded by the Arabidopsis HY4 gene. The CRY1 photoreceptor mediates extension growth and gene expression responses to UV-A/blue light presumably through different or branching signal transduction pathways. Progress has been made in cell physiological and biochemical studies of UV/blue light signal transduction, but much remains to be done to relate candidate UV/blue signal transduction events to particular photoreceptors and responses. The application of a genetic approach in Arabidopsis has been responsible for many advances in understanding UV/blue responses, but further UV-B, UV-A and blue light response mutants need to be isolated. (author)

  15. Tramadol Induced Adrenal Insufficiency: Histological, Immunohistochemical, Ultrastructural, and Biochemical Genetic Experimental Study

    OpenAIRE

    Abdelaleem, Shereen Abdelhakim; Hassan, Osama A.; Ahmed, Rasha F.; Zenhom, Nagwa M.; Rifaai, Rehab A.; El-Tahawy, Nashwa F.

    2017-01-01

    Tramadol is a synthetic, centrally acting analgesic. It is the most consumed narcotic drug that is prescribed in the world. Tramadol abuse has dramatically increased in Egypt. Long term use of tramadol can induce endocrinopathy. So, the aim of this study was to analyze the adrenal insufficiency induced by long term use of tramadol in experimental animals and also to assess its withdrawal effects through histopathological and biochemical genetic study. Forty male albino rats were used in this ...

  16. Biochemical and genetic analysis of the Drk SH2/SH3 adaptor protein of Drosophila.

    OpenAIRE

    Raabe, T; Olivier, J P; Dickson, B J; Liu, X; Gish, G D; Pawson, T; Hafen, E

    1995-01-01

    The Drk SH3-SH2-SH3 adaptor protein has been genetically identified in a screen for rate-limiting components acting downstream of the Sevenless (Sev) receptor tyrosine kinase in the developing eye of Drosophila. It provides a link between the activated Sev receptor and Sos, a guanine nucleotide release factor that activates Ras1. We have used a combined biochemical and genetic approach to study the interactions between Sev, Drk and Sos. We show that Tyr2546 in the cytoplasmic tail of Sev is r...

  17. Genetic and biochemical changes of the serotonergic system in migraine pathobiology.

    Science.gov (United States)

    Gasparini, Claudia Francesca; Smith, Robert Anthony; Griffiths, Lyn Robyn

    2017-12-01

    Migraine is a brain disorder characterized by a piercing headache which affects one side of the head, located mainly at the temples and in the area around the eye. Migraine imparts substantial suffering to the family in addition to the sufferer, particularly as it affects three times more women than men and is most prevalent between the ages of 25 and 45, the years of child rearing. Migraine typically occurs in individuals with a genetic predisposition and is aggravated by specific environmental triggers. Attempts to study the biochemistry of migraine began as early as the 1960s and were primarily directed at serotonin metabolism after an increase of 5-hydroxyindoleacetic acid (5-HIAA), the main metabolite of serotonin was observed in urine of migraineurs. Genetic and biochemical studies have primarily focused on the neurotransmitter serotonin, considering receptor binding, transport and synthesis of serotonin and have investigated serotonergic mediators including enzymes, receptors as well as intermediary metabolites. These studies have been mainly assayed in blood, CSF and urine as the most accessible fluids. More recently PET imaging technology integrated with a metabolomics and a systems biology platform are being applied to study serotonergic biology. The general trend observed is that migraine patients have alterations of neurotransmitter metabolism detected in biological fluids with different biochemistry from controls, however the interpretation of the biological significance of these peripheral changes is unresolved. In this review we present the biology of the serotonergic system and metabolic routes for serotonin and discuss results of biochemical studies with regard to alterations in serotonin in brain, cerebrospinal fluid, saliva, platelets, plasma and urine of migraine patients.

  18. Polyphenol Oxidases in Crops: Biochemical, Physiological and Genetic Aspects

    Directory of Open Access Journals (Sweden)

    Francesca Taranto

    2017-02-01

    Full Text Available Enzymatic browning is a colour reaction occurring in plants, including cereals, fruit and horticultural crops, due to oxidation during postharvest processing and storage. This has a negative impact on the colour, flavour, nutritional properties and shelf life of food products. Browning is usually caused by polyphenol oxidases (PPOs, following cell damage caused by senescence, wounding and the attack of pests and pathogens. Several studies indicated that PPOs play a role in plant immunity, and emerging evidence suggested that PPOs might also be involved in other physiological processes. Genomic investigations ultimately led to the isolation of PPO homologs in several crops, which will be possibly characterized at the functional level in the near future. Here, focusing on the botanic families of Poaceae and Solanaceae, we provide an overview on available scientific literature on PPOs, resulting in useful information on biochemical, physiological and genetic aspects.

  19. Acetylcholine receptors and cholinergic ligands: biochemical and genetic aspects in Torpedo californica and Drosophila melanogaster

    International Nuclear Information System (INIS)

    Rosenthal, L.S.

    1987-01-01

    This study evaluates the biochemical and genetic aspects of the acetylcholine receptor proteins and cholinergic ligands in Drosophila melanogaster and Torpedo californica. Included are (1) a comparative study of nicotinic ligand-induced cation release from acetylcholine receptors isolated from Torpedo californica and from Drosophila melanogaster, (2) solution studies of the cholinergic ligands, nikethamide and ethamivan, aimed at measuring internal molecular rotational barriers in solvents of different polarity; and (3) the isolation and characterization of the gene(s) for the acetylcholine receptor in Drosophila melasogaster. Acetylcholine receptor proteins isolated from Drosphila melanogaster heads were found to behave kinetically similar (with regards to cholinergic ligand-induced 155 Eu: 3+ displacement from prelabeled proteins) to receptor proteins isolated from Torpedo californica electric tissue, providing additional biochemical evidence for the existence of a Drosophila acetylcholine receptor

  20. Heritability and genetic advance studies for biochemical traits in F2-3 introgressed families of Brassica

    International Nuclear Information System (INIS)

    Farhatullah, N.K.; Khalil, I.H.; Nahed, H.

    2015-01-01

    Higher heritability estimates along with high genetic advance values are effective in envisaging gain under selection in developing genotypes. The objective of the present study was to evaluate variability, heritability and genetic advance in 10 interspecific F2-3 families of Brassica species (B. napus * B. juncea, B. napus * B. rapa). These families were studied for heterospecific introgression of biochemical traits. Low to high heritability estimates were recorded for seed quality traits. Considerable variations within F2-3 families were observed for biochemical traits. Most of the F2-3 families for oil content and erucic showed moderate to high heritability indicating the slightest influence of environment thus modification of trait by selection would be more effective. Among F2-3 introgressed families Bn-510 x Bj-109 produced high oil i.e., 49.5% while Bn-532 x Br-118 (24.4%), Bn-533 x Bj-109 (24.1%) and high protein percentage in terms of mean performance. In the present research, individual segregating progenies of interspecific cross populations i.e., which possessed combination of desirable traits, were identified which could be incorporated in the future Breeding programs and it may facilitate varietal development. (author)

  1. Biochemical and molecular genetic studies on some cyanobacterial isolates

    International Nuclear Information System (INIS)

    Kamal, E.A.R.; Ebrahim, S.A.A.

    2011-01-01

    In the present study, the isolation and purification of a set of Cyanobacteria strains belonging to genus Oscillatoria was undertaken, followed by the analyses of phylogenetic relationships using different biochemical and molecular genetic techniques (SOS-PAGE and RAPO-PCR). A total of 45 protein bands were observed within the studied Osci/latoria isolates by SOS-PAGE (only three unique bands, eight monomorphic bands and 37 polymorphic bands). On the other hand, extracted ONA from isolates was used to identify the molecular fingerprints. A sum of 94 polymorphic bands was generated by these primers in the Ocsi/laloria genotypes under study. A total of 20 unique bands were identified out of the polymorphic ones. These unique bands were used to discriminate among the studied Ocsi/latoria isolates. Most isolates of Ocsi/latoria genotypes were discriminated by one or more unique bands. Numerical taxonomic using 45 protein attributes of 19 isolates and RAPO markers on five isolates. Two methods -Clustering (UPGMA) and Principal Component Analysis (PCA) were used for these analyses. The similarities and clusters produced between the studied isolates were discussed.

  2. Biochemical and molecular genetic studies on some cyanobacterial isolates

    Energy Technology Data Exchange (ETDEWEB)

    Kamal, E A.R. [Umm Al-Qura University, Makkah (Saudi Arabia). Dept. of Biology; Ebrahim, S A.A. [Ain Sham University, Cairo (Egypt). Dept. of Cytogenetic

    2011-11-15

    In the present study, the isolation and purification of a set of Cyanobacteria strains belonging to genus Oscillatoria was undertaken, followed by the analyses of phylogenetic relationships using different biochemical and molecular genetic techniques (SOS-PAGE and RAPO-PCR). A total of 45 protein bands were observed within the studied Osci/latoria isolates by SOS-PAGE (only three unique bands, eight monomorphic bands and 37 polymorphic bands). On the other hand, extracted ONA from isolates was used to identify the molecular fingerprints. A sum of 94 polymorphic bands was generated by these primers in the Ocsi/laloria genotypes under study. A total of 20 unique bands were identified out of the polymorphic ones. These unique bands were used to discriminate among the studied Ocsi/latoria isolates. Most isolates of Ocsi/latoria genotypes were discriminated by one or more unique bands. Numerical taxonomic using 45 protein attributes of 19 isolates and RAPO markers on five isolates. Two methods -Clustering (UPGMA) and Principal Component Analysis (PCA) were used for these analyses. The similarities and clusters produced between the studied isolates were discussed.

  3. Biochemical and molecular study of genetic stability in tomatoes plants rom seeds treated with low doses of X-ray

    International Nuclear Information System (INIS)

    Ramirez, R; Gonzalez, LM; Chavez, Licet; Camejo, Yanelis; Gonzalez, Maria C; Fernandez, Arais

    2008-01-01

    For the extensive agricultural exploitation of vegetable radio stimulation, it is indispensable to study the genetic stability of treated varieties, having in mind X ray potentialities of inducing not only physiological but genetic changes as well. Therefore, biochemical and molecular markers were employed in tomato plants derived from irradiated seeds at low doses of X rays. For the biochemical analysis, peroxidases, polyphenoloxidases and dismutase superoxide isoenzymes were determined whereas the Random Amplification of Polymorphic DNA (RAPD) method based on Polymerase Chain Reaction (PCR) was used for the molecular analysis. When comparing the electrophoretic patterns from the control and irradiated treatments applied to the three enzymatic systems, there were not appreciable variations on the number of bands and their intensities, indicating the little variability induced in these systems by the low X ray doses. Also, from the molecular viewpoint, electrophoretic patterns showed a clear amplification of DNA by generating a total of 155 bands in all varieties studied. This molecular marker showed a high monomorphism independently of the treatments applied, with values ranging between 86 and 97 %, indicating that irradiation at low doses did not induce an important genetic variability and confirming its possible practical usefulness for stimulating some physiological processes without causing. (Author)

  4. Tramadol Induced Adrenal Insufficiency: Histological, Immunohistochemical, Ultrastructural, and Biochemical Genetic Experimental Study.

    Science.gov (United States)

    Abdelaleem, Shereen Abdelhakim; Hassan, Osama A; Ahmed, Rasha F; Zenhom, Nagwa M; Rifaai, Rehab A; El-Tahawy, Nashwa F

    2017-01-01

    Tramadol is a synthetic, centrally acting analgesic. It is the most consumed narcotic drug that is prescribed in the world. Tramadol abuse has dramatically increased in Egypt. Long term use of tramadol can induce endocrinopathy. So, the aim of this study was to analyze the adrenal insufficiency induced by long term use of tramadol in experimental animals and also to assess its withdrawal effects through histopathological and biochemical genetic study. Forty male albino rats were used in this study. The rats were divided into 4 groups (control group, tramadol-treated group, and withdrawal groups). Tramadol was given to albino rats at a dose of 80 mg/kg body weight for 3 months and after withdrawal periods (7-15 days) rats were sacrificed. Long term use of tramadol induced severe histopathological changes in adrenal glands. Tramadol decreased the levels of serum cortisol and DHEAS hormones. In addition, it increased the level of adrenal MDA and decreased the genetic expression of glutathione peroxidase and thioredoxin reductase in adrenal gland tissues. All these changes started to return to normal after withdrawal of tramadol. Thus, it was confirmed that long term use of tramadol can induce severe adrenal insufficiency.

  5. A comparative clinical, pathological, biochemical and genetic study of fused in sarcoma proteinopathies

    DEFF Research Database (Denmark)

    Lashley, Tammaryn; Rohrer, Jonathan D; Bandopadhyay, Rina

    2011-01-01

    Neuronal intermediate filament inclusion disease and atypical frontotemporal lobar degeneration are rare diseases characterized by ubiquitin-positive inclusions lacking transactive response DNA-binding protein-43 and tau. Recently, mutations in the fused in sarcoma gene have been shown to cause...... findings, as well as genetic and biochemical data in 14 fused in sarcoma proteinopathy cases. In this cohort, the age of onset was variable but included cases of young-onset disease. Patients with atypical frontotemporal lobar degeneration with ubiquitinated inclusions all presented with behavioural...... familial amyotrophic lateral sclerosis and fused in sarcoma-positive neuronal inclusions have subsequently been demonstrated in neuronal intermediate filament inclusion disease and atypical frontotemporal lobar degeneration with ubiquitinated inclusions. Here we provide clinical, imaging, morphological...

  6. Tramadol Induced Adrenal Insufficiency: Histological, Immunohistochemical, Ultrastructural, and Biochemical Genetic Experimental Study

    Directory of Open Access Journals (Sweden)

    Shereen Abdelhakim Abdelaleem

    2017-01-01

    Full Text Available Tramadol is a synthetic, centrally acting analgesic. It is the most consumed narcotic drug that is prescribed in the world. Tramadol abuse has dramatically increased in Egypt. Long term use of tramadol can induce endocrinopathy. So, the aim of this study was to analyze the adrenal insufficiency induced by long term use of tramadol in experimental animals and also to assess its withdrawal effects through histopathological and biochemical genetic study. Forty male albino rats were used in this study. The rats were divided into 4 groups (control group, tramadol-treated group, and withdrawal groups. Tramadol was given to albino rats at a dose of 80 mg/kg body weight for 3 months and after withdrawal periods (7–15 days rats were sacrificed. Long term use of tramadol induced severe histopathological changes in adrenal glands. Tramadol decreased the levels of serum cortisol and DHEAS hormones. In addition, it increased the level of adrenal MDA and decreased the genetic expression of glutathione peroxidase and thioredoxin reductase in adrenal gland tissues. All these changes started to return to normal after withdrawal of tramadol. Thus, it was confirmed that long term use of tramadol can induce severe adrenal insufficiency.

  7. 40 CFR 798.5195 - Mouse biochemical specific locus test.

    Science.gov (United States)

    2010-07-01

    ...-induced variants are bred to determine the genetic nature of the change. (f) Data and reports—(1... SUBSTANCES CONTROL ACT (CONTINUED) HEALTH EFFECTS TESTING GUIDELINES Genetic Toxicity § 798.5195 Mouse...) A biochemical specific locus mutation is a genetic change resulting from a DNA lesion causing...

  8. Social stratification in the Sikh population of Punjab (India) has a genetic basis: evidence from serological and biochemical markers.

    Science.gov (United States)

    Chahal, Sukh Mohinder Singh; Virk, Rupinder Kaur; Kaur, Sukhvir; Bansal, Rupinder

    2011-01-01

    The present study was planned to assess whether social stratification in the Sikh population inhabiting the northwest border Indian state of Punjab has any genetic basis. Blood samples were collected randomly from a total of 2851 unrelated subjects belonging to 21 groups of two low-ranking Sikh scheduled caste populations, viz. Mazhabi and Ramdasi, and a high-ranking Jat Sikh caste population of Punjab. The genetic profile of Sikh groups was investigated using a total of nine serobiochemical genetic markers, comprising two blood groups (ABO, RH(D)) and a battery of seven red cell enzyme polymorphisms (ADA, AK1, ESD, PGM1, GLO1, ACP1, GPI), following standard serological and biochemical laboratory protocols. Genetic structure was studied using original allele frequency data and statistical measures of heterozygosity, genic differentiation, genetic distance, and genetic admixture. Great heterogeneity was observed between Sikh scheduled caste and Jat Sikh populations, especially in the RH(D) blood group system, and distribution of ESD, ACP1, and PGM1 enzyme markers was also found to be significantly different between many of their groups. Genetic distance trees demonstrated little or no genetic affinities between Sikh scheduled caste and Jat Sikh populations; the Mazhabi and Ramdasi also showed little genetic relationship. Genetic admixture analysis suggested a higher element of autochthonous tribal extraction in the Ramdasi. The present study revealed much genetic heterogeneity in differently ranking Sikh caste populations of Punjab, mainly attributable to their different ethnic backgrounds, and provided a genetic basis to social stratification present in this religious community of Punjab, India.

  9. Intra-specific genetic relationship analyses of Elaeagnus angustifolia based on RP-HPLC biochemical markers

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Elaeagnus angustifolia Linn. has various ecological, medicinal and economical uses. An approach was established using RP-HPLC (reversed-phase high-performance liquid chromatography) to classify and analyse the intra-specific genetic relationships of seventeen populations of E. angustifolia, collected from the Xinjiang areas of China. Chromatograms of alcohol-soluble proteins produced by seventeen populations ofE. angustifolia, were compared. Each chromatogram of alcohol-soluble proteins came from a single seed of one wild plant only. The results showed that when using a Waters Delta Pak. C18, 5 μm particle size reversed phase column (150 mm×3.9 mm), a linear gradient of 25%~60% solvent B with flow rate of 1 ml/min and run time of 67 min, the chromatography yielded optimum separation ofE. angustifolia alcohol-soluble proteins. Representative peaks in each population were chosen according to peak area and occurrence in every seed. The converted data on the elution peaks of each population were different and could be used to represent those populations. GSC (genetic similarity coefficients) of 41% to 62% showed a medium degree of genetic diversity among the populations in these eco-areas. Cluster analysis showed that the seventeen populations ofE. angustifolia could be divided into six clusters at the GSC=0.535 level and indicated the general and unique biochemical markers of these clusters. We suggest that E. angustifolia distribution in these eco-areas could be classified into six variable species. RP-HPLC was shown to be a rapid, repeatable and reliable method for E. angustifolia classification and identification and for analysis of genetic diversity.

  10. Genetic parameters for the prediction of abdominal fat traits using blood biochemical indicators in broilers.

    Science.gov (United States)

    Zhang, H L; Xu, Z Q; Yang, L L; Wang, Y X; Li, Y M; Dong, J Q; Zhang, X Y; Jiang, X Y; Jiang, X F; Li, H; Zhang, D X; Zhang, H

    2018-02-01

    1. Excessive deposition of body fat, especially abdominal fat, is detrimental in chickens and the prevention of excessive fat accumulation is an important problem. The aim of this study was to identify blood biochemical indicators that could be used as criteria to select lean Yellow-feathered chicken lines. 2. Levels of blood biochemical indicators in the fed and fasted states and the abdominal fat traits were measured in 332 Guangxi Yellow chickens. In the fed state, the genetic correlations (r g ) of triglycerides and very low density lipoprotein levels were positive for the abdominal fat traits (0.47 ≤ r g  ≤ 0.67), whereas total cholesterol, high-density lipoprotein cholesterol (HDL-C) and low-density lipoprotein cholesterol (LDL-C) showed higher negative correlations with abdominal fat traits (-0.59 ≤ r g  ≤ -0.33). Heritabilities of these blood biochemical parameters were high, varying from 0.26 to 0.60. 3. In the fasted state, HDL-C:LDL-C level was positively correlated with abdominal fat traits (0.35 ≤ r g  ≤ 0.38), but triglycerides, total cholesterol, HDL-C, LDL-C, total protein, albumin, aspartate transaminase, uric acid and creatinine levels were negatively correlated with abdominal fat traits (-0.79 ≤ r g  ≤ -0.35). The heritabilities of these 10 blood biochemical parameters were high (0.22 ≤ h 2  ≤ 0.59). 4. In the fed state, optimal multiple regression models were constructed to predict abdominal fat traits by using triglycerides and LDL-C. In the fasted state, triglycerides, total cholesterol, HDL-C, LDL-C, total protein, albumin and uric acid could be used to predict abdominal fat content. 5. It was concluded that these models in both nutritional states could be used to predict abdominal fat content in Guangxi Yellow broiler chickens.

  11. Biochemical traits useful for the determination of genetic variation in a natural population of Myracrodruon urundeuva

    Directory of Open Access Journals (Sweden)

    Abdala Ludmila

    2002-01-01

    Full Text Available The objectives of this work were to analyze seeds from 20 trees of aroeira (Myracrodruon urundeuva Fr. All. of a natural population located in the region of Selvíria, State of Mato Grosso do Sul, Brazil, in order to evaluate their protein, lipid and carbohydrate contents, and to estimate their genetic variation. A completely randomized experimental design consisting of 20 treatments (families was set up, with two replications. Four types of proteins were detected: albumin (35.0 to 107.3 mg/g seed, globulin (3.4 to 9.3 mg/g, prolamin (60.0 to 135.2 mg/g and glutelin (118.0 to 286.0 mg/g. The lipid content varied between 200 and 334 mg/g seed. The total sugars also varied (26.5 to 46.3 mg/g seed, with a predominance of polyols (arabinitol, mannitol, glucitol and xylitol. The main monosaccharides detected were glucose and arabinose. Total hydrolysis of the sugars indicated the presence of neutral arabinan and xylan oligosaccharides. The starch content varied from 0.35 to 1.58 mg/g seed. These biochemical traits showed considerable genetic variability, indicating that only the collection of seeds from many different trees can provide a representative sample of the population for conservation and genetic improvement.

  12. Biochemical and genetic analysis of the Drk SH2/SH3 adaptor protein of Drosophila.

    Science.gov (United States)

    Raabe, T; Olivier, J P; Dickson, B; Liu, X; Gish, G D; Pawson, T; Hafen, E

    1995-06-01

    The Drk SH3-SH2-SH3 adaptor protein has been genetically identified in a screen for rate-limiting components acting downstream of the Sevenless (Sev) receptor tyrosine kinase in the developing eye of Drosophila. It provides a link between the activated Sev receptor and Sos, a guanine nucleotide release factor that activates Ras1. We have used a combined biochemical and genetic approach to study the interactions between Sev, Drk and Sos. We show that Tyr2546 in the cytoplasmic tail of Sev is required for Drk binding, probably because it provides a recognition site for the Drk SH2 domain. Interestingly, a mutation at this site does not completely block Sev function in vivo. This may suggest that Sev can signal in a Drk-independent, parallel pathway or that Drk can also bind to an intermediate docking protein. Analysis of the Drk-Sos interaction has identified a high affinity binding site for Drk SH3 domains in the Sos tail. We show that the N-terminal Drk SH3 domain is primarily responsible for binding to the tail of Sos in vitro, and for signalling to Ras in vivo.

  13. Attention-deficit hyperactivity disorder in adults: A systematic review and meta-analysis of genetic, pharmacogenetic and biochemical studies

    Science.gov (United States)

    Bonvicini, C; Faraone, S V; Scassellati, C

    2016-01-01

    The adult form of attention-deficit/hyperactivity disorder has a prevalence of up to 5% and is the most severe long-term outcome of this common disorder. Family studies in clinical samples as well as twin studies suggest a familial liability and consequently different genes were investigated in association studies. Pharmacotherapy with methylphenidate (MPH) seems to be the first-line treatment of choice in adults with attention-deficit hyperactive disorder (ADHD) and some studies were conducted on the genes influencing the response to this drug. Finally some peripheral biomarkers were identified in ADHD adult patients. We believe this work is the first systematic review and meta-analysis of candidate gene association studies, pharmacogenetic and biochemical (metabolomics) studies performed in adults with ADHD to identify potential genetic, predictive and peripheral markers linked specifically to ADHD in adults. After screening 5129 records, we selected 87 studies of which 61 were available for candidate gene association studies, 5 for pharmacogenetics and 21 for biochemical studies. Of these, 15 genetic, 2 pharmacogenetic and 6 biochemical studies were included in the meta-analyses. We obtained an association between adult ADHD and the gene BAIAP2 (brain-specific angiogenesis inhibitor 1-associated protein 2), even after Bonferroni correction, with any heterogeneity in effect size and no publication bias. If we did not apply the Bonferroni correction, a trend was found for the carriers allele 9R of dopamine transporter SLC6A3 40 bp variable tandem repeat polymorphism (VNTR) and for 6/6 homozygotes of SLC6A3 30 bp VNTR. Negative results were obtained for the 9-6 haplotype, the dopamine receptor DRD4 48 bp VNTR, and the enzyme COMT SNP rs4680. Concerning pharmacogenetic studies, no association was found for the SLC6A3 40 bp and response to MPH with only two studies selected. For the metabolomics studies, no differences between ADHD adults and controls were

  14. Raman spectroscopic biochemical mapping of tissues

    Science.gov (United States)

    Stone, Nicholas; Hart Prieto, Maria C.; Kendall, Catherine A.; Shetty, Geeta; Barr, Hugh

    2006-02-01

    Advances in technologies have brought us closer to routine spectroscopic diagnosis of early malignant disease. However, there is still a poor understanding of the carcinogenesis process. For example it is not known whether many cancers follow a logical sequence from dysplasia, to carcinoma in situ, to invasion. Biochemical tissue changes, triggered by genetic mutations, precede morphological and structural changes. These can be probed using Raman or FTIR microspectroscopy and the spectra analysed for biochemical constituents. Local microscopic distribution of various constituents can then be visualised. Raman mapping has been performed on a number of tissues including oesophagus, breast, bladder and prostate. The biochemical constituents have been calculated at each point using basis spectra and least squares analysis. The residual of the least squares fit indicates any unfit spectral components. The biochemical distribution will be compared with the defined histopathological boundaries. The distribution of nucleic acids, glycogen, actin, collagen I, III, IV, lipids and others appear to follow expected patterns.

  15. Biochemical genetic variation between four populations of ...

    African Journals Online (AJOL)

    system) to 0.093 in the Spekboom River population (Limpopo River system). The genetic distance, FST and NEM values, as well as pair-wise contingency c2 analyses indicate a lack of gene flow between populations, as expected for isolated fish. Evidence of foreign genetic material in one population was also observed.

  16. Biochemical features of genetic Creutzfeldt-Jakob disease with valine-to-isoleucine substitution at codon 180 on the prion protein gene.

    Science.gov (United States)

    Ito, Yoko; Sanjo, Nobuo; Hizume, Masaki; Kobayashi, Atsushi; Ohgami, Tetsuya; Satoh, Katsuya; Hamaguchi, Tsuyoshi; Yamada, Masahito; Kitamoto, Tetsuyuki; Mizusawa, Hidehiro; Yokota, Takanori

    2018-02-19

    Valine-to-isoleucine substitution at codon 180 of the prion protein gene is only observed in patients with Creutzfeldt-Jakob disease and accounts for approximately half of all cases of genetic prion disease in Japan. In the present study, we investigated the biochemical characteristics of valine-to-isoleucine substitution at codon 180 in the prion protein gene, using samples obtained from the autopsied brains of seven patients with genetic Creutzfeldt-Jakob disease exhibiting this mutation (diagnoses confirmed via neuropathological examination). Among these patients, we observed an absence of diglycosylated and monoglycosylated forms of PrP res at codon 181. Our findings further indicated that the abnormal prion proteins were composed of at least three components, although smaller carboxyl-terminal fragments were predominant. Western blot analyses revealed large amounts of PrP res in the cerebral neocortices, where neuropathological examination revealed marked spongiosis. Relatively smaller amounts of PrP res were detected in the hippocampus, where milder spongiosis was observed, than in the cerebral neocortex. These findings indicate that abnormal prion proteins in the neocortex are associated with severe toxicity, resulting in severe spongiosis. Our findings further indicate that the valine-to-isoleucine substitution is not a polymorphism, but rather an authentic pathogenic mutation associated with specific biochemical characteristics that differ from those observed in sporadic Creutzfeldt-Jakob disease. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. Genetic and perinatal effects of abused substances

    Energy Technology Data Exchange (ETDEWEB)

    Brande, M.C.; Zimmerman, A.M.

    1987-01-01

    This book provides an overview of the effects of several abused drugs, including opiates, cannabinoids, alcohol, nicotine, and cocaine, with special emphasis on the actions of these substances at the molecular and cellular levels. The first half deals with genetic effects, including molecular genetics, biochemical genetics, pharmacogenetics, cytogenetics, and genetic toxicity. The second half focuses on perinatal effects and covers: drug abuse during pregnancy; biochemical aspects of marihuana on male reproduction; and long-term behavioral and neuroendocrine effects of perinatal alcohol exposure.

  18. On the Adaptive Design Rules of Biochemical Networks in Evolution

    Directory of Open Access Journals (Sweden)

    Bor-Sen Chen

    2007-01-01

    Full Text Available Biochemical networks are the backbones of physiological systems of organisms. Therefore, a biochemical network should be sufficiently robust (not sensitive to tolerate genetic mutations and environmental changes in the evolutionary process. In this study, based on the robustness and sensitivity criteria of biochemical networks, the adaptive design rules are developed for natural selection in the evolutionary process. This will provide insights into the robust adaptive mechanism of biochemical networks in the evolutionary process. We find that if a mutated biochemical network satisfies the robustness and sensitivity criteria of natural selection, there is a high probability for the biochemical network to prevail during natural selection in the evolutionary process. Since there are various mutated biochemical networks that can satisfy these criteria but have some differences in phenotype, the biochemical networks increase their diversities in the evolutionary process. The robustness of a biochemical network enables co-option so that new phenotypes can be generated in evolution. The proposed robust adaptive design rules of natural selection gain much insight into the evolutionary mechanism and provide a systematic robust biochemical circuit design method of biochemical networks for biotechnological and therapeutic purposes in the future.

  19. Genetic Variability among Lucerne Cultivars Based on Biochemical (SDS-PAGE) and Morphological Markers

    Science.gov (United States)

    Farshadfar, M.; Farshadfar, E.

    The present research was conducted to determine the genetic variability of 18 Lucerne cultivars, based on morphological and biochemical markers. The traits studied were plant height, tiller number, biomass, dry yield, dry yield/biomass, dry leaf/dry yield, macro and micro elements, crude protein, dry matter, crude fiber and ash percentage and SDS- PAGE in seed and leaf samples. Field experiments included 18 plots of two meter rows. Data based on morphological, chemical and SDS-PAGE markers were analyzed using SPSSWIN soft ware and the multivariate statistical procedures: cluster analysis (UPGMA), principal component. Analysis of analysis of variance and mean comparison for morphological traits reflected significant differences among genotypes. Genotype 13 and 15 had the greatest values for most traits. The Genotypic Coefficient of Variation (GCV), Phenotypic Coefficient of Variation (PCV) and Heritability (Hb) parameters for different characters raged from 12.49 to 26.58% for PCV, hence the GCV ranged from 6.84 to 18.84%. The greatest value of Hb was 0.94 for stem number. Lucerne genotypes could be classified, based on morphological traits, into four clusters and 94% of the variance among the genotypes was explained by two PCAs: Based on chemical traits they were classified into five groups and 73.492% of variance was explained by four principal components: Dry matter, protein, fiber, P, K, Na, Mg and Zn had higher variance. Genotypes based on the SDS-PAGE patterns all genotypes were classified into three clusters. The greatest genetic distance was between cultivar 10 and others, therefore they would be suitable parent in a breeding program.

  20. Biochemical genetics of some Indian fishes

    Digital Repository Service at National Institute of Oceanography (India)

    Menezes, M.R.; Qasim, S.Z.

    similarities in their protein make up, whereas these taxonomically apart showed striking differences. Thus, the usefulness of employing this method was clearly demonstrated in fish taxonomy. The study of genetic struture of fish populations through the analysis...

  1. The first joint congress of the South African Biochemical Society, South African Genetics Society and the South African Society for Microbiology at the University of the Witwatersrand, 29 June-4 July 1986

    International Nuclear Information System (INIS)

    1986-01-01

    The South African Biochemical Society, South African Genetics Society and the South African Society for Microbiology held a joint congress at the University of the Witwatersrand from 29 June - 4 July 1986. The papers delivered cover subjects such as Molecular biology, Genetics, Biochemistry, Medical biochemistry, Physiology, Zoology and Isotope and radiation sciences. Different isotopes are used in labelling studies of enzymes, nutrition, metabolism, viruses, bacteria and other biological assays done in the fields of Biochenmistry, Genetics and Microbiology. This work contains only the abstracts of these papers

  2. A Simple Approach to Study Designs in Complex Biochemical ...

    Indian Academy of Sciences (India)

    Somdatta Sinha

    Protein sequences. • Biochemical & Genetic information. REVERSE ENGINEERING. LARGE NETWORKS. FORWARD ENGINEERING. All designs that are not physically forbidden are realizable, but not all realizable designs are functionally effective. (in relation to context and constraints of the system and environment).

  3. Hereditary rickets. How genetic alterations explain the biochemical and clinical phenotypes.

    Science.gov (United States)

    Papadopoulou, Anna; Gole, Evaggelia; Nicolaidou, Polyxeni

    2013-12-01

    The reemergence of vitamin D deficiency in the industrialized countries resurrects the "threat" of nutritional rickets, especially among pediatric populations, a fact that may lead to underdiagnosis of hereditary rickets. Today, hereditary rickets may be subdivided into two main groups according to their biochemical profile: the one associated with defects in vitamin D synthesis and action and the second associated with abnormal phosphorus metabolism. The classification of the patients in a particular group of hereditary rickets is determinative of the treatment to follow. This review, through the recent advances on vitamin D and P metabolism, discusses the molecular and biochemical defects associated to each group of inherited rickets, as well as the clinical phenotypes and the recommended therapeutic approaches.

  4. Biochemical and genetic characterization of a novel metallo-β-lactamase from marine bacterium Erythrobacter litoralis HTCC 2594.

    Science.gov (United States)

    Jiang, Xia-Wei; Cheng, Hong; Huo, Ying-Yi; Xu, Lin; Wu, Yue-Hong; Liu, Wen-Hong; Tao, Fang-Fang; Cui, Xin-Jie; Zheng, Bei-Wen

    2018-01-16

    Metallo-β-lactamases (MBLs) are a group of enzymes that can inactivate most commonly used β-lactam-based antibiotics. Among MBLs, New Delhi metallo-β-lactamase-1 (NDM-1) constitutes an urgent threat to public health as evidenced by its success in rapidly disseminating worldwide since its first discovery. Here we report the biochemical and genetic characteristics of a novel MBL, ElBla2, from the marine bacterium Erythrobacter litoralis HTCC 2594. This enzyme has a higher amino acid sequence similarity to NDM-1 (56%) than any previously reported MBL. Enzymatic assays and secondary structure alignment also confirmed the high similarity between these two enzymes. Whole genome comparison of four Erythrobacter species showed that genes located upstream and downstream of elbla2 were highly conserved, which may indicate that elbla2 was lost during evolution. Furthermore, we predicted two prophages, 13 genomic islands and 25 open reading frames related to insertion sequences in the genome of E. litoralis HTCC 2594. However, unlike NDM-1, the chromosome encoded ElBla2 did not locate in or near these mobile genetic elements, indicating that it cannot transfer between strains. Finally, following our phylogenetic analysis, we suggest a reclassification of E. litoralis HTCC 2594 as a novel species: Erythrobacter sp. HTCC 2594.

  5. biochemical and haematological findings in alcohol consumers in Ile

    African Journals Online (AJOL)

    Administrator

    Effect of drinking patterns on biochemical and haematological parameters was conducted on ... disease depends on a variety of factors, including genetic ... by cirrhosis, cancer and violent deaths. .... (1985) stated that the marked influence of alcohol ... The relationship between alcohol consumption, health indicators and.

  6. Genetic diversity of notary-national uniform rape seed yield trial and brassica napus varieties using raped markers and biochemical analysis

    International Nuclear Information System (INIS)

    Bakhat, J.; Fareed, A.; Swati, Z.A.; Shafi, M.

    2011-01-01

    In Pakistan, Brassica is the second most important source of oil after cotton. Seventeen NURYT (National Uniform Rape Seed Yield Trial) lines and 5 Brassica napus varieties were assessed through RAPD primers and biochemical assays. Seven different Randomly Amplified Polymorphic DNA markers (RAPD) were employed during the present study. A total of 30 RAPD bands were scored by these primers. Size of the scorable fragments ranged from approximately 250 to 2000 bp. Diversity index was estimated to be 42%. Mean genetic distance estimates ranged between 0.10 and 1.00. For the assessment of various biochemical parameters, Near Infrared Reflectance Spectroscopy (NIRS) was used. Oil content ranged from 38.30 to 49% and protein content from 19.80 to 29.10% among the 22 genotypes. Maximum protein content was assayed in genotype RBN 3046 while minimum in Hyola 405. Glucosinolates ranged between 2 and 84% for genotype CRH 60/08 and CRH05/08 showing the maximum and minimum values respectively. Oleic acid (52 to 72.5%), linolenic acid (7.07 and 9.90%) and erucic acid content (9.57 to 38.3%) was also recorded during the present study. (author)

  7. Duchenne/Becker muscular dystrophy: A report on clinical, biochemical, and genetic study in Gujarat population, India.

    Science.gov (United States)

    Rao, Mandava V; Sindhav, Gaurang M; Mehta, Jitendra J

    2014-07-01

    In India, various groups have studied different regions to find out deletion pattern of dystrophin gene. We have investigated its deletion pattern among Duchenne/Becker muscular dystrophy (D/BMD) patients across Gujarat. Moreover, in this study we also correlate the same with reading frame rule. However, we too consider various clinicopathological features to establish as adjunct indices when deletion detection fails. In this pilot study, a total of 88 D/BMD patients consulting at our centers in Gujarat, India were included. All patients were reviewed on basis of their clinical characteristics, tested by three primer sets of 10-plex, 9-plex, and 7-plex polymerase chain reaction (PCR) for genetic analysis; whereas, biochemical indices were measured using automated biochemical analyzers. The diagnosis of D/BMD was confirmed by multiplex-PCR (M-PCR) in D/BMD patients. A number of 65 (73.86%) out of 88 patients showed deletion in dystrophin gene. The exon 50 (58.46%) was the most frequent deletion found in our study. The mean age of onset of DMD and BMD was 4.09 ± 0.15 and 7.14 ± 0.55 years, respectively. In patients, mean creatine phosphokinase (CPK), lactate dehydrogenase (LDH), and myoglobin levels were elevated significantly (P < 0.05) in comparison to controls. Addition to CPK, LDH and myoglobin are good adjunct when deletion detection failed. These data are further in accordance with world literature when correlated with frame rule. The analysis has been carried out for the first time for a total of 88 D/BMD patients particularly from Gujarat, India. More research is essential to elucidate specific mutation pattern in association with management and therapies of proband.

  8. Diagnostic approach to neurotransmitter monoamine disorders: experience from clinical, biochemical, and genetic profiles.

    Science.gov (United States)

    Kuster, Alice; Arnoux, Jean-Baptiste; Barth, Magalie; Lamireau, Delphine; Houcinat, Nada; Goizet, Cyril; Doray, Bérénice; Gobin, Stéphanie; Schiff, Manuel; Cano, Aline; Amsallem, Daniel; Barnerias, Christine; Chaumette, Boris; Plaze, Marion; Slama, Abdelhamid; Ioos, Christine; Desguerre, Isabelle; Lebre, Anne-Sophie; de Lonlay, Pascale; Christa, Laurence

    2018-01-01

    To improve the diagnostic work-up of patients with diverse neurological diseases, we have elaborated specific clinical and CSF neurotransmitter patterns. Neurotransmitter determinations in CSF from 1200 patients revealed abnormal values in 228 (19%) cases. In 54/228 (24%) patients, a final diagnosis was identified. We have reported primary (30/54, 56%) and secondary (24/54, 44%) monoamine neurotransmitter disorders. For primary deficiencies, the most frequently mutated gene was DDC (n = 9), and the others included PAH with neuropsychiatric features (n = 4), PTS (n = 5), QDPR (n = 3), SR (n = 1), and TH (n = 1). We have also identified mutations in SLC6A3, FOXG1 (n = 1 of each), MTHFR (n = 3), FOLR1, and MTHFD (n = 1 of each), for dopamine transporter, neuronal development, and folate metabolism disorders, respectively. For secondary deficiencies, we have identified POLG (n = 3), ACSF3 (n = 1), NFU1, and SDHD (n = 1 of each), playing a role in mitochondrial function. Other mutated genes included: ADAR, RNASEH2B, RNASET2, SLC7A2-IT1 A/B lncRNA, and EXOSC3 involved in nuclear and cytoplasmic metabolism; RanBP2 and CASK implicated in post-traductional and scaffolding modifications; SLC6A19 regulating amino acid transport; MTM1, KCNQ2 (n = 2), and ATP1A3 playing a role in nerve cell electrophysiological state. Chromosome abnormalities, del(8)(p23)/dup(12) (p23) (n = 1), del(6)(q21) (n = 1), dup(17)(p13.3) (n = 1), and non-genetic etiologies (n = 3) were also identified. We have classified the final 54 diagnoses in 11 distinctive biochemical profiles and described them through 20 clinical features. To identify the specific molecular cause of abnormal NT profiles, (targeted) genomics might be used, to improve diagnosis and allow early treatment of complex and rare neurological genetic diseases.

  9. Recent Advances on the Use of Biochemical Extracts as Filaricidal Agents

    Directory of Open Access Journals (Sweden)

    Nazeh M. Al-Abd

    2013-01-01

    Full Text Available Lymphatic filariasis is a parasitic infection that causes a devastating public health and socioeconomic burden with an estimated infection of over 120 million individuals worldwide. The infection is caused by three closely related nematode parasites, namely, Wuchereria bancrofti, Brugia malayi, and B. timori, which are transmitted to human through mosquitoes of Anopheles, Culex, and Aedes genera. The species have many ecological variants and are diversified in terms of their genetic fingerprint. The rapid spread of the disease and the genetic diversification cause the lymphatic filarial parasites to respond differently to diagnostic and therapeutic interventions. This in turn prompts the current challenge encountered in its management. Furthermore, most of the chemical medications used are characterized by adverse side effects. These complications urgently warrant intense prospecting on bio-chemicals that have potent efficacy against either the filarial worms or thier vector. In lieu of this, we presented a review on recent literature that reported the efficacy of filaricidal biochemicals and those employed as vector control agents. In addition, methods used for biochemical extraction, screening procedures, and structure of the bioactive compounds were also presented.

  10. Biochemical And Genetic Modification Of Polysaccharides

    Science.gov (United States)

    Kern, Roger G.; Petersen, Gene R.; Richards, Gil F.

    1993-01-01

    Bacteriophages producing endopolysaccharase-type enzymes used to produce, isolate, and purify high yields of modified polysaccharides from polysaccharides produced by, and incorporated into capsules of, certain bacteria. Bacteriophages used in conversion of native polysaccharide materials into polymers of nearly uniform high molecular weight or, alternatively, into highly pure oligosaccharides. Also used in genetic selection of families of polysaccharides structurally related to native polysaccharide materials, but having altered properties. Resulting new polysaccharides and oligosaccharides prove useful in variety of products, including pharmaceutical chemicals, coating materials, biologically active carbohydrates, and drag-reducing additives for fluids.

  11. Duchenne/Becker muscular dystrophy: A report on clinical, biochemical, and genetic study in Gujarat population, India

    Directory of Open Access Journals (Sweden)

    Mandava V Rao

    2014-01-01

    Full Text Available Objective: In India, various groups have studied different regions to find out deletion pattern of dystrophin gene. We have investigated its deletion pattern among Duchenne/Becker muscular dystrophy (D/BMD patients across Gujarat. Moreover, in this study we also correlate the same with reading frame rule. However, we too consider various clinicopathological features to establish as adjunct indices when deletion detection fails. Materials and Methods: In this pilot study, a total of 88 D/BMD patients consulting at our centers in Gujarat, India were included. All patients were reviewed on basis of their clinical characteristics, tested by three primer sets of 10-plex, 9-plex, and 7-plex polymerase chain reaction (PCR for genetic analysis; whereas, biochemical indices were measured using automated biochemical analyzers. Results: The diagnosis of D/BMD was confirmed by multiplex-PCR (M-PCR in D/BMD patients. A number of 65 (73.86% out of 88 patients showed deletion in dystrophin gene. The exon 50 (58.46% was the most frequent deletion found in our study. The mean age of onset of DMD and BMD was 4.09 ΁ 0.15 and 7.14 ΁ 0.55 years, respectively. In patients, mean creatine phosphokinase (CPK, lactate dehydrogenase (LDH, and myoglobin levels were elevated significantly (P < 0.05 in comparison to controls. Addition to CPK, LDH and myoglobin are good adjunct when deletion detection failed. These data are further in accordance with world literature when correlated with frame rule. Conclusion: The analysis has been carried out for the first time for a total of 88 D/BMD patients particularly from Gujarat, India. More research is essential to elucidate specific mutation pattern in association with management and therapies of proband.

  12. Craniometaphyseal dysplasia with obvious biochemical abnormality and rickets-like features.

    Science.gov (United States)

    Wu, Bo; Jiang, Yan; Wang, Ou; Li, Mei; Xing, Xiao-Ping; Xia, Wei-Bo

    2016-05-01

    Craniometaphyseal dysplasia (CMD) is a rare genetic disorder that is characterized by progressive sclerosis of the craniofacial bones and metaphyseal widening of long bones, and biochemical indexes were mostly normal. To further the understanding of the disease from a biochemical perspective, we reported a CMD case with obviously abnormal biochemical indexes. A 1-year-old boy was referred to our clinic. Biochemical test showed obviously increased alkaline phosphatase (ALP) and parathyroid hormone (PTH), mild hypocalcemia and hypophosphatemia. Moreover, significant elevated receptor activator of nuclear factor kappa-B ligand (RANKL) level, but normal β-C-terminal telopeptide of type I collagen (β-CTX) concentration were revealed. He was initially suspected of rickets, because the radiological examination also showed broadened epiphysis in his long bones. Supplementation with calcium and calcitriol alleviated biochemical abnormality. However, the patient gradually developed osteosclerosis which was inconformity with rickets. Considering that he was also presented with facial paralysis and nasal obstruction symptom, the diagnosis of craniometaphyseal dysplasia was suspected, and then was confirmed by the mutation analysis of ANKH of the proband and his family, which showed a de novo heterozygous mutation (C1124-1126delCCT) on exon 9. Our study revealed that obvious biochemical abnormality and rickets-like features might present as uncommon characteristics in CMD patients, and the calcium and calcitriol supplementation could alleviate biochemical abnormalities. Furthermore, although early osteoclast differentiation factor was excited in CMD patient, activity of osteoclast was still inert. Copyright © 2016. Published by Elsevier B.V.

  13. Genetic and biochemical investigations of the role of MamP in redox control of iron biomineralization in Magnetospirillum magneticum.

    Science.gov (United States)

    Jones, Stephanie R; Wilson, Tiffany D; Brown, Margaret E; Rahn-Lee, Lilah; Yu, Yi; Fredriksen, Laura L; Ozyamak, Ertan; Komeili, Arash; Chang, Michelle C Y

    2015-03-31

    Magnetotactic bacteria have evolved complex subcellular machinery to construct linear chains of magnetite nanocrystals that allow the host cell to sense direction. Each mixed-valent iron nanoparticle is mineralized from soluble iron within a membrane-encapsulated vesicle termed the magnetosome, which serves as a specialized compartment that regulates the iron, redox, and pH environment of the growing mineral. To dissect the biological components that control this process, we have carried out a genetic and biochemical study of proteins proposed to function in iron mineralization. In this study, we show that the redox sites of c-type cytochromes of the Magnetospirillum magneticum AMB-1 magnetosome island, MamP and MamT, are essential to their physiological function and that ablation of one or both heme motifs leads to loss of function, suggesting that their ability to carry out redox chemistry in vivo is important. We also develop a method to heterologously express fully heme-loaded MamP from AMB-1 for in vitro biochemical studies, which show that its Fe(III)-Fe(II) redox couple is set at an unusual potential (-89 ± 11 mV) compared with other related cytochromes involved in iron reduction or oxidation. Despite its low reduction potential, it remains competent to oxidize Fe(II) to Fe(III) and mineralize iron to produce mixed-valent iron oxides. Finally, in vitro mineralization experiments suggest that Mms mineral-templating peptides from AMB-1 can modulate the iron redox chemistry of MamP.

  14. Atherogenic dyslipidemia in children: evaluation of clinical, biochemical and genetic aspects.

    Science.gov (United States)

    Montali, Anna; Truglio, Gessica; Martino, Francesco; Ceci, Fabrizio; Ferraguti, Giampiero; Ciociola, Ester; Maranghi, Marianna; Gianfagna, Francesco; Iacoviello, Licia; Strom, Roberto; Lucarelli, Marco; Arca, Marcello

    2015-01-01

    The precursors of atherogenic dyslipidemia (AD) are not well defined. Therefore, we investigated 62 non-obese, non-diabetic AD and 221 normolipemic children. Anthropometric parameters, blood pressure and biochemical measures were obtained in index children, their parents and all available siblings. The heritability (h(2)) of anthropometric and biochemical traits was estimated by SOLAR. Rare and common variants in APOA1 and LPL genes were screened by re-sequencing. Compared to normolipemic, AD children showed increased body mass index, waist circumference, plasma glucose, insulin, ApoB, HOMA-IR, hs-CRP and lower adiponectin (pchildren (0.073 vs. 0.026; P=0.038). The LPL p.S447* gain-of-function mutation, resulted to be less frequent in AD than in control children (0.064 vs. 0.126; P=0.082). No variant in the APOA1 gene was found. Our data indicate that AD is a rather common dyslipidemia in childhood; it associates with metabolic abnormalities typical of insulin resistant state and shows a strong familial aggregation. LPL variants may contribute to the development of AD phenotype.

  15. Genetics and developmental biology

    International Nuclear Information System (INIS)

    Barnett, W.E.

    1975-01-01

    Progress is reported on research activities in the fields of mutagenesis in Haemophilus influenzae and Escherichia coli; radioinduced chromosomal aberrations in mammalian germ cells; effects of uv radiation on xeroderma pigmentosum skin cells; mutations in Chinese hamster ovary cells; radioinduced hemoglobin variants in the mouse; analysis of mutants in yeast; Drosophila genetics; biochemical genetics of Neurospora; DNA polymerase activity in Xenopus laevis oocytes; uv-induced damage in Bacillus subtilis; and others

  16. Environmental, biochemical and genetic drivers of DMSP degradation and DMS production in the Sargasso Sea.

    Science.gov (United States)

    Levine, Naomi Marcil; Varaljay, Vanessa A; Toole, Dierdre A; Dacey, John W H; Doney, Scott C; Moran, Mary Ann

    2012-05-01

    Dimethylsulfide (DMS) is a climatically relevant trace gas produced and cycled by the surface ocean food web. Mechanisms driving intraannual variability in DMS production and dimethylsulfoniopropionate (DMSP) degradation in open-ocean, oligotrophic regions were investigated during a 10-month time-series at the Bermuda Atlantic Time-series Study site in the Sargasso Sea. Abundance and transcription of bacterial DMSP degradation genes, DMSP lyase enzyme activity, and DMS and DMSP concentrations, consumption rates and production rates were quantified over time and depth. This interdisciplinary data set was used to test current hypotheses of the role of light and carbon supply in regulating upper-ocean sulfur cycling. Findings supported UV-A-dependent phytoplankton DMS production. Bacterial DMSP degraders may also contribute significantly to DMS production when temperatures are elevated and UV-A dose is moderate, but may favour DMSP demethylation under low UV-A doses. Three groups of bacterial DMSP degraders with distinct intraannual variability were identified and niche differentiation was indicated. The combination of genetic and biochemical data suggest a modified 'bacterial switch' hypothesis where the prevalence of different bacterial DMSP degradation pathways is regulated by a complex set of factors including carbon supply, temperature and UV-A dose. © 2012 Society for Applied Microbiology and Blackwell Publishing Ltd.

  17. Genetic and biochemical analysis reveals linked QTLs determining natural variation for fruit post-harvest water loss in pepper (Capsicum).

    Science.gov (United States)

    Popovsky-Sarid, Sigal; Borovsky, Yelena; Faigenboim, Adi; Parsons, Eugene P; Lohrey, Gregory T; Alkalai-Tuvia, Sharon; Fallik, Elazar; Jenks, Matthew A; Paran, Ilan

    2017-02-01

    Molecular markers linked to QTLs controlling post-harvest fruit water loss in pepper may be utilized to accelerate breeding for improved shelf life and inhibit over-ripening before harvest. Bell pepper (Capsicum annuum L.) is an important vegetable crop world-wide. However, marketing is limited by the relatively short shelf life of the fruit due to water loss and decay that occur during prolonged storage. Towards breeding pepper with reduced fruit post-harvest water loss (PWL), we studied the genetic, physiological and biochemical basis for natural variation of PWL. We performed quantitative trait locus (QTL) mapping of fruit PWL in multiple generations of an interspecific cross of pepper, which resulted in the identification of two linked QTLs on chromosome 10 that control the trait. We further developed near-isogenic lines (NILs) for characterization of the QTL effects. Transcriptome analysis of the NILs allowed the identification of candidate genes associated with fruit PWL-associated traits such as cuticle biosynthesis, cell wall metabolism and fruit ripening. Significant differences in PWL between the NILs in the immature fruit stage, differentially expressed cuticle-associated genes and differences in the content of specific chemical constituents of the fruit cuticle, indicated a likely influence of cuticle composition on the trait. Reduced PWL in the NILs was associated with delayed over-ripening before harvest, low total soluble solids before storage, and reduced fruit softening after storage. Our study enabled a better understanding of the genetic and biological processes controlling natural variation in fruit PWL in pepper. Furthermore, the genetic materials and molecular markers developed in this study may be utilized to breed peppers with improved shelf life and inhibited over-ripening before harvest.

  18. Medical Genetics In Clinical Practice

    African Journals Online (AJOL)

    1974-08-24

    Aug 24, 1974 ... Genetics is now an important facet of medical practice. and clinical ... facilities for cytogenetic and biochemical investigation are an essential ..... mem, and Rehabilitation (WHO Technical Report Series No. 497). Geneva: WHO ...

  19. Genetic variations of the NPC1L1 gene associated with hepatitis C virus (HCV) infection and biochemical characteristics of HCV patients in China.

    Science.gov (United States)

    Zhang, A-Mei; Zhang, Cheng-Lin; Song, Yuzhu; Zhao, Ping; Feng, Yue; Wang, Binghui; Li, Zheng; Liu, Li; Xia, Xueshan

    2016-12-01

    About 2% of the world population is infected with hepatitis C virus (HCV), a leading cause of hepatic cirrhosis and hepatocellular carcinoma. The Niemann-Pick C1-like 1 cholesterol absorption receptor (NPC1L1) was recently identified to be an important factor for HCV entry into host cells. Whether genetic variations of the NPC1L1 gene are associated with HCV infection is unknown. In this study, five single nucleotide polymorphisms (SNPs) of the NPC1L1 gene were analyzed in 261 HCV-infected individuals and 265 general controls from Yunnan Province, China. No significant differences were identified in genotypes or alleles of the SNPs between the two groups. After constructing haplotypes based on the five SNPs, a significant difference between HCV-infected individuals and general controls was shown for two haplotypes. Haplotype GCCTT appeared to be a protective factor and haplotype GCCCT was a risk factor for HCV-infected individuals. Genotypes of four SNPs correlated with biochemical characteristics of HCV-infected persons. Genotypes of SNPs rs799444 and rs2070607 were correlated with total bilirubin. Genotype TT of rs917098 was a risk factor for the gamma-glutamyltransferase level. Furthermore, HCV-infected individuals carrying genotype GG of rs41279633 showed statistically higher gamma-glutamyltransferase levels than HCV-infected persons with GT and TT. The results of this study identified the association between genetic susceptibility of the NPC1L1 gene and HCV infection, as well as biochemical characteristics of HCV-infected persons in Yunnan, China. Copyright © 2016 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  20. [The genetics of collagen diseases].

    Science.gov (United States)

    Kaplan, J; Maroteaux, P; Frezal, J

    1986-01-01

    Heritable disorders of collagen include Ehler-Danlos syndromes (11 types are actually known), Larsen syndrome and osteogenesis imperfecta. Their clinical, genetic and biochemical features are reviewed. Marfan syndrome is closely related to heritable disorders of collagen.

  1. Integrated biochemical, molecular genetic, and bioacoustical analysis of mesoscale variability of the euphausiid Nematoscelis difficilis in the California Current

    Science.gov (United States)

    Bucklin, Ann; Wiebe, Peter H.; Smolenack, Sara B.; Copley, Nancy J.; Clarke, M. Elizabeth

    2002-03-01

    Integrated assessment of the euphausiid Nematoscelis difficilis (Crustacea; Euphausiacea) and the zooplankton assemblage of the California Current was designed to investigate individual, population, and community responses to mesoscale variability in biological and physical characters of the ocean. Zooplankton samples and observational data were collected along a cross-shelf transect of the California Current in association with the California Cooperative Fisheries Investigations (CalCOFI) Survey during October 1996. The transect crossed three domains defined by temperature and salinity: nearshore, mid-Current, and offshore. Individual N. difficilis differed in physiological condition along the transect, with higher size-corrected concentrations of four central metabolic enzymes (citrate synthetase, hexokinase, lactate dehydrogenase (LDH), and phosphoglucose isomerase (PGI)) for euphausiids collected in nearshore waters than in mid-Current and offshore waters. There was little variation in the DNA sequences of the genes encoding PGI and LDH (all DNA changes were either silent or heterozygous base substitutions), suggesting that differences in enzyme concentration did not result from underlying molecular genetic variation. The population genetic makeup of N. difficilis varied from sample to sample based on haplotype frequencies of mitochondrial cytochrome oxidase I (mtCOI; P=0.029). There were significant differences between pooled nearshore and offshore samples, based on allele frequencies at two sites of common substitutions in the mtCOI sequence ( P=0.020 and 0.026). Silhouette and bioacoustical backscattering measurements of the zooplankton assemblage of the top 100 m showed marked diel vertical migration of the scattering layer, of which euphausiids were a small but significant fraction. The biochemical and molecular assays are used as indices of complex physiological (i.e., growth and condition) and genetic (i.e., mortality) processes; the bioacoustical

  2. Genetic and biochemical identification of a novel single-stranded DNA binding complex in Haloferax volcanii

    Directory of Open Access Journals (Sweden)

    Amy eStroud

    2012-06-01

    Full Text Available Single-stranded DNA binding proteins play an essential role in DNA replication and repair. They use oligosaccharide-binding folds, a five-stranded ß-sheet coiled into a closed barrel, to bind to single-stranded DNA thereby protecting and stabilizing the DNA. In eukaryotes the single-stranded DNA binding protein is known as replication protein A (RPA and consists of three distinct subunits that function as a heterotrimer. The bacterial homolog is termed single-stranded DNA-binding protein (SSB and functions as a homotetramer. In the archaeon Haloferax volcanii there are three genes encoding homologs of RPA. Two of the rpa genes (rpa1 and rpa3 exist in operons with a novel gene specific to Euryarchaeota, this gene encodes a protein that we have termed rpa-associated protein (RPAP. The rpap genes encode proteins belonging to COG3390 group and feature oligosaccharide-binding folds, suggesting that they might cooperate with RPA in binding to single-stranded DNA. Our genetic analysis showed that rpa1 and rpa3 deletion mutants have differing phenotypes; only ∆rpa3 strains are hypersensitive to DNA damaging agents. Deletion of the rpa3-associated gene rpap3 led to similar levels of DNA damage sensitivity, as did deletion of the rpa3 operon, suggesting that RPA3 and RPAP3 function in the same pathway. Protein pull-downs involving recombinant hexahistidine-tagged RPAs showed that RPA3 co-purifies with RPAP3, and RPA1 co-purifies with RPAP1. This indicates that the RPAs interact only with their respective associated proteins; this was corroborated by the inability to construct rpa1 rpap3 and rpa3 rpap1 double mutants. This is the first report investigating the individual function of the archaeal COG3390 RPA-associated proteins. We have shown genetically and biochemically that the RPAPs interact with their respective RPAs, and have uncovered a novel single-stranded DNA binding complex that is unique to Euryarchaeota.

  3. Genetic and Biochemical Identification of a Novel Single-Stranded DNA-Binding Complex in Haloferax volcanii.

    Science.gov (United States)

    Stroud, Amy; Liddell, Susan; Allers, Thorsten

    2012-01-01

    Single-stranded DNA (ssDNA)-binding proteins play an essential role in DNA replication and repair. They use oligonucleotide/oligosaccharide-binding (OB)-folds, a five-stranded β-sheet coiled into a closed barrel, to bind to ssDNA thereby protecting and stabilizing the DNA. In eukaryotes the ssDNA-binding protein (SSB) is known as replication protein A (RPA) and consists of three distinct subunits that function as a heterotrimer. The bacterial homolog is termed SSB and functions as a homotetramer. In the archaeon Haloferax volcanii there are three genes encoding homologs of RPA. Two of the rpa genes (rpa1 and rpa3) exist in operons with a novel gene specific to Euryarchaeota; this gene encodes a protein that we have termed RPA-associated protein (rpap). The rpap genes encode proteins belonging to COG3390 group and feature OB-folds, suggesting that they might cooperate with RPA in binding to ssDNA. Our genetic analysis showed that rpa1 and rpa3 deletion mutants have differing phenotypes; only Δrpa3 strains are hypersensitive to DNA damaging agents. Deletion of the rpa3-associated gene rpap3 led to similar levels of DNA damage sensitivity, as did deletion of the rpa3 operon, suggesting that RPA3 and RPAP3 function in the same pathway. Protein pull-downs involving recombinant hexahistidine-tagged RPAs showed that RPA3 co-purifies with RPAP3, and RPA1 co-purifies with RPAP1. This indicates that the RPAs interact only with their respective associated proteins; this was corroborated by the inability to construct rpa1 rpap3 and rpa3 rpap1 double mutants. This is the first report investigating the individual function of the archaeal COG3390 RPA-associated proteins (RPAPs). We have shown genetically and biochemically that the RPAPs interact with their respective RPAs, and have uncovered a novel single-stranded DNA-binding complex that is unique to Euryarchaeota.

  4. Bistable responses in bacterial genetic networks: Designs and dynamical consequences

    Science.gov (United States)

    Tiwari, Abhinav; Ray, J. Christian J.; Narula, Jatin; Igoshin, Oleg A.

    2011-01-01

    A key property of living cells is their ability to react to stimuli with specific biochemical responses. These responses can be understood through the dynamics of underlying biochemical and genetic networks. Evolutionary design principles have been well studied in networks that display graded responses, with a continuous relationship between input signal and system output. Alternatively, biochemical networks can exhibit bistable responses so that over a range of signals the network possesses two stable steady states. In this review, we discuss several conceptual examples illustrating network designs that can result in a bistable response of the biochemical network. Next, we examine manifestations of these designs in bacterial master-regulatory genetic circuits. In particular, we discuss mechanisms and dynamic consequences of bistability in three circuits: two-component systems, sigma-factor networks, and a multistep phosphorelay. Analyzing these examples allows us to expand our knowledge of evolutionary design principles for networks with bistable responses. PMID:21385588

  5. Higher physiopathogenicity by Fasciola gigantica than by the genetically close F. hepatica: experimental long-term follow-up of biochemical markers.

    Science.gov (United States)

    Valero, M Adela; Bargues, M Dolores; Khoubbane, Messaoud; Artigas, Patricio; Quesada, Carla; Berinde, Lavinia; Ubeira, Florencio M; Mezo, Mercedes; Hernandez, Jose L; Agramunt, Veronica H; Mas-Coma, Santiago

    2016-01-01

    Fascioliasis is caused by Fasciola hepatica and F. gigantica. The latter, always considered secondary in human infection, nowadays appears increasingly involved in Africa and Asia. Unfortunately, little is known about its pathogenicity, mainly due to difficulties in assessing the moment a patient first becomes infected and the differential diagnosis with F. hepatica. A long-term, 24-week, experimental study comparing F. hepatica and F. gigantica was made for the first time in the same animal model host, Guirra sheep. Serum biochemical parameters of liver damage, serum electrolytes, protein metabolism, plasma proteins, carbohydrate metabolism, hepatic lipid metabolism and inflammation were analysed on a biweekly basis as morbidity indicators. Serum anti-Fasciola IgG, coproantigen and egg shedding were simultaneously followed up. rDNA and mtDNA sequencing and the morphometric study by computer image analysis system (CIAS) showed that fasciolids used fitted standard species characteristics. Results demonstrated that F. gigantica is more pathogenic, given its bigger size and biomass but not due to genetic differences which are few. Fasciola gigantica shows a delayed development of 1-2 weeks regarding both the biliary phase and the beginning of egg shedding, with respective consequences for biochemical modifications in the acute and chronic periods. The higher F. gigantica pathogenicity contrasts with previous studies which only reflected the faster development of F. hepatica observed in short-term experiments. © The Author 2015. Published by Oxford University Press on behalf of Royal Society of Tropical Medicine and Hygiene. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  6. Genetic sexing of the Mediterranean fruit fly

    International Nuclear Information System (INIS)

    1990-01-01

    In the early 1980s, it was recognized by the FAO and the IAEA that a genetic sexing method for the Mediterranean fruit fly (medfly) would greatly improve the efficacy of the medfly sterile insect technique (SIT) and reduce its costs. These Proceedings summarize the research and development findings of the Agency's co-operators in the co-ordinated research programme to develop a genetic sexing method for the medfly. Great progress has been made in many aspects of medfly genetics. including the development of a number of genetic sexing strains. Contents: Genetics, Cytogenetics and Population Genetics. Genetic Sexing of Ceratitis Capitata by Morphological, Biochemical and other means. Recommendations. Refs, figs and tabs

  7. Aldehyde Dehydrogenases in Arabidopsis thaliana: Biochemical Requirements, Metabolic Pathways, and Functional Analysis.

    Science.gov (United States)

    Stiti, Naim; Missihoun, Tagnon D; Kotchoni, Simeon O; Kirch, Hans-Hubert; Bartels, Dorothea

    2011-01-01

    Aldehyde dehydrogenases (ALDHs) are a family of enzymes which catalyze the oxidation of reactive aldehydes to their corresponding carboxylic acids. Here we summarize molecular genetic and biochemical analyses of selected ArabidopsisALDH genes. Aldehyde molecules are very reactive and are involved in many metabolic processes but when they accumulate in excess they become toxic. Thus activity of aldehyde dehydrogenases is important in regulating the homeostasis of aldehydes. Overexpression of some ALDH genes demonstrated an improved abiotic stress tolerance. Despite the fact that several reports are available describing a role for specific ALDHs, their precise physiological roles are often still unclear. Therefore a number of genetic and biochemical tools have been generated to address the function with an emphasis on stress-related ALDHs. ALDHs exert their functions in different cellular compartments and often in a developmental and tissue specific manner. To investigate substrate specificity, catalytic efficiencies have been determined using a range of substrates varying in carbon chain length and degree of carbon oxidation. Mutational approaches identified amino acid residues critical for coenzyme usage and enzyme activities.

  8. Molecular & Genetic Investigation of Tau in Chronic Traumatic Encephalopathy

    Science.gov (United States)

    2015-10-01

    AWARD NUMBER: W81XWH-14-1-0399 TITLE: Molecular & Genetic Investigation of Tau in Chronic Traumatic Encephalopathy PRINCIPAL INVESTIGATOR: John F...Include area code) October 2015 Annual Report 30 Sep 2014 - 29 Sep 2015 Molecular & Genetic Investigation of Tau in Chronic Traumatic Encephalopathy John... encephalopathy (CTE), but the underlying molecular changes remain unclear. Here, biochemical and genetic studies that deepen our understanding of the

  9. Biochemical mechanisms determine the functional compatibility of heterologous genes

    DEFF Research Database (Denmark)

    Porse, Andreas; Schou, Thea S.; Munck, Christian

    2018-01-01

    -gene libraries have suggested that sequence composition is a strong barrier for the successful integration of heterologous genes. Here we sample 200 diverse genes, representing >80% of sequenced antibiotic resistance genes, to interrogate the factors governing genetic compatibility in new hosts. In contrast...... factors governing the functionality and fitness of antibiotic resistance genes. These findings emphasize the importance of biochemical mechanism for heterologous gene compatibility, and suggest physiological constraints as a pivotal feature orienting the evolution of antibiotic resistance....

  10. Biochemical reasoning for radiation protection and screening methods for radiation sensitivity and potential carcinogenicity

    International Nuclear Information System (INIS)

    Riklis, Emanuel; Emerit, Ingrid

    1994-01-01

    Cells of different genetic characteristics respond differently to agents that modify radiation effects. When the modification is a result of chemical repair, reduction of the amount of damage by radical scavenging, production of hypoxia, or any other such mechanism, then the modification of the response will be the same for all types of cells, but not the same when biological or biochemical parameters are involved, because the differences between the cells affect the final outcome, and the genetic traits obviously become affected by chemical modifying agents. Some of these agents directly affect the repair of deoxyribonucleic acid (DNA) by mechanisms not yet understood. Another agent nicotinamide (NA), is directly linked to a repair pathway. Thus, a system that uses NA as a precursor of nicotinamide adenine dinucleotide (NAD) + , and uses NAD + to produce the polymer polyadenosine diphosphate ribose (PADPR) appears to be an interesting and important factor in the biochemical events that may be linked to improved radioprotection. (author). 36 refs., 5 figs

  11. Genetic manipulation of Methanosarcina spp.

    Directory of Open Access Journals (Sweden)

    Petra Regine Adelheid Kohler

    2012-07-01

    Full Text Available The discovery of the third domain of life, the Archaea, is one of the most exciting findings of the last century. These remarkable prokaryotes are well known for their adaptations to extreme environments; however, Archaea have also conquered moderate environments. Many of the archaeal biochemical processes, such as methane production, are unique in nature and therefore of great scientific interest. Although formerly restricted to biochemical and physiological studies, sophisticated systems for genetic manipulation have been developed during the last two decades for methanogenic archaea, halophilic archaea and thermophilic, sulfur-metabolizing archaea. The availability of these tools has allowed for more complete studies of archaeal physiology and metabolism and most importantly provides the basis for the investigation of gene expression, regulation and function. In this review we provide an overview of methods for genetic manipulation of Methanosarcina spp., a group of methanogenic archaea that are key players in the global carbon cycle and which can be found in a variety of anaerobic environments.

  12. New function for Escherichia coli xanthosine phophorylase (xapA): genetic and biochemical evidences on its participation in NAD+ salvage from nicotinamide

    Science.gov (United States)

    2014-01-01

    Background In an effort to reconstitute the NAD+ synthetic pathway in Escherichia coli (E. coli), we produced a set of gene knockout mutants with deficiencies in previously well-defined NAD+de novo and salvage pathways. Unexpectedly, the mutant deficient in NAD+de novo and salvage pathway I could grow in M9/nicotinamide medium, which was contradictory to the proposed classic NAD+ metabolism of E. coli. Such E. coli mutagenesis assay suggested the presence of an undefined machinery to feed nicotinamide into the NAD+ biosynthesis. We wanted to verify whether xanthosine phophorylase (xapA) contributed to a new NAD+ salvage pathway from nicotinamide. Results Additional knockout of xapA further slowed down the bacterial growth in M9/nicotinamide medium, whereas the complementation of xapA restored the growth phenotype. To further validate the new function of xapA, we cloned and expressed E. coli xapA as a recombinant soluble protein. Biochemical assay confirmed that xapA was capable of using nicotinamide as a substrate for nicotinamide riboside formation. Conclusions Both the genetic and biochemical evidences indicated that xapA could convert nicotinamide to nicotinamide riboside in E. coli, albeit with relatively weak activity, indicating that xapA may contribute to a second NAD+ salvage pathway from nicotinamide. We speculate that this xapA-mediated NAD+ salvage pathway might be significant in some bacteria lacking NAD+de novo and NAD+ salvage pathway I or II, to not only use nicotinamide riboside, but also nicotinamide as precursors to synthesize NAD+. However, this speculation needs to be experimentally tested. PMID:24506841

  13. Genetics Home Reference: spastic paraplegia type 7

    Science.gov (United States)

    ... in the arms; speech difficulties (dysarthria); difficulty swallowing (dysphagia); involuntary movements of the eyes (nystagmus); mild hearing ... AH, Warner TT. A clinical, genetic and biochemical study of SPG7 mutations in hereditary spastic paraplegia. Brain. ...

  14. Atherogenic dyslipidemia in children: evaluation of clinical, biochemical and genetic aspects.

    Directory of Open Access Journals (Sweden)

    Anna Montali

    Full Text Available The precursors of atherogenic dyslipidemia (AD are not well defined. Therefore, we investigated 62 non-obese, non-diabetic AD and 221 normolipemic children. Anthropometric parameters, blood pressure and biochemical measures were obtained in index children, their parents and all available siblings. The heritability (h(2 of anthropometric and biochemical traits was estimated by SOLAR. Rare and common variants in APOA1 and LPL genes were screened by re-sequencing. Compared to normolipemic, AD children showed increased body mass index, waist circumference, plasma glucose, insulin, ApoB, HOMA-IR, hs-CRP and lower adiponectin (p<0.001 for all. Metabolic syndrome was present in 40% of AD while absent in controls. All traits (except adiponectin and hs-CRP showed a strong familial aggregation, with plasma glucose having the highest heritability (89%. Overall, 4 LPL loss-of-function mutations were detected (p.Asp9Asn, p.Ser45Asn, p.Asn291Ser, p.Leu365Val and their cumulative prevalence was higher in AD than in control children (0.073 vs. 0.026; P=0.038. The LPL p.S447* gain-of-function mutation, resulted to be less frequent in AD than in control children (0.064 vs. 0.126; P=0.082. No variant in the APOA1 gene was found. Our data indicate that AD is a rather common dyslipidemia in childhood; it associates with metabolic abnormalities typical of insulin resistant state and shows a strong familial aggregation. LPL variants may contribute to the development of AD phenotype.

  15. Molecular genetic identification of some wheat cultivars in the sudan

    International Nuclear Information System (INIS)

    Mekki, I. I; El Amin, H. B.

    2002-01-01

    Four wheat (Triticum aestivum L.) cultivars, namely condor, El-Nellene, Wadi El Neil and Debeira were characterized on biochemical and molecular bases. The biochemical ones were protein-banding patterns, using sodium dodecylsulfate-polyacrylamide gel electrophoresis (SDS-PAGE), and isozymes to identify the biochemical genetic fingerprint of the four cultivars. Water-soluble protein-banding pattern showed no polymorphisms among the tested cultivars. The data from starch gel electrophoresis of enzymes, malate dehydrogenase (MDH), esterase (EST) and acid phosphate (ACPH) showed that the cultivars are monomorphic. Further trials to identify the molecular genetic fingerprints of the studied cultivars were carried out using RAPD-PCR twenty-five primers were tested to perform. RAPD-PCR analysis. From the PCR products, a phylogenetic map, i.e, dendrogram, was constructed for the studied cultivars which depicted tow groups. The first group contained Wadi El Neil and Deberia with 48.4% similarity, and the second group contained Condor and El Neileen with 100% similarity. There was no similarity between Condor and Debeira (100% dissimilarity). Therefor, these data can be used subsequently for genetic engineering research and for wheat breeding programmes in the Sudan.(Author)

  16. Genetic and biochemical studies of the lipid-containing bacteriophage PR4

    International Nuclear Information System (INIS)

    Vanden Boom, T.J.

    1989-01-01

    Bacteriophage PR4 is a lipid-containing bacterial virus able to infect Escherichia coli and Salmonella typhimurium. The icosahedral virion consists of an external protein capsid layer which surrounds a membrane vesicle enclosed ds DNA genome. The author has analyzed the time course of phage PR4 protein synthesis and have identified at least 34 proteins present in phage infected cells not detected in uninfected control cultures. In addition, he has isolated a more extensive set of conditional-lethal nonsense mutants of this virus. This collection of mutants permitted the identification of seven additional phage PR4 gene products, including the terminal genome protein and an accessory lytic factor. The present collection of phage PR4 mutants has been assigned to 19 distinct genetic groups on the basis of genetic complementation tests and sodium dodecyl sulfate polyacrylamide gel electrophoresis analysis of the proteins produced in mutant-infected UV-irradiated cells. A restriction endonuclease map of the phage PR4 genome was constructed which includes 59 sites for ten restriction endonucleases. In addition, he has constructed a collection of recombinant plasmids containing subgenomic DNA fragments of bacteriophage PR4. He has used this collection of plasmids to generate a physical-genetic map of the PR4 genome. The physical-genetic map localizes mutations in 13 phage PR4 genetic groups on the viral DNA molecule. To investigate the role of phosphatidylglycerol (PG) in phage assembly and infectivity, he propagated PR4 on an E. coli mutant defective in PG synthesis. The PG content of phage PR4 grown on the mutant host accounted for 0.4% of the total viral phospholipids, representing a 90-fold decrease in PG relative to the PG content of phage grown on a wild type host

  17. Dynamics of biochemical processes and redox conditions in geochemically linked landscapes of oligotrophic bogs

    Science.gov (United States)

    Inisheva, L. I.; Szajdak, L.; Sergeeva, M. A.

    2016-04-01

    The biological activity in oligotrophic peatlands at the margins of the Vasyugan Mire has been studied. It is shown found that differently directed biochemical processes manifest themselves in the entire peat profile down to the underlying mineral substrate. Their activity is highly variable. It is argued that the notion about active and inert layers in peat soils is only applicable for the description of their water regime. The degree of the biochemical activity is specified by the physical soil properties. As a result of the biochemical processes, a micromosaic aerobic-anaerobic medium is developed under the surface waterlogged layer of peat deposits. This layer contains the gas phase, including oxygen. It is concluded that the organic and mineral parts of peat bogs represent a single functional system of a genetic peat profile with a clear record of the history of its development.

  18. The biochemical womb of schizophrenia: A review.

    Science.gov (United States)

    Gaur, N; Gautam, S; Gaur, M; Sharma, P; Dadheech, G; Mishra, S

    2008-10-01

    The conclusive identification of specific etiological factors or pathogenic processes in the illness of schizophrenia has remained elusive despite great technological progress. The convergence of state-of-art scientific studies in molecular genetics, molecular neuropathophysiology, in vivo brain imaging and psychopharmacology, however, indicates that we may be coming much closer to understanding the genesis of schizophrenia. In near future, the diagnosis and assessment of schizophrenia using biochemical markers may become a "dream come true" for the medical community as well as for the general population. An understanding of the biochemistry/ visa vis pathophysiology of schizophrenia is essential to the discovery of preventive measures and therapeutic intervention.

  19. Recent advances in genetic modification systems for Actinobacteria.

    Science.gov (United States)

    Deng, Yu; Zhang, Xi; Zhang, Xiaojuan

    2017-03-01

    Actinobacteria are extremely important to human health, agriculture, and forests. Because of the vast differences of the characteristics of Actinobacteria, a lot of genetic tools have been developed for efficiently manipulating the genetics. Although there are a lot of successful examples of engineering Actinobacteria, they are still more difficult to be genetically manipulated than other model microorganisms such as Saccharomyces cerevisiae, Escherichia coli, and Bacillus subtilis etc. due to the diverse genomics and biochemical machinery. Here, we review the methods to introduce heterologous DNA into Actinobacteria and the available genetic modification tools. The trends and problems existing in engineering Actinobacteria are also covered.

  20. use of genetic variability estimates and interrelationships

    African Journals Online (AJOL)

    Prof. Adipala Ekwamu

    of 11 agronomic and biochemical traits to water stress based on estimation of genetic ... of primary branches and 100 seed weight under W0, and number of primary ... selection of superior drought-tolerant genotype (LR1) with good yield ...

  1. Molecular genetics: Step by step implementation in maize breeding

    Directory of Open Access Journals (Sweden)

    Konstantinov Kosana

    2007-01-01

    Full Text Available Efficiency in plant breeding is determined primarily by the ability to screen for genetic polymorphism, productivity and yield stability early in program. Dependent on the knowledge about the biochemical bases of the trait and nature of its genetic control, trait could be modified either through mutagenesis of genes controlling it or through the transfer of already existing mutant genes, controlling desired trait to different plant genotypes by classic crossing. Objective of this report is to present partly results on the investigation of the possibilities to apply ionizing radiations (fast neutrons, γ -rays and chemical mutagens (EI, iPMS, EMS, ENU to get maize and wheat mutants with increased amount and improved protein quality. Besides this approach in mutation breeding, results on the very early investigation of biochemical background of opaque -2 mutation including use of coupled cell - free RNA and protein synthesis containing components from both wild and opaque - 2 maize genotypes (chromatin, RNA polymerase, microsomall fraction, protein bodies will be presented. Partial results on opaque - 2 gene incorporation in different genetic background are reviewed. Part of report is dealing with different classes of molecular markers (proteins, RFLP, AFLP, RAPD, and SSR application in maize genome polymorphism investigation. Besides application of different molecular markers classes in the investigation of heterosis phenomena they are useful in biochemical pathway of important traits control determination as well. .

  2. Genetic analysis of three South African horse breeds

    Directory of Open Access Journals (Sweden)

    E.G. Cothran

    1998-07-01

    Full Text Available Genetic variability at 7 blood-group and 10 biochemical genetic loci was examined in 3 South African horse breeds, the Nooitgedacht, Boerperd and Basuto Pony. Observed heterozygosity for these breeds was intermediate for domestic horses, with the highest heterozygosity in the Boerperd and the lowest in the Basuto Pony. The 3 breeds show greater genetic similarity to each other than to other domestic horse breeds. Compared to other breeds, the South African breeds show greater genetic similarity to breeds such as the Thoroughbred, Holstein, Trakehner and Hanovarian and also to North American breeds such as the Saddlebred, Standardbred and Morgan Horse.

  3. Connecting Biochemical Photosynthesis Models with Crop Models to Support Crop Improvement.

    Science.gov (United States)

    Wu, Alex; Song, Youhong; van Oosterom, Erik J; Hammer, Graeme L

    2016-01-01

    The next advance in field crop productivity will likely need to come from improving crop use efficiency of resources (e.g., light, water, and nitrogen), aspects of which are closely linked with overall crop photosynthetic efficiency. Progress in genetic manipulation of photosynthesis is confounded by uncertainties of consequences at crop level because of difficulties connecting across scales. Crop growth and development simulation models that integrate across biological levels of organization and use a gene-to-phenotype modeling approach may present a way forward. There has been a long history of development of crop models capable of simulating dynamics of crop physiological attributes. Many crop models incorporate canopy photosynthesis (source) as a key driver for crop growth, while others derive crop growth from the balance between source- and sink-limitations. Modeling leaf photosynthesis has progressed from empirical modeling via light response curves to a more mechanistic basis, having clearer links to the underlying biochemical processes of photosynthesis. Cross-scale modeling that connects models at the biochemical and crop levels and utilizes developments in upscaling leaf-level models to canopy models has the potential to bridge the gap between photosynthetic manipulation at the biochemical level and its consequences on crop productivity. Here we review approaches to this emerging cross-scale modeling framework and reinforce the need for connections across levels of modeling. Further, we propose strategies for connecting biochemical models of photosynthesis into the cross-scale modeling framework to support crop improvement through photosynthetic manipulation.

  4. Connecting Biochemical Photosynthesis Models with Crop Models to Support Crop Improvement

    Science.gov (United States)

    Wu, Alex; Song, Youhong; van Oosterom, Erik J.; Hammer, Graeme L.

    2016-01-01

    The next advance in field crop productivity will likely need to come from improving crop use efficiency of resources (e.g., light, water, and nitrogen), aspects of which are closely linked with overall crop photosynthetic efficiency. Progress in genetic manipulation of photosynthesis is confounded by uncertainties of consequences at crop level because of difficulties connecting across scales. Crop growth and development simulation models that integrate across biological levels of organization and use a gene-to-phenotype modeling approach may present a way forward. There has been a long history of development of crop models capable of simulating dynamics of crop physiological attributes. Many crop models incorporate canopy photosynthesis (source) as a key driver for crop growth, while others derive crop growth from the balance between source- and sink-limitations. Modeling leaf photosynthesis has progressed from empirical modeling via light response curves to a more mechanistic basis, having clearer links to the underlying biochemical processes of photosynthesis. Cross-scale modeling that connects models at the biochemical and crop levels and utilizes developments in upscaling leaf-level models to canopy models has the potential to bridge the gap between photosynthetic manipulation at the biochemical level and its consequences on crop productivity. Here we review approaches to this emerging cross-scale modeling framework and reinforce the need for connections across levels of modeling. Further, we propose strategies for connecting biochemical models of photosynthesis into the cross-scale modeling framework to support crop improvement through photosynthetic manipulation. PMID:27790232

  5. Variable Levels of Tolerance to Water Stress (Drought and Associated Biochemical Markers in Tunisian Barley Landraces

    Directory of Open Access Journals (Sweden)

    Sameh Dbira

    2018-03-01

    Full Text Available Due to its high tolerance to abiotic stress, barley (Hordeum vulgare is cultivated in many arid areas of the world. In the present study, we evaluate the tolerance to water stress (drought in nine accessions of “Ardhaoui” barley landraces from different regions of Tunisia. The genetic diversity of the accessions is evaluated with six SSR markers. Seedlings from the nine accessions are subjected to water stress by completely stopping irrigation for three weeks. A high genetic diversity is detected among the nine accessions, with no relationships between genetic distance and geographical or ecogeographical zone. The analysis of growth parameters and biochemical markers in the water stress-treated plants in comparison to their respective controls indicated great variability among the studied accessions. Accession 2, from El May Island, displayed high tolerance to drought. Increased amounts of proline in water-stressed plants could not be correlated with a better response to drought, as the most tolerant accessions contained lower levels of this osmolyte. A good correlation was established between the reduction of growth and degradation of chlorophylls and increased levels of malondialdehyde and total phenolics. These biochemical markers may be useful for identifying drought tolerant materials in barley.

  6. Prenatal diagnosis--principles of diagnostic procedures and genetic counseling.

    Directory of Open Access Journals (Sweden)

    Ryszard Slezak

    2008-04-01

    Full Text Available The frequency of inherited malformations as well as genetic disorders in newborns account for around 3-5%. These frequency is much higher in early stages of pregnancy, because serious malformations and genetic disorders usually lead to spontaneous abortion. Prenatal diagnosis allowed identification of malformations and/or some genetic syndromes in fetuses during the first trimester of pregnancy. Thereafter, taking into account the severity of the disorders the decision should be taken in regard of subsequent course of the pregnancy taking into account a possibilities of treatment, parent's acceptation of a handicapped child but also, in some cases the possibility of termination of the pregnancy. In prenatal testing, both screening and diagnostic procedures are included. Screening procedures such as first and second trimester biochemical and/or ultrasound screening, first trimester combined ultrasound/biochemical screening and integrated screening should be widely offered to pregnant women. However, interpretation of screening results requires awareness of both sensitivity and predictive value of these procedures. In prenatal diagnosis ultrasound/MRI searching as well as genetic procedures are offered to pregnant women. A variety of approaches for genetic prenatal analyses are now available, including preimplantation diagnosis, chorion villi sampling, amniocentesis, fetal blood sampling as well as promising experimental procedures (e.g. fetal cell and DNA isolation from maternal blood. An incredible progress in genetic methods opened new possibilities for valuable genetic diagnosis. Although karyotyping is widely accepted as golden standard, the discussion is ongoing throughout Europe concerning shifting to new genetic techniques which allow obtaining rapid results in prenatal diagnosis of aneuploidy (e.g. RAPID-FISH, MLPA, quantitative PCR.

  7. Most Colorful Example of Genetic Assimilation? Exploring the Evolutionary Destiny of Recurrent Phenotypic Accommodation.

    Science.gov (United States)

    Badyaev, Alexander V; Potticary, Ahva L; Morrison, Erin S

    2017-08-01

    Evolution of adaptation requires both generation of novel phenotypic variation and retention of a locally beneficial subset of this variation. Such retention can be facilitated by genetic assimilation, the accumulation of genetic and molecular mechanisms that stabilize induced phenotypes and assume progressively greater control over their reliable production. A particularly strong inference into genetic assimilation as an evolutionary process requires a system where it is possible to directly evaluate the extent to which an induced phenotype is progressively incorporated into preexisting developmental pathways. Evolution of diet-dependent pigmentation in birds-where external carotenoids are coopted into internal metabolism to a variable degree before being integrated with a feather's developmental processes-provides such an opportunity. Here we combine a metabolic network view of carotenoid evolution with detailed empirical study of feather modifications to show that the effect of physical properties of carotenoids on feather structure depends on their metabolic modification, their environmental recurrence, and biochemical redundancy, as predicted by the genetic assimilation hypothesis. Metabolized carotenoids caused less stochastic variation in feather structure and were more closely integrated with feather growth than were dietary carotenoids of the same molecular weight. These patterns were driven by the recurrence of organism-carotenoid associations: commonly used dietary carotenoids and biochemically redundant derived carotenoids caused less stochastic variation in feather structure than did rarely used or biochemically unique compounds. We discuss implications of genetic assimilation processes for the evolutionary diversification of diet-dependent animal coloration.

  8. Hemoglobin Variants: Biochemical Properties and Clinical Correlates

    Science.gov (United States)

    Thom, Christopher S.; Dickson, Claire F.; Gell, David A.; Weiss, Mitchell J.

    2013-01-01

    Diseases affecting hemoglobin synthesis and function are extremely common worldwide. More than 1000 naturally occurring human hemoglobin variants with single amino acid substitutions throughout the molecule have been discovered, mainly through their clinical and/or laboratory manifestations. These variants alter hemoglobin structure and biochemical properties with physiological effects ranging from insignificant to severe. Studies of these mutations in patients and in the laboratory have produced a wealth of information on hemoglobin biochemistry and biology with significant implications for hematology practice. More generally, landmark studies of hemoglobin performed over the past 60 years have established important paradigms for the disciplines of structural biology, genetics, biochemistry, and medicine. Here we review the major classes of hemoglobin variants, emphasizing general concepts and illustrative examples. PMID:23388674

  9. Chronic effects of soft drink consumption on the health state of Wistar rats: A biochemical, genetic and histopathological study

    OpenAIRE

    ALKHEDAIDE, ADEL; SOLIMAN, MOHAMED MOHAMED; SALAH-ELDIN, ALAA-ELDIN; ISMAIL, TAMER AHMED; ALSHEHIRI, ZAFER SAAD; ATTIA, HOSSAM FOUAD

    2016-01-01

    The present study was performed to examine the effects of chronic soft drink consumption (SDC) on oxidative stress, biochemical alterations, gene biomarkers and histopathology of bone, liver and kidney. Free drinking water of adult male Wistar rats was substituted with three different soft drinks: Coca-Cola, Pepsi and 7-Up, for three consecutive months. The serum and organs were collected for examining the biochemical parameters associated with bone, liver and kidney functions. Semi-quantitat...

  10. In vitro propagation of critically endangered species Scilla autumnalis L. – biochemical analyses of the regenerants

    Directory of Open Access Journals (Sweden)

    Cristian BANCIU

    2010-11-01

    Full Text Available The present study belongs to the international efforts for plant conservation from the areas threatened by human activities. The saline soils areas are restricting for agriculture and in some cases for fishery facilities and the plant species are extinct from those areas. Scilla autumnalis L. is one of the threatened plants (rare on the national red list of vascular plants from Romania that grows in the Natural Park Comana, Giurgiu County, South Romania. Seeds from plants grown in the natural habitat have been used for in vitro plant regeneration and multiplication. After successfully rooting and acclimatization of the regenerated plantlets from germinated seeds, biochemical studies have been performed in order to compare the regenerants from in vitro cultures with native plants from genetically point of view. Peroxydase and esterase’s spectra were the biochemical markers used.The results indicated that this plant species can be multiplicated, rooted and acclimatized on synthetic medium (MS supplemented with NAA, IBA, IAA, kinetin and BAP with a good efficiency and the regenerants had no genetic alterations determinated by culture conditions.

  11. Education and certification of genetic counselors.

    Science.gov (United States)

    Katsichti, L; Hadzipetros-Bardanis, M; Bartsocas, C S

    1999-01-01

    Genetic counseling is defined by the American Society of Human Genetics as a communication process which deals with the human problems associated with the occurrence, or risk of occurrence, of a genetic disorder in a family. The first graduate program (Master's degree) in genetic counseling started in 1969 at Sarah Lawrence College, NY, USA, while in 1979 the National Society of Genetic Counseling (NSGC) was established. Today, there are 29 programs in U.S.A. offering a Master's degree in Genetic Counseling, five programs in Canada, one in Mexico, one in England and one in S. Africa. Most of these graduate programs offer two year training, consisting of graduate courses, seminars, research and practical training. Emphasis is given in human physiology, biochemistry, clinical genetics, cytogenetics, molecular and biochemical genetics, population genetics and statistics, prenatal diagnosis, teratology and genetic counseling in relation to psychosocial and ethical issues. Certification for eligible candidates is available through the American Board of Medical Genetics (ABMG). Requirements for certification include a master's degree in human genetics, training at sites accredited by the ABMG, documentation of genetic counseling experience, evidence of continuing education and successful completion of a comprehensive ABMG certification examination. As professionals, genetic counselors should maintain expertise, should insure mechanisms for professional advancement and should always maintain the ability to approach their patients.

  12. Biochemical survey for children of A-bomb survivors

    International Nuclear Information System (INIS)

    Sato, Chiyoko

    1992-01-01

    The Radiation Effects Research Foundation has conducted biochemical survey in children of A-bomb survivors, with the purpose of elucidating whether or not the rate of genetic mutation in genital cells is increased. This paper describes the previous surveys done at protein levels. Two kinds of indicators have been used: (1) 'rare mutation type' reflecting base substitution mutation, base deletion, and insertion; (2) 'mutation type' reflecting the decrease of red cell enzyme activity. According to the DS86 dosimetry system, the children population of A-bomb survivors were examined by dividing into the exposed group (n=11,364) of their parents exposed to 0.01 Sv or more and the control group (n=12,297) of those exposed to less than 0.01 Sv. 'Rare mutation type' was detected using electrophoresis in a total of 1,233 children in both groups. Of these children, 2 in the exposed group and 4 in the control group had a new 'mutation', i.e., mutation that was considered to have occurred in genital cells of their parents. Survey for genetic foci has revealed mutation in 2 children in the exposed group and 4 children in the control group, with the rate of mutation being 0.37 x 10 -5 /genetic foci/generation and 0.68 x 10 -5 /genetic foci/generation, respectively. Mutation type reflecting the decrease in red cell enzyme activity was seen in 26 in the exposed group and 21 in the control group. A total of 41 children were found to have been inherited from their parents. In the survey for genetic foci, only one had mutation in the exposed group, with the rate of mutation being 1.7 x 10 -5 /genetic foci/generation. These findings have revealed no evidence of significant difference in the rate of mutation between the exposed and control groups. Finally, the future genetic surveys at molecular levels are briefly discussed. (N.K.)

  13. Genetic and Biochemical Diversity of Paenibacillus larvae Isolated from Tunisian Infected Honey Bee Broods

    Directory of Open Access Journals (Sweden)

    Chadlia Hamdi

    2013-01-01

    Full Text Available Paenibacillus larvae is the causative agent of American foulbrood (AFB, a virulent disease of honeybee (Apis mellifera larvae. In Tunisia, AFB has been detected in many beekeeping areas, where it causes important economic losses, but nothing is known about the diversity of the causing agent. Seventy-five isolates of P. larvae, identified by biochemical tests and 16S rRNA gene sequencing, were obtained from fifteen contaminated broods showing typical AFB symptoms, collected in different locations in the northern part of the country. Using BOX-PCR, a distinct profile of P. larvae with respect to related Paenibacillus species was detected which may be useful for its identification. Some P. larvae-specific bands represented novel potential molecular markers for the species. BOX-PCR fingerprints indicated a relatively high intraspecific diversity among the isolates not described previously with several molecular polymorphisms identifying six genotypes on polyacrylamide gel. Polymorphisms were also detected in several biochemical characters (indol production, nitrate reduction, and methyl red and oxidase tests. Contrary to the relatively high intraspecies molecular and phenotypic diversity, the in vivo virulence of three selected P. larvae genotypes did not differ significantly, suggesting that the genotypic/phenotypic differences are neutral or related to ecological aspects other than virulence.

  14. Identification and biochemical characterization of an Arabidopsis indole-3-acetic acid glucosyltransferase.

    Science.gov (United States)

    Jackson, R G; Lim, E K; Li, Y; Kowalczyk, M; Sandberg, G; Hoggett, J; Ashford, D A; Bowles, D J

    2001-02-09

    Biochemical characterization of recombinant gene products following a phylogenetic analysis of the UDP-glucosyltransferase (UGT) multigene family of Arabidopsis has identified one enzyme (UGT84B1) with high activity toward the plant hormone indole-3-acetic acid (IAA) and three related enzymes (UGT84B2, UGT75B1, and UGT75B2) with trace activities. The identity of the IAA conjugate has been confirmed to be 1-O-indole acetyl glucose ester. A sequence annotated as a UDP-glucose:IAA glucosyltransferase (IAA-UGT) in the Arabidopsis genome and expressed sequence tag data bases given its similarity to the maize iaglu gene sequence showed no activity toward IAA. This study describes the first biochemical analysis of a recombinant IAA-UGT and provides the foundation for future genetic approaches to understand the role of 1-O-indole acetyl glucose ester in Arabidopsis.

  15. Genetics and biochemistry remain essential in the structural era of the spliceosome.

    Science.gov (United States)

    Mayerle, Megan; Guthrie, Christine

    2017-08-01

    The spliceosome is not a single macromolecular machine. Rather it is a collection of dynamic heterogeneous subcomplexes that rapidly interconvert throughout the course of a typical splicing cycle. Because of this, for many years the only high resolution structures of the spliceosome available were of smaller, isolated protein or RNA components. Consequently much of our current understanding of the spliceosome derives from biochemical and genetic techniques. Now with the publication of multiple, high resolution structures of the spliceosome, some question the relevance of traditional biochemical and genetic techniques to the splicing field. We argue such techniques are not only relevant, but vital for an in depth mechanistic understanding of pre-mRNA splicing. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Biochemical and genetic toxicity of the ionic liquid 1-octyl-3-methylimidazolium chloride on earthworms (Eisenia fetida).

    Science.gov (United States)

    Guo, Yingying; Liu, Tong; Zhang, Jun; Wang, Jinhua; Wang, Jun; Zhu, Lusheng; Yang, Jinhui

    2016-02-01

    Ionic liquids also known as "green solvents," are used in many fields. However, the dispersion of ionic liquids in soil systems is likely to cause damage to soil organisms. The objective of the present study was to investigate the toxicity of 1-octyl-3-methylimidazolium chloride ([C8 mim]Cl) on earthworms (Eisenia fetida). For this purpose, earthworms were exposed to different concentrations of [C8 mim]Cl (0 mg/kg, 5 mg/kg, 10 mg/kg, 20 mg/kg, and 40 mg/kg artificial soil) and sampled at 7 d, 14 d, 21 d, and 28 d. The results indicated that [C8 mim]Cl could cause an accumulation of reactive oxygen species (ROS) in earthworms, even at the lowest concentration (5 mg/kg). Compared with the controls, during the [C8 mim]Cl exposure period, the activities of superoxide dismutase (SOD) and catalase (CAT) decreased and then increased, whereas the activities of peroxidase (POD) and glutathione S-transferase (GST) increased. These changes in the activities of antioxidant enzymes and GST indicated that [C8 mim]Cl could induce oxidative damage in earthworms. The malondialdehyde content was increased by high levels of [C8 mim]Cl at 14 d and 28 d, indicating that [C8 mim]Cl could lead to lipid peroxidation in earthworms. In addition, the degree of DNA damage significantly increased with increasing [C8 mim]Cl concentrations and exposure time. The present study shows that [C8 mim]Cl caused biochemical and genetic toxicity in earthworms. © 2015 SETAC.

  17. Physiological, Biochemical, Epigenetic and Molecular Analyses of Wheat (Triticum aestivum Genotypes with Contrasting Salt Tolerance

    Directory of Open Access Journals (Sweden)

    Suresh Kumar

    2017-06-01

    Full Text Available Abiotic stress exerts significant impact on plant’s growth, development, and productivity. Productivity of crop plants under salt stress is lagging behind because of our limited knowledge about physiological, biochemical, epigenetic, and molecular mechanisms of salt tolerance in plants. This study aimed to investigate physio-biochemical, molecular indices and defense responses of selected wheat cultivars to identify the most contrasting salt-responsive genotypes and the mechanisms associated with their differential responses. Physio-biochemical traits specifically membrane stability index, antioxidant potential, osmoprotectants and chlorophyll contents, measured at vegetative stage, were used for multivariate analysis to identify the most contrasting genotypes. Genetic and epigenetic analyses indicated the possible mechanisms associated with differential response of the wheat genotypes under salt stress. Better antioxidant potential, membrane stability, increased accumulation of osmolytes/phytophenolics, and higher K+/Na+ ratio under 200 mM NaCl stress identified Kharchia-65 to be the most salt-tolerant cultivar. By contrast, increased MDA level, reduced soluble sugar, proline, total chlorophyll, total phenolics contents, and lower antioxidant potential in HD-2329 marked it to be sensitive to the stress. Genetic and bioinformatics analyses of HKT1;4 of contrasting genotypes (Kharchia-65 and HD-2329 revealed deletions, transitions, and transversions resulting into altered structure, loss of conserved motifs (Ser-Gly-Gly-Gly and Gly-Arg and function in salt-sensitive (HD-2329 genotype. Expression analysis of HKTs rationalized the observed responses. Epigenetic variations in cytosine methylation explained tissue- and genotype-specific differential expression of HKT2;1 and HKT2;3.

  18. An efficient algorithm for computing fixed length attractors based on bounded model checking in synchronous Boolean networks with biochemical applications.

    Science.gov (United States)

    Li, X Y; Yang, G W; Zheng, D S; Guo, W S; Hung, W N N

    2015-04-28

    Genetic regulatory networks are the key to understanding biochemical systems. One condition of the genetic regulatory network under different living environments can be modeled as a synchronous Boolean network. The attractors of these Boolean networks will help biologists to identify determinant and stable factors. Existing methods identify attractors based on a random initial state or the entire state simultaneously. They cannot identify the fixed length attractors directly. The complexity of including time increases exponentially with respect to the attractor number and length of attractors. This study used the bounded model checking to quickly locate fixed length attractors. Based on the SAT solver, we propose a new algorithm for efficiently computing the fixed length attractors, which is more suitable for large Boolean networks and numerous attractors' networks. After comparison using the tool BooleNet, empirical experiments involving biochemical systems demonstrated the feasibility and efficiency of our approach.

  19. Biochemical and Molecular Characterization of Plant-Parasitic Nematodes

    Directory of Open Access Journals (Sweden)

    I.M. de O. Abrantes

    2004-08-01

    Full Text Available Nematologists need correct species identification to carry out research, teaching, extension and other activities. Therefore, nematode taxonomy must be pursued diligently at all levels. The identification of plant-parasitic nematodes is not always easy and that of some species is especially difficult. Most of the information that nematologists use when characterizing and identifying specimens is based on morphological and morphometrical characters. Although these characters are of primary importance, in the last three decades they have been supplemented by biochemical/ molecular characters. Biochemical approaches include the separation of proteins (general proteins and isozymes by one-dimensional gel electrophoresis, isoelectric focusing, two-dimensional gel electrophoresis, and sodium dodecyl sulphate-capillary gel electrophoresis. Serology has also been found effective in the identification and quantification of nematodes, monoclonal antibodies being a more useful immunological tool than polyclonal antibodies. Identification based on the direct examination of DNA is potentially a more powerful method to characterize inter- and intra-specific variability. The development of techniques such as the polymerase chain reaction, restriction fragment length polymorphism, randomly amplified polymorphic DNA, and amplified fragment length polymorphism has increased the accuracy and speed of nematode characterization/identification. Progress continues to be made and more and more nematologists are using molecular techniques for diagnostic purposes and to assess genetic variation.

  20. Genetic technologies for extremely thermophilic microorganisms of Sulfolobus, the only genetically tractable genus of crenarchaea.

    Science.gov (United States)

    Peng, Nan; Han, Wenyuan; Li, Yingjun; Liang, Yunxiang; She, Qunxin

    2017-04-01

    Archaea represents the third domain of life, with the information-processing machineries more closely resembling those of eukaryotes than the machineries of the bacterial counterparts but sharing metabolic pathways with organisms of Bacteria, the sister prokaryotic phylum. Archaeal organisms also possess unique features as revealed by genomics and genome comparisons and by biochemical characterization of prominent enzymes. Nevertheless, diverse genetic tools are required for in vivo experiments to verify these interesting discoveries. Considerable efforts have been devoted to the development of genetic tools for archaea ever since their discovery, and great progress has been made in the creation of archaeal genetic tools in the past decade. Versatile genetic toolboxes are now available for several archaeal models, among which Sulfolobus microorganisms are the only genus representing Crenarchaeota because all the remaining genera are from Euryarchaeota. Nevertheless, genetic tools developed for Sulfolobus are probably the most versatile among all archaeal models, and these include viral and plasmid shuttle vectors, conventional and novel genetic manipulation methods, CRISPR-based gene deletion and mutagenesis, and gene silencing, among which CRISPR tools have been reported only for Sulfolobus thus far. In this review, we summarize recent developments in all these useful genetic tools and discuss their possible application to research into archaeal biology by means of Sulfolobus models.

  1. Intraspecific variation in cellular and biochemical heat response strategies of Mediterranean Xeropicta derbentina [Pulmonata, Hygromiidae].

    Directory of Open Access Journals (Sweden)

    Sandra Troschinski

    Full Text Available Dry and hot environments challenge the survival of terrestrial snails. To minimize overheating and desiccation, physiological and biochemical adaptations are of high importance for these animals. In the present study, seven populations of the Mediterranean land snail species Xeropicta derbentina were sampled from their natural habitat in order to investigate the intraspecific variation of cellular and biochemical mechanisms, which are assigned to contribute to heat resistance. Furthermore, we tested whether genetic parameters are correlated with these physiological heat stress response patterns. Specimens of each population were individually exposed to elevated temperatures (25 to 52°C for 8 h in the laboratory. After exposure, the health condition of the snails' hepatopancreas was examined by means of qualitative description and semi-quantitative assessment of histopathological effects. In addition, the heat-shock protein 70 level (Hsp70 was determined. Generally, calcium cells of the hepatopancreas were more heat resistant than digestive cells - this phenomenon was associated with elevated Hsp70 levels at 40°C.We observed considerable variation in the snails' heat response strategy: Individuals from three populations invested much energy in producing a highly elevated Hsp70 level, whereas three other populations invested energy in moderate stress protein levels - both strategies were in association with cellular functionality. Furthermore, one population kept cellular condition stable despite a low Hsp70 level until 40°C exposure, whereas prominent cellular reactions were observed above this thermal limit. Genetic diversity (mitochondrial cytochrome c oxidase subunit I gene within populations was low. Nevertheless, when using genetic indices as explanatory variables in a multivariate regression tree (MRT analysis, population structure explained mean differences in cellular and biochemical heat stress responses, especially in the group

  2. BISEN: Biochemical simulation environment

    NARCIS (Netherlands)

    Vanlier, J.; Wu, F.; Qi, F.; Vinnakota, K.C.; Han, Y.; Dash, R.K.; Yang, F.; Beard, D.A.

    2009-01-01

    The Biochemical Simulation Environment (BISEN) is a suite of tools for generating equations and associated computer programs for simulating biochemical systems in the MATLAB® computing environment. This is the first package that can generate appropriate systems of differential equations for

  3. Genomic analysis of thermophilic Bacillus coagulans strains: efficient producers for platform bio-chemicals.

    Science.gov (United States)

    Su, Fei; Xu, Ping

    2014-01-29

    Microbial strains with high substrate efficiency and excellent environmental tolerance are urgently needed for the production of platform bio-chemicals. Bacillus coagulans has these merits; however, little genetic information is available about this species. Here, we determined the genome sequences of five B. coagulans strains, and used a comparative genomic approach to reconstruct the central carbon metabolism of this species to explain their fermentation features. A novel xylose isomerase in the xylose utilization pathway was identified in these strains. Based on a genome-wide positive selection scan, the selection pressure on amino acid metabolism may have played a significant role in the thermal adaptation. We also researched the immune systems of B. coagulans strains, which provide them with acquired resistance to phages and mobile genetic elements. Our genomic analysis provides comprehensive insights into the genetic characteristics of B. coagulans and paves the way for improving and extending the uses of this species.

  4. [Signal transduction in plant development: Chemical and biochemical approaches to receptor identification]. Progress report, [May 15, 1993--May 14, 1994

    Energy Technology Data Exchange (ETDEWEB)

    1994-06-01

    Progress is reported on studies concerning NAD(P)H-2,6-DMBQ oxidoreductase of Striga asiatica aimed at elucidating basic biochemical parameters of Striga. Reported studies include characterization of the enzyme, development of Striga molecular genetics, and development of a redox model for germination control.

  5. Biochemistry and genetics of inositol phosphate metabolism in Dictyostelium

    NARCIS (Netherlands)

    vanHaastert, PJM; van Dijken, P.

    1997-01-01

    Biochemical and genetic data on the metabolism of inositol phosphates in the microorganism Dictyostelium are combined in a scheme composed of in five subroutes. The first subroute is the inositol cycle as found in other organisms:inositol is incorporated into phospholipids that are hydrolysed by PLC

  6. Involvement of immunologic and biochemical mechanisms in the pathogenesis of Tourette's syndrome

    Science.gov (United States)

    Landau, Yuval Eliahu; Steinberg, Tamar; Richmand, Brian; Leckman, James Frederick; Apter, Alan

    2014-01-01

    Tourette's syndrome is a neurodevelopmental disorder clinically characterized by multiple motor and phonic tics. It is likely that a neurobiological susceptibility to the disorder is established during development by the interaction of genetic, biochemical, immunological, and environmental factors. This study sought to investigate the possible correlation of several immunological and biochemical markers with Tourette's syndrome. Children with Tourette's syndrome attending a tertiary pediatric medical center from May 2008 to April 2010, and healthy age-matched control subjects underwent a comprehensive biochemical and immunological work-up. Demographic data were abstracted from the medical records. Findings were compared between the groups and analyzed statistically. Sixty-eight children with Tourette's syndrome (58 males, 85.3%) and 36 healthy children (25 males, 69.4%) were recruited. Compared with the control group, the Tourette's syndrome group had significantly higher levels of ferritin (p = 0.01) and hemoglobin (p = 0.02), a lower level of zinc (p = 0.05), and a lower percentage of non-ceruloplasmin copper (p = 0.01). Analysis of the immunological markers revealed no significant between-group differences in IgA, IgM or IgG; however, IgE and IgG-4 levels were significantly higher in the Tourette's syndrome group (p = 0.04 and p = 0.02, respectively). Children with Tourette's syndrome have high levels of biochemical indices of oxidative stress and the quantitative immunoglobulins. These findings add to the still-limited knowledge on the pathogenesis of Tourette's syndrome and may have implications for the development of novel therapeutic modalities. PMID:22139323

  7. Structural modification of polysaccharides: A biochemical-genetic approach

    Science.gov (United States)

    Kern, Roger G.; Petersen, Gene R.

    1991-01-01

    Polysaccharides have a wide range of industrial and biomedical applications. An industry trend is underway towards the increased use of bacteria to produce polysaccharides. Long term goals of this work are the adaptation and enhancement of saccharide properties for electronic and optic applications. In this report we illustrate the application of enzyme-bearing bacteriophage on strains of the enteric bacterium Klebsiella pneumoniae, which produces a polysaccharide with the relatively rare rheological property of drag-reduction. This has resulted in the production of new polysaccharides with enhanced rheological properties. Our laboratory is developing techniques for processing and structurally modifying bacterial polysaccharides and oligosaccharides which comprise their basic polymeric repeat units. Our research has focused on bacteriophage which produce specific polysaccharide degrading enzymes. This has lead to the development of enzymes generated by bacteriophage as tools for polysaccharide modification and purification. These enzymes were used to efficiently convert the native material to uniform-sized high molecular weight polymers, or alternatively into high-purity oligosaccharides. Enzyme-bearing bacteriophage also serve as genetic selection tools for bacteria that produce new families of polysaccharides with modified structures.

  8. D2-Thr92Ala, thyroid hormone levels and biochemical hypothyroidism in preeclampsia.

    Science.gov (United States)

    Procopciuc, Lucia Maria; Caracostea, Gabriela; Hazi, Georgeta; Nemeti, Georgiana; Stamatian, Florin

    2017-02-01

    To identify if there is a relationship between the deiodinase D2-Thr92Ala genetic variant, thyroid hormone levels and biochemical hypothyroidism in preeclampsia. We genotyped 125 women with preeclampsia and 131 normal pregnant women using PCR-RFLP. Serum thyroid hormone levels were determined using ELISA. Our study showed higher TSH and FT4 levels and lower FT3 levels in women with preeclampsia compared to normal pregnant women, with statistical significance for women with mild and severe preeclampsia. The risk to develop pregnancy-induced hypertension (PIH), mild or severe preeclampsia was increased in carriers of at least one D2-Ala92 allele. TSH and FT4 levels were significantly higher and FT3 levels were significantly lower in preeclamptic women with severe preeclampsia if they carried the D2-Ala92 allele compared to non-carriers. Pregnant women with PIH and mild preeclampsia, carriers of at least one D2-Ala92 allele, delivered at lower gestational age neonates with a lower birth weight compared to non-carriers, but the results were statistically significant only in severe preeclampsia. The D2-Thr92Ala genetic variant is associated with the severity and the obstetric outcome of preeclampsia, and it also influences thyroid hormone levels. The study demonstrates non-thyroidal biochemical hypothyroidism - as a result of deiodination effects due to D2 genotypes.

  9. GM1-gangliosidosis in American black bears: clinical, pathological, biochemical and molecular genetic characterization.

    Science.gov (United States)

    Muthupalani, Sureshkumar; Torres, Paola A; Wang, Betty C; Zeng, Bai Jin; Eaton, Samuel; Erdelyi, Ildiko; Ducore, Rebecca; Maganti, Rajanikarath; Keating, John; Perry, Bain J; Tseng, Florina S; Waliszewski, Nicole; Pokras, Mark; Causey, Robert; Seger, Rita; March, Philip; Tidwell, Amy; Pfannl, Rolf; Seyfried, Thomas; Kolodny, Edwin H; Alroy, Joseph

    2014-04-01

    G(M1)-gangliosidosis is a rare progressive neurodegenerative disorder due to an autosomal recessively inherited deficiency of lysosomal β-galactosidase. We have identified seven American black bears (Ursus americanus) found in the Northeast United States suffering from G(M1)-gangliosidosis. This report describes the clinical features, brain MRI, and morphologic, biochemical and molecular genetic findings in the affected bears. Brain lipids were compared with those in the brain of a G(M1)-mouse. The bears presented at ages 10-14 months in poor clinical condition, lethargic, tremulous and ataxic. They continued to decline and were humanely euthanized. The T(2)-weighted MR images of the brain of one bear disclosed white matter hyperintensity. Morphological studies of the brain from five of the bears revealed enlarged neurons with foamy cytoplasm containing granules. Axonal spheroids were present in white matter. Electron microscopic examination revealed lamellated membrane structures within neurons. Cytoplasmic vacuoles were found in the liver, kidneys and chondrocytes and foamy macrophages within the lungs. Acid β-galactosidase activity in cultured skin fibroblasts was only 1-2% of control values. In the brain, ganglioside-bound sialic acid was increased more than 2-fold with G(M1)-ganglioside predominating. G(A1) content was also increased whereas cerebrosides and sulfatides were markedly decreased. The distribution of gangliosides was similar to that in the G(M1)-mouse brain, but the loss of myelin lipids was greater in the brain of the affected bear than in the brain of the G(M1) mouse. Isolated full-length cDNA of the black bear GLB1 gene revealed 86% homology to its human counterpart in nucleotide sequence and 82% in amino acid sequence. GLB1 cDNA from liver tissue of an affected bear contained a homozygous recessive T(1042) to C transition inducing a Tyr348 to His mutation (Y348H) within a highly conserved region of the GLB1 gene. The coincidence of several

  10. Genetic mutations associated with status epilepticus.

    Science.gov (United States)

    Bhatnagar, M; Shorvon, S

    2015-08-01

    This paper reports the results of a preliminary search of the literature aimed at identifying the genetic mutations reported to be strongly associated with status epilepticus. Genetic mutations were selected for inclusion if status epilepticus was specifically mentioned as a consequence of the mutation in standard genetic databases or in a case report or review article. Mutations in 122 genes were identified. The genetic mutations identified were found in only rare conditions (sometimes vanishingly rare) and mostly in infants and young children with multiple other handicaps. Most of the genetic mutations can be subdivided into those associated with cortical dysplasias, inborn errors of metabolism, mitochondrial disease, or epileptic encephalopathies and childhood syndromes. There are no identified 'pure status epilepticus genes'. The range of genes underpinning status epilepticus differs in many ways from the range of genes underpinning epilepsy, which suggests that the processes underpinning status epilepticus differ from those underpinning epilepsy. It has been frequently postulated that status epilepticus is the result of a failure of 'seizure termination mechanisms', but the wide variety of genes affecting very diverse biochemical pathways identified in this survey makes any unitary cause unlikely. The genetic influences in status epilepticus are likely to involve a wide range of mechanisms, some related to development, some to cerebral energy production, some to diverse altered biochemical pathways, some to transmitter and membrane function, and some to defects in networks or systems. The fact that many of the identified genes are involved with cerebral development suggests that status epilepticus might often be a system or network phenomenon. To date, there are very few genes identified which are associated with adult-onset status epilepticus (except in those with preexisting neurological damage), and this is disappointing as the cause of many adult

  11. Sucrose accumulation in watermelon fruits: genetic variation and biochemical analysis.

    Science.gov (United States)

    Yativ, Merav; Harary, Idan; Wolf, Shmuel

    2010-05-15

    Sugar accumulation, the key process determining fruit quality, is controlled by both the translocation of sugars and their metabolism in developing fruits. Sugar composition in watermelon, as in all cucurbit fruits, includes sucrose, fructose and glucose. The proportions of these three sugars are determined primarily by three enzyme families: invertases, sucrose synthases (SuSys) and sucrose phosphate synthases (SPSs). The goal of the present research was to explore the process of sugar metabolism in watermelon fruits. Crosses between the domestic watermelon (Citrullus lanatus) and three wild species provided a wide germplasm to explore genetic variability in sugar composition and metabolism. This survey demonstrated great genetic variability in sugar content and in the proportions of sucrose, glucose and fructose in mature fruits. Genotypes accumulating high and low percentage of sucrose provided an experimental system to study sugar metabolism in developing fruits. Insoluble invertase activity was high and constant throughout fruit development in control lines and in genotypes accumulating low levels of sucrose, while in genotypes accumulating high levels of sucrose, activity declined sharply 4 weeks after pollination. Soluble acid invertase activity was significantly lower in genotypes accumulating high levels of sucrose than in low-sucrose-accumulating genotypes. Conversely, activities of SuSy and SPS were higher in the high-sucrose-accumulating genotypes. The present results establish that, within the genus Citrullus, there are genotypes that accumulate a high percentage of sucrose in the fruit, while others accumulate high percentages of glucose and fructose. The significant negative correlation between insoluble invertase activity and fruit sucrose level suggests that sucrose accumulation is affected by both phloem unloading and sugar metabolism. (c) 2009 Elsevier GmbH. All rights reserved.

  12. Clinical and Biochemical Pitfalls in the Diagnosis of Peroxisomal Disorders.

    Science.gov (United States)

    Klouwer, Femke C C; Huffnagel, Irene C; Ferdinandusse, Sacha; Waterham, Hans R; Wanders, Ronald J A; Engelen, Marc; Poll-The, Bwee Tien

    2016-08-01

    Peroxisomal disorders are a heterogeneous group of genetic metabolic disorders, caused by a defect in peroxisome biogenesis or a deficiency of a single peroxisomal enzyme. The peroxisomal disorders include the Zellweger spectrum disorders, the rhizomelic chondrodysplasia punctata spectrum disorders, X-linked adrenoleukodystrophy, and multiple single enzyme deficiencies. There are several core phenotypes caused by peroxisomal dysfunction that clinicians can recognize. The diagnosis is suggested by biochemical testing in blood and urine and confirmed by functional assays in cultured skin fibroblasts, followed by mutation analysis. This review describes the phenotype of the main peroxisomal disorders and possible pitfalls in (laboratory) diagnosis to aid clinicians in the recognition of this group of diseases. Georg Thieme Verlag KG Stuttgart · New York.

  13. Clinical and genetic examinations of children with one parent whose gonads were therapeutically irradiated before conception

    International Nuclear Information System (INIS)

    Neumeister, K.; Herrmann, T.; Koelling, H.L.; Oelssner, W.; Schoeneich, R.

    1978-01-01

    A systematic program for investigating genetic radiation hazards is outlined. The program is aimed at obtaining clinical, genetic and biochemical data on children with one parent whose gonads were exposed to therapeutic radiation before conception. First results obtained show that there is no contraindication against radiotherapy. However, it is recommended to consult a geneticist in such cases. (author)

  14. Seed Biochemical Analysis Based Profiling of Diverse Wheat Genetic Resource from Pakistan

    Science.gov (United States)

    Khalid, Anam; Hameed, Amjad

    2017-01-01

    Wheat is the major nutrient source worldwide. In Pakistan, it has a crucial place in agriculture as well as in national economy. For seed biochemical compositional analysis, wheat germplasm (77 genotypes) was collected from different agro-climatic zones of Pakistan. Significant variation (p sugar was found in Saleem-2000 (29.86 mg/g s. wt.), reducing sugars in Punjab-96 (12.68 mg/g s. wt.), non-reducing sugars in Saleem-2000 (27.33 mg/g s. wt.). However, highest albumins was identified in TC-4928 (352.89 mg/g s. wt.) and globulins in MEXI PAK (252.67 mg/g s. wt.), salt soluble proteins in Faisalabad-2008 (162.44 mg/g s. wt.), and total soluble proteins in Punjab-96 (487.33 mg/g s. wt.) indicating good quality of wheat genotypes as well as good nutritional status. Genotypes which have been ranked high in respective parameter can be employed in breeding to enhance the nutritional quality of wheat. PMID:28775731

  15. Biochemical genetics of the circadian rhythm in Neurospora crassa: studies on the cel strain

    International Nuclear Information System (INIS)

    Lakin-Thomas, P.L.

    1985-01-01

    In Neurospora crassa, the cel mutation lengthens the period of the circadian rhythm when the medium is supplemented with linoleic acid (18:2). Double mutant strains were constructed between cel and the clock mutants prd-1 and four alleles at the frq locus. It was found that: (1) the effect of 18:2 on cel was blocked by prd-1, i.e., prd-1 is epistatic to cel. (2) cel and frq interact such that the percent increase in the period produced by 18:2 was inversely proportional to the period of the frq parent. (3) Data from the literature on period effects in double mutant strains support a multiplicative rather than an additive model. A biochemical interpretation of these interactions is discussed, based on the control of flux through metabolic pathways. Because the cel strain is known to be deficient in the pantothenate derivative normally attached to the fatty acid synthetase (FAS) complex, the possibility that cel may affect other pantothenate-modified proteins was investigated. It was found that in the cel + strain, five proteins of molecular weights (M/sub r/) 9000, 19,000, 22,000, 140,000, and 200,000 were labelled with [ 14 C]pantothenate. In the cel strain, only the 200 k (FAS) label was reduced in amount. Therefore, there is no evidence that cel affects circadian rhythmicity through any deficiency other than FAS. A biochemical model for circadian rhythmicity in Neurospora is presented. Oscillations in cytoplasmic and mitochondrial Ca 2+ are proposed; clock mutations are postulated to affect Ca 2+ transporters and the mitochondrial membrane; and phase-shifting effects are accounted for by changes in Ca 2+ or ATP levels

  16. Biochemical and genetic analyses of the oomycete Pythium insidiosum provide new insights into clinical identification and urease-based evolution of metabolism-related traits

    Directory of Open Access Journals (Sweden)

    Theerapong Krajaejun

    2018-06-01

    Full Text Available The oomycete microorganism, Pythium insidiosum, causes the life-threatening infectious condition, pythiosis, in humans and animals worldwide. Affected individuals typically endure surgical removal of the infected organ(s. Detection of P. insidiosum by the established microbiological, immunological, or molecular methods is not feasible in non-reference laboratories, resulting in delayed diagnosis. Biochemical assays have been used to characterize P. insidiosum, some of which could aid in the clinical identification of this organism. Although hydrolysis of maltose and sucrose has been proposed as the key biochemical feature useful in discriminating P. insidiosum from other oomycetes and fungi, this technique requires a more rigorous evaluation involving a wider selection of P. insidiosum strains. Here, we evaluated 10 routinely available biochemical assays for characterization of 26 P. insidiosum strains, isolated from different hosts and geographic origins. Initial assessment revealed diverse biochemical characteristics across the P. insidiosum strains tested. Failure to hydrolyze sugars is observed, especially in slow-growing strains. Because hydrolysis of maltose and sucrose varied among different strains, use of the biochemical assays for identification of P. insidiosum should be cautioned. The ability of P. insidiosum to hydrolyze urea is our focus, because this metabolic process relies on the enzyme urease, an important virulence factor of other pathogens. The ability to hydrolyze urea varied among P. insidiosum strains and was not associated with growth rates. Genome analyses demonstrated that urease- and urease accessory protein-encoding genes are present in both urea-hydrolyzing and non-urea-hydrolyzing strains of P. insidiosum. Urease genes are phylogenetically conserved in P. insidiosum and related oomycetes, while the presence of urease accessory protein-encoding genes is markedly diverse in these organisms. In summary, we dissected

  17. The Role of Cumulative Genetic Defeats in NF1 Tumorigenesis

    Science.gov (United States)

    2000-10-01

    without LOH of the NF1 tumors’ slow and limited growth, and lack of gene. Biochem Biophys Res Comm 234:346-350. Decker H-JH, Cannizzaro LA, Mendez MJ, Leong... Caro - lina; and the 4 Department of Pediatrics, Division of Genetics, University of Florida, Gaines- Center, Durham. ville, Florida L. Messiaen

  18. Structural and Biochemical Studies of LysM Proteins

    DEFF Research Database (Denmark)

    Wong, Mei Mei Jaslyn Elizabeth

    2017-01-01

    . Most of the signalling components in the Nod factor signalling pathway have been identified through genetic approaches. The current symbiosis signalling model, however, lacks components that could link Nod factor perception at the plasma membrane to downstream responses, such as calcium influx and perinuclear calcium...... involved in peptidoglycan hydrolysis; the Cell Wall Lytic enzyme associated with cell Separation (CwlS) from Bacillus subtilis, and P60_Tth from Thermus thermopiles. Biochemical studies conducted on purified CwlS showed that multiple LysM modules function cooperatively to bind N-acetylglucosamine (NAG......-induced intermolecular dimerization was observed in the co-crystal structure of P60_2LysM and NAG6. Until today, this is the only structural evidence illustrating intermolecular dimerization of LysM proteins. Intermolecular dimerization of plant LysM receptor kinases (RK) has been proposed as a mechanism...

  19. Biochemical Network Stochastic Simulator (BioNetS: software for stochastic modeling of biochemical networks

    Directory of Open Access Journals (Sweden)

    Elston Timothy C

    2004-03-01

    Full Text Available Abstract Background Intrinsic fluctuations due to the stochastic nature of biochemical reactions can have large effects on the response of biochemical networks. This is particularly true for pathways that involve transcriptional regulation, where generally there are two copies of each gene and the number of messenger RNA (mRNA molecules can be small. Therefore, there is a need for computational tools for developing and investigating stochastic models of biochemical networks. Results We have developed the software package Biochemical Network Stochastic Simulator (BioNetS for efficientlyand accurately simulating stochastic models of biochemical networks. BioNetS has a graphical user interface that allows models to be entered in a straightforward manner, and allows the user to specify the type of random variable (discrete or continuous for each chemical species in the network. The discrete variables are simulated using an efficient implementation of the Gillespie algorithm. For the continuous random variables, BioNetS constructs and numerically solvesthe appropriate chemical Langevin equations. The software package has been developed to scale efficiently with network size, thereby allowing large systems to be studied. BioNetS runs as a BioSpice agent and can be downloaded from http://www.biospice.org. BioNetS also can be run as a stand alone package. All the required files are accessible from http://x.amath.unc.edu/BioNetS. Conclusions We have developed BioNetS to be a reliable tool for studying the stochastic dynamics of large biochemical networks. Important features of BioNetS are its ability to handle hybrid models that consist of both continuous and discrete random variables and its ability to model cell growth and division. We have verified the accuracy and efficiency of the numerical methods by considering several test systems.

  20. Arabidopsis and the Genetic Potential for the Phytoremediation of Toxic Elemental and Organic Pollutants

    OpenAIRE

    Cobbett, Christopher S.; Meagher, Richard B.

    2002-01-01

    In a process called phytoremediation, plants can be used to extract, detoxify, and/or sequester toxic pollutants from soil, water, and air. Phytoremediation may become an essential tool in cleaning the environment and reducing human and animal exposure to potential carcinogens and other toxins. Arabidopsis has provided useful information about the genetic, physiological, and biochemical mechanisms behind phytoremediation, and it is an excellent model genetic organism to test foreign gene expr...

  1. Identifying Breeding Priorities for Blueberry Flavor Using Biochemical, Sensory, and Genotype by Environment Analyses.

    Science.gov (United States)

    Gilbert, Jessica L; Guthart, Matthew J; Gezan, Salvador A; Pisaroglo de Carvalho, Melissa; Schwieterman, Michael L; Colquhoun, Thomas A; Bartoshuk, Linda M; Sims, Charles A; Clark, David G; Olmstead, James W

    2015-01-01

    Breeding for a subjective goal such as flavor is challenging, as many blueberry cultivars are grown worldwide, and identifying breeding targets relating to blueberry flavor biochemistry that have a high degree of genetic control and low environmental variability are priorities. A variety of biochemical compounds and physical characters induce the sensory responses of taste, olfaction, and somatosensation, all of which interact to create what is perceived flavor. The goal of this study was to identify the flavor compounds with a larger genetic versus environmental component regulating their expression over an array of cultivars, locations, and years. Over the course of three years, consumer panelists rated overall liking, texture, sweetness, sourness, and flavor intensity of 19 southern highbush blueberry (Vaccinium corymbosum hybrids) genotypes in 30 sensory panels. Significant positive correlations to overall liking of blueberry fruit (Pblueberry sensory components, and many of the compounds affecting consumer favor of blueberries, such as fructose, pH, β-caryophyllene oxide and 2-heptanone, were sufficiently genetically controlled that allocating resources for their breeding is worthwhile.

  2. Information transmission in genetic regulatory networks: a review

    International Nuclear Information System (INIS)

    Tkacik, Gasper; Walczak, Aleksandra M

    2011-01-01

    Genetic regulatory networks enable cells to respond to changes in internal and external conditions by dynamically coordinating their gene expression profiles. Our ability to make quantitative measurements in these biochemical circuits has deepened our understanding of what kinds of computations genetic regulatory networks can perform, and with what reliability. These advances have motivated researchers to look for connections between the architecture and function of genetic regulatory networks. Transmitting information between a network's inputs and outputs has been proposed as one such possible measure of function, relevant in certain biological contexts. Here we summarize recent developments in the application of information theory to gene regulatory networks. We first review basic concepts in information theory necessary for understanding recent work. We then discuss the functional complexity of gene regulation, which arises from the molecular nature of the regulatory interactions. We end by reviewing some experiments that support the view that genetic networks responsible for early development of multicellular organisms might be maximizing transmitted 'positional information'. (topical review)

  3. Partial response to biotin therapy in a patient with holocarboxylase synthetase deficiency: clinical, biochemical, and molecular genetic aspects

    NARCIS (Netherlands)

    Santer, R.; Muhle, H.; Suormala, T.; Baumgartner, E. R.; Duran, M.; Yang, X.; Aoki, Y.; Suzuki, Y.; Stephani, U.

    2003-01-01

    We report the clinical course and biochemical findings of a 10-year-old, mentally retarded girl with late-onset holocarboxylase synthetase (HCS, gene symbol HLCS) deficiency and only partial response to biotin. On treatment, even with an unusually high dose of 200mg/day, activities of the

  4. Potential genetic polymorphisms predicting polycystic ovary syndrome

    Directory of Open Access Journals (Sweden)

    Yao Chen

    2018-05-01

    Full Text Available Polycystic ovary syndrome (PCOS is a heterogenous endocrine disorder with typical symptoms of oligomenorrhoea, hyperandrogenism, hirsutism, obesity, insulin resistance and increased risk of type 2 diabetes mellitus. Extensive evidence indicates that PCOS is a genetic disease and numerous biochemical pathways have been linked with its pathogenesis. A number of genes from these pathways have been investigated, which include those involved with steroid hormone biosynthesis and metabolism, action of gonadotropin and gonadal hormones, folliculogenesis, obesity and energy regulation, insulin secretion and action and many others. In this review, we summarize the historical and recent findings in genetic polymorphisms of PCOS from the relevant publications and outline some genetic polymorphisms that are potentially associated with the risk of PCOS. This information could uncover candidate genes associating with PCOS, which will be valuable for the development of novel diagnostic and treatment platforms for PCOS patients.

  5. Clinical and genetic spectrum in limb-girdle muscular dystrophy type 2E

    DEFF Research Database (Denmark)

    Semplicini, Claudio; Vissing, John; Dahlqvist, Julia R

    2015-01-01

    OBJECTIVE: To determine the clinical spectrum of limb-girdle muscular dystrophy 2E (LGMD2E) and to investigate whether genetic or biochemical features can predict the phenotype of the disease. METHODS: All LGMD2E patients followed in participating centers were included. A specific clinical protoc...

  6. Erosion of Brassica incana Genetic Resources: Causes and Effects

    Science.gov (United States)

    Muscolo, A.; Settineri, G.; Mallamaci, C.; Papalia, T.; Sidari, M.

    2017-07-01

    Brassica incana Ten., possessing a number of useful agronomic traits, represents a precious genetic resource to be used in plant breeding programs to broaden the genetic base in most Brassica crop species. B. incana that grows on limestone cliffs is at risk of genetic erosion for environmental constraints and human activities. We studied the pedological conditions of a Calabrian site where the B. incana grows, and we correlated the soil properties to the physiological and biochemical aspects of B. incana to identify the causes and effects of the genetic erosion of this species. Our results evidenced that physical soil conditions did not affect B. incana growth and nutraceutical properties; conversely, biological soil properties modified its properties. We identified leaf pigments and secondary metabolites that can be used routinely as early warning indicators of plant threat, to evaluate in a short term the dynamic behavior of plants leading to species extinction.

  7. Computing molecular fluctuations in biochemical reaction systems based on a mechanistic, statistical theory of irreversible processes.

    Science.gov (United States)

    Kulasiri, Don

    2011-01-01

    We discuss the quantification of molecular fluctuations in the biochemical reaction systems within the context of intracellular processes associated with gene expression. We take the molecular reactions pertaining to circadian rhythms to develop models of molecular fluctuations in this chapter. There are a significant number of studies on stochastic fluctuations in intracellular genetic regulatory networks based on single cell-level experiments. In order to understand the fluctuations associated with the gene expression in circadian rhythm networks, it is important to model the interactions of transcriptional factors with the E-boxes in the promoter regions of some of the genes. The pertinent aspects of a near-equilibrium theory that would integrate the thermodynamical and particle dynamic characteristics of intracellular molecular fluctuations would be discussed, and the theory is extended by using the theory of stochastic differential equations. We then model the fluctuations associated with the promoter regions using general mathematical settings. We implemented ubiquitous Gillespie's algorithms, which are used to simulate stochasticity in biochemical networks, for each of the motifs. Both the theory and the Gillespie's algorithms gave the same results in terms of the time evolution of means and variances of molecular numbers. As biochemical reactions occur far away from equilibrium-hence the use of the Gillespie algorithm-these results suggest that the near-equilibrium theory should be a good approximation for some of the biochemical reactions. © 2011 Elsevier Inc. All rights reserved.

  8. Genetic Differences Between Humans and Great Apes -- Implications for the Evolution of Humans

    Science.gov (United States)

    Varki, Ajit

    2004-06-01

    At the level of individual protein sequences, humans are 97-100% identical to the great apes, our closest evolutionary relatives. The evolution of humans (and of human intelligence) from a common ancestor with the chimpanzee and bonobo involved many steps, influenced by interactions amongst factors of genetic, developmental, ecological, microbial, climatic, behavioral, cultural and social origin. The genetic factors can be approached by direct comparisons of human and great ape genomes, genes and gene products, and by elucidating biochemical and biological consequences of any differences found. We have discovered multiple genetic and biochemical differences between humans and great apes, particularly with respect to a family of cell surface molecules called sialic acids, as well as in the metabolism of thyroid hormones. The hormone differences have potential consequences for human brain development. The differences in sialic acid biology have multiple implications for the human condition, ranging from susceptibility or resistance to microbial pathogens, effects on endogenous receptors in the immune system, and potential effects on placental signaling, expression of oncofetal antigens in cancers, consequences of dietary intake of animal foods, and development of the mammalian brain.

  9. [The muzzle and biochemical genetic markers as supplementary breed characteristics in cattle].

    Science.gov (United States)

    Tarasiuk, S I; Glazko, V I; Trofimenko, A L

    1997-01-01

    The comparative analysis of characteristics of three different cattle breeds (Brown Carpathian, Pinzgauer, Red Polish) on the 5 molecular-genetic markers and 5 muzzle dermatoglyphic types was carried out. It was indicated, that one characteristic can not be use as a breed-specific one but only their complex. The main aspect of search of this complex is the use of characteristics which mark different structure-functional systems of whole organism.

  10. Comparative analysis of phenotypes features in two common genetic variants of limb-girdle muscular dystrophy

    Directory of Open Access Journals (Sweden)

    I. V. Sharkova

    2015-01-01

    Full Text Available The algorithm of differential diagnosis of the two most common genetic variants the limb-girdle muscular dystrophy (LGMD2A and DMD, developed on the basis of a comprehensive survey of 85 patients with a diagnosis specification using techniques of DNA analysis. It is shown that the accurate diagnosis of LGMD genetic types should be based on the results of the clinical and genealogical, biochemical and molecular genetic analysis. The proposed algorithm will significantly reduces the economic and time costs with expensive DNA testing.

  11. Development of a genetic sexing mechanism in the Mediterranean fruit fly Ceratitis capitata for isolation of males in the egg or neonatal larval stage. Coordinated programme on development of sexing mechanisms in fruit flies through manipulation of radiation induced conditional lethals and other genetic measures

    International Nuclear Information System (INIS)

    Milani, R.

    1984-05-01

    The use of biochemical markers has allowed a sufficiently detailed evaluation of the genetic variability of the medfly; it has also fostered significant progress in the field of formal genetics. Chromosomal examinations have provided clues for interpreting genetical aspects of sex determination and of occasional recombination of linked factors in heterozygous males. The results obtained are considered a reliable basis for rewarding progress both in basic research and in applied programs

  12. RMBNToolbox: random models for biochemical networks

    Directory of Open Access Journals (Sweden)

    Niemi Jari

    2007-05-01

    Full Text Available Abstract Background There is an increasing interest to model biochemical and cell biological networks, as well as to the computational analysis of these models. The development of analysis methodologies and related software is rapid in the field. However, the number of available models is still relatively small and the model sizes remain limited. The lack of kinetic information is usually the limiting factor for the construction of detailed simulation models. Results We present a computational toolbox for generating random biochemical network models which mimic real biochemical networks. The toolbox is called Random Models for Biochemical Networks. The toolbox works in the Matlab environment, and it makes it possible to generate various network structures, stoichiometries, kinetic laws for reactions, and parameters therein. The generation can be based on statistical rules and distributions, and more detailed information of real biochemical networks can be used in situations where it is known. The toolbox can be easily extended. The resulting network models can be exported in the format of Systems Biology Markup Language. Conclusion While more information is accumulating on biochemical networks, random networks can be used as an intermediate step towards their better understanding. Random networks make it possible to study the effects of various network characteristics to the overall behavior of the network. Moreover, the construction of artificial network models provides the ground truth data needed in the validation of various computational methods in the fields of parameter estimation and data analysis.

  13. [Physiological and biochemical characteristics and capacity for polyhydroxyalkanoates synthesis in a glucose-utilizing strain of hydrogen-oxidizing bacteria, Ralstonia eutropha B8562].

    Science.gov (United States)

    Volova, T G; Kozhevnikov, I V; Dolgopolova, Iu B; Trusova, M Iu; Kalacheva, G S; Aref'eva, Iu V

    2005-01-01

    The physiological, biochemical, genetic, and cultural characteristics of the glucose-utilizing mutant strain Ralstonia eutropha B8562 were investigated in comparison with the parent strain R. eutropha B5786. The morphological, cultural, and biochemical characteristics of strain R. eutropha B8562 were similar to those of strain R. eutropha B5786. Genetic analysis revealed differences between the 16S rRNA gene sequences of these strains. The growth characteristics of the mutant using glucose as the sole carbon and energy source were comparable with those of the parent strain grown on fructose. Strain B8562 was characterized by high yields of polyhydroxyalkanoate (PHA) from different carbon sources (CO2, fructose, and glucose). In batch culture with glucose under nitrogen limitation, PHA accumulation reached 90% of dry weight. In PHA, beta-hydroxybutyrate was predominant (over 99 mol %); beta-hydroxyvalerate (0.25-0.72 mol %) and beta-hydroxyhexanoate (0.008-1.5 mol %) were present as minor components. The strain has prospects as a PHA producer on glucose-containing media.

  14. Phenotypic, genetic and molecular characterization of a maize low phytic acid mutant (lpa241)

    DEFF Research Database (Denmark)

    Pilu, R.; Panzeri, D.; Gavazzi, G.

    2003-01-01

    -nutritional factor for animals, and isolation of maize low phytic acid (lpa) mutants provides a novel approach to study its biochemical pathway and to tackle the nutritional problems associated with it. Following chemical mutagenesis of pollen, we have isolated a viable recessive mutant named lpa 241 showing about...... 90% reduction of phytic acid and about a tenfold increase in seed-free phosphate content. Although germination rate was decreased by about 30% compared to wild-type, developement of mutant plants was apparentely unaffected. The results of the genetic, biochemical and molecular characterization...

  15. Potential biochemical markers for selection of disease resistance in Vigna radiata

    International Nuclear Information System (INIS)

    Badere, R.S.; Koche, D.K.; Choudhary, A.D.; Pawar, S.E.

    2001-01-01

    The Vigna radiata (L.) Wilczek (Green gram), a major pulse crop is prone to damaging diseases caused by Erysiphe polygoni, Cercospora canescens and Rhizoctonia sp. Therefore, the development of multiple resistance is a major breeding objective in green gram. Resistance to powdery mildew has already been developed, however, there are no reports on the development of resistance to Cercospora in green gram. Owing to limitation of conventional screening methods, the improvement for multiple disease resistance is inadequate, in this crop. It needs an efficient and quick selection method, for screening the plant population at an early stage. It is well established that the resistant interaction, in plants, involves accumulation of antibiotic compound phytoalexin (Genestein in Vigna radiata) and induction of enzymes such as β-1,3 gulcanase and Chitinases. These compounds are not only induced by pathogens but also pathogen-derived elicitors. These biochemical compounds can be used as resistance indicative biochemical markers for screening the natural or mutagen induced genetic diversity in populations of Vigna radiata in non-destructive manner. It, however, needs a systematic study of plant defense response. This paper deals with the response of resistant and susceptible cultivars of vigna radiata to Cercospora elicitor and development of non-destructive selection method for disease resistance. (author)

  16. Genetic Diversity in Natural Populations of New World Leishmania

    Directory of Open Access Journals (Sweden)

    Cupolillo Elisa

    1998-01-01

    Full Text Available Our results have shown the wide diversity of parasites within New World Leishmania. Biochemical and molecular characterization of species within the genus has revealed that much of the population heterogeneity has a genetic basis. The source of genetic diversity among Leishmania appears to arise from predominantly asexual, clonal reproduction, although occasional bouts of sexual reproduction can not be ruled out. Genetic variation is extensive with some clones widely distributed and others seemingly unique and localized to a particular endemic focus. Epidemiological studies of leishmaniasis has been directed to the ecology and dynamics of transmission of Leishmania species/variants, particularly in localized areas. Future research using molecular techniques should aim to identify and follow Leishmania types in nature and correlate genetic typing with important clinical characteristics such as virulence, pathogenicity, drug resistance and antigenic variation. The epidemiological significance of such variation not only has important implications for the control of the leishmaniases, but would also help to elucidate the evolutionary biology of the causative agents.

  17. Morphological, biochemical and genetic influence of mutagen treatments on medicinal plant tissue cultures

    International Nuclear Information System (INIS)

    Onisei, T.; Toth, E.; Tesio, B.; Floria, F.

    1994-01-01

    Gamma rays and/or alkylant agents have been applied on callus tissue, young regenerants and cell suspension in order to establish their effect on morphogenesis, regeneration ability and biosynthetic potential. Growth dynamics, morpho-anatomic variables, secondary metabolite production, cell cytogenetics, enzyme specific activities, isoperoxidase and isoesterase patterns were analyzed in relation to the morphogenetic response of Atropa belladonna, Datura innoxia, Lavandula angustifolia, Chamomilla recutita, Digitalis lanata and Vinca minor tissue cultures. The effects of gamma-ray doses varied from one species to another; 10 to 20 Gy were generally able to stimulate growth and plant regeneration (via organogenesis and somatic embryogenesis), while 10 to 50 Gy enhanced secondary metabolite biosynthesis both in callus and cell suspension culture. Semnificative increase of secondary metabolite production was obtained when treatments with EMS (0.1-0.2%) have been applied to young regenerants. Many differences in biological features and biochemical behaviour were registered 20 days and one year, respectively, after treatment. (author)

  18. The clinical, biochemical and genetic features associated with RMND1-related mitochondrial disease

    Czech Academy of Sciences Publication Activity Database

    Ng, Y. S.; Alston, Ch. L.; Diodato, D.; Morris, A. A.; Ulrick, N.; Kmoch, S.; Houštěk, Josef; Martinelli, D.; Haghighi, A.; Atiq, M.; Gamero, M. A.; Garcia-Martinez, E.; Kratochvílová, H.; Santra, S.; Brown, R. M.; Brown, G. K.; Ragge, N.; Monavari, A.; Pysden, K.; Ravn, K.; Casey, J. P.; Khan, A.; Chakrapani, A.; Vassallo, G.; Simons, C.; McKeever, K.; O´Sullivan, S.; Childs, A.-M.; Ostergaard, E.; Vanderver, A.; Goldstein, A.; Vogt, J.; Taylor, R. W.; McFarland, R.

    2016-01-01

    Roč. 53, č. 11 (2016), s. 768-775 ISSN 0022-2593 R&D Projects: GA ČR(CZ) GB14-36804G Institutional support: RVO:67985823 Keywords : congenital sensorineural deafness * lactic acidosis * mitochondrial respiratory chain deficiencies * prognosis * renal disease Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 5.451, year: 2016

  19. Improving Marine Ecosystem Models with Biochemical Tracers

    Science.gov (United States)

    Pethybridge, Heidi R.; Choy, C. Anela; Polovina, Jeffrey J.; Fulton, Elizabeth A.

    2018-01-01

    Empirical data on food web dynamics and predator-prey interactions underpin ecosystem models, which are increasingly used to support strategic management of marine resources. These data have traditionally derived from stomach content analysis, but new and complementary forms of ecological data are increasingly available from biochemical tracer techniques. Extensive opportunities exist to improve the empirical robustness of ecosystem models through the incorporation of biochemical tracer data and derived indices, an area that is rapidly expanding because of advances in analytical developments and sophisticated statistical techniques. Here, we explore the trophic information required by ecosystem model frameworks (species, individual, and size based) and match them to the most commonly used biochemical tracers (bulk tissue and compound-specific stable isotopes, fatty acids, and trace elements). Key quantitative parameters derived from biochemical tracers include estimates of diet composition, niche width, and trophic position. Biochemical tracers also provide powerful insight into the spatial and temporal variability of food web structure and the characterization of dominant basal and microbial food web groups. A major challenge in incorporating biochemical tracer data into ecosystem models is scale and data type mismatches, which can be overcome with greater knowledge exchange and numerical approaches that transform, integrate, and visualize data.

  20. Biochemical and genetical analysis reveal a new clade of biovar 3 Dickeya spp. strains isolated from potato in Europe

    NARCIS (Netherlands)

    Slawiak, M.; Beckhoven, van J.R.C.M.; Speksnijder, A.G.C.L.; Czajkowski, R.L.; Grabe, G.; Wolf, van der J.M.

    2009-01-01

    Sixty-five potato strains of the soft rot-causing plant pathogenic bacterium Dickeya spp., and two strains from hyacinth, were characterised using biochemical assays, REP-PCR genomic finger printing, 16S rDNA and dnaX sequence analysis. These methods were compared with nineteen strains representing

  1. Genetic, histochemical and biochemical studies on goat TSE cases from Cyprus.

    Science.gov (United States)

    Niedermeyer, Susanne; Eiden, Martin; Toumazos, Pavlos; Papasavva-Stylianou, Penelope; Ioannou, Ioannis; Sklaviadis, Theodoros; Panagiotidis, Cynthia; Langeveld, Jan; Bossers, Alex; Kuczius, Thorsten; Kaatz, Martin; Groschup, Martin H; Fast, Christine

    2016-10-06

    Scrapie and bovine spongiform encephalopathy (BSE) are transmissible spongiform encephalopathies (TSE's) affecting sheep and goats. Susceptibility of goats to scrapie is influenced by polymorphisms of the prion protein gene (PRNP) of the host. Five polymorphisms are associated with reduced susceptibility to TSE's. In the study presented here caprine samples from a scrapie eradication program on Cyprus were genotyped and further characterized using BioRad TeSeE rapid test, histological, immunohistochemical and biochemical methods. In total 42 goats from 20 flocks were necropsied from which 25 goats showed a positive result in the rapid test, a spongiform encephalopathy and an accumulation of pathological prion protein (PrP Sc ) in the obex. PrP Sc deposits were demonstrated in the placenta, peripheral nervous and lymphoreticular system. Two animals showed PrP Sc -accumulations in peripheral tissues only. By discriminatory immunoblots a scrapie infection could be confirmed for all cases. Nevertheless, slight deviations in the glycosylation pattern might indicate the presence of different scrapie strains. Furthermore scrapie samples from goats in the current study demonstrated less long term resistance to proteinase K than ovine or caprine BSE control samples. Reduced scrapie susceptibility according to the PRNP genotype was demonstrated (Fishers Exact test, p goats with at least one polymorphism (p = 0.023) at the six codons examined and in particular for those with polymorphisms at codon 146 (p = 0.016). This work characterizes scrapie in goats having implications for breeding and surveillance strategies.

  2. Simulation studies in biochemical signaling and enzyme reactions

    Science.gov (United States)

    Nelatury, Sudarshan R.; Vagula, Mary C.

    2014-06-01

    Biochemical pathways characterize various biochemical reaction schemes that involve a set of species and the manner in which they are connected. Determination of schematics that represent these pathways is an important task in understanding metabolism and signal transduction. Examples of these Pathways are: DNA and protein synthesis, and production of several macro-molecules essential for cell survival. A sustained feedback mechanism arises in gene expression and production of mRNA that lead to protein synthesis if the protein so synthesized serves as a transcription factor and becomes a repressor of the gene expression. The cellular regulations are carried out through biochemical networks consisting of reactions and regulatory proteins. Systems biology is a relatively new area that attempts to describe the biochemical pathways analytically and develop reliable mathematical models for the pathways. A complete understanding of chemical reaction kinetics is prohibitively hard thanks to the nonlinear and highly complex mechanisms that regulate protein formation, but attempting to numerically solve some of the governing differential equations seems to offer significant insight about their biochemical picture. To validate these models, one can perform simple experiments in the lab. This paper introduces fundamental ideas in biochemical signaling and attempts to take first steps into the understanding of biochemical oscillations. Initially, the two-pool model of calcium is used to describe the dynamics behind the oscillations. Later we present some elementary results showing biochemical oscillations arising from solving differential equations of Elowitz and Leibler using MATLAB software.

  3. Genetic variations in marine natural population - Measurement and utility in resource management and conservation: A review

    Digital Repository Service at National Institute of Oceanography (India)

    Menezes, M.R.; Parulekar, A.H.

    A number of molecular and biochemical tools which can be applied to the identification of species and the detection of genetic variation within species have been developed in recent years. All these methods rely on the ability to distinguish between...

  4. Inverse problem studies of biochemical systems with structure identification of S-systems by embedding training functions in a genetic algorithm.

    Science.gov (United States)

    Sarode, Ketan Dinkar; Kumar, V Ravi; Kulkarni, B D

    2016-05-01

    An efficient inverse problem approach for parameter estimation, state and structure identification from dynamic data by embedding training functions in a genetic algorithm methodology (ETFGA) is proposed for nonlinear dynamical biosystems using S-system canonical models. Use of multiple shooting and decomposition approach as training functions has been shown for handling of noisy datasets and computational efficiency in studying the inverse problem. The advantages of the methodology are brought out systematically by studying it for three biochemical model systems of interest. By studying a small-scale gene regulatory system described by a S-system model, the first example demonstrates the use of ETFGA for the multifold aims of the inverse problem. The estimation of a large number of parameters with simultaneous state and network identification is shown by training a generalized S-system canonical model with noisy datasets. The results of this study bring out the superior performance of ETFGA on comparison with other metaheuristic approaches. The second example studies the regulation of cAMP oscillations in Dictyostelium cells now assuming limited availability of noisy data. Here, flexibility of the approach to incorporate partial system information in the identification process is shown and its effect on accuracy and predictive ability of the estimated model are studied. The third example studies the phenomenological toy model of the regulation of circadian oscillations in Drosophila that follows rate laws different from S-system power-law. For the limited noisy data, using a priori information about properties of the system, we could estimate an alternate S-system model that showed robust oscillatory behavior with predictive abilities. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. [Subchronic toxicity test of genetically modified rice with double antisense starch-branching enzyme gene].

    Science.gov (United States)

    Li, Min; Piao, Jianhua; Yang, Xiaoguang

    2010-07-01

    To observe the sub-chronic toxic effects of the genetically modified rice with double antisense SBE gene. Based on gender and weight, weanling Wistar rats were randomly sorted into five groups: non-genetically modified rice group (group A), genetically modified rice group (group B), half genetically modified rice group (group C), quarter genetically modified rice group (group D) and AIN-93G normal diet group (group E). Indicators were the followings: body weight, food consumption, blood routine, blood biochemical test, organ weight, bone density and pathological examination of organs. At the middle of the experiment, the percentage of monocyte of female group B was less than that of group E (P 0.05), and no notable abnormity in the pathological examination of main organs (P > 0.05). There were no enough evidence to confirm the sub-chronic toxicity of genetically modified rice on rats.

  6. Genetic variability in five species of Anostomidae (Ostariophysi - Characiformes

    Directory of Open Access Journals (Sweden)

    Chiari Lucimara

    1999-01-01

    Full Text Available Genetic variability was studied in five fish species (Anostomidae: Schizodon intermedius and S. nasutus and Leporinus friderici, L. elongatus and L. obtusidens, collected at one location on the Tibagi River (Paraná, Brazil. The protein data from seven systems coded collectively for 19 loci in the liver, muscle and heart. Nine of these loci were polymorphic. The estimated proportion of polymorphism loci ( varied from 16.7% in S. intermedius to 36.9% in L. friderici; the mean heterozygosity observed (o was 0.027 ± 0.015 and 0.109 ± 0.042, respectively. The estimated value of the genetic identity among L. friderici and S. intermedius (0.749 and S. nasutus (0.787 suggested that these are "congeneric" species. Morphological characteristics indicate that these species belong to distinct genera, while isoenzymatic data show that they are very similar at the genetic/biochemical level.

  7. Complexity of generic biochemical circuits: topology versus strength of interactions

    Science.gov (United States)

    Tikhonov, Mikhail; Bialek, William

    2016-12-01

    The historical focus on network topology as a determinant of biological function is still largely maintained today, illustrated by the rise of structure-only approaches to network analysis. However, biochemical circuits and genetic regulatory networks are defined both by their topology and by a multitude of continuously adjustable parameters, such as the strength of interactions between nodes, also recognized as important. Here we present a class of simple perceptron-based Boolean models within which comparing the relative importance of topology versus interaction strengths becomes a quantitatively well-posed problem. We quantify the intuition that for generic networks, optimization of interaction strengths is a crucial ingredient of achieving high complexity, defined here as the number of fixed points the network can accommodate. We propose a new methodology for characterizing the relative role of parameter optimization for topologies of a given class.

  8. Genetic variations of robinia pseudoacacia plant using sds-page

    International Nuclear Information System (INIS)

    Zahoor, M.; Islam, N. U.; Nisar, M.

    2015-01-01

    The biochemical analysis using SDS-PAGE has great contribution for the estimation of genetic diversity. We estimated the genetic diversity of R. pseudoacacia germ plasm protein. A total of 19 varieties were collected from different areas of Dir lower were investigated for the level of genetic divergence and genetic linkages. The total germ plasm grouped were separated at 20 percentage distance into two linkages based on Euclidean distances the 19 cultivars were further divide at 45 percentage distance into three clusters, cluster 1, cluster 2 and cluster 3. Cluster 1 was comprised of Munda 3, Munda 4, Talash 2 and UOM 1. Cluster 2 was comprised of Maidan 1 and Gulabad 1. Cluster 3 was comprised Maidan 2, UOM 3, Talash 1, Maidan 4, Maidan 3, Gulabad 2, Gulabad 3 and Gulabad 4. A total of range 00 percentage to 88 percentage variation recoded among 19 varieties. The result obtained after SDS-PAGE were computed for the construction of phylogenetic diversity, geographic relationship, Euclidian distance, genetic distance and linkage distance. This plant show a lot of variation in germ plasmic level. It is concluded that it is possible to improve and produce new varieties of this plant. (author)

  9. [An Efficient Method for Genetic Certification of Bacillus subtilis strains, Prospective Producers of Biopreparations].

    Science.gov (United States)

    Terletskiy, V P; Tyshenko, V I; Novikova, I I; Boikova, I V; Tyulebaev, S D; Shakhtamirov, I Ya

    2016-01-01

    Genetic certification of commercial strains of bacteria antagonistic to phytopathogenic microorganisms guarantees their unequivocal identification and confirmation of safety. In Russia, unlike EU countries, genetic certification of Bacillus subtilis strains is not used. Based on the previously proposed double digestion selective label (DDSL) fingerprinting, a method for genetic identification and certification of B. subtilis strains was proposed. The method was tested on several strains differing in their physiological and biochemical properties and in the composition of secondary metabolites responsible for the spectrum of antibiotic activity. High resolving power of this approach was shown. Optimal restriction endonucleases (SgsI and Eco32I) were determined and validated. A detailed protocol for genetic certification of this bacterial species was developed. DDSL is a universal method, which may be adapted for genetic identification and certification of other bacterial species.

  10. Biennal Report 1979/80 of the Institute for Genetics and Toxicology

    International Nuclear Information System (INIS)

    Hotz, G.

    1981-07-01

    The research activities of the Genetics and the Toxicology Divisions of the Institute for Genetics and Toxicology of Fissile Materials during the period January 1979 to December 1980 are decribed. In addition to scientific reports on the various research topics the report gives an overview of the external scientific and teaching activities of the staff members during the review period. The main emphasis of the toxicology program has been on studies of the radiotoxicology of the actinides and other heavy metals, especially in relation to chelation therapy and to the development of biochemical and physical methods for investigation of their metabolic behaviour. In the field of radiation genetics most of the interest has been focussed on the mechanisms of gene repair, gene regulation and the molecular biology of tumor viruses. (orig.) [de

  11. Biochemical Process Development and Integration | Bioenergy | NREL

    Science.gov (United States)

    Biochemical Process Development and Integration Biochemical Process Development and Integration Our conversion and separation processes to pilot-scale integrated process development and scale up. We also Publications Accounting for all sugar produced during integrated production of ethanol from lignocellulosic

  12. Genetic basis of metabolome variation in yeast.

    Directory of Open Access Journals (Sweden)

    Jeffrey S Breunig

    2014-03-01

    Full Text Available Metabolism, the conversion of nutrients into usable energy and biochemical building blocks, is an essential feature of all cells. The genetic factors responsible for inter-individual metabolic variability remain poorly understood. To investigate genetic causes of metabolome variation, we measured the concentrations of 74 metabolites across ~ 100 segregants from a Saccharomyces cerevisiae cross by liquid chromatography-tandem mass spectrometry. We found 52 quantitative trait loci for 34 metabolites. These included linkages due to overt changes in metabolic genes, e.g., linking pyrimidine intermediates to the deletion of ura3. They also included linkages not directly related to metabolic enzymes, such as those for five central carbon metabolites to ira2, a Ras/PKA pathway regulator, and for the metabolites, S-adenosyl-methionine and S-adenosyl-homocysteine to slt2, a MAP kinase involved in cell wall integrity. The variant of ira2 that elevates metabolite levels also increases glucose uptake and ethanol secretion. These results highlight specific examples of genetic variability, including in genes without prior known metabolic regulatory function, that impact yeast metabolism.

  13. Genetic polymorphisms of antioxidant enzymes CAT and SOD affect the outcome of clinical, biochemical, and anthropometric variables in people with obesity under a dietary intervention.

    Science.gov (United States)

    Hernández-Guerrero, César; Parra-Carriedo, Alicia; Ruiz-de-Santiago, Diana; Galicia-Castillo, Oscar; Buenrostro-Jáuregui, Mario; Díaz-Gutiérrez, Carmen

    2018-01-01

    Genetic polymorphisms of antioxidant enzymes CAT, GPX, and SOD are involved in the etiology of obesity and its principal comorbidities. The aim of the present study was to analyze the effect of aforementioned SNPs over the output of several variables in people with obesity after a nutritional intervention. The study included 92 Mexican women, which received a dietary intervention by 3 months. Participants were genotyped and stratified into two groups: (1) carriers; mutated homozygous plus heterozygous (CR) and (2) homozygous wild type (WT). A comparison between CR and WT was done in clinical (CV), biochemical (BV), and anthropometric variables (AV), at the beginning and at the end of the intervention. Participants ( n  = 92) showed statistically significant differences ( p  T GPX1 (rs1050450), - 251A>G SOD1 (rs2070424), and - 262C>T CAT (rs1001179). (B) Only CR showed statistically changes ( p  T CAT (rs7943316) and 47C>T SOD2 (rs4880). The dietary intervention effect was statistically significantly between the polymorphisms of 47C>T SOD2 and BMI, SBP, TBARS, total cholesterol, and C-LCL ( p  T CAT (rs7943316) and SBP, DBP, total cholesterol, and atherogenic index ( p  CAT enzymes.

  14. Scaling laws and universality for the strength of genetic interactions in yeast

    Science.gov (United States)

    Velenich, Andrea; Dai, Mingjie; Gore, Jeff

    2012-02-01

    Genetic interactions provide a window to the organization of the thousands of biochemical reactions in living cells. If two mutations affect unrelated cellular functions, the fitness effects of their combination can be easily predicted from the two separate fitness effects. However, because of interactions, for some pairs of mutations their combined fitness effect deviates from the naive prediction. We study genetic interactions in yeast cells by analyzing a publicly available database containing experimental growth rates of 5 million double mutants. We show that the characteristic strength of genetic interactions has a simple power law dependence on the fitness effects of the two interacting mutations and that the probability distribution of genetic interactions is a universal function. We further argue that the strength of genetic interactions depends only on the fitness effects of the interacting mutations and not on their biological origin in terms of single point mutations, entire gene knockouts or even more complicated physiological perturbations. Finally, we discuss the implications of the power law scaling of genetic interactions on the ruggedness of fitness landscapes and the consequent evolutionary dynamics.

  15. The Structure of Trade in Genetic Resources: Implications for the International ABS Regime Negotiation

    Directory of Open Access Journals (Sweden)

    Mikyung Yun

    2010-06-01

    Full Text Available The intensive exploitation of genetic resources at the international level has led to a negotiation of an international regime on Access and Benefit-Sharing (ABS of genetic resources. Due to lack of systematic data, little is known about the structure of trade in genetic resources to inform the negotiators. This study attempts to shed a greater insight into genetic resources trade in the pharmaceutical sector in Korea, mainly relying on interviews of industry practitioners and scientists in related fields. The study finds that Korea is mainly a genetic resource importer, but that pharmaceutical firms rarely carry out bioprospecting directly, relying on semi-processed biochemicals imports trough agents. Therefore, the impact of the to-be negotiated international ABS negotiation will be larger if derivatives are included in its scope. However, the general impact on the economy as a whole would be small, given the small share of genetic resources trade compared to total trade volumes.

  16. Identifying Breeding Priorities for Blueberry Flavor Using Biochemical, Sensory, and Genotype by Environment Analyses

    Science.gov (United States)

    Gilbert, Jessica L.; Guthart, Matthew J.; Gezan, Salvador A.; Pisaroglo de Carvalho, Melissa; Schwieterman, Michael L.; Colquhoun, Thomas A.; Bartoshuk, Linda M.; Sims, Charles A.; Clark, David G.; Olmstead, James W.

    2015-01-01

    Breeding for a subjective goal such as flavor is challenging, as many blueberry cultivars are grown worldwide, and identifying breeding targets relating to blueberry flavor biochemistry that have a high degree of genetic control and low environmental variability are priorities. A variety of biochemical compounds and physical characters induce the sensory responses of taste, olfaction, and somatosensation, all of which interact to create what is perceived flavor. The goal of this study was to identify the flavor compounds with a larger genetic versus environmental component regulating their expression over an array of cultivars, locations, and years. Over the course of three years, consumer panelists rated overall liking, texture, sweetness, sourness, and flavor intensity of 19 southern highbush blueberry (Vaccinium corymbosum hybrids) genotypes in 30 sensory panels. Significant positive correlations to overall liking of blueberry fruit (Panalysis was used to identify sugars, acids, and volatile compounds contributing to liking and sensory intensities, and revealed strong effects of fructose, pH, and several volatile compounds upon all sensory parameters measured. To assess the feasibility of breeding for flavor components, a three year study was conducted to compare genetic and environmental influences on flavor biochemistry. Panelists could discern genotypic variation in blueberry sensory components, and many of the compounds affecting consumer favor of blueberries, such as fructose, pH, β-caryophyllene oxide and 2-heptanone, were sufficiently genetically controlled that allocating resources for their breeding is worthwhile. PMID:26378911

  17. Genetic and biochemical basis of Gall Midge resistance in some cultivars of Indica Rice. Final report for the period 1 October 1980 - 30 November 1986

    International Nuclear Information System (INIS)

    Reddy, G.M.

    1986-01-01

    The stability of high productivity of modern rice varieties is greatly affected by insect pests. Rice gall midge is a serious insect pest of rice that is prevalent in several south eastern asian countries. Gall midge resistance has been mainly attributed to antibiosis. No progress has so far been made in identifying the exact biochemical nature of resistance. In Indica subspecies the understanding of chemical nature of disease would be helpful in the control of the disease and also in breeding programme aimed at developing resistance varieties. Studies were undertaken to establish the biochemical basis of resistance. Biochemical characterization of resistant and susceptible varieties were carried out. The parameters considered were: total sugar and reducing sugar content, total phenol content, amino acid profile, post infectional changes in sugar and phenol, isozyme studies. 2 figs, 6 tabs

  18. Genetic and biochemical basis of Gall Midge resistance in some cultivars of Indica Rice. Final report for the period 1 October 1980 - 30 November 1986

    Energy Technology Data Exchange (ETDEWEB)

    Reddy, G M [Osmania Univ., Hyderabad (India). Dept. of Genetics

    1987-12-31

    The stability of high productivity of modern rice varieties is greatly affected by insect pests. Rice gall midge is a serious insect pest of rice that is prevalent in several south eastern asian countries. Gall midge resistance has been mainly attributed to antibiosis. No progress has so far been made in identifying the exact biochemical nature of resistance. In Indica subspecies the understanding of chemical nature of disease would be helpful in the control of the disease and also in breeding programme aimed at developing resistance varieties. Studies were undertaken to establish the biochemical basis of resistance. Biochemical characterization of resistant and susceptible varieties were carried out. The parameters considered were: total sugar and reducing sugar content, total phenol content, amino acid profile, post infectional changes in sugar and phenol, isozyme studies. 2 figs, 6 tabs.

  19. Biochemical basis for the action of radioprotective drugs

    International Nuclear Information System (INIS)

    Romantsev, E.F.; Blokhina, V.D.; Zhulanova, Z.I.; Koshcheenko, N.N.; Filippovich, I.V.

    1977-01-01

    The hypothesis of complex biochemical mechanism of action of radioprotective drugs is described. Shortly after injection of radioprotective aminothiols into animals the inhibition of radiosensitive biochemical processes: DNA and RNA synthesis, protein synthesis and oxidative phosphorylation has been observed. The molecular mechanism of these phenomena consists of radioprotectors ability to form adsorption, thioester, amide, and disulphide bonds with appropriate enzymes. The curve reflecting the formation and breakdown of mixed disulphides between radioprotectors and proteins coincides well with that reflecting the radioprotective effect dependence on time. The radiobiological significance of molecular interactions observed may be interpreted as the diminution in ''spoiled'' molecules formation (inhibition of replication) and elevation in repartion rate. The inhibition of biochemical processes has the reversible nature and last for short time. The drugs acting according to so-called oxygen effect protect also by means of biochemical mechanisms. The molecular mechanism is mediated through their ability to bind to receptors, and biologically important molecules and macromolecules. As a result the inhibition of radiosensitive processes occurs, the ''spoiled'' molecules number is diminished and reparation takes place more easily. The idea on the complex biochemical mechanism of action of radioprotectors correlates with the proposal on complex biochemical mechanism responsible for interphase death occured after irradiation

  20. Biochemical reactions of the organism

    International Nuclear Information System (INIS)

    Fedorova, A.V.

    1984-01-01

    Effects of mercury, strontium chloride, GMDA, trichlorfon as well as some radionuclides ( 89 Sr, 137 Cs, 203 Hg) were studied on rats. Changes in biochemical parameters (histamine content, activity of cholinesterase and histaminase) are noted. Most noticeable changes were observed in enzymatic activity. Distortion of enzymatic systems and accumulation of intermediate exchange and decay products of tissues in excess quantities affecting other systems can be the reason for changes in the organism. The observed changes in biochemical parameters should be necessarily taken into account at hygienic regulations of harmful effects of enviroment

  1. Physiological, Biochemical and Genetic Characteristics of Ralstonia solanacearum Strains Isolated from Pepper Plants in Korea

    Directory of Open Access Journals (Sweden)

    Young Kee Lee

    2013-12-01

    Full Text Available Totally sixty three bacteria were isolated from lower stems showing symptoms of bacterial wilt on pepper plants in 14 counties of 7 provinces, Korea. The isolates showed strong pathogenicity on red pepper (cv. Daewang and tomato (cv. Seogwang seedlings. All virulent bacteria were identified as Ralstonia solanacearum based on colony types, physiological and biochemical tests and polymerase chain reaction (PCR. All R. solanacearum isolates from peppers were race 1. The bacterial isolates consisted of biovar 3 (27% and biovar 4 (73%. Based on polymorphic PCR bands generated by repetitive sequence (rep-PCR, the 63 R. solanacearum isolates were divided into 12 groups at 70% similarity level. These results will be used as basic materials for resistant breeding program and efficient control against bacterial wilt disease of pepper.

  2. Increased Insulin following an Oral Glucose Load, Genetic Variation near the Melatonin Receptor MTNR1B, but No Biochemical Evidence of Endothelial Dysfunction in Young Asian Men and Women.

    Directory of Open Access Journals (Sweden)

    Maria A Matuszek

    Full Text Available To identify biochemical and genetic variation relating to increased risk of developing type 2 diabetes mellitus and cardiovascular disease in young, lean male and female adults of different ethnicities.Fasting blood and urine and non-fasting blood following oral glucose intake were analysed in 90 Caucasians, South Asians and South East/East Asians.There were no differences in age, birthweight, blood pressure, body mass index, percent body fat, total energy, percentage of macronutrient intake, microalbumin, leptin, cortisol, adrenocorticotropic hormone, nitric oxide metabolites, C-reactive protein, homocysteine, tumor necrosis factor-α, interleukin-6, von Willebrand factor, vascular cell adhesion molecule-1, plasminogen activator inhibitor-1, and tissue plasminogen activator. Fasting total cholesterol (P = .000, triglycerides (P = .050, low density lipoprotein (P = .009 and non-fasting blood glucose (15 min (P = .024 were elevated in South Asians compared with Caucasians, but there was no significant difference in glucose area under curve (AUC. Non-fasting insulin in South Asians (15-120 min, in South East/East Asians (60-120 min, and insulin AUC in South Asians and South East/East Asians, were elevated compared with Caucasians (P≤0.006. The molar ratio of C-peptide AUC/Insulin AUC (P = .045 and adiponectin (P = .037 were lower in South Asians compared with Caucasians. A significant difference in allele frequency distributions in Caucasians and South Asians was found for rs2166706 (P = 0.022 and rs10830963 (P = 0.009, which are both near the melatonin receptor MTNR1B.Elevated non-fasting insulin exists in young South Asians of normal fasting glucose and insulin. Hepatic clearance of insulin may be reduced in South Asians. No current biochemical evidence exists of endothelial dysfunction at this stage of development. MTNR1B signalling may be a useful therapeutic target in Asian populations in the prevention of type 2 diabetes mellitus.

  3. Increased Insulin following an Oral Glucose Load, Genetic Variation near the Melatonin Receptor MTNR1B, but No Biochemical Evidence of Endothelial Dysfunction in Young Asian Men and Women.

    Science.gov (United States)

    Matuszek, Maria A; Anton, Angelyn; Thillainathan, Sobana; Armstrong, Nicola J

    2015-01-01

    To identify biochemical and genetic variation relating to increased risk of developing type 2 diabetes mellitus and cardiovascular disease in young, lean male and female adults of different ethnicities. Fasting blood and urine and non-fasting blood following oral glucose intake were analysed in 90 Caucasians, South Asians and South East/East Asians. There were no differences in age, birthweight, blood pressure, body mass index, percent body fat, total energy, percentage of macronutrient intake, microalbumin, leptin, cortisol, adrenocorticotropic hormone, nitric oxide metabolites, C-reactive protein, homocysteine, tumor necrosis factor-α, interleukin-6, von Willebrand factor, vascular cell adhesion molecule-1, plasminogen activator inhibitor-1, and tissue plasminogen activator. Fasting total cholesterol (P = .000), triglycerides (P = .050), low density lipoprotein (P = .009) and non-fasting blood glucose (15 min) (P = .024) were elevated in South Asians compared with Caucasians, but there was no significant difference in glucose area under curve (AUC). Non-fasting insulin in South Asians (15-120 min), in South East/East Asians (60-120 min), and insulin AUC in South Asians and South East/East Asians, were elevated compared with Caucasians (P≤0.006). The molar ratio of C-peptide AUC/Insulin AUC (P = .045) and adiponectin (P = .037) were lower in South Asians compared with Caucasians. A significant difference in allele frequency distributions in Caucasians and South Asians was found for rs2166706 (P = 0.022) and rs10830963 (P = 0.009), which are both near the melatonin receptor MTNR1B. Elevated non-fasting insulin exists in young South Asians of normal fasting glucose and insulin. Hepatic clearance of insulin may be reduced in South Asians. No current biochemical evidence exists of endothelial dysfunction at this stage of development. MTNR1B signalling may be a useful therapeutic target in Asian populations in the prevention of type 2 diabetes mellitus.

  4. Genetic, Biochemical, Nutritional and Antimicrobial Characteristics of Pomegranate (Punica granatum L. Grown in Istria

    Directory of Open Access Journals (Sweden)

    Ana Miklavčič Višnjevec

    2017-01-01

    Full Text Available This study characterises the genetic variability of local pomegranate (Punica granatum L. germplasm from the Slovenian and Croatian areas of Istria. The bioactive components and antioxidant and antimicrobial properties of ethanol and water extracts of different parts of pomegranate fruit were also determined, along with their preliminary nutritional characterisation. Twenty-six different genotypes identified with microsatellite analysis indicate the great diversity of pomegranate in Istria. The pomegranate fruit ethanol extracts represent rich sources of phenolic compounds (mean value of the mass fraction in exocarp and mesocarp expressed as gallic acid is 23 and 16 mg/g, respectively. The ethanol extracts of pomegranate exocarp and mesocarp showed the greatest antimicrobial activity against Candida albicans, Candida parapsilosis, Rhodotorula mucilaginosa, Exophiala dermatitidis and Staphylococcus aureus, and the same water extracts against S. aureus and Escherichia coli. To the best of our knowledge, this study represents the first report of the characterisation of pomegranate genetic resources from Istria at different levels, including the molecular, chemical, antimicrobial and nutritional properties.

  5. Prevalence of biochemical and immunological abnormalities in ...

    African Journals Online (AJOL)

    Tile prevalence of biochemical and immunological abnormalities was studied in a group of 256 patients with rheumatoid arthritis (104 coloureds, 100 whites and 52 blacks). The most common biochemical abnormalities detected were a reduction in the serum creatinine value (43,4%), raised globulins (39,7%), raised serum ...

  6. [Biochemical diagnostics of fatal opium intoxication].

    Science.gov (United States)

    Papyshev, I P; Astashkina, O G; Tuchik, E S; Nikolaev, B S; Cherniaev, A L

    2013-01-01

    Biochemical diagnostics of fatal opium intoxication remains a topical problem in forensic medical science and practice. We investigated materials obtained in the course of forensic medical expertise of the cases of fatal opium intoxication. The study revealed significant differences between myoglobin levels in blood, urine, myocardium, and skeletal muscles. The proposed approach to biochemical diagnostics of fatal opium intoxication enhances the accuracy and the level of evidence of expert conclusions.

  7. Thirty years of Alzheimer's disease genetics: the implications of systematic meta-analyses.

    Science.gov (United States)

    Bertram, Lars; Tanzi, Rudolph E

    2008-10-01

    The genetic underpinnings of Alzheimer's disease (AD) remain largely elusive despite early successes in identifying three genes that cause early-onset familial AD (those that encode amyloid precursor protein (APP) and the presenilins (PSEN1 and PSEN2)), and one genetic risk factor for late-onset AD (the gene that encodes apolipoprotein E (APOE)). A large number of studies that aimed to help uncover the remaining disease-related loci have been published in recent decades, collectively proposing or refuting the involvement of over 500 different gene candidates. Systematic meta-analyses of these studies currently highlight more than 20 loci that have modest but significant effects on AD risk. This Review discusses the putative pathogenetic roles and common biochemical pathways of some of the most genetically and biologically compelling of these potential AD risk factors.

  8. Biochemical response to ursodeoxycholic acid predicts survival in a North American cohort of primary biliary cirrhosis patients.

    Science.gov (United States)

    Lammert, Craig; Juran, Brian D; Schlicht, Erik; Chan, Landon L; Atkinson, Elizabeth J; de Andrade, Mariza; Lazaridis, Konstantinos N

    2014-10-01

    Biochemical response to ursodeoxycholic acid among patients with primary biliary cirrhosis remains variable, and there is no agreement of an ideal model. Novel assessment of response coupled to histologic progression was recently defined by the Toronto criteria. We retrospectively assessed transplant-free survival and clinical outcomes associated with ursodeoxycholic acid response to evaluate the Toronto criteria using a large North American cohort of PBC patients. Three hundred and ninety-eight PBC patients from the Mayo Clinic PBC Genetic Epidemiology Registry were assessed for ursodeoxycholic acid treatment and biochemical response per the Toronto criteria. Responders were defined by reduction in alkaline phosphatase to less than or equal to 1.67 times the upper normal limit by 2 years of treatment, whereas non-responders had alkaline phosphatase values greater than 1.67 times the upper normal limit. Probability of survival was estimated using the Kaplan-Meier method. Three hundred and two (76 %) patients were responders and 96 (24 %) were non-responders. Significantly more non-responders developed adverse events related to chronic liver disease compared to responders (hazard ratio (HR) 2.77, P = 0.001). Biochemical responders and early-stage disease at treatment start was associated with improved overall transplant-free survival compared to non-responders (HR 1.9) and patients with late-stage disease (HR 2.7) after age and sex adjustment. The Toronto criteria are capable of identifying ursodeoxycholic acid-treated primary biliary cirrhosis patients at risk of poor transplant-free survival and adverse clinical outcomes. Our data reveal that despite advanced disease at diagnosis, biochemical response per the Toronto criteria associates with improved overall transplant-free survival.

  9. Growth stage-based modulation in physiological and biochemical attributes of two genetically diverse wheat (Triticum aestivum L.) cultivars grown in salinized hydroponic culture.

    Science.gov (United States)

    Ashraf, Muhammad Arslan; Ashraf, Muhammad

    2016-04-01

    Hydroponic experiment was conducted to appraise variation in the salt tolerance potential of two wheat cultivars (salt tolerant, S-24, and moderately salt sensitive, MH-97) at different growth stages. These two wheat cultivars are not genetically related as evident from randomized polymorphic DNA analysis (random amplified polymorphic DNA (RAPD)) which revealed 28% genetic diversity. Salinity stress caused a marked reduction in grain yield of both wheat cultivars. However, cv. S-24 was superior to cv. MH-97 in maintaining grain yield under saline stress. Furthermore, salinity caused a significant variation in different physiological attributes measured at different growth stages. Salt stress caused considerable reduction in different water relation attributes of wheat plants. A significant reduction in leaf water, osmotic, and turgor potentials was recorded in both wheat cultivars at different growth stages. Maximal reduction in leaf water potential was recorded at the reproductive stage in both wheat cultivars. In contrast, maximal turgor potential was observed at the boot stage. Salt-induced adverse effects of salinity on different water relation attributes were more prominent in cv. MH-97 as compared to those in cv. S-24. Salt stress caused a substantial decrease in glycine betaine and alpha tocopherols. These biochemical attributes exhibited significant salt-induced variation at different growth stages in both wheat cultivars. For example, maximal accumulation of glycine betaine was evident at the early growth stages (vegetative and boot). However, cv. S-24 showed higher accumulation of this organic osmolyte, and this could be the reason for maintenance of higher turgor than that of cv. MH-97 under stress conditions. Salt stress significantly increased the endogenous levels of toxic ions (Na(+) and Cl(-)) and decreased essential cations (K(+) and Ca(2+)) in both wheat cultivars at different growth stages. Furthermore, K(+)/Na(+) and Ca(2+)/Na(+) ratios

  10. Genetic similarity of soybean genotypes revealed by seed protein

    Directory of Open Access Journals (Sweden)

    Nikolić Ana

    2005-01-01

    Full Text Available More accurate and complete descriptions of genotypes could help determinate future breeding strategies and facilitate introgression of new genotypes in current soybean genetic pool. The objective of this study was to characterize 20 soybean genotypes from the Maize Research Institute "Zemun Polje" collection, which have good agronomic performances, high yield, lodging and drought resistance, and low shuttering by seed proteins as biochemical markers. Seed proteins were isolated and separated by PAA electrophoresis. On the basis of the presence/absence of protein fractions coefficients of similarity were calculated as Dice and Roger and Tanamoto coefficient between pairs of genotypes. The similarity matrix was submitted for hierarchical cluster analysis of un weighted pair group using arithmetic average (UPGMA method and necessary computation were performed using NTSYS-pc program. Protein seed analysis confirmed low level of genetic diversity in soybean. The highest genetic similarity was between genotypes P9272 and Kador. According to obtained results, soybean genotypes were assigned in two larger groups and coefficients of similarity showed similar results. Because of the lack of pedigree data for analyzed genotypes, correspondence with marker data could not be determined. In plant with a narrow genetic base in their gene pool, such as soybean, protein markers may not be sufficient for characterization and study of genetic diversity.

  11. Clinical and biochemical heterogeneity between patients with glycogen storage disease type IA: the added value of CUSUM for metabolic control.

    Science.gov (United States)

    Peeks, Fabian; Steunenberg, Thomas A H; de Boer, Foekje; Rubio-Gozalbo, M Estela; Williams, Monique; Burghard, Rob; Rajas, Fabienne; Oosterveer, Maaike H; Weinstein, David A; Derks, Terry G J

    2017-09-01

    To study heterogeneity between patients with glycogen storage disease type Ia (GSD Ia), a rare inherited disorder of carbohydrate metabolism caused by the deficiency of glucose-6-phosphatase (G6Pase). Descriptive retrospective study of longitudinal clinical and biochemical data and long-term complications in 20 GSD Ia patients. We included 11 patients with homozygous G6PC mutations and siblings from four families carrying identical G6PC genotypes. To display subtle variations for repeated triglyceride measurements with respect to time for individual patients, CUSUM-analysis graphs were constructed. Patients with different homozygous G6PC mutations showed important differences in height, BMI, and biochemical parameters (i.e., lactate, uric acid, triglyceride, and cholesterol concentrations). Furthermore, CUSUM-analysis predicts and displays subtle changes in longitudinal blood triglyceride concentrations. Siblings in families also displayed important differences in biochemical parameters (i.e., lactate, uric acid, triglycerides, and cholesterol concentrations) and long-term complications (i.e., liver adenomas, nephropathy, and osteopenia/osteoporosis). Differences between GSD Ia patients reflect large clinical and biochemical heterogeneity. Heterogeneity between GSD Ia patients with homozygous G6PC mutations indicate an important role of the G6PC genotype/mutations. Differences between affected siblings suggest an additional role (genetic and/or environmental) of modifying factors defining the GSD Ia phenotype. CUSUM-analysis can facilitate single-patient monitoring of metabolic control and future application of this method may improve precision medicine for patients both with GSD and remaining inherited metabolic diseases.

  12. Genetic diversity for fermentable carbohydrates production in alfalfa

    Energy Technology Data Exchange (ETDEWEB)

    Castonguay, Y.; Bertrand, A.; Duceppe, M.O.; Dube, M.P.; Michaud, R. [Agriculture and Agri-Food Canada, Quebec City, PQ (Canada)

    2009-07-01

    Alfalfa has many attributes that renders it suitable for bioethanol production, including its adaptability to diverse environmental conditions without any need for nitrogen fertilizer. However research is needed to develop biofuel-type alfalfa with improved biomass production and standability, increased persistence, and better cell wall degradability. The ethanol conversion rates from alfalfa biomass could be increased by genetically improving the accumulation of readily fermentable non-structural carbohydrates (NSC). This presentation reported on a screening project where genotypes with superior cell wall degradability were identified. NSC accumulation within 300 genotypes was randomly selected within six genetic backgrounds from Europe and North America. Biochemical analyses of dried stems revealed a large genetic variability for NSC content, with concentrations ranging from 20 to 100 mg per g DW. NSC variability was considerably higher in a genetic background of European origin compared to the other populations, therefore emphasizing the potential for genetic improvement for that trait. A modified commercial enzymatic cocktail known as AcceleraseTM 1000 Genencor is being developed to optimize the degradation of alfalfa biomass. DNA extracted from genotypes with the highest and lowest cell wall degradability or NSC accumulation will be pooled and used for bulk segregant analysis of DNA polymorphisms using the PCR-based sequence-related amplified polymorphism technique. It was concluded that the commercial release of biofuel-type alfalfa can be accelerated if the genetic markers associated with these traits can be identified.

  13. Biochemical and toxicological studies of aqueous extract of ...

    African Journals Online (AJOL)

    Biochemical and toxicological studies of aqueous extract of Syzigium ... tract diseases and also used as food spices), on some biochemical indices, such as ... liver functions and blood parameters were studied in adult albino rats of both sexes.

  14. Food safety evaluation of crops produced through genetic engineering--how to reduce unintended effects?

    Science.gov (United States)

    Jelenić, Srećko

    2005-06-01

    Scientists started applying genetic engineering techniques to improve crops two decades ago; about 70 varieties obtained via genetic engineering have been approved to date. Although genetic engineering offers the most precise and controllable genetic modification of crops in entire history of plant improvement, the site of insertion of a desirable gene cannot be predicted during the application of this technology. As a consequence, unintended effects might occur due to activation or silencing of genes, giving rise to allergic reactions or toxicity. Therefore, extensive chemical, biochemical and nutritional analyses are performed on each new genetically engineered variety. Since the unintended effects may be predictable on the basis of what is known about the insertion place of the transgenic DNA, an important aim of plant biotechnology is to define techniques for the insertion of transgene into the predetermined chromosomal position (gene targeting). Although gene targeting cannot be applied routinely in crop plants, given the recent advances, that goal may be reached in the near future.

  15. Genetic variants and cognitive aging: destiny or a nudge?

    Science.gov (United States)

    Raz, Naftali; Lustig, Cindy

    2014-06-01

    One would be hard-pressed to find a human trait that is not heritable at least to some extent, and genetics have played an important role in behavioral science for more than half a century. With the advent of high-throughput molecular methods and the increasing availability of genomic analyses, genetics have acquired a firm foothold in public discourse. However, although the proliferation of genetic association studies and ever-expanding library of single-nucleotide polymorphisms have generated some fascinating results, they have thus far fallen short of delivering the anticipated dramatic breakthroughs. In this collection of eight articles, we present a spectrum of efforts aimed at finding more nuanced and meaningful ways of integrating genomic findings into the study of cognitive aging. The articles present examples of Mendelian randomization in the service of investigating difficult-to-manipulate biochemical properties of human participants. Furthermore, in an important step forward, they acknowledge the interactive effects of genes and physiological risk factors on age-related difference and change in cognitive performance, as well as the possibility of modifying the negative effect of genetic variants by lifestyle changes. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  16. A Comprehensive Genomic Analysis Reveals the Genetic Landscape of Mitochondrial Respiratory Chain Complex Deficiencies.

    Directory of Open Access Journals (Sweden)

    Masakazu Kohda

    2016-01-01

    Full Text Available Mitochondrial disorders have the highest incidence among congenital metabolic disorders characterized by biochemical respiratory chain complex deficiencies. It occurs at a rate of 1 in 5,000 births, and has phenotypic and genetic heterogeneity. Mutations in about 1,500 nuclear encoded mitochondrial proteins may cause mitochondrial dysfunction of energy production and mitochondrial disorders. More than 250 genes that cause mitochondrial disorders have been reported to date. However exact genetic diagnosis for patients still remained largely unknown. To reveal this heterogeneity, we performed comprehensive genomic analyses for 142 patients with childhood-onset mitochondrial respiratory chain complex deficiencies. The approach includes whole mtDNA and exome analyses using high-throughput sequencing, and chromosomal aberration analyses using high-density oligonucleotide arrays. We identified 37 novel mutations in known mitochondrial disease genes and 3 mitochondria-related genes (MRPS23, QRSL1, and PNPLA4 as novel causative genes. We also identified 2 genes known to cause monogenic diseases (MECP2 and TNNI3 and 3 chromosomal aberrations (6q24.3-q25.1, 17p12, and 22q11.21 as causes in this cohort. Our approaches enhance the ability to identify pathogenic gene mutations in patients with biochemically defined mitochondrial respiratory chain complex deficiencies in clinical settings. They also underscore clinical and genetic heterogeneity and will improve patient care of this complex disorder.

  17. eQuilibrator--the biochemical thermodynamics calculator.

    Science.gov (United States)

    Flamholz, Avi; Noor, Elad; Bar-Even, Arren; Milo, Ron

    2012-01-01

    The laws of thermodynamics constrain the action of biochemical systems. However, thermodynamic data on biochemical compounds can be difficult to find and is cumbersome to perform calculations with manually. Even simple thermodynamic questions like 'how much Gibbs energy is released by ATP hydrolysis at pH 5?' are complicated excessively by the search for accurate data. To address this problem, eQuilibrator couples a comprehensive and accurate database of thermodynamic properties of biochemical compounds and reactions with a simple and powerful online search and calculation interface. The web interface to eQuilibrator (http://equilibrator.weizmann.ac.il) enables easy calculation of Gibbs energies of compounds and reactions given arbitrary pH, ionic strength and metabolite concentrations. The eQuilibrator code is open-source and all thermodynamic source data are freely downloadable in standard formats. Here we describe the database characteristics and implementation and demonstrate its use.

  18. eQuilibrator—the biochemical thermodynamics calculator

    Science.gov (United States)

    Flamholz, Avi; Noor, Elad; Bar-Even, Arren; Milo, Ron

    2012-01-01

    The laws of thermodynamics constrain the action of biochemical systems. However, thermodynamic data on biochemical compounds can be difficult to find and is cumbersome to perform calculations with manually. Even simple thermodynamic questions like ‘how much Gibbs energy is released by ATP hydrolysis at pH 5?’ are complicated excessively by the search for accurate data. To address this problem, eQuilibrator couples a comprehensive and accurate database of thermodynamic properties of biochemical compounds and reactions with a simple and powerful online search and calculation interface. The web interface to eQuilibrator (http://equilibrator.weizmann.ac.il) enables easy calculation of Gibbs energies of compounds and reactions given arbitrary pH, ionic strength and metabolite concentrations. The eQuilibrator code is open-source and all thermodynamic source data are freely downloadable in standard formats. Here we describe the database characteristics and implementation and demonstrate its use. PMID:22064852

  19. Genetic counseling in monogenic diabetes GCK MODY.

    Science.gov (United States)

    Skała-Zamorowska, Eliza; Deja, Grażyna; Borowiec, Maciej; Fendler, Wojciech; Małachowska, Beata; Kamińska, Halla; Młynarski, Wojciech; Jarosz-Chobot, Przemysława

    2016-01-01

    Genetic testing in families with monogenic GCK MODY has predictive, diagnostic, and preventive utility. Predictive tests relate to people who have no features of the disorder themselves at the time of testing. Diagnostic tests relate to family members who have been previously diagnosed with diabetes mellitus or glucose metabolism disturbances. The preventive value of genetic testing for families is to raise awareness of the circumstances leading to glucose metabolism disorders. The detection of mutation carriers among family members of patients with GCK MODY and the determination of the clinical significance of the genetic test result. The study group included 27 families of adolescent patients with GCK MODY (39 (75%) of parents and 19 (73.08%) of siblings) monitored in the Department of Pediatrics, Endocrinology and Diabetes and in the Diabetes Clinic of John Paul II Upper Silesian Child Health Centre in Katowice in the years 2007-2012. Subjects underwent a blood sample drawing for genetic and biochemical testing. Through the genetic diagnostics we diagnosed GCK MODY in 14 (63.64%) mothers, 6 (35.29%) fathers and in 7 (36,84%) siblings. Genetic testing has contributed to the detection of 7 (26.92%) asymptomatic carriers of GCK gene mutation among parents and 3 (15,79%) asymptomatic carriers among siblings declaring no carbohydrate metabolism disturbances (before genetic testing there were no indications suggesting carbohydrate metabolism disturbances; OGTT were performed after positive genetic testing). Each case of mutation detection, which is the cause of monogenic diabetes in a patient, justifies the genetic testing in other members of his/her family. Awareness of the genetic status may allow sick family member to confirm the diagnosis, while asymptomatic mutation carriers could benefit from an early clinical observation. Consequently, in each case it gives an opportunity to take diagnostic and therapeutic measures in accordance with the current state of

  20. Possible Biochemical Markers in Protein-Energy Malnutrition and ...

    African Journals Online (AJOL)

    This study was carried out to determine possible biochemical markers in children suffering from Plasmodium falciparum malaria and Protein-Energy Malnutrition in a Hospital setting in Western Kenya. Spectrophotometric assays of selected biochemical parameters namely, albumin, total proteins, glucose, glutamate ...

  1. Biochemical Predictors of Low Bone Mineral Density and Fracture Susceptibility in Maltese Postmenopausal Women.

    Science.gov (United States)

    Formosa, Melissa M; Xuereb-Anastasi, Angela

    2016-01-01

    Osteoporosis and fractures are complex conditions influenced by an interplay of genetic and environmental factors. The aim of the study was to investigate three biochemical parameters including total serum calcium, total serum alkaline phosphatase (sALP) and albumin in relation to bone mineral density (BMD) at the lumbar spine and femoral neck (FN), and with all-type of low-trauma fractures in Maltese postmenopausal women. Levels were also correlated with age and physical activity. A case-control study of 1045 women was performed. Women who suffered a fracture were classified as cases whereas women without a fracture history were included as controls subdivided into normal, osteopenic, or osteoporotic according to their BMD measurements. Blood specimens were collected following good standard practice and testing was performed by spectrophotometry. Calcium and sALP levels were weakly correlated with FN BMD levels (calcium: r = -0.111, p = 0.002; sALP: r = 0.089, p = 0.013). Fracture cases had the lowest serum levels of calcium, sALP and albumin relative to all other control groups, which decreased with increasing age, possibly increasing fracture risk. Biochemical levels were lowest in women who sustained a hip fracture and more than one fracture. Biochemical parameters decreased with reduced physical activity; however, this was most evident for fracture cases. Reduced physical activity was associated with lower BMD levels at the hip, and to a lower extent at the spine. In conclusion, results suggest that levels of serum calcium and albumin could be indicative of fracture risk, whereas calcium levels and to lower extent sALP levels could be indicators of hip BMD.

  2. Genetic Approaches to Study Meiosis and Meiosis-Specific Gene Expression in Saccharomyces cerevisiae.

    Science.gov (United States)

    Kassir, Yona; Stuart, David T

    2017-01-01

    The budding yeast Saccharomyces cerevisiae has a long history as a model organism for studies of meiosis and the cell cycle. The popularity of this yeast as a model is in large part due to the variety of genetic and cytological approaches that can be effectively performed with the cells. Cultures of the cells can be induced to synchronously progress through meiosis and sporulation allowing large-scale gene expression and biochemical studies to be performed. Additionally, the spore tetrads resulting from meiosis make it possible to characterize the haploid products of meiosis allowing investigation of meiotic recombination and chromosome segregation. Here we describe genetic methods for analysis progression of S. cerevisiae through meiosis and sporulation with an emphasis on strategies for the genetic analysis of regulators of meiosis-specific genes.

  3. Modeling delay in genetic networks: from delay birth-death processes to delay stochastic differential equations.

    Science.gov (United States)

    Gupta, Chinmaya; López, José Manuel; Azencott, Robert; Bennett, Matthew R; Josić, Krešimir; Ott, William

    2014-05-28

    Delay is an important and ubiquitous aspect of many biochemical processes. For example, delay plays a central role in the dynamics of genetic regulatory networks as it stems from the sequential assembly of first mRNA and then protein. Genetic regulatory networks are therefore frequently modeled as stochastic birth-death processes with delay. Here, we examine the relationship between delay birth-death processes and their appropriate approximating delay chemical Langevin equations. We prove a quantitative bound on the error between the pathwise realizations of these two processes. Our results hold for both fixed delay and distributed delay. Simulations demonstrate that the delay chemical Langevin approximation is accurate even at moderate system sizes. It captures dynamical features such as the oscillatory behavior in negative feedback circuits, cross-correlations between nodes in a network, and spatial and temporal information in two commonly studied motifs of metastability in biochemical systems. Overall, these results provide a foundation for using delay stochastic differential equations to approximate the dynamics of birth-death processes with delay.

  4. Modeling delay in genetic networks: From delay birth-death processes to delay stochastic differential equations

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Chinmaya; López, José Manuel; Azencott, Robert; Ott, William [Department of Mathematics, University of Houston, Houston, Texas 77004 (United States); Bennett, Matthew R. [Department of Biochemistry and Cell Biology, Rice University, Houston, Texas 77204, USA and Institute of Biosciences and Bioengineering, Rice University, Houston, Texas 77005 (United States); Josić, Krešimir [Department of Mathematics, University of Houston, Houston, Texas 77004 (United States); Department of Biology and Biochemistry, University of Houston, Houston, Texas 77204 (United States)

    2014-05-28

    Delay is an important and ubiquitous aspect of many biochemical processes. For example, delay plays a central role in the dynamics of genetic regulatory networks as it stems from the sequential assembly of first mRNA and then protein. Genetic regulatory networks are therefore frequently modeled as stochastic birth-death processes with delay. Here, we examine the relationship between delay birth-death processes and their appropriate approximating delay chemical Langevin equations. We prove a quantitative bound on the error between the pathwise realizations of these two processes. Our results hold for both fixed delay and distributed delay. Simulations demonstrate that the delay chemical Langevin approximation is accurate even at moderate system sizes. It captures dynamical features such as the oscillatory behavior in negative feedback circuits, cross-correlations between nodes in a network, and spatial and temporal information in two commonly studied motifs of metastability in biochemical systems. Overall, these results provide a foundation for using delay stochastic differential equations to approximate the dynamics of birth-death processes with delay.

  5. Modeling delay in genetic networks: From delay birth-death processes to delay stochastic differential equations

    International Nuclear Information System (INIS)

    Gupta, Chinmaya; López, José Manuel; Azencott, Robert; Ott, William; Bennett, Matthew R.; Josić, Krešimir

    2014-01-01

    Delay is an important and ubiquitous aspect of many biochemical processes. For example, delay plays a central role in the dynamics of genetic regulatory networks as it stems from the sequential assembly of first mRNA and then protein. Genetic regulatory networks are therefore frequently modeled as stochastic birth-death processes with delay. Here, we examine the relationship between delay birth-death processes and their appropriate approximating delay chemical Langevin equations. We prove a quantitative bound on the error between the pathwise realizations of these two processes. Our results hold for both fixed delay and distributed delay. Simulations demonstrate that the delay chemical Langevin approximation is accurate even at moderate system sizes. It captures dynamical features such as the oscillatory behavior in negative feedback circuits, cross-correlations between nodes in a network, and spatial and temporal information in two commonly studied motifs of metastability in biochemical systems. Overall, these results provide a foundation for using delay stochastic differential equations to approximate the dynamics of birth-death processes with delay

  6. Genetic variability in biochemical characters of Brazilian field populations of the Leishmania vector, Lutzomyia longipalpis (Diptera: Psychodidae).

    Science.gov (United States)

    Mukhopadhyay, J; Ghosh, K; Rangel, E F; Munstermann, L E

    1998-12-01

    The phlebotomine sand fly Lutzomyia longipalpis is the insect vector of visceral leishmaniasis, a protozoan disease of increasing incidence and distribution in Central and South America. Electrophoretic allele frequencies of 15 enzyme loci were compared among the L. longipalpis populations selected across its distribution range in Brazil. The mean heterozygosity of two colonized geographic strains (one each from Colombia and Brazil) were 6% and 13% respectively, with 1.6-1.9 alleles detected per locus. In contrast, among the seven widely separated field populations, the mean heterozygosity ranged from 11% to 16% with 2.1-2.9 alleles per locus. No locus was recovered that was diagnostic for any of the field populations. Allelic frequency differences among five field strains from the Amazon basin and eastern coastal Brazil were very low, with Nei's genetic distances of less than 0.01 separating them. The two inland and southerly samples from Minas Gerais (Lapinha) and Bahia (Jacobina) states were more distinctive with genetic distances of 0.024-0.038 and 0.038-0.059, respectively, when compared with the five other samples. These differences were the consequence of several high frequency alleles (glycerol-3-phosphate dehydrogenase [Gpd1.69] and phosphoglucomutase [Pgm1.69]) relatively uncommon in other strains. The low genetic distances, absence of diagnostic loci, and the distribution of genes in geographic space indicate L. longipalpis of Brazil to be a single, but genetically heterogeneous, polymorphic species.

  7. Triennial report 1981-83 of the Institute for Genetics and for Toxicology

    International Nuclear Information System (INIS)

    Hotz, G.

    1984-07-01

    The scientific activity of the Divisions of Genetics and of Toxicology of the Institute for Genetics and for Toxicology during the period January 1981 to December 1983 is described. In addition to reports on the various research topics this second 'Report' also gives an overview of the external scientific and teaching activities of the staff members during the period. In the field of radiation genetics most of the interest has been focussed on the mechanisms of gene repair, gene regulation and the molecular biology of tumor viruses in human and other mammalian cells. The main emphasis of the long term toxicology program has been on studies of radiotoxicology of the actinides and other heavy metals, especially in relation to chelation therapy and to the development of biochemical and physical methods for investigation of their metabolic behaviour. (orig.) [de

  8. Non-genetic engineering of cells for drug delivery and cell-based therapy.

    Science.gov (United States)

    Wang, Qun; Cheng, Hao; Peng, Haisheng; Zhou, Hao; Li, Peter Y; Langer, Robert

    2015-08-30

    Cell-based therapy is a promising modality to address many unmet medical needs. In addition to genetic engineering, material-based, biochemical, and physical science-based approaches have emerged as novel approaches to modify cells. Non-genetic engineering of cells has been applied in delivering therapeutics to tissues, homing of cells to the bone marrow or inflammatory tissues, cancer imaging, immunotherapy, and remotely controlling cellular functions. This new strategy has unique advantages in disease therapy and is complementary to existing gene-based cell engineering approaches. A better understanding of cellular systems and different engineering methods will allow us to better exploit engineered cells in biomedicine. Here, we review non-genetic cell engineering techniques and applications of engineered cells, discuss the pros and cons of different methods, and provide our perspectives on future research directions. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Possibilities and methods for biochemical assessment of radiation injury

    Energy Technology Data Exchange (ETDEWEB)

    Minkova, M [Meditsinska Akademiya, Sofia (Bulgaria). Nauchen Inst. po Rentgenologiya i Radiobiologiya

    1986-01-01

    An extensitive review (77 references) is made of the application of biochemical diagnostic methods for assessment of radiation diseases. A brief characteristics of several biochemical indicators is given: deoxycytidine, thymidine, rho-aminoisocarboxylic acid, DNA-ase, nucleic acids. Influence of such factors as age, sex, season etc. is studied by means of functional biochemical indicators as: creatine, triptophanic metabolites, 5-hydroxy-indolacetic acid, biogenic amines, serum proteins, enzymes, etc.

  10. Genetic, Biochemical, Nutritional and Antimicrobial Characteristics of Pomegranate (Punica granatum L.)
Grown in Istria.

    Science.gov (United States)

    Višnjevec, Ana Miklavčič; Ota, Ajda; Skrt, Mihaela; Butinar, Bojan; Možina, Sonja Smole; Cimerman, Nina Gunde; Nečemer, Marijan; Arbeiter, Alenka Baruca; Hladnik, Matjaž; Krapac, Marin; Ban, Dean; Bučar-Miklavčič, Milena; Ulrih, Nataša Poklar; Bandelj, Dunja

    2017-06-01

    This study characterises the genetic variability of local pomegranate ( Punica granatum L.) germplasm from the Slovenian and Croatian areas of Istria. The bioactive components and antioxidant and antimicrobial properties of ethanol and water extracts of different parts of pomegranate fruit were also determined, along with their preliminary nutritional characterisation. Twenty-six different genotypes identified with microsatellite analysis indicate the great diversity of pomegranate in Istria. The pomegranate fruit ethanol extracts represent rich sources of phenolic compounds (mean value of the mass fraction in exocarp and mesocarp expressed as gallic acid is 23 and 16 mg/g, respectively). The ethanol extracts of pomegranate exocarp and mesocarp showed the greatest antimicrobial activity against Candida albicans , Candida parapsilosis , Rhodotorula mucilaginosa , Exophiala dermatitidis and Staphylococcus aureus , and the same water extracts against S. aureus and Escherichia coli. To the best of our knowledge, this study represents the first report of the characterisation of pomegranate genetic resources from Istria at different levels, including the molecular, chemical, antimicrobial and nutritional properties.

  11. THE GENETIC STRUCTURE OF DIFFERENT AGE GROUPS OF SILVER (HYPOPHTHALMICHTHYS MOLITRIX) AND BIGHEAD (ARISTICHTHYS NOBILIS) CARPS FROM FISH FARM LIMANSKE

    OpenAIRE

    Т. Nagorniuk; I. Hrytsyniak; N. Borysenko

    2015-01-01

    Purpose. Studying the peculiarities of the genetic structure of different age groups of silver and bighead carps from fish farm Limanske with the use of genetic-biochemical markers. Methodology. The methods of vertical polyacrylamide and horizontal starch electrophoresis with our own modifications have been used for the study. Sampling of the biological material and histochemical staining of gel plates were carried out using the generally accepted methods. Statistical analysis of the obta...

  12. Genetic Algorithm Based PID Controller Tuning Approach for Continuous Stirred Tank Reactor

    OpenAIRE

    A. Jayachitra; R. Vinodha

    2014-01-01

    Genetic algorithm (GA) based PID (proportional integral derivative) controller has been proposed for tuning optimized PID parameters in a continuous stirred tank reactor (CSTR) process using a weighted combination of objective functions, namely, integral square error (ISE), integral absolute error (IAE), and integrated time absolute error (ITAE). Optimization of PID controller parameters is the key goal in chemical and biochemical industries. PID controllers have narrowed down the operating r...

  13. Genetic and biochemical characterization of HMB-1, a novel subclass B1 metallo-β-lactamase found in a Pseudomonas aeruginosa clinical isolate.

    Science.gov (United States)

    Pfennigwerth, Niels; Lange, Felix; Belmar Campos, Cristina; Hentschke, Moritz; Gatermann, Sören G; Kaase, Martin

    2017-04-01

    To characterize a novel subclass B1 metallo-β-lactamase (MBL) found in an MDR Pseudomonas aeruginosa clinical isolate. The isolate P. aeruginosa NRZ-03096 was recovered in 2012 from an anal swab from a patient hospitalized in Northern Germany and showed high MICs of carbapenems. MBL production was analysed by several phenotypic tests. Genetic characterization of the novel bla gene and MLST was performed by WGS. The novel bla gene was expressed in Escherichia coli TOP10 and the enzyme was subjected to biochemical characterization to determine the kinetic parameters K m and k cat . P. aeruginosa NRZ-03096 was resistant to all tested β-lactams and showed an MBL phenotype. Shotgun cloning experiments yielded a clone producing a novel subclass B1 enzyme with only 74.3% identity to the next nearest relative, KHM-1. The novel MBL was named HMB-1 (for Hamburg MBL). Analysis of WGS data showed that the bla HMB-1 gene was chromosomally located as part of a Tn 3 family transposon that was named Tn 6345 . Expression of bla HMB-1 in E. coli TOP10 led to increased resistance to β-lactams. Determination of K m and k cat revealed that HMB-1 had different hydrolytic characteristics compared with KHM-1, with lower hydrolytic rates for cephalosporins and a higher rate for imipenem. The identification of HMB-1 further underlines the ongoing spread and diversification of carbapenemases in Gram-negative human pathogens and especially in P. aeruginosa . © The Author 2017. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  14. Haematological and blood biochemical indices of West African ...

    African Journals Online (AJOL)

    Haematological and blood biochemical indices of West African dwarf goats vaccinated against Pestes des petit ruminants (PPR) ... blood biochemical indices of forty randomly selected West African dwarf (WAD) goats were studied. Packed cell volume ... neutrophil/lymphocyte ratio and white blood cells (WBC) than females.

  15. BioNessie - a grid enabled biochemical networks simulation environment

    OpenAIRE

    Liu, X.; Jiang, J.; Ajayi, O.; Gu, X.; Gilbert, D.; Sinnott, R.O.

    2008-01-01

    The simulation of biochemical networks provides insight and understanding about the underlying biochemical processes and pathways used by cells and organisms. BioNessie is a biochemical network simulator which has been developed at the University of Glasgow. This paper describes the simulator and focuses in particular on how it has been extended to benefit from a wide variety of high performance compute resources across the UK through Grid technologies to support larger scale simulations.

  16. Definitions of biochemical failure in prostate cancer following radiation therapy

    International Nuclear Information System (INIS)

    Taylor, Jeremy M.G.; Griffith, Kent A.; Sandler, Howard M.

    2001-01-01

    Purpose: The American Society for Therapeutic Radiology and Oncology (ASTRO) published a consensus panel definition of biochemical failure following radiation therapy for prostate cancer. In this paper, we develop a series of alternative definitions of biochemical failure. Using data from 688 patients, we evaluated the sensitivity and specificity of the various definitions, with respect to a defined 'clinically meaningful' outcome. Methods and Materials: The ASTRO definition of biochemical failure requires 3 consecutive rises in prostate-specific antigen (PSA). We considered several modifications to the standard definition: to require PSA rises of a certain magnitude, to consider 2 instead of 3 rises, to require the final PSA value to be greater than a fixed cutoff level, and to define biochemical failure based on the slope of PSA over 1, 1.5, or 2 years. A clinically meaningful failure is defined as local recurrence, distant metastases, initiation of unplanned hormonal therapy, unplanned radical prostatectomy, or a PSA>25 later than 6 months after radiation. Results: Requiring the final PSA in a series of consecutive rises to be larger than 1.5 ng/mL increased the specificity of biochemical failure. For a fixed specificity, defining biochemical failure based on 2 consecutive rises, or the slope over the last year, could increase the sensitivity by up to approximately 20%, compared to the ASTRO definition. Using a rule based on the slope over the previous year or 2 rises leads to a slightly earlier detection of biochemical failure than does the ASTRO definition. Even with the best rule, only approximately 20% of true failures are biochemically detected more than 1 year before the clinically meaningful event time. Conclusion: There is potential for improvement in the ASTRO consensus definition of biochemical failure. Further research is needed, in studies with long follow-up times, to evaluate the relationship between various definitions of biochemical failure and

  17. 40 CFR 158.2080 - Experimental use permit data requirements-biochemical pesticides.

    Science.gov (United States)

    2010-07-01

    ... requirements-biochemical pesticides. 158.2080 Section 158.2080 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS DATA REQUIREMENTS FOR PESTICIDES Biochemical Pesticides § 158.2080 Experimental use permit data requirements—biochemical pesticides. (a) Sections 158.2081...

  18. Molecular genetic and biochemical analyses of a DNA repair gene from Serratia marcescens

    International Nuclear Information System (INIS)

    Murphy, K.E.

    1989-01-01

    In Escherichia coli, the SOS response and two 3-methyladenine DNA glycosylases (TagI and TagII) are required for repair of DNA damaged by alkylating agents such as methyl methanesulfonate (MMS). Mutations of the recA gene eliminate the SOS response. TagI and TagII are encoded by the tag and alkA genes, respectively. A gene (rpr) encoding 3-methyladenine DNA glycosylase activity was isolated from the Gram-negative bacterium Serratia marcescens. The gene, localized to a 1.5-kilobase pair SmaI-HindIII restriction fragment, was cloned into plasmid pUC18. The clone complemented E. coli tag alkA and recA mutations for MMS resistance. The rpr gene did not, however, complement recA mutations for resistance to ultraviolet light or the ability to perform homologous recombination reactions, nor did it complement E. coli ada or alkB mutations. Two proteins of molecular weights 42,000 and 16,000 were produced from the rpr locus. Analysis of deletion and insertion mutants of rpr suggested that the 42kD molecule is the active protein. The 16kD protein may either be a breakdown product of the 42kD species or may be encoded by another gene overlapping the reading frame of the rpr gene. Biochemical assays showed that the rpr gene product (Rpr) possesses 3-methyladenine DNA glycosylase activity

  19. Challenging behavior: Behavioral phenotypes of some genetic syndromes

    Directory of Open Access Journals (Sweden)

    Buha Nataša

    2014-01-01

    Full Text Available Challenging behavior in individuals with mental retardation (MR is relatively frequent, and represents a significant obstacle to adaptive skills. The frequency of specific forms and manifestations of challenging behavior can depend on a variety of personal and environmental factors. There are several prominent theoretical models regarding the etiology of challenging behavior and psychopathology in persons with MR: behavioral, developmental, socio-cultural and biological. The biological model emphasizes the physiological, biochemical and genetic factors as the potential source of challenging behavior. The progress in the field of genetics and neuroscience has opened the opportunity to study and discover the neurobiological basis of phenotypic characteristics. Genetic syndromes associated with MR can be followed by a specific set of problems and disorders which constitutes their behavioral phenotype. The aim of this paper was to present challenging behaviors that manifest in the most frequently studied syndromes: Down syndrome, Fragile X syndrome, Williams syndrome, Prader-Willi syndrome and Angelman syndrome. The concept of behavioral phenotype implies a higher probability of manifesting specific developmental characteristics and specific behaviors in individuals with a certain genetic syndrome. Although the specific set of (possible problems and disorders is distinctive for the described genetic syndromes, the connection between genetics and behavior should be viewed through probabilistic dimension. The probabilistic concept takes into consideration the possibility of intra-syndrome variability in the occurrence, intensity and time onset of behavioral characteristics, at which the higher variability the lower is the specificity of the genetic syndrome. Identifying the specific pattern of behavior can be most important for the process of early diagnosis and prognosis. In addition, having knowledge about behavioral phenotype can be a landmark in

  20. Genetic and biochemical analysis of peptide transport in Escherichia coli

    International Nuclear Information System (INIS)

    Andrews, J.C.

    1986-01-01

    E. coli peptide transport mutants have been isolated based on their resistance to toxic tripeptides. These genetic defects were found to map in two distinct chromosomal locations. The transport systems which require expression of the trp-linked opp genes and the oppE gene(s) for activity were shown to have different substrate preferences. Growth of E. coli in medium containing leucine results in increased entry of exogenously supplied tripeptides into the bacterial cell. This leucine-mediated elevation of peptide transport required expression of the trp-linked opp operon and was accompanied by increased sensitivity to toxic tripeptides, by an enhanced capacity to utilize nutritional peptides, and by an increase in both the velocity and apparent steady-state level of L-(U- 14 C)alanyl-L-alanyl-L-alanine accumulation for E. coli grown in leucine-containing medium relative to these parameters of peptide transport measured with bacteria grown in media lacking leucine. Direct measurement of opp operon expression by pulse-labeling experiments demonstrated that growth of E. coli in the presence of leucine resulted in increased synthesis of the oppA-encoded periplasmic binding protein. The transcriptional regulation of the trp-linked opp operon of E. coli was investigated using λ placMu51-generated lac operon fusions. Synthesis of β-galactosidase by strains harboring oppA-lac, oppB-lac, and oppD-lac fusions occurred at a basal level when the fusion-containing strains were grown in minimal medium

  1. SERS-based detection methods for screening of genetically modified bacterial strains

    DEFF Research Database (Denmark)

    Morelli, Lidia

    factories vary largely, including industrial production of valuable compounds for biofuels, polymer synthesis and food, cosmetic and pharmaceutical industry. The improvement of computational and biochemical tools has revolutionized the synthesis of novel modified microbial strains, opening up new......The importance of metabolic engineering has been growing over the last decades, establishing the use of genetically modified microbial strains for overproduction of metabolites at industrial scale as an innovative, convenient and biosustainable method. Nowadays, application areas of microbial...

  2. Genetic, Biochemical and Environmental Factors Associated with Pregnancy Outcomes in Newborns from the Czech Republic

    Czech Academy of Sciences Publication Activity Database

    Rössner ml., Pavel; Tabashidze, Nana; Dostál, Miroslav; Nováková, Zuzana; Chvátalová, Irena; Špátová, Milada; Šrám, Radim

    2011-01-01

    Roč. 119, č. 2 (2011), s. 265-271 ISSN 0091-6765 R&D Projects: GA MŽP(CZ) SP/1B3/50/07 Institutional research plan: CEZ:AV0Z50390512 Keywords : air pollution * biomarkers * genetic polymorphisms Subject RIV: DN - Health Impact of the Environment Quality Impact factor: 7.036, year: 2011

  3. Climatic Controls on Leaf Nitrogen Content and Implications for Biochemical Modeling.

    Science.gov (United States)

    Tcherednichenko, I. A.; White, M.; Bastidas, L.

    2007-12-01

    Leaf nitrogen (N) content, expressed as percent total nitrogen per unit of leaf dry mass, is a widely used parameter in biochemical modeling, due mainly to its role as a potentially limiting factor for photosynthesis. The amount of nitrogen, however, does not occur in a fixed amount in every leaf, but rather varies continuously with the leaf life cycle, in constant response to soil-root-stem-leaf-climate interactions and demand for growth. Moreover, while broad data on leaf N has become available it is normally measured under ambient conditions with consequent difficulty for distinguishing between genetic and time specific environmental effects. In the present work we: 1) Investigate the theoretical variation of leaf mass, specific heat capacity and leaf thickness of full sun-expanded leaves as a regulatory mechanism to ensure thermal survival along with long-term climatic radiation/temperature gradient; and discuss nitrogen and carbon controls on leaf thickness. 2) Based on possible states of partition between nitrogenous and non-nitrogenous components of a leaf we further derive probability density functions (PDFs) of nitrogen and carbon content and assess the effect of water and nutrient uptake on the PDFs. 3) Translate the results to spatially explicit representation over the conterminous USA at 1 km spatial resolution by providing maximum potential values of leaf N of fully expanded leaf optimally suited for long term climatic averages values and soils conditions. Implications for potential presence of inherently slow/fast growing species are discussed along with suitability of results for use by biochemical models.

  4. A Sensitive Method for Examining Whole Cell Biochemical Composition in Single Cells of Filamentous Fungi using Synchrotron FTIR Spectromicroscopy

    International Nuclear Information System (INIS)

    Konstantin, J.; Gough, K.; Julian, R.; Kaminskyj, S.

    2008-01-01

    Cell function is related to cell composition. The asexual state of filamentous fungi (molds and mildews) has two main life cycle stages: vegetative hyphae for substrate colonization and nutrient acquisition, and asexual spores for survival and dispersal. Hyphal composition changes over a few tens of microns during growth and maturation; spores are different from hyphae. Most biochemical analyses are restricted to studying a few components at high spatial resolution (e.g. histochemistry) or many compounds at low spatial resolution (e.g. GC-MS). Synchrotron FTIR spectromicroscopy can be used to study fungal cell biology by fingerprinting varieties of carbohydrates, proteins, and lipids at about 6 microm spatial resolution. FTIR can distinguish fungal species and changes during hyphal growth, and reveals that even fungi grown under optimal vs mildly stressed conditions exhibit dramatic biochemical changes without obvious morphological effects. Here we compare hypha and spore composition of two fungi, Neurospora and Rhizopus. There are clear biochemical changes when Neurospora hyphae commit to spore development, during spore maturation and following germination, many of which are consistent with results from molecular genetics, but have not been shown before at high spatial resolution. Rhizopus spores develop within a fluid-containing sporangium that becomes dry at maturity. Rhizopus spores had similar protein content and significantly more carbohydrate than the sporangial fluid, both of which are novel findings.

  5. Skin barrier and contact allergy: Genetic risk factor analyses

    DEFF Research Database (Denmark)

    Ross-Hansen, Katrine

    2013-01-01

    allergy. Objectives To evaluate the effect of specific gene polymorphisms on the risk of developing contact allergy by a candidate gene approach. These included polymorphisms in the glutathione S-transferase genes (GSTM1, -T1 and -P1 variants), the claudin-1 gene (CLDN1), and the filaggrin gene (FLG......) in particular. Methods Epidemiological genetic association studies were performed on a general Danish population. Participants were patch tested, answered a questionnaire on general health and were genotyped for GST, CLDN1 and FLG polymorphisms. Filaggrin’s nickel binding potential was evaluated biochemically...

  6. Colombia a Source of Cacao Genetic Diversity As Revealed by the Population Structure Analysis of Germplasm Bank of Theobroma cacao L.

    Directory of Open Access Journals (Sweden)

    Jaime A. Osorio-Guarín

    2017-11-01

    Full Text Available Beans of the species Theobroma cacao L., also known as cacao, are the raw material to produce chocolate. Colombian cacao has been classified as a fine flavor cacao that represents the 5% of cacao world’s production. Colombian genetic resources from this species are conserved in ex situ and in-field germplasm banks, since T. cacao has recalcitrant seeds to desication and long-term storage. Currently, the collection of T. cacao of the Colombian Corporation of Agricultural Research (CORPOICA has approximately 700 germplasm accessions. We conducted a molecular analysis of Corpoica’s cacao collection and a morphological characterization of some accessions with the goal to study its genetic diversity and population structure and, to select interesting accessions for the cacao’s breeding program. Phenotypic evaluation was performed based on 18 morphological traits and 4 biochemical traits. PCA analysis of morphological traits explained 60.6% of the total variation in seven components and 100% of the total variation of biochemical traits in four components, grouping the collection in 4 clusters for both variables. We explored 565 accessions from Corpoica’s germplasm and 252 accessions from reference populations using 96 single nucleotide polymorphism (SNP molecular markers. Molecular patterns of cacao Corpoica’s collection were obtained amplifying specific alleles in a Fluidigm platform that used integrated circuits of fluids. Corpoica’s collection showed highest genetic diversity [Expected Heterozygosity (HE = 0.314, Observed Heterozygosity (HO = 0.353] that is reduced when reference populations were included in the dataset (HE = 0.294, HO = 0.261. The collection was divided into four clusters based on population structure analysis. Cacao accessions from distinct groups showed some taxonomic concordance and reflected their geographic origins. For instance, accessions classified as Criollo were clearly differentiated in one group and we

  7. Biochemical and clinical profiles of 52 Tunisian patients affected by Zellweger syndrome

    Directory of Open Access Journals (Sweden)

    Fahmi Nasrallah

    2017-12-01

    Full Text Available Background: Zellweger syndrome (ZS is a peroxisome biogenesis disorder attributed to a mutation of the PEX genes family. The incidence of this disease in Africa and the Arab world remains unknown. This contribution is aimed at describing the clinical phenotype and biochemical features in Tunisian patients with ZS in order to improve the detection and management of this severe disorder. Methods: A total of 52 patients diagnosed with ZS and 60 age- and sex-matched healthy controls were included in this study. Patients were recruited during the past 21 years, and the diagnosis of ZS was based on clinical and biochemical characteristics. Plasma very long chain fatty acids (VLCFA were analyzed using capillary gas chromatography. The estimated incidence of ZS was calculated using the Hardy–Weinberg formula. Results: The estimated incidence of ZS is 1/15,898 in Tunisia. Age at diagnosis varied between 3 days and 18 months. Severe neurological syndrome, polymalformative features, and hepatodigestive signs were observed in 100%, 67.9%, and 32% of patients, respectively. Values for plasma C26:0 and C26:0/C22:0 and C24:0/C22:0 ratios were noticeably higher in ZS patients than in controls. Distributions of values were completely different for C26:0 (0.10–0.37 vs. 0.001–0.009, C26:0/C22:0 ratio (0.11–1.29 vs. 0.003–0.090, and C24:0/C22:0 ratio (1.03–3.18 vs. 0.4–0.90 in ZS patients versus controls, respectively. Conclusions: This study highlights the high incidence of ZS in Tunisia and the possibility of simple and reliable biochemical diagnosis, thus permitting early genetic counseling for families at risk. Key Words: gas chromatography, hypotonia, peroxisomal disorder, very long chain fatty acids, Zellweger syndrome

  8. Accurate atom-mapping computation for biochemical reactions.

    Science.gov (United States)

    Latendresse, Mario; Malerich, Jeremiah P; Travers, Mike; Karp, Peter D

    2012-11-26

    The complete atom mapping of a chemical reaction is a bijection of the reactant atoms to the product atoms that specifies the terminus of each reactant atom. Atom mapping of biochemical reactions is useful for many applications of systems biology, in particular for metabolic engineering where synthesizing new biochemical pathways has to take into account for the number of carbon atoms from a source compound that are conserved in the synthesis of a target compound. Rapid, accurate computation of the atom mapping(s) of a biochemical reaction remains elusive despite significant work on this topic. In particular, past researchers did not validate the accuracy of mapping algorithms. We introduce a new method for computing atom mappings called the minimum weighted edit-distance (MWED) metric. The metric is based on bond propensity to react and computes biochemically valid atom mappings for a large percentage of biochemical reactions. MWED models can be formulated efficiently as Mixed-Integer Linear Programs (MILPs). We have demonstrated this approach on 7501 reactions of the MetaCyc database for which 87% of the models could be solved in less than 10 s. For 2.1% of the reactions, we found multiple optimal atom mappings. We show that the error rate is 0.9% (22 reactions) by comparing these atom mappings to 2446 atom mappings of the manually curated Kyoto Encyclopedia of Genes and Genomes (KEGG) RPAIR database. To our knowledge, our computational atom-mapping approach is the most accurate and among the fastest published to date. The atom-mapping data will be available in the MetaCyc database later in 2012; the atom-mapping software will be available within the Pathway Tools software later in 2012.

  9. Biochemical Removal of HAP Precursors From Coal

    Energy Technology Data Exchange (ETDEWEB)

    Olson, G.; Tucker, L.; Richards, J.

    1997-07-01

    This project addresses DOE`s interest in advanced concepts for controlling emissions of air toxics from coal-fired utility boilers. We are determining the feasibility of developing a biochemical process for the precombustion removal of substantial percentages of 13 inorganic hazardous air pollutant (HAP) precursors from coal. These HAP precursors are Sb, As, Be, Cd, Cr, Cl, Co, F, Pb, Hg, Mn, Ni, and Se. Although rapid physical coal cleaning is done routinely in preparation plants, biochemical processes for removal of HAP precursors from coal potentially offer advantages of deeper cleaning, more specificity, and less coal loss. Compared to chemical processes for coal cleaning, biochemical processes potentially offer lower costs and milder process conditions. Pyrite oxidizing bacteria, most notably Thiobacillusferrooxidans, are being evaluated in this project for their ability to remove HAP precursors from U.S. coals.

  10. Biochemical Removal of HAP Precursors From Coal

    International Nuclear Information System (INIS)

    Olson, G.; Tucker, L.; Richards, J.

    1997-07-01

    This project addresses DOE's interest in advanced concepts for controlling emissions of air toxics from coal-fired utility boilers. We are determining the feasibility of developing a biochemical process for the precombustion removal of substantial percentages of 13 inorganic hazardous air pollutant (HAP) precursors from coal. These HAP precursors are Sb, As, Be, Cd, Cr, Cl, Co, F, Pb, Hg, Mn, Ni, and Se. Although rapid physical coal cleaning is done routinely in preparation plants, biochemical processes for removal of HAP precursors from coal potentially offer advantages of deeper cleaning, more specificity, and less coal loss. Compared to chemical processes for coal cleaning, biochemical processes potentially offer lower costs and milder process conditions. Pyrite oxidizing bacteria, most notably Thiobacillusferrooxidans, are being evaluated in this project for their ability to remove HAP precursors from U.S. coals

  11. Genetics of polycystic ovarian syndrome.

    Science.gov (United States)

    Fratantonio, Enza; Vicari, Enzo; Pafumi, Carlo; Calogero, Aldo E

    2005-06-01

    Polycystic ovarian syndrome (PCOS) is a reproductive system disorder characterized by irregular menses, anovulation, clinical and/or biochemical signs of hyperandrogenism (hirsutism and/or acne), ovarian micropolycystic appearance and metabolic abnormalities, such as hyperinsulinaemia and obesity. The aetiopathogenesis of this syndrome is not well known. Several pathogenetic hypotheses have been proposed to explain the full array of symptoms and signs, but with elusive results. A genetic abnormality causing PCOS is supported by the observation that different members of the same family are often affected, and about half of the sisters of PCOS women have elevated serum testosterone concentrations. Therefore, the presence of gene abnormalities in women with PCOS has been widely explored in the attempt to establish whether their mutations or polymorphisms may cause PCOS. The main genes evaluated are those involved in steroidogenesis, steroid hormone effects, gonadotrophin release regulation and action, insulin secretion and action, and adipose tissue metabolism. Despite the vast body of literature produced, none of the genes evaluated seems to play a key role in PCOS pathogenesis. It is likely that PCOS may represent the final outcome of different, deeply inter-related genetic abnormalities that influence each other and perpetuate the syndrome.

  12. FASEB Summer Research Conference. Genetic Recombination and Chromosome Rearrangements

    Energy Technology Data Exchange (ETDEWEB)

    Jinks-Robertson, Sue

    2002-02-01

    The 2001 meeting entitled ''Genetic Recombination and Genome Rearrangements'' was held July 21-26 in Snowmass, Colorado. The goal of the meeting was to bring together scientists using diverse approaches to study all aspects of genetic recombination. This goal was achieved by integrating talks covering the genetics, biochemistry and structural biology of homologous recombination, site-specific recombination, and nonhomologous recombination. The format of the meeting consisted of a keynote address on the opening evening, two formal plenary sessions on each of the four full meeting days, a single afternoon workshop consisting of short talks chosen from among submitted abstracts, and afternoon poster sessions on each of the four full meeting days. The eight plenary session were entitled: (1) Recombination Mechanisms, (2) Prokaryotic Recombination, (3) Repair and Recombination, (4) Site-specific Recombination and Transposition, (5) Eukaryotic Recombination I, (6) Genome Rearrangements, (7) Meiosis, and (8) Eukaryotic Recombination II. Each session included a mix of genetic, biochemical and structural talks; talks were limited to 20 minutes, followed by 10 minutes of very lively, general discussion. Much of the data presented in the plenary sessions was unpublished, thus providing attendees with the most up-to-date knowledge of this rapidly-moving field.

  13. Developments in commercially produced microbials at Biochem Products

    Science.gov (United States)

    John Lublinkhof; Douglas H. Ross

    1985-01-01

    Biochem Products is part of a large industrial and scientific family - the Solvay Group. Solvay, headquartered in Brussels, Belgium is a multinational company with 46,000 employees worldwide. In the U.S., our working partners include a large polymer manufacturer, a peroxygen producer and a leading poultry and animal health products company. Biochem Products is a...

  14. Kombucha tea fermentation: Microbial and biochemical dynamics.

    Science.gov (United States)

    Chakravorty, Somnath; Bhattacharya, Semantee; Chatzinotas, Antonis; Chakraborty, Writachit; Bhattacharya, Debanjana; Gachhui, Ratan

    2016-03-02

    Kombucha tea, a non-alcoholic beverage, is acquiring significant interest due to its claimed beneficial properties. The microbial community of Kombucha tea consists of bacteria and yeast which thrive in two mutually non-exclusive compartments: the soup or the beverage and the biofilm floating on it. The microbial community and the biochemical properties of the beverage have so far mostly been described in separate studies. This, however, may prevent understanding the causal links between the microbial communities and the beneficial properties of Kombucha tea. Moreover, an extensive study into the microbial and biochemical dynamics has also been missing. In this study, we thus explored the structure and dynamics of the microbial community along with the biochemical properties of Kombucha tea at different time points up to 21 days of fermentation. We hypothesized that several biochemical properties will change during the course of fermentation along with the shifts in the yeast and bacterial communities. The yeast community of the biofilm did not show much variation over time and was dominated by Candida sp. (73.5-83%). The soup however, showed a significant shift in dominance from Candida sp. to Lachancea sp. on the 7th day of fermentation. This is the first report showing Candida as the most dominating yeast genus during Kombucha fermentation. Komagateibacter was identified as the single largest bacterial genus present in both the biofilm and the soup (~50%). The bacterial diversity was higher in the soup than in the biofilm with a peak on the seventh day of fermentation. The biochemical properties changed with the progression of the fermentation, i.e., beneficial properties of the beverage such as the radical scavenging ability increased significantly with a maximum increase at day 7. We further observed a significantly higher D-saccharic acid-1,4-lactone content and caffeine degradation property compared to previously described Kombucha tea fermentations. Our

  15. Biochemical markers of bone turnover

    International Nuclear Information System (INIS)

    Kim, Deog Yoon

    1999-01-01

    Biochemical markers of bone turnover has received increasing attention over the past few years, because of the need for sensitivity and specific tool in the clinical investigation of osteoporosis. Bone markers should be unique to bone, reflect changes of bone less, and should be correlated with radiocalcium kinetics, histomorphometry, or changes in bone mass. The markers also should be useful in monitoring treatment efficacy. Although no bone marker has been established to meet all these criteria, currently osteocalcin and pyridinium crosslinks are the most efficient markers to assess the level of bone turnover in the menopausal and senile osteoporosis. Recently, N-terminal telopeptide (NTX), C-terminal telopeptide (CTX) and bone specific alkaline phosphatase are considered as new valid markers of bone turnover. Recent data suggest that CTX and free deoxypyridinoline could predict the subsequent risk of hip fracture of elderly women. Treatment of postmenopausal women with estrogen, calcitonin and bisphosphonates demonstrated rapid decrease of the levels of bone markers that correlated with the long-term increase of bone mass. Factors such as circadian rhythms, diet, age, sex, bone mass and renal function affect the results of biochemical markers and should be appropriately adjusted whenever possible. Each biochemical markers of bone turnover may have its own specific advantages and limitations. Recent advances in research will provide more sensitive and specific assays

  16. Chromosome 15q25.1 genetic markers associated with level of response to alcohol in humans.

    Science.gov (United States)

    Joslyn, Geoff; Brush, Gerry; Robertson, Margaret; Smith, Tom L; Kalmijn, Jelger; Schuckit, Marc; White, Raymond L

    2008-12-23

    As with other genetically complex common psychiatric and medical conditions, multiple genetic and environmental components contribute to alcohol use disorders (AUDs), which can confound attempts to identify genetic components. Intermediate phenotypes are often more closely correlated with underlying biology and have often proven invaluable in genetic studies. Level of response (LR) to alcohol is an intermediate phenotype for AUDs, and individuals with a low LR are at increased risk. A high rate of concurrent alcohol and nicotine use and dependence suggests that these conditions may share biochemical and genetic mechanisms. Genetic association studies indicate that a genetic locus, which includes the CHRNA5-CHRNA3-CHRNB4 gene cluster, plays a role in nicotine consumption and dependence. Genetic association with alcohol dependence was also recently shown. We show here that two of the markers from the nicotine studies also show an association (multiple testing corrected P a sample of 367 siblings. Additional markers in the region were analyzed and shown to be located in a 250-kb expanse of high linkage disequilibrium containing three additional genes. These findings indicate that LR intermediate phenotypes have utility in genetic approaches to AUDs and will prove valuable in the identification of other genetic loci conferring susceptibility to AUDs.

  17. Measures of Biochemical Sociology

    Science.gov (United States)

    Snell, Joel; Marsh, Mitchell

    2008-01-01

    In a previous article, the authors introduced a new sub field in sociology that we labeled "biochemical sociology." We introduced the definition of a sociology that encompasses sociological measures, psychological measures, and biological indicators Snell & Marsh (2003). In this article, we want to demonstrate a research strategy that would assess…

  18. Discovering Reliable Sources of Biochemical Thermodynamic Data to Aid Students' Understanding

    Science.gov (United States)

    Me´ndez, Eduardo; Cerda´, María F.

    2016-01-01

    Students of physical chemistry in biochemical disciplines need biochemical examples to capture the need, not always understood, of a difficult area in their studies. The use of thermodynamic data in the chemical reference state may lead to incorrect interpretations in the analysis of biochemical examples when the analysis does not include relevant…

  19. Broad-Scale Genetic Diversity of Cannabis for Forensic Applications.

    Directory of Open Access Journals (Sweden)

    Christophe Dufresnes

    Full Text Available Cannabis (hemp and marijuana is an iconic yet controversial crop. On the one hand, it represents a growing market for pharmaceutical and agricultural sectors. On the other hand, plants synthesizing the psychoactive THC produce the most widespread illicit drug in the world. Yet, the difficulty to reliably distinguish between Cannabis varieties based on morphological or biochemical criteria impedes the development of promising industrial programs and hinders the fight against narcotrafficking. Genetics offers an appropriate alternative to characterize drug vs. non-drug Cannabis. However, forensic applications require rapid and affordable genotyping of informative and reliable molecular markers for which a broad-scale reference database, representing both intra- and inter-variety variation, is available. Here we provide such a resource for Cannabis, by genotyping 13 microsatellite loci (STRs in 1 324 samples selected specifically for fibre (24 hemp varieties and drug (15 marijuana varieties production. We showed that these loci are sufficient to capture most of the genome-wide diversity patterns recently revealed by NGS data. We recovered strong genetic structure between marijuana and hemp and demonstrated that anonymous samples can be confidently assigned to either plant types. Fibres appear genetically homogeneous whereas drugs show low (often clonal diversity within varieties, but very high genetic differentiation between them, likely resulting from breeding practices. Based on an additional test dataset including samples from 41 local police seizures, we showed that the genetic signature of marijuana cultivars could be used to trace crime scene evidence. To date, our study provides the most comprehensive genetic resource for Cannabis forensics worldwide.

  20. Broad-Scale Genetic Diversity of Cannabis for Forensic Applications.

    Science.gov (United States)

    Dufresnes, Christophe; Jan, Catherine; Bienert, Friederike; Goudet, Jérôme; Fumagalli, Luca

    2017-01-01

    Cannabis (hemp and marijuana) is an iconic yet controversial crop. On the one hand, it represents a growing market for pharmaceutical and agricultural sectors. On the other hand, plants synthesizing the psychoactive THC produce the most widespread illicit drug in the world. Yet, the difficulty to reliably distinguish between Cannabis varieties based on morphological or biochemical criteria impedes the development of promising industrial programs and hinders the fight against narcotrafficking. Genetics offers an appropriate alternative to characterize drug vs. non-drug Cannabis. However, forensic applications require rapid and affordable genotyping of informative and reliable molecular markers for which a broad-scale reference database, representing both intra- and inter-variety variation, is available. Here we provide such a resource for Cannabis, by genotyping 13 microsatellite loci (STRs) in 1 324 samples selected specifically for fibre (24 hemp varieties) and drug (15 marijuana varieties) production. We showed that these loci are sufficient to capture most of the genome-wide diversity patterns recently revealed by NGS data. We recovered strong genetic structure between marijuana and hemp and demonstrated that anonymous samples can be confidently assigned to either plant types. Fibres appear genetically homogeneous whereas drugs show low (often clonal) diversity within varieties, but very high genetic differentiation between them, likely resulting from breeding practices. Based on an additional test dataset including samples from 41 local police seizures, we showed that the genetic signature of marijuana cultivars could be used to trace crime scene evidence. To date, our study provides the most comprehensive genetic resource for Cannabis forensics worldwide.

  1. 'BioNessie(G) - a grid enabled biochemical networks simulation environment

    OpenAIRE

    Liu, X; Jiang, J; Ajayi, O; Gu, X; Gilbert, D; Sinnott, R

    2008-01-01

    The simulation of biochemical networks provides insight and understanding about the underlying biochemical processes and pathways used by cells and organisms. BioNessie is a biochemical network simulator which has been developed at the University of Glasgow. This paper describes the simulator and focuses in particular on how it has been extended to benefit from a wide variety of high performance compute resources across the UK through Grid technologies to support larger scal...

  2. Exploring basic biochemical constituents in the body tissues of ...

    African Journals Online (AJOL)

    Feeding regime did not influence susceptibility to mass loss during export. Animal age influenced the biochemical composition and export performance of abalone. Keywords: abalone; aquaculture; feeds; Haliotis midae; live export; mass loss; tissue biochemical constituents. African Journal of Marine Science 2010, 32(1): ...

  3. Genetics meets metabolomics: a genome-wide association study of metabolite profiles in human serum.

    Directory of Open Access Journals (Sweden)

    Christian Gieger

    2008-11-01

    Full Text Available The rapidly evolving field of metabolomics aims at a comprehensive measurement of ideally all endogenous metabolites in a cell or body fluid. It thereby provides a functional readout of the physiological state of the human body. Genetic variants that associate with changes in the homeostasis of key lipids, carbohydrates, or amino acids are not only expected to display much larger effect sizes due to their direct involvement in metabolite conversion modification, but should also provide access to the biochemical context of such variations, in particular when enzyme coding genes are concerned. To test this hypothesis, we conducted what is, to the best of our knowledge, the first GWA study with metabolomics based on the quantitative measurement of 363 metabolites in serum of 284 male participants of the KORA study. We found associations of frequent single nucleotide polymorphisms (SNPs with considerable differences in the metabolic homeostasis of the human body, explaining up to 12% of the observed variance. Using ratios of certain metabolite concentrations as a proxy for enzymatic activity, up to 28% of the variance can be explained (p-values 10(-16 to 10(-21. We identified four genetic variants in genes coding for enzymes (FADS1, LIPC, SCAD, MCAD where the corresponding metabolic phenotype (metabotype clearly matches the biochemical pathways in which these enzymes are active. Our results suggest that common genetic polymorphisms induce major differentiations in the metabolic make-up of the human population. This may lead to a novel approach to personalized health care based on a combination of genotyping and metabolic characterization. These genetically determined metabotypes may subscribe the risk for a certain medical phenotype, the response to a given drug treatment, or the reaction to a nutritional intervention or environmental challenge.

  4. Biochemical Stimulus-Based Strategies for Meniscus Tissue Engineering and Regeneration

    Science.gov (United States)

    Chen, Mingxue; Guo, Weimin; Gao, Shunag; Hao, Chunxiang; Shen, Shi; Zhang, Zengzeng; Wang, Zhenyong; Wang, Zehao; Li, Xu; Jing, Xiaoguang; Zhang, Xueliang; Yuan, Zhiguo; Wang, Mingjie; Zhang, Yu; Peng, Jiang; Wang, Aiyuan; Wang, Yu; Sui, Xiang

    2018-01-01

    Meniscus injuries are very common and still pose a challenge for the orthopedic surgeon. Meniscus injuries in the inner two-thirds of the meniscus remain incurable. Tissue-engineered meniscus strategies seem to offer a new approach for treating meniscus injuries with a combination of seed cells, scaffolds, and biochemical or biomechanical stimulation. Cell- or scaffold-based strategies play a pivotal role in meniscus regeneration. Similarly, biochemical and biomechanical stimulation are also important. Seed cells and scaffolds can be used to construct a tissue-engineered tissue; however, stimulation to enhance tissue maturation and remodeling is still needed. Such stimulation can be biomechanical or biochemical, but this review focuses only on biochemical stimulation. Growth factors (GFs) are one of the most important forms of biochemical stimulation. Frequently used GFs always play a critical role in normal limb development and growth. Further understanding of the functional mechanism of GFs will help scientists to design the best therapy strategies. In this review, we summarize some of the most important GFs in tissue-engineered menisci, as well as other types of biological stimulation. PMID:29581987

  5. Thermodynamically consistent Bayesian analysis of closed biochemical reaction systems

    Directory of Open Access Journals (Sweden)

    Goutsias John

    2010-11-01

    Full Text Available Abstract Background Estimating the rate constants of a biochemical reaction system with known stoichiometry from noisy time series measurements of molecular concentrations is an important step for building predictive models of cellular function. Inference techniques currently available in the literature may produce rate constant values that defy necessary constraints imposed by the fundamental laws of thermodynamics. As a result, these techniques may lead to biochemical reaction systems whose concentration dynamics could not possibly occur in nature. Therefore, development of a thermodynamically consistent approach for estimating the rate constants of a biochemical reaction system is highly desirable. Results We introduce a Bayesian analysis approach for computing thermodynamically consistent estimates of the rate constants of a closed biochemical reaction system with known stoichiometry given experimental data. Our method employs an appropriately designed prior probability density function that effectively integrates fundamental biophysical and thermodynamic knowledge into the inference problem. Moreover, it takes into account experimental strategies for collecting informative observations of molecular concentrations through perturbations. The proposed method employs a maximization-expectation-maximization algorithm that provides thermodynamically feasible estimates of the rate constant values and computes appropriate measures of estimation accuracy. We demonstrate various aspects of the proposed method on synthetic data obtained by simulating a subset of a well-known model of the EGF/ERK signaling pathway, and examine its robustness under conditions that violate key assumptions. Software, coded in MATLAB®, which implements all Bayesian analysis techniques discussed in this paper, is available free of charge at http://www.cis.jhu.edu/~goutsias/CSS%20lab/software.html. Conclusions Our approach provides an attractive statistical methodology for

  6. Identifying Breeding Priorities for Blueberry Flavor Using Biochemical, Sensory, and Genotype by Environment Analyses.

    Directory of Open Access Journals (Sweden)

    Jessica L Gilbert

    Full Text Available Breeding for a subjective goal such as flavor is challenging, as many blueberry cultivars are grown worldwide, and identifying breeding targets relating to blueberry flavor biochemistry that have a high degree of genetic control and low environmental variability are priorities. A variety of biochemical compounds and physical characters induce the sensory responses of taste, olfaction, and somatosensation, all of which interact to create what is perceived flavor. The goal of this study was to identify the flavor compounds with a larger genetic versus environmental component regulating their expression over an array of cultivars, locations, and years. Over the course of three years, consumer panelists rated overall liking, texture, sweetness, sourness, and flavor intensity of 19 southern highbush blueberry (Vaccinium corymbosum hybrids genotypes in 30 sensory panels. Significant positive correlations to overall liking of blueberry fruit (P<0.001 were found with sweetness (R2 = 0.70, texture (R2 = 0.68, and flavor (R2 = 0.63. Sourness had a significantly negative relationship with overall liking (R2 = 0.55. The relationship between flavor and texture liking was also linear (R2 = 0.73, P<0.0001 demonstrating interaction between olfaction and somatosensation. Partial least squares analysis was used to identify sugars, acids, and volatile compounds contributing to liking and sensory intensities, and revealed strong effects of fructose, pH, and several volatile compounds upon all sensory parameters measured. To assess the feasibility of breeding for flavor components, a three year study was conducted to compare genetic and environmental influences on flavor biochemistry. Panelists could discern genotypic variation in blueberry sensory components, and many of the compounds affecting consumer favor of blueberries, such as fructose, pH, β-caryophyllene oxide and 2-heptanone, were sufficiently genetically controlled that allocating resources for their

  7. Genetic diversity among and within cultured cyanobionts of diverse species of Azolla.

    Science.gov (United States)

    Sood, A; Prasanna, R; Prasanna, B M; Singh, P K

    2008-01-01

    The cyanobionts isolated from 10 Azolla accessions belonging to 6 species (Azolla mexicana, A. microphylla, A. rubra, A. caroliniana, A. filiculoides, A. pinnata) were cultured under laboratory conditions and analyzed on the basis of whole cell protein profiles and molecular marker dataset generated using repeat sequence primers (STRR(mod) and HipTG). The biochemical and molecular marker profiles of the cyanobionts were compared with those of the free-living cyanobacteria and symbiotic Nostoc strains from Anthoceros sp., Cycas sp. and Gunnera monoika. Cluster analysis revealed the genetic diversity among the selected strains, and identified 3 distinct clusters. Group 1 included cyanobionts from all the 10 accessions of Azolla, group 2 comprised all the symbiotic Nostoc strains, while group 3 included the free-living cyanobacteria belonging to the genera Nostoc and Anabaena. The interrelationships among the Azolla cyanobionts were further revealed by principal component analysis. Cyanobionts from A. caroliniana-A. microphylla grouped together while cyanobionts associated with A. mexicana-A. filiculoides along with A. pinnata formed another group. A. rubra cyanobionts had intermediate relationship with both the subgroups. This is the first study analyzing the diversity existing among the cultured cyanobionts of diverse Azolla species through the use of biochemical and molecular profiles and also the genetic distinctness of these free-living cyanobionts as compared to cyanobacterial strains of the genera Anabaena and Nostoc.

  8. Biochemical toxicology of environmental agents

    International Nuclear Information System (INIS)

    Bruin, A. de

    1976-01-01

    A thorough and up-to-date account of the molecular-biological aspects of harmful agents - both chemical and physical - is given. This current treatise is principally intended to serve as an informative reference work for researchers in various areas of the field. In the pursuit of this aim, a devision of the entire field into 42 chapters has been made. Each chapter starts with a short introductory account dealing with the biochemical essentials of the particular subject. Radiation effects are discussed briefly at the end of each treatise. In order to make the treatise useful as a source book, a substantial collection of pertinent literature references is provided which are numbered in order of citation in the text. Initial chapters are devoted to the metabolic fate of the major classes of xenobiotic compounds. Peripheral topics, closely related to metabolism and dealing with modification of xenobiotic-metabolizing ability, as well as interaction phenomena follow (chs. 5-8). Subjects that draw heavily on the practical field of occupational hygiene are dealt with in chapters 9 and 10. The systematic treatment of how chemical and physical agents interact with the various biochemical and enzymatic systems they encounter during their passage through the organism occupies quantitatively the main part of the book (chs. 11-36). Finally, radiation biochemistry is discussed from the viewpoint of its high degree of scientific advancement, and secondly because the type of biochemical changes produced in vivo by X-rays closely parallel those evoked by chemical agents

  9. Enzyme and biochemical producing fungi

    DEFF Research Database (Denmark)

    Lübeck, Peter Stephensen; Lübeck, Mette; Nilsson, Lena

    2010-01-01

    factories for sustainable production of important molecules. For developing fungi into efficient cell factories, the project includes identification of important factors that control the flux through the pathways using metabolic flux analysis and metabolic engineering of biochemical pathways....

  10. Predictive hypotheses are ineffectual in resolving complex biochemical systems.

    Science.gov (United States)

    Fry, Michael

    2018-03-20

    Scientific hypotheses may either predict particular unknown facts or accommodate previously-known data. Although affirmed predictions are intuitively more rewarding than accommodations of established facts, opinions divide whether predictive hypotheses are also epistemically superior to accommodation hypotheses. This paper examines the contribution of predictive hypotheses to discoveries of several bio-molecular systems. Having all the necessary elements of the system known beforehand, an abstract predictive hypothesis of semiconservative mode of DNA replication was successfully affirmed. However, in defining the genetic code whose biochemical basis was unclear, hypotheses were only partially effective and supplementary experimentation was required for its conclusive definition. Markedly, hypotheses were entirely inept in predicting workings of complex systems that included unknown elements. Thus, hypotheses did not predict the existence and function of mRNA, the multiple unidentified components of the protein biosynthesis machinery, or the manifold unknown constituents of the ubiquitin-proteasome system of protein breakdown. Consequently, because of their inability to envision unknown entities, predictive hypotheses did not contribute to the elucidation of cation theories remained the sole instrument to explain complex bio-molecular systems, the philosophical question of alleged advantage of predictive over accommodative hypotheses became inconsequential.

  11. Probabilistic sensitivity analysis of biochemical reaction systems.

    Science.gov (United States)

    Zhang, Hong-Xuan; Dempsey, William P; Goutsias, John

    2009-09-07

    Sensitivity analysis is an indispensable tool for studying the robustness and fragility properties of biochemical reaction systems as well as for designing optimal approaches for selective perturbation and intervention. Deterministic sensitivity analysis techniques, using derivatives of the system response, have been extensively used in the literature. However, these techniques suffer from several drawbacks, which must be carefully considered before using them in problems of systems biology. We develop here a probabilistic approach to sensitivity analysis of biochemical reaction systems. The proposed technique employs a biophysically derived model for parameter fluctuations and, by using a recently suggested variance-based approach to sensitivity analysis [Saltelli et al., Chem. Rev. (Washington, D.C.) 105, 2811 (2005)], it leads to a powerful sensitivity analysis methodology for biochemical reaction systems. The approach presented in this paper addresses many problems associated with derivative-based sensitivity analysis techniques. Most importantly, it produces thermodynamically consistent sensitivity analysis results, can easily accommodate appreciable parameter variations, and allows for systematic investigation of high-order interaction effects. By employing a computational model of the mitogen-activated protein kinase signaling cascade, we demonstrate that our approach is well suited for sensitivity analysis of biochemical reaction systems and can produce a wealth of information about the sensitivity properties of such systems. The price to be paid, however, is a substantial increase in computational complexity over derivative-based techniques, which must be effectively addressed in order to make the proposed approach to sensitivity analysis more practical.

  12. Characterizing multistationarity regimes in biochemical reaction networks.

    Directory of Open Access Journals (Sweden)

    Irene Otero-Muras

    Full Text Available Switch like responses appear as common strategies in the regulation of cellular systems. Here we present a method to characterize bistable regimes in biochemical reaction networks that can be of use to both direct and reverse engineering of biological switches. In the design of a synthetic biological switch, it is important to study the capability for bistability of the underlying biochemical network structure. Chemical Reaction Network Theory (CRNT may help at this level to decide whether a given network has the capacity for multiple positive equilibria, based on their structural properties. However, in order to build a working switch, we also need to ensure that the bistability property is robust, by studying the conditions leading to the existence of two different steady states. In the reverse engineering of biological switches, knowledge collected about the bistable regimes of the underlying potential model structures can contribute at the model identification stage to a drastic reduction of the feasible region in the parameter space of search. In this work, we make use and extend previous results of the CRNT, aiming not only to discriminate whether a biochemical reaction network can exhibit multiple steady states, but also to determine the regions within the whole space of parameters capable of producing multistationarity. To that purpose we present and justify a condition on the parameters of biochemical networks for the appearance of multistationarity, and propose an efficient and reliable computational method to check its satisfaction through the parameter space.

  13. The historical role of species from the Solanaceae plant family in genetic research.

    Science.gov (United States)

    Gebhardt, Christiane

    2016-12-01

    This article evaluates the main contributions of tomato, tobacco, petunia, potato, pepper and eggplant to classical and molecular plant genetics and genomics since the beginning of the twentieth century. Species from the Solanaceae family form integral parts of human civilizations as food sources and drugs since thousands of years, and, more recently, as ornamentals. Some Solanaceous species were subjects of classical and molecular genetic research over the last 100 years. The tomato was one of the principal models in twentieth century classical genetics and a pacemaker of genome analysis in plants including molecular linkage maps, positional cloning of disease resistance genes and quantitative trait loci (QTL). Besides that, tomato is the model for the genetics of fruit development and composition. Tobacco was the major model used to establish the principals and methods of plant somatic cell genetics including in vitro propagation of cells and tissues, totipotency of somatic cells, doubled haploid production and genetic transformation. Petunia was a model for elucidating the biochemical and genetic basis of flower color and development. The cultivated potato is the economically most important Solanaceous plant and ranks third after wheat and rice as one of the world's great food crops. Potato is the model for studying the genetic basis of tuber development. Molecular genetics and genomics of potato, in particular association genetics, made valuable contributions to the genetic dissection of complex agronomic traits and the development of diagnostic markers for breeding applications. Pepper and eggplant are horticultural crops of worldwide relevance. Genetic and genomic research in pepper and eggplant mostly followed the tomato model. Comparative genome analysis of tomato, potato, pepper and eggplant contributed to the understanding of plant genome evolution.

  14. SABIO-RK: A data warehouse for biochemical reactions and their kinetics

    Directory of Open Access Journals (Sweden)

    Krebs Olga

    2007-03-01

    Full Text Available Systems biology is an emerging field that aims at obtaining a system-level understanding of biological processes. The modelling and simulation of networks of biochemical reactions have great and promising application potential but require reliable kinetic data. In order to support the systems biology community with such data we have developed SABIO-RK (System for the Analysis of Biochemical Pathways - Reaction Kinetics, a curated database with information about biochemical reactions and their kinetic properties, which allows researchers to obtain and compare kinetic data and to integrate them into models of biochemical networks. SABIO-RK is freely available for academic use at http://sabio.villa-bosch.de/SABIORK/.

  15. Pin count-aware biochemical application compilation for mVLSI biochips

    DEFF Research Database (Denmark)

    Lander Raagaard, Michael; Pop, Paul

    2015-01-01

    Microfluidic biochips are replacing the conventional biochemical analyzers and are able to integrate the necessary functions for biochemical analysis on-chip. In this paper we are interested in flow-based biochips, in which the fluidic flow manipulated using integrated microvalves, which are cont...... a biochemical application. We focus on the compilation task, where the strategy is to delay operations, without missing their deadlines, such that the sharing of control signals is maximized. The evaluation shows a significant reduction in the number of control pins required....

  16. Development of a new first-aid biochemical detector

    Science.gov (United States)

    Hu, Jingfei; Liao, Haiyang; Su, Shilin; Ding, Hao; Liu, Suquan

    2016-10-01

    The traditional biochemical detector exhibits poor adaptability, inconvenient carrying and slow detection, which can't meet the needs of first-aid under field condition like natural or man-made disasters etc. Therefore a scheme of first-aid biochemical detector based on MOMES Micro Spectrometer, UV LED and Photodiode was proposed. An optical detection structure combined continuous spectrum sweep with fixed wavelength measurement was designed, which adopted mobile detection optical path consisting of Micro Spectrometer and Halogen Lamp to detect Chloride (Cl-), Creatinine (Cre), Glucose (Glu), Hemoglobin (Hb). The UV LED and Photodiode were designed to detect Potassium (K-), Carbon dioxide (CO2), Sodium (Na+). According to the field diagnosis and treatment requirements, we designed the embedded control hardware circuit and software system, the prototype of first-aid biochemical detector was developed and the clinical trials were conducted. Experimental results show that the sample's absorbance repeatability is less than 2%, the max coefficient of variation (CV) in the batch repeatability test of all 7 biochemical parameters in blood samples is 4.68%, less than the clinical requirements 10%, the correlation coefficient (R2) in the clinical contrast test with AU5800 is almost greater than 0.97. To sum up, the prototype meets the requirements of clinical application.

  17. Biochemical failure after radical external beam radiotherapy for prostate cancer

    International Nuclear Information System (INIS)

    Nomoto, Satoshi; Imada, Hajime; Kato, Fumio; Yahara, Katsuya; Morioka, Tomoaki; Ohguri, Takayuki; Nakano, Keita; Korogi, Yukunori

    2005-01-01

    The purpose of this study was to evaluate biochemical failures after radical external beam radiotherapy for prostate cancer. A total of 143 patients with prostate cancer (5 cases in stage A2, 95 in stage B and 43 in stage C; 18 in low risk group, 37 in intermediate risk group, 67 in high risk group and 21 in unknown group) were included in this study. Patients of stage A2 and B underwent external irradiation of 46 Gy to the prostate gland and seminal vesicle and additional 20 Gy to the prostate gland, while patients of stage C underwent external irradiation of 66 Gy to the prostate gland and seminal vesicle including 46 Gy to the pelvis. Neoadjuvant hormonal therapy was done in 66 cases, and long-term hormonal therapy in 75 cases; two cases were treated with radiation therapy alone. The 3-year relapse free survival rates by stage A2, B and C were 100%, 96.7% and 88.1%, respectively. The 3-year relapse free survival rates by low, intermediate and high risk groups were 100%, 92.3% and 89.7%, respectively. Biochemical failure was noted in nine cases during the average observation term of 32.2 months; in this group the median of prostate specific antigen (PSA) value was 2.6 ng/ml, the doubling time was 8.6 months, and the term of biochemical failure was 33.2 months. Six of eight cases with biochemical failure were the neoadjuvant hormonal therapy group, but biochemical no evidence of disease (bNED) curve showed no significant difference between neoadjuvant and long-term hormonal groups. It is supposed that unnecessary hormonal therapies were performed based on the nonspecific diagnosis of biochemical failure after radical radiotherapy in our group of patients. A precise criterion of biochemical failure after radical radiotherapy for prostate cancer is necessary. (author)

  18. Identification of autophagosome-associated proteins and regulators by quantitative proteomic analysis and genetic screens

    DEFF Research Database (Denmark)

    Dengjel, Jörn; Høyer-Hansen, Maria; Nielsen, Maria

    2012-01-01

    Autophagy is one of the major intracellular catabolic pathways, but little is known about the composition of autophagosomes. To study the associated proteins, we isolated autophagosomes from human breast cancer cells using two different biochemical methods and three stimulus types: amino acid dep...... regulators of autophagy, including subunits of the retromer complex. The combined spatiotemporal proteomic and genetic data sets presented here provide a basis for further characterization of autophagosome biogenesis and cargo selection....

  19. Multidimensional biochemical information processing of dynamical patterns.

    Science.gov (United States)

    Hasegawa, Yoshihiko

    2018-02-01

    Cells receive signaling molecules by receptors and relay information via sensory networks so that they can respond properly depending on the type of signal. Recent studies have shown that cells can extract multidimensional information from dynamical concentration patterns of signaling molecules. We herein study how biochemical systems can process multidimensional information embedded in dynamical patterns. We model the decoding networks by linear response functions, and optimize the functions with the calculus of variations to maximize the mutual information between patterns and output. We find that, when the noise intensity is lower, decoders with different linear response functions, i.e., distinct decoders, can extract much information. However, when the noise intensity is higher, distinct decoders do not provide the maximum amount of information. This indicates that, when transmitting information by dynamical patterns, embedding information in multiple patterns is not optimal when the noise intensity is very large. Furthermore, we explore the biochemical implementations of these decoders using control theory and demonstrate that these decoders can be implemented biochemically through the modification of cascade-type networks, which are prevalent in actual signaling pathways.

  20. Biochemical markers in the follow-up of medullary thyroid cancer

    NARCIS (Netherlands)

    de Groot, Jan Willem B.; Kema, Ido P.; Breukelman, Henk; van der Veer, Eveline; Wiggers, Theo; Plukker, John T. M.; Wolffenbuttel, Bruce H. R.; Links, Thera P.

    2006-01-01

    Medullary thyroid cancer (MTC) shares biochemical features with other neuroendocrine tumors but the particular characteristics are largely unexplored. We investigated the biochemical neuroendocrine profile of MTC and whether specific markers could be useful in follow-up. In addition to the standard

  1. Biochemical evaluation of phenylketonuria (PKU: from diagnosis to treatment

    Directory of Open Access Journals (Sweden)

    Leticia Belmont-Martínez

    2014-07-01

    Besides periodical Phe and Tyr testing, biochemical follow-up includes the measurement of necessary elements that guarantee normal physical and intellectual development such as selenium, zinc, B12 vitamin, folates, iron and long chain fatty acids. Clinical context is as important as biochemical status so periodic evaluation of nutritional, medical, social and psychological aspects should be included.

  2. Biochemical signatures mimicking multiple carboxylase deficiency in children with mutations in MT-ATP6.

    Science.gov (United States)

    Larson, Austin A; Balasubramaniam, Shanti; Christodoulou, John; Burrage, Lindsay C; Marom, Ronit; Graham, Brett H; Diaz, George A; Glamuzina, Emma; Hauser, Natalie; Heese, Bryce; Horvath, Gabriella; Mattman, Andre; van Karnebeek, Clara; Lane Rutledge, S; Williamson, Amy; Estrella, Lissette; Van Hove, Johan K L; Weisfeld-Adams, James D

    2018-01-04

    Elevations of specific acylcarnitines in blood reflect carboxylase deficiencies, and have utility in newborn screening for life-threatening organic acidemias and other inherited metabolic diseases. In this report, we describe a newly-identified association of biochemical features of multiple carboxylase deficiency in individuals harboring mitochondrial DNA (mtDNA) mutations in MT-ATP6 and in whom organic acidemias and multiple carboxylase deficiencies were excluded. Using retrospective chart review, we identified eleven individuals with abnormally elevated propionylcarnitine (C3) or hydroxyisovalerylcarnitine (C5OH) with mutations in MT-ATP6, most commonly m.8993T>G in high heteroplasmy or homoplasmy. Most patients were ascertained on newborn screening; most had normal enzymatic or molecular genetic testing to exclude biotinidase and holocarboxylase synthetase deficiencies. MT-ATP6 is associated with some cases of Leigh disease; clinical outcomes in our cohort ranged from death from neurodegenerative disease in early childhood to clinically and developmentally normal after several years of follow-up. These cases expand the biochemical phenotype associated with MT-ATP6 mutations, especially m.8993T>G, to include acylcarnitine abnormalities mimicking carboxylase deficiency states. Clinicians should be aware of this association and its implications for newborn screening, and consider mtDNA sequencing in patients exhibiting similar acylcarnitine abnormalities that are biotin-unresponsive and in whom other enzymatic deficiencies have been excluded. Copyright © 2018 Elsevier B.V. and Mitochondria Research Society. All rights reserved.

  3. An improved solution of first order kinetics for biochemical oxygen ...

    African Journals Online (AJOL)

    This paper evaluated selected Biochemical Oxygen Demand first order kinetics methods. Domesticinstitutional wastewaters were collected twice in a month for three months from the Obafemi Awolowo University, Ile-Ife waste stabilization ponds. Biochemical Oxygen Demand concentrations at different days were determined ...

  4. The effects of Islamic fasting on blood hematological-biochemical parameters

    Directory of Open Access Journals (Sweden)

    Mohamad Reza Sedaghat

    2017-06-01

    Conclusion:This study on healthy subjects suggests that fasting could affect some hematological-biochemical parameters but not all of them. Also, these changes in hematological-biochemical parameters were within the normal range and Ramadan fasting seems to be safe for healthy subjects.

  5. Salvage conformal radiotherapy for biochemical recurrent prostate cancer after radical prostatectomy

    Directory of Open Access Journals (Sweden)

    Carlos R. Monti

    2006-08-01

    Full Text Available OBJECTIVE: Assess the results of salvage conformal radiotherapy in patients with biochemical failure after radical prostatectomy and identify prognostic factors for biochemical recurrence and toxicity of the treatment. MATERIALS AND METHODS: From June 1998 to November 2001, 35 patients were submitted to conformal radiotherapy for PSA > 0.2 ng/mL in progression after radical prostatectomy and were retrospectively analyzed. The mean dose of radiation in prostatic bed was of 77.4 Gy (68-81. Variables related to the treatment and to tumor were assessed to identify prognostic factors for biochemical recurrence after salvage radiotherapy. RESULTS: The median follow-up was of 55 months (17-83. The actuarial survival rates free of biochemical recurrence and free of metastasis at a distance of 5 years were 79.7% e 84.7%, respectively. The actuarial global survival rate in 5 years was 96.1%.The actuarial survival rate free of biochemical recurrence in 5 years was 83.3% with PSA pre-radiotherapy 1 and 2 (p = 0.023. Dose > 70 Gy in 30% of the bladder volume implied in more acute urinary toxicity (p = 0.035. The mean time for the development of late urinary toxicity was 21 months (12-51. Dose > 55 Gy in 50% bladder volume implied in more late urinary toxicity (p = 0.018. A patient presented late rectal toxicity of 2nd grade. CONCLUSIONS: Conformal radiotherapy showed to be effective for the control of biochemical recurrence after radical prostatectomy. Patients with pre-therapy PSA < 2 ng/mL have more biochemical control.

  6. Agro-physiological and biochemical responses of faba bean (Vicia faba L. var. 'minor' genotypes to water deficit stress

    Directory of Open Access Journals (Sweden)

    Abid, G.

    2017-01-01

    Full Text Available Description of the subject. Drought is one of the major abiotic factors affecting growth and productivity of plants by imposing certain morphological, physiological and biochemical changes at different growth stages. Objectives. The objective of this work is to study key morphological, physiological and biochemical responses of faba bean (Vicia faba L. var. 'minor' to soil water deficit stress and to assess the contribution of genetic factors in improving faba bean tolerance to water deficit. Method. Plants of 11 faba bean cultivars were grown in the greenhouse and subjected to three levels of water deficit (90, 50 and 30% of field capacity [FC] in a simple randomized design for 20 days. Water deficit effects on plant growth, relative water content (RWC, gas exchange, chlorophyll a (Chla and chlorophyll b (Chlb content, osmoprotectant accumulations (such as proline and soluble sugars, antioxidant enzyme activities and grain yield were determined. Results. Soil water deficit stress reduced growth and affected physiological parameters, especially antioxidant enzyme activities. Water deficit also increased proline, soluble sugars and protein contents. The studied cultivars significantly differed in their responses to water deficit stress. Photosynthetic parameters were less affected in the 'Hara' cultivar. Furthermore, this cultivar produced the highest value of grain yield at 30% FC, and showed higher antioxidant enzyme activities (CAT, GPX and APX, osmoprotectant accumulations, Chlb and RWC. The 'Hara' cultivar was found to be more tolerant to water deficit stress than the other cultivars. Conclusions. Our methodology can be used for assessing the response of faba bean genetic resources to soil water deficit. The identified tolerant cultivar can be utilized as a source for water stress tolerance in faba bean breeding programs aimed at improving drought tolerance.

  7. Circadian Clocks: Unexpected Biochemical Cogs

    OpenAIRE

    Mori, Tetsuya; Mchaourab, Hassane; Johnson, Carl Hirschie

    2015-01-01

    A circadian oscillation can be reconstituted in vitro from three proteins that cycles with a period of ~24 h. Two recent studies provide surprising biochemical answers to why this remarkable oscillator has such a long time constant and how it can switch effortlessly between alternating enzymatic modes.

  8. Implications of new technologies and shifting priorities on the understanding of genetic injury

    International Nuclear Information System (INIS)

    Grahn, D.

    1988-01-01

    Some areas of radiation genetics still contain gaps of knowledge, as these studies lost priority when the emphasis in experimental mutagenesis shifted toward the effect of chemical mutagens. This shifted emphasis, however, was accompanied by the development of a better understanding of genetic injury at the molecular level. At the opposite end of the spectrum, more attention was paid to estimates of the direct health costs of the genetic burden in humans and the capacity to make prenatal diagnoses, and to consider reasonable clinical and biochemical intervention. Although, as yet, there are no completely reliable direct methods to estimate the radiation-induced mutation rate in humans, we have come to rely upon data from experimental animals to predict event frequency and extrapolate from these data to predict human health consequences. What will the future offer? Certainly, we should develop a better understanding of molecular genetic damage and, possibly, a better extrapolation model for predicting mutation rate, but many aspects of expected health consequences may remain elusive. We still may have to rely upon (1) an inadequate human population genetic baseline, (2) sometimes arguable perceptions of man-mouse extrapolation models, (3) changing perceptions of gene-environment interactions, and (4) changing levels of short-term selection pressure against detrimental mutations

  9. Local biochemical and morphological differences in human Achilles tendinopathy

    DEFF Research Database (Denmark)

    Pingel, Jessica; Fredberg, U.; Qvortrup, Klaus

    2012-01-01

    The incidence of Achilles tendinopathy is high and underlying etiology as well as biochemical and morphological pathology associated with the disease is largely unknown. The aim of the present study was to describe biochemical and morphological differences in chronic Achilles tendinopathy....... The expressions of growth factors, inflammatory mediators and tendon morphology were determined in both chronically diseased and healthy tendon parts....

  10. Biochemical correlates in an animal model of depression

    International Nuclear Information System (INIS)

    Johnson, J.O.

    1986-01-01

    A valid animal model of depression was used to explore specific adrenergic receptor differences between rats exhibiting aberrant behavior and control groups. Preliminary experiments revealed a distinct upregulation of hippocampal beta-receptors (as compared to other brain regions) in those animals acquiring a response deficit as a result of exposure to inescapable footshock. Concurrent studies using standard receptor binding techniques showed no large changes in the density of alpha-adrenergic, serotonergic, or dopaminergic receptor densities. This led to the hypothesis that the hippocampal beta-receptor in responses deficient animals could be correlated with the behavioral changes seen after exposure to the aversive stimulus. Normalization of the behavior through the administration of antidepressants could be expected to reverse the biochemical changes if these are related to the mechanism of action of antidepressant drugs. This study makes three important points: (1) there is a relevant biochemical change in the hippocampus of response deficient rats which occurs in parallel to a well-defined behavior, (2) the biochemical and behavioral changes are normalized by antidepressant treatments exhibiting both serotonergic and adrenergic mechanisms of action, and (3) the mode of action of antidepressants in this model is probably a combination of serotonergic and adrenergic influences modulating the hippocampal beta-receptor. These results are discussed in relation to anatomical and biochemical aspects of antidepressant action

  11. Area program in population genetics. Final report, November 1, 1975-August 31, 1982

    International Nuclear Information System (INIS)

    Chu, E.H.Y.; Gershowitz, H.; Meisler, M.H.; Mohrenweiser, H.W.; Neel, J.V.; Rothman, E.D.; Sing, C.S.

    1982-01-01

    Research results are summarized for the following task areas: (1) Amerindian mutation rates; (2) pilot study of monitoring populations for the frequency of mutation; (3) interdigitation with the biochemical genetics study of the Radiation Effects Research Foundation (Hiroshima, Japan); (4) intraindividual variation in erythrocyte blood group antigens as indicators of somatic mutation; (5) in vitro studies of somatic cell mutation rates; (6) development of approaches to the study of mutation rates; and (7) statistical problems associated with the study of mutation and selection

  12. A Clinical Roadmap to Investigate the Genetic Basis of Pediatric Pheochromocytoma: Which Genes Should Physicians Think About?

    Directory of Open Access Journals (Sweden)

    Bernardo Dias Pereira

    2018-01-01

    Full Text Available Pheochromocytoma is very rare at a pediatric age, and when it is present, the probability of a causative genetic mutation is high. Due to high costs of genetic surveys and an increasing number of genes associated with pheochromocytoma, a sequential genetic analysis driven by clinical and biochemical phenotypes is advised. The published literature regarding the genetic landscape of pediatric pheochromocytoma is scarce, which may hinder the establishment of genotype-phenotype correlations and the selection of appropriate genetic testing at this population. In the present review, we focus on the clinical phenotypes of pediatric patients with pheochromocytoma in an attempt to contribute to an optimized genetic testing in this clinical context. We describe epidemiological data on the prevalence of pheochromocytoma susceptibility genes, including new genes that are expanding the genetic etiology of this neuroendocrine tumor in pediatric patients. The clinical phenotypes associated with a higher pretest probability for hereditary pheochromocytoma are presented, focusing on differences between pediatric and adult patients. We also describe new syndromes, as well as rates of malignancy and multifocal disease associated with these syndromes and pheochromocytoma susceptibility genes published more recently. Finally, we discuss new tools for genetic screening of patients with pheochromocytoma, with an emphasis on its applicability in a pediatric population.

  13. Assessing the Molecular Genetics of the Development of Executive Attention in Children: Focus on Genetic Pathways Related to the Anterior Cingulate Cortex and Dopamine

    Science.gov (United States)

    Brocki, Karin; Clerkin, Suzanne M.; Guise, Kevin G.; Fan, Jin; Fossella, John A.

    2009-01-01

    It is well-known that children show gradual and protracted improvement in an array of behaviors involved in the conscious control of thought and emotion. Non-invasive neuroimaging in developing populations has revealed many neural correlates of behavior, particularly in the developing cingulate cortex and fronto-striatal circuits. These brain regions, themselves, undergo protracted molecular and cellular change in the first two decades of human development and, as such, are ideal regions of interest for cognitive- and imaging-genetic studies that seek to link processes at the biochemical and synaptic levels to brain activity and behavior. We review our research to-date that employs both adult and child-friendly versions of the Attention Network Task (ANT) in an effort to begin to describe the role of specific genes in the assembly of a functional attention system. Presently, we constrain our predictions for genetic association studies by focusing on the role of the anterior cingulate cortex (ACC) and of dopamine in the development of executive attention. PMID:19344637

  14. Development of enhanced radioprotectors - Biochemical and molecular genetical approaches on the radioprotective mechanism of natural products

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jeong Hee; Lee, Eun Ju; Hong, Jung A [Kyunghee University, Seoul (Korea)

    2000-04-01

    To identify radio-protective agent candidate among medicinal plants and to elucidate the mechanism of action of the candidate material by using modern biochemical and molecular biological methods, we screened radio-protective activity among 48 medicinal plants. Seven samples showed above 20% protective activities against oxidative cell damage: Euryale ferox, Glycyrrhiza uralensis, Salvia miltiorrhiza, Eucomia ulmoides, Paeonia suffruticosa, Spirodela polyrrhiza, and Nelumbo nucifera. We also screened for oxidative stress sensitizing activity among other 51 medicinal plants. Among those samples, 11 samples showed good sensitizing effect; Melia azedarach, Agastache rugosa, Catalpa ovata, Prunus persica, Sinomenium acutum, Pulsatilla koreana, Oldenlandia diffusa, Anthriscus sylvestris, Schizandra chinensis, Gleditsia sinensis, and Cridium officinale. We also reported the radio-protective effect of DTT. The treatment of DTT increased cell survival after gamma-irradiation, decreased in the frequencies of micronucleus, and reduction in DNA fragmentation and apoptotic cells. Induction of apoptosis after UV-C irradiation was revealed by the changes in the relative cell death, increase in the relative amount of apoptotic cells, and the induction of DNA fragmentation. 165 refs., 9 figs., 8 tabs. (Author)

  15. The 50th Annual Maize Genetics Conference

    Energy Technology Data Exchange (ETDEWEB)

    Cone, Karen

    2014-03-26

    The 50th Annual Maize Genetics Conference was held February 27 - March 2, 2008 at the Marriott Wardman Park Hotel in Washington, D.C. As the golden anniversary of the Conference and coinciding with the release of a draft of the maize genome sequence, this was a special meeting. To publicize this unique occasion, meeting organizers hosted a press conference, which was attended by members of the press representing science and non-science publications, and an evening reception at the Smithsonian National Museum of Natural History, where the draft sequence was announced and awards were presented to Dr. Mary Clutter and Senator Kit Bond to thank them for their outstanding contributions to maize genetics and genomics research. As usual, the Conference provided an invigorating forum for exchange of recent research results in many areas of maize genetics, e.g., cytogenetics, development, molecular genetics, transposable element biology, biochemical genetics, and genomics. Results were shared via both oral and poster presentations. Invited talks were given by four distinguished geneticists: Vicki Chandler, University of Arizona; John Doebley, University of Wisconsin; Susan Wessler, University of Georgia; and Richard Wilson, Washington University. There were 46 short talks and 241 poster presentations. The Conference was attended by over 500 participants. This included a large number of first-time participants in the meeting and an increasingly visible presence by individuals from underrepresented groups. Although we do not have concrete counts, there seem to be more African American, African and Hispanic/Latino attendees coming to the meeting than in years past. In addition, this meeting attracted many participants from outside the U.S. Student participation continues to be hallmark of the spirit of free exchange and cooperation characteristic of the maize genetics community. With the generous support provided by DOE, USDA NSF, and corporate/private donors, organizers were

  16. Clinical and pathologic factors predictive of biochemical control following post-prostatectomy irradiation

    International Nuclear Information System (INIS)

    Stromberg, Jannifer S.; Ziaja, Ellen L.; Horwitz, Eric M.; Vicini, Frank A.; Brabbins, Donald S.; Dmuchowski, Carl F.; Gonzalez, Jose; Martinez, Alvaro A.

    1996-01-01

    Purpose/Objective: Indications for post-prostatectomy radiation therapy are not well defined. We reviewed our experience treating post-prostatectomy patients with external beam irradiation to assess clinical and pathologic factors predictive of biochemical control. Materials and Methods: Between 1/87 and 3/93, 61 patients received post-operative tumor bed irradiation with a median dose of 59.4 Gy (50.4 - 68 Gy). Median follow-up was 4.1 years (7.6 months - 8.3 years) from irradiation. Patients were treated for the following reasons: 1) adjuvantly, within 6 months of surgery for extracapsular extension, seminal vesicle involvement, or positive surgical margins (n=38); 2) persistently elevated PSA post-operatively (n=2); 3) rising PSA >6 months after surgery (n=9); and 4) biopsy proven local recurrence (n=12). No patients had known nodal or metastatic disease. All patients had post-radiation PSA data available. Biochemical control was the endpoint studied using Kaplan-Meier life table analysis. Biochemical control was defined as the ability to maintain an undetectable PSA ( 4 and ≤1 0, >10 and ≤20, and > 20 ng/ml. The 3 year actuarial rates of biochemical control were 100% for group 1, 66.7% for group 2, 61.5% for group 3, and 28.6% for group 4. Pre-RT PSA values were also evaluated. Univariate Cox models indicated lower presurgical and pre-RT PSA values were predictive of biochemical control (p=0.017, p 6 months after surgery (group 3), the 3 year actuarial rate of biochemical control was 55.6%. The 3 year actuarial rate of biochemical control for patients treated for a biopsy proven recurrence (group 4) was 8.3%. By pair-wise log rank test, the rates of biochemical control were significantly different between groups 1 and 3 (p=0.036), groups 1 and 4 (p<0.001), and groups 3 and 4 (p=0.009). Conclusion: Biochemical control was achieved in approximately half of the patients treated with post-operative prostatic fossa irradiation. Elevated presurgical and pre

  17. Biochemical studies on some zooplankton off the west coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Goswami, S.C.; Rao, T.S.S.; Matondkar, S.G.P.

    Proximate biochemical analyses on twelve zooplankton species showed that protein was the predominant biochemical component followed by lipid. Carbohydrate content was very low especially in species with high water content or calcareous shell...

  18. Substantial equivalence--an appropriate paradigm for the safety assessment of genetically modified foods?

    International Nuclear Information System (INIS)

    Kuiper, Harry A.; Kleter, Gijs A.; Noteborn, Hub P.J.M.; Kok, Esther J.

    2002-01-01

    Safety assessment of genetically modified food crops is based on the concept of substantial equivalence, developed by OECD and further elaborated by FAO/WHO. The concept embraces a comparative approach to identify possible differences between the genetically modified food and its traditional comparator, which is considered to be safe. The concept is not a safety assessment in itself, it identifies hazards but does not assess them. The outcome of the comparative exercise will further guide the safety assessment, which may include (immuno)toxicological and biochemical testing. Application of the concept of substantial equivalence may encounter practical difficulties: (i) the availability of near-isogenic parental lines to compare the genetically modified food with; (ii) limited availability of methods for the detection of (un)intended effects resulting from the genetic modification; and (iii) limited information on natural variations in levels of relevant crop constituents. In order to further improve the methodology for identification of unintended effects, new 'profiling' methods are recommended. Such methods will allow for the screening of potential changes in the modified host organism at different integration levels, i.e. at the genome level, during gene expression and protein translation, and at the level of cellular metabolism

  19. GBA2 Mutations Cause a Marinesco-Sjögren-Like Syndrome: Genetic and Biochemical Studies.

    Directory of Open Access Journals (Sweden)

    Kristoffer Haugarvoll

    Full Text Available With the advent new sequencing technologies, we now have the tools to understand the phenotypic diversity and the common occurrence of phenocopies. We used these techniques to investigate two Norwegian families with an autosomal recessive cerebellar ataxia with cataracts and mental retardation.Single nucleotide polymorphism (SNP chip analysis followed by Exome sequencing identified a 2 bp homozygous deletion in GBA2 in both families, c.1528_1529del [p.Met510Valfs*17]. Furthermore, we report the biochemical characterization of GBA2 in these patients. Our studies show that a reduced activity of GBA2 is sufficient to elevate the levels of glucosylceramide to similar levels as seen in Gaucher disease. Furthermore, leucocytes seem to be the proper enzyme source for in vitro analysis of GBA2 activity.We report GBA2 mutations causing a Marinesco-Sjögren-like syndrome in two Norwegian families. One of the families was originally diagnosed with Marinesco-Sjögren syndrome based on an autosomal recessive cerebellar ataxia with cataracts and mental retardation. Our findings highlight the phenotypic variability associated with GBA2 mutations, and suggest that patients with Marinesco-Sjögren-like syndromes should be tested for mutations in this gene.

  20. Salvage conformal radiotherapy for biochemical recurrent prostate cancer after radical prostatectomy

    International Nuclear Information System (INIS)

    Monti, Carlos R.; Nakamura, Ricardo A.; Ferrigno, Robson; Rossi Junior, Aristides; Kawakami, Neusa S.; Trevisan, Felipe A.

    2006-01-01

    Objective: Assess the results of salvage conformal radiotherapy in patients with biochemical failure after radical prostatectomy and identify prognostic factors for biochemical recurrence and toxicity of the treatment. Materials and methods: From June 1998 to November 2001, 35 patients were submitted to conformal radiotherapy for PSA ≥ 0.2 ng/mL in progression after radical prostatectomy and were retrospectively analyzed. The mean dose of radiation in prostatic bed was of 77.4 Gy (68-81). Variables related to the treatment and to tumor were assessed to identify prognostic factors for biochemical recurrence after salvage radiotherapy. Results: The median follow-up was of 55 months (17-83). The actuarial survival rates free of biochemical recurrence and free of metastasis at a distance of 5 years were 79.7% e 84.7%, respectively. The actuarial global survival rate in 5 years was 96.1%.The actuarial survival rate free of biochemical recurrence in 5 years was 83.3% with PSA pre-radiotherapy ≤ 1, 100% when > 1 and ≤ 2, and 57.1% when > 2 (p = 0.023). Dose > 70 Gy in 30% of the bladder volume implied in more acute urinary toxicity (p = 0.035). The mean time for the development of late urinary toxicity was 21 months (12-51). Dose > 55 Gy in 50% bladder volume implied in more late urinary toxicity (p = 0.018). A patient presented late rectal toxicity of second grade. Conclusions: Conformal radiotherapy showed to be effective for the control of biochemical recurrence after radical prostatectomy. Patients with pre-therapy PSA < 2 ng/mL have more biochemical control. (author)

  1. Sublethal microcystin exposure and biochemical outcomes among hemodialysis patients.

    Directory of Open Access Journals (Sweden)

    Elizabeth D Hilborn

    Full Text Available Cyanobacteria are commonly-occurring contaminants of surface waters worldwide. Microcystins, potent hepatotoxins, are among the best characterized cyanotoxins. During November, 2001, a group of 44 hemodialysis patients were exposed to microcystins via contaminated dialysate. Serum microcystin concentrations were quantified with enzyme-linked immunosorbent assay which measures free serum microcystin LR equivalents (ME. We describe serum ME concentrations and biochemical outcomes among a subset of patients during 8 weeks following exposure. Thirteen patients were included; 6 were males, patients' median age was 45 years (range 16-80, one was seropositive for hepatitis B surface antigen. The median serum ME concentration was 0.33 ng/mL (range: <0.16-0.96. One hundred thirty nine blood samples were collected following exposure. Patients' biochemical outcomes varied, but overall indicated a mixed liver injury. Linear regression evaluated each patient's weekly mean biochemical outcome with their maximum serum ME concentration; a measure of the extrinsic pathway of clotting function, prothrombin time, was negatively and significantly associated with serum ME concentrations. This group of exposed patients' biochemical outcomes display evidence of a mixed liver injury temporally associated with microcystin exposure. Interpretation of biochemical outcomes are complicated by the study population's underlying chronic disease status. It is clear that dialysis patients are a distinct 'at risk' group for cyanotoxin exposures due to direct intravenous exposure to dialysate prepared from surface drinking water supplies. Careful monitoring and treatment of water supplies used to prepare dialysate is required to prevent future cyanotoxin exposure events.

  2. Biochemical activity of fullerenes and related derivatives

    International Nuclear Information System (INIS)

    Huczko, A.; Lange, H.; Calko, E.

    1999-01-01

    An astonishing scientific interest, embodied in over 15000 research articles so far, has been encountered since 1985 when fullerenes were discovered. From new superconductors to a rich electrochemistry and reaction chemistry, fullerene nanostructures continue to excite the scientific world, and new findings continue at record pace. This review presents many examples of the biochemical activities of fullerenes and derivatives, e. g. cytotoxic activity, selective DNA cleavage and antiviral activity against HIV. We also present some results of our testing which show that, despite its chemical and biochemical activity, fullerene matter does not present any health hazard directly related to skin irritation and allergic risks. (author)

  3. Phenotypic and genetic characterization of Piscirickettsia salmonis from Chilean and Canadian salmonids.

    Science.gov (United States)

    Otterlei, Alexander; Brevik, Øyvind J; Jensen, Daniel; Duesund, Henrik; Sommerset, Ingunn; Frost, Petter; Mendoza, Julio; McKenzie, Peter; Nylund, Are; Apablaza, Patricia

    2016-03-15

    The study presents the phenotypic and genetic characterization of selected P. salmonis isolates from Atlantic salmon and rainbow trout suffering from SRS (salmonid rickettsial septicemia) in Chile and in Canada. The phenotypic characterization of the P. salmonis isolates were based on growth on different agar media (including a newly developed medium), different growth temperatures, antibiotics susceptibility and biochemical tests. This is the first study differentiating Chilean P. salmonis isolates into two separate genetic groups. Genotyping, based on 16S rRNA-ITS and concatenated housekeeping genes grouped the selected isolates into two clades, constituted by the Chilean strains, while the Canadian isolates form a branch in the phylogenetic tree. The latter consisted of two isolates that were different in both genetic and phenotypic characteristics. The phylogenies and the MLST do not reflect the origin of the isolates with respect to host species. The isolates included were heterogeneous in phenotypic tests. The genotyping methods developed in this study provided a tool for separation of P. salmonis isolates into distinct clades. The SRS outbreaks in Chile are caused by minimum two different genetic groups of P. salmonis. This heterogeneity should be considered in future development of vaccines against this bacterium in Chile. Two different strains of P. salmonis, in regards to genetic and phenotypic characteristics, can occur in the same contemporary outbreak of SRS.

  4. Genetic Diversity of Pectobacterium carotovorum subsp. brasiliensis Isolated in Korea

    Directory of Open Access Journals (Sweden)

    Dong Hwan Lee

    2014-06-01

    Full Text Available The plant pathogenic bacterial genus Pectobacteirum consists of heterogeneous strains. The P. carotovorum species is a complex strain showing divergent characteristics, and a new subspecies named P. carotovorum subsp. brasiliensis has been identified recently. In this paper, we re-identified the P. carotovorum subsp. brasiliensis isolates from those classified under the subspecies carotovorum and newly isolated P. carotovorum subsp. brasiliensis strains. All isolates were able to produce plant cell-wall degrading enzymes such as pectate lyase, polygalacturonase, cellulase and protease. We used genetic and biochemical methods to examine the diversity of P. carotovorum subsp. brasiliensis isolates, and found genetic diversity within the brasiliensis subsp. isolates in Korea. The restriction fragment length polymorphism analysis based on the recA gene revealed a unique pattern for the brasiliensis subspecies. The Korean brasiliensis subsp. isolates were divided into four clades based on pulsed-field gel electrophoresis. However, correlations between clades and isolated hosts or year could not be found, suggesting that diverse brasiliensis subsp. isolates existed.

  5. Chronic effects of soft drink consumption on the health state of Wistar rats: A biochemical, genetic and histopathological study

    Science.gov (United States)

    ALKHEDAIDE, ADEL; SOLIMAN, MOHAMED MOHAMED; SALAH-ELDIN, ALAA-ELDIN; ISMAIL, TAMER AHMED; ALSHEHIRI, ZAFER SAAD; ATTIA, HOSSAM FOUAD

    2016-01-01

    The present study was performed to examine the effects of chronic soft drink consumption (SDC) on oxidative stress, biochemical alterations, gene biomarkers and histopathology of bone, liver and kidney. Free drinking water of adult male Wistar rats was substituted with three different soft drinks: Coca-Cola, Pepsi and 7-Up, for three consecutive months. The serum and organs were collected for examining the biochemical parameters associated with bone, liver and kidney functions. Semi-quantitative reverse transcription polymerase chain reaction was used to observe the changes in the expression of genes in the liver and kidney, which are associated with oxidative stress resistance. Histopathological investigations were performed to determine the changes in bone, liver and kidney tissues using hematoxylin and eosin stains. SDC affected liver, kidney and bone function biomarkers. Soft drinks increased oxidative stress, which is represented by an increase in malondialdehyde and a decrease in antioxidant levels. SDC affected serum mineral levels, particularly calcium and phosphorus. Soft drinks downregulated the expression levels of glutathione-S-transferase and super oxide dismutase in the liver compared with that of control rats. Rats administered Coca-Cola exhibited a hepatic decrease in the mRNA expression of α2-macroglobulin compared with rats administered Pepsi and 7-Up. On the other hand, SDC increased the mRNA expression of α1-acid glycoprotein. The present renal studies revealed that Coca-Cola increased the mRNA expression levels of desmin, angiotensinogen and angiotensinogen receptor compared with the other groups, together with mild congestion in renal histopathology. Deleterious histopathological changes were reported predominantly in the bone and liver of the Coca-Cola and Pepsi groups. In conclusion, a very strict caution must be considered with SDC due to the increase in oxidative stress biomarkers and disruption in the expression of certain genes

  6. Genetic engineering: a promising tool to engender physiological, biochemical and molecular stress resilience in green microalgae

    Directory of Open Access Journals (Sweden)

    Freddy eGuiheneuf

    2016-03-01

    Full Text Available As we march into the 21st century, the prevailing scenario of depleting energy resources, global warming and ever increasing issues of human health and food security will quadruple. In this context, genetic and metabolic engineering of green microalgae complete the quest towards a continuum of environmentally clean fuel and food production. Evolutionarily related, but unlike land plants, microalgae need nominal land or water, and are best described as unicellular autotrophs using light energy to fix atmospheric CO2 into algal biomass, mitigating fossil CO2 pollution in the process. Remarkably, a feature innate to most microalgae is synthesis and accumulation of lipids (60–65% of dry weight, carbohydrates and secondary metabolites like pigments and vitamins, especially when grown under abiotic stress conditions. Particularly fruitful, such an application of abiotic stress factors like nitrogen starvation , salinity, heat shock etc. can be used in a biorefinery concept for production of multiple valuable products. The focus of this mini-review underlies metabolic reorientation practices and tolerance mechanisms as applied to green microalgae under specific stress stimuli for a sustainable pollution-free future. Moreover, we entail current progress on genetic engineering as a promising tool to grasp adaptive processes for improving strains with potential biotechnological interests.

  7. Principal component analysis of tomato genotypes based on some morphological and biochemical quality indicators

    Directory of Open Access Journals (Sweden)

    Glogovac Svetlana

    2012-01-01

    Full Text Available This study investigates variability of tomato genotypes based on morphological and biochemical fruit traits. Experimental material is a part of tomato genetic collection from Institute of Filed and Vegetable Crops in Novi Sad, Serbia. Genotypes were analyzed for fruit mass, locule number, index of fruit shape, fruit colour, dry matter content, total sugars, total acidity, lycopene and vitamin C. Minimum, maximum and average values and main indicators of variability (CV and σ were calculated. Principal component analysis was performed to determinate variability source structure. Four principal components, which contribute 93.75% of the total variability, were selected for analysis. The first principal component is defined by vitamin C, locule number and index of fruit shape. The second component is determined by dry matter content, and total acidity, the third by lycopene, fruit mass and fruit colour. Total sugars had the greatest part in the fourth component.

  8. Causal correlation of foliar biochemical concentrations with AVIRIS spectra using forced entry linear regression

    Science.gov (United States)

    Dawson, Terence P.; Curran, Paul J.; Kupiec, John A.

    1995-01-01

    A major goal of airborne imaging spectrometry is to estimate the biochemical composition of vegetation canopies from reflectance spectra. Remotely-sensed estimates of foliar biochemical concentrations of forests would provide valuable indicators of ecosystem function at regional and eventually global scales. Empirical research has shown a relationship exists between the amount of radiation reflected from absorption features and the concentration of given biochemicals in leaves and canopies (Matson et al., 1994, Johnson et al., 1994). A technique commonly used to determine which wavelengths have the strongest correlation with the biochemical of interest is unguided (stepwise) multiple regression. Wavelengths are entered into a multivariate regression equation, in their order of importance, each contributing to the reduction of the variance in the measured biochemical concentration. A significant problem with the use of stepwise regression for determining the correlation between biochemical concentration and spectra is that of 'overfitting' as there are significantly more wavebands than biochemical measurements. This could result in the selection of wavebands which may be more accurately attributable to noise or canopy effects. In addition, there is a real problem of collinearity in that the individual biochemical concentrations may covary. A strong correlation between the reflectance at a given wavelength and the concentration of a biochemical of interest, therefore, may be due to the effect of another biochemical which is closely related. Furthermore, it is not always possible to account for potentially suitable waveband omissions in the stepwise selection procedure. This concern about the suitability of stepwise regression has been identified and acknowledged in a number of recent studies (Wessman et al., 1988, Curran, 1989, Curran et al., 1992, Peterson and Hubbard, 1992, Martine and Aber, 1994, Kupiec, 1994). These studies have pointed to the lack of a physical

  9. Physiological and molecular biochemical mechanisms of bile formation

    Science.gov (United States)

    Reshetnyak, Vasiliy Ivanovich

    2013-01-01

    This review considers the physiological and molecular biochemical mechanisms of bile formation. The composition of bile and structure of a bile canaliculus, biosynthesis and conjugation of bile acids, bile phospholipids, formation of bile micellar structures, and enterohepatic circulation of bile acids are described. In general, the review focuses on the molecular physiology of the transporting systems of the hepatocyte sinusoidal and apical membranes. Knowledge of physiological and biochemical basis of bile formation has implications for understanding the mechanisms of development of pathological processes, associated with diseases of the liver and biliary tract. PMID:24259965

  10. An integrated biochemistry and genetics outreach program designed for elementary school students.

    Science.gov (United States)

    Ross, Eric D; Lee, Sarah K; Radebaugh, Catherine A; Stargell, Laurie A

    2012-02-01

    Exposure to genetic and biochemical experiments typically occurs late in one's academic career. By the time students have the opportunity to select specialized courses in these areas, many have already developed negative attitudes toward the sciences. Given little or no direct experience with the fields of genetics and biochemistry, it is likely that many young people rule these out as potential areas of study or career path. To address this problem, we developed a 7-week (~1 hr/week) hands-on course to introduce fifth grade students to basic concepts in genetics and biochemistry. These young students performed a series of investigations (ranging from examining phenotypic variation, in vitro enzymatic assays, and yeast genetic experiments) to explore scientific reasoning through direct experimentation. Despite the challenging material, the vast majority of students successfully completed each experiment, and most students reported that the experience increased their interest in science. Additionally, the experiments within the 7-week program are easily performed by instructors with basic skills in biological sciences. As such, this program can be implemented by others motivated to achieve a broader impact by increasing the accessibility of their university and communicating to a young audience a positive impression of the sciences and the potential for science as a career.

  11. Optimal Information Processing in Biochemical Networks

    Science.gov (United States)

    Wiggins, Chris

    2012-02-01

    A variety of experimental results over the past decades provide examples of near-optimal information processing in biological networks, including in biochemical and transcriptional regulatory networks. Computing information-theoretic quantities requires first choosing or computing the joint probability distribution describing multiple nodes in such a network --- for example, representing the probability distribution of finding an integer copy number of each of two interacting reactants or gene products while respecting the `intrinsic' small copy number noise constraining information transmission at the scale of the cell. I'll given an overview of some recent analytic and numerical work facilitating calculation of such joint distributions and the associated information, which in turn makes possible numerical optimization of information flow in models of noisy regulatory and biochemical networks. Illustrating cases include quantification of form-function relations, ideal design of regulatory cascades, and response to oscillatory driving.

  12. Optical Slot-Waveguide Based Biochemical Sensors

    Directory of Open Access Journals (Sweden)

    Carlos Angulo Barrios

    2009-06-01

    Full Text Available Slot-waveguides allow light to be guided and strongly confined inside a nanometer-scale region of low refractive index. Thus stronger light-analyte interaction can be obtained as compared to that achievable by a conventional waveguide, in which the propagating beam is confined to the high-refractive-index core of the waveguide. In addition, slot-waveguides can be fabricated by employing CMOS compatible materials and technology, enabling miniaturization, integration with electronic, photonic and fluidic components in a chip, and mass production. These advantages have made the use of slot-waveguides for highly sensitive biochemical optical integrated sensors an emerging field. In this paper, recent achievements in slot-waveguide based biochemical sensing will be reviewed. These include slot-waveguide ring resonator based refractometric label-free biosensors, label-based optical sensing, and nano-opto-mechanical sensors.

  13. Designing Epigenome Editors: Considerations of Biochemical and Locus Specificities.

    Science.gov (United States)

    Sen, Dilara; Keung, Albert J

    2018-01-01

    The advent of locus-specific protein recruitment technologies has enabled a new class of studies in chromatin biology. Epigenome editors enable biochemical modifications of chromatin at almost any specific endogenous locus. Their locus specificity unlocks unique information including the functional roles of distinct modifications at specific genomic loci. Given the growing interest in using these tools for biological and translational studies, there are many specific design considerations depending on the scientific question or clinical need. Here we present and discuss important design considerations and challenges regarding the biochemical and locus specificities of epigenome editors. These include how to account for the complex biochemical diversity of chromatin; control for potential interdependency of epigenome editors and their resultant modifications; avoid sequestration effects; quantify the locus specificity of epigenome editors; and improve locus specificity by considering concentration, affinity, avidity, and sequestration effects.

  14. Genetic and phenotypic diversity of Rhizobium isolates from Southern Ecuador

    Directory of Open Access Journals (Sweden)

    Roldán Torres-Gutiérrez

    Full Text Available ABSTRACT Rhizobium-legume symbioses play relevant roles in agriculture but have not been well studied in Ecuador. The aim of this study was to characterize the genetic and phenotypic diversity of Rhizobium isolates associated with Phaseolus vulgaris from southern Ecuador. Morpho-cultural characterization, biochemical tests and physiological analyses were conducted to authenticate and determine the diversity of bacteria Rhizobium-like isolates. The genetic diversity of the isolates was determined by molecular techniques, which consisted of bacteria DNA extraction and amplification and sequencing of the 16S rRNA gene. The nodulation parameters and nitrogen fixation for P. vulgaris under greenhouse conditions were also assessed to determine the phenotypic diversity among isolates. Furthermore, bacteria indole-acetic-acid production was evaluated by the colorimetric method. Morpho-cultural and biochemical characteristic assessments demonstrated that Rhizobium-like bacteria was associated with the P. vulgaris nodules. The diversity among the isolates, as determined by physiological analyses, revealed the potential of several isolates to grow at different pH values, salinity conditions and temperatures. Partial sequencing of the 16S rRNA gene identified the Rhizobium genus in every sampling site. From a total of 20 aligned sequences, nine species of Rhizobium were identified. Nodule formation and biomass, as well as nitrogen fixation, showed an increase in plant phenotypic parameters, which could be influenced by IAA production, especially for the strains R. mesoamericanum NAM1 and R. leguminosarum bv. viciae COL6. These results demonstrated the efficiency of native symbiotic diazotrophic strains inoculants for legume production. This work can serve as the basis for additional studies of native Rhizobium strains and to help spread the use of biofertilizers in Ecuadorian fields.

  15. Anderson-Fabry, the histrionic disease: from genetics to clinical management

    Directory of Open Access Journals (Sweden)

    Franco Cecchi

    2013-02-01

    Full Text Available Anderson-Fabry disease (AFD is an Xlinked lysosomal storage disorder of glycosphingolipid catabolism, due to deficiency or absence of a galactosidase A (α-gal A enzyme. The disease may affect males and females, the latter with an average 10 years delay. Metabolites storage (mostly Gb3 and lyso-Gb3 leads to progressive cellular and multiorgan dysfunction, with either early and late onset variable clinical manifestations that usually reduce quality of life and life expectancy. Heart and kidney failure, stroke and sudden death are the most devastating complications. AFD is always been considered a very rare disease, although new epidemiologic data, based on newborn screening, showed that AFD prevalence is probably underestimated and much higher than previously reported, especially for late-onset atypical phenotypes. Currently, the diagnosis may be easier and simpler by evaluating α-gal A enzyme activity and genetic analysis for GLA gene mutations on dried blood spot. While a marked α-gal A deficiency leads to diagnosis of AFD in hemizygous males, the molecular analysis is mandatory in heterozygous females. However, referral to a center with an expert multidisciplinary team is highly advisable, in order to ensure careful management and treatment of patients, based also on accurate molecular and biochemical data interpretation. While long-term efficacy of enzyme replacement therapy (ERT in advanced stage is still debated, increasing evidence shows greater efficacy of early treatment initiation. Concomitant, organ-specific therapy is also needed. New treatment approaches, such as chemical chaperone therapy, alone or in combination with ERT, are currently under investigation. The present review illustrates the major features of the disease, focusing also on biochemical and genetic aspects.

  16. Biochem-Env, a plateform of environmental biochemistry for research

    OpenAIRE

    GRONDIN, VIRGINIE; Nelieu, Sylvie; Crouzet, Olivier; Hedde, Mickaël; Mougin, Christian

    2016-01-01

    As a service of the research infrastructure AnaEE-France (http://www.anaee-france.fr/fr/), the platform Biochem-Env (http://www.biochemenv.fr) offers skills and innovative analytical tools for biochemical characterizations of soils, sediments, and micro-macro-organisms living in terrestrial and aquatic ecosystems. The platform provides methods validated according to Quality Guidelines, i.e. to measure global soil enzymatic activities. Our robot-supported protocols allow great number of enzyme...

  17. Biochemical Factors Modulating Cellular Neurotoxicity of Methylmercury

    Directory of Open Access Journals (Sweden)

    Parvinder Kaur

    2011-01-01

    Full Text Available Methylmercury (MeHg, an environmental toxicant primarily found in fish and seafood, poses a dilemma to both consumers and regulatory authorities, given the nutritional benefits of fish consumption versus the possible adverse neurological damage. Several studies have shown that MeHg toxicity is influenced by a number of biochemical factors, such as glutathione (GSH, fatty acids, vitamins, and essential elements, but the cellular mechanisms underlying these complex interactions have not yet been fully elucidated. The objective of this paper is to outline the cellular response to dietary nutrients, as well as to describe the neurotoxic exposures to MeHg. In order to determine the cellular mechanism(s of toxicity, the effect of pretreatment with biochemical factors (e.g., N-acetyl cysteine, (NAC; diethyl maleate, (DEM; docosahexaenoic acid, (DHA; selenomethionine, SeM; Trolox and MeHg treatment on intercellular antioxidant status, MeHg content, and other endpoints was evaluated. This paper emphasizes that the protection against oxidative stress offered by these biochemical factors is among one of the major mechanisms responsible for conferring neuroprotection. It is therefore critical to ascertain the cellular mechanisms associated with various dietary nutrients as well as to determine the potential effects of neurotoxic exposures for accurately assessing the risks and benefits associated with fish consumption.

  18. Stochastic stabilization of phenotypic States: the genetic bistable switch as a case study.

    Science.gov (United States)

    Weber, Marc; Buceta, Javier

    2013-01-01

    We study by means of analytical calculation and stochastic simulations how intrinsic noise modifies the bifurcation diagram of gene regulatory processes that can be effectively described by the Langevin formalism. In a general context, our study raises the intriguing question of how biochemical fluctuations redesign the epigenetic landscape in differentiation processes. We have applied our findings to a general class of regulatory processes that includes the simplest case that displays a bistable behavior and hence phenotypic variability: the genetic auto-activating switch. Thus, we explain why and how the noise promotes the stability of the low-state phenotype of the switch and show that the bistable region is extended when increasing the intensity of the fluctuations. This phenomenology is found in a simple one-dimensional model of the genetic switch as well as in a more detailed model that takes into account the binding of the protein to the promoter region. Altogether, we prescribe the analytical means to understand and quantify the noise-induced modifications of the bifurcation points for a general class of regulatory processes where the genetic bistable switch is included.

  19. Circadian Clocks: Unexpected Biochemical Cogs.

    Science.gov (United States)

    Mori, Tetsuya; Mchaourab, Hassane; Johnson, Carl Hirschie

    2015-10-05

    A circadian oscillation can be reconstituted in vitro from three proteins that cycles with a period of ∼ 24 h. Two recent studies provide surprising biochemical answers to why this remarkable oscillator has such a long time constant and how it can switch effortlessly between alternating enzymatic modes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Autonomous bio-chemical decontaminator (ABCD) against weapons of mass destruction

    Science.gov (United States)

    Hyacinthe, Berg P.

    2006-05-01

    The proliferation of weapons of mass destruction (WMD) and the use of such elements pose an eminent asymmetric threat with disastrous consequences to the national security of any nation. In particular, the use of biochemical warfare agents against civilians and unprotected troops in international conflicts or by terrorists against civilians is considered as a very peculiar threat. Accordingly, taking a quarantine-before-inhalation approach to biochemical warfare, the author introduces the notion of autonomous biochemical decontamination against WMD. In the unfortunate event of a biochemical attack, the apparatus proposed herein is intended to automatically detect, identify, and more importantly neutralize a biochemical threat. Along with warnings concerning a cyber-WMD nexus, various sections cover discussions on human senses and computer sensors, corroborating evidence related to detection and neutralization of chemical toxins, and cyber-assisted olfaction in stand alone, peer-to-peer, and network settings. In essence, the apparatus can be used in aviation and mass transit security to initiate mass decontamination by dispersing a decontaminant aerosol or to protect the public water supply against a potential bioterrorist attack. Future effort may involve a system-on-chip (SoC) embodiment of this apparatus that allows a safer environment for the emerging phenomenon of cyber-assisted olfaction and morph cell phones into ubiquitous sensors/decontaminators. Although this paper covers mechanisms and protocols to avail a neutralizing substance, further research will need to explore the substance's various pharmacological profiles and potential side effects.

  1. Behavioral, ecological and genetic differentiation in an open environment--a study of a mysid population in the Baltic Sea.

    Directory of Open Access Journals (Sweden)

    Martin Ogonowski

    Full Text Available Diel vertical migration (DVM is often assumed to encompass an entire population. However, bimodal nighttime vertical distributions have been observed in various taxa. Mysid shrimp populations also display this pattern with one group concentrated in the pelagia and the other near the bottom. This may indicate alternative migratory strategies, resembling the seasonal partial migrations seen in birds, fishes and amphibians, where only a subset of the population migrates. To assess the persistence of these alternative strategies, we analyzed the nitrogen and carbon stable isotope signatures (as proxies for diet, biochemical indices (as proxies for growth condition, and genetic population divergence in the Baltic mysid Mysis salemaai collected at night in the pelagia and close to the bottom. Stable isotope signatures were significantly different between migrants (pelagic samples and residents (benthic samples, indicating persistent diet differences, with pelagic mysids having a more uniform and carnivorous diet. Sequencing of the mitochondrial cytochrome subunit I (COI gene showed genetic differentiation attributable to geographic location but not between benthic and pelagic groups. Divergent migration strategies were however supported by significantly lower gene flow between benthic populations indicating that these groups have a lower predisposition for horizontal migrations compared to pelagic ones. Different migration strategies did not convey measurable growth benefits as pelagic and benthic mysids had similar growth condition indices. Thus, the combination of ecological, biochemical and genetic markers indicate that this partial migration may be a plastic behavioral trait that yields equal growth benefits.

  2. Genetic Testing Confirmed the Early Diagnosis of X-Linked Hypophosphatemic Rickets in a 7-Month-Old Infant

    Directory of Open Access Journals (Sweden)

    Kok Siong Poon BSc

    2015-08-01

    Full Text Available Loss-of-function mutations in the p hosphate regulating gene with h omologies to e ndopeptidases on the X -chromosome ( PHEX have been causally associated with X-linked hypophosphatemic rickets (XLHR. The early diagnosis of XLHR in infants is challenging when it is based solely on clinical features and biochemical findings. We report a 7-month-old boy with a family history of hypophosphatemic rickets., who demonstrated early clinical evidence of rickets, although serial biochemical findings could not definitively confirm rickets. A sequencing assay targeting the PHEX gene was first performed on the mother’s DNA to screen for mutations in the 5′UTR, 22 coding exons, and the exon-intron junctions. Targeted mutation analysis and mRNA studies were subsequently performed on the boys’ DNA to investigate the pathogenicity of the identified mutation. Genetic screening of the PHEX gene revealed a novel mutation, c.1080-2A>C, at the splice acceptor site in intron 9. The detection of an aberrant mRNA transcript with skipped (loss of exon 10 establishes its pathogenicity and confirms the diagnosis of XLHR in this infant. Genetic testing of the PHEX gene resulted in early diagnosis of XLHR, thus enabling initiation of therapy and prevention of progressive rachitic changes in the infant.

  3. Summary of the mechanism of U-induced renal damage and its biochemical studies

    International Nuclear Information System (INIS)

    Chen Rusong

    1994-05-01

    In China studies on the toxicology of uranium were systematically conducted from the 1960's. Among them the studies of the change of biochemical indicators of U-induced renal damage were involved. On the basis of summarizing the relevant information of our country and the study progress of biochemical methods in recent years, the mechanism of U-induced renal damage and its biochemical basis, the behavior of uranium in kidney and the recent progress to detect renal damage with several biochemical indexes (such as α 1 -or β 2 -microglobulin, N-acetyl-β-D-glucosaminidase and alanine aminopeptidase etc.) are introduced respectively. Finally, the evaluation on the biochemical basis for acquired tolerance to U in kidney is performed. It should be noted that from the clinical viewpoint the tolerance cannot be considered as a practical measure of protection

  4. Effect of Modifying Factors on Radiosensitive Biochemical Reactions

    Energy Technology Data Exchange (ETDEWEB)

    Romantsev, E. F.; Filippovich, I. V.; Zhulanova, Z. I.; Blokhina, V. D.; Trebenok, Z. A.; Kolesnikov, E. E.; Sheremetyevskaya, T. N.; Nikolsky, A. V.; Zymaleva, O. G. [Institute of Biophysics, USSR Ministry of Health, Moscow, USSR (Russian Federation)

    1971-03-15

    Some of the radioprotective aminothiols are now routine pharmacopoeial drugs and are used in clinics to decrease the radiation reaction which appears as a side effect during the radiotherapy of cancer. The action of effective modifying agents on radiosensitive biochemical reactions in the organisms of mammals, in principle, cannot be different from the same effects of the protectors on biochemical systems of the human organism. The effect of modifying agents is mediated by biochemical systems. The administration of radioprotective doses of MEA to rats before irradiation results in a significant normalization of the excretion in urine of degradation products of nucleic acids (so-called Dische-positive compounds), the excretion of which sharply rises after irradiation. The curve of the radioprotective effect of MEA (survival rate after administration of radioprotectors at different intervals of time) completely corresponds to curves of the accumulation of MEA which is bound (by mixed disulphide links) to the proteins of liver mitochondria, to proteins of the nuclear-sap, to the hyaloplasm of rat thymus and to the nuclear ribosomes of the spleen. After MEA administration the curve of the biosynthesis of deoxycytidine represents a mirror reflection of the curve of MEA bound to proteins of the thymus hyaloplasm by means of mixed disulphide links. The mechanism of action of such modifying factors as MEA in experiments on mammals is mediated to a great degree through the temporary formation of mixed disulphide links between the aminothiol and the protein component of enzymes in different biochemical systems. (author)

  5. 2009 Biochemical Conversion Platform Review Report

    Energy Technology Data Exchange (ETDEWEB)

    Ferrell, John [Office of Energy Efficiency and Renewable Energy (EERE), Washington, DC (United States)

    2009-12-01

    This document summarizes the recommendations and evaluations provided by an independent external panel of experts at the U.S. Department of Energy Biomass Program’s Biochemical Conversion platform review meeting, held on April 14-16, 2009, at the Sheraton Denver Downtown, Denver, Colorado.

  6. Biochemical characterization of Tunisian grapevine varieties

    Directory of Open Access Journals (Sweden)

    Ferjani Ben Abdallah

    1998-03-01

    The study of GPI, PGM, AAT and peroxydase isozyme banding patterns in combination with berry colour has led to establish a classification of the 61 autochton varieties into 37 groups including 26 varieties definitely differentiated through the results of this biochemical study.

  7. Toxicity of titanium dioxide nanoparticles: Effect of dose and time on biochemical disturbance, oxidative stress and genotoxicity in mice.

    Science.gov (United States)

    Rizk, Maha Z; Ali, Sanaa A; Hamed, Manal A; El-Rigal, Nagy Saba; Aly, Hanan F; Salah, Heba H

    2017-06-01

    The toxic impact of titanium dioxide nanoparticles (TiO 2 NPs) on human health is of prime importance owing to their wide uses in many commercial industries. In the present study, the effect of different doses and exposure time durations of TiO 2 NPs (21nm) inducing oxidative stress, biochemical disturbance, histological alteration and cytogenetic aberration in mice liver and bone marrow was investigated. Different doses of (TiO 2 NPs) (50, 250 and 500mg/kg body weight) were each daily intrapertioneally injected to mice for 7, 14 and 45days. Aspartate and alanine aminotransferases (AST &ALT), gamma glutamyl transpeptidase (GGT), total protein, total antioxidant capacity (TAC), malondialdehyde (MDA), glutathione (GSH), catalase (CAT) and nitric oxide (NO) levels were measured. The work was extended to evaluate the liver histopathological pattern and the chromosomal aberration in mice spinal cord bone marrow. The results revealed severe TiO 2 NPs toxicity in a dose and time dependent manner with positive correlation (r=0.98) for most investigated biochemical parameters. The same observation was noticed for the histological analysis. In case of cytogenetic study, chromosomal aberrations were demonstrated after injection of TiO 2 NPs with 500mg/kg b. wt. for 45days. In conclusion, the selected biochemical parameters and the liver architectures were influenced with dose and time of TiO 2 NPs toxicity, while the genetic disturbance started at the high dose of exposure and for long duration. Further studies are needed to fulfil the effect of TiO 2 NPs on pharmaceutical and nutritional applications. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  8. Genetic analysis of diaminopimelic acid- and lysine-requiring mutants of Escherichia coli.

    Science.gov (United States)

    Bukhari, A I; Taylor, A L

    1971-03-01

    Several diaminopimelic acid (DAP)- and lysine-requiring mutants of Escherichia coli were isolated and studied by genetic, physiological, and biochemical means. The genes concerned with DAP-lysine synthesis map at several different sites on the E. coli chromosome and, therefore, do not constitute a single operon. Three separate loci affecting DAP synthesis are located in the 0 to 2.5 min region of the genetic map. The order of the loci in this region is thr-dapB-pyrA-ara-leu-pan-dapC-tonA-dapD. Two additional DAP genes map in the region between min 47 and 48, with the gene order being gua-dapA-dapE-ctr. The lys locus at min 55 determines the synthesis of the enzyme DAP decarboxylase, which catalyzes the conversion of DAP into lysine. The order of the genes in this region is serA-lysA-thyA.

  9. Diagnosis Of Inherited Neurometabolic Disorders : A Biochemical Approach

    Directory of Open Access Journals (Sweden)

    Christopher R

    1999-01-01

    Full Text Available The past two decades have witnessed a rapid increase in the knowledge of the inherited neurometabolic disorders. The precise diagnosis of these disorders which is a challenge to the physician can be best accomplished by biochemical methods. Screening of clinically selected patients with simple chemical urine tests and routine blood chemistry investigations followed by measurement of specific metabolites and assay of the relevant enzymes confirms the diagnosis in most cases. Biochemical diagnosis of inherited neurometabolic disorders although expensive is rapid and confirmatory and therefore aids in treatment and further prevention of these rare disorders.

  10. Changes in Biochemical Properties of the Blood in Winter Swimmers.

    Science.gov (United States)

    Teleglow, Aneta; Marchewka, Jakub; Marchewka, Anna; Kulpa, Jan

    The aim of the study was to investigate the effects of winter swimming on biochemical indicators of the blood. The subjects - winter swimmers - belonged to the Krakow Walrus Club "Kaloryfer" - "The Heater". The study group consisted of 11 men, aged 30-50 years, 'walrusing' throughout the whole season from November to March. Statistically significant changes throughout the 'walrusing' season were observed for the following biochemical parameters: a decrease in sodium (mmol/1), chloride (mmol/1), alpha-2 globulin(g/1), gamma globulin (g/1), IgG (g/1), and an increase in albumin (g/1), indicator A/G, IgA (g/l ), Herpes simplex virus IgM. Seasonal effort of winter swimmers has a positive influence on biochemical blood parameters.

  11. A Program on Biochemical and Biomedical Engineering.

    Science.gov (United States)

    San, Ka-Yiu; McIntire, Larry V.

    1989-01-01

    Presents an introduction to the Biochemical and Biomedical Engineering program at Rice University. Describes the development of the academic and enhancement programs, including organizational structure and research project titles. (YP)

  12. Genetic and Biochemical Characterization of the MinC-FtsZ Interaction in Bacillus subtilis

    Science.gov (United States)

    Castellen, Patricia; Nogueira, Maria Luiza C.; Bettini, Jefferson; Portugal, Rodrigo V.; Zeri, Ana Carolina M.; Gueiros-Filho, Frederico J.

    2013-01-01

    Cell division in bacteria is regulated by proteins that interact with FtsZ and modulate its ability to polymerize into the Z ring structure. The best studied of these regulators is MinC, an inhibitor of FtsZ polymerization that plays a crucial role in the spatial control of Z ring formation. Recent work established that E. coli MinC interacts with two regions of FtsZ, the bottom face of the H10 helix and the extreme C-terminal peptide (CTP). Here we determined the binding site for MinC on Bacillus subtilis FtsZ. Selection of a library of FtsZ mutants for survival in the presence of Min overexpression resulted in the isolation of 13 Min-resistant mutants. Most of the substitutions that gave rise to Min resistance clustered around the H9 and H10 helices in the C-terminal domain of FtsZ. In addition, a mutation in the CTP of B. subtilis FtsZ also produced MinC resistance. Biochemical characterization of some of the mutant proteins showed that they exhibited normal polymerization properties but reduced interaction with MinC, as expected for binding site mutations. Thus, our study shows that the overall architecture of the MinC-FtsZ interaction is conserved in E. coli and B. subtilis. Nevertheless, there was a clear difference in the mutations that conferred Min resistance, with those in B. subtilis FtsZ pointing to the side of the molecule rather than to its polymerization interface. This observation suggests that the mechanism of Z ring inhibition by MinC differs in both species. PMID:23577149

  13. Biochemical Hypermedia: Galactose Metabolism.

    Directory of Open Access Journals (Sweden)

    J.K. Sugai

    2013-05-01

    Full Text Available Introduction: Animations of biochemical processes and virtual laboratory environments lead to true molecular simulations. The use of interactive software’s in education can improve cognitive capacity, better learning and, mainly, it makes information acquisition easier. Material and Methods: This work presents the development of a biochemical hypermedia to understanding of the galactose metabolism. It was developed with the help of concept maps, ISIS Draw, ADOBE Photoshop and FLASH MX Program. Results and Discussion: A step by step animation process shows the enzymatic reactions of galactose conversion to glucose-1-phosphate (to glycogen synthesis, glucose-6-phosphate (glycolysis intermediary, UDP-galactose (substrate to mucopolysaccharides synthesis and collagen’s glycosylation. There are navigation guide that allow scrolling the mouse over the names of the components of enzymatic reactions of via the metabolism of galactose. Thus, explanatory text box, chemical structures and animation of the actions of enzymes appear to navigator. Upon completion of the module, the user’s response to the proposed exercise can be checked immediately through text box with interactive content of the answer. Conclusion: This hypermedia was presented for undergraduate students (UFSC who revealed that it was extremely effective in promoting the understanding of the theme.

  14. The Evolution of Biochemical Indices After Basal Cell Epithelioma Removal - Case Report

    Directory of Open Access Journals (Sweden)

    Gurgas L.

    2017-05-01

    Full Text Available The paper proposes new exposure data on etiopathogenesis basal cell epithelioma and present a clinical case investigated dermatoscopic, biochemically, treated surgically and guided to avoid relapses. The case presented is part of typical cases of pigmented basal cell carcinoma. Biochemical and haematological investigations performed one day before the excisional intervention (results 1 and 30 days (results 2 after the intervention: It is recommended to monitor biochemical investigations in which alterations were found, and ways for raising the immunological status.

  15. Comparison of two biochemical methods for identifying Corynebacterium pseudotuberculosis isolated from sheep and goats.

    Science.gov (United States)

    Huerta, Belén; Gómez-Gascón, Lidia; Vela, Ana I; Fernández-Garayzábal, José F; Casamayor, Almudena; Tarradas, Carmen; Maldonado, Alfonso

    2013-06-01

    The biochemical pattern of Cowan and Steel (BPCS) was compared with a commercial biochemical strip for the identification of Corynebacterium pseudotuberculosis isolated from small ruminants. On 16S rRNA gene sequencing, 40/78 coryneform isolates from the lymph nodes of sheep and goats with lesions resembling caseous lymphadenitis were identified as C. pseudotuberculosis. The sensitivities of the BPCS and the commercial biochemical strip relative to 16S rRNA sequencing were 80% and 85%, and their specificities were 92.1% and 94.7%, respectively; the level of agreement between the BPCS and the commercial biochemical strip was high (κ=0.82). Likelihood ratios for positive and negative results were 10.0 and 0.22 for the BPCS, and 16.0 and 0.16 for the commercial biochemical strip, respectively. These results indicate that the BPCS and the commercial biochemical strip are both useful for identifying C. pseudotuberculosis in veterinary microbiology laboratories. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. An Integrated Qualitative and Quantitative Biochemical Model Learning Framework Using Evolutionary Strategy and Simulated Annealing.

    Science.gov (United States)

    Wu, Zujian; Pang, Wei; Coghill, George M

    2015-01-01

    Both qualitative and quantitative model learning frameworks for biochemical systems have been studied in computational systems biology. In this research, after introducing two forms of pre-defined component patterns to represent biochemical models, we propose an integrative qualitative and quantitative modelling framework for inferring biochemical systems. In the proposed framework, interactions between reactants in the candidate models for a target biochemical system are evolved and eventually identified by the application of a qualitative model learning approach with an evolution strategy. Kinetic rates of the models generated from qualitative model learning are then further optimised by employing a quantitative approach with simulated annealing. Experimental results indicate that our proposed integrative framework is feasible to learn the relationships between biochemical reactants qualitatively and to make the model replicate the behaviours of the target system by optimising the kinetic rates quantitatively. Moreover, potential reactants of a target biochemical system can be discovered by hypothesising complex reactants in the synthetic models. Based on the biochemical models learned from the proposed framework, biologists can further perform experimental study in wet laboratory. In this way, natural biochemical systems can be better understood.

  17. From chemical or biochemical microsensors to fast detection systems

    International Nuclear Information System (INIS)

    Pistre, J.; Dejous, C.; Rebiere, D.

    2011-01-01

    The market of chemical and biochemical sensors is increasing and represents a large opportunity. The problem of chemical and biochemicaldetection involves the use of one/several transducing layer/interface. Several types of detection exist. Among them, acoustic wave devices present many advantages. The paper deals with surface acoustic waves devices and their implementation. The role and properties of the sensing layer are discussed for chemical sensors and biochemical sensors as well. Examples of realizations are presented taking into account the microfluidic approach.

  18. Chronic effects of soft drink consumption on the health state of Wistar rats: A biochemical, genetic and histopathological study.

    Science.gov (United States)

    Alkhedaide, Adel; Soliman, Mohamed Mohamed; Salah-Eldin, Alaa-Eldin; Ismail, Tamer Ahmed; Alshehiri, Zafer Saad; Attia, Hossam Fouad

    2016-06-01

    The present study was performed to examine the effects of chronic soft drink consumption (SDC) on oxidative stress, biochemical alterations, gene biomarkers and histopathology of bone, liver and kidney. Free drinking water of adult male Wistar rats was substituted with three different soft drinks: Coca‑Cola, Pepsi and 7‑Up, for three consecutive months. The serum and organs were collected for examining the biochemical parameters associated with bone, liver and kidney functions. Semi‑quantitative reverse transcription polymerase chain reaction was used to observe the changes in the expression of genes in the liver and kidney, which are associated with oxidative stress resistance. Histopathological investigations were performed to determine the changes in bone, liver and kidney tissues using hematoxylin and eosin stains. SDC affected liver, kidney and bone function biomarkers. Soft drinks increased oxidative stress, which is represented by an increase in malondialdehyde and a decrease in antioxidant levels. SDC affected serum mineral levels, particularly calcium and phosphorus. Soft drinks downregulated the expression levels of glutathione‑S‑transferase and super oxide dismutase in the liver compared with that of control rats. Rats administered Coca‑Cola exhibited a hepatic decrease in the mRNA expression of α2‑macroglobulin compared with rats administered Pepsi and 7‑Up. On the other hand, SDC increased the mRNA expression of α1‑acid glycoprotein. The present renal studies revealed that Coca‑Cola increased the mRNA expression levels of desmin, angiotensinogen and angiotensinogen receptor compared with the other groups, together with mild congestion in renal histopathology. Deleterious histopathological changes were reported predominantly in the bone and liver of the Coca‑Cola and Pepsi groups. In conclusion, a very strict caution must be considered with SDC due to the increase in oxidative stress biomarkers and disruption in the expression

  19. Explorations into Chemical Reactions and Biochemical Pathways.

    Science.gov (United States)

    Gasteiger, Johann

    2016-12-01

    A brief overview of the work in the research group of the present author on extracting knowledge from chemical reaction data is presented. Methods have been developed to calculate physicochemical effects at the reaction site. It is shown that these physicochemical effects can quite favourably be used to derive equations for the calculation of data on gas phase reactions and on reactions in solution such as aqueous acidity of alcohols or carboxylic acids or the hydrolysis of amides. Furthermore, it is shown that these physicochemical effects are quite effective for assigning reactions into reaction classes that correspond to chemical knowledge. Biochemical reactions constitute a particularly interesting and challenging task for increasing our understanding of living species. The BioPath.Database is a rich source of information on biochemical reactions and has been used for a variety of applications of chemical, biological, or medicinal interests. Thus, it was shown that biochemical reactions can be assigned by the physicochemical effects into classes that correspond to the classification of enzymes by the EC numbers. Furthermore, 3D models of reaction intermediates can be used for searching for novel enzyme inhibitors. It was shown in a combined application of chemoinformatics and bioinformatics that essential pathways of diseases can be uncovered. Furthermore, a study showed that bacterial flavor-forming pathways can be discovered. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Insight into the genetic components of community genetics: QTL mapping of insect association in a fast-growing forest tree.

    Directory of Open Access Journals (Sweden)

    Jennifer DeWoody

    Full Text Available Identifying genetic sequences underlying insect associations on forest trees will improve the understanding of community genetics on a broad scale. We tested for genomic regions associated with insects in hybrid poplar using quantitative trait loci (QTL analyses conducted on data from a common garden experiment. The F2 offspring of a hybrid poplar (Populus trichocarpa x P. deltoides cross were assessed for seven categories of insect leaf damage at two time points, June and August. Positive and negative correlations were detected among damage categories and between sampling times. For example, sap suckers on leaves in June were positively correlated with sap suckers on leaves (P<0.001 but negatively correlated with skeletonizer damage (P<0.01 in August. The seven forms of leaf damage were used as a proxy for seven functional groups of insect species. Significant variation in insect association occurred among the hybrid offspring, including transgressive segregation of susceptibility to damage. NMDS analyses revealed significant variation and modest broad-sense heritability in insect community structure among genets. QTL analyses identified 14 genomic regions across 9 linkage groups that correlated with insect association. We used three genomics tools to test for putative mechanisms underlying the QTL. First, shikimate-phenylpropanoid pathway genes co-located to 9 of the 13 QTL tested, consistent with the role of phenolic glycosides as defensive compounds. Second, two insect association QTL corresponded to genomic hotspots for leaf trait QTL as identified in previous studies, indicating that, in addition to biochemical attributes, leaf morphology may influence insect preference. Third, network analyses identified categories of gene models over-represented in QTL for certain damage types, providing direction for future functional studies. These results provide insight into the genetic components involved in insect community structure in a fast

  1. Biochemical applications of FT-IR spectroscopy

    NARCIS (Netherlands)

    Pistorius, A.M.A.

    1996-01-01

    This thesis describes the use of (FT-)IR spectroscopy in general biochemical research. In chapter 3, IR spectroscopy is used in the quantitation of residual detergent after reconstitution of an integral membrane protein in a pre-defined lipid matrix. This chapter discusses the choice of the

  2. Morphological, physiological and biochemical studies on Pyricularia ...

    African Journals Online (AJOL)

    SARAH

    2014-02-28

    Feb 28, 2014 ... compounds seem to reflect inherent biochemical and physiological differences among P. grisea isolates .... solutions for imaging and microscopy, soft image system .... characteristics among 12 P. grisea isolates from rice were.

  3. Short Report Biochemical derangements prior to emergency ...

    African Journals Online (AJOL)

    MMJ VOL 29 (1): March 2017. Biochemical derangements prior to emergency laparotomy at QECH 55. Malawi Medical Journal 29 (1): March 2017 ... Venepuncture was performed preoperatively for urgent cases, defined as those requiring.

  4. Reconstructing biochemical pathways from time course data.

    Science.gov (United States)

    Srividhya, Jeyaraman; Crampin, Edmund J; McSharry, Patrick E; Schnell, Santiago

    2007-03-01

    Time series data on biochemical reactions reveal transient behavior, away from chemical equilibrium, and contain information on the dynamic interactions among reacting components. However, this information can be difficult to extract using conventional analysis techniques. We present a new method to infer biochemical pathway mechanisms from time course data using a global nonlinear modeling technique to identify the elementary reaction steps which constitute the pathway. The method involves the generation of a complete dictionary of polynomial basis functions based on the law of mass action. Using these basis functions, there are two approaches to model construction, namely the general to specific and the specific to general approach. We demonstrate that our new methodology reconstructs the chemical reaction steps and connectivity of the glycolytic pathway of Lactococcus lactis from time course experimental data.

  5. A second-order, unconditionally positive, mass-conserving integration scheme for biochemical systems.

    NARCIS (Netherlands)

    F.J. Bruggeman (Frank); H. Burchard; B. Kooi; B.P. Sommeijer (Ben)

    2006-01-01

    textabstractBiochemical systems are bound by two mathematically-relevant restrictions. First, state variables in such systems represent non-negative quantities, such as concentrations of chemical compounds. Second, biochemical systems conserve mass and energy. Both properties must be reflected in

  6. Genetic cytological and biochemical study of a tomato chlorophyll mutant of the xanthic type, obtained by irradiation of the seeds

    International Nuclear Information System (INIS)

    Lefort, M.; Duranton, J.; Galmiche, J.M.; Roux, E.

    1958-01-01

    Irradiation of Lycopersicum aesculantum seeds with increasing doses of X-rays and thermal neutrons leads to the appearance of chlorophyll mutations in the descendants of the irradiated seeds. A genetic study of one of these mutants of the xanthic type showed that it was a recessive mutant with typical mono-genetic separation, while the cytological study demonstrated that the differentiation of the plast stopped at the stage of elementary lamella. Finally it is shown that in the light, the mutation brings about a very large deviation of the carbon metabolism towards the synthesis of amino acids and proteins, at the expense of that of glucosides. (author) [fr

  7. Biochemical and kinetic characterization of geranylgeraniol 18 ...

    African Journals Online (AJOL)

    Suchart

    2015-07-22

    Jul 22, 2015 ... biochemical characterization of GGOH 18-hydroxylase activity in the microsomal fraction from C. .... method as previously described (Chanama et al., 2009). Briefly, 30 g of frozen ..... Catalytic properties of the plant cytochrome.

  8. Distinct configurations of protein complexes and biochemical pathways revealed by epistatic interaction network motifs

    LENUS (Irish Health Repository)

    Casey, Fergal

    2011-08-22

    Abstract Background Gene and protein interactions are commonly represented as networks, with the genes or proteins comprising the nodes and the relationship between them as edges. Motifs, or small local configurations of edges and nodes that arise repeatedly, can be used to simplify the interpretation of networks. Results We examined triplet motifs in a network of quantitative epistatic genetic relationships, and found a non-random distribution of particular motif classes. Individual motif classes were found to be associated with different functional properties, suggestive of an underlying biological significance. These associations were apparent not only for motif classes, but for individual positions within the motifs. As expected, NNN (all negative) motifs were strongly associated with previously reported genetic (i.e. synthetic lethal) interactions, while PPP (all positive) motifs were associated with protein complexes. The two other motif classes (NNP: a positive interaction spanned by two negative interactions, and NPP: a negative spanned by two positives) showed very distinct functional associations, with physical interactions dominating for the former but alternative enrichments, typical of biochemical pathways, dominating for the latter. Conclusion We present a model showing how NNP motifs can be used to recognize supportive relationships between protein complexes, while NPP motifs often identify opposing or regulatory behaviour between a gene and an associated pathway. The ability to use motifs to point toward underlying biological organizational themes is likely to be increasingly important as more extensive epistasis mapping projects in higher organisms begin.

  9. Least-squares methods for identifying biochemical regulatory networks from noisy measurements

    Directory of Open Access Journals (Sweden)

    Heslop-Harrison Pat

    2007-01-01

    Full Text Available Abstract Background We consider the problem of identifying the dynamic interactions in biochemical networks from noisy experimental data. Typically, approaches for solving this problem make use of an estimation algorithm such as the well-known linear Least-Squares (LS estimation technique. We demonstrate that when time-series measurements are corrupted by white noise and/or drift noise, more accurate and reliable identification of network interactions can be achieved by employing an estimation algorithm known as Constrained Total Least Squares (CTLS. The Total Least Squares (TLS technique is a generalised least squares method to solve an overdetermined set of equations whose coefficients are noisy. The CTLS is a natural extension of TLS to the case where the noise components of the coefficients are correlated, as is usually the case with time-series measurements of concentrations and expression profiles in gene networks. Results The superior performance of the CTLS method in identifying network interactions is demonstrated on three examples: a genetic network containing four genes, a network describing p53 activity and mdm2 messenger RNA interactions, and a recently proposed kinetic model for interleukin (IL-6 and (IL-12b messenger RNA expression as a function of ATF3 and NF-κB promoter binding. For the first example, the CTLS significantly reduces the errors in the estimation of the Jacobian for the gene network. For the second, the CTLS reduces the errors from the measurements that are corrupted by white noise and the effect of neglected kinetics. For the third, it allows the correct identification, from noisy data, of the negative regulation of (IL-6 and (IL-12b by ATF3. Conclusion The significant improvements in performance demonstrated by the CTLS method under the wide range of conditions tested here, including different levels and types of measurement noise and different numbers of data points, suggests that its application will enable

  10. Biochemical Changes in the Serum and Liver of albino rats exposed ...

    African Journals Online (AJOL)

    Biochemical changes in the serum and liver of albino rats chronically exposed to rats administered 5gk-1 , 7.5gk-1 and 15gk-1 of gasoline , kerosine and crude petroleum(bonny light) respectively were studied. The petroleum samples were administered intraperitoneally and the biochemical changes in the rat serum and the ...

  11. Cancer genetics meets biomolecular mechanism-bridging an age-old gulf.

    Science.gov (United States)

    González-Sánchez, Juan Carlos; Raimondi, Francesco; Russell, Robert B

    2018-02-01

    Increasingly available genomic sequencing data are exploited to identify genes and variants contributing to diseases, particularly cancer. Traditionally, methods to find such variants have relied heavily on allele frequency and/or familial history, often neglecting to consider any mechanistic understanding of their functional consequences. Thus, while the set of known cancer-related genes has increased, for many, their mechanistic role in the disease is not completely understood. This issue highlights a wide gap between the disciplines of genetics, which largely aims to correlate genetic events with phenotype, and molecular biology, which ultimately aims at a mechanistic understanding of biological processes. Fortunately, new methods and several systematic studies have proved illuminating for many disease genes and variants by integrating sequencing with mechanistic data, including biomolecular structures and interactions. These have provided new interpretations for known mutations and suggested new disease-relevant variants and genes. Here, we review these approaches and discuss particular examples where these have had a profound impact on the understanding of human cancers. © 2018 Federation of European Biochemical Societies.

  12. Defining a new candidate gene for amelogenesis imperfecta: from molecular genetics to biochemistry.

    Science.gov (United States)

    Urzúa, Blanca; Ortega-Pinto, Ana; Morales-Bozo, Irene; Rojas-Alcayaga, Gonzalo; Cifuentes, Víctor

    2011-02-01

    Amelogenesis imperfecta is a group of genetic conditions that affect the structure and clinical appearance of tooth enamel. The types (hypoplastic, hypocalcified, and hypomature) are correlated with defects in different stages of the process of enamel synthesis. Autosomal dominant, recessive, and X-linked types have been previously described. These disorders are considered clinically and genetically heterogeneous in etiology, involving a variety of genes, such as AMELX, ENAM, DLX3, FAM83H, MMP-20, KLK4, and WDR72. The mutations identified within these causal genes explain less than half of all cases of amelogenesis imperfecta. Most of the candidate and causal genes currently identified encode proteins involved in enamel synthesis. We think it is necessary to refocus the search for candidate genes using biochemical processes. This review provides theoretical evidence that the human SLC4A4 gene (sodium bicarbonate cotransporter) may be a new candidate gene.

  13. Particulate matter effect on biometric and biochemical attributes of fruiting plants

    Directory of Open Access Journals (Sweden)

    U. Younis

    2015-04-01

    Full Text Available Dust accumulation capacity of Ficus carica L. and Psidium guajava L. was investigated from eight different sites of Multan, Pakistan.  Leaves of both plants were used for analyzing biometric (leaf area, fresh and dry weights and biochemical attributes (chlorophyll contents, carotenoids and ascorbic acid.  Maximum dust accumulation was occurred in the plants growing near road sites, while, minimum dust accumulation occurred in the plants of Bahauddin Zakariya University.  Most of the biometric and biochemical attributes of F. carica showed significant response towards dust but it had not significant influence on some attributes of P. guajava.  Biochemical traits of P. guajava appeared to be more prone than foliage ones. A positive correlation was foundbetween dust accumulation and foliage attributes in F. carica. On the other hand,in P. guajava opposite was observed, however, the reverse was true for leaf biomass.Biochemical contents had shown an inconsistency as chlorophylls (a, b & total, carotenoid contents declined but ascorbic acid increased with an increase in dust accumulation in both species.

  14. Biochemical behavior of Trypanosoma cruzi strains isolated from mice submitted to specific chemotherapy

    Directory of Open Access Journals (Sweden)

    Jesila Pinto M. Marretto

    1994-12-01

    Full Text Available To investigate the influence of chemotherapy on the biochemical beha vior of Trypanosoma cruzi strains, three groups of mice were infected with one of three strains of T. cruzi of different biological and isoenzymic patterns (Peruvian, 21 SF and Colombian strains. Each group was subdivided into subgroups: 1 - treated with nifurtimox; 2 - treated with benznidazole and 3 - untreated infected controls. At the end of treatment, that lasted for 90 days, xenodiagnosis, sub inoculation of blood into new born mice and haemoculture were performed as tests of cure. From the positive tests, 22 samples of T. cruzi were isolated from all subgroups. Electrophoretic analysis of the isoenzymes PGM, GP1, ALAT and AS AT failed to show any difference between parasite strains isolated from treated and untreated mice, which indicates that no detectable clonal selection or parasite genetic markers alterations concerning the isoenzymes analysed have been determined by treatment with drugs of recognized antiparasitic effect, suggesting stability of the phenotypic characteristics of the three biological types of T. cruzi strains.

  15. Growth and Biochemical performance of Cassava-Manihot ...

    African Journals Online (AJOL)

    MICHAEL HORSFALL

    the crude oil polluted soil improved the growth and biochemical performance of cassava. For the qualitative .... delay in the rate of soil recovery and a decrease in crop yield ... enhances biodegradation of polluted soil presumably by removing ...

  16. Biochemical changes in blood caused by radioisotopes

    International Nuclear Information System (INIS)

    Zapol'skaya, N.A.; Fedorova, A.V.

    1975-01-01

    The changes were studied occurring in some biochemical indicators in blood at chronic peroral administration of strontium-90, cesium-137 and iodine-131 in amounts resulting in accumulation of commensurable doses in critical organs corresponding to each isotope

  17. Synthesis of Biochemical Applications on Flow-Based Microfluidic Biochips using Constraint Programming

    DEFF Research Database (Denmark)

    Minhass, Wajid Hassan; Pop, Paul; Madsen, Jan

    2012-01-01

    Microfluidic biochips are replacing the conventional biochemical analyzers and are able to integrate the necessary functions for biochemical analysis on-chip. In this paper we are interested in flow-based biochips, in which the flow of liquid is manipulated using integrated microvalves. By combin...

  18. Genetic analysis of the cytoplasmic dynein subunit families.

    Science.gov (United States)

    Pfister, K Kevin; Shah, Paresh R; Hummerich, Holger; Russ, Andreas; Cotton, James; Annuar, Azlina Ahmad; King, Stephen M; Fisher, Elizabeth M C

    2006-01-01

    Cytoplasmic dyneins, the principal microtubule minus-end-directed motor proteins of the cell, are involved in many essential cellular processes. The major form of this enzyme is a complex of at least six protein subunits, and in mammals all but one of the subunits are encoded by at least two genes. Here we review current knowledge concerning the subunits, their interactions, and their functional roles as derived from biochemical and genetic analyses. We also carried out extensive database searches to look for new genes and to clarify anomalies in the databases. Our analysis documents evolutionary relationships among the dynein subunits of mammals and other model organisms, and sheds new light on the role of this diverse group of proteins, highlighting the existence of two cytoplasmic dynein complexes with distinct cellular roles.

  19. Genetic analysis of the cytoplasmic dynein subunit families.

    Directory of Open Access Journals (Sweden)

    K Kevin Pfister

    2006-01-01

    Full Text Available Cytoplasmic dyneins, the principal microtubule minus-end-directed motor proteins of the cell, are involved in many essential cellular processes. The major form of this enzyme is a complex of at least six protein subunits, and in mammals all but one of the subunits are encoded by at least two genes. Here we review current knowledge concerning the subunits, their interactions, and their functional roles as derived from biochemical and genetic analyses. We also carried out extensive database searches to look for new genes and to clarify anomalies in the databases. Our analysis documents evolutionary relationships among the dynein subunits of mammals and other model organisms, and sheds new light on the role of this diverse group of proteins, highlighting the existence of two cytoplasmic dynein complexes with distinct cellular roles.

  20. PHYSIOLOGICAL AND BIOCHEMICAL MARKERS OF SALINITY TOLERANCE IN PLANTS

    Directory of Open Access Journals (Sweden)

    Mustafa YILDIZ

    2011-02-01

    Full Text Available Salt stress limits plant productivity in arid and semi arid regions. Salt stress causes decrease in plant growth by adversely affecting physiological processes, especially photosynthesis. Salinity tolerance is defined as the ability of plant to maintain normal rowth and development under salt conditions. Salt stress results in accumulation of low molecular weight compounds, termed compatible solutes, which do not interfere with the normal biochemical reactions. These compatible solutes such as carbohydrates, polyols, amino acids and amides, quaternary ammonium compounds, polyamines andsoluble proteins may play a crucial role in osmotic adjustment, protection of macromolecules, maintenance of cellular pH and detoxification of free radicals. On the other hand, plants subjected to environmental stresses such as salinity produce reactive oxygen species (ROS and these ROS are efficiently eliminated by antioxidant enzyme systems. In plant breeding studies, the use of some physiological and biochemical markers for improving the salt tolerance in plants is crucial. In this review, the possibility of using some physiological and biochemical markers as selection criteria for salt tolerance is discussed.

  1. [Circulating miR-152 helps early prediction of postoperative biochemical recurrence of prostate cancer].

    Science.gov (United States)

    Chen, Jun-Feng; Liao, Yu-Feng; Ma, Jian-Bo; Mao, Qi-Feng; Jia, Guang-Cheng; Dong, Xue-Jun

    2017-07-01

    To investigate the value of circulating miR-152 in the early prediction of postoperative biochemical recurrence of prostate cancer. Sixty-six cases of prostate cancer were included in this study, 35 with and 31 without biochemical recurrence within two years postoperatively, and another 31 healthy individuals were enrolled as normal controls. The relative expression levels of circulating miR-152 in the serum of the subjects were detected by qRT-PCR, its value in the early diagnosis of postoperative biochemical recurrence of prostate cancer was assessed by ROC curve analysis, and the correlation of its expression level with the clinicopathological parameters of the patients were analyzed. The expression of circulating miR-152 was significantly lower in the serum of the prostate cancer patients than in the normal controls (t = -5.212, P = 0.001), and so was it in the patients with than in those without postoperative biochemical recurrence (t = -5.727, P = 0.001). The ROC curve for the value of miR-152 in the early prediction of postoperative biochemical recurrence of prostate cancer showed the area under the curve (AUC) to be 0.906 (95% CI: 0.809-0.964), with a sensitivity of 91.4% and a specificity of 80.6%. The expression level of miR-152 was correlated with the Gleason score, clinical stage of prostate cancer, biochemical recurrence, and bone metastasis (P 0.05). The expression level of circulating miR-152 is significantly reduced in prostate cancer patients with biochemical recurrence after prostatectomy and could be a biomarker in the early prediction of postoperative biochemical recurrence of the malignancy.

  2. Mannose Phosphate Isomerase Isoenzymes in Plutella xylostella Support Common Genetic Bases of Resistance to Bacillus thuringiensis Toxins in Lepidopteran Species

    OpenAIRE

    Herrero, Salvador; Ferré, Juan; Escriche, Baltasar

    2001-01-01

    A strong correlation between two mannose phosphate isomerase (MPI) isoenzymes and resistance to Cry1A toxins from Bacillus thuringiensis has been found in a Plutella xylostella population. MPI linkage to Cry1A resistance had previously been reported for a Heliothis virescens population. The fact that the two populations share similar biochemical, genetic, and cross-resistance profiles of resistance suggests the occurrence of homologous resistance loci in both species.

  3. Polyphenol Oxidase as a Biochemical Seed Defense Mechanism

    Directory of Open Access Journals (Sweden)

    E. Patrick Fuerst

    2014-12-01

    Full Text Available Seed dormancy and resistance to decay are fundamental survival strategies, which allow a population of seeds to germinate over long periods of time. Seeds have physical, chemical, and biological defense mechanisms that protect their food reserves from decay-inducing organisms and herbivores. Here, we hypothesize that seeds also possess enzyme-based biochemical defenses, based on induction of the plant defense enzyme, polyphenol oxidase (PPO, when wild oat (Avena fatua L. caryopses and seeds were challenged with seed-decaying Fusarium fungi. These studies suggest that dormant seeds are capable of mounting a defense response to pathogens. The pathogen-induced PPO activity from wild oat was attributed to a soluble isoform of the enzyme that appeared to result, at least in part, from proteolytic activation of a latent PPO isoform. PPO activity was also induced in wild oat hulls (lemma and palea, non-living tissues that cover and protect the caryopsis. These results are consistent with the hypothesis that seeds possess inducible enzyme-based biochemical defenses arrayed on the exterior of seeds and these defenses represent a fundamental mechanism of seed survival and longevity in the soil. Enzyme-based biochemical defenses may have broader implications since they may apply to other defense enzymes as well as to a diversity of plant species and ecosystems.

  4. Population based reference intervals for common blood haematological and biochemical parameters in the akuapem north district.

    Science.gov (United States)

    Koram, Ka; Addae, Mm; Ocran, Jc; Adu-Amankwah, S; Rogers, Wo; Nkrumah, Fk

    2007-12-01

    To estimate the reference intervals for commonly used blood haematology and biochemical parameters in an adult (18-55yrs) population of residents of Mampong Akuapem. This was a population based cross sectional study of a randomly selected sample of the adult population of Mampong. The sample was selected from an updated census list of the Mampong area. Median values (95% range) for measured parameters were established as follows: Haemoglobin, (males) 14.2 g/dl (females) 12.0 g/dl Alanine aminotransferase (ALT), (female) 19.6 U/L (males) 26.1 U/L and Creatinine, (males) 108 mmol/L (females) 93 mmol/L. In comparison to reference values that are commonly used in Ghana, the haemoglobulin levels from this study were lower, and liver function parameters higher. This could be a result of genetic or environmental differences and calls for the need to establish site specific reference values applicable to our population.

  5. Genetic and nutritional characterization of some macrophytes, inhabiting the Bardawil Lagoon, Sinai, Egypt

    Directory of Open Access Journals (Sweden)

    Hosam E. Elsaied

    2015-12-01

    Full Text Available The ecological and economical significances of macrophytes, inhabiting the Mediterranean Lagoon, Bardawil, northern Sinai, Egypt, are still ambiguous, due to lack of knowledge. This study focused on genetic and nutritional characterization of three dominant macrophyte species at Bardawil Lagoon. Genetic identifications were done through genomic DNA extraction, followed by PCR amplifications and sequencing of 18S rRNA genes of the studied species. Phylogenetic analyses indicated that two of the recorded species showed homologies with the seagrass species, Posidonia oceanica and Halophila ovalis, with nucleotide identities 94.5% and 96.8%, respectively. The third species showed a unique phylogenetic lineage, representing nucleotide identity average, 86.5%, among the brown seaweeds, Heterokontophyta. Nutritional analyses indicated that the recorded seaweed-like macrophyte had the highest recommended nutritional contents, crude protein, 24.67%, with a total amino acid composition of 6.64 g/100 g protein, and carbohydrate, 38.16%, besides a calorific value of 3.063 K cal/g, among the studied macrophytes. To the best of our knowledge, this is the first attempt to characterize macrophyte community in Bardawil Lagoon, using both genetic and biochemical approaches.

  6. Biochemical Markers for Assessing Aquatic Contamination

    Directory of Open Access Journals (Sweden)

    Zdeňka Svobodová

    2007-11-01

    Full Text Available Biochemical markers, specifically enzymes of the first phase of xenobiotic transformation - cytochrome P450 and ethoxyresorufin-O-deethylase (EROD - were used to determine the quantities of persistent organic pollutants (POPs in fish muscle (PCB, HCB, HCH, OCS, DDT. Eight rivers were monitored (Orlice, Chrudimka, Cidlina, Jizera, Vltava, Ohře and Bílina; and the River Blanice was used as a control. The indicator species selected was the chub (Leuciscus cephalus L.. There were no significant differences in cytochrome P450 content between the locations monitored. The highest concentration of cytochrome P450 in fish liver was in the Vltava (0.241 nmol mg-1 protein, and the lowest was in the Orlice (0.120 nmol mg-1 protein. Analysis of EROD activity showed a significant difference between the Blanice and the Vltava (P< 0.05, and also between the Orlice and the Vltava (P< 0.01, the Orlice and the Bílina (P< 0.01, and the Orlice and the Ohře (P< 0.05. The highest EROD activity in fish liver was in the Vltava (576.4 pmol min-1 mg-1 protein, and the lowest was in the Orlice (63.05 pmol min-1 mg-1 protein. In individual locations, results of chemical monitoring and values of biochemical markers were compared. A significant correlation (P< 0.05 was found between biochemical markers and OCS, and PCB. Among the tributaries studied those that contaminated the Elbe most were the Vltava and the Bílina. These tributaries should not be considered the main sources of industrial contamination of the River Elbe, because the most important contamination sources were along the river Elbe itself.

  7. Opium and heroin alter biochemical parameters of human's serum.

    Science.gov (United States)

    Kouros, Divsalar; Tahereh, Haghpanah; Mohammadreza, Afarinesh; Minoo, Mahmoudi Zarandi

    2010-05-01

    Iran is a significant consumer of opium, and, generally, of opioids, in the world. Addiction is one of the important issues of the 21st century and is an imperative issue in Iran. Long-term consumption of opioids affects homeostasis. To determine the effects of opium and heroin consumption on serum biochemical parameters. In a cross-sectional study, subjects who had consumed heroin (n = 35) or opium (n = 42) for more than two years and 35 nonaddict volunteers as the control group were compared in regard to various biochemical parameters such as fasting blood sugar (FBS), Na(+), K(+), Ca(2+), blood urea nitrogen (BUN), uric acid (UA), triglyceride (TG), cholesterol, creatinine, and total protein. Chromatography was used to confirm opioid consumption, and the concentration of biochemical parameters was determined by laboratory diagnostic tests on serum. No significant differences were found in Na(+), Ca(2+), BUN, UA, TG, creatinine, and total protein concentrations among the three groups. FBS, K(+), and UA levels were significantly lower in opium addicts compared to the control group. Serum Ca(2+) concentration of heroin addicts showed a significant decrease compared to that of the control group. Both addict groups showed a significant decrease in serum cholesterol levels. Chronic use of opium and heroin can change serum FBS, K(+), Ca(2+), UA, and cholesterol. This study, one of few on the effects of opium on serum biochemical parameters in human subjects, has the potential to contribute to the investigation of new approaches for further basic studies.

  8. INVESTIGATIONS ON BIOCHEMICAL PURIFICATION OF GROUND WATER FROM HYDROGEN SULFIDE

    Directory of Open Access Journals (Sweden)

    Yu. P. Sedlukho

    2015-01-01

    Full Text Available The paper considers problems and features of biochemical removal of hydrogen sulfide from ground water. The analysis of existing methods for purification of ground water from hydrogen sulfide has been given in the paper. The paper has established shortcomings of physical and chemical purification of ground water. While using aeration methods for removal of hydrogen sulfide formation of colloidal sulfur that gives muddiness and opalescence to water occurs due to partial chemical air oxidation. In addition to this violation of sulfide-carbonate equilibrium taking place in the process of aeration due to desorption of H2S and CO2, often leads to clogging of degasifier nozzles with formed CaCO3 that causes serious operational problems. Chemical methods require relatively large flow of complex reagent facilities, storage facilities and transportation costs.In terms of hydrogen sulfide ground water purification the greatest interest is given to the biochemical method. Factors deterring widespread application of the biochemical method is its insufficient previous investigation and necessity to execute special research in order to determine optimal process parameters while purifying groundwater of a particular water supply source. Biochemical methods for oxidation of sulfur compounds are based on natural biological processes that ensure natural sulfur cycle. S. Vinogradsky has established a two-stage mechanism for oxidation of hydrogen sulfide with sulfur bacteria (Beggiatoa. The first stage presupposes oxidation of hydrogen sulphide to elemental sulfur which is accumulating in the cytoplasm in the form of globules. During the second stage sulfur bacteria begin to oxidize intracellular sulfur to sulfuric acid due to shortage of hydrogen sulfide.The paper provides the results of technological tests of large-scale pilot plants for biochemical purification of groundwater from hydrogen sulfide in semi-industrial conditions. Dependences of water quality

  9. Aspects on the Physiological and Biochemical Foundations of Neurocritical Care

    Directory of Open Access Journals (Sweden)

    Carl-Henrik Nordström

    2017-06-01

    Full Text Available Neurocritical care (NCC is a branch of intensive care medicine characterized by specific physiological and biochemical monitoring techniques necessary for identifying cerebral adverse events and for evaluating specific therapies. Information is primarily obtained from physiological variables related to intracranial pressure (ICP and cerebral blood flow (CBF and from physiological and biochemical variables related to cerebral energy metabolism. Non-surgical therapies developed for treating increased ICP are based on knowledge regarding transport of water across the intact and injured blood–brain barrier (BBB and the regulation of CBF. Brain volume is strictly controlled as the BBB permeability to crystalloids is very low restricting net transport of water across the capillary wall. Cerebral pressure autoregulation prevents changes in intracranial blood volume and intracapillary hydrostatic pressure at variations in arterial blood pressure. Information regarding cerebral oxidative metabolism is obtained from measurements of brain tissue oxygen tension (PbtO2 and biochemical data obtained from intracerebral microdialysis. As interstitial lactate/pyruvate (LP ratio instantaneously reflects shifts in intracellular cytoplasmatic redox state, it is an important indicator of compromised cerebral oxidative metabolism. The combined information obtained from PbtO2, LP ratio, and the pattern of biochemical variables reveals whether impaired oxidative metabolism is due to insufficient perfusion (ischemia or mitochondrial dysfunction. Intracerebral microdialysis and PbtO2 give information from a very small volume of tissue. Accordingly, clinical interpretation of the data must be based on information of the probe location in relation to focal brain damage. Attempts to evaluate global cerebral energy state from microdialysis of intraventricular fluid and from the LP ratio of the draining venous blood have recently been presented. To be of clinical relevance

  10. Some hematological and biochemical parameters in smokeless ...

    African Journals Online (AJOL)

    AJB SERVER

    2007-01-04

    Jan 4, 2007 ... The effect of Jharda powder (smokeless tobacco) on some hematological and biochemical parameters in consumers was investigated. Hematological parameters including hemoglobin content and white blood cell and leukocyte counts were higher in jharda powder consumers, while monocytes and.

  11. Biochemical Manifestation of HIV Lipodystrophy Syndrome.

    Science.gov (United States)

    Ihenetu, Kenneth; Mason, Darius

    2012-01-01

    Highly active anti-retroviral therapy (HAART), including protease inhibitors (PI) have led to dramatic improvements in the quality and quantity of life in patients with acquired immunodeficiency syndrome (AIDS). However, a significant number of AIDS patients on HAART develop characteristic changes in body fat redistribution referred to as lipodystrophy syndrome (LDS). Features of LDS include hypertrophy in the neck fat pad (buffalo hump), increased fat in the abdominal region (protease paunch), gynecomastia and loss of fat in the mid-face and extremities. The aim of this paper is to review the current knowledge regarding this syndrome. This article reviews the published investigations on biochemical manifestation of HIV lipodystrophy syndrome. It is estimated that approximately 64% of patients treated with PI will experience this syndrome. Biochemically, these patients have increased triglycerides (Trig), total cholesterol (TC), low-density lipoprotein-cholesterol (LDL-C) and extremely low high-density lipoprotein-cholesterol (HDL-C). It is hoped that awareness of this syndrome would aid in early diagnosis and better patient management, possibly leading to a lower incidence of cardiovascular complications among these patients.

  12. A return to the genetic heritage of durum wheat to cope with drought heightened by climate change.

    Science.gov (United States)

    Slama, Amor; Mallek-Maalej, Elhem; Ben Mohamed, Hatem; Rhim, Thouraya; Radhouane, Leila

    2018-01-01

    The objective of this work was to perform a comparative analysis of the physiological, biochemical and agronomical parameters of recent and heritage durum wheat cultivars (Triticum durum Desf.) under water-deficit conditions. Five cultivars were grown under irrigated (control) and rainfall (stressed) conditions. Different agro-physiological and biochemical parameters were studied: electrolyte leakage, relative water content, chlorophyll fluorescence, proline, soluble sugars, specific peroxidase activity, yield and drought stress indices. It was revealed that a water deficit increased proline content, electrolyte leakage, soluble sugars and specific peroxidase activity and decreased relative water content, fluorescence and grain yield. According to these parameters and drought stress indices, our investigation indicated that old cultivars are the best-adapted to local conditions and showed characteristics of drought tolerance, while recent cultivars showed more drought susceptibility. Therefore, local cultivars of each country should be kept by farmers and plant breeders to preserve their genetic heritage.

  13. Molecular markers: a potential resource for ginger genetic diversity studies.

    Science.gov (United States)

    Ismail, Nor Asiah; Rafii, M Y; Mahmud, T M M; Hanafi, M M; Miah, Gous

    2016-12-01

    Ginger is an economically important and valuable plant around the world. Ginger is used as a food, spice, condiment, medicine and ornament. There is available information on biochemical aspects of ginger, but few studies have been reported on its molecular aspects. The main objective of this review is to accumulate the available molecular marker information and its application in diverse ginger studies. This review article was prepared by combing material from published articles and our own research. Molecular markers allow the identification and characterization of plant genotypes through direct access to hereditary material. In crop species, molecular markers are applied in different aspects and are useful in breeding programs. In ginger, molecular markers are commonly used to identify genetic variation and classify the relatedness among varieties, accessions, and species. Consequently, it provides important input in determining resourceful management strategies for ginger improvement programs. Alternatively, a molecular marker could function as a harmonizing tool for documenting species. This review highlights the application of molecular markers (isozyme, RAPD, AFLP, SSR, ISSR and others such as RFLP, SCAR, NBS and SNP) in genetic diversity studies of ginger species. Some insights on the advantages of the markers are discussed. The detection of genetic variation among promising cultivars of ginger has significance for ginger improvement programs. This update of recent literature will help researchers and students select the appropriate molecular markers for ginger-related research.

  14. A Genetic System for the Thermophilic Acetogenic Bacterium Thermoanaerobacter kivui.

    Science.gov (United States)

    Basen, Mirko; Geiger, Irina; Henke, Laura; Müller, Volker

    2018-02-01

    Thermoanaerobacter kivui is one of the very few thermophilic acetogenic microorganisms. It grows optimally at 66°C on sugars but also lithotrophically with H 2 + CO 2 or with CO, producing acetate as the major product. While a genome-derived model of acetogenesis has been developed, only a few physiological or biochemical experiments regarding the function of important enzymes in carbon and energy metabolism have been carried out. To address this issue, we developed a method for targeted markerless gene deletions and for integration of genes into the genome of T. kivui The strain naturally took up plasmid DNA in the exponential growth phase, with a transformation frequency of up to 3.9 × 10 -6 A nonreplicating plasmid and selection with 5-fluoroorotate was used to delete the gene encoding the orotate phosphoribosyltransferase ( pyrE ), resulting in a Δ pyrE uracil-auxotrophic strain, TKV002. Reintroduction of pyrE on a plasmid or insertion of pyrE into different loci within the genome restored growth without uracil. We subsequently studied fructose metabolism in T. kivui The gene fruK (TKV_c23150) encoding 1-phosphofructosekinase (1-PFK) was deleted, using pyrE as a selective marker via two single homologous recombination events. The resulting Δ fruK strain, TKV003, did not grow on fructose; however, growth on glucose (or on mannose) was unaffected. The combination of pyrE as a selective marker and the natural competence of the strain for DNA uptake will be the basis for future studies on CO 2 reduction and energy conservation and their regulation in this thermophilic acetogenic bacterium. IMPORTANCE Acetogenic bacteria are currently the focus of research toward biotechnological applications due to their potential for de novo synthesis of carbon compounds such as acetate, butyrate, or ethanol from H 2 + CO 2 or from synthesis gas. Based on available genome sequences and on biochemical experiments, acetogens differ in their energy metabolism. Thus, there is an

  15. Mesotrione herbicide promotes biochemical changes and DNA damage in two fish species

    Directory of Open Access Journals (Sweden)

    L.D.S. Piancini

    2015-01-01

    Full Text Available Mesotrione is one of the new herbicides that have emerged as an alternative after the ban of atrazine in the European Union. To our knowledge, any work using genetic or biochemical biomarkers was performed in any kind of fish evaluating the toxicity of this compound. The impact of acute (96 h exposure to environmentally relevant mesotrione concentrations (1.8, 7, 30, 115 e 460 μg L−1 were evaluated on the liver of Oreochorimis niloticus and Geophagus brasiliensis by assessing the activity of superoxide dismutase (SOD, glutathione peroxidase (GPx and glutathione-S- transferase (GST, the levels of reduced glutathione (GSH, carbonyl assays (PCO and lipid peroxide (LPO as well as the DNA damage to erithrocytes, liver and gills through the comet assay. We observed an increase in the concentration of GSH and the GPx activity in O. niloticus, and the GST and SOD activity in G. brasiliensis. We found significant increase in DNA damage in all tissues in both species. The results indicated that the acute exposure to mesotrione can induce oxidative stress and DNA damage in both species.

  16. Variations in biochemical values for common laboratory tests: a comparison among multi-ethnic Israeli women cohort.

    Science.gov (United States)

    Birk, Ruth; Heifetz, Eliyahu M

    2018-04-28

    Biochemical laboratory values are an essential tool in medical diagnosis, treatment, and follow-up; however, they are known to vary between populations. Establishment of ethnicity-adjusted reference values is recommended by health organizations. To investigate the ethnicity element in biochemical lab values studying women of different ethnic groups. Biochemical lab values (n = 27) of 503 adult Israeli women of three ethnicities (Jewish Ashkenazi, Jewish Sephardic, and Bedouin Arab) attending a single medical center were analyzed. Biochemical data were extracted from medical center records. Ethnic differences of laboratory biochemicals were studied using ANCOVA to analyze the center of the distribution as well as quartile regression analysis to analyze the upper and lower limits, both done with an adjustment for age. Significant ethnic differences were found in almost half (n = 12) of the biochemical laboratory tests. Ashkenazi Jews exhibited significantly higher mean values compared to Bedouins in most of the biochemical tests, including albumin, alkaline phosphatase, calcium, cholesterol, cholesterol LDL and HDL, cholesterol LDL calc., folic acid, globulin, and iron saturation, while the Bedouins exhibited the highest mean values in the creatinine and triglycerides. For most of these tests, Sephardic Jews exhibited biochemical mean levels in between the two other groups. Compared to Ashkenazi Jews, Sephardic Jews had a significant shift to lower values in cholesterol LDL. Ethnic subpopulations have distinct distributions in biochemical laboratory test values, which should be taken into consideration in medical practice enabling precision medicine.

  17. Responses of physiological and biochemical components in Gossypium hirsutum L. to mutagens

    International Nuclear Information System (INIS)

    Muthusamy, A.; Vasanth, K.; Jayabalan, N.

    2003-01-01

    The two tetraploid varieties of cotton were exposed to gamma rays, EMS and SA. Chlorophyll, carotenoids, sugar, starch, free amino acids, protein, lipids, DNA and RNA were estimated quantitatively. All the physiological and biochemical components were increased in lower dose/concentration of the mutagenic treatments and they were decreased in higher dose/concentrations. The stimulation of the biochemical contents was a dose/concentration dependent response. Among the two varieties, MCU 11 was found to be responsive to mutagens than MCU 5. Based on the study the lower dose/concentration of the mutagenic treatments could enhance the biochemical components which is used for improved economic characters of cotton. (author)

  18. Real-time biochemical sensor based on Raman scattering with CMOS contact imaging.

    Science.gov (United States)

    Muyun Cao; Yuhua Li; Yadid-Pecht, Orly

    2015-08-01

    This work presents a biochemical sensor based on Raman scattering with Complementary metal-oxide-semiconductor (CMOS) contact imaging. This biochemical optical sensor is designed for detecting the concentration of solutions. The system is built with a laser diode, an optical filter, a sample holder and a commercial CMOS sensor. The output of the system is analyzed by an image processing program. The system provides instant measurements with a resolution of 0.2 to 0.4 Mol. This low cost and easy-operated small scale system is useful in chemical, biomedical and environmental labs for quantitative bio-chemical concentration detection with results reported comparable to a highly cost commercial spectrometer.

  19. Some hematological and biochemical parameters in smokeless ...

    African Journals Online (AJOL)

    The effect of Jharda powder (smokeless tobacco) on some hematological and biochemical parameters in consumers was investigated. Hematological parameters including hemoglobin content and white blood cell and leukocyte counts were higher in jharda powder consumers, while monocytes and basophiles counts were ...

  20. Evaluation of Haematological and Biochemical Parameters of ...

    African Journals Online (AJOL)

    ADOWIE PERE

    Evaluation of Haematological and Biochemical Parameters of Juvenile Oreochromis niloticus after Exposure to Water Soluble Fractions of ... niloticus were evaluated. After a preliminary determination of the 96 h-LC50 of ... evaporation, dissolution, emulsion, photolysis and biodegradation which generate a water soluble.

  1. Biochemical changes during aging of soybean seed

    Directory of Open Access Journals (Sweden)

    Balešević-Tubić Svetlana

    2009-01-01

    Full Text Available Biochemical changes that occur in the seed as a result of ageing are very significant for seed quality and longevity. Because of its characteristic composition, processes occurring in the seed of oil crops during storage will be typical as well. Six soybean varieties developed in Institute of field and vegetable crops Novi Sad, submitted to accelerated and natural aging, under controlled and conventional storage conditions were used in these trials. The content of malondialdehyde, superoxide dismutase and peroxidase activities were studied. The biochemical processes i.e. lipid peroxidation, as well as the decrease in supeoxide dismutase and peroxidase activities (especially pronounced by applied accelerated aging were caused by both type of aging. The degree of seed damage and the ability of seed to resist the negative consequences of aging were influenced, beside duration of aging period, by type of storage and characteristics of soybean varieties. .

  2. Cooperativity Leads to Temporally-Correlated Fluctuations in the Bacteriophage Lambda Genetic Switch

    Directory of Open Access Journals (Sweden)

    Jacob Quinn Shenker

    2015-04-01

    Full Text Available Cooperative interactions are widespread in biochemical networks, providing the nonlinear response that underlies behavior such as ultrasensitivity and robust switching. We introduce a temporal correlation function—the conditional activity—to study the behavior of these phenomena. Applying it to the bistable genetic switch in bacteriophage lambda, we find that cooperative binding between binding sites on the prophage DNA lead to non-Markovian behavior, as quantified by the conditional activity. Previously, the conditional activity has been used to predict allosteric pathways in proteins; here, we show that it identifies the rare unbinding events which underlie induction from lysogeny to lysis.

  3. Integration of electrochemistry in micro-total analysis systems for biochemical assays: recent developments.

    Science.gov (United States)

    Xu, Xiaoli; Zhang, Song; Chen, Hui; Kong, Jilie

    2009-11-15

    Micro-total analysis systems (microTAS) integrate different analytical operations like sample preparation, separation and detection into a single microfabricated device. With the outstanding advantages of low cost, satisfactory analytical efficiency and flexibility in design, highly integrated and miniaturized devices from the concept of microTAS have gained widespread applications, especially in biochemical assays. Electrochemistry is shown to be quite compatible with microanalytical systems for biochemical assays, because of its attractive merits such as simplicity, rapidity, high sensitivity, reduced power consumption, and sample/reagent economy. This review presents recent developments in the integration of electrochemistry in microdevices for biochemical assays. Ingenious microelectrode design and fabrication methods, and versatility of electrochemical techniques are involved. Practical applications of such integrated microsystem in biochemical assays are focused on in situ analysis, point-of-care testing and portable devices. Electrochemical techniques are apparently suited to microsystems, since easy microfabrication of electrochemical elements and a high degree of integration with multi-analytical functions can be achieved at low cost. Such integrated microsystems will play an increasingly important role for analysis of small volume biochemical samples. Work is in progress toward new microdevice design and applications.

  4. Genetic and biochemical evidence that haploinsufficiency of the Nf1 tumor suppressor gene modulates melanocyte and mast cell fates in vivo.

    Science.gov (United States)

    Ingram, D A; Yang, F C; Travers, J B; Wenning, M J; Hiatt, K; New, S; Hood, A; Shannon, K; Williams, D A; Clapp, D W

    2000-01-03

    Neurofibromatosis type 1 (NF1) is a common autosomal-dominant disorder characterized by cutaneous neurofibromas infiltrated with large numbers of mast cells, melanocyte hyperplasia, and a predisposition to develop malignant neoplasms. NF1 encodes a GTPase activating protein (GAP) for Ras. Consistent with Knudson's "two hit" model of tumor suppressor genes, leukemias and malignant solid tumors in NF1 patients frequently demonstrate somatic loss of the normal NF1 allele. However, the phenotypic and biochemical consequences of heterozygous inactivation of Nf1 are largely unknown. Recently neurofibromin, the protein encoded by NF1, was shown to negatively regulate Ras activity in Nf1-/- murine myeloid hematopoietic cells in vitro through the c-kit receptor tyrosine kinase (dominant white spotting, W). Since the W and Nf1 locus appear to function along a common developmental pathway, we generated mice with mutations at both loci to examine potential interactions in vivo. Here, we show that haploinsufficiency at Nf1 perturbs cell fates in mast cells in vivo, and partially rescues coat color and mast cell defects in W(41) mice. Haploinsufficiency at Nf1 also increased mast cell proliferation, survival, and colony formation in response to Steel factor, the ligand for c-kit. Furthermore, haploinsufficiency was associated with enhanced Ras-mitogen-activated protein kinase activity, a major downstream effector of Ras, via wild-type and mutant (W(41)) c-kit receptors. These observations identify a novel interaction between c-kit and neurofibromin in vivo, and offer experimental evidence that haploinsufficiency of Nf1 alters both cellular and biochemical phenotypes in two cell lineages that are affected in individuals with NF1. Collectively, these data support the emerging concept that heterozygous inactivation of tumor suppressor genes may have profound biological effects in multiple cell types.

  5. Genetic Analysis of Diaminopimelic Acid- and Lysine-Requiring Mutants of Escherichia coli1

    Science.gov (United States)

    Bukhari, Ahmad I.; Taylor, Austin L.

    1971-01-01

    Several diaminopimelic acid (DAP)- and lysine-requiring mutants of Escherichia coli were isolated and studied by genetic, physiological, and biochemical means. The genes concerned with DAP-lysine synthesis map at several different sites on the E. coli chromosome and, therefore, do not constitute a single operon. Three separate loci affecting DAP synthesis are located in the 0 to 2.5 min region of the genetic map. The order of the loci in this region is thr-dapB-pyrA-ara-leu-pan-dapC-tonA-dapD. Two additional DAP genes map in the region between min 47 and 48, with the gene order being gua-dapA-dapE-ctr. The lys locus at min 55 determines the synthesis of the enzyme DAP decarboxylase, which catalyzes the conversion of DAP into lysine. The order of the genes in this region is serA-lysA-thyA. PMID:4926684

  6. Genetic, metabolite and developmental determinism of fruit friction discolouration in pear.

    Science.gov (United States)

    Saeed, Munazza; Brewer, Lester; Johnston, Jason; McGhie, Tony K; Gardiner, Susan E; Heyes, Julian A; Chagné, David

    2014-09-16

    The unattractive appearance of the surface of pear fruit caused by the postharvest disorder friction discolouration (FD) is responsible for significant consumer dissatisfaction in markets, leading to lower returns to growers. Developing an understanding of the genetic control of FD is essential to enable the full application of genomics-informed breeding for the development of new pear cultivars. Biochemical constituents [phenolic compounds and ascorbic acid (AsA)], polyphenol oxidase (PPO) activity, as well as skin anatomy, have been proposed to play important roles in FD susceptibility in studies on a limited number of cultivars. However, to date there has been no investigation on the biochemical and genetic control of FD, employing segregating populations. In this study, we used 250 seedlings from two segregating populations (POP369 and POP356) derived from interspecific crosses between Asian (Pyrus pyrifolia Nakai and P. bretschneideri Rehd.) and European (P. communis) pears to identify genetic factors associated with susceptibility to FD. Single nucleotide polymorphism (SNP)-based linkage maps suitable for QTL analysis were developed for the parents of both populations. The maps for population POP369 comprised 174 and 265 SNP markers for the male and female parent, respectively, while POP356 maps comprised 353 and 398 SNP markers for the male and female parent, respectively. Phenotypic data for 22 variables were measured over two successive years (2011 and 2012) for POP369 and one year (2011) only for POP356. A total of 221 QTLs were identified that were linked to 22 phenotyped variables, including QTLs associated with FD for both populations that were stable over the successive years. In addition, clear evidence of the influence of developmental factors (fruit maturity) on FD and other variables was also recorded. The QTLs associated with fruit firmness, PPO activity, AsA concentration and concentration of polyphenol compounds as well as FD are the first

  7. Considerations on the biochemical composition of some freshwater zooplankton species.

    Directory of Open Access Journals (Sweden)

    Nicoletta RICCARDI

    1999-02-01

    Full Text Available The mean elemental (C, H, N and biochemical composition (lipids, carbohydrates and proteins of some abundant crustacean zooplankton species of Italian insubric lakes has been estimated by the analysis of samples collected at different seasons from various environments (Lake Maggiore, Lake Varese, Lake Comabbio, Lake Monate. From each sample an adequate number of specimens of each abundant species was sorted and analyzed by a CHN elemental analyzer. The percentage of lipids, carbohydrates and proteins and the calorific content were calculated from the elemental composition according to Gnaiger & Bitterlich (1984. Inter- and intraspecific variability of biochemical composition was quite high, while elemental composition and calorific content were less variable. An estimate of the mean elemental and biochemical composition of each species was obtained by pooling the data. These mean values have been used to estimate the pools of elements and compounds in the crustacean zooplankton of Lake Comabbio to provide an example of the importance of a multiple approach in zooplankton studies.

  8. Identification of biochemical features of defective Coffea arabica L. beans.

    Science.gov (United States)

    Casas, María I; Vaughan, Michael J; Bonello, Pierluigi; McSpadden Gardener, Brian; Grotewold, Erich; Alonso, Ana P

    2017-05-01

    Coffee organoleptic properties are based in part on the quality and chemical composition of coffee beans. The presence of defective beans during processing and roasting contribute to off flavors and reduce overall cup quality. A multipronged approach was undertaken to identify specific biochemical markers for defective beans. To this end, beans were split into defective and non-defective fractions and biochemically profiled in both green and roasted states. A set of 17 compounds in green beans, including organic acids, amino acids and reducing sugars; and 35 compounds in roasted beans, dominated by volatile compounds, organic acids, sugars and sugar alcohols, were sufficient to separate the defective and non-defective fractions. Unsorted coffee was examined for the presence of the biochemical markers to test their utility in detecting defective beans. Although the green coffee marker compounds were found in all fractions, three of the roasted coffee marker compounds (1-methylpyrrole, 5-methyl- 2-furfurylfuran, and 2-methylfuran) were uniquely present in defective fractions. Published by Elsevier Ltd.

  9. Label-Free Imaging and Biochemical Characterization of Bovine Sperm Cells

    Science.gov (United States)

    Ferrara, Maria Antonietta; Di Caprio, Giuseppe; Managò, Stefano; De Angelis, Annalisa; Sirleto, Luigi; Coppola, Giuseppe; De Luca, Anna Chiara

    2015-01-01

    A full label-free morphological and biochemical characterization is desirable to select spermatozoa during preparation for artificial insemination. In order to study these fundamental parameters, we take advantage of two attractive techniques: digital holography (DH) and Raman spectroscopy (RS). DH presents new opportunities for studying morphological aspect of cells and tissues non-invasively, quantitatively and without the need for staining or tagging, while RS is a very specific technique allowing the biochemical analysis of cellular components with a spatial resolution in the sub-micrometer range. In this paper, morphological and biochemical bovine sperm cell alterations were studied using these techniques. In addition, a complementary DH and RS study was performed to identify X- and Y-chromosome-bearing sperm cells. We demonstrate that the two techniques together are a powerful and highly efficient tool elucidating some important criterions for sperm morphological selection and sex-identification, overcoming many of the limitations associated with existing protocols. PMID:25836358

  10. The impact of atrazine on several biochemical properties of chernozem soil

    Directory of Open Access Journals (Sweden)

    LJ. RADIVOJEVIC

    2008-10-01

    Full Text Available The impact of the pesticide atrazine on biochemical processes in soil was investigated. Atrazine loadings of 8.0, 40.0 and 80.0 mg/kg soil were laboratory tested in an experiment set up on a clay loam soil. Dehydrogenase activity, change in biomass carbon, soil respiration and metabolic coefficient were examined. The samples were collected for analysis 1, 7, 14, 21, 30 and 60 days after atrazine application. The acquired data indicated that the effect of atrazine on the biochemical activity of the soil depended on its application rate and duration of activity, and the effect was either stimulating or inhibiting. However, the detected changes were found to be transient, indicating that there is no real risk of the compound disrupting the balance of biochemical processes in soil.

  11. 2011 Biomass Program Platform Peer Review: Biochemical Conversion

    Energy Technology Data Exchange (ETDEWEB)

    Pezzullo, Leslie [Office of Energy Efficiency and Renewable Energy (EERE), Washington, DC (United States)

    2012-02-01

    This document summarizes the recommendations and evaluations provided by an independent external panel of experts at the 2011 U.S. Department of Energy Biomass Program’s Biochemical Conversion Platform Review meeting.

  12. Diagnostic utility of clinical and biochemical parameters in ...

    African Journals Online (AJOL)

    Diagnostic utility of clinical and biochemical parameters in pancreatic head malignancy ... Department of Surgery, Sir Run Run Shaw Hospital College of Medicine, Zhejiang University, ..... technical review on the epidemiology, diagnosis, and.

  13. Slot-waveguide biochemical sensor.

    Science.gov (United States)

    Barrios, Carlos A; Gylfason, Kristinn B; Sánchez, Benito; Griol, Amadeu; Sohlström, H; Holgado, M; Casquel, R

    2007-11-01

    We report an experimental demonstration of an integrated biochemical sensor based on a slot-waveguide microring resonator. The microresonator is fabricated on a Si3N4-SiO2 platform and operates at a wavelength of 1.3 microm. The transmission spectrum of the sensor is measured with different ambient refractive indices ranging from n=1.33 to 1.42. A linear shift of the resonant wavelength with increasing ambient refractive index of 212 nm/refractive index units (RIU) is observed. The sensor detects a minimal refractive index variation of 2x10(-4) RIU.

  14. DMPD: The oxidation of lipoproteins by monocytes-macrophages. Biochemical andbiological mechanisms. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 10473535 The oxidation of lipoproteins by monocytes-macrophages. Biochemical andbio.... (.png) (.svg) (.html) (.csml) Show The oxidation of lipoproteins by monocytes-macrophages. Biochemical and...onocytes-macrophages. Biochemical andbiological mechanisms. Authors Chisolm GM 3rd, Hazen SL, Fox PL, Cathca

  15. Biochemical and secondary metabolites changes under moisture ...

    African Journals Online (AJOL)

    The study showed the importance of carbohydrate and nitrogen cycle related metabolites in mediating tolerance in cassava by affecting their phenotypic expression in the plant. Keywords: Hydrothermal stress, bio-chemicals, pigments, secondary metabolites, cassava. African Journal of Biotechnology, Vol 13(31) 3173-3186 ...

  16. Efficacy of topical honey therapy against silver sulphadiazine treatment in burns: A biochemical study

    OpenAIRE

    Nagane, N. S.; Ganu, J. V.; Bhagwat, V. R.; Subramanium, M.

    2004-01-01

    Thermal injury is associated with biochemical changes. The present study was undertaken to investigate relation of oxidative free radical generation and related biochemical parameters in burn trauma. The specific aim was to compare the levels of serum lipid peroxide, Ceruloplasmin and Uric Acid in burn patients during treatment with Silver Sulfadiazine Cream and honey therapy. It is a single blind prospective controlled study involving comparison of biochemical changes after treatment with si...

  17. haematological parameters and serum biochemical indices of pre

    African Journals Online (AJOL)

    mrmrsolayiwola

    2012-05-01

    BWSFM) on haematological and serum biochemical parameters in rabbit were studied. Thirty-two (32) cross-bred. (New Zealand-white X Chinchilla) male weaner rabbits aged between 6 and 9 weeks were randomly.

  18. Biochemical recurrence after radical prostatectomy: what does it mean?

    Science.gov (United States)

    Tourinho-Barbosa, Rafael; Srougi, Victor; Nunes-Silva, Igor; Baghdadi, Mohammed; Rembeyo, Gregory; Eiffel, Sophie S.; Barret, Eric; Rozet, Francois; Galiano, Marc; Cathelineau, Xavier; Sanchez-Salas, Rafael

    2018-01-01

    ABSTRACT Background Radical prostatectomy (RP) has been used as the main primary treatment for prostate cancer (PCa) for many years with excellent oncologic results. However, approximately 20-40% of those patients has failed to RP and presented biochemical recurrence (BCR). Prostatic specific antigen (PSA) has been the pivotal tool for recurrence diagnosis, but there is no consensus about the best PSA threshold to define BCR until this moment. The natural history of BCR after surgical procedure is highly variable, but it is important to distinguish biochemical and clinical recurrence and to find the correct timing to start multimodal treatment strategy. Also, it is important to understand the role of each clinical and pathological feature of prostate cancer in BCR, progression to metastatic disease and cancer specific mortality (CSM). Review design A simple review was made in Medline for articles written in English language about biochemical recurrence after radical prostatectomy. Objective To provide an updated assessment of BCR definition, its meaning, PCa natural history after BCR and the weight of each clinical/pathological feature and risk group classifications in BCR, metastatic disease and CSM. PMID:29039897

  19. Improved biochemical preservation of lung slices during cold storage.

    Science.gov (United States)

    Bull, D A; Connors, R C; Reid, B B; Albanil, A; Stringham, J C; Karwande, S V

    2000-05-15

    Development of lung preservation solutions typically requires whole-organ models which are animal and labor intensive. These models rely on physiologic rather than biochemical endpoints, making accurate comparison of the relative efficacy of individual solution components difficult. We hypothesized that lung slices could be used to assess preservation of biochemical function during cold storage. Whole rat lungs were precision cut into slices with a thickness of 500 microm and preserved at 4 degrees C in the following solutions: University of Wisconsin (UW), Euro-Collins (EC), low-potassium-dextran (LPD), Kyoto (K), normal saline (NS), or a novel lung preservation solution (NPS) developed using this model. Lung biochemical function was assessed by ATP content (etamol ATP/mg wet wt) and capacity for protein synthesis (cpm/mg protein) immediately following slicing (0 h) and at 6, 12, 18, and 24 h of cold storage. Six slices were assayed at each time point for each solution. The data were analyzed using analysis of variance and are presented as means +/- SD. ATP content was significantly higher in the lung slices stored in NPS compared with all other solutions at each time point (P cold storage. Copyright 2000 Academic Press.

  20. Biochemical comparison of osteoarthritic knees with and without effusion

    Science.gov (United States)

    2011-01-01

    Background Several symptom-relieving interventions have been shown to be efficacious among osteoarthritis (OA) patients with knee effusion; however, not every symptomatic knee OA patient has clinical effusion. Results may be over-generalized since it is unclear if effused knees represent a unique pathological condition or subset compared to knees without effusion. The primary purpose of this study was to determine if biochemical differences existed between OA knees with and without effusion. Methods The present cross-sectional study consisted of 22 volunteers (11 with knee effusion, 11 without knee effusion) with confirmed late-stage radiographic knee OA (Kellgren-Lawrence score ≥ 3). Synovial fluid samples were collected and analyzed using a custom multiplex enzyme-linked immunosorbent assay to determine eight specific biomarker concentrations (e.g., catabolic, anabolic). Results Matrix metalloproteinase (MMP)-3, tissue inhibitor of MMPs (TIMP)-1, TIMP-2, and interleukin-10 were significantly higher in the knees with effusion than in the knees without effusion. Conclusions The biochemical differences that existed between knees with and without effusion provide support that OA subsets may exist, characterized by distinct biochemical characteristics and clinical findings (e.g., effusion). PMID:22122951

  1. Biochemical and Cellular Assessment of Acetabular Chondral Flaps Identified During Hip Arthroscopy.

    Science.gov (United States)

    Hariri, Sanaz; Truntzer, Jeremy; Smith, Robert Lane; Safran, Marc R

    2015-06-01

    To analyze chondral flaps debrided during hip arthroscopy to determine their biochemical and cellular composition. Thirty-one full-thickness acetabular chondral flaps were collected during hip arthroscopy. Biochemical analysis was undertaken in 21 flaps from 20 patients, and cellular viability was determined in 10 flaps from 10 patients. Biochemical analysis included concentrations of (1) DNA (an indicator of chondrocyte content), (2) hydroxyproline (an indicator of collagen content), and (3) glycosaminoglycan (an indicator of chondrocyte biosynthesis). Higher values for these parameters indicated more healthy tissue. The flaps were examined to determine the percentage of viable chondrocytes. The percentage of acetabular chondral flap specimens that had concentrations within 1 SD of the mean values reported in previous normal cartilage studies was 38% for DNA, 0% for glycosaminoglycan, and 43% for hydroxyproline. The average cellular viability of our acetabular chondral flap specimens was 39% (SD, 14%). Only 2 of the 10 specimens had more than half the cells still viable. There was no correlation between (1) the gross examination of the joint or knowledge of the patient's demographic characteristics and symptoms and (2) biochemical properties and cell viability of the flap, with one exception: a degenerative appearance of the surrounding cartilage correlated with a higher hydroxyproline concentration. Although full-thickness acetabular chondral flaps can appear normal grossly, the biochemical properties and percentage of live chondrocytes in full-thickness chondral flaps encountered in hip arthroscopy show that this tissue is not normal. There has been recent interest in repairing chondral flaps encountered during hip arthroscopy. These data suggest that acetabular chondral flaps are not biochemically and cellularly normal. Although these flaps may still be valuable mechanically and/or as a scaffold in some conductive or inductive capacity, further study is

  2. Evaluation of biochemical changes in unstimulated salivary, calcium ...

    African Journals Online (AJOL)

    TORNADO

    2012-01-26

    Jan 26, 2012 ... salivary, calcium, phosphorous and total protein during ... teins in saliva are important components and any chan- ... Sialochemical analysis .... quantities of protein utilizing the principal of protein-dye binding. Anal biochem.

  3. Biochemical composition of muscle tissue of penaeid prawns

    Digital Repository Service at National Institute of Oceanography (India)

    Achuthankutty, C.T.; Parulekar, A.H.

    Biochemical composition of muscle tissue of females belonging to four species of penaeid prawns, viz. Metapenaeus affinis, M. dobsoni, Penaeus merguiensis and Parapenaeopsis stylifera, inhabiting the coastal waters of Goa, India, was estimated...

  4. Psoriatic arthritis: An assessment of clinical, biochemical and ...

    African Journals Online (AJOL)

    , epidemiological, clinical and radiological studies of South African (SA) patients are scarce. Objectives. To assess clinical, biochemical and radiological features in a single-centre SA cohort. Methods. We conducted a prospective assessment ...

  5. Metabonomics and medicine: the Biochemical Oracle.

    Science.gov (United States)

    Mitchell, Steve; Holmes, Elaine; Carmichael, Paul

    2002-10-01

    Occasionally, a new idea emerges that has the potential to revolutionize an entire field of scientific endeavour. It is now within our grasp to be able to detect subtle perturbations within the phenomenally complex biochemical matrix of living organisms. The discipline of metabonomics promises an all-encompassing approach to understanding total, yet fundamental, changes occurring in disease processes, drug toxicity and cell function.

  6. Institute of Genetics and Toxicology of Fission Products (IGT) of Karlsruhe Nuclear Research Centre. Progress report on R and D work in 1985

    International Nuclear Information System (INIS)

    1986-02-01

    The main research activities of the IGT in 1985 according to the R and D programme set up for that year have been carried out under the roof of eight different projects or programmes: Gene repair; gene regulation; biological cancerogenesis; molecular genetics of eukaryotes; radiotoxicology of actinides; biochemistry of actinides and other heavy metals; biophysics of organometallic compounds; biochemical principles of decorporation therapy. (orig./MG) [de

  7. Biochemical and microstructural characteristics of meat samples ...

    African Journals Online (AJOL)

    This study was conducted to compare the efficiency of different plant proteases for changing biochemical and microstructural characteristics in muscle foods. The meat samples from chicken, giant catfish, pork and beef were treated with four types of proteolytic enzymes: Calotropis procera latex proteases, papaya latex ...

  8. Feasibility of biochemical verification in a web-based smoking cessation study.

    Science.gov (United States)

    Cha, Sarah; Ganz, Ollie; Cohn, Amy M; Ehlke, Sarah J; Graham, Amanda L

    2017-10-01

    Cogent arguments have been made against the need for biochemical verification in population-based studies with low-demand characteristics. Despite this fact, studies involving digital interventions (low-demand) are often required in peer review to report biochemically verified abstinence. To address this discrepancy, we examined the feasibility and costs of biochemical verification in a web-based study conducted with a national sample. Participants were 600U.S. adult current smokers who registered on a web-based smoking cessation program and completed surveys at baseline and 3months. Saliva sampling kits were sent to participants who reported 7-day abstinence at 3months, and analyzed for cotinine. The response rate at 3-months was 41.2% (n=247): 93 participants reported 7-day abstinence (38%) and were mailed a saliva kit (71% returned). The discordance rate was 36.4%. Participants with discordant responses were more likely to report 3-month use of nicotine replacement therapy or e-cigarettes than those with concordant responses (79.2% vs. 45.2%, p=0.007). The total cost of saliva sampling was $8280 ($125/sample). Biochemical verification was both time- and cost-intensive, and yielded a relatively small number of samples due to low response rates and use of other nicotine products during the follow-up period. There was a high rate of discordance of self-reported abstinence and saliva testing. Costs for data collection may be prohibitive for studies with large sample sizes or limited budgets. Our findings echo previous statements that biochemical verification is not necessary in population-based studies, and add evidence specific to technology-based studies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Characterization of biochemical traits of dog rose (Rosa canina L.) ecotypes in the central part of Iran.

    Science.gov (United States)

    Javanmard, Milad; Asadi-Gharneh, Hossein Ali; Nikneshan, Pejman

    2018-07-01

    Dog rose (Rosa canina L.) is a wild native species in Iran, with a significant genetic diversity. This plant serves as a rich source of vitamin C, anthocyanins, phenolic contents and carotenoids. Rose hips have been used in several food products, as well as perfumery and cosmetics industries. In this research, we investigate biochemical characteristics of five dog rose ecotypes (Kopehjamshid, Zarneh, Miyankish, Aghcheh and Sadeghiyeh), that were collected from the central part of Iran (Isfahan province). Amounts of vitamin C, total carotenoids, total phenolic contents, total anthocyanins, macro and micro minerals were measured. Seed oil are extracted by soxhlet method and analysed by gas chromatography. The macro and micro minerals levels in the fruit vary significantly among these regions. The results of this study demonstrate that dog rose have great diversity and can be used in breeding programmes in order to increase nutrient values as a food resource additive.

  10. Classification and fingerprinting of different berries based on biochemical profiling and antioxidant capacity

    Directory of Open Access Journals (Sweden)

    Jasminka Milivojević

    2013-09-01

    Full Text Available The objective of this work was to evaluate the biochemical composition of six berry types belonging to Fragaria, Rubus, Vaccinium and Ribes genus. Fruit samples were collected in triplicate (50 fruit each from 18 different species or cultivars of the mentioned genera, during three years (2008 to 2010. Content of individual sugars, organic acids, flavonols, and phenolic acids were determined by high performance liquid chromatography (HPLC analysis, while total phenolics (TPC and total antioxidant capacity (TAC, by using spectrophotometry. Principal component analysis (PCA and hierarchical cluster analysis (CA were performed to evaluate the differences in fruit biochemical profile. The highest contents of bioactive components were found in Ribes nigrum and in Fragaria vesca, Rubus plicatus, and Vaccinium myrtillus. PCA and CA were able to partially discriminate between berries on the basis of their biochemical composition. Individual and total sugars, myricetin, ellagic acid, TPC and TAC showed the highest impact on biochemical composition of the berry fruits. CA separated blackberry, raspberry, and blueberry as isolate groups, while classification of strawberry, black and red currant in a specific group has not occurred. There is a large variability both between and within the different types of berries. Metabolite fingerprinting of the evaluated berries showed unique biochemical profiles and specific combination of bioactive compound contents.

  11. BioCluster: Tool for Identification and Clustering of Enterobacteriaceae Based on Biochemical Data

    Directory of Open Access Journals (Sweden)

    Ahmed Abdullah

    2015-06-01

    Full Text Available Presumptive identification of different Enterobacteriaceae species is routinely achieved based on biochemical properties. Traditional practice includes manual comparison of each biochemical property of the unknown sample with known reference samples and inference of its identity based on the maximum similarity pattern with the known samples. This process is labor-intensive, time-consuming, error-prone, and subjective. Therefore, automation of sorting and similarity in calculation would be advantageous. Here we present a MATLAB-based graphical user interface (GUI tool named BioCluster. This tool was designed for automated clustering and identification of Enterobacteriaceae based on biochemical test results. In this tool, we used two types of algorithms, i.e., traditional hierarchical clustering (HC and the Improved Hierarchical Clustering (IHC, a modified algorithm that was developed specifically for the clustering and identification of Enterobacteriaceae species. IHC takes into account the variability in result of 1–47 biochemical tests within this Enterobacteriaceae family. This tool also provides different options to optimize the clustering in a user-friendly way. Using computer-generated synthetic data and some real data, we have demonstrated that BioCluster has high accuracy in clustering and identifying enterobacterial species based on biochemical test data. This tool can be freely downloaded at http://microbialgen.du.ac.bd/biocluster/.

  12. [Biochemical principles of early saturnism recognition].

    Science.gov (United States)

    Tsimakuridze, M P; Mansuradze, E A; Zurashvili, D G; Tsimakuridze, M P

    2009-03-01

    The aim of the work is to determine the major sensitive criteria of biochemical indicators that allow timely discovery of negative influence of lead on organism and assist in early diagnosis of primary stages of saturnism. The workers of Georgian typographies, performing technological processes of letterpress printing were observed. Professional groups having contact with lead aerosols (main group of 66 people) and the workers of the same typography not being in touch with the poison (control group of 24 people) were studied. It was distinguished that, protracted professional contact with lead causes moderate increase of lead, coproporphyrin and DALA in daily urine in most cases; it is more clearly evidenced in the professional groups of lead smelters and lino operators and less clearly among typesetter and printers. Upon the checkup of people, having a direct contact with lead, biochemical analysis of urine should be given a preference, especially the determination of quantitative content of lead and coproporphyrin in urine with the aim of revealing the lead carrier, which is one of the first signals for occupational lookout and medical monitoring of the similar contingent.

  13. Comparison of Enterococcus faecium and Enterococcus faecalis Strains isolated from water and clinical samples: antimicrobial susceptibility and genetic relationships.

    Science.gov (United States)

    Castillo-Rojas, Gonzalo; Mazari-Hiríart, Marisa; Ponce de León, Sergio; Amieva-Fernández, Rosa I; Agis-Juárez, Raúl A; Huebner, Johannes; López-Vidal, Yolanda

    2013-01-01

    Enterococci are part of the normal intestinal flora in a large number of mammals, and these microbes are currently used as indicators of fecal contamination in water and food for human consumption. These organisms are considered one of the primary causes of nosocomial and environmental infections due to their ability to survive in the environment and to their intrinsic resistance to antimicrobials. The aims of this study were to determine the biochemical patterns and antimicrobial susceptibilities of Enterococcus faecalis and E. faecium isolates from clinical samples and from water (groundwater, water from the Xochimilco wetland, and treated water from the Mexico City Metropolitan Area) and to determine the genetic relationships among these isolates. A total of 121 enterococcus strains were studied; 31 and 90 strains were isolated from clinical samples and water (groundwater, water from the Xochimilco wetland, and water for agricultural irrigation), respectively. Identification to the species level was performed using a multiplex PCR assay, and antimicrobial profiles were obtained using a commercial kit. Twenty-eight strains were analyzed by pulsed-field gel electrophoresis (PFGE). E. faecium strains isolated from water showed an atypical biochemical pattern. The clinical isolates showed higher resistance to antibiotics than those from water. Both the enterococci isolated from humans, and those isolated from water showed high genetic diversity according to the PFGE analysis, although some strains seemed to be closely related. In conclusion, enterococci isolated from humans and water are genetically different. However, water represents a potential route of transmission to the community and a source of antimicrobial resistance genes that may be readily transmitted to other, different bacterial species.

  14. Comparison of Enterococcus faecium and Enterococcus faecalis Strains isolated from water and clinical samples: antimicrobial susceptibility and genetic relationships.

    Directory of Open Access Journals (Sweden)

    Gonzalo Castillo-Rojas

    Full Text Available Enterococci are part of the normal intestinal flora in a large number of mammals, and these microbes are currently used as indicators of fecal contamination in water and food for human consumption. These organisms are considered one of the primary causes of nosocomial and environmental infections due to their ability to survive in the environment and to their intrinsic resistance to antimicrobials. The aims of this study were to determine the biochemical patterns and antimicrobial susceptibilities of Enterococcus faecalis and E. faecium isolates from clinical samples and from water (groundwater, water from the Xochimilco wetland, and treated water from the Mexico City Metropolitan Area and to determine the genetic relationships among these isolates. A total of 121 enterococcus strains were studied; 31 and 90 strains were isolated from clinical samples and water (groundwater, water from the Xochimilco wetland, and water for agricultural irrigation, respectively. Identification to the species level was performed using a multiplex PCR assay, and antimicrobial profiles were obtained using a commercial kit. Twenty-eight strains were analyzed by pulsed-field gel electrophoresis (PFGE. E. faecium strains isolated from water showed an atypical biochemical pattern. The clinical isolates showed higher resistance to antibiotics than those from water. Both the enterococci isolated from humans, and those isolated from water showed high genetic diversity according to the PFGE analysis, although some strains seemed to be closely related. In conclusion, enterococci isolated from humans and water are genetically different. However, water represents a potential route of transmission to the community and a source of antimicrobial resistance genes that may be readily transmitted to other, different bacterial species.

  15. Family history and biochemical diagnosis in 1948 kidney stone formers

    Directory of Open Access Journals (Sweden)

    Francisco R. Spivacow

    2016-12-01

    Full Text Available Introduction: The presence of family history of nephrolithiasis is associated with an increased risk of renal lithiasis. Different epidemiological studies have shown a family component in the incidence of it, which is independent of dietary and environmental factors. The role of heredity is evident in monogenic diseases such as cystinuria, Dent’s disease or primary hyperoxaluria, while a polygenic inheritance has been proposed to explain the tendency to form calcium oxalate stones. Objective: Our objective was to evaluate the family history of patients with renal lithiasis and the correlation of family history with its corresponding biochemical alteration, considering only those with a single metabolic alteration. Methods: a prospective and retrospective observational and analytical study that included 1948 adults over 17 years of age and a normal control group of 165 individuals, all evaluated according to an ambulatory protocol to obtain a biochemical diagnosis. They were asked about their family history of nephrolithiasis and classified into five groups according to the degree of kinship and the number of people affected in the family. Results: a positive family history of nephrolithiasis was found in 27.4% of renal stone formers, predominantly in women, compared to 15.2% of normal controls. The family history of nephrolithiasis was observed especially in 31.4% of patients with hypomagnesuria and in 29.6% of hypercalciuric patients. The rest of the biochemical alterations had a positive family history between 28.6% in hyperoxaluria and 21.9% in hypocitraturia. The highest percentage of family history of nephrolithiasis was found in cystinuria (75% although there were few patients with this diagnosis. Conclusions: the inheritance has a clear impact on urolithiasis independently of the present biochemical alteration. Family history of nephrolithiasis of the first and second degree was observed between 21 and 32% of patients with renal

  16. Survey of Biochemical Education in Japanese Universities.

    Science.gov (United States)

    Kagawa, Yasuo

    1995-01-01

    Reports findings of questionnaires sent to faculty in charge of biochemical education in medical schools and other programs from dentistry to agriculture. Total class hours have declined since 1984. New trends include bioethics and computer-assisted learning. Tables show trends in lecture hours, lecture content, laboratory hours, core subject…

  17. Discordant results between biochemical and molecular transthyretin

    Indian Academy of Sciences (India)

    Discordant results between biochemical and molecular transthyretin assays: lessons learned from a unique testing algorithm at the Mayo Clinic. Honey V. Reddi Brittany C. Thomas Kurt S. Willkomm Matthew J. Ferber Kandelaria M. Rumilla Kimiyo M. Raymond John F. O'Brien W. Edward Highsmith. Research Note Volume ...

  18. The Comparison of Biochemical and Sequencing 16S rDNA Gene Methods to Identify Nontuberculous Mycobacteria

    Directory of Open Access Journals (Sweden)

    Shafipour1, M.

    2014-11-01

    Full Text Available The identification of Mycobacteria in the species level has great medical importance. Biochemical tests are laborious and time-consuming, so new techniques could be used to identify the species. This research aimed to the comparison of biochemical and sequencing 16S rDNA gene methods to identify nontuberculous Mycobacteria in patients suspected to tuberculosis in Golestan province which is the most prevalent region of tuberculosis in Iran. Among 3336 patients suspected to tuberculosis referred to hospitals and health care centres in Golestan province during 2010-2011, 319 (9.56% culture positive cases were collected. Identification of species by using biochemical tests was done. On the samples recognized as nontuberculous Mycobacteria, after DNA extraction by boiling, 16S rDNA PCR was done and their sequencing were identified by NCBI BLAST. Of the 319 positive samples in Golestan Province, 300 cases were M.tuberculosis and 19 cases (5.01% were identified as nontuberculous Mycobacteria by biochemical tests. 15 out of 19 nontuberculous Mycobacteria were identified by PCR and sequencing method as similar by biochemical methods (similarity rate: 78.9%. But after PCR, 1 case known as M.simiae by biochemical test was identified as M. lentiflavum and 3 other cases were identified as Nocardia. Biochemical methods corresponded to the 16S rDNA PCR and sequencing in 78.9% of cases. However, in identification of M. lentiflavum and Nocaria sp. the molecular method is better than biochemical methods.

  19. Biochemical constituents of seaweeds along the Maharashtra coast

    Digital Repository Service at National Institute of Oceanography (India)

    Dhargalkar, V.K.; Jagtap, T.G.; Untawale, A.G.

    Protein, carbohydrate and organic carbon were estimated in 43 marine algal species from different stations along the Maharashtra Coast in India These species showed variation in their biochemical contents Protein varied from 10 to 33% Chlorophyceae...

  20. Anthropometric and Biochemical Profiles of Black South African ...

    African Journals Online (AJOL)

    Rev Dr Olaleye

    Anthropometric and biochemical profiles were determined according to standard methods. From the ... Email: bejufemi@yahoo.co.uk ... 995 plots, Pahameng 1 711, Joe Slovo 1 359, and. Botchabela 2 ...... York: John Wiley & Sons, Inc. Steyn K ...

  1. Biochemical characterization of cholesterol-reducing Eubacterium.

    OpenAIRE

    Mott, G E; Brinkley, A W; Mersinger, C L

    1980-01-01

    We characterized two isolates of cholesterol-reducing Eubacterium by conducting conventional biochemical tests and by testing various sterols and glycerolipids as potential growth factors. In media containing cholesterol and plasmenylethanolamine, the tests for nitrate reduction, indole production, and gelatin and starch hydrolyses were negative, and no acid was produced from any of 22 carbohydrates. Both isolates hydrolyzed esculin to esculetin, indicating beta-glycosidase activity. In addit...

  2. Covering chemical diversity of genetically-modified tomatoes using metabolomics for objective substantial equivalence assessment.

    Directory of Open Access Journals (Sweden)

    Miyako Kusano

    Full Text Available As metabolomics can provide a biochemical snapshot of an organism's phenotype it is a promising approach for charting the unintended effects of genetic modification. A critical obstacle for this application is the inherently limited metabolomic coverage of any single analytical platform. We propose using multiple analytical platforms for the direct acquisition of an interpretable data set of estimable chemical diversity. As an example, we report an application of our multi-platform approach that assesses the substantial equivalence of tomatoes over-expressing the taste-modifying protein miraculin. In combination, the chosen platforms detected compounds that represent 86% of the estimated chemical diversity of the metabolites listed in the LycoCyc database. Following a proof-of-safety approach, we show that % had an acceptable range of variation while simultaneously indicating a reproducible transformation-related metabolic signature. We conclude that multi-platform metabolomics is an approach that is both sensitive and robust and that it constitutes a good starting point for characterizing genetically modified organisms.

  3. Covering Chemical Diversity of Genetically-Modified Tomatoes Using Metabolomics for Objective Substantial Equivalence Assessment

    Science.gov (United States)

    Hirai, Tadayoshi; Oikawa, Akira; Matsuda, Fumio; Fukushima, Atsushi; Arita, Masanori; Watanabe, Shin; Yano, Megumu; Hiwasa-Tanase, Kyoko; Ezura, Hiroshi; Saito, Kazuki

    2011-01-01

    As metabolomics can provide a biochemical snapshot of an organism's phenotype it is a promising approach for charting the unintended effects of genetic modification. A critical obstacle for this application is the inherently limited metabolomic coverage of any single analytical platform. We propose using multiple analytical platforms for the direct acquisition of an interpretable data set of estimable chemical diversity. As an example, we report an application of our multi-platform approach that assesses the substantial equivalence of tomatoes over-expressing the taste-modifying protein miraculin. In combination, the chosen platforms detected compounds that represent 86% of the estimated chemical diversity of the metabolites listed in the LycoCyc database. Following a proof-of-safety approach, we show that % had an acceptable range of variation while simultaneously indicating a reproducible transformation-related metabolic signature. We conclude that multi-platform metabolomics is an approach that is both sensitive and robust and that it constitutes a good starting point for characterizing genetically modified organisms. PMID:21359231

  4. A preliminary investigation into the genetic variation and population structure of Taenia hydatigena from Sardinia, Italy.

    Science.gov (United States)

    Boufana, Belgees; Scala, Antonio; Lahmar, Samia; Pointing, Steve; Craig, Philip S; Dessì, Giorgia; Zidda, Antonella; Pipia, Anna Paola; Varcasia, Antonio

    2015-11-30

    Cysticercosis caused by the metacestode stage of Taenia hydatigena is endemic in Sardinia. Information on the genetic variation of this parasite is important for epidemiological studies and implementation of control programs. Using two mitochondrial genes, the cytochrome c oxidase subunit 1 (cox1) and the NADH dehydrogenase subunit 1 (ND1) we investigated the genetic variation and population structure of Cysticercus tenuicollis from Sardinian intermediate hosts and compared it to that from other hosts from various geographical regions. The parsimony cox1 network analysis indicated the existence of a common lineage for T. hydatigena and the overall diversity and neutrality indices indicated demographic expansion. Using the cox1 sequences, low pairwise fixation index (Fst) values were recorded for Sardinian, Iranian and Palestinian sheep C. tenuicollis which suggested the absence of genetic differentiation. Using the ND1 sequences, C. tenuicollis from Sardinian sheep appeared to be differentiated from those of goat and pig origin. In addition, goat C. tenuicollis were genetically different from adult T. hydatigena as indicated by the statistically significant Fst value. Our results are consistent with biochemical and morphological studies that suggest the existence of variants of T. hydatigena. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Genetic modification and genetic determinism

    Science.gov (United States)

    Resnik, David B; Vorhaus, Daniel B

    2006-01-01

    In this article we examine four objections to the genetic modification of human beings: the freedom argument, the giftedness argument, the authenticity argument, and the uniqueness argument. We then demonstrate that each of these arguments against genetic modification assumes a strong version of genetic determinism. Since these strong deterministic assumptions are false, the arguments against genetic modification, which assume and depend upon these assumptions, are therefore unsound. Serious discussion of the morality of genetic modification, and the development of sound science policy, should be driven by arguments that address the actual consequences of genetic modification for individuals and society, not by ones propped up by false or misleading biological assumptions. PMID:16800884

  6. Genetic modification and genetic determinism

    Directory of Open Access Journals (Sweden)

    Vorhaus Daniel B

    2006-06-01

    Full Text Available Abstract In this article we examine four objections to the genetic modification of human beings: the freedom argument, the giftedness argument, the authenticity argument, and the uniqueness argument. We then demonstrate that each of these arguments against genetic modification assumes a strong version of genetic determinism. Since these strong deterministic assumptions are false, the arguments against genetic modification, which assume and depend upon these assumptions, are therefore unsound. Serious discussion of the morality of genetic modification, and the development of sound science policy, should be driven by arguments that address the actual consequences of genetic modification for individuals and society, not by ones propped up by false or misleading biological assumptions.

  7. Biochemical Disincentives to Fertilizing Cellulosic Ethanol Crops

    Science.gov (United States)

    Gallagher, M. E.; Hockaday, W. C.; Snapp, S.; McSwiney, C.; Baldock, J.

    2010-12-01

    Corn grain biofuel crops produce the highest yields when the cropping ecosystem is not nitrogen (N)-limited, achieved by application of fertilizer. There are environmental consequences for excessive fertilizer application to crops, including greenhouse gas emissions, hypoxic “dead zones,” and health problems from N runoff into groundwater. The increase in corn acreage in response to demand for alternative fuels (i.e. ethanol) could exacerbate these problems, and divert food supplies to fuel production. A potential substitute for grain ethanol that could reduce some of these impacts is cellulosic ethanol. Cellulosic ethanol feedstocks include grasses (switchgrass), hardwoods, and crop residues (e.g. corn stover, wheat straw). It has been assumed that these feedstocks will require similar N fertilization rates to grain biofuel crops to maximize yields, but carbohydrate yield versus N application has not previously been monitored. We report the biochemical stocks (carbohydrate, protein, and lignin in Mg ha-1) of a corn ecosystem grown under varying N levels. We measured biochemical yield in Mg ha-1 within the grain, leaf and stem, and reproductive parts of corn plants grown at seven N fertilization rates (0-202 kg N ha-1), to evaluate the quantity and quality of these feedstocks across a N fertilization gradient. The N fertilization rate study was performed at the Kellogg Biological Station-Long Term Ecological Research Site (KBS-LTER) in Michigan. Biochemical stocks were measured using 13C nuclear magnetic resonance spectroscopy (NMR), combined with a molecular mixing model (Baldock et al. 2004). Carbohydrate and lignin are the main biochemicals of interest in ethanol production since carbohydrate is the ethanol feedstock, and lignin hinders the carbohydrate to ethanol conversion process. We show that corn residue carbohydrate yields respond only weakly to N fertilization compared to grain. Grain carbohydrate yields plateau in response to fertilization at

  8. Biochemical and biomedical applications of multifunctional magnetic nanoparticles: a review

    International Nuclear Information System (INIS)

    Huang, Shih-Hung; Juang, Ruey-Shin

    2011-01-01

    Nanotechnology offers tremendous potential for future medical diagnosis and therapy. Various types of nanoparticles have been extensively studied for numerous biochemical and biomedical applications. Magnetic nanoparticles are well-established nanomaterials that offer controlled size, ability to be manipulated by an external magnetic field, and enhancement of contrast in magnetic resonance imaging. As a result, these nanoparticles could have many applications including bacterial detection, protein purification, enzyme immobilization, contamination decorporation, drug delivery, hyperthermia, etc. All these biochemical and biomedical applications require that these nanoparticles should satisfy some prerequisites including high magnetization, good stability, biocompatibility, and biodegradability. Because of the potential benefits of multimodal functionality in biomedical applications, in this account highlights some general strategies to generate magnetic nanoparticle-based multifunctional nanostructures. After these magnetic nanoparticles are conjugated with proper ligands (e.g., nitrilotriacetate), polymers (e.g., polyacrylic acid, chitosan, temperature- and pH-sensitive polymers), antibodies, enzymes, and inorganic metals (e.g., gold), such biofunctional magnetic nanoparticles exhibit many advantages in biomedical applications. In addition, the multifunctional magnetic nanoparticles have been widely applied in biochemical fields including enzyme immobilization and protein purification.

  9. Genetic diveristy and breeding of larch (Larix decidua Mill. in Romania

    Directory of Open Access Journals (Sweden)

    Georgeta Mihai

    2009-11-01

    Full Text Available Although it is one of the most important coniferous species, the larch(Larix decidua Mill. covers a restricted area in Romania, only 0.3% of the forest area, most being represented by artificial stands. The natural area of the larch is fragmented, being concentrated into five genetic centers: Ceahlãu, Ciucas, Bucegi, Lotru and Apuseni. The speed of growth, high productivity, high wood quality and resistanceto adversities resulted in initiating research on the genetic variability of the larch. In 1978 and 1982 respectively, by means of international collaboration, two series of comparative trials were installed, with Romanian and foreign provenances of larch, totalizing 6 experimental areas. Selection of seed stands followed, andamong them, more than 300 plus trees. There have been installed 26 orchards (134 hectares of which 3 (15 hectares are interspecific seed orchards (Larix x eurolepis.This paper presents the results obtained over the last years, regarding the continuing larch breeding program; genetic variation of the main characters in multisite provenances comparative trials planted in 1982, evaluation of the genetic parameters in a clonal seed orchard in order to advance to the second generation seed orchard, and a study of the genetic diversity by means of primary biochemical markers. The provenance tests include 24 populations of larch, 13 Romanian and 11 from the following countries: Germany (4, Austria (2, Belgium (1 and the Czech Republic (4. The studied characters are total height, diameter at 1.30 meters, volume/tree, branches characters, stem straightness and survival. At the age of 25 years from planting, the variance analysis reveals significant interpopulation genetic variation for all the studied characters. The expected genetic gain and the genetic parameters, estimated inthe Adâncata larch seed orchard, shows that selection on the clones level, in the first generation seed orchard, can be successfully applied, being

  10. Genetic diversity and breeding of larch (Larix decidua Mill. in Romania

    Directory of Open Access Journals (Sweden)

    Georgeta Mihai

    2009-12-01

    Full Text Available Although it is one of the most important coniferous species, the larch (Larix decidua Mill. covers a restricted area in Romania, only 0.3% of the forest area, most being represented by artificial stands. The natural area of the larch is fragmented, being concentrated into five genetic centers: Ceahlău, Ciucas, Bucegi, Lotru and Apuseni. The speed of growth, high productivity, high wood quality and resistance to adversities resulted in initiating research on the genetic variability of the larch. In 1978 and 1982 respectively, by means of international collaboration, two series of comparative trials were installed, with Romanian and foreign provenances of larch, totalizing 6 experimental areas. Selection of seed stands followed, and among them, more than 300 plus trees. There have been installed 26 orchards (134 hectares of which 3 (15 hectares are interspecific seed orchards (Larix x eurolepis. This paper presents the results obtained over the last years, regarding the continuing larch breeding program; genetic variation of the main characters in multisite provenances comparative trials planted in 1982, evaluation of the genetic parameters in a clonal seed orchard in order to advance to the second generation seed orchard, and a study of the genetic diversity by means of primary biochemical markers. The provenance tests include 24 populations of larch, 13 Romanian and 11 from the following countries: Germany (4, Austria (2, Belgium (1 and the Czech Republic (4. The studied characters are total height, diameter at 1.30 meters, volume/tree, branches characters, stem straightness and survival. At the age of 25 years from planting, the variance analysis reveals significant interpopulation genetic variation for all the studied characters. The expected genetic gain and the genetic parameters, estimated in the Adâncata larch seed orchard, shows that selection on the clones level, in the first generation seed orchard, can be successfully applied, being

  11. Haematological And Biochemical Effects Of Sulphadimidine In ...

    African Journals Online (AJOL)

    Haematological and biochemical efects of sulphadmidine were studied in Nigerian mongrel dogs. Five Nigerian mongrel dogs of either sex weighing between 7 and 12 kg were used for the study. The pretreatment blood and serum samples were collected and the weight of animals taken before the administraton of 100 ...

  12. Haematological and biochemical responses of starter broiler ...

    African Journals Online (AJOL)

    A study was conducted to investigate the haematological and biochemical responses of starter broiler chickens fed copper and probiotics supplemented diets. A total of 180-day old Marshal broiler chicks were randomly allotted to six treatment groups of 30 birds each. The treatments were divided into three replicates of ten ...

  13. Biochemical and Kinetic Characterization of Geranylgeraniol 18 ...

    African Journals Online (AJOL)

    This enzyme and its gene are an attractive target for development of plaunotol production and its detailed biochemical properties need to be understood. Recently, even though the gene (CYP97C27) coding for GGOH 18-hydroxylase has been identified, cloned, and expressed in Escherichia coli system, the enzyme activity ...

  14. Complement Levels and Haemate-Biochemical Parameters as ...

    African Journals Online (AJOL)

    Complement levels and haemato-biochemical parameters in West African Dwarf (WAD) and Borno White (BW) goats experimentally infected with Trypanosoma congolense were investigated. Parasitaemia was established in both breeds of goats by day 7 post-infection. Peak parasitaemia of 7.5 x 103/µL for WAD goats was ...

  15. Clinico-haematological and serum biochemical alterations in ...

    African Journals Online (AJOL)

    An increase in serum CRE and BUN values were recorded in all cases of pyometra which reduced to lower levels during both treatments in follow-ups. All the haemato-biochemical parameters were comparable to their respective reference values after either medicinal treatment or ovariohysterectomy of dogs. Thus the dogs ...

  16. MATLAB-Based Teaching Modules in Biochemical Engineering

    Science.gov (United States)

    Lee, Kilho; Comolli, Noelle K.; Kelly, William J.; Huang, Zuyi

    2015-01-01

    Mathematical models play an important role in biochemical engineering. For example, the models developed in the field of systems biology have been used to identify drug targets to treat pathogens such as Pseudomonas aeruginosa in biofilms. In addition, competitive binding models for chromatography processes have been developed to predict expanded…

  17. Seroprevalence of brucellosis and associated hemato-biochemical changes in pakistani horses

    International Nuclear Information System (INIS)

    Gul, S.T.; Khan, A.; Ahmad, M.

    2013-01-01

    The aim of this study was to determine the seroprevalence and hemato-biochemical manifestations of brucellosis in horses. Serum samples were screened for Brucella antibodies by Rose Bengal plate test (RBPT) and serum agglutination test (SAT). Blood samples were evaluated for hemato-biochemical parameters following standard procedures. Results indicated seroprevalence of brucellosis 20.13 and 16.23% in horses by RBPT and SAT, respectively. Brucellosis does not lead to any significant change in hematological and biochemical parameters in relation to age, sex, body condition and lactation except few parameters. The values of erythrocyte sedimentation rate, neutrophil, basophil and alkaline phosphatase significantly decreased in brucellosis positive animals as compared to healthy animals whereas lymphocytes and alanine aminotransferase were in opposite order. It was concluded from the results that prevalence of brucellosis in horse population is of concern; therefore, control measures should be opted so that its zoonotic threat is curtailed. (author)

  18. An Inductive Logic Programming Approach to Validate Hexose Binding Biochemical Knowledge.

    Science.gov (United States)

    Nassif, Houssam; Al-Ali, Hassan; Khuri, Sawsan; Keirouz, Walid; Page, David

    2010-01-01

    Hexoses are simple sugars that play a key role in many cellular pathways, and in the regulation of development and disease mechanisms. Current protein-sugar computational models are based, at least partially, on prior biochemical findings and knowledge. They incorporate different parts of these findings in predictive black-box models. We investigate the empirical support for biochemical findings by comparing Inductive Logic Programming (ILP) induced rules to actual biochemical results. We mine the Protein Data Bank for a representative data set of hexose binding sites, non-hexose binding sites and surface grooves. We build an ILP model of hexose-binding sites and evaluate our results against several baseline machine learning classifiers. Our method achieves an accuracy similar to that of other black-box classifiers while providing insight into the discriminating process. In addition, it confirms wet-lab findings and reveals a previously unreported Trp-Glu amino acids dependency.

  19. Genetic mapping and exome sequencing identify variants associated with five novel diseases.

    Directory of Open Access Journals (Sweden)

    Erik G Puffenberger

    Full Text Available The Clinic for Special Children (CSC has integrated biochemical and molecular methods into a rural pediatric practice serving Old Order Amish and Mennonite (Plain children. Among the Plain people, we have used single nucleotide polymorphism (SNP microarrays to genetically map recessive disorders to large autozygous haplotype blocks (mean = 4.4 Mb that contain many genes (mean = 79. For some, uninformative mapping or large gene lists preclude disease-gene identification by Sanger sequencing. Seven such conditions were selected for exome sequencing at the Broad Institute; all had been previously mapped at the CSC using low density SNP microarrays coupled with autozygosity and linkage analyses. Using between 1 and 5 patient samples per disorder, we identified sequence variants in the known disease-causing genes SLC6A3 and FLVCR1, and present evidence to strongly support the pathogenicity of variants identified in TUBGCP6, BRAT1, SNIP1, CRADD, and HARS. Our results reveal the power of coupling new genotyping technologies to population-specific genetic knowledge and robust clinical data.

  20. Modeling Self-Healing of Concrete Using Hybrid Genetic Algorithm-Artificial Neural Network.

    Science.gov (United States)

    Ramadan Suleiman, Ahmed; Nehdi, Moncef L

    2017-02-07

    This paper presents an approach to predicting the intrinsic self-healing in concrete using a hybrid genetic algorithm-artificial neural network (GA-ANN). A genetic algorithm was implemented in the network as a stochastic optimizing tool for the initial optimal weights and biases. This approach can assist the network in achieving a global optimum and avoid the possibility of the network getting trapped at local optima. The proposed model was trained and validated using an especially built database using various experimental studies retrieved from the open literature. The model inputs include the cement content, water-to-cement ratio (w/c), type and dosage of supplementary cementitious materials, bio-healing materials, and both expansive and crystalline additives. Self-healing indicated by means of crack width is the model output. The results showed that the proposed GA-ANN model is capable of capturing the complex effects of various self-healing agents (e.g., biochemical material, silica-based additive, expansive and crystalline components) on the self-healing performance in cement-based materials.

  1. Haematological and serum biochemical profiles of broiler chickens ...

    African Journals Online (AJOL)

    MOLM) on the haematological and serum biochemical profile of broiler chickens. Fresh Moringa leaves (FML) were shade-dried for four days and milled into meal. A total of two hundred broilers unsexed chickens (Anak strain) were randomly ...

  2. Clinical, biochemical and ultrasonographic features of infertile women with polycystic ovarian syndrome

    International Nuclear Information System (INIS)

    Haq, F.; Rizvi, J.

    2007-01-01

    To evaluate and compare the clinical, biochemical and ultrasonic features of infertile women with PCOS from the two infertility centers of Karachi, The Aga Khan University Hospital and Concept Fertility Centre. Patients attending the Infertility Clinics of Aga Khan University Hospital, Karachi and Concept Fertility Centre, Karachi, were evaluated for their clinical features. Complete biochemical evaluation was performed by day 2 FSH, LH, serum prolactin, serum testosterone and fasting serum insulin determination. These results were recorded on the data collection form. Ultrasonic evaluation was performed with transvaginal ultrasound to check the morphological appearance of ovaries. A total of 508 patients were evaluated for epidemiological features of PCOS. Frequency of PCOS in the infertility clinic was 17.6% with high rate of obesity (68.5%) and hyperinsulinemia (59%). The highest rate of abnormal clinical, biochemical features were seen above BMI of 30. High rates of obesity, hyperinsulinemia and impaired glycemic control were seen in this series. It was demonstrated that high BMI had an association and correlation with abnormal clinical and biochemical features. Obese women with PCOS need more attention for their appropriate management. (author)

  3. Relationship between obesity and biochemical markers in Brazilian adolescents

    Directory of Open Access Journals (Sweden)

    Alexandre Romero

    2014-03-01

    The aim of this study was to describe the prevalence of biochemical markers and associate with obesity in Brazilian adolescents enrolled in public schools in a rural area. The sample consisted of 199 adolescents between 10 to 14 years old from Piracicaba, Brazil. The obesity was measured by body mass index (BMI and according to the World Health Organization curves. We collected blood for biochemical markers analysis (total cholesterol, high density lipoprotein, low density lipoprotein, triacylglycerol, insulin and glycemia. Mann Whitney test was used to compare continuous variables between sexes. Chi-square test was used to compare proportions. To investigate the association between the independent variables and biochemical markers a multiple logistic regression model was performed. Among 199 adolescents, 23.1% was obese and 65.8% were insufficiently active. A high prevalence of dyslipidemia (71.4% was observed, whereas the low levels of high density lipoprotein (40.7% were the most prevalent. An association between obesity and undesirable values for high density lipoprotein, triacylglycerol and insulin resistance was found. Obese adolescents were less likely to present a desirable value for high density lipoprotein. It is understood that obesity is detrimental to metabolic profile and should be prevented and treated even in adolescence.

  4. Improved biochemical preservation of heart slices during cold storage.

    Science.gov (United States)

    Bull, D A; Reid, B B; Connors, R C; Albanil, A; Stringham, J C; Karwande, S V

    2000-01-01

    Development of myocardial preservation solutions requires the use of whole organ models which are animal and labor intensive. These models rely on physiologic rather than biochemical endpoints, making accurate comparison of the relative efficacy of individual solution components difficult. We hypothesized that myocardial slices could be used to assess preservation of biochemical function during cold storage. Whole rat hearts were precision cut into slices with a thickness of 200 microm and preserved at 4 degrees C in one of the following solutions: Columbia University (CU), University of Wisconsin (UW), D5 0.2% normal saline with 20 meq/l KCL (QNS), normal saline (NS), or a novel cardiac preservation solution (NPS) developed using this model. Myocardial biochemical function was assessed by ATP content (etamoles ATP/mg wet weight) and capacity for protein synthesis (counts per minute (cpm)/mg protein) immediately following slicing (0 hours), and at 6, 12, 18, and 24 hours of cold storage. Six slices were assayed at each time point for each solution. The data were analyzed using analysis of variance and are presented as the mean +/- standard deviation. ATP content was higher in the heart slices stored in the NPS compared to all other solutions at 6, 12, 18 and 24 hours of cold storage (p cold storage (p cold storage.

  5. Studies on some biochemical parameters in viral hepatitis patients

    International Nuclear Information System (INIS)

    El-Sherbiny, E.M.

    2002-01-01

    The present investigation deals with studying liver amino transferases (ALT. AST). Cholesterol and triglycerides. As well as testosterone and protection hormones in blood of Egyptian men infected with hepatitis C virus.hepatitis B virus and mixed B and C viruses. These biochemical parameters were evaluated to be used in diagnosis and prognosis of viral hepatitis. Which considered the most important health problem in Egypt and developing countries. Biochemical analysis were performed using spectrophotometric and radioimmunoassay techniques. All data will be subjected to statistical analysis in order to detect the most suitable biochemical analysis that can be used as specific tests for early diagnosis of viral hepatitis and to detect the parameters that show abnormalities among the different groups of infected patients. The data revealed that AST and ALT levels were increased in all patient groups. Concerning the level of triglycerides, it was increased only in the group of mixed viral hepatitis B and C, while cholesterol showed non-significant changes in all viral hepatitis groups. The sex hormone testosterone was decreased in all infected patients while the prolactin level was increased only in case of patients infected with mixed B and C viruses. However, these abnormal values in such sex hormones play a serious role in male sterility

  6. Study on color difference estimation method of medicine biochemical analysis

    Science.gov (United States)

    Wang, Chunhong; Zhou, Yue; Zhao, Hongxia; Sun, Jiashi; Zhou, Fengkun

    2006-01-01

    The biochemical analysis in medicine is an important inspection and diagnosis method in hospital clinic. The biochemical analysis of urine is one important item. The Urine test paper shows corresponding color with different detection project or different illness degree. The color difference between the standard threshold and the test paper color of urine can be used to judge the illness degree, so that further analysis and diagnosis to urine is gotten. The color is a three-dimensional physical variable concerning psychology, while reflectance is one-dimensional variable; therefore, the estimation method of color difference in urine test can have better precision and facility than the conventional test method with one-dimensional reflectance, it can make an accurate diagnose. The digital camera is easy to take an image of urine test paper and is used to carry out the urine biochemical analysis conveniently. On the experiment, the color image of urine test paper is taken by popular color digital camera and saved in the computer which installs a simple color space conversion (RGB -> XYZ -> L *a *b *)and the calculation software. Test sample is graded according to intelligent detection of quantitative color. The images taken every time were saved in computer, and the whole illness process will be monitored. This method can also use in other medicine biochemical analyses that have relation with color. Experiment result shows that this test method is quick and accurate; it can be used in hospital, calibrating organization and family, so its application prospect is extensive.

  7. Structure and biochemical characterization of proliferating cellular nuclear antigen from a parasitic protozoon

    Energy Technology Data Exchange (ETDEWEB)

    Cardona-Felix, Cesar S.; Lara-Gonzalez, Samuel; Brieba, Luis G. (LNLS)

    2012-02-08

    Proliferating cellular nuclear antigen (PCNA) is a toroidal-shaped protein that is involved in cell-cycle control, DNA replication and DNA repair. Parasitic protozoa are early-diverged eukaryotes that are responsible for neglected diseases. In this work, a PCNA from a parasitic protozoon was identified, cloned and biochemically characterized and its crystal structure was determined. Structural and biochemical studies demonstrate that PCNA from Entamoeba histolytica assembles as a homotrimer that is able to interact with and stimulate the activity of a PCNA-interacting peptide-motif protein from E. histolytica, EhDNAligI. The data indicate a conservation of the biochemical mechanisms of PCNA-mediated interactions between metazoa, yeast and parasitic protozoa.

  8. Genetics as a modernization program: biological research at the Kaiser Wilhelm Institutes and the political economy of the Nazi State.

    Science.gov (United States)

    Gausemeier, Bernd

    2010-01-01

    During the Third Reich, the biological institutes of the Kaiser Wilhelm Society (KWG, Kaiser-Wilhelm-Gesellschaft) underwent a substantial reorganization and modernization. This paper discusses the development of projects in the fields of biochemical genetics, virus research, radiation genetics, and plant genetics that were initiated in those years. These cases exemplify, on the one hand, the political conditions for biological research in the Nazi state. They highlight how leading scientists advanced their projects by building close ties with politicians and science-funding organizations and companies. On the other hand, the study examines how the contents of research were shaped by, and how they contributed to, the aims and needs of the political economy of the Nazi system. This paper therefore aims not only to highlight basic aspects of scientific development under Nazism, but also to provide general insights into the structure of the Third Reich and the dynamics of its war economy.

  9. Biochemical and serological characterization of Escherichia coli ...

    African Journals Online (AJOL)

    This study was designed to determine the isolation rate, serotypes and biochemical profiles of E. coli from colibacillosis and dead-in-shell embryos in Zaria, Northern-Nigeria. The isolation rate of E. coli from hatcheries studied were 4.67% and 7.50% from farms of Simtu Agricultural Company and National Animal Production ...

  10. ENZYMOCHEMICAL AND BIOCHEMICAL CHANGES IN THE LIVER OF RATS INDUCED BY FURFURAL

    Directory of Open Access Journals (Sweden)

    Dragana Veličković

    2011-06-01

    Full Text Available In today's industrial expansion of the chemical products, the liver is becoming increasingly important. Furfural (C4C3OCHO is a colorless liquid with pleasant aroma and it is partially soluble in water (8, 3% of weight. The elimination of furfural is done slowly through the kidneys and lungs, while the liver oxidizes it into pyromucic acid (C4C3OCOOH. Glucose-6-phosphate dehydrogenase (G6PD is a multi-component system of gluconeogenesis. Biochemical parameters (AST, ALT, glucose, γ-GT and alkaline phosphatase are important markers of liver damage.The aim of our study was to analyze the function of hepatocytes using biochemical parameters and to show the dynamics and topography in the development of changes in enzyme activity.The experiment was conducted on Wistar rats aged 6 weeks. The animals were divided into three groups. The control group received pure drinking water, the second group received a 50 mg/kg body weight (BW dose of furfural for seven days and in the third group the dose was progressively increased after which the animals were sacrificed. Biochemical methods were used to determine the parameters of liver damage. Enzyme-histochemical tests were performed on 8nm WKF 1150 cryostat cross sections which were stained according to Pearse (1968. The results are presented tables and graphs.The amount of enzymes and biochemical parameters in the control group were normal. In the group treated for 7 days, the activity of the enzymes was diffusely decreased while the biochemical parameters were increased. In the group of rats treated for 90 days, the periportal G6PD was constantly preserved. Biochemical parameters were different. The differences in all parameters were statistically significant (p<0.05 both in the group treated for 7 days and the group treated for 90 days. The same goes for the control group and the group treated for 7 days.Acute treatment with furfural causes damage to liver functions. The synthetic liver function is

  11. Biochemical composition and methane production correlations

    OpenAIRE

    Charnier, Cyrille; Latrille, Eric; Moscoviz, Roman; Miroux, Jérémie; Steyer, Jean-Philippe

    2016-01-01

    Substrates for anaerobic digestion are composed of heterogeneous and complex organic matter. General parameters of the organic matter can be used to describe its composition such as sugar, protein and lipid contents, Chemical Oxygen Demand (COD), Biochemical Methane Potential (BMP) and kinetic of methane production. These parameters are required for the monitoring of digesters but their characterization are time consuming and expensive; thus, these parameters are rarely assessed all together....

  12. Some biochemical studies on thyroid immunity

    International Nuclear Information System (INIS)

    Shoush, M.A.M.

    1980-01-01

    The present study was carried out to investigate the effect of induced immunological environment on: a - Carbohydrate metabolism as reflected by immunoreactive insulin and blood sugar levels. b - Biochemical parameters, namely total protein, albumin, globulin, alkaline phosphatase and transaminases, reflecting liver function. c - Radioimmunological tests reflecting thyroid function. The study comprised 36 male rabbits, boscate strain of six months age assigned randomly to : control, albumin immunized and thyroglobulin immunized groups

  13. Biochemical Characterization of Porphobilinogen Deaminase–Deficient Mice During Phenobarbital Induction of Heme Synthesis and the Effect of Enzyme Replacement

    Science.gov (United States)

    Johansson, Annika; Möller, Christer; Fogh, Jens; Harper, Pauline

    2003-01-01

    Acute intermittent porphyria (AIP) is a genetic disorder caused by a deficiency of porphobilinogen deaminase (PBGD), the 3rd enzyme in heme synthesis. It is clinically characterized by acute attacks of neuropsychiatric symptoms and biochemically by increased urinary excretion of the porphyrin precursors porphobilinogen (PBG) and 5-aminolevulinic acid (ALA). A mouse model that is partially deficient in PBGD and biochemically mimics AIP after induction of the hepatic ALA synthase by phenobarbital was used in this study to identify the site of formation of the presumably toxic porphyrin precursors and study the effect of enzyme-replacement therapy by using recombinant human PBGD (rhPBGD). After 4 d of phenobarbital administration, high levels of PBG and ALA were found in liver, kidney, plasma, and urine of the PBGD-deficient mice. The administration of rhPBGD intravenously or subcutaneously after a 4-d phenobarbital induction was shown to lower the PBG level in plasma in a dose-dependent manner with maximal effect seen after 30 min and 2 h, respectively. Injection of rhPBGD subcutaneously twice daily during a 4-d phenobarbital induction reduced urinary PBG excretion to 25% of the levels found in PBGD-deficient mice administered with only phenobarbital. This study points to the liver as the main producer of PBG and ALA in the phenobarbital-induced PBGD-deficient mice and demonstrates efficient removal of accumulated PBG in plasma and urine by enzyme-replacement therapy. PMID:15208740

  14. Haematological and Serum Bio-Chemical Parameters of West ...

    African Journals Online (AJOL)

    Haematological and Serum Bio-Chemical Parameters of West African Dwarf and Kalahari Red Goats in the Humid Tropics. ... Haematological results showed that white blood cell count, haemoglobin concentration, haematocrit, mean corpuscular volume, mean corpuscular haemoglobin and mean corpuscular haemoglobin ...

  15. Biochemical and Heamatological Indices of Broiler Chickens fed ...

    African Journals Online (AJOL)

    SH

    investigate the implications of feeding broiler chickens with mucuna bean processed by simple domestic methods on performance, haematological and biochemical parameters. Materials and Methods. Sample preparation: The raw Mucuna pruriens beans used in this study were purchased from International Institute of.

  16. Biochemical methane potential (BMP) of solid organic materials

    DEFF Research Database (Denmark)

    Raposo, Francisco; Fernández-Cegrí, V.; De la Rubia, M.A.

    2010-01-01

    This paper describes the results obtained for different participating research groups in an interlaboratory study related to the biochemical methane potential (BMP). In this research work, the full experimental conditions influencing the test such as inoculum, substrate characteristics and experi...

  17. Nutritional rickets: vitamin D, calcium, and the genetic make-up.

    Science.gov (United States)

    El Kholy, Mohamed; Elsedfy, Heba; Fernández-Cancio, Monica; Hamza, Rasha Tarif; Amr, Nermine Hussein; Ahmed, Alaa Youssef; Toaima, Nadin Nabil; Audí, Laura

    2017-02-01

    The prevalence of vitamin D (vitD) deficiency presenting as rickets is increasing worldwide. Insufficient sun exposure, vitD administration, and/or calcium intake are the main causes. However, vitD system-related genes may also have a role. Prospective study: 109 rachitic children completed a 6-mo study period or until rachitic manifestations disappeared. Thirty children were selected as controls. Clinical and biochemical data were evaluated at baseline in patients and controls and biochemistry re-evaluated at radiological healing. Therapy was stratified in three different protocols. Fifty-four single-nucleotide polymorphisms (SNPs) of five vitD system genes (VDR, CP2R1, CYP27B1, CYP24A1, and GC) were genotyped and their association with clinical and biochemcial data was analyzed. Therapy response was similar in terms of radiological healing although it was not so in terms of biochemical normalization. Only VDR gene (promoter, start-codon, and intronic genotypes) was rickets-associated in terms of serum 25-OH-D, calcium, radiological severity and time needed to heal. Eight patients with sufficient calcium intake and 25-OH-D levels carried a VDR genotype lacking minor allele homozygous genotypes at SNPs spread along the gene. Although patients presented epidemiologic factors strongly contributing to rickets, genetic modulation affecting predisposition, severity, and clinical course is exerted, at least in part, by VDR gene polymorphic variation.

  18. Chemical and biochemical tools to assess pollution exposure in cultured fish

    International Nuclear Information System (INIS)

    Fernandes, Denise; Zanuy, Silvia; Bebianno, Maria Joao; Porte, Cinta

    2008-01-01

    There is little information regarding pollutant levels in farmed fish, and the risks associated to consumption. This study was designed to assess levels of exposure to metals, organochlorinated compounds, polycyclic aromatic hydrocarbons (PAHs) and alkylphenols (APEs) in farmed sea bass Dicentrarchus labrax from five aquacultures located in Southern Europe. Additionally, several biochemical responses (metallothionein, 7-ethoxyresorufin O-deethylase, vitellogenin) were determined as complementary tools. The obtained data indicate that pollutants exposure in farmed fish is similar to the levels reported in wild specimens from the area. Nonetheless, some biochemical responses were observed in the studied organisms, viz. metallothionein induction in Cu exposed organisms, and 7-ethoxyresorufin O-deethylase (EROD) and vitellogenin induction in PAHs and APEs exposed ones. The study further supports the usefulness of the biomarker approach as a first screening method to discriminate between basal and high levels of exposure in cultured fish. - Pollution assessment in cultured fish: chemical and biochemical tools

  19. Biochemical and Molecular Analysis of the Hb Lepore Boston Washington in a Syrian Homozygous Child

    Directory of Open Access Journals (Sweden)

    Monica Pirastru

    2017-01-01

    Full Text Available Hemoglobin (Hb Lepore is composed of two normal α chains and two δβ fusion globins that arise from unequal crossover events between the δ- and β-globin genes. The Hb Lepore is widespread all over the world and in many ethnic groups. It includes some of the few clinically significant Hb variants that are associated with a β-thalassemia phenotype. Here, we describe the first occurrence of Hb Lepore Boston Washington in a Syrian individual. The patient, a 10-year-old child, shows severe anemia with a Hb level of 6.85 g/dL and typical thalassemic red cell indices. The diagnostic procedure implies hematological, biochemical, and molecular analysis, including multiplex ligation-dependent probe amplification (MLPA assay, GAP-PCR, and DNA sequencing. This latter allowed us to define the correct structure of the hybrid δβ-globin gene. The knowledge of the spectrum of mutations associated with different geographical areas is the prerequisite to set up large-scale screening programs and be able to offer genetic counseling to couples at risk.

  20. Assessing the variability of outcome for patients treated with localized prostate irradiation using different definitions of biochemical control

    International Nuclear Information System (INIS)

    Horwitz, Eric; Ziaja, Ellen; Vicini, Frank; Dmuchowski, Carl; Gonzalez, Jose; Stromberg, Jannifer; Brabbins, Donald; Hollander, Jay; Chen, Peter; Martinez, Alvaro

    1995-01-01

    Purpose: Biochemical control is rapidly becoming the standard to assess treatment outcome of clinically localized prostate cancer. However, no standardized definition of biochemical control has been established. We reviewed our experience treating patients with localized prostate cancer and applied 3 different commonly used definitions to estimate the variability in rates of biochemical control. Materials and Methods: Between (1(87)) and (12(91)), 480 patients with clinically localized prostate cancer received uniform treatment with external beam irradiation (RT) using localized prostate fields at William Beaumont Hospital. The median dose to the prostate was 66.6 Gy (range 58 to 70.4 Gy) through a 4 field technique. A total of 14 patients received pelvic nodal RT (median dose 45 Gy). Four hundred seventy patients had post-treatment (posttx) PSA values and 414 patients had pre-treatment (pretx) PSA values. Three different definitions of biochemical control were used: 1) Biochemical control was defined as posttx PSA nadir < 1 ng/ml within 1 year. After achieving nadir, if there were 2 consecutive increases, the patient was scored a failure at the time of the first increase; 2) Biochemical control was defined as posttx PSA nadir < 1.5 ng/ml within 1 year. After achieving nadir, if there were 2 consecutive increases, the patient was scored a failure at the time of the first increase; 3) Posttx PSA nadir < 4 ng/ml without a time limit. Once the nadir was achieved, and it did not rise above normal, the patient was considered controlled. Clinical local control was defined as no palpable prostate nodularity beyond 18 months, no new prostate nodularity, or a negative biopsy. If hormonal therapy was started, the patient was censored for biochemical failure at that time. Results: Median follow-up is 48 months (range 3 to 112 months). Pre-treatment PSA values were correlated with biochemical response using the 3 definitions of biochemical control as well as clinical local

  1. Biochemical Conversion Processes of Lignocellulosic Biomass to Fuels and Chemicals - A Review.

    Science.gov (United States)

    Brethauer, Simone; Studer, Michael H

    2015-01-01

    Lignocellulosic biomass - such as wood, agricultural residues or dedicated energy crops - is a promising renewable feedstock for production of fuels and chemicals that is available at large scale at low cost without direct competition for food usage. Its biochemical conversion in a sugar platform biorefinery includes three main unit operations that are illustrated in this review: the physico-chemical pretreatment of the biomass, the enzymatic hydrolysis of the carbohydrates to a fermentable sugar stream by cellulases and finally the fermentation of the sugars by suitable microorganisms to the target molecules. Special emphasis in this review is put on the technology, commercial status and future prospects of the production of second-generation fuel ethanol, as this process has received most research and development efforts so far. Despite significant advances, high enzyme costs are still a hurdle for large scale competitive lignocellulosic ethanol production. This could be overcome by a strategy termed 'consolidated bioprocessing' (CBP), where enzyme production, enzymatic hydrolysis and fermentation is integrated in one step - either by utilizing one genetically engineered superior microorganism or by creating an artificial co-culture. Insight is provided on both CBP strategies for the production of ethanol as well as of advanced fuels and commodity chemicals.

  2. Screening of genetic parameters for soluble protein expression in Escherichia coli

    DEFF Research Database (Denmark)

    Vernet, Erik; Kotzsch, Alexander; Voldborg, Bjørn

    2011-01-01

    Soluble expression of proteins in a relevant form for functional and structural investigations still often remains a challenge. Although many biochemical factors are known to affect solubility, a thorough investigation of yield-limiting factors is normally not feasible in high-throughput efforts....... Here we present a screening strategy for expression of biomedically relevant proteins in Escherichia coli using a panel of six different genetic variations. These include engineered strains for rare codon supplementation, increased disulfide bond formation in the cytoplasm and novel vectors...... for secretion to the periplasm or culture medium. Combining these variants with expression construct truncations design, we report on parallel cloning and expression of more than 300 constructs representing 24 selected proteins; including full-length variants of human growth factors, interleukins and growth...

  3. Exercise-induced biochemical changes and their potential influence on cancer: a scientific review

    Science.gov (United States)

    Thomas, Robert James; Kenfield, Stacey A; Jimenez, Alfonso

    2017-01-01

    Aim To review and discuss the available international literature regarding the indirect and direct biochemical mechanisms that occur after exercise, which could positively, or negatively, influence oncogenic pathways. Methods The PubMed, MEDLINE, Embase and Cochrane libraries were searched for papers up to July 2016 addressing biochemical changes after exercise with a particular reference to cancer. The three authors independently assessed their appropriateness for inclusion in this review based on their scientific quality and relevance. Results 168 papers were selected and categorised into indirect and direct biochemical pathways. The indirect effects included changes in vitamin D, weight reduction, sunlight exposure and improved mood. The direct effects included insulin-like growth factor, epigenetic effects on gene expression and DNA repair, vasoactive intestinal peptide, oxidative stress and antioxidant pathways, heat shock proteins, testosterone, irisin, immunity, chronic inflammation and prostaglandins, energy metabolism and insulin resistance. Summary Exercise is one of several lifestyle factors known to lower the risk of developing cancer and is associated with lower relapse rates and better survival. This review highlights the numerous biochemical processes, which explain these potential anticancer benefits. PMID:27993842

  4. Linear analysis near a steady-state of biochemical networks: control analysis, correlation metrics and circuit theory

    Directory of Open Access Journals (Sweden)

    Qian Hong

    2008-05-01

    Full Text Available Abstract Background: Several approaches, including metabolic control analysis (MCA, flux balance analysis (FBA, correlation metric construction (CMC, and biochemical circuit theory (BCT, have been developed for the quantitative analysis of complex biochemical networks. Here, we present a comprehensive theory of linear analysis for nonequilibrium steady-state (NESS biochemical reaction networks that unites these disparate approaches in a common mathematical framework and thermodynamic basis. Results: In this theory a number of relationships between key matrices are introduced: the matrix A obtained in the standard, linear-dynamic-stability analysis of the steady-state can be decomposed as A = SRT where R and S are directly related to the elasticity-coefficient matrix for the fluxes and chemical potentials in MCA, respectively; the control-coefficients for the fluxes and chemical potentials can be written in terms of RT BS and ST BS respectively where matrix B is the inverse of A; the matrix S is precisely the stoichiometric matrix in FBA; and the matrix eAt plays a central role in CMC. Conclusion: One key finding that emerges from this analysis is that the well-known summation theorems in MCA take different forms depending on whether metabolic steady-state is maintained by flux injection or concentration clamping. We demonstrate that if rate-limiting steps exist in a biochemical pathway, they are the steps with smallest biochemical conductances and largest flux control-coefficients. We hypothesize that biochemical networks for cellular signaling have a different strategy for minimizing energy waste and being efficient than do biochemical networks for biosynthesis. We also discuss the intimate relationship between MCA and biochemical systems analysis (BSA.

  5. Chapter A7. Section 7.0. Five-Day Biochemical Oxygen Demand

    Science.gov (United States)

    Delzer, Gregory C.; McKenzie, Stuart W.

    1999-01-01

    The presence of a sufficient concentration of dissolved oxygen is critical to maintaining the aquatic life and aesthetic quality of streams and lakes. Determinng how organic matter affects the concentration of dissolved oxygen (DO) in a stream or lake is integral to water-quality management. The decay of organic matter in water is measured as biochemical or chemical oxygen demand. This report describes the field protocols used by U.S. Geological Survey (USGS) personnel to determine the five-day test for biochemical oxygen demand.

  6. Hierarchical thinking in network biology: the unbiased modularization of biochemical networks.

    Science.gov (United States)

    Papin, Jason A; Reed, Jennifer L; Palsson, Bernhard O

    2004-12-01

    As reconstructed biochemical reaction networks continue to grow in size and scope, there is a growing need to describe the functional modules within them. Such modules facilitate the study of biological processes by deconstructing complex biological networks into conceptually simple entities. The definition of network modules is often based on intuitive reasoning. As an alternative, methods are being developed for defining biochemical network modules in an unbiased fashion. These unbiased network modules are mathematically derived from the structure of the whole network under consideration.

  7. Homocystein: A new biochemical marker in livestock sector

    Directory of Open Access Journals (Sweden)

    Suleyman Kozat

    2017-12-01

    Full Text Available The livestock sector is making great contributions to the world economy. Many different diseases, such as cardiovascular diseases, kidney and mineral substance insufficiency, cause huge losses in yield and production in the livestock sector. Early diagnosis is essential to combat these diseases. Today, homocysteine levels are used as biochemical markers in the diagnosis of the functions and diseases of many different organs in human medicine. Homocysteine is an amino acid that occurs in the process of methionine metabolism and does not enter the primary structure of proteins. Homocysteine is a biochemical marker used in the assessment of cardiovascular and renal diseases as well as other organ functions. In this review, homocysteine determination methods and detailed information about which organ and system diseases can be used in livestock sector will be given. [J Adv Vet Anim Res 2017; 4(4.000: 319-332

  8. Recent progress in genetics, epigenetics and metagenomics unveils the pathophysiology of human obesity.

    Science.gov (United States)

    Pigeyre, Marie; Yazdi, Fereshteh T; Kaur, Yuvreet; Meyre, David

    2016-06-01

    In high-, middle- and low-income countries, the rising prevalence of obesity is the underlying cause of numerous health complications and increased mortality. Being a complex and heritable disorder, obesity results from the interplay between genetic susceptibility, epigenetics, metagenomics and the environment. Attempts at understanding the genetic basis of obesity have identified numerous genes associated with syndromic monogenic, non-syndromic monogenic, oligogenic and polygenic obesity. The genetics of leanness are also considered relevant as it mirrors some of obesity's aetiologies. In this report, we summarize ten genetically elucidated obesity syndromes, some of which are involved in ciliary functioning. We comprehensively review 11 monogenic obesity genes identified to date and their role in energy maintenance as part of the leptin-melanocortin pathway. With the emergence of genome-wide association studies over the last decade, 227 genetic variants involved in different biological pathways (central nervous system, food sensing and digestion, adipocyte differentiation, insulin signalling, lipid metabolism, muscle and liver biology, gut microbiota) have been associated with polygenic obesity. Advances in obligatory and facilitated epigenetic variation, and gene-environment interaction studies have partly accounted for the missing heritability of obesity and provided additional insight into its aetiology. The role of gut microbiota in obesity pathophysiology, as well as the 12 genes associated with lipodystrophies is discussed. Furthermore, in an attempt to improve future studies and merge the gap between research and clinical practice, we provide suggestions on how high-throughput '-omic' data can be integrated in order to get closer to the new age of personalized medicine. © 2016 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  9. Electrochemical sensor for multiplex screening of genetically modified DNA: identification of biotech crops by logic-based biomolecular analysis.

    Science.gov (United States)

    Liao, Wei-Ching; Chuang, Min-Chieh; Ho, Ja-An Annie

    2013-12-15

    Genetically modified (GM) technique, one of the modern biomolecular engineering technologies, has been deemed as profitable strategy to fight against global starvation. Yet rapid and reliable analytical method is deficient to evaluate the quality and potential risk of such resulting GM products. We herein present a biomolecular analytical system constructed with distinct biochemical activities to expedite the computational detection of genetically modified organisms (GMOs). The computational mechanism provides an alternative to the complex procedures commonly involved in the screening of GMOs. Given that the bioanalytical system is capable of processing promoter, coding and species genes, affirmative interpretations succeed to identify specified GM event in terms of both electrochemical and optical fashions. The biomolecular computational assay exhibits detection capability of genetically modified DNA below sub-nanomolar level and is found interference-free by abundant coexistence of non-GM DNA. This bioanalytical system, furthermore, sophisticates in array fashion operating multiplex screening against variable GM events. Such a biomolecular computational assay and biosensor holds great promise for rapid, cost-effective, and high-fidelity screening of GMO. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Seasonal changes in meat weight and biochemical composition in the Black Clam Villorita cyprinoides (Grey)

    Digital Repository Service at National Institute of Oceanography (India)

    Ansari, Z.A.; Parulekar, A.H.; Matondkar, S.G.P.

    Seasonal changes in meat weight and biochemical composition are associated with reproduction, storage and utilization of reserves. The main period of increase in biochemical constituents corresponds to gametogenesis and maturation of gonads just...

  11. Biochemical Indicators of Radiation Injury in Man. Proceedings of a Scientific Meeting

    International Nuclear Information System (INIS)

    1971-01-01

    After an organism has suffered a radiation insult, knowledge of the dose and localization of the exposure is of the greatest importance for the treatment of any radiation damage. Supplementary to the information obtained from physical dosimetry, data obtained by biochemical indicators can, on the basis of metabolic changes in the irradiated organism, help in making early diagnosis, in assessing the extent of the radiation injury, and making a prognosis. Biochemical tests under optimal conditions would not depend on the quality and distribution of the dose in the body and would also reflect the sensitivity of the individual organisms. The International Atomic Energy Agency and the World Health Organization convened a joint scientific meeting on Biochemical Indicators of Radiation Injury in Man in Paris-Le Vésinet, France, from 22 to 26 June 1970. The main purpose of the meeting was to discuss recent problems in determining which biochemical and metabolic changes occurring in irradiated organisms could be used as indicators of radiation injury and its extent, and could thus be of help in planning the proper treatment of the injured persons. During the meeting the results obtained with various biochemical indicators, and experimental techniques and laboratory methods used in this field, were evaluated and compared. Both research workers and clinicians were invited to participate at the meeting. They discussed the possible value of several tests, used successfully in experimental animals, for clinical application; ways of standardizing suitable tests; and mutual collaboration between laboratories and clinics. The outcome of their discussions is summarized in the conclusions and recommendations which are included in these Proceedings together with the papers presented

  12. The Effect of Tumor-Prostate Ratio on Biochemical Recurrence after Radical Prostatectomy

    Directory of Open Access Journals (Sweden)

    Sung Yong Cho

    2016-08-01

    Full Text Available Purpose: Prostate tumor volume calculated after surgery using pathologic tissue has been shown to be an independent risk factor for biochemical recurrence. Nonetheless, prostate size varies among individuals, regardless of the presence or absence of cancer. We assumed to be lower margin positive rate in the surgical operation, when the prostate volume is larger and the tumor lesion is same. Thus, we defined the tumor-prostate ratio in the ratio of tumor volume to prostate volume. In order to compensate the prostate tumor volume, the effect of tumor-prostate ratio on biochemical recurrence was examined. Materials and Methods: This study included 251 patients who underwent open retropubic radical prostatectomy for prostate cancer in a single hospital. We analyzed the effects of tumor volume and tumor-prostate ratio, as well as the effects of known risk factors for biochemical recurrence, on the duration of disease-free survival. Results: In the univariate analysis, the risk factors that significantly impacted disease-free survival time were found to be a prostate-specific antigen level ≥10 ng/mL, a tumor volume ≥5 mL, tumor-prostate ratio ≥10%, tumor capsular invasion, lymph node invasion, positive surgical margins, and seminal vesicle invasion. In the multivariate analysis performed to evaluate the risk factors found to be significant in the univariate analysis, positive surgical margins (hazard ratio=3.066 and a tumor density ≥10% (hazard ratio=1.991 were shown to be significant risk factors for biochemical recurrence. Conclusions: Tumor-prostate ratio, rather than tumor volume, should be regarded as a significant risk factor for biochemical recurrence.

  13. Viva la Familia Study: genetic and environmental contributions to childhood obesity and its comorbidities in the Hispanic population.

    Science.gov (United States)

    Butte, Nancy F; Cai, Guowen; Cole, Shelley A; Comuzzie, Anthony G

    2006-09-01

    Genetic and environmental contributions to childhood obesity are poorly delineated. The Viva la Familia Study was designed to genetically map childhood obesity and its comorbidities in the Hispanic population. The objectives of this report were to describe the study design and to summarize genetic and environmental contributions to the phenotypic variation in obesity and risk factors for metabolic diseases in Hispanic children. The Viva la Familia cohort consisted of 1030 children from 319 families selected based on an overweight proband between the ages of 4 and 19 y. In-depth phenotyping to characterize the overweight children and their siblings included anthropometric and body-composition traits by dual-energy X-ray absorptiometry and assessments of diet by 24-h recalls, physical activity by accelerometry, and risk factors for metabolic diseases by standard biochemical methods. Univariate quantitative genetic analysis was used to partition phenotypic variance into additive genetic and environmental components by using the computer program SOLAR. Sex, age, and environmental covariates explained 1-91% of the phenotypic variance. Heritabilities of anthropometric indexes ranged from 0.24 to 0.75. Heritability coefficients for the body-composition traits ranged from 0.18 to 0.35. Diet and physical activity presented heritabilities of 0.32 to 0.69. Risk factors for metabolic diseases were heritable with coefficients ranging from 0.25 to 0.73. Significant genetic correlations between obesity traits and risk factors for metabolic diseases substantiated pleiotropy between traits. The Viva la Familia Study provides evidence of a strong genetic contribution to the high prevalence of obesity and its comorbidities in Hispanic children.

  14. Light Manipulation in Inhomogeneous Liquid Flow and Its Application in Biochemical Sensing

    Directory of Open Access Journals (Sweden)

    Yunfeng Zuo

    2018-04-01

    Full Text Available Light manipulation has always been the fundamental subject in the field of optics since centuries ago. Traditional optical devices are usually designed using glasses and other materials, such as semiconductors and metals. Optofluidics is the combination of microfluidics and optics, which brings a host of new advantages to conventional solid systems. The capabilities of light manipulation and biochemical sensing are inherent alongside the emergence of optofluidics. This new research area promotes advancements in optics, biology, and chemistry. The development of fast, accurate, low-cost, and small-sized biochemical micro-sensors is an urgent demand for real-time monitoring. However, the fluid flow in the on-chip sensor is usually non-uniformed, which is a new and emerging challenge for the accuracy of optical detection. It is significant to reveal the principle of light propagation in an inhomogeneous liquid flow and the interaction between biochemical samples and light in flowing liquids. In this review, we summarize the current state of optofluidic lab-on-a-chip techniques from the perspective of light modulation by the unique dynamic properties of fluid in heterogeneous media, such as diffusion, heat transfer, and centrifugation etc. Furthermore, this review introduces several novel photonic phenomena in an inhomogeneous liquid flow and demonstrates their application in biochemical sensing.

  15. Follicular fluid content and oocyte quality: from single biochemical markers to metabolomics

    Directory of Open Access Journals (Sweden)

    Massobrio Marco

    2009-05-01

    Full Text Available Abstract The assessment of oocyte quality in human in vitro fertilization (IVF is getting increasing attention from embryologists. Oocyte selection and the identification of the best oocytes, in fact, would help to limit embryo overproduction and to improve the results of oocyte cryostorage programs. Follicular fluid (FF is easily available during oocyte pick-up and theorically represents an optimal source on non-invasive biochemical predictors of oocyte quality. Unfortunately, however, the studies aiming to find a good molecular predictor of oocyte quality in FF were not able to identify substances that could be used as reliable markers of oocyte competence to fertilization, embryo development and pregnancy. In the last years, a well definite trend toward passing from the research of single molecular markers to more complex techniques that study all metabolites of FF has been observed. The metabolomic approach is a powerful tool to study biochemical predictors of oocyte quality in FF, but its application in this area is still at the beginning. This review provides an overview of the current knowledge about the biochemical predictors of oocyte quality in FF, describing both the results coming from studies on single biochemical markers and those deriving from the most recent studies of metabolomics

  16. Characterization of some Brucella species from Zimbabwe by biochemical profiling and AMOS-PCR

    Directory of Open Access Journals (Sweden)

    Skjerve Eystein

    2009-12-01

    Full Text Available Abstract Background Bovine brucellosis caused by Brucella abortus is endemic in most large commercial and smallholder cattle farms of Zimbabwe, while brucellosis in other domestic animals is rare. The diagnosis of brucellosis is mainly accomplished using serological tests. However, some Brucella spp. have been isolated from clinical cases in the field and kept in culture collection but their biochemical profiles were not documented. We report biochemical profiling and AMOS-PCR characterization of some of these field isolates of Brucella originating from both commercial and smallholder cattle farming sectors of Zimbabwe. Findings Fourteen isolates of Brucella from culture collection were typed using biochemical profiles, agglutination by monospecific antisera, susceptibility to Brucella-specific bacteriophages and by AMOS-PCR that amplifies species- specific IS711. The results of the biochemical profiles for B. abortus biovar 1 (11 isolates and biovar 2 (2 isolates were consistent with those of reference strains. A single isolate from a goat originating from a smallholder mixed animal farm was identified as B. melitensis biovar 1. The AMOS-PCR produced DNA products of sizes 498 bp and 731 bp for B. abortus (biovar 1 and 2 and B. melitensis biovar 1, respectively. Conclusion We concluded that the biochemical profiles and AMOS-PCR characterization were consistent with their respective species and biovars. B. abortus biovar 1 is likely to be the predominant cause of brucellosis in both commercial and smallholder cattle farms in Zimbabwe.

  17. Article Neurotransmitters – A biochemical view | Shalayel | Sudan ...

    African Journals Online (AJOL)

    The neurotransmission at most if not all synapses is chemical and is of great biochemical, physiological and pharmacological importance. Neurons communicate with each other at synapses by a process called synaptic transmission in which the release of small quantities of chemical messengers, called neurotransmitters ...

  18. Some Biochemical and Haematological Studies on the Prevalence ...

    African Journals Online (AJOL)

    Dr J. T. Ekanem

    Printed in Nigeria. Some Biochemical and Haematological Studies on the Prevalence of Congenital Malaria in. Ilorin, Nigeria. Olatunji M. KOLAWOLE. 1 ... appropriate information filled such as maternal age, parity, past clinical history of malaria, anti malaria drug (such as chloroquine, amodiaquine in combination with.

  19. Evaluation of haematological and plasma biochemical effects of ...

    African Journals Online (AJOL)

    TAYO AJIBADE

    2012-11-01

    Nov 1, 2012 ... African Journal of Biotechnology Vol. 11(88), pp. ... biochemical values revealed significant increase in total protein, albumin and aspartate amino transferase. However ... functions and damages to cellular membrane normally leads to the .... way analysis of variance (ANOVA) for statistical significance was.

  20. Polycystic ovaries and associated clinical and biochemical features ...

    African Journals Online (AJOL)

    The aim of this study was to determine prevalence of polycystic ovaries (PCO) and associated clinical and biochemical features among women with infertility attending gynaecological outpatient department (GOPD) at Muhimbili National Hospital (MNH) in Dar es Salaam, Tanzania. All women with infertility attending the ...

  1. Health risks of genetically modified foods.

    Science.gov (United States)

    Dona, Artemis; Arvanitoyannis, Ioannis S

    2009-02-01

    As genetically modified (GM) foods are starting to intrude in our diet concerns have been expressed regarding GM food safety. These concerns as well as the limitations of the procedures followed in the evaluation of their safety are presented. Animal toxicity studies with certain GM foods have shown that they may toxically affect several organs and systems. The review of these studies should not be conducted separately for each GM food, but according to the effects exerted on certain organs it may help us create a better picture of the possible health effects on human beings. The results of most studies with GM foods indicate that they may cause some common toxic effects such as hepatic, pancreatic, renal, or reproductive effects and may alter the hematological, biochemical, and immunologic parameters. However, many years of research with animals and clinical trials are required for this assessment. The use of recombinant GH or its expression in animals should be re-examined since it has been shown that it increases IGF-1 which may promote cancer.

  2. Impact of the mitochondrial genetic background in complex III deficiency.

    Directory of Open Access Journals (Sweden)

    Mari Carmen Gil Borlado

    Full Text Available BACKGROUND: In recent years clinical evidence has emphasized the importance of the mtDNA genetic background that hosts a primary pathogenic mutation in the clinical expression of mitochondrial disorders, but little experimental confirmation has been provided. We have analyzed the pathogenic role of a novel homoplasmic mutation (m.15533 A>G in the cytochrome b (MT-CYB gene in a patient presenting with lactic acidosis, seizures, mild mental delay, and behaviour abnormalities. METHODOLOGY: Spectrophotometric analyses of the respiratory chain enzyme activities were performed in different tissues, the whole muscle mitochondrial DNA of the patient was sequenced, and the novel mutation was confirmed by PCR-RFLP. Transmitochondrial cybrids were constructed to confirm the pathogenicity of the mutation, and assembly/stability studies were carried out in fibroblasts and cybrids by means of mitochondrial translation inhibition in combination with blue native gel electrophoresis. PRINCIPAL FINDINGS: Biochemical analyses revealed a decrease in respiratory chain complex III activity in patient's skeletal muscle, and a combined enzyme defect of complexes III and IV in fibroblasts. Mutant transmitochondrial cybrids restored normal enzyme activities and steady-state protein levels, the mutation was mildly conserved along evolution, and the proband's mother and maternal aunt, both clinically unaffected, also harboured the homoplasmic mutation. These data suggested a nuclear genetic origin of the disease. However, by forcing the de novo functioning of the OXPHOS system, a severe delay in the biogenesis of the respiratory chain complexes was observed in the mutants, which demonstrated a direct functional effect of the mitochondrial genetic background. CONCLUSIONS: Our results point to possible pitfalls in the detection of pathogenic mitochondrial mutations, and highlight the role of the genetic mtDNA background in the development of mitochondrial disorders.

  3. Anthropometric and biochemical profiles of black south african women

    African Journals Online (AJOL)

    ... with the urban diet composed of more refined carbohydrates and fatty food. ... A significant association was found between insulin sensitivity and BMI and ... anthropometric indicators, biochemical parameters, obesity, type 2 diabetes mellitus ...

  4. Reachability in Biochemical Dynamical Systems by Quantitative Discrete Approximation (extended abstract

    Directory of Open Access Journals (Sweden)

    L. Brim

    2011-09-01

    Full Text Available In this paper, a novel computational technique for finite discrete approximation of continuous dynamical systems suitable for a significant class of biochemical dynamical systems is introduced. The method is parameterized in order to affect the imposed level of approximation provided that with increasing parameter value the approximation converges to the original continuous system. By employing this approximation technique, we present algorithms solving the reachability problem for biochemical dynamical systems. The presented method and algorithms are evaluated on several exemplary biological models and on a real case study.

  5. Leaf optical properties with explicit description of its biochemical composition: direct and inverse problems

    Energy Technology Data Exchange (ETDEWEB)

    Fourty, T. [INRA, Avignon (France); Baret, F.; Jacquemoud, S.; Schmuck, G.; Verdebout, J.

    1996-05-15

    This study presents a methodology to estimate the leaf biochemical compounds specific absorption coefficients and to use them to predict leaf biochemistry. A wide range of leaves was collected including variations in species and leaf status. All the leaves were dried out. The biochemical composition was measured using classical wet chemistry techniques to determine lignin, cellulose, hemicellulose, starch, and protein contents. Concurrently, leaf reflectance and transmittance were measured with a high spectral resolution spectrophotometer in the 800–2500 nm range with approximately 1 nm spectral resolution and sampling interval. In addition, infinite reflectance achieved by stacking leaves was also measured. The PROSPECT leaf optical properties model was first inverted over a selection of wavebands in the 800–2400 nm domain to provide estimates of the scattering characteristics using leaf reflectance, transmittance, and infinite reflectance data. Then, the model was inverted again over all the wavelengths to estimate the global absorption coefficient, using the previously estimated scattering properties. The global absorption coefficient was eventually explained using the measured biochemical composition by fitting the corresponding specific absorption coefficients after substraction of the measured contribution of the residual structural water absorption. Results show that the derived specific absorption coefficients are quite robustly estimated. Further, they are in good agreement with known absorption features of each biochemical compound. The average contribution of each biochemical compound to leaf absorption feature is also evaluated. Sugar, cellulose, and hemicellulose are the main compounds that contribute to absorption. Results demonstrate the possibility of modeling leaf optical properties of dry leaves with explicit description of leaf biochemistry. Estimates of the detailed biochemical composition obtained by model inversion over the 1300–2400 nm

  6. Accelerated maximum likelihood parameter estimation for stochastic biochemical systems

    Directory of Open Access Journals (Sweden)

    Daigle Bernie J

    2012-05-01

    Full Text Available Abstract Background A prerequisite for the mechanistic simulation of a biochemical system is detailed knowledge of its kinetic parameters. Despite recent experimental advances, the estimation of unknown parameter values from observed data is still a bottleneck for obtaining accurate simulation results. Many methods exist for parameter estimation in deterministic biochemical systems; methods for discrete stochastic systems are less well developed. Given the probabilistic nature of stochastic biochemical models, a natural approach is to choose parameter values that maximize the probability of the observed data with respect to the unknown parameters, a.k.a. the maximum likelihood parameter estimates (MLEs. MLE computation for all but the simplest models requires the simulation of many system trajectories that are consistent with experimental data. For models with unknown parameters, this presents a computational challenge, as the generation of consistent trajectories can be an extremely rare occurrence. Results We have developed Monte Carlo Expectation-Maximization with Modified Cross-Entropy Method (MCEM2: an accelerated method for calculating MLEs that combines advances in rare event simulation with a computationally efficient version of the Monte Carlo expectation-maximization (MCEM algorithm. Our method requires no prior knowledge regarding parameter values, and it automatically provides a multivariate parameter uncertainty estimate. We applied the method to five stochastic systems of increasing complexity, progressing from an analytically tractable pure-birth model to a computationally demanding model of yeast-polarization. Our results demonstrate that MCEM2 substantially accelerates MLE computation on all tested models when compared to a stand-alone version of MCEM. Additionally, we show how our method identifies parameter values for certain classes of models more accurately than two recently proposed computationally efficient methods

  7. Genetic classes and genetic categories : Protecting genetic groups through data protection law

    NARCIS (Netherlands)

    Hallinan, Dara; de Hert, Paul; Taylor, L.; Floridi, L.; van der Sloot, B.

    2017-01-01

    Each person shares genetic code with others. Thus, one individual’s genome can reveal information about other individuals. When multiple individuals share aspects of genetic architecture, they form a ‘genetic group’. From a social and legal perspective, two types of genetic group exist: Those which

  8. Genetic and biochemical characterization of rhizobacterial strains and their potential use in combination with chelants for assisted phytoremediation.

    Science.gov (United States)

    Cicatelli, Angela; Guarino, Francesco; Baldan, Enrico; Castiglione, Stefano

    2017-03-01

    Copper and zinc are essential micronutrients in plants but, at high concentrations, they are toxic. Assisted phytoremediation is an emerging "green" technology that aims to improve the efficiency of tolerant species to remove metals from soils through the use of chelants or microorganisms. Rhizobacteria can promote plant growth and tolerance and also affect the mobility, bioavailability, and complexation of metals. A pot experiment was conducted to evaluate the phytoremediation effectiveness of sunflowers cultivated in a Cu- and Zn-spiked soil, in the presence or absence of bacterial consortium and/or chelants. The consortium was constituted of two Stenotrophomonas maltophilia strains and one of Agrobacterium sp. These strains were previously isolated from the rhizosphere of maize plants cultivated on a metal-polluted soil and here molecularly and biochemically characterized. Results showed that the consortium improved sunflower growth and biomass production on the spiked soils. Sunflowers accumulated large amounts of metals in their roots and leaves; however, neither the bacterial consortium nor the chelants, singularly added to pots, influenced significantly Cu and Zn plant uptake. Furthermore, the consecutive soil amendment with the EDTA and bacterial consortium determined a consistent accumulation of metals in sunflowers, and it might be an alternative strategy to limit the use of EDTA and its associated environmental risks in phytoremediation.

  9. Plant Genetic Resources: Selected Issues from Genetic Erosion to Genetic Engineering

    Directory of Open Access Journals (Sweden)

    Karl Hammer

    2008-04-01

    Full Text Available Plant Genetic Resources (PGR continue to play an important role in the development of agriculture. The following aspects receive a special consideration:1. Definition. The term was coined in 1970. The genepool concept served as an important tool in the further development. Different approaches are discussed.2. Values of Genetic Resources. A short introduction is highlighting this problem and stressing the economic usfulness of PGR.3. Genetic Erosion. Already observed by E. Baur in 1914, this is now a key issue within PGR. The case studies cited include Ethiopia, Italy, China, S Korea, Greece and S. Africa. Modern approaches concentrate on allelic changes in varieties over time but neglect the landraces. The causes and consequences of genetic erosion are discussed.4. Genetic Resources Conservation. Because of genetic erosion there is a need for conservation. PGR should be consigned to the appropriate method of conservation (ex situ, in situ, on-farm according to the scientific basis of biodiversity (genetic diversity, species diversity, ecosystem diversity and the evolutionary status of plants (cultivated plants, weeds, related wild plants (crop wild relatives.5. GMO. The impact of genetically engineered plants on genetic diversity is discussed.6. The Conclusions and Recommendations stress the importance of PGR. Their conservation and use are urgent necessities for the present development and future survival of mankind.

  10. Haemato-biochemical and endocrine profiling of north western ...

    African Journals Online (AJOL)

    The study was aimed to provide baseline data regarding haemato-biochemical and endocrine profiling of Gaddi sheep found in north western Himalayan region of Himachal Pradesh, India. Each random sample was collected from 45 Gaddi sheep reared in government sheep breeding farm Tal, Hamirpur, India, during ...

  11. Haematological and serum biochemical parameters of West African ...

    African Journals Online (AJOL)

    The study was conducted to evaluate the haematological and serum biochemical parameters of West African dwarf goats fed ensiled cassava leaves with molasses and caged layer waste. Eighteen West African dwarf goats were randomly assigned to three experimental diets consisting of cassava leaves ensiled alone ...

  12. Biological and biochemical evaluation of some prepared high ...

    African Journals Online (AJOL)

    Biological and biochemical evaluation of some prepared high antioxidant fruit beverages as functional foods. W A El-Malky ... The beverage which contain mango, red grape, carrot and tomato was the best prepared beverages according to the sensory evaluation, chemical composition and antioxidant activity. The high ...

  13. A coupled mechano-biochemical model for bone adaptation

    Czech Academy of Sciences Publication Activity Database

    Klika, Václav; Pérez, M. A.; García-Aznar, J. M.; Maršík, F.; Doblaré, M.

    2014-01-01

    Roč. 69, 6-7 (2014), s. 1383-1429 ISSN 0303-6812 Institutional support: RVO:61388998 Keywords : mechano-biochemical model * bone remodelling * BMU Subject RIV: BJ - Thermodynamics Impact factor: 1.846, year: 2014 http://link.springer.com/article/10.1007%2Fs00285-013-0736-9

  14. Diagnostic utility of clinical and biochemical parameters in ...

    African Journals Online (AJOL)

    Diagnostic utility of clinical and biochemical parameters in pancreatic head malignancy patients with normal carbohydrate antigen 19-9 levels. Xiaoli Jin1, Yulian Wu2. 1. Department of Surgery, Sir Run Run Shaw Hospital College of Medicine, Zhejiang University, 3 Qingchun. Road East, Hangzhou, Zhejiang Province ...

  15. Biomphalaria prona (Gastropoda: Planorbidae: a morphological and biochemical study

    Directory of Open Access Journals (Sweden)

    W. Lobato Paraense

    1992-06-01

    Full Text Available Two samples of Biomphalaria prona (Martens, 1873 from Lake Valencia (type locality and seven from other Venezuelan localities were studied morphologically (shell and reproductive system and biochemically (allozyme electrophoresis. In spite of marked differences in shell characters, all of them proved indistinguishable under the anatomic and biochemical criteria. So far B. prona has been considered an endemic species, restricted to Lake Valencia. It is now demonstrated that the extralacustrine populations refered to Biomphalaria havanensis (Pfeiffer, 1839 by several authors correspond in shell characters to an extreme variant of B. prona from the Lake and really belong to the last*mentioned species. They may be regarded as the result of a process of directional selection favoring a shell phenotype other than those making up the modal class in the Lake.

  16. Panel 4: Recent Advances in Otitis Media in Molecular Biology, Biochemistry, Genetics, and Animal Models

    Science.gov (United States)

    Li, Jian-Dong; Hermansson, Ann; Ryan, Allen F.; Bakaletz, Lauren O.; Brown, Steve D.; Cheeseman, Michael T.; Juhn, Steven K.; Jung, Timothy T. K.; Lim, David J.; Lim, Jae Hyang; Lin, Jizhen; Moon, Sung-Kyun; Post, J. Christopher

    2014-01-01

    Background Otitis media (OM) is the most common childhood bacterial infection and also the leading cause of conductive hearing loss in children. Currently, there is an urgent need for developing novel therapeutic agents for treating OM based on full understanding of molecular pathogenesis in the areas of molecular biology, biochemistry, genetics, and animal model studies in OM. Objective To provide a state-of-the-art review concerning recent advances in OM in the areas of molecular biology, biochemistry, genetics, and animal model studies and to discuss the future directions of OM studies in these areas. Data Sources and Review Methods A structured search of the current literature (since June 2007). The authors searched PubMed for published literature in the areas of molecular biology, biochemistry, genetics, and animal model studies in OM. Results Over the past 4 years, significant progress has been made in the areas of molecular biology, biochemistry, genetics, and animal model studies in OM. These studies brought new insights into our understanding of the molecular and biochemical mechanisms underlying the molecular pathogenesis of OM and helped identify novel therapeutic targets for OM. Conclusions and Implications for Practice Our understanding of the molecular pathogenesis of OM has been significantly advanced, particularly in the areas of inflammation, innate immunity, mucus overproduction, mucosal hyperplasia, middle ear and inner ear interaction, genetics, genome sequencing, and animal model studies. Although these studies are still in their experimental stages, they help identify new potential therapeutic targets. Future preclinical and clinical studies will help to translate these exciting experimental research findings into clinical applications. PMID:23536532

  17. Seasonal changes in biochemical composition of Holothuria leucospilota (Echinodermata)

    Digital Repository Service at National Institute of Oceanography (India)

    Jayasree, V.; Parulekar, A.H.; Wahidullah, S.; Kamat, S.Y.

    Biochemical composition of body wall and gonads of Holothuria leucospilota was analysed for protein, carbohydrate, lipid, ash, dry weight and calorific values and was discussed in relation to its spawning activities. Lipids constituted the major...

  18. Biochemical and Haematological Indices of Weanly Albino Rats Fed ...

    African Journals Online (AJOL)

    acer

    ABSTRACT: Malnutrition is a public health problem in Nigeria accounting for more than 50% of ... weanly albino rats using nutritional, biochemical ... groundnut (16%), soy beans (16%), crayfish ... consumption was observed in rats on PC and.

  19. Thermodynamic analysis of biochemical systems

    International Nuclear Information System (INIS)

    Yuan, Y.; Fan, L.T.; Shieh, J.H.

    1989-01-01

    Introduction of the concepts of the availability (or exergy), datum level materials, and the dead state has been regarded as some of the most significant recent developments in classical thermodynamics. Not only the available energy balance but also the material and energy balances of a biological system may be established in reference to the datum level materials in the dead state or environment. In this paper these concepts are illustrated with two examples of fermentation and are shown to be useful in identifying sources of thermodynamic inefficiency, thereby leading naturally to the rational definition of thermodynamic efficiency of a biochemical process

  20. Strategy-Driven Exploration for Rule-Based Models of Biochemical Systems with Porgy

    OpenAIRE

    Andrei , Oana; Fernández , Maribel; Kirchner , Hélène; Pinaud , Bruno

    2016-01-01

    This paper presents Porgy – an interactive visual environment for rule-based modelling of biochemical systems. We model molecules and molecule interactions as port graphs and port graph rewrite rules, respectively. We use rewriting strategies to control which rules to apply, and where and when to apply them. Our main contributions to rule-based modelling of biochemical systems lie in the strategy language and the associated visual and interactive features offered by Porgy. These features faci...

  1. A variational principle for computing nonequilibrium fluxes and potentials in genome-scale biochemical networks.

    Science.gov (United States)

    Fleming, R M T; Maes, C M; Saunders, M A; Ye, Y; Palsson, B Ø

    2012-01-07

    We derive a convex optimization problem on a steady-state nonequilibrium network of biochemical reactions, with the property that energy conservation and the second law of thermodynamics both hold at the problem solution. This suggests a new variational principle for biochemical networks that can be implemented in a computationally tractable manner. We derive the Lagrange dual of the optimization problem and use strong duality to demonstrate that a biochemical analogue of Tellegen's theorem holds at optimality. Each optimal flux is dependent on a free parameter that we relate to an elementary kinetic parameter when mass action kinetics is assumed. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Variation in sclerophylly among Iberian populations of Quercus coccifera L. is associated with genetic differentiation across contrasting environments.

    Science.gov (United States)

    Rubio de Casas, R; Vargas, P; Pérez-Corona, E; Cano, E; Manrique, E; García-Verdugo, C; Balaguer, L

    2009-05-01

    Evergreen oaks are an emblematic element of the Mediterranean vegetation and have a leaf phenotype that seems to have remained unchanged since the Miocene. We hypothesise that variation of the sclerophyll phenotype among Iberian populations of Quercus coccifera is partly due to an ulterior process of ecotypic differentiation. We analysed the genetic structure of nine Iberian populations using ISSR fingerprints, and their leaf phenotypes using mean and intracanopy plasticity values of eight morphological (leaf angle, area, spinescence, lobation and specific area) and biochemical traits (VAZ pool, chlorophyll and beta-carotene content). Climate and soil were also characterised at the population sites. Significant genetic and phenotypic differences were found among populations and between NE Iberia and the rest of the populations of the peninsula. Mean phenotypes showed a strong and independent correlation with both genetic and geographic distances. Northeastern plants were smaller, less plastic, with smaller, spinier and thicker leaves, a phenotype consistent with the stressful conditions that prevailed in the steppe environments of the refugia within this geographic area during glaciations. These genetic, phenotypic, geographic and environmental patterns are consistent with previously reported palaeoecological and common evidence. Such consistency leads us to conclude that there has been a Quaternary divergence within the sclerophyllous syndrome that was at least partially driven by ecological factors.

  3. Effect of Resveratrol on Hematological and Biochemical Alterations in Rats Exposed to Fluoride

    Directory of Open Access Journals (Sweden)

    Nurgül Atmaca

    2014-01-01

    Full Text Available We investigated the protective effects of resveratrol on hematological and biochemical changes induced by fluoride in rats. A total of 28 rats were divided into 4 groups: control, resveratrol, fluoride, and fluoride/resveratrol (n=7 each, for a total of 21 days of treatment. Blood samples were taken and hematological and biochemical parameters were measured. Compared to the control group, the fluoride-treated group showed significant differences in several hematological parameters, including decreases in WBC, RBC, and PLT counts and neutrophil ratio. The group that received resveratrol alone showed a decrease in WBC count compared to the control group. Furthermore, in comparison to the control group, the fluoride group showed significantly increased ALT enzyme activity and decreased inorganic phosphorus level. The hematological and biochemical parameters in the fluoride + resveratrol treated group were similar to control group. In the fluoride + resveratrol group, resveratrol restored the changes observed following fluoride treatment, including decreased counts of WBC, RBC, and PLT, decreased neutrophil ratio and inorganic phosphorus levels, and elevated ALT enzyme activity. The present study showed that fluoride caused adverse effects in rats and that resveratrol reduced hematological and biochemical alterations produced by fluoride exposure.

  4. Biochemical and Biophysical Cues in Matrix Design for Chronic and Diabetic Wound Treatment.

    Science.gov (United States)

    Xiao, Yun; Ahadian, Samad; Radisic, Milica

    2017-02-01

    Progress in biomaterial science and engineering and increasing knowledge in cell biology have enabled us to develop functional biomaterials providing appropriate biochemical and biophysical cues for tissue regeneration applications. Tissue regeneration is particularly important to treat chronic wounds of people with diabetes. Understanding and controlling the cellular microenvironment of the wound tissue are important to improve the wound healing process. In this study, we review different biochemical (e.g., growth factors, peptides, DNA, and RNA) and biophysical (e.g., topographical guidance, pressure, electrical stimulation, and pulsed electromagnetic field) cues providing a functional and instructive acellular matrix to heal diabetic chronic wounds. The biochemical and biophysical signals generally regulate cell-matrix interactions and cell behavior and function inducing the tissue regeneration for chronic wounds. Some technologies and devices have already been developed and used in the clinic employing biochemical and biophysical cues for wound healing applications. These technologies can be integrated with smart biomaterials to deliver therapeutic agents to the wound tissue in a precise and controllable manner. This review provides useful guidance in understanding molecular mechanisms and signals in the healing of diabetic chronic wounds and in designing instructive biomaterials to treat them.

  5. A comparative biochemical profile of some cyprinids fish in Dukan Lake, Kurdistan-Iraq

    Science.gov (United States)

    Azeez, Darya Mohammed; Mohammed, Sarbaz Ibrahim

    2017-09-01

    The present study was carried out to demonstrate the baseline values for some serum biochemical parameters for 64 adult freshwater fish including seven species belong to family Cyprinidae, have been collected in Dukan Lake, Kurdistan region-Iraq. Fishes were weighed, measured, and collect blood for blood chemistry. Serum biochemical analyses were determined using (Cobas C 311) full automatic chemical analyzer. The result of comparative study of serum biochemical parameters of all Cyprinidae species showed that serum glucose was (459.10±106.99 mg/dl) and direct bilirubin was (0.056±0.021mg/dl) in Barbus grypus, serum total protein (3.511± 0.0484gm/dl) and HDL (133.11±0.4231mg/dl) in Cyprinus carpio, serum cholesterol (338.33±43.923 mg/dl) and LDL (86.11±11.871mg/dl) in Carassius carassius, serum triglyceride (420.0±28.8mg/dl) and ALK (113.93±20.65U/L) in Chondrostoma regium, serum AST and serum ALT in Capoeta trutta, were significantly higher when compared to other species. In a conclusion there is variation in biochemical values among species of same family.

  6. Biochemical and Haematological Blood Parameters at Different Stages of Lactation in Cows

    Directory of Open Access Journals (Sweden)

    Cristian Ovidiu COROIAN

    2017-05-01

    Full Text Available The health status of cows is evaluated and depending on haematological and biochemical profile of blood. Nutrition is the main technological factor that can produce profound changes in the metabolic profile in animals (Dhiman et al., 1991; Khaled et al., 1999; Ingvartsen, 2006. Blood parameters analyze can lead to identify if there are errors in nutrition of lactating cows (Payne et al., 1970. The aim of this study was the evaluation of metabolic and biochemical changes that occur during colostrum period and in terms of number of lactations in cows. The biological material was represented by a total of 60 heads of dairy cows from a family farm from Sălaj County, Romania. The cows are all from Holstein breed and presented no clinical signs of any specific pathology. Blood samples were collected from the jugular vein of each cow and analyzed. 10 individuals from each of the six lactations have been randomly selected. Haematological and biochemical parameters showed variations depending on factors analyzed here. In lactation 1 Hb was 7.55±3.05 (g/dl, while in lactation 6 the value was 12.5±2.10 (g/dl. RBC ranged as follows: in lactation 1 - 28.50±2.05 and in lactation 6 - 30.02±2.05. Lymphocytes varied within very wide limits under the influence of lactation: in lactation 1 - 2.8±1.56 and in lactation 6 - 7.55±1.80. The number of lactations and lactation rank have influenced blood biochemical and hematological parameters in dairy cows. Biochemical parameters are influenced by post-partum day, showing the lowest values in the early days of colostral period and the highest in the last few days of the same period.

  7. Biochemical changes in diabetic retinopathy triggered by hyperglycaemia: A review

    Directory of Open Access Journals (Sweden)

    Solani D. Mathebula

    2018-04-01

    Full Text Available Background: Diabetes mellitus (DM is now a global health problem which will lead to increasing incidence of macrovascular and microvascular complications that contribute to morbidity, mortality and premature deaths. Diabetic retinopathy (DR is a serious complication of DM, and its prevalence is increasing worldwide. Diabetes mellitus is one of the fastest growing causes of visual impairment and blindness in the working-age population. Aim: The aim of this paper was to introduce the multiple interconnecting biochemical pathways that have been proposed and tested as key contributors in how the diabetic eye loses vision. Method: An extensive literature search was performed using the Medline database from 1970 to present. The search subjects included diabetes and eye, diabetic retinopathy and diabetic complications in the eye. The search was limited to the literature pertaining to humans and to English language. Preference was given to recent published papers. Results: Results were limited to human participants with publications in English. References of all included papers were also scrutinized to identify additional studies. Studies were selected for inclusion in the review if they met the following criteria: subjects with diabetes, pathophysiology of diabetic retinopathy. Conclusion: Although the biochemical pathways involved in DR have been researched, to date the exact mechanism involved in the onset and progression of the disease is uncertain, which makes therapeutic interventions challenging. The aim of this review is to discuss the possible biochemical pathways and clinical and anatomical changes that occur during the onset and progression of DR that link hyperglycaemia with retinal tissue damage. An understanding of the biochemical and molecular changes may lead to health care practitioners advising patients with DR on events that lead to possible complications of the diseases.

  8. Adults' perceptions of genetic counseling and genetic testing.

    Science.gov (United States)

    Houfek, Julia Fisco; Soltis-Vaughan, Brigette S; Atwood, Jan R; Reiser, Gwendolyn M; Schaefer, G Bradley

    2015-02-01

    This study described the perceptions of genetic counseling and testing of adults (N = 116) attending a genetic education program. Understanding perceptions of genetic counseling, including the importance of counseling topics, will contribute to patient-focused care as clinical genetic applications for common, complex disorders evolve. Participants completed a survey addressing: the importance of genetic counseling topics, benefits and negative effects of genetic testing, and sharing test results. Topics addressing practical information about genetic conditions were rated most important; topics involving conceptual genetic/genomic principles were rated least important. The most frequently identified benefit and negative effect of testing were prevention/early detection/treatment and psychological distress. Participants perceived that they were more likely to share test results with first-degree than other relatives. Findings suggest providing patients with practical information about genetic testing and genetic contributions to disease, while also determining whether their self-care abilities would be enhanced by teaching genetic/genomic principles. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Outcome after PSMA PET/CT based radiotherapy in patients with biochemical persistence or recurrence after radical prostatectomy.

    Science.gov (United States)

    Schmidt-Hegemann, Nina-Sophie; Fendler, Wolfgang Peter; Ilhan, Harun; Herlemann, Annika; Buchner, Alexander; Stief, Christian; Eze, Chukwuka; Rogowski, Paul; Li, Minglun; Bartenstein, Peter; Ganswindt, Ute; Belka, Claus

    2018-03-02

    PSMA PET/CT visualises prostate cancer residual disease or recurrence at lower PSA levels compared to conventional imaging and results in a change of treatment in a remarkable high number of patients. Radiotherapy with dose escalation to the former prostate bed has been associated with improved biochemical recurrence-free survival. Thus, it can be hypothesised that PSMA PET/CT-based radiotherapy might improve the prognosis of these patients. One hundred twenty-nine patients underwent PSMA PET/CT due to biochemical persistence (52%) or recurrence (48%) after radical prostatectomy without evidence of distant metastases (February 2014-May 2017) and received PSMA PET/CT-based radiotherapy. Biochemical recurrence free survival (PSA ≤ 0.2 ng/ml) was defined as the study endpoint. Patients with biochemical persistence were significantly more often high-risk patients with significantly shorter time interval before PSMA PET/CT than patients with biochemical recurrence. Patients with biochemical recurrence had significantly more often no evidence of disease or local recurrence only in PSMA PET/CT, whereas patients with biochemical persistence had significantly more often lymph node involvement. Seventy-three patients were started on antiandrogen therapy prior to radiotherapy due to macroscopic disease in PSMA PET/CT. Cumulatively, 70 (66-70.6) Gy was delivered to local macroscopic tumor, 66 (63-66) Gy to the prostate fossa, 61.6 (53.2-66) Gy to PET-positive lymph nodes and 50.4 (45-52.3) Gy to lymphatic pathways. Median PSA after radiotherapy was 0.07 ng/ml with 74% of patients having a PSA ≤ 0.1 ng/ml. After a median follow-up of 20 months, median PSA was 0.07 ng/ml with ongoing antiandrogen therapy in 30 patients. PET-positive patients without antiandrogen therapy at last follow-up (45 patients) had a median PSA of 0.05 ng/ml with 89% of all patients, 94% of patients with biochemical recurrence and 82% of patients with biochemical persistence having a

  10. Biochemical and pathological studies in rats following dietary ...

    African Journals Online (AJOL)

    Biochemical and pathological studies in rats following dietary supplementation with high levels of polyunsaturated fatty acids and vitamin E. ... Furthermore, high dietary supplementation of vitamin E showed no deleterious effects on rats and no pathological changes in the liver, kidney and heart tissues were observed in the ...

  11. Pattern Of Biochemical Derangements Seen In Chronic Renal ...

    African Journals Online (AJOL)

    Objective: To study the pattern of biochemical derangements in advanced renal failure patients. Subjects and Methods: Ninety adult patients [54 males and 36 females] were recruited from the renal clinic of the University of Nigeria Teaching Hospital (UNTH) Enugu over a period of one year. History and physical ...

  12. Toxicological Effects of Cigarette Smoke on Some Biochemical ...

    African Journals Online (AJOL)

    It is believed that while normal people may suffer complications of active and passive cigarette smoking, diabetes patients may suffer more. This study therefore aimed at investigating the toxicological effects of cigarette smoke on some biochemical parameters of alloxan-induced diabetic rats. Adult male Wistar rats (n ...

  13. Molecular and biochemical diagnosis of Salmonella in wastewater ...

    African Journals Online (AJOL)

    This study aimed to employ biochemical and molecular assays to detect and diagnose Salmonella in wastewater. For this reason, two water samples were collected from Alexandria wastewater treatment plant (S1) and septic tank of a hospital at Alexandria governorate (S2). Selective culture media specific for Salmonella ...

  14. Fragrance analysis using molecular and biochemical methods in ...

    African Journals Online (AJOL)

    For molecular and biochemical analysis of aroma, a mapping population comprising 208 recombinant inbred lines (RILs) derived from a diverse cross between CSR10 and Taraori Basmati through Single seed descent (SSD) method was used. RILs are among the best mapping populations, which provide a novel material ...

  15. Biochemical research elucidating metabolic pathways in Pneumocystis*

    Directory of Open Access Journals (Sweden)

    Kaneshiro E.S.

    2010-12-01

    Full Text Available Advances in sequencing the Pneumocystis carinii genome have helped identify potential metabolic pathways operative in the organism. Also, data from characterizing the biochemical and physiological nature of these organisms now allow elucidation of metabolic pathways as well as pose new challenges and questions that require additional experiments. These experiments are being performed despite the difficulty in doing experiments directly on this pathogen that has yet to be subcultured indefinitely and produce mass numbers of cells in vitro. This article reviews biochemical approaches that have provided insights into several Pneumocystis metabolic pathways. It focuses on 1 S-adenosyl-L-methionine (AdoMet; SAM, which is a ubiquitous participant in numerous cellular reactions; 2 sterols: focusing on oxidosqualene cyclase that forms lanosterol in P. carinii; SAM:sterol C-24 methyltransferase that adds methyl groups at the C-24 position of the sterol side chain; and sterol 14α-demethylase that removes a methyl group at the C-14 position of the sterol nucleus; and 3 synthesis of ubiquinone homologs, which play a pivotal role in mitochondrial inner membrane and other cellular membrane electron transport.

  16. Electrocardiographic and hemato-biochemical effects of two balanced anesthetic protocols in dogs

    Directory of Open Access Journals (Sweden)

    Anubhav Khurana

    2014-10-01

    Full Text Available Aim: The purpose of this study was to compare the electrocardiographic (ECG, hematological and clinico-biochemical effects of two balanced anesthetic protocols in dogs. Materials and Methods: A total of 20 clinical cases of dogs, randomly divided into two groups of 10 animals each were made part of study. All dogs were premedicated with injection atropine sulfate @ 0.04 mg/kg body weight (b. wt. subcutaneously followed 15 min later with injection butorphanol tartarate @ 0.2 mg/kg b. wt. intravenous (IV. Subsequently after 10 min premedicated with injection diazepam @ 0.5 mg/kg b. wt. IV (Group DP or injection acepromazine maleate @ 0.015 mg/kg b. wt. IV (Group AP followed by injection propofol “till effect” IV for induction of surgical anesthesia. The animals were immediately transferred to halothane in oxygen. Observations recorded in dogs included ECG recordings, hematological and clinico-biochemical observations at various time intervals. Results: No arrhythmia was observed in any animal pre-operatively and intra-operatively in any of the groups. Significant fall in packed cell volume (PCV and total erythrocyte count occurred in DP group in early phase, whereas only PCV decreased significantly in AP group. Biochemical parameters were non-significant in both the groups. Conclusion: Both diazepam-butorphanol-propofol-halothane and acepromazine-butorphanol-propofol-halothane are safe with respect to their ECG, hematological and biochemical effects in clinical cases.

  17. Mathematical treatment of isotopologue and isotopomer speciation and fractionation in biochemical kinetics

    Science.gov (United States)

    Maggi, Federico; Riley, William J.

    2010-03-01

    We present a mathematical treatment of the kinetic equations that describe isotopologue and isotopomer speciation and fractionation during enzyme-catalyzed biochemical reactions. These equations, presented here with the name GEBIK (general equations for biochemical isotope kinetics) and GEBIF (general equations for biochemical isotope fractionation), take into account microbial biomass and enzyme dynamics, reaction stoichiometry, isotope substitution number, and isotope location within each isotopologue and isotopomer. In addition to solving the complete GEBIK and GEBIF, we also present and discuss two approximations to the full solutions under the assumption of biomass-free and enzyme steady-state, and under the quasi-steady-state assumption as applied to the complexation rate. The complete and approximate approaches are applied to observations of biological denitrification in soils. Our analysis highlights that the full GEBIK and GEBIF provide a more accurate description of concentrations and isotopic compositions of substrates and products throughout the reaction than do the approximate forms. We demonstrate that the isotopic effects of a biochemical reaction depend, in the most general case, on substrate and complex concentrations and, therefore, the fractionation factor is a function of time. We also demonstrate that inverse isotopic effects can occur for values of the fractionation factor smaller than 1, and that reactions that do not discriminate isotopes do not necessarily imply a fractionation factor equal to 1.

  18. Biochemical quantitation of the eIF5A hypusination in Arabidopsis thaliana uncovers ABA-dependent regulation

    Science.gov (United States)

    Belda-Palazón, Borja; Nohales, María A.; Rambla, José L.; Aceña, José L.; Delgado, Oscar; Fustero, Santos; Martínez, M. Carmen; Granell, Antonio; Carbonell, Juan; Ferrando, Alejandro

    2014-01-01

    The eukaryotic translation elongation factor eIF5A is the only protein known to contain the unusual amino acid hypusine which is essential for its biological activity. This post-translational modification is achieved by the sequential action of the enzymes deoxyhypusine synthase (DHS) and deoxyhypusine hydroxylase (DOHH). The crucial molecular function of eIF5A during translation has been recently elucidated in yeast and it is expected to be fully conserved in every eukaryotic cell, however the functional description of this pathway in plants is still sparse. The genetic approaches with transgenic plants for either eIF5A overexpression or antisense have revealed some activities related to the control of cell death processes but the molecular details remain to be characterized. One important aspect of fully understanding this pathway is the biochemical description of the hypusine modification system. Here we have used recombinant eIF5A proteins either modified by hypusination or non-modified to establish a bi-dimensional electrophoresis (2D-E) profile for the three eIF5A protein isoforms and their hypusinated or unmodified proteoforms present in Arabidopsis thaliana. The combined use of the recombinant 2D-E profile together with 2D-E/western blot analysis from whole plant extracts has provided a quantitative approach to measure the hypusination status of eIF5A. We have used this information to demonstrate that treatment with the hormone abscisic acid produces an alteration of the hypusine modification system in Arabidopsis thaliana. Overall this study presents the first biochemical description of the post-translational modification of eIF5A by hypusination which will be functionally relevant for future studies related to the characterization of this pathway in Arabidopsis thaliana. PMID:24904603

  19. Biochemical and Histological effects of Aqueous extract of Cyperus ...

    African Journals Online (AJOL)

    ADOWIE PERE

    Biochemical and Histological effects of Triton Wr-1339 and Aqueous extract. 674. INNIH, SO; UBHENIN, AE; ... fatty liver, chronic hepatitis, and cirrhosis is not giving much ..... Alcoholic Fatty Liver Disease in Southern Iran: A Population Based ...

  20. Towards a genetic architecture of cryptic genetic variation

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Genetics; Volume 84; Issue 3. Towards a genetic architecture of cryptic genetic variation and genetic assimilation: the contribution of K. G. Bateman. Ian Dworkin. Commentary on J. Genet. Classic Volume 84 Issue 3 December 2005 pp 223-226 ...

  1. Synthesis of Biochemical Applications on Digital Microfluidic Biochips with Operation Execution Time Variability

    DEFF Research Database (Denmark)

    Alistar, Mirela; Pop, Paul

    2015-01-01

    that each biochemical operation in an application is characterized by a worst-case execution time (wcet). However, during the execution of the application, due to variability and randomness in biochemical reactions, operations may finish earlier than their wcetswcets, resulting in unexploited slack...... in the schedule. In this paper, we first propose an online synthesis strategy that re-synthesizes the application at runtime when operations experience variability in their execution time, exploiting thus the slack to obtain shorter application completion times. We also propose a quasi-static synthesis strategy...... approaches have been proposed for the synthesis of digital microfluidic biochips, which, starting from a biochemical application and a given biochip architecture, determine the allocation, resource binding, scheduling, placement and routing of the operations in the application. Researchers have assumed...

  2. Prediction of bakery products nutritive value based on mathematical modeling of biochemical reactions

    Directory of Open Access Journals (Sweden)

    E. I. Ponomareva

    2013-01-01

    Full Text Available Researches are devoted to identifying changes in the chemical composition of whole-grain wheat bread during baking and to forecasting of food value of bakery products by mathematical modeling of biochemical transformations. The received model represents the invariant composition, considering speed of biochemical reactions at a batch of bakery products, and allowing conduct virtual experiments to develop new types of bread for various categories of the population, including athletes. The offered way of modeling of biochemical transformations at a stage of heat treatment allows to predict food value of bakery products, without spending funds for raw materials and large volume of experiment that will provide possibility of economy of material resources at a stage of development of new types of bakery products and possibility of production efficiency increase.

  3. Systematic methods for synthesis and design of sustainable chemical and biochemical processes

    DEFF Research Database (Denmark)

    Gani, Rafiqul

    Chemical and biochemical process design consists of designing the process that can sustainably manufacture an identified chemical product through a chemical or biochemical route. The chemical product tree is potentially very large; starting from a set of basic raw materials (such as petroleum...... for process intensification, sustainable process design, identification of optimal biorefinery models as well as integrated process-control design, and chemical product design. The lecture will present the main concepts, the decomposition based solution approach, the developed methods and tools together...

  4. Laying performance, haematology and serum biochemical profile of ...

    African Journals Online (AJOL)

    The study was carried out to compare the effects of unfermented and fermented African locust bean on laying performance, haematology and serum biochemical profile of hens in a twelve week feeding trial. The unfermented African locust bean (UALB) contained seeds that were dehulled and boiled in water, without going ...

  5. Biochemical characterization of blood plasma of coronary artery ...

    Indian Academy of Sciences (India)

    This study aimed to investigate the biochemical profile of blood plasma of patients with coronary artery disease (CAD) and angiographically normal subjects (controls) to determine biomarkers for their differentiation. In this double blind study, 5 mL venous blood was drawn before angiography from CAD patients (n=60) and ...

  6. haematological parameters and serum biochemical indices of pre

    African Journals Online (AJOL)

    mrmrsolayiwola

    2012-05-01

    May 1, 2012 ... pubertal male rabbits fed with graded level of blood- ... The effects of feeding graded levels of blood wild sunflower forage meal ... and serum biochemical parameters in rabbit were studied. ... (Cheeke et al., 1986), high in protein, low in cholesterol ..... assay of nutritional anaemia (dietary deficiency of iron,.

  7. Perineural invasion on prostate needle biopsy does not predict biochemical failure following brachytherapy for prostate cancer

    International Nuclear Information System (INIS)

    Weight, Christopher J.; Ciezki, Jay P.; Reddy, Chandana A.; Zhou Ming; Klein, Eric A.

    2006-01-01

    Purpose: To determine if the presence of perineural invasion (PNI) predicts biochemical recurrence in patients who underwent low-dose-rate brachytherapy for the treatment of localized prostate cancer. Methods and Materials: A retrospective case control matching study was performed. The records of 651 patients treated with brachytherapy between 1996 and 2003 were reviewed. Sixty-three of these patients developed biochemical failure. These sixty-three patients were then matched in a one-to-one ratio to patients without biochemical failure, controlling for biopsy Gleason score, clinical stage, initial prostate-specific antigen, age, and the use of androgen deprivation. The pathology of the entire cohort was then reviewed for evidence of perineural invasion on initial prostate biopsy specimens. The biochemical relapse free survival rates for these two groups were compared. Results: Cases and controls were well matched, and there were no significant differences between the two groups in age, Gleason grade, clinical stage, initial prostate-specific antigen, and the use of androgen deprivation. PNI was found in 19 (17%) patients. There was no significant difference in the rates of PNI between cases and controls, 19.6% and 14.3% respectively (p 0.45). PNI did not correlate with biochemical relapse free survival (p 0.40). Conclusion: Perineural invasion is not a significant predictor of biochemical recurrence in patients undergoing brachytherapy for prostate cancer

  8. Safety assessment for genetically modified sweet pepper and tomato

    International Nuclear Information System (INIS)

    Chen Zhangliang; Gu Hongya; Li Yi; Su Yilan; Wu Ping; Jiang Zhicheng; Ming Xiaotian; Tian Jinhua; Pan Naisui; Qu Lijia

    2003-01-01

    The coat protein (CP) gene of cucumber mosaic virus (CMV) was cloned from a Chinese CMV isolate, the CaMV promoter and NOS terminator added and the gene construct was transformed into both sweet pepper and tomato plants to confer resistance to CMV. Safety assessments of these genetically modified (GM) plants were conducted. It was found that these two GM products showed no genotoxicity either in vitro or in vivo by the micronucleus test, sperm aberration test and Ames test. Animal feeding studies showed no significant differences in growth, body weight gain, food consumption, hematology, blood biochemical indices, organ weights and histopathology between rats or mice of either sex fed with either GM sweet pepper or tomato diets compared with those with non-GM diets. These results demonstrate that the CMV-resistant sweet pepper and tomato are comparable to the non-GM counterparts in terms of food safety

  9. Conservative treatment of bone tissue metabolic disorders among patients with vitamin D-dependent rickets type II with genetic abnormality of type I collagen formation

    Directory of Open Access Journals (Sweden)

    S.M. Martsyniak

    2017-08-01

    Full Text Available Background. The purpose of the article is to determine the effect of conservative therapy on genetically caused disorders of bone tissue metabolism in patients with vitamin D-dependent rickets type II and genetic abnormality of type I collagen formation (VDDR(COL1. Materials and methods. At the premises of consulting and outpatient department of SI “Institute of Traumatology and Orthopaedics of the NAMS of Ukraine”, 13 patients having VDDR type II and genetic damage of type I collagen formation were examined and treated. The medical treatment was conducted in four stages. The first stage included full examination of patients (calcium and phosphorus levels in the blood serum and their urinary excretion, as well as determination of calcidiol and calcitriol serum levels, indicators of parathyroid hormone and osteocalcin, and a marker of bone formation P1NP and osteoresorption b-CTx. At this stage, children were obligated to undergo a genetic test to detect changes (polymorphism in alleles of receptors to vitamin D and type I collagen. Besides genetic tests, examinations at the other stages were conducted in full. Results. The study has shown the following. The genetically caused abnormality of reception to vitamin D results into substantial accumulation of vitamin D active metabolite in the blood serum. When combined with gene­tic abnormality of type I collagen formation, it significantly affected bone formation and destruction processes that causes development of osteomalacia (parathormone — vitamin D — osteocalcin system. The comprehensive study of vitamin D metabolism and biochemical vitals of bone tissue in patients having VDDR (COL1 brought us to understanding of some issues related to pathogenesis and nature of osteomalacia and, in future, osteoporotic changes on different levels, ensured us to express these changes by corresponding indices in the biochemical research and, finally, to develop appropriate schemes for the treatment of

  10. Effects of open- and self-pollination treatments on genetic estimations in maize diallel experiment

    Energy Technology Data Exchange (ETDEWEB)

    Kahriman, F.; Egesel, C.O.; Zorlu, E.

    2015-07-01

    This study investigated the effects of open- and self-pollination treatments on genetic estimations and kernel biochemical content in a maize diallel experiment. A 7×7 complete reciprocal diallel set (7 parents and 42 hybrids) was used as plant material. Measured traits were: kernel weight per plant, protein content, oil content and carbohydrate content. General combining ability (GCA), specific combining ability (SCA), maternal effects (MAT), non-maternal effects (NMAT) and heterosis values were compared in open- and self-pollination treatments for measured traits. Results showed that the pollination treatments had a significant effect on all investigated traits. Parental lines and hybrid combinations gave different responses. Parents had relatively higher protein and oil content in self-pollination but hybrids had lower values in self-pollination compared with open-pollination. A considerable number of genotypes showed significant differences for genetic estimations (GCA, SCA, MAT, NMAT) and heterosis between open- and self-pollination treatments. Overall, findings suggest that evaluation of kernel quality traits should be made on selfed ear samples; however, evaluation for yield should be carried out on open-pollinated samples. (Author)

  11. The future: genetics advances in MEN1 therapeutic approaches and management strategies.

    Science.gov (United States)

    Agarwal, Sunita K

    2017-10-01

    The identification of the multiple endocrine neoplasia type 1 ( MEN1 ) gene in 1997 has shown that germline heterozygous mutations in the MEN1 gene located on chromosome 11q13 predisposes to the development of tumors in the MEN1 syndrome. Tumor development occurs upon loss of the remaining normal copy of the MEN1 gene in MEN1-target tissues. Therefore, MEN1 is a classic tumor suppressor gene in the context of MEN1. This tumor suppressor role of the protein encoded by the MEN1 gene, menin, holds true in mouse models with germline heterozygous Men1 loss, wherein MEN1-associated tumors develop in adult mice after spontaneous loss of the remaining non-targeted copy of the Men1 gene. The availability of genetic testing for mutations in the MEN1 gene has become an essential part of the diagnosis and management of MEN1. Genetic testing is also helping to exclude mutation-negative cases in MEN1 families from the burden of lifelong clinical screening. In the past 20 years, efforts of various groups world-wide have been directed at mutation analysis, molecular genetic studies, mouse models, gene expression studies, epigenetic regulation analysis, biochemical studies and anti-tumor effects of candidate therapies in mouse models. This review will focus on the findings and advances from these studies to identify MEN1 germline and somatic mutations, the genetics of MEN1-related states, several protein partners of menin, the three-dimensional structure of menin and menin-dependent target genes. The ongoing impact of all these studies on disease prediction, management and outcomes will continue in the years to come. © 2017 Society for Endocrinology.

  12. Genetics of variation in HOMA-IR and cardiovascular risk factors in Mexican-Americans.

    Science.gov (United States)

    Voruganti, V Saroja; Lopez-Alvarenga, Juan C; Nath, Subrata D; Rainwater, David L; Bauer, Richard; Cole, Shelley A; Maccluer, Jean W; Blangero, John; Comuzzie, Anthony G

    2008-03-01

    Insulin resistance is a major biochemical defect underlying the pathogenesis of cardiovascular disease (CVD). Mexican-Americans are known to have an unfavorable cardiovascular profile. Thus, the aim of this study was to investigate the genetic effect on variation in HOMA-IR and to evaluate its genetic correlations with other phenotypes related to risk of CVD in Mexican-Americans. The homeostatic model assessment method (HOMA-IR) is one of several approaches that are used to measure insulin resistance and was used here to generate a quantitative phenotype for genetic analysis. For 644 adults who had participated in the San Antonio Family Heart Study (SAFHS), estimates of genetic contribution were computed using a variance components method implemented in SOLAR. Traits that exhibited significant heritabilities were body mass index (BMI) (h (2) = 0.43), waist circumference (h (2) = 0.48), systolic blood pressure (h (2) = 0.30), diastolic blood pressure (h (2) = 0.21), pulse pressure (h (2) = 0.32), triglycerides (h (2) = 0.51), LDL cholesterol (h (2) = 0.31), HDL cholesterol (h (2) = 0.24), C-reactive protein (h (2) = 0.17), and HOMA-IR (h (2) = 0.33). A genome-wide scan for HOMA-IR revealed significant evidence of linkage on chromosome 12q24 (close to PAH (phenylalanine hydroxylase), LOD = 3.01, p HOMA-IR with BMI (rho (G) = 0.36), waist circumference (rho (G) = 0.47), pulse pressure (rho (G) = 0.39), and HDL cholesterol (rho (G) = -0.18). Identification of significant linkage for HOMA-IR on chromosome 12q replicates previous family-based studies reporting linkage of phenotypes associated with type 2 diabetes in the same chromosomal region. Significant genetic correlations between HOMA-IR and phenotypes related to CVD risk factors suggest that a common set of gene(s) influence the regulation of these phenotypes.

  13. Decoupling of Growth from Production of Biochemicals and Proteins

    DEFF Research Database (Denmark)

    Li, Songyuan

    With increasing awareness of sustainability in our current society, alternative approaches to produce fuels and petro-derived chemicals are required. Biofuels and biochemicals produced from microbial cell factories provide an alternative to current fossil based chemicals. Meanwhile, microbial cell...

  14. Genetic privacy.

    Science.gov (United States)

    Sankar, Pamela

    2003-01-01

    During the past 10 years, the number of genetic tests performed more than tripled, and public concern about genetic privacy emerged. The majority of states and the U.S. government have passed regulations protecting genetic information. However, research has shown that concerns about genetic privacy are disproportionate to known instances of information misuse. Beliefs in genetic determinacy explain some of the heightened concern about genetic privacy. Discussion of the debate over genetic testing within families illustrates the most recent response to genetic privacy concerns.

  15. Conservation and Divergence in the Candida Species Biofilm Matrix Mannan-Glucan Complex Structure, Function, and Genetic Control.

    Science.gov (United States)

    Dominguez, Eddie; Zarnowski, Robert; Sanchez, Hiram; Covelli, Antonio S; Westler, William M; Azadi, Parastoo; Nett, Jeniel; Mitchell, Aaron P; Andes, David R

    2018-04-03

    Candida biofilms resist the effects of available antifungal therapies. Prior studies with Candida albicans biofilms show that an extracellular matrix mannan-glucan complex (MGCx) contributes to antifungal sequestration, leading to drug resistance. Here we implement biochemical, pharmacological, and genetic approaches to explore a similar mechanism of resistance for the three most common clinically encountered non- albicans Candida species (NAC). Our findings reveal that each Candida species biofilm synthesizes a mannan-glucan complex and that the antifungal-protective function of this complex is conserved. Structural similarities extended primarily to the polysaccharide backbone (α-1,6-mannan and β-1,6-glucan). Surprisingly, biochemical analysis uncovered stark differences in the branching side chains of the MGCx among the species. Consistent with the structural analysis, similarities in the genetic control of MGCx production for each Candida species also appeared limited to the synthesis of the polysaccharide backbone. Each species appears to employ a unique subset of modification enzymes for MGCx synthesis, likely accounting for the observed side chain diversity. Our results argue for the conservation of matrix function among Candida spp. While biogenesis is preserved at the level of the mannan-glucan complex backbone, divergence emerges for construction of branching side chains. Thus, the MGCx backbone represents an ideal drug target for effective pan- Candida species biofilm therapy. IMPORTANCE Candida species, the most common fungal pathogens, frequently grow as a biofilm. These adherent communities tolerate extremely high concentrations of antifungal agents, due in large part, to a protective extracellular matrix. The present studies define the structural, functional, and genetic similarities and differences in the biofilm matrix from the four most common Candida species. Each species synthesizes an extracellular mannan-glucan complex (MGCx) which

  16. Fragrance analysis using molecular and biochemical methods in ...

    African Journals Online (AJOL)

    admin

    Biochemical analysis of aroma was performed with the 1.7% KOH solution and molecular analysis of aroma was carried out with microsatellite markers present on chromosome 8 (BAD2, BADEX7-5, SCUSSR1) to determine the extent of association between trait, marker and chromosome 8. Among these markers, BAD2 ...

  17. Haematological profile and serum biochemical indices of weaned ...

    African Journals Online (AJOL)

    This study was carried out to determine the haematological profile and serum biochemical indices of rabbits fed pawpaw (Carica papaya) leaves as feed supplement to a corn – soybean mealbasal diet. The study involved thirty six (36) cross bred (New Zealand White X Chinchilla) mixed sex weaned rabbits of five - six ...

  18. Serum Biochemical Changes Associated With The Digestibility Of ...

    African Journals Online (AJOL)

    Serum Biochemical Changes Associated With The Digestibility Of Raw And Heat Processed Cajanus cajan Seeds In Rats. ... The level of anti-nutritive food toxicants in exotic breed of Cajanus cajan L. (pigeon pea) was evaluated in this study using an animal model experiment in which animals were fed with raw and heat ...

  19. Molecular and biochemical studies of some yeast strains

    African Journals Online (AJOL)

    user

    2011-02-21

    Feb 21, 2011 ... Kluyveromyces lactis (Y.9) and Pichia jadinii (Y.10) contained almost double the amount of total amino ... Differences between ... biochemical analysis (total protein profile and total amino acids) were used as tools to select the best yeast strains in Saudi Arabia and Egypt as a rich source of animal protein.

  20. Effect of genotype on haematology and biochemical parameters of ...

    African Journals Online (AJOL)

    Frizzle n = 33, Naked neck, n= 33 and Normal n = 33) were generated from 36 matured local chickens and used for the study to determine the effect of genotype on hematological and biochemical parameters of local chicken in the humid ...