WorldWideScience

Sample records for biochar carbon mitigation

  1. Potential phosphorus eutrophication mitigation strategy: Biochar carbon composition, thermal stability and pH influence phosphorus sorption.

    Science.gov (United States)

    Ngatia, L W; Hsieh, Y P; Nemours, D; Fu, R; Taylor, R W

    2017-08-01

    Phosphorus (P) eutrophication is a major pollution problem globally, with unprecedented amount of P emanating from agricultural sources. But little is known about the optimization of soil-biochar P sorption capacity. The study objective was to determine how biochar feedstocks and pyrolysis conditions influences carbon (C) thermal stability, C composition and pH and in turn influence the phosphorus sorption optimization. Biochar was produced from switchgrass, kudzu and Chinese tallow at 200, 300, 400, 500, 550, 650,750 °C. Carbon thermal stability was determined by multi-element scanning thermal analysis (MESTA), C composition was determined using solid state 13 C NMR. Phosphorus sorption was determined using a mixture of 10% biochar and 90% sandy soil after incubation. Results indicate increased P sorption (P biochar pyrolysis temperature. However, optimum P sorption was feedstock specific with switchgrass indicating P desorption between 200 and 550 °C. Phosphorus sorption was in the order of kudzu > switchgrass > Chinese tallow. Total C, C thermal stability, aromatic C and alkalinity increased with elevated pyrolysis temperature. Biochar alkalinity favored P sorption. There was a positive relationship between high thermal stable C and P sorption for Kudzu (r = 0.62; P = 0.0346) and Chinese tallow (r = 0.73; P = 0.0138). In conclusion, biochar has potential for P eutrophication mitigation, however, optimum biochar pyrolysis temperature for P sorption is feedstock specific and in some cases might be out of 300-500 °C temperature range commonly used for agronomic application. High thermal stable C dominated by aromatic C and alkaline pH seem to favor P sorption. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Challenging the claims on the potential of biochar to mitigate climate change

    NARCIS (Netherlands)

    Francischinelli Rittl, T.

    2015-01-01

    Summary

    In this PhD thesis I studied the influence of biochar discourses on the political practices in Brazil and the impact of biochar on soil organic carbon (SOC) stocks, thus contributing to the current debate on the potential of biochar to mitigate climate change. Biochar is the solid

  3. Potentials to mitigate climate change using biochar - the Austrian perspective

    Science.gov (United States)

    Bruckman, Viktor J.; Klinglmüller, Michaela; Liu, Jay; Uzun, Basak B.; Varol, Esin A.

    2015-04-01

    Biomass utilization is seen as one of various promising strategies to reduce additional carbon emissions. A recent project on potentials of biochar to mitigate climate change (FOREBIOM) goes even a step further towards bioenergy in combination of CCS or "BECS" and tries to assess the current potentials, from sustainable biomass availability to biochar amendment in soils, including the identification of potential disadvantages and current research needs. The current report represents an outcome of the 1st FOREBIOM Workshop held in Vienna in April, 2013 and tries to characterize the Austrian perspective of biochar for climate change mitigation. The survey shows that for a widespread utilization of biochar in climate change mitigation strategies, still a number of obstacles have to be overcome. There are concerns regarding production and application costs, contamination and health issues for both producers and customers besides a fragmentary knowledge about biochar-soil interactions specifically in terms of long-term behavior, biochar stability and the effects on nutrient cycles. However, there are a number of positive examples showing that biochar indeed has the potential to sequester large amounts of carbon while improving soil properties and subsequently leading to a secondary carbon sink via rising soil productivity. Diversification, cascadic utilization and purpose designed biochar production are key strategies overcoming initial concerns, especially regarding economic aspects. A theoretical scenario calculation showed that relatively small amounts of biomass that is currently utilized for energy can reduce the gap between Austria's current GHG emissions and the Kyoto target by about 30% if biomass residues are pyrolized and biochar subsequently used as soil amendment. However, by using a more conservative approach that is representing the aims of the underlying FOREBIOM project (assuming that 10% of the annual biomass increment from forests is used for biochar

  4. Biochar production for carbon sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Thakkar, J.; Kumar, A. [Alberta Univ., Edmonton, AB (Canada). Dept. of Mechanical Engineering

    2010-07-01

    This study examined the use of agricultural biomass for biochar production and its storage in a landfill to sequester carbon. Capturing the energy from biomass that would otherwise decay, is among the many options available to mitigate the impact of the greenhouse gas (GHG) emissions associated with fossil fuel consumption. Biochar is a solid fuel which can be produced from agricultural biomass such as wheat and barley straw. This organic solid can be produced by slow pyrolysis of straw. A conceptual techno-economic model based on actual data was used to estimate the cost of producing biochar from straw in a centralized plant. The objectives of the study were to estimate the overall delivered cost of straw to the charcoal production plant; estimate the transportation costs of charcoal to the landfill site; estimate the cost of landfill; and estimate the overall cost of carbon sequestration through a charcoal landfill. According to preliminary results, the cost of carbon sequestration through this pathway is greater than $50 per tonne of carbon dioxide.

  5. Biochar mitigates salinity stress in potato

    DEFF Research Database (Denmark)

    Saleem Akhtar, Saqib; Andersen, M.N.; Liu, Fulai

    2015-01-01

    capability of biochar. Results indicated that biochar was capable to ameliorate salinity stress by adsorbing Na+. Increasing salinity level resulted in significant reductions of shoot biomass, root length and volume, tuber yield, photosynthetic rate (An), stomatal conductance (gs), midday leaf water......A pot experiment was conducted in a climate-controlled greenhouse to investigate the growth, physiology and yield of potato in response to salinity stress under biochar amendment. It was hypothesized that addition of biochar may improve plant growth and yield by mitigating the negative effect...... potential, but increased abscisic acid (ABA) concentration in both leaf and xylem sap. At each salinity level, incorporation of biochar increased shoot biomass, root length and volume, tuber yield, An, gs, midday leaf water potential, and decreased ABA concentration in the leaf and xylem sap as compared...

  6. Carbon dioxide emissions from biochar in soil

    DEFF Research Database (Denmark)

    Bruun, Sander; Clauson-Kaas, Anne Sofie Kjærulff; Bobuľská, L.

    2014-01-01

    The stability of biochar in soil is of importance if it is to be used for carbon sequestration and long-term improvement of soil properties. It is well known that a significant fraction of biochar is highly stable in soil, but carbon dioxide (CO2) is also released immediately after application....... This study investigated the nature of the early release of CO2 and the degree to which stabilizing mechanisms protect biochar from microbial attack. Incubations of 14C-labelled biochar produced at different temperatures were performed in soils with different clay contents and in sterilized and non......-sterilized soils. It emerged that carbonate may be concentrated or form during or after biochar production, resulting in significant carbonate contents. If CO2 released from carbonates in short-term experiments is misinterpreted as mineralization of biochar, the impact of this process may be significantly over...

  7. Biochar soil application to mitigate climate change

    DEFF Research Database (Denmark)

    Bruun, Esben; Hauggaard-Nielsen, Henrik; Ambus, Per

    2009-01-01

    Production of energy carriers (oil, gas) and biochar from pyrolysis of biomass is by many considered a promising technology for combined production of bioenergy and recalcitrant C suitable for sequestration in soil. The mechanism behind biochar-C sequestration is straightforward: Due to its...... recalcitrant characteristics the microbial decomposition of biochar is much slower in comparison to the mineralization of the original feedstock. Conversion of organic residues like household waste or cereal straw to biochar is hence proposed a way to withdraw CO2 from the atmosphere and sequester it on a long...... term basis in the soil. The experiments presented here illustrate the C sequestration potentials of biochar originating from fast pyrolysis of wheat straw. It is documented that after 47 days in soil 95 % of the added biochar-C is still present in the soil as compared to only 56 % if straw is applied...

  8. Application of fast pyrolysis biochar to a loamy soil - Effects on carbon and nitrogen dynamics and potential for carbon sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Bruun, E W

    2011-05-15

    Thermal decomposition of biomass in an oxygen-free environment (pyrolysis) produces bio-oil, syngas, and char. All three products can be used to generate energy, but an emerging new use of the recalcitrant carbon-rich char (biochar) is to apply it to the soil in order to enhance soil fertility and at the same time mitigate climate change by sequestering carbon in the soil. In general, the inherent physicochemical characteristics of biochars make these materials attractive agronomic soil conditioners. However, different pyrolysis technologies exist, i.e. slow pyrolysis, fast pyrolysis, and full gasification systems, and each of these influence the biochar quality differently. As of yet, there is only limited knowledge on the effect of applying fast pyrolysis biochar (FP-biochar) to soil. This PhD project provides new insights into the short-term impacts of adding FP-biochar to soil on the greenhouse gas (GHG) emissions and on soil carbon and nitrogen dynamics. The FP-biochars investigated in the thesis were generated at different reactor temperatures by fast pyrolysis of wheat straw employing a Pyrolysis Centrifuge Reactor (PCR). The carbohydrate content ranged from more than 35 % in FP-biochars made at a low reactor temperature (475 deg. C) down to 3 % in FP-biochars made at high temperatures (575 deg. C). The relative amount of carbohydrates in the FP-biochar was found to be correlated to the short-term degradation rates of the FP-biochars when applied to soil. Fast and slow pyrolysis of wheat straw resulted in two different biochar types with each their distinct physical structures and porosities, carbohydrate contents, particle sizes, pH values, BET surface areas, and elemental compositions. These different physicochemical properties obviously have different impacts on soil processes, which underscores that results obtained from soil studies using slow pyrolysis biochars (SP-biochar) are not necessarily applicable for FP-biochars. For example, the incorporation

  9. Application of fast pyrolysis biochar to a loamy soil - Effects on carbon and nitrogen dynamics and potential for carbon sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Bruun, E.W.

    2011-05-15

    Thermal decomposition of biomass in an oxygen-free environment (pyrolysis) produces bio-oil, syngas, and char. All three products can be used to generate energy, but an emerging new use of the recalcitrant carbon-rich char (biochar) is to apply it to the soil in order to enhance soil fertility and at the same time mitigate climate change by sequestering carbon in the soil. In general, the inherent physicochemical characteristics of biochars make these materials attractive agronomic soil conditioners. However, different pyrolysis technologies exist, i.e. slow pyrolysis, fast pyrolysis, and full gasification systems, and each of these influence the biochar quality differently. As of yet, there is only limited knowledge on the effect of applying fast pyrolysis biochar (FP-biochar) to soil. This PhD project provides new insights into the short-term impacts of adding FP-biochar to soil on the greenhouse gas (GHG) emissions and on soil carbon and nitrogen dynamics. The FP-biochars investigated in the thesis were generated at different reactor temperatures by fast pyrolysis of wheat straw employing a Pyrolysis Centrifuge Reactor (PCR). The carbohydrate content ranged from more than 35 % in FP-biochars made at a low reactor temperature (475 deg. C) down to 3 % in FP-biochars made at high temperatures (575 deg. C). The relative amount of carbohydrates in the FP-biochar was found to be correlated to the short-term degradation rates of the FP-biochars when applied to soil. Fast and slow pyrolysis of wheat straw resulted in two different biochar types with each their distinct physical structures and porosities, carbohydrate contents, particle sizes, pH values, BET surface areas, and elemental compositions. These different physicochemical properties obviously have different impacts on soil processes, which underscores that results obtained from soil studies using slow pyrolysis biochars (SP-biochar) are not necessarily applicable for FP-biochars. For example, the incorporation

  10. Technical feasibility and carbon footprint of biochar co-production with tomato plant residue.

    Science.gov (United States)

    Llorach-Massana, Pere; Lopez-Capel, Elisa; Peña, Javier; Rieradevall, Joan; Montero, Juan Ignacio; Puy, Neus

    2017-09-01

    World tomato production is in the increase, generating large amounts of organic agricultural waste, which are currently incinerated or composted, releasing CO 2 into the atmosphere. Organic waste is not only produced from conventional but also urban agricultural practices due recently gained popularity. An alternative to current waste management practices and carbon sequestration opportunity is the production of biochar (thermally converted biomass) from tomato plant residues and use as a soil amendment. To address the real contribution of biochar for greenhouse gas mitigation, it is necessary to assess the whole life cycle from the production of the tomato biomass feedstock to the actual distribution and utilisation of the biochar produced in a regional context. This study is the first step to determine the technical and environmental potential of producing biochar from tomato plant (Solanum lycopersicum arawak variety) waste biomass and utilisation as a soil amendment. The study includes the characterisation of tomato plant residue as biochar feedstock (cellulose, hemicellulose, lignin and metal content); feedstock thermal stability; and the carbon footprint of biochar production under urban agriculture at pilot and small-scale plant, and conventional agriculture at large-scale plant. Tomato plant residue is a potentially suitable biochar feedstock under current European Certification based on its lignin content (19.7%) and low metal concentration. Biomass conversion yields of over 40%, 50% carbon stabilization and low pyrolysis temperature conditions (350-400°C) would be required for biochar production to sequester carbon under urban pilot scale conditions; while large-scale biochar production from conventional agricultural practices have not the potential to sequestrate carbon because its logistics, which could be improved. Therefore, the diversion of tomato biomass waste residue from incineration or composting to biochar production for use as a soil amendment

  11. A systematic review of biochar research, with a focus on its stability in situ and its promise as a climate mitigation strategy.

    Directory of Open Access Journals (Sweden)

    Noel P Gurwick

    Full Text Available BACKGROUND: Claims about the environmental benefits of charring biomass and applying the resulting "biochar" to soil are impressive. If true, they could influence land management worldwide. Alleged benefits include increased crop yields, soil fertility, and water-holding capacity; the most widely discussed idea is that applying biochar to soil will mitigate climate change. This claim rests on the assumption that biochar persists for hundreds or thousands of years, thus storing carbon that would otherwise decompose. We conducted a systematic review to quantify research effort directed toward ten aspects of biochar and closely evaluated the literature concerning biochar's stability. FINDINGS: We identified 311 peer-reviewed research articles published through 2011. We found very few field studies that addressed biochar's influence on several ecosystem processes: one on soil nutrient loss, one on soil contaminants, six concerning non-CO2 greenhouse gas (GHG fluxes (some of which fail to support claims that biochar decreases non-CO2 GHG fluxes, and 16-19 on plants and soil properties. Of 74 studies related to biochar stability, transport or fate in soil, only seven estimated biochar decomposition rates in situ, with mean residence times ranging from 8 to almost 4,000 years. CONCLUSIONS: Our review shows there are not enough data to draw conclusions about how biochar production and application affect whole-system GHG budgets. Wide-ranging estimates of a key variable, biochar stability in situ, likely result from diverse environmental conditions, feedstocks, and study designs. There are even fewer data about the extent to which biochar stimulates decomposition of soil organic matter or affects non-CO2 GHG emissions. Identifying conditions where biochar amendments yield favorable GHG budgets requires a systematic field research program. Finally, evaluating biochar's suitability as a climate mitigation strategy requires comparing its effects with

  12. [Preliminary assessment of the potential of biochar technology in mitigating the greenhouse effect in China].

    Science.gov (United States)

    Jiang, Zhi-Xiang; Zheng, Hao; Li, Feng-Min; Wang, Zhen-Yu

    2013-06-01

    The production of biochar by pyrolysis and its application to soil can sequester the CO2 which was absorbed by plants from atmosphere into soil, in addition it can also bring multiple benefits for agriculture production. On the basis of the available potential survey of the biomass residues from agriculture and forestry section, life cycle assessment was employed to quantify the potential of biochar technology in mitigation of greenhouse gases in our country. The results showed: In China, the amount of available biomass resource was 6.04 x 10(8) t every year and its net greenhouse effect potential was 5.32 x 10(8) t CO(2e) (CO(2e): CO2 equivalent), which was equivalent to 0.88 t CO(2e) for every ton biomass. The greatest of contributor to the total potential was plant carbon sequestration in soil as the form of biochar which accounts for 73.94%, followed by production of renewable energy and its percentage was 23.85%. In summary, production of biochar from agriculture and forestry biomass residues had a significant potential for our country to struggle with the pressure of greenhouse gas emission.

  13. Carbon Abatement and Emissions Associated with the Gasification of Walnut Shells for Bioenergy and Biochar Production.

    Science.gov (United States)

    Pujol Pereira, Engil Isadora; Suddick, Emma C; Six, Johan

    2016-01-01

    By converting biomass residue to biochar, we could generate power cleanly and sequester carbon resulting in overall greenhouse gas emissions (GHG) savings when compared to typical fossil fuel usage and waste disposal. We estimated the carbon dioxide (CO2) abatements and emissions associated to the concurrent production of bioenergy and biochar through biomass gasification in an organic walnut farm and processing facility in California, USA. We accounted for (i) avoided-CO2 emissions from displaced grid electricity by bioenergy; (ii) CO2 emissions from farm machinery used for soil amendment of biochar; (iii) CO2 sequestered in the soil through stable biochar-C; and (iv) direct CO2 and nitrous oxide (N2O) emissions from soil. The objective of these assessments was to pinpoint where the largest C offsets can be expected in the bioenergy-biochar chain. We found that energy production from gasification resulted in 91.8% of total C offsets, followed by stable biochar-C (8.2% of total C sinks), offsetting a total of 107.7 kg CO2-C eq Mg-1 feedstock. At the field scale, we monitored gas fluxes from soils for 29 months (180 individual observations) following field management and precipitation events in addition to weekly measurements within three growing seasons and two tree dormancy periods. We compared four treatments: control, biochar, compost, and biochar combined with compost. Biochar alone or in combination with compost did not alter total N2O and CO2 emissions from soils, indicating that under the conditions of this study, biochar-prompted C offsets may not be expected from the mitigation of direct soil GHG emissions. However, this study revealed a case where a large environmental benefit was given by the waste-to-bioenergy treatment, addressing farm level challenges such as waste management, renewable energy generation, and C sequestration.

  14. Carbon Abatement and Emissions Associated with the Gasification of Walnut Shells for Bioenergy and Biochar Production.

    Directory of Open Access Journals (Sweden)

    Engil Isadora Pujol Pereira

    Full Text Available By converting biomass residue to biochar, we could generate power cleanly and sequester carbon resulting in overall greenhouse gas emissions (GHG savings when compared to typical fossil fuel usage and waste disposal. We estimated the carbon dioxide (CO2 abatements and emissions associated to the concurrent production of bioenergy and biochar through biomass gasification in an organic walnut farm and processing facility in California, USA. We accounted for (i avoided-CO2 emissions from displaced grid electricity by bioenergy; (ii CO2 emissions from farm machinery used for soil amendment of biochar; (iii CO2 sequestered in the soil through stable biochar-C; and (iv direct CO2 and nitrous oxide (N2O emissions from soil. The objective of these assessments was to pinpoint where the largest C offsets can be expected in the bioenergy-biochar chain. We found that energy production from gasification resulted in 91.8% of total C offsets, followed by stable biochar-C (8.2% of total C sinks, offsetting a total of 107.7 kg CO2-C eq Mg-1 feedstock. At the field scale, we monitored gas fluxes from soils for 29 months (180 individual observations following field management and precipitation events in addition to weekly measurements within three growing seasons and two tree dormancy periods. We compared four treatments: control, biochar, compost, and biochar combined with compost. Biochar alone or in combination with compost did not alter total N2O and CO2 emissions from soils, indicating that under the conditions of this study, biochar-prompted C offsets may not be expected from the mitigation of direct soil GHG emissions. However, this study revealed a case where a large environmental benefit was given by the waste-to-bioenergy treatment, addressing farm level challenges such as waste management, renewable energy generation, and C sequestration.

  15. Biochar alters microbial community and carbon sequestration potential across different soil pH.

    Science.gov (United States)

    Sheng, Yaqi; Zhu, Lizhong

    2018-05-01

    Biochar application to soil has been proposed for soil carbon sequestration and global warming mitigation. While recent studies have demonstrated that soil pH was a main factor affecting soil microbial community and stability of biochar, little information is available for the microbiome across different soil pH and the subsequently CO 2 emission. To investigate soil microbial response and CO 2 emission of biochar across different pH levels, comparative incubation studies on CO 2 emission, degradation of biochar, and microbial communities in a ferralsol (pH5.19) and a phaeozems (pH7.81) with 4 biochar addition rates (0.5%, 1.0%, 2.0%, 5.0%) were conducted. Biochar induced higher CO 2 emission in acidic ferralsol, largely due to the higher biochar degradation, while the more drastic negative priming effect (PE) of SOC resulted in decreased total CO 2 emission in alkaline phaeozems. The higher bacteria diversity, especially the enrichment of copiotrophic bacteria such as Bacteroidetes, Gemmatimonadetes, and decrease of oligotrophic bacteria such as Acidobacteria, were responsible for the increased CO 2 emission and initial positive PE of SOC in ferralsol, whereas biochar did not change the relative abundances of most bacteria at phylum level in phaeozems. The relative abundances of other bacterial taxa (i.e. Actinobacteria, Anaerolineae) known to degrade aromatic compounds were also elevated in both soils. Soil pH was considered to be the dominant factor to affect CO 2 emission by increasing the bioavailability of organic carbon and abundance of copiotrophic bacteria after biochar addition in ferralsol. However, the decreased bioavailability of SOC via adsorption of biochar resulted in higher abundance of oligotrophic bacteria in phaeozems, leading to the decrease in CO 2 emission. Copyright © 2017. Published by Elsevier B.V.

  16. Biochar carbon stability and effect on greenhouse gas emissions

    DEFF Research Database (Denmark)

    Bruun, Esben Wilson; Cross, Andrew; Hammond, Jim

    2016-01-01

    As demonstrated by several scientific studies there is no doubt that biochar in general is very recalcitrant compared to other organic matter additions and soil organic matter fractions and also that it is possible to sequester carbon at a climate change relevant time scale (~100 years or more......) by soil application of biochar. However, the carbon stability of biochar in soil is strongly correlated with the degree of thermal alteration of the original feedstock (the lower the temperature, the larger the labile fraction) and in depth understanding of the technology used and its effect...... on the biochar quality is necessary in order to produce the most beneficial biochars for soil application. Beside carbon sequestration in soil biochar may improve the GHG balance by reducing N2O and CH4 soil emissions, although contrasting results are found in the literature. The mechanisms behind...

  17. Biochars mitigate greenhouse gas emissions and bioaccumulation of potentially toxic elements and arsenic speciation in Phaseolus vulgaris L.

    Science.gov (United States)

    Ibrahim, Muhammad; Li, Gang; Khan, Sardar; Chi, Qiaoqiao; Xu, Yaoyang; Zhu, Yongguan

    2017-08-01

    Anthropogenic and natural activities can lead to increased greenhouse gas emissions and discharge of potentially toxic elements (PTEs) into soil environment. Biochar amendment to soils is a cost-effective technology and sustainable approach used to mitigate greenhouse gas emissions, improve phytoremediation, and minimize the health risks associated with consumption of PTE-contaminated vegetables. Greenhouse pot experiments were conducted to investigate the effects of peanut shell biochar (PNB) and sewage sludge biochar (SSB) on greenhouse gas (GHG) emissions, plant growth, PTE bioaccumulation, and arsenic (As) speciation in bean plants. Results indicated that amendments of PNB and SSB increased plant biomass production by increasing soil fertility and reducing bioavailability of PTEs. Addition of biochars also increased soil pH, total nitrogen (TN), total carbon (TC), dissolved organic carbon (DOC), and ammonium-nitrogen (NH 4 -N) but decreased available concentrations of PTEs such as cadmium (Cd), lead (Pb), and As. The concentration of nitrate-nitrogen (NO 3 - -N) was also decreased in biochar-amended soils. In addition, PNB and SSB amendments significantly (P Greenhouse gases such as carbon dioxide (CO 2 ) and methane (CH 4 ) emissions were significantly (P greenhouse gas emissions and PTE bioaccumulation as well as arsenic speciation in P. vulgaris L.

  18. Biochar for soil fertility and natural carbon sequestration

    Science.gov (United States)

    Rostad, C.E.; Rutherford, D.W.

    2011-01-01

    Biochar is charcoal (similar to chars generated by forest fires) that is made for incorporation into soils to increase soil fertility while providing natural carbon sequestration. The incorporation of biochar into soils can preserve and enrich soils and also slow the rate at which climate change is affecting our planet. Studies on biochar, such as those cited by this report, are applicable to both fire science and soil science.

  19. Influence of fast pyrolysis temperature on biochar labile fraction and short-term carbon loss in a loamy soil

    International Nuclear Information System (INIS)

    Bruun, Esben W.; Hauggaard-Nielsen, Henrik; Ibrahim, Norazana; Egsgaard, Helge; Ambus, Per; Jensen, Peter A.; Dam-Johansen, Kim

    2011-01-01

    Production of bio-oil, gas and biochar from pyrolysis of biomass is considered a promising technology for combined production of bioenergy and recalcitrant carbon (C) suitable for sequestration in soil. Using a fast pyrolysis centrifuge reactor (PCR) the present study investigated the relation between fast pyrolysis of wheat straw at different reactor temperatures and the short-term degradability of biochar in soil. After 115 days incubation 3-12% of the added biochar-C had been emitted as CO 2 . On average, 90% of the total biochar-C loss occurred within the first 20 days of the experiment, emphasizing the importance of knowing the biochar labile fraction when evaluating a specific biochars C sequestration potential. The pyrolysis temperature influenced the outputs of biochar, bio-oil and syngas significantly, as well as the stability of the biochar produced. Contrary to slow pyrolysis a fast pyrolysis process may result in incomplete conversion of biomass due to limitations to heat transfer and kinetics. In our case chemical analysis of the biochars revealed unconverted cellulosic and hemicellulosic fractions, which in turn were found to be proportional with the short-term biochar degradation in soil. As these labile carbohydrates are rapidly mineralized, their presence lowers the biochar-C sequestration potential. By raising the pyrolysis temperature, biochar with none or low contents of these fractions can be produced, but this will be on the expense of the biochar quantity. The yield of CO 2 neutral bio-oil is the other factor to optimize when adjusting the pyrolysis temperature settings to give the overall greatest climate change mitigation effect.

  20. The Effect of Gasification Biochar on Soil Carbon Sequestration, Soil Quality and Crop Growth

    DEFF Research Database (Denmark)

    Hansen, Veronika

    and pot and field experiments was used to study the effect of straw and wood biochar on carbon sequestration, soil quality and crop growth. Overall, the biochar amendment improved soil chemical and physical properties and plant growth and showed a potential for soil carbon sequestration without having any......New synergies between agriculture and the energy sector making use of agricultural residues for bioenergy production and recycling recalcitrant residuals to soil may offer climate change mitigation potential through the substitution of fossil fuels and soil carbon sequestration. However, concerns...... have been raised about the potential negative impacts of incorporating bioenergy residuals (biochar) in soil and increasing the removal of crop residues such as straw, possibly reducing important soil functions and services for maintaining soil quality. Therefore, a combination of incubation studies...

  1. Reduced carbon sequestration potential of biochar in acidic soil.

    Science.gov (United States)

    Sheng, Yaqi; Zhan, Yu; Zhu, Lizhong

    2016-12-01

    Biochar application in soil has been proposed as a promising method for carbon sequestration. While factors affecting its carbon sequestration potential have been widely investigated, the number of studies on the effect of soil pH is limited. To investigate the carbon sequestration potential of biochar across a series of soil pH levels, the total carbon emission, CO 2 release from inorganic carbon, and phospholipid fatty acids (PLFAs) of six soils with various pH levels were compared after the addition of straw biochar produced at different pyrolysis temperatures. The results show that the acidic soils released more CO 2 (1.5-3.5 times higher than the control) after the application of biochar compared with neutral and alkaline soils. The degradation of both native soil organic carbon (SOC) and biochar were accelerated. More inorganic CO 2 release in acidic soil contributed to the increased degradation of biochar. Higher proportion of gram-positive bacteria in acidic soil (25%-36%) was responsible for the enhanced biochar degradation and simultaneously co-metabolism of SOC. In addition, lower substrate limitation for bacteria, indicated by higher C-O stretching after the biochar application in the acidic soil, also caused more CO 2 release. In addition to the soil pH, other factors such as clay contents and experimental duration also affected the phsico-chemical and biotic processes of SOC dynamics. Gram-negative/gram-positive bacteria ratio was found to be negatively related to priming effects, and suggested to serve as an indicator for priming effect. In general, the carbon sequestration potential of rice-straw biochar in soil reduced along with the decrease of soil pH especially in a short-term. Given wide spread of acidic soils in China, carbon sequestration potential of biochar may be overestimated without taking into account the impact of soil pH. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Bioenergy production systems and biochar application in forests: potential for renewable energy, soil enhancement, and carbon sequestration

    Science.gov (United States)

    Kristin McElligott; Debbie Dumroese; Mark Coleman

    2011-01-01

    Bioenergy production from forest biomass offers a unique solution to reduce wildfire hazard fuel while producing a useful source of renewable energy. However, biomass removals raise concerns about reducing soil carbon and altering forest site productivity. Biochar additions have been suggested as a way to mitigate soil carbon loss and cycle nutrients back into forestry...

  3. Biochar, Tool for Climate Change Mitigation and Soil Management

    Science.gov (United States)

    Shackley, Simon; Sohi, Saran; Ibarrola, Rodrigo; Hammond, Jim; Mašek, Ondřej; Brownsort, Peter; Cross, Andrew; Prendergast-Miller, Miranda; Haszeldine, Stuart

    Biochar is the solid remains of any organic material that has been heated to at least 350oC in a zero-oxygen or oxygen-limited environment, which is intended to be mixed with soils. If the solid remains are not suitable for addition to soils, or will be burned as a fuel or used as an aggregate in construction, it is defined as char not biochar. There is a very wide range of potential biochar feedstocks, e.g., wood waste, timber, agricultural residues and wastes (straws, bagasse, manure, husks, shells, fibers, etc.), leaves, food wastes, paper and sewage sludge, green waste, distiller's grain, and many others. Pyrolysis is usually the technology of choice for producing biochar, though biomass gasification also produces smaller char yields. Syngas and pyrolytic bio-liquids, which have a potential use as energy carriers, are produced alongside biochar.

  4. Soil carbon sequestration and biochar as negative emission technologies.

    Science.gov (United States)

    Smith, Pete

    2016-03-01

    Despite 20 years of effort to curb emissions, greenhouse gas (GHG) emissions grew faster during the 2000s than in the 1990s, which presents a major challenge for meeting the international goal of limiting warming to deforestation, showed that all NETs have significant limits to implementation, including economic cost, energy requirements, land use, and water use. In this paper, I assess the potential for negative emissions from soil carbon sequestration and biochar addition to land, and also the potential global impacts on land use, water, nutrients, albedo, energy and cost. Results indicate that soil carbon sequestration and biochar have useful negative emission potential (each 0.7 GtCeq. yr(-1) ) and that they potentially have lower impact on land, water use, nutrients, albedo, energy requirement and cost, so have fewer disadvantages than many NETs. Limitations of soil carbon sequestration as a NET centre around issues of sink saturation and reversibility. Biochar could be implemented in combination with bioenergy with carbon capture and storage. Current integrated assessment models do not represent soil carbon sequestration or biochar. Given the negative emission potential of SCS and biochar and their potential advantages compared to other NETs, efforts should be made to include these options within IAMs, so that their potential can be explored further in comparison with other NETs for climate stabilization. © 2016 John Wiley & Sons Ltd.

  5. Comparison of Biochars Characteristics from Different Raw Materials

    OpenAIRE

    SUN Tao; ZHU Xin-ping; LI Dian-peng; GU Zhu-yu; ZHANG Jia-xi; JIA Hong-tao

    2017-01-01

    Biochar is the carbon-rich product from biomass under limited supply of oxygen. Biochar has been well recognized in enhancing terrestrial carbon sequestration and greenhouse gas mitigation as well as in improving soil fertility and plant productivity. To explore the differences of biochars produced from different raw materials, six biochar samples made from alfalfa straw, wheat straw, cotton straw, grape vines, sludge and lignite were selected as test material. Qualitative and quantitative an...

  6. Comparison of Biochars Characteristics from Different Raw Materials

    Directory of Open Access Journals (Sweden)

    SUN Tao

    2017-10-01

    Full Text Available Biochar is the carbon-rich product from biomass under limited supply of oxygen. Biochar has been well recognized in enhancing terrestrial carbon sequestration and greenhouse gas mitigation as well as in improving soil fertility and plant productivity. To explore the differences of biochars produced from different raw materials, six biochar samples made from alfalfa straw, wheat straw, cotton straw, grape vines, sludge and lignite were selected as test material. Qualitative and quantitative analysis by fourier transform infrared spectroscopy(FTIR and Boehm titration were used to determine the amount of the surface functional groups of biochars. Meanwhile the scanning electron microscopy(SEM was used to characterize the surface morphology of biochar samples. In addition, the basic physicochemical characteristics of biochar samples, such as pH value, organic carbon content and cation exchange capacity were also determined. The results showed that all of the biochar were alkaline except the sludge biochar was acidic. The organic carbon content of alfalfa biochar was the highest(588.43 g·kg-1 and sludge biochar was the lowest(168.17 g·kg-1. Furthermore, the rank of cation exchange capacity was alfalfa straw biochar, cotton straw biochar > grape vine biochar > wheat straw biochar > sludge biochar > lignite biochar. FTIR spectrum showed that there were the aromatic hydrocarbon and the oxygen group on the surface of biochar and the structure of biochar was mainly based on the aromatic rings skeleton. The total functional groups content of alfalfa straw biochar was the highest, but that of sludge biochar was the lowest. The SEM results showed that there were obvious pore structure on the surface of plant-based biochar, but none on the surface of mineral-based biochar. Alfalfa straw biochar, wheat straw biochar, cotton straw biochar and grape vine biochar can be applied to improve farmland soil quality and increase soil fertility, and lignite biochar

  7. Carbon Mineralization in Two Ultisols Amended with Different Sources and Particle Sizes of Pyrolyzed Biochar

    Science.gov (United States)

    Biochar produced during pyrolysis has the potential to enhance soil fertility and reduce greenhouse gas emissions. The influence of biochar properties (e.g., particle size) on both short- and long-term carbon (C) mineralization of biochar remains unclear. There is minimal informa...

  8. Review of the effects of biochar amendment on soil properties and carbon sequestration

    Science.gov (United States)

    Biochar is part of a series of materials referred to as black carbons, since biochar is produced by a chemical and/or thermal transformation of the original biomass material in different conditions. The objective of this paper is to summarize the characteristics of biochar from different feedstocks ...

  9. BIOCHAR: PYROGENIC CARBON FOR AGRICULTURAL USE - A CRITICAL REVIEW

    Directory of Open Access Journals (Sweden)

    Etelvino Henrique Novotny

    2015-04-01

    Full Text Available Biochar (carbonized biomass for agricultural use has been used worldwide as soil amendment and is a technology of particular interest for Brazil, since its "inspiration" is from the historical Terra Preta de Índios(Amazon Dark Earth, and also because Brazil is the world's largest charcoal producer, generating enormous residue quantities in form of fine charcoal and due to the availability of different residual biomasses, mainly from agroindustry (e.g., sugar-cane bagasse; wood and paper-mill wastes; residues from biofuel industries; sewage sludge etc, that can be used for biochar production, making Brazil a key actor in the international scenario in terms of biochar research and utilization. In the last decade, numerous studies on biochar have been carried out and now a vast literature, and excellent reviews, are available. The objective of this paper is therefore to deliver a critical review with some highlights on biochar research, rather than an exhaustive bibliographic review. To this end, some key points considered critical and relevant were selected and the pertinent literature "condensed", with a view to guide future research, rather than analyze trends of the past.

  10. The economic value of biochar in crop production and carbon sequestration

    International Nuclear Information System (INIS)

    Galinato, Suzette P.; Yoder, Jonathan K.; Granatstein, David

    2011-01-01

    This paper estimates the economic value of biochar application on agricultural cropland for carbon sequestration and its soil amendment properties. In particular, we consider the carbon emissions avoided when biochar is applied to agricultural soil, instead of agricultural lime, the amount of carbon sequestered, and the value of carbon offsets, assuming there is an established carbon trading mechanism for biochar soil application. We use winter wheat production in Eastern Whitman County, Washington as a case study, and consider different carbon offset price scenarios and different prices of biochar to estimate a farm profit. Our findings suggest that it may be profitable to apply biochar as a soil amendment under some conditions if the biochar market price is low enough and/or a carbon offset market exists. - Highlights: → We estimate the economic value of biochar application on agricultural cropland. → We consider biochar's carbon sequestration and soil amendment properties. → Biochar soil application may be profitable if a carbon offset market exists for it. → Farmers may use biochar if its market price is low enough to earn a profit.

  11. An index-based approach to assessing recalcitrance and soil carbon sequestration potential of engineered black carbons (biochars).

    Science.gov (United States)

    Harvey, Omar R; Kuo, Li-Jung; Zimmerman, Andrew R; Louchouarn, Patrick; Amonette, James E; Herbert, Bruce E

    2012-02-07

    The ability of engineered black carbons (or biochars) to resist abiotic and, or biotic degradation (herein referred to as recalcitrance) is crucial to their successful deployment as a soil carbon sequestration strategy. A new recalcitrance index, the R(50), for assessing biochar quality for carbon sequestration is proposed. The R(50) is based on the relative thermal stability of a given biochar to that of graphite and was developed and evaluated with a variety of biochars (n = 59), and soot-like black carbons. Comparison of R(50), with biochar physicochemical properties and biochar-C mineralization revealed the existence of a quantifiable relationship between R(50) and biochar recalcitrance. As presented here, the R(50) is immediately applicable to pre-land application screening of biochars into Class A (R(50) ≥ 0.70), Class B (0.50 ≤ R(50) carbon sequestration classes. Class A and Class C biochars would have carbon sequestration potential comparable to soot/graphite and uncharred plant biomass, respectively, whereas Class B biochars would have intermediate carbon sequestration potential. We believe that the coupling of the R(50), to an index-based degradation, and an economic model could provide a suitable framework in which to comprehensively assess soil carbon sequestration in biochars.

  12. Biochar's role in mitigating soil nitrous oxide emissions: a review and meta-analysis

    NARCIS (Netherlands)

    Cayuela, M.L.; Zwieten, van L.; Singh, B.P.; Jeffery, S.L.; Roig, A.; Sánchez-Monedero, M.A.

    2014-01-01

    More than two thirds of global nitrous oxide (N2O) emissions originate from soil, mainly associated with the extensive use of nitrogen (N) fertilizers in agriculture. Although the interaction of black carbon with the N cycle has been long recognized, the impact of biochar on N2O emissions has only

  13. Gasification biochar as soil amendment for carbon sequestration and soil quality

    DEFF Research Database (Denmark)

    Hansen, Veronika

    2014-01-01

    Thermal gasification of biomass is an efficient and flexible way to generate energy. Besides the energy, avaluable by-product, biochar, is produced. Biochar contains a considerable amount of recalcitrant carbon thathas potential for soil carbon sequestration and soil quality improvement if recycled...... back to agriculture soils. To determine the effect of gasification biochar on soil processes and crop yield, a short-term incubation study was conducted and a field trial has been established....

  14. Effects of mineral additives on biochar formation: carbon retention, stability, and properties.

    Science.gov (United States)

    Li, Feiyue; Cao, Xinde; Zhao, Ling; Wang, Jianfei; Ding, Zhenliang

    2014-10-07

    Biochar is being recognized as a promising tool for long-term carbon sequestration, and biochar with high carbon retention and strong stability is supposed to be explored for that purpose. In this study, three minerals, including kaolin, calcite (CaCO3), and calcium dihydrogen phosphate [Ca(H2PO4)2], were added to rice straw feedstock at the ratio of 20% (w/w) for biochar formation through pyrolysis treatment, aiming to improve carbon retention and stabilization in biochar. Kaolin and CaCO3 had little effect on the carbon retention, whereas Ca(H2PO4)2 increased the carbon retention by up to 29% compared to untreated biochar. Although the carbon loss from the kaolin-modified biochar with hydrogen peroxide oxidation was enhanced, CaCO3 and Ca(H2PO4)2 modification reduced the carbon loss by 18.6 and 58.5%, respectively. Moreover, all three minerals reduced carbon loss of biochar with potassium dichromate oxidation from 0.3 to 38.8%. The microbial mineralization as CO2 emission in all three modified biochars was reduced by 22.2-88.7% under aerobic incubation and 5-61% under anaerobic incubation. Enhanced carbon retention and stability of biochar with mineral treatment might be caused by the enhanced formation of aromatic C, which was evidenced by cross-polarization magic angle spinning (13)C nuclear magnetic resonance spectra and Fourier transform infrared spectroscopy analysis. Our results indicated that the three minerals, especially Ca(H2PO4)2, were effective in increasing carbon retention and strengthening biochar stabilization, which provided a novel idea that people could explore and produce the designated biochar with high carbon sequestration capacity and stability.

  15. Cross-scale modelling of the climate-change mitigation potential of biochar systems: Global implications of nano-scale processes

    Science.gov (United States)

    Woolf, Dominic; Lehmann, Johannes

    2014-05-01

    With CO2 emissions still tracking the upper bounds of projected emissions scenarios, it is becoming increasingly urgent to reduce net greenhouse gas (GHG) emissions, and increasingly likely that restricting future atmospheric GHG concentrations to within safe limits will require an eventual transition towards net negative GHG emissions. Few measures capable of providing negative emissions at a globally-significant scale are currently known. Two that are most often considered include carbon sequestration in biomass and soil, and biomass energy with carbon capture and storage (BECCS). In common with these two approaches, biochar also relies on the use of photosynthetically-bound carbon in biomass. But, because biomass and land are limited, it is critical that these resources are efficiently allocated between biomass/soil sequestration, bioenergy, BECCS, biochar, and other competing uses such as food, fiber and biodiversity. In many situations, biochar can offer advantages that may make it the preferred use of a limited biomass supply. These advantages include that: 1) Biochar can provide valuable benefits to agriculture by improving soil fertility and crop production, and reducing fertlizer and irrigation requirements. 2) Biochar is significantly more stable than biomass or other forms of soil carbon, thus lowering the risk of future losses compared to sequestration in biomass or soil organic carbon. 3) Gases and volatiles produced by pyrolysis can be combusted for energy (which may offset fossil fuel emissions). 4) Biochar can further lower GHG emissions by reducing nitrous oxide emissions from soil and by enhancing net primary production. Determining the optimal use of biomass requires that we are able to model not only the climate-change mitigation impact of each option, but also their economic and wider environmental impacts. Thus, what is required is a systems modelling approach that integrates components representing soil biogeochemistry, hydrology, crop

  16. Effect of soil biochar concentration on the mitigation of emerging organic contaminant uptake in lettuce.

    Science.gov (United States)

    Hurtado, Carlos; Cañameras, Núria; Domínguez, Carmen; Price, Gordon W; Comas, Jordi; Bayona, Josep M

    2017-02-05

    Although crop uptake of emerging organic contaminants (EOC) from irrigation water and soils has been previously reported, successful mitigation strategies have not yet been established. In this study, soil was amended with a wood-based biochar (BC) at two rates (0, 2.5 and 5% w/w) to evaluate the effect on mitigation of EOC uptake (i.e. bisphenol A, caffeine, carbamazepine, clofibric acid, furosemide, ibuprofen, methyl dihydrojasmonate, tris(2-chloroethyl)phosphate, triclosan, and tonalide) in lettuce (Lactuca sativa L.). After 28 days of irrigation with water containing EOCs at 15μgL -1 , the average EOC concentration in roots and leaves decreased by 20-76% in biochar amended soil relative to non BC-amended soil. In addition, the enantiomeric fractions (EF) of ibuprofen (IBU) in biochar amended soils (EF=0.58) and unamended soils (EF=0.76) suggest that the IBU sorbed fraction in BC is more recalcitrant to its biodegradation. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Production of Biochar for Soil Application

    NARCIS (Netherlands)

    Mia, Shamim; Uddin, Nijam; Mamun Hossain, Al Shaikh Abdullah; Amin, Ruhul; Mete, Fatima Z.; Hiemstra, Tjisse

    2015-01-01

    Biochar has potentials for soil fertility improvement, climate change mitigation and environmental reclamation, and charred biomass can be deliberately incorporated into soil for long-term carbon stabilization and soil amendment. Many different methods have been used for biochar production

  18. Prospective life cycle carbon abatement for pyrolysis biochar systems in the UK

    International Nuclear Information System (INIS)

    Hammond, Jim; Shackley, Simon; Sohi, Saran; Brownsort, Peter

    2011-01-01

    Life cycle assessment (LCA) of slow pyrolysis biochar systems (PBS) in the UK for small, medium and large scale process chains and ten feedstocks was performed, assessing carbon abatement and electricity production. Pyrolysis biochar systems appear to offer greater carbon abatement than other bioenergy systems. Carbon abatement of 0.7-1.3 t CO 2 equivalent per oven dry tonne of feedstock processed was found. In terms of delivered energy, medium to large scale PBS abates 1.4-1.9 t CO 2 e/MWh, which compares to average carbon emissions of 0.05-0.30 t CO 2 e/MWh for other bioenergy systems. The largest contribution to PBS carbon abatement is from the feedstock carbon stabilised in biochar (40-50%), followed by the less certain indirect effects of biochar in the soil (25-40%)-mainly due to increase in soil organic carbon levels. Change in soil organic carbon levels was found to be a key sensitivity. Electricity production off-setting emissions from fossil fuels accounted for 10-25% of carbon abatement. The LCA suggests that provided 43% of the carbon in the biochar remains stable, PBS will out-perform direct combustion of biomass at 33% efficiency in terms of carbon abatement, even if there is no beneficial effect upon soil organic carbon levels from biochar application. - Research highlights: → Biochar systems offer greater carbon abatement than combustion or gasification. → Carbon abatement of 0.7-1.4t CO 2 e/dry tonne of feedstock processed was found. → Change in soil organic carbon stocks induced by biochar is the key sensitivity. → Biochar systems produce less electricity then combustion or gasification.

  19. The promises of the Amazonian soil: shifts in discourses of Terra Preta and biochar

    NARCIS (Netherlands)

    Carlos Bezerra, J.; Turnhout, E.; Melo Vasquez, I.; Francischinelli Rittl, T.; Arts, B.J.M.; Kuijper, Thomas

    2016-01-01

    Biochar – a carbon-rich product used as a soil conditioner – is among the more recent technologies in environmental governance. In the spirit of ecological modernisation, biochar is claimed to deliver multiple benefits for soil fertility and climate change mitigation. However, biochar has a long

  20. Magnetite impregnation effects on the sorbent properties of activated carbons and biochars.

    Science.gov (United States)

    Han, Zhantao; Sani, Badruddeen; Mrozik, Wojciech; Obst, Martin; Beckingham, Barbara; Karapanagioti, Hrissi K; Werner, David

    2015-03-01

    This paper discusses the sorbent properties of magnetic activated carbons and biochars produced by wet impregnation with iron oxides. The sorbents had magnetic susceptibilities consistent with theoretical predictions for carbon-magnetite composites. The high BET surface areas of the activated carbons were preserved in the synthesis, and enhanced for one low surface area biochar by dissolving carbonates. Magnetization decreased the point of zero charge. Organic compound sorption correlated strongly with BET surface areas for the pristine and magnetized materials, while metal cation sorption did not show such a correlation. Strong sorption of the hydrophobic organic contaminant phenanthrene to the activated carbon or biochar surfaces was maintained following magnetite impregnation, while phenol sorption was diminished, probably due to enhanced carbon oxidation. Copper, zinc and lead sorption to the activated carbons and biochars was unchanged or slightly enhanced by the magnetization, and iron oxides also contributed to the composite metal sorption capacity. While a magnetic biochar with 219 ± 3.7 m(2)/g surface area nearly reached the very strong organic pollutant binding capacity of the two magnetic activated carbons, a magnetic biochar with 68 ± 2.8 m(2)/g surface area was the best metal sorbent. Magnetic biochars thus hold promise as more sustainable alternatives to coal-derived magnetic activated carbons. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Characteristics of Biochar Obtained by Hydrothermal Carbonization of Cellulose for Renewable Energy

    OpenAIRE

    Daegi Kim; Kunio Yoshikawa; Ki Young Park

    2015-01-01

    The effect of hydrothermal carbonization on the properties of cellulose present in lignocellulosic biomass was investigated for converting it into a renewable energy resource with high energy recovery efficiency. The biochar obtained from cellulose subjected to hydrothermal carbonization showed a significant increase in its carbon content and a calorific value. 13C NMR spectroscopy showed that when raw cellulose was subjected to hydrothermal carbonization above 220 °C, the resulting biochar h...

  2. Effects of Rice Straw and Its Biochar Addition on Soil Labile Carbon and Soil Organic Carbon

    Institute of Scientific and Technical Information of China (English)

    YIN Yun-feng; HE Xin-hua; GAO Ren; MA Hong-liang; YANG Yu-sheng

    2014-01-01

    Whether the biochar amendment could affect soil organic matter (SOM) turnover and hence soil carbon (C) stock remains poorly understood. Effects of the addition of 13C-labelled rice straw or its pyrolysed biochar at 250 or 350°C to a sugarcane soil (Ferrosol) on soil labile C (dissolved organic C, DOC;microbial biomass C, MBC;and mineralizable C, MC) and soil organic C (SOC) were investigated after 112 d of laboratory incubation at 25°C. Four treatments were examined as (1) the control soil without amendment (Soil);(2) soil plus 13C-labelled rice straw (Soil+Straw);(3) soil plus 250°C biochar (Soil+B250) and (4) soil plus 350°C biochar (Soil+B350). Compared to un-pyrolysed straw, biochars generally had an increased aryl C, carboxyl C, C and nitrogen concentrations, a decreased O-alkyl C and C:N ratio, but similar alkyl C and d13C (1 742-1 877‰). Among treatments, signiifcant higher DOC, MBC and MC derived from the new C (straw or biochar) ranked as Soil+Straw>Soil+B250>Soil+B350, whilst signiifcant higher SOC from the new C as Soil+B250>Soil+Straw≈Soil+B350. Compared to Soil, DOC and MBC derived from the native soil were decreased under straw or biochar addition, whilst MC from the native soil was increased under straw addition but decreased under biochar addition. Meanwhile, native SOC was similar among the treatments, irrespective of the straw or biochar addition. Compared to Soil, signiifcant higher total DOC and total MBC were under Soil+Straw, but not under Soil+B250 and Soil+B350, whilst signiifcant higher total MC and total SOC were under straw or biochar addition, except for MC under Soil+B350. Our results demonstrated that the application of biochar to soil may be an appropriate management practice for increasing soil C storage.

  3. Turnover of soil carbon pools following addition of switchgrass-derived biochar to four soils

    Science.gov (United States)

    The amendment of soils with biochar may improve plant growth and sequester carbon, especially in marginal soils not suitable for the majority of commodity production. While biochar can persist in soils, it is not clear whether its persistence is affected by soil type. Moreover, we know little of how...

  4. Biochar as soil amendment to improve soil quality, crop yield, and carbon sequestration

    Science.gov (United States)

    Biochar, a by-product of a thermochemical process called pyrolysis, which involves burning of any agricultural and animal waste (biomass) under high temperature and absence of oxygen. It is assumed that since biochar is very high in aromatic carbon, which persists in soil environment for very long ...

  5. Composting, anaerobic digestion and biochar production in Ghana. Environmental–economic assessment in the context of voluntary carbon markets

    International Nuclear Information System (INIS)

    Galgani, Pietro; Voet, Ester van der; Korevaar, Gijsbert

    2014-01-01

    Highlights: • Economic–environmental assessment of combining composting with biogas and biochar in Ghana. • These technologies can save greenhouse gas emissions for up to 0.57 t CO 2 eq/t of waste treated. • Labor intensive, small-scale organic waste management is not viable without financial support. • Carbon markets would make these technologies viable with carbon prices in the range of 30–84 EUR/t. - Abstract: In some areas of Sub-Saharan Africa appropriate organic waste management technology could address development issues such as soil degradation, unemployment and energy scarcity, while at the same time reducing emissions of greenhouse gases. This paper investigates the role that carbon markets could have in facilitating the implementation of composting, anaerobic digestion and biochar production, in the city of Tamale, in the North of Ghana. Through a life cycle assessment of implementation scenarios for low-tech, small scale variants of the above mentioned three technologies, the potential contribution they could give to climate change mitigation was assessed. Furthermore an economic assessment was carried out to study their viability and the impact thereon of accessing carbon markets. It was found that substantial climate benefits can be achieved by avoiding landfilling of organic waste, producing electricity and substituting the use of chemical fertilizer. Biochar production could result in a net carbon sequestration. These technologies were however found not to be economically viable without external subsidies, and access to carbon markets at the considered carbon price of 7 EUR/ton of carbon would not change the situation significantly. Carbon markets could help the realization of the considered composting and anaerobic digestion systems only if the carbon price will rise above 75–84 EUR/t of carbon (respectively for anaerobic digestion and composting). Biochar production could achieve large climate benefits and, if approved as a land

  6. Composting, anaerobic digestion and biochar production in Ghana. Environmental–economic assessment in the context of voluntary carbon markets

    Energy Technology Data Exchange (ETDEWEB)

    Galgani, Pietro, E-mail: p.galgani@hotmail.com [Department of Industrial Ecology, Institute of Environmental Sciences, Leiden University, Van Steenis gebouw, Einsteinweg 2, 2333CC Leiden (Netherlands); Voet, Ester van der [Department of Industrial Ecology, Institute of Environmental Sciences, Leiden University, Van Steenis gebouw, Einsteinweg 2, 2333CC Leiden (Netherlands); Korevaar, Gijsbert [Department of Energy and Industry, Faculty of Technology, Policy, and Management, Delft University of Technology, Jaffalaan 5, 2628 BX Delft (Netherlands)

    2014-12-15

    Highlights: • Economic–environmental assessment of combining composting with biogas and biochar in Ghana. • These technologies can save greenhouse gas emissions for up to 0.57 t CO{sub 2} eq/t of waste treated. • Labor intensive, small-scale organic waste management is not viable without financial support. • Carbon markets would make these technologies viable with carbon prices in the range of 30–84 EUR/t. - Abstract: In some areas of Sub-Saharan Africa appropriate organic waste management technology could address development issues such as soil degradation, unemployment and energy scarcity, while at the same time reducing emissions of greenhouse gases. This paper investigates the role that carbon markets could have in facilitating the implementation of composting, anaerobic digestion and biochar production, in the city of Tamale, in the North of Ghana. Through a life cycle assessment of implementation scenarios for low-tech, small scale variants of the above mentioned three technologies, the potential contribution they could give to climate change mitigation was assessed. Furthermore an economic assessment was carried out to study their viability and the impact thereon of accessing carbon markets. It was found that substantial climate benefits can be achieved by avoiding landfilling of organic waste, producing electricity and substituting the use of chemical fertilizer. Biochar production could result in a net carbon sequestration. These technologies were however found not to be economically viable without external subsidies, and access to carbon markets at the considered carbon price of 7 EUR/ton of carbon would not change the situation significantly. Carbon markets could help the realization of the considered composting and anaerobic digestion systems only if the carbon price will rise above 75–84 EUR/t of carbon (respectively for anaerobic digestion and composting). Biochar production could achieve large climate benefits and, if approved as a land

  7. Biochar affects carbon composition and stability in soil: a combined spectroscopy-microscopy study

    Science.gov (United States)

    Hernandez-Soriano, Maria C.; Kerré, Bart; Kopittke, Peter M.; Horemans, Benjamin; Smolders, Erik

    2016-01-01

    The use of biochar can contribute to carbon (C) storage in soil. Upon addition of biochar, there is a spatial reorganization of C within soil particles, but the mechanisms remain unclear. Here, we used Fourier transformed infrared-microscopy and confocal laser scanning microscopy to examine this reorganization. A silty-loam soil was amended with three different organic residues and with the biochar produced from these residues and incubated for 237 d. Soil respiration was lower in biochar-amended soils than in residue-amended soils. Fluorescence analysis of the dissolved organic matter revealed that biochar application increased a humic-like fluorescent component, likely associated with biochar-C in solution. The combined spectroscopy-microscopy approach revealed the accumulation of aromatic-C in discrete spots in the solid-phase of microaggregates and its co-localization with clay minerals for soil amended with raw residue or biochar.The co-localization of aromatic-C:polysaccharides-C was consistently reduced upon biochar application. We conclude that reduced C metabolism is an important mechanism for C stabilization in biochar-amended soils. PMID:27113269

  8. Biochar affects carbon composition and stability in soil: a combined spectroscopy-microscopy study

    Science.gov (United States)

    Hernandez-Soriano, Maria C.; Kerré, Bart; Kopittke, Peter M.; Horemans, Benjamin; Smolders, Erik

    2016-04-01

    The use of biochar can contribute to carbon (C) storage in soil. Upon addition of biochar, there is a spatial reorganization of C within soil particles, but the mechanisms remain unclear. Here, we used Fourier transformed infrared-microscopy and confocal laser scanning microscopy to examine this reorganization. A silty-loam soil was amended with three different organic residues and with the biochar produced from these residues and incubated for 237 d. Soil respiration was lower in biochar-amended soils than in residue-amended soils. Fluorescence analysis of the dissolved organic matter revealed that biochar application increased a humic-like fluorescent component, likely associated with biochar-C in solution. The combined spectroscopy-microscopy approach revealed the accumulation of aromatic-C in discrete spots in the solid-phase of microaggregates and its co-localization with clay minerals for soil amended with raw residue or biochar.The co-localization of aromatic-C:polysaccharides-C was consistently reduced upon biochar application. We conclude that reduced C metabolism is an important mechanism for C stabilization in biochar-amended soils.

  9. Application of Fast Pyrolysis Biochar to a Loamy soil - Effects on carbon and nitrogen dynamics and potential for carbon sequestration

    DEFF Research Database (Denmark)

    Bruun, Esben

    -biochar for agronomic use, since field trials are needed in order to verify potential benefits or drawbacks on soil fertility and crop yields. However, this thesis has improved the mechanistic understanding of the effects of applying FP-biochar to soil, and shows that wheat-straw FP-biochar has properties beneficial...... increased it moderately. Moreover, soil amendment of FP-biochar caused immobilization of considerable amounts of soil N, whereas SP-biochar resulted in a net mineralization of N after two months of soil incubation. Nitrogen immobilisation can be detrimental to crop yields, as shown in a Barley pot trial......Thermal decomposition of biomass in an oxygen-free environment (pyrolysis) produces bio-oil, syngas, and char. All three products can be used to generate energy, but an emerging new use of the recalcitrant carbon-rich char (biochar) is to apply it to the soil in order to enhance soil fertility...

  10. Effect of carbonization temperatures on biochar formation of bamboo leaves

    Science.gov (United States)

    Pattnaik, D.; Kumar, S.; Bhuyan, S. K.; Mishra, S. C.

    2018-03-01

    Bamboo is a typical plant native in Asia, been used in many sectors, which also produces a large volume of leaves which goes waste and not find its application for any useful purposes; is often considered as a bio-waste and normally incinerated or dumped; as its applications are not yet fully explored. However, some research work done on bamboo fibers for use as a reinforcement in making polymer matrix composite. In the present piece of research work, the influence of burning/carbonization of bamboo leaves (at different temperatures) have been studied and characterized. Proximate analysis gave the fixed carbon content (of ~nearly21%). X-Ray diffraction results revealed the presence of various phases viz. cristobalite (SiO2), Calcite (Ca2O3) etc. accompanied with changes in crystal structures. Fourier transform infrared spectroscopy results showed various modes of vibrations viz. O-H stretching bending of other bonds; (for aromatic benzene derivatives) etc. Scanning Electron Microscopic observation (of morphology) showed irregular stacking arrangements between the randomly spaced lamellae structure, with variation in carbonizing temperature. Results revealed the advantages of pyrolysis process in biochar production/formation. It appears that, the bamboo biochar can have suitable properties for its use as an alternative energy source and also for agricultural applications. Its high porosity and carbon content suggest its application as activated carbon also; after physical or chemical treatments. The present research focuses on extending the frontiers of use of bamboo leaves from being an unutilized biowaste to its conversion into a value added product, which can be compassed in terms of sustainable applications.

  11. Activated carbon, biochar and charcoal: Linkages and synergies across pyrogenic carbon's ABC

    Science.gov (United States)

    Biochar and activated carbon, both carbonaceous pyrogenic materials, are important products for environmental technology and intensively studied for a multitude of purposes. A strict distinction between these materials is not always possible, and also a generally accepted terminology is lacking. How...

  12. Soil carbon mineralization following biochar addition associated with external nitrogen

    Directory of Open Access Journals (Sweden)

    Rudong Zhao

    2015-12-01

    Full Text Available Biochar has been attracting increasing attention for its potentials of C sequestration and soil amendment. This study aimed to understand the effects of combining biochar with additional external N on soil C mineralization. A typical red soil (Plinthudults was treated with two biochars made from two types of plantation-tree trunks (soil-biochar treatments, and was also treated with external N (soil-biochar-N treatments. All treatments were incubated for 42 d. The CO2-C released from the treatments was detected periodically. After the incubation, soil properties such as pH, microbial biomass C (MBC, and microbial biomass N (MBN were measured. The addition of biochar with external N increased the soil pH (4.31-4.33 compared to the soil treated with external N only (4.21. This was not observed in the comparison of soil-biochar treatments (4.75-4.80 to soil only (4.74. Biochar additions (whether or not they were associated with external N increased soil MBC and MBN, but decreased CO2-C value per unit total C (added biochar C + soil C according to the model fitting. The total CO2-C released in soil-biochar treatments were enhanced compared to soil only (i.e., 3.15 vs. 2.57 mg and 3.23 vs. 2.45 mg, which was attributed to the labile C fractions in the biochars and through soil microorganism enhancement. However, there were few changes in soil C mineralization in soil-biochar-N treatments. Additionally, the potentially available C per unit total C in soil-biochar-N treatments was lower than that observed in the soil-biochar treatments. Therefore, we believe in the short term, that C mineralization in the soil can be enhanced by biochar addition, but not by adding external N concomitantly.

  13. Biochar, compost and biochar-compost blend as options to recover nutrients and sequester carbon.

    Science.gov (United States)

    Oldfield, Thomas L; Sikirica, Nataša; Mondini, Claudio; López, Guadalupe; Kuikman, Peter J; Holden, Nicholas M

    2018-07-15

    This work assessed the potential environmental impact of recycling organic materials in agriculture via pyrolysis (biochar) and composting (compost), as well its combination (biochar-compost blend) versus business-as-usual represented by mineral fertiliser. Life cycle assessment methodology was applied using data sourced from experiments (FP7 project Fertiplus) in three countries (Spain, Italy and Belgium), and considering three environmental impact categories, (i) global warming; (ii) acidification and (iii) eutrophication. The novelty of this analysis is the inclusion of the biochar-compost blend with a focus on multiple European countries, and the inclusion of the acidification and eutrophication impact categories. Biochar, compost and biochar-compost blend all resulted in lower environmental impacts than mineral fertiliser from a systems perspective. Regional differences were found between biochar, compost and biochar-compost blend. The biochar-compost blend offered benefits related to available nutrients and sequestered C. It also produced yields of similar magnitude to mineral fertiliser, which makes its acceptance by farmers more likely whilst reducing environmental impacts. However, careful consideration of feedstock is required. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Influence of fast pyrolysis temperature on biochar labile fraction and short-term carbon loss in a loamy soil

    DEFF Research Database (Denmark)

    Bruun, Esben; Hauggaard-Nielsen, Henrik; Ibrahim, Norazana

    2011-01-01

    Production of bio-oil, gas and biochar from pyrolysis of biomass is considered a promising technology for combined production of bioenergy and recalcitrant carbon (C) suitable for sequestration in soil. Using a fast pyrolysis centrifuge reactor (PCR) the present study investigated the relation...... between fast pyrolysis of wheat straw at different reactor temperatures and the short-term degradability of biochar in soil. After 115 days incubation 3–12% of the added biochar-C had been emitted as CO2. On average, 90% of the total biochar-C loss occurred within the first 20 days of the experiment......, emphasizing the importance of knowing the biochar labile fraction when evaluating a specific biochars C sequestration potential. The pyrolysis temperature influenced the outputs of biochar, bio-oil and syngas significantly, as well as the stability of the biochar produced. Contrary to slow pyrolysis a fast...

  15. Biochar as a Strategy for Sustainable Land Management, Poverty Reduction and Climate Change Mitigation/Adaptation? Thermolysis of lignin for value-added products

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez Tejerina, V.M.

    2010-08-15

    In the context of current concerns about food security, energy security and environmental degradation, the characteristics of biochar are analyzed to determine if biochar systems are a possible solution to these interlinked global issues. With this purpose, the mechanisms by which biochar can affect global biogeochemical cycles are revised. Feasibility of biochar production and application to soil, among other options, is then examined under the criteria of energy, greenhouse gas emissions and financial performance. This is carried out by using life-cycle assessments (LCA) from the literature and by performing a cost-benefit analysis, in the context of a developing country. It is determined that, under certain conditions detailed in the body of the work, biochar can be well suited as a strategy for promoting sustainable land management, climate change mitigation and adaptation, and subsequently, poverty reduction. Among the relevant variables that determine the feasibility of biochar systems are: feedstock; production conditions; geographic context; and current management of biomass.

  16. [Impacts of rice straw biochar on organic carbon and CO2 release in arable soil].

    Science.gov (United States)

    Ke, Yue-Jin; Hu, Xue-Yu; Yi, Qing; Yu, Zhong

    2014-01-01

    In order to investigate the stability of biochar and the effect of biochar when added into soil on soil organic carbon, a 130-day incubation experiment was conducted with rice straw biochar produced at 500 degrees C and 700 degrees C (RBC500 and RBC700) and with addition rates of 0% (control), 3%, 6% and 100% (pure biochar), to detect the change of total organic carbon (TOC), easily oxidized carbon (EOC) and status of CO2 release, following addition of biochar in arable soil. Results showed that: the content of both TOC and EOC in soil increased with biochar addition rates comparing with the control. RBC500 had greater contributions to both TOC and EOC increasing amounts than those of RBC700 under the same biochar addition rate. TOC contents of all treatments decreased during the initial 30 days with the largest decreasing amplitude of 15.8%, and tended to be stable in late incubation stages. Same to that of TOC, EOC contents of all treatments also tended to remain stable after 30 days, but in the 30 days of early incubation, EOC in the soil decreased by 72.4% and 81.7% respectively when the added amount of RBC500 was 3% and 6% , while it was reduced by 61.3% and 69.8% respectively when the added amount of RBC700 was 3% and 6%. EOC contents of soil added with biochar produced at the same temperature were similar in the end of incubation. The reduction of soil EOC content in early incubation may be related to mineralization caused by labile fractions of biochar. During the 130-day incubation, the accumulated CO2 releases showed an order of soil and biochar mixtures soil could reduce CO2 release, the largest reduction amplitude is 41.05%. In a long time scale, biochar as a soil amendment is favorable to the deduction of greenhouse gas release and soil carbon immobilization. Biochar could be used as a soil carbon sequestration carrier.

  17. Carbon sequestration potential and physicochemical properties differ between wildfire charcoals and slow-pyrolysis biochars.

    Science.gov (United States)

    Santín, Cristina; Doerr, Stefan H; Merino, Agustin; Bucheli, Thomas D; Bryant, Rob; Ascough, Philippa; Gao, Xiaodong; Masiello, Caroline A

    2017-09-11

    Pyrogenic carbon (PyC), produced naturally (wildfire charcoal) and anthropogenically (biochar), is extensively studied due to its importance in several disciplines, including global climate dynamics, agronomy and paleosciences. Charcoal and biochar are commonly used as analogues for each other to infer respective carbon sequestration potentials, production conditions, and environmental roles and fates. The direct comparability of corresponding natural and anthropogenic PyC, however, has never been tested. Here we compared key physicochemical properties (elemental composition, δ 13 C and PAHs signatures, chemical recalcitrance, density and porosity) and carbon sequestration potentials of PyC materials formed from two identical feedstocks (pine forest floor and wood) under wildfire charring- and slow-pyrolysis conditions. Wildfire charcoals were formed under higher maximum temperatures and oxygen availabilities, but much shorter heating durations than slow-pyrolysis biochars, resulting in differing physicochemical properties. These differences are particularly relevant regarding their respective roles as carbon sinks, as even the wildfire charcoals formed at the highest temperatures had lower carbon sequestration potentials than most slow-pyrolysis biochars. Our results challenge the common notion that natural charcoal and biochar are well suited as proxies for each other, and suggest that biochar's environmental residence time may be underestimated when based on natural charcoal as a proxy, and vice versa.

  18. Insights on the molecular mechanism for the recalcitrance of biochars: interactive effects of carbon and silicon components.

    Science.gov (United States)

    Guo, Jianhua; Chen, Baoliang

    2014-08-19

    Few studies have investigated the effects of structural heterogeneity (particularly the interactions of silicon and carbon) on the mechanisms for the recalcitrance of biochar. In this study, the molecular mechanisms for the recalcitrance of biochars derived from rice straw at 300, 500, and 700 °C (named RS300, RS500, and RS700, respectively) were elucidated. Short-term (24 h) and long-term (240 h) oxidation kinetics experiments were conducted under different concentrations of H2O2 to distinguish the stable carbon pools in the biochars. We discovered that the stabilities of the biochars were influenced not only by their aromaticity but also through possible protection by silicon encapsulation, which is regulated by pyrolysis temperatures. The aromatic components and recalcitrance of the biochars increased with increasing pyrolysis temperatures. The morphologies of the carbon forms in all of the biochars were also greatly associated with those of silica. Silica-encapsulation protection only occurred for RS500, not for RS300 and RS700. In RS300, carbon and silica were both amorphous, and they were easily decomposed by H2O2. The separation of crystalline silica from condensed aromatic carbon in RS700 eliminated the protective role of silicon on carbon. The effect of the biochar particle size on the stability of the biochar was greatly influenced by C-Si interactions and by the oxidation intensities. A novel silicon-and-carbon-coupled framework model was proposed to guide biochar carbon sequestration.

  19. Adsorption with Biochar or Activated Carbon as Treatment Processes for Greywater Reuse

    Science.gov (United States)

    Thompson, K.; Cook, S. M.; Summers, R. S.

    2017-12-01

    Nearly 3 billion people experience water scarcity in their watershed for at least one month every year. Population growth, urbanization, and global climate change are increasing the severity of water scarcity in many areas. Decentralized reuse of greywater from showers, baths, and bathroom sinks could reduce residential water demand by 35% and urban water demand by 15%. Decentralized greywater reuse could be environmentally sustainable due to less energy for pumping than centralized systems. However, decentralized greywater reuse presents challenges from economies of scale. Biochar can serve as a low-cost, environmentally sustainable alternative to activated carbon (AC) in water treatment. Many studies have explored biochar as a sorbent for surface water or wastewater, but studies about biochar for greywater treatment are limited. The objectives of this study were (1) to compare the performance of biochar and AC for sorption of dissolved organic carbon (DOC) in greywater and (2) to determine whether AC or biochar can satisfy greywater treatment regulations alone or in combination with other processes. Jar tests with doses ranges of 0.25 to 4 g/L were used to compare sorbents for DOC removal after various pretreatments. All sorbents were ground to ≤45 µm particle diameter. Five biochars were screened to select the most effective greywater sorbent. These biochars covered a range of production temperatures, feedstocks, and lab- and full-scale production. Wood-based forced draft top lit updraft biochar (FD-TLUD) biochar was found to be the most effective for DOC removal from both real and synthetic greywater. Sorption with FD-TLUD biochar or AC can remove up to 70% or 80% of DOC from greywater, respectively. AC sorption of DOC was only 1-10% greater at each dose from a greywater sample with 11 mg/L DOC than from a greywater sample with 43 mg/L DOC. Coagulation with 30 mg/L alum removed 14% of greywater DOC, and biochar or AC sorption removed similar percentages of

  20. Innovative Process to Enrich Carbon Content of EFB-Derived Biochar as an Alternative Energy Source in Ironmaking

    Directory of Open Access Journals (Sweden)

    Hadi Purwanto

    2018-01-01

    Full Text Available This paper describes the mechanism of a developed process—an integrated pyrolysis-tar decomposition process—to produce oil palm empty fruit bunch- (EFB- derived biochar with additional solid carbon within the biochar bodies, produced by decomposition of tar vapor on its pore surface, using the chemical vapor infiltration (CVI method. The product, carbon-infiltrated biochar, was characterized to investigate the possibility to be used as partial coke breeze replacement in ironmaking. Carbon-infiltrated biochar is proposed to be utilized for a sintering process that could reduce the consumption of coke and CO2 emission in iron-steel industry.

  1. [Priming effect of biochar on the minerialization of native soil organic carbon and the mechanisms: A review.

    Science.gov (United States)

    Chen, Ying; Liu, Yu Xue; Chen, Chong Jun; Lyu, Hao Hao; Wa, Yu Ying; He, Li Li; Yang, Sheng Mao

    2018-01-01

    In recent years, studies on carbon sequestration of biochar in soil has been in spotlight owing to the specific characteristics of biochar such as strong carbon stability and well developed pore structure. However, whether biochar will ultimately increase soil carbon storage or promote soil carbon emissions when applied into the soil? This question remains controversial in current academic circles. Further research is required on priming effect of biochar on mineralization of native soil organic carbon and its mechanisms. Based on the analysis of biochar characteristics, such as its carbon composition and stability, pore structure and surface morphology, research progress on the priming effect of biochar on the decomposition of native soil organic carbon was reviewed in this paper. Furthermore, possible mechanisms of both positive and negative priming effect, that is promoting and suppressing the mineralization, were put forward. Positive priming effect is mainly due to the promotion of soil microbial activity caused by biochar, the preferential mineralization of easily decomposed components in biochar, and the co-metabolism of soil microbes. While negative priming effect is mainly based on the encapsulation and adsorption protection of soil organic matter due to the internal pore structure and the external surface of biochar. Other potential reasons for negative priming effect can be the stabilization resulted from the formation of organic-inorganic complex promoted by biochar in the soil, and the inhibition of activity of soil microbes and its enzymes by biochar. Finally, future research directions were proposed in order to provide theoretical basis for the application of biochar in soil carbon sequestration.

  2. Activated Biochars with Iron for In-Situ Sequestration of Organics, Metals and Carbon

    Science.gov (United States)

    2012-04-30

    Soil and Sediment Remediation. Beckingham B., Gomez-Eyles J.L., Riedel, G., Gilmour, C. and Ghosh, U. European Geosciences Union ( EGU ) General Assembly ...sorption of the contaminants to natural organic matter (OM), derived using generic Kow to Koc relationships obtained from the literature...that the n term is generally lower for the biochars than the activated carbons suggests strong sorption sites are more limited in the biochars, and

  3. Enhanced rice production but greatly reduced carbon emission following biochar amendment in a metal-polluted rice paddy.

    Science.gov (United States)

    Zhang, Afeng; Bian, Rongjun; Li, Lianqing; Wang, Xudong; Zhao, Ying; Hussain, Qaiser; Pan, Genxing

    2015-12-01

    Soil amendment of biochar (BSA) had been shown effective for mitigating greenhouse gas (GHG) emission and alleviating metal stress to plants and microbes in soil. It has not yet been addressed if biochar exerts synergy effects on crop production, GHG emission, and microbial activity in metal-polluted soils. In a field experiment, biochar was amended at sequential rates at 0, 10, 20, and 40 t ha(-1), respectively, in a cadmium- and lead-contaminated rice paddy from the Tai lake Plain, China, before rice cropping in 2010. Fluxes of soil carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) were monitored using a static chamber method during the whole rice growing season (WRGS) of 2011. BSA significantly reduced soil CaCl2 extractable pool of Cd, and DTPA extractable pool of Cd and Pb. As compared to control, soil CO2 emission under BSA was observed to have no change at 10 t ha(-1) but decreased by 16-24% at 20 and 40 t ha(-1). In a similar trend, BSA at 20 and 40 t ha(-1) increased rice yield by 25-26% and thus enhanced ecosystem CO2 sequestration by 47-55% over the control. Seasonal total N2O emission was reduced by 7.1, 30.7, and 48.6% under BSA at 10, 20, and 40 t ha(-1), respectively. Overall, a net reduction in greenhouse gas balance (NGHGB) by 53.9-62.8% and in greenhouse gas intensity (GHGI) by 14.3-28.6% was observed following BSA at 20 and 40 t ha(-1). The present study suggested a great potential of biochar to enhancing grain yield while reducing carbon emission in metal-polluted rice paddies.

  4. Biochar: Promoting citizen driven carbon capture economies by developing science-inspired products that create a pull in the biochar market.

    Science.gov (United States)

    Hood-Nowotny, Rebecca; Ziss, Elisabeth

    2017-04-01

    Prevention of catastrophic climate change requires push-pull mechanisms to attain critical mass engagement in reducing global carbon emissions or through large scale carbon capture, which is currently administered through international carbon trading schemes. Unfortunately the formal carbon trading market appears to be in disarray, as there is crisis of trust in the system; as a result the carbon credit prices are low and investment in solutions has almost ground to a halt. However there is still a public and commercial demand for trustworthy carbon credit products; consequently a vibrant and growing market. With this in mind we wanted to develop high value carbon-based substitution products for glass house production that that could have significant peripheral benefits to create market pull mechanisms. We systematically tested a variety biochar based products in hydroponic growing systems and commercial nursery scenarios, to determine their potential as substitute products. Results suggested that the high pH of the raw-biochar produced rendered it unsuitable for hydroponic production. Blending and buffering of the biochar for plant production was investigated and showed greater promise with comparable production potential. In another arm of horticultural production millions of cubic metres of peat are used across Europe each year. Biochar has a number of comparable properties to peat, it holds water, forms air pockets or pores to provide oxygen to plant roots and allows for drainage, it is light and most importantly it is sterile. In combination with other horticultural media such as compost, biochar blends could be a viable alternative to peat. Although there has been an explosion of research into the effect of biochar as a soil amendment, most of these publications deal with the impact of biochar on the carbon sequestration capacity of soils however few address the peripheral benefits of biochar on soil water holding capacity specifically in a horticultural

  5. Highly ordered macroporous woody biochar with ultra-high carbon content as supercapacitor electrodes

    International Nuclear Information System (INIS)

    Jiang, Junhua; Zhang, Lei; Wang, Xinying; Holm, Nancy; Rajagopalan, Kishore; Chen, Fanglin; Ma, Shuguo

    2013-01-01

    Woody biochar monolith with ultra-high carbon content and highly ordered macropores has been prepared via one-pot pyrolysis and carbonization of red cedar wood at 750 °C without the need of post-treatment. Energy-dispersive spectroscope (EDX) and scanning electron microscope (SEM) studies show that the original biochar has a carbon content of 98 wt% with oxygen as the only detectable impurity and highly ordered macroporous texture characterized by alternating regular macroporous regions and narrow porous regions. Moreover, the hierarchically porous biochar monolith has a high BET specific surface area of approximately 400 m 2 g −1 . We have studied the monolith material as supercapacitor electrodes under acidic environment using electrochemical and surface characterization techniques. Electrochemical measurements show that the original biochar electrodes have a potential window of about 1.3 V and exhibit typical rectangular-shape voltammetric responses and fast charging–discharging behavior with a gravimetric capacitance of about 14 F g −1 . Simple activation of biochar in diluted nitric acid at room temperature leads to 7 times increase in the capacitance (115 F g −1 ). Because the HNO 3 -activation slightly decreases rather than increases the BET surface area of the biochar, an increase in the coverage of surface oxygen groups is the most likely origin of the substantial capacitance improvement. This is supported by EDX, X-ray photoelectron spectroscopy (XPS), and Raman measurements. Preliminary life-time studies show that biochar supercapacitors using the original and HNO 3 -activated electrodes are stable over 5000 cycles without performance decays. These facts indicate that the use of woody biochar is promising for its low cost and it can be a good performance electrode with low environmental impacts for supercapacitor applications

  6. Effect of biochar or activated carbon amendment on the volatilisation and biodegradation of organic soil pollutants

    Science.gov (United States)

    Werner, David; Meynet, Paola; Bushnaf, Khaled

    2013-04-01

    Biochar or activated carbon added to contaminated soil may temporarily reduce the volatilisation of organic pollutants by enhanced sorption. The long-term effect of sorbent amendments on the fate of volatile petroleum hydrocarbon mixtures (VPHs) will depend on the responses of the soil bacterial community members, especially those which may utilize VPHs as carbon substrates. We investigated the volatilisation and biodegradation of VPHs emanating from NAPL sources and migrating through one meter long columns containing unsaturated sandy soil with and without 2% biochar or activated carbon amendment. After 420 days, VPH volatilisation from AC amended soil was less than 10 percent of the cumulative VPH volatilisation flux from unamended soil. The cumulative CO2 volatilisation flux increased more slowly in AC amended soil, but was comparable to the untreated soil after 420 days. This indicated that the pollution attenuation over a 1 meter distance was improved by the AC amendment. Biochar was a weaker VPH sorbent than AC and had a lesser effect on the cumulative VPH and CO2 fluxes. We also investgated the predominant bacterial community responses in sandy soil to biochar and/or VPH addition with a factorially designed batch study, and by analyzing preserved soil samples. Biochar addition alone had only weak effects on soil bacterial communities, while VPH addition was a strong community structure shaping factor. The bacterial community effects of biochar-enhanced VPH sorption were moderated by the limited biomass carrying capacity of the sandy soil investigated which contained only low amounts of inorganic nitrogen. Several Pseudomonas spp., including Pseudomonas putida strains, became dominant in VPH polluted soil with and without biochar. The ability of these versatile VPH degraders to effectively regulate their metabolic pathways according to substrate availabilities may additionally have moderated bacterial community structure responses to the presence of biochar

  7. Stabilization of carbon in composts and biochars in relation to carbon sequestration and soil fertility.

    Science.gov (United States)

    Bolan, N S; Kunhikrishnan, A; Choppala, G K; Thangarajan, R; Chung, J W

    2012-05-01

    There have been increasing interests in the conversion of organic residues into biochars in order to reduce the rate of decomposition, thereby enhancing carbon (C) sequestration in soils. However energy is required to initiate the pyrolysis process during biochar production which can also lead to the release of greenhouse gasses. Alternative methods can be used to stabilize C in composts and other organic residues without impacting their quality. The objectives of this study include: (i) to compare the rate of decomposition among various organic amendments and (ii) to examine the effect of clay materials on the stabilization of C in organic amendments. The decomposition of a number of organic amendments (composts and biochars) was examined by monitoring the release of carbon-dioxide using respiration experiments. The results indicated that the rate of decomposition as measured by half life (t(1/2)) varied between the organic amendments and was higher in sandy soil than in clay soil. The half life value ranged from 139 days in the sandy soil and 187 days in the clay soil for poultry manure compost to 9989 days for green waste biochar. Addition of clay materials to compost decreased the rate of decomposition, thereby increasing the stabilization of C. The half life value for poultry manure compost increased from 139 days to 620, 806 and 474 days with the addition of goethite, gibbsite and allophane, respectively. The increase in the stabilization of C with the addition of clay materials may be attributed to the immobilization of C, thereby preventing it from microbial decomposition. Stabilization of C in compost using clay materials did not impact negatively the value of composts in improving soil quality as measured by potentially mineralizable nitrogen and microbial biomass carbon in soil. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Gasification biochar as a valuable by-product for carbon sequestration and soil amendment

    International Nuclear Information System (INIS)

    Hansen, Veronika; Müller-Stöver, Dorette; Ahrenfeldt, Jesper; Holm, Jens Kai; Henriksen, Ulrik Birk; Hauggaard-Nielsen, Henrik

    2015-01-01

    Thermal gasification of various biomass residues is a promising technology for combining bioenergy production with soil fertility management through the application of the resulting biochar as soil amendment. In this study, we investigated gasification biochar (GB) materials originating from two major global biomass fuels: straw gasification biochar (SGB) and wood gasification biochar (WGB), produced by a Low Temperature Circulating Fluidized Bed gasifier (LT-CFB) and a TwoStage gasifier, respectively, optimized for energy conversion. Stability of carbon in GB against microbial degradation was assessed in a short-term soil incubation study and compared to the traditional practice of direct incorporation of cereal straw. The GBs were chemically and physically characterized to evaluate their potential to improve soil quality parameters. After 110 days of incubation, about 3% of the added GB carbon was respired as CO 2 , compared to 80% of the straw carbon added. The stability of GB was also confirmed by low H/C and O/C atomic ratios with lowest values for WGB (H/C 0.12 and O/C 0.10). The soil application of GBs exhibited a liming effect increasing the soil pH from ca 8 to 9. Results from scanning electron microscopy and BET analyses showed high porosity and specific surface area of both GBs, indicating a high potential to increase important soil quality parameters such as soil structure, nutrient and water retention, especially for WGB. These results seem promising regarding the possibility to combine an efficient bioenergy production with various soil aspects such as carbon sequestration and soil quality improvements. - Highlights: • Biomass gasification can combine efficient bioenergy production with valuable biochar residuals for soil improvements. • The two investigated gasification biochars are recalcitrant indicating soil carbon sequestration potential. • Gasification biochars are potential soil improvers due to high specific surface area, liming effect

  9. Application of biochar to soil and N2O emissions: potential effects of blending fast‐pyrolysis biochar with anaerobically digested slurry

    DEFF Research Database (Denmark)

    Bruun, Esben; Müller-Stöver, Dorette Sophie; Ambus, Per

    2011-01-01

    Soil applications of recalcitrant biochar offer the possibility of mitigating climate change effects through long‐term carbon sequestration and potentially also by reducing emissions of the potent greenhouse gas nitrous oxide (N2O). This laboratory study examined the effect of combining a fast......‐pyrolysis biochar at small (1% by mass) and large (3%) concentrations with anaerobically digested slurry on soil N2O and carbon dioxide (CO2) emissions over a period of 55 days. The results showed that fast‐pyrolysis biochar applied on its own increased N2O emissions from soil. However, when biochar was applied...... together with slurry, the larger biochar concentration decreased N2O emissions by 47%, relative to those from the slurry treatment with the smaller biochar concentration. Reduced N2O emissions coincided with enhanced soil microbial activity and immobilization of nitrogen. A combined application of biochar...

  10. Induction of systemic resistance in plants by biochar, a soil-applied carbon sequestering agent.

    Science.gov (United States)

    Elad, Yigal; David, Dalia Rav; Harel, Yael Meller; Borenshtein, Menahem; Kalifa, Hananel Ben; Silber, Avner; Graber, Ellen R

    2010-09-01

    Biochar is the solid coproduct of biomass pyrolysis, a technique used for carbon-negative production of second-generation biofuels. The biochar can be applied as a soil amendment, where it permanently sequesters carbon from the atmosphere as well as improves soil tilth, nutrient retention, and crop productivity. In addition to its other benefits in soil, we found that soil-applied biochar induces systemic resistance to the foliar fungal pathogens Botrytis cinerea (gray mold) and Leveillula taurica (powdery mildew) on pepper and tomato and to the broad mite pest (Polyphagotarsonemus latus Banks) on pepper. Levels of 1 to 5% biochar in a soil and a coconut fiber-tuff potting medium were found to be significantly effective at suppressing both diseases in leaves of different ages. In long-term tests (105 days), pepper powdery mildew was significantly less severe in the biochar-treated plants than in the plants from the unamended controls although, during the final 25 days, the rate of disease development in the treatments and controls was similar. Possible biochar-related elicitors of systemic induced resistance are discussed.

  11. Stabilization of carbon in composts and biochars in relation to carbon sequestration and soil fertility

    International Nuclear Information System (INIS)

    Bolan, N.S.; Kunhikrishnan, A.; Choppala, G.K.; Thangarajan, R.; Chung, J.W.

    2012-01-01

    There have been increasing interests in the conversion of organic residues into biochars in order to reduce the rate of decomposition, thereby enhancing carbon (C) sequestration in soils. However energy is required to initiate the pyrolysis process during biochar production which can also lead to the release of greenhouse gasses. Alternative methods can be used to stabilize C in composts and other organic residues without impacting their quality. The objectives of this study include: (i) to compare the rate of decomposition among various organic amendments and (ii) to examine the effect of clay materials on the stabilization of C in organic amendments. The decomposition of a number of organic amendments (composts and biochars) was examined by monitoring the release of carbon-dioxide using respiration experiments. The results indicated that the rate of decomposition as measured by half life (t 1/2 ) varied between the organic amendments and was higher in sandy soil than in clay soil. The half life value ranged from 139 days in the sandy soil and 187 days in the clay soil for poultry manure compost to 9989 days for green waste biochar. Addition of clay materials to compost decreased the rate of decomposition, thereby increasing the stabilization of C. The half life value for poultry manure compost increased from 139 days to 620, 806 and 474 days with the addition of goethite, gibbsite and allophane, respectively. The increase in the stabilization of C with the addition of clay materials may be attributed to the immobilization of C, thereby preventing it from microbial decomposition. Stabilization of C in compost using clay materials did not impact negatively the value of composts in improving soil quality as measured by potentially mineralizable nitrogen and microbial biomass carbon in soil. - Graphical abstract: Stabilization of compost using clay materials (e.g. allophane) enhances carbon sequestration in soils. Highlights: ► Comparison of decomposition rate

  12. Stabilization of carbon in composts and biochars in relation to carbon sequestration and soil fertility

    Energy Technology Data Exchange (ETDEWEB)

    Bolan, N.S., E-mail: Nanthi.Bolan@unisa.edu.au [Centre for Environmental Risk Assessment and Remediation (CERAR), University of South Australia, SA 5095 (Australia); Cooperative Research Centre for Contaminants Assessment and Remediation of the Environment (CRC CARE), University of South Australia, SA 5095 (Australia); Kunhikrishnan, A. [Chemical Safety Division, Department of Agro-Food Safety, National Academy of Agricultural Science, Suwon-si, Gyeonggi-do 441-707 (Korea, Republic of); Choppala, G.K.; Thangarajan, R. [Centre for Environmental Risk Assessment and Remediation (CERAR), University of South Australia, SA 5095 (Australia); Cooperative Research Centre for Contaminants Assessment and Remediation of the Environment (CRC CARE), University of South Australia, SA 5095 (Australia); Chung, J.W. [Department of Environmental Engineering, Gyeongnam National University of Science and Technology, Dongjin-ro 33, Jinju, Gyeongnam, 660-758 (Korea, Republic of)

    2012-05-01

    There have been increasing interests in the conversion of organic residues into biochars in order to reduce the rate of decomposition, thereby enhancing carbon (C) sequestration in soils. However energy is required to initiate the pyrolysis process during biochar production which can also lead to the release of greenhouse gasses. Alternative methods can be used to stabilize C in composts and other organic residues without impacting their quality. The objectives of this study include: (i) to compare the rate of decomposition among various organic amendments and (ii) to examine the effect of clay materials on the stabilization of C in organic amendments. The decomposition of a number of organic amendments (composts and biochars) was examined by monitoring the release of carbon-dioxide using respiration experiments. The results indicated that the rate of decomposition as measured by half life (t{sub 1/2}) varied between the organic amendments and was higher in sandy soil than in clay soil. The half life value ranged from 139 days in the sandy soil and 187 days in the clay soil for poultry manure compost to 9989 days for green waste biochar. Addition of clay materials to compost decreased the rate of decomposition, thereby increasing the stabilization of C. The half life value for poultry manure compost increased from 139 days to 620, 806 and 474 days with the addition of goethite, gibbsite and allophane, respectively. The increase in the stabilization of C with the addition of clay materials may be attributed to the immobilization of C, thereby preventing it from microbial decomposition. Stabilization of C in compost using clay materials did not impact negatively the value of composts in improving soil quality as measured by potentially mineralizable nitrogen and microbial biomass carbon in soil. - Graphical abstract: Stabilization of compost using clay materials (e.g. allophane) enhances carbon sequestration in soils. Highlights: Black

  13. Native Soil Charcoal as a Model for Designing Biochar for Carbon Sequestration

    Science.gov (United States)

    Under changing climate a variety of mechanisms for removing carbon from the atmosphere and sequestering it elsewhere are being considered to reduce the forcing of the atmosphere. Amending soils with biochar has been proposed as one long-term means of sequestering carbon originat...

  14. Characterization of biochars and dissolved organic matter phases obtained upon hydrothermal carbonization of Elodea nuttallii.

    Science.gov (United States)

    Poerschmann, J; Weiner, B; Wedwitschka, H; Zehnsdorf, A; Koehler, R; Kopinke, F-D

    2015-01-01

    The invasive aquatic plant Elodea nuttallii was subjected to hydrothermal carbonization at 200 °C and 240 °C to produce biochar. About 58% w/w of the organic carbon of the pristine plant was translocated into the solid biochar irrespectively of the operating temperature. The process water rich in dissolved organic matter proved a good substrate for biogas production. The E. nuttallii plants showed a high capability of incorporating metals into the biomass. This large inorganic fraction which was mainly transferred into the biochar (except sodium and potassium) may hamper the prospective application of biochar as soil amendment. The high ash content in biochar (∼ 40% w/w) along with its relatively low content of organic carbon (∼ 36% w/w) is associated with low higher heating values. Fatty acids were completely hydrolyzed from lipids due to hydrothermal treatment. Low molecular-weight carboxylic acids (acetic and lactic acid), phenols and phenolic acids turned out major organic breakdown products. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Producing energy while sequestering carbon? The relationship between biochar and agricultural productivity

    International Nuclear Information System (INIS)

    Kauffman, Nathan; Dumortier, Jerome; Hayes, Dermot J.; Brown, Robert C.; Laird, David A.

    2014-01-01

    A partial solution to problems associated with anthropogenic greenhouse gas (GHG) emissions could be the development and deployment of carbon-negative technologies, i.e., producing energy while reducing atmospheric carbon dioxide levels. Biofuels have been considered a possibility but have faced limitations due to competition with food production and GHG emissions through indirect land-use change (ILUC). In this article, we show how emissions from ILUC can potentially be reduced by producing food and bioenergy from biochar amended soils. The possibility of yield improvements from biochar would reduce the land requirement for crop production and thus, lead to a reduction in emissions from ILUC. In our application, biochar and bio-oil are produced via fast pyrolysis of corn stover. Bio-oil is subsequently upgraded into a fuel suitable for use in internal combustion engines. Applying the U.S. regulatory method used to determine biofuel life cycle emissions, our results show that a biochar-induced yield improvement in the U.S. Midwest ranging from 1% to 8% above trend can lead to an ILUC credit between 1.65 and 14.79 t CO 2 -equivalent ha −1  year −1 when future emissions are assessed over the next 30 years. The model is generalizable to other feedstocks and locations and illustrates the relationship between biochar and crop production. - Highlights: • If biochar leads to higher crop yields, a land-use change (LUC) credit applies. • Indirect LUC credit is applied to biofuel if biochar is produced as a by-product. • 1.65 to 14.79 t CO 2 -e ha −1  year −1 credit for 1%–8% yield increase in U.S. Midwest. • Life cycle analysis generalizable to other locations and feedstock

  16. Silk industry and carbon footprint mitigation

    Science.gov (United States)

    Giacomin, A. M.; Garcia, J. B., Jr.; Zonatti, W. F.; Silva-Santos, M. C.; Laktim, M. C.; Baruque-Ramos, J.

    2017-10-01

    Currently there is a concern with issues related to sustainability and more conscious consumption habits. The carbon footprint measures the total amount of greenhouse gas (GHG) emissions produced directly and indirectly by human activities and is usually expressed in tonnes of carbon dioxide (CO2) equivalents. The present study takes into account data collected in scientific literature regarding the carbon footprint, garments produced with silk fiber and the role of mulberry as a CO2 mitigation tool. There is an indication of a positive correlation between silk garments and carbon footprint mitigation when computed the cultivation of mulberry trees in this calculation. A field of them mitigates CO2 equivalents in a proportion of 735 times the weight of the produced silk fiber by the mulberry cultivated area. At the same time, additional researches are needed in order to identify and evaluate methods to advertise this positive correlation in order to contribute to a more sustainable fashion industry.

  17. The influence of feedstock and production temperature on biochar carbon chemistry: A solid-state 13C NMR study

    International Nuclear Information System (INIS)

    McBeath, Anna V.; Smernik, Ronald J.; Krull, Evelyn S.; Lehmann, Johannes

    2014-01-01

    Solid-state 13 C nuclear magnetic resonance (NMR) spectroscopy was used to evaluate the carbon chemistry of twenty-six biochars produced from eleven different feedstocks at production temperatures ranging from 350 °C to 600 °C. Carbon-13 NMR spectra were acquired using both cross-polarisation (CP) and direct polarisation (DP) techniques. Overall, the corresponding CP and DP spectra were similar, although aromaticity was slightly higher and observability much higher when DP was used. The relative size and purity of the aromatic ring structures (i.e. aromatic condensation) were also gauged using the ring current technique. Both aromaticity and aromatic condensation increased with increasing production temperature, regardless of the feedstock source. However, there were clear differences in these two measures for biochars produced at the same temperature but from different feedstocks. Based on a relationship previously established in a long-term incubation study between aromatic condensation and the mean residence time (MRT) of biochar, the MRT of the biochars was estimated to range from 1400 years. This study demonstrates how the combination of feedstock composition and production temperature influences the composition of aromatic domains in biochars, which in turn is likely to be related to their recalcitrance and ultimately their carbon sequestration value. -- Highlights: • Sensitive NMR techniques were used to gauge differences in biochar carbon chemistry. • Varying pyrolysis conditions influences biochars recalcitrant properties. • The MRT of contrasting biochars varies considerably from 1400 years

  18. Effects of biochar and manure amendments on water vapor sorption in a sandy loam soil

    DEFF Research Database (Denmark)

    Arthur, Emmanuel; Tuller, Markus; Moldrup, Per

    2015-01-01

    Over the last few years, the application of biochar (BC) as a soil amendment to sequester carbon and mitigate global climate change has received considerable attention. While positive effects of biochar on plant nutrition are well documented, little is known about potential impacts on the physical....... Hysteresis of the water vapor sorption isotherms increased with increasing BC application rates. Biochar age did not significantly affect vapor sorption and SSA....

  19. Biochar soil amendment for waste-stream diversion, nutrient holding capacity, and carbon sequestration in two contrasting soils

    Science.gov (United States)

    Deem, L. M.; Crow, S. E.; Deenik, J. L.; Penton, C. R.; Yanagida, J.

    2013-12-01

    Biochar is organic matter that has been pyrolized under low oxygen conditions for use as a soil amendment. Currently biochar is viewed as a way to improve soil quality (e.g., increased nutrient and water holding capacity) and increase in soil carbon (C) sequestration. The use of biochar in soil is not new, yet little is known about the underlying mechanisms that control the interactions between biochar and soil following amendment. In the past, the effects of biochar addition on crop yields, soil properties and greenhouse gas (GHG) fluxes in both in-situ and controlled experiments have produced inconsistent results. These discrepancies may be uncovered in part by chemical and physical characterization of the biochar prior to amendment and identification of soil- and biochar-specific interactions. Furthermore, a more holistic consideration of the system may demonstrate the virtues of biochar amendment beyond the typical considerations of yield and gas flux. We expect that as the differences between the physical and chemical properties of the biochar and the soil increase, the impact on the soil quality metrics will also increase. For this study, we used a waste product (i.e., anaerobic digester sludge) biochar with 81.5% C, pH of 10.44, pH-independent charge for anion exchange capacity (AEC) and a pH-dependent charge for cation exchange capacity (CEC), 4.14% moisture content and 25.75 cmol¬c /kg exchangeable base cations. This biochar was incorporated into both a low and a high fertility Hawaiian field soil to quantitate biochar effects on crop yield, soil pH, CEC, AEC, hot and cold water extractable C and nitrogen, bulk density, phosphorus, soil microbial ecology, and GHG flux in varying soil conditions. Compared to the higher fertility soil, we hypothesized that the low fertility soil would demonstrate a greater increase in soil quality, including higher pH, CEC and water holding capacity. Two crop management practices were included with each soil: traditional

  20. In situ application of activated carbon and biochar to PCB-contaminated soil and the effects of mixing regime

    International Nuclear Information System (INIS)

    Denyes, Mackenzie J.; Rutter, Allison; Zeeb, Barbara A.

    2013-01-01

    The in situ use of carbon amendments such as activated carbon (AC) and biochar to minimize the bioavailability of organic contaminants is gaining in popularity. In the first in situ experiment conducted at a Canadian PCB-contaminated Brownfield site, GAC and two types of biochar were statistically equal at reducing PCB uptake into plants. PCB concentrations in Cucurbita pepo root tissue were reduced by 74%, 72% and 64%, with the addition of 2.8% GAC, Burt's biochar and BlueLeaf biochar, respectively. A complementary greenhouse study which included a bioaccumulation study of Eisenia fetida (earthworm), found mechanically mixing carbon amendments with PCB-contaminated soil (i.e. 24 h at 30 rpm) resulted in shoot, root and worm PCB concentrations 66%, 59% and 39% lower than in the manually mixed treatments (i.e. with a spade and bucket). Therefore, studies which mechanically mix carbon amendments with contaminated soil may over-estimate the short-term potential to reduce PCB bioavailability. Highlights: •Biochar and GAC reduced PCB uptake into plants and earthworms. •Biochar offered additional benefits, including increased plant and earthworm biomass. •BSAF reductions are greater when amendments are mechanically vs. manually mixed. •Mechanically mixing carbon amendments may over-estimate their remediation potential. -- In situ AC and biochar soil amendments perform equally well at reducing PCB uptake, however, laboratory-based mixing methods may exaggerate the sorptive capacities of both amendments

  1. A mycorrhizal fungus grows on biochar and captures phosphorus from its surfaces

    DEFF Research Database (Denmark)

    Hammer, Edith; Balogh-Brunstad, Zsuzsanna; Jakobsen, Iver

    2014-01-01

    Biochar application to soils has potential to simultaneously improve soil fertility and store carbon to aid climate change mitigation. While many studies have shown positive effects on plant yields, much less is known about the synergies between biochar and plant growth promoting microbes......, such as mycorrhizal fungi. We present the first evidence that arbuscular mycorrhizal (AM) fungi can use biochar as a physical growth matrix and nutrient source. We used monoxenic cultures of the AM fungus Rhizophagus irregularis in symbiosis with carrot roots. Using scanning electron microscopy we observed that AM...... fungal hyphae grow on and into two contrasting types of biochar particles, strongly attaching to inner and outer surfaces. Loading a nutrient-poor biochar surface with nutrients stimulated hyphal colonization. We labeled biochar surfaces with 33P radiotracer and found that hyphal contact to the biochar...

  2. How much biochar does gasification energy need to be carbon neutral?

    DEFF Research Database (Denmark)

    Saez de Bikuna Salinas, Koldo; Ibrom, Andreas; Hauschild, Michael Zwicky

    and arable land scenarios. Specific soil types and their estimated SOC changes have been considered [9], as well as iLUC emissions for the arable case. Taking the study case of a willow plantation combined with a medium-scale gasification plant in Denmark, we illustrate the biochar needed from the process...... in order to remain carbon neutral. The time scopes assessed are 20 and 100 years and it is assumed a fossil fuel (FF) free Denmark beyond 2050 as targeted by government (no FF displacement occurs after 2050). Results show that willow on marginal land remains carbon negative (4% biochar fraction......) for the short term, while as much as 31,8% of biochar (or 0,95 Mg C ha-1 yr-1) would be necessary in 100 years to be carbon neutral (taking natural vegetation as reference baseline). As for arable land willow, a biochar fraction of 34,1% (or 2,32 Mg C ha-1 yr-1) would be necessary in the short term...

  3. Effect of activated carbon and biochars on the bioavailability of polycyclic aromatic hydrocarbons in different industrially contaminated soils.

    Science.gov (United States)

    Kołtowski, Michał; Hilber, Isabel; Bucheli, Thomas D; Oleszczuk, Patryk

    2016-06-01

    Coal production negatively affects the environment by the emission of polycyclic aromatic hydrocarbons (PAHs). Two soils (KOK and KB) from a coking plant area was investigated and their total PAH concentration was 40 and 17 mg/kg for the sum (∑) 16 US EPA PAHs, respectively. A third soil was sampled from a bitumen plant area and was characterized by 9 mg/kg ∑16 US EPA PAHs. To reduce the freely dissolved concentration (Cfree) of the PAHs in the soil pore water, active carbon (AC) and two biochars pyrolysed from wheat straw (biochar-S) and willow (biochar-W) were added to the soils at 0.5-5 % (w/w), each. The AC performed best and reduced the Cfree by 51-98 % already at the lowest dose. The biochars needed doses up to 2.5 % to significantly reduce the Cfree by 44-86 % in the biochar-S and by 37-68 % in the biochar-W amended soils. The high black carbon (BC) content of up to 2.3 % in the Silesian soils competed with the sorption sites of the carbon amendments and the performance of the remediation was a consequence of the contaminant's source and the distribution between the BC and the AC/biochars. In contrast, the carbon amendment could best reduce the Cfree in the Lublin soil where the BC content was normal (0.05 %). It is therefore crucial to know the contaminant's source and history of a sample/site to choose the appropriate carbon amendment not only for remediation success but also for economic reasons.

  4. Effect of biochar amendment on compost organic matter composition following aerobic composting of manure.

    Science.gov (United States)

    Hagemann, Nikolas; Subdiaga, Edisson; Orsetti, Silvia; de la Rosa, José María; Knicker, Heike; Schmidt, Hans-Peter; Kappler, Andreas; Behrens, Sebastian

    2018-02-01

    Biochar, a material defined as charred organic matter applied in agriculture, is suggested as a beneficial additive and bulking agent in composting. Biochar addition to the composting feedstock was shown to reduce greenhouse gas emissions and nutrient leaching during the composting process, and to result in a fertilizer and plant growth medium that is superior to non-amended composts. However, the impact of biochar on the quality and carbon speciation of the organic matter in bulk compost has so far not been the focus of systematic analyses, although these parameters are key to determine the long-term stability and carbon sequestration potential of biochar-amended composts in soil. In this study, we used different spectroscopic techniques to compare the organic carbon speciation of manure compost amended with three different biochars. A non-biochar-amended compost served as control. Based on Fourier-transformed infrared (FTIR) and 13 C nuclear magnetic resonance (NMR) spectroscopy we did not observe any differences in carbon speciation of the bulk compost independent of biochar type, despite a change in the FTIR absorbance ratio 2925cm -1 /1034cm -1 , that is suggested as an indicator for compost maturity. Specific UV absorbance (SUVA) and emission-excitation matrixes (EEM) revealed minor differences in the extractable carbon fractions, which only accounted for ~2-3% of total organic carbon. Increased total organic carbon content of biochar-amended composts was only due to the addition of biochar-C and not enhanced preservation of compost feedstock-C. Our results suggest that biochars do not alter the carbon speciation in compost organic matter under conditions optimized for aerobic decomposition of compost feedstock. Considering the effects of biochar on compost nutrient retention, mitigation of greenhouse gas emissions and carbon sequestration, biochar addition during aerobic composting of manure might be an attractive strategy to produce a sustainable, slow

  5. Fabrication of bimetallic Ag/Fe immobilized on modified biochar for removal of carbon tetrachloride

    Institute of Scientific and Technical Information of China (English)

    Hongwei Wu; Qiyan Feng

    2017-01-01

    As an effective conventional absorbent,biochar exhibited limited adsorption ability toward small hydrophobic molecules.To enhance the adsorption capacity,a novel adsorbent was prepared by immobilizing nanoscale zero-valent iron onto modified biochar (MB) and then the elemental silver was attached to the surface of iron (Ag/Fe/MB).It's noted that spherical Ag/Fe nanoparticles with diameter of 51 nm were highly dispersed on the surface of MB.As the typical hydrophobic contaminant,carbon tetrachloride was selected for examining the removal efficiency of the adsorbent.The removal efficiencies of carbon tetrachloride by original biochar (OB),Ag/Fe,Ag/Fe/OB and Ag/Fe/MB were fully investigated.It's found that Ag/Fe/MB showed higher carbon tetrachloride removal efficiency,which is about 5.5 times higher than that of the OB sample due to utilizing the merits of high adsorption and reduction.Thermodynamic parameters revealed that the removal of carbon tetrachloride by Ag/Fe/MB was a spontaneous and exothermic process,which was affected by solution pH,initial carbon tetrachloride concentration and temperature.The novel Ag/Fe/MB composites provided a promising material for carbon tetrachloride removal from effluent.

  6. Impact of activated carbon, biochar and compost on the desorption and mineralization of phenanthrene in soil

    International Nuclear Information System (INIS)

    Marchal, Geoffrey; Smith, Kilian E.C.; Rein, Arno; Winding, Anne; Wollensen de Jonge, Lis; Trapp, Stefan; Karlson, Ulrich G.

    2013-01-01

    Sorption of PAHs to carbonaceous soil amendments reduces their dissolved concentrations, limiting toxicity but also potentially biodegradation. Therefore, the maximum abiotic desorption of freshly sorbed phenanthrene (≤5 mg kg −1 ) was measured in three soils amended with activated carbon (AC), biochar or compost. Total amounts of phenanthrene desorbed were similar between the different soils, but the amendment type had a large influence. Complete desorption was observed in the unamended and compost amended soils, but this reduced for biochar (41% desorbed) and AC (8% desorbed). Cumulative amounts mineralized were 28% for the unamended control, 19% for compost, 13% for biochar and 4% for AC. Therefore, the effects of the amendments in soil in reducing desorption were also reflected in the extents of mineralization. Modeling was used to analyze key processes, indicating that for the AC and charcoal treatments bacterial activity did not limit mineralization, but rather desorption into the dissolved phase. -- Highlights: •Phenanthrene desorption and mineralization compared in soils with activated carbon, charcoal or compost. •Only activated charcoal and biochar hindered both desorption and mineralization. •A linear relationship was found between the extents desorbed and mineralized. •Modelling indicated that bacterial activity was not limiting but that desorption was. -- Extraction into an exhaustive silicone sink measures the maximum phenanthrene desorption from soils with amendments, and this is reflected in the extent of mineralization

  7. Mechanisms of distinct activated carbon and biochar amendment effects on petroleum vapour biofiltration in soil.

    Science.gov (United States)

    Bushnaf, Khaled M; Mangse, George; Meynet, Paola; Davenport, Russell J; Cirpka, Olaf A; Werner, David

    2017-10-18

    We studied the effects of two percent by weight activated carbon versus biochar amendments in 93 cm long sand columns on the biofiltration of petroleum vapours released by a non-aqueous phase liquid (NAPL) source. Activated carbon greatly enhanced, whereas biochar slightly reduced, the biofiltration of volatile petroleum hydrocarbons (VPHs) over 430 days. Sorbent amendment benefitted the VPH biofiltration by retarding breakthrough during the biodegradation lag phase. Subsequently, sorbent amendment briefly reduced the mineralization of petroleum hydrocarbons by limiting their bioavailability. During the last and longest study period, when conditions became less supportive of microbial growth, because of inorganic nutrient scarcity, the sorbents again improved the pollution attenuation by preventing the degrading microorganisms from being overloaded with VPHs. A 16S rRNA gene based analysis showed sorbent amendment effects on soil microbial communities. Nocardioidaceae benefitted the most from petroleum hydrocarbons in activated carbon amended soil, whereas Pseudomonadacea predominated in unamended soil. Whilst the degrading microorganisms were overloaded with VPHs in the unamended soil, the reduced mobility and bioavailability of VPHs in the activated carbon amended soil led to the emergence of communities with higher specific substrate affinity, which removed bioavailable VPHs effectively at low concentrations. A numerical pollutant fate model reproduced these experimental observations by considering sorption effects on the pollutant migration and bioavailability for growth of VPH degrading biomass, which is limited by a maximum soil biomass carrying capacity. Activated carbon was a much stronger sorbent for VPHs than biochar, which explained the diverging effects of the two sorbents in this study.

  8. Source and Biological Response of Biochar Organic Compounds Released into Water; Relationships with Bio-Oil Composition and Carbonization Degree.

    Science.gov (United States)

    Ghidotti, Michele; Fabbri, Daniele; Mašek, Ondřej; Mackay, Colin Logan; Montalti, Marco; Hornung, Andreas

    2017-06-06

    Water-soluble organic compounds (WSOCs) were extracted from corn stalk biochar produced at increasing pyrolysis temperatures (350-650 °C) and from the corresponding vapors, collected as bio-oil. WSOCs were characterized by gas chromatography (semivolatile fraction), negative electron spray ionization high resolution mass spectrometry (hydrophilic fraction) and fluorescence spectroscopy. The pattern of semivolatile WSOCs in bio-oil was dominated by aromatic products from lignocellulose, while in biochar was featured by saturated carboxylic acids from hemi/cellulose and lipids with concentrations decreasing with decreasing H/C ratios. Hydrophilic species in poorly carbonized biochar resembled those in bio-oil, but the increasing charring intensity caused a marked reduction in the molecular complexity and degree of aromaticity. Differences in the fluorescence spectra were attributed to the predominance of fulvic acid-like structures in biochar and lignin-like moieties in bio-oil. The divergence between pyrolysis vapors and biochar in the distribution of WSOCs with increasing carbonization was explained by the hydrophobic carbonaceous matrix acting like a filter favoring the release into water of carboxylic and fulvic acid-like components. The formation of these structures was confirmed in biochar produced by pilot plant pyrolysis units. Biochar affected differently shoot and root length of cress seedlings in germination tests highlighting its complex role on plant growth.

  9. Biochar from Biomass and its Potential Agronomic and Environmental Use in Washington: A Promising Alternative to Drawdown Carbon from the Atmosphere and Develop a New Industry

    Energy Technology Data Exchange (ETDEWEB)

    Amonette, James E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Garcia-Perez, Manuel [Washington State Univ., Pullman, WA (United States); Sjoding, David [Washington State Energy Program Office, Olympia, WA (United States); Fuchs, Mark R. [Washington Dept. of Ecology, Spokane, WA (United States)

    2016-03-04

    Climate change is one of the most serious issues facing the world today. Increasing concentrations of carbon dioxide (CO2) and other long-lived greenhouse gases (GHGs) in the atmosphere continue to warm the planet and destabilize the climate. It has been estimated that the impact from this warming could cost the state 10 billion per year by 2020, and 16 billion per year by 2040. Long-term solutions to the climate problem likely will require that large quantities of CO2 be removed from the atmosphere. In fact, massive CO2 drawdowns from the atmosphere have occurred in earth’s recent past from events occurring in our hemisphere. Studies of those analogs provide insight into the potential magnitude for specific actions to drawdown significant CO2 from the atmosphere. One of these potential actions is the large-scale production of biochar from abundant woody biomass waste and its storage in soils, where it remains stable for hundreds to thousands of years. Moreover, for the carbon emission intensity of Washington’s fuel mix, biochar production from biomass is twice as effective in offsetting GHG emissions as complete biomass combustion of the same biomass. Washington State has large quantities of wood waste biomass that could be purposed for production of combined heat/power/biochar (CHPB) through existing biomass boilers. We propose to 1) evaluate the quantities of Washington wood waste biomass, 2) inventory existing boiler capacity and assess the technical merits and challenges to repurpose the boilers to CHPB, and 3) apply literature values and analog biochar examples to better quantify the extent of CO2 drawdown that could be achieved in Washington State over the next century using engineered biochar. This white paper explores the potential to replicate the historical drawdowns of atmospheric CO2, a topic the authors think should be part of current climate-change mitigation discussions. This

  10. Economic feasibility of biochar application to soils in temperate climate regions

    Science.gov (United States)

    Soja, Gerhard; Bücker, Jannis; Gunczy, Stefan; Kitzler, Barbara; Klinglmüller, Michaela; Kloss, Stefanie; Watzinger, Andrea; Wimmer, Bernhard; Zechmeister-Boltenstern, Sophie; Zehetner, Franz

    2014-05-01

    The findings that fertility improvements in tropical soils have been successfully mediated by biochar applications have caused wide-spread interest to use biochar as a soil amendment also for soils in temperate climate regions. But these soils in intensively cultivated regions are not always as acidic or sandy as the tropical Ferralsols where biochar is most effective. Therefore it is not self-evident that different soil characteristics allow biochar to display the same benefits if site-specific demands for the optimal organic soil amendment are not considered. This study pursued the objective to study the extent of benefits that biochar could provide for crops on two typical Austrian agricultural soils in a two-year field experiment. An economic evaluation assessed the local biochar production costs and compared them with the value of the observed biochar benefits. From a business economic viewpoint, currently high costs of biochar are not balanced by only moderate increases in crop yields and thus agricultural revenues. Improved water retention due to biochar, however, might justify biochar as an adaptation measure to global warming, especially when considering beside business economic aspects also overall economic aspects. When not assuming total crop failures but only increased soil fertility, even an inclusion of avoided social (=societal) costs by sequestering carbon and thereby helping to mitigate climate change do not economically justify the application of biochar. Price of biochar would need to decrease by at least 40 % to achieve a break-even from the overall economic viewpoint (if optimistic assumptions about the social value of sequestered carbon are applied; at pessimistic assumptions price for biochar must decrease even more in order to break even). When applying an alternative type of soil treatment of using modified biochar but avoiding additional N-fertilization, a similar picture arises: Social benefits due to avoided N-fertilization and

  11. Storage and stability of biochar-derived carbon and total organic carbon in relation to minerals in an acid forest soil of the Spanish Atlantic area.

    Science.gov (United States)

    Fernández-Ugalde, Oihane; Gartzia-Bengoetxea, Nahia; Arostegi, Javier; Moragues, Lur; Arias-González, Ander

    2017-06-01

    Biochar can largely contribute to enhance organic carbon (OC) stocks in soil and improve soil quality in forest and agricultural lands. Its contribution depends on its recalcitrance, but also on its interactions with minerals and other organic compounds in soil. Thus, it is important to study the link between minerals, natural organic matter and biochar in soil. In this study, we investigated the incorporation of biochar-derived carbon (biochar-C) into various particle-size fractions with contrasting mineralogy and the effect of biochar on the storage of total OC in the particle-size fractions in an acid loamy soil under Pinus radiata (C3 type) in the Spanish Atlantic area. We compared plots amended with biochar produced from Miscanthus sp. (C4 type) with control plots (not amended). We separated sand-, silt-, and clay-size fractions in samples collected from 0 to 20-cm depth. In each fraction, we analyzed clay minerals, metallic oxides and oxy-hydroxides, total OC and biochar-C. The results showed that 51% of the biochar-C was in fractions fractions (0.2-2μm, 0.05-0.2μm, fractions, as it occurred with the vermiculitic phases and metallic oxides and oxy-hydroxides. Biochar also affected to the distribution of total OC among particle-size fractions. Total OC concentration was greater in fractions 2-20μm, 0.2-2μm, 0.05-0.2μm in biochar-amended plots than in control plots. This may be explained by the adsorption of dissolved OC from fraction organic matter already occurred in the first year. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Biochar increased water holding capacity but accelerated organic carbon leaching from a sloping farmland soil in China.

    Science.gov (United States)

    Liu, Chen; Wang, Honglan; Tang, Xiangyu; Guan, Zhuo; Reid, Brian J; Rajapaksha, Anushka Upamali; Ok, Yong Sik; Sun, Hui

    2016-01-01

    A hydrologically contained field study, to assess biochar (produced from mixed crop straws) influence upon soil hydraulic properties and dissolved organic carbon (DOC) leaching, was conducted on a loamy soil (entisol). The soil, noted for its low plant-available water and low soil organic matter, is the most important arable soil type in the upper reaches of the Yangtze River catchment, China. Pore size distribution characterization (by N2 adsorption, mercury intrusion, and water retention) showed that the biochar had a tri-modal pore size distribution. This included pores with diameters in the range of 0.1-10 μm that can retain plant-available water. Comparison of soil water retention curves between the control (0) and the biochar plots (16 t ha(-1) on dry weight basis) demonstrated biochar amendment to increase soil water holding capacity. However, significant increases in DOC concentration of soil pore water in both the plough layer and the undisturbed subsoil layer were observed in the biochar-amended plots. An increased loss of DOC relative to the control was observed upon rainfall events. Measurements of excitation-emission matrix (EEM) fluorescence indicated the DOC increment originated primarily from the organic carbon pool in the soil that became more soluble following biochar incorporation.

  13. The molecular properties of biochar carbon released in dilute acidic solution and its effects on maize seed germination.

    Science.gov (United States)

    Sun, Jingling; Drosos, Marios; Mazzei, Pierluigi; Savy, Davide; Todisco, Daniele; Vinci, Giovanni; Pan, Genxing; Piccolo, Alessandro

    2017-01-15

    It is not yet clear whether the carbon released from biochar in the soil solution stimulates biological activities. Soluble fractions (AQU) from wheat and maize biochars, whose molecular content was thoroughly characterized by FTIR, 13 C and 1 H NMR, and high-resolution ESI-IT-TOF-MS, were separated in dilute acidic solution to simulate soil rhizospheric conditions and their effects evaluated on maize seeds germination activity. Elongation of maize-seeds coleoptile was significantly promoted by maize biochar AQU, whereas it was inhibited by wheat biochar AQU. Both AQU fractions contained relatively small heterocyclic nitrogen compounds, whose structures were accounted by their spectroscopic properties. Point-of-Zero-Charge (PZC) values and van Krevelen plots of identified masses of soluble components suggested that the dissolved carbon from maize biochar behaved as humic-like supramolecular material capable to adhere to seedlings and deliver bioactive molecules. These findings contribute to understand the biostimulation potential of biochars from crop biomasses when applied in agricultural production. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Biochar Preparation from Simulated Municipal Solid Waste Employing Low Temperature Carbonization Process

    Science.gov (United States)

    Areeprasert, C.; Leelachaikul, P.; Jangkobpattana, G.; Phumprasop, K.; Kiattiwat, T.

    2018-02-01

    This paper presents an investigation on carbonization process of simulated municipal solid waste (MSW). Simulated MSW consists of a representative of food residue (68%), plastic waste (20%), paper (8%), and textile (4%). Laboratory-scale carbonization was performed in this study using a vertical-type pyrolyzer varying carbonization temperature (300, 350, 400, and 450 °C) and heating rate (5, 10, 15, and 20 °C/min). Appearance of the biochar product was in black and the volume was significantly reduced. Low carbonization temperature (300 °C) might not completely decompose plastic materials in MSW. Results showed that the carbonization at the temperature of 400 °C with the heating rate of 5 °C/min was the optimal condition. The yield of biochar from the optimal process was 50.6% with the heating value of 26.85 MJ/kg. Energy input of the process was attributed to water evaporation and the decomposition of plastics and paper. Energy output of the process was highest at the optimal condition. Energy output and input ratio was around 1.3-1.7 showing the feasibility of the carbonization process in all heating rate condition.

  15. In Situ Persistence and Migration of Biochar Carbon and Its Impact on Native Carbon Emission in Contrasting Soils under Managed Temperate Pastures.

    Directory of Open Access Journals (Sweden)

    Bhupinder Pal Singh

    Full Text Available Pyrogenic carbon (PyC is an important component of the global soil carbon (C pool, but its fate, persistence, and loss dynamics in contrasting soils and environments under planted field conditions are poorly understood. To fill this knowledge gap, a 13C-labelled biochar, as a surrogate material for PyC, produced from Eucalyptus saligna by slow pyrolysis (450°C; δ13C -36.7‰ was surface (0-10 cm applied in C3 dominated temperate pasture systems across Arenosol, Cambisol and Ferralsol. The results show a low proportion of the applied biochar-C mineralised over 12 months in a relatively clay- and C-poor Arenosol (i.e., 2.0% loss via mineralisation, followed by a clay- and C-rich Cambisol (4.6%, and clay-, C- and earthworm-rich Ferralsol (7.0%. The biochar-C mean residence time (MRT, estimated by different models, varied between 44-1079 (Arenosol, 18-172 (Cambisol, and 11-29 (Ferralsol years, with the shorter MRT estimated by a one-pool exponential and the longer MRT by an infinite-pool power or a two-pool exponential model. The two-pool model was best fitted to biochar-C mineralisation. The biochar-C recovery in the 12-30 cm soil layer varied from between 1.2% (Arenosol, 2.5-2.7% (Cambisol and 13.8-15.7% (Ferralsol of the applied biochar-C after 8-12 months. There was a further migration of biochar-C below the 50-cm depth in the Arenosol, as the combined biochar-C recovery in the mineralised pool and soil profile (up to 30 or 50 cm was 82%, in contrast to 101% in the Cambisol and 104% in the Ferralsol after 12 months. These results indicate that the downward migration of biochar-C was greatest in the Arenosol (cf. Cambisol and Ferralsol. Cumulative CO2-C emission from native soil-plant sources was lower (p <0.10 in the biochar-amended vs. non-amended Ferralsol. This field-based study shows that the downward migration of biochar-C exceeded its loss via mineralisation in the Arenosol and Ferralsol, but not in the Cambisol. It is thus important to

  16. Pharmaceutical load in sewage sludge and biochar produced by hydrothermal carbonization.

    Science.gov (United States)

    vom Eyser, C; Palmu, K; Schmidt, T C; Tuerk, J

    2015-12-15

    We investigated the removal of twelve pharmaceuticals in sewage sludge by hydrothermal carbonization (HTC), which has emerged as a technology for improving the quality of organic waste materials producing a valuable biochar material. In this study, the HTC converted sewage sludge samples to a biochar product within 4h at a temperature of 210 °C and a resulting pressure of about 15 bar. Initial pharmaceutical load of the sewage sludge was investigated as well as the residual concentrations in biochar produced from spiked and eight native sewage sludge samples from three waste water treatment plants. Additionally, the solid contents of source material and product were compared, which showed a considerable increase of the solid content after filtration by HTC. All pharmaceuticals except sulfamethoxazole, which remained below the limit of quantification, frequently occurred in the investigated sewage sludges in the μg/kg dry matter (DM) range. Diclofenac, carbamazepine, metoprolol and propranolol were detected in all sludge samples with a maximum concentration of 800 μg/kgDM for metoprolol. HTC was investigated regarding its contaminant removal efficiency using spiked sewage sludge. Pharmaceutical concentrations were reduced for seven compounds by 39% (metoprolol) to≥97% (carbamazepine). In native biochar samples the four compounds phenazone, carbamazepine, metoprolol and propranolol were detected, which confirmed that the HTC process can reduce the load of micropollutants. In contrast to the other investigated compounds phenazone concentration increased, which was further addressed in thermal behaviour studies including three structurally similar potential precursors. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Removal of micro pollutants using activated biochars and powdered activated carbon in water

    Science.gov (United States)

    Kim, E.; Jung, C.; Han, J.; Son, A.; Yoon, Y.

    2015-12-01

    Recent studies have suggested that emerging micropollutants containing endocrine disrupting compounds (EDCs); bisphenol A, 17 α-ethinylestradiol, 17 β-estradiol and pharmaceuticals and personal care products (PPCPs); sulfamethoxazole, carbamazepine, ibuprofen, atenolol, benzophenone, benzotriazole, caffeine, gemfibrozil, primidone, triclocarban in water have been linked to ecological impacts, even at trace concentrations (sub ug/L). Adsorption with adsorbent such as activated carbon having a high-binding affinity has been widely used to eliminate various contaminants in the aqueous phase. Recently, an efficient treatment strategy for EDCs and PPCPs has been considered by using cost effective adsorption particularly with biochar in aqueous environmentIn this study, the objective of this study is to determine the removal of 13 target EDCs/PPCPs having different physicochemical properties by a biochar at various water quality conditions (pH (3.5, 7, and 10.5), background ions (NaCl, CaCl2, Na₂SO₄), ionic strength, natural organic matter (NOM)). The activated biochar produced in a laboratory was also characterized by using conventional analytical methods as well as advanced solid-state nuclear magnetic resonance (NMR) techniques, which answer how these properties determine the competitive adsorption characteristics and mechanisms of EDCs and PPCPs.The primary findings suggest that micropollutants can be removed more effectively by the biochar than the commercially available powdered activated carbon. At pH values below the pKa of each compound, the adsorption affinity toward adsorbents increased significantly with the pH, whereas the adsorption affinity decreased significantly at the pH above the pKa values. Na+ did not significantly impact adsorption, while increasing the concentration of Ca2+lead to increase in the adsorption of these micropollutants. NOM adsorption with humic acids on these adsorbents disturbed adsorption capacity of the target compounds as

  18. Dynamic energy models and carbon mitigation policies

    Science.gov (United States)

    Tilley, Luke A.

    In this dissertation I examine a specific class of energy models and their implications for carbon mitigation policies. The class of models includes a production function capable of reproducing the empirically observed phenomenon of short run rigidity of energy use in response to energy price changes and long run exibility of energy use in response to energy price changes. I use a theoretical model, parameterized using empirical data, to simulate economic performance under several tax regimes where taxes are levied on capital income, investment, and energy. I also investigate transitions from one tax regime to another. I find that energy taxes intended to reduce energy use can successfully achieve those goals with minimal or even positive impacts on macroeconomic performance. But the transition paths to new steady states are lengthy, making political commitment to such policies very challenging.

  19. Analyzing the impacts of three types of biochar on soil carbon fractions and physiochemical properties in a corn-soybean rotation

    Science.gov (United States)

    Biochar is a soil amendment produced from incomplete pyrolysis of organic materials in the absence of oxygen. In most previous studies, the impacts of biochar on soil physical properties and organic carbon was investigated under controlled conditions such as laboratory or greenhouse environments. Th...

  20. Effect of dolomite and biochar addition on N2O and CO2 emissions from acidic tea field soil.

    Science.gov (United States)

    Oo, Aung Zaw; Sudo, Shigeto; Akiyama, Hiroko; Win, Khin Thuzar; Shibata, Akira; Yamamoto, Akinori; Sano, Tomohito; Hirono, Yuhei

    2018-01-01

    A laboratory study was conducted to study the effects of liming and different biochar amendments on N2O and CO2 emissions from acidic tea field soil. The first experiment was done with three different rates of N treatment; N 300 (300 kg N ha-1), N 600 (600 kg N ha-1) and N 900 (900 kg N ha-1) and four different rates of bamboo biochar amendment; 0%, 0.5%, 1% and 2% biochar. The second experiment was done with three different biochars at a rate of 2% (rice husk, sawdust, and bamboo) and a control and lime treatment (dolomite) and control at two moisture levels (50% and 90% water filled pore space (WFPS)). The results showed that dolomite and biochar amendment significantly increased soil pH. However, only biochar amendment showed a significant increase in total carbon (C), C/N (the ratio of total carbon and total nitrogen), and C/IN ratio (the ratio of total carbon and inorganic nitrogen) at the end of incubation. Reduction in soil NO3--N concentration was observed under different biochar amendments. Bamboo biochar with the rates of 0.5, 1 and 2% reduced cumulative N2O emission by 38%, 48% and 61%, respectively, compare to the control soil in experiment 1. Dolomite and biochar, either alone or combined significantly reduced cumulative N2O emission by 4.6% to 32.7% in experiment 2. Reduction in N2O production under biochar amendment was due to increases in soil pH and decreases in the magnitude of mineral-N in soil. Although, both dolomite and biochar increased cumulative CO2 emission, only biochar amendment had a significant effect. The present study suggests that application of dolomite and biochar to acidic tea field soil can mitigate N2O emissions.

  1. Bioavailability assessments following biochar and activated carbon amendment in DDT-contaminated soil.

    Science.gov (United States)

    Denyes, Mackenzie J; Rutter, Allison; Zeeb, Barbara A

    2016-02-01

    The effects of 2.8% w/w granulated activated carbon (GAC) and two types of biochar (Burt's and BlueLeaf) on DDT bioavailability in soil (39 μg/g) were investigated using invertebrates (Eisenia fetida), plants (Cucurbita pepo spp. pepo) and a polyoxymethylene (POM) passive sampler method. Biochar significantly reduced DDT accumulation in E. fetida (49%) and showed no detrimental effects to invertebrate health. In contrast, addition of GAC caused significant toxic effects (invertebrate avoidance and decreased weight) and did not significantly reduce the accumulation of DDT into invertebrate tissue. None of the carbon amendments reduced plant uptake of DDT. Bioaccumulation of 4,4'DDT and 4,4'-DDE in plants (C. pepo spp. pepo) and invertebrates (E. fetida) was assessed using bioaccumulation factors (BAFs) and compared to predicted bioavailability using the freely-dissolved porewater obtained from a polyoxymethylene (POM) equilibrium biomimetic method. The bioavailable fraction predicted by the POM samplers correlated well with measured invertebrate uptake (DDT soil contamination levels and the inclusion of field data from a 2.5 μg/g DDT-contaminated site found that these plants exhibit a concentration threshold effect at [DDT](soil) > 10 μg/g. The results of these studies illustrate the importance of including plants in bioavailability studies as the use of carbon materials for in situ contaminant sorption moves from predominantly sediment to soil remediation technologies. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Biochar-based carbons with hierarchical micro-meso-macro porosity for high rate and long cycle life supercapacitors

    Science.gov (United States)

    Qiu, Zhipeng; Wang, Yesheng; Bi, Xu; Zhou, Tong; Zhou, Jin; Zhao, Jinping; Miao, Zhichao; Yi, Weiming; Fu, Peng; Zhuo, Shuping

    2018-02-01

    The development of supercapacitors with high energy density and power density is an important research topic despite many challenging issues exist. In this work, porous carbon material was prepared from corn straw biochar and used as the active electrode material for electric double-layer capacitors (EDLCs). During the KOH activation process, the ratio of KOH/biochar significantly affects the microstructure of the resultant carbon, which further influences the capacitive performance. The optimized carbon material possesses typical hierarchical porosity composed of multi-leveled pores with high surface area and pore volume up to 2790.4 m2 g-1 and 2.04 cm3 g-1, respectively. Such hierarchical micro-meso-macro porosity significantly improved the rate performance of the biochar-based carbons. The achieved maximum specific capacitance was 327 F g-1 and maintained a high value of 205 F g-1 at a ultrahigh current density of 100 A g-1. Meanwhile, the prepared EDLCs present excellent cycle stability in alkaline electrolytes for 120 000 cycles at 5 A g-1. Moreover, the biochar-based carbon could work at a high voltage of 1.6 V in neutral Na2SO4, and exhibit a high specific capacitance of 227 F g-1, thus giving an outstanding energy density of 20.2 Wh kg-1.

  3. The molar H: Corg ratio of biochar is a key factor in mitigating N2O emissions from soil

    NARCIS (Netherlands)

    Cayuela, M.L.; Jeffery, S.L.; Zwieten, van L.

    2015-01-01

    A previously published meta-analysis of biochar impacts on soil N2O emissions by Cayuela et al. (2014) found a “grand mean” reduction in N2O emissions of 54 ± 6% following biochar application to soil. Here we update this analysis to include 26 additional manuscripts bringing the total to 56

  4. Utilization of corn cob biochar in a direct carbon fuel cell

    Science.gov (United States)

    Yu, Jinshuai; Zhao, Yicheng; Li, Yongdan

    2014-12-01

    Biochar obtained from the pyrolysis of corn cob is used as the fuel of a direct carbon fuel cell (DCFC) employing a composite electrolyte composed of a samarium doped ceria (SDC) and a eutectic carbonate phase. An anode layer made of NiO and SDC is utilized to suppress the cathode corrosion by the molten carbonate and improves the whole cell stability. The anode off-gas of the fuel cell is analyzed with a gas chromatograph. The effect of working temperature on the cell resistance and power output is examined. The maximum power output achieves 185 mW cm-2 at a current density of 340 mA cm-2 and 750 °C. An anode reaction scheme including the Boudouard reaction is proposed.

  5. Carbon recovery rates following different wildfire risk mitigation treatments

    Science.gov (United States)

    M. Hurteau; M. North

    2010-01-01

    Sequestered forest carbon can provide a climate change mitigation benefit, but in dry temperate forests, wildfire poses a reversal risk to carbon offset projects. Reducing wildfire risk requires a reduction in and redistribution of carbon stocks, the benefit of which is only realized when wildfire occurs. To estimate the time needed to recover carbon removed and...

  6. Mycoextraction by Clitocybe maxima combined with metal immobilization by biochar and activated carbon in an aged soil.

    Science.gov (United States)

    Wu, Bin; Cheng, Guanglei; Jiao, Kai; Shi, Wenjin; Wang, Can; Xu, Heng

    2016-08-15

    To develop an eco-friendly and efficient route to remediate soil highly polluted with heavy metals, the idea of mycoextraction combined with metal immobilization by carbonaceous sorbents (biochar and activated carbon) was investigated in this study. Results showed that the application of carbonaceous amendments decreased acid soluble Cd and Cu by 5.13-14.06% and 26.86-49.58%, respectively, whereas the reducible and oxidizable fractions increased significantly as the amount of carbonaceous amendments added increased. The biological activities (microbial biomass, soil enzyme activities) for treatments with carbonaceous sorbents were higher than those of samples without carbonaceous amendments. Clitocybe maxima (C. maxima) simultaneously increased soil enzyme activities and the total number of microbes. Biochar and activated carbon both showed a positive effect on C. maxima growth and metal accumulation. The mycoextraction efficiency of Cd and Cu in treatments with carbonaceous amendments enhanced by 25.64-153.85% and 15.18-107.22%, respectively, in response to that in non-treated soil, which showed positive correlation to the augment of biochar and activated carbon in soil. Therefore, this work suggested the effectiveness of mycoextraction by C. maxima combined the application of biochar and activated carbon in immobilising heavy metal in contaminated soil. Copyright © 2016. Published by Elsevier B.V.

  7. Comparing the desorption and biodegradation of low concentrations of phenanthrene sorbed to activated carbon, biochar and compost

    DEFF Research Database (Denmark)

    Marchal, Geoffrey; Smith, Kilian E.C.; Rein, Arno

    2013-01-01

    can be degraded at all, the desorption and biodegradation of low concentrations of 14C-labelled phenanthrene (⩽5μgL−1) freshly sorbed to suspensions of the pure soil amendments activated carbon (AC), biochar (charcoal) and compost were compared. Firstly, the maximum abiotic desorption of phenanthrene...

  8. Adsorption of Pb(II and Cu(II by Ginkgo-Leaf-Derived Biochar Produced under Various Carbonization Temperatures and Times

    Directory of Open Access Journals (Sweden)

    Myoung-Eun Lee

    2017-12-01

    Full Text Available Ginkgo trees are common street trees in Korea, and the large amounts of leaves that fall onto the streets annually need to be cleaned and treated. Therefore, fallen gingko leaves have been used as a raw material to produce biochar for the removal of heavy metals from solutions. Gingko-leaf-derived biochar was produced under various carbonization temperatures and times. This study evaluated the physicochemical properties and adsorption characteristics of gingko-leaf-derived biochar samples produced under different carbonization conditions regarding Pb(II and Cu(II. The biochar samples that were produced at 800 °C for 90 and 120 min contained the highest oxygen- and nitrogen-substituted carbons, which might contribute to a high metal-adsorption rate. The intensity of the phosphate bond was increased with the increasing of the carbonization temperature up to 800 °C and after 90 min of carbonization. The Pb(II and Cu(II adsorption capacities were the highest when the gingko-leaf-derived biochar was produced at 800 °C, and the removal rates were 99.2% and 34.2%, respectively. The highest removal rate was achieved when the intensity of the phosphate functional group in the biochar was the highest. Therefore, the gingko-leaf-derived biochar produced at 800 °C for 90 min can be used as an effective bio-adsorbent in the removal of metals from solutions.

  9. Influence of Pyrolysis Temperature on Physico-Chemical Properties of Corn Stover (Zea mays L. Biochar and Feasibility for Carbon Capture and Energy Balance.

    Directory of Open Access Journals (Sweden)

    Muhammad Khalid Rafiq

    Full Text Available This study examined the influence of pyrolysis temperature on biochar characteristics and evaluated its suitability for carbon capture and energy production. Biochar was produced from corn stover using slow pyrolysis at 300, 400 and 500°C and 2 hrs holding time. The experimental biochars were characterized by elemental analysis, BET, FTIR, TGA/DTA, NMR (C-13. Higher heating value (HHV of feedstock and biochars was measured using bomb calorimeter. Results show that carbon content of corn stover biochar increased from 45.5% to 64.5%, with increasing pyrolysis temperatures. A decrease in H:C and O:C ratios as well as volatile matter, coupled with increase in the concentration of aromatic carbon in the biochar as determined by FTIR and NMR (C-13 demonstrates a higher biochar carbon stability at 500°C. It was estimated that corn stover pyrolysed at 500°C could provide of 10.12 MJ/kg thermal energy. Pyrolysis is therefore a potential technology with its carbon-negative, energy positive and soil amendment benefits thus creating win- win scenario.

  10. Influence of Pyrolysis Temperature on Physico-Chemical Properties of Corn Stover (Zea mays L.) Biochar and Feasibility for Carbon Capture and Energy Balance.

    Science.gov (United States)

    Rafiq, Muhammad Khalid; Bachmann, Robert Thomas; Rafiq, Muhammad Tariq; Shang, Zhanhuan; Joseph, Stephen; Long, Ruijun

    2016-01-01

    This study examined the influence of pyrolysis temperature on biochar characteristics and evaluated its suitability for carbon capture and energy production. Biochar was produced from corn stover using slow pyrolysis at 300, 400 and 500°C and 2 hrs holding time. The experimental biochars were characterized by elemental analysis, BET, FTIR, TGA/DTA, NMR (C-13). Higher heating value (HHV) of feedstock and biochars was measured using bomb calorimeter. Results show that carbon content of corn stover biochar increased from 45.5% to 64.5%, with increasing pyrolysis temperatures. A decrease in H:C and O:C ratios as well as volatile matter, coupled with increase in the concentration of aromatic carbon in the biochar as determined by FTIR and NMR (C-13) demonstrates a higher biochar carbon stability at 500°C. It was estimated that corn stover pyrolysed at 500°C could provide of 10.12 MJ/kg thermal energy. Pyrolysis is therefore a potential technology with its carbon-negative, energy positive and soil amendment benefits thus creating win- win scenario.

  11. Carbon dioxide emissions from semi-arid soils amended with biochar alone or combined with mineral and organic fertilizers.

    Science.gov (United States)

    Fernández, José M; Nieto, M Aurora; López-de-Sá, Esther G; Gascó, Gabriel; Méndez, Ana; Plaza, César

    2014-06-01

    Semi-arid soils cover a significant area of Earth's land surface and typically contain large amounts of inorganic C. Determining the effects of biochar additions on CO2 emissions from semi-arid soils is therefore essential for evaluating the potential of biochar as a climate change mitigation strategy. Here, we measured the CO2 that evolved from semi-arid calcareous soils amended with biochar at rates of 0 and 20tha(-1) in a full factorial combination with three different fertilizers (mineral fertilizer, municipal solid waste compost, and sewage sludge) applied at four rates (equivalent to 0, 75, 150, and 225kg potentially available Nha(-1)) during 182 days of aerobic incubation. A double exponential model, which describes cumulative CO2 emissions from two active soil C compartments with different turnover rates (one relatively stable and the other more labile), was found to fit very well all the experimental datasets. In general, the organic fertilizers increased the size and decomposition rate of the stable and labile soil C pools. In contrast, biochar addition had no effects on any of the double exponential model parameters and did not interact with the effects ascribed to the type and rate of fertilizer. After 182 days of incubation, soil organic and microbial biomass C contents tended to increase with increasing the application rates of organic fertilizer, especially of compost, whereas increasing the rate of mineral fertilizer tended to suppress microbial biomass. Biochar was found to increase both organic and inorganic C contents in soil and not to interact with the effects of type and rate of fertilizer on C fractions. As a whole, our results suggest that the use of biochar as enhancer of semi-arid soils, either alone or combined with mineral and organic fertilizers, is unlikely to increase abiotic and biotic soil CO2 emissions. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Comparative kinetic study of functionalized carbon nanotubes and magnetic biochar for removal of Cd2+ ions from wastewater

    International Nuclear Information System (INIS)

    Ruthiraan, Manimaran; Thines, Raj Kogiladas; Abdullah, Ezzat Chan; Mubarak, Nabisab Mujawar; Jayakumar, Natesan Subramanian; Ganesan, Poobalan; Sahu, Jaya Narayan

    2015-01-01

    We did a comparative study between functionalized multiwall carbon nanotube (FMWCNTs), and magnetic biochar was carried out to determine the most efficient adsorbent to be employed in the Cd 2+ ion removal. We optimized parameters such as agitation speed, contact time, pH and adsorbent dosage using design expert vrsion 6.08. The statistical analysis reveals that optimized condition for highest removal of Cd 2+ are at pH 5.0, with dosage 1.0 g, agitation speed and contact time of 100 rpm and 90 minutes, respectively. For the initial concentration of 10mg/l, the removal efficiency of Cd 2+ using FMWCNTs was 90% and and 82% of magnetic biochar. The maximum Cd 2+ adsorption capacities of both FMWCNTs and magnetic biochar were calculated: 83.33mg/g and 62.5mg/g. The Langmuir and Freundlich constants for FMWCNTs were 0.056 L/mg and 13.613 L/mg, while 0.098 L/mg and 25.204 L/mg for magnetic biochar. The statistical analysis proved that FMWCNTs have better adsorption capacity compared to magnetic biochar and both models obeyed the pseudo-second-order

  13. Comparative kinetic study of functionalized carbon nanotubes and magnetic biochar for removal of Cd{sup 2+} ions from wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Ruthiraan, Manimaran; Thines, Raj Kogiladas; Abdullah, Ezzat Chan [Universiti Teknologi Malaysia, Kuala Lumpur (Malaysia); Mubarak, Nabisab Mujawar [UCSI University, Kuala Lumpur (Malaysia); Jayakumar, Natesan Subramanian; Ganesan, Poobalan [University of Malaya, Kuala Lumpur (Malaysia); Sahu, Jaya Narayan [Institut Teknologi Brunei, Gadong (Brunei Darussalam)

    2015-03-15

    We did a comparative study between functionalized multiwall carbon nanotube (FMWCNTs), and magnetic biochar was carried out to determine the most efficient adsorbent to be employed in the Cd{sup 2+} ion removal. We optimized parameters such as agitation speed, contact time, pH and adsorbent dosage using design expert vrsion 6.08. The statistical analysis reveals that optimized condition for highest removal of Cd{sup 2+} are at pH 5.0, with dosage 1.0 g, agitation speed and contact time of 100 rpm and 90 minutes, respectively. For the initial concentration of 10mg/l, the removal efficiency of Cd{sup 2+} using FMWCNTs was 90% and and 82% of magnetic biochar. The maximum Cd{sup 2+} adsorption capacities of both FMWCNTs and magnetic biochar were calculated: 83.33mg/g and 62.5mg/g. The Langmuir and Freundlich constants for FMWCNTs were 0.056 L/mg and 13.613 L/mg, while 0.098 L/mg and 25.204 L/mg for magnetic biochar. The statistical analysis proved that FMWCNTs have better adsorption capacity compared to magnetic biochar and both models obeyed the pseudo-second-order.

  14. Gasification biochar as a valuable by-product for carbon sequestration and soil amendment

    DEFF Research Database (Denmark)

    Hansen, Veronika; Müller-Stöver, Dorette Sophie; Ahrenfeldt, Jesper

    2015-01-01

    Thermal gasification of various biomass residues is a promising technology for combining bioenergy production with soil fertility management through the application of the resulting biochar as soil amendment. In this study, we investigated gasification biochar (GB) materials originating from two ...

  15. Carbon sequestration to mitigate climate change

    Science.gov (United States)

    Sundquist, Eric; Burruss, Robert; Faulkner, Stephen; Gleason, Robert; Harden, Jennifer; Kharaka, Yousif; Tieszen, Larry; Waldrop, Mark

    2008-01-01

    Human activities, especially the burning of fossil fuels such as coal, oil, and gas, have caused a substantial increase in the concentration of carbon dioxide (CO2) in the atmosphere. This increase in atmospheric CO2 - from about 280 to more than 380 parts per million (ppm) over the last 250 years - is causing measurable global warming. Potential adverse impacts include sea-level rise; increased frequency and intensity of wildfires, floods, droughts, and tropical storms; changes in the amount, timing, and distribution of rain, snow, and runoff; and disturbance of coastal marine and other ecosystems. Rising atmospheric CO2 is also increasing the absorption of CO2 by seawater, causing the ocean to become more acidic, with potentially disruptive effects on marine plankton and coral reefs. Technically and economically feasible strategies are needed to mitigate the consequences of increased atmospheric CO2. The United States needs scientific information to develop ways to reduce human-caused CO2 emissions and to remove CO2 from the atmosphere.

  16. Environmental Impacts of the Production and Application of Biochar - EuroChar Project

    Science.gov (United States)

    Rack, Mireille; Woods, Jeremy

    2014-05-01

    magnitude assessment as to the potential role for biochar as a material climate mitigation option. Preliminary results show net negative supply chain emissions, indicating biochar to be a carbon sink. Overall, the life cycle stage that contributes most significantly to the environmental impact profile is feedstock production. Feedstock selection is therefore expected to play a key role in determining the overall viability of biochar production and its use in land application. Further sensitivity analyses show that the allocation method of the attributional LCA has the greatest impact on the results, followed by the oxidation rate of the carbon in the biochar, and the transportation distances of the feedstock and biochar. Indirect impacts, such as avoided use of fossil fuel, can significantly alter the results. As the EuroChar project comes to a completion at the end of May 2014, the near-final results are presented at the EGU 2014 General Assembly.

  17. China's carbon mitigation strategies: Enough?

    International Nuclear Information System (INIS)

    Wang, Can; Lin, Jie; Cai, Wenjia; Liao, Hua

    2014-01-01

    As the largest CO 2 emitter in the world, China has made great achievements in carbon mitigation over the past eight years (2005–2013). Through a comprehensive and detailed overview of China's carbon mitigation strategies, this paper presents China's carbon mitigation achievements and strategies, including adjustment to the industrial structure, saving energy, optimizing energy structure, increasing forest carbon sinks, building foundational capacity, innovating technologies and practicing mitigation efforts in localities and sectors. Having been in place for some years already, the results of many of these measures and policies are now plateauing. China is facing challenges including inevitable emissions growth, shrinking of mitigation potential from technological progress, difficulty in further adjusting the industrial structure and economic development mode, continued dominance of coal in the energy mix, local governments’ reluctance to adopt measures to reduce carbon emissions, etc. Through policy diagnosis it is found that the root causes of these problems and challenges are the facts that policy-making is done primarily on the production side and there is an absence of co-benefits in the decision-making process. Therefore, it is recommended that translating mitigation targets to the consumption level and mainstreaming mitigations’ co-benefits into decision-making processes are needed to quickly enhance the results of mitigation work in China. - Highlights: • Key aspects of China's carbon mitigation strategies were outlined. • China's carbon mitigation achievements were summarized. • Challenges to meet further mitigation were investigated. • Strategic suggestions to quickly enhance China's mitigation ambition were given

  18. Hydrothermal Carbonization of Seaweed For Advanced Biochar Production

    Directory of Open Access Journals (Sweden)

    Prakoso Tirto

    2018-01-01

    Full Text Available Seaweed such as Eucheuma Cottonii is a potential source of biomaterialIts high moisture content makes it suitable for hydrothermal conversion process since it doesn’t need to utilize dry feedstock. The aim of this study is to convert the biomass of red seaweed Eucheuma Cottonii into alternative fuels and high value biomaterials using hydrothermal process. The hydrothermal process seaweed Eucheuma Cottonii produce two types of products, liquid product and char (solid. This research focus on the char product. The char from hydrothermal process was then activated using the tubular furnace. The yield for activated char is 7.5 % and results of SEM analysis of activated char showed the formation of allotropes carbon include carbon micro spheres, carbon micro fibres and graphene. These structures have encountered application in a wide range of technological fields, such as adsorption, catalysis, hydrogen storage or electronics.

  19. Soil biota response to amendment with biochar as P and K fertilizer

    Science.gov (United States)

    Winding, Anne; Imparato, Valentina; Santos, Susana; Hansen, Veronika; Haugaard-Nielsen, Henrik; Browne, Patrick; Hestbjerg Hansen, Lars; Henning Krogh, Paul; Johansen, Anders

    2017-04-01

    Thermal gasification converts biomass into a combustible gas at oxygen-poor conditions, the bi-product being biochar which can be used as soil amendment to increase pH, sequester carbon to mitigate climate change, and supply phosphate and potassium to crops; replacing chemical or other alternative organic fertilizers. Amending soil with biochar can support three soil functions: production of food, carbon sequestration, and biodiversity. This was tested in a field experiment with reduced-tillage agricultural management, where the effect of biochar amendment on soil ecosystem services, especially biodiversity and carbon sequestration were studied. The effects on soil microorganisms and fauna (protists and earthworms) were assessed with activity based assays and Next Generation Sequencing (NGS). Crops were alternating oil seed rape and winter wheat, and biochar was added annually for 3 years. The soil was a sandy loam soil with SOM content of ca. 5%. Earthworms and soil were sampled from field plots either left untreated, amended with straw or annually amended with either 6-8 t ha-1 or ca. 1 t ha-1 biochar. Soil was sampled from bulk soil and earthworm drilosphere. Earthworms had a priming effect on protist abundance and basal soil respiration. However, in biochar amended soil the protist abundance decreased in the drilosphere. Culturable bacteria and extracellular enzymatic activities were not significantly affected by earthworms. The abundance of only one earthworm species increased at high compared to low application levels of biochar, while still not differing from controls without biochar. Thus, no harmful effects were detected for earthworms. At the lower biochar amendment, significant changes were observed for the activity of a few selected enzymes related to biochar and also a relative increase in abundance of low abundant microorganisms was seen. At the high doses of biochar the abundance of protists increased compared to control. NGS analysis was more

  20. Review on utilization of biochar for metal-contaminated soil and sediment remediation.

    Science.gov (United States)

    Wang, Mingming; Zhu, Yi; Cheng, Lirong; Andserson, Bruce; Zhao, Xiaohui; Wang, Dayang; Ding, Aizhong

    2018-01-01

    Biochar is a carbon-neutral or even carbon-negative material produced through thermal decomposition of plant- and animal-based biomass under oxygen-limited conditions. Recently, there has been an increasing interest in the application of biochar as an adsorbent, soil ameliorant and climate mitigation approach in many types of applications. Metal-contaminated soil remediation using biochar has been intensively investigated in small-scale and pilot-scale trials with obtained beneficial results and multifaceted effects. But so far, the study and application of biochar in contaminated sediment management has been very limited, and this is also a worldwide problem. Nonetheless, there is reason to believe that the same multiple benefits can also be realized with these sediments due to similar mechanisms for stabilizing contaminants. This paper provides a review on current biochar properties and its use as a sorbent/amendment for metal-contaminated soil/sediment remediation and its effect on plant growth, fauna habits as well as microorganism communities. In addition, the use of biochar as a potential strategy for contaminated sediment management is also discussed, especially as regards in-situ planning. Finally, we highlight the possibility of biochar application as an effective amendment and propose further research directions to ensure the safe and sustainable use of biochar as an amendment for remediation of contaminated soil and sediment. Copyright © 2017. Published by Elsevier B.V.

  1. Co-gasification of pine and oak biochar with sub-bituminous coal in carbon dioxide.

    Science.gov (United States)

    Beagle, E; Wang, Y; Bell, D; Belmont, E

    2018-03-01

    Pine and oak biochars derived as byproducts of demonstration-scale pyrolysis, and blends of these two feedstocks with Powder River Basin coal, were gasified in a carbon dioxide environment using a modified drop tube reactor (MDTR) and a thermogravimetric analyzer (TGA). The impact of gasification temperature on conversion kinetics was evaluated from the temporal evolution of major product gases in the MDTR as measured using a mass spectrometer. Random pore modeling was conducted to simulate gasification in the MDTR with favorable results. The MDTR and TGA were used to conduct gasification for assessment of non-linear additive effects in the blends. Additive analysis of the blends showed deviation from the experimental blend results, indicating inhibiting effects of co-gasifying the biochar and coal. Inhibitory effects are more significant for oak than pine and more pronounced in the TGA at lower gasification temperatures. Results are discussed in the context of feedstock and reactor type. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Preparation of porous bio-char and activated carbon from rice husk by leaching ash and chemical activation.

    Science.gov (United States)

    Ahiduzzaman, Md; Sadrul Islam, A K M

    2016-01-01

    Preparation porous bio-char and activated carbon from rice husk char study has been conducted in this study. Rice husk char contains high amount silica that retards the porousness of bio-char. Porousness of rice husk char could be enhanced by removing the silica from char and applying heat at high temperature. Furthermore, the char is activated by using chemical activation under high temperature. In this study no inert media is used. The study is conducted at low oxygen environment by applying biomass for consuming oxygen inside reactor and double crucible method (one crucible inside another) is applied to prevent intrusion of oxygen into the char. The study results shows that porous carbon is prepared successfully without using any inert media. The adsorption capacity of material increased due to removal of silica and due to the activation with zinc chloride compared to using raw rice husk char. The surface area of porous carbon and activated carbon are found to be 28, 331 and 645 m(2) g(-1) for raw rice husk char, silica removed rice husk char and zinc chloride activated rice husk char, respectively. It is concluded from this study that porous bio-char and activated carbon could be prepared in normal environmental conditions instead of inert media. This study shows a method and possibility of activated carbon from agro-waste, and it could be scaled up for commercial production.

  3. Heterogeneous global crop yield response to biochar: a meta-regression analysis

    International Nuclear Information System (INIS)

    Crane-Droesch, Andrew; Torn, Margaret S; Abiven, Samuel; Jeffery, Simon

    2013-01-01

    Biochar may contribute to climate change mitigation at negative cost by sequestering photosynthetically fixed carbon in soil while increasing crop yields. The magnitude of biochar’s potential in this regard will depend on crop yield benefits, which have not been well-characterized across different soils and biochars. Using data from 84 studies, we employ meta-analytical, missing data, and semiparametric statistical methods to explain heterogeneity in crop yield responses across different soils, biochars, and agricultural management factors, and then estimate potential changes in yield across different soil environments globally. We find that soil cation exchange capacity and organic carbon were strong predictors of yield response, with low cation exchange and low carbon associated with positive response. We also find that yield response increases over time since initial application, compared to non-biochar controls. High reported soil clay content and low soil pH were weaker predictors of higher yield response. No biochar parameters in our dataset—biochar pH, percentage carbon content, or temperature of pyrolysis—were significant predictors of yield impacts. Projecting our fitted model onto a global soil database, we find the largest potential increases in areas with highly weathered soils, such as those characterizing much of the humid tropics. Richer soils characterizing much of the world’s important agricultural areas appear to be less likely to benefit from biochar. (letter)

  4. Biochars with excellent Pb(II) adsorption property produced from fresh and dehydrated banana peels via hydrothermal carbonization.

    Science.gov (United States)

    Zhou, Nan; Chen, Honggang; Xi, Junting; Yao, Denghui; Zhou, Zhi; Tian, Yun; Lu, Xiangyang

    2017-05-01

    Fresh and dehydrated banana peels were used as biomass feedstock to produce highly effective sorbent biochars through a facile one-step hydrothermal carbonization approach with 20%vol phosphoric acid as the reaction medium. The elemental ratio of oxygen content of the two as-prepared biochars were about 20%, and the FT-IR analysis confirmed the existence of abundant surface functional groups such as hydroxyl and carboxyl which greatly enhanced the adsorption performance. The sorbents showed excellent lead clarification capability of 359mg·g -1 and 193mg·g -1 for dehydrated and fresh banana peels based biochars, respectively. The change of the CO/OCO and the appearance of PbO/PbOC on the surface after adsorption confirmed that the ion exchange might be the dominant mechanism. The dehydration and pulverization pre-treatment and the addition of phosphoric acid can benefit the formation of those functional groups and hydrothermal carbonization can be a promising method to transfer biomass like fruit peels into biochars with excellent adsorption performance. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Production and characterization of activated carbon prepared from safflower seed cake biochar and its ability to absorb reactive dyestuff

    Energy Technology Data Exchange (ETDEWEB)

    Angın, Dilek, E-mail: angin@sakarya.edu.tr [Department of Food Engineering, Faculty of Engineering, Sakarya University, Sakarya (Turkey); Köse, T. Ennil, E-mail: ennilb@ogu.edu.tr [Department of Chemical Engineering, Faculty of Engineering and Architecture, Eskisehir Osmangazi University, 26480 Meselik-Eskisehir (Turkey); Selengil, Uğur, E-mail: uselen@ogu.edu.tr [Department of Chemical Engineering, Faculty of Engineering and Architecture, Eskisehir Osmangazi University, 26480 Meselik-Eskisehir (Turkey)

    2013-09-01

    The use of activated carbon obtained from biochar for the removal of reactive dyestuff from aqueous solutions at various contact times, pHs and temperatures was investigated. The biochar was chemically modified with potassium hydroxide. The surface area and micropore volume of activated carbon was 1277 m{sup 2}/g and 0.4952 cm{sup 3}/g, respectively. The surface characterization of both biochar and activated carbon was undertaken using by Fourier transform infrared spectroscopy and scanning electron microscopy. The experimental data indicated that the adsorption isotherms are well described by the Dubinin–Radushkevich (DR) isotherm equation. The adsorption kinetics of reactive dyestuff obeys the pseudo second-order kinetic model. The thermodynamic parameters such as ΔG{sup o}, ΔH{sup o} and ΔS{sup o} were calculated to estimate the nature of adsorption. The activation energy of the system was calculated as 1.12 kJ/mol. According to these results, prepared activated carbon could be used as a low-cost adsorbent to compare with the commercial activated carbon for the removal reactive dyestuff from waste water.

  6. The potential of activated carbon derived from bio-char waste of bio-oil pyrolysis as adsorbent

    Directory of Open Access Journals (Sweden)

    Zulkania Ariany

    2018-01-01

    Full Text Available Activated carbon from bio-char waste of bio oil pyrolysis of mixed sugarcane bagasse and Rambutan twigs was investigated. Bio-char as by-product of bio-oil pyrolysis has potential to be good adsorbed by activating process. Bio-chars waste was activated in fixed bed reactor inside furnace without presenting oxygen. Gas N2 and CO2 were employed to drive out oxygen from the reactor and as activator, respectively. One of the best activation treatments is achieved by performing activation in different temperature and time to produce standard activated carbon. The experiment was performed at different temperatures and activation time, i.e. 800, 850, and 900° C and 80 and 120 minutes, respectively, to determine the optimal operating condition. Activated carbon was characterized by analysis of moisture content, ash content pH, and methylene blue test. The results showed that optimum activation was at 850°C and 80 minute, where activated carbon produced indicated the best adsorption capacity. The ash content and pH had significant role in resulting good activated carbon.

  7. Partitioning of carbon sources among functional pools to investigate short-term priming effects of biochar in soil: A 13C study

    International Nuclear Information System (INIS)

    Kerré, Bart; Hernandez-Soriano, Maria C.; Smolders, Erik

    2016-01-01

    Biochar sequesters carbon (C) in soils because of its prolonged residence time, ranging from several years to millennia. In addition, biochar can promote indirect C-sequestration by increasing crop yield while, potentially, reducing C-mineralization. This laboratory study was set up to evaluate effects of biochar on C-mineralization with due attention to source appointment by using 13 C isotope signatures. An arable soil (S) (7.9 g organic C, OC kg −1 ) was amended (single dose of 10 g kg −1 soil) with dried, grinded maize stover (leaves and stalks), either natural (R) or 13 C enriched (R*), and/or biochar (B/B*) prepared from the maize stover residues (450 °C). Accordingly, seven different combinations were set up (S, SR, SB, SR*, SB*, SRB*, SR*B) to trace the source of C in CO 2 (180 days), dissolved organic-C (115 days) and OC in soil aggregate fractions (90 days). The application of biochar to soil reduced the mineralization of native soil organic C but the effect on maize stover-C mineralization was not consistent. Biochar application decreased the mineralization of the non-enriched maize stover after 90 days, this being consistent with a significant reduction of dissolved organic C concentration from 45 to 18 mg L −1 . However, no significant effect was observed for the enriched maize stover, presumably due to differences between the natural and enriched materials. The combined addition of biochar and enriched maize stover significantly increased (twofold) the presence of native soil organic C or maize derived C in the free microaggregate fraction relative to soil added only with stover. Although consistent effects among C sources and biochar materials remains elusive, our outcomes indicate that some biochar products can reduce mineralization and solubilization of other sources of C while promoting their physical protection in soil particles. - Highlights: • Biochar can reduce native soil organic carbon mineralization. • Biochar can promote storage

  8. Partitioning of carbon sources among functional pools to investigate short-term priming effects of biochar in soil: A {sup 13}C study

    Energy Technology Data Exchange (ETDEWEB)

    Kerré, Bart [Department of Earth and Environmental Science, KU Leuven, Kasteelpark Arenberg 20, B-3001 Heverlee (Belgium); Hernandez-Soriano, Maria C., E-mail: m.hernandezsoriano@uq.edu.au [Department of Earth and Environmental Science, KU Leuven, Kasteelpark Arenberg 20, B-3001 Heverlee (Belgium); The University of Queensland, School of Agriculture and Food Sciences, St. Lucia, Queensland 4072 (Australia); Smolders, Erik [Department of Earth and Environmental Science, KU Leuven, Kasteelpark Arenberg 20, B-3001 Heverlee (Belgium)

    2016-03-15

    Biochar sequesters carbon (C) in soils because of its prolonged residence time, ranging from several years to millennia. In addition, biochar can promote indirect C-sequestration by increasing crop yield while, potentially, reducing C-mineralization. This laboratory study was set up to evaluate effects of biochar on C-mineralization with due attention to source appointment by using {sup 13}C isotope signatures. An arable soil (S) (7.9 g organic C, OC kg{sup −1}) was amended (single dose of 10 g kg{sup −1} soil) with dried, grinded maize stover (leaves and stalks), either natural (R) or {sup 13}C enriched (R*), and/or biochar (B/B*) prepared from the maize stover residues (450 °C). Accordingly, seven different combinations were set up (S, SR, SB, SR*, SB*, SRB*, SR*B) to trace the source of C in CO{sub 2} (180 days), dissolved organic-C (115 days) and OC in soil aggregate fractions (90 days). The application of biochar to soil reduced the mineralization of native soil organic C but the effect on maize stover-C mineralization was not consistent. Biochar application decreased the mineralization of the non-enriched maize stover after 90 days, this being consistent with a significant reduction of dissolved organic C concentration from 45 to 18 mg L{sup −1}. However, no significant effect was observed for the enriched maize stover, presumably due to differences between the natural and enriched materials. The combined addition of biochar and enriched maize stover significantly increased (twofold) the presence of native soil organic C or maize derived C in the free microaggregate fraction relative to soil added only with stover. Although consistent effects among C sources and biochar materials remains elusive, our outcomes indicate that some biochar products can reduce mineralization and solubilization of other sources of C while promoting their physical protection in soil particles. - Highlights: • Biochar can reduce native soil organic carbon mineralization.

  9. Establishing a green platform for biodiesel synthesis via strategic utilization of biochar and dimethyl carbonate.

    Science.gov (United States)

    Lee, Jechan; Jung, Jong-Min; Oh, Jeong-Ik; Sik Ok, Yong; Kwon, Eilhann E

    2017-10-01

    To establish a green platform for biodiesel production, this study mainly investigates pseudo-catalytic (non-catalytic) transesterification of olive oil. To this end, biochar from agricultural waste (maize residue) and dimethyl carbonate (DMC) as an acyl acceptor were used for pseudo-catalytic transesterification reaction. Reaction parameters (temperature and molar ratio of DMC to olive oil) were also optimized. The biodiesel yield reached up to 95.4% under the optimal operational conditions (380°C and molar ratio of DMC to olive oil (36:1)). The new sustainable environmentally benign biodiesel production introduced in this study is greener and faster than conventional transesterification reactions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Metal immobilization by sludge-derived biochar: roles of mineral oxides and carbonized organic compartment.

    Science.gov (United States)

    Zhang, Weihua; Huang, Xinchen; Jia, Yanming; Rees, Frederic; Tsang, Daniel C W; Qiu, Rongliang; Wang, Hong

    2017-04-01

    Pyrolyzing sludge into biochar is a potentially promising recycling/disposal solution for municipal wastewater sludge, and the sludge-derived biochar (SDBC) presents an excellent sorbent for metal immobilization. As SDBC is composed of both mineral oxides and carbonized organic compartment, this study therefore compared the sorption behaviour of Pb and Zn on SDBC to those of individual and mixture of activated carbon (AC) and amorphous aluminium oxide (Al 2 O 3 ). Batch experiments were conducted at 25 and 45 °C, and the metal-loaded sorbents were artificially aged in the atmosphere for 1-60 days followed by additional sorption experiments. The Pb sorption was generally higher than Zn sorption, and the co-presence of Pb reduced Zn sorption on each studied sorbent. Higher sorption capacities were observed at 45 °C than 25 °C for SDBC and AC, while the opposite was shown for Al 2 O 3 , indicating the significance of temperature-dependent diffusion processes in SDBC and AC. Nevertheless, metal sorption was more selective on Al 2 O 3 that showed a greater affinity towards Pb over Zn under competition, correlating with the reducible fraction of sequential extraction. Furthermore, significant amounts of Pb and Zn were additionally sorbed on SDBC following 30-day ageing. The X-ray diffraction revealed the formation of metal-phosphate precipitates, while the X-ray photoelectron spectroscopy showed a larger quantity of metal-oxygen bonding after 30-day ageing of metal-loaded SDBC. The results may imply favourable long-term transformation and additional sorption capacity of SDBC. In conclusion, SDBC resembles the sorption characteristics of both organic and mineral sorbents in different aspects, presenting an appropriate material for metal immobilization during soil amendment.

  11. Biomass, Bioenergy and the Sustainability of Soils and Climate: What Role for Biochar?

    Science.gov (United States)

    Sohi, Saran

    2013-04-01

    Biochar is the solid, carbon rich product of heating biomass with the exclusion of air (pyrolysis). Whereas charcoal is derived from wood, biochar is a co-product of energy capture and can derive from waste or non-waste, virgin or non-virgin biomass resources. But also, biochar is not a fuel - rather it is intended for the beneficial amendment of soil in agriculture, forestry and horticulture. This results in long-term storage of plant-derived carbon that could improve yield or efficiency of crop production, and/or mitigate trace gas emissions from the land. Life cycle analysis (LCA) shows that pyrolysis bioenergy with biochar production should offer considerably more carbon abatement than combustion, or gasification of the same feedstock. This has potential to link climate change mitigation to bioenergy and sustainable use of soil. But, in economic terms, the opportunity cost of producing biochar (reflecting the calorific value of its stored carbon) is inflated by bioenergy subsidies. This, combined with a lack of clear regulatory position and no mature pyrolysis technologies at large scale, means that pyrolysis-biochar systems (PBS) remain largely conceptual at the current time. Precise understanding of its function and an ability to predict its impact on different soils and crops with certainty, biochar should acquire a monetary value. Combining such knowledge with a system that monetizes climate change mitigation potential (such as carbon markets), could see schemes for producing and using biochar escalate - including a context for its deployment in biomass crops, or through pyrolysis of residues from other bioenergy processes. This talk explores the opportunity, challenges and risks in pursuing biochar production in various bioenergy contexts including enhanced sustainability of soil use in biomass crop production, improving the carbon balance and value chain in biofuel production, and using organic waste streams more effectively (including the processing of

  12. Offsetting global warming-induced elevated greenhouse gas emissions from an arable soil by biochar application.

    Science.gov (United States)

    Bamminger, Chris; Poll, Christian; Marhan, Sven

    2018-01-01

    Global warming will likely enhance greenhouse gas (GHG) emissions from soils. Due to its slow decomposability, biochar is widely recognized as effective in long-term soil carbon (C) sequestration and in mitigation of soil GHG emissions. In a long-term soil warming experiment (+2.5 °C, since July 2008) we studied the effect of applying high-temperature Miscanthus biochar (0, 30 t/ha, since August 2013) on GHG emissions and their global warming potential (GWP) during 2 years in a temperate agroecosystem. Crop growth, physical and chemical soil properties, temperature sensitivity of soil respiration (R s ), and metabolic quotient (qCO 2 ) were investigated to yield further information about single effects of soil warming and biochar as well as on their interactions. Soil warming increased total CO 2 emissions by 28% over 2 years. The effect of warming on soil respiration did not level off as has often been observed in less intensively managed ecosystems. However, the temperature sensitivity of soil respiration was not affected by warming. Overall, biochar had no effect on most of the measured parameters, suggesting its high degradation stability and its low influence on microbial C cycling even under elevated soil temperatures. In contrast, biochar × warming interactions led to higher total N 2 O emissions, possibly due to accelerated N-cycling at elevated soil temperature and to biochar-induced changes in soil properties and environmental conditions. Methane uptake was not affected by soil warming or biochar. The incorporation of biochar-C into soil was estimated to offset warming-induced elevated GHG emissions for 25 years. Our results highlight the suitability of biochar for C sequestration in cultivated temperate agricultural soil under a future elevated temperature. However, the increased N 2 O emissions under warming limit the GHG mitigation potential of biochar. © 2017 John Wiley & Sons Ltd.

  13. Life cycle assessment of biochar systems: estimating the energetic, economic, and climate change potential.

    Science.gov (United States)

    Roberts, Kelli G; Gloy, Brent A; Joseph, Stephen; Scott, Norman R; Lehmann, Johannes

    2010-01-15

    Biomass pyrolysis with biochar returned to soil is a possible strategy for climate change mitigation and reducing fossil fuel consumption. Pyrolysis with biochar applied to soils results in four coproducts: long-term carbon (C) sequestration from stable C in the biochar, renewable energy generation, biochar as a soil amendment, and biomass waste management. Life cycle assessment was used to estimate the energy and climate change impacts and the economics of biochar systems. The feedstocks analyzed represent agricultural residues (corn stover), yard waste, and switchgrass energy crops. The net energy of the system is greatest with switchgrass (4899 MJ t(-1) dry feedstock). The net greenhouse gas (GHG) emissions for both stover and yard waste are negative, at -864 and -885 kg CO(2) equivalent (CO(2)e) emissions reductions per tonne dry feedstock, respectively. Of these total reductions, 62-66% are realized from C sequestration in the biochar. The switchgrass biochar-pyrolysis system can be a net GHG emitter (+36 kg CO(2)e t(-1) dry feedstock), depending on the accounting method for indirect land-use change impacts. The economic viability of the pyrolysis-biochar system is largely dependent on the costs of feedstock production, pyrolysis, and the value of C offsets. Biomass sources that have a need for waste management such as yard waste have the highest potential for economic profitability (+$69 t(-1) dry feedstock when CO(2)e emission reductions are valued at $80 t(-1) CO(2)e). The transportation distance for feedstock creates a significant hurdle to the economic profitability of biochar-pyrolysis systems. Biochar may at present only deliver climate change mitigation benefits and be financially viable as a distributed system using waste biomass.

  14. Production and Composition of Dissolved Black Carbon from Various Biochars and Environmentally-aged Charcoals

    Science.gov (United States)

    Bostick, K. W.; Zimmerman, A. R.; Hatcher, P.; Mitra, S.; Wozniak, A. S.

    2016-12-01

    Pyrogenic organic matter, or black carbon (BC), is the solid carbonaceous product of biomass pyrolysis. While solid BC represents a long-lived portion of the C cycle, it releases pyrogenic dissolved organic matter (py-DOM) which may be more susceptible to mineralization and transformation. This py-DOM may impact environmental and public health and likely controls exchange between terrestrial and aquatic BC pools. Benzene polycarboxylic acids (BPCAs), produced by acid digestion of samples, are used as molecular markers for pyrogenic organic matter. Yet, we currently have a poor understanding of the controls on the production of py-DOM and its yield of BPCA compounds. In response, aqueous leaching time series experiments were carried out using a series of laboratory-made biochars and environmentally-aged charcoals. While non-charred oak biomass released 31.8 mg C/g (45% C loss), oak biochars prepared at low temperatures (250 and 400ºC), produced 9.9 and 2.6 mg C/g (11 and 2.3% C loss), respectively. Oak chars prepared at a higher temperatures (650ºC) leached only 1.85 mg C/g (1.5% C loss). In contrast, an environmentally-aged charcoal (30 y old cypress charcoal) leached 10.9% of its C. On average, 59% (ranging 38-80%) of oak pyrogenic DOC was converted into BPCAs, suggesting that oak py-DOM has a variably condensed aromatic proportion. However, much less BPCAs were generated by BC parent solids. In addition, trace amounts of BPCA were generated from non-pyrolyzed grass, oak wood, and compost leachates; these lend concern to the use of BPCAs as exclusive pyrogenic molecular markers. As expected, BPCA molecular distribution showed that condensation increased with pyrolysis temperature of solid biochars and their corresponding leachates. The comparison of these findings to 13C and 1H NMR spectra of charcoal parent solids and their leachates will further elucidate the chemistry and production mechanisms of py-DOM.

  15. Analyzing the impacts of three types of biochar on soil carbon fractions and physiochemical properties in a corn-soybean rotation.

    Science.gov (United States)

    Sandhu, Saroop S; Ussiri, David A N; Kumar, Sandeep; Chintala, Rajesh; Papiernik, Sharon K; Malo, Douglas D; Schumacher, Thomas E

    2017-10-01

    Biochar is a solid material obtained when biomass is thermochemically converted in an oxygen-limited environment. In most previous studies, the impacts of biochar on soil properties and organic carbon (C) were investigated under controlled conditions, mainly laboratory incubation or greenhouse studies. This 2-year field study was conducted to evaluate the influence of biochar on selected soil physical and chemical properties and carbon and nitrogen fractions for two selected soil types (clay loam and a sandy loam soil) under a corn (Zea mays L.)-soybean (Glycine max L.) rotation. The three plant based biochar materials used for this study were corn stover (CS), ponderosa pine (Pinus ponderosa Lawson and C. Lawson) wood residue (PW), and switchgrass (Panicum virgatum L.) (SG). Data showed that CS and SG significantly increased the pH of acidic soil at the eroded landscape position but produced no significant change in soil pH at the depositional landscape position. The effects of biochar treatments on cold water extractable C (WSC) and nitrogen (WSN) fractions for the 0-7.5 cm depth were depended on biochar and soil type. Results suggested that alkaline biochars applied at 10 Mg ha -1 can increase the pH and WSC fraction of acidic sandy loam soil, but the 10 Mg ha -1 rate might be low to substantially improve physical properties and hot water extractable C and N fractions of soil. Application of higher rates of biochar and long-term monitoring is needed to quantify the benefits of biochar under field conditions on soils in different environmental conditions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Carbon mitigation technologies for emerging economies

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-05-15

    A review of the various options being pursued to reduce carbon intensities in five developing countries, namely Brazil, China, India, Indonesia and South Africa. These are major emerging economies, all of which are vulnerable to adverse effects from climate change, with their governments having to balance economic, environmental and social priorities. All have large carbon footprints; however, in each case, they have made commitments to reduce carbon intensities over the period to 2030 and, in some cases, beyond.

  17. Climate change mitigation by carbon stocking

    DEFF Research Database (Denmark)

    Lykke, Anne Mette; Barfod, Anders S.; Svendsen, Gert Tinggaard

    2009-01-01

    with promotion of secondary crops such as food resources and traditional medicines harvested on a sustainable basis. Methods for modelling and mapping of potential carbon biomass are being developed, but are still in a preliminary state. Although economic benefits from the sale of carbon credits are likely...... primarily on rain forest countries and excludes semi-arid West Africa from the preliminary setup. African savannas have potentials to store carbon in the present situation with degrading ecosystems and relatively low revenues from crops and cattle, especially if it is possible to combine carbon stocking...

  18. Dynamic molecular structure of plant biomass-derived black carbon (biochar)

    Energy Technology Data Exchange (ETDEWEB)

    Keiluweit, M.; Nico, P.S.; Johnson, M.G.; Kleber, M.

    2009-11-15

    Char black carbon (BC), the solid residue of incomplete combustion, is continuously being added to soils and sediments due to natural vegetation fires, anthropogenic pollution, and new strategies for carbon sequestration ('biochar'). Here we present a molecular-level assessment of the physical organization and chemical complexity of biomass-derived chars and, specifically, that of aromatic carbon in char structures. BET-N{sub 2} surface area, X-ray diffraction (XRD), synchrotron-based Near-edge X-ray Absorption Fine Structure (NEXAFS), and Fourier transform infrared (FT-IR) spectroscopy are used to show how two plant materials (wood and grass) undergo analogous, but quantitatively different physical-chemical transitions as charring temperature increases from 100 to 700 C. These changes suggest the existence of four distinct categories of char consisting of a unique mixture of chemical phases and physical states: (i) in transition chars the crystalline character of the precursor materials is preserved, (ii) in amorphous chars the heat-altered molecules and incipient aromatic polycondensates are randomly mixed, (iii) composite chars consist of poorly ordered graphene stacks embedded in amorphous phases, and (iv) turbostratic chars are dominated by disordered graphitic crystallites. The molecular variations among the different char categories translate into differences in their ability to persist in the environment and function as environmental sorbents.

  19. Effect of activated carbon or biochars on toxicity of different soils contaminated by mixture of native polycyclic aromatic hydrocarbons and heavy metals.

    Science.gov (United States)

    Kołtowski, Michał; Oleszczuk, Patryk

    2016-05-01

    Activated carbon (AC), biochar from wheat straw (BCS), and biochar from willow (BCW) were added to the soils sampled from areas of strong anthropogenic influence at doses of 0.5%, 1%, 2.5%, or 5% (w/w) and incubated for 2 mo. At the end of this period, the toxicity of the soils was measured. The effect of AC and biochars on the toxicity of the soils varied based on soil, type of amendment, dose, and test organism. For most of the parameters tested, the highest effectiveness of AC in terms of reduction of toxicity was observed in soil POPI (from bitumen processing plant area). In the case of the remaining soils, after the addition of AC varied results were observed, in which a reduction or an increase of toxicity, relative to the control soil, occurred. As in the case of AC, biochars also caused a significant reduction of phytotoxicity of soil POPI. In soils KB (from coking plant area, industrial waste deposit) and KOK (from coking plant area, coking battery), the reduction or increase of toxicity depended on biochar dose. Compared with the biochars, the effectiveness of AC in the reduction of toxicity depended also on soil, type of amendment, dose, and test organism. Generally, the AC was more effective than biochars in relation to mortality and reproduction of Folsomia candida (in all soils) and for reduction of luminescence inhibition of Vibrio fischeri (in POPI soil). © 2015 SETAC.

  20. Retention efficiency of Cd, Pb and Zn from agricultural by-products activated carbon and biochar under laboratory conditions

    Science.gov (United States)

    Coscione, Aline; Ramos, Barbara

    2015-04-01

    The immobilization of inorganic contaminants by using biochar in soils has played an increasingly important role and it is seen as an attractive alternative for the remediation of heavy metals. Although, the production of activated carbon (CA) from agricultural by-products has received special attention, the activation of the the organic source has been studied in order to increase its porposity, surface area and chemical polarity, resulting in higher adsorption of metals. Therefore, this study aimed to evaluate the effectiveness of BC and CA samples, obtained from a eucalyptus husks and cane sugar bagasse after activation with 20% phosphoric acid and pyrolyzed at 450oC in the retention of Zn, Cd and Pb using contaminated individual solutions. The experiment was performed using samples of activated carbon of eucalyptus husk (CCA), eucalyptus husk biochar (BC), activated carbon of sugar cane bagasse (CBA) and sugar cane bagasse biochar (BB) previously treated with Zn, Cd (range of tested solution from 0.1 up to 12 mmol L-1) and Pb (from 0.1 up 50 mmol L-1) which were submitted to stirring with ammonium acetate solution at pH 4.9 for 48 h. The results obtained were adjusted with Langmuir desorptiom isotherms. The pH of the resulting solution, were the meatls were analyse, was measure and remained in the range 4.9 - 5.0. The lower pH found in activated samples (range 2.4-2.5) resulted in larger desorption of metals than the biochar samples (pH of 9.7 for BC and 7.0 for BB). This result is surprising since for the biochar samples it was expected that any precipated metals were dissolved by the desorption solution in addition to metals released by ion exchange. Although the desorption results of activated samoels is still unclear, hich we belive may be explaibed by some adicitonal insterumental analysis, biochar samples showed better potential for application in contaminated soils than the previous.

  1. Is biochar-manure co-compost a better solution for soil health improvement and N2O emissions mitigation?

    Science.gov (United States)

    Land application of compost has been a promising remediation strategy for soil health and environmental quality, but substantial emissions of greenhouse gases, especially N2O, need to be controlled during making and using compost. Biochar as a bulking agent for composting has bee...

  2. Characterization of narrow micropores in almond shell biochars by nitrogen, carbon dioxide, and hydrogen adsorption

    Science.gov (United States)

    Characterization of biochars usually includes surface area and pore volume determination by nitrogen adsorption. In this study, we show that there is a substantial pore volume in biochars created via slow pyrolysis from low- and high-ash almond shells that cannot be characterized in this fashion due...

  3. Mitigating in situ oil sands carbon costs

    Energy Technology Data Exchange (ETDEWEB)

    Theriault, D.J.; Peterson, J. [Laricina Energy Ltd., Calgary, AB (Canada); Heinrichs, H. [Canadian Chemical Technology Inc., Calgary, AB (Canada)

    2008-10-15

    Carbon capture and sequestration is a complex problem with a variety of dimensions that need to be considered. The political, social, and regulatory pressures are forcing carbon costs on the oil sands industry in an effort to reduce the carbon footprint of oil sands operations. This paper reviewed the political, social, and regulatory pressures and obligations for the in-situ oil sands industry. It presented the views and insights of Laricina Energy on the carbon challenge. It also described the initiatives that Laricina Energy is taking to manage these imperatives and outlined the challenges the industry is facing. The purpose of the paper was to encourage dialogue and collaboration by the oil sands industry. The paper also described the dimensions of the carbon problem and how the industry can contribute to a solution. Last, the paper reviewed the parameters of carbon dioxide or greenhouse gas containment and storage issues. It was concluded that the regulatory and policy requirements need to be clarified so that industry understands the new business landscape as well as the requirements that influence the economics of in-situ oil sands development. 7 refs., 7 figs.

  4. Nitrogen and Carbon Leaching in Repacked Sandy Soil with Added Fine Particulate Biochar

    DEFF Research Database (Denmark)

    Bruun, Esben W.; Petersen, Carsten; Strobel, Bjarne W.

    2012-01-01

    Biochar amendment to soil may affect N turnover and retention, and may cause translocation of dissolved and particulate C. We investigated effects of three fine particulate biochars made of wheat (Triticum aestivum L.) straw (one by slow pyrolysis and two by fast pyrolysis) on N and C leaching from...... repacked sandy soil columns (length: 51 cm). Biochar (2 wt%), ammonium fertilizer (NH4+, amount corresponding to 300 kg N ha-1) and an inert tracer (bromide) were added to a 3-cm top layer of sandy loam, and the columns were then irrigated with constant rate (36 mm d-1) for 15 d. The total amount...... of leachate came to about 3.0 water filled pore volumes (WFPVs). Our study revealed a high mobility of labile C components originating from the fine particulate fast pyrolysis biochar. This finding highlights a potential risk of C leaching coupled with the use of fast pyrolysis biochars for soil amendment...

  5. Carbon Dioxide Mitigation Benefit of High-Speed Railway in Terms of Carbon Tax

    Directory of Open Access Journals (Sweden)

    Fu Yanbing

    2013-01-01

    Full Text Available This paper calculates the carbon dioxide mitigation benefit of high-speed railway based on the carbon dioxide tax policy. We define the carbon dioxide emission system boundary for high-speed railway in its whole life cycle and estimate the life cycle carbon dioxide inventories during its construction, application, and recovery stages. And then we establish a theoretical model to calculate the life cycle carbon dioxide mitigation quantity for high-speed railway when compared with road transport and then calculate its carbon dioxide mitigation benefit. The numerical example shows that the carbon dioxide mitigation benefit of high-speed railway is better than that of road transport from the whole life cycle perspective.

  6. Sorption of ionizable and ionic organic compounds to biochar, activated carbon and other carbonaceous materials.

    Science.gov (United States)

    Kah, Melanie; Sigmund, Gabriel; Xiao, Feng; Hofmann, Thilo

    2017-11-01

    The sorption of ionic and ionizable organic compounds (IOCs) (e.g., pharmaceuticals and pesticides) on carbonaceous materials plays an important role in governing the fate, transport and bioavailability of IOCs. The paradigms previously established for the sorption of neutral organic compounds do not always apply to IOCs and the importance of accounting for the particular sorption behavior of IOCs is being increasingly recognized. This review presents the current state of knowledge and summarizes the recent advances on the sorption of IOCs to carbonaceous sorbents. A broad range of sorbents were considered to evaluate the possibility to read across between fields of research that are often considered in isolation (e.g., carbon nanotubes, graphene, biochar, and activated carbon). Mechanisms relevant to IOCs sorption on carbonaceous sorbents are discussed and critically evaluated, with special attention being given to emerging sorption mechanisms including low-barrier, charge-assisted hydrogen bonds and cation-π assisted π-π interactions. The key role played by some environmental factors is also discussed, with a particular focus on pH and ionic strength. Overall the review reveals significant advances in our understanding of the interactions between IOCs and carbonaceous sorbents. In addition, knowledge gaps are identified and priorities for future research are suggested. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Solubility of lead and copper in biochar-amended small arms range soils: influence of soil organic carbon and pH.

    Science.gov (United States)

    Uchimiya, Minori; Bannon, Desmond I

    2013-08-14

    Biochar is often considered a strong heavy metal stabilizing agent. However, biochar in some cases had no effects on, or increased the soluble concentrations of, heavy metals in soil. The objective of this study was to determine the factors causing some biochars to stabilize and others to dissolve heavy metals in soil. Seven small arms range soils with known total organic carbon (TOC), cation exchange capacity, pH, and total Pb and Cu contents were first screened for soluble Pb and Cu concentrations. Over 2 weeks successive equilibrations using weak acid (pH 4.5 sulfuric acid) and acetate buffer (0.1 M at pH 4.9), Alaska soil containing disproportionately high (31.6%) TOC had nearly 100% residual (insoluble) Pb and Cu. This soil was then compared with sandy soils from Maryland containing significantly lower (0.5-2.0%) TOC in the presence of 10 wt % (i) plant biochar activated to increase the surface-bound carboxyl and phosphate ligands (PS450A), (ii) manure biochar enriched with soluble P (BL700), and (iii) unactivated plant biochars produced at 350 °C (CH350) and 700 °C (CH500) and by flash carbonization (corn). In weak acid, the pH was set by soil and biochar, and the biochars increasingly stabilized Pb with repeated extractions. In pH 4.9 acetate buffer, PS450A and BL700 stabilized Pb, and only PS450A stabilized Cu. Surface ligands of PS450A likely complexed and stabilized Pb and Cu even under acidic pH in the presence of competing acetate ligand. Oppositely, unactivated plant biochars (CH350, CH500, and corn) mobilized Pb and Cu in sandy soils; the putative mechanism is the formation of soluble complexes with biochar-borne dissolved organic carbon. In summary, unactivated plant biochars can inadvertently increase dissolved Pb and Cu concentrations of sandy, low TOC soils when used to stabilize other contaminants.

  8. Effects of biochar on air and water permeability and colloid and phosphorus leaching in soils from a natural calcium carbonate gradient

    DEFF Research Database (Denmark)

    Kahawaththa Gamage, Inoka Damayanthi Kumari; Møldrup, Per; Perez, Marcos Paradelo

    2014-01-01

    chemical properties (e.g., pH and ionic strength) which significantly affected air and water transport and colloid and phosphorous leaching. In denser soils (bulk density 1.57-1.69 g cm-3) preferential flow dominated the transport and caused an enhanced movement of air and water whereas in less dense soils......Application of biochar to agricultural fields to improve soil quality has increased in popularity in recent years, but limited attention is generally paid to existing field conditions prior to biochar application. This study examined the short-term physico-chemical effects of biochar amendment...... in an agricultural field in Denmark with a calcium carbonate (CaCO3) gradient. The field comprised four reference plots and four plots to which biochar (birch wood pyrolyzed at 500 C) was applied at a rate of 20 tons ha-1. Five undisturbed soil columns (10 cm dia., 8 cm height) were sampled from each plot seven...

  9. Carbon flux from plants to soil microbes is highly sensitive to nitrogen addition and biochar amendment

    Science.gov (United States)

    Kaiser, C.; Solaiman, Z. M.; Kilburn, M. R.; Clode, P. L.; Fuchslueger, L.; Koranda, M.; Murphy, D. V.

    2012-04-01

    The release of carbon through plant roots to the soil has been recognized as a governing factor for soil microbial community composition and decomposition processes, constituting an important control for ecosystem biogeochemical cycles. Moreover, there is increasing awareness that the flux of recently assimilated carbon from plants to the soil may regulate ecosystem response to environmental change, as the rate of the plant-soil carbon transfer will likely be affected by increased plant C assimilation caused by increasing atmospheric CO2 levels. What has received less attention so far is how sensitive the plant-soil C transfer would be to possible regulations coming from belowground, such as soil N addition or microbial community changes resulting from anthropogenic inputs such as biochar amendments. In this study we investigated the size, rate and sensitivity of the transfer of recently assimilated plant C through the root-soil-mycorrhiza-microbial continuum. Wheat plants associated with arbuscular mycorrhizal fungi were grown in split-boxes which were filled either with soil or a soil-biochar mixture. Each split-box consisted of two compartments separated by a membrane which was penetrable for mycorrhizal hyphae but not for roots. Wheat plants were only grown in one compartment while the other compartment served as an extended soil volume which was only accessible by mycorrhizal hyphae associated with the plant roots. After plants were grown for four weeks we used a double-labeling approach with 13C and 15N in order to investigate interactions between C and N flows in the plant-soil-microorganism system. Plants were subjected to an enriched 13CO2 atmosphere for 8 hours during which 15NH4 was added to a subset of split-boxes to either the root-containing or the root-free compartment. Both, 13C and 15N fluxes through the plant-soil continuum were monitored over 24 hours by stable isotope methods (13C phospho-lipid fatty acids by GC-IRMS, 15N/13C in bulk plant

  10. Activated carbon and biochar from agricultural by-products in the adorption of Cd, Pb and Zn under laboratory conditions

    Science.gov (United States)

    Coscione, Aline; Zini, Barbara

    2015-04-01

    The immobilization of inorganic contaminants by using biochar in soils has played an increasingly important role and it is seen as an attractive alternative for the remediation of heavy metals. Although, the production of activated carbon (CA) from agricultural by-products has received special attention, the activation of the the organic source has been studied in order to increase its porposity, surface area and chemical polarity, resulting in higher adsorption of metals. Therefore, this study aimed to evaluate the effectiveness of BC and CA samples, obtained from a eucalyptus husks and cane sugar bagasse after activation with 20% phosphoric acid and pyrolyzed at 450oC in the retention of Zn, Cd and Pb using contaminated individual solutions. The experiment was performed using samples of activated carbon of eucalyptus husk (CCA), eucalyptus husk biochar (BC), activated carbon of sugar cane bagasse (CBA) and sugar cane bagasse biochar (BB), treated with Zn, Cd (range of tested solution from 0.1 up to 12 mmol L-1) and Pb (from 0.1 up 50 mmol L-1) and the adjustemento of Langmuir adsorption isotherms. Samples obtained from bagasse presented higher adsoprtion of the metals tested then eucalyptus. Also the activation process had not the expected effect on either eucalyptus and bagasse samples The maxmum adsorption capacyty of samples were as follws, in mmol g-1: for Cd - 0.36 for BC; 0.32 for CCA; 0.40 for BB; 0.31 for CBA. For Zn- 0.14 for BC; no adsorbed by CCA; 0.35 5 for BB; 0.06 for CBA. For Pb - 1.24 for BC; 0.40 for CCA; 0,45 for BB; 0,03 for CBA. However, it was also observed that due to the activation with phosphoric acid, the pH of the activated carbon (CCA and CBA) were 2.4 and 2.5 in comparison with the biochars not activated (BC and BB) 9.7 and 7.0 respectively. Thus, it is yet not possible to state if the calculate capacity is due exclusively to the complexation of chemical groups in the surface of samples or to which extent there is a contribution of

  11. Long-term effect of biochar application on yield-scaled greenhouse gas emissions in a rice paddy cropping system: A four-year case study in south China

    Energy Technology Data Exchange (ETDEWEB)

    Qin, Xiaobo [Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, The Key Laboratory for Agro-Environment, Ministry of Agriculture, No.12 Zhongguancun South Street, Haidian district, Beijing 100081 (China); Semiarid Prairie Agricultural Research Centre, Agriculture and Agri-Food Canada, P.O. Box 1030, Swift Current, Saskatchewan S9H 3X2 (Canada); Li, Yu' e, E-mail: liyue@caas.cn [Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, The Key Laboratory for Agro-Environment, Ministry of Agriculture, No.12 Zhongguancun South Street, Haidian district, Beijing 100081 (China); Wang, Hong [Semiarid Prairie Agricultural Research Centre, Agriculture and Agri-Food Canada, P.O. Box 1030, Swift Current, Saskatchewan S9H 3X2 (Canada); Liu, Chong; Li, Jianling; Wan, Yunfan; Gao, Qingzhu [Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, The Key Laboratory for Agro-Environment, Ministry of Agriculture, No.12 Zhongguancun South Street, Haidian district, Beijing 100081 (China); Fan, Fenliang [Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081 (China); Liao, Yulin [Soils and Fertilizer Institute of Hunan Province, Changsha 410125 (China)

    2016-11-01

    To evaluate long-term effect of biochar application on yield-scaled greenhouse gas emissions (YSGE) in a paddy rice cropping system, a 4-year field experiment by static chamber - gas chromatograph method was conducted in South China. Principal component analysis and terminal restriction fragment length polymorphism (T-RFLP) and real-time qPCR was used to unravel the microbial mechanisms of biochar addition. Six treatments were included: control (CK), application of 5 t ha{sup −} {sup 1} biochar (BC1), application of 10 t ha{sup −} {sup 1} biochar (BC2), application of 10 t ha{sup −} {sup 1} biochar (BC3), rice straw return at 2400 kg ha{sup −} {sup 1}(RS) and inoculated rice straw return at 2400 kg ha{sup −} {sup 1}(RI). The results indicated that biochar amendment significantly decreased methane (CH{sub 4}) and gross greenhouse gas (GHG) emissions. This may primarily be ascribed to the stimulated biodiversity and abundance of methanotrophic microbes, increased soil pH and improved aeration by reducing bulk density after biochar incorporation. Compared with CK, RS and RI, 26.18%, 70.02%, 66.47% of CH{sub 4} flux and 26.14%, 70.16%, 66.46% of gross GHG emissions were reduced by biochar (mean of three biochar treatments), respectively. Furthermore, biochar significantly increased harvest index of double rice production (p < 0.05). In comparison with CK, RS and RI, 29.14%, 68.04%, 62.28% of YSGE was reduced by biochar, respectively, and the highest biochar addition rate (20 t ha{sup −} {sup 1}) contributed most to the mitigation of GHG emissions (36.24% decrease compared to CK) and improvement of rice yield (7.65% increase compared to CK). Results of our study suggested that long-term application of biochar should be the potential way to mitigate GHGs emissions and simultaneously improve rice productivity in the paddy rice system. - Graphical abstract: Relative change ratio of different biochar amendments and rice straw residues to CK treatment during the

  12. Long-term effect of biochar application on yield-scaled greenhouse gas emissions in a rice paddy cropping system: A four-year case study in south China

    International Nuclear Information System (INIS)

    Qin, Xiaobo; Li, Yu'e; Wang, Hong; Liu, Chong; Li, Jianling; Wan, Yunfan; Gao, Qingzhu; Fan, Fenliang; Liao, Yulin

    2016-01-01

    To evaluate long-term effect of biochar application on yield-scaled greenhouse gas emissions (YSGE) in a paddy rice cropping system, a 4-year field experiment by static chamber - gas chromatograph method was conducted in South China. Principal component analysis and terminal restriction fragment length polymorphism (T-RFLP) and real-time qPCR was used to unravel the microbial mechanisms of biochar addition. Six treatments were included: control (CK), application of 5 t ha"− "1 biochar (BC1), application of 10 t ha"− "1 biochar (BC2), application of 10 t ha"− "1 biochar (BC3), rice straw return at 2400 kg ha"− "1(RS) and inoculated rice straw return at 2400 kg ha"− "1(RI). The results indicated that biochar amendment significantly decreased methane (CH_4) and gross greenhouse gas (GHG) emissions. This may primarily be ascribed to the stimulated biodiversity and abundance of methanotrophic microbes, increased soil pH and improved aeration by reducing bulk density after biochar incorporation. Compared with CK, RS and RI, 26.18%, 70.02%, 66.47% of CH_4 flux and 26.14%, 70.16%, 66.46% of gross GHG emissions were reduced by biochar (mean of three biochar treatments), respectively. Furthermore, biochar significantly increased harvest index of double rice production (p < 0.05). In comparison with CK, RS and RI, 29.14%, 68.04%, 62.28% of YSGE was reduced by biochar, respectively, and the highest biochar addition rate (20 t ha"− "1) contributed most to the mitigation of GHG emissions (36.24% decrease compared to CK) and improvement of rice yield (7.65% increase compared to CK). Results of our study suggested that long-term application of biochar should be the potential way to mitigate GHGs emissions and simultaneously improve rice productivity in the paddy rice system. - Graphical abstract: Relative change ratio of different biochar amendments and rice straw residues to CK treatment during the rice growing seasons from 2012 to 2015. * and *** stand for

  13. Soil biochar amendment shapes the composition of N2O-reducing microbial communities.

    Science.gov (United States)

    Harter, Johannes; Weigold, Pascal; El-Hadidi, Mohamed; Huson, Daniel H; Kappler, Andreas; Behrens, Sebastian

    2016-08-15

    Soil biochar amendment has been described as a promising tool to improve soil quality, sequester carbon, and mitigate nitrous oxide (N2O) emissions. N2O is a potent greenhouse gas. The main sources of N2O in soils are microbially-mediated nitrogen transformation processes such as nitrification and denitrification. While previous studies have focused on the link between N2O emission mitigation and the abundance and activity of N2O-reducing microorganisms in biochar-amended soils, the impact of biochar on the taxonomic composition of the nosZ gene carrying soil microbial community has not been subject of systematic study to date. We used 454 pyrosequencing in order to study the microbial diversity in biochar-amended and biochar-free soil microcosms. We sequenced bacterial 16S rRNA gene amplicons as well as fragments of common (typical) nosZ genes and the recently described 'atypical' nosZ genes. The aim was to describe biochar-induced shifts in general bacterial community diversity and taxonomic variations among the nosZ gene containing N2O-reducing microbial communities. While soil biochar amendment significantly altered the 16S rRNA gene-based community composition and structure, it also led to the development of distinct functional traits capable of N2O reduction containing typical and atypical nosZ genes related to nosZ genes found in Pseudomonas stutzeri and Pedobacter saltans, respectively. Our results showed that biochar amendment can affect the relative abundance and taxonomic composition of N2O-reducing functional microbial traits in soil. Thus these findings broaden our knowledge on the impact of biochar on soil microbial community composition and nitrogen cycling. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Incorporation of Biochar Carbon into Stable Soil Aggregates: The Role of Clay Mineralogy and Other Soil Characteristics

    Institute of Scientific and Technical Information of China (English)

    Charlene N.KELLY; Joseph BENJAMIN; Francisco C.CALDER(O)N; Maysoon M.MIKHA; David W.RUTHERFORD; Colleen E.ROSTAD

    2017-01-01

    Aggregation and structure plav key roles in water-holding capacity and stability of soils.In this study,the incorporation of carbon (C) from switchgrass biochar into stable aggregate size fractions was assessed in an Aridisol (from Colorado,USA) dominated by 2:1 clays and an Alfisol (from Virginia,USA) containing weathered mixed 1∶1 and 2∶1 mineralogy,to evaluate the effect of biochar addition on soil characteristics.The biochar was applied at 4 levels,0,25,50,and 100 g kg-1,to the soils grown with wheat in a growth chamber experiment.The changes in soil strength and water-holding capacity using water release curves were measured.In the Colorado soil,the proportion of soil occurring in large aggregates decreased,with concomitant increases in small size fractions.No changes in aggregate size fractions occurred in the Virginia soil.In the Colorado soil,C content increased from 3.3 to 16.8 g kg-1,whereas in the < 53 μm fraction C content increased from 5.7 to 22.6 g kg-1 with 100 g kg-1 biochar addition.In the Virginia soil,C content within aggregate size fractions increased for each size fraction,except the > 2 000 μm fraction.The greatest increase (from 6.2 to 22.0 g kg-1) occurred in the 53-250 μm fraction.The results indicated that C was incorporated into larger aggregates in the Virginia soil,but remained largely unassociated to soil particles in the Colorado soil.Biochar addition had no significant effect on water-holding capacity or strength measurements.Adding biochar to more weathered soils with high native soil organic content may result in greater stabilization of incorporated C and result in less loss because of erosion and transport,compared with the soils dominated by 2∶1 clays and low native soil organic content.

  15. A Cost Framework for the Economic Feasibility of Wide-Scale Biochar Production

    Science.gov (United States)

    Pourhashem, G.; Masiello, C. A.; Medlock, K. B., III

    2017-12-01

    industry evolves. Our study helps identify pyrolysis pathways that are most economically suitable for scaling up biochar production for ecosystem carbon storage and environmental improvement. Finally, we discuss the market development or policy strategies that can make biochar an attractive environmental mitigation tool for decision makers.

  16. Life cycle cost and economic assessment of biochar-based bioenergy production and biochar land application in Northwestern Ontario, Canada

    Institute of Scientific and Technical Information of China (English)

    Krish Homagain; Chander Shahi; Nancy Luckai; Mahadev Sharma

    2017-01-01

    Background:Replacement of fossil fuel based energy with biochar-based bioenergy production can help reduce greenhouse gas emissions while mitigating the adverse impacts of climate change and global warming.However,the production of biochar-based bioenergy depends on a sustainable supply of biomass.Although,Northwestern Ontario has a rich and sustainable supply of woody biomass,a comprehensive life cycle cost and economic assessment of biochar-based bioenergy production technology has not been done so far in the region.Methods:In this paper,we conducted a thorough life cycle cost assessment (LCCA) of biochar-based bioenergy production and its land application under four different scenarios:1) biochar production with low feedstock availability;2) biochar production with high feedstock availability;3) biochar production with low feedstock availability and its land application;and 4) biochar production with high feedstock availability and its land application-using SimaPro(R),EIOLCA(R) software and spreadsheet modeling.Based on the LCCA results,we further conducted an economic assessment for the break-even and viability of this technology over the project period.Results:It was found that the economic viability of biochar-based bioenergy production system within the life cycle analysis system boundary based on study assumptions is directly dependent on costs of pyrolysis,feedstock processing (drying,grinding and pelletization) and collection on site and the value of total carbon offset provided by the system.Sensitivity analysis of transportation distance and different values of C offset showed that the system is profitable in case of high biomass availability within 200 km and when the cost of carbon sequestration exceeds CAD S60 per tonne of equivalent carbon (CO2e).Conclusions:Biochar-based bioenergy system is economically viable when life cycle costs and environmental assumptions are accounted for.This study provides a medium scale slow-pyrolysis plant scenario and

  17. Impact of activated carbon, biochar and compost on the desorption and mineralization of phenanthrene in soil

    DEFF Research Database (Denmark)

    Marchal, Geoffrey; Smith, Kilian E.C.; Rein, Arno

    2013-01-01

    ), biochar or compost. Total amounts of phenanthrene desorbed were similar between the different soils, but the amendment type had a large influence. Complete desorption was observed in the unamended and compost amended soils, but this reduced for biochar (41% desorbed) and AC (8% desorbed). Cumulative...... amounts mineralized were 28% for the unamended control, 19% for compost, 13% for biochar and 4% for AC. Therefore, the effects of the amendments in soil in reducing desorption were also reflected in the extents of mineralization. Modeling was used to analyze key processes, indicating that for the AC...

  18. Biochar amended soils and crop productivity: A critical and meta-analysis of literature

    DEFF Research Database (Denmark)

    Baidoo, Isaac; Sarpong, Daniel Bruce; Bolwig, Simon

    2016-01-01

    Biochar is a kind of charcoal used for soil improvement and it is produced by pyrolysis of biomass under low or anaerobic conditions. It has the potential to mitigate climate change, via carbon sequestration, decrease soil acidity and increase agricultural productivity. Historically it is known...... that the Amazonians used biochar to enhance soil productivity by smoldering agricultural wastes. Desk reviewed of articles of soil amended biochar and some attributes which enhance crop development and the economic benefits derived from its use in agriculture were critically analysed. A meta-analysis using twenty......-seven (27) articles reveal that the temperature at which pyrolysis is done is a major contributing factor towards the intended use of the biochar. For the purpose of crop yield, a temperature of 5500C is recommended based on the regression results. It is recommended that an in-depth study should be done...

  19. Mitigating climate change by minimising the carbon footprint and ...

    African Journals Online (AJOL)

    The analysis determines that lower scaled, spatially economical structures using low embodied energy materials will positively contribute to reduced carbon footprints and thus climate change mitigation strategies. The outcomes of the article also set a benchmark for prospective life-cycle assessments (LCA) and establish ...

  20. Mitigation of Global Warming with Focus on Personal Carbon Allowances

    DEFF Research Database (Denmark)

    Meyer, Niels I

    2008-01-01

    The mitigation of global warming requires new efficient systems and methods. The paper presents a new proposal called personal carbon allowances with caps on the CO2 emission from household heating and electricity and on emission from transport in private cars and in personal air flights. Results...

  1. Carbon Dioxide Mitigation by Microalgal Photosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Mijeong Lee; Gillis, James M.; Hwang, Jiann Yang [Michigan Technological University, Houghton (United States)

    2003-12-15

    Algal growth studies of Chlorella strains were conducted in a batch mode with bench type experiments. Carbon dioxide fixation rates of the following green microalgae were determined: Chlorella sp. H84, Chlorella sp. A2, Chlorella sorokiniana UTEX 1230, Chlorella vulgaris, and Chlorella pyrenoidosa. C. vulgaris, among other strains of microalgae, showed the highest growth rate (1.17 optical density/5 days). Cultivating conditions for C. vulgaris that produced the highest growth rate were at concentrations of 243 μg CO{sub 2}/mL, 10 mM ammonia, and 1 mM phosphate, with an initial pH range of 7-8.

  2. Black Carbon (Biochar) In Water/Soil Environments: Molecular Structure, Sorption, Stability, and Potential Risk.

    Science.gov (United States)

    Lian, Fei; Xing, Baoshan

    2017-12-05

    Black carbon (BC) is ubiquitous in the environments and participates in various biogeochemical processes. Both positive and negative effects of BC (especially biochar) on the ecosystem have been identified, which are mainly derived from its diverse physicochemical properties. Nevertheless, few studies systematically examined the linkage between the evolution of BC molecular structure with the resulted BC properties, environmental functions as well as potential risk, which is critical for understanding the BC environmental behavior and utilization as a multifunctional product. Thus, this review highlights the molecular structure evolution of BC during pyrolysis and the impact of BC physicochemical properties on its sorption behavior, stability, and potential risk in terrestrial and aqueous ecosystems. Given the wide application of BC and its important role in biogeochemical processes, future research should focus on the following: (1) establishing methodology to more precisely predict and design BC properties on the basis of pyrolysis and phase transformation of biomass; (2) developing an assessment system to evaluate the long-term effect of BC on stabilization and bioavailability of contaminants, agrochemicals, and nutrient elements in soils; and (3) elucidating the interaction mechanisms of BC with plant roots, microorganisms, and soil components.

  3. Adsorption of uranium from aqueous solution using biochar produced by hydrothermal carbonization

    International Nuclear Information System (INIS)

    Zhi-bin Zhang; East China Institute of Technology, Fuzhou; China University of Geosciences, Wuhan; China University of Geosciences, Wuhan; Xiao-hong Cao; Yun-hai Liu; East China Institute of Technology, Fuzhou; Ping Liang; East China Institute of Technology, Fuzhou; China University of Geosciences, Wuhan

    2013-01-01

    The ability of biochar produced by hydrothermal carbonization (HTC) has been explored for the removal and recovery of uranium from aqueous solutions. The micro-morphology and structure of HTC were characterized by Fourier transform infrared spectroscopy and scanning electron microscopy. The influences of different experimental parameters such as solution pH, initial concentration, contact time, ionic strength and temperature on adsorption were investigated. The HTC showed the highest uranium sorption capacity at initial pH of 6.0 and contact time of 50 min. Adsorption kinetics was better described by the pseudo-second-order model and adsorption process could be well defined by the Langmuir isotherm. The thermodynamic parameters, ΔGdeg(298 K), ΔHdeg and ΔSdeg were determined to be -14.4, 36.1 kJ mol -1 and 169.7 J mol -1 K -1 , respectively, which demonstrated the sorption process of HTC towards U(VI) was feasible, spontaneous and endothermic in nature. The adsorbed HTC could be effectively regenerated by 0.05 mol/L HCl solution for the removal and recovery of U(VI). Complete removal (99.9 %) of U(VI) from 1.0 L industry wastewater containing 15.0 mg U(VI) ions was possible with 2.0 g HTC. (author)

  4. Corn cob biochar increases soil culturable bacterial abundance without enhancing their capacities in utilizing carbon sources in Biolog Eco-plates

    Institute of Scientific and Technical Information of China (English)

    JIANG Lin-lin; HAN Guang-ming; LAN Yu; LIU Sai-nan; GAO Ji-ping; YANG Xu; MENG Jun; CHEN Wen-fu

    2017-01-01

    Biochar has been shown to influence soil microbial communities in terms of their abundance and diversity.However,the relationship among microbial abundance,structure and C metabolic traits is not well studied under biochar application.Here it was hypothesized that the addition of biochar with intrinsic properties (i.e.,porous structure) could affect the proliferation of culturable microbes and the genetic structure of soil bacterial communities.In the meantime,the presence of available organic carbon in biochar may influence the C utilization capacities of microbial community in Biolog Eco-plates.A pot experiment was conducted with differenct biochar application (BC) rates:control (0 t ha-1),BC1 (20 t ha-1) and BC2 (40 t ha-1).Culturable microorganisms were enumerated via the plate counting method.Bacterial diversity was examined using denaturing gradient gel electrophoresis (DGGE).Microbial capacity in using C sources was assessed using Biolog Eco-plates.The addition of biochar stimulated the growth of actinomyces and bacteria,especially the ammonifying bacteria and azotobacteria,but had no significant effect on fungi proliferation.The phylogenetic distribution of the operational taxonomic units could be divided into the following groups with the biochar addition:Firmicutes,Acidobacteria,Gemmatimonadetes,Actinobacteria,Cyanobacteria and α-,β-,γ-and δ-Proteobacteria (average similarity >95%).Biochar application had a higher capacity utilization for L-asparagine,Tween 80,D-mannitol,L-serine,γ-hydroxybutyric acid,N-acetyI-D-glucosamine,glycogen,itaconic acid,glycyl-L-glutamic acid,α-ketobutyricacid and putrescine,whereas it had received decreased capacities in using the other 20 carbon sources in Biolog Eco-plates.Redundancy analysis (RDA) revealed that the physico-chemical properties,indices of bacterial diversity,and C metabolic traits were positively correlated with the appearance of novel sequences under BC2 treatment.Our study indicates that the

  5. Sustainable biochar effects for low carbon crop production: A 5-crop season field experiment on a low fertility soil from Central China

    Science.gov (United States)

    Liu, X.

    2014-12-01

    Biochar's effects on improving soil fertility, enhancing crop productivity and reducing greenhouse gases (GHGs) emission from croplands had been well addressed in numerous short-term experiments with biochar soil amendment (BSA) mostly in a single crop season / cropping year. However, the persistence of these effects, after a single biochar application, has not yet been well known due to limited long-term field studies so far. Large scale BSA in agriculture is often commented on the high cost due to large amount of biochar in a single application. Here, we try to show the persistence of biochar effects on soil fertility and crop productivity improvement as well as GHGs emission reduction, using data from a field experiment with BSA for 5 crop seasons in central North China. A single amendment of biochar was performed at rates of 0 (C0), 20 (C20) and 40 t ha-1 (C40) before sowing of the first crop season. Emissions of CO2, CH4 and N2O were monitored with static closed chamber method throughout the crop growing season for the 1st, 2nd and 5th cropping. Crop yield was measured and topsoil samples were collected at harvest of each crop season. BSA altered most of the soil physic-chemical properties with a significant increase over control in soil organic carbon (SOC) and available potassium (K) content. The increase in SOC and available K was consistent over the 5 crop seasons after BSA. Despite a significant yield increase in the first maize season, enhancement of crop yield was not consistent over crop seasons without corresponding to the changes in soil nutrient availability. BSA did not change seasonal total CO2 efflux but greatly reduced N2O emissions throughout the five seasons. This supported a stable nature of biochar carbon in soil, which played a consistent role in reducing N2O emission, which showed inter-annual variation with changes in temperature and soil moisture conditions. The biochar effect was much more consistent under C40 than under C20 and with

  6. Promoting Interspecies Electron Transfer with Biochar

    Science.gov (United States)

    Chen, Shanshan; Rotaru, Amelia-Elena; Shrestha, Pravin Malla; Malvankar, Nikhil S.; Liu, Fanghua; Fan, Wei; Nevin, Kelly P.; Lovley, Derek R.

    2014-01-01

    Biochar, a charcoal-like product of the incomplete combustion of organic materials, is an increasingly popular soil amendment designed to improve soil fertility. We investigated the possibility that biochar could promote direct interspecies electron transfer (DIET) in a manner similar to that previously reported for granular activated carbon (GAC). Although the biochars investigated were 1000 times less conductive than GAC, they stimulated DIET in co-cultures of Geobacter metallireducens with Geobacter sulfurreducens or Methanosarcina barkeri in which ethanol was the electron donor. Cells were attached to the biochar, yet not in close contact, suggesting that electrons were likely conducted through the biochar, rather than biological electrical connections. The finding that biochar can stimulate DIET may be an important consideration when amending soils with biochar and can help explain why biochar may enhance methane production from organic wastes under anaerobic conditions. PMID:24846283

  7. CARBON DIOXIDE MITIGATION THROUGH CONTROLLED PHOTOSYNTHESIS; FINAL

    International Nuclear Information System (INIS)

    Unknown

    2000-01-01

    This research was undertaken to meet the need for a robust portfolio of carbon management options to ensure continued use of coal in electrical power generation. In response to this need, the Ohio Coal Research Center at Ohio University developed a novel technique to control the emissions of CO(sub 2) from fossil-fired power plants by growing organisms capable of converting CO(sub 2) to complex sugars through the process of photosynthesis. Once harvested, the organisms could be used in the production of fertilizer, as a biomass fuel, or fermented to produce alcohols. In this work, a mesophilic organism, Nostoc 86-3, was examined with respect to the use of thermophilic algae to recycle CO(sub 2) from scrubbed stack gases. The organisms were grown on stationary surfaces to facilitate algal stability and promote light distribution. The testing done throughout the year examined properties of CO(sub 2) concentration, temperature, light intensity, and light duration on process viability and the growth of the Nostoc. The results indicate that the Nostoc species is suitable only in a temperature range below 125 F, which may be practical given flue gas cooling. Further, results indicate that high lighting levels are not suitable for this organism, as bleaching occurs and growth rates are inhibited. Similarly, the organisms do not respond well to extended lighting durations, requiring a significant (greater than eight hour) dark cycle on a consistent basis. Other results indicate a relative insensitivity to CO(sub 2) levels between 7-12% and CO levels as high as 800 ppm. Other significant results alluded to previously, relate to the development of the overall process. Two processes developed during the year offer tremendous potential to enhance process viability. First, integration of solar collection and distribution technology from Oak Ridge laboratories could provide a significant space savings and enhanced use of solar energy. Second, the use of translating slug flow

  8. CARBON DIOXIDE MITIGATION THROUGH CONTROLLED PHOTOSYNTHESIS

    Energy Technology Data Exchange (ETDEWEB)

    Unknown

    2000-10-01

    This research was undertaken to meet the need for a robust portfolio of carbon management options to ensure continued use of coal in electrical power generation. In response to this need, the Ohio Coal Research Center at Ohio University developed a novel technique to control the emissions of CO{sub 2} from fossil-fired power plants by growing organisms capable of converting CO{sub 2} to complex sugars through the process of photosynthesis. Once harvested, the organisms could be used in the production of fertilizer, as a biomass fuel, or fermented to produce alcohols. In this work, a mesophilic organism, Nostoc 86-3, was examined with respect to the use of thermophilic algae to recycle CO{sub 2} from scrubbed stack gases. The organisms were grown on stationary surfaces to facilitate algal stability and promote light distribution. The testing done throughout the year examined properties of CO{sub 2} concentration, temperature, light intensity, and light duration on process viability and the growth of the Nostoc. The results indicate that the Nostoc species is suitable only in a temperature range below 125 F, which may be practical given flue gas cooling. Further, results indicate that high lighting levels are not suitable for this organism, as bleaching occurs and growth rates are inhibited. Similarly, the organisms do not respond well to extended lighting durations, requiring a significant (greater than eight hour) dark cycle on a consistent basis. Other results indicate a relative insensitivity to CO{sub 2} levels between 7-12% and CO levels as high as 800 ppm. Other significant results alluded to previously, relate to the development of the overall process. Two processes developed during the year offer tremendous potential to enhance process viability. First, integration of solar collection and distribution technology from Oak Ridge laboratories could provide a significant space savings and enhanced use of solar energy. Second, the use of translating slug flow

  9. Fuel carbon intensity standards may not mitigate climate change

    International Nuclear Information System (INIS)

    Plevin, Richard J.; Delucchi, Mark A.; O’Hare, Michael

    2017-01-01

    To mitigate the climate change effects of transportation, the US states of California and Oregon, the Canadian province of British Columbia, and the European Union have implemented regulations to reduce the life cycle greenhouse gas (GHG) emissions intensity of transport fuel, commonly referred to as 'carbon intensity', or CI. In this article, we unpack the theory and practice of fuel CI standards, examining claims regarding climate-change mitigation. We show that these standards do not reliably mitigate climate change because estimates of GHG reductions rely primarily on models that are not designed to estimate changes in emissions and climate impacts. Some regulations incorporate models that estimate a subset of changes in emissions, but the models must project changes in global markets over decades, and there is little agreement about the best model structure or parameter values. Since multiple models and projections may be equally plausible, fuel CI is inevitably subjective and unverifiable. We conclude that regulating or taxing observable emissions would more reliably achieve emission reduction. - Highlights: • Use of fuel carbon intensity (CI) standards has been expanding recently. • Fuel CI ratings are subjective, scenario- and model-dependent. • Uncertainty in fuel CI ratings creates uncertainty in policy outcomes. • There is no reliable test of whether fuel CI standards mitigate climate change. • Regulating or taxing observable emissions would be a more reliable approach.

  10. Size distribution of carbon layer planes in biochar from different plant type of feedstock with different heating temperatures.

    Science.gov (United States)

    Lu, Guan-Yang; Ikeya, Kosuke; Watanabe, Akira

    2016-11-01

    Biochar application to soil is a strategy to decelerate the increase in the atmospheric carbon concentration. The composition of condensed aromatic clusters appears to be an important determinant of the degradation rate of char in soil. The objective of the present study was to determine the size distribution of carbon layer planes in biochars produced from different types of feedstock (a broadleaf and a coniferous tree and two herbs) using different heating treatment temperatures (HTT; 400 °C-800 °C) using X-ray diffraction 11 band profile analysis. (13)C nuclear magnetic resonance with the phase-adjusted spinning side bands of the chars indicated different spectral features depending on the HTT and similar carbon composition among the plant types at each HTT. Both the content and composition of carbon layer planes in biochar produced using the same HTT were also similar among the plant types. The carbon layer plane size in the 400 °C and 600 °C chars was distributed from 0.24 to 1.68 or 1.92 nm (corresponding to 37 or 52 rings) with the mean size of 0.79-0.92 and 0.80-1.14 nm, respectively. The carbon layer planes in the 800 °C chars ranged from 0.72-0.96 nm (7-14 rings) to 2.64-3.60 nm (91-169 rings) and the mean values were 1.47-1.89 nm. The relative carbon layer plane content in the 600 °C and 800 °C chars was typically 2 and 3 times that in the 400 °C chars. These results indicate the progression of the formation and/or the size development of graphite-like structures, suggesting that a char produced at a higher HTT would have better carbon sequestrating characteristics. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. The effect of straw and wood gasification biochar on carbon sequestration, selected soil fertility indicators and functional groups in soil: an incubation study

    DEFF Research Database (Denmark)

    Hansen, Veronika; Müller-Stöver, Dorette; Munkholm, Lars Juhl

    2016-01-01

    Annual removal of crop residues may lead to depletion of soil organic carbon and soil degradation. Gasification biochar (GB), the carbon-rich byproduct of gasification of biomass such as straw and wood chips, may be used for maintaining the soil organic carbon content and counteract soil degradat......Annual removal of crop residues may lead to depletion of soil organic carbon and soil degradation. Gasification biochar (GB), the carbon-rich byproduct of gasification of biomass such as straw and wood chips, may be used for maintaining the soil organic carbon content and counteract soil......, the addition of straw resulted in a high soil respiration rate, and about 80% of the added carbonwas respired at the end of the incubation. However, the addition of straw increased aggregate stability and decreased clay dispersibility. Results from Fourier transformed infrared photoacoustic spectroscopy...

  12. Biochar composts and composites.

    Science.gov (United States)

    Ekebafe, Marian Osazoduwa; Ekebafe, Lawrence Olu; Ugbesia, Stella Omozee

    2015-01-01

    Research has shown that the carbon content of wastes decreases during composting with an increase in the nitrogen content. This indicates that the increased microbial activity in the process results in an increased mineralisation rate of organic nitrogen. A formula containing biochar in the form of terra preta, biochar bokashi, biochar glomalin, biochar hydrogel and biochar mokusaku-eki could further enhance the stability of the system and its effectiveness as a soil ameliorant. It could increase the cation exchange capacity, reuse crop residue, reduce runoff, reduce watering, reduce the quantity of fertiliser increase crop yield, build and multiply soil biodiversity, strengthen and rebuild our soil food web, sequester atmospheric carbon in a carbon negative process, increase soil pH, restructure poor soils, and reduce carbon dioxide/methane/ nitrous oxide/ammonia emissions from gardens and fields. This paper considers these claims and also the wider environmental implications of the adoption of these processes. The intention of this overview is not just to summarise current knowledge of the subject, but also to identify gaps in knowledge that require further research.

  13. Granular biochar compared with activated carbon for wastewater treatment and resource recovery.

    Science.gov (United States)

    Huggins, Tyler M; Haeger, Alexander; Biffinger, Justin C; Ren, Zhiyong Jason

    2016-05-01

    Granular wood-derived biochar (BC) was compared to granular activated carbon (GAC) for the treatment and nutrient recovery of real wastewater in both batch and column studies. Batch adsorption studies showed that BC material had a greater adsorption capacity at the high initial concentrations of total chemical oxygen demand (COD-T) (1200 mg L(-1)), PO4 (18 mg L(-1)), and NH4 (50 mg L(-1)) compared to GAC. Conversely the BC material showed a lower adsorption capacity for all concentrations of dissolved chemical oxygen demand (COD-D) and the lower concentrations of PO4 (5 mg L(-1)) and NH4 (10 mg L(-1)). Packed bed column studies showed similar average COD-T removal rate for BC with 0.27 ± 0.01 kg m(-3) d(-1) and GAC with 0.24 ± 0.01 kg m(-3) d(-1), but BC had nearly twice the average removal rate (0.41 ± 0.08 kg m(-3) d(-3)) compared to GAC during high COD-T concentrations (>500 mg L(-1)). Elemental analysis showed that both materials accumulated phosphorous during wastewater treatment (2.6 ± 0.4 g kg(-1) and 1.9 ± 0.1 g kg(-1) for BC and GAC respectively). They also contained high concentrations of other macronutrients (K, Ca, and Mg) and low concentrations of metals (As, Cd, Cr, Pb, Zn, and Cu). The good performance of BC is attributed to its macroporous structure compared with the microporous GAC. These favorable treatment data for high strength wastewater, coupled with additional life-cycle benefits, helps support the use of BC in packed bed column filters for enhanced wastewater treatment and nutrient recovery. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Is sustainability certification for biochar the answer to environmental risks?

    Directory of Open Access Journals (Sweden)

    Annette L. Cowie

    2012-05-01

    Full Text Available Biochar has the potential to make a major contribution to the mitigation of climate change, and enhancement of plant production. However, in order for biochar to fulfill this promise, the industry and regulating bodies must take steps to manage potential environmental threats and address negative perceptions. The potential threats to the sustainability of biochar systems, at each stage of the biochar life cycle, were reviewed. We propose that a sustainability framework for biochar could be adapted from existing frameworks developed for bioenergy. Sustainable land use policies, combined with effective regulation of biochar production facilities and incentives for efficient utilization of energy, and improved knowledge of biochar impacts on ecosystem health and productivity could provide a strong framework for the development of a robust sustainable biochar industry. Sustainability certification could be introduced to provide confidence to consumers that sustainable practices have been employed along the production chain, particularly where biochar is traded internationally.

  15. Proper Particle Size Range for Resistance to Chemical Oxidation: A Perspective on the Recalcitrance of Beanpod Biochar for Soil Carbon Sequestration

    Institute of Scientific and Technical Information of China (English)

    Jianhua GUO; Dongyun ZHANG

    2017-01-01

    The effect of particle size on the recalcitrance of biochar against oxidation has been regarded as one of the most important factors influencing its stability and transportation in soils. Little is known about the peculiar stability of different particle sizes under chemical oxidation conditions. In this study, several sizes of biochar particles derived from beanpod were produced,and their stabilities were tested by using acid dichromate and hydrogen peroxide. We discovered that the 60-100 mesh size of particles produced at 400 and 500 ℃ showed the least carbon loss under the oxidation of both dichromate and hydrogen peroxide.In addition, this particle size also shows great stability at 600 and 700 ℃, but this stability was not observed below 300 °C for all temperature-dependent biochars. Medium-sized particles composed of exclusively heterogeneous components produced a biochar at temperatures over 400 ℃ with comparatively stronger chemical anti-oxidation characteristics. The chemical recalcitrance of biochar should be reevaluated based on particle size before soil application.

  16. Mitigating wildfire carbon loss in managed northern peatlands through restoration

    Science.gov (United States)

    Granath, Gustaf; Moore, Paul A.; Lukenbach, Maxwell C.; Waddington, James M.

    2016-06-01

    Northern peatlands can emit large amounts of carbon and harmful smoke pollution during a wildfire. Of particular concern are drained and mined peatlands, where management practices destabilize an array of ecohydrological feedbacks, moss traits and peat properties that moderate water and carbon losses in natural peatlands. Our results demonstrate that drained and mined peatlands in Canada and northern Europe can experience catastrophic deep burns (>200 t C ha-1 emitted) under current weather conditions. Furthermore, climate change will cause greater water losses in these peatlands and subject even deeper peat layers to wildfire combustion. However, the rewetting of drained peatlands and the restoration of mined peatlands can effectively lower the risk of these deep burns, especially if a new peat moss layer successfully establishes and raises peat moisture content. We argue that restoration efforts are a necessary measure to mitigate the risk of carbon loss in managed peatlands under climate change.

  17. The national security dividend of global carbon mitigation

    International Nuclear Information System (INIS)

    Mignone, Bryan K.

    2007-01-01

    Energy and environmental security objectives are often conflated in political circles and in the popular press. Results from a well-established integrated assessment model suggest that policies designed to stabilize atmospheric carbon dioxide concentrations at levels above ∼500 ppm generally do not align with policies to curb global oil dependence, because these atmospheric objectives can be achieved largely through reductions in global coal consumption. Policies designed to stabilize atmospheric carbon dioxide at levels below ∼500 ppm, on the other hand, directly facilitate the alignment of environmental and security objectives because atmospheric targets in this range demand significant reductions in both coal and oil use. Greater recognition that investment in carbon mitigation can yield significant security dividends may alter the political cost-benefit calculus of energy-importing nations and could increase the willingness of some key global actors to seek binding cooperative targets under any post-Kyoto climate treaty regime

  18. Sustainable Biofuel Contributions to Carbon Mitigation and Energy Independence

    Directory of Open Access Journals (Sweden)

    Phillip Steele

    2011-10-01

    Full Text Available The growing interest in US biofuels has been motivated by two primary national policy goals, (1 to reduce carbon emissions and (2 to achieve energy independence. However, the current low cost of fossil fuels is a key barrier to investments in woody biofuel production capacity. The effectiveness of wood derived biofuels must consider not only the feedstock competition with low cost fossil fuels but also the wide range of wood products uses that displace different fossil intensive products. Alternative uses of wood result in substantially different unit processes and carbon impacts over product life cycles. We developed life cycle data for new bioprocessing and feedstock collection models in order to make life cycle comparisons of effectiveness when biofuels displace gasoline and wood products displace fossil intensive building materials. Wood products and biofuels can be joint products from the same forestland. Substantial differences in effectiveness measures are revealed as well as difficulties in valuing tradeoffs between carbon mitigation and energy independence.

  19. Evaluation of sorbed polycyclic aromatic hydrocarbons (PAH) on various biochars

    Science.gov (United States)

    Biochar is the name given to the chemical and/or thermal transformation of biomass feed stocks into a more stable carbon form for purposes of carbon sequestration. Soil has been the focused, but not exclusive, application target for biochar. Biochar additions have resulted in both positive and nega...

  20. Is carbon farming an effective climate mitigation option?

    Science.gov (United States)

    Zelikova, T. J.; Funk, J.; Deich, N.; Amador, G.; Jacobson, R.

    2017-12-01

    "Carbon farming" refers to agricultural and land management practices that store carbon in soils and biomass. Carbon-farming techniques can include crop rotation, cover crops, no-till practices, and the application of compost to build up soil organic matter. Carbon farming also improves agricultural production and sustainability, while mitigating climate change. Despite well-documented benefits of carbon farming, these practices continue to be underutilized outside of experimental settings. One barrier to the widespread use of carbon farming is the challenge of fitting these practices into ongoing commercial operations, while managing the consequent market uncertainties across the value chain. To help address this barrier, we are working with landowners and local groups to establish demonstration "test beds" that can build experience among land managers and help resolve market uncertainties. We specifically focus on demonstrating the commercial viability of management practices that can enhance soil health, catalyzing economic and environmental synergies that come from healthy soils. Each test bed has a commercial agricultural operation at its center, and we bring together researchers, local groups, corporate partners, and key policymakers who can support wider adoption of these agricultural techniques. Early challenges have included finding commercial farms willing to shift their practices and face uncertain outcomes. A transition to new practices usually involves changes in equipment, scheduling, activities, and monitoring that have implications for the entire farm operation, its resources, and its bottom line. At the same time, practitioners have difficulty quantifying the carbon benefits they provide, due to persistent uncertainties, even with the benefit of decades of experimental research. We are building a network of farmers who are implementing carbon farming practices and addressing these challenges, step by step. We envision our test beds becoming hubs

  1. Mycorrhizal responses to biochar in soil-concepts and mechanisms.

    NARCIS (Netherlands)

    Warnock, D.D.; Lehmann, J.; Kuyper, T.W.; Rillig, M.C.

    2007-01-01

    Experiments suggest that biomass-derived black carbon (biochar) affects microbial populations and soil biogeochemistry. Both biochar and mycorrhizal associations, ubiquitous symbioses in terrestrial ecosystems, are potentially important in various ecosystem services provided by soils, contributing

  2. Investigating biochar as a tool for environmental remediation

    Science.gov (United States)

    Biochar is being proposed as a cost-effective, carbon negative soil amendment for environmental remediation. Research has demonstrated the efficacy of biochar to sorb heavy metals and agricultural chemicals from contaminated soils, thus effectively reducing the potential for met...

  3. [Carbon capture and storage (CCS) and its potential role to mitigate carbon emission in China].

    Science.gov (United States)

    Chen, Wen-Ying; Wu, Zong-Xin; Wang, Wei-Zhong

    2007-06-01

    Carbon capture and storage (CCS) has been widely recognized as one of the options to mitigate carbon emission to eventually stabilize carbon dioxide concentration in the atmosphere. Three parts of CCS, which are carbon capture, transport, and storage are assessed in this paper, covering comparisons of techno-economic parameters for different carbon capture technologies, comparisons of storage mechanism, capacity and cost for various storage formations, and etc. In addition, the role of CCS to mitigate global carbon emission is introduced. Finally, China MARKAL model is updated to include various CCS technologies, especially indirect coal liquefaction and poly-generation technologies with CCS, in order to consider carbon emission reduction as well as energy security issue. The model is used to generate different scenarios to study potential role of CCS to mitigate carbon emissions by 2050 in China. It is concluded that application of CCS can decrease marginal abatement cost and the decrease rate can reach 45% for the emission reduction rate of 50%, and it can lessen the dependence on nuclear power development for stringent carbon constrains. Moreover, coal resources can be cleanly used for longer time with CCS, e.g., for the scenario C70, coal share in the primary energy consumption by 2050 will increase from 10% when without CCS to 30% when with CCS. Therefore, China should pay attention to CCS R&D activities and to developing demonstration projects.

  4. Soil biochar amendment shapes the composition of N_2O-reducing microbial communities

    International Nuclear Information System (INIS)

    Harter, Johannes; Weigold, Pascal; El-Hadidi, Mohamed; Huson, Daniel H.; Kappler, Andreas; Behrens, Sebastian

    2016-01-01

    Soil biochar amendment has been described as a promising tool to improve soil quality, sequester carbon, and mitigate nitrous oxide (N_2O) emissions. N_2O is a potent greenhouse gas. The main sources of N_2O in soils are microbially-mediated nitrogen transformation processes such as nitrification and denitrification. While previous studies have focused on the link between N_2O emission mitigation and the abundance and activity of N_2O-reducing microorganisms in biochar-amended soils, the impact of biochar on the taxonomic composition of the nosZ gene carrying soil microbial community has not been subject of systematic study to date. We used 454 pyrosequencing in order to study the microbial diversity in biochar-amended and biochar-free soil microcosms. We sequenced bacterial 16S rRNA gene amplicons as well as fragments of common (typical) nosZ genes and the recently described ‘atypical’ nosZ genes. The aim was to describe biochar-induced shifts in general bacterial community diversity and taxonomic variations among the nosZ gene containing N_2O-reducing microbial communities. While soil biochar amendment significantly altered the 16S rRNA gene-based community composition and structure, it also led to the development of distinct functional traits capable of N_2O reduction containing typical and atypical nosZ genes related to nosZ genes found in Pseudomonas stutzeri and Pedobacter saltans, respectively. Our results showed that biochar amendment can affect the relative abundance and taxonomic composition of N_2O-reducing functional microbial traits in soil. Thus these findings broaden our knowledge on the impact of biochar on soil microbial community composition and nitrogen cycling. - Highlights: • Biochar promoted anaerobic, alkalinity-adapted, and polymer-degrading microbial taxa. • Biochar fostered the development of distinct N_2O-reducing microbial taxa. • Taxonomic shifts among N_2O-reducing microbes might explain lower N_2O emissions.

  5. Soil biochar amendment shapes the composition of N{sub 2}O-reducing microbial communities

    Energy Technology Data Exchange (ETDEWEB)

    Harter, Johannes; Weigold, Pascal [Geomicrobiology & Microbial Ecology, Center for Applied Geosciences, University of Tuebingen, Sigwartstr. 10, 72076 Tuebingen (Germany); El-Hadidi, Mohamed; Huson, Daniel H. [Algorithms in Bioinformatics, Center for Bioinformatics, University of Tuebingen, Sand 14, 72076 Tuebingen (Germany); Kappler, Andreas [Geomicrobiology & Microbial Ecology, Center for Applied Geosciences, University of Tuebingen, Sigwartstr. 10, 72076 Tuebingen (Germany); Behrens, Sebastian, E-mail: sbehrens@umn.edu [Geomicrobiology & Microbial Ecology, Center for Applied Geosciences, University of Tuebingen, Sigwartstr. 10, 72076 Tuebingen (Germany); Department of Civil, Environmental, and Geo-Engineering, University of Minnesota, 500 Pillsbury Drive S.E., Minneapolis, MN 55455-0116 (United States); BioTechnology Institute, 140 Gortner Labs, 1479 Gortner Avenue, St. Paul, MN 55108-6106 (United States)

    2016-08-15

    Soil biochar amendment has been described as a promising tool to improve soil quality, sequester carbon, and mitigate nitrous oxide (N{sub 2}O) emissions. N{sub 2}O is a potent greenhouse gas. The main sources of N{sub 2}O in soils are microbially-mediated nitrogen transformation processes such as nitrification and denitrification. While previous studies have focused on the link between N{sub 2}O emission mitigation and the abundance and activity of N{sub 2}O-reducing microorganisms in biochar-amended soils, the impact of biochar on the taxonomic composition of the nosZ gene carrying soil microbial community has not been subject of systematic study to date. We used 454 pyrosequencing in order to study the microbial diversity in biochar-amended and biochar-free soil microcosms. We sequenced bacterial 16S rRNA gene amplicons as well as fragments of common (typical) nosZ genes and the recently described ‘atypical’ nosZ genes. The aim was to describe biochar-induced shifts in general bacterial community diversity and taxonomic variations among the nosZ gene containing N{sub 2}O-reducing microbial communities. While soil biochar amendment significantly altered the 16S rRNA gene-based community composition and structure, it also led to the development of distinct functional traits capable of N{sub 2}O reduction containing typical and atypical nosZ genes related to nosZ genes found in Pseudomonas stutzeri and Pedobacter saltans, respectively. Our results showed that biochar amendment can affect the relative abundance and taxonomic composition of N{sub 2}O-reducing functional microbial traits in soil. Thus these findings broaden our knowledge on the impact of biochar on soil microbial community composition and nitrogen cycling. - Highlights: • Biochar promoted anaerobic, alkalinity-adapted, and polymer-degrading microbial taxa. • Biochar fostered the development of distinct N{sub 2}O-reducing microbial taxa. • Taxonomic shifts among N{sub 2}O-reducing microbes

  6. Influence of Biochar on C and N Transformation in Soil and Their Impact on Greenhouse Gas Emissions

    Science.gov (United States)

    Chintala, R.; Schumacher, T. E.; Kumar, S.; Clay, D. E.; Malo, D. D.

    2014-12-01

    The capacity of pyrogenic biochar to mitigate soil surface exchange of greenhouse gases (GHG) is dependent on the influence of biochar on physiochemical transformations of C and N in soils. Incorporated biochar amendments are hypothesized to interfere with transformations of C and N as a result of the unique recalcitrant chemical structure and surface complexity of biochars. The nature of interference by biochar with C and N transformations are assumed to be dynamic not only due to their highly variable amphilicity inherited from feedstock source and controlled pyrolytic processing parameters but also to variation in soil factors. Experiments comprised of laboratory and field studies were designed to gain insight into the priming effect of incorporated non-native biochar materials on the transformations of C and N species in the soil. Molecular structure and surface functionality of plant based biochar materials produced from carbon optimized gasification of corn stover (Zea mays L.), Ponderosa pine (Pinus ponderosa Lawson and C. Lawson) wood residue, and switchgrass (Panicum virgatum L.) were studied in the laboratory using NMR and SEM-EdX. Biochar materials were found to be highly hydrophobic (low H/C values) with high aromaticity. The surface morphology of all the biochar materials was highly heterogeneous and pore size ranged from 1-22µm with the faces and edges of ordered sheets. In the field study, all the three biochar types were applied at a 1% (w/w) rate to a Maddock soil (Sandy, Mixed, Frigid Entic Hapludolls) located in an eroded upper landscape position and a Brookings soil (Fine-Silty, Mixed, Superactive, Frigid Pachic Hapludolls) located in a depositional landscape position. The crop rotation is a corn (Zea mays L.) followed by soybean (Glycine max L.). The priming effect of biochars on the transformations of C and N is determined by measuring the changes in soil C (total organic carbon, microbial biomass C, hydrolyzable C, and δ 13C) and N pools

  7. Biochar and soil nitrous oxide emissions

    Directory of Open Access Journals (Sweden)

    Carlos Francisco Brazão Vieira Alho

    2012-05-01

    Full Text Available The objective of this work was to evaluate the effect of biochar application on soil nitrous oxide emissions. The experiment was carried out in pots under greenhouse conditions. Four levels of ground commercial charcoal of 2 mm (biochar were evaluated in a sandy Albaqualf (90% of sand: 0, 3, 6, and 9 Mg ha-1. All treatments received 100 kg ha-1 of N as urea. A cubic effect of biochar levels was observed on the N2O emissions. Biochar doses above 5 Mg ha-1 started to mitigate the emissions in the evaluated soil. However, lower doses promote the emissions.

  8. Biochar effect on maize yield and soil characteristics in five conservation farming sites in Zambia

    Science.gov (United States)

    Cornelissen, Gerard; Martinsen, Vegard; Shitumbanuma, Victor; Alling, Vanja; Breedveld, Gijs D.; Rutherford, David W.; Sparrevik, Magnus; Hale, Sarah E.; Obia, Alfred; Mulder, Jan

    2013-01-01

    Biochar addition to agricultural soils can improve soil fertility, with the added bonus of climate change mitigation through carbon sequestration. Conservation farming (CF) is precision farming, often combining minimum tillage, crop rotation and residue retention. In the present farmer-led field trials carried out in Zambia, the use of a low dosage biochar combined with CF minimum tillage was tested as a way to increase crop yields. Using CF minimum tillage allows the biochar to be applied to the area where most of the plant roots are present and mirrors the fertilizer application in CF practices. The CF practice used comprised manually hoe-dug planting 10-L sized basins, where 10%–12% of the land was tilled. Pilot trials were performed with maize cob biochar and wood biochar on five soils with variable physical/chemical characteristics. At a dosage as low as 4 tons/ha, both biochars had a strong positive effect on maize yields in the coarse white aeolian sand of Kaoma, West-Zambia, with yields of 444% ± 114% (p = 0.06) and 352% ± 139% (p = 0.1) of the fertilized reference plots for maize and wood biochar, respectively. Thus for sandy acidic soils, CF and biochar amendment can be a promising combination for increasing harvest yield. Moderate but non-significant effects on yields were observed for maize and wood biochar in a red sandy clay loam ultisol east of Lusaka, central Zambia (University of Zambia, UNZA, site) with growth of 142% ± 42% (p > 0.2) and 131% ± 62% (p > 0.2) of fertilized reference plots, respectively. For three other soils (acidic and neutral clay loams and silty clay with variable cation exchange capacity, CEC), no significant effects on maize yields were observed (p > 0.2). In laboratory trials, 5% of the two biochars were added to the soil samples in order to study the effect of the biochar on physical and chemical soil characteristics. The large increase in crop yield in Kaoma soil was tentatively explained by a combination of an

  9. Biochar Effect on Maize Yield and Soil Characteristics in Five Conservation Farming Sites in Zambia

    Directory of Open Access Journals (Sweden)

    Alfred Obia

    2013-04-01

    Full Text Available Biochar addition to agricultural soils can improve soil fertility, with the added bonus of climate change mitigation through carbon sequestration. Conservation farming (CF is precision farming, often combining minimum tillage, crop rotation and residue retention. In the present farmer-led field trials carried out in Zambia, the use of a low dosage biochar combined with CF minimum tillage was tested as a way to increase crop yields. Using CF minimum tillage allows the biochar to be applied to the area where most of the plant roots are present and mirrors the fertilizer application in CF practices. The CF practice used comprised manually hoe-dug planting 10-L sized basins, where 10%–12% of the land was tilled. Pilot trials were performed with maize cob biochar and wood biochar on five soils with variable physical/chemical characteristics. At a dosage as low as 4 tons/ha, both biochars had a strong positive effect on maize yields in the coarse white aeolian sand of Kaoma, West-Zambia, with yields of 444% ± 114% (p = 0.06 and 352% ± 139% (p = 0.1 of the fertilized reference plots for maize and wood biochar, respectively. Thus for sandy acidic soils, CF and biochar amendment can be a promising combination for increasing harvest yield. Moderate but non-significant effects on yields were observed for maize and wood biochar in a red sandy clay loam ultisol east of Lusaka, central Zambia (University of Zambia, UNZA, site with growth of 142% ± 42% (p > 0.2 and 131% ± 62% (p > 0.2 of fertilized reference plots, respectively. For three other soils (acidic and neutral clay loams and silty clay with variable cation exchange capacity, CEC, no significant effects on maize yields were observed (p > 0.2. In laboratory trials, 5% of the two biochars were added to the soil samples in order to study the effect of the biochar on physical and chemical soil characteristics. The large increase in crop yield in Kaoma soil was tentatively explained by a combination

  10. Biochar effect on maize yield and soil characteristics in five conservation farming sites in Zambia

    Science.gov (United States)

    Cornelissen, Gerard; Martinsen, Vegard; Shitumbanuma, Victor; Alling, Vanja; Breedveld, Gijs D.; Rutherford, David W.; Sparrevik, Magnus; Hale, Sarah E.; Obia, Alfred; Mulder, Jan

    2013-01-01

    Biochar addition to agricultural soils can improve soil fertility, with the added bonus of climate change mitigation through carbon sequestration. Conservation farming (CF) is precision farming, often combining minimum tillage, crop rotation and residue retention. In the present farmer-led field trials carried out in Zambia, the use of a low dosage biochar combined with CF minimum tillage was tested as a way to increase crop yields. Using CF minimum tillage allows the biochar to be applied to the area where most of the plant roots are present and mirrors the fertilizer application in CF practices. The CF practice used comprised manually hoe-dug planting 10-L sized basins, where 10%–12% of the land was tilled. Pilot trials were performed with maize cob biochar and wood biochar on five soils with variable physical/chemical characteristics. At a dosage as low as 4 tons/ha, both biochars had a strong positive effect on maize yields in the coarse white aeolian sand of Kaoma, West-Zambia, with yields of 444% ± 114% (p = 0.06) and 352% ± 139% (p = 0.1) of the fertilized reference plots for maize and wood biochar, respectively. Thus for sandy acidic soils, CF and biochar amendment can be a promising combination for increasing harvest yield. Moderate but non-significant effects on yields were observed for maize and wood biochar in a red sandy clay loam ultisol east of Lusaka, central Zambia (University of Zambia, UNZA, site) with growth of 142% ± 42% (p > 0.2) and 131% ± 62% (p > 0.2) of fertilized reference plots, respectively. For three other soils (acidic and neutral clay loams and silty clay with variable cation exchange capacity, CEC), no significant effects on maize yields were observed (p > 0.2). In laboratory trials, 5% of the two biochars were added to the soil samples in order to study the effect of the biochar on physical and chemical soil characteristics. The large increase in crop yield in Kaoma soil was tentatively explained by a combination of an

  11. Policy Considerations for Using Forests to Mitigate Carbon Dioxide Emissions

    Directory of Open Access Journals (Sweden)

    Sandra Brown

    2001-01-01

    Full Text Available A recent article in Nature, “Soil Fertility Limits Carbon Sequestration by Forest Ecosystems in a CO2-Enriched Atmosphere” by Oren and colleagues[1], has been widely reported on, and often misinterpreted, by the press. The article dampens enthusiasm for accelerated forest growth due to CO2 fertilization and puts in question the fringe theory that the world’s forests can provide an automatic mