WorldWideScience

Sample records for biochemical genetics

  1. Biochemical genetics of some Indian fishes

    Digital Repository Service at National Institute of Oceanography (India)

    Menezes, M.R.; Qasim, S.Z.

    Studies on biochemical genetics of fishes, using electrophoretic methods, are relatively of recent origin. Earlier serum and eye lens protein were used to identify marine populations. This technique showed that closely related species have...

  2. Biochemical investigations on genetically modified oil crops

    OpenAIRE

    Mekawi, Enas

    2009-01-01

    The main purpose of this study was to develop a method of purification and characterization of Cry1Ab isolated from MON810 genetically modified maize. The second object was to study the effect of the genetic modification of MON810 and high-oleic sunflower on the oil composition. Therefore, the following investigations were performed: (1) Quantification of Cry1Ab toxin in different corn plant parts. (2) Development of a suitable method for purification of Cry1Ab from MON810. (3) Esta...

  3. Constructive effects of fluctuations in genetic and biochemical regulatory systems.

    Science.gov (United States)

    Steuer, Ralf; Zhou, Changsong; Kurths, Jürgen

    2003-12-01

    Biochemical and genetic regulatory systems that involve low concentrations of molecules are inherently noisy. This intrinsic stochasticity has received considerable interest recently, leading to new insights about the sources and consequences of noise in complex systems of genetic regulation. However, most prior work was devoted to the reduction of fluctuation and the robustness of cellular function with respect to intrinsic noise. Here, we focus on several scenarios in which the inherent molecular fluctuations are not merely a nuisance, but act constructively and bring about qualitative changes in the dynamics of the system. It will be demonstrated that in many typical situations biochemical and genetic regulatory systems may utilize intrinsic noise to their advantage. PMID:14643492

  4. Stochastic signaling in biochemical cascades and genetic systems in genetically engineered living cells

    Science.gov (United States)

    Daniel, Ramiz; Almog, Ronen; Shacham-Diamand, Yosi

    2010-04-01

    Living cells, either prokaryote or eukaryote, can be integrated within whole-cell biochips (WCBCs) for various applications. We investigate WCBCs where information is extracted from the cells via a cascade of biochemical reactions that involve gene expression. The overall biological signal is weak due to small sample volume, low intrinsic cell response, and extrinsic signal loss mechanisms. The low signal-to-noise ratio problem is aggravated during initial detection stages and limits the minimum detectable signal or, alternatively, the minimum detection time. Taking into account the stochastic nature of biochemical process, we find that the signal is accompanied by relatively large noise disturbances. In this work, we use genetically engineered microbe sensors as a model to study the biochips output signal stochastic behavior. In our model, the microbes are designed to express detectable reporter proteins under external induction. We present analytical approximated expressions and numerical simulations evaluating the fluctuations of the synthesized reporter proteins population based on a set of equations modeling a cascade of biochemical and genetic reactions. We assume that the reporter proteins decay more slowly than messenger RNA molecules. We calculate the relation between the noise of the input signal (extrinsic noise) and biochemical reaction statistics (intrinsic noise). We discuss in further details two cases: (1) a cascade with large decay rates of all biochemical reactions compared to the protein decay rate. We show that in this case, the noise amplitude has a positive linear correlation with the number of stages in the cascade. (2) A cascade which includes a stable enzymatic-binding reaction with slow decay rate. We show that in this case, the noise strongly depends on the protein decay rate. Finally, a general observation is presented stating that the noise in whole-cell biochip sensors is determined mainly by the first reactions in the genetic system

  5. Genetic and biochemical studies in Argentinean patients with variegate porphyria

    Directory of Open Access Journals (Sweden)

    Giudice Jimena

    2008-06-01

    Full Text Available Abstract Background A partial deficiency in Protoporphyrinogen oxidase (PPOX produces the mixed disorder Variegate Porphyria (VP, the second acute porphyria more frequent in Argentina. Identification of patients with an overt VP is absolutely important because treatment depends on an accurate diagnosis but more critical is the identification of asymptomatic relatives to avoid acute attacks which may progress to death. Methods We have studied at molecular level 18 new Argentinean patients biochemically diagnosed as VP. PPOX gene was amplified in one or in twelve PCR reactions. All coding exons, flanking intronic and promoter regions were manual or automatically sequenced. For RT-PCR studies RNA was retrotranscripted, amplified and sequenced. PPOX activity in those families carrying a new and uncharacterized mutation was performed. Results All affected individuals harboured mutations in heterozygous state. Nine novel mutations and 3 already reported mutations were identified. Six of the novel mutations were single nucleotide substitutions, 2 were small deletions and one a small insertion. Three single nucleotide substitutions and the insertion were at exon-intron boundaries. Two of the single nucleotide substitutions, c.471G>A and c.807G>A and the insertion (c.388+3insT were close to the splice donor sites in exons 5, 7 and intron 4 respectively. The other single nucleotide substitution was a transversion in the last base of intron 7, g.3912G>C (c.808-1G>C so altering the consensus acceptor splice site. However, only in the first case the abnormal band showing the skipping of exon 5 was detected. The other single nucleotide substitutions were transversions: c.101A>T, c.995G>C and c.670 T>G that result in p.E34V, p.G332A and W224G aminoacid substitutions in exons 3, 10 and 7 respectively. Activity measurements indicate that these mutations reduced about 50% PPOX activity and also that they co-segregate with this reduced activity value. Two

  6. GENETIC CHARACTERIZATION OF ROMANIAN CATTLE BREEDS USING BIOCHEMICAL MARKERS

    Directory of Open Access Journals (Sweden)

    REBEDEA MARIANA

    2007-01-01

    Full Text Available The paper presents a genetic characterization of cattle breeds in Romania based onbiochemical markers in the blood and the milk. The surveyed breeds are: RomanianBlack Spotted Cattle (BNR, Romanian Spotted Cattle (BR, Romanian Brown (Band Romanian Steppe, and the markers identified are represented by some proteins,serum transferrin (Tf, serum albumins (Al, hemoglobin (Hb respectively-from theblood and beta-lactoglobulin (βLg-from the milk. In order to determine thegenotypes in the studied populations electrophoresis was used in three differentvariations, depending on the type of the protein, and the migration substrates usedwere starch and polyacrylamide. The identified genetic structures in the individualsfrom the surveyed breeds allowed their genetic characterization based on gene andgenotype frequencies, as well as using these data in establishing the identity andpaternity of the individuals in the surveyed breeds.

  7. Clinical, biochemical and genetic heterogeneity in lysosomal storage diseases

    NARCIS (Netherlands)

    A.J.J. Reuser (Arnold)

    1977-01-01

    textabstractThe history of lysosomal storage diseases dates back to the end of the last century when the first clinical reports appeared of patients suffering from these genetic, metabolic disorders (Tay, 1881; Gaucher, 1882; Sachs, 1887; Fabry, 1898). About seventy years wouid pass before the term

  8. Morphological, kinetic, membrane biochemical and genetic aspects of intestinal enteroplasticity

    Institute of Scientific and Technical Information of China (English)

    Laurie A Drozdowski; M Tom Clandinin; Alan BR Thomson

    2009-01-01

    The process of intestinal adaptation ("enteroplasticity") is complex and multifaceted. Although a number of trophic nutrients and non-nutritive factors have been identified in animal studies, successful, reproducible clinical trials in humans are awaited. Understanding mechanisms underlying this adaptive process may direct research toward strategies that maximize intestinal function and impart a true clinical benefit to patients with short bowel syndrome, or to persons in whom nutrient absorption needs to be maximized. In this review, we consider the morphological, kinetic and membrane biochemical aspects of enteroplasticity, focus on the importance of nutritional factors, provide an overview of the many hormones that may alter the adaptive process, and consider some of the possible molecular profiles. While most of the data is derived from rodent studies, wherever possible, the results of human studies of intestinal enteroplasticity are provided.

  9. A biochemical and genetic study of Leishmania donovani pyruvate kinase.

    Science.gov (United States)

    Sandoval, Will; Isea, Raúl; Rodriguez, Evelyn; Ramirez, Jose Luis

    2008-11-15

    Here we present a biochemical and molecular biology study of the enzyme pyruvate kinase (PYK) from the parasitic protozoa Leishmania donovani. The PYK gene was cloned, mutagenised and over expressed and its kinetic parameters determined. Like in other kinetoplastids, L. donovani PYK is allosterically stimulated by the effector fructose 2,6 biphosphate and not by fructose 1,6 biphosphate. When the putative effector binding site of L. donovani PYK was mutagenised, we obtained two mutants with extreme kinetic behavior: Lys453Leu, which retained a sigmoidal kinetics and was little affected by the effector; and His480Gln, which deployed a hyperbolic kinetics that was not changed by the addition of the effector. Molecular Dynamics (MD) studies revealed that the mutations not only altered the effector binding site of L. donovani PYK but also changed the folding of its domain C. PMID:18725273

  10. Genetic Investigations Using Immuno-biochemical Markers in a Maramureş Brown Cattle Population

    Directory of Open Access Journals (Sweden)

    Nicoleta Isfan

    2011-05-01

    Full Text Available The study of the genetic markers and identifying new markers involves an increasing number of research projects in the fields of genetics of immunology, biochemical genetics, molecular genetics, quantity genetics and the genetic improvement of animals. Some studies on genes frequency determining the red cells specificity and for whey hemoglobin are approached in the present report. In this way, some blood factors, most of them belonging to B system (the most complex system in cattle have been evidenced. The lowest gene frequency was present in K factor (7%, and highest one in, O1, G’ , W and F1 (100%. In addition to basic importance on knowledge and determination of cattle population genetic structure for studied protein loci, another theme proposed to correlate hemoglobin type with some traits of economical importance: milk yield, fat and protein content, fat and protein yield. Higher performance was recorded by HbA/HbA individuals.

  11. Mode of inheritance for biochemical traits in genetically engineered cotton under water stress.

    Science.gov (United States)

    Abid, Muhammad Ali; Malik, Waqas; Yasmeen, Azra; Qayyum, Abdul; Zhang, Rui; Liang, Chengzhen; Guo, Sandui; Ashraf, Javaria

    2016-01-01

    Drought is an abiotic environmental stress that can significantly reduce crop productivity. We examined the mode of inheritance for different biochemical traits including total soluble proteins, chlorophyll a, chlorophyll b, total chlorophyll, carotenoids, total phenolic contents and enzymatic antioxidants (superoxide dismutase, peroxidase and catalase), and their relationship with Bacillus thuringiensis (Bt) toxin under control and drought conditions. Eight genetically diverse cotton genotypes were selfed for two generations to ensure homozygosity. Fifteen F1 hybrids were developed by crossing five non-Bt female lines with three Bt male testers. The F1 hybrids and eight parents were finally evaluated under control (100 % field capacity (FC)) and drought (50 % FC) conditions in 2013. The biochemical traits appeared to be controlled by non-additive gene action with low narrow sense heritability estimates. The estimates of general combining ability and specific combining ability for all biochemical traits were significant under control and drought conditions. The genotype-by-trait biplot analysis showed the better performance of Bt cotton hybrids when compared with their parental genotypes for various biochemical traits under control and drought conditions. The biplot and path coefficient analyses revealed the prevalence of different relationships between Cry1Ac toxin and biochemical traits in the control and drought conditions. In conclusion, biochemical traits could serve as potential biochemical markers for breeding Bt cotton genotypes without compromising the optimal level of Bt toxin. PMID:26839284

  12. Erythropoietin in the General Population : Reference Ranges and Clinical, Biochemical and Genetic Correlates

    NARCIS (Netherlands)

    Grote Beverborg, Niels; Verweij, Niek; Klip, IJsbrand T.; van der Wal, Haye H.; Voors, Adriaan A.; van Veldhuisen, Dirk J.; Gansevoort, Ron T.; Bakker, Stephan J. L.; van der Harst, Pim; van der Meer, Peter

    2015-01-01

    Background Although erythropoietin has been used for decades in the treatment of anemia, data regarding endogenous levels in the general population are scarce. Therefore, we determined erythropoietin reference ranges and its clinical, biochemical and genetic associations in the general population. M

  13. Developing genetic tools to exploit Chaetomium thermophilum for biochemical analyses of eukaryotic macromolecular assemblies

    OpenAIRE

    Nikola Kellner; Johannes Schwarz; Miriam Sturm; Javier Fernandez-Martinez; Sabine Griesel; Wenzhu Zhang; Chait, Brian T.; Rout, Michael P.; Ulrich Kück; Ed Hurt

    2016-01-01

    We describe a method to genetically manipulate Chaetomium thermophilum, a eukaryotic thermophile, along with various biochemical applications. The transformation method depends on a thermostable endogenous selection marker operating at high temperatures combined with chromosomal integration of target genes. Our technique allows exploiting eukaryotic thermophiles as source for purifying thermostable native macromolecular complexes with an emphasis on the nuclear pore complex, holding great pot...

  14. Biochemical and Molecular Genetic Studies on Biosilica Morphogenesis in Diatoms

    Science.gov (United States)

    Kroger, N.; Poulsen, N.

    2006-12-01

    Diatoms are a large group of unicellular microalgae encased by silica cell walls that exhibit species-specific micro-and nanopatterns. Previously, we have characterized from diatoms unique phosphoproteins (termed silaffins) and unusually long polyamine chains (termed LCPA), which have both been implicated in biosilica formation. While the chemical structures of LCPA are largely conserved among different diatom species, the silaffins exhibit extensive structural variations. In vitro studies on the silica formation activities of silaffins and LCPA from the diatom Thalassiosira pseudonana indicate that silica morphogenesis is primarily determined by silaffins rather than LCPA. Recently, the complete genome sequence of T. pseudonana has become available, which for the first time opens the door to employ functional genomic approaches for studying the mechanism of silica biomineralization. To this end we have established the first genetic transformation system for T. pseudonana, which will be instrumental for analyzing the functions of silaffins in vivo, and for identifying new components of the diatom silica forming machinery. Here we describe the current knowledge on the structures and properties of silaffins and LCPA, the methods for genetic manipulation of T. pseudonana, and the first experimental steps towards functional genomics in diatoms.

  15. Biochemical genetics study of children of atomic bomb survivors

    International Nuclear Information System (INIS)

    In order to investigate genetic effect of radiation, especially the rate of mutation, the presence of protein variants in plasma and blood cells of children (F1 generation) of A-bomb survivors was examined. Twenty four kinds of protein consisting of 6 serum proteins and 18 hemoglobin, sampled from 2,800 children have been studied to data by using starch gel electrophoresis. Variants were detected in 13 kinds of proteins in 91 samples and among which the variants were observed often in transferrin, phosphoglucomutase and phosphohexose isomerase. To know whether detected variant types were induced by mutation, 54 cases of parents were tested. Results indicated that same variant types were observed in either of their parents. From these findings, it was confirmed that the variation is genetic and was not related to A-bomb radiation to their parents. Though the incidence of variant types was different in Hiroshima and Nagasaki, The number of samples, is not big enough to conclude it to be regional difference. (Iwagami, H.)

  16. Report: Human biochemical genetics: an insight into inborn errors of metabolism

    Institute of Scientific and Technical Information of China (English)

    YU Chunli; SCOTT C. Ronald

    2006-01-01

    Inborn errors of metabolism (IEM) include a broad spectrum of defects of various gene products that affect intermediary metabolism in the body. Studying the molecular and biochemical mechanisms of those inherited disorder, systematically summarizing the disease phenotype and natural history, providing diagnostic rationale and methodology and treatment strategy comprise the context of human biochemical genetics. This session focused on: (1) manifestations of representative metabolic disorders; (2) the emergent technology and application of newborn screening of metabolic disorders using tandem mass spectrometry; (3) principles of managing IEM; (4) the concept of carrier testing aiming prevention. Early detection of patients with IEM allows early intervention and more options for treatment.

  17. Genetic and biochemical analysis of peptide transport in Escherichia coli

    International Nuclear Information System (INIS)

    E. coli peptide transport mutants have been isolated based on their resistance to toxic tripeptides. These genetic defects were found to map in two distinct chromosomal locations. The transport systems which require expression of the trp-linked opp genes and the oppE gene(s) for activity were shown to have different substrate preferences. Growth of E. coli in medium containing leucine results in increased entry of exogenously supplied tripeptides into the bacterial cell. This leucine-mediated elevation of peptide transport required expression of the trp-linked opp operon and was accompanied by increased sensitivity to toxic tripeptides, by an enhanced capacity to utilize nutritional peptides, and by an increase in both the velocity and apparent steady-state level of L-(U-14C)alanyl-L-alanyl-L-alanine accumulation for E. coli grown in leucine-containing medium relative to these parameters of peptide transport measured with bacteria grown in media lacking leucine. Direct measurement of opp operon expression by pulse-labeling experiments demonstrated that growth of E. coli in the presence of leucine resulted in increased synthesis of the oppA-encoded periplasmic binding protein. The transcriptional regulation of the trp-linked opp operon of E. coli was investigated using λ placMu51-generated lac operon fusions. Synthesis of β-galactosidase by strains harboring oppA-lac, oppB-lac, and oppD-lac fusions occurred at a basal level when the fusion-containing strains were grown in minimal medium

  18. Genetic and biochemical analysis of peptide transport in Escherichia coli

    Energy Technology Data Exchange (ETDEWEB)

    Andrews, J.C.

    1986-01-01

    E. coli peptide transport mutants have been isolated based on their resistance to toxic tripeptides. These genetic defects were found to map in two distinct chromosomal locations. The transport systems which require expression of the trp-linked opp genes and the oppE gene(s) for activity were shown to have different substrate preferences. Growth of E. coli in medium containing leucine results in increased entry of exogenously supplied tripeptides into the bacterial cell. This leucine-mediated elevation of peptide transport required expression of the trp-linked opp operon and was accompanied by increased sensitivity to toxic tripeptides, by an enhanced capacity to utilize nutritional peptides, and by an increase in both the velocity and apparent steady-state level of L-(U-/sup 14/C)alanyl-L-alanyl-L-alanine accumulation for E. coli grown in leucine-containing medium relative to these parameters of peptide transport measured with bacteria grown in media lacking leucine. Direct measurement of opp operon expression by pulse-labeling experiments demonstrated that growth of E. coli in the presence of leucine resulted in increased synthesis of the oppA-encoded periplasmic binding protein. The transcriptional regulation of the trp-linked opp operon of E. coli was investigated using lambda placMu51-generated lac operon fusions. Synthesis of ..beta..-galactosidase by strains harboring oppA-lac, oppB-lac, and oppD-lac fusions occurred at a basal level when the fusion-containing strains were grown in minimal medium.

  19. Erythropoietin in the General Population: Reference Ranges and Clinical, Biochemical and Genetic Correlates

    OpenAIRE

    Niels Grote Beverborg; Niek Verweij; Klip, IJsbrand T.; Haye H van der Wal; Voors, Adriaan A.; van Veldhuisen, Dirk J.; Gansevoort, Ron T.; Bakker, Stephan J. L.; Pim van der Harst; Peter van der Meer

    2015-01-01

    Background Although erythropoietin has been used for decades in the treatment of anemia, data regarding endogenous levels in the general population are scarce. Therefore, we determined erythropoietin reference ranges and its clinical, biochemical and genetic associations in the general population. Methods We used data from 6,777 subjects enrolled in the Prevention of REnal and Vascular ENd-stage Disease (PREVEND) study. Fasting venous blood samples were obtained in the morning from all partic...

  20. BiGG: a Biochemical Genetic and Genomic knowledgebase of large scale metabolic reconstructions

    OpenAIRE

    Conrad Tom M; Park Junyoung O; Schellenberger Jan; Palsson Bernhard Ø

    2010-01-01

    Abstract Background Genome-scale metabolic reconstructions under the Constraint Based Reconstruction and Analysis (COBRA) framework are valuable tools for analyzing the metabolic capabilities of organisms and interpreting experimental data. As the number of such reconstructions and analysis methods increases, there is a greater need for data uniformity and ease of distribution and use. Description We describe BiGG, a knowledgebase of Biochemically, Genetically and Genomically structured genom...

  1. Serological and biochemical genetic markers and their associations with psychiatric disorders : a review.

    Science.gov (United States)

    Balgir, R S

    1983-10-01

    The studies pertaining to associations of serological and biochemical genetic markers (blood groups in particular and scrum proteins and enzymes in general) with the psychiatric disorders such as psychoses in general, Schizophrenia, manic-depressive psychosis including unipolar and bipolar affective disorders and neuroses have been critically examined. The reasons for inconsistent findings of various investigators have been pointed out to assist the future researchers to overcome the previous drawbacks. Implications of associations of genetic markers with the psychiatric disorders have been discussed and future areas of research suggested. PMID:21847304

  2. Influence of boar breeds or hybrid genetic composition on semen quality and seminal plasma biochemical variables.

    Science.gov (United States)

    Žaja, Ivona Žura; Samardžija, Marko; Vince, Silvijo; Majić-Balić, Ivanka; Vilić, Marinko; Đuričić, Dražen; Milinković-Tur, Suzana

    2016-01-01

    The enzyme concentrations of seminal plasma are important for spermatozoa metabolism and function in boars. The need has arisen for introducing a biochemical evaluation of semen, along with the usual standard semen analyses. There are no data on the influence of boar breeds on the seminal plasma biochemical variables investigated in this study. Therefore, the objective was to determine the influence of breed and hybrid genetic composition of boars on semen quality and seminal plasma biochemical variables. Semen samples of 27 boars (Swedish Landrace, German Landrace, Large White, Pietrain and Pig Improvement Company hybrid-PIC-hybrid), aged between 1.5 and 3 years, were collected. After evaluation of semen quality, the seminal plasma was separated from the spermatozoa by centrifugation of semen. The seminal plasma was subjected to spectrophotometric analysis to determine alkaline phosphatase (ALP), acid phosphatase (ACP), γ-glutamyltransferase (GGT), creatine kinase (CK) and lactate dehydrogenase (LDH) and to atomic absorption spectrophotometric analysis to measure the concentration of calcium and magnesium. Conventional semen quality variables differed depending on breed and PIC-hybrid genetic composition, though these differences were typically insignificant. In the seminal plasma, significant differences were determined in enzyme activity (ALP, GGT, CK and LDH) and in calcium concentration among boars of different breeds. There are, therefore, differences in semen quality and significant differences in the seminal plasma biochemical variables among boars of different breeds and PIC-hybrid genetic composition. The data and differences in semen variables detected in the present study provide knowledge for enhancing evaluation and monitoring of boar reproductive potential, semen quality and explain the potential causes of boar infertility. PMID:26692346

  3. Genetic assessment of serological and biochemical markers in Bharia tribe of Chhindwara district of Madhya Pradesh

    Directory of Open Access Journals (Sweden)

    Chaudhary Ruchira

    2010-01-01

    Full Text Available Background: The present sero-genetic study is the first of its kind to present the baseline data of Bharia tribe of Madhya Pradesh. The main aim of this study is to provide phenotype and allele-frequency data to characterize the population genetically and to fill the void on the genetic map of Madhya Pradesh. Materials and Methods: For this, blood samples from 92 unrelated healthy individuals of Bharia tribe from Chhindwara district (Tamia block were collected. Hemolysates prepared were analyzed for two serological (A1A2BO and Rh and six biochemical (adenosine deaminase, adenylate kinase locus 1, acid phosphatase locus 1, phosphoglucomutase locus 1, esterase D and glucosephosphate isomerase parameters, following the standard electrophoretic techniques. Results: The Chi-square test for goodness of fit revealed no significant deviation between the observed and expected numbers in any of the seven genetic markers, suggesting that the tribe is in genetic equilibrium. A high incidence of B allele in A1A2BO blood group and low incidence of the A1 allele, with presence of A2 in only one individual, and a low frequency of Rh(D (Rh negative allele was observed in serological markers. Also, no rare variant was observed for biochemical markers. Conclusion: Principal Component Analysis done in order to detect the genetic affinity of Bharia tribe with other populations from the adjoining states of Madhya Pradesh based on the allele frequencies, showed a close association of Bharia with Gujarat and Rajasthan. Hence, this study has been helpful in revealing the genetic structure and affinity of Bharia tribe.

  4. Plant responses to UV and blue light: biochemical and genetic approaches

    International Nuclear Information System (INIS)

    UV and blue light control many aspects of plant growth and development. It is evident that several different photoreceptors mediate responses to UV and blue light, and there are reports of the functional and biochemical characterisation of a putative photoreceptor for phototropism and of the functional and molecular characterisation of the CRY1 photoreceptor, encoded by the Arabidopsis HY4 gene. The CRY1 photoreceptor mediates extension growth and gene expression responses to UV-A/blue light presumably through different or branching signal transduction pathways. Progress has been made in cell physiological and biochemical studies of UV/blue light signal transduction, but much remains to be done to relate candidate UV/blue signal transduction events to particular photoreceptors and responses. The application of a genetic approach in Arabidopsis has been responsible for many advances in understanding UV/blue responses, but further UV-B, UV-A and blue light response mutants need to be isolated. (author)

  5. Biochemical Genetics of Short-Season Cotton Cultivars that Express Early Maturity Without Senescence

    Institute of Scientific and Technical Information of China (English)

    Shu-Xun YU; Mei-Zhen SONG; Shu-Li FAN; Wu WANG; Ri-Hong YUAN

    2005-01-01

    The present study is aimed to investigate the mechanism of the biochemical genetic in shortseasoned cotton (Gossypium hirsutum L.) (SSC). Ten cultivars from two types of SSC were selected, five SSC with no prematuresenescence crossed with five SSC with premature senescence. The parents, F1, and F2 from the reciprocal crosses were field tested in replication in 2001 and 2002. The results indicated that the activities of protective enzymes of the antioxidant system, such as catalase (CAT), superoxide dismutase (SOD), and peroxidase (POD), were higher in the early maturing SSC with premature senescence compared with activities in the SSC parental cultivars that showed premature senescence, whereas the malondialdehyde (MDA) content in former group was lower than that in latter group. Various genetic variances and heritabilities for these biochemical traits and auxin (IAA), abscisic acid (ABA), and chlorophyll (Chl a+b) contents were also estimated. Significant additive variance for CAT, POD, ABA, and IAA existed, whereas CAT specific activity and SOD activity were largely controlled by dominant effects. Both maternal and dominant variances played equally predominant roles in the specific activity of POD and SOD, MDA, and soluble portents. The relative contribution of the various genetic components to the phenotypic variation varied in the boll-setting period.

  6. Biochemical genetic studies on genotype strains of medfly, Ceratitis capitata (Wied.)

    International Nuclear Information System (INIS)

    Four genotypes of Mediterranean fruit fly (medfly), i.e. two laboratory strains (dark and yellow pupae), genetic sexing line and wild strain were examined biochemically in larvae, pupae and adult stages by means of isoelectrophoresis to determine further genetic variations. Isozymes of alkaline phosphatase, polyphenol oxidase and esterase enzymes were chosen for study. The medfly genotypes exhibited variations in the strains, as well as the genetic sexing line according to the biological characters. In order to identify some markers to distinguish individuals of different strains it should prove necessary to compare the electrophoretic pattern mobilities of isozyme numbers and activities of the three tested enzymes. The isoenzymes were genetically different from one genotype to another and from one stage to another. These results appear to be consistent over polymorphic loci. The functional genes of alkaline phosphatase larvae were higher in band numbers and activities than those of pupae and adult extractions in all materials. No variations were found between the adult males and females of all materials except the males of the genetic sexing line, which were more active. Electrophoresis and spectrophotometer enzymatic analysis of polyphenol oxidase indicated that the larval stage was more active than the other stages. In addition, the larval polyphenol oxidase activity of the yellow pupae strain and the genetic sexing line were more active than the others. Concerning the esterases, the genes controlling the activity of isozymes were different from one strain to another according to the stages of development. The esterases band numbers were low in larvae, but a high number was found in adult males of the genetic sexing line and the females of the yellow pupae strain. The results of this work were supported by previous results of Sabrah et al., where the genic polymorphism and ontogenic variation of esterase isoenzymes in medfly collected from different geographical

  7. Genetic programming-based approach to elucidate biochemical interaction networks from data.

    Science.gov (United States)

    Kandpal, Manoj; Kalyan, Chakravarthy Mynampati; Samavedham, Lakshminarayanan

    2013-02-01

    Biochemical systems are characterised by cyclic/reversible reciprocal actions, non-linear interactions and a mixed relationship structures (linear and non-linear; static and dynamic). Deciphering the architecture of such systems using measured data to provide quantitative information regarding the nature of relationships that exist between the measured variables is a challenging proposition. Causality detection is one of the methodologies that are applied to elucidate biochemical networks from such data. Autoregressive-based modelling approach such as granger causality, partial directed coherence, directed transfer function and canonical variate analysis have been applied on different systems for deciphering such interactions, but with limited success. In this study, the authors propose a genetic programming-based causality detection (GPCD) methodology which blends evolutionary computation-based procedures along with parameter estimation methods to derive a mathematical model of the system. Application of the GPCD methodology on five data sets that contained the different challenges mentioned above indicated that GPCD performs better than the other methods in uncovering the exact structure with less false positives. On a glycolysis data set, GPCD was able to fill the 'interaction gaps' which were missed by other methods. PMID:23848052

  8. Genetic architecture, biochemical underpinnings and ecological impact of floral UV patterning.

    Science.gov (United States)

    Brock, Marcus T; Lucas, Lauren K; Anderson, Nickolas A; Rubin, Matthew J; Markelz, R J Cody; Covington, Michael F; Devisetty, Upendra K; Chapple, Clint; Maloof, Julin N; Weinig, Cynthia

    2016-03-01

    Floral attraction traits can significantly affect pollinator visitation patterns, but adaptive evolution of these traits may be constrained by correlations with other traits. In some cases, molecular pathways contributing to floral attraction are well characterized, offering the opportunity to explore loci potentially underlying variation among individuals. Here, we quantify the range of variation in floral UV patterning (i.e. UV 'bulls-eye nectar guides) among crop and wild accessions of Brassica rapa. We then use experimental crosses to examine the genetic architecture, candidate loci and biochemical underpinnings of this patterning as well as phenotypic manipulations to test the ecological impact. We find qualitative variation in UV patterning between wild (commonly lacking UV patterns) and crop (commonly exhibiting UV patterns) accessions. Similar to the majority of crops, recombinant inbred lines (RILs) derived from an oilseed crop × WI fast-plant® cross exhibit UV patterns, the size of which varies extensively among genotypes. In RILs, we further observe strong statistical-genetic and QTL correlations within petal morphological traits and within measurements of petal UV patterning; however, correlations between morphology and UV patterning are weak or nonsignificant, suggesting that UV patterning is regulated and may evolve independently of overall petal size. HPLC analyses reveal a high concentration of sinapoyl glucose in UV-absorbing petal regions, which, in concert with physical locations of UV-trait QTLs, suggest a regulatory and structural gene as candidates underlying observed quantitative variation. Finally, insects prefer flowers with UV bulls-eye patterns over those that lack patterns, validating the importance of UV patterning in pollen-limited populations of B. rapa. PMID:26800256

  9. Genetic Variability among Lucerne Cultivars Based on Biochemical (SDS-PAGE) and Morphological Markers

    Science.gov (United States)

    Farshadfar, M.; Farshadfar, E.

    The present research was conducted to determine the genetic variability of 18 Lucerne cultivars, based on morphological and biochemical markers. The traits studied were plant height, tiller number, biomass, dry yield, dry yield/biomass, dry leaf/dry yield, macro and micro elements, crude protein, dry matter, crude fiber and ash percentage and SDS- PAGE in seed and leaf samples. Field experiments included 18 plots of two meter rows. Data based on morphological, chemical and SDS-PAGE markers were analyzed using SPSSWIN soft ware and the multivariate statistical procedures: cluster analysis (UPGMA), principal component. Analysis of analysis of variance and mean comparison for morphological traits reflected significant differences among genotypes. Genotype 13 and 15 had the greatest values for most traits. The Genotypic Coefficient of Variation (GCV), Phenotypic Coefficient of Variation (PCV) and Heritability (Hb) parameters for different characters raged from 12.49 to 26.58% for PCV, hence the GCV ranged from 6.84 to 18.84%. The greatest value of Hb was 0.94 for stem number. Lucerne genotypes could be classified, based on morphological traits, into four clusters and 94% of the variance among the genotypes was explained by two PCAs: Based on chemical traits they were classified into five groups and 73.492% of variance was explained by four principal components: Dry matter, protein, fiber, P, K, Na, Mg and Zn had higher variance. Genotypes based on the SDS-PAGE patterns all genotypes were classified into three clusters. The greatest genetic distance was between cultivar 10 and others, therefore they would be suitable parent in a breeding program.

  10. Environmental, biochemical and genetic drivers of DMSP degradation and DMS production in the Sargasso Sea.

    Science.gov (United States)

    Levine, Naomi Marcil; Varaljay, Vanessa A; Toole, Dierdre A; Dacey, John W H; Doney, Scott C; Moran, Mary Ann

    2012-05-01

    Dimethylsulfide (DMS) is a climatically relevant trace gas produced and cycled by the surface ocean food web. Mechanisms driving intraannual variability in DMS production and dimethylsulfoniopropionate (DMSP) degradation in open-ocean, oligotrophic regions were investigated during a 10-month time-series at the Bermuda Atlantic Time-series Study site in the Sargasso Sea. Abundance and transcription of bacterial DMSP degradation genes, DMSP lyase enzyme activity, and DMS and DMSP concentrations, consumption rates and production rates were quantified over time and depth. This interdisciplinary data set was used to test current hypotheses of the role of light and carbon supply in regulating upper-ocean sulfur cycling. Findings supported UV-A-dependent phytoplankton DMS production. Bacterial DMSP degraders may also contribute significantly to DMS production when temperatures are elevated and UV-A dose is moderate, but may favour DMSP demethylation under low UV-A doses. Three groups of bacterial DMSP degraders with distinct intraannual variability were identified and niche differentiation was indicated. The combination of genetic and biochemical data suggest a modified 'bacterial switch' hypothesis where the prevalence of different bacterial DMSP degradation pathways is regulated by a complex set of factors including carbon supply, temperature and UV-A dose. PMID:22324779

  11. BiGG: a Biochemical Genetic and Genomic knowledgebase of large scale metabolic reconstructions

    Directory of Open Access Journals (Sweden)

    Conrad Tom M

    2010-04-01

    Full Text Available Abstract Background Genome-scale metabolic reconstructions under the Constraint Based Reconstruction and Analysis (COBRA framework are valuable tools for analyzing the metabolic capabilities of organisms and interpreting experimental data. As the number of such reconstructions and analysis methods increases, there is a greater need for data uniformity and ease of distribution and use. Description We describe BiGG, a knowledgebase of Biochemically, Genetically and Genomically structured genome-scale metabolic network reconstructions. BiGG integrates several published genome-scale metabolic networks into one resource with standard nomenclature which allows components to be compared across different organisms. BiGG can be used to browse model content, visualize metabolic pathway maps, and export SBML files of the models for further analysis by external software packages. Users may follow links from BiGG to several external databases to obtain additional information on genes, proteins, reactions, metabolites and citations of interest. Conclusions BiGG addresses a need in the systems biology community to have access to high quality curated metabolic models and reconstructions. It is freely available for academic use at http://bigg.ucsd.edu.

  12. Streptococcus salivarius urease: genetic and biochemical characterization and expression in a dental plaque streptococcus.

    Science.gov (United States)

    Chen, Y Y; Clancy, K A; Burne, R A

    1996-01-01

    The hydrolysis of urea by urease enzyme of oral bacteria is believed to have a major impact on oral microbial ecology and to be intimately involved in oral health and diseases. To begin to understand the biochemistry and genetics of oral ureolysis, a study of the urease of Streptococcus salivarius, a highly ureolytic organism which is present in large numbers on the soft tissues of the oral cavity, has been initiated. By using as a probe a 0.6-kpb internal fragment of the S. salivarius 57.I ureC gene, two clones from subgenomic libraries of S. salivarius 57.I in an Escherichia coli plasmid vector were identified. Nucleotide sequence analysis revealed the presence of one partial and six complete open reading frames which were most homologous to ureIAB-CEFGD of other ureolytic bacteria. Plasmid clones were generated to construct a complete gene cluster and used to transform E. coli and Streptococcus gordonii DL1, a nonureolytic, dental plaque microorganism. The recombinant organisms expressed high levels of urease activity when the growth medium was supplemented with NiCl2. The urease enzyme was purified from E. coli, and its biochemical properties were compared with those of the urease produced by S. salivarius and those of the urease produced by S. gordonii carrying the plasmid-borne ure genes. In all cases, the enzyme had a Km of 3.5 to 4.1 mM, a pH optimum near 7.0, and a temperature optimum near 60 degrees C. S. gordonii carrying the urease genes was then demonstrated to have a significant capacity to temper glycolytic acidification in vitro in the presence of concentrations of urea commonly found in the oral cavity. The ability to genetically engineer plaque bacteria that can modulate environmental pH through ureolysis will open the way to using recombinant ureolytic organisms to test hypotheses regarding the role of oral ureolysis in dental caries, calculus formation, and periodontal diseases. Such recombinant organisms may eventually prove useful for

  13. Genetic and Biochemical Aspects of Ectoine Biosynthesis in Moderately Halophilic and Halotolerant Methylotrophic Bacteria

    Directory of Open Access Journals (Sweden)

    Valentina N. Khmelenina

    2010-01-01

    Full Text Available Problem statement: The cyclic imino acid ectoine is a widely distributed compatible solute synthesizing by halophilic and halotolerant bacteria to prevent osmotic stress at high external salinity. This water-keeping compound is used in a variety of commercial cosmetics and therapeutic products. Approach: Development of integrated, predictive functional model of the metabolic and regulatory netwoks of ectoine-producing microbes is an active area of research. In this article we present a brief overview of the current knowledge on genetic and biochemical aspects of ectoine biosynthesis in aerobic halophilic and halotolerant bacteria utilizing C1 compounds (methylotrophs. Although enzymology and genetics of the ectoine biosynthesis in methylotrophs are similar to other halophilic bacteria, the regulatory patterns are different. In all methylotrophic bacteria studied, the genes coding for specific enzymes of ectoine biosynthesis: Diaminobutyric Acid (DABA aminotransferase (EctB, DABA acetyltransferase (EctA and ectoine synthase (EctC are organized into ectABC or ectABC-ask, whith is linked to gene encoding Aspartokinase isozyme (Ask. Results: Remarkably, the methylotrophic bacteria possessing a four-gene cluster showed higher halotolerance and accumulated more ectoine than bacteria with a cluster composed of three genes. The DABA acetyltransferases from three methylotrophic species have been comparatively characterized. The properties of the enzymes correlate with eco-physiological and metabolic particularities of the host. Some elements of the regulatory system governing the ectoine pathway operation have been revealed in both methane and methanol utilizing bacteria. In Methylomicrobium alcaliphilum transcription of the ectABC-ask operon is initiated from two σ70-like promoters and controlled by the EctR, a MarR-type negative regulator. EctR orthologs were identified in genomes of several heterotrophic halophilic bacteria. Here

  14. Changes in composition of cuticular biochemicals of the facultatively polygynous ant Petalomyrmex phylax during range expansion in Cameroon with respect to social, spatial and genetic variation

    OpenAIRE

    Dalecky, Ambroise; Renucci, M.; Tirard, A.; Debout, G.; Roux, M.; Kjellberg, F.; Provost, E.

    2007-01-01

    In social insects, biochemicals found at the surface of the cuticle are involved in the recognition process and in protection against desiccation and pathogens. However, the relative contribution of evolutionary forces in shaping diversity of these biochemicals remains largely unresolved in ants. We determined the composition of epicuticular biochemicals for workers sampled in 12 populations of the ant Petalomyrmex phylax from Cameroon. Genetic variation at 12 microsatellite markers was used ...

  15. Biochemical and molecular study of genetic stability in tomatoes plants rom seeds treated with low doses of X-ray

    International Nuclear Information System (INIS)

    For the extensive agricultural exploitation of vegetable radio stimulation, it is indispensable to study the genetic stability of treated varieties, having in mind X ray potentialities of inducing not only physiological but genetic changes as well. Therefore, biochemical and molecular markers were employed in tomato plants derived from irradiated seeds at low doses of X rays. For the biochemical analysis, peroxidases, polyphenoloxidases and dismutase superoxide isoenzymes were determined whereas the Random Amplification of Polymorphic DNA (RAPD) method based on Polymerase Chain Reaction (PCR) was used for the molecular analysis. When comparing the electrophoretic patterns from the control and irradiated treatments applied to the three enzymatic systems, there were not appreciable variations on the number of bands and their intensities, indicating the little variability induced in these systems by the low X ray doses. Also, from the molecular viewpoint, electrophoretic patterns showed a clear amplification of DNA by generating a total of 155 bands in all varieties studied. This molecular marker showed a high monomorphism independently of the treatments applied, with values ranging between 86 and 97 %, indicating that irradiation at low doses did not induce an important genetic variability and confirming its possible practical usefulness for stimulating some physiological processes without causing. (Author)

  16. Changes in composition of cuticular biochemicals of the facultatively polygynous ant Petalomyrmex phylax during range expansion in Cameroon with respect to social, spatial and genetic variation.

    Science.gov (United States)

    Dalecky, Ambroise; Renucci, Marielle; Tirard, Alain; Debout, Gabriel; Roux, Maurice; Kjellberg, Finn; Provost, Erick

    2007-09-01

    In social insects, biochemicals found at the surface of the cuticle are involved in the recognition process and in protection against desiccation and pathogens. However, the relative contribution of evolutionary forces in shaping diversity of these biochemicals remains largely unresolved in ants. We determined the composition of epicuticular biochemicals for workers sampled in 12 populations of the ant Petalomyrmex phylax from Cameroon. Genetic variation at 12 microsatellite markers was used to infer population history and to provide null expectations under the neutrality hypothesis. Genetic data suggest a recent southward range expansion of this ant species. Furthermore, there is a decline southward in the numbers of queens present in mature colonies. Here, we contrast the pattern of biochemical variation against genetic, social and spatial parameters. We thus provide the first estimates of the relative contribution of neutral and selective processes on variation of ant cuticular profile. Populations in migration-drift disequilibrium showed reduction of within-population variation for genetic markers as well as for cuticular profiles. In these populations, the cuticular profile became biased towards a limited number of high molecular weight molecules. Within- and among-population biochemical variation was explained by both genetic and social variation and by the spatial distribution of populations. We therefore propose that during range expansion of P. phylax, the composition of epicuticular compounds has been affected by a combination of neutral processes - genetic drift and spatially limited dispersal - and spatially varying selection, social organization and environmental effects. PMID:17850545

  17. Biochemical and genetic characterization of the multidrug resistance phenotype in murine macrophage-like J774.2 cells.

    Science.gov (United States)

    Kirschner, L S; Greenberger, L M; Hsu, S I; Yang, C P; Cohen, D; Piekarz, R L; Castillo, G; Han, E K; Yu, L J; Horwitz, S B

    1992-01-01

    The development of multidrug resistance (MDR) in malignant tumors is a major obstacle to the treatment of many cancers. MDR sublines have been derived from the J774.2 mouse macrophage-like cell line and utilized to characterize the phenotype at the biochemical and genetic level. Two isoforms of the drug resistance-associated P-glycoprotein are present and distinguishable both electrophoretically and pharmacologically. Genetic analysis has revealed the presence of a three-member gene family; expression of two of these genes, mdr1a and mdr1b, is associated with MDR whereas the expression of the third, mdr2, is not. Studies of these three genes have revealed similarities and differences in the manner in which they are regulated at the transcriptional level, and have suggested that post-transcriptional effects may also be important. PMID:1346495

  18. Heritability and genetic advance studies for biochemical traits in F2-3 introgressed families of Brassica

    International Nuclear Information System (INIS)

    Higher heritability estimates along with high genetic advance values are effective in envisaging gain under selection in developing genotypes. The objective of the present study was to evaluate variability, heritability and genetic advance in 10 interspecific F2-3 families of Brassica species (B. napus * B. juncea, B. napus * B. rapa). These families were studied for heterospecific introgression of biochemical traits. Low to high heritability estimates were recorded for seed quality traits. Considerable variations within F2-3 families were observed for biochemical traits. Most of the F2-3 families for oil content and erucic showed moderate to high heritability indicating the slightest influence of environment thus modification of trait by selection would be more effective. Among F2-3 introgressed families Bn-510 x Bj-109 produced high oil i.e., 49.5% while Bn-532 x Br-118 (24.4%), Bn-533 x Bj-109 (24.1%) and high protein percentage in terms of mean performance. In the present research, individual segregating progenies of interspecific cross populations i.e., which possessed combination of desirable traits, were identified which could be incorporated in the future Breeding programs and it may facilitate varietal development. (author)

  19. Biochemical, mechanical, and spectroscopic analyses of genetically engineered flax fibers producing bioplastic (poly-beta-hydroxybutyrate).

    Science.gov (United States)

    Wróbel-Kwiatkowska, Magdalena; Skórkowska-Telichowska, Katarzyna; Dymińska, Lucyna; Maczka, Mirosław; Hanuza, Jerzy; Szopa, Jan

    2009-01-01

    The interest in biofibers has grown in recent years due to their expanding range of applications in fields as diverse as biomedical science and the automotive industry. Their low production costs, biodegradability, physical properties, and perceived eco-friendliness allow for their extensive use as composite components, a role in which they could replace petroleum-based synthetic polymers. We performed biochemical, mechanical, and structural analyses of flax stems and fibers derived from field-grown transgenic flax enriched with PHB (poly-beta-hydroxybutyrate). The analyses of the plant stems revealed an increase in the cellulose content and a decrease in the lignin and pectin contents relative to the control plants. However, the contents of the fibers' major components (cellulose, lignin, pectin) remain unchanged. An FT-IR study confirmed the results of the biochemical analyses of the flax fibers. However, the arrangement of the cellulose polymer in the transgenic fibers differed from that in the control, and a significant increase in the number of hydrogen bonds was detected. The mechanical properties of the transgenic flax stems were significantly improved, reflecting the cellulose content increase. However, the mechanical properties of the fibers did not change in comparison with the control, with the exception of the fibers from transgenic line M13. The generated transgenic flax plants, which produce both components of the flax/PHB composites (i.e., fibers and thermoplastic matrix in the same plant organ) are a source of an attractive and ecologically safe material for industry and medicine. PMID:19572280

  20. Genetic and biochemical diversity of Paenibacillus larvae isolated from Tunisian infected honey bee broods.

    Science.gov (United States)

    Hamdi, Chadlia; Essanaa, Jihène; Sansonno, Luigi; Crotti, Elena; Abdi, Khaoula; Barbouche, Naima; Balloi, Annalisa; Gonella, Elena; Alma, Alberto; Daffonchio, Daniele; Boudabous, Abdellatif; Cherif, Ameur

    2013-01-01

    Paenibacillus larvae is the causative agent of American foulbrood (AFB), a virulent disease of honeybee (Apis mellifera) larvae. In Tunisia, AFB has been detected in many beekeeping areas, where it causes important economic losses, but nothing is known about the diversity of the causing agent. Seventy-five isolates of P. larvae, identified by biochemical tests and 16S rRNA gene sequencing, were obtained from fifteen contaminated broods showing typical AFB symptoms, collected in different locations in the northern part of the country. Using BOX-PCR, a distinct profile of P. larvae with respect to related Paenibacillus species was detected which may be useful for its identification. Some P. larvae-specific bands represented novel potential molecular markers for the species. BOX-PCR fingerprints indicated a relatively high intraspecific diversity among the isolates not described previously with several molecular polymorphisms identifying six genotypes on polyacrylamide gel. Polymorphisms were also detected in several biochemical characters (indol production, nitrate reduction, and methyl red and oxidase tests). Contrary to the relatively high intraspecies molecular and phenotypic diversity, the in vivo virulence of three selected P. larvae genotypes did not differ significantly, suggesting that the genotypic/phenotypic differences are neutral or related to ecological aspects other than virulence. PMID:24073406

  1. Genetic and biochemical evaluation of natural rubber from Eastern Washington prickly lettuce (Lactuca serriola L.).

    Science.gov (United States)

    Bell, Jared L; Burke, Ian C; Neff, Michael M

    2015-01-21

    Alternative sources of natural rubber are of importance due to economic, biological, and political threats that could diminish supplies of this resource. Prickly lettuce (Lactuca serriola L.) synthesizes long-chain natural rubber and was studied to determine underlying genetic and phenotypic characteristics of rubber biosynthesis. Genotypic and phenotypic analysis of an F2 segregating population using EST-SSR markers led to the discovery of genetic regions linked to natural rubber production. Interval mapping (IM) and multiple QTL mapping (MQM) identified several QTL in the mapping population that had significance based on LOD score thresholds. The discovered QTL and the corresponding local markers are genetic resources for understanding rubber biosynthesis in prickly lettuce and could be used in marker-assisted selection (MAS) breeding. Prickly lettuce is an excellent candidate for elucidating the rubber synthesis mechanism and has potential as a crop plant for rubber production. PMID:25513853

  2. Some Genetic, Biochemical and Morphological Analysis of Selected Powdery Mildew Strains at the Beginning of Sporulation on Barley

    Directory of Open Access Journals (Sweden)

    ELENA HLINKOVA

    2010-06-01

    Full Text Available The present work analyzes some characteristics of four powdery mildew pathotypes, RU-3, Sk-5/11, Sk-12/1 and A-4/0, selected from the wild strains of BGH from Central European regions. Our results showed that the studied BGH strains differ in the virulence and avirulence genes in their genomes, in prolongation of their asexual phase of the growth and also in morphological and biochemical characteristics. Protein analysis confirmed the genetic differences between the studied powdery mildew pathotypes. Abundant acid glucanases in all studied BHG pathotypes were found between molecular weights Mr ? 25-35 kDa and 11-22kDa. Races RU-3 and A-4/0 also contained low molecular weight glucanases with Mr ? 9-14kDa. Immunological analyses showed higher specificity of pathogen chitinases to plant antibody compared to barley cultivars carrying different dominant/semidominant resistance genes. Rabbit antibody prepared against the plant interacellular acid chitinase Chi 14.4 (PR-4 gave the positive signal for two powdery mildew races, Sk-5/11 and A-4/0. These pathotypes were more aggressive compared to races Sk-12/1 and RU-3. Their genomes contained more virulence genes and asexual phase of the growth was shorter. Ultrastructural analyses of BGH body in the sensitive barley cultivar cells, showed presence of virus like particles, which probably play role by the synthesis of some PR-proteins with hydrolytic function. Genetic and biochemical analyses indicate that some powdery mildew pathotypes contain genes in their genome which are orthological to those in their hosts, which makes them suitable subjects for the future as a source of new resistance genes for plant breeding.

  3. [Biosynthesis of secondary metabolites in methanotrophs: biochemical and genetic aspects (review)].

    Science.gov (United States)

    Khmelenina, V N; Rozova, N; But, C Yu; Mustakhimov, I I; Reshetnikov, A S; Beschastnyi, A P; Trotsenko, Yu A

    2015-01-01

    The review summarizes the data on the metabolic potential of methanotrophs as producers of biopolymers, alternative biofuel, bioprotectants, and other secondary metabolites. The work provides the examples of modern 'omic' technologies used for genetic engineering of efficient methanotrophic producers. PMID:26027349

  4. Genetic, Biochemical and Environmental Factors Associated with Pregnancy Outcomes in Newborns from the Czech Republic

    Czech Academy of Sciences Publication Activity Database

    Rössner ml., Pavel; Tabashidze, Nana; Dostál, Miroslav; Nováková, Zuzana; Chvátalová, Irena; Špátová, Milada; Šrám, Radim

    2011-01-01

    Roč. 119, č. 2 (2011), s. 265-271. ISSN 0091-6765 R&D Projects: GA MŽP(CZ) SP/1B3/50/07 Institutional research plan: CEZ:AV0Z50390512 Keywords : air pollution * biomarkers * genetic polymorphisms Subject RIV: DN - Health Impact of the Environment Quality Impact factor: 7.036, year: 2011

  5. Morphological, biochemical and genetic influence of mutagen treatments on medicinal plant tissue cultures

    International Nuclear Information System (INIS)

    Gamma rays and/or alkylant agents have been applied on callus tissue, young regenerants and cell suspension in order to establish their effect on morphogenesis, regeneration ability and biosynthetic potential. Growth dynamics, morpho-anatomic variables, secondary metabolite production, cell cytogenetics, enzyme specific activities, isoperoxidase and isoesterase patterns were analyzed in relation to the morphogenetic response of Atropa belladonna, Datura innoxia, Lavandula angustifolia, Chamomilla recutita, Digitalis lanata and Vinca minor tissue cultures. The effects of gamma-ray doses varied from one species to another; 10 to 20 Gy were generally able to stimulate growth and plant regeneration (via organogenesis and somatic embryogenesis), while 10 to 50 Gy enhanced secondary metabolite biosynthesis both in callus and cell suspension culture. Semnificative increase of secondary metabolite production was obtained when treatments with EMS (0.1-0.2%) have been applied to young regenerants. Many differences in biological features and biochemical behaviour were registered 20 days and one year, respectively, after treatment. (author)

  6. Genetic, physiological and biochemical characterization of multiple methanol methyltransferase isozymes in Methanosarcina acetivorans C2A.

    Science.gov (United States)

    Pritchett, Matthew A; Metcalf, William W

    2005-06-01

    Biochemical evidence suggests that methanol catabolism in Methanosarcina species requires the concerted effort of methanol:5-hydroxybenzimidazolylcobamide methyltransferase (MtaB), a corrinoid-containing methyl-accepting protein (MtaC) and Co-methyl-5-hydroxybenzimidazolylcobamide:2-mercapto-ethanesulphonic acid methyltransferase (MtaA). Here we show that Methanosarcina acetivorans possesses three operons encoding putative methanol-specific MtaB and corrinoid proteins: mtaCB1, mtaCB2 and mtaCB3. Deletion mutants lacking the three operons, in all possible combinations, were constructed and characterized. Strains deleted for any two of the operons grew on methanol, whereas strains lacking all three did not. Therefore, each operon encodes a bona fide methanol-utilizing MtaB/corrinoid protein pair. Most of the mutants were similar to the wild-type strain, with the exception of the DeltamtaCB1 DeltamtaCB2 double mutant, which grew more slowly and had reduced cell yields on methanol medium. However, all mutants displayed significantly longer lag times when switching from growth on trimethylamine to growth on methanol. This indicates that all three operons are required for wild-type growth on methanol and suggests that each operon has a distinct role in the metabolism of this substrate. The combined methanol:CoM methyltransferase activity of strains carrying only mtaCB1 was twofold higher than strains carrying only mtaCB2 and fourfold higher than strains carrying only mtaCB3. Interestingly, the presence of the mtaCB2 and mtaCB3 operons, in addition to the mtaCB1 operon, did not increase the overall methyltransferase activity, suggesting that these strains may be limited by MtaA availability. All deletion mutants were unaffected with respect to growth on trimethylamine and acetate corroborating biochemical evidence indicating that each methanogenic substrate has specific methyltransfer enzymes. PMID:15882413

  7. Genetic Engineering: A Promising Tool to Engender Physiological, Biochemical, and Molecular Stress Resilience in Green Microalgae

    OpenAIRE

    Guihéneuf, Freddy; Khan, Asif; Tran, Lam-Son P.

    2016-01-01

    As we march into the 21st century, the prevailing scenario of depleting energy resources, global warming and ever increasing issues of human health and food security will quadruple. In this context, genetic and metabolic engineering of green microalgae complete the quest toward a continuum of environmentally clean fuel and food production. Evolutionarily related, but unlike land plants, microalgae need nominal land or water, and are best described as unicellular autotrophs using light energy ...

  8. Genetic engineering: a promising tool to engender physiological, biochemical and molecular stress resilience in green microalgae

    OpenAIRE

    Freddy eGuiheneuf; Asif eKhan; Lam-Son ePhan Tran

    2016-01-01

    As we march into the 21st century, the prevailing scenario of depleting energy resources, global warming and ever increasing issues of human health and food security will quadruple. In this context, genetic and metabolic engineering of green microalgae complete the quest towards a continuum of environmentally clean fuel and food production. Evolutionarily related, but unlike land plants, microalgae need nominal land or water, and are best described as unicellular autotrophs using light energy...

  9. Attention-deficit hyperactivity disorder in adults: A systematic review and meta-analysis of genetic, pharmacogenetic and biochemical studies.

    Science.gov (United States)

    Bonvicini, C; Faraone, S V; Scassellati, C

    2016-07-01

    The adult form of attention-deficit/hyperactivity disorder has a prevalence of up to 5% and is the most severe long-term outcome of this common disorder. Family studies in clinical samples as well as twin studies suggest a familial liability and consequently different genes were investigated in association studies. Pharmacotherapy with methylphenidate (MPH) seems to be the first-line treatment of choice in adults with attention-deficit hyperactive disorder (ADHD) and some studies were conducted on the genes influencing the response to this drug. Finally some peripheral biomarkers were identified in ADHD adult patients. We believe this work is the first systematic review and meta-analysis of candidate gene association studies, pharmacogenetic and biochemical (metabolomics) studies performed in adults with ADHD to identify potential genetic, predictive and peripheral markers linked specifically to ADHD in adults. After screening 5129 records, we selected 87 studies of which 61 were available for candidate gene association studies, 5 for pharmacogenetics and 21 for biochemical studies. Of these, 15 genetic, 2 pharmacogenetic and 6 biochemical studies were included in the meta-analyses. We obtained an association between adult ADHD and the gene BAIAP2 (brain-specific angiogenesis inhibitor 1-associated protein 2), even after Bonferroni correction, with any heterogeneity in effect size and no publication bias. If we did not apply the Bonferroni correction, a trend was found for the carriers allele 9R of dopamine transporter SLC6A3 40 bp variable tandem repeat polymorphism (VNTR) and for 6/6 homozygotes of SLC6A3 30 bp VNTR. Negative results were obtained for the 9-6 haplotype, the dopamine receptor DRD4 48 bp VNTR, and the enzyme COMT SNP rs4680. Concerning pharmacogenetic studies, no association was found for the SLC6A3 40 bp and response to MPH with only two studies selected. For the metabolomics studies, no differences between ADHD adults and controls were

  10. Species identification of enterococci by biochemical test and molecular-genetic methods

    Directory of Open Access Journals (Sweden)

    Monika Lavová

    2014-02-01

    Full Text Available The aim of this study was comparison different methods of species identification of enterococci. One hundred and fifty three suspected colonies were isolated from milk and dairy products (cheeses from cow´s, ewe´s and goat´s milk. On the bases of their growth on BEA agar, microscopic characteristic, results of Gram staining, catalase test and PYRAtest was thirty four isolates assigned to the genus Enterococcus. These isolates were identified by commercial biochemical test EN-COCCUS. 52.9% of them were included in species E. faecalis, 29.4% in E. faecium, 14.7% in E. durans and 2.9% in E. group III. This group includes 3 species: E. durans, E. hirae, E. faecalis asaccharolytic var. Then 16S rRNA sequencing nucleotide of all isolates was realized. Results of sequencing were compared with NCBI database. Only 14.7% of isolates were in 100% accordance. One from them was species E. durans and others were designated as E. faecium. For 20.6% of detected isolates was in accordance with more reference strains. Other isolates were identical with reference strain on 99%. For verification of all results species-specific PCR was used and 52.9% isolates were identified as species E. faecalis, 32.4% as E. faecium and 14.7% as E. durans. Strains belonging to the species E. faecalis were identified the most reliable by all used methods.

  11. Biochemical and genetic characterization of arazyme, an extracellular metalloprotease produced from Serratia proteamaculans HY-3.

    Science.gov (United States)

    Kwak, Jangyul; Lee, Kieun; Shin, Dong-Ha; Maeng, Jin-Soo; Park, Doo-Sang; Oh, Hyun Woo; Son, Kwang-Hee; Bae, Kyung-Sook; Park, Ho-Yong

    2007-05-01

    Serratia proteamaculans HY-3 isolated from the digestive tract of a spider produces an extracellular protease named arazyme, with an estimated molecular mass of 51.5 kDa. The purified enzyme was characterized as having high activities at wide pH and temperature ranges. We further characterized biochemical features of the enzymatic reactions under various reaction conditions. The protease efficiently hydrolyzed a broad range of protein substrates including albumin, keratin, and collagen. The dependence of enzymatic activities on the presence of metal ions such as calcium and zinc indicated that the enzyme is a metalloprotease, together with the previous observation that the proteolytic activity of the enzyme was not inhibited by aspartate, cysteine, or serine protease inhibitors, but strongly inhibited by 1,10-phenanthroline and EDTA. The araA gene encoding the exoprotease was isolated as a 5.6 kb BamHl fragment after PCR amplification using degenerate primers and subsequent Southern hybridization. The nucleotide sequence revealed that the deduced amino acid sequences shared extensive similarity with those of the serralysin family of metalloproteases from other enteric bacteria. A gene (inh) encoding a putative protease inhibitor was also identified immediately adjacent to the araA structural gene. PMID:18051297

  12. Development of enhanced radioprotectors - Biochemical and molecular genetical approaches on the radioprotective mechanism of natural products

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jeong Hee; Lee, Eun Ju; Hong, Jung A [Kyunghee University, Seoul (Korea)

    2000-04-01

    To identify radio-protective agent candidate among medicinal plants and to elucidate the mechanism of action of the candidate material by using modern biochemical and molecular biological methods, we screened radio-protective activity among 48 medicinal plants. Seven samples showed above 20% protective activities against oxidative cell damage: Euryale ferox, Glycyrrhiza uralensis, Salvia miltiorrhiza, Eucomia ulmoides, Paeonia suffruticosa, Spirodela polyrrhiza, and Nelumbo nucifera. We also screened for oxidative stress sensitizing activity among other 51 medicinal plants. Among those samples, 11 samples showed good sensitizing effect; Melia azedarach, Agastache rugosa, Catalpa ovata, Prunus persica, Sinomenium acutum, Pulsatilla koreana, Oldenlandia diffusa, Anthriscus sylvestris, Schizandra chinensis, Gleditsia sinensis, and Cridium officinale. We also reported the radio-protective effect of DTT. The treatment of DTT increased cell survival after gamma-irradiation, decreased in the frequencies of micronucleus, and reduction in DNA fragmentation and apoptotic cells. Induction of apoptosis after UV-C irradiation was revealed by the changes in the relative cell death, increase in the relative amount of apoptotic cells, and the induction of DNA fragmentation. 165 refs., 9 figs., 8 tabs. (Author)

  13. Genetic engineering: a promising tool to engender physiological, biochemical and molecular stress resilience in green microalgae

    Directory of Open Access Journals (Sweden)

    Freddy eGuiheneuf

    2016-03-01

    Full Text Available As we march into the 21st century, the prevailing scenario of depleting energy resources, global warming and ever increasing issues of human health and food security will quadruple. In this context, genetic and metabolic engineering of green microalgae complete the quest towards a continuum of environmentally clean fuel and food production. Evolutionarily related, but unlike land plants, microalgae need nominal land or water, and are best described as unicellular autotrophs using light energy to fix atmospheric CO2 into algal biomass, mitigating fossil CO2 pollution in the process. Remarkably, a feature innate to most microalgae is synthesis and accumulation of lipids (60–65% of dry weight, carbohydrates and secondary metabolites like pigments and vitamins, especially when grown under abiotic stress conditions. Particularly fruitful, such an application of abiotic stress factors like nitrogen starvation , salinity, heat shock etc. can be used in a biorefinery concept for production of multiple valuable products. The focus of this mini-review underlies metabolic reorientation practices and tolerance mechanisms as applied to green microalgae under specific stress stimuli for a sustainable pollution-free future. Moreover, we entail current progress on genetic engineering as a promising tool to grasp adaptive processes for improving strains with potential biotechnological interests.

  14. Genetic Engineering: A Promising Tool to Engender Physiological, Biochemical, and Molecular Stress Resilience in Green Microalgae.

    Science.gov (United States)

    Guihéneuf, Freddy; Khan, Asif; Tran, Lam-Son P

    2016-01-01

    As we march into the 21st century, the prevailing scenario of depleting energy resources, global warming and ever increasing issues of human health and food security will quadruple. In this context, genetic and metabolic engineering of green microalgae complete the quest toward a continuum of environmentally clean fuel and food production. Evolutionarily related, but unlike land plants, microalgae need nominal land or water, and are best described as unicellular autotrophs using light energy to fix atmospheric carbon dioxide (CO2) into algal biomass, mitigating fossil CO2 pollution in the process. Remarkably, a feature innate to most microalgae is synthesis and accumulation of lipids (60-65% of dry weight), carbohydrates and secondary metabolites like pigments and vitamins, especially when grown under abiotic stress conditions. Particularly fruitful, such an application of abiotic stress factors such as nitrogen starvation, salinity, heat shock, etc., can be used in a biorefinery concept for production of multiple valuable products. The focus of this mini-review underlies metabolic reorientation practices and tolerance mechanisms as applied to green microalgae under specific stress stimuli for a sustainable pollution-free future. Moreover, we entail current progress on genetic engineering as a promising tool to grasp adaptive processes for improving strains with potential biotechnological interests. PMID:27066043

  15. Genetic Engineering: A Promising Tool to Engender Physiological, Biochemical, and Molecular Stress Resilience in Green Microalgae

    Science.gov (United States)

    Guihéneuf, Freddy; Khan, Asif; Tran, Lam-Son P.

    2016-01-01

    As we march into the 21st century, the prevailing scenario of depleting energy resources, global warming and ever increasing issues of human health and food security will quadruple. In this context, genetic and metabolic engineering of green microalgae complete the quest toward a continuum of environmentally clean fuel and food production. Evolutionarily related, but unlike land plants, microalgae need nominal land or water, and are best described as unicellular autotrophs using light energy to fix atmospheric carbon dioxide (CO2) into algal biomass, mitigating fossil CO2 pollution in the process. Remarkably, a feature innate to most microalgae is synthesis and accumulation of lipids (60–65% of dry weight), carbohydrates and secondary metabolites like pigments and vitamins, especially when grown under abiotic stress conditions. Particularly fruitful, such an application of abiotic stress factors such as nitrogen starvation, salinity, heat shock, etc., can be used in a biorefinery concept for production of multiple valuable products. The focus of this mini-review underlies metabolic reorientation practices and tolerance mechanisms as applied to green microalgae under specific stress stimuli for a sustainable pollution-free future. Moreover, we entail current progress on genetic engineering as a promising tool to grasp adaptive processes for improving strains with potential biotechnological interests. PMID:27066043

  16. Dalmatian Sage (Salvia officinalis L.: A Review of Biochemical Contents, Medical Properties and Genetic Diversity

    Directory of Open Access Journals (Sweden)

    Martina Grdiša

    2015-11-01

    Full Text Available Dalmatian sage (Salvia officinalis L. represents one of the most significant medicinal autochthonous species in flora of eastern Adriatic coast and islands. It is evergreen outcrossing perennial subshrub with short woody stems that branch extensively and violet flowers. Apart from being native to Mediterranean karst of west Balkan and Apenine peninsula it is cultivated in numerous countries worldwide with Mediterranean and temperate continental climate. From the earliest times it has been used in traditional medicine in healing gingiva, mouth cavity and the sore throat, against bacterial and fungal infections, for wound treatment, memory enhancement, for treating common cold, against sweating, stomach inflammation, ulcer formation, etc. Its essential oil has also been used in preservation of food and as spice as it gives both specific aroma and promotes digestion of food. The essential oil is extremely complex mixture of different active ingredients; however, the thujones and camphor are the dominant compounds and are the parameter by which S. officinalis is distinguished from other Salvia species. The great variability of essential oil composition and yield has been detected depending on various factors such as genotype, environmental conditions, phonological stage, plant parts used for the extraction of essential oil and drying procedure. Molecular genetic analysis of S. officinalis is still limited and comprises the use of RAPD markers, AFLP and SSR markers in assessing mostly the genetic variability and structure of wild S. officinalis populations.

  17. Molecular and biochemical evaluation of genetic effect of calotropics (Ait.) latex on aspergillus terreus thom

    International Nuclear Information System (INIS)

    On treating dense conidial suspensions of Aspergillus terreus Thom with different concentrations of Calotropis procera latex, for investigating the genotoxicity of the latter, it was found that latex of Calotropis procera had potent lethal and mutagenic activities. Survival percentage decreased as concentration or time of exposure increased. Frequency of auxotrophic mutants increased with increase in concentration or exposure time. Most auxotrophic mutants were amino acid requiring mutants. DNA and total protein contents of each mutant was significantly lower than wild type of Aspergillus terreus. RAPD demonstrated polymorphic genetic bands of electrophoretic products of PCR for all mutants compared with the wild type strain. SDS-PAGE results expressed a polymorphism of protein bands as well. All these results indicated the mutagenicity of the latex of Calotropis procera. (author)

  18. Biochemical and Genetic Engineering of Diatoms for Polyunsaturated Fatty Acid Biosynthesis

    Directory of Open Access Journals (Sweden)

    Hong-Ye Li

    2014-01-01

    Full Text Available The role of diatoms as a source of bioactive compounds has been recently explored. Diatom cells store a high amount of fatty acids, especially certain polyunsaturated fatty acids (PUFAs. However, many aspects of diatom metabolism and the production of PUFAs remain unclear. This review describes a number of technical strategies, such as modulation of environmental factors (temperature, light, chemical composition of culture medium and culture methods, to influence the content of PUFAs in diatoms. Genetic engineering, a newly emerging field, also plays an important role in controlling the synthesis of fatty acids in marine microalgae. Several key points in the biosynthetic pathway of PUFAs in diatoms as well as recent progresses are also a critical part and are summarized here.

  19. Lilium floral fragrance: A biochemical and genetic resource for aroma and flavor.

    Science.gov (United States)

    Johnson, Timothy S; Schwieterman, Michael L; Kim, Joo Young; Cho, Keun H; Clark, David G; Colquhoun, Thomas A

    2016-02-01

    Hybrid Lilium (common name lily) cultivars are among the top produced domestic fresh cut flowers and potted plants in the US today. Many hybrid Lilium cultivars produce large and showy flowers that emit copious amounts of volatile molecules, which can negatively affect a consumer's appreciation or limit use of the plant product. There are few publications focused on the biochemistry, genetics, and/or molecular regulation of floral volatile biosynthesis for Lilium cultivars. In an initial pursuit to provide breeders with molecular markers for floral volatile biosynthesis, a total of five commercially available oriental and oriental-trumpet hybrid Lilium cultivars were selected for analytical characterization of floral volatile emission. In total, 66 volatile molecules were qualified and quantitated among all cultivars. Chemical classes of identified volatiles include monoterpene hydrocarbons, monoterpene alcohols and aldehydes, phenylpropanoids, benzenoids, fatty-acid-derived, nitrogen-containing, and amino-acid-derived compounds. In general, the floral volatile profiles of the three oriental-trumpet hybrids were dominated by monoterpene hydrocarbons, monoterpene alcohols and aldehydes, while the two oriental hybrids were dominated by monoterpene alcohols and aldehydes and phenylpropanoids, respectively. Tepal tissues (two petal whirls) emitted the vast majority of total volatile molecules compared to the reproductive organs of the flowers. Tepal volatile profiles were cultivar specific with a high degree of distinction, which indicates the five cultivars chosen will provide an excellent differential genetic environment for gene discovery through comparative transcriptomics in the future. Cloning and assaying transcript accumulation from four floral volatile biosynthetic candidates provided few immediate or obvious trends with floral volatile emission. PMID:26654856

  20. Dalmatian Sage (Salvia officinalis L.: A Review of Biochemical Contents, Medical Properties and Genetic Diversity

    Directory of Open Access Journals (Sweden)

    Martina Grdiša

    2016-01-01

    Full Text Available Dalmatian sage (Salvia officinalis L. represents one of the most significant medicinal autochthonous species in flora of eastern Adriatic coast and islands. It is evergreen outcrossing perennial subshrub with short woody stems that branch extensively and violet flowers. Apart from being native to Mediterranean karst of west Balkan and Apenine peninsula it is cultivated in numerous countries worldwide with Mediterranean and temperate continental climate. From the earliest times it has been used in traditional medicine in healing gingiva, mouth cavity and the sore throat, against bacterial and fungal infections, for wound treatment, memory enhancement, for treating common cold, against sweating, stomach inflammation, ulcer formation, etc. Its essential oil has also been used in preservation of food and as spice as it gives both specific aroma and promotes digestion of food. The essential oil is extremely complex mixture of different active ingredients; however, the thujones and camphor are the dominant compounds and are the parameter by which S. officinalis is distinguished from other Salvia species. The great variability of essential oil composition and yield has been detected depending on various factors such as genotype, environmental conditions, phonological stage, plant parts used for the extraction of essential oil and drying procedure. Molecular genetic analysis of S. officinalis is still limited and comprises the use of RAPD markers, AFLP and SSR markers in assessing mostly the genetic variability and structure of wild S. officinalis populations. Flora. 10.1016/j.flora.2012.06.018 Ivan Sostaric 14.00   Normal 0 21 false false false HR X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin-top:0cm; mso-para-margin-right:0cm; mso

  1. Biochemical and genetic variation of some Syrian wheat varieties using NIR, RAPD and AFLPs techniques

    International Nuclear Information System (INIS)

    This study was performed to assess chemical components and genetic variability of five Syrian wheat varieties using NIR, RAPD and AFLP techniques. NIR technique showed that Cham6 was the best variety in term of wheat grain quality due to their lowest protein (%), hardness, water uptake and baking volume and the highest starch (%) compared to the other tested varieties. PCR amplifications with 21 RAPD primers and 13 AFLP PCs primer combinations gave 104 and 466 discernible loci of which 24 (18.823%) and 199 (45.527%) were polymorphic for the both techniques respectively. Our data indicated that the three techniques gave similar results regarding the degree of relatedness among the tested varieties. In the present investigation, AFLP fingerprinting was more efficient than the RAPD assay. Where the letter exhibited lower Marker Index (MI) average (0.219) compared to AFLP one (3.203). The pattern generated by RAPD, AFLPs markers or by NIR separated the five wheat varieties into two groups. The first group consists of two subclusters. The first subcluster involved Cham8 and Bohous6, while the second one includes Cham6 that is very closed to precedent varieties. The second group consists of Bohous9 and Cham7 that were also closely related. Based on this study, the use of NIR, RAPD and AFLP techniques could be a powerful tool to detect the effectiveness relationships of these technologies. (author)

  2. Morphological, Biochemical and Genetic Analysis of a Brittle Stalk Mutant of Maize Inserted by Mutator

    Institute of Scientific and Technical Information of China (English)

    FU Xue-qian; FENG Jing; YU Bin; GAO You-jun; ZHENG Yong-lian; YUE Bing

    2013-01-01

    Mutants on stalk strength are essential materials for the studies on the formation of plant cell wall. In this study, a brittle stalk mutant of maize, designated as Bk-x, was screened from a Mutator inserted mutant library. At the germination and early seedling stage, the mutant plants were indistinguishable from the normal ones. However, all of the plant organs were brittle after the 5th-leaf stage and remained brittle throughout the rest of the growing period. Microstructure observation showed that the cell wall in vascular bundle sheath of Bk-x was thinner than that in normal plants. The leaf mechanical strength in Bk-x was 77.9%of that in normal plants growing at Xishuangbanna (BN), Yunnan province and that was 61.7%in Wuhan (WH), Hubei Province, China. The proportion of cellulose was 12.3%in Bk-x, which was significantly lower than that in normal plants (26.7%), while the soluble sugar content was 36.1%in Bk-x, which is significantly higher than that in normal plants (12.4%). Genetic analysis using two F2 populations and one F2:3 families demonstrated that the trait of brittle stalk is controlled by a single recessive gene.

  3. Assessment of inactivated human rabies vaccines: biochemical characterization and genetic identification of virus strains.

    Science.gov (United States)

    Finke, Stefan; Karger, Axel; Freuling, Conrad; Müller, Thomas

    2012-05-21

    The World Health Organization (WHO) recommends the periodic evaluation of the purity of the cell lines used in the production of rabies vaccines, as well as the antigenic identity of the virus strains. Here, we analyzed seventeen marketed inactivated human rabies virus vaccines for viral and non-viral proteins by SDS-PAGE and Coomassie/silver staining. Mass spectrometric analysis of an abundant 60-70 kDa signal indicated that in most vaccines serum albumin of human origin (HSA) was the major component. Quantification of HSA in the vaccines revealed a mean concentration of 22 mg HSA/dose in all tested PVRV (purified vero cell rabies vaccine), HDCV (human diploid cell rabies vaccine) and PHK (primary hamster kidney) vaccines. In contrast, 1000-fold lower HSA levels and no HSA were detected in PCECV (purified chick embryo cell-culture vaccine) and PDEV (duck embryo rabies vaccine), respectively. Western blot analyses further confirmed a high bias in the HSA content, whereas the virus protein levels were rather similar in all tested vaccines. In addition, the vaccine viruses were sequenced within the N- and G-genes to identify the strain. In the majority of sequenced vaccines, the declared vaccine strain was confirmed. However, some discrepancies in the genetic identification were observed, supporting WHO's recommendation for the molecular characterization of vaccine seed strains. This research highlights the variation in purity found between different human rabies virus vaccines, and suggests that further research is needed to establish the impact non-active components have on the potency of such vaccines. PMID:22469862

  4. Oligomerization of the human immunodeficiency virus type 1 (HIV-1 Vpu protein – a genetic, biochemical and biophysical analysis

    Directory of Open Access Journals (Sweden)

    Tanwar Charu

    2007-08-01

    Full Text Available Abstract Background The human immunodeficiency virus type 1(HIV-1 is a complex retrovirus and the causative agent of acquired immunodeficiency syndrome (AIDS. The HIV-1 Vpu protein is an oligomeric integral membrane protein essential for particle release, viral load and CD4 degradation. In silico models show Vpu to form pentamers with an ion channel activity. Results Using Vpu proteins from a primary subtype C and the pNL4-3 subtype B isolates of HIV-1, we show oligomerization of the full-length protein as well as its transmembrane (TM domain by genetic, biochemical and biophysical methods. We also provide direct evidence of the presence of Vpu pentamers in a stable equilibrium with its monomers in vitro. This was also true for the TM domain of Vpu. Confocal microscopy localized Vpu to the endoplasmic reticulum and Golgi regions of the cell, as well as to post-Golgi vesicles. In fluorescence resonance energy transfer (FRET experiments in live cells we show that Vpu oligomerizes in what appears to be either the Golgi region or intracellular vesicles, but not in the ER. Conclusion We provide here direct evidence that the TM domain, is critical for Vpu oligomerization and the most favourable channel assembly is a pentamer. The Vpu oligomerization appears to be either the Golgi region or intracellular vesicles, but not in the ER.

  5. Pathogenicity of novel ABCD1 variants: The need for biochemical testing in the era of advanced genetics.

    Science.gov (United States)

    Schackmann, Martin J A; Ofman, Rob; van Geel, Björn M; Dijkstra, Inge M E; van Engelen, Klaartje; Wanders, Ronald J A; Engelen, Marc; Kemp, Stephan

    2016-06-01

    X-linked adrenoleukodystrophy (ALD), a progressive neurodegenerative disease, is caused by mutations in ABCD1 and characterized by very-long-chain fatty acids (VLCFA) accumulation. In male patients, an increased plasma VLCFA levels in combination with a pathogenic mutation in ABCD1 confirms the diagnosis. Recent studies have shown that many women with ALD also develop myelopathy. Correct diagnosis is important for management including genetic counseling. Diagnosis in women can only be confirmed when VLCFA levels are elevated or when a known pathogenic ABCD1 mutation is identified. However, in 15-20% of women with ALD VLCFA plasma levels are not elevated. Demonstration that a novel sequence variant is pathogenic can be a challenge when VLCFA levels are in the normal range. Here we report two women with a clinical presentation compatible with ALD, an ABCD1 variation (p.Arg17His and p.Ser358Pro) of unknown significance, but with normal VLCFA levels. We developed a diagnostic test that is based on generating clonal cell lines that express only one of the two alleles. Subsequent biochemical studies enabled us to show that the two sequence variants were not pathogenic, thereby excluding the diagnosis ALD in these women. We conclude that the clonal approach is an important addition to the existing diagnostic array. PMID:27067449

  6. Evaluation of biochemical parameters and genetic markers for association with meat tenderness in South African feedlot cattle.

    Science.gov (United States)

    Frylinck, L; van Wyk, G L; Smith, T P L; Strydom, P E; van Marle-Köster, E; Webb, E C; Koohmaraie, M; Smith, M F

    2009-12-01

    A large proportion of South African feedlot cattle are crossbreds of Brahman (BrX, Bos indicus), and Simmental (SiX, Bos taurus). A sample of 20 grain fed bulls from each of these crossbreeds was used to compare meat quality with that of the small frame indigenous Nguni (NgX, Sanga) by evaluating a variety of biochemical and genetic parameters previously shown to be associated with meat tenderness. Shear force values were generally high (5.6kg average at 14days post mortem), with SiX animals higher than BrX or NgX (P=0.051) despite higher calpastatin:calpain ratio in BrX (P<0.05). Calpain activity and cold shortening were both correlated with tenderness for all classes. The sample size was too small to accurately estimate genotypic effects of previously published markers in the CAST and CAPN1 genes, but the allele frequencies suggest that only modest progress would be possible in these South African crossbreds using these markers. PMID:20416642

  7. Biochemical and genetic toxicity of the ionic liquid 1-octyl-3-methylimidazolium chloride on earthworms (Eisenia fetida).

    Science.gov (United States)

    Guo, Yingying; Liu, Tong; Zhang, Jun; Wang, Jinhua; Wang, Jun; Zhu, Lusheng; Yang, Jinhui

    2016-02-01

    Ionic liquids also known as "green solvents," are used in many fields. However, the dispersion of ionic liquids in soil systems is likely to cause damage to soil organisms. The objective of the present study was to investigate the toxicity of 1-octyl-3-methylimidazolium chloride ([C8 mim]Cl) on earthworms (Eisenia fetida). For this purpose, earthworms were exposed to different concentrations of [C8 mim]Cl (0 mg/kg, 5 mg/kg, 10 mg/kg, 20 mg/kg, and 40 mg/kg artificial soil) and sampled at 7 d, 14 d, 21 d, and 28 d. The results indicated that [C8 mim]Cl could cause an accumulation of reactive oxygen species (ROS) in earthworms, even at the lowest concentration (5 mg/kg). Compared with the controls, during the [C8 mim]Cl exposure period, the activities of superoxide dismutase (SOD) and catalase (CAT) decreased and then increased, whereas the activities of peroxidase (POD) and glutathione S-transferase (GST) increased. These changes in the activities of antioxidant enzymes and GST indicated that [C8 mim]Cl could induce oxidative damage in earthworms. The malondialdehyde content was increased by high levels of [C8 mim]Cl at 14 d and 28 d, indicating that [C8 mim]Cl could lead to lipid peroxidation in earthworms. In addition, the degree of DNA damage significantly increased with increasing [C8 mim]Cl concentrations and exposure time. The present study shows that [C8 mim]Cl caused biochemical and genetic toxicity in earthworms. PMID:26671879

  8. Genetic variability in different biochemical traits and their relationship with yield and yield parameters of cotton cultivars grown under water stress conditions

    International Nuclear Information System (INIS)

    Water scarcity is an important factor limiting cotton production worldwide particularly in Pakistan. To identify drought tolerant genotypes, it is vital to understand their genetic variation for different biochemical traits under water limited conditions. In the present study, 24 genotypes of cotton (Gossypium hirsutum L.) were evaluated under two irrigation regimes viz., well watered (W1) and limited water (W2) conditions. Before physiological maturity, cotton leaves were collected and analyzed for nitrate and nitrite reductase activities, and total free amino acids. At maturity, data regarding yield and yield parameters were recorded. Significant reduction in case of all the activities of nitrate and nitrite reductase, and yield parameters was observed under W2 condition in all the genotypes; however, total free amino acids were substantially increased under W 2 condition. Correlation between the yield parameters of cotton and biochemical traits was determined. Non-significant correlation between nitrate reductase activity and yield parameters was observed under limited water condition. The genotypes evaluated exhibited decrease in the activities of nitrate and nitrite reductase whereas total free amino acids accumulation was higher under drought conditions that showed comparatively higher yield. This study shows that these biochemical traits were regulated genetically and environmentally in the tested cotton genotypes. It was concluded that these biochemical traits can be used as biochemical markers for screening cotton germplasm for drought tolerance as well as for evolving high yielding drought tolerant varieties of this crop. The findings are useful in bridging plant biochemistry and molecular biology for identifying and selecting genes involved in conferring drought tolerance in cotton. (author)

  9. Genetic and biochemical characterization of FRI-1, a carbapenem-hydrolyzing class A β-Lactamase from Enterobacter cloacae

    OpenAIRE

    Dortet, Laurent; Poirel , Laurent; Abbas, Samia; Oueslati, Saoussen; Nordmann, Patrice

    2016-01-01

    An Enterobacter cloacae isolate was recovered from a rectal swab from a patient hospitalized in France with previous travel to Switzerland. It was resistant to penicillins, narrow- and broad-spectrum cephalosporins, aztreonam, and carbapenems but remained susceptible to expanded-spectrum cephalosporins. Whereas PCR-based identification of the most common carbapenemase genes failed, the biochemical Carba NP test II identified an Ambler class A carbapenemase. Cloning experiments followed ...

  10. Biochemical and genetical analysis reveal a new clade of biovar 3 Dickeya spp. strains isolated from potato in Europe

    OpenAIRE

    Slawiak, M.; Beckhoven, van, J.R.C.M.; Speksnijder, A.G.C.L.; Czajkowski, R.L.; Grabe, G; Wolf,

    2009-01-01

    Sixty-five potato strains of the soft rot-causing plant pathogenic bacterium Dickeya spp., and two strains from hyacinth, were characterised using biochemical assays, REP-PCR genomic finger printing, 16S rDNA and dnaX sequence analysis. These methods were compared with nineteen strains representing six Dickeya species which included the type strains. A group of twenty-two potato strains isolated between 2005-2007 in the Netherlands, Poland, Finland and Israel were characterised as belonging t...

  11. Biochemical genetic analysis of isozymes in Plecoglossus altivelis population in Fuxi%凫溪香鱼群体同工酶的生化遗传分析

    Institute of Scientific and Technical Information of China (English)

    黄福勇; 李明云

    2004-01-01

    30 ayu(Plecoglossus altivelis) samples were collected from the cultural net in Fuxi Town, Ninghai County, Zhejiang Province. Polyarylamide gel electrophoresis was used to detect the expression of isozymes in 8 organs or tissues: eye, liver, kidney, muscle, spleen, heart, gill and pectroral fin. ADH,CAT,POD,ACP,ALP,EST,LDH,MDH,ME,GcDH,SCD,GDH,SDH,SOD,ATP were analyzed and the biochemical genetic results showed that 15 isozymes were coded by 55 gene loci, 12 of which (ADH-1, ADH-4, CAT-2, POD-3,ALP-2, EST-3, EST-4, LDH-5, ME-4, GcDH-4, GDH, SDH-2) were found polymorphic. The population of ayu (Plecoglossus altivelis) in Fuxi town showed the higher genetic diversity when compared with other freshwater fishes, with 21.8% of the proportion of polymorphic loci and 0.0459 of the average heterozygosity per loci. And we think the expression of CAT, POD and SOD of ayu (Plecoglossus altivelis) can be used to evaluate the influence to body-protecting system of the fish when environmental factors were changed. The expression of isozymes in pectroral fin can be used as genetic marker in breeding of ayu (Plecoglossus altivelis)

  12. Genetic cytological and biochemical study of a tomato chlorophyll mutant of the xanthic type, obtained by irradiation of the seeds

    International Nuclear Information System (INIS)

    Irradiation of Lycopersicum aesculantum seeds with increasing doses of X-rays and thermal neutrons leads to the appearance of chlorophyll mutations in the descendants of the irradiated seeds. A genetic study of one of these mutants of the xanthic type showed that it was a recessive mutant with typical mono-genetic separation, while the cytological study demonstrated that the differentiation of the plast stopped at the stage of elementary lamella. Finally it is shown that in the light, the mutation brings about a very large deviation of the carbon metabolism towards the synthesis of amino acids and proteins, at the expense of that of glucosides. (author)

  13. Genetic diversity of notary-national uniform rape seed yield trial and brassica napus varieties using raped markers and biochemical analysis

    International Nuclear Information System (INIS)

    In Pakistan, Brassica is the second most important source of oil after cotton. Seventeen NURYT (National Uniform Rape Seed Yield Trial) lines and 5 Brassica napus varieties were assessed through RAPD primers and biochemical assays. Seven different Randomly Amplified Polymorphic DNA markers (RAPD) were employed during the present study. A total of 30 RAPD bands were scored by these primers. Size of the scorable fragments ranged from approximately 250 to 2000 bp. Diversity index was estimated to be 42%. Mean genetic distance estimates ranged between 0.10 and 1.00. For the assessment of various biochemical parameters, Near Infrared Reflectance Spectroscopy (NIRS) was used. Oil content ranged from 38.30 to 49% and protein content from 19.80 to 29.10% among the 22 genotypes. Maximum protein content was assayed in genotype RBN 3046 while minimum in Hyola 405. Glucosinolates ranged between 2 and 84% for genotype CRH 60/08 and CRH05/08 showing the maximum and minimum values respectively. Oleic acid (52 to 72.5%), linolenic acid (7.07 and 9.90%) and erucic acid content (9.57 to 38.3%) was also recorded during the present study. (author)

  14. Chronic effects of soft drink consumption on the health state of Wistar rats: A biochemical, genetic and histopathological study.

    Science.gov (United States)

    Alkhedaide, Adel; Soliman, Mohamed Mohamed; Salah-Eldin, Alaa-Eldin; Ismail, Tamer Ahmed; Alshehiri, Zafer Saad; Attia, Hossam Fouad

    2016-06-01

    The present study was performed to examine the effects of chronic soft drink consumption (SDC) on oxidative stress, biochemical alterations, gene biomarkers and histopathology of bone, liver and kidney. Free drinking water of adult male Wistar rats was substituted with three different soft drinks: Coca‑Cola, Pepsi and 7‑Up, for three consecutive months. The serum and organs were collected for examining the biochemical parameters associated with bone, liver and kidney functions. Semi‑quantitative reverse transcription polymerase chain reaction was used to observe the changes in the expression of genes in the liver and kidney, which are associated with oxidative stress resistance. Histopathological investigations were performed to determine the changes in bone, liver and kidney tissues using hematoxylin and eosin stains. SDC affected liver, kidney and bone function biomarkers. Soft drinks increased oxidative stress, which is represented by an increase in malondialdehyde and a decrease in antioxidant levels. SDC affected serum mineral levels, particularly calcium and phosphorus. Soft drinks downregulated the expression levels of glutathione‑S‑transferase and super oxide dismutase in the liver compared with that of control rats. Rats administered Coca‑Cola exhibited a hepatic decrease in the mRNA expression of α2‑macroglobulin compared with rats administered Pepsi and 7‑Up. On the other hand, SDC increased the mRNA expression of α1‑acid glycoprotein. The present renal studies revealed that Coca‑Cola increased the mRNA expression levels of desmin, angiotensinogen and angiotensinogen receptor compared with the other groups, together with mild congestion in renal histopathology. Deleterious histopathological changes were reported predominantly in the bone and liver of the Coca‑Cola and Pepsi groups. In conclusion, a very strict caution must be considered with SDC due to the increase in oxidative stress biomarkers and disruption in the expression

  15. CHROMOSOME LOCATION OF GENETIC FACTORS DETERMINIG PHYSIOLOGICAL AND BIOCHEMICAL PROCESSES ASSOCIATED WITH DROUGHT TOLERANCE IN WHEAT TRITICUM AESTIVUM L.

    OpenAIRE

    Osipova S.; Permyakova, M.; Permyakov, A.; Pshenichnikova, T.; A. Börner; Verkhoturov, V.

    2012-01-01

    Drought tolerance is characterized as the most recalcitrant trait to improve for its complexity and considered target for genomic-assisted improvement. A profitable genetic strategy lies in the discovery and exploitation of quantitative trait loci (QTL) involved in determining tolerance to water deficit at the cellular level. Enzymes of the antioxidant system participating in detoxification of reactive oxygen species accumulating under stress are the essential component of the common protecti...

  16. Mutant rodent cell lines sensitive to ultraviolet light, ionizing radiation and cross-linking agents; A comprehensive survey of genetic and biochemical characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Collins, A.R. (Aberdeen University (United Kingdom). Department of Molecular and Cell Biology)

    1993-01-01

    Mutant rodent cell lines with hypersensitivity to DNA damage resulting from a defect in cellular response to the damage have contributed to many recent advances in our knowledge of DNA-repair processes. Many of these mutants have been classified by genetic complementation analysis. They proved excellent recipients of human DNA in transfection experiments, and from those transfectants with restored resistance to DNA damage it has been possible to isolate the foreign DNA responsible for correcting the defect. Several human genes coding for DNA-repair proteins have now been cloned. Until recently, there was apparently no correlation at the genetic level between artificially produced rodent mutants and the inherited human diseases associated with sensitivity to DNA-damaging agents, but several of the human genes cloned in rodent mutants now turn out to correct defects in cells representing the human diseases, too. Others are homologous to yeast DNA-repair genes, and it is clear that at least some of the proteins involved in DNA-repair are highly conserved through evolution. Mutants have provided material for comparative biochemical studies of DNA repair too, and we are nearer to understanding the complexities of this process. This article presents tables that list rodent mutant cell lines sensitive to ultraviolet light, to ionizing radiation and to cross-linking agents. (author). 126 refs., 3 tabs.

  17. 鲈鱼群体生化遗传学研究Ⅱ.种群生化遗传结构及变异%BIOCHEMICAL GENETICS OF LATEOLABRAX JAPONICUS POPULATION Ⅱ.BIOCHEMICAL GENETIC STRUCTURE AND VARIATION

    Institute of Scientific and Technical Information of China (English)

    徐成; 王可玲; 张培军

    2001-01-01

    One hundred samples of two sea bass (Lateolabrax japonicus) populations were collected from Shantou and Qingdao coastal waters from June,1995 to May,1996. Seventeen isozymes coded by 31 gene loci were analyzed by starch gel electrophoresis and polyacrylamide gel electrophoresis,and allele frequencies of each loci in two populations were calculated. Seven loci,which were Mep-1,Pgm-1,Sdh,Gdh,Mpi,Est-1 and Est-4,were found polymorphic in Shantou population,the mean proportions of polymorphic loci was 22.6%. Pgdh was also polymorphic besides these loci in Qingdao population,the mean proportions of polymorphic was 25.8%. The observational value of heterozygosity (Ho) of polymorphic locus in Shantou population was 0.106—0.980,the expected value of heterozygosity (He) was 0.101—0.500,the genetic departure index (d value) was -0.181—0.960,d value of Est-4 in Shantou population was 0.960,obviously on the high side,this showed the number of hybrid individuals was more than expected. Ho in Qingdao population was 0.167—0.471,He was 0.210—0.556,d value was -0.399—-0.014. The average heterozygosities of Shantou and Qingdao populations were 0.079 and 0.099 respectively. The chi-Square test showed all polymorphic loci but Est-4 from Shantou were in Hardy-Weinberg equilibrium. The genetic deviation index agreed with the result of chi-Square test. The genetic similarity and genetic distance between the two populations were 0.9920 and 0.0080 respectively. It is concluded that the sea bass in Chinese coastal waters should belong to one species and two populations. The polymorphic loci proportions of the two populations was average among fishes,the average heterozygosities were high,reflected by high allele number of polymorphic loci. The genetic diversity level of Qingdao population was higher than that of Shantou population,because the former was distributed over a wider area and its population was larger. Various genetic indexes show that sea bass resource quality is

  18. Genetic Diversity in ex-situ Conserved Lens culinaris for Botanical Descriptors, Biochemical and Molecular Markers and Identification of Landraces from Indigenous Genetic Resources of Pakistan

    Institute of Scientific and Technical Information of China (English)

    Tayyaba Sultana; Abdul Ghafoor

    2008-01-01

    Lentil, one of the oldest legumes was Investigated for diversity based on botanical descriptors, total seed proteins,isozymes and random amplified polymorphic DNA (RAPD) markers. About one fourth of accessions were heterogeneous for botanical descriptors and a seed protein profile. The germplaem collected from the province of Baluchistan revealed the prevalence of indigenous landraces as high diversity was observed for all of the techniques. Diversity explored through various techniques revealed validity Irrespective of the sample size or geographic pattern, RAPD being the best choice for Investigating both inter- and intra-accession variation In lentil. Although all of the techniques were able to resolve genetic diversity In lentil, isozymes and seed proteins gave low levels of genetic diversity, suggesting that more investigation into isozymes of specific proteins is required. RAPD is the best option for determining inter- and Intra-accession variation, and will be required to extend germplasme and primers to continue the study of botanical descriptors.

  19. The first joint congress of the South African Biochemical Society, South African Genetics Society and the South African Society for Microbiology at the University of the Witwatersrand, 29 June-4 July 1986

    International Nuclear Information System (INIS)

    The South African Biochemical Society, South African Genetics Society and the South African Society for Microbiology held a joint congress at the University of the Witwatersrand from 29 June - 4 July 1986. The papers delivered cover subjects such as Molecular biology, Genetics, Biochemistry, Medical biochemistry, Physiology, Zoology and Isotope and radiation sciences. Different isotopes are used in labelling studies of enzymes, nutrition, metabolism, viruses, bacteria and other biological assays done in the fields of Biochenmistry, Genetics and Microbiology. This work contains only the abstracts of these papers

  20. Genetic and biochemical effects induced by iron ore, Fe and Mn exposure in tadpoles of the bullfrog Lithobates catesbeianus.

    Science.gov (United States)

    Veronez, Alexandra Caroline da Silva; Salla, Rômulo Victor; Baroni, Vinícius Dadalto; Barcarolli, Indianara Fernanda; Bianchini, Adalto; Dos Reis Martinez, Claudia Bueno; Chippari-Gomes, Adriana Regina

    2016-05-01

    exposed to iron ore. These findings indicated that tadpoles accumulated Fe and Mn at the whole body level after exposure to the single metals or to their mixture as iron ore. In addition, they indicate that Fe and Mn accumulation can induce oxidative stress with consequent significant developmental, genotoxic and biochemical effects in L. catesbeianus tadpoles. PMID:26930479

  1. BIOCHEMICAL GENETICS OF LATEOLABRAXJAPONICUS POPULATIONI. BIOCHEMICAL GENETIC ANALYSIS OF ISOZYMES%鲈鱼群体生化遗传学研究I. 同工酶的生化遗传分析

    Institute of Scientific and Technical Information of China (English)

    徐成; 王可玲; 尤锋; 吴谡琦; 张培军

    2001-01-01

    During Sep. 1994-Dec. 1995, 37 sea bass (Lateolabrax japonicus) samples were collected from coastal water of Qingdao, Shandong Province. Starch gel electrophoresis and polyacrylamide gel electropho resis were used to detect expression of isozymes in seven organs or tissues: eye , muscle, heart, liver, kidney, gill and pectoral fin. LDH, MDH, MEP, IDHP, PGM, G3PDH, AK, CK were analyzed in Tris-citric acid buffer system (TC, pH=6.9); AD H , SDH, G6PDH, GDH, PGDH, CAT and MPI were analyzed in EDTA-boric acid-Tris buf fe r system (EBT, pH=8.9); SOD and EST in Tris-gly buffer system (TG, pH=8.3). Bio c hemical genetic analysis showed 17 isozymes were coded by 31 gene loci, 8 of whi ch were found polymorphic. Of the polymorphic loci, Mep-1, Gdh, Pgdh, Est-1 an d Est-4 each had two alleles and three phenotypes; Pgm-1, Sdh and Mpi each had thr ee alleles, all six phenotypes of Mpi were observed, but only four of Pgm-1 and three of Sdh were observed, low frequency phenotypes were absent. Mean proportio n of polymorphic loci was 25.8%.%于1994年9月—1995年12月,在青岛近海采集37尾 鲈鱼的生化样品,采用淀粉胶和聚丙烯酰胺凝胶2种电泳方法,分析了LDH、MDH、MEP、IDHP 、PGM、G3PDH、AK、CK、ADH、SDH、G6PDH、GDH、PGDH、CAT、MPI、EST、SOD等同工酶在鲈 鱼眼睛、肌肉、心脏、肝脏、肾脏、鳃、胸鳍等7种组织或器官中的表达情况,并对同工酶 表型进行了生化遗传分析,以期为其种质资源保护和开发,以及遗传育种等方面的研究提供 基础资料。结果表明,17种同工酶由31个基因座位编码,其中Mep-1、Pgm-1、Sdh、Gdh、Pg dh、Mpi、Est-1、Est-4等8个基因座位为多态。多态座位比例为25.8%。

  2. A Combined Genetic, Biochemical, and Biophysical Analysis of the A1 Phylloquinone Binding Site of Photosystem I from Green Algae

    Energy Technology Data Exchange (ETDEWEB)

    Kevin E. Redding

    2011-12-17

    This project has resulted in the increase in our understanding of how proteins interact with and influence the properties of bound cofactors. This information is important for several reasons, including providing essential information for the re-engineering of biological molecules, such as proteins, for either improved function or entirely new ones. In particular, we have found that a molecule, such as the phylloquinone used in Photosystem I (PS1), can be made a stronger electron donor by placing it in a hydrophobic environment surrounded by negative charges. In addition, the protein is constrained in its interactions with the phylloqinone, in that it must bind the cofactor tightly, but not in such a way that would stabilize the reduced (negatively-charged) version of the molecule. We have used a combination of molecular genetics, in order to make specific mutations in the region of the phylloquinone, and an advanced form of spectroscopy capable of monitoring the transfer of electrons within PS1 using living cells as the material. This approach turned out to produce a significant savings in time and supplies, as it allowed us to focus quickly on the mutants that produced interesting effects, without having to go through laborious purification of the affected proteins. We followed up selected mutants using other spectroscopic techniques in order to gain more specialized information. In addition to the main project funded by this work, this grant supported several related side-projects that also increased our understanding about related issues.

  3. Genetic, serological and biochemical characterization of Leishmania tropica from foci in northern Palestine and discovery of zymodeme MON-307

    Directory of Open Access Journals (Sweden)

    Azmi Kifaya

    2012-06-01

    came. Conclusions The Palestinian strains that were assigned to different genetic groups differed in their MLEE profiles and their EF types. A new zymodeme, zymodeme MON-307 was discovered that seems to be unique to the northern part of the Palestinian West Bank. What seemed to be a straight forward classical situation of L. tropica causing anthroponotic CL in the Jenin District might be a more complex situation, owing to the presence of two separate sub-types of L. tropica that, possibly, indicates two separate transmission cycles involving two separate types of phlebotomine sand fly vector.

  4. Genetics

    Science.gov (United States)

    ... Inheritance; Heterozygous; Inheritance patterns; Heredity and disease; Heritable; Genetic markers ... The chromosomes are made up of strands of genetic information called DNA. Each chromosome contains sections of ...

  5. Inverse problem studies of biochemical systems with structure identification of S-systems by embedding training functions in a genetic algorithm.

    Science.gov (United States)

    Sarode, Ketan Dinkar; Ravi Kumar, V; Kulkarni, B D

    2016-05-01

    An efficient inverse problem approach for parameter estimation, state and structure identification from dynamic data by embedding training functions in a genetic algorithm methodology (ETFGA) is proposed for nonlinear dynamical biosystems using S-system canonical models. Use of multiple shooting and decomposition approach as training functions has been shown for handling of noisy datasets and computational efficiency in studying the inverse problem. The advantages of the methodology are brought out systematically by studying it for three biochemical model systems of interest. By studying a small-scale gene regulatory system described by a S-system model, the first example demonstrates the use of ETFGA for the multifold aims of the inverse problem. The estimation of a large number of parameters with simultaneous state and network identification is shown by training a generalized S-system canonical model with noisy datasets. The results of this study bring out the superior performance of ETFGA on comparison with other metaheuristic approaches. The second example studies the regulation of cAMP oscillations in Dictyostelium cells now assuming limited availability of noisy data. Here, flexibility of the approach to incorporate partial system information in the identification process is shown and its effect on accuracy and predictive ability of the estimated model are studied. The third example studies the phenomenological toy model of the regulation of circadian oscillations in Drosophila that follows rate laws different from S-system power-law. For the limited noisy data, using a priori information about properties of the system, we could estimate an alternate S-system model that showed robust oscillatory behavior with predictive abilities. PMID:26968929

  6. Growth stage-based modulation in physiological and biochemical attributes of two genetically diverse wheat (Triticum aestivum L.) cultivars grown in salinized hydroponic culture.

    Science.gov (United States)

    Ashraf, Muhammad Arslan; Ashraf, Muhammad

    2016-04-01

    Hydroponic experiment was conducted to appraise variation in the salt tolerance potential of two wheat cultivars (salt tolerant, S-24, and moderately salt sensitive, MH-97) at different growth stages. These two wheat cultivars are not genetically related as evident from randomized polymorphic DNA analysis (random amplified polymorphic DNA (RAPD)) which revealed 28% genetic diversity. Salinity stress caused a marked reduction in grain yield of both wheat cultivars. However, cv. S-24 was superior to cv. MH-97 in maintaining grain yield under saline stress. Furthermore, salinity caused a significant variation in different physiological attributes measured at different growth stages. Salt stress caused considerable reduction in different water relation attributes of wheat plants. A significant reduction in leaf water, osmotic, and turgor potentials was recorded in both wheat cultivars at different growth stages. Maximal reduction in leaf water potential was recorded at the reproductive stage in both wheat cultivars. In contrast, maximal turgor potential was observed at the boot stage. Salt-induced adverse effects of salinity on different water relation attributes were more prominent in cv. MH-97 as compared to those in cv. S-24. Salt stress caused a substantial decrease in glycine betaine and alpha tocopherols. These biochemical attributes exhibited significant salt-induced variation at different growth stages in both wheat cultivars. For example, maximal accumulation of glycine betaine was evident at the early growth stages (vegetative and boot). However, cv. S-24 showed higher accumulation of this organic osmolyte, and this could be the reason for maintenance of higher turgor than that of cv. MH-97 under stress conditions. Salt stress significantly increased the endogenous levels of toxic ions (Na(+) and Cl(-)) and decreased essential cations (K(+) and Ca(2+)) in both wheat cultivars at different growth stages. Furthermore, K(+)/Na(+) and Ca(2+)/Na(+) ratios

  7. Biochemical analysis of encapsulated and non-encapsulated species of Trichinella (Nematoda, Trichinellidae) from cold- and warm-blooded animals reveals a high genetic divergence in the genus.

    Science.gov (United States)

    La Rosa, Giuseppe; Marucci, Gianluca; Pozio, Edoardo

    2003-12-01

    Multilocus enzyme electrophoresis was used to analyse genetic variation in the genus Trichinella. Twenty-eight isolates belonging to eight species and six genotypes were analysed for 12 enzyme systems, producing 19 different phenotypes. According to Jaccard's similarity index, the isolates clustered into two main groups, specifically, encapsulated species/genotypes and non-encapsulated species/genotypes. Furthermore, the non-encapsulated species clustered into two other groups: the species infecting mammals and birds ( Trichinella pseudospiralis) and those infecting mammals and reptiles ( Trichinella papuaeand Trichinella zimbabwensis). The encapsulated species/genotypes, which only infect mammals, clustered into four main groups: the cosmopolitan species Trichinella spiralis, the species/genotypes of the temperate regions ( Trichinella britovi, Trichinella murrelli, Trichinella T8, and Trichinella T9), the species/genotype of the arctic region ( Trichinella nativa and Trichinella T6), and the equatorial species Trichinella nelsoni. These results are consistent with biological, epidemiological, and molecular data, which show a high genetic divergence in this genus. PMID:14557876

  8. Increased Insulin following an Oral Glucose Load, Genetic Variation near the Melatonin Receptor MTNR1B, but No Biochemical Evidence of Endothelial Dysfunction in Young Asian Men and Women.

    Directory of Open Access Journals (Sweden)

    Maria A Matuszek

    Full Text Available To identify biochemical and genetic variation relating to increased risk of developing type 2 diabetes mellitus and cardiovascular disease in young, lean male and female adults of different ethnicities.Fasting blood and urine and non-fasting blood following oral glucose intake were analysed in 90 Caucasians, South Asians and South East/East Asians.There were no differences in age, birthweight, blood pressure, body mass index, percent body fat, total energy, percentage of macronutrient intake, microalbumin, leptin, cortisol, adrenocorticotropic hormone, nitric oxide metabolites, C-reactive protein, homocysteine, tumor necrosis factor-α, interleukin-6, von Willebrand factor, vascular cell adhesion molecule-1, plasminogen activator inhibitor-1, and tissue plasminogen activator. Fasting total cholesterol (P = .000, triglycerides (P = .050, low density lipoprotein (P = .009 and non-fasting blood glucose (15 min (P = .024 were elevated in South Asians compared with Caucasians, but there was no significant difference in glucose area under curve (AUC. Non-fasting insulin in South Asians (15-120 min, in South East/East Asians (60-120 min, and insulin AUC in South Asians and South East/East Asians, were elevated compared with Caucasians (P≤0.006. The molar ratio of C-peptide AUC/Insulin AUC (P = .045 and adiponectin (P = .037 were lower in South Asians compared with Caucasians. A significant difference in allele frequency distributions in Caucasians and South Asians was found for rs2166706 (P = 0.022 and rs10830963 (P = 0.009, which are both near the melatonin receptor MTNR1B.Elevated non-fasting insulin exists in young South Asians of normal fasting glucose and insulin. Hepatic clearance of insulin may be reduced in South Asians. No current biochemical evidence exists of endothelial dysfunction at this stage of development. MTNR1B signalling may be a useful therapeutic target in Asian populations in the prevention of type 2 diabetes mellitus.

  9. Improved phytoaccumulation of cadmium by genetically modified tobacco plants (Nicotiana tabacum L.). Physiological and biochemical response of the transformants to cadmium toxicity

    International Nuclear Information System (INIS)

    The response of tobacco plants (Nicotiana tabacum L.)-non-transformed and transformed with a metallothionein gene MThis from Silene vulgaris L. - to increase cadmium supply in the nutrient solution was compared. The transgenic plants accumulated significantly more Cd both in the roots and the leaves. Visual toxicity symptoms and disturbance in water balance were correlated with Cd tissue content. Treatment with 300 μM CdCl2 resulted in inhibition of photosynthesis and mobilization of the ascorbate-glutathione cycle. Treatment with 500 μM CdCl2 led to irreversible damage of photosynthesis and oxidative stress. An appearance of a new peroxidase isoform and changes in the leaf polypeptide pattern were observed at the highest Cd concentration. The level of non-protein thiols gradually increased following the Cd treatment both in transgenic and non-transformed plants. - Genetic transformation of Nicotiana tabacum L. by metallothionein gene improved phytoaccumulation of cadmium

  10. Improved phytoaccumulation of cadmium by genetically modified tobacco plants (Nicotiana tabacum L.). Physiological and biochemical response of the transformants to cadmium toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Gorinova, N. [AgroBioInstitute, 8 Dragan Tzankov Blvd., 1164 Sofia (Bulgaria)]. E-mail: noraig60@yahoo.co.uk; Nedkovska, M. [AgroBioInstitute, 8 Dragan Tzankov Blvd., 1164 Sofia (Bulgaria); Todorovska, E. [AgroBioInstitute, 8 Dragan Tzankov Blvd., 1164 Sofia (Bulgaria); Simova-Stoilova, L. [Institute of Plant Physiology, Bulgarian Academy of Sciences, 1113 Sofia (Bulgaria); Stoyanova, Z. [Institute of Plant Physiology, Bulgarian Academy of Sciences, 1113 Sofia (Bulgaria); Georgieva, K. [Institute of Plant Physiology, Bulgarian Academy of Sciences, 1113 Sofia (Bulgaria); Demirevska-Kepova, K. [Institute of Plant Physiology, Bulgarian Academy of Sciences, 1113 Sofia (Bulgaria); Atanassov, A. [AgroBioInstitute, 8 Dragan Tzankov Blvd., 1164 Sofia (Bulgaria); Herzig, R. [Phytotech-Foundation PT-F, Quartiergasse 12, CH 3013 Bern (Switzerland)

    2007-01-15

    The response of tobacco plants (Nicotiana tabacum L.)-non-transformed and transformed with a metallothionein gene MThis from Silene vulgaris L. - to increase cadmium supply in the nutrient solution was compared. The transgenic plants accumulated significantly more Cd both in the roots and the leaves. Visual toxicity symptoms and disturbance in water balance were correlated with Cd tissue content. Treatment with 300 {mu}M CdCl{sub 2} resulted in inhibition of photosynthesis and mobilization of the ascorbate-glutathione cycle. Treatment with 500 {mu}M CdCl{sub 2} led to irreversible damage of photosynthesis and oxidative stress. An appearance of a new peroxidase isoform and changes in the leaf polypeptide pattern were observed at the highest Cd concentration. The level of non-protein thiols gradually increased following the Cd treatment both in transgenic and non-transformed plants. - Genetic transformation of Nicotiana tabacum L. by metallothionein gene improved phytoaccumulation of cadmium.

  11. Serum Biochemical Phenotypes in the Domestic Dog

    Science.gov (United States)

    Chang, Yu-Mei; Hadox, Erin; Szladovits, Balazs; Garden, Oliver A.

    2016-01-01

    The serum or plasma biochemical profile is essential in the diagnosis and monitoring of systemic disease in veterinary medicine, but current reference intervals typically take no account of breed-specific differences. Breed-specific hematological phenotypes have been documented in the domestic dog, but little has been published on serum biochemical phenotypes in this species. Serum biochemical profiles of dogs in which all measurements fell within the existing reference intervals were retrieved from a large veterinary database. Serum biochemical profiles from 3045 dogs were retrieved, of which 1495 had an accompanying normal glucose concentration. Sixty pure breeds plus a mixed breed control group were represented by at least 10 individuals. All analytes, except for sodium, chloride and glucose, showed variation with age. Total protein, globulin, potassium, chloride, creatinine, cholesterol, total bilirubin, ALT, CK, amylase, and lipase varied between sexes. Neutering status significantly impacted all analytes except albumin, sodium, calcium, urea, and glucose. Principal component analysis of serum biochemical data revealed 36 pure breeds with distinctive phenotypes. Furthermore, comparative analysis identified 23 breeds with significant differences from the mixed breed group in all biochemical analytes except urea and glucose. Eighteen breeds were identified by both principal component and comparative analysis. Tentative reference intervals were generated for breeds with a distinctive phenotype identified by comparative analysis and represented by at least 120 individuals. This is the first large-scale analysis of breed-specific serum biochemical phenotypes in the domestic dog and highlights potential genetic components of biochemical traits in this species. PMID:26919479

  12. Recent abstracts in biochemical technology

    OpenAIRE

    R R Siva Kiran; Brijesh P

    2008-01-01

    “Recent abstracts in biochemical technology” is a collection of interesting research articles published in “List of biochemical technology journals” (Table 1). The abstracts are most likely to report significant results in biochemical technology.

  13. Genetic and perinatal effects of abused substances

    Energy Technology Data Exchange (ETDEWEB)

    Brande, M.C.; Zimmerman, A.M.

    1987-01-01

    This book provides an overview of the effects of several abused drugs, including opiates, cannabinoids, alcohol, nicotine, and cocaine, with special emphasis on the actions of these substances at the molecular and cellular levels. The first half deals with genetic effects, including molecular genetics, biochemical genetics, pharmacogenetics, cytogenetics, and genetic toxicity. The second half focuses on perinatal effects and covers: drug abuse during pregnancy; biochemical aspects of marihuana on male reproduction; and long-term behavioral and neuroendocrine effects of perinatal alcohol exposure.

  14. Measures of Biochemical Sociology

    Science.gov (United States)

    Snell, Joel; Marsh, Mitchell

    2008-01-01

    In a previous article, the authors introduced a new sub field in sociology that we labeled "biochemical sociology." We introduced the definition of a sociology that encompasses sociological measures, psychological measures, and biological indicators Snell & Marsh (2003). In this article, we want to demonstrate a research strategy that would assess…

  15. Biochemical Education in Brazil.

    Science.gov (United States)

    Vella, F.

    1988-01-01

    Described are discussions held concerning the problems of biochemical education in Brazil at a meeting of the Sociedade Brazileira de Bioquimica in April 1988. Also discussed are other visits that were made to universities in Brazil. Three major recommendations to improve the state of biochemistry education in Brazil are presented. (CW)

  16. Genetics Home Reference: congenital hyperinsulinism

    Science.gov (United States)

    ... Z, Arya VB, Hussain K. Hyperinsulinaemic hypoglycaemia:genetic mechanisms, diagnosis and management. J Clin Res Pediatr Endocrinol. ... Shyng SL, Stanley CA. Clinical characteristics and biochemical mechanisms of congenital hyperinsulinism associated with dominant KATP channel ...

  17. Multiplexing oscillatory biochemical signals.

    Science.gov (United States)

    de Ronde, Wiet; ten Wolde, Pieter Rein

    2014-04-01

    In recent years it has been increasingly recognized that biochemical signals are not necessarily constant in time and that the temporal dynamics of a signal can be the information carrier. Moreover, it is now well established that the protein signaling network of living cells has a bow-tie structure and that components are often shared between different signaling pathways. Here we show by mathematical modeling that living cells can multiplex a constant and an oscillatory signal: they can transmit these two signals simultaneously through a common signaling pathway, and yet respond to them specifically and reliably. We find that information transmission is reduced not only by noise arising from the intrinsic stochasticity of biochemical reactions, but also by crosstalk between the different channels. Yet, under biologically relevant conditions more than 2 bits of information can be transmitted per channel, even when the two signals are transmitted simultaneously. These observations suggest that oscillatory signals are ideal for multiplexing signals. PMID:24685537

  18. Biochemical Hypermedia: Galactose Metabolism.

    Directory of Open Access Journals (Sweden)

    J.K. Sugai

    2013-05-01

    Full Text Available Introduction: Animations of biochemical processes and virtual laboratory environments lead to true molecular simulations. The use of interactive software’s in education can improve cognitive capacity, better learning and, mainly, it makes information acquisition easier. Material and Methods: This work presents the development of a biochemical hypermedia to understanding of the galactose metabolism. It was developed with the help of concept maps, ISIS Draw, ADOBE Photoshop and FLASH MX Program. Results and Discussion: A step by step animation process shows the enzymatic reactions of galactose conversion to glucose-1-phosphate (to glycogen synthesis, glucose-6-phosphate (glycolysis intermediary, UDP-galactose (substrate to mucopolysaccharides synthesis and collagen’s glycosylation. There are navigation guide that allow scrolling the mouse over the names of the components of enzymatic reactions of via the metabolism of galactose. Thus, explanatory text box, chemical structures and animation of the actions of enzymes appear to navigator. Upon completion of the module, the user’s response to the proposed exercise can be checked immediately through text box with interactive content of the answer. Conclusion: This hypermedia was presented for undergraduate students (UFSC who revealed that it was extremely effective in promoting the understanding of the theme.

  19. Genetics and developmental biology

    International Nuclear Information System (INIS)

    Progress is reported on research activities in the fields of mutagenesis in Haemophilus influenzae and Escherichia coli; radioinduced chromosomal aberrations in mammalian germ cells; effects of uv radiation on xeroderma pigmentosum skin cells; mutations in Chinese hamster ovary cells; radioinduced hemoglobin variants in the mouse; analysis of mutants in yeast; Drosophila genetics; biochemical genetics of Neurospora; DNA polymerase activity in Xenopus laevis oocytes; uv-induced damage in Bacillus subtilis; and others

  20. Involvement of immunologic and biochemical mechanisms in the pathogenesis of Tourette's syndrome

    OpenAIRE

    Landau, Yuval Eliahu; Steinberg, Tamar; Richmand, Brian; Leckman, James Frederick; Apter, Alan

    2011-01-01

    Tourette's syndrome is a neurodevelopmental disorder clinically characterized by multiple motor and phonic tics. It is likely that a neurobiological susceptibility to the disorder is established during development by the interaction of genetic, biochemical, immunological, and environmental factors. This study sought to investigate the possible correlation of several immunological and biochemical markers with Tourette's syndrome. Children with Tourette's syndrome attending a tertiary pediatric...

  1. Biochemical synthesis with stable isotopes

    International Nuclear Information System (INIS)

    Descriptions of the biochemical synthesis of glucose-13C6 from Agmenellum quadruplication; the biochemical labelling of [13C, 15N] Chlorella and [13C] E. coli, [15N] E. coli, and the production of lactic-13C3 acid utilizing Lactobacillus casei are discussed

  2. EVALUATING BIOCHEMICAL INTERNET RESOURCES

    Directory of Open Access Journals (Sweden)

    R.M. Lima

    2007-05-01

    Full Text Available Many people fail to properly evaluate INTERNET information. This is often due to alack of understanding of the issues, by responsible authorities, and, morespecifically, a lack of understanding of the structure and modis operandi of theINTERNET tool. The aim of this project was to analyze biochemical issuesavailable in WEB pages, evaluating contents quality, coverage, accuracy, authorityand currency. Twenty three sites were analyzed for their contents, presence ofbibliographical references, authorship, titles responsibility and adequacy to targetpublic. The great majority (95% did not mention bibliographic references andtarget public. Less than half divulged names and/or graduation status ofresponsibles. Some sites contained critical conceptual errors, such as: oxygen isessential for anaerobic respiration; presence of H2O in photosynthesis dark phase;yeast is a pluricellular fungal; the overall equation of photosynthesis with errors;NADH2 instead NAD+; etc. None of the analyzed sites was thus consideredexcellent. Although the use of the internet is expanding rapidly on collegecampuses, little is known about students usage; how they perceive the reality ofinternet information and how successful they are in searching through it. Our datastrenghthen the need for rigorous evaluation concerning to educational research ofbiochemical themes on the WEB.

  3. 3个地理居群泥鳅的同工酶生化遗传分析%Biochemical genetic analysis of isozymes in three populations of Misgurnus anguillicaudatus

    Institute of Scientific and Technical Information of China (English)

    吴艳丽; 常重杰

    2009-01-01

    [目的]探讨3个不同地理居群(黄河、长江、珠江流域)泥鳅群体的遗传变异特性及其亲缘关系.[方法]采用聚丙烯酰胺凝胶电泳(PAGE)技术和同工酶谱分析方法,检测并分析黄河、长江、珠江流域各30尾泥鳅的10种同工酶(乳酸脱氢酶(LDH)、过氧化物酶(POD)、酯酶(EST)、α-淀粉酶(α-AMY)、苹果酸脱氢酶(MDH)、葡萄糖6磷酸脱氢酶(G6PDH)、超氧化物歧化酶(SOD)、过氧化氢酶(CAT)、碱性磷酸酯酶(ALP)、ATP酶(ATPase))基肉的多态性,并采用Nei's数据处理方法分析泥鳅群体间的遗传变异特性和亲缘关系.[结果]在所分析的10种同工酶中,记录到30个基因座位,以其主要的等位基因频率低于0.99为标准,从泥鳅3个群体中各检测到7~9个多态基因位点,其多态位点比例为0.233 3~0.3000,平均预期杂和度为0.058 65~0.076 29;3个地理居群泥鳅群体的遗传偏离指数均为负值;泥鳅种内遗传相似性很高,为0.983 8~0.996 5.[结论]泥鳅群体的遗传多样性在淡水鱼中处于较高水平,但其群体遗传结构不够合理,会对以后泥鳅种质资源的保护产生较大影响;3个地理居群泥鳅群体从分类上还属于同一个种群.%[Objective] This study was to investigate the genetic variation and relationship in 3 population of M.anguillicaudatus collected from the Yellow River, Yangtze River and Pearl River.[Method] 30 loach(M.anguillicaudatus) samples were collected from Huanghe, Changjiang, Zhujiang.Discontinuous vertical plate polyacrylamide gel electrophoresis (PAGE) was used to investigate the genomic polymorphism of 10 isozymes.Xiong QM's method was made to analyse the patterns of Isozyme and Nei's was used for statistical analysis.[Result]The results showed that 10 isozymes (EST, SOD, POD, CAT, G6PDH,α-AMY,MDH,LDH,ALP and ATPase) were coded by 30 loci,7 -9 of each 3 population were found polymorphic according to the polymorphic standard 0.99, and the mean

  4. Enzyme and biochemical producing fungi

    DEFF Research Database (Denmark)

    Lübeck, Peter Stephensen; Lübeck, Mette; Nilsson, Lena;

    2010-01-01

    factories for sustainable production of important molecules. For developing fungi into efficient cell factories, the project includes identification of important factors that control the flux through the pathways using metabolic flux analysis and metabolic engineering of biochemical pathways....

  5. Ouroboros - Playing A Biochemical

    Directory of Open Access Journals (Sweden)

    D. T. Rodrigues

    2014-08-01

    Full Text Available Ouroboros: Playing A Biochemical RODRIGUES,D.T.1,2;GAYER, M.C.1,2; ESCOTO, D.F.1; DENARDIN, E.L.G.2, ROEHRS, R.1,2 1Interdisciplinary Research Group on Teaching Practice, Graduate Program in Biochemistry, Unipampa, RS, Brazil 2Laboratory of Physicochemical Studies and Natural Products, Post Graduate Program in Biochemistry, Unipampa, RS, Brazil Introduction: Currently, teachers seek different alternatives to enhance the teaching-learning process. Innovative teaching methodologies are increasingly common tools in educational routine. The use of games, electronic or conventional, is an effective tool to assist in learning and also to raise the social interaction between students. Objective: In this sense our work aims to evaluate the card game and "Ouroboros" board as a teaching and learning tool in biochemistry for a graduating class in Natural Sciences. Materials and methods: The class gathered 22 students of BSc in Natural Sciences. Each letter contained a question across the board that was drawn to a group to answer within the allotted time. The questions related concepts of metabolism, organic and inorganic chemical reactions, bioenergetics, etc.. Before the game application, students underwent a pre-test with four issues involving the content that was being developed. Soon after, the game was applied. Then again questions were asked. Data analysis was performed from the ratio of the number of correct pre-test and post-test answers. Results and discussion: In the pre-test 18.1% of the students knew all issues, 18.1% got 3 correct answers, 40.9% answered only 2 questions correctly and 22.7% did not hit any. In post-test 45.4% answered all the questions right, 31.8% got 3 questions and 22.7% got 2 correct answers. The results show a significant improvement of the students about the field of content taught through the game. Conclusion: Generally, traditional approaches of chemistry and biochemistry are abstract and complex. Thus, through games

  6. Overcoming Challenges in Engineering the Genetic Code.

    Science.gov (United States)

    Lajoie, M J; Söll, D; Church, G M

    2016-02-27

    Withstanding 3.5 billion years of genetic drift, the canonical genetic code remains such a fundamental foundation for the complexity of life that it is highly conserved across all three phylogenetic domains. Genome engineering technologies are now making it possible to rationally change the genetic code, offering resistance to viruses, genetic isolation from horizontal gene transfer, and prevention of environmental escape by genetically modified organisms. We discuss the biochemical, genetic, and technological challenges that must be overcome in order to engineer the genetic code. PMID:26348789

  7. [Genetics and genetic counseling].

    Science.gov (United States)

    Izzi, Claudia; Liut, Francesca; Dallera, Nadia; Mazza, Cinzia; Magistroni, Riccardo; Savoldi, Gianfranco; Scolari, Francesco

    2016-01-01

    Autosomal Dominant Polycystic Kidney Disease (ADPKD) is the most frequent genetic disease, characterized by progressive development of bilateral renal cysts. Two causative genes have been identified: PKD1 and PKD2. ADPKD phenotype is highly variable. Typically, ADPKD is an adult onset disease. However, occasionally, ADPKD manifests as very early onset disease. The phenotypic variability of ADPKD can be explained at three genetic levels: genic, allelic and gene modifier effects. Recent advances in molecular screening for PKD gene mutations and the introduction of the new next generation sequencing (NGS)- based genotyping approach have generated considerable improvement regarding the knowledge of genetic basis of ADPKD. The purpose of this article is to provide a comprehensive review of the genetics of ADPKD, focusing on new insights in genotype-phenotype correlation and exploring novel clinical approach to genetic testing. Evaluation of these new genetic information requires a multidisciplinary approach involving a nephrologist and a clinical geneticist. PMID:27067213

  8. Bile salt hydrolase of Bifidobacterium longum - Biochemical and genetic characterization

    NARCIS (Netherlands)

    Tanaka, H; Hashiba, Honoo; Kok, Jan; Mierau, Igor

    2000-01-01

    A bile salt hydrolase (BSH) was isolated from Bifidobacterium longum SBT2928, purified, and characterized, Furthermore, we describe for the first time cloning and analysis of the gene encoding BSII (bsh) in a member of the genus Bifidobacterium. The enzyme has a native molecular weight of 125,000 to

  9. Biochemical genetics of glutathione-S-transferase in man.

    OpenAIRE

    Board, P G

    1981-01-01

    Glutathione-S-transferases from liver and erythrocytes have been separated by starch gel electrophoresis and localized by a specific staining procedure. The data suggest that the most active glutathione-S-transferases in liver are the products of two autosomal loci, GST1 and GST2. Both these loci are polymorphic, and there is evidence that a common null allele exists at the GST1 locus. The glutathione-S-transferase expressed in erythrocytes is the product of a third locus, GST3, and is not po...

  10. Erythropoietic protoporphyria in Denmark: Demographic, biochemical and genetic characteristics

    DEFF Research Database (Denmark)

    Brusgaard, Klaus

    Erythropoietic protoporphyria (EPP) is an inherited cutaneous porphyria caused by partial deficiency of the ferrochelatase gene (FECH), leading to accumulation of protoporphyrin IX (PPIX) in erythrocytes, skin and liver, and acute photosensitivity. Less frequently, a mutation in the delta...

  11. Study of some biochemical and genetic markers in asthmatic children

    International Nuclear Information System (INIS)

    Bronchial asthma is the most common chronic disease of childhood. Interleukin-4 (IL-4) and interleukin-13 (IL-13) are T-helper type 2 (Th2) cytokines with numerous activities that contribute to allergic inflammation and asthma. Both IL-4 and IL-13 use the IL-4 receptor alpha chain (IL-4 Ra) as a component of their respective systems. Allelic variants of IL-4 Ra have been reported and the R 576 IL-4 Ra allele was recently shown to be a risk factor for atopy. This study was designed to determine whether the R 576 allele was associated with the prevalence of asthma among children and also to evaluate the role of serum IL-4 and IL-13 in the development of asthma. Hence, we used a developed, rapid and reliable PCR-based assay to screen individuals for the R 576 IL-4 Ra allele. This assay has also used to genotype prospectively both recruited children with asthma (n = 22) and controls (n = 11). Serum IL-4 and IL-13 were determined by ELISA. The results of the PCR-based assay revealed a significant association of R 576 IL-4 Ra with the prevalence of all asthmatics, Chi-square (x2) 4.035; P 2 = 4.197, P 2 = 0.609, P > 0.05). Consequently, R 576 IL-4 Ra acts as an allergic asthma susceptibility gene. Also, asthmatic children displayed higher significant levels of IL-4 and IL-13 (P <0.()1). Allergic group exhibited significant higher levels of IL-4 (P < 0.001) and IL-13 (P < 0. 05). This gave clear evidence that both cytokines contributed to the development of asthma especially the allergic phenotype

  12. Genetic and biochemical markers in physical exercise assessment

    OpenAIRE

    Innocenti, G.; G. Morucci; J.J.V. Branca; Pacini, S; Gulisano, M

    2012-01-01

    An excessive physical activity could stress the organism determining unbalanced hormonal orders that can negatively affect the state of optimal health and therefore the sporting output. In particular during physical exercise the free salivary Cortisol concentration increases with the intensity of the exercise followed by an increase of the free Testosterone. On this basis, there is the possibility the determine if the program of preset physical exercise evokes an abnormal reaction of ada...

  13. Carnitine-acylcarnitine translocase deficiency, clinical, biochemical and genetic aspects.

    Science.gov (United States)

    Rubio-Gozalbo, M E; Bakker, J A; Waterham, H R; Wanders, R J A

    2004-01-01

    The carnitine-acylcarnitine translocase (CACT) is one of the components of the carnitine cycle. The carnitine cycle is necessary to shuttle long-chain fatty acids from the cytosol into the intramitochondrial space where mitochondrial beta-oxidation of fatty acids takes place. The oxidation of fatty acids yields acetyl-coenzyme A (CoA) units, which may either be degraded to CO(2) and H(2)O in the citric acid cycle to produce ATP or converted into ketone bodies which occurs in liver and kidneys. Metabolic consequences of a defective CACT are hypoketotic hypoglycaemia under fasting conditions, hyperammonemia, elevated creatine kinase and transaminases, dicarboxylic aciduria, very low free carnitine and an abnormal acylcarnitine profile with marked elevation of the long-chain acylcarnitines. Clinical signs and symptoms in CACT deficient patients, are a combination of energy depletion and endogenous toxicity. The predominantly affected organs are brain, heart and skeletal muscle, and liver, leading to neurological abnormalities, cardiomyopathy and arrythmias, skeletal muscle damage and liver dysfunction. Most patients become symptomatic in the neonatal period with a rapidly progressive deterioration and a high mortality rate. However, presentations at a later age with a milder phenotype have also been reported. The therapeutic approach is the same as in other long-chain fatty acid disorders and includes intravenous glucose (+/- insulin) administration to maximally inhibit lipolysis and subsequent fatty acid oxidation during the acute deterioration, along with other measures such as ammonia detoxification, depending on the clinical features. Long-term strategy consists of avoidance of fasting with frequent meals and a special diet with restriction of long-chain fatty acids. Due to the extremely low free carnitine concentrations, carnitine supplementation is often needed. Acylcarnitine profiling in plasma is the assay of choice for the diagnosis at a metabolite level. However, since the acylcarnitine profile observed in CACT-deficient patients is identical to that in CPT2-deficient patients, definitive identification of CACT-deficiency in a certain patient requires determination of the activity of CACT. Subsequently, mutational analysis of the CACT gene can be performed. So far, 9 different mutations have been identified in the CACT gene. PMID:15363639

  14. Biochemical genetics in marine fisheries management and conservation

    Digital Repository Service at National Institute of Oceanography (India)

    Menezes, M.R.

    occupy different geographical areas: they may originate from different spawning grounds, as larvae or juveniles they may feed in different nursing grounds; they may consist of different age groups that form discrete schools or as adults they may return...

  15. Hyponatraemia: biochemical and clinical perspectives.

    OpenAIRE

    Gill, G; Leese, G

    1998-01-01

    Hyponatraemia is a common bio-chemical abnormality, occurring in about 15% of hospital inpatients. It is often associated with severe illness and relatively poor outcome. Pathophysiologically, hyponatraemia may be spurious, dilutional, depletional or redistributional. Particularly difficult causes and concepts of hyponatraemia are the syndrome of inappropriate antidiuresis and the sick cell syndrome, which are discussed here in detail. Therapy should always be targeted at the underlying disea...

  16. Biochemical markers of bone turnover

    International Nuclear Information System (INIS)

    Biochemical markers of bone turnover has received increasing attention over the past few years, because of the need for sensitivity and specific tool in the clinical investigation of osteoporosis. Bone markers should be unique to bone, reflect changes of bone less, and should be correlated with radiocalcium kinetics, histomorphometry, or changes in bone mass. The markers also should be useful in monitoring treatment efficacy. Although no bone marker has been established to meet all these criteria, currently osteocalcin and pyridinium crosslinks are the most efficient markers to assess the level of bone turnover in the menopausal and senile osteoporosis. Recently, N-terminal telopeptide (NTX), C-terminal telopeptide (CTX) and bone specific alkaline phosphatase are considered as new valid markers of bone turnover. Recent data suggest that CTX and free deoxypyridinoline could predict the subsequent risk of hip fracture of elderly women. Treatment of postmenopausal women with estrogen, calcitonin and bisphosphonates demonstrated rapid decrease of the levels of bone markers that correlated with the long-term increase of bone mass. Factors such as circadian rhythms, diet, age, sex, bone mass and renal function affect the results of biochemical markers and should be appropriately adjusted whenever possible. Each biochemical markers of bone turnover may have its own specific advantages and limitations. Recent advances in research will provide more sensitive and specific assays

  17. New Genetics

    Science.gov (United States)

    ... Home > Science Education > The New Genetics The New Genetics Living Laboratories Classroom Poster Order a Free Copy ... Piece to a Century-Old Evolutionary Puzzle Computing Genetics Model Organisms RNA Interference The New Genetics is ...

  18. Genetics of Aging inC. elegans

    OpenAIRE

    Martin, George M.; Aviv Bergman; Nir Barzilai

    2007-01-01

    We review three approaches to the genetic analysis of the biology and pathobiology of human aging. The first and so far the best-developed is the search for the biochemical genetic basis of varying susceptibilities to major geriatric disorders. These include a range of progeroid syndromes. Collectively, they tell us much about the genetics of health span. Given that the major risk factor for virtually all geriatric disorders is biological aging, they may also serve as markers for the study of...

  19. Biochemical and proteomic characterization of alkaptonuric chondrocytes.

    Science.gov (United States)

    Braconi, Daniela; Bernardini, Giulia; Bianchini, Claretta; Laschi, Marcella; Millucci, Lia; Amato, Loredana; Tinti, Laura; Serchi, Tommaso; Chellini, Federico; Spreafico, Adriano; Santucci, Annalisa

    2012-09-01

    Alkaptonuria (AKU) is a rare genetic disease associated with the accumulation of homogentisic acid (HGA) and its oxidized/polymerized products which leads to the deposition of melanin-like pigments (ochronosis) in connective tissues. Although numerous case reports have described ochronosis in joints, little is known on the molecular mechanisms leading to such a phenomenon. For this reason, we characterized biochemically chondrocytes isolated from the ochronotic cartilage of AKU patients. Based on the macroscopic appearance of the ochronotic cartilage, two sub-populations were identified: cells coming from the black portion of the cartilage were referred to as "black" AKU chondrocytes, while those coming from the white portion were referred to as "white" AKU chondrocytes. Notably, both AKU chondrocytic types were characterized by increased apoptosis, NO release, and levels of pro-inflammatory cytokines. Transmission electron microscopy also revealed that intracellular ochronotic pigment deposition was common to both "white" and "black" AKU cells. We then undertook a proteomic and redox-proteomic analysis of AKU chondrocytes which revealed profound alterations in the levels of proteins involved in cell defence, protein folding, and cell organization. An increased post-translational oxidation of proteins, which also involved high molecular weight protein aggregates, was found to be particularly relevant in "black" AKU chondrocytes. PMID:22213341

  20. Genetics of metabolic resistance.

    Science.gov (United States)

    Richter, Otto; Langemann, Dirk; Beffa, Roland

    2016-09-01

    Herbicide resistance has become a major issue for many weeds. Metabolic resistance refers to the biochemical processes within organisms that degrade herbicides to less toxic compounds, resulting in a shift of the dose response curve. This type of resistance involves polygenic inheritance. A model is presented linking the biochemical pathway of amino acid synthesis and the detoxifying pathway of an inhibitor of the key enzyme ALS. From this model, resistance factors for each biotype are derived, which are then applied to a polygenic population genetic model for an annual weed plant. Polygenic inheritance is described by a new approach based on tensor products of heredity matrices. Important results from the model are that low dose regimes favour fast emergence of resistant biotypes and that the emergence of resistant biotypes occurs as abrupt outbreaks. The model is used to evaluate strategies for the management of metabolic resistance. PMID:27424952

  1. MouseCyc: a curated biochemical pathways database for the laboratory mouse

    OpenAIRE

    Evsikov, Alexei V.; Dolan, Mary E; Genrich, Michael P; Patek, Emily; Bult, Carol J

    2009-01-01

    Linking biochemical genetic data to the reference genome for the laboratory mouse is important for comparative physiology and for developing mouse models of human biology and disease. We describe here a new database of curated metabolic pathways for the laboratory mouse called MouseCyc . MouseCyc has been integrated with genetic and genomic data for the laboratory mouse available from the Mouse Genome Informatics database and with pathway data from other organisms, including human.

  2. Biochemical screening for inherited metabolic disorders in the mentally retarded.

    Science.gov (United States)

    Henderson, H E; Goodman, R; Schram, J; Diamond, E; Daneel, A

    1981-11-01

    A biochemical screening programme for the detection of inherited metabolic disease was carried out on urine and blood samples from inmates of the Alexandra Institute for the mentally retarded, Cape Town. Of the 1087 patients screened, positive results for phenylketonuria were obtained in 3, for cystinuria in 2 and for Hartnup disease in 1. The overall frequency of metabolic disorders was 0,6%. It is evident that genetic metabolic disease as detected by current screening procedures makes only a small contribution to the overall burden of mental retardation. PMID:6795726

  3. Variability of genetic characteristics in animals kept in the zone of Chernobyl' NPP accident

    International Nuclear Information System (INIS)

    Genetic structure and cytogenetic variability by some genetic-biochemical systems (22 locusses) in Black-and-White cows kept in the zone of Chernobyl' atomic power station with increased radionuclidic contamination have been analyzed comparatively. Increased frequency of cytogenetic anomalies, differing distribution of allele frequencies, and reduced expression of some biochemical markers have been revealed in tested animals as compared to the control

  4. Genetic characterization of a brangus-ibage cattle population: biochemical polymorphisms and reproductive efficiency Caracterização genética de uma população de bovinos brangus-ibagé: polimorfismos bioquímicos e eficiência reprodutiva

    Directory of Open Access Journals (Sweden)

    Luiz Ernani Henkes

    2000-10-01

    Full Text Available Biochemical techniques were used to investigate the genetic variability in a Brangus-Ibage population by determining allele frequencies of 18 blood protein systems: Hemogloin beta-Chain (Hb, Albumin (Alb, Amylase (Am, Transferrin (Tf, Carbonic Anhydrase (CA, Ceruloplasmin (Cp, Malic Enzyme (ME, Diaphorase I and II (Dia I and Dia II, Slow Alpha 2 Macroglobulin (Ap, Acid Phosphatase (ACP, Esterase B and D (EstB and EstD, Phosphogluconate Dehydrogenase (PGD, Glucose-6-Phosphate Dehydrogenase (G-6-PD, Glucose-Phosphate-Isomerase (GPI, Superoxide Dismutase (SOD and Glyoxalase I (GLO. The percentage of polymorphic loci were estimated at 0.27, the mean number of alleles was 1.33 and the mean heterozygosity was 0.07. There was a good agreement between expected and observed heterozygosity values. The population was in agreement with Hardy-Weinberg expectations in all systems. Reproductive records allowed to estimate three parameters of reproductive efficiency: mean age at first calving (1152.15 ± 166.60 days, mean calving interval (539.23 ± 124.10 days and mean weight at first calving (391.02 ± 37.59kg. No relationship was found between reproductive efficiency and genetic systems.Técnicas bioquímicas foram utilizadas para determinar a variabilidade genética numa população de bovinos da raça Brangus-Ibagé com relação a 18 sistemas protéicos sangüíneos: Hemoglobina - Cadeia beta (Hb, Albumina (Alb, Amilase (Am, Transferrina (Tf, Anidrase Carbônica (CA, Ceruloplasmina (Cp, Enzima Málica (ME, Diaforase I and II (Dia I and Dia II, Macroglobulina alfa2 lenta (Ap, Fosfatase Ácida (ACP, Esterase B and D (EstB and EstD, Fosfogliconato Desidrogenase (PGD, Glicose-6-Fosfato Desidrogenase (G-6-PD, Glicose-Fosfato-Isomerase (GPI, Superóxido Dismutase (SOD e Glioxalase I (GLO. O percentual de locos polimórficos foi estimado em 0,27, o número médio de alelos foi 1,33 e a heterozigosidade média foi de 0,07. Houve boa concordância entre a

  5. Genome-wide association study of biochemical traits in Korcula Island, Croatia

    OpenAIRE

    Zemunik, Tatijana; Boban, Mladen; Lauc, Gordan; Janković, Stipan; Rotim, Kresimir; Vatavuk, Zoran; Bencić, Goran; Dogas, Zoran; Boraska, Vesna; Torlak, Vesela; Susac, Jelena; Zobić, Ivana; Rudan, Diana; Pulanić, Drazen; Modun, Darko

    2009-01-01

    To identify genetic variants underlying biochemical traits--total cholesterol, low-density lipoprotein (LDL) cholesterol, high-density lipoprotein (HDL) cholesterol, triglycerides, uric acid, albumin, and fibrinogen, in a genome-wide association study in an isolated population where rare variants of larger effect may be more easily identified.

  6. ASSESMENT OF BIOCHEMICAL ATTRIBUTES OF PRAECITRULLUS FISTULOSUS TREATED WITH MUTAGENS

    Directory of Open Access Journals (Sweden)

    Mehreen Khan

    2016-02-01

    Full Text Available Plants are well known to have certain primary and secondary metabolites collectively are known as biochemicals that plays an important role for human health as their medicinal properties. The aim of present study was to enhance and evaluate biochemical profile of Praecitrullus fistulosus by induced mutagenesis to cause genetic variations, plant leaves were treated with different chemical and physical mutagens. Colchicine and Ethidium bromide were used as chemical mutagens. While Ultraviolet (UV rays and X- rays were used as physical mutagens for the treatment of seeds. After the eleventh week of their growth, methanol extracts of dried leaves were prepared and further analyzed for the estimation of biochemicals. It was observed that total carbohydrates, total Proteins, phenolic compounds, antioxidant activity, reducing power, ascorbic Acid  and Chlorophyll a, were found significantly (p<0.05 higher in Colchicine 0.02% treated plants, while reducing sugars were significantly (p<0.05  increases in Colchicine 0.01% treated plants as compared to control plants. Total flavonoids, total flavonol, Chlorophyll b and Carotenoids were increases significantly (p<0.05 in plants treated with 0.05% Ethidium bromide while tannin content was increased significantly (p<0.05 in 0.10% Ethidium bromide treated plants as compared to the  control plants.

  7. Genetic Counseling

    Science.gov (United States)

    Genetic counseling provides information and support to people who have, or may be at risk for, genetic disorders. A ... meets with you to discuss genetic risks. The counseling may be for yourself or a family member. ...

  8. Biochemical diagnosis of mitochondrial disorders

    NARCIS (Netherlands)

    Rodenburg, R.J.T.

    2011-01-01

    Establishing a diagnosis in patients with a suspected mitochondrial disorder is often a challenge. Both knowledge of the clinical spectrum of mitochondrial disorders and the number of identified disease-causing molecular genetic defects are continuously expanding. The diagnostic examination of patie

  9. Biochemical Analysis of Microbial Rhodopsins.

    Science.gov (United States)

    Maresca, Julia A; Keffer, Jessica L; Miller, Kelsey J

    2016-01-01

    Ion-pumping rhodopsins transfer ions across the microbial cell membrane in a light-dependent fashion. As the rate of biochemical characterization of microbial rhodopsins begins to catch up to the rate of microbial rhodopsin identification in environmental and genomic sequence data sets, in vitro analysis of their light-absorbing properties and in vivo analysis of ion pumping will remain critical to characterizing these proteins. As we learn more about the variety of physiological roles performed by microbial rhodopsins in different cell types and environments, observing the localization patterns of the rhodopsins and/or quantifying the number of rhodopsin-bearing cells in natural environments will become more important. Here, we provide protocols for purification of rhodopsin-containing membranes, detection of ion pumping, and observation of functional rhodopsins in laboratory and environmental samples using total internal reflection fluorescence microscopy. © 2016 by John Wiley & Sons, Inc. PMID:27153387

  10. Biochemical bases of mineral waters genesis

    Directory of Open Access Journals (Sweden)

    D. D. Zhernosekov

    2005-02-01

    Full Text Available This work directs data about mineral water genesis. The accent on balneological sense is done. We suggest the criteria of biochemical processes estimation which take part in mineral water compounds creation. These criteria can be used for illustration of dependence between waters medical properties and biochemical processes of their genesis.

  11. Genetic engineering of Geobacillus spp.

    Science.gov (United States)

    Kananavičiūtė, Rūta; Čitavičius, Donaldas

    2015-04-01

    Members of the genus Geobacillus are thermophiles that are of great biotechnological importance, since they are sources of many thermostable enzymes. Because of their metabolic versatility, geobacilli can be used as whole-cell catalysts in processes such as bioconversion and bioremediation. The effective employment of Geobacillus spp. requires the development of reliable methods for genetic engineering of these bacteria. Currently, genetic manipulation tools and protocols are under rapid development. However, there are several convenient cloning vectors, some of which replicate autonomously, while others are suitable for the genetic modification of chromosomal genes. Gene expression systems are also intensively studied. Combining these tools together with proper techniques for DNA transfer, some Geobacillus strains were shown to be valuable producers of recombinant proteins and industrially important biochemicals, such as ethanol or isobutanol. This review encompasses the progress made in the genetic engineering of Geobacillus spp. and surveys the vectors and transformation methods that are available for this genus. PMID:25659824

  12. Genetic sexing of the Mediterranean fruit fly

    International Nuclear Information System (INIS)

    In the early 1980s, it was recognized by the FAO and the IAEA that a genetic sexing method for the Mediterranean fruit fly (medfly) would greatly improve the efficacy of the medfly sterile insect technique (SIT) and reduce its costs. These Proceedings summarize the research and development findings of the Agency's co-operators in the co-ordinated research programme to develop a genetic sexing method for the medfly. Great progress has been made in many aspects of medfly genetics. including the development of a number of genetic sexing strains. Contents: Genetics, Cytogenetics and Population Genetics. Genetic Sexing of Ceratitis Capitata by Morphological, Biochemical and other means. Recommendations. Refs, figs and tabs

  13. Correlation between yield and biochemical parameters in the mulberry silkworm,Bombyx mori L.

    Science.gov (United States)

    Chatterjee, S N; Rao, C G; Chatterjee, G K; Ashwath, S K; Patnaik, A K

    1993-11-01

    A detailed study was carried out on six biochemical parameters and four yield attributes using multiple regression analysis to investigate their relationship in the mulberry silkworm,Bombyx mori. The study generated new information on the importance of digestive amylase activity for the survival of the silkworm and revealed the inability of other enzymes to affect this relationship. Data also substantiate the observations made earlier on the genetic variability of amylase in the mulberry silkworm. Analyses extend the positive role of alkaline phosphatase and invertase in the expression of the other yield traits studied and indicate the definite possibility of using biochemical markers for silkworm breeding. PMID:24190267

  14. The evolutionary genetics of canalization.

    Science.gov (United States)

    Flatt, Thomas

    2005-09-01

    interactions, and in terms of genetic redundancy, modularity, and emergent properties of gene networks and biochemical pathways. While different forms of selection can favor canalization, the requirements for its evolution are typically rather restrictive. Although there are several methods to detect canalization, there are still serious problems with unambiguously demonstrating canalization, particularly its adaptive value. PMID:16250465

  15. Variability of various genetic characteristics of animals kept in the zone of ChAPS [Chernobyl' atomic power station] accident

    International Nuclear Information System (INIS)

    Genetic structure and cytogenetic variability by some genetic-biochemical systems (22 locuses) in Black-and-White cows kept in the zone of Chernobyl' atomic power station with increased radionuclidic comtamination have been analyzed comparatively. Increased frequency of cytogenetic anomalies, differing distribution of allele frequencies, and reduced expression of some biochemical markers have been revealed in tested animals as compared to the control

  16. Simulation of Biochemical Pathway Adaptability Using Evolutionary Algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Bosl, W J

    2005-01-26

    The systems approach to genomics seeks quantitative and predictive descriptions of cells and organisms. However, both the theoretical and experimental methods necessary for such studies still need to be developed. We are far from understanding even the simplest collective behavior of biomolecules, cells or organisms. A key aspect to all biological problems, including environmental microbiology, evolution of infectious diseases, and the adaptation of cancer cells is the evolvability of genomes. This is particularly important for Genomes to Life missions, which tend to focus on the prospect of engineering microorganisms to achieve desired goals in environmental remediation and climate change mitigation, and energy production. All of these will require quantitative tools for understanding the evolvability of organisms. Laboratory biodefense goals will need quantitative tools for predicting complicated host-pathogen interactions and finding counter-measures. In this project, we seek to develop methods to simulate how external and internal signals cause the genetic apparatus to adapt and organize to produce complex biochemical systems to achieve survival. This project is specifically directed toward building a computational methodology for simulating the adaptability of genomes. This project investigated the feasibility of using a novel quantitative approach to studying the adaptability of genomes and biochemical pathways. This effort was intended to be the preliminary part of a larger, long-term effort between key leaders in computational and systems biology at Harvard University and LLNL, with Dr. Bosl as the lead PI. Scientific goals for the long-term project include the development and testing of new hypotheses to explain the observed adaptability of yeast biochemical pathways when the myosin-II gene is deleted and the development of a novel data-driven evolutionary computation as a way to connect exploratory computational simulation with hypothesis

  17. BIOCHEMICAL SCREENING OF DIABETIC NEPHROPATHY

    Directory of Open Access Journals (Sweden)

    Vivek

    2016-01-01

    Full Text Available Diabetic nephropathy is a clinical syndrome characterized by the following- Persistent albuminuria (>300mg/d or >200μg/min, that is confirmed on at least 2 occasions 3-6 months apart diabetic, progressive decline in the Glomerular Filtration Rate (GFR, elevated arterial blood pressure. The earliest biochemical criteria for the diagnosis of diabetic nephropathy is the presence of micro-albumin in the urine, which if left untreated will eventually lead to End-Stage Renal Disease (ESRD. Micro-albuminuria refers to the excretion of albumin in the urine at a rate that exceeds normal limits. The current study was conducted to establish the prevalence of micro-albuminuria in a sequential sample of diabetic patients attending hospital and OPD Clinic to determine its relationship with known and putative risk factors to identify micro- and normo-albuminuric patients in their sample for subsequent comparison in different age, sex, weight and creatinine clearance of the micro- and normo-albuminuric patients. This cross-sectional analytical study was conducted in one hundred patients at Saraswathi Institute of Medical Sciences, Anwarpur, Hapur, U. P. Patients having diabetes mellitus in different age group ranging from 30 to 70 years were selected. Data was analysed by SPSS software. Micro-albuminuria was observed in 35% in patients with type 2 diabetes mellitus. It was observed that 65% patients were free from any type of albuminuria. Also micro-albuminuria was present in 10% of the patients less than 50 yrs. of age, while 15% of the patients more than 50 yrs. of age were having micro-albuminuria. There was a statistically significant correlation of micro-albuminuria with duration of diabetes. Incidence of micro-albuminuria increases with age as well as increased duration of diabetes mellitus. Our study shows that only 5% patients developed macro-albuminuria. Glycosylated haemoglobin and fasting plasma glucose was significantly raised among all these

  18. The art and design of genetic screens: maize

    Science.gov (United States)

    Maize (Zea mays) is an excellent model for basic research. Genetic screens have informed our understanding of developmental processes, meiosis, epigenetics and biochemical pathways--not only in maize but also in other cereal crops. We discuss the forward and reverse genetic screens that are possible...

  19. Genetic and Biochemical Characterizations of Enzymes Involved in Streptococcus pneumoniae Serotype 2 Capsule Synthesis Demonstrate that Cps2T (WchF) Catalyzes the Committed Step by Addition of β1-4 Rhamnose, the Second Sugar Residue in the Repeat Unit

    OpenAIRE

    James, David B. A.; Yother, Janet

    2012-01-01

    Five genes (cps2E, cps2T, cps2F, cps2G, and cps2I) are predicted to encode the glycosyltransferases responsible for synthesis of the Streptococcus pneumoniae serotype 2 capsule repeat unit, which is polymerized to yield a branched surface structure containing glucose-glucuronic acid linked to a glucose-rhamnose-rhamnose-rhamnose backbone. Cps2E is the initiating glycosyltransferase, but experimental evidence supporting the functions of the remaining glycosyltransferases is lacking. To biochem...

  20. Alpha-locus hexosaminidase genetic compound with juvenile gangliosidosis phenotype: clinical, genetic, and biochemical studies.

    OpenAIRE

    Johnson, W G; Cohen, C S; Miranda, A F; Waran, S P; Chutorian, A M

    1980-01-01

    A 3-year-old boy developed progressive neurological deterioration in his third year, characterized by dementia, ataxia, myoclonic jerks, and bilateral macular cherry-red spots. Hexosaminidase A (HEX A) was partially decreased in the patient's serum, leukocytes, and cultured skin fibroblasts. Hexosaminidase was studied in serum and leukocytes from family members. Four members of the paternal branch appeared to be carriers of classical infantile Tay-Sachs allele, HEX alpha 2, probably receiving...

  1. Physics and Electro-Biochemical Technology

    Directory of Open Access Journals (Sweden)

    Conrad P Pritscher

    2008-12-01

    Full Text Available Not Available Keywords: Biochemical technology, physics Received: 22 October 2008 / Received in revised form: 23 October 2008, Accepted: 24 October 2008 Published online: 07 January 2009

  2. Genetic Disorders

    Science.gov (United States)

    ... This can cause a medical condition called a genetic disorder. You can inherit a gene mutation from ... during your lifetime. There are three types of genetic disorders: Single-gene disorders, where a mutation affects ...

  3. Free energy simulations of important biochemical processes

    OpenAIRE

    Yang LIU; 刘洋

    2013-01-01

    Free energy simulations have been widely employed to compute the thermodynamic properties of many important biochemical processes. In the first part of this dissertation, two important biochemical processes, protonation/deprotonation of acid in solution and solvation of small organic molecules, are investigated using free energy simulations. Accurate computation of the pKa value of a compound in solution is important and challenging. To efficiently simulate the free energy change associat...

  4. RMBNToolbox: random models for biochemical networks

    Directory of Open Access Journals (Sweden)

    Niemi Jari

    2007-05-01

    Full Text Available Abstract Background There is an increasing interest to model biochemical and cell biological networks, as well as to the computational analysis of these models. The development of analysis methodologies and related software is rapid in the field. However, the number of available models is still relatively small and the model sizes remain limited. The lack of kinetic information is usually the limiting factor for the construction of detailed simulation models. Results We present a computational toolbox for generating random biochemical network models which mimic real biochemical networks. The toolbox is called Random Models for Biochemical Networks. The toolbox works in the Matlab environment, and it makes it possible to generate various network structures, stoichiometries, kinetic laws for reactions, and parameters therein. The generation can be based on statistical rules and distributions, and more detailed information of real biochemical networks can be used in situations where it is known. The toolbox can be easily extended. The resulting network models can be exported in the format of Systems Biology Markup Language. Conclusion While more information is accumulating on biochemical networks, random networks can be used as an intermediate step towards their better understanding. Random networks make it possible to study the effects of various network characteristics to the overall behavior of the network. Moreover, the construction of artificial network models provides the ground truth data needed in the validation of various computational methods in the fields of parameter estimation and data analysis.

  5. Genetic Counseling

    Science.gov (United States)

    ... go for genetic counseling, such as: A family history of a genetic condition To learn about genetic screening for diseases that are more common in certain ethnic groups (e.g., sickle cell disease in African Americans and Tay-Sachs disease in Ashkenazi Jews) To discuss abnormal results ...

  6. Imaging Genetics

    Science.gov (United States)

    Munoz, Karen E.; Hyde, Luke W.; Hariri, Ahmad R.

    2009-01-01

    Imaging genetics is an experimental strategy that integrates molecular genetics and neuroimaging technology to examine biological mechanisms that mediate differences in behavior and the risks for psychiatric disorder. The basic principles in imaging genetics and the development of the field are discussed.

  7. Biochemical Models for S-Rnase-Based Self-Incompatibility

    Institute of Scientific and Technical Information of China (English)

    Zhi-Hua Hua; Allison Fields; Teh-hui Kao

    2008-01-01

    S-RNase-based self-incompatibility (SI) is a genetically determined self/non-self-recognition process employed by many flowering plant species to prevent inbreeding and promote outcrosses.For the Plantaginaceae,Rosa-ceae and Solanaceae,it is now known that S-RNase and S-Iocu F-box(two multiple allelic genes at the S-locus)determine the female and male specificity,respectively,during SI interactions.However,how allelic products of these two genes interact inside pollen tubes to result in specific growth inhibition of self-pollen tubes remains to be investigated.Here,we review all the previously proposed biochemical models and discuss whether their predictions are consistent with all SI phenomena,including competitive jnteraction where SI breaks down in pollen that carries two different pollen 5-alleles.We also discuss these models in Iight of the recent findings of compartmentalization of S-RNases in both incompatible and compatible pollen tubes.Lastly,we summarize the results from our recent biochemical studies of PiSLF(Petunia inflata SLF)and S-RNase.and present a new model for the biochemical mechanism of SI in the Solanaceae.The tenet of this model is that a PiSLF preferentially interacts with its non-self S-RNases in the cytoplasm of a pollen tube to result in the assembly of an E3-like complex,which then mediates ubiquitination and degradation of non-self S-RNases through the ubiquitin-26S proteasome pathway.This model can explain all SI phenomena and,at the same time,has raised new questions for further study.

  8. Genetics Home Reference: Genetic Conditions

    Science.gov (United States)

    Skip to main content Your Guide to Understanding Genetic Conditions Enable Javascript for addthis links to activate. ... Conditions Genes Chromosomes & mtDNA Resources Help Me Understand Genetics Home Health Conditions Health Conditions Explore the signs ...

  9. Biochemical reasoning for radiation protection and screening methods for radiation sensitivity and potential carcinogenicity

    International Nuclear Information System (INIS)

    Cells of different genetic characteristics respond differently to agents that modify radiation effects. When the modification is a result of chemical repair, reduction of the amount of damage by radical scavenging, production of hypoxia, or any other such mechanism, then the modification of the response will be the same for all types of cells, but not the same when biological or biochemical parameters are involved, because the differences between the cells affect the final outcome, and the genetic traits obviously become affected by chemical modifying agents. Some of these agents directly affect the repair of deoxyribonucleic acid (DNA) by mechanisms not yet understood. Another agent nicotinamide (NA), is directly linked to a repair pathway. Thus, a system that uses NA as a precursor of nicotinamide adenine dinucleotide (NAD)+, and uses NAD+ to produce the polymer polyadenosine diphosphate ribose (PADPR) appears to be an interesting and important factor in the biochemical events that may be linked to improved radioprotection. (author). 36 refs., 5 figs

  10. Neurobiological approaches in human behavior genetics.

    Science.gov (United States)

    Vogel, F

    1981-03-01

    An attempt should be made to base analysis of problems in human behavior genetics on existing knowledge of human biochemical genetics and neurobiology. Examples for this approach are studies showing HY antigen patterns of the opposite sex in transsexuality, slight psychological deviations in heterozygotes of recessive metabolic diseases such as phenylketonuria and lipid storage diseases, and psychological studies in healthy individuals with various genetic variants of the normal human electroencephalogram (EEG). Results of such studies will help gradually to replace emotional controversy by rational assessment of facts. PMID:7271684

  11. Evaluation of Iranian Native Apple (Malus x domestica Borkh) Germplasm using Biochemical and Morphological Characteristics

    OpenAIRE

    Javad Farrokhi; Reza Darvishzadeh; Hamid Hatami Maleki; Lotfali Naseri

    2014-01-01

    In this study, fifty six native apple genotypes from different geographical regions of Iran were evaluated based on 16 different biochemical and morphological characters using augment design. Analysis of variance showed significant difference between studied genotypes. Considering descriptive statistics, there was high level of genetic variation in this plant material. Regarding simple correlation between studied characters, fruit weight as one of the most important item, was positive...

  12. 40 CFR 158.2010 - Biochemical pesticides data requirements.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Biochemical pesticides data...) PESTICIDE PROGRAMS DATA REQUIREMENTS FOR PESTICIDES Biochemical Pesticides § 158.2010 Biochemical pesticides... required to support registration of biochemical pesticides. Sections 158.2080 through 158.2084 identify...

  13. 40 CFR 158.2000 - Biochemical pesticides definition and applicability.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Biochemical pesticides definition and...) PESTICIDE PROGRAMS DATA REQUIREMENTS FOR PESTICIDES Biochemical Pesticides § 158.2000 Biochemical pesticides definition and applicability. This subpart applies to all biochemical pesticides as defined in paragraphs...

  14. [Signal transduction in plant development: Chemical and biochemical approaches to receptor identification]. Progress report, [May 15, 1993--May 14, 1994

    Energy Technology Data Exchange (ETDEWEB)

    1994-06-01

    Progress is reported on studies concerning NAD(P)H-2,6-DMBQ oxidoreductase of Striga asiatica aimed at elucidating basic biochemical parameters of Striga. Reported studies include characterization of the enzyme, development of Striga molecular genetics, and development of a redox model for germination control.

  15. The Chemical Master Equation Approach to Nonequilibrium Steady-State of Open Biochemical Systems: Linear Single-Molecule Enzyme Kinetics and Nonlinear Biochemical Reaction Networks

    Directory of Open Access Journals (Sweden)

    Lisa M. Bishop

    2010-09-01

    Full Text Available We develop the stochastic, chemical master equation as a unifying approach to the dynamics of biochemical reaction systems in a mesoscopic volume under a living environment. A living environment provides a continuous chemical energy input that sustains the reaction system in a nonequilibrium steady state with concentration fluctuations. We discuss the linear, unimolecular single-molecule enzyme kinetics, phosphorylation-dephosphorylation cycle (PdPC with bistability, and network exhibiting oscillations. Emphasis is paid to the comparison between the stochastic dynamics and the prediction based on the traditional approach based on the Law of Mass Action. We introduce the difference between nonlinear bistability and stochastic bistability, the latter has no deterministic counterpart. For systems with nonlinear bistability, there are three different time scales: (a individual biochemical reactions, (b nonlinear network dynamics approaching to attractors, and (c cellular evolution. For mesoscopic systems with size of a living cell, dynamics in (a and (c are stochastic while that with (b is dominantly deterministic. Both (b and (c are emergent properties of a dynamic biochemical network; We suggest that the (c is most relevant to major cellular biochemical processes such as epi-genetic regulation, apoptosis, and cancer immunoediting. The cellular evolution proceeds with transitions among the attractors of (b in a “punctuated equilibrium” manner.

  16. The chemical master equation approach to nonequilibrium steady-state of open biochemical systems: linear single-molecule enzyme kinetics and nonlinear biochemical reaction networks.

    Science.gov (United States)

    Qian, Hong; Bishop, Lisa M

    2010-01-01

    We develop the stochastic, chemical master equation as a unifying approach to the dynamics of biochemical reaction systems in a mesoscopic volume under a living environment. A living environment provides a continuous chemical energy input that sustains the reaction system in a nonequilibrium steady state with concentration fluctuations. We discuss the linear, unimolecular single-molecule enzyme kinetics, phosphorylation-dephosphorylation cycle (PdPC) with bistability, and network exhibiting oscillations. Emphasis is paid to the comparison between the stochastic dynamics and the prediction based on the traditional approach based on the Law of Mass Action. We introduce the difference between nonlinear bistability and stochastic bistability, the latter has no deterministic counterpart. For systems with nonlinear bistability, there are three different time scales: (a) individual biochemical reactions, (b) nonlinear network dynamics approaching to attractors, and (c) cellular evolution. For mesoscopic systems with size of a living cell, dynamics in (a) and (c) are stochastic while that with (b) is dominantly deterministic. Both (b) and (c) are emergent properties of a dynamic biochemical network; We suggest that the (c) is most relevant to major cellular biochemical processes such as epi-genetic regulation, apoptosis, and cancer immunoediting. The cellular evolution proceeds with transitions among the attractors of (b) in a "punctuated equilibrium" manner. PMID:20957107

  17. Genetic barcodes

    Energy Technology Data Exchange (ETDEWEB)

    Weier, Heinz -Ulrich G

    2015-08-04

    Herein are described multicolor FISH probe sets termed "genetic barcodes" targeting several cancer or disease-related loci to assess gene rearrangements and copy number changes in tumor cells. Two, three or more different fluorophores are used to detect the genetic barcode sections thus permitting unique labeling and multilocus analysis in individual cell nuclei. Gene specific barcodes can be generated and combined to provide both numerical and structural genetic information for these and other pertinent disease associated genes.

  18. Reconfigurable neuromorphic computation in biochemical systems.

    Science.gov (United States)

    Chiang, Hui-Ju Katherine; Jiang, Jie-Hong R; Fages, Francois

    2015-08-01

    Implementing application-specific computation and control tasks within a biochemical system has been an important pursuit in synthetic biology. Most synthetic designs to date have focused on realizing systems of fixed functions using specifically engineered components, thus lacking flexibility to adapt to uncertain and dynamically-changing environments. To remedy this limitation, an analog and modularized approach to realize reconfigurable neuromorphic computation with biochemical reactions is presented. We propose a biochemical neural network consisting of neuronal modules and interconnects that are both reconfigurable through external or internal control over the concentrations of certain molecular species. Case studies on classification and machine learning applications using the DNA strain displacement technology demonstrate the effectiveness of our design in both reconfiguration and autonomous adaptation. PMID:26736417

  19. Genetic variations in marine natural population - Measurement and utility in resource management and conservation: A review

    Digital Repository Service at National Institute of Oceanography (India)

    Menezes, M.R.; Parulekar, A.H.

    A number of molecular and biochemical tools which can be applied to the identification of species and the detection of genetic variation within species have been developed in recent years. All these methods rely on the ability to distinguish between...

  20. Genetic modification and genetic determinism

    Directory of Open Access Journals (Sweden)

    Vorhaus Daniel B

    2006-06-01

    Full Text Available Abstract In this article we examine four objections to the genetic modification of human beings: the freedom argument, the giftedness argument, the authenticity argument, and the uniqueness argument. We then demonstrate that each of these arguments against genetic modification assumes a strong version of genetic determinism. Since these strong deterministic assumptions are false, the arguments against genetic modification, which assume and depend upon these assumptions, are therefore unsound. Serious discussion of the morality of genetic modification, and the development of sound science policy, should be driven by arguments that address the actual consequences of genetic modification for individuals and society, not by ones propped up by false or misleading biological assumptions.

  1. Genetic Engineering

    Science.gov (United States)

    Phillips, John

    1973-01-01

    Presents a review of genetic engineering, in which the genotypes of plants and animals (including human genotypes) may be manipulated for the benefit of the human species. Discusses associated problems and solutions and provides an extensive bibliography of literature relating to genetic engineering. (JR)

  2. Predictive biochemical assays for late radiation effects

    Energy Technology Data Exchange (ETDEWEB)

    Rubin, P.; Finkelstein, J.N.; Siemann, D.W.; Shapiro, D.L.; Van Houtte, P.; Penney, D.P.

    1986-04-01

    Surfactant precursors or other products of Type II pneumocytes have the potential to be the first biochemical marker for late radiation effects. This is particularly clinically important in the combined modality era because of the frequent occurrence of pneumonitis and pulmonary fibrosis secondary to radiation or chemotherapy. Accordingly, correlative studies have been pursued with the Type II pneumocyte as a beginning point to understand the complex pathophysiology of radiation pneumonitis and fibrosis. From our ultrastructural and biochemical studies, it is evident that Type II pneumocytes are an early target of radiation and the release of surfactant into the alveolus shortly after exposure persists for days and weeks. Through the use of lavaging techniques, alveolar surfactant has been elevated after pulmonary irradiation. In three murine strains and in the rabbit, there is a strong correlation with surfactant release at 7 and/or 28 days in vivo with later lethality in months. In vitro studies using cultures of type II pneumocytes also demonstrate dose response and tolerance factors that are comparable to the in vivo small and large animal diagnostic models. New markers are being developed to serve as a predictive index for later lethal pneumonopathies. With the development of these techniques, the search for early biochemical markers in man has been undertaken. Through the use of biochemical, histological, and ultrastructural techniques, a causal relationship between radiation effects on type II pneumocytes, pulmonary cells, endothelial cells of blood vessels, and their roles in the production of pneumonitis and fibrosis will evolve.

  3. Biochemical Applications in the Analytical Chemistry Lab

    Science.gov (United States)

    Strong, Cynthia; Ruttencutter, Jeffrey

    2004-01-01

    An HPLC and a UV-visible spectrophotometer are identified as instruments that helps to incorporate more biologically-relevant experiments into the course, in order to increase the students understanding of selected biochemistry topics and enhances their ability to apply an analytical approach to biochemical problems. The experiment teaches…

  4. Survey of Biochemical Education in Japanese Universities.

    Science.gov (United States)

    Kagawa, Yasuo

    1995-01-01

    Reports findings of questionnaires sent to faculty in charge of biochemical education in medical schools and other programs from dentistry to agriculture. Total class hours have declined since 1984. New trends include bioethics and computer-assisted learning. Tables show trends in lecture hours, lecture content, laboratory hours, core subject…

  5. Predictive biochemical assays for late radiation effects

    International Nuclear Information System (INIS)

    Surfactant precursors or other products of Type II pneumocytes have the potential to be the first biochemical marker for late radiation effects. This is particularly clinically important in the combined modality era because of the frequent occurrence of pneumonitis and pulmonary fibrosis secondary to radiation or chemotherapy. Accordingly, correlative studies have been pursued with the Type II pneumocyte as a beginning point to understand the complex pathophysiology of radiation pneumonitis and fibrosis. From our ultrastructural and biochemical studies, it is evident that Type II pneumocytes are an early target of radiation and the release of surfactant into the alveolus shortly after exposure persists for days and weeks. Through the use of lavaging techniques, alveolar surfactant has been elevated after pulmonary irradiation. In three murine strains and in the rabbit, there is a strong correlation with surfactant release at 7 and/or 28 days in vivo with later lethality in months. In vitro studies using cultures of type II pneumocytes also demonstrate dose response and tolerance factors that are comparable to the in vivo small and large animal diagnostic models. New markers are being developed to serve as a predictive index for later lethal pneumonopathies. With the development of these techniques, the search for early biochemical markers in man has been undertaken. Through the use of biochemical, histological, and ultrastructural techniques, a causal relationship between radiation effects on type II pneumocytes, pulmonary cells, endothelial cells of blood vessels, and their roles in the production of pneumonitis and fibrosis will evolve

  6. 2009 Biochemical Conversion Platform Review Report

    Energy Technology Data Exchange (ETDEWEB)

    Ferrell, John [Office of Energy Efficiency and Renewable Energy (EERE), Washington, DC (United States)

    2009-12-01

    This document summarizes the recommendations and evaluations provided by an independent external panel of experts at the U.S. Department of Energy Biomass Program’s Biochemical Conversion platform review meeting, held on April 14-16, 2009, at the Sheraton Denver Downtown, Denver, Colorado.

  7. Biochemical Thermodynamics under near Physiological Conditions

    Science.gov (United States)

    Mendez, Eduardo

    2008-01-01

    The recommendations for nomenclature and tables in Biochemical Thermodynamics approved by IUBMB and IUPAC in 1994 can be easily introduced after the chemical thermodynamic formalism. Substitution of the usual standard thermodynamic properties by the transformed ones in the thermodynamic equations, and the use of appropriate thermodynamic tables…

  8. Effects of macromolecular crowding on genetic networks.

    Science.gov (United States)

    Morelli, Marco J; Allen, Rosalind J; Wolde, Pieter Rein ten

    2011-12-21

    The intracellular environment is crowded with proteins, DNA, and other macromolecules. Under physiological conditions, macromolecular crowding can alter both molecular diffusion and the equilibria of bimolecular reactions and therefore is likely to have a significant effect on the function of biochemical networks. We propose a simple way to model the effects of macromolecular crowding on biochemical networks via an appropriate scaling of bimolecular association and dissociation rates. We use this approach, in combination with kinetic Monte Carlo simulations, to analyze the effects of crowding on a constitutively expressed gene, a repressed gene, and a model for the bacteriophage λ genetic switch, in the presence and absence of nonspecific binding of transcription factors to genomic DNA. Our results show that the effects of crowding are mainly caused by the shift of association-dissociation equilibria rather than the slowing down of protein diffusion, and that macromolecular crowding can have relevant and counterintuitive effects on biochemical network performance. PMID:22208186

  9. Genetic basis of cohesinopathies

    Directory of Open Access Journals (Sweden)

    Barbero JL

    2013-05-01

    Full Text Available José L Barbero Cellular and Molecular Biology Department, Biological Research Center, Madrid, Spain Abstract: Cohesin is a ring-form multifunctional protein complex, which was discovered during a search for molecules that keep sister chromatids together during segregation of chromosomes during cell division. In the past decade, a large number of results have also demonstrated a need for the cohesin complex in other crucial events in the life cycle of the cell, including DNA duplication, heterochromatin formation, DNA double-strand break repair, and control of gene expression. The dynamics of the cohesin ring are modulated by a number of accessory and regulatory proteins, known as cohesin cofactors. Loss of function of the cohesin complex is incompatible with life; however, mutations in the genes encoding for cohesin subunits and/or cohesin cofactors, which have very little or a null effect on chromosome segregation, represent a newly recognized class of human genetic disorders known as cohesinopathies. A number of genetic, biochemical, and clinical approaches, and importantly, animal models, can help us to determine the underlying mechanisms for these human diseases. Keywords: cohesin, cohesinopathies, Cornelia de Lange syndrome, Roberts syndrome, control, gene expression, insulators

  10. Low biochemical variability in European fallow deer (Dama dama L.): natural bottlenecks and the effects of domestication.

    Science.gov (United States)

    Randi, E; Apollonio, M

    1988-12-01

    Tissue and blood samples from 180 fallow deer (Dama dama L.) belonging to an Italian free-ranging population were studied for biochemical variability by means of cellulose acetate and polyacrylamide gel electrophoresis. The 51 putative genetic loci successfully resolved showed a very low level of variability (P = 0.020, H = 0.006) in accordance with previously reported data on British and West German populations. That low biochemical polymorphism in European fallow deer populations is discussed taking into account the effects of natural bottlenecks and of domestication. PMID:3230030

  11. Recent Advances on the Use of Biochemical Extracts as Filaricidal Agents

    Directory of Open Access Journals (Sweden)

    Nazeh M. Al-Abd

    2013-01-01

    Full Text Available Lymphatic filariasis is a parasitic infection that causes a devastating public health and socioeconomic burden with an estimated infection of over 120 million individuals worldwide. The infection is caused by three closely related nematode parasites, namely, Wuchereria bancrofti, Brugia malayi, and B. timori, which are transmitted to human through mosquitoes of Anopheles, Culex, and Aedes genera. The species have many ecological variants and are diversified in terms of their genetic fingerprint. The rapid spread of the disease and the genetic diversification cause the lymphatic filarial parasites to respond differently to diagnostic and therapeutic interventions. This in turn prompts the current challenge encountered in its management. Furthermore, most of the chemical medications used are characterized by adverse side effects. These complications urgently warrant intense prospecting on bio-chemicals that have potent efficacy against either the filarial worms or thier vector. In lieu of this, we presented a review on recent literature that reported the efficacy of filaricidal biochemicals and those employed as vector control agents. In addition, methods used for biochemical extraction, screening procedures, and structure of the bioactive compounds were also presented.

  12. Kombucha tea fermentation: Microbial and biochemical dynamics.

    Science.gov (United States)

    Chakravorty, Somnath; Bhattacharya, Semantee; Chatzinotas, Antonis; Chakraborty, Writachit; Bhattacharya, Debanjana; Gachhui, Ratan

    2016-03-01

    Kombucha tea, a non-alcoholic beverage, is acquiring significant interest due to its claimed beneficial properties. The microbial community of Kombucha tea consists of bacteria and yeast which thrive in two mutually non-exclusive compartments: the soup or the beverage and the biofilm floating on it. The microbial community and the biochemical properties of the beverage have so far mostly been described in separate studies. This, however, may prevent understanding the causal links between the microbial communities and the beneficial properties of Kombucha tea. Moreover, an extensive study into the microbial and biochemical dynamics has also been missing. In this study, we thus explored the structure and dynamics of the microbial community along with the biochemical properties of Kombucha tea at different time points up to 21 days of fermentation. We hypothesized that several biochemical properties will change during the course of fermentation along with the shifts in the yeast and bacterial communities. The yeast community of the biofilm did not show much variation over time and was dominated by Candida sp. (73.5-83%). The soup however, showed a significant shift in dominance from Candida sp. to Lachancea sp. on the 7th day of fermentation. This is the first report showing Candida as the most dominating yeast genus during Kombucha fermentation. Komagateibacter was identified as the single largest bacterial genus present in both the biofilm and the soup (~50%). The bacterial diversity was higher in the soup than in the biofilm with a peak on the seventh day of fermentation. The biochemical properties changed with the progression of the fermentation, i.e., beneficial properties of the beverage such as the radical scavenging ability increased significantly with a maximum increase at day 7. We further observed a significantly higher D-saccharic acid-1,4-lactone content and caffeine degradation property compared to previously described Kombucha tea fermentations. Our

  13. Genetic Breakthrough

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    A new calf breeding technique shows promise for treating malignant tumors Chinese scientists have successfully bred a genetically altered cow capable of producing cancer-curing proteins for human beings.

  14. Genetic Discrimination

    Science.gov (United States)

    ... Care Online Health Resources For Health Professionals Competency & Curricular Resources Genetics 101 Genomic Medicine and Health Care ... Role of the NHGRI in the Federal Legislative Process Genome Statute and Legislation Database Human Subjects Research ...

  15. Genetic Mapping

    Science.gov (United States)

    ... Care Online Health Resources For Health Professionals Competency & Curricular Resources Genetics 101 Genomic Medicine and Health Care ... of DNA. Think of it as a shuffling process, called recombination. The single chromosome in a reproductive ...

  16. Genetic Disorders

    Science.gov (United States)

    ... 21 (Down syndrome) . Other trisomies include trisomy 13 (Patau syndrome) and trisomy 18 (Edwards syndrome) . Monosomy is ... which there is an extra chromosome. Trisomy 13 (Patau Syndrome): A genetic disorder that causes serious heart ...

  17. RNA genetics

    Energy Technology Data Exchange (ETDEWEB)

    Domingo, E. (Instituto de Biologia Molecular, Facultad de Ciencias, Universidad Autonoma de Madrid, Canto Blanco, Madrid (ES)); Holland, J.J. (California Univ., San Diego, La Jolla, CA (USA). Dept. of Biology); Ahlquist, P. (Wisconsin Univ., Madison, WI (USA). Dept. of Plant Pathology)

    1988-01-01

    This book contains the proceedings on RNA genetics: Retroviruses, Viroids, and RNA recombination, Volume 2. Topics covered include: Replication of retrovirus genomes, Hepatitis B virus replication, and Evolution of RNA viruses.

  18. Ciona Genetics

    OpenAIRE

    Veeman, Michael T.; Chiba, Shota; Smith, William C.

    2011-01-01

    Ascidians, such as Ciona, are invertebrate chordates with simple embryonic body plans and small, relatively non-redundant genomes. Ciona genetics is in its infancy compared to many other model systems, but it provides a powerful method for studying this important vertebrate outgroup. Here we give basic methods for genetic analysis of Ciona, including protocols for controlled crosses both by natural spawning and by the surgical isolation of gametes; the identification and propagation of mutant...

  19. Dynamic analysis of biochemical network using complex network method

    OpenAIRE

    Wang Shuqiang; Shen Yanyan; Hu Jinxing; Li Ning; Zeng Dewei

    2015-01-01

    In this study, the stochastic biochemical reaction model is proposed based on the law of mass action and complex network theory. The dynamics of biochemical reaction system is presented as a set of non-linear differential equations and analyzed at the molecular-scale. Given the initial state and the evolution rules of the biochemical reaction system, the system can achieve homeostasis. Compared with random graph, the biochemical reaction network has larger ...

  20. Biochemical considerations in the design of radiopharmaceuticals

    International Nuclear Information System (INIS)

    The goal of radiopharmaceutical chemistry is to design and develop radiotracers targeted to an organ or function whose activity kinetics in tissue can be detected externally by a gamma or a positron device. Radiopharmaceuticals are divided into the general categories of specific and non-specific agents. The specific radiopharmaceuticals are the tracers that follow a biochemical pathway or are involved in a particular interaction, for example metabolic substrates, drugs or analogs, and antibodies. This paper will focus on trends in the design of specific agents. The best radionuclides for the development of specific tracers are the positron emitting nuclides: carbon-11, nitrogen-13, oxygen-15 and fluorine-18. First the design of radiopharmaceuticals are considered in general (labeling strategies, stereochemical effects, specific activity). Next, a brief summary of the use of several radiopharmaceuticals is presented on the basis of their biochemical rationale. (orig./G.J.P.)

  1. Cytologic-Biochemical Radiation Dosimeters in Man

    International Nuclear Information System (INIS)

    The result of radiation interacting with living tissue is the deposition of energy therein. This energy triggers numerous chemical reactions within the molecules of the target tissues. We have measured in man the results of some of these reactions at doses up to 300 rads: chromosome aberrations; alterations in the kinetics of specific human cell populations; changes in 37 biochemical constituents of serum and/or urine. The utilization of chromosomes as a biological dosimeter is partially perfected but there are numerous discrepancies in data between different laboratories. Etiocholanolone can be used to evaluate marrow injury before the white-cell count falls below 5000/mm3. Most biochemical dosimeters evaluated gave negative or inconsistent results. However, salivary amylase is a promising indicator of human radiation injury from doses as low as 100 rads. (author)

  2. Reconstructing biochemical pathways from time course data.

    Science.gov (United States)

    Srividhya, Jeyaraman; Crampin, Edmund J; McSharry, Patrick E; Schnell, Santiago

    2007-03-01

    Time series data on biochemical reactions reveal transient behavior, away from chemical equilibrium, and contain information on the dynamic interactions among reacting components. However, this information can be difficult to extract using conventional analysis techniques. We present a new method to infer biochemical pathway mechanisms from time course data using a global nonlinear modeling technique to identify the elementary reaction steps which constitute the pathway. The method involves the generation of a complete dictionary of polynomial basis functions based on the law of mass action. Using these basis functions, there are two approaches to model construction, namely the general to specific and the specific to general approach. We demonstrate that our new methodology reconstructs the chemical reaction steps and connectivity of the glycolytic pathway of Lactococcus lactis from time course experimental data. PMID:17370261

  3. Optical Biochemical Platforms for Nanoparticles Detection

    CERN Document Server

    Campanella, Clarissa Martina

    2014-01-01

    In the biochemical sensing field, a fervent research activity related to the development of real time, low cost, compact and high throughput devices for the detection and characterization of natural or synthetic nanoparticles NPs actually exists. In this research scenario, different platforms for biosensing purposes have been developed according to the huge amount of physical effects involved in the transduction of the biochemical-signal into a measurable output signal. In the present work two different optical platforms for NP detection have been investigated, one based on integrated optics and the other based on microscopy. Both the approaches rely on the study of the interaction of an electromagnetic wave with a small particle in the hypothesis of dealing with a Rayleigh scatterer, i.e. a nanoparticle having a size really smaller than the one of the wavelength of the incident light and scattering light elastically.

  4. Biological dosimetry: biochemical and cellular parameters

    International Nuclear Information System (INIS)

    Early after the beginning of radiobiology studies, biochemistry has led to research of a biological dosimeter. From an extensive literature review, methods were selected that might be suitable for dose assessment via biochemical indicators. By now, research both in laboratory animals and in therapeutic or accidental human exposures, do not allow to retain a biochemical parameter alone for the purpose of diagnosis or prognosis. Several enzymatic activities have been precociously studied after irradiation: from these studies, it seems that analysis of four enzymatic activities in serum (serum glutamic oxaloacetic transaminase, amylase, lactic dehydrogenase, alkaline phosphatase) could be the most useful dosimetry system for mass sorting. Detection of DNA damage or methods for measuring somatic mutations are currently advancing and provide important new opportunities for biological dosimetry of low doses

  5. Advancement in biochemical assays in andrology

    Institute of Scientific and Technical Information of China (English)

    Wolf-BernhardSchill; RaftHenkel

    1999-01-01

    Determination of maikers of sperm function, accessory sex gland secretion and silent male genital tract inflammation is of considerable diagnostic value in the evaluation of male infertility. The introduction of biochemical tests into the analysis of male factor has the advantage that standardized assays with a coefficient of variafion characteristic of clinical chemistry are performed, in contrast to biological test systems with a large variability .Biochemical parameters may be used in clinical practice to evaluate the sperm fertitizing capacity (acrosin, aniline blue,ROS), to characterize male accessory sex gland secretinns (fructose, a-glucosidase, PSA), and to identify men with silent genital tract inflammation (elastase, C'3 complement component, coeruloplasmin, IgA, IgG, ROS). (As/an J Androl 1999 Jun; 1: 45-51)

  6. Biochemical changes in ginger after gamma irradiation

    International Nuclear Information System (INIS)

    Ginger (Zingiber officinate) was irradiated with gamma rays (0.1Kgy, 1.0Kgy). Biochemical changes during storage at room temperature (23-28 degree centigrade), in sand (23-28 degree centigrade) and at cold (8 degree centigrade) temperature were observed. Changes in starch, soluble protein, fixed oil and volatile oil contents showed that treatment of ginger at 0.1Kgy radiation level was most appropriate for storage upto 45 days

  7. Prions: the danger of biochemical weapons

    OpenAIRE

    Eric Almeida Xavier

    2014-01-01

    The knowledge of biotechnology increases the risk of using biochemical weapons for mass destruction. Prions are unprecedented infectious pathogens that cause a group of fatal neurodegenerative diseases by a novel mechanism. They are transmissible particles that are devoid of nucleic acid. Due to their singular characteristics, Prions emerge as potential danger since they can be used in the development of such weapons. Prions cause fatal infectious diseases, and to date there is no therapeutic...

  8. The stochastic dynamics of biochemical systems

    OpenAIRE

    Challenger, Joseph Daniel

    2013-01-01

    The topic of this thesis is the stochastic dynamics of biochemical reaction systems. The importance of the intrinsic fluctuations in these systems has become more widely appreciated in recent years, and should be accounted for when modelling such systems mathematically. These models are described as continuous time Markov processes and their dynamics defined by a master equation. Analytical progress is made possible by the use of the van Kampen system-size expansion, which splits the dynamics...

  9. The Biochemical Anatomy of Cortical Inhibitory Synapses

    OpenAIRE

    Heller, E.A.; Zhang, W.; Selimi, F.; Earnheart, J.C.; Slimak, M.A.; Santos-Torres, J.; Ibanez-Tallon, I.; Aoki, C; Chait, B. T.; Heintz, N

    2012-01-01

    Classical electron microscopic studies of the mammalian brain revealed two major classes of synapses, distinguished by the presence of a large postsynaptic density (PSD) exclusively at type 1, excitatory synapses. Biochemical studies of the PSD have established the paradigm of the synapse as a complex signal-processing machine that controls synaptic plasticity. We report here the results of a proteomic analysis of type 2, inhibitory synaptic complexes isolated by affinity purification from th...

  10. Probabilistic sensitivity analysis of biochemical reaction systems

    OpenAIRE

    Zhang, Hong-Xuan; Dempsey, William P.; Goutsias, John

    2009-01-01

    Sensitivity analysis is an indispensable tool for studying the robustness and fragility properties of biochemical reaction systems as well as for designing optimal approaches for selective perturbation and intervention. Deterministic sensitivity analysis techniques, using derivatives of the system response, have been extensively used in the literature. However, these techniques suffer from several drawbacks, which must be carefully considered before using them in problems of systems biology. ...

  11. Biochemical and functional characterisation of casein and whey protein hydrolysates.

    OpenAIRE

    Ven, van de, P.M.

    2002-01-01

    Whey protein and sodium caseinate were hydrolysed with commercially available enzyme preparations. The resulting hydrolysates were characterised using several analytical characterisation methods and by determination of several functional properties. Subsequently, correlations between the biochemical characteristics themselves and between biochemical and functional properties were studied using multivariate regression analysis.Biochemical characteristics of hydrolysates were determined using u...

  12. [Biochemical antenatal screening for fetal anomalies.].

    Science.gov (United States)

    Torfadóttir, G; Jónsson, J J

    2001-05-01

    Biochemical antenatal screening started 30 years ago. Initially, the goal was to detect neural tube defects by measuring a-fetoprotein in maternal serum (MS-AFP) and amniotic fluid (AF-AFP). The serendipitous discovery of an association between low AFP maternal serum concentration and chromosomal anomalies resulted in increased research interest in biochemical screening in pregnancy. Subsequently double, triple or quadruple tests in 2nd trimester of pregnancy became widely used in combination with fetal chromosome determination in at risk individuals. In Iceland, antenatal screening for chromosomal anomalies has essentially been based on fetal chromosome studies offered to pregnant women 35 years or older. This strategy needs to be revised. Recently first trimester biochemical screening based on maternal serum pregnancy associated plasma protein A (MS-PAPP-A) and free b-human chorionic gonadotropin (MS-free b-hCG) and multivariate risk assessment has been developed. This screening test can be improved if done in conjunction with nuchal translucency measurements in an early sonography scan. PMID:17018982

  13. Electronic modulation of biochemical signal generation

    Science.gov (United States)

    Gordonov, Tanya; Kim, Eunkyoung; Cheng, Yi; Ben-Yoav, Hadar; Ghodssi, Reza; Rubloff, Gary; Yin, Jun-Jie; Payne, Gregory F.; Bentley, William E.

    2014-08-01

    Microelectronic devices that contain biological components are typically used to interrogate biology rather than control biological function. Patterned assemblies of proteins and cells have, however, been used for in vitro metabolic engineering, where coordinated biochemical pathways allow cell metabolism to be characterized and potentially controlled on a chip. Such devices form part of technologies that attempt to recreate animal and human physiological functions on a chip and could be used to revolutionize drug development. These ambitious goals will, however, require new biofabrication methodologies that help connect microelectronics and biological systems and yield new approaches to device assembly and communication. Here, we report the electrically mediated assembly, interrogation and control of a multi-domain fusion protein that produces a bacterial signalling molecule. The biological system can be electrically tuned using a natural redox molecule, and its biochemical response is shown to provide the signalling cues to drive bacterial population behaviour. We show that the biochemical output of the system correlates with the electrical input charge, which suggests that electrical inputs could be used to control complex on-chip biological processes.

  14. Hydrogel-based piezoresistive biochemical microsensors

    Science.gov (United States)

    Guenther, Margarita; Schulz, Volker; Gerlach, Gerald; Wallmersperger, Thomas; Solzbacher, Florian; Magda, Jules J.; Tathireddy, Prashant; Lin, Genyao; Orthner, Michael P.

    2010-04-01

    This work is motivated by a demand for inexpensive, robust and reliable biochemical sensors with high signal reproducibility and long-term-stable sensitivity, especially for medical applications. Micro-fabricated sensors can provide continuous monitoring and on-line control of analyte concentrations in ambient aqueous solutions. The piezoresistive biochemical sensor containing a special biocompatible polymer (hydrogel) with a sharp volume phase transition in the neutral physiological pH range near 7.4 can detect a specific analyte, for example glucose. Thereby the hydrogel-based biochemical sensors are useful for the diagnosis and monitoring of diabetes. The response of the glucosesensitive hydrogel was studied at different regimes of the glucose concentration change and of the solution supply. Sensor response time and accuracy with which a sensor can track gradual changes in glucose was estimated. Additionally, the influence of various recommended sterilization methods on the gel swelling properties and on the mechano-electrical transducer of the pH-sensors has been evaluated in order to choose the most optimal sterilization method for the implantable sensors. It has been shown that there is no negative effect of gamma irradiation with a dose of 25.7 kGy on the hydrogel sensitivity. In order to achieve an optimum between sensor signal amplitude and sensor response time, corresponding calibration and measurement procedures have been proposed and evaluated for the chemical sensors.

  15. Genetic manipulation of Methanosarcina spp.

    Directory of Open Access Journals (Sweden)

    PetraRegine AdelheidKohler

    2012-07-01

    Full Text Available The discovery of the third domain of life, the Archaea, is one of the most exciting findings of the last century. These remarkable prokaryotes are well known for their adaptations to extreme environments; however, Archaea have also conquered moderate environments. Many of the archaeal biochemical processes, such as methane production, are unique in nature and therefore of great scientific interest. Although formerly restricted to biochemical and physiological studies, sophisticated systems for genetic manipulation have been developed during the last two decades for methanogenic archaea, halophilic archaea and thermophilic, sulfur-metabolizing archaea. The availability of these tools has allowed for more complete studies of archaeal physiology and metabolism and most importantly provides the basis for the investigation of gene expression, regulation and function. In this review we provide an overview of methods for genetic manipulation of Methanosarcina spp., a group of methanogenic archaea that are key players in the global carbon cycle and which can be found in a variety of anaerobic environments.

  16. Identification and biochemical characterization of an Arabidopsis indole-3-acetic acid glucosyltransferase.

    Science.gov (United States)

    Jackson, R G; Lim, E K; Li, Y; Kowalczyk, M; Sandberg, G; Hoggett, J; Ashford, D A; Bowles, D J

    2001-02-01

    Biochemical characterization of recombinant gene products following a phylogenetic analysis of the UDP-glucosyltransferase (UGT) multigene family of Arabidopsis has identified one enzyme (UGT84B1) with high activity toward the plant hormone indole-3-acetic acid (IAA) and three related enzymes (UGT84B2, UGT75B1, and UGT75B2) with trace activities. The identity of the IAA conjugate has been confirmed to be 1-O-indole acetyl glucose ester. A sequence annotated as a UDP-glucose:IAA glucosyltransferase (IAA-UGT) in the Arabidopsis genome and expressed sequence tag data bases given its similarity to the maize iaglu gene sequence showed no activity toward IAA. This study describes the first biochemical analysis of a recombinant IAA-UGT and provides the foundation for future genetic approaches to understand the role of 1-O-indole acetyl glucose ester in Arabidopsis. PMID:11042207

  17. What is Genetic Counseling?

    Science.gov (United States)

    ... 1983) For information on genetic counselors and genetic counseling training programs, please download this helpful brochure from the Association of Genetic Counseling Program Directors: Who are Genetic Counselors? Practicing genetic ...

  18. Genetic cytological and biochemical study of a tomato chlorophyll mutant of the xanthic type, obtained by irradiation of the seeds; Etude genetique, cytologique et biochimique d'un mutant chlorophyllien de tomate du type xantha, obtenu par irradiation de graines

    Energy Technology Data Exchange (ETDEWEB)

    Lefort, M.; Duranton, J.; Galmiche, J.M.; Roux, E. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1958-07-01

    Irradiation of Lycopersicum aesculantum seeds with increasing doses of X-rays and thermal neutrons leads to the appearance of chlorophyll mutations in the descendants of the irradiated seeds. A genetic study of one of these mutants of the xanthic type showed that it was a recessive mutant with typical mono-genetic separation, while the cytological study demonstrated that the differentiation of the plast stopped at the stage of elementary lamella. Finally it is shown that in the light, the mutation brings about a very large deviation of the carbon metabolism towards the synthesis of amino acids and proteins, at the expense of that of glucosides. (author) [French] L'irradiation de graines de Lycopersicum Aesculantum avec des doses croissantes de rayons X et de neutrons thermiques entraine l'apparition de mutations chlorophylliennes dans la descendance des graines irradiees. L'etude genetique d'un de ces mutants du type xantha a montre qu'il s'agissait d'un mutant recessif a disjonction monogenique typique, tandis que l'etude cytologique a revele que la differentiation du plaste s'arretait au stade de lamelles elementaires. Il est apparu enfin qu'a la lumiere la mutation entrainait une deviation tres importante du metabolisme du carbone vers la synthese des acides amines et des proteines, au detriment de celle des glucides. (auteur)

  19. Molecular genetics: Step by step implementation in maize breeding

    OpenAIRE

    Konstantinov Kosana; Mladenović-Drinić Snežana

    2007-01-01

    Efficiency in plant breeding is determined primarily by the ability to screen for genetic polymorphism, productivity and yield stability early in program. Dependent on the knowledge about the biochemical bases of the trait and nature of its genetic control, trait could be modified either through mutagenesis of genes controlling it or through the transfer of already existing mutant genes, controlling desired trait to different plant genotypes by classic crossing. Objective of this report is to...

  20. Teaching human genetics in biochemistry by computer literature searching.

    OpenAIRE

    Proud, V. K.; Schmidt, F J; Johnson, E D; Mitchell, J. A.

    1989-01-01

    We describe a new user-intense-learning experience that incorporates the teaching of clinical and research applications of human genetics in biochemistry while training first-year medical students to develop skills in computer access to the literature. Human genetics was incorporated into the biochemistry curriculum by providing each student with experience in on-line literature searching in MEDLINE, using Grateful Med, in order to write an abstract about a specific inherited biochemical diso...

  1. Structural Diversity and Biochemical and Microbiological Characteristics of Aflatoxins

    Directory of Open Access Journals (Sweden)

    Ketney Otto

    2014-12-01

    Full Text Available Among all mycotoxins, Aflatoxin B1 (AFB1 is considered to be the most carcinogenic, and it has been classified by the International Agency for Research on Cancer in Group 1 of human carcinogen. It signifies a high hazard because it contaminates a diversity of agricultural products such as nuts and derivatives, peanuts/hazelnuts, grains, seeds, cottonseed, milk, dairy food. In milk AFB1 is metabolized to aflatoxin M (AFM1 which is 4-hydroxy derivative of AFB1, it is formed in the liver and excreted in the milk into the mammary glands of both human and lactating animals which have been fed with AFB1 contaminated diet. After the food contamination, one part of the aflatoxin B1 which was present in the food is eliminated through the milk. At the molecular level aflatoxin biosynthesis involves several levels of transcriptional and post-transcriptional control, so the main stages subsequent biochemical and genetic constituents of aflatoxin biosynthesis have been demonstrated recently. Recent studies over the last few decades have shown that the metabolism of AFB is an essential component of hepatocarcinogenic, however it was shown that AFB1 is metabolized by cytochrome P450 oxidised to intermediates and other metabolites Therefore, the biotransformation process may also lead to the formation of carcinogenic metabolites.

  2. Biochemical Network Stochastic Simulator (BioNetS: software for stochastic modeling of biochemical networks

    Directory of Open Access Journals (Sweden)

    Elston Timothy C

    2004-03-01

    Full Text Available Abstract Background Intrinsic fluctuations due to the stochastic nature of biochemical reactions can have large effects on the response of biochemical networks. This is particularly true for pathways that involve transcriptional regulation, where generally there are two copies of each gene and the number of messenger RNA (mRNA molecules can be small. Therefore, there is a need for computational tools for developing and investigating stochastic models of biochemical networks. Results We have developed the software package Biochemical Network Stochastic Simulator (BioNetS for efficientlyand accurately simulating stochastic models of biochemical networks. BioNetS has a graphical user interface that allows models to be entered in a straightforward manner, and allows the user to specify the type of random variable (discrete or continuous for each chemical species in the network. The discrete variables are simulated using an efficient implementation of the Gillespie algorithm. For the continuous random variables, BioNetS constructs and numerically solvesthe appropriate chemical Langevin equations. The software package has been developed to scale efficiently with network size, thereby allowing large systems to be studied. BioNetS runs as a BioSpice agent and can be downloaded from http://www.biospice.org. BioNetS also can be run as a stand alone package. All the required files are accessible from http://x.amath.unc.edu/BioNetS. Conclusions We have developed BioNetS to be a reliable tool for studying the stochastic dynamics of large biochemical networks. Important features of BioNetS are its ability to handle hybrid models that consist of both continuous and discrete random variables and its ability to model cell growth and division. We have verified the accuracy and efficiency of the numerical methods by considering several test systems.

  3. Intraspecific variation in cellular and biochemical heat response strategies of Mediterranean Xeropicta derbentina [Pulmonata, Hygromiidae].

    Directory of Open Access Journals (Sweden)

    Sandra Troschinski

    Full Text Available Dry and hot environments challenge the survival of terrestrial snails. To minimize overheating and desiccation, physiological and biochemical adaptations are of high importance for these animals. In the present study, seven populations of the Mediterranean land snail species Xeropicta derbentina were sampled from their natural habitat in order to investigate the intraspecific variation of cellular and biochemical mechanisms, which are assigned to contribute to heat resistance. Furthermore, we tested whether genetic parameters are correlated with these physiological heat stress response patterns. Specimens of each population were individually exposed to elevated temperatures (25 to 52°C for 8 h in the laboratory. After exposure, the health condition of the snails' hepatopancreas was examined by means of qualitative description and semi-quantitative assessment of histopathological effects. In addition, the heat-shock protein 70 level (Hsp70 was determined. Generally, calcium cells of the hepatopancreas were more heat resistant than digestive cells - this phenomenon was associated with elevated Hsp70 levels at 40°C.We observed considerable variation in the snails' heat response strategy: Individuals from three populations invested much energy in producing a highly elevated Hsp70 level, whereas three other populations invested energy in moderate stress protein levels - both strategies were in association with cellular functionality. Furthermore, one population kept cellular condition stable despite a low Hsp70 level until 40°C exposure, whereas prominent cellular reactions were observed above this thermal limit. Genetic diversity (mitochondrial cytochrome c oxidase subunit I gene within populations was low. Nevertheless, when using genetic indices as explanatory variables in a multivariate regression tree (MRT analysis, population structure explained mean differences in cellular and biochemical heat stress responses, especially in the group

  4. 干旱胁迫对分蘖期转基因水稻抗旱性生理生化指标的影响%Effects of Drought Stress on Physiological and Biochemical Indices of Drought-resistance in Genetically Modified Rice Tillering Stage

    Institute of Scientific and Technical Information of China (English)

    尉荣蓉; 隋亚珍; 许萌萌; 刘杨; 赵昕

    2013-01-01

    [目的]通过比较野生型日本晴株系水稻WT和OsCAS基因过表达株系水稻777在分蘖期的抗旱性生理生化指标,分析OsCAS基因高表达株系水稻的抗旱能力.[方法]用10%和15%的PEG模拟干旱胁迫,测定2种株系水稻的CAT、POD和SOD活性及MDA和Pro含量.[结果]在10% PEG处理下,WT和777的3种保护酶活性均有增加;在15% PEG处理下,WT的3种保护酶活性明显降低,777的3种保护酶却能够保持相对较高的活性;此外,WT和777的MDA和Pro含量都随干旱胁迫程度的加深而增加,在同一胁迫条件下WT的MDA和Pro含量要明显高于777的.[结论]OsCAS基因高表达株系777在分蘖期较WT对干旱有较强的抗性,特别是在严重干旱胁迫(15% PEG)时优势尤为明显.%[Objective] To study the drought resistance of 777 (a kind of rice with OsCAS gene overexpression),we compared the physiological and biochemical indices of drought-resistance between the WT (a kind of wild rice,Nipponbare rice) and 777.[Method] Two different drought resistant varieties were treated by 10% and 15% PEG.Their CAT,SOD and POD activity and Pro and MDA contents were measured.[Result] The results indicated that under 10% PEG treatment,the CAT,SOD and POD activity were increased in both WT and 777.Under 15% PEG treatrnem,the CAT,SOD and POD activity decreased in WT but maintained relatively higher level in 777.In the two different varieties,the MDA and Pro content augmented with PEG concentration increasing.There were more Pro and MDA in WT than 777 under the same drought stress.[Conclusion] In tillering stage,the 777 has a stronger ability to resistant the drought stress than the WT,especially under serious drought stress (15% PEG).

  5. BNDB – The Biochemical Network Database

    Directory of Open Access Journals (Sweden)

    Kaufmann Michael

    2007-10-01

    Full Text Available Abstract Background Technological advances in high-throughput techniques and efficient data acquisition methods have resulted in a massive amount of life science data. The data is stored in numerous databases that have been established over the last decades and are essential resources for scientists nowadays. However, the diversity of the databases and the underlying data models make it difficult to combine this information for solving complex problems in systems biology. Currently, researchers typically have to browse several, often highly focused, databases to obtain the required information. Hence, there is a pressing need for more efficient systems for integrating, analyzing, and interpreting these data. The standardization and virtual consolidation of the databases is a major challenge resulting in a unified access to a variety of data sources. Description We present the Biochemical Network Database (BNDB, a powerful relational database platform, allowing a complete semantic integration of an extensive collection of external databases. BNDB is built upon a comprehensive and extensible object model called BioCore, which is powerful enough to model most known biochemical processes and at the same time easily extensible to be adapted to new biological concepts. Besides a web interface for the search and curation of the data, a Java-based viewer (BiNA provides a powerful platform-independent visualization and navigation of the data. BiNA uses sophisticated graph layout algorithms for an interactive visualization and navigation of BNDB. Conclusion BNDB allows a simple, unified access to a variety of external data sources. Its tight integration with the biochemical network library BN++ offers the possibility for import, integration, analysis, and visualization of the data. BNDB is freely accessible at http://www.bndb.org.

  6. Biochemical changes in blood under Cr6+

    Directory of Open Access Journals (Sweden)

    Kuzenko E.V.

    2013-01-01

    Full Text Available Background. For the manufacture of dentures many different alloys containing chromium are used. Interaction with oral fluid, organic acids and food, results in formation of Cr3+, Cr6+ ions, but their influence on the whole organism is poorly investigated. Objective. To analyze the biochemical changes in blood plasma during the influence of Cr6+ ions. Methods. 15 animals of experimental group were receiving drinking water with potassium dichromate in a dose of 0,2 mol/l. Rats of control group (5 individuals drank usual drinking water. Animals were led out of experiment on the 20th, 40th and 60th days after the beginning of introduction of potassium dichromate. Results. It was established that at the beginning of experiment the blood biochemical indicators of control and the 1st experimental groups differed by its content. Increase of urea concentration led to suspicion about violation of a glomerular filtration, damage of a kidney parenchyma and tissue disintegration. On the 20th and 40th days of experiment the symptoms of acidosis and increase of potassium ions concentration in blood plasma were defined. Continuous and dynamic increase of creatin-phosphokinase was observed during 60 days of experiment. Conclusion. Biochemical changes in blood under the influence of Cr6+ ions evidence their toxic action on an organism. Especial concern is caused by changes of ionic composition and increase of the atherogenic index of blood plasma on the 40th day of experiment. Substantial increase of the creatin-phosphokinase level indicates general somatic influence of chromium ions.

  7. Genetic analysis

    NARCIS (Netherlands)

    Koornneef, M.; Alonso-Blanco, C.; Stam, P.

    2006-01-01

    The Mendelian analysis of genetic variation, available as induced mutants or as natural variation, requires a number of steps that are described in this chapter. These include the determination of the number of genes involved in the observed trait's variation, the determination of dominance relation

  8. Genetic effects

    International Nuclear Information System (INIS)

    In 1948-1953 a large scale field survey was conducted to investigate the possible genetic effects of A-bomb radiation on over 70,000 pregnancy terminations in the cities of Hiroshima and Nagasaki. The indices of possible genetic effect including sex ratio, birth weight, frequency of malformation, stillbirth, neonatal death, deaths within 9 months and anthropometric measurements at 9 months of age for these children were investigated in relation to their parent's exposure status to the A-bomb. There were no detectable genetic effects in this sample, except for a slight change in sex ratio which was in the direction to be expected if exposure had induced sex-linked lethal mutations. However, continued study of the sex ratio, based upon birth certificates in Hiroshima and Nagasaki for 1954-1962, did not confirm the earlier trend. Mortality in these children of A-bomb survivors is being followed using a cohort of 54,000 subjects. No clearly significant effect of parental exposure on survival of the children has been demonstrated up to 1972 (age 17 on the average). On the basis of the regression data, the minimal genetic doubling dose of this type of radiation for mutations resulting in death is estimated at 46 rem for the father and 125 rem for the mother. (auth.)

  9. Fluctuation preserving coarse graining for biochemical systems

    CERN Document Server

    Altaner, Bernhard

    2011-01-01

    Finite stochastic Markov models play a major role for modelling biochemical pathways. Such models are a coarse-grained description of the underlying microscopic dynamics and can be considered mesoscopic. The level of coarse-graining is to a certain extend arbitrary since it depends on the resolution of accomodating measurements. Here, we present a way to simplify such stochastic descriptions, which preserves both the meso-micro and the meso-macro connection. The former is achieved by demanding locality, the latter by considering cycles on the network of states. Using single- and multicycle examples we demonstrate how our new method preserves fluctuations of observables much better than na\\"ive approaches.

  10. Radiation treatment of drugs, biochemicals and vaccines

    International Nuclear Information System (INIS)

    The concise and tabulated review reports experimental results on the effects of radiation treatment on drugs, vaccines, biochemicals and adjuvants including enzymes as well. Irradiation was mostly performed by γ-radiation using 60Co and to a lesser extent by 137Cs, 182Ta, X-rays and accelerators. Ionizing radiation proved to be a useful tool for sterilization and inactivation in producing drugs, vaccines, and bioactive agents and will contribute to realize procedures difficultly solvable as to engineering and economy, respectively. 124 refs

  11. Induced biochemical conversions of heavy crude oils

    International Nuclear Information System (INIS)

    Products formed during multiple interactions of microorganisms with oils fall into two major categories: those formed due to the action of indigenous microorganisms under reservoir conditions over geological periods of time and those products which are generated by the action of introduced organisms. The extreme end product of the first category is the production of heavy 'biodegraded' crudes. The extreme end product of the second category is the production of reduced sulfates due to the introduction of sulfate-reducing bacteria which may lead to the souring of a field. There is, however, a select group of microorganisms whose action on the crudes is beneficial. The interactions between such microorganisms and different crude oils occur through complex biochemical and chemical reactions. These reactions depend on multiple variables within and at the interface of a multicomponent system consisting of organic, aqueous, and inorganic components. Studies, carried out in this laboratory (BNL) of biochemical and chemical reactions in crude oils which involve extremophilic organisms (organisms which thrive in extreme environments), have shown that the reactions are not random and follow distinct trends. These trends can be categorized. The use of a group of characteristic chemical markers, such as mass spectrometric fragmentation patterns of light and heavy hydrocarbons, heterocyclic and organometallic compounds, as well as total trace metal and heteroatom contents of crude oils before and after the biochemical treatment allows to follow the type and the extent of chemical changes which occur during the biochemical conversion of heavy crude oils by microorganisms. The bioconversion involves multiple, simultaneous, and/or concurrent chemical reactions in which the microorganisms serve as biocatalysts. In this sense, the biocatalysts are active in a reaction medium which depends on the chemical composition of the crude and the selectivity of the biocatalyst. Thus, the

  12. Biochemical Disincentives to Fertilizing Cellulosic Ethanol Crops

    Science.gov (United States)

    Gallagher, M. E.; Hockaday, W. C.; Snapp, S.; McSwiney, C.; Baldock, J.

    2010-12-01

    Corn grain biofuel crops produce the highest yields when the cropping ecosystem is not nitrogen (N)-limited, achieved by application of fertilizer. There are environmental consequences for excessive fertilizer application to crops, including greenhouse gas emissions, hypoxic “dead zones,” and health problems from N runoff into groundwater. The increase in corn acreage in response to demand for alternative fuels (i.e. ethanol) could exacerbate these problems, and divert food supplies to fuel production. A potential substitute for grain ethanol that could reduce some of these impacts is cellulosic ethanol. Cellulosic ethanol feedstocks include grasses (switchgrass), hardwoods, and crop residues (e.g. corn stover, wheat straw). It has been assumed that these feedstocks will require similar N fertilization rates to grain biofuel crops to maximize yields, but carbohydrate yield versus N application has not previously been monitored. We report the biochemical stocks (carbohydrate, protein, and lignin in Mg ha-1) of a corn ecosystem grown under varying N levels. We measured biochemical yield in Mg ha-1 within the grain, leaf and stem, and reproductive parts of corn plants grown at seven N fertilization rates (0-202 kg N ha-1), to evaluate the quantity and quality of these feedstocks across a N fertilization gradient. The N fertilization rate study was performed at the Kellogg Biological Station-Long Term Ecological Research Site (KBS-LTER) in Michigan. Biochemical stocks were measured using 13C nuclear magnetic resonance spectroscopy (NMR), combined with a molecular mixing model (Baldock et al. 2004). Carbohydrate and lignin are the main biochemicals of interest in ethanol production since carbohydrate is the ethanol feedstock, and lignin hinders the carbohydrate to ethanol conversion process. We show that corn residue carbohydrate yields respond only weakly to N fertilization compared to grain. Grain carbohydrate yields plateau in response to fertilization at

  13. Identification of the variability of a common bean collection through morphological, physiological, biochemical, and molecular relationships

    OpenAIRE

    Ligarreto M., Gustavo A.; Martínez W., Orlando

    2014-01-01

    The present study was carried out in Corpoica, C.I. Tibaitata (Mosquera, Colombia) at an altitude of 2,540 m a.s.l. in six environments composed of different seasons and at an altitude of 1,485 m a.s.l. in the International Center of Tropical Agriculture (CIAT), Calima, Colombia. Morphological, physiological, biochemical, and molecular descriptors were used to estimate the genetic variability between 36 Colombian bean accessions, of which four were wild and the others cultivated. Diacol Calim...

  14. Genetic effects

    International Nuclear Information System (INIS)

    In this chapter, we present a comprehensive analysis of the major classes of genetic diseases that would be increased as a result of an increased gonadal radiation exposure to a human population. The risk analysis takes on two major forms: the increase in genetic disease that would be observed in the immediate offspring of the exposed population, and the subsequent transmission of the newly induced mutations through future generations. The major classes of genetic disease will be induced at different frequencies, and will also impact differentially in terms of survivability and fertility on the affected individuals and their descendants. Some classes of disease will be expected to persist for only a few generations at most. Other types of genetic disease will persist through a longer period. The classes of genetic diseases studied are: dominant gene mutation, X-linked gene mutation, chromosome disorders and multifactorial disorders which involve the interaction of many mutant genes and environmental factors. For each of these classes we have derived the general equations of mutation induction for the male and female germ cells of critical importance in the mutation process. The frequency of induced mutations will be determined initially by the dose received, the type of radiation and, to some extent at high dose, by the manner in which the dose is received. We have used the modeling analyses to predict the outcomes for two nuclear power plant accident scenarios, the first in which the population receives a chronic dose of 0.1 Gy (10 rad) over a 50-year period, the second in which an equivalent population receives an acute dose of 2 Gy. In both cases the analyses are projected over a period of five generations

  15. Biochemical research elucidating metabolic pathways in Pneumocystis*

    Directory of Open Access Journals (Sweden)

    Kaneshiro E.S.

    2010-12-01

    Full Text Available Advances in sequencing the Pneumocystis carinii genome have helped identify potential metabolic pathways operative in the organism. Also, data from characterizing the biochemical and physiological nature of these organisms now allow elucidation of metabolic pathways as well as pose new challenges and questions that require additional experiments. These experiments are being performed despite the difficulty in doing experiments directly on this pathogen that has yet to be subcultured indefinitely and produce mass numbers of cells in vitro. This article reviews biochemical approaches that have provided insights into several Pneumocystis metabolic pathways. It focuses on 1 S-adenosyl-L-methionine (AdoMet; SAM, which is a ubiquitous participant in numerous cellular reactions; 2 sterols: focusing on oxidosqualene cyclase that forms lanosterol in P. carinii; SAM:sterol C-24 methyltransferase that adds methyl groups at the C-24 position of the sterol side chain; and sterol 14α-demethylase that removes a methyl group at the C-14 position of the sterol nucleus; and 3 synthesis of ubiquinone homologs, which play a pivotal role in mitochondrial inner membrane and other cellular membrane electron transport.

  16. Biochemical mechanisms of laser vascular tissue fusion.

    Science.gov (United States)

    Guthrie, C R; Murray, L W; Kopchok, G E; Rosenbaum, D; White, R A

    1991-01-01

    This study examines the biochemical changes that occur in argon laser-fused canine veins compared with control segments of vein. Laser fusions were formed using 0.5 W argon laser energy (1100-1500 J/cm2). Immediately following tissue fusion, blood flow was reestablished to test the integrity of the welds. 1-mm3 sections of the anastomoses and control sections were minced and protein extraction was performed by solubilizing the tissue in hot SDS Laemmli gel sample buffer. The proteins were separated electrophoretically on 5 and 10% polyacylamide SDS gels and silver stained. The analysis demonstrated significant biochemical differences between control and lased veins. We noted increases in several proteins after laser welding: the putative beta chain of type V collagen (5/5 gels), the putative gamma chain of type I collagen (4/5 gels), a 156-kDa protein (based on collagen molecular weight standards) 7/7 gels), an 82-kDa protein (8/9 gels), and several proteins of lower molecular weight (3/8 gels). The increases may be due to crosslinking of lower molecular weight proteins, degradation of higher molecular weight proteins, or increased solubility of certain proteins. These findings suggest that laser welding may occur by formation of crosslinks or by denaturation and reannealment of structural proteins. PMID:1863584

  17. BIOCHEMICAL PROCESSES FOR GEOTHERMAL BRINE TREATMENT

    Energy Technology Data Exchange (ETDEWEB)

    PREMUZIC,E.T.; LIN,M.S.; BOHENEK,M.; JOSHI-TOPE,G.; ZHOU,W.; SHELENKOVA,L.; WILKE,R.

    1998-09-20

    As part of the DOE Geothermal Energy Program, BNL's Advanced Biochemical Processes for Geothermal Brines (ABPGB) project is aimed at the development of cost-efficient and environmentally acceptable technologies for the disposal of geothermal wastes. Extensive chemical studies of high and low salinity brines and precipitates have indicated that in addition to trace quantities of regulated substances, e.g., toxic metals such as arsenic and mercury, there are significant concentrations of valuable metals, including gold, silver and platinum. Further chemical and physical studies of the silica product have also shown that the produced silica is a valuable material with commercial potential. A combined biochemical and chemical technology is being developed which (1) solubilizes, separates, and removes environmentally regulated constituents in geothermal precipitates and brines (2) generates an amorphous silica product which may be used as feedstock for the production of revenue generating materials, (3) recover economically valuable trace metals and salts. Geothermal power resources which utilize low salinity brines and use the Stretford process for hydrogen sulfide abatement generate a contaminated sulfur cake. Combined technology converts such sulfur to a commercial grade sulfur, suitable for agricultural use. The R and D activities at BNL are conducted jointly with industrial parties in an effort focused on field applications.

  18. Biochemical processes for geothermal brine treatment

    Energy Technology Data Exchange (ETDEWEB)

    Premuzic, E.T.; Lin, M.S.; Bohenek, M.; Joshi-Tope, G.; Zhou, W.; Shelenkova, L.; Wilke, R.

    1998-08-01

    As part of the DOE Geothermal Energy Program, BNL`s Advanced Biochemical Processes for Geothermal Brines (ABPGB) project is aimed at the development of cost-efficient and environmentally acceptable technologies for the disposal of geothermal wastes. Extensive chemical studies of high and low salinity brines and precipitates have indicated that in addition to trace quantities of regulated substances, e.g., toxic metals such as arsenic and mercury, there are significant concentrations of valuable metals, including gold, silver and platinum. Further chemical and physical studies of the silica product have also shown that the produced silica is a valuable material with commercial potential. A combined biochemical and chemical technology is being developed which (1) solubilizes, separates, and removes environmentally regulated constituents in geothermal precipitates and brines, (2) generates an amorphous silica product which may be used as feedstock for the production of revenue generating materials, (3) recover economically valuable trace metals and salts. Geothermal power resources which utilize low salinity brines and use the Stretford process for hydrogen sulfide abatement generate a contaminated sulfur cake. Combined technology converts such sulfur to a commercial grade sulfur, suitable for agricultural use. The R and D activities at BNL are conducted jointly with industrial parties in an effort focused on field applications.

  19. Serum biochemical markers in carcinoma breast.

    Directory of Open Access Journals (Sweden)

    Seth R

    2003-08-01

    Full Text Available BACKGROUND: Despite the extensive research for many years throughout the world, the etiopathogenesis of cancer still remains obscure. For the early detection of carcinoma of various origins, a number of biochemical markers have been studied to evaluate the malignancy. AIM: To analyse serum gamma glutamyl transpeptidase (GGTP, lactate dehydrogenase (LDH and superoxide dismutase (SOD in carcinoma breast patients. SETTINGS & DESIGN: The serum biochemical markers were estimated in twenty five histopathologically confirmed patients with carcinoma breast and equal number of healthy age- matched individuals served as control. MATERIAL & METHODS: Serum gamma glutamyl transpeptidase (GGTP, lactate dehydrogenase (LDH and superoxide dismutase (SOD were estimated and their sensitivity determined. Statistics: Data was analysed with student′s ′t′-test and sensitivity score of these markers was determined. RESULTS & CONCLUSIONS: The mean serum GGTP, LDH and SOD activities in patients with carcinoma breast were tremendously increased as compared to controls, and a steady increase was observed in their activities from stage I through stage IV as well as following distant metastasis. Serum GGTP, LDH and SOD might prove to be most sensitive biomarkers in carcinoma breast in early detection of the disease.

  20. Metabolomic profiling and genomic analysis of wheat aneuploid lines to identify genes controlling biochemical pathways in mature grain.

    Science.gov (United States)

    Francki, Michael G; Hayton, Sarah; Gummer, Joel P A; Rawlinson, Catherine; Trengove, Robert D

    2016-02-01

    Metabolomics is becoming an increasingly important tool in plant genomics to decipher the function of genes controlling biochemical pathways responsible for trait variation. Although theoretical models can integrate genes and metabolites for trait variation, biological networks require validation using appropriate experimental genetic systems. In this study, we applied an untargeted metabolite analysis to mature grain of wheat homoeologous group 3 ditelosomic lines, selected compounds that showed significant variation between wheat lines Chinese Spring and at least one ditelosomic line, tracked the genes encoding enzymes of their biochemical pathway using the wheat genome survey sequence and determined the genetic components underlying metabolite variation. A total of 412 analytes were resolved in the wheat grain metabolome, and principal component analysis indicated significant differences in metabolite profiles between Chinese Spring and each ditelosomic lines. The grain metabolome identified 55 compounds positively matched against a mass spectral library where the majority showed significant differences between Chinese Spring and at least one ditelosomic line. Trehalose and branched-chain amino acids were selected for detailed investigation, and it was expected that if genes encoding enzymes directly related to their biochemical pathways were located on homoeologous group 3 chromosomes, then corresponding ditelosomic lines would have a significant reduction in metabolites compared with Chinese Spring. Although a proportion showed a reduction, some lines showed significant increases in metabolites, indicating that genes directly and indirectly involved in biosynthetic pathways likely regulate the metabolome. Therefore, this study demonstrated that wheat aneuploid lines are suitable experimental genetic system to validate metabolomics-genomics networks. PMID:26032167

  1. Genetic effects

    International Nuclear Information System (INIS)

    Modeling analyses are used to predict the outcomes for two nuclear power plant accident scenarios, the first in which the population received a chronic dose of 0.1 Gy (10 rad) over a 50 year period, the second in which an equivalent population receives acute dose of 2 Gy. In both cases the analyses are projected over a period of five generations. The risk analysis takes on two major forms: the increase in genetic disease that would be observed in the immediate offspring of the exposed population, and the subsequent transmission of the newly induced mutations through future generations. The classes of genetic diseases studied are: dominant gene mutation, X-linked gene mutation, chromosome disorders and multifactorial disorders which involve the interaction of many mutant genes and environmental factors. 28 references, 3 figures, 5 tables

  2. Cancer Genetics Services Directory

    Science.gov (United States)

    ... Prevention Overview–for health professionals Research NCI Cancer Genetics Services Directory This directory lists professionals who provide services related to cancer genetics (cancer risk assessment, genetic counseling, genetic susceptibility testing, ...

  3. Genetic Testing (For Parents)

    Science.gov (United States)

    ... Story" 5 Things to Know About Zika & Pregnancy Genetic Testing KidsHealth > For Parents > Genetic Testing Print A A ... blood, skin, bone, or other tissue is needed. Genetic Testing During Pregnancy For genetic testing before birth, pregnant ...

  4. Mutual information in time-varying biochemical systems

    OpenAIRE

    Tostevin, Filipe; Wolde, Pieter Rein ten

    2010-01-01

    Cells must continuously sense and respond to time-varying environmental stimuli. These signals are transmitted and processed by biochemical signalling networks. However, the biochemical reactions making up these networks are intrinsically noisy, which limits the reliability of intracellular signalling. Here we use information theory to characterise the reliability of transmission of time-varying signals through elementary biochemical reactions in the presence of noise. We calculate the mutual...

  5. Possibilities and methods for biochemical assessment of radiation injury

    International Nuclear Information System (INIS)

    An extensitive review (77 references) is made of the application of biochemical diagnostic methods for assessment of radiation diseases. A brief characteristics of several biochemical indicators is given: deoxycytidine, thymidine, ρ-aminoisocarboxylic acid, DNA-ase, nucleic acids. Influence of such factors as age, sex, season etc. is studied by means of functional biochemical indicators as: creatine, triptophanic metabolites, 5-hydroxy-indolacetic acid, biogenic amines, serum proteins, enzymes, etc

  6. Conceptual Aspects of Theory Appraisal: Some Biochemical Examples

    Directory of Open Access Journals (Sweden)

    F. Michael Akeroyd

    1997-11-01

    Full Text Available This paper considers papers on conceptual analysis by Laudan (1981 and Whitt (1989 and relates them to three biochemical episodes: (1 the modern 'biochemical explanation' of acupuncture; (2 the chemio-osmotic hypothesis of oxidative phosphorylation; (3 the theory of the complete digestion of proteins in the gut. The advantages of including philosophical debate in chemical/biochemical undergraduate courses is then discussed.

  7. Dynamic analysis of biochemical network using complex network method

    Directory of Open Access Journals (Sweden)

    Wang Shuqiang

    2015-01-01

    Full Text Available In this study, the stochastic biochemical reaction model is proposed based on the law of mass action and complex network theory. The dynamics of biochemical reaction system is presented as a set of non-linear differential equations and analyzed at the molecular-scale. Given the initial state and the evolution rules of the biochemical reaction system, the system can achieve homeostasis. Compared with random graph, the biochemical reaction network has larger information capacity and is more efficient in information transmission. This is consistent with theory of evolution.

  8. Category analysis: from biochemical mechanics to astrophysics

    International Nuclear Information System (INIS)

    Full text: One of the main goals of this report is to bridge the gap between computer modelling and group analysis of nonlinear partial differential equations. But we can work with a category of groups rather than a Lie group. In view of the experience of the past development of the relation between mathematics, mechanics and physics, the categorical extension may be justified that one day categoric structures will be as important as groups are today. Also our aim is the application of the same category-theoretic methods in biochemical mechanics and astrophysics. As examples we consider the category analysis of material models for concrete, wood and reinforcing or prestressing steel, on the one hand, and process of the linear and circular polarization of the cosmic microwave background radiation due to the quantum effects of electromagnetic field in anisotropic Bianchi-type cosmological models, on the other hand. (author)

  9. Prions: the danger of biochemical weapons

    Directory of Open Access Journals (Sweden)

    Eric Almeida Xavier

    2014-09-01

    Full Text Available The knowledge of biotechnology increases the risk of using biochemical weapons for mass destruction. Prions are unprecedented infectious pathogens that cause a group of fatal neurodegenerative diseases by a novel mechanism. They are transmissible particles that are devoid of nucleic acid. Due to their singular characteristics, Prions emerge as potential danger since they can be used in the development of such weapons. Prions cause fatal infectious diseases, and to date there is no therapeutic or prophylactic approach against these diseases. Furthermore, Prions are resistant to food-preparation treatments such as high heat and can find their way from the digestive system into the nervous system; recombinant Prions are infectious either bound to soil particles or in aerosols. Therefore, lethal Prions can be developed by malicious researchers who could use it to attack political enemies since such weapons cause diseases that could be above suspicion.

  10. Robust simplifications of multiscale biochemical networks

    Directory of Open Access Journals (Sweden)

    Zinovyev Andrei

    2008-10-01

    Full Text Available Abstract Background Cellular processes such as metabolism, decision making in development and differentiation, signalling, etc., can be modeled as large networks of biochemical reactions. In order to understand the functioning of these systems, there is a strong need for general model reduction techniques allowing to simplify models without loosing their main properties. In systems biology we also need to compare models or to couple them as parts of larger models. In these situations reduction to a common level of complexity is needed. Results We propose a systematic treatment of model reduction of multiscale biochemical networks. First, we consider linear kinetic models, which appear as "pseudo-monomolecular" subsystems of multiscale nonlinear reaction networks. For such linear models, we propose a reduction algorithm which is based on a generalized theory of the limiting step that we have developed in 1. Second, for non-linear systems we develop an algorithm based on dominant solutions of quasi-stationarity equations. For oscillating systems, quasi-stationarity and averaging are combined to eliminate time scales much faster and much slower than the period of the oscillations. In all cases, we obtain robust simplifications and also identify the critical parameters of the model. The methods are demonstrated for simple examples and for a more complex model of NF-κB pathway. Conclusion Our approach allows critical parameter identification and produces hierarchies of models. Hierarchical modeling is important in "middle-out" approaches when there is need to zoom in and out several levels of complexity. Critical parameter identification is an important issue in systems biology with potential applications to biological control and therapeutics. Our approach also deals naturally with the presence of multiple time scales, which is a general property of systems biology models.

  11. Biochemically enhanced methane production from coal

    Science.gov (United States)

    Opara, Aleksandra

    For many years, biogas was connected mostly with the organic matter decomposition in shallow sediments (e.g., wetlands, landfill gas, etc.). Recently, it has been realized that biogenic methane production is ongoing in many hydrocarbon reservoirs. This research examined microbial methane and carbon dioxide generation from coal. As original contributions methane production from various coal materials was examined in classical and electro-biochemical bench-scale reactors using unique, developed facultative microbial consortia that generate methane under anaerobic conditions. Facultative methanogenic populations are important as all known methanogens are strict anaerobes and their application outside laboratory would be problematic. Additional testing examined the influence of environmental conditions, such as pH, salinity, and nutrient amendments on methane and carbon dioxide generation. In 44-day ex-situ bench-scale batch bioreactor tests, up to 300,000 and 250,000 ppm methane was generated from bituminous coal and bituminous coal waste respectively, a significant improvement over 20-40 ppm methane generated from control samples. Chemical degradation of complex hydrocarbons using environmentally benign reagents, prior to microbial biodegradation and methanogenesis, resulted in dissolution of up to 5% bituminous coal and bituminous coal waste and up to 25% lignite in samples tested. Research results confirm that coal waste may be a significant underutilized resource that could be converted to useful fuel. Rapid acidification of lignite samples resulted in low pH (below 4.0), regardless of chemical pretreatment applied, and did not generate significant methane amounts. These results confirmed the importance of monitoring and adjusting in situ and ex situ environmental conditions during methane production. A patented Electro-Biochemical Reactor technology was used to supply electrons and electron acceptor environments, but appeared to influence methane generation in a

  12. Biochemical Pharmacology of the Sigma-1 Receptor.

    Science.gov (United States)

    Chu, Uyen B; Ruoho, Arnold E

    2016-01-01

    The sigma-1 receptor (S1R) is a 223 amino acid two transmembrane (TM) pass protein. It is a non-ATP-binding nonglycosylated ligand-regulated molecular chaperone of unknown three-dimensional structure. The S1R is resident to eukaryotic mitochondrial-associated endoplasmic reticulum and plasma membranes with broad functions that regulate cellular calcium homeostasis and reduce oxidative stress. Several multitasking functions of the S1R are underwritten by chaperone-mediated direct (and indirect) interactions with ion channels, G-protein coupled receptors and cell-signaling molecules involved in the regulation of cell growth. The S1R is a promising drug target for the treatment of several neurodegenerative diseases related to cellular stress. In vitro and in vivo functional and molecular characteristics of the S1R and its interactions with endogenous and synthetic small molecules have been discovered by the use of pharmacologic, biochemical, biophysical, and molecular biology approaches. The S1R exists in monomer, dimer, tetramer, hexamer/octamer, and higher oligomeric forms that may be important determinants in defining the pharmacology and mechanism(s) of action of the S1R. A canonical GXXXG in putative TM2 is important for S1R oligomerization. The ligand-binding regions of S1R have been identified and include portions of TM2 and the TM proximal regions of the C terminus. Some client protein chaperone functions and interactions with the cochaperone 78-kDa glucose-regulated protein (binding immunoglobulin protein) involve the C terminus. Based on its biochemical features and mechanisms of chaperone action the possibility that the S1R is a member of the small heat shock protein family is discussed. PMID:26560551

  13. In vitro propagation of critically endangered species Scilla autumnalis L. – biochemical analyses of the regenerants

    Directory of Open Access Journals (Sweden)

    Cristian BANCIU

    2010-11-01

    Full Text Available The present study belongs to the international efforts for plant conservation from the areas threatened by human activities. The saline soils areas are restricting for agriculture and in some cases for fishery facilities and the plant species are extinct from those areas. Scilla autumnalis L. is one of the threatened plants (rare on the national red list of vascular plants from Romania that grows in the Natural Park Comana, Giurgiu County, South Romania. Seeds from plants grown in the natural habitat have been used for in vitro plant regeneration and multiplication. After successfully rooting and acclimatization of the regenerated plantlets from germinated seeds, biochemical studies have been performed in order to compare the regenerants from in vitro cultures with native plants from genetically point of view. Peroxydase and esterase’s spectra were the biochemical markers used.The results indicated that this plant species can be multiplicated, rooted and acclimatized on synthetic medium (MS supplemented with NAA, IBA, IAA, kinetin and BAP with a good efficiency and the regenerants had no genetic alterations determinated by culture conditions.

  14. Genetic variation in the feral horses of the Namib Desert, Namibia

    Directory of Open Access Journals (Sweden)

    E.G. Cothran

    2001-07-01

    Full Text Available Genetic variation at 7 blood-group and 10 biochemical genetic loci was examined in 30 horses from a feral herd from the Namib Desert of Namibia, Africa. The observed genetic variability was extremely low compared with that found in domestic horse breeds. The low variation was most probably a result of recent small population size and a small founding population size. Genetic comparison of the Namib horses, which were of unknown origins, to domestic horse breeds, showed that the Namib horses had the highest genetic similarity to Arabian type horses, although they did not closely resemble this type of horse in conformation.

  15. Genetics of the Pantaneiro horse of the Pantanal region of Brazil

    Directory of Open Access Journals (Sweden)

    Cothran E. Gus

    1998-01-01

    Full Text Available Genetic variation at seven red blood cell alloantigen, blood group loci and 10 biochemical genetic loci was examined in 102 Pantaneiro horses from the Pantanal region of Brazil and compared to that of other domestic horse breeds. Measures of both individual genic variation and populational genetic diversity within the Pantaneiro were near the average for domestic horse breeds. From the standpoint of genetic conservation there is no immediate concern for loss of variation within the Pantaneiro. Analysis of genetic relationship showed that the Pantaneiro was clearly of Iberian Peninsula descent and that it was most closely related to other Brazilian breeds.

  16. Genetic mutations associated with status epilepticus.

    Science.gov (United States)

    Bhatnagar, M; Shorvon, S

    2015-08-01

    This paper reports the results of a preliminary search of the literature aimed at identifying the genetic mutations reported to be strongly associated with status epilepticus. Genetic mutations were selected for inclusion if status epilepticus was specifically mentioned as a consequence of the mutation in standard genetic databases or in a case report or review article. Mutations in 122 genes were identified. The genetic mutations identified were found in only rare conditions (sometimes vanishingly rare) and mostly in infants and young children with multiple other handicaps. Most of the genetic mutations can be subdivided into those associated with cortical dysplasias, inborn errors of metabolism, mitochondrial disease, or epileptic encephalopathies and childhood syndromes. There are no identified 'pure status epilepticus genes'. The range of genes underpinning status epilepticus differs in many ways from the range of genes underpinning epilepsy, which suggests that the processes underpinning status epilepticus differ from those underpinning epilepsy. It has been frequently postulated that status epilepticus is the result of a failure of 'seizure termination mechanisms', but the wide variety of genes affecting very diverse biochemical pathways identified in this survey makes any unitary cause unlikely. The genetic influences in status epilepticus are likely to involve a wide range of mechanisms, some related to development, some to cerebral energy production, some to diverse altered biochemical pathways, some to transmitter and membrane function, and some to defects in networks or systems. The fact that many of the identified genes are involved with cerebral development suggests that status epilepticus might often be a system or network phenomenon. To date, there are very few genes identified which are associated with adult-onset status epilepticus (except in those with preexisting neurological damage), and this is disappointing as the cause of many adult

  17. Biochemical mutations in the children of atomic bomb survivors

    International Nuclear Information System (INIS)

    Genetic effects of atomic bombs in children of survivors in Hiroshima and Nagasaki were studied using two biochemical indicators. Eligible children were classified as those born to parents exposed at up to 2,000 m from the hypocenter (Group I, n=13,052); and those born to either parents exposed at a distance of over 2,500 m or parents who were not in the cities (Group II, n=10,609). Thirty blood proteins were examined by one-dimensional gel electrophoresis. In Group I, 3 mutations altering electrophoretic mobility of proteins were identified among 667,404 locus tests. This corresponded to a mutation rate of 0.45 x 10-5 per locus per generation. In Group II, 3 mutations among 466,881 locus tests were seen, yielding a mutation rate for electromorphs of 0.64 x 10-5 per locus per generation. According to the dose schedule developed in 1965 (T65 DR), average gonal doses of gamma and neutrons were 16.9 and 3.4, respectively, for Hiroshima's fathers; 14.0 and 1.3 for Hiroshima's mothers; 26.2 and 0.3 for Nagasaki's fathers; and 19.7 and 0.1 for Nagasaki's mothers. A screening for variants in 9 erythrocyte enzymes with activity ≤66% of normal value revealed one mutation resulting in the loss of enzyme activity in 60,529 tests for Group I, but none of the mutations in 61,741 tests for Group II. The mutation rates in both groups are thus considered to be 0.60 and 0.64 x 10-5, respectively, per locus per generation. (Namekawa, K)

  18. Genetic resources, biotech patents and gene ownership.

    Science.gov (United States)

    Lucchi, Nicola

    2014-01-01

    Human genetic resources are increasingly considered as ordinary commercial goods, but their value and utility go beyond the simple and immediate private profit. In contrast to other biological resources, commercial use does not focus upon the material itself but rather upon the genetic information it contains. Information goods are then usually subject to intellectual property rights, but in the biological and life science domains, property rights can have a negative influence upon the proper allocation of several goods, including genetic material or goods that are related to it. This scenario reflects the facts of recent litigations in the United States and Europe. In particular, these lawsuits have revived the debate over private ownership and control over genes. Within this context, the objective of the paper is to discuss how to recast the traditional right to access to and use of biochemical and human genetic material currently considered as part of the market framework. Looking beyond the protection of traditional public goods, the paper emphasizes the debate around the progressive commodification of human genetic resources facilitated by an improper use of intellectual property rights. Different scenarios are analyzed to evaluate alternative instruments and new regulatory approaches to avoid the private appropriation of human genetic resources and other natural assets. PMID:25845208

  19. A useful routine for biochemical detection and diagnosis of mucopolysaccharidoses

    Directory of Open Access Journals (Sweden)

    Sandra Leistner

    1998-03-01

    Full Text Available Mucopolysaccharidoses (MPS constitute, owing to their biochemical, genetical and clinical characteristics, a large and heterogeneous subgroup among the lysosomal storage diseases (LSD. They are caused by deficiency of specific enzymes, which are responsible for glycosaminoglycan (GAG breakdown during different steps of its degradation pathway. MPS are responsible for about 32% of inborn errors of metabolism (IEM and 54% of LSD identified in our laboratory (Regional Laboratory of Inborn Errors of Metabolism (RLIEM, Medical Genetics Unit, Hospital de Clínicas in Porto Alegre, which is a reference center for LSD diagnosis in Brazil. Therefore, we decided to set up a specific laboratory routine for detection and differential diagnosis of MPS in patients with clinical features suggestive of this group of disordersAs mucopolissacaridoses (MPS constituem, devido às suas características bioquímicas, genéticas e clínicas, um grupo grande e heterogêneo dentro das doenças lisossômicas de depósito (LSD, e são causadas pela deficiência de enzimas específicas que são responsáveis pela quebra de glicosaminoglicanos (GAGs em passos diferentes da sua rota de degradação. Sendo as MPS responsáveis por aproximadamente 32% dos erros inatos do metabolismo (EIM e 54% das LSD identificadas em nosso laboratório (Laboratório Regional dos Erros Inatos do Metabolismo (RLIEM, Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, que é um centro de referência para o diagnóstico de LSD no Brasil, nós decidimos implantar uma rotina para a detecção e o diagnóstico diferencial de MPS em pacientes com características clínicas sugestivas deste grupo de doenças.

  20. Biochemical mechanisms of tumor invasion and metastases

    DEFF Research Database (Denmark)

    Liotta, L A; Wewer, U; Rao, N C;

    1988-01-01

    Cancer invasion and metastases is a complex multistep process. In order for a tumor cell to successfully traverse all the steps of this process and initiate a metastatic colony, it must express the right combination of gene products. Such gene products may include proteins which regulate cell...... with the number of laminin receptors on the cell surface of these cells. Following attachment to the basement membrane, the tumor cell next secretes proteases which may degrade type IV collagen. A genetic linkage between type IV collagenase secretion and metastases was studied using our new genetic...... system for inducing metastases employing the ras oncogene. Following attachment and local proteolysis, the third step of invasion is tumor cell motility. We have isolated a tumor cell autocrine motility factor (AMF). This factor is secreted by the tumor cells and binds to a cell surface receptor...

  1. Local biochemical and morphological differences in human Achilles tendinopathy

    DEFF Research Database (Denmark)

    J, Pingel; Fredberg, Ulrich; K, Qvortrup;

    2012-01-01

    The incidence of Achilles tendinopathy is high and underlying etiology as well as biochemical and morphological pathology associated with the disease is largely unknown. The aim of the present study was to describe biochemical and morphological differences in chronic Achilles tendinopathy. The...

  2. Model-Based Design of Biochemical Microreactors.

    Science.gov (United States)

    Elbinger, Tobias; Gahn, Markus; Neuss-Radu, Maria; Hante, Falk M; Voll, Lars M; Leugering, Günter; Knabner, Peter

    2016-01-01

    Mathematical modeling of biochemical pathways is an important resource in Synthetic Biology, as the predictive power of simulating synthetic pathways represents an important step in the design of synthetic metabolons. In this paper, we are concerned with the mathematical modeling, simulation, and optimization of metabolic processes in biochemical microreactors able to carry out enzymatic reactions and to exchange metabolites with their surrounding medium. The results of the reported modeling approach are incorporated in the design of the first microreactor prototypes that are under construction. These microreactors consist of compartments separated by membranes carrying specific transporters for the input of substrates and export of products. Inside the compartments of the reactor multienzyme complexes assembled on nano-beads by peptide adapters are used to carry out metabolic reactions. The spatially resolved mathematical model describing the ongoing processes consists of a system of diffusion equations together with boundary and initial conditions. The boundary conditions model the exchange of metabolites with the neighboring compartments and the reactions at the surface of the nano-beads carrying the multienzyme complexes. Efficient and accurate approaches for numerical simulation of the mathematical model and for optimal design of the microreactor are developed. As a proof-of-concept scenario, a synthetic pathway for the conversion of sucrose to glucose-6-phosphate (G6P) was chosen. In this context, the mathematical model is employed to compute the spatio-temporal distributions of the metabolite concentrations, as well as application relevant quantities like the outflow rate of G6P. These computations are performed for different scenarios, where the number of beads as well as their loading capacity are varied. The computed metabolite distributions show spatial patterns, which differ for different experimental arrangements. Furthermore, the total output of G6P

  3. Definitions of biochemical failure in prostate cancer following radiation therapy

    International Nuclear Information System (INIS)

    Purpose: The American Society for Therapeutic Radiology and Oncology (ASTRO) published a consensus panel definition of biochemical failure following radiation therapy for prostate cancer. In this paper, we develop a series of alternative definitions of biochemical failure. Using data from 688 patients, we evaluated the sensitivity and specificity of the various definitions, with respect to a defined 'clinically meaningful' outcome. Methods and Materials: The ASTRO definition of biochemical failure requires 3 consecutive rises in prostate-specific antigen (PSA). We considered several modifications to the standard definition: to require PSA rises of a certain magnitude, to consider 2 instead of 3 rises, to require the final PSA value to be greater than a fixed cutoff level, and to define biochemical failure based on the slope of PSA over 1, 1.5, or 2 years. A clinically meaningful failure is defined as local recurrence, distant metastases, initiation of unplanned hormonal therapy, unplanned radical prostatectomy, or a PSA>25 later than 6 months after radiation. Results: Requiring the final PSA in a series of consecutive rises to be larger than 1.5 ng/mL increased the specificity of biochemical failure. For a fixed specificity, defining biochemical failure based on 2 consecutive rises, or the slope over the last year, could increase the sensitivity by up to approximately 20%, compared to the ASTRO definition. Using a rule based on the slope over the previous year or 2 rises leads to a slightly earlier detection of biochemical failure than does the ASTRO definition. Even with the best rule, only approximately 20% of true failures are biochemically detected more than 1 year before the clinically meaningful event time. Conclusion: There is potential for improvement in the ASTRO consensus definition of biochemical failure. Further research is needed, in studies with long follow-up times, to evaluate the relationship between various definitions of biochemical failure and

  4. Skeleton Genetics: a comprehensive database for genes and mutations related to genetic skeletal disorders.

    Science.gov (United States)

    Chen, Chong; Jiang, Yi; Xu, Chenyang; Liu, Xinting; Hu, Lin; Xiang, Yanbao; Chen, Qingshuang; Chen, Denghui; Li, Huanzheng; Xu, Xueqin; Tang, Shaohua

    2016-01-01

    Genetic skeletal disorders (GSD) involving the skeletal system arises through disturbances in the complex processes of skeletal development, growth and homeostasis and remain a diagnostic challenge because of their clinical heterogeneity and genetic variety. Over the past decades, tremendous effort platforms have been made to explore the complex heterogeneity, and massive new genes and mutations have been identified in different GSD, but the information supplied by literature is still limited and it is hard to meet the further needs of scientists and clinicians. In this study, combined with Nosology and Classification of genetic skeletal disorders, we developed the first comprehensive and annotated genetic skeletal disorders database, named 'SkeletonGenetics', which contains information about all GSD-related knowledge including 8225 mutations in 357 genes, with detailed information associated with 481 clinical diseases (2260 clinical phenotype) classified in 42 groups defined by molecular, biochemical and/or radiographic criteria from 1698 publications. Further annotations were performed to each entry including Gene Ontology, pathways analysis, protein-protein interaction, mutation annotations, disease-disease clustering and gene-disease networking. Furthermore, using concise search methods, intuitive graphical displays, convenient browsing functions and constantly updatable features, 'SkeletonGenetics' could serve as a central and integrative database for unveiling the genetic and pathways pre-dispositions of GSD.Database URL: http://101.200.211.232/skeletongenetics/. PMID:27580923

  5. BALL - biochemical algorithms library 1.3

    Directory of Open Access Journals (Sweden)

    Stöckel Daniel

    2010-10-01

    Full Text Available Abstract Background The Biochemical Algorithms Library (BALL is a comprehensive rapid application development framework for structural bioinformatics. It provides an extensive C++ class library of data structures and algorithms for molecular modeling and structural bioinformatics. Using BALL as a programming toolbox does not only allow to greatly reduce application development times but also helps in ensuring stability and correctness by avoiding the error-prone reimplementation of complex algorithms and replacing them with calls into the library that has been well-tested by a large number of developers. In the ten years since its original publication, BALL has seen a substantial increase in functionality and numerous other improvements. Results Here, we discuss BALL's current functionality and highlight the key additions and improvements: support for additional file formats, molecular edit-functionality, new molecular mechanics force fields, novel energy minimization techniques, docking algorithms, and support for cheminformatics. Conclusions BALL is available for all major operating systems, including Linux, Windows, and MacOS X. It is available free of charge under the Lesser GNU Public License (LPGL. Parts of the code are distributed under the GNU Public License (GPL. BALL is available as source code and binary packages from the project web site at http://www.ball-project.org. Recently, it has been accepted into the debian project; integration into further distributions is currently pursued.

  6. PHA bioplastics, biochemicals, and energy from crops.

    Science.gov (United States)

    Somleva, Maria N; Peoples, Oliver P; Snell, Kristi D

    2013-02-01

    Large scale production of polyhydroxyalkanoates (PHAs) in plants can provide a sustainable supply of bioplastics, biochemicals, and energy from sunlight and atmospheric CO(2). PHAs are a class of polymers with various chain lengths that are naturally produced by some microorganisms as storage materials. The properties of these polyesters make them functionally equivalent to many of the petroleum-based plastics that are currently in the market place. However, unlike most petroleum-derived plastics, PHAs can be produced from renewable feedstocks and easily degrade in most biologically active environments. This review highlights research efforts over the last 20 years to engineer the production of PHAs in plants with a focus on polyhydroxybutryrate (PHB) production in bioenergy crops with C(4) photosynthesis. PHB has the potential to be a high volume commercial product with uses not only in the plastics and materials markets, but also in renewable chemicals and feed. The major challenges of improving product yield and plant fitness in high biomass yielding C(4) crops are discussed in detail. PMID:23294864

  7. NUTRITION AND SPORTS: A BIOCHEMICAL APPROACH

    Directory of Open Access Journals (Sweden)

    A.A.G. Bianco

    2004-05-01

    Full Text Available This work presents a course dedicated to the pedagogical instruction of graduate students (Ensino deBioqumica - QBQ 5711 in which they have to plan and teach a 30 hour-discipline for undergraduatestudents. The graduate students have to choose a subject for the discipline and, in 2003, the cho-sen subject was Nutrition and Sports: a Biochemical Approach, which is not specically broached inregular disciplines. The discipline was structured in the basis of collaborative learning, thus, the 75 en-rolled undergraduate students (from dierent courses as Nutrition, Sports, Pharmacy, Chemistry andBiology were organized in small working groups. The students were given a study guide produced bythe graduate teachers (available in Portuguese at http://www.sbbq.org.br/revista/mtdidaticos.php,in which the following contents were covered: muscle contraction, O2 up-take, oxidative stress andanti-oxidant response, cramp, hydration, doping and nutritional supplies. In the nal activity thestudents had to evaluate critically myths and true facts in 80 statements usually associated to physi-cal activities and sports. The discipline was evaluated through questionnaires. From the analysis ofthe answers of both undergraduate and graduate/teachers students it is possible to conclude that thediscipline was well conduced and succeeded. These results emphasize the relevance and contribution ofthis kind of discipline to the pedagogical instruction of the graduate students and also to the increaseof undergraduate students interests in Biochemistry.

  8. Skin biochemical composition analysis by Raman spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Patricia Karen; Tosato, Maira Gaspar; Alves, Rani de Souza; Martin, Airton Abrahao; Favero, Priscila Pereira; Raniero, Leandro, E-mail: amartin@univap.br [Laboratorio de Espectroscopia Vibracional Biomedica, Instituto de Pesquisa e Desenvolvimento - IP e D, Universidade do Vale do Paraiba - UniVap, Sao Jose dos Campos, SP (Brazil)

    2012-09-15

    Skin aging is characterized by cellular and molecular alterations. In this context, Confocal Raman spectroscopy was used in vivo to measure these biochemical changes as function of the skin depth. In this study we have tried to correlate spectra from pure amino acids to in vivo spectra from volunteers with different ages. This study was performed on 32 volunteers: 11 from Group A (20-23 years), 11 from Group B (39-42 years) and 10 from Group C (59-62 years). For each group, the Raman spectra were measured on the surface (0 mm), 30 +- 3 mm and 60 +- 3 {mu}m below the surface. The results from intergroup comparisons showed that the oldest group had a prevalence of the tyrosine band, but it also presented a decrease in the band centered at 875 cm{sup -1} of pyrrolidone acid. The amide I band centered at 1637 cm{sup -1} that is attributed to collagen, as well as other proteins and lipid, showed a smaller amount of these biomolecules for Group C, which can be explained by the decrease in collagen concentration as a function of age. (author)

  9. Hierarchical clustering of 54 races and strains of the mulberry silkworm, Bombyx mori L: Significance of biochemical parameters.

    Science.gov (United States)

    Chatterjee, S N; Datta, R K

    1992-12-01

    A detailed analysis was undertaken to test the efficacy of hierarchical agglomerative clustering (UPGMA method) in grouping the races and strains of the mulberry silkworm, Bombyx moti L., and to ascertain the importance of biochemical parameters in the clustering process. The analysis was based on data from two rearing seasons with 54 selected races/strains of different geographic origin and varying yield potentials. The results indicate that seven clusters can be realised with yield parameters alone, whereas the inclusion of biochemical parameters in clustering resulted into two broad groups: one having all the breeds with high cocoon weight and shell weight, the other having all the low-yielding silkworm strains both from India and from other countries. Further sub-grouping under these two groups highlights genetical differences associated with the differentiation of various groups of races in temperate and tropical areas as well as their significance for silkworm breeding. Estimates of all ten variables were further subjected to 'quick clustering' and the results showed that cluster 5, constituted by 38 lowyielding strains of India, China and Europe, had the highest values of the final cluster centre for amylase and the effective rate of rearing (ERR), while clusters 1 and 4 had the highest values for invertase and alkaline phosphatase. The evolutionary aspect of the genetic channelisation of silkworm races from various countries is discussed against the background of differences in the biochemical parameters and yield variables. PMID:24197452

  10. 40 CFR 158.2080 - Experimental use permit data requirements-biochemical pesticides.

    Science.gov (United States)

    2010-07-01

    ... requirements-biochemical pesticides. 158.2080 Section 158.2080 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS DATA REQUIREMENTS FOR PESTICIDES Biochemical Pesticides § 158.2080 Experimental use permit data requirements—biochemical pesticides. (a) Sections...

  11. Genetic risks and genetic model specification.

    Science.gov (United States)

    Zheng, Gang; Zhang, Wei; Xu, Jinfeng; Yuan, Ao; Li, Qizhai; Gastwirth, Joseph L

    2016-08-21

    Genetic risks and genetic models are often used in design and analysis of genetic epidemiology studies. A genetic model is defined in terms of two genetic risk measures: genotype relative risk and odds ratio. The impacts of choosing a risk measure on the resulting genetic models are studied in the power to detect association and deviation from Hardy-Weinberg equilibrium in cases using genetic relative risk. Extensive simulations demonstrate that the power of a study to detect associations using odds ratio is lower than that using relative risk with the same value when other parameters are fixed. When the Hardy-Weinberg equilibrium holds in the general population, the genetic model can be inferred by the deviation from Hardy-Weinberg equilibrium in only cases. Furthermore, it is more efficient than that based on the deviation from Hardy-Weinberg equilibrium in all cases and controls. PMID:27181372

  12. Genetics and Rheumatic Disease

    Science.gov (United States)

    ... Well with Rheumatic Disease Genetics and Rheumatic Disease Genetics and Rheumatic Disease Fast Facts Studying twins has ... percent, and for non-identical pairs, even lower. Genetics and ankylosing spondylitis Each rheumatic disease has its ...

  13. Genetic Testing for ALS

    Science.gov (United States)

    ... your area, please visit www.nsgc.org . Genetic Testing Genetic testing can help determine the cause of FALS ... couples planning on having children to pursue prenatal testing. Genetic testing does not: Currently change medical treatment. Diagnose ...

  14. Specific Genetic Disorders

    Science.gov (United States)

    ... links from the National Institutes of Health. Specific Genetic Disorders Many human diseases have a genetic component. ... Condition in an Adult The Undiagnosed Diseases Program Genetic Disorders Achondroplasia Alpha-1 Antitrypsin Deficiency Antiphospholipid Syndrome ...

  15. Assessment of biochemical concentrations of vegetation using remote sensing technology

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The main biochemicals (such as lignin, protein, cellulose, sugar, starch, chlorophyll and water) of vegetation are directly or indirectly involved in major ecological processes, such as the functions of terrestrial ecosystems (i.e., nutrient-cycling processes, primary production, and decomposition). Remote sensing techniques provide a very convenient way of data acquisition capable of covering a large area several times during one season, so it can play a unique and essential role provided that we can relate remote sensing measurements to the biochemical characteristics of the Earth surface in a reliable and operational way. The application of remote sensing techniques for the estimation of canopy biochemicals was reviewed. Three methods of estimating biochemical concentrations of vegetation were included in this paper: index, stepwise multiple linear regression, and stepwise multiple linear regression based on a model of the forest crown. In addition, the vitality and potential applying value are stressed.

  16. Biochemical Aspects of Acclimatization of Man to High Altitude Stress

    Directory of Open Access Journals (Sweden)

    K. K. Srivastava

    1975-07-01

    Full Text Available The paper reviews the biochemical aspects of acclimatization of human body to high altitude with particular reference to the adaptive changes in Skeletal muscles, hepatic function, adrenal function and carbohydrate metabolism.

  17. NERVOUS-SYSTEM SPECIFIC PROTEINS AS BIOCHEMICAL INDICATORS OF NEUROTOXICITY

    Science.gov (United States)

    Recent advances in neuroimmunology and protein purification methodology have led to the identification of nervous-system specific proteins. Their intimate relationship to the cellular and functional heterogeneity of the nervous system, makes these proteins ideal biochemical marke...

  18. 2011 Biomass Program Platform Peer Review: Biochemical Conversion

    Energy Technology Data Exchange (ETDEWEB)

    Pezzullo, Leslie [Office of Energy Efficiency and Renewable Energy (EERE), Washington, DC (United States)

    2012-02-01

    This document summarizes the recommendations and evaluations provided by an independent external panel of experts at the 2011 U.S. Department of Energy Biomass Program’s Biochemical Conversion Platform Review meeting.

  19. Culturing of the first 37:4 predominant lacustrine haptophyte: Geochemical, biochemical, and genetic implications

    Science.gov (United States)

    Toney, Jaime L.; Theroux, Susanna; Andersen, Robert A.; Coleman, Annette; Amaral-Zettler, Linda; Huang, Yongsong

    2012-02-01

    Long chain alkenones (LCAs) are potential biomarkers for quantitative paleotemperature reconstructions from lacustrine environments. However, progress in this area has been hindered, because the conditions necessary for the growth of haptophytes responsible for alkenone distributions in lake sediments: the predominance of C 37:4 LCA are not known. Here we report the first enrichment culturing of a novel haptophyte phylotype (Hap-A) from Lake George, ND that produces predominantly C 37:4-LCA. Hap-A was enriched from its resting phase collected from deep sediments rather than from water column samples. In contrast, enrichments from near surface water yielded a different haptophyte phylotype (Hap-B), closely related to Chrysotila lamellosa and Pseudoisochrysis paradoxa, which does not display C 37:4-LCA predominance (similar enrichments have been reported previously). The LCA profile in sediments resembles that of enrichments containing Hap-A, suggesting that Hap-A is the dominant alkenone producer of the sedimentary LCAs. In enrichments, increased lighting appeared to be crucial for triggering alkenone production. Both U37K and U38K indices show a promising, positive relationship with temperature for Hap-A in enrichments, but the offset from the environmental calibration suggests that other factors (e.g., the growth stage or nutrients) may influence the absolute U37K value. Based on 18S rRNA gene analyses, several lakes from the Northern Great Plains, as well as Pyramid Lake, NV and Tso Ur, Tibetan Plateau, China contain the same two haptophyte phylotypes. Analysis of surface sediment from the Great Plains lakes show the Hap-A-type LCA distribution, whereas Pyramid and Tso Ur show the Hap-B type distribution. Waters of the Great Plain lakes are dominated by sulfate ions, whereas those Pyramid and Tso Ur are dominated by carbonate ions, suggesting that the sulfate to carbonate ratio may be a determining factor for the dominance of the Hap-A and Hap-B phylotypes in natural settings.

  20. The genetic and biochemical basis of human DNA repair and radiosensitivity

    International Nuclear Information System (INIS)

    Differences in radiosensitivity between neonatal and adult blood derived lymphocytes as well as between those from AT and normal donors have been detected by clonal assay. Radiosensitive mutants isolated from rodent cell lines have been further characterized and assigned to complementation groups. Progress has been made in isolation of the ERCC1 protein by overproduction in E. coli. The influence of DNA repair on mutagenesis has been assessed in rodent and human cells. The collaborating laboratories will continue to focus on heterogeneity and variability in human radiation response; isolation of new radiosensitive mutants; cloning and characterization of repair genes and gene products; analysis of effects of repair on mutagenesis and other cellular processes; influence of chromatin organization on repair, and establishment and analysis of repair by in vitro assays. Results of five contributions of the project for the reporting period are presented. (R.P.) 46 refs

  1. Nitrogen fixation by Rhizobium leguminosarum PRE; a genetical and biochemical approach.

    OpenAIRE

    Klein Lankhorst, R.

    1989-01-01

    Nitrogen fix ation by Rhizobium and Bradyrhizobium bacteria in symbiosis with their leguminous host plants forms an attractive alternative for the industrial production of nitrogenous fertilizers, both from an economic as well as an enviromnental point of view, and is the topic of many scientific research programs nowadays. Ultimate goals in many of these programs are improving the efficiency of nitrogen fix ation, the extension of the host range of the bacteria to important, non-leguminous c...

  2. Structural, biochemical and genetic characterization of dissimilatory ATP sulfurylase from Allochromatium vinosum.

    Directory of Open Access Journals (Sweden)

    Kristian Parey

    Full Text Available ATP sulfurylase (ATPS catalyzes a key reaction in the global sulfur cycle by reversibly converting inorganic sulfate (SO4 (2- with ATP to adenosine 5'-phosphosulfate (APS and pyrophosphate (PPi. In this work we report on the sat encoded dissimilatory ATP sulfurylase from the sulfur-oxidizing purple sulfur bacterium Allochromatium vinosum. In this organism, the sat gene is located in one operon and co-transcribed with the aprMBA genes for membrane-bound APS reductase. Like APS reductase, Sat is dispensible for growth on reduced sulfur compounds due to the presence of an alternate, so far unidentified sulfite-oxidizing pathway in A. vinosum. Sulfate assimilation also proceeds independently of Sat by a separate pathway involving a cysDN-encoded assimilatory ATP sulfurylase. We produced the purple bacterial sat-encoded ATP sulfurylase as a recombinant protein in E. coli, determined crucial kinetic parameters and obtained a crystal structure in an open state with a ligand-free active site. By comparison with several known structures of the ATPS-APS complex in the closed state a scenario about substrate-induced conformational changes was worked out. Despite different kinetic properties ATPS involved in sulfur-oxidizing and sulfate-reducing processes are not distinguishable on a structural level presumably due to the interference between functional and evolutionary processes.

  3. Genetic difference but functional similarity among fish gut bacterial communities through molecular and biochemical fingerprints

    OpenAIRE

    Mouchet, M.A.; Bouvier, C.; Bouvier, T.; Troussellier, Marc; Escalas, A.; Mouillot, D.

    2012-01-01

    Considering the major involvement of gut microflora in the digestive function of various macro-organisms, bacterial communities inhabiting fish guts may be the main actors of organic matter degradation by fish. Nevertheless, the extent and the sources of variability in the degradation potential of gut bacterial communities are largely overlooked. Using Biolog Ecoplate (TM) and denaturing gradient gel electrophoresis (DGGE), we explored functional (i.e. the ability to degrade organic matter) a...

  4. Clinical, biochemical and genetic findings in two siblings with a dihydropyrimidinase deficiency.

    Science.gov (United States)

    van Kuilenburg, André B P; Meijer, Judith; Dobritzsch, Doreen; Meinsma, Rutger; Duran, Marinus; Lohkamp, Bernhard; Zoetekouw, Lida; Abeling, Nico G G M; van Tinteren, Herman L G; Bosch, Annet M

    2007-06-01

    Dihydropyrimidinase (DHP) is the second enzyme of the pyrimidine degradation pathway and it catalyses the ring opening of 5,6-dihydrouracil and 5,6-dihydrothymine to N-carbamyl-beta-alanine and N-carbamyl-beta-aminoisobutyric acid, respectively. To date, only nine individuals have been reported suffering from a complete DHP deficiency. We report two siblings presenting with strongly elevated levels of 5,6-dihydrouracil and 5,6-dihydrothymine in plasma, cerebrospinal fluid and urine. One of the siblings had a severe delay in speech development and white matter abnormalities, whereas the other one was free of symptoms. Analysis of the DHP gene (DPYS) showed that both patients were compound heterozygous for the missense mutation 1078T>C (W360R) in exon 6 and a novel missense mutation 1235G>T (R412M) in exon 7. Heterologous expression of the mutant enzymes in Escherichia coli showed that both missense mutations resulted in a mutant DHP enzyme without residual activity. Analysis of the crystal structure of eukaryotic DHP from the yeast Saccharomyces kluyveri and the slime mold Dictyostelium discoideum suggests that the W360R and R412M mutations lead to structural instability of the enzyme which could potentially impair the assembly of the tetramer. PMID:17383919

  5. In planta transient expression as a system for genetic and biochemical analyses of chlorophyll biosynthesis

    Directory of Open Access Journals (Sweden)

    Sawers Ruairidh JH

    2006-09-01

    Full Text Available Abstract Background Mg chelatase is a multi-subunit enzyme that catalyses the first committed step of chlorophyll biosynthesis. Studies in higher plants and algae indicate that the Mg chelatase reaction product, Mg-protoporphyrin IX plays an essential role in nuclear-plastid interactions. A number of Mg chelatase mutants have been isolated from higher plants, including semi-dominant alleles of ChlI, the gene encoding the I subunit of the enzyme. To investigate the function of higher plant CHLI, bacterial orthologues have been engineered to carry analogous amino acid substitutions to the higher plant mutations and the phenotypes examined through in vitro characterization of heterologously produced proteins. Here, we demonstrate the utility of a transient expression system in Nicotiana benthamiana for rapidly assaying mutant variants of the maize CHLI protein in vivo. Results Transient expression of mutant maize ChlI alleles in N. benthamiana resulted in the formation of chlorotic lesions within 4 d of inoculation. Immunoblot analyses confirmed the accumulation of maize CHLI protein suggesting that the chlorosis observed resulted from an interaction between maize CHLI and endogenous components of the N. benthamiana chlorophyll biosynthetic pathway. On the basis of this assay, PCR-based cloning techniques were used to rapidly recombine polymorphisms present in the alleles studied allowing confirmation of causative lesions. A PCR-based mutagenesis was conducted and clones assayed by transient expression. A number of novel allelic variants of maize ZmChlI were generated and analyzed using this assay, demonstrating the utility of this technique for fine mapping. Conclusion Transient expression provides a convenient, high-throughput, qualitative assay for functional variation in the CHLI protein. Furthermore, we suggest that the approach used here would be applicable to the analysis of other plastid-localized proteins where gain-of-function mutations will result in readily observable mutant phenotypes.

  6. Genetic and biochemical characterization of arginine biosynthesis in Sinorhizobium meliloti 1021.

    Science.gov (United States)

    Hernández, Victor M; Girard, Lourdes; Hernández-Lucas, Ismael; Vázquez, Alejandra; Ortíz-Ortíz, Catalina; Díaz, Rafael; Dunn, Michael F

    2015-08-01

    L-Ornithine production in the alfalfa microsymbiont Sinorhizobium meliloti occurs as an intermediate step in arginine biosynthesis. Ornithine is required for effective symbiosis but its synthesis in S. meliloti has been little studied. Unlike most bacteria, S. meliloti 1021 is annotated as encoding two enzymes producing ornithine: N-acetylornithine (NAO) deacetylase (ArgE) hydrolyses NAO to acetate and ornithine, and glutamate N-acetyltransferase (ArgJ) transacetylates l-glutamate with the acetyl group from NAO, forming ornithine and N-acetylglutamate (NAG). NAG is the substrate for the second step of arginine biosynthesis catalysed by NAG kinase (ArgB). Inactivation of argB in strain 1021 resulted in arginine auxotrophy. The activity of purified ArgB was significantly inhibited by arginine but not by ornithine. The purified ArgJ was highly active in NAO deacetylation/glutamate transacetylation and was significantly inhibited by ornithine but not by arginine. The purified ArgE protein (with a 6His-Sumo affinity tag) was also active in deacetylating NAO. argE and argJ single mutants, and an argEJ double mutant, are arginine prototrophs. Extracts of the double mutant contained aminoacylase (Ama) activity that deacetylated NAO to form ornithine. The purified products of three candidate ama genes (smc00682 (hipO1), smc02256 (hipO2) and smb21279) all possessed NAO deacetylase activity. hipO1 and hipO2, but not smb21279, expressed in trans functionally complemented an Escherichia coli ΔargE : : Km mutant. We conclude that Ama activity accounts for the arginine prototrophy of the argEJ mutant. Transcriptional assays of argB, argE and argJ, fused to a promoterless gusA gene, showed that their expression was not significantly affected by exogenous arginine or ornithine. PMID:26271664

  7. Genetic and Biochemical Aspects of Ectoine Biosynthesis in Moderately Halophilic and Halotolerant Methylotrophic Bacteria

    OpenAIRE

    Valentina N. Khmelenina; Mustakhimov, Ildar I.; Reshetnikov, Alexander S.; Marina G. Kalyuzhnaya; Trotsenko, Yuri A.

    2010-01-01

    Problem statement: The cyclic imino acid ectoine is a widely distributed compatible solute synthesizing by halophilic and halotolerant bacteria to prevent osmotic stress at high external salinity. This water-keeping compound is used in a variety of commercial cosmetics and therapeutic products. Approach: Development of integrated, predictive functional model of the metabolic and regulatory netwoks of ectoine-producing microbes is an active area of research. In this article...

  8. Biochemical and genetic analysis of the nifUSVWZM cluster from Azotobacter vinelandii.

    Science.gov (United States)

    Jacobson, M R; Cash, V L; Weiss, M C; Laird, N F; Newton, W E; Dean, D R

    1989-10-01

    Azotobacter vinelandii genes contained within the major nif-cluster and designated orf6, nifU, nifS, nifV, orf7, orf8, nifW, nifZ, nifM, and orf9 are organized into at least two overlapping transcriptional units. Nitrogenase derepressed crude extracts of Azotobacter vinelandii mutant strains having individual deletions located within nifU, nifS, nifV, nifW, nifZ, or nifM were examined for nitrogenase component protein activities. The results of these experiments indicated that, in A. vinelandii, the nifU, nifS and nifM gene products are required for the full activation or the catalytic stability of the nitrogenase Fe protein. Deletion of the nifV gene resulted in lower MoFe protein activity, probably resulting from the accumulation of an altered FeMo-cofactor. The nifW and nifZ gene products were required for the full activation or catalytic stability of the MoFe protein. Deletion of nifZ alone or nifM alone did not appear to affect FeMo-cofactor biosynthesis. However, deletion of both nifZ and nifM eleminated either FeMo-cofactor biosynthesis or the insertion of FeMo-cofactor into the apo-MoFe protein. Other genes contained within the nifUSVWZM gene cluster (orf6, orf7, orf8, and orf9) were not required for Mo-dependent diazotrophic growth. PMID:2615765

  9. Clinical relevance of the biochemical, metabolic, and genetic factors that influence low-density lipoprotein heterogeneity.

    Science.gov (United States)

    Kwiterovich, Peter O

    2002-10-17

    Traditional risk factors for coronary artery disease (CAD) predict about 50% of the risk of developing CAD. The Adult Treatment Panel (ATP) III has defined emerging risk factors for CAD, including small, dense low-density lipoprotein (LDL). Small, dense LDL is often accompanied by increased triglycerides (TGs) and low high-density lipoprotein (HDL). An increased number of small, dense LDL particles is often missed when the LDL cholesterol level is normal or borderline elevated. Small, dense LDL particles are present in families with premature CAD and hyperapobetalipoproteinemia, familial combined hyperlipidemia, LDL subclass pattern B, familial dyslipidemic hypertension, and syndrome X. The metabolic syndrome, as defined by ATP III, incorporates a number of the components of these syndromes, including insulin resistance and intra-abdominal fat. Subclinical inflammation and elevated procoagulants also appear to be part of this atherogenic syndrome. Overproduction of very low-density lipoproteins (VLDLs) by the liver and increased secretion of large, apolipoprotein (apo) B-100-containing VLDL is the primary metabolic characteristic of most of these patients. The TG in VLDL is hydrolyzed by lipoprotein lipase (LPL) which produces intermediate-density lipoprotein. The TG in intermediate-density lipoprotein is hydrolyzed further, resulting in the generation of LDL. The cholesterol esters in LDL are exchanged for TG in VLDL by the cholesterol ester tranfer proteins, followed by hydrolysis of TG in LDL by hepatic lipase which produces small, dense LDL. Cholesterol ester transfer protein mediates a similar lipid exchange between VLDL and HDL, producing a cholesterol ester-poor HDL. In adipocytes, reduced fatty acid trapping and retention by adipose tissue may result from a primary defect in the incorporation of free fatty acids into TGs. Alternatively, insulin resistance may promote reduced retention of free fatty acids by adipocytes. Both these abnormalities lead to increased levels of free fatty acids in plasma, increased flux of free fatty acids back to the liver, enhanced production of TGs, decreased proteolysis of apo B-100, and increased VLDL production. Decreased removal of postprandial TGs often accompanies these metabolic abnormalities. Genes regulating the expression of the major players in this metabolic cascade, such as LPL, cholesterol ester transfer protein, and hepatic lipase, can modulate the expression of small, dense LDL but these are not the major defects. New candidates for major gene effects have been identified on chromosome 1. Regardless of their fundamental causes, small, dense LDL (compared with normal LDL) particles have a prolonged residence time in plasma, are more susceptible to oxidation because of decreased interaction with the LDL receptor, and enter the arterial wall more easily, where they are retained more readily. Small, dense LDL promotes endothelial dysfunction and enhanced production of procoagulants by endothelial cells. Both in animal models of atherosclerosis and in most human epidemiologic studies and clinical trials, small, dense LDL (particularly when present in increased numbers) appears more atherogenic than normal LDL. Treatment of patients with small, dense LDL particles (particularly when accompanied by low HDL and hypertriglyceridemia) often requires the use of combined lipid-altering drugs to decrease the number of particles and to convert them to larger, more buoyant LDL. The next critical step in further reduction of CAD will be the correct diagnosis and treatment of patients with small, dense LDL and the dyslipidemia that accompanies it. PMID:12419479

  10. A comparative clinical, pathological, biochemical and genetic study of fused in sarcoma proteinopathies

    DEFF Research Database (Denmark)

    Lashley, Tammaryn; Rohrer, Jonathan D; Bandopadhyay, Rina;

    2011-01-01

    Neuronal intermediate filament inclusion disease and atypical frontotemporal lobar degeneration are rare diseases characterized by ubiquitin-positive inclusions lacking transactive response DNA-binding protein-43 and tau. Recently, mutations in the fused in sarcoma gene have been shown to cause...

  11. Genetic and Biochemical Characterization of Monokaryotic Progeny Strains of Button Mushroom (Agaricus bisporus)

    OpenAIRE

    Kwon, Hyuk Woo; Choi, Min Ah; Yun, Yeo Hong; Oh, Youn-Lee; Kong, Won-Sik; Kim, Seong Hwan

    2015-01-01

    To promote the selection of promising monokaryotic strains of button mushroom (Agaricus bisporus) during breeding, 61 progeny strains derived from basidiospores of two different lines of dikaryotic parental strains, ASI1038 and ASI1346, were analyzed by nucleotide sequencing of the intergenic spacer I (IGS I) region in their rDNA and by extracellular enzyme assays. Nineteen different sizes of IGS I, which ranged from 1,301 to 1,348 bp, were present among twenty ASI1346-derived progeny strains...

  12. Procedure for studying population genetic aspects of marine organisms using biochemical techniques

    Digital Repository Service at National Institute of Oceanography (India)

    Menezes, M.R.

    powdered starch. The process consists of making a solution of starch, cooling it, and then pouring it into a mould called a starch gel tray. As the starch solution cools, it solidifies into a gel which is used for electrophoresis. The width of the starch...

  13. Dalmatian Sage (Salvia officinalis L.): A Review of Biochemical Contents, Medical Properties and Genetic Diversity

    OpenAIRE

    Martina Grdiša; Marija Jug-Dujaković; Matija Lončarić; Klaudija Carović-Stanko; Tonka Ninčević; Zlatko Liber; Ivan Radosavljević; Zlatko Satovic

    2016-01-01

    Dalmatian sage (Salvia officinalis L.) represents one of the most significant medicinal autochthonous species in flora of eastern Adriatic coast and islands. It is evergreen outcrossing perennial subshrub with short woody stems that branch extensively and violet flowers. Apart from being native to Mediterranean karst of west Balkan and Apenine peninsula it is cultivated in numerous countries worldwide with Mediterranean and temperate continental climate. From the earliest times it has ...

  14. Dalmatian Sage (Salvia officinalis L.): A Review of Biochemical Contents, Medical Properties and Genetic Diversity

    OpenAIRE

    Martina Grdiša; Marija Jug-Dujaković; Matija Lončarić; Klaudija Carović-Stanko; Tonka Ninčević; Zlatko Liber; Ivan Radosavljević; Zlatko Šatović

    2015-01-01

    Dalmatian sage (Salvia officinalis L.) represents one of the most significant medicinal autochthonous species in flora of eastern Adriatic coast and islands. It is evergreen outcrossing perennial subshrub with short woody stems that branch extensively and violet flowers. Apart from being native to Mediterranean karst of west Balkan and Apenine peninsula it is cultivated in numerous countries worldwide with Mediterranean and temperate continental climate. From the earliest times it has been us...

  15. Dalmatian Sage (Salvia officinalis L.): A Review of Biochemical Contents, Medical Properties and Genetic Diversity

    OpenAIRE

    Martina Grdiša; Marija Jug-Dujaković; Matija Lončarić; Klaudija Carović-Stanko; Tonka Ninčević; Zlatko Liber; Ivan Radosavljević; Zlatko Satovic

    2015-01-01

    Dalmatian sage (Salvia officinalis L.) represents one of the most significant medicinal autochthonous species in flora of eastern Adriatic coast and islands. It is evergreen outcrossing perennial subshrub with short woody stems that branch extensively and violet flowers. Apart from being native to Mediterranean karst of west Balkan and Apenine peninsula it is cultivated in numerous countries worldwide with Mediterranean and temperate continental climate. From the earliest times it has ...

  16. Biochemical and molecular genetic approaches on the radioprotective mechanism of natural products

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jeong Hee; Lee, Eun Ju; Sung, Woo Kyung; Piao, Wen Hua [Kyunghee University, Seoul (Korea)

    1999-04-01

    We reported the radio-protective effect of DTT. The treatment of DTT increased cell survival after gamma-irradiation, decreased in the frequencies of micronucleus, and reduction in DNA fragmentation and apoptotic cells. Induction of apoptosis after UV-C irradiation was revealed by the changes in the relative cell death, increase in the relative amount of apoptotic cells, and the induction of DNA fragmentation. About 100 medicinal plants were purchased and methanol extract samples were prepared. Radio-protective and radio-sensitizing activities of these samples were screened. Seven samples showed above 20% radio-protective activities: Salvia miltiorrhiza, Areca catechu, Cornus officinalis, Alpiniae officinari rhizoma, Meliae fructus, Alpiniae katsumadaii semen, Betulae cortex. Acanthopanax sessiliflous showed the highest radio-sensitizing effect and 10 other samples revealed moderate activities: Melia japonica, Agastache rugosa, Platycodon gradiflorum, Broussonetia bazinoki, Angelica gigas, Inula helenium, Chelidonium majus, Pulsatilla koreana, Oldenlandia diffusa, Dioscorea batatas. (author). 49 refs., 9 figs., 7 tabs.

  17. Purification, biochemical characterization, and genetic cloning of the phytase produced by Burkholderia sp. strain a13

    OpenAIRE

    Rezende Graminho, Eduardo; Takaya, Naoki; Nakamura, Akira; Hoshino, Takayuki

    2015-01-01

    A phytase-producing bacterium, Burkholderia sp. a13 (JCM 30421), was isolated from Lake Kasumigaura by enrichment cultivation using minimum medium containing phytic acid as the sole phosphorus source. The phytase production by strain a13 was induced by the presence of phytic acid and repressed by the addition of glucose. The purified enzyme had a molecular weight of 44 kDa and a phytase activity of 174 μmol min–1 mg–1. The enzyme showed broad substrate specificity, but the highest activity wa...

  18. Anatomical and biochemical investigation of primary brain tumours

    International Nuclear Information System (INIS)

    Cancerous transformation entails major biochemical changes including modifications of the energy metabolism of the cell, e.g. utilisation of glucose and other substrates, protein synthesis, and expression of receptors and antigens. Tumour growth also leads to heterogeneity in blood flow owing to focal necrosis, angiogenesis and metabolic demands, as well as disruption of transport mechanisms of substrates across cell membranes and other physiological boundaries such as the blood-brain barrier. All these biochemical, histological and anatomical changes can be assessed with emission tomography, X-ray computed tomography (CT), magnetic resonance imaging (MRI) and magnetic resonance spectroscopy (MRS). Whereas anatomical imaging is aimed at the diagnosis of brain tumours, biochemical imaging is better suited for tissue characterisation. The identification of a tumoural mass and the assessment of its size and vascularisation are best achieved with X-ray CT and MRI, while biochemical imaging can provide additional information that is crucial for tumour classification, differential diagnosis and follow-up. As the assessment of variables such as water content, appearance of cystic lesions and location of the tumour are largely irrelevant for tissue characterisation, a number of probes have been employed for the assessment of the biochemical features of tumours. Since biochemical changes may be related to the growth rate of cancer cells, they can be thought of as markers of tumour cell proliferation. Biochemical imaging with radionuclides of processes that occur at a cellular level provides information that complements findings obtained by anatomical imaging aimed at depicting structural, vascular and histological changes. This review focusses on the clinical application of anatomical brain imaging and biochemical assessment with positron emission tomography, single-photon emission tomography and MRS in the diagnosis of primary brain tumours, as well as in follow-up. (orig.)

  19. Click Chemistry-Mediated Nanosensors for Biochemical Assays

    OpenAIRE

    Chen, Yiping; Xianyu, Yunlei; Wu, Jing; Yin, Binfeng; Jiang, Xingyu

    2016-01-01

    Click chemistry combined with functional nanoparticles have drawn increasing attention in biochemical assays because they are promising in developing biosensors with effective signal transformation/amplification and straightforward signal readout for clinical diagnostic assays. In this review, we focus on the latest advances of biochemical assays based on Cu (I)-catalyzed 1, 3-dipolar cycloaddition of azides and alkynes (CuAAC)-mediated nanosensors, as well as the functionalization of nanopro...

  20. Biomphalaria prona (Gastropoda: Planorbidae): a morphological and biochemical study

    OpenAIRE

    W. Lobato Paraense; Pointier, J.P.; Delay, B.; A. F. Pernot; Incani, R N; C. Balzan; P. Chrosciechowski

    1992-01-01

    Two samples of Biomphalaria prona (Martens, 1873) from Lake Valencia (type locality) and seven from other Venezuelan localities were studied morphologically (shell and reproductive system) and biochemically (allozyme electrophoresis). In spite of marked differences in shell characters, all of them proved indistinguishable under the anatomic and biochemical criteria. So far B. prona has been considered an endemic species, restricted to Lake Valencia. It is now demonstrated that the extralacust...

  1. Correlations between female breast density and biochemical markers

    OpenAIRE

    Kim, Ji-Hye; Lee, Hae-Kag; Cho, Jae-Hwan; Park, Hyong-Keun; Yang, Han-Jun

    2015-01-01

    [Purpose] The aim of this study was to identify biochemical markers related to breast density. The study was performed with 200 patients who received mammography and biochemical marker testing between March 1, 2014 to October 1, 2014. [Subjects and Methods] Following the American College of Radiology, Breast Imaging Reporting and Data System (ACR BI-RADS), breast parenchymal pattern density from mammography was categorized into four grades: grade 1, almost entirely fat; grade 2, fibroglandula...

  2. Serum Biochemical Profile of Post Partum Metritic Cow

    OpenAIRE

    Magnus P. K.; Lali F. A.

    2009-01-01

    Present study was conducted to find out the relationship between serum biochemical profile and postpartum metritis. Mainly serum glucose, total protein, albumin, albumin globulin ratio, blood urea nitrogen (BUN), creatinine and calcium were studied. Colorimetric method was used for quantitative estimation of biochemical profile. Twenty-seven animals with recent history of calving and subsequent metritis were included in the study. On analysis, serum glucose was found to be 22.3 ± 2.1...

  3. Murine interleukin 2 receptor. IV. Biochemical characterization

    International Nuclear Information System (INIS)

    The IL 2 receptor isolated from the IL 2-dependent CTL-L cell line was subjected to biochemical analysis. Pulse-chase and tunicamycin studies, as well as digestion with the endoglycosidases, Endo-F and Endo-H, of 35S-methionine-labeled IL 2 receptors suggested a single protein pecursor of 32,000 (p32) daltons. The p32 precursor was rapidly processed by addition of high-mannose-containing core N-linked sugars to intracytoplasmic precursor intermediates of 38,000 (p38) and 40,000 (p40) daltons, which undergo further processing to yield a mature surface receptor with heterogeneous apparent m.w. of 52,000 to 65,000 (p58). Two-dimensional gel studies indicated that p58 exhibited broad charge heterogeneity between pH 4.6 and 6.3. Endo-F digestions of p58 shifted the isoelectric focus point to a more basic 5.5 to 7.4. This considerable charge heterogeneity is consistent with the possibility that other post-translational modifications to the mouse IL 2 receptor occur besides addition of complex N-linked glycans. Immunoprecipitations of the IL 2 receptor from surface iodinated cells also revealed an additional band at 110,000 (p110) daltons. IEF vs SDS-PAGE two-dimensional gel studies demonstrated that p110 also had an isoelectric focus point identical to p58. Western blot studies with an anti-IL 2 receptor monoclonal antibody (7D4) demonstrates that p38, p40, p58, and p110 each expressed the epitope recognized by this antibody. Thus, it is likely that p110 is not a unique molecule that coprecipitates with IL 2 receptor. Western blot analysis of mitogen-stimulated T and B lymphocytes also revealed bands similar to p58 and p110, although these bands had an average apparent m.w. 3000 and 6000 less than those seen for CTL-L cells

  4. Mitochondrial diseases: an overview of genetics, pathogenesis, clinical features and an approach to diagnosis and treatment.

    Directory of Open Access Journals (Sweden)

    Singhal N

    2000-07-01

    Full Text Available Defects in structures or functions of mitochondria, mainly involving the oxidative phosphorylation, mitochondrial biogenesis and other metabolic pathways have been shown to be associated with a wide spectrum of clinical phenotypes. The ubiquitous nature of mitochondria and their unique genetic features contribute to the clinical, biochemical and genetic heterogenecity of mitochondrial diseases. This article focuses on the recent advances in the field of mitochondrial disorders with respect to the consequences for an advanced clinical and genetic diagnostics. In addition, an overview on recently identified genetic defects and their pathogenic molecular mechanisms are given.

  5. Clinical, endocrinological and biochemical effects of zinc deficiency.

    Science.gov (United States)

    Prasad, A S

    1985-08-01

    The essentiality of zinc for humans was recognized in the early 1960s. The causes of zinc deficiency include malnutrition, alcoholism, malabsorption, extensive burns, chronic debilitating disorders, chronic renal disease, certain diuretics, the use of chelating agents such as penicillamine for Wilson's disease, and genetic disorders such as acrodermatitis enteropathica and sickle cell disease. The requirement of zinc is increased in pregnancy and during the growing age period. The clinical manifestations in severe cases of zinc deficiency included bullous-pustular dermatitis, alopecia, diarrhoea, emotional disorder, weight loss, intercurrent infections, hypogonadism in males and it is fatal if untreated. A moderate deficiency of zinc is characterized by growth retardation and delayed puberty in adolescents, hypogonadism in males, rough skin, poor appetite, mental lethargy, delayed wound healing, taste abnormalities and abnormal dark adaptation. In mild cases of zinc deficiency in human subjects, we have observed oligospermia, slight weight loss and hyperammonaemia. Zinc is a growth factor. As a result of its deficiency, growth is affected adversely in many animal species and in man. Inasmuch as zinc is needed for protein and DNA synthesis and cell division, it is believed that the growth effect of zinc is related to its effect on protein synthesis. Testicular functions are affected adversely as a result of zinc deficiency in both humans and experimental animals. This effect of zinc is at the end organ level and the hypothalamic--pituitary axis is intact in zinc-deficient subjects. Inasmuch as zinc is intimately involved in a cell division, its deficiency may adversely affect testicular size and thus its function. In mice, the incidence of degenerate oocytes, and hypohaploidy and hyperhaploidy in metaphase II oocytes were increased due to zinc deficiency. Zinc at physiological concentrations reduced prolactin secretion from the pituitary in vitro and it has been

  6. Biochemical characterization of plant Rad52 protein from rice (Oryza sativa).

    Science.gov (United States)

    Nair, Anuradha; Agarwal, Rachna; Chittela, Rajani Kant

    2016-09-01

    DNA damage in living cells is repaired by two main pathways, homologous recombination (HR) and non-homologous end joining (NHEJ). Of all the genes promoting HR, Rad52 (Radiation sensitive 52) is an important gene which is found to be highly conserved across different species. It was believed that RAD52 is absent in plant systems until lately. However, recent genetic studies have shown the presence of RAD52 homologues in plants. Rad52 homologues in plant systems have not yet been characterized biochemically. In the current study, we bring out the biochemical properties of rice Rad52-2a protein. OsRad52-2a was over-expressed in Escherichia coli BL21 (DE3) cells and the protein was purified. The identity of purified OsRad52-2a protein was confirmed via peptide mass fingerprinting. Gel filtration and native PAGE analysis indicated that the OsRad52-2a protein in its native state probably formed an undecameric structure. Purified OsRad52-2a protein showed binding to single stranded DNA, double stranded DNA. Protein also mediated the renaturation of complementary single strands into duplex DNA in both agarose gel and FRET based assays. Put together, OsRad52-2a forms oligomeric structures and binds to ssDNA/dsDNA for mediating an important function like renaturation during homologous recombination. This study represents the first report on biochemical properties of OsRad52-2a protein from important crop like rice. This information will help in dissecting the recombination and repair machinery in plant systems. PMID:27156135

  7. The genetics of drug resistance in malaria parasites*

    OpenAIRE

    Beale, G. H.

    1980-01-01

    The available experimental data on the genetics of drug resistance in malaria parasites are reviewed. Seven possible mechanisms for the origin of drug resistance are considered, and it is pointed out that spontaneous gene mutation is probably the most important. Experiments on the production of pyrimethamine-resistant and chloroquine-resistant strains of rodent Plasmodium species, and on the inheritance of such drug resistance, are reviewed. Relevant biochemical data are also considered in re...

  8. Biofuel Potential of Plants Transformed Genetically with NAC Family Genes

    OpenAIRE

    Singh, Sadhana; Grover, Atul; Nasim, M

    2016-01-01

    NAC genes contribute to enhance survivability of plants under conditions of environmental stress and in secondary growth of the plants, thereby building biomass. Thus, genetic transformation of plants using NAC genes provides a possibility to tailor biofuel plants. Over-expression studies have indicated that NAC family genes can provide tolerance to various biotic and abiotic stresses, either by physiological or biochemical changes at the cellular level, or by affecting visible morphological ...

  9. Potential biochemical markers for selection of disease resistance in Vigna radiata

    International Nuclear Information System (INIS)

    The Vigna radiata (L.) Wilczek (Green gram), a major pulse crop is prone to damaging diseases caused by Erysiphe polygoni, Cercospora canescens and Rhizoctonia sp. Therefore, the development of multiple resistance is a major breeding objective in green gram. Resistance to powdery mildew has already been developed, however, there are no reports on the development of resistance to Cercospora in green gram. Owing to limitation of conventional screening methods, the improvement for multiple disease resistance is inadequate, in this crop. It needs an efficient and quick selection method, for screening the plant population at an early stage. It is well established that the resistant interaction, in plants, involves accumulation of antibiotic compound phytoalexin (Genestein in Vigna radiata) and induction of enzymes such as β-1,3 gulcanase and Chitinases. These compounds are not only induced by pathogens but also pathogen-derived elicitors. These biochemical compounds can be used as resistance indicative biochemical markers for screening the natural or mutagen induced genetic diversity in populations of Vigna radiata in non-destructive manner. It, however, needs a systematic study of plant defense response. This paper deals with the response of resistant and susceptible cultivars of vigna radiata to Cercospora elicitor and development of non-destructive selection method for disease resistance. (author)

  10. Effect of imatinib on the biochemical parameters of the reproductive function in male Swiss albino mice

    Directory of Open Access Journals (Sweden)

    A M Prasad

    2011-01-01

    Full Text Available Background: Treatment of cancers with cytotoxic agents such as tyrosine kinase inhibiting drugs often, but not always, result in transient to permanent testicular dysfunction. Germ cells are important targets of many chemicals. Most of the drugs are genotoxins and induce irreversible effect on genetic makeup. These mutagenic changes are proportionally related to carcinogenesis. This is alarmingly dangerous in youth and children, since these effects last longer, affecting fertility or forming basis for carcinogenesis. There is paucity of reports on planned studies of imatinib on the testicular function. Hence, the study was planned to assess the effects of imatinib on biochemical markers of testicular functions in male Swiss albino mice. Materials and Methods: Male Swiss albino mice were treated with imatinib and sacrificed at the end of first, second, fourth, fifth, seventh, and tenth week after the last exposure to imatinib. The testis were removed, weighed, and processed for biochemical analysis. Results: The intratesticular testosterone level was significantly (P<0.001 reduced in treated groups and severe effect was observed on week 4 and 5. The intratesticular lactate dehydrogenase (LDH level was significantly increased by imatinib in all treated groups up to week 5. Conclusion: Imatinib does affect testosterone and LDH level significantly, but this effect is reversible once the drug is withdrawn. This finding may help the clinicians to plan and address the fertility-related issues in young patients of reproductive age who are being treated with imatinib for gastrointestinal tumors and chronic myeloid leukemia.

  11. Clinical Relevance of the Advanced Microbiologic and Biochemical Investigations in Periodontal Diagnosis: A Critical Analysis

    Directory of Open Access Journals (Sweden)

    Vishakha Grover

    2014-01-01

    Full Text Available New approaches to periodontal diagnosis, including advanced microbiologic, biochemical, and genetic tests, have been shown to provide the clinician with the information not available by traditional means. The purpose of a diagnostic test is to confirm, exclude, classify, or monitor disease to guide treatment. Their clinical value depends on whether the information they provide leads to improved patient outcomes. This can be assessed by randomized trials, which compare patient outcomes from the new diagnostic test versus the old test strategy. Being nonmandatory for marketing approval, such trials are not always feasible because of large sample sizes requirements. So, many diagnostic tests enter the practice without being critically analysed for any additional benefits. Effective diagnosis is just as essential as the selection of effective treatments for the success of periodontal therapy. So, the current paper aims to focus on the practical utility of this rapidly emerging plethora of periodontal diagnostic tools, emphasizing the critical issues surrounding the clinical application of microbiologic and biochemical investigations, employed for periodontal diagnosis.

  12. Engineering the iron-oxidizing chemolithoautotroph Acidithiobacillus ferrooxidans for biochemical production.

    Science.gov (United States)

    Kernan, Timothy; Majumdar, Sudipta; Li, Xiaozheng; Guan, Jingyang; West, Alan C; Banta, Scott

    2016-01-01

    There is growing interest in developing non-photosynthetic routes for the conversion of CO2 to fuels and chemicals. One underexplored approach is the transfer of energy to the metabolism of genetically modified chemolithoautotrophic bacteria. Acidithiobacillus ferrooxidans is an obligate chemolithoautotroph that derives its metabolic energy from the oxidation of iron or sulfur at low pH. Two heterologous biosynthetic pathways have been expressed in A. ferrooxidans to produce either isobutyric acid or heptadecane from CO2 and the oxidation of Fe(2+). A sevenfold improvement in productivity of isobutyric acid was obtained through improved media formulations in batch cultures. Steady-state efficiencies were lower in continuous cultures, likely due to ferric inhibition. If coupled to solar panels, the photon-to-fuel efficiency of this proof-of-principle process approaches estimates for agriculture-derived biofuels. These efforts lay the foundation for the utilization of this organism in the exploitation of electrical energy for biochemical synthesis. PMID:26174759

  13. Determining the functional significance of mismatch repair gene missense variants using biochemical and cellular assays

    DEFF Research Database (Denmark)

    Heinen, Christopher D; Juel Rasmussen, Lene

    2012-01-01

    provided an important experimental tool for studying the functional consequences of VUS. However, beyond this repair assay, a number of other experimental methods have been developed that allow us to test the effect of a VUS on discrete biochemical steps or other aspects of MMR function. Here, we describe......ABSTRACT: With the discovery that the hereditary cancer susceptibility disease Lynch syndrome (LS) is caused by deleterious germline mutations in the DNA mismatch repair (MMR) genes nearly 20 years ago, genetic testing can now be used to diagnose this disorder in patients. A definitive diagnosis of...... LS can direct how clinicians manage the disease as well as prevent future cancers for the patient and their families. A challenge emerges, however, when a germline missense variant is identified in a MMR gene in a suspected LS patient. The significance of a single amino acid change in these large...

  14. Molecular genetics: Step by step implementation in maize breeding

    Directory of Open Access Journals (Sweden)

    Konstantinov Kosana

    2007-01-01

    Full Text Available Efficiency in plant breeding is determined primarily by the ability to screen for genetic polymorphism, productivity and yield stability early in program. Dependent on the knowledge about the biochemical bases of the trait and nature of its genetic control, trait could be modified either through mutagenesis of genes controlling it or through the transfer of already existing mutant genes, controlling desired trait to different plant genotypes by classic crossing. Objective of this report is to present partly results on the investigation of the possibilities to apply ionizing radiations (fast neutrons, γ -rays and chemical mutagens (EI, iPMS, EMS, ENU to get maize and wheat mutants with increased amount and improved protein quality. Besides this approach in mutation breeding, results on the very early investigation of biochemical background of opaque -2 mutation including use of coupled cell - free RNA and protein synthesis containing components from both wild and opaque - 2 maize genotypes (chromatin, RNA polymerase, microsomall fraction, protein bodies will be presented. Partial results on opaque - 2 gene incorporation in different genetic background are reviewed. Part of report is dealing with different classes of molecular markers (proteins, RFLP, AFLP, RAPD, and SSR application in maize genome polymorphism investigation. Besides application of different molecular markers classes in the investigation of heterosis phenomena they are useful in biochemical pathway of important traits control determination as well. .

  15. In silico evolution of biochemical networks

    Science.gov (United States)

    Francois, Paul

    2010-03-01

    We use computational evolution to select models of genetic networks that can be built from a predefined set of parts to achieve a certain behavior. Selection is made with the help of a fitness defining biological functions in a quantitative way. This fitness has to be specific to a process, but general enough to find processes common to many species. Computational evolution favors models that can be built by incremental improvements in fitness rather than via multiple neutral steps or transitions through less fit intermediates. With the help of these simulations, we propose a kinetic view of evolution, where networks are rapidly selected along a fitness gradient. This mathematics recapitulates Darwin's original insight that small changes in fitness can rapidly lead to the evolution of complex structures such as the eye, and explain the phenomenon of convergent/parallel evolution of similar structures in independent lineages. We will illustrate these ideas with networks implicated in embryonic development and patterning of vertebrates and primitive insects.

  16. Genetics of the Connectome

    OpenAIRE

    Thompson, Paul M.; Ge, Tian; Glahn, David C.; Jahanshad, Neda; Nichols, Thomas E.

    2013-01-01

    Connectome genetics attempts to discover how genetic factors affect brain connectivity. Here we review a variety of genetic analysis methods – such as genome-wide association studies (GWAS), linkage and candidate gene studies – that have been fruitfully adapted to imaging data to implicate specific variants in the genome for brain-related traits. We then review studies of that emphasized the genetic influences on brain connectivity. Some of these perform genetic analysis of brain integrity an...

  17. BIOCHEMICAL STUDIES ON NIGERIAN MONODORA TENUIFOLIA SEED

    Directory of Open Access Journals (Sweden)

    Ekeanyanwu Raphael Chukwuma

    2013-01-01

    Full Text Available The nutritive constituents of the seeds of Monodora tenuifolia were analyzed to augment the available information on Monodora tenuifolia research. Blood glucose and lipid profile were investigated on the flavonoid rich fraction of M. tenuifolia in rats. The composition (gkg-1 of alkaloids, cyanogenic glycosides, tannins and flavonoids were 13.3±0.1, 21.2×10-2±0.6, 1.3±0.1, 1.7±0.1 and 11.7±1.1 respectively. The proximate composition (gkg-1 of M. tenuifolia seed were crude fibre (262.3±1.2, crude protein (82.6±1.0, crude fat (349.9±1.9, ash (49.9±0.6, moisture (190.0±0.00 and carbohydrate (65.5±4.7. Analysis of the minerals content (gkg-1 yielded calcium (864.0±29.38, sodium (2752.0±140.35, iron (3.34±0.06, zinc (5.26±0.08, potassium (326.4±13.06, magnesium (342.9±13.71 and phosphorus (9.52±0.17, while vitamin analysis yielded vitamin A (10.05±0.17 iu/100 g, C (56.40±0.14 gkg-1 and E (11.71±0.87 iu /100 g, thiamine (0.11±0.01 gkg-1, niacin (0.46±0.32 gkg-1 and riboflavin (0.04±0.01 gkg-1. The results of amino acid analysis showed the total amino acid of M. tenuifolia seed was 71.78 of crude protein. The total essential amino acid with Histidine was calculated to be 29.24 of the crude protein. The antinutrient analysis of M. tenuifolia shows it contained total phenol (0.8±0.0 gkg-1, oxalates (4.09±1.17 gkg-1, phytates (0.012±0.42 gkg-1 and trypsin inhibitor (0.230±0.42 iu/g. The main fatty acids of the seed oil are linoleic acid (401.7 g kg-1, oleic acid (346.1 g kg-1 and palmitic acid (122.61 g kg-1. The LD50 of the flavonoid-rich fraction was found to be above 5000 mg kg-1 b.w. After the day 14 study, biochemical markers such as triacylglycerol, very low density lipoprotein increased significantly (p0.05 effect was observed on the blood glucose and lipid profile of wistar albino rats compared with the control. The result shows that M. tenuifolia seed is rich

  18. Biochemical and histological characterization of tomato mutants

    Directory of Open Access Journals (Sweden)

    Carolina C. Monteiro

    2012-06-01

    Full Text Available Biochemical responses inherent to antioxidant systems as well morphological and anatomical properties of photomorphogenic, hormonal and developmental tomato mutants were investigated. Compared to the non-mutant Micro-Tom (MT, we observed that the malondialdehyde (MDA content was enhanced in the diageotropica (dgt and lutescent (l mutants, whilst the highest levels of hydrogen peroxide (H2O2 were observed in high pigment 1 (hp1 and aurea (au mutants. The analyses of antioxidant enzymes revealed that all mutants exhibited reduced catalase (CAT activity when compared to MT. Guaiacol peroxidase (GPOX was enhanced in both sitiens (sit and notabilis (not mutants, whereas in not mutant there was an increase in ascorbate peroxidase (APX. Based on PAGE analysis, the activities of glutathione reductase (GR isoforms III, IV, V and VI were increased in l leaves, while the activity of superoxide dismutase (SOD isoform III was reduced in leaves of sit, epi, Never ripe (Nr and green flesh (gf mutants. Microscopic analyses revealed that hp1 and au showed an increase in leaf intercellular spaces, whereas sit exhibited a decrease. The au and hp1 mutants also exhibited a decreased in the number of leaf trichomes. The characterization of these mutants is essential for their future use in plant development and ecophysiology studies, such as abiotic and biotic stresses on the oxidative metabolism.Neste trabalho, analisamos as respostas bioquímicas inerentes ao sistema antioxidante, assim como propriedades morfológicas e anatômicas de mutantes fotomorfogenéticos e hormonais de tomateiro. Comparados ao não mutante Micro-Tom (MT, observamos que o conteúdo de malondialdeído (MDA aumentou nos mutantes diageotropica (dgt e lutescent (l, enquanto os maiores níveis de H2O2 foram encontrados nos mutantes high pigment 1 (hp1 e aurea (au. Análises de enzimas antioxidantes mostraram que todos os mutantes reduziram a atividade de catalase (CAT quando comparado a MT. A

  19. Association of CD36 expression and polymorphism with serum biochemical indices in Cherry Valley duck.

    Science.gov (United States)

    Wang, D D; Li, W G; Zhang, Y Y

    2016-01-01

    Cluster of differentiation 36 (CD36) plays a crucial role in lipid sensing, innate immunity, atherogenesis, and glycolipid metabolism. This aims of this study were to delineate the CD36 mRNA expression profile in 16 duck tissues using relative quantitative real-time PCR and to screen single nucleotide polymorphisms (SNPs) in the duck CD36 gene by PCR-single strand conformation polymorphism and DNA direct sequencing. In addition, this study investigated CD36 gene expression, genetic variation, and their effect on serum biochemical indices in duck. The results showed that CD36 mRNA was expressed in all tissues, and was highly specific to the pituitary and large intestine, and to subcutaneous and abdominal fat. Furthermore, three genotypes of the SNP g.476593 T > C in exon 9 of the duck CD36 gene were identified: MM, MN, and NN. The dominant genotype and allele were MM and M, with frequencies of 0.453 and 0.643, respectively. The genotype distributions deviated from Hardy-Weinberg equilibrium (P < 0.05) and achieved moderate levels of polymorphism in ducks. Correlation results showed that CD36 mRNA was significantly negatively correlated with triglycerides (P < 0.05), and significantly positively correlated with total protein, globulin, low-density lipoprotein cholesterol, and total cholesterol (P < 0.01). All serum biochemical indices measured, with the exception of triglycerides, in birds with the NN genotype were significantly higher than those in birds with the MM genotype. These findings demonstrated that CD36 might be an important genetic marker for the selection of lipid metabolism and meat quality traits in ducks. PMID:27323079

  20. Hepatic Lipogenesis Associated with Biochemical Changes in Overfed Landaise Geese and China Xupu Geese

    Institute of Scientific and Technical Information of China (English)

    LIU Xiang-you; HE Rui-guo; HUANG Chou-shen; LI Xiang; ZHOU Qi-an; WANG Cheng; ZHAO Na; ZHOU Shi-xia

    2006-01-01

    This experiment studied hepatic lipogenesis associated with biochemical changes in overfed Landaise Geese and China Xupu geese. Twenty healthy male Landaise geese and 20 healthy male Xupu geese, hatched on the same day under the same feeding conditions, were selected as experimental animals. The animals were divided into two groups and each breed served as an experimental group. Per goose of per experimental group served for a repeat. Brown rice was selected as test diet. After overfeeding for 21 d and then slaughtering, the biochemical changes of hepatic lipogenesis in the genetic susceptibility to fatty liver were evaluated. These results showed that (1) the weight of fatty liver of the two breeds of geese were 801 and 375 g (P<0.05), respectively. There were no differences on the abdominal fat pat, filet total and filet pectoralis major in the two breeds experimental of the geese group (P<0.05) and no difference on body and filet skin plus subcutaneous adipose tissue (P>0.05) was found; (2) in these two breeds of geese, there were no differences on very-lowdensity lipoprotein (VLDL), cholesteryl esters (CE) (P< 0.05), free cholesterol (FC), triglycerides (TG), phospholipids (PL) and protein (P<0.05); (3) there were no differences on activities of malic enzyme (ME), glucose-6-phosphatedehydrogenase (G6PDH), acetyl-CoA-carboxylas (ACX), fatty acid synthase (FAS), and mRNA level of ME in the two experimental breeds of geese groups (P < 0.05); (4) test in Landaise geese group showed that there was no significant correlation with the specific enzymatic activities, while in Xupu geese group, the liver weight was negatively correlated to the specific activity of ACX and positively to that of ME; (5) in these overfed geese, ME activity appeared to be a major factor involved in the genetic susceptibility to hepatic steatosis and it determined the hepatic lipogenesis capacity.

  1. Workshop on molecular methods for genetic diagnosis. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Rinchik, E.M.

    1997-07-01

    The Sarah Lawrence College Human Genetics Program received Department of Energy funding to offer a continuing medical education workshop for genetic counselors in the New York metropolitan area. According to statistics from the National Society of Genetic Counselors, there are approximately 160 genetic counselors working in the tri-state area (New York, New Jersey, and Connecticut), and many of them had been working in the field for more than 10 years. Thus, there was a real need to offer these counselors an in-depth opportunity to learn the specifics of the major advances in molecular genetics, and, in particular, the new approaches to diagnostic testing for genetic disease. As a result of the DOE Award DE-FG02-95ER62048 ($20,583), in July 1995 we offered the {open_quotes}Workshop on Molecular Methods for Genetic Diagnosis{close_quotes} for 24 genetic counselors in the New York metropolitan area. The workshop included an initial review session on the basics of molecular biology, lectures and discussions on past and current topics in molecular genetics and diagnostic procedures, and, importantly, daily laboratory exercises. Each counselor gained not only background, but also firsthand experience, in the major techniques of biochemical and molecular methods for diagnosing genetic diseases as well as in mathematical and computational techniques involved in human genetics analyses. Our goal in offering this workshop was not to make genetic counselors experts in these laboratory diagnostic techniques, but to acquaint them, by hands-on experience, about some of the techniques currently in use. We also wanted to provide them a technical foundation upon which they can understand and appreciate new technical developments arising in the near future.

  2. Biochemical analysis of PIFTC3, the Trypanosoma brucei ortholog of nematode DYF-13, reveals interactions with established and putative intraflagellar transport components

    OpenAIRE

    Franklin, Joseph B.; Ullu, Elisabetta

    2010-01-01

    DYF-13, originally identified in C. elegans within a collection of dye-filling chemosensory mutants, is one of several proteins that have been classified as putatively involved in intraflagellar transport (IFT), the bidirectional movement of protein complexes along cilia and flagella, and specifically in anterograde IFT. Although genetic studies have highlighted a fundamental role of DYF-13 in nematode sensory cilium and trypanosome flagellum biogenesis, biochemical studies on DYF-13 have lag...

  3. Arabidopsis and the Genetic Potential for the Phytoremediation of Toxic Elemental and Organic Pollutants

    OpenAIRE

    Cobbett, Christopher S.; Meagher, Richard B.

    2002-01-01

    In a process called phytoremediation, plants can be used to extract, detoxify, and/or sequester toxic pollutants from soil, water, and air. Phytoremediation may become an essential tool in cleaning the environment and reducing human and animal exposure to potential carcinogens and other toxins. Arabidopsis has provided useful information about the genetic, physiological, and biochemical mechanisms behind phytoremediation, and it is an excellent model genetic organism to test foreign gene expr...

  4. Assessment of genetic variation in Bulgarian tomato (Solanum lycopersicum L.) genotypes, using fluorescent SSR genotyping platform

    OpenAIRE

    TODOROVSKA, Elena; IVANOVA, Albena; Daniela GANEVA; Galina PEVICHAROVA; Molle, Emil; Bojinov, Bojin; Radkova, Mariana; Danailov, Zhivko

    2014-01-01

    Genetic variability in modern crops is limited due to domestication and selection processes. Genetic variation in eight Bulgarian tomato varieties and breeding lines (variety Plovdivska karotina, variety IZK Alya, L21β, L53β, L1140, L1116, L975, L984) differing in their morphological and biochemical composition was assessed using a highly efficient and low-cost fluorescent simple sequence repeat (SSR) genotyping platform. Genotyping was conducted with 165 publicly available microsatellite mar...

  5. Determining the gross biochemical composition of cells and tissue with Raman spectrosocpy

    Science.gov (United States)

    Mourant, Judith R.; Dominguez, Jorge; Carpenter, Susan; Powers, Tamara M.; Guerra, Anabel; Short, Kurt W.; Kunapareddy, Nagapratima; Freyer, James P.

    2006-02-01

    The biochemical composition of mammalian cells has been estimated by Raman spectroscopy and the results compared with other biochemical methods. The Raman spectroscopy estimates were performed by fitting measured Raman and infrared spectra of dense cell suspensions to a linear combination of basis components (RNA, DNA, protein, lipid, glycoen). The Raman spectroscopy results are compared to biochemical analyses performed by extraction and quantfication of the biochemical components. Both absolute and relative measurements of biochemical composition are compared. Both the Raman and biochemical results indicate that there are signficant differences in gross biochemical composition dependent on growth stage and tumorigneicity.

  6. Biochemical characterisation during seed development of oil palm (Elaeis guineensis).

    Science.gov (United States)

    Kok, Sau-Yee; Namasivayam, Parameswari; Ee, Gwendoline Cheng-Lian; Ong-Abdullah, Meilina

    2013-07-01

    Developmental biochemical information is a vital base for the elucidation of seed physiology and metabolism. However, no data regarding the biochemical profile of oil palm (Elaeis guineensis Jacq.) seed development has been reported thus far. In this study, the biochemical changes in the developing oil palm seed were investigated to study their developmental pattern. The biochemical composition found in the seed differed significantly among the developmental stages. During early seed development, the water, hexose (glucose and fructose), calcium and manganese contents were present in significantly high levels compared to the late developmental stage. Remarkable changes in the biochemical composition were observed at 10 weeks after anthesis (WAA): the dry weight and sucrose content increased significantly, whereas the water content and hexose content declined. The switch from a high to low hexose/sucrose ratio could be used to identify the onset of the maturation phase. At the late stage, dramatic water loss occurred, whereas the content of storage reserves increased progressively. Lauric acid was the most abundant fatty acid found in oil palm seed starting from 10 WAA. PMID:23575803

  7. Microstereolithography and its application to biochemical IC chip

    Science.gov (United States)

    Ikuta, Koji; Maruo, Shoji; Hasegawa, Tadahiro; Adachi, Takao

    2001-06-01

    The world's first micro stereo lithography, named IH process, was proposed and developed by the speaker in 1992. By now, several types of micro stereo lithography systems have been developed. Three-dimensional resolution of solidification has reached to 0.2 micron at present. These 3D micro fabrication processes using UV curable polymer gave a big impact on not only MEMS but also optics. The latest version of IH process enables us to make a movable micro mechanism without assemble process or sacrificial layer technique often used in silicon process. It is well known that the IH process is the mother of two-photon micro stereo lithography and its applications. Recently new micro chemical device named Biochemical IC Chip was proposed and developed by the speaker. This chip is based on the module IC chip-set like today's TTL family. IH process enable to make the biochemical IC including real three-dimensional micro fluid channels. Various kinds of Biochemical IC chips such as micro pump, switching valve, reactor, concentrator and detector have already been fabricated successfully. Basic performance of micro chemical devices constructed by the biochemical IC chips were demonstrated. The biochemical IC chips will open new bioscience and medicine based on innovative technology.

  8. Skeleton Genetics: a comprehensive database for genes and mutations related to genetic skeletal disorders

    Science.gov (United States)

    Chen, Chong; Jiang, Yi; Xu, Chenyang; Liu, Xinting; Hu, Lin; Xiang, Yanbao; Chen, Qingshuang; Chen, Denghui; Li, Huanzheng; Xu, Xueqin; Tang, Shaohua

    2016-01-01

    Genetic skeletal disorders (GSD) involving the skeletal system arises through disturbances in the complex processes of skeletal development, growth and homeostasis and remain a diagnostic challenge because of their clinical heterogeneity and genetic variety. Over the past decades, tremendous effort platforms have been made to explore the complex heterogeneity, and massive new genes and mutations have been identified in different GSD, but the information supplied by literature is still limited and it is hard to meet the further needs of scientists and clinicians. In this study, combined with Nosology and Classification of genetic skeletal disorders, we developed the first comprehensive and annotated genetic skeletal disorders database, named ‘SkeletonGenetics’, which contains information about all GSD-related knowledge including 8225 mutations in 357 genes, with detailed information associated with 481 clinical diseases (2260 clinical phenotype) classified in 42 groups defined by molecular, biochemical and/or radiographic criteria from 1698 publications. Further annotations were performed to each entry including Gene Ontology, pathways analysis, protein–protein interaction, mutation annotations, disease–disease clustering and gene–disease networking. Furthermore, using concise search methods, intuitive graphical displays, convenient browsing functions and constantly updatable features, ‘SkeletonGenetics’ could serve as a central and integrative database for unveiling the genetic and pathways pre-dispositions of GSD. Database URL: http://101.200.211.232/skeletongenetics/ PMID:27580923

  9. The 50th Annual Maize Genetics Conference

    Energy Technology Data Exchange (ETDEWEB)

    Cone, Karen

    2014-03-26

    The 50th Annual Maize Genetics Conference was held February 27 - March 2, 2008 at the Marriott Wardman Park Hotel in Washington, D.C. As the golden anniversary of the Conference and coinciding with the release of a draft of the maize genome sequence, this was a special meeting. To publicize this unique occasion, meeting organizers hosted a press conference, which was attended by members of the press representing science and non-science publications, and an evening reception at the Smithsonian National Museum of Natural History, where the draft sequence was announced and awards were presented to Dr. Mary Clutter and Senator Kit Bond to thank them for their outstanding contributions to maize genetics and genomics research. As usual, the Conference provided an invigorating forum for exchange of recent research results in many areas of maize genetics, e.g., cytogenetics, development, molecular genetics, transposable element biology, biochemical genetics, and genomics. Results were shared via both oral and poster presentations. Invited talks were given by four distinguished geneticists: Vicki Chandler, University of Arizona; John Doebley, University of Wisconsin; Susan Wessler, University of Georgia; and Richard Wilson, Washington University. There were 46 short talks and 241 poster presentations. The Conference was attended by over 500 participants. This included a large number of first-time participants in the meeting and an increasingly visible presence by individuals from underrepresented groups. Although we do not have concrete counts, there seem to be more African American, African and Hispanic/Latino attendees coming to the meeting than in years past. In addition, this meeting attracted many participants from outside the U.S. Student participation continues to be hallmark of the spirit of free exchange and cooperation characteristic of the maize genetics community. With the generous support provided by DOE, USDA NSF, and corporate/private donors, organizers were

  10. Clinical and genetic spectrum in limb-girdle muscular dystrophy type 2E

    DEFF Research Database (Denmark)

    Semplicini, Claudio; Vissing, John; Dahlqvist, Julia R;

    2015-01-01

    OBJECTIVE: To determine the clinical spectrum of limb-girdle muscular dystrophy 2E (LGMD2E) and to investigate whether genetic or biochemical features can predict the phenotype of the disease. METHODS: All LGMD2E patients followed in participating centers were included. A specific clinical protocol...

  11. Infrared spectroscopic imaging of the biochemical modifications induced in the cerebellum of the Niemann-Pick type C mouse

    Science.gov (United States)

    Kidder, Linda H.; Colarusso, Pina; Stewart, Sarah A.; Levin, Ira W.; Appel, Nathan M.; Lester, David S.; Pentchev, Peter G.; Lewis, E. N.

    1999-01-01

    WE have applied Fourier transform infrared (IR) spectroscopic imaging to the investigation of the neuropathologic effects of a genetic lipid storage disease, Niemann-Pick type C (NPC). Tissue sections both from the cerebella of a strain of BALB/c mice that demonstrated morphology and pathology of the human disease and from control animals were used. These samples were analyzed by standard histopathological procedures as well as this new IR imaging approach. The IR absorbance images exhibit contrast based on biochemical variations and allow for the identification of the cellular layers within the tissue samples. Furthermore, these images provide a qualitative description of the localized biochemical differences existing between the diseased and control tissue in the absence of histological staining. Statistical analyses of the IR spectra extracted from individual cell layers of the imaging data sets provide concise quantitative descriptions of these biochemical changes. The results indicate that lipid is depleted specifically in the white matter of the NPC mouse in comparison to the control samples. Minor differences were noted for the granular layers, but no significant differences were observed in the molecular layers of the cerebellar tissue. These changes are consistent with significant demyelination within the cerebellum of the NPC mouse.

  12. A Sensitive Method for Examining Whole Cell Biochemical Composition in Single Cells of Filamentous Fungi using Synchrotron FTIR Spectromicroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Konstantin,J.; Gough, K.; Julian, R.; Kaminskyj, S.

    2008-01-01

    Cell function is related to cell composition. The asexual state of filamentous fungi (molds and mildews) has two main life cycle stages: vegetative hyphae for substrate colonization and nutrient acquisition, and asexual spores for survival and dispersal. Hyphal composition changes over a few tens of microns during growth and maturation; spores are different from hyphae. Most biochemical analyses are restricted to studying a few components at high spatial resolution (e.g. histochemistry) or many compounds at low spatial resolution (e.g. GC-MS). Synchrotron FTIR spectromicroscopy can be used to study fungal cell biology by fingerprinting varieties of carbohydrates, proteins, and lipids at about 6 microm spatial resolution. FTIR can distinguish fungal species and changes during hyphal growth, and reveals that even fungi grown under optimal vs mildly stressed conditions exhibit dramatic biochemical changes without obvious morphological effects. Here we compare hypha and spore composition of two fungi, Neurospora and Rhizopus. There are clear biochemical changes when Neurospora hyphae commit to spore development, during spore maturation and following germination, many of which are consistent with results from molecular genetics, but have not been shown before at high spatial resolution. Rhizopus spores develop within a fluid-containing sporangium that becomes dry at maturity. Rhizopus spores had similar protein content and significantly more carbohydrate than the sporangial fluid, both of which are novel findings.

  13. A sensitive method for examining whole-cell biochemical composition in single cells of filamentous fungi using synchrotron FTIR spectromicroscopy.

    Science.gov (United States)

    Jilkine, Konstantin; Gough, Kathleen M; Julian, Robert; Kaminskyj, Susan G W

    2008-03-01

    Cell function is related to cell composition. The asexual state of filamentous fungi (molds and mildews) has two main life cycle stages: vegetative hyphae for substrate colonization and nutrient acquisition, and asexual spores for survival and dispersal. Hyphal composition changes over a few tens of microns during growth and maturation; spores are different from hyphae. Most biochemical analyses are restricted to studying a few components at high spatial resolution (e.g. histochemistry) or many compounds at low spatial resolution (e.g. GC-MS). Synchrotron FTIR spectromicroscopy can be used to study fungal cell biology by fingerprinting varieties of carbohydrates, proteins, and lipids at about 6 microm spatial resolution. FTIR can distinguish fungal species and changes during hyphal growth, and reveals that even fungi grown under optimal vs mildly stressed conditions exhibit dramatic biochemical changes without obvious morphological effects. Here we compare hypha and spore composition of two fungi, Neurospora and Rhizopus. There are clear biochemical changes when Neurospora hyphae commit to spore development, during spore maturation and following germination, many of which are consistent with results from molecular genetics, but have not been shown before at high spatial resolution. Rhizopus spores develop within a fluid-containing sporangium that becomes dry at maturity. Rhizopus spores had similar protein content and significantly more carbohydrate than the sporangial fluid, both of which are novel findings. PMID:18158185

  14. A Sensitive Method for Examining Whole Cell Biochemical Composition in Single Cells of Filamentous Fungi using Synchrotron FTIR Spectromicroscopy

    International Nuclear Information System (INIS)

    Cell function is related to cell composition. The asexual state of filamentous fungi (molds and mildews) has two main life cycle stages: vegetative hyphae for substrate colonization and nutrient acquisition, and asexual spores for survival and dispersal. Hyphal composition changes over a few tens of microns during growth and maturation; spores are different from hyphae. Most biochemical analyses are restricted to studying a few components at high spatial resolution (e.g. histochemistry) or many compounds at low spatial resolution (e.g. GC-MS). Synchrotron FTIR spectromicroscopy can be used to study fungal cell biology by fingerprinting varieties of carbohydrates, proteins, and lipids at about 6 microm spatial resolution. FTIR can distinguish fungal species and changes during hyphal growth, and reveals that even fungi grown under optimal vs mildly stressed conditions exhibit dramatic biochemical changes without obvious morphological effects. Here we compare hypha and spore composition of two fungi, Neurospora and Rhizopus. There are clear biochemical changes when Neurospora hyphae commit to spore development, during spore maturation and following germination, many of which are consistent with results from molecular genetics, but have not been shown before at high spatial resolution. Rhizopus spores develop within a fluid-containing sporangium that becomes dry at maturity. Rhizopus spores had similar protein content and significantly more carbohydrate than the sporangial fluid, both of which are novel findings.

  15. Carbamates toxicity in farmers and its assesment through biochemical parameters

    International Nuclear Information System (INIS)

    Prevalent environmental toxicity of various chemical group of pesticides and their effects leading towards increasing morbidity and mortality in the farmers is of great concerned. In this situation the biochemical biomarkers are regarded as meaningful tools for monitoring toxic end points. This work was aimed to assess the toxic impacts of carbamates through some biochemical parameters and useful validity of these biomarkers was also observed. Present results reveal inhibition of cholinesterase activity by 46% whereas bilirubin, urea and creatinine levels in serum were increased and sugar values was decreased at highly significant level (p<0.001). Urine urobilinogen concentration found raised significantly at high level (p<0.001) while protein, urea creatinine and sugar values in urine of the farmers seen non-significant. This study concluded that the selected biochemical parameters can be used as biomarkers to assess the significant toxic effects in the exposed populations. (author)

  16. Click Chemistry-Mediated Nanosensors for Biochemical Assays

    Science.gov (United States)

    Chen, Yiping; Xianyu, Yunlei; Wu, Jing; Yin, Binfeng; Jiang, Xingyu

    2016-01-01

    Click chemistry combined with functional nanoparticles have drawn increasing attention in biochemical assays because they are promising in developing biosensors with effective signal transformation/amplification and straightforward signal readout for clinical diagnostic assays. In this review, we focus on the latest advances of biochemical assays based on Cu (I)-catalyzed 1, 3-dipolar cycloaddition of azides and alkynes (CuAAC)-mediated nanosensors, as well as the functionalization of nanoprobes based on click chemistry. Nanoprobes including gold nanoparticles, quantum dots, magnetic nanoparticles and carbon nanomaterials are covered. We discuss the advantages of click chemistry-mediated nanosensors for biochemical assays, and give perspectives on the development of click chemistry-mediated approaches for clinical diagnosis and other biomedical applications. PMID:27217831

  17. Hematologic and plasma biochemical values of hyacinth macaws (Anodorhynchus hyacinthinus).

    Science.gov (United States)

    Kolesnikovas, Cristiane K M; Niemeyer, Claudia; Teixeira, Rodrigo H F; Nunes, Adauto L V; Rameh-de-Albuquerque, Luciana C; Sant'Anna, Sávio S; Catão-Dias, José L

    2012-09-01

    The hyacinth macaw (Anodorhyncus hyacinthinus), considered the largest psittacine bird species in the world, is an endangered species, with a remaining population of approximately 6500 birds in the wild. To establish hematologic and plasma biochemical reference ranges and to verify differences related to sex, samples from 29 hyacinth macaws (14 males, 15 females) were obtained from birds apprehended from illegal wildlife trade and subsequently housed at the Sorocaba Zoo, Brazil. No significant differences in hematologic or plasma biochemical values were found between females and males. Compared with published reference values, differences were found in mean concentrations of total red blood cell count, corpuscular volume, corpuscular hemoglobin level, total white blood cell count, aspartate aminotransferase level, creatine kinase concentration, alkaline phosphatase concentration, and phosphorus level. Baseline hematologic and plasma biochemical ranges were established, which may be useful as reference values for clinicians working with this endangered species in captivity or rehabilitation centers. PMID:23156973

  18. Hematologic and plasma biochemical values of Spix's macaws (Cyanopsitta spixii).

    Science.gov (United States)

    Foldenauer, Ulrike; Borjal, Raffy Jim; Deb, Amrita; Arif, Abdi; Taha, Abid Sharif; Watson, Ryan William; Steinmetz, Hanspeter; Bürkle, Marcellus; Hammer, Sven

    2007-12-01

    The Spix's macaw (Cyanopsitta spixii) is considered the world's most endangered parrot, with the last wild bird disappearing in 2001 and only 74 birds in captivity. To establish hematologic and plasma biochemical reference ranges and to look for differences relative to sex, age, and season, we obtained blood samples from 46 captive Spix's macaws (23 male, 23 female) housed in aviaries at the Al Wabra Wildlife Preservation in the State of Qatar. No significant differences in hematologic or plasma biochemical values were found between females and males. Adult and juvenile birds differed in mean concentrations of glucose, total protein, amylase, cholesterol, and phosphorus; in percentages of heterophils and lymphocytes; and in the absolute lymphocyte count. Total protein, cholesterol, and phosphorus concentrations; hematocrit; and heterophil and lymphocyte counts differed significantly by season. Baseline hematologic and plasma biochemical ranges were established, which may be useful as reference values for clinicians working with this highly endangered species. PMID:18351006

  19. Occurrence of bacteria and biochemical markers on public surfaces.

    Science.gov (United States)

    Reynolds, Kelly A; Watt, Pamela M; Boone, Stephanie A; Gerba, Charles P

    2005-06-01

    From 1999-2003, the hygiene of 1061 environmental surfaces from shopping, daycare, and office environments, personal items, and miscellaneous activities (i.e., gymnasiums, airports, movie theaters, restaurants, etc.), in four US cities, was monitored. Samples were analyzed for fecal and total coliform bacteria, protein, and biochemical markers. Biochemical markers, i.e., hemoglobin (blood marker), amylase (mucus, saliva, sweat, and urine marker), and urea (urine and sweat marker) were detected on 3% (26/801); 15% (120/801), and 6% (48/801) of the surfaces, respectively. Protein (general hygiene marker) levels > or = 200 microg/10 cm2 were present on 26% (200/801) of the surfaces tested. Surfaces from children's playground equipment and daycare centers were the most frequently contaminated (biochemical markers on 36%; 15/42 and 46%; 25/54, respectively). Surfaces from the shopping, miscellaneous activities, and office environments were positive for biochemical markers with a frequency of 21% (69/333), 21% (66/308), and 11% (12/105), respectively). Sixty samples were analyzed for biochemical markers and bacteria. Total and fecal coliforms were detected on 20% (12/60) and 7% (4/ 60) of the surfaces, respectively. Half and one-third of the sites positive for biochemical markers were also positive for total and fecal coliforms, respectively. Artificial contamination of public surfaces with an invisible fluorescent tracer showed that contamination from outside surfaces was transferred to 86% (30/ 35) of exposed individual's hands and 82% (29/35) tracked the tracer to their home or personal belongings hours later. Results provide information on the relative hygiene of commonly encountered public surfaces and aid in the identification of priority environments where contaminant occurrence and risk of exposure may be greatest. Children's playground equipment is identified as a priority surface for additional research on the occurrence of and potential exposure to infectious

  20. The Development of a Biochemical Profile of Acacia Honey by Identifying Biochemical Determinants of its Quality

    Directory of Open Access Journals (Sweden)

    Liviu Alexandru MARGHITAS

    2010-09-01

    Full Text Available Codex Alimentarius Standard, EU Legislation and National Standards state honey authenticity. Authenticity in respect of production (to prevent adulteration and authenticity in respect of geographical and botanical origin are the two main aspects of general honey authenticity. Quality of honey depends on the plant source, the chemical composition of these plants as well, as on the climatic conditions and soil mineral composition. Romanian acacia (Robinia pseudoacacia honey that came from the most important Transylvanian massif (Valea lui Mihai, Bihor County, Romania was evaluated for authenticity by pollen-analysis, several physico-chemical analyses, including sugar profile and mineral content. As polyphenolic content could be also an important factor for botanical authentification, HPLC-DAD-MS analyses were performed to assess the fingerprint of this important secondary plant metabolite. Statistical data were processed in order to develop a biochemical profile of this type of honey and the main quality categories identification. The results of physico-chemical analysis demonstrated that the tested honey samples could be framed into monofloral type of acacia honeys. The analysis of acacia honeys originating from Valea lui Mihai, Romania, showed that polyphenolic profile (phenolic acids and flavonoids could be used as a complementary method for authenticity determination together with pollen analysis and other physico-chemical analysis.

  1. Physiological and biochemical basis of salmon young ifshes migratory behavior

    Institute of Scientific and Technical Information of China (English)

    Vladimir Ivanovich Martemyanov

    2016-01-01

    The review presents data on structural changes, physiological and biochemical reactions occurring at salmon young fishes during smoltification. It is shown, that young salmon fishes located in fresh water, in the process of smoltification undergo a complex of structural, physiological and biochemical changes directed on preparation of the organism for living in the sea. These changes cause stress reaction which excites young fishes to migrate down the river towards the sea. Measures to improve reproduction of young salmon fishes at fish farms are offered.

  2. Alzheimer's Disease Genetics

    Science.gov (United States)

    ... Referral Center Alzheimer's Disease Education and Referral Center Alzheimer's Disease Education and Referral Center Home About Alzheimer’s ... Plan National Alzheimer's Project Act (NAPA) About ADEAR Alzheimer's Disease Genetics Fact Sheet The Genetics of Disease ...

  3. Genetic Brain Disorders

    Science.gov (United States)

    A genetic brain disorder is caused by a variation or a mutation in a gene. A variation is a different form ... mutation is a change in a gene. Genetic brain disorders affect the development and function of the ...

  4. Prenatal screening and genetics

    DEFF Research Database (Denmark)

    Alderson, P; Aro, A R; Dragonas, T;

    2001-01-01

    Although the term 'genetic screening' has been used for decades, this paper discusses how, in its most precise meaning, genetic screening has not yet been widely introduced. 'Prenatal screening' is often confused with 'genetic screening'. As we show, these terms have different meanings, and we...... examine definitions of the relevant concepts in order to illustrate this point. The concepts are i) prenatal, ii) genetic screening, iii) screening, scanning and testing, iv) maternal and foetal tests, v) test techniques and vi) genetic conditions. So far, prenatal screening has little connection...... with precisely defined genetics. There are benefits but also disadvantages in overstating current links between them in the term genetic screening. Policy making and professional and public understandings about screening could be clarified if the distinct meanings of prenatal screening and genetic screening were...

  5. Genetics Home Reference

    Science.gov (United States)

    Skip Navigation Bar Home Current Issue Past Issues Genetics Home Reference Past Issues / Spring 2007 Table of ... of this page please turn Javascript on. The Genetics Home Reference (GHR) Web site — ghr.nlm.nih. ...

  6. Genetics by the Numbers

    Science.gov (United States)

    ... View All Articles | Inside Life Science Home Page Genetics by the Numbers By Chelsea Toledo and Kirstie ... June 11, 2012 Scholars have been studying modern genetics since the mid-19th century, but even today ...

  7. Genetics and the Brain

    Science.gov (United States)

    ... Find us on YouTube Follow us on Instagram Genetics and the Brain by Carl Sherman September 10, ... effects that may be responsible. How Much Is Genetic? [x] , [xi] , [xii] , [xiii] A basic question in ...

  8. Frontotemporal Dementia: Genetics

    Science.gov (United States)

    ... Calendar of Events Fundraising Events Conferences Press Releases Genetics of FTD After receiving a diagnosis of FTD ... that recent advances in science have brought the genetics of FTD into much better focus. In 2012, ...

  9. Genetics of Hearing Loss

    Science.gov (United States)

    ... in Latin America Information For... Media Policy Makers Genetics of Hearing Loss Language: English Español (Spanish) Recommend ... of hearing loss in babies is due to genetic causes. There are also a number of things ...

  10. Genetics Home Reference: adermatoglyphia

    Science.gov (United States)

    Skip to main content Your Guide to Understanding Genetic Conditions Enable Javascript for addthis links to activate. ... Conditions Genes Chromosomes & mtDNA Resources Help Me Understand Genetics Home Health Conditions adermatoglyphia adermatoglyphia Enable Javascript to ...

  11. Genetic Brain Disorders

    Science.gov (United States)

    A genetic brain disorder is caused by a variation or a mutation in a gene. A variation is a different form of a ... is a change in a gene. Genetic brain disorders affect the development and function of the brain. ...

  12. Genetics Home Reference: phenylketonuria

    Science.gov (United States)

    ... links) Disease InfoSearch: Phenylketonuria Genetic Science Learning Center, University of Utah Genetics Education Materials for School Success (GEMSS) MalaCards: phenylketonuria March of Dimes Montreal Children's Hospital My46 Trait Profile New England Consortium of Metabolic ...

  13. Genetic Testing and PXE

    Science.gov (United States)

    ... Donate Search form Search You are here Home › Genetic Testing and PXE Shi Y, Terry SF, Terry ... LG, Gerard GF. Development of a rapid, reliable genetic test for pseudoxanthoma elasticum . J Mol Diagn . 2007 ...

  14. Genetic Disease Foundation

    Science.gov (United States)

    ... Newly Diagnosed Patients There are over 6,000 genetic disorders that can be passed down through the ... mission to help prevent, manage and treat inherited genetic diseases. View our latest News Brief here . You ...

  15. Evaluation of Iranian Native Apple (Malus x domestica Borkh Germplasm using Biochemical and Morphological Characteristics

    Directory of Open Access Journals (Sweden)

    Javad Farrokhi

    2014-03-01

    Full Text Available 800x600 In this study, fifty six native apple genotypes from different geographical regions of Iran were evaluated based on 16 different biochemical and morphological characters using augment design. Analysis of variance showed significant difference between studied genotypes. Considering descriptive statistics, there was high level of genetic variation in this plant material. Regarding simple correlation between studied characters, fruit weight as one of the most important item, was positively and significantly correlated with fruit volume, leaf size and canopy axile. Principle component analysis revealed that the first seven principle components (PCs were accounted 74.7% of the total variation. Cluster analysis using Ward method classified the 56 genotypes into four groups. As regards to clustering pattern, distribution of the cultivars was independent from their geographical distribution. The present study shows that Iranian apple genotypes possess high level of genetic variation that is useful for breeding. Normal 0 false false false EN-US X-NONE FA MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin:0cm; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:10.0pt; font-family:"Times New Roman","serif";}

  16. Distinct configurations of protein complexes and biochemical pathways revealed by epistatic interaction network motifs

    LENUS (Irish Health Repository)

    Casey, Fergal

    2011-08-22

    Abstract Background Gene and protein interactions are commonly represented as networks, with the genes or proteins comprising the nodes and the relationship between them as edges. Motifs, or small local configurations of edges and nodes that arise repeatedly, can be used to simplify the interpretation of networks. Results We examined triplet motifs in a network of quantitative epistatic genetic relationships, and found a non-random distribution of particular motif classes. Individual motif classes were found to be associated with different functional properties, suggestive of an underlying biological significance. These associations were apparent not only for motif classes, but for individual positions within the motifs. As expected, NNN (all negative) motifs were strongly associated with previously reported genetic (i.e. synthetic lethal) interactions, while PPP (all positive) motifs were associated with protein complexes. The two other motif classes (NNP: a positive interaction spanned by two negative interactions, and NPP: a negative spanned by two positives) showed very distinct functional associations, with physical interactions dominating for the former but alternative enrichments, typical of biochemical pathways, dominating for the latter. Conclusion We present a model showing how NNP motifs can be used to recognize supportive relationships between protein complexes, while NPP motifs often identify opposing or regulatory behaviour between a gene and an associated pathway. The ability to use motifs to point toward underlying biological organizational themes is likely to be increasingly important as more extensive epistasis mapping projects in higher organisms begin.

  17. Clinical, biochemical and molecular analysis of two infants with familial chylomicronemia syndrome.

    Science.gov (United States)

    Zhang, Yonghong; Zhou, Jing; Zheng, Wenxin; Lan, Zhangzhang; Huang, Zhiwei; Yang, Qingnan; Liu, Chengbo; Gao, Rui; Zhang, Yongjun

    2016-01-01

    Familial chylomicronemia syndrome (FCS) is a rare autosomal recessive disease due mainly to inherited deficiencies in the proteins or enzymes involved in the clearance of triglycerides from circulation. It usually happens in late childhood and adolescence, which can have serious consequences if misdiagnosed or untreated. In the present study, we investigated two Chinese male babies (A and B), 30d and 48d in age, respectively, who have milky plasma. Clinical, biochemical, and radiological assessments were performed, while samples from the patients were referred for molecular diagnosis, including genetic testing and subsequent analysis of related genes. The fasting serum lipids of the two patients showed extreme lipid abnormalities. Through a low-lipid formula diet including skimmed milk and dietary advice, their plasma lipid levels were significantly lower and more stable at the time of hospital discharge. The genetic testing revealed compound heterozygote mutations in the lipoprotein lipase (LPL) gene for patient A and two known compound heterozygote LPL gene mutations for the patient B. FCS is the most dramatic example of severe hypertriglyceridemia. Early diagnosis and timely dietary intervention is very important for affected children. PMID:27153815

  18. Genetics of language

    OpenAIRE

    Ramus, F.; Fisher, S.

    2009-01-01

    It has long been hypothesised that the human faculty to acquire a language is in some way encoded in our genetic program. However, only recently has genetic evidence been available to begin to substantiate the presumed genetic basis of language. Here we review the first data from molecular genetic studies showing association between gene variants and language disorders (specific language impairment, speech sound disorder, developmental dyslexia), we discuss the biological function of these ge...

  19. Behavioral genetics and taste

    Directory of Open Access Journals (Sweden)

    Bachmanov Alexander A

    2007-09-01

    Full Text Available Abstract This review focuses on behavioral genetic studies of sweet, umami, bitter and salt taste responses in mammals. Studies involving mouse inbred strain comparisons and genetic analyses, and their impact on elucidation of taste receptors and transduction mechanisms are discussed. Finally, the effect of genetic variation in taste responsiveness on complex traits such as drug intake is considered. Recent advances in development of genomic resources make behavioral genetics a powerful approach for understanding mechanisms of taste.

  20. Report: Human cancer genetics

    Institute of Scientific and Technical Information of China (English)

    LI Marilyn; ALBERTSON Donna

    2006-01-01

    The short report will be focused on the genetic basis and possible mechanisms of tumorigenesis, common types of cancer, the importance of genetic diagnosis of cancer, and the methodology of cancer genetic diagnosis. They will also review presymptomatic testing of hereditary cancers, and the application of expression profiling to identify patients likely to benefit from particular therapeutic approaches.

  1. Statistics for Learning Genetics

    Science.gov (United States)

    Charles, Abigail Sheena

    2012-01-01

    This study investigated the knowledge and skills that biology students may need to help them understand statistics/mathematics as it applies to genetics. The data are based on analyses of current representative genetics texts, practicing genetics professors' perspectives, and more directly, students' perceptions of, and performance in,…

  2. Prenatal screening and genetics

    NARCIS (Netherlands)

    Alderson, P.; Aro, A.R.; Dragonas, T.; Ettorre, E.; Hemminki, E.; Jalinoja, P.; Santalahti, P.; Tijmstra, T.

    2001-01-01

    Although the term 'genetic screening' has been used for decades, this paper discusses how, in its most precise meaning, genetic screening has not yet been widely introduced. 'Prenatal screening' is often confused with 'genetic screening'. As we show, these terms have different meanings, and we exami

  3. Imminent Cardiac Risk Assessment via Optical Intravascular Biochemical Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Wetzel, D.; Wetzel, L; Wetzel, M; Lodder, R

    2009-01-01

    Heart disease is by far the biggest killer in the United States, and type II diabetes, which affects 8% of the U.S. population, is on the rise. In many cases, the acute coronary syndrome and/or sudden cardiac death occurs without warning. Atherosclerosis has known behavioral, genetic and dietary risk factors. However, our laboratory studies with animal models and human post-mortem tissue using FT-IR microspectroscopy reveal the chemical microstructure within arteries and in the arterial walls themselves. These include spectra obtained from the aortas of ApoE-/- knockout mice on sucrose and normal diets showing lipid deposition in the former case. Also pre-aneurysm chemical images of knockout mouse aorta walls, and spectra of plaque excised from a living human patient are shown for comparison. In keeping with the theme of the SPEC 2008 conference Spectroscopic Diagnosis of Disease this paper describes the background and potential value of a new catheter-based system to provide in vivo biochemical analysis of plaque in human coronary arteries. We report the following: (1) results of FT-IR microspectroscopy on animal models of vascular disease to illustrate the localized chemical distinctions between pathological and normal tissue, (2) current diagnostic techniques used for risk assessment of patients with potential unstable coronary syndromes, and (3) the advantages and limitations of each of these techniques illustrated with patent care histories, related in the first person, by the physician coauthors. Note that the physician comments clarify the contribution of each diagnostic technique to imminent cardiac risk assessment in a clinical setting, leading to the appreciation of what localized intravascular chemical analysis can contribute as an add-on diagnostic tool. The quality of medical imaging has improved dramatically since the turn of the century. Among clinical non-invasive diagnostic tools, laboratory tests of body fluids, EKG, and physical examination are

  4. GENETICS AND GENOMICS OF PLANT GENETIC RESOURCES

    Directory of Open Access Journals (Sweden)

    Börner A.

    2012-08-01

    Full Text Available Plant genetic resources play a major role for global food security. The most significant and widespread mean of conserving plant genetic resources is ex situ conservation. Most conserved accessions are kept in specialized facilities known as genebanks maintained by public or private institutions. World-wide 7.4 million accessions are stored in about 1,500 ex situ genebanks.In addition, series of genetic stocks including chromosome substitution lines, alloplasmic lines, single chromosome recombinant lines, introgression lines, etc. have been created. Analysing these genetic stocks many qualitative and quantitative inherited traits were associated to certain chromosomes, chromosome arms or introgressed segments. Today, genetic stocks are supplemented by a huge number of genotyped mapping populations. Beside progenies of bi-parental crosses (doubled haploid lines, recombinant inbred lines, etc. panels for association mapping were created recently.In our presentation we give examples for the successful utilisation of genebank accessions and genetic stocks for genetic and genomic studies. Using both segregation and association mapping approaches, data on mapping of loci/marker trait associations for a range of different traits are presented.

  5. Feline genetics: clinical applications and genetic testing.

    Science.gov (United States)

    Lyons, Leslie A

    2010-11-01

    DNA testing for domestic cat diseases and appearance traits is a rapidly growing asset for veterinary medicine. Approximately 33 genes contain 50 mutations that cause feline health problems or alterations in the cat's appearance. A variety of commercial laboratories can now perform cat genetic diagnostics, allowing both the veterinary clinician and the private owner to obtain DNA test results. DNA is easily obtained from a cat via a buccal swab with a standard cotton bud or cytological brush, allowing DNA samples to be easily sent to any laboratory in the world. The DNA test results identify carriers of the traits, predict the incidence of traits from breeding programs, and influence medical prognoses and treatments. An overall goal of identifying these genetic mutations is the correction of the defect via gene therapies and designer drug therapies. Thus, genetic testing is an effective preventative medicine and a potential ultimate cure. However, genetic diagnostic tests may still be novel for many veterinary practitioners and their application in the clinical setting needs to have the same scrutiny as any other diagnostic procedure. This article will review the genetic tests for the domestic cat, potential sources of error for genetic testing, and the pros and cons of DNA results in veterinary medicine. Highlighted are genetic tests specific to the individual cat, which are a part of the cat's internal genome. PMID:21147473

  6. The Stereochemistry of Biochemical Molecules: A Subject to Revisit

    Science.gov (United States)

    Centelles, Josep J.; Imperial, Santiago

    2005-01-01

    Although Fischer's convention for stereoisomers is useful for simple molecules, the stereochemistry of complex biochemical molecules is often poorly indicated in textbooks. This article reports on errors in stereochemistry of complex hydrosoluble vitamin B12 molecule. Twenty-five popular biochemistry textbooks were examined for their treatment of…

  7. A coupled mechano-biochemical model for bone adaptation

    Czech Academy of Sciences Publication Activity Database

    Klika, Václav; Pérez, M. A.; García-Aznar, J. M.; Maršík, F.; Doblaré, M.

    2014-01-01

    Roč. 69, 6-7 (2014), s. 1383-1429. ISSN 0303-6812 Institutional support: RVO:61388998 Keywords : mechano-biochemical model * bone remodelling * BMU Subject RIV: BJ - Thermodynamics Impact factor: 1.846, year: 2014 http://link.springer.com/article/10.1007%2Fs00285-013-0736-9

  8. Biochemical Pathways That Are Important for Cotton Fiber Cell Elongation

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The regulatory mechanism that controls the sustained cotton fiber cell elongation is gradually being elucidated by coupling genome-wide transcriptome profiling with systematic biochemical and physiological studies.Very long chain fatty acids(VLCFA),H2O2,and several types of plant hormones

  9. Salvage Brachytherapy for Biochemically Recurrent Prostate Cancer following Primary Brachytherapy

    Science.gov (United States)

    Lacy, John M.; Wilson, William A.; Bole, Raevti; Chen, Li; Meigooni, Ali S.; Rowland, Randall G.; Clair, William H. St.

    2016-01-01

    Purpose. In this study, we evaluated our experience with salvage brachytherapy after discovery of biochemical recurrence after a prior brachytherapy procedure. Methods and Materials. From 2001 through 2012 twenty-one patients treated by brachytherapy within University of Kentucky or from outside centers developed biochemical failure and had no evidence of metastases. Computed tomography (CT) scans were evaluated; patients who had an underseeded portion of their prostate were considered for reimplantation. Results. The majority of the patients in this study (61.9%) were low risk and median presalvage PSA was 3.49 (range 17.41–1.68). Mean follow-up was 61 months. At last follow-up after reseeding, 11/21 (52.4%) were free of biochemical recurrence. There was a trend towards decreased freedom from biochemical recurrence in low risk patients (p = 0.12). International Prostate Symptom Scores (IPSS) increased at 3-month follow-up visits but decreased and were equivalent to baseline scores at 18 months. Conclusions. Salvage brachytherapy after primary brachytherapy is possible; however, in our experience the side-effect profile after the second brachytherapy procedure was higher than after the first brachytherapy procedure. In this cohort of patients we demonstrate that approximately 50% oncologic control, low risk patients appear to have better outcomes than others. PMID:27092279

  10. BIOCHEMICAL AND NEUROPATHOLOGICAL ASSESSMENT OF TRIPHENYL PHOSPHITE IN RATS

    Science.gov (United States)

    The putative neurotoxicity of the organophosphorus compound triphenyl phosphite (TPP) was examined in Long Evans, adult male rats. Animals were exposed to two 1.0 ml/kg (1184 mg/kg) injections (sc) of TPP spaced 1 week apart and sampled for biochemical and neuropathological exami...

  11. Integrating Carbon Nanotubes into Microfluidic Chip for Separating Biochemical Compounds

    DEFF Research Database (Denmark)

    Chen, Miaoxiang Max; Mogensen, Klaus Bo; Bøggild, Peter;

    2012-01-01

    We present a new type of device to separate biochemical compounds wherein carbon nanotubes (CNTs) are integrated as chromatographic stationary phase. The CNTs were directly grown on the bottom of microfluidic channels on Si/SiO2 substrates by chemical vapor deposition (CVD). Acetylene was used as...

  12. A MULTILAYER BIOCHEMICAL DRY DEPOSITION MODEL 2. MODEL EVALUATION

    Science.gov (United States)

    The multilayer biochemical dry deposition model (MLBC) described in the accompanying paper was tested against half-hourly eddy correlation data from six field sites under a wide range of climate conditions with various plant types. Modeled CO2, O3, SO2<...

  13. A MULTILAYER BIOCHEMICAL DRY DEPOSITION MODEL 1. MODEL FORMULATION

    Science.gov (United States)

    A multilayer biochemical dry deposition model has been developed based on the NOAA Multilayer Model (MLM) to study gaseous exchanges between the soil, plants, and the atmosphere. Most of the parameterizations and submodels have been updated or replaced. The numerical integration ...

  14. Advances in Biochemical Screening for Phaeochromocytoma using Biogenic Amines

    OpenAIRE

    Whiting, Malcolm J; Doogue, Matthew P

    2009-01-01

    Biochemical testing for phaeochromocytoma is performed in diagnostic laboratories using a variety of tests with plasma, serum or 24-hour urine collections. These tests include catecholamines and their methylated metabolites - the metanephrines, either individually or in combination with their sulfated metabolites. High-performance liquid chromatography (HPLC) continues to be the dominant analytical method for biogenic amine quantitation. Chromatographic techniques are changing, with improveme...

  15. USE OF MUNICIPAL SOLID WASTE LANDFILLS AS BIOCHEMICAL REACTORS

    Science.gov (United States)

    Municipal solid waste (MSW) from the nation is managed predominantly in anitary landfills. ue to the physical, chemical and biological makeup f he aste he landfill acts as a biochemical reactor and degrades the organic matter. urrent practices are to use covers and liners as engi...

  16. Biosensors and bioelectronics on smartphone for portable biochemical detection.

    Science.gov (United States)

    Zhang, Diming; Liu, Qingjun

    2016-01-15

    Smartphone has been widely integrated with sensors, such as test strips, sensor chips, and hand-held detectors, for biochemical detections due to its portability and ubiquitous availability. Utilizing built-in function modules, smartphone is often employed as controller, analyzer, and displayer for rapid, real-time, and point-of-care monitoring, which can significantly simplify design and reduce cost of the detecting systems. This paper presents a review of biosensors and bioelectronics on smartphone for portable biochemical detections. The biosensors and bioelectronics based on smartphone can mainly be classified into biosensors using optics, surface plasmon resonance, electrochemistry, and near-field communication. The developments of these biosensors and bioelectronics on smartphone are reviewed along with typical biochemical detecting cases. Sensor strategies, detector attachments, and coupling methods are highlighted to show designs of the compact, lightweight, and low-cost sensor systems. The performances and advantages of these designs are introduced with their applications in healthcare diagnosis, environment monitoring, and food evaluation. With advances in micro-manufacture, sensor technology, and miniaturized electronics, biosensor and bioelectronic devices on smartphone can be used to perform biochemical detections as common and convenient as electronic tag readout in foreseeable future. PMID:26319170

  17. Biochemical correlates in an animal model of depression

    International Nuclear Information System (INIS)

    A valid animal model of depression was used to explore specific adrenergic receptor differences between rats exhibiting aberrant behavior and control groups. Preliminary experiments revealed a distinct upregulation of hippocampal beta-receptors (as compared to other brain regions) in those animals acquiring a response deficit as a result of exposure to inescapable footshock. Concurrent studies using standard receptor binding techniques showed no large changes in the density of alpha-adrenergic, serotonergic, or dopaminergic receptor densities. This led to the hypothesis that the hippocampal beta-receptor in responses deficient animals could be correlated with the behavioral changes seen after exposure to the aversive stimulus. Normalization of the behavior through the administration of antidepressants could be expected to reverse the biochemical changes if these are related to the mechanism of action of antidepressant drugs. This study makes three important points: (1) there is a relevant biochemical change in the hippocampus of response deficient rats which occurs in parallel to a well-defined behavior, (2) the biochemical and behavioral changes are normalized by antidepressant treatments exhibiting both serotonergic and adrenergic mechanisms of action, and (3) the mode of action of antidepressants in this model is probably a combination of serotonergic and adrenergic influences modulating the hippocampal beta-receptor. These results are discussed in relation to anatomical and biochemical aspects of antidepressant action

  18. Biochemical Characterization of Prion Strains in Bank Voles

    Directory of Open Access Journals (Sweden)

    Romolo Nonno

    2013-07-01

    Full Text Available Prions exist as different strains exhibiting distinct disease phenotypes. Currently, the identification of prion strains is still based on biological strain typing in rodents. However, it has been shown that prion strains may be associated with distinct PrPSc biochemical types. Taking advantage of the availability of several prion strains adapted to a novel rodent model, the bank vole, we investigated if any prion strain was actually associated with distinctive PrPSc biochemical characteristics and if it was possible to univocally identify strains through PrPSc biochemical phenotypes. We selected six different vole-adapted strains (three human-derived and three animal-derived and analyzed PrPSc from individual voles by epitope mapping of protease resistant core of PrPSc (PrPres and by conformational stability and solubility assay. Overall, we discriminated five out of six prion strains, while two different scrapie strains showed identical PrPSc types. Our results suggest that the biochemical strain typing approach here proposed was highly discriminative, although by itself it did not allow us to identify all prion strains analyzed.

  19. Biochemical tests for diagnosis of phaeochromocytoma: urinary versus plasma determinations.

    OpenAIRE

    Plouin, P F; Duclos, J M; Menard, J; Comoy, E; Bohuon, C; Alexandre, J M

    1981-01-01

    Fifteen patients with hypertension due to phaeochromocytoma and 35 controls with essential hypertension were studied to assess the diagnostic value of urinary and plasma biochemical determinations in phaeochromocytoma. In every case of phaeochromocytoma the urinary concentration of vanillylmandelate, metanephrines, or adrenaline plus noradrenaline was diagnostic of the disease irrespective of whether the patient was normotensive or hypertensive at the time. Plasma determinations of adrenaline...

  20. Biochemical Importance of Glycosylation of Plasminogen Activator Inhibitor-1

    DEFF Research Database (Denmark)

    Gils, Ann; Pedersen, Katrine Egelund; Skottrup, Peter;

    2003-01-01

    glycosylation sites could be excluded as explanation for the differential reactivity. The latency transition of non-glycosylated, but not of glycosylated PAI-1, was strongly accelerated by a non-ionic detergent. The different biochemical properties of glycosylated and non-glycosylated PAI-1 depended...

  1. Study on color difference estimation method of medicine biochemical analysis

    Science.gov (United States)

    Wang, Chunhong; Zhou, Yue; Zhao, Hongxia; Sun, Jiashi; Zhou, Fengkun

    2006-01-01

    The biochemical analysis in medicine is an important inspection and diagnosis method in hospital clinic. The biochemical analysis of urine is one important item. The Urine test paper shows corresponding color with different detection project or different illness degree. The color difference between the standard threshold and the test paper color of urine can be used to judge the illness degree, so that further analysis and diagnosis to urine is gotten. The color is a three-dimensional physical variable concerning psychology, while reflectance is one-dimensional variable; therefore, the estimation method of color difference in urine test can have better precision and facility than the conventional test method with one-dimensional reflectance, it can make an accurate diagnose. The digital camera is easy to take an image of urine test paper and is used to carry out the urine biochemical analysis conveniently. On the experiment, the color image of urine test paper is taken by popular color digital camera and saved in the computer which installs a simple color space conversion (RGB -> XYZ -> L *a *b *)and the calculation software. Test sample is graded according to intelligent detection of quantitative color. The images taken every time were saved in computer, and the whole illness process will be monitored. This method can also use in other medicine biochemical analyses that have relation with color. Experiment result shows that this test method is quick and accurate; it can be used in hospital, calibrating organization and family, so its application prospect is extensive.

  2. Model Based Monitoring and Control of Chemical and Biochemical Processes

    DEFF Research Database (Denmark)

    Huusom, Jakob Kjøbsted

    This presentation will give an overview of the work performed at the department of Chemical and Biochemical Engineering related to process control. A research vision is formulated and related to a number of active projects at the department. In more detail a project describing model estimation and...

  3. [Experiments using rats on Kosmos biosatellites: morphologic and biochemical studies].

    Science.gov (United States)

    Il'in, E A; Kaplanskiĭ, A S; Savina, E A

    1989-01-01

    Results of morphological and biochemical investigations of rats flown on Cosmos biosatellites are discussed. It is emphasized that most changes occurring during exposure to microgravity are directly or indirectly related to lower musculoskeletal loads which in turn produce deconditioning of different physiological systems and organism as a whole. It is concluded that this deconditioning is associated with both metabolic and structural changes. PMID:2685464

  4. MATLAB-Based Teaching Modules in Biochemical Engineering

    Science.gov (United States)

    Lee, Kilho; Comolli, Noelle K.; Kelly, William J.; Huang, Zuyi

    2015-01-01

    Mathematical models play an important role in biochemical engineering. For example, the models developed in the field of systems biology have been used to identify drug targets to treat pathogens such as Pseudomonas aeruginosa in biofilms. In addition, competitive binding models for chromatography processes have been developed to predict expanded…

  5. All about Genetics (For Parents)

    Science.gov (United States)

    ... Things to Know About Zika & Pregnancy All About Genetics KidsHealth > For Parents > All About Genetics Print A ... way they pick up special laboratory dyes. continue Genetic Problems Errors in the genetic code or "gene ...

  6. How Is Genetic Testing Done?

    Science.gov (United States)

    ... Testing How is genetic testing done? How is genetic testing done? Once a person decides to proceed with ... is called informed consent . For more information about genetic testing procedures: The Genetic Science Learning Center at the ...

  7. Genetic technology: Promises and problems

    Science.gov (United States)

    Frankel, M. S.

    1975-01-01

    Issues concerning the use of genetic technology are discussed. Some areas discussed include treating genetic disease, prenatal diagnosis and selective abortion, screening for genetic disease, and genetic counseling. Policy issues stemming from these capabilities are considered.

  8. Thermodynamically consistent Bayesian analysis of closed biochemical reaction systems

    Directory of Open Access Journals (Sweden)

    Goutsias John

    2010-11-01

    Full Text Available Abstract Background Estimating the rate constants of a biochemical reaction system with known stoichiometry from noisy time series measurements of molecular concentrations is an important step for building predictive models of cellular function. Inference techniques currently available in the literature may produce rate constant values that defy necessary constraints imposed by the fundamental laws of thermodynamics. As a result, these techniques may lead to biochemical reaction systems whose concentration dynamics could not possibly occur in nature. Therefore, development of a thermodynamically consistent approach for estimating the rate constants of a biochemical reaction system is highly desirable. Results We introduce a Bayesian analysis approach for computing thermodynamically consistent estimates of the rate constants of a closed biochemical reaction system with known stoichiometry given experimental data. Our method employs an appropriately designed prior probability density function that effectively integrates fundamental biophysical and thermodynamic knowledge into the inference problem. Moreover, it takes into account experimental strategies for collecting informative observations of molecular concentrations through perturbations. The proposed method employs a maximization-expectation-maximization algorithm that provides thermodynamically feasible estimates of the rate constant values and computes appropriate measures of estimation accuracy. We demonstrate various aspects of the proposed method on synthetic data obtained by simulating a subset of a well-known model of the EGF/ERK signaling pathway, and examine its robustness under conditions that violate key assumptions. Software, coded in MATLAB®, which implements all Bayesian analysis techniques discussed in this paper, is available free of charge at http://www.cis.jhu.edu/~goutsias/CSS%20lab/software.html. Conclusions Our approach provides an attractive statistical methodology for

  9. Microchip-based Devices for Molecular Diagnosis of Genetic Diseases.

    Science.gov (United States)

    Cheng; Fortina; Surrey; Kricka; Wilding

    1996-09-01

    Microchips, constructed with a variety of microfabrication technologies (photolithography, micropatterning, microjet printing, light-directed chemical synthesis, laser stereochemical etching, and microcontact printing) are being applied to molecular biology. The new microchip-based analytical devices promise to solve the analytical problems faced by many molecular biologists (eg, contamination, low throughput, and high cost). They may revolutionize molecular biology and its application in clinical medicine, forensic science, and environmental monitoring. A typical biochemical analysis involves three main steps: (1) sample preparation, (2) biochemical reaction, and (3) detection (either separation or hybridization may be involved) accompanied by data acquisition and interpretation. The construction of a miniturized analyzer will therefore necessarily entail the miniaturization and integration of all three of these processes. The literature related to the miniaturization of these three processes indicates that the greatest emphasis so far is on the investigation and development of methods for the detection of nucleic acid, followed by the optimization of a biochemical reaction, such as the polymerase chain reaction. The first step involving sample preparation has received little attention. In this review the state of the art of, microchip-based, miniaturized analytical processes (eg, sample preparation, biochemical reaction, and detection of products) are outlined and the applications of microchip-based devices in the molecular diagnosis of genetic diseases are discussed. PMID:10462559

  10. INVESTIGATIONS ON BIOCHEMICAL PURIFICATION OF GROUND WATER FROM HYDROGEN SULFIDE

    Directory of Open Access Journals (Sweden)

    Yu. P. Sedlukho

    2015-01-01

    Full Text Available The paper considers problems and features of biochemical removal of hydrogen sulfide from ground water. The analysis of existing methods for purification of ground water from hydrogen sulfide has been given in the paper. The paper has established shortcomings of physical and chemical purification of ground water. While using aeration methods for removal of hydrogen sulfide formation of colloidal sulfur that gives muddiness and opalescence to water occurs due to partial chemical air oxidation. In addition to this violation of sulfide-carbonate equilibrium taking place in the process of aeration due to desorption of H2S and CO2, often leads to clogging of degasifier nozzles with formed CaCO3 that causes serious operational problems. Chemical methods require relatively large flow of complex reagent facilities, storage facilities and transportation costs.In terms of hydrogen sulfide ground water purification the greatest interest is given to the biochemical method. Factors deterring widespread application of the biochemical method is its insufficient previous investigation and necessity to execute special research in order to determine optimal process parameters while purifying groundwater of a particular water supply source. Biochemical methods for oxidation of sulfur compounds are based on natural biological processes that ensure natural sulfur cycle. S. Vinogradsky has established a two-stage mechanism for oxidation of hydrogen sulfide with sulfur bacteria (Beggiatoa. The first stage presupposes oxidation of hydrogen sulphide to elemental sulfur which is accumulating in the cytoplasm in the form of globules. During the second stage sulfur bacteria begin to oxidize intracellular sulfur to sulfuric acid due to shortage of hydrogen sulfide.The paper provides the results of technological tests of large-scale pilot plants for biochemical purification of groundwater from hydrogen sulfide in semi-industrial conditions. Dependences of water quality

  11. Molecular genetics made simple

    Directory of Open Access Journals (Sweden)

    Heba Sh. Kassem

    2012-07-01

    Full Text Available Genetics have undoubtedly become an integral part of biomedical science and clinical practice, with important implications in deciphering disease pathogenesis and progression, identifying diagnostic and prognostic markers, as well as designing better targeted treatments. The exponential growth of our understanding of different genetic concepts is paralleled by a growing list of genetic terminology that can easily intimidate the unfamiliar reader. Rendering genetics incomprehensible to the clinician however, defeats the very essence of genetic research: its utilization for combating disease and improving quality of life. Herein we attempt to correct this notion by presenting the basic genetic concepts along with their usefulness in the cardiology clinic. Bringing genetics closer to the clinician will enable its harmonious incorporation into clinical care, thus not only restoring our perception of its simple and elegant nature, but importantly ensuring the maximal benefit for our patients.

  12. The Study to Understand the Genetics of the Acute Response to Metformin and Glipizide in Humans (SUGAR-MGH): Design of a pharmacogenetic Resource for Type 2 Diabetes

    OpenAIRE

    Walford, Geoffrey A.; Colomo, Natalia; Todd, Jennifer N.; Billings, Liana K.; Fernandez, Marlene; Chamarthi, Bindu; Warner, A. Sofia; Davis, Jaclyn; Littleton, Katherine R.; Hernandez, Alicia M.; Fanelli, Rebecca R.; Lanier, Amelia; Barbato, Corinne; Ackerman, Rachel J.; Khan, Sabina Q.

    2015-01-01

    Objective: Genome-wide association studies have uncovered a large number of genetic variants associated with type 2 diabetes or related phenotypes. In many cases the causal gene or polymorphism has not been identified, and its impact on response to anti-hyperglycemic medications is unknown. The Study to Understand the Genetics of the Acute Response to Metformin and Glipizide in Humans (SUGAR-MGH, NCT01762046) is a novel resource of genetic and biochemical data following glipizide and metformi...

  13. Comparative analysis of phenotypes features in two common genetic variants of limb-girdle muscular dystrophy

    OpenAIRE

    I. V. Sharkova; E. L. Dadali; I. V. Ugarov; O. P. Ryzhkova; A. V. Polyakov

    2015-01-01

    The algorithm of differential diagnosis of the two most common genetic variants the limb-girdle muscular dystrophy (LGMD2A and DMD), developed on the basis of a comprehensive survey of 85 patients with a diagnosis specification using techniques of DNA analysis. It is shown that the accurate diagnosis of LGMD genetic types should be based on the results of the clinical and genealogical, biochemical and molecular genetic analysis. The proposed algorithm will significantly reduces the economic a...

  14. Next-generation sequencing technologies and applications for human genetic history and forensics

    Directory of Open Access Journals (Sweden)

    Berglund Eva C

    2011-11-01

    Full Text Available Abstract Rapid advances in the development of sequencing technologies in recent years have enabled an increasing number of applications in biology and medicine. Here, we review key technical aspects of the preparation of DNA templates for sequencing, the biochemical reaction principles and assay formats underlying next-generation sequencing systems, methods for imaging and base calling, quality control, and bioinformatic approaches for sequence alignment, variant calling and assembly. We also discuss some of the most important advances that the new sequencing technologies have brought to the fields of human population genetics, human genetic history and forensic genetics.

  15. Comparative analysis of phenotypes features in two common genetic variants of limb-girdle muscular dystrophy

    Directory of Open Access Journals (Sweden)

    I. V. Sharkova

    2015-01-01

    Full Text Available The algorithm of differential diagnosis of the two most common genetic variants the limb-girdle muscular dystrophy (LGMD2A and DMD, developed on the basis of a comprehensive survey of 85 patients with a diagnosis specification using techniques of DNA analysis. It is shown that the accurate diagnosis of LGMD genetic types should be based on the results of the clinical and genealogical, biochemical and molecular genetic analysis. The proposed algorithm will significantly reduces the economic and time costs with expensive DNA testing.

  16. Genetic studies of medfly populations and related species

    International Nuclear Information System (INIS)

    Multilocus enzyme electrophoresis (MLEE) and random amplified polymorphic DNA were used to detect genetic markers in Ceratitis capitata. The authors employed both types of markers (1) to study the genome organization of the medfly, (2) to determine the level of intraspecific genetic diversity, and (3) to understand the evolution of the geographical populations. Sterility and high mutation rates in interstrain crosses were observed in C. capitata, reminiscent of hybrid dysgenesis in Drosophila, and may represent the activation of mobile elements, useful for medfly transformation. The biochemical, genetic and molecular characterization of the enzyme alcohol dehydrogenase clarified the peculiarity of this selectable system, compared with that of Drosophila, and revealed a surprisingly high sequence variability in medfly populations. The phylogenetic relationships between C. capitata and other Tephritidae species of economic importance were analysed by the MLEE approach. (author)

  17. Molecular genetics of schizophrenia: past, present and future

    Indian Academy of Sciences (India)

    Suman Prasad; Prachi Semwal; Smita Deshpande; Triptish Bhatia; V L Nimgaonkar; B K Thelma

    2002-02-01

    Schizophrenia is a severe neuropsychiatric disorder with a polygenic mode of inheritance which is also governed by non-genetic factors. Candidate genes identified on the basis of biochemical and pharmacological evidence are being tested for linkage and association studies. Neurotransmitters, especially dopamine and serotonin have been widely implicated in its etiology. Genome scan of all human chromosomes with closely spaced polymorphic markers is being used for linkage studies. The completion and availability of the first draft of Human Genome Sequence has provided a treasure-trove that can be utilized to gain insight into the so far inaccessible regions of the human genome. Significant technological advances for identification of single nucleotide polymorphisms (SNPs) and use of microarrays have further strengthened research methodologies for genetic analysis of complex traits. In this review, we summarize the evolution of schizophrenia genetics from the past to the present, current trends and future direction of research.

  18. Review: Genetically modified plants for the promotion of human health.

    Science.gov (United States)

    Yonekura-Sakakibara, Keiko; Saito, Kazuki

    2006-12-01

    Plants are attractive biological resources because of their ability to produce a huge variety of chemical compounds, and the familiarity of production in even the most rural settings. Genetic engineering gives plants additional characteristics and value for cultivation and post-harvest. Genetically modified (GM) plants of the "first generation" were conferred with traits beneficial to producers, whereas GM plants in subsequent "generations" are intended to provide beneficial traits for consumers. Golden Rice is a promising example of a GM plant in the second generation, and has overcome a number of obstacles for practical use. Furthermore, consumer-acceptable plants with health-promoting properties that are genetically modified using native genes are being developed. The emerging technology of metabolomics will also support the commercial realization of GM plants by providing comprehensive analyzes of plant biochemical components. PMID:17080241

  19. BPA genetic monitoring - BPA Genetic Monitoring Project

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Initiated in 1989, this study monitors genetic changes associated with hatchery propagation in multiple Snake River sub-basins for Chinook salmon and steelhead. We...

  20. Stable propagation of `selfish' genetic elements

    Indian Academy of Sciences (India)

    Soundarapandian Velmurugan; Shwetal Mehta; Dina Uzri; Makkuni Jayaram

    2003-09-01

    Extrachromosomal or chromosomally integrated genetic elements are common among prokaryotic and eukaryotic cells. These elements exhibit a variety of `selfish’ strategies to ensure their replication and propagation during the growth of their host cells. To establish long-term persistence, they have to moderate the degree of selfishness so as not to imperil the fitness of their hosts. Earlier genetic and biochemical studies together with more recent cell biological investigations have revealed details of the partitioning mechanisms employed by low copy bacterial plasmids. At least some bacterial chromosomes also appear to rely on similar mechanisms for their own segregation. The 2 m plasmid of Saccharomyces cerevisiae and related yeast plasmids provide models for optimized eukaryotic selfish DNA elements. Selfish DNA elements exploit the genetic endowments of their hosts without imposing an undue metabolic burden on them. The partitioning systems of these plasmids appear to make use of a molecular trick by which the plasmids feed into the segregation pathway established for the host chromosomes.

  1. The Contribution of Buckwheat Genetic Resources to Health and Dietary Diversity.

    Science.gov (United States)

    Sytar, Oksana; Brestic, Marian; Zivcak, Marek; Tran, Lam-Son Phan

    2016-06-01

    Despite several reports on the beneficial effects of buckwheat in prevention of human diseases, little attention has been devoted to the variability of biochemical and physiological traits in different buckwheat genetic resources. This review describes the biochemical evaluation of buckwheat genetic resources and the identification of elite genotypes for plant breeding and exploitation. The various types of bioactive compounds present in different varieties provide basic background information needed for the efficient production of buckwheat foods with added value. In this review, we will provide an integrated view of the biochemistry of bioactive compounds of buckwheat plants of different origin, especially of fagopyrin, proteins and amino acids, as well as of other phenolic compounds including rutin and chlorogenic acid. In addition to the genetic background, the effect of different growth conditions is discussed. The health effects of fagopyrin, phenolic acids, specific proteins and rutin are also presented. PMID:27252586

  2. Genetic selection and conservation of genetic diversity*.

    Science.gov (United States)

    Blackburn, H D

    2012-08-01

    For 100s of years, livestock producers have employed various types of selection to alter livestock populations. Current selection strategies are little different, except our technologies for selection have become more powerful. Genetic resources at the breed level have been in and out of favour over time. These resources are the raw materials used to manipulate populations, and therefore, they are critical to the past and future success of the livestock sector. With increasing ability to rapidly change genetic composition of livestock populations, the conservation of these genetic resources becomes more critical. Globally, awareness of the need to steward genetic resources has increased. A growing number of countries have embarked on large scale conservation efforts by using in situ, ex situ (gene banking), or both approaches. Gene banking efforts have substantially increased and data suggest that gene banks are successfully capturing genetic diversity for research or industry use. It is also noteworthy that both industry and the research community are utilizing gene bank holdings. As pressures grow to meet consumer demands and potential changes in production systems, the linkage between selection goals and genetic conservation will increase as a mechanism to facilitate continued livestock sector development. PMID:22827378

  3. Students' Ability to Organize Biochemical and Biochemistry-Related Terms Correlates with Their Performance in a Biochemical Examination

    Science.gov (United States)

    Nagata, Ryoichi

    2007-01-01

    Organization is believed to be related to understanding and memory. Whether this belief was applicable in biochemical education was examined about two years after students had experienced biochemistry classes in their first year. The ability of organizing information in biochemistry was judged from the number of correct links of 886 biochemical…

  4. Biochemical recurrence and survival prediction models for the management of clinically localized prostate cancer.

    Science.gov (United States)

    Tewari, Ashuthosh; Gamito, Eduard J; Crawford, E David; Menon, Mani

    2004-03-01

    A number of new predictive modeling techniques have emerged in the past several years. These methods, which have been developed in fields such as artificial intelligence research, engineering, and meteorology, are now being applied to problems in medicine with promising results. This review outlines our recent work with use of selected advanced techniques such as artificial neural networks, genetic algorithms, and propensity scoring to develop useful models for estimating the risk of biochemical recurrence and long-term survival in men with clinically localized prostate cancer. In addition, we include a description of our efforts to develop a comprehensive prostate cancer database that, along with these novel modeling techniques, provides a powerful research tool that allows for the stratification of risk for treatment failure and survival by such factors as age, race, and comorbidities. Clinical and pathologic data from 1400 patients were used to develop the biochemical recurrence model. The area under the receiver operating characteristic curve for this model was 0.83, with a sensitivity of 85% and specificity of 74%. For the survival model, data from 6149 men were used. Our analysis indicated that age, income, and comorbidities had a statistically significant impact on survival. The effect of race did not reach statistical significance in this regard. The C index value for the model was 0.69 for overall survival. We conclude that these methods, along with a comprehensive database, allow for the development of models that provide estimates of treatment failure risk and survival probability that are more meaningful and clinically useful than those previously developed. PMID:15072605

  5. 40 CFR 158.2081 - Experimental use permit biochemical pesticides product chemistry data requirements table.

    Science.gov (United States)

    2010-07-01

    ... pesticides product chemistry data requirements table. 158.2081 Section 158.2081 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS DATA REQUIREMENTS FOR PESTICIDES Biochemical Pesticides § 158.2081 Experimental use permit biochemical pesticides product chemistry data...

  6. 40 CFR 158.2084 - Experimental use permit biochemical pesticides nontarget organisms and environmental fate data...

    Science.gov (United States)

    2010-07-01

    ... pesticides nontarget organisms and environmental fate data requirements table. 158.2084 Section 158.2084 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS DATA REQUIREMENTS FOR PESTICIDES Biochemical Pesticides § 158.2084 Experimental use permit biochemical...

  7. Genetic epidemiology of diabetes

    OpenAIRE

    Permutt, M. Alan; Wasson, Jonathon; Cox, Nancy

    2005-01-01

    Conventional genetic analysis focuses on the genes that account for specific phenotypes, while traditional epidemiology is more concerned with the environmental causes and risk factors related to traits. Genetic epidemiology is an alliance of the 2 fields that focuses on both genetics, including allelic variants in different populations, and environment, in order to explain exactly how genes convey effects in different environmental contexts and to arrive at a more complete comprehension of t...

  8. Genetic toxicology: web resources.

    Science.gov (United States)

    Young, Robert R

    2002-04-25

    Genetic toxicology is the scientific discipline dealing with the effects of chemical, physical and biological agents on the heredity of living organisms. The Internet offers a wide range of online digital resources for the field of Genetic Toxicology. The history of genetic toxicology and electronic data collections are reviewed. Web-based resources at US National Library of Medicine (NLM), including MEDLINE, PUBMED, Gateway, Entrez, and TOXNET, are discussed. Search strategies and Medical Subject Headings (MeSH) are reviewed in the context of genetic toxicology. The TOXNET group of databases are discussed with emphasis on those databases with genetic toxicology content including GENE-TOX, TOXLINE, Hazardous Substances Data Bank, Integrated Risk Information System, and Chemical Carcinogenesis Research Information System. Location of chemical information including chemical structure and linkage to health and regulatory information using CHEMIDPLUS at NLM and other databases is reviewed. Various government agencies have active genetic toxicology research programs or use genetic toxicology data to assist fulfilling the agency's mission. Online resources at the US Food and Drug Administration (FDA), the US Environmental Protection Agency (EPA), the National Institutes of Environmental Health Sciences, and the National Toxicology Program (NTP) are outlined. Much of the genetic toxicology for pharmaceuticals, industrial chemicals and pesticides that is performed in the world is regulatory-driven. Regulatory web resources are presented for the laws mandating testing, guidelines on study design, Good Laboratory Practice (GLP) regulations, and requirements for electronic data collection and reporting. The Internet provides a range of other supporting resources to the field of genetic toxicology. The web links for key professional societies and journals in genetic toxicology are listed. Distance education, educational media resources, and job placement services are also

  9. Imaging genetics of schizophrenia

    OpenAIRE

    Meyer-Lindenberg, Andreas

    2010-01-01

    Recent years have seen an explosive growth of interest in the application of imaging genetics to understand neurogenetic mechanisms of schizophrenia. Imaging genetics applies structural and functional neuroimaging to study subjects carrying genetic risk variants that relate to a psychiatric disorder. We review selected aspects of this literature, starting with a widely studied candidate gene - the catechol-0-methyltransferase gene (COMT)- discussing other candidate genes in the dopaminergic s...

  10. PCR in forensic genetics

    DEFF Research Database (Denmark)

    Morling, Niels

    2009-01-01

    Since the introduction in the mid-1980s of analyses of minisatellites for DNA analyses, a revolution has taken place in forensic genetics. The subsequent invention of the PCR made it possible to develop forensic genetics tools that allow both very informative routine investigations and still more...... and more advanced, special investigations in cases concerning crime, paternity, relationship, disaster victim identification etc. The present review gives an update on the use of DNA investigations in forensic genetics....

  11. Welcome to Neurology: Genetics

    OpenAIRE

    Pulst, Stefan M.

    2015-01-01

    The powers of human genetics and genetic technologies have transformed the complexities of neurology and neuroscience at the basic, translational, and now also the clinical level. We have left an era of black and white views of causative genetic variation and are entering a period of more than 50 shades of grey, fascinated with DNA variants that increase or decrease risk, epigenetic modification, and an unexpectedly large number of variants of unknown or potentially pathogenic significance. L...

  12. Development of a genetic sexing mechanism in the Mediterranean fruit fly Ceratitis capitata for isolation of males in the egg or neonatal larval stage. Coordinated programme on development of sexing mechanisms in fruit flies through manipulation of radiation induced conditional lethals and other genetic measures

    International Nuclear Information System (INIS)

    The use of biochemical markers has allowed a sufficiently detailed evaluation of the genetic variability of the medfly; it has also fostered significant progress in the field of formal genetics. Chromosomal examinations have provided clues for interpreting genetical aspects of sex determination and of occasional recombination of linked factors in heterozygous males. The results obtained are considered a reliable basis for rewarding progress both in basic research and in applied programs

  13. BIOCHEMICAL PROCESSES IN CHERNOZEM SOIL UNDER DIFFERENT FERTILIZATION SYSTEMS

    Directory of Open Access Journals (Sweden)

    Ecaterina Emnova

    2012-06-01

    Full Text Available The paper deals with the evaluation of the intensity of certain soil biochemical processes (e.g. soil organic C mineralization at Organic and mixed Mineral+Organic fertilization of typical chernozem in crop rotation dynamics (for 6 years by use of eco-physiological indicators of biological soil quality: microbial biomass carbon, basal soil respiration, as well as, microbial and metabolic quotients. Soil sampling was performed from a long-term field crop experiment, which has been established in 1971 at the Balti steppe (Northern Moldova. The crop types had a more considerable impact on the soil microbial biomass accumulation and community biochemical activity compared to long-term Organic or mixed Mineral + Organic fertilizers amendments. The Org fertilization system doesn’t make it possible to avoid the loss of organic C in arable typical chernozem. The organic fertilizer (cattle manure is able to mitigate the negative consequences of long-term mineral fertilization.

  14. Overview of the DOE/SERI Biochemical Conversion Program

    Energy Technology Data Exchange (ETDEWEB)

    Wright, J D

    1986-09-01

    The Solar Energy Research Institute manages a program of research and development on the biochemical conversion of renewable lignocellulosic materials to liquid fuels for the Department of Energy's Biofuels and Municipal Waste Technology Division. The Biochemical Conversion Program is mission oriented so effort is concentrated on technologies which appear to have the greatest potential for being adopted by the private sector to economically convert lignocellulosic materials into high value liquid transportation fuels such as ethanol. The program is structured to supply the technology for such fuels to compete economically first as an octane booster or fuel additive, and, with additional improvements, as a neat fuel. 18 refs., 3 figs., 1 tab.

  15. Electrolyte-Gated Graphene Ambipolar Frequency Multipliers for Biochemical Sensing.

    Science.gov (United States)

    Fu, Wangyang; Feng, Lingyan; Mayer, Dirk; Panaitov, Gregory; Kireev, Dmitry; Offenhäusser, Andreas; Krause, Hans-Joachim

    2016-04-13

    In this Letter, the ambipolar properties of an electrolyte-gated graphene field-effect transistor (GFET) have been explored to fabricate frequency-doubling biochemical sensor devices. By biasing the ambipolar GFETs in a common-source configuration, an input sinusoidal voltage at frequency f applied to the electrolyte gate can be rectified to a sinusoidal wave at frequency 2f at the drain electrode. The extraordinary high carrier mobility of graphene and the strong electrolyte gate coupling provide the graphene ambipolar frequency doubler an unprecedented unity gain, as well as a detection limit of ∼4 pM for 11-mer single strand DNA molecules in 1 mM PBS buffer solution. Combined with an improved drift characteristics and an enhanced low-frequency 1/f noise performance by sampling at doubled frequency, this good detection limit suggests the graphene ambipolar frequency doubler a highly promising biochemical sensing platform. PMID:26928906

  16. Development of a biochemical switching device: mathematical model.

    Science.gov (United States)

    Okamoto, M

    1990-01-01

    There are many examples of enzymes that share substrates or cofactors in a cyclic manner. Techniques have been developed that use cyclic enzyme systems to assay quantitatively small amounts of biochemical substances (cofactor, substrate), however, only a few studies of the control of these systems have been published. The author previously showed with computer simulations that cyclic enzyme systems have the reliability of ON-OFF types of operation (McCulloch-Pitts' neuronic equation) and the applicability for a switching circuit in a biocomputer. The switching time was inevitably determined in accordance with the difference in amount between two inputs of the system. A unique switching mechanism of cyclic enzyme systems (basic switching element) and the effects of excitatory stimuli on switching properties of the integrated biochemical switching system are demonstrated. PMID:2082931

  17. Biochemical functionalization of peptide nanotubes with phage displayed peptides

    Science.gov (United States)

    Swaminathan, Swathi; Cui, Yue

    2016-09-01

    The development of a general approach for the biochemical functionalization of peptide nanotubes (PNTs) could open up existing opportunities in both fundamental studies as well as a variety of applications. PNTs are spontaneously assembled organic nanostructures made from peptides. Phage display has emerged as a powerful approach for identifying selective peptide binding motifs. Here, we demonstrate for the first time the biochemical functionalization of PNTs via peptides identified from a phage display peptide library. The phage-displayed peptides are shown to recognize PNTs. These advances further allow for the development of bifunctional peptides for the capture of bacteria and the self-assembly of silver particles onto PNTs. We anticipate that these results could provide significant opportunities for using PNTs in both fundamental studies and practical applications, including sensors and biosensors nanoelectronics, energy storage devices, drug delivery, and tissue engineering.

  18. The free energy cost of accurate biochemical oscillations

    CERN Document Server

    Cao, Yuansheng; Ouyang, Qi; Tu, Yuhai

    2015-01-01

    Oscillation is an important cellular process that regulates timing of different vital life cycles. However, in the noisy cellular environment, oscillations can be highly inaccurate due to phase fluctuations. It remains poorly understood how biochemical circuits suppress phase fluctuations and what is the incurred thermodynamic cost. Here, we study four different types of biochemical oscillations representing three basic oscillation motifs shared by all known oscillatory systems. We find that the phase diffusion constant follows the same inverse dependence on the free energy dissipation per period for all systems studied. This relationship between the phase diffusion and energy dissipation is shown analytically in a model of noisy oscillation. Microscopically, we find that the oscillation is driven by multiple irreversible cycles that hydrolyze the fuel molecules such as ATP; the number of phase coherent periods is proportional to the free energy consumed per period. Experimental evidence in support of this un...

  19. Biomphalaria prona (Gastropoda: Planorbidae: a morphological and biochemical study

    Directory of Open Access Journals (Sweden)

    W. Lobato Paraense

    1992-06-01

    Full Text Available Two samples of Biomphalaria prona (Martens, 1873 from Lake Valencia (type locality and seven from other Venezuelan localities were studied morphologically (shell and reproductive system and biochemically (allozyme electrophoresis. In spite of marked differences in shell characters, all of them proved indistinguishable under the anatomic and biochemical criteria. So far B. prona has been considered an endemic species, restricted to Lake Valencia. It is now demonstrated that the extralacustrine populations refered to Biomphalaria havanensis (Pfeiffer, 1839 by several authors correspond in shell characters to an extreme variant of B. prona from the Lake and really belong to the last*mentioned species. They may be regarded as the result of a process of directional selection favoring a shell phenotype other than those making up the modal class in the Lake.

  20. Fruit developmental stages effects on biochemical attributes in date palm

    International Nuclear Information System (INIS)

    Some date palm cultivars grown in Pakistan were biochemically characterized and the effect of fruit maturity on radical scavenging capacity (DPPH), total phenolic contents (TPC), specific activity of antioxidant enzymes, sugars profile and soluble protein contents was assessed. Higher range of differences in composition of studied phytochemicals was recorded among different cultivars. Antiradical efficiency (AE), TPC, antioxidant enzymes and soluble protein contents were recorded higher at khalal stage thereafter, declined at rutab then finally at tamar stage. The amount of glucose (11.32-32.50%) and fructose (10.95-32.41%) started accumulation from khalal stage and were in higher composition at tamar stage due to hydrolysis and inversion of sucrose (10.82-3.1%) contents. The results concluded that variation in biochemical attributes primarily influenced by type of cultivars and different fruit developmental stages. (author)

  1. [Formation of genetic polymorphism in connection with phylogenesis and microevolution of the domestic dog Canis familiaris L].

    Science.gov (United States)

    Kniazev, S P; Tikhonov, V N; Tanabe, Y; Morozov, P S

    1998-11-01

    The analysis of genetic relationships between numerous breeds and populations of domestic dogs of Asian and European origin was performed by studying their polymorphism for 14 loci of biochemical markers. Phylogenetic positions of different breed groups, related to one another and to ancestral forms from the center of domestication, were elucidated. Directions of gene flow in the formation of breed as well as dynamics and vectors of the forming genetic structure in microevolution of this extremely polytypic species, were established. PMID:10096028

  2. Sankara Nethralaya Diabetic Retinopathy Epidemiology and Molecular Genetic Study (SN--DREAMS III): Study design and research methodology

    OpenAIRE

    Sahu Chinmaya; Ganesan Suganeswari; Raman Rajiv; Saumya Pal Swakshyar; Sharma Tarun

    2011-01-01

    Abstract Background To describe the methodology of the Sankara Nethralaya Diabetic Retinopathy Epidemiology and Molecular Genetic Study III, an ongoing epidemiological study to estimate the prevalence of Diabetes and Diabetic Retinopathy in rural population of Kanchipuram and Thiravallur districts of Tamil Nadu, India and to elucidate the clinical, anthropometric, biochemical and genetic risk factors associated with diabetic retinopathy in this rural population. Methods Sankara Nethralaya Dia...

  3. Genome-wide Association Study of Biochemical Traits in Korčula Island, Croatia

    Science.gov (United States)

    Zemunik, Tatijana; Boban, Mladen; Lauc, Gordan; Janković, Stipan; Rotim, Krešimir; Vatavuk, Zoran; Benčić, Goran; Đogaš, Zoran; Boraska, Vesna; Torlak, Vesela; Sušac, Jelena; Zobić, Ivana; Rudan, Diana; Pulanić, Dražen; Modun, Darko; Mudnić, Ivana; Gunjača, Grgo; Budimir, Danijela; Hayward, Caroline; Vitart, Veronique; Wright, Alan F.; Campbell, Harry; Rudan, Igor

    2009-01-01

    Aim To identify genetic variants underlying biochemical traits – total cholesterol, low-density lipoprotein (LDL) cholesterol, high-density lipoprotein (HDL) cholesterol, triglycerides, uric acid, albumin, and fibrinogen, in a genome-wide association study in an isolated population where rare variants of larger effect may be more easily identified. Methods The study included 944 adult inhabitants of the island of Korčula, as a part of a larger DNA-based genetic epidemiological study in 2007. Biochemical measurements were performed in a single laboratory with stringent internal and external quality control procedures. Examinees were genotyped using Human Hap370CNV chip by Illumina, with a genome-wide scan containing 346 027 single nucleotide polymorphisms (SNP). Results A total of 31 SNPs were associated with 7 investigated traits at the level of P < 1.00 × 10−5. Nine of SNPs implicated the role of SLC2A9 in uric acid regulation (P = 4.10 × 10−6-2.58 × 10−12), as previously found in other populations. All 22 remaining associations fell into the P = 1.00 × 10−5-1.00 × 10−6 significance range. One of them replicated the association between cholesteryl ester transfer protein (CETP) and HDL, and 7 associations were more than 100 kilobases away from the closest known gene. Nearby SNPs, rs4767631 and rs10444502, in gene kinase suppressor of ras 2 (KSR2) on chromosome 12 were associated with LDL cholesterol levels, and rs10444502 in the same gene with total cholesterol levels. Similarly, rs2839619 in gene PBX/knotted 1 homeobox 1 (PKNOX1) on chromosome 21 was associated with total and LDL cholesterol levels. The remaining 9 findings implied possible associations between phosphatidylethanolamine N-methyltransferase (PEMT) gene and total cholesterol; USP46, RAP1GDS1, and ZCCHC16 genes and triglycerides; BCAT1 and SLC14A2 genes and albumin; and NR3C2, GRIK2, and PCSK2 genes and fibrinogen. Conclusion Although this study was

  4. Is genetic evolution predictable?

    Science.gov (United States)

    Stern, David L; Orgogozo, Virginie

    2009-02-01

    Ever since the integration of Mendelian genetics into evolutionary biology in the early 20th century, evolutionary geneticists have for the most part treated genes and mutations as generic entities. However, recent observations indicate that all genes are not equal in the eyes of evolution. Evolutionarily relevant mutations tend to accumulate in hotspot genes and at specific positions within genes. Genetic evolution is constrained by gene function, the structure of genetic networks, and population biology. The genetic basis of evolution may be predictable to some extent, and further understanding of this predictability requires incorporation of the specific functions and characteristics of genes into evolutionary theory. PMID:19197055

  5. Genetics Home Reference: trimethylaminuria

    Science.gov (United States)

    ... Primary Trimethylaminuria Genetic Testing Registry: Trimethylaminuria Monell Chemical Senses Center: TMAU & Body Malodors National Human Genome Research Institute: Diagnosis and Treatment of Trimethylaminuria ...

  6. Genetics of complex diseases

    DEFF Research Database (Denmark)

    Mellerup, Erling; Møller, Gert Lykke; Koefoed, Pernille

    2012-01-01

    A complex disease with an inheritable component is polygenic, meaning that several different changes in DNA are the genetic basis for the disease. Such a disease may also be genetically heterogeneous, meaning that independent changes in DNA, i.e. various genotypes, can be the genetic basis...... for the disease. Each of these genotypes may be characterized by specific combinations of key genetic changes. It is suggested that even if all key changes are found in genes related to the biology of a certain disease, the number of combinations may be so large that the number of different genotypes may be close...

  7. Biochemical Characterization of Rice Somaclones Resistant to Blast

    OpenAIRE

    Antar N. El-Banna; Ismael A. Khatab

    2012-01-01

    The aim of the present study was to produce rice somaclones resistant to P. oryza that could be useful to improve rice plants against blast disease and use them in the future breeding programs. In addition, to detect biochemical changes among somaclones and their original cultivars. Mature embryo-derived calli of the three susceptible rice varieties, Sakha 101, Sakha 104 and Riho were stressed with different concentrations of fungal toxin filtrate. Blast-resistant lines of rice were developed...

  8. Biochemical and antigenic properties of Streptococcus bovis isolated from pigeons.

    OpenAIRE

    De Herdt, P; Haesebrouck, F; DEVRIESE, L.A.; Ducatelle, R.

    1992-01-01

    Biochemical and serological properties of 60 strains of Streptococcus bovis isolated from healthy pigeons and from pigeons that died from S. bovis septicemia were determined. On the basis of the hemolysis of bovine erythrocytes, the production of polysaccharides on saccharose-containing media, and the fermentation of mannitol, inulin, trehalose, and L-arabinose, the isolates were classified in five biotypes and two subbiotypes. Slide agglutination and microagglutination tests using monospecif...

  9. Morphologic and biochemical studies of canine mucopolysaccharidosis I.

    OpenAIRE

    Shull, R M; Helman, R. G.; Spellacy, E.; Constantopoulos, G.; Munger, R. J.; Neufeld, E F

    1984-01-01

    This report presents the necropsy and biochemical findings on the first dog to die with alpha-L-iduronidase deficiency (mucopolysaccharidosis I, MPS I). Gross pathologic features, light- and electron-microscopic findings, and tissue enzyme, glycosaminoglycan (GAG), and sphingolipid levels are compared with the human disease counterpart and the previously described feline model. Results lend further support for the similarities of the canine disease and human MPS I.

  10. Biochemical Analyses of Sorghum Varieties Reveal Differential Responses to Drought

    OpenAIRE

    Chukwuma C Ogbaga; Piotr Stepien; Dyson, Beth C.; Nicholas J W Rattray; Ellis, David I.; Royston Goodacre; Johnson, Giles N.

    2016-01-01

    We have examined the biochemical responses of two sorghum cultivars of differing drought tolerance, Samsorg 17 (more drought tolerant) and Samsorg 40 (less drought tolerant), to sustained drought. Plants were exposed to different degrees of drought and then maintained at that level for five days. Responses were examined in terms of metabolic changes and the expression of drought induced proteins - Heat Shock Proteins (HSPs) and dehydrins (DHNs). Generalised phenotypic changes were studied usi...

  11. Molecular and biochemical studies on bovine ephemeral fever

    Directory of Open Access Journals (Sweden)

    Nahed S. Thabet; Emad W. Ghazy; Mohamed A. Nayel; Mohamed Abo-Elkhair

    2011-05-01

    Full Text Available Bovine ephemeral fever (BEF in cattle has been reported to be associated with a range of biochemical changes which are similar to those seen in milk fever. This study aimed to clarify the biochemical alterations that associate infection of cattle with BEF with special references to the mechanisms involved in the development of hypocalcemia. The study was conducted on 30 cases of cattle infected with BEF based on the characteristic clinical signs which were confirmed by isolation of virus and RT-PCR. Another 6 healthy cows were used in the study as control. The evaluated parameters included biochemical variables such as serum values of total protein (TP, albumin (Alb, glucose (Glu, total calcium (tCa, ionized calcium (iCa, inorganic phosphorus (P, magnesium (Mg, sodium (Na, potassium (K, chloride (Cl, creatinine (Cr, blood urea nitrogen (BUN and serum activity of alkaline phosphatase (ALP. Hormonal profile included parathyroid hormone (PTH, insulin (Ins, and cortisol (Cor. The results showed that BEF-infected animals demonstrated a significant decrease (P<0.05 in serum concentrations of TP, Glo, iCa, P, Na, K, BUN and ALP while the mean values of serum levels of Glu and Cl were significantly increased (P<0.05. The mean values of serum levels of PTH were significantly decreased (P<0.05 while serum concentrations of Ins and Cor showed a significant increase. It was concluded that the clinical signs of bovine ephemeral fever are related to the hypocalcemia resulting from suppression of parathyroid hormone which seems to be mediated by respiratory alkalosis caused by the disease. This explanation needs future studies to provide a direct link between measurement of blood indicators of acid-base status, blood biochemical parameters and urine analysis. However, this work can provide a good knowledge about the pathogenesis of the disease that can lead to better management and proper treatment.

  12. Optical methods for monitoring physiological and biochemical variables

    OpenAIRE

    Crowe, John; Rea, Philip; Dr. Philip Rea

    1986-01-01

    The use of optical methods for performing non-invasive physiological and biochemical monitoring has been investigated, with particular emphasis on the application of near-infrared spectrophotocetry for following changes in the redox state of cytochrome oxidase. Initial studies of the gross optical properties of in vivo tissue were made using an image intensifier. These demonstrated that some light is transmitted through biological tissues and that such material is very hi...

  13. Biochemical assays for the discovery of TDP1 inhibitors

    OpenAIRE

    Marchand, Christophe; Huang, Shar-yin N.; Dexheimer, Thomas S.; Lea, Wendy A.; Mott, Bryan T.; Chergui, Adel; Naumova, Alena; Stephen, Andrew G.; Rosenthal, Andrew S.; Rai, Ganesha; Murai, Junko; Gao, Rui; Maloney, David J.; Jadhav, Ajit; Jorgensen, William L.

    2014-01-01

    Drug screening against novel targets is warranted to generate biochemical probes and new therapeutic drug leads. Tyrosyl-DNA-phosphodiesterases 1 and 2 (TDP1 and TDP2) are two DNA repair enzymes that have yet to be successfully targeted. TDP1 repairs topoisomerase I-, alkylation-, and chain terminator-induced DNA damage, while TDP2 repairs topoisomerase II-induced DNA damage. Here we report the quantitative high-throughput screening (qHTS) of the NIH Molecular Libraries Small Molecule Reposit...

  14. Accelerated maximum likelihood parameter estimation for stochastic biochemical systems

    Directory of Open Access Journals (Sweden)

    Daigle Bernie J

    2012-05-01

    Full Text Available Abstract Background A prerequisite for the mechanistic simulation of a biochemical system is detailed knowledge of its kinetic parameters. Despite recent experimental advances, the estimation of unknown parameter values from observed data is still a bottleneck for obtaining accurate simulation results. Many methods exist for parameter estimation in deterministic biochemical systems; methods for discrete stochastic systems are less well developed. Given the probabilistic nature of stochastic biochemical models, a natural approach is to choose parameter values that maximize the probability of the observed data with respect to the unknown parameters, a.k.a. the maximum likelihood parameter estimates (MLEs. MLE computation for all but the simplest models requires the simulation of many system trajectories that are consistent with experimental data. For models with unknown parameters, this presents a computational challenge, as the generation of consistent trajectories can be an extremely rare occurrence. Results We have developed Monte Carlo Expectation-Maximization with Modified Cross-Entropy Method (MCEM2: an accelerated method for calculating MLEs that combines advances in rare event simulation with a computationally efficient version of the Monte Carlo expectation-maximization (MCEM algorithm. Our method requires no prior knowledge regarding parameter values, and it automatically provides a multivariate parameter uncertainty estimate. We applied the method to five stochastic systems of increasing complexity, progressing from an analytically tractable pure-birth model to a computationally demanding model of yeast-polarization. Our results demonstrate that MCEM2 substantially accelerates MLE computation on all tested models when compared to a stand-alone version of MCEM. Additionally, we show how our method identifies parameter values for certain classes of models more accurately than two recently proposed computationally efficient methods

  15. BIOCHEMICAL ALTERATIONS IN ZINC DEFICIENT SHEEP ASSOCIATED BY HYPERLACTATEMIA

    OpenAIRE

    Ali Hafez El-Far

    2013-01-01

    Blood samples from diseased and clinically healthy Balady sheep of both sexes were collected and subjected for biochemical analysis of serum glucose, fructosamine, lactate, growth hormone, insulin, creatine phosphokinase, Lactate dehydrogenase and aldolase. The obtained results revealed a significant decrease in serum zinc and growth hormone were stated. In contrary, serum glucose and lactate, insulin, CPK, LDH and aldolase were significantly increased statically. While, fructosamine levels w...

  16. Postharvest biochemical and textural characteristics of sh2 sweetcorn cobs

    OpenAIRE

    Smyrniotaki, Mari

    2011-01-01

    The determination of storage conditions leading to optimum quality attributes and extended postharvest life of sweetcorn is essential. The increased consumption and consequently the need for greater consumer satisfaction have resulted in the introduction of supersweet sweetcorn. The present study, aimed to report on the effects of various postharvest factors on biochemical and texture-related characteristics of supersweet sweetcorn cultivars as current knowledge is still incomp...

  17. Supplementation with carnitine for weight loss: a biochemical approach

    Directory of Open Access Journals (Sweden)

    José Henry Osorio

    2011-11-01

    Full Text Available Carnitine is a molecule involved in transporting activated fatty acids among different cellular compartments, which is mostlikely present in all animal species, and in numerous microorganisms and plants. Recently the trend in the field of weightcontrol is to include carnitine in the diet as an agent responsible for weight loss. In the present review, some findings arediscussed from a biochemical point of view to illustrate if the use of carnitine for weight loss can be considered fiction orreality.

  18. Specialization of Biochemical Oxygen Demand for Surface Water and Wastewater

    OpenAIRE

    F.M. Nurul; Z.Z. Abdul Rahman; A.N. Norizan

    2011-01-01

    Pollution of rivers is attributed to point and non-point sources and marine pollution originates mainly from land-based sources. Therefore in order to control the quality of the water a few parameters have been chosen as the index for determining the water pollution. Amongst the parameters, Biochemical Oxygen Demand, (BOD) is one of the most important and frequently used parameters for estimating the level of water pollution. BOD measures the amount of oxygen consumed by microorganism to util...

  19. Novel Biochemical Markers of Psychosocial Stress in Women

    OpenAIRE

    Marie Asberg; Ake Nygren; Rosario Leopardi; Gunnar Rylander; Ulla Peterson; Lukas Wilczek; Håkan Källmén; Mirjam Ekstedt; Torbjörn Akerstedt; Mats Lekander; Rolf Ekman

    2009-01-01

    BACKGROUND: Prolonged psychosocial stress is a condition assessed through self-reports. Here we aimed to identify biochemical markers for screening and early intervention in women. METHODS: Plasma concentrations of interleukin (IL) 1-alpha, IL1-beta, IL-2, IL-4, IL-6, IL-8, IL-10, interferon-gamma (INF-gamma), tumor necrosis factor-alpha (TNF-alpha), monocyte chemotactic protein-1 (MCP-1), epidermal growth factor (EGF), vascular endothelial growth factor (VEGF), thyroid stimulating hormone (T...

  20. Biological and biochemical properties in evaluation of forest soil quality

    OpenAIRE

    Błońska Ewa; Lasota Jarosław

    2014-01-01

    The aim of this study was to assess the possibility of using biological and biochemical parameters in the evaluation of forest soil quality and changes caused by land use. The study attempted to determine a relationship between the enzymatic activity of soil, the number of earthworms and soil physico-chemical properties. The study was carried out in central Poland in adjoining Forest Districts (Przedbórz and Smardzewice). In soil samples taken from 12 research plots, basic physico-chem...

  1. Biochemical Studies in Some Indigenous Dye Yielding Plants of Manipur

    OpenAIRE

    Joylani D. SAIKHOM; Jekendra S. SALAM; Kumar S. POTSHANGBAM; Manabendra D. Choudhury; Haripriya D. MAIBAM

    2013-01-01

    Ten natural dye yielding and two mordant plants were biochemically analyzed. Though natural dyes are widely used, information about the active principles responsible for dyeing is hardly available. In the present experiment, total chlorophyll, carotinoids, tannins, phenolics, flavonoids and curcumin were determined among the dye yielding plants, while K, S, P, Ca, Mg, Mn, Zn, Fe, Cu and Co were determined in the case of mordant plants. In Bixa orellana, used for yellow dyeing, the carotinoid ...

  2. Finite time thermodynamic coupling in a biochemical network

    OpenAIRE

    Dasgupta, Anjan Kr

    2014-01-01

    The paper describes some thermodynamic constrains and relations in biochemical or metabolic network and provides a basis for entropy enthalpy compensation. Conventional definition of macroscopic forces and fluxes leads to a paradox namely, non-existence of positive efficiency of a chemically driven process. This paradox is resolved by deriving an appropriate definition of macroscopic force using the local balance equations. Entropy enthalpy compensation, whose thermodynamic basis is so far un...

  3. Antibiogram, Biochemical Reactions and Biotyping of Biofield Treated Providencia rettgeri

    OpenAIRE

    Trivedi, Mahendra Kumar

    2015-01-01

    Providencia rettgeri (P. rettgeri) is the key organism for gastrointestinal tract infections due to its high virulence properties. The current study was designed to investigate the effect of Mr. Trivedi’s biofield energy treatment on P. rettgeri in lyophilized as well as revived state for antimicrobial susceptibility pattern, biochemical characteristics, and biotype number. The lyophilized strain of P. rettgeri (ATCC 9250) was divided into two parts, Group (Gr.)...

  4. Biochemical Changes During Seed Germination of Sterculia urens Roxb.

    OpenAIRE

    Botcha SATYANARAYANA; Prattipati Subhashini DEVI; Atluru ARUNDATHI

    2011-01-01

    The present study describes biochemical changes taking place during seed germination of Sterculia urens. The levels of proteins, total amino acids, reducing sugars, total soluble sugars and lipids were studied during various stages of seed germination (0-15 days). Total protein content was decreased in cotyledons during seed germination while free amino acid content increased to its maximum extent by 9th day of germination and reverse trend thereafter. The levels of reducing sugars and total ...

  5. Sensitivity analysis for computational models of biochemical systems

    OpenAIRE

    Maj,

    2014-01-01

    Systems biology is an integrated area of science which aims at the analysis of biochemical systems using an holistic perspective. In this context, sensitivity analysis, a technique studying how the output variation of a computational model can be associated to its input state plays a pivotal role. In the thesis it is described how to properly apply the different sensitivity analysis techniques according to the specific case study (i.e., continuous deterministic rather than discrete stochastic...

  6. Reduction of dynamical biochemical reactions networks in computational biology

    OpenAIRE

    Radulescu, O.; Gorban, A.N.; Zinovyev, A.; Noel, V.

    2012-01-01

    Biochemical networks are used in computational biology, to model mechanistic details of systems involved in cell signaling, metabolism, and regulation of gene expression. Parametric and structural uncertainty, as well as combinatorial explosion are strong obstacles against analyzing the dynamics of large models of this type. Multiscaleness, an important property of these networks, can be used to get past some of these obstacles. Networks with many well separated time scales, can be reduced to...

  7. The role of configurational entropy in biochemical cooperativity.

    Science.gov (United States)

    Jusuf, Sutjano; Loll, Patrick J; Axelsen, Paul H

    2002-04-10

    Cooperativity is a common biochemical phenomenon in which two or more otherwise independent processes are thermodynamically coupled. Because cooperative processes are usually attended by changes in molecular conformation, thermodynamic coupling is usually attributed to an enthalpy-driven mechanism. In the family of glycopeptide antibiotics that includes vancomycin, however, cooperative phenomena occur that cannot be explained by conformational change. In this communication, we demonstrate that cooperativity in these systems can arise solely from changes in vibrational activity. PMID:11929222

  8. Integrating Carbon Nanotubes into Microfluidic Chip for Separating Biochemical Compounds

    OpenAIRE

    Chen, Miaoxiang Max; Mogensen, Klaus Bo; BØGGILD, Peter; Kutter, Jörg Peter

    2012-01-01

    We present a new type of device to separate biochemical compounds wherein carbon nanotubes (CNTs) are integrated as chromatographic stationary phase. The CNTs were directly grown on the bottom of microfluidic channels on Si/SiO2 substrates by chemical vapor deposition (CVD). Acetylene was used as carbon source and Ni was employed as catalyst. For electrokinetic separations, higher electrical field strength is usually required; therefore, the CNTs were constructed in pillar-array-form by patte...

  9. Clinical laboratory evaluation of the automicrobic system Enterobacteriaceae biochemical card.

    OpenAIRE

    J.R. Davis; Stager, C E; Wende, R D; Qadri, S M

    1981-01-01

    The AutoMicrobic System Enterobacteriaceae Biochemical Card (AMS-EBC; Vitek Systems, Inc.) was evaluated in two clinical microbiology laboratories. A total of 502 consecutive clinical isolates representing members of the family Enterobacteriaceae were tested in parallel with the AMS-EBC, API 20E, and Enterotube II systems. Discrepancies between systems were resolved with the conventional methods of Edwards and Ewing (P. R. Edwards and W. H. Ewing [ed.], Identification of Enterobacteriaceae, 1...

  10. Prognostic Significance of Various Biochemical Parameters in Acute Organophosphorus Poisoning

    OpenAIRE

    Sumathi, M. E.; Kumar, S. Harish; Shashidhar, K N; Takkalaki, Nandini

    2014-01-01

    Background: Organophosphorus (OP) compounds are a heterogeneous group of insecticides widely used in agricultural industry. These OP compounds are likely to have more adverse effects in developing countries like India due to its easy availability and less awareness which results in high morbidity and mortality. Aims and objectives: 1. To estimate plasma cholinesterase, amylase, lipase and, creatine phosphokinase (CPK) in acute OP poisoning. 2. To correlate these biochemical parameters with pl...

  11. Automatising the analysis of stochastic biochemical time-series

    OpenAIRE

    Caravagna, Giulio; De Sano, Luca; Antoniotti, Marco

    2015-01-01

    Background Mathematical and computational modelling of biochemical systems has seen a lot of effort devoted to the definition and implementation of high-performance mechanistic simulation frameworks. Within these frameworks it is possible to analyse complex models under a variety of configurations, eventually selecting the best setting of, e.g., parameters for a target system. Motivation This operational pipeline relies on the ability to interpret the predictions of a model, often represented...

  12. Biochemical analyses of sorghum varieties reveal differential responses to drought

    OpenAIRE

    Ogbaga, C.C.; Stepien, P.; Dyson, B.C.; Rattray, N.J.W.; Ellis, D.I.; Goodacre, R.; Johnson, G. N.

    2016-01-01

    We have examined the biochemical responses of two sorghum cultivars of differing drought tolerance, Samsorg 17 (more drought tolerant) and Samsorg 40 (less drought tolerant), to sustained drought. Plants were exposed to different degrees of drought and then maintained at that level for five days. Responses were examined in terms of metabolic changes and the expression of drought induced proteins - Heat Shock Proteins (HSPs) and dehydrins (DHNs). Generalised phenotypic changes were studied usi...

  13. Biochemical Analyses of Sorghum Varieties Reveal Differential Responses to Drought

    OpenAIRE

    Ogbaga, Chukwuma C.; Stepien, Piotr; Dyson, Beth C.; Nicholas J W Rattray; Ellis, David I.; Goodacre, Royston; Johnson, Giles N.

    2016-01-01

    We have examined the biochemical responses of two sorghum cultivars of differing drought tolerance, Samsorg 17 (more drought tolerant) and Samsorg 40 (less drought tolerant), to sustained drought. Plants were exposed to different degrees of drought and then maintained at that level for five days. Responses were examined in terms of metabolic changes and the expression of drought induced proteins—Heat Shock Proteins (HSPs) and dehydrins (DHNs). Generalised phenotypic changes were studied using...

  14. ADVANCES ON BILINEAR MODELING OF BIOCHEMICAL BATCH PROCESSES

    OpenAIRE

    GONZÁLEZ MARTÍNEZ, JOSÉ MARÍA

    2015-01-01

    [EN] This thesis is aimed to study the implications of the statistical modeling approaches proposed for the bilinear modeling of batch processes, develop new techniques to overcome some of the problems that have not been yet solved and apply them to data of biochemical processes. The study, discussion and development of the new methods revolve around the four steps of the modeling cycle, from the alignment, preprocessing and calibration of batch data to the monitoring of batches trajectories....

  15. Nanoplasmonics: From biochemical sensors to surface enhanced spectroscopies

    Directory of Open Access Journals (Sweden)

    P. M. Adam

    2011-09-01

    Full Text Available Plasmonics is a field connected to optics dealing with the properties and applications of surface plasmons which are modes of metal dielectric interfaces. Nanoplasmonics concerns the excitation, manipulation and detection of the surface plasmons at the nanometric scale. It has highly potential applications for ultrasensitive biochemical sensing. Surface enhanced spectroscopies are the ultimate sensor tools as they can reach single molecule sensitivity. We will present in this paper our results towards the realization of highly controllable and reproducible nanoplasmonics substrates.

  16. Polyphenol oxidase as a biochemical seed defense mechanism

    OpenAIRE

    Fuerst, E. Patrick; Okubara, Patricia A.; Anderson, James V.; Morris, Craig F.

    2014-01-01

    Seed dormancy and resistance to decay are fundamental survival strategies, which allow a population of seeds to germinate over long periods of time. Seeds have physical, chemical, and biological defense mechanisms that protect their food reserves from decay-inducing organisms and herbivores. Here, we hypothesize that seeds also possess enzyme-based biochemical defenses, based on induction of the plant defense enzyme, polyphenol oxidase (PPO), when wild oat (Avena fatua L.) caryopses and seeds...

  17. Clinical and Biochemical Parameters of Children and Adolescents Applying Pesticides

    OpenAIRE

    O Hendy; M Abou Salem; G Abdel Rasoul; D Rohlman; A. Ismail

    2010-01-01

    Background: The primary agricultural product in Egypt is the cotton crop. Children and adolescents work seasonally in the cotton fields applying pesticides.Objectives: To examine the effect of pesticide exposure on clinical and biochemical parameters in children and adolescents applying pesticides.Methods: Male children currently applying pesticides and aged between 9 and 19 years (n = 50) were recruited for this study. They were asked to complete work, health, and exposure questionnaires; ex...

  18. Axonal tubulin and axonal microtubules: biochemical evidence for cold stability

    OpenAIRE

    1984-01-01

    Nerve extracts containing tubulin labeled by axonal transport were analyzed by electrophoresis and differential extraction. We found that a substantial fraction of the tubulin in the axons of the retinal ganglion cell of guinea pigs is not solubilized by conventional methods for preparation of microtubules from whole brain. In two-dimensional polyacrylamide gel electrophoresis this cold-insoluble tubulin was biochemically distinct from tubulin obtained from whole brain microtubules prepared b...

  19. Biochemical functionalization of silicon dioxide surfaces for sensing applications

    OpenAIRE

    Römhildt, Lotta

    2014-01-01

    The aim of this work was to functionalize silicon dioxide surfaces with biochemical molecules in such a way that biorecognition of target molecules in solution will be possible. By introducing a tool set of different molecules and characterization methods, a more universal approach towards various biosensor setups is presented. This includes on the one hand preparation of the biosensor surfaces to allow further molecule attachment via their reactive functional groups. Secondly, the select...

  20. 40 CFR 158.2050 - Biochemical pesticides human health assessment data requirements table.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Biochemical pesticides human health... PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS DATA REQUIREMENTS FOR PESTICIDES Biochemical Pesticides § 158.2050 Biochemical pesticides human health assessment data requirements table. (a) General....

  1. 40 CFR 158.2040 - Biochemical pesticides residue data requirements table.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Biochemical pesticides residue data... (CONTINUED) PESTICIDE PROGRAMS DATA REQUIREMENTS FOR PESTICIDES Biochemical Pesticides § 158.2040 Biochemical pesticides residue data requirements table. (a) General. Sections 158.100 through 158.130 describe how to...

  2. 40 CFR 158.2070 - Biochemical pesticides product performance data requirements.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Biochemical pesticides product... AGENCY (CONTINUED) PESTICIDE PROGRAMS DATA REQUIREMENTS FOR PESTICIDES Biochemical Pesticides § 158.2070 Biochemical pesticides product performance data requirements. Product performance data must be developed...

  3. 40 CFR 158.2030 - Biochemical pesticides product chemistry data requirements table.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Biochemical pesticides product... PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS DATA REQUIREMENTS FOR PESTICIDES Biochemical Pesticides § 158.2030 Biochemical pesticides product chemistry data requirements table. (a) General. (1)...

  4. 40 CFR 158.2060 - Biochemical pesticides nontarget organisms and environmental fate data requirements table.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Biochemical pesticides nontarget... Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS DATA REQUIREMENTS FOR PESTICIDES Biochemical Pesticides § 158.2060 Biochemical pesticides nontarget organisms and environmental fate...

  5. Discovering Reliable Sources of Biochemical Thermodynamic Data to Aid Students' Understanding

    Science.gov (United States)

    Me´ndez, Eduardo; Cerda´, María F.

    2016-01-01

    Students of physical chemistry in biochemical disciplines need biochemical examples to capture the need, not always understood, of a difficult area in their studies. The use of thermodynamic data in the chemical reference state may lead to incorrect interpretations in the analysis of biochemical examples when the analysis does not include relevant…

  6. Endothelial cells and cathepsins: Biochemical and biomechanical regulation.

    Science.gov (United States)

    Platt, Manu O; Shockey, W Andrew

    2016-03-01

    Cathepsins are mechanosensitive proteases that are regulated not only by biochemical factors, but are also responsive to biomechanical forces in the cardiovascular system that regulate their expression and activity to participate in cardiovascular tissue remodeling. Their elastinolytic and collagenolytic activity have been implicated in atherosclerosis, abdominal aortic aneurysms, and in heart valve disease, all of which are lined by endothelial cells that are the mechanosensitive monolayer of cells that sense and respond to fluid shear stress as the blood flows across the surfaces of the arteries and valve leaflets. Inflammatory cytokine signaling is integrated with biomechanical signaling pathways by the endothelial cells to transcribe, translate, and activate either the cysteine cathepsins to remodel the tissue or to express their inhibitors to maintain healthy cardiovascular tissue structure. Other cardiovascular diseases should now be included in the study of the cysteine cathepsin activation because of the additional biochemical cues they provide that merges with the already existing hemodynamics driving cardiovascular disease. Sickle cell disease causes a chronic inflammation including elevated TNFα and increased numbers of circulating monocytes that alter the biochemical stimulation while the more viscous red blood cells due to the sickling of hemoglobin alters the hemodynamics and is associated with accelerated elastin remodeling causing pediatric strokes. HIV-mediated cardiovascular disease also occurs earlier in than the broader population and the influence of HIV-proteins and antiretrovirals on endothelial cells must be considered to understand these accelerated mechanisms in order to identify new therapeutic targets for prevention. PMID:26458976

  7. Importance of Biochemical Markers in Postmenopausal and Senile Osteoporosis

    Directory of Open Access Journals (Sweden)

    Deniz Evcik

    2002-12-01

    Full Text Available Recently, the biochemical markers are widely used in order to evaluate the bone turnover. This study was planned to investigate the role of biochemical markers and Bone Mineral Density(BMD in postmenopausal (PMO and senile osteoporosis (SO patients. A total of 86 patients( 44 PMO, 42 SO, ages ranged between 39-79 were included in this study. Alkaline phosphatase (ALP and osteocalcin levels were determined from blood samples. Urinary deoxypyridinoline(Dpd and creatinine(cr concentration were examined and the ratio of Dpd/cr was calculated. Also BMD of the patients were measured from L1-L4 and proximal femur and t score were determined. There was no statistical difference in ALP levels between two groups. Osteocalcine and Dpd/cr levels were statistically increased in PMO group(p<0.001. According to BMD t score which was measured from proximal femur was significantly higher in SO patients(p<0.05. Our results show that biochemical markers are useful for the assessment of high-turnover osteoporosis.

  8. Biochemical and biomedical applications of multifunctional magnetic nanoparticles: a review

    International Nuclear Information System (INIS)

    Nanotechnology offers tremendous potential for future medical diagnosis and therapy. Various types of nanoparticles have been extensively studied for numerous biochemical and biomedical applications. Magnetic nanoparticles are well-established nanomaterials that offer controlled size, ability to be manipulated by an external magnetic field, and enhancement of contrast in magnetic resonance imaging. As a result, these nanoparticles could have many applications including bacterial detection, protein purification, enzyme immobilization, contamination decorporation, drug delivery, hyperthermia, etc. All these biochemical and biomedical applications require that these nanoparticles should satisfy some prerequisites including high magnetization, good stability, biocompatibility, and biodegradability. Because of the potential benefits of multimodal functionality in biomedical applications, in this account highlights some general strategies to generate magnetic nanoparticle-based multifunctional nanostructures. After these magnetic nanoparticles are conjugated with proper ligands (e.g., nitrilotriacetate), polymers (e.g., polyacrylic acid, chitosan, temperature- and pH-sensitive polymers), antibodies, enzymes, and inorganic metals (e.g., gold), such biofunctional magnetic nanoparticles exhibit many advantages in biomedical applications. In addition, the multifunctional magnetic nanoparticles have been widely applied in biochemical fields including enzyme immobilization and protein purification.

  9. Relationship between cellular response models and biochemical mechanisms

    International Nuclear Information System (INIS)

    In most cellular response experiments, survival reflects the kinetics of a variety of damage and repair processes. Unfortunately, biochemical studies of molecular repair deal with mechanisms which cannot be readily correlated with these kinetic observations. The difference in these approaches sometimes leads to confusion over terms such as potentially-lethal and sublethal damage. These terms were introduced with operation definitions, derived from kinetic studies of cell survival, but some researchers have since attempted to associate them with specific biochemical mechanisms. Consequently, the terms are often used in totally different ways be different investigators. The use of carefully constructed models originating either out of assumptions based on mechanisms, or on kinetics, can be used to design experiments to eliminate some alternative kinetic schemes. In turn, some mechanisms may also be eliminated, resulting in a reduction in the number of mechanisms which must be investigated biochemically. One must take advantage of a wide range of specialized radiation procedures in order to accomplish this. Examples of the use of such specialized experimental designs, which have led to a more detailed understanding of the kinetics of both algal and mammalian cell responses, are discussed

  10. Modelling biochemical reaction systems by stochastic differential equations with reflection.

    Science.gov (United States)

    Niu, Yuanling; Burrage, Kevin; Chen, Luonan

    2016-05-01

    In this paper, we gave a new framework for modelling and simulating biochemical reaction systems by stochastic differential equations with reflection not in a heuristic way but in a mathematical way. The model is computationally efficient compared with the discrete-state Markov chain approach, and it ensures that both analytic and numerical solutions remain in a biologically plausible region. Specifically, our model mathematically ensures that species numbers lie in the domain D, which is a physical constraint for biochemical reactions, in contrast to the previous models. The domain D is actually obtained according to the structure of the corresponding chemical Langevin equations, i.e., the boundary is inherent in the biochemical reaction system. A variant of projection method was employed to solve the reflected stochastic differential equation model, and it includes three simple steps, i.e., Euler-Maruyama method was applied to the equations first, and then check whether or not the point lies within the domain D, and if not perform an orthogonal projection. It is found that the projection onto the closure D¯ is the solution to a convex quadratic programming problem. Thus, existing methods for the convex quadratic programming problem can be employed for the orthogonal projection map. Numerical tests on several important problems in biological systems confirmed the efficiency and accuracy of this approach. PMID:26920245

  11. BIOCHEMICAL NUTRITIONAL PROFILE OF LIVER CIRRHOSIS PATIENTS WITH HEPATOCELLULAR CARCINOMA

    Directory of Open Access Journals (Sweden)

    Gabriela Zanatta PORT

    2014-03-01

    Full Text Available Context Liver cirrhosis patients with hepatocellular carcinoma present nutritional alterations and metabolic disorders that negatively impact the prognosis. Objective The objective is to identify alterations in the metabolism of macro and micronutrients among liver cirrhosis patients with and without hepatocellular carcinoma and their relation to the Child-Turcote-Pugh score and Barcelona Clinic Liver Cancer staging. Methods Analytical transversal study, with 31 hepatocellular carcinoma patients and 48 liver cirrhosis patients. Laboratorial exams were carried out. The existence of an association between the biochemical parameters and the disease severity as well as the presence of hepatocellular carcinoma was assessed. Results The metabolic-nutritional profile of liver cirrhosis patients caused by the hepatitis C virus and hepatocellular carcinoma showed alterations, specifically the lipid (total cholesterol, HDL and triglycerides, protein (albumin, creatinine and uric acid, iron (transferrin, iron and ferritin saturation, hematocrit and hemoglobin, zinc and B12 vitamin profiles. There is a relation between nutritional biochemical markers and the Child-Turcote-Pugh, as well as Barcelona Clinic Liver Cancer staging. Conclusions Considering the existence of alterations in the metabolism of nutrients in liver cirrhosis patients with and without hepatocellular carcinoma, and also that conventional nutritional assessment methods present limitations for this population, the biochemical laboratorial exams are valid to complement the diagnosis of the nutritional state in a quick and practical manner.

  12. Studies on some biochemical parameters in viral hepatitis patients

    International Nuclear Information System (INIS)

    The present investigation deals with studying liver amino transferases (ALT. AST). Cholesterol and triglycerides. As well as testosterone and protection hormones in blood of Egyptian men infected with hepatitis C virus.hepatitis B virus and mixed B and C viruses. These biochemical parameters were evaluated to be used in diagnosis and prognosis of viral hepatitis. Which considered the most important health problem in Egypt and developing countries. Biochemical analysis were performed using spectrophotometric and radioimmunoassay techniques. All data will be subjected to statistical analysis in order to detect the most suitable biochemical analysis that can be used as specific tests for early diagnosis of viral hepatitis and to detect the parameters that show abnormalities among the different groups of infected patients. The data revealed that AST and ALT levels were increased in all patient groups. Concerning the level of triglycerides, it was increased only in the group of mixed viral hepatitis B and C, while cholesterol showed non-significant changes in all viral hepatitis groups. The sex hormone testosterone was decreased in all infected patients while the prolactin level was increased only in case of patients infected with mixed B and C viruses. However, these abnormal values in such sex hormones play a serious role in male sterility

  13. Effect of Different Psychoactive Substances on Serum Biochemical Parameters

    Science.gov (United States)

    Sanli, Dilek Beker; Bilici, Rabia; Suner, Ozgur; Citak, Serhat; Kartkaya, Kazim; Mutlu, Fezan Sahin

    2015-01-01

    Background: Psychoactive substances affect mainly central nervous system and brain function causing changes in behavior. Objectives: The purpose of this study was to determine the effects of different psychoactive substances on serum biochemical parameters. Patients and Methods: The study included 324 drug dependents, and 69 controls. The patient group was determined according to DSM-IV (The diagnostic and statistical manual of mental disorders, fourth edition) criteria. All patients and control subjects were tested for routine biochemical parameters and urine toxicology parameters for psychoactive substance use. Cases and controls with accompanying diseases like diabetes, cancer, metabolic disorders etc. are excluded from the study. Moreover, an association between urine toxicology results and changes in biochemical parameters was evaluated for statistical significance. Results: There was a statistically significant difference in the Gamma-Glutamyl Transferase (GGT), uric acid, creatinine, urea, albumin, Aspartate Aminotransferase (AST) medians between the dependent and control groups (P < 0.05). We found a statistically significant difference in sodium and albumin levels between the opium-dependent and control groups (P < 0.05). In the benzodiazepin dependent group, we found a significant difference in GGT, urea, glucose, sodium, T protein, and AST levels (P < 0.05). Moreover, a statistically significant difference was observed in triglyceride and GGT levels between the ethyl glucuronide and control groups (P < 0.05). Conclusions: In psychoactive substance dependents, serum routine biochemistry parameters can be used to predict the need for intensive monitoring and treatment programs. PMID:26405680

  14. Biochemical Characterization of Hypothetical Proteins from Helicobacter pylori.

    Directory of Open Access Journals (Sweden)

    Han-Pil Choi

    Full Text Available The functional characterization of Open Reading Frames (ORFs from sequenced genomes remains a bottleneck in our effort to understand microbial biology. In particular, the functional characterization of proteins with only remote sequence homology to known proteins can be challenging, as there may be few clues to guide initial experiments. Affinity enrichment of proteins from cell lysates, and a global perspective of protein function as provided by COMBREX, affords an approach to this problem. We present here the biochemical analysis of six proteins from Helicobacter pylori ATCC 26695, a focus organism in COMBREX. Initial hypotheses were based upon affinity capture of proteins from total cellular lysate using derivatized nano-particles, and subsequent identification by mass spectrometry. Candidate genes encoding these proteins were cloned and expressed in Escherichia coli, and the recombinant proteins were purified and characterized biochemically and their biochemical parameters compared with the native ones. These proteins include a guanosine triphosphate (GTP cyclohydrolase (HP0959, an ATPase (HP1079, an adenosine deaminase (HP0267, a phosphodiesterase (HP1042, an aminopeptidase (HP1037, and new substrates were characterized for a peptidoglycan deacetylase (HP0310. Generally, characterized enzymes were active at acidic to neutral pH (4.0-7.5 with temperature optima ranging from 35 to 55°C, although some exhibited outstanding characteristics.

  15. Design of a biochemical circuit motif for learning linear functions.

    Science.gov (United States)

    Lakin, Matthew R; Minnich, Amanda; Lane, Terran; Stefanovic, Darko

    2014-12-01

    Learning and adaptive behaviour are fundamental biological processes. A key goal in the field of bioengineering is to develop biochemical circuit architectures with the ability to adapt to dynamic chemical environments. Here, we present a novel design for a biomolecular circuit capable of supervised learning of linear functions, using a model based on chemical reactions catalysed by DNAzymes. To achieve this, we propose a novel mechanism of maintaining and modifying internal state in biochemical systems, thereby advancing the state of the art in biomolecular circuit architecture. We use simulations to demonstrate that the circuit is capable of learning behaviour and assess its asymptotic learning performance, scalability and robustness to noise. Such circuits show great potential for building autonomous in vivo nanomedical devices. While such a biochemical system can tell us a great deal about the fundamentals of learning in living systems and may have broad applications in biomedicine (e.g. autonomous and adaptive drugs), it also offers some intriguing challenges and surprising behaviours from a machine learning perspective. PMID:25401175

  16. Polyphenol Oxidase as a Biochemical Seed Defense Mechanism

    Directory of Open Access Journals (Sweden)

    E. Patrick Fuerst

    2014-12-01

    Full Text Available Seed dormancy and resistance to decay are fundamental survival strategies, which allow a population of seeds to germinate over long periods of time. Seeds have physical, chemical, and biological defense mechanisms that protect their food reserves from decay-inducing organisms and herbivores. Here, we hypothesize that seeds also possess enzyme-based biochemical defenses, based on induction of the plant defense enzyme, polyphenol oxidase (PPO, when wild oat (Avena fatua L. caryopses and seeds were challenged with seed-decaying Fusarium fungi. These studies suggest that dormant seeds are capable of mounting a defense response to pathogens. The pathogen-induced PPO activity from wild oat was attributed to a soluble isoform of the enzyme that appeared to result, at least in part, from proteolytic activation of a latent PPO isoform. PPO activity was also induced in wild oat hulls (lemma and palea, non-living tissues that cover and protect the caryopsis. These results are consistent with the hypothesis that seeds possess inducible enzyme-based biochemical defenses arrayed on the exterior of seeds and these defenses represent a fundamental mechanism of seed survival and longevity in the soil. Enzyme-based biochemical defenses may have broader implications since they may apply to other defense enzymes as well as to a diversity of plant species and ecosystems.

  17. Hematological and Biochemical Responses of the Flowerhorn Fish to Hypoxia

    Directory of Open Access Journals (Sweden)

    Pakanit Kupittayanant

    2011-01-01

    Full Text Available Hematological and biochemical responses of the flowerhorn fish (Amphilophus trimaculatus x Amphilophus citrinelllus x Vieja synspilum and their surviving strategies to hypoxia were investigated. Male and female flowerhorn fish were divided into five groups. Each group contained tree replications of five groups and was exposed to hypoxia by the substitution of nitrogen for oxygen for 12, 24 and 48 h, respectively. Blood sample was collected from the caudal vein and physiological-biochemical blood parameters analyzed. The results showed that hypoxia caused a significant increase in ventilation rate. Hematological parameters including red blood cell count, white blood cell count, hematocrit and hemoglobin concentration were significantly increased in fish exposed to hypoxia whereas mean corpuscular hemoglobin concentration remained the same. In addition, hypoxia caused significant increases in serum glucose, alanine amino-transferase, aspartate amino-transferase, creatine kinase and blood urea nitrogen. However, cholesterol and creatinine were significantly decreased. The effects of hypoxia on those parameters occurred in a time dependent manner. Changes in hematological parameters fully recovered after 1 week oxygen replenishment whereas biochemical parameters slowly returned to control levels. These suggest that acute hypoxia in the flowerhorn fish up to 48 h can affect physiology functions as indicated by changes in hematological and biological parameters. Alteration of most physiological functions can be restored by repayment of oxygen debt. The results also suggest that the flowerhorn fish coped with hypoxic condition by using both energy saving strategies and by attempting to increase the oxygen extraction capacity.

  18. Considerations on the biochemical composition of some freshwater zooplankton species.

    Directory of Open Access Journals (Sweden)

    Nicoletta RICCARDI

    1999-02-01

    Full Text Available The mean elemental (C, H, N and biochemical composition (lipids, carbohydrates and proteins of some abundant crustacean zooplankton species of Italian insubric lakes has been estimated by the analysis of samples collected at different seasons from various environments (Lake Maggiore, Lake Varese, Lake Comabbio, Lake Monate. From each sample an adequate number of specimens of each abundant species was sorted and analyzed by a CHN elemental analyzer. The percentage of lipids, carbohydrates and proteins and the calorific content were calculated from the elemental composition according to Gnaiger & Bitterlich (1984. Inter- and intraspecific variability of biochemical composition was quite high, while elemental composition and calorific content were less variable. An estimate of the mean elemental and biochemical composition of each species was obtained by pooling the data. These mean values have been used to estimate the pools of elements and compounds in the crustacean zooplankton of Lake Comabbio to provide an example of the importance of a multiple approach in zooplankton studies.

  19. Ethical considerations of population screening for late-onset genetic disease.

    Science.gov (United States)

    Golden-Grant, K; Merritt, J L; Scott, C R

    2015-12-01

    Population-based genetic screening has been a mainstay of public health in the United States for many years. The goal of genetic screening is to identify individuals at increased risk for treatable diseases. The evolution of genetic testing to include multi-disease panels allows for new screening applications which challenge the traditional model of clinical genetics care by the identification of late-onset disorders in an asymptomatic fetus, child, or adult. We present two unique examples of individuals referred to a biochemical genetics clinic due to the detection of late-onset Pompe disease by population-based screening modalities. We review early experiences in counseling and management of pre-symptomatic individuals and highlight some of the primary ethical factors warranting consideration as we enter the era of genomic medicine. PMID:25677830

  20. [An Efficient Method for Genetic Certification of Bacillus subtilis strains, Prospective Producers of Biopreparations].

    Science.gov (United States)

    Terletskiy, V P; Tyshenko, V I; Novikova, I I; Boikova, I V; Tyulebaev, S D; Shakhtamirov, I Ya

    2016-01-01

    Genetic certification of commercial strains of bacteria antagonistic to phytopathogenic microorganisms guarantees their unequivocal identification and confirmation of safety. In Russia, unlike EU countries, genetic certification of Bacillus subtilis strains is not used. Based on the previously proposed double digestion selective label (DDSL) fingerprinting, a method for genetic identification and certification of B. subtilis strains was proposed. The method was tested on several strains differing in their physiological and biochemical properties and in the composition of secondary metabolites responsible for the spectrum of antibiotic activity. High resolving power of this approach was shown. Optimal restriction endonucleases (SgsI and Eco32I) were determined and validated. A detailed protocol for genetic certification of this bacterial species was developed. DDSL is a universal method, which may be adapted for genetic identification and certification of other bacterial species. PMID:27301128

  1. Genetics and Developmental Psychology

    Science.gov (United States)

    Plomin, Robert

    2004-01-01

    One of the major changes in developmental psychology during the past 50 years has been the acceptance of the important role of nature (genetics) as well as nurture (environment). Past research consisting of twin and adoption studies has shown that genetic influence is substantial for most domains of developmental psychology. Present research…

  2. Genetically engineered foods

    Science.gov (United States)

    ... Genetically Engineered Plants. FDA.gov. www.fda.gov/food/foodscienceresearch/biotechnology/ucm346030.htm . Last updated July 22, 2014. Accessed Nov. 3, 2014. Key S, Ma JK, Drake PM. Genetically modified plants and human health. J R Soc Med . 2008;101:290-8. ...

  3. [Human genetics and ethics].

    Science.gov (United States)

    Zergollern, L

    1990-01-01

    Many new problems and dilemmas have occurred in the practice of medical geneticists with the development of human genetics and its subdisciplines--molecular genetics, ethic genetics and juridical genetics. Devoid of the possibility to get adequate education, genetic informer or better to say, counsellor, although a scientist and a professional who has already formed his ethic attitudes, often finds himself in a dilemma when he has to decide whether a procedure made possible by progress of science is ethical or not. Thus, due to different attitudes, same decision is ethical for some, while for the others it is not. Ethic committees are groups of moral and good people trying to find an objective approach to certain genetic and ethic problems. There are more and more ethically unanswered questions in modern human genetics, and particularly in medical genetics. Medical geneticist-ethicist still encounters numerous problems in his work. These are, for example, experiments with human gametes and embryos, possibilities of hybridization of human gametes with animal gametes, in vitro fertilization, detection of heterozygotes and homozygotes for monogene diseases. early detection of chromosomopathies, substitute mothers, homo and hetero insemination, transplantation of fetal and cadeveric organs, uncontrolled consumption of alcohol and drugs, environmental pollution, etc. It is almost impossible to create a single attitude which shall be shared by all those engaged in human health protection. Therefore, it is best to have a neutral eugenetic attitude which allows free ethical choice of each individual, in any case, for the well-being of man. PMID:2366624

  4. Genetic effects of radiation

    International Nuclear Information System (INIS)

    Data are reviewed from studies on the genetic effects of x radiation in mice and the extrapolation of the findings for estimating genetic hazards in man is discussed. Data are included on the frequency of mutation induction following acute or chronic irradiation of male or female mice at various doses and dose rates

  5. Genetics in the courts

    Energy Technology Data Exchange (ETDEWEB)

    Coyle, Heather; Drell, Dan

    2000-12-01

    Various: (1)TriState 2000 Genetics in the Courts (2) Growing impact of the new genetics on the courts (3)Human testing (4) Legal analysis - in re G.C. (5) Legal analysis - GM ''peanots'', and (6) Legal analysis for State vs Miller

  6. THE MEANING OF GENETICS

    Directory of Open Access Journals (Sweden)

    Svenja Adolphs

    2003-05-01

    Full Text Available Research into the public understanding of genetics has greatly expanded lately. At the same time inatters relating to biotechnology have scizcd the public's attention. Corpus linguistics has long asked questions about how meaning is created and changed in the public sphere through language use. However, linking Corpus linguistics to the study of the public understanding of science is something too few have done. To correct this trend, we apply methods from corpus linguistics and cognitive linguistics to study how people talk about genetics. We do so by analysiny the mieaning of words like gene, genes, genetic, genetics, and genetically as found in various spoken and written corpora. Specifically, we examine how they take on certain (e.g. figurative connotations and modulate in context.

  7. Association of IFNL3 rs12979860 and rs8099917 with biochemical predictors of interferon responsiveness in chronic hepatitis C virus infection.

    Directory of Open Access Journals (Sweden)

    Janett Fischer

    Full Text Available BACKGROUND & AIMS: Genetic variations near the interferon lambda 3 gene (IFNL3, IL28B are the most powerful predictors for sustained virologic response (SVR in patients with chronic hepatitis C virus (HCV infection, compared to other biochemical or histological baseline parameters. We evaluated whether the interplay of both IFNL3 polymorphisms rs12979860 and rs8099917 together with non-genetic clinical factors contributes to the predictive role of these genetic variants. METHODS: The cohort comprised 1,402 patients of European descent with chronic HCV type 1 infection. 1,298 patients received interferon-based antiviral therapy, and 719 (55% achieved SVR. The IFNL3 polymorphisms were genotyped by polymerase chain reaction and melting curve analysis. RESULTS: A significant correlation was found between the IFNL3 polymorphisms and biochemical as well as virologic predictors of treatment outcome such as ALT, GGT, cholesterol, and HCV RNA levels. In multivariate regression analysis, IFLN3 SNPs, HCV RNA levels, and the GGT/ALT ratio were independent predictors of SVR. Dependent on the GGT/ALT ratio and on the HCV RNA concentration, significant variations in the likelihood for achieving SVR were observed in both, carriers of the responder as well as non-responder alleles. CONCLUSIONS: Our data support a clear association between IFNL3 genotypes and baseline parameters known to impact interferon responsiveness. Improved treatment outcome prediction was achieved when these predictors were considered in combination with the IFNL3 genotype.

  8. Skin barrier and contact allergy: Genetic risk factor analyses

    DEFF Research Database (Denmark)

    Ross-Hansen, Katrine

    2013-01-01

    particular. Methods Epidemiological genetic association studies were performed on a general Danish population. Participants were patch tested, answered a questionnaire on general health and were genotyped for GST, CLDN1 and FLG polymorphisms. Filaggrin’s nickel binding potential was evaluated biochemically......, when ear piercing status was regarded. Nickel patch test readings indicated that proportionally more mutation carriers than wild types had stronger reactions. Epidermally derived filaggrin binds nickel. The GST gene polymorphisms did not associate with contact allergy among adult Danes. The CLDN1...

  9. Challenging behavior: Behavioral phenotypes of some genetic syndromes

    Directory of Open Access Journals (Sweden)

    Buha Nataša

    2014-01-01

    Full Text Available Challenging behavior in individuals with mental retardation (MR is relatively frequent, and represents a significant obstacle to adaptive skills. The frequency of specific forms and manifestations of challenging behavior can depend on a variety of personal and environmental factors. There are several prominent theoretical models regarding the etiology of challenging behavior and psychopathology in persons with MR: behavioral, developmental, socio-cultural and biological. The biological model emphasizes the physiological, biochemical and genetic factors as the potential source of challenging behavior. The progress in the field of genetics and neuroscience has opened the opportunity to study and discover the neurobiological basis of phenotypic characteristics. Genetic syndromes associated with MR can be followed by a specific set of problems and disorders which constitutes their behavioral phenotype. The aim of this paper was to present challenging behaviors that manifest in the most frequently studied syndromes: Down syndrome, Fragile X syndrome, Williams syndrome, Prader-Willi syndrome and Angelman syndrome. The concept of behavioral phenotype implies a higher probability of manifesting specific developmental characteristics and specific behaviors in individuals with a certain genetic syndrome. Although the specific set of (possible problems and disorders is distinctive for the described genetic syndromes, the connection between genetics and behavior should be viewed through probabilistic dimension. The probabilistic concept takes into consideration the possibility of intra-syndrome variability in the occurrence, intensity and time onset of behavioral characteristics, at which the higher variability the lower is the specificity of the genetic syndrome. Identifying the specific pattern of behavior can be most important for the process of early diagnosis and prognosis. In addition, having knowledge about behavioral phenotype can be a landmark in

  10. Biochemical and high throughput microscopic assessment of fat mass in Caenorhabditis elegans.

    Science.gov (United States)

    Pino, Elizabeth C; Webster, Christopher M; Carr, Christopher E; Soukas, Alexander A

    2013-01-01

    The nematode C. elegans has emerged as an important model for the study of conserved genetic pathways regulating fat metabolism as it relates to human obesity and its associated pathologies. Several previous methodologies developed for the visualization of C. elegans triglyceride-rich fat stores have proven to be erroneous, highlighting cellular compartments other than lipid droplets. Other methods require specialized equipment, are time-consuming, or yield inconsistent results. We introduce a rapid, reproducible, fixative-based Nile red staining method for the accurate and rapid detection of neutral lipid droplets in C. elegans. A short fixation step in 40% isopropanol makes animals completely permeable to Nile red, which is then used to stain animals. Spectral properties of this lipophilic dye allow it to strongly and selectively fluoresce in the yellow-green spectrum only when in a lipid-rich environment, but not in more polar environments. Thus, lipid droplets can be visualized on a fluorescent microscope equipped with simple GFP imaging capability after only a brief Nile red staining step in isopropanol. The speed, affordability, and reproducibility of this protocol make it ideally suited for high throughput screens. We also demonstrate a paired method for the biochemical determination of triglycerides and phospholipids using gas chromatography mass-spectrometry. This more rigorous protocol should be used as confirmation of results obtained from the Nile red microscopic lipid determination. We anticipate that these techniques will become new standards in the field of C. elegans metabolic research. PMID:23568026

  11. Molecular Biological and Biochemical Studies Reveal New Pathways Important for Cotton Fiber Development

    Institute of Scientific and Technical Information of China (English)

    Yu Xu; Hong-Bin Li; Yu-Xian Zhu

    2007-01-01

    As one of the longest single-celled seed trichomes, fibers provide an excellent model for studying fundamental biological processes such as cell differentiation, cell expansion, and cell wall biosynthesis. In this review, we summarize recent progress in cotton functional genomic studies that characterize the dynamic changes in the transcriptomes of fiber cells. Extensive expression profilings of cotton fiber transcriptomes have provided comprehensive information, as quite a number of transcription factors and enzyme-coding genes have been shown to express preferentially during the fiber elongation period. Biosynthesis of the plant hormone ethylene is found significantly upregulated during the fiber growth period as revealed by both microarray analysis and by biochemical and physiological studies. It is suggested that genetic engineering of the ethylene pathway may improve the quality and the productivity of cotton lint. Many metabolic pathways, such as biosynthesis of celiulose and matrix polysaccharides are preferentially expressed in actively growing fiber cells. Five gene families, including proline-rich proteins (PRP), arabinogalactan proteins (AGP), expansins, tubulins and lipid transfer proteins (LTP) are activated during early fiber development,indicating that they may also be needed for cell elongation. In conclusion, we identify a few areas of future research for cotton functional genomic studies.

  12. Biochemical peculiarity of in vitro morphogenesis under conservation strategy of Ruscus aculeatus L.

    Directory of Open Access Journals (Sweden)

    Cristian Banciu

    2009-12-01

    Full Text Available The present study is part of the actual concerns in biodiversity conservation of endangered angyosperm species from the Comana Natural Park. Ruscus aculeatus L. species is protected both at national and European level (trough Habitats Directive of EU and Bern Convention. The aspects of in vitro morphogenesis through all the stages from inoculation, multiplication to rooting and acclimatization have been studied. In order to long term conservation and multiplication or to exploit somaclonal variation induced by in vitro technique is required the identification of some biochemical or molecular markers for fast evaluation of regenerants. In this respect, genetic stability or variability of Ruscus aculeatus plants collected from three populations and regenerants obtained in vitro culture was estimated by electrophoretical methods. Therefore, zymograms of different enzymes as esterase, acid and alkaline phosphatase, glutamate-oxaloacetate transferase, malate dehydrogenase and peroxidase were analyzed. The expression of esterases, phosphatases, malate dehydrogenases displayed changes in correlation with growth condition, while the peroxidases pattern was more stabile in natural population as well as in vitro regenerated plantlet.

  13. Biochemical Conversion Processes of Lignocellulosic Biomass to Fuels and Chemicals - A Review.

    Science.gov (United States)

    Brethauer, Simone; Studer, Michael H

    2015-01-01

    Lignocellulosic biomass - such as wood, agricultural residues or dedicated energy crops - is a promising renewable feedstock for production of fuels and chemicals that is available at large scale at low cost without direct competition for food usage. Its biochemical conversion in a sugar platform biorefinery includes three main unit operations that are illustrated in this review: the physico-chemical pretreatment of the biomass, the enzymatic hydrolysis of the carbohydrates to a fermentable sugar stream by cellulases and finally the fermentation of the sugars by suitable microorganisms to the target molecules. Special emphasis in this review is put on the technology, commercial status and future prospects of the production of second-generation fuel ethanol, as this process has received most research and development efforts so far. Despite significant advances, high enzyme costs are still a hurdle for large scale competitive lignocellulosic ethanol production. This could be overcome by a strategy termed 'consolidated bioprocessing' (CBP), where enzyme production, enzymatic hydrolysis and fermentation is integrated in one step - either by utilizing one genetically engineered superior microorganism or by creating an artificial co-culture. Insight is provided on both CBP strategies for the production of ethanol as well as of advanced fuels and commodity chemicals. PMID:26598400

  14. Biochemical behavior of Trypanosoma cruzi strains isolated from mice submitted to specific chemotherapy

    Directory of Open Access Journals (Sweden)

    Jesila Pinto M. Marretto

    1994-12-01

    Full Text Available To investigate the influence of chemotherapy on the biochemical beha vior of Trypanosoma cruzi strains, three groups of mice were infected with one of three strains of T. cruzi of different biological and isoenzymic patterns (Peruvian, 21 SF and Colombian strains. Each group was subdivided into subgroups: 1 - treated with nifurtimox; 2 - treated with benznidazole and 3 - untreated infected controls. At the end of treatment, that lasted for 90 days, xenodiagnosis, sub inoculation of blood into new born mice and haemoculture were performed as tests of cure. From the positive tests, 22 samples of T. cruzi were isolated from all subgroups. Electrophoretic analysis of the isoenzymes PGM, GP1, ALAT and AS AT failed to show any difference between parasite strains isolated from treated and untreated mice, which indicates that no detectable clonal selection or parasite genetic markers alterations concerning the isoenzymes analysed have been determined by treatment with drugs of recognized antiparasitic effect, suggesting stability of the phenotypic characteristics of the three biological types of T. cruzi strains.

  15. Mutational and Biochemical Analysis of the DNA-entry Nuclease EndA from Streptococcus pneumoniae

    Energy Technology Data Exchange (ETDEWEB)

    M Midon; P Schafer; A Pingoud; M Ghosh; A Moon; M Cuneo; R London; G Meiss

    2011-12-31

    EndA is a membrane-attached surface-exposed DNA-entry nuclease previously known to be required for genetic transformation of Streptococcus pneumoniae. More recent studies have shown that the enzyme also plays an important role during the establishment of invasive infections by degrading extracellular chromatin in the form of neutrophil extracellular traps (NETs), enabling streptococci to overcome the innate immune system in mammals. As a virulence factor, EndA has become an interesting target for future drug design. Here we present the first mutational and biochemical analysis of recombinant forms of EndA produced either in a cell-free expression system or in Escherichia coli. We identify His160 and Asn191 to be essential for catalysis and Asn182 to be required for stability of EndA. The role of His160 as the putative general base in the catalytic mechanism is supported by chemical rescue of the H160A variant of EndA with imidazole added in excess. Our study paves the way for the identification and development of protein or low-molecular-weight inhibitors for EndA in future high-throughput screening assays.

  16. Modeling and Robustness Analysis of Biochemical Networks of Glycerol Metabolism by Klebsiella Pneumoniae

    Science.gov (United States)

    Ye, Jianxiong; Feng, Enmin; Wang, Lei; Xiu, Zhilong; Sun, Yaqin

    Glycerol bioconversion to 1,3-propanediol (1,3-PD) by Klebsiella pneumoniae (K. pneumoniae) can be characterized by an intricate network of interactions among biochemical fluxes, metabolic compounds, key enzymes and genetic regulatory. To date, there still exist some uncertain factors in this complex network because of the limitation in bio-techniques, especially in measuring techniques for intracellular substances. In this paper, among these uncertain factors, we aim to infer the transport mechanisms of glycerol and 1,3-PD across the cell membrane, which have received intensive interest in recent years. On the basis of different inferences of the transport mechanisms, we reconstruct various metabolic networks correspondingly and subsequently develop their dynamical systems (S-systems). To determine the most reasonable metabolic network from all possible ones, we establish a quantitative definition of biological robustness and undertake parameter identification and robustness analysis for each system. Numerical results show that it is most possible that both glycerol and 1,3-PD pass the cell membrane by active transport and passive diffusion.

  17. A case of variant biochemical phenotype of Niemann-Pick disease type C accompanying savant syndrome.

    Science.gov (United States)

    Hamatani, Mio; Jingami, Naoto; Uemura, Kengo; Nakasone, Naoe; Kinoshita, Hisanori; Yamakado, Hodaka; Ninomiya, Haruaki; Takahashi, Ryosuke

    2016-06-22

    A 40-year-old man was referred to our hospital because of vertical supranuclear gaze palsy, frequent sudden loss of muscle tonus and ataxia for several years. He had a history of prolonged neonatal jaundice. He was given a diagnosis of autism in his childhood, followed by a diagnosis of schizophrenia in his teenage. He also developed a savant skill of calendar calculating. (123)I-IMP-SPECT showed decreased cerebral blood flow in the left frontotemporal lobe as often seen in savant syndrome. Although genetic analysis of NPC1 and NPC2 revealed no pathogenic mutation, filipin staining of cultured fibroblasts from his biopsied skin revealed a certain amount of intracellular cholesterol storage pattern, indicating a variant biochemical phenotype of Niemann-Pick disease type C (NPC). The diagnosis of adulthood onset NPC is difficult and challenging, especially for neurologists, because the symptoms and signs are not as clear as those in the classical childhood onset NPC and this subtype is not yet widely known. However, the diagnosis can be made by a combination of filipin staining of fibroblast and/or gene analysis. As a disease-specific therapy for NPC has been approved in Japan, the diagnosis of NPC is of significance. PMID:27181747

  18. Atrazine promotes biochemical changes and DNA damage in a Neotropical fish species.

    Science.gov (United States)

    Santos, Thais G; Martinez, Cláudia B R

    2012-11-01

    The effects of Atrazine, an herbicide used worldwide and considered as a potential contaminant in aquatic environments, were assessed on the Neotropical fish Prochilodus lineatus acutely (24 and 48 h) exposed to 2 or 10 μg L(-1) of atrazine by using a set of biochemical and genetic biomarkers. The following parameters were measured in the liver: activity of the biotransformation enzymes ethoxyresorufin-O-deethylase (EROD) and glutathione S transferase (GST), antioxidant enzymes superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione reductase (GR), content of reduced glutathione (GSH), generation of reactive oxygen species (ROS) and occurrence of lipid peroxidation (LPO); in brain and muscle the activity of acetylcholinesterase (AChE) and DNA damage (comet assay) on erythrocytes, gills and liver cells. A general decreasing trend on the biotransformation and antioxidant enzymes was observed in the liver of P. lineatus exposed to atrazine; except for GR, all the other antioxidant enzymes (SOD, CAT and GPx) and biotransformation enzymes (EROD and GST) showed inhibited activity. Changes in muscle or brain AChE were not detected. DNA damage was observed in the different cell types of fish exposed to the herbicide, and it was probably not from oxidative origin, since no increase in ROS generation and LPO was detected in the liver. These results show that atrazine behaves as enzyme inhibitor, impairing hepatic metabolism, and produces genotoxic damage to different cell types of P. lineatus. PMID:22739540

  19. Genetics Home Reference: congenital hypothyroidism

    Science.gov (United States)

    ... Help Me Understand Genetics Home Health Conditions congenital hypothyroidism congenital hypothyroidism Enable Javascript to view the expand/collapse ... Genetic Testing Registry: Congenital hypothyroidism Genetic Testing Registry: Hypothyroidism, ... Encyclopedia: Congenital Hypothyroidism These resources ...

  20. Genetics, Disease Prevention and Treatment

    Science.gov (United States)

    ... for the genetic terms used on this page Genetics, Disease Prevention and Treatment Overview How can learning ... gov] Top of page How can knowing about genetics help treat disease? Every year, more than two ...

  1. A network characteristic that correlates environmental and genetic robustness.

    Directory of Open Access Journals (Sweden)

    Zeina Shreif

    2014-02-01

    Full Text Available As scientific advances in perturbing biological systems and technological advances in data acquisition allow the large-scale quantitative analysis of biological function, the robustness of organisms to both transient environmental stresses and inter-generational genetic changes is a fundamental impediment to the identifiability of mathematical models of these functions. An approach to overcoming this impediment is to reduce the space of possible models to take into account both types of robustness. However, the relationship between the two is still controversial. This work uncovers a network characteristic, transient responsiveness, for a specific function that correlates environmental imperturbability and genetic robustness. We test this characteristic extensively for dynamic networks of ordinary differential equations ranging up to 30 interacting nodes and find that there is a power-law relating environmental imperturbability and genetic robustness that tends to linearity as the number of nodes increases. Using our methods, we refine the classification of known 3-node motifs in terms of their environmental and genetic robustness. We demonstrate our approach by applying it to the chemotaxis signaling network. In particular, we investigate plausible models for the role of CheV protein in biochemical adaptation via a phosphorylation pathway, testing modifications that could improve the robustness of the system to environmental and/or genetic perturbation.

  2. Iron disorders of genetic origin: a changing world.

    Science.gov (United States)

    Brissot, Pierre; Bardou-Jacquet, Edouard; Jouanolle, Anne-Marie; Loréal, Olivier

    2011-12-01

    Iron disorders of genetic origin are mainly composed of iron overload diseases, the most frequent being HFE-related hemochromatosis. Hepcidin deficiency underlies iron overload in HFE-hemochromatosis as well as in several other genetic iron excess disorders, such as hemojuvelin or hepcidin-related hemochromatosis and transferrin receptor 2-related hemochromatosis. Deficiency of ferroportin, the only known cellular protein iron exporter, produces iron overload in the typical form of ferroportin disease. By contrast, genetically enhanced hepcidin production, as observed in matriptase-2 deficiency, generates iron-refractory iron deficiency anemia. Diagnosis of these iron storage disorders is usually established noninvasively through combined biochemical, imaging and genetic approaches. Moreover, improved knowledge of the molecular mechanisms accounting for the variations of iron stores opens the way of novel therapeutic approaches aiming to restore normal iron homeostasis. In this review, we will summarize recent findings about these various genetic entities that have been identified owing to an exemplary interplay between clinicians and basic scientists. PMID:21862411

  3. Molecular Genetic Tools and Techniques for Marchantia polymorpha Research.

    Science.gov (United States)

    Ishizaki, Kimitsune; Nishihama, Ryuichi; Yamato, Katsuyuki T; Kohchi, Takayuki

    2016-02-01

    Liverworts occupy a basal position in the evolution of land plants, and are a key group to address a wide variety of questions in plant biology. Marchantia polymorpha is a common, easily cultivated, dioecious liverwort species, and is emerging as an experimental model organism. The haploid gametophytic generation dominates the diploid sporophytic generation in its life cycle. Genetically homogeneous lines in the gametophyte generation can be established easily and propagated through asexual reproduction, which aids genetic and biochemical experiments. Owing to its dioecy, male and female sexual organs are formed in separate individuals, which enables crossing in a fully controlled manner. Reproductive growth can be induced at the desired times under laboratory conditions, which helps genetic analysis. The developmental process from a single-celled spore to a multicellular body can be observed directly in detail. As a model organism, molecular techniques for M. polymorpha are well developed; for example, simple and efficient protocols of Agrobacterium-mediated transformation have been established. Based on them, various strategies for molecular genetics, such as introduction of reporter constructs, overexpression, gene silencing and targeted gene modification, are available. Herein, we describe the technologies and resources for reverse and forward genetics in M. polymorpha, which offer an excellent experimental platform to study the evolution and diversity of regulatory systems in land plants. PMID:26116421

  4. Genetic variations of robinia pseudoacacia plant using sds-page

    International Nuclear Information System (INIS)

    The biochemical analysis using SDS-PAGE has great contribution for the estimation of genetic diversity. We estimated the genetic diversity of R. pseudoacacia germ plasm protein. A total of 19 varieties were collected from different areas of Dir lower were investigated for the level of genetic divergence and genetic linkages. The total germ plasm grouped were separated at 20 percentage distance into two linkages based on Euclidean distances the 19 cultivars were further divide at 45 percentage distance into three clusters, cluster 1, cluster 2 and cluster 3. Cluster 1 was comprised of Munda 3, Munda 4, Talash 2 and UOM 1. Cluster 2 was comprised of Maidan 1 and Gulabad 1. Cluster 3 was comprised Maidan 2, UOM 3, Talash 1, Maidan 4, Maidan 3, Gulabad 2, Gulabad 3 and Gulabad 4. A total of range 00 percentage to 88 percentage variation recoded among 19 varieties. The result obtained after SDS-PAGE were computed for the construction of phylogenetic diversity, geographic relationship, Euclidian distance, genetic distance and linkage distance. This plant show a lot of variation in germ plasmic level. It is concluded that it is possible to improve and produce new varieties of this plant. (author)

  5. Bioprospecting of Plant Growth Promoting Bacilli and Related Genera Prevalent in Soils of Pristine Sacred Groves: Biochemical and Molecular Approach

    Science.gov (United States)

    Lyngwi, Nathaniel A.; Nongkhlaw, Macmillan; Kalita, Debajit; Joshi, Santa Ram

    2016-01-01

    Bacillus spp. and related genera native to soils of the pristine sacred groves from Meghalaya, India were characterized using biochemical and 16S rRNA gene analysis which revealed dominance of Bacillus, Paenibacillus, Lysinibacillus and Viridibacillus in the groves. Biochemical estimation was carried out for in vitro testing of plant growth promoting traits present in these isolates. PCR screening were performed for plant growth-promoting related genes involved in the biosynthesis of acid phosphatase (AcPho), indolepyruvate decarboxylase (ipdC), 1-aminocyclopropane-1-carboxylate deaminase (accd) and siderophore biosynthesis protein (asbA). 76% of the sacred grove isolates gave an amplified fragment for AcPho. Three of the isolates gave an amplified fragment for IpdC gene. Apart from 2 isolates, all the other isolates including the reference strains were positive for the amplification of the accd gene indicating their potential to produce ACC deaminase enzyme. 42% of the isolates gave an amplified fragment for asbA gene indicating the potential ability of these isolates to produce the catechol type siderophore, petrobactin. Overall findings indicated multiple PGP genetic traits present in these isolates which suggested that these isolates are capable of expressing multiple PGP traits. Phylogenetic and sequence analysis of accd and asbA genes from the isolates revealed that asbA genes from Paenibacillus taichungiensis SG3 and Paenibacillus tylopili SG24 indicated the occurrence of intergeneric horizontal transfer between Paenibacillus and Bacillus. PMID:27111883

  6. Conservation genetics of Iberian raptors

    OpenAIRE

    Martinez–Cruz, B.

    2011-01-01

    In this paper I provide an overview of conservation genetics and describe the management actions in the wild that can benefit from conservation genetic studies. I describe the genetic factors of risk for the survival of wild species, the consequences of loss of genetic diversity, inbreeding and outbreeding depression, and the use of genetic tools to delimitate units of conservation. Then I introduce the most common applications of conservation genetics in the management of wild populations. I...

  7. Conservation genetics of Iberian raptors

    OpenAIRE

    Martínez-Cruz, Begoña

    2011-01-01

    [EN] In this paper I provide an overview of conservation genetics and describe the management actions in the wild that can benefit from conservation genetic studies. I describe the genetic factors of risk for the survival of wild species, the consequences of loss of genetic diversity, inbreeding and outbreeding depression, and the use of genetic tools to delimitate units of conservation. Then I introduce the most common applications of conservation genetics in the management of wild populatio...

  8. On Derivations Of Genetic Algebras

    International Nuclear Information System (INIS)

    A genetic algebra is a (possibly non-associative) algebra used to model inheritance in genetics. In application of genetics this algebra often has a basis corresponding to genetically different gametes, and the structure constant of the algebra encode the probabilities of producing offspring of various types. In this paper, we find the connection between the genetic algebras and evolution algebras. Moreover, we prove the existence of nontrivial derivations of genetic algebras in dimension two

  9. Self-organizing ontology of biochemically relevant small molecules

    Directory of Open Access Journals (Sweden)

    Chepelev Leonid L

    2012-01-01

    Full Text Available Abstract Background The advent of high-throughput experimentation in biochemistry has led to the generation of vast amounts of chemical data, necessitating the development of novel analysis, characterization, and cataloguing techniques and tools. Recently, a movement to publically release such data has advanced biochemical structure-activity relationship research, while providing new challenges, the biggest being the curation, annotation, and classification of this information to facilitate useful biochemical pattern analysis. Unfortunately, the human resources currently employed by the organizations supporting these efforts (e.g. ChEBI are expanding linearly, while new useful scientific information is being released in a seemingly exponential fashion. Compounding this, currently existing chemical classification and annotation systems are not amenable to automated classification, formal and transparent chemical class definition axiomatization, facile class redefinition, or novel class integration, thus further limiting chemical ontology growth by necessitating human involvement in curation. Clearly, there is a need for the automation of this process, especially for novel chemical entities of biological interest. Results To address this, we present a formal framework based on Semantic Web technologies for the automatic design of chemical ontology which can be used for automated classification of novel entities. We demonstrate the automatic self-assembly of a structure-based chemical ontology based on 60 MeSH and 40 ChEBI chemical classes. This ontology is then used to classify 200 compounds with an accuracy of 92.7%. We extend these structure-based classes with molecular feature information and demonstrate the utility of our framework for classification of functionally relevant chemicals. Finally, we discuss an iterative approach that we envision for future biochemical ontology development. Conclusions We conclude that the proposed methodology

  10. [Biochemical diagnostics in acute pancreatitis recognition and outcome predicition].

    Science.gov (United States)

    Olczyk, Paweł; Kozma, Ewa M; Olczyk, Krystyna; Komosińska-Vassev, Katarzyna

    2004-01-01

    Acute pancreatitis (AP) is a common disease associated with an improper activation of pancreatic zymogens leading to autodigestion of the gland and if excessive--to multiple organ dysfunction. Acute necrotizing pancreatitis manifested by 20% of patients with acute pancreatitis is a life threatening disorder requiring subsequent management in intensive care unit. Unfortunately, none of biochemical tests presently used for laboratory assessment of acute pancreatitis at the early stage of the disease is able to estimate accurately: diagnosis, etiology and severity. At present, diagnosis of acute pancreatitis is based on evaluation of serum amylase and lipase activity due to easy availability and simplicity of these enzymatic tests. Low specificity of the mentioned enzymes resulted in studies concerning pancreatic isoamylase, elastase-1, chymotrypsine, procarboxy-peptidase B, trypsinogen-2 and immunoreactive trypsinogen usefulness in the laboratory diagnosis of AP. The prediction of severity in acute pancreatitis using multifactorial scoring systems is cumbersome especially due to their complexity. On the other hand the biochemical method of choice, estimation of serum C reactive protein, is useless in the early phase of disease. Unfortunately, the computed tomography--the most accurate method in severity assessing--is not always available. Recent studies have brought some progress in severity predicting, such as phospholipase A2, cellular immunity markers, cytokines, activation peptides of trypsinogen and carboxypeptidase B, procalcitonine, pancreatitis associated protein and serum amyloid A. All these newly introduced biochemical methods allow to look optimistically into the future of laboratory diagnostics of the acute pancreatitis believing that the problem of diagnosing and predicting the AP severity will be solved. PMID:15850341

  11. Clinico-hemato-biochemical profile of dogs with liver cirrhosis

    Directory of Open Access Journals (Sweden)

    M. A. Elhiblu

    2015-04-01

    Full Text Available Aim: The aim of this study was to determine the relevant tools in the diagnosis of liver cirrhosis in dogs. Material and Methods: A total of 140 dogs presented at Veterinary Teaching Hospital, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, showing clinical signs of hepatic insufficiency were subjected to clinico-hemato biochemical, urological, ultrasonographic (USG, and USG guided fine-needle biopsy examinations by standard methods. On the basis of these results, 6 dogs out of 140 dogs were found to be suffering from liver cirrhosis. Six clinically healthy dogs constituted the control group. Results: The dogs suffering from liver cirrhosis manifested inappetence, halitosis, abdominal distension, weight loss, melena, icterus, anemia, and neutrophilic leukocytosis with the left shift. Levels of hemoglobin, lymphocytes, packed cell volume, mean corpuscular volume, mean corpuscular Hb (MCH, and platelet count were significantly lower in liver cirrhosis group than control group while total leukocyte count, neutrophils, and MCH concentration were significantly higher. Glucose, total protein, albumin, A/G ratio, and fibrinogen were significantly lower, and creatinine, alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, prothrombin time, and APTT were significantly higher than the control values. Ultrasound revealed diffuse increase in echogenicity with rounded and irregular liver margins. Cytological examination of the ascitic fluid and fine-needle aspiration biopsy of liver was not fruitful in the diagnosis of liver cirrhosis. Conclusions: Liver cirrhosis causes clinical and hemo-biochemical alterations, which require special consideration when treating diseased animals. USG, diffuse increase in echogenicity of liver, rounding and irregularity of liver margins and microhepatica were the consistent findings. It is suggested that USG along with hemo-biochemical alterations may be used as a diagnostic tool for

  12. Radiation and cadmium induced biochemical alterations in mouse kidney

    International Nuclear Information System (INIS)

    In the present investigation radiation and cadmium induced biochemical changes in the kidney of Swiss albino mice have been studied. Materials and Methods: For this purpose, adult male Swiss albino mice (6-8 weeks old) were divided into four groups. Group I (sham-irradiated), Group II (treated with CdCl2 solution 20 ppm), Group III (irradiated with 1.25, 2.5 and 5.0 Gy gamma rays), Group IV (both irradiated with 1.25, 2.5 and 5.0 Gy gamma rays and treated with CdCl2 solution). The animals were autopsied after 1, 2, 4, 7, 14 and 28 days of treatment. The kidney was taken out and different biochemical parameters, such as total proteins, glycogen, cholesterol, acid phosphatase activity, alkaline phosphatase activity, DNA and RNA were estimated. Results: In irradiated animals, the values of total proteins, glycogen, acid phosphatase, alkaline phosphatase activity and RNA increased continuously up to day-7 and decreased thereafter up to day-28. The changes were dose dependent. In CdCl2 treated animals, the values of glycogen and total proteins decreased during the early intervals and increased thereafter whereas the values of acid and alkaline phosphatase activity and RNA increased during early Intervals and decreased thereafter, The values of cholesterol and DNA showed decrease in all the experimental groups (except group I) up to day-7 and increase thereafter up to day-28. After combined treatment also, the parameters followed the same pattern of increase and decrease, but the changes were more pronounced indicating their synergistic effect. The biochemical parameters showed highly significant values (P<0.001) as compared to normal ones. Conclusion: These results indicate that combined treatment of cadmium and gamma radiations causes synergistic or additive effect

  13. Statistics for Learning Genetics

    Science.gov (United States)

    Charles, Abigail Sheena

    This study investigated the knowledge and skills that biology students may need to help them understand statistics/mathematics as it applies to genetics. The data are based on analyses of current representative genetics texts, practicing genetics professors' perspectives, and more directly, students' perceptions of, and performance in, doing statistically-based genetics problems. This issue is at the emerging edge of modern college-level genetics instruction, and this study attempts to identify key theoretical components for creating a specialized biological statistics curriculum. The goal of this curriculum will be to prepare biology students with the skills for assimilating quantitatively-based genetic processes, increasingly at the forefront of modern genetics. To fulfill this, two college level classes at two universities were surveyed. One university was located in the northeastern US and the other in the West Indies. There was a sample size of 42 students and a supplementary interview was administered to a select 9 students. Interviews were also administered to professors in the field in order to gain insight into the teaching of statistics in genetics. Key findings indicated that students had very little to no background in statistics (55%). Although students did perform well on exams with 60% of the population receiving an A or B grade, 77% of them did not offer good explanations on a probability question associated with the normal distribution provided in the survey. The scope and presentation of the applicable statistics/mathematics in some of the most used textbooks in genetics teaching, as well as genetics syllabi used by instructors do not help the issue. It was found that the text books, often times, either did not give effective explanations for students, or completely left out certain topics. The omission of certain statistical/mathematical oriented topics was seen to be also true with the genetics syllabi reviewed for this study. Nonetheless

  14. Genetics of Obesity.

    Science.gov (United States)

    Srivastava, Apurva; Srivastava, Neena; Mittal, Balraj

    2016-10-01

    Numerous classical genetic studies have proved that genes are contributory factors for obesity. Genes are directly responsible for obesity associated disorders such as Bardet-Biedl and Prader-Willi syndromes. However, both genes as well as environment are associated with obesity in the general population. Genetic epidemiological approaches, particularly genome-wide association studies, have unraveled many genes which play important roles in human obesity. Elucidation of their biological functions can be very useful for understanding pathobiology of obesity. In the near future, further exploration of obesity genetics may help to develop useful diagnostic and predictive tests for obesity treatment. PMID:27605733

  15. Genetically Engineered Cyanobacteria

    Science.gov (United States)

    Zhou, Ruanbao (Inventor); Gibbons, William (Inventor)

    2015-01-01

    The disclosed embodiments provide cyanobacteria spp. that have been genetically engineered to have increased production of carbon-based products of interest. These genetically engineered hosts efficiently convert carbon dioxide and light into carbon-based products of interest such as long chained hydrocarbons. Several constructs containing polynucleotides encoding enzymes active in the metabolic pathways of cyanobacteria are disclosed. In many instances, the cyanobacteria strains have been further genetically modified to optimize production of the carbon-based products of interest. The optimization includes both up-regulation and down-regulation of particular genes.

  16. The clinical and biochemical study of pesticide sprayers.

    Science.gov (United States)

    Srivastava, A K; Gupta, B N; Mathur, A K; Mathur, N; Mahendra, P N; Bharti, R S

    1991-07-01

    Clinical, haematological and biochemical studies of 34 subjects, occupationally exposed to different types of pesticides, were conducted. The findings have been compared with those observed in 14 control subjects. Inhibition of cholinesterase activity was observed in the exposed group. Serum alkaline phosphatase was also found to be raised. Radiological examination revealed pneumonitic patches in the chest skiagrams of three exposed subjects. Paraesthesia with hyporeflexia was also found in 8.8% of exposed subjects. The findings suggest that exposure to multiple pesticides over many years affects the normal functioning of different organ systems and may produce characteristic clinical effects. PMID:1679651

  17. Biochemical, Physiological and Morphological Responses of Sugar Beet to Salinization

    OpenAIRE

    Eisa, Sayed S.; Ali, Safwat H.

    2001-01-01

    Biochemical, physiological and morphological responses of sugar beet grown on sandy soil under three levels of NaCl salinity in irrigation water, i.e. control, 3000 & 6000 ppm was studied in pot experiment. Results showed that root fresh weight linearly decreased by increasing NaCl salinity levels up to 6000 ppm, but sucrose percentage in root was significantly increased. On the other hand, increasing NaCl levels resulted in significant increase of Na content in both of shoot and root Meanwhi...

  18. Diurnal changes of biochemical metabolic markers in healthy young males

    DEFF Research Database (Denmark)

    Sennels, Henriette P; Jørgensen, Henrik L; Fahrenkrug, Jan

    2015-01-01

    .06 mmol/L) did not show significant oscillations. CONCLUSIONS: When diagnosing and monitoring metabolic disorders compensation for the 24-h variation of the biochemical metabolic markers is needed especially C-peptide, triglyceride and glucose. Furthermore, the stable HbA1c level through 24 h makes......BACKGROUND: To examine whether time of the day has an effect on the circulating levels of metabolism parameters. METHODS: Venous blood samples were obtained under standardized conditions from 24 healthy young men every third hour through 24 hours. The metabolic markers and melatonin were examined...

  19. Stoichiometric estimates of the biochemical conversion efficiencies in tsetse metabolism

    Directory of Open Access Journals (Sweden)

    Custer Adrian V

    2005-08-01

    Full Text Available Abstract Background The time varying flows of biomass and energy in tsetse (Glossina can be examined through the construction of a dynamic mass-energy budget specific to these flies but such a budget depends on efficiencies of metabolic conversion which are unknown. These efficiencies of conversion determine the overall yields when food or storage tissue is converted into body tissue or into metabolic energy. A biochemical approach to the estimation of these efficiencies uses stoichiometry and a simplified description of tsetse metabolism to derive estimates of the yields, for a given amount of each substrate, of conversion product, by-products, and exchanged gases. This biochemical approach improves on estimates obtained through calorimetry because the stoichiometric calculations explicitly include the inefficiencies and costs of the reactions of conversion. However, the biochemical approach still overestimates the actual conversion efficiency because the approach ignores all the biological inefficiencies and costs such as the inefficiencies of leaky membranes and the costs of molecular transport, enzyme production, and cell growth. Results This paper presents estimates of the net amounts of ATP, fat, or protein obtained by tsetse from a starting milligram of blood, and provides estimates of the net amounts of ATP formed from the catabolism of a milligram of fat along two separate pathways, one used for resting metabolism and one for flight. These estimates are derived from stoichiometric calculations constructed based on a detailed quantification of the composition of food and body tissue and on a description of the major metabolic pathways in tsetse simplified to single reaction sequences between substrates and products. The estimates include the expected amounts of uric acid formed, oxygen required, and carbon dioxide released during each conversion. The calculated estimates of uric acid egestion and of oxygen use compare favorably to

  20. Serological and biochemical identification of hybrid Ia antigens

    OpenAIRE

    1980-01-01

    Ia specificities 22 and 23 were found to be determinants on hybrid Ia molecules by serological and biochemical studies. Lipopolysaccharide- stimulated splenic lymphocytes from (B10 X B10.D2)F1 expressed Ia.22 although both the parents were negative. Similarly [D2.GD X B10.A(5R)]F1 cells expressed Ia.23, whereas D2.GD and B10.A(5R) lacked it. Ia.22 can be generated by gene complementation of Ak-Ek, Ab-Ed, Ab- Ek, As-Ed, and As-Ek, whereas Ia.23 can be generated by Ad-Ed, Ad-Ek, and Ad-Ep. Othe...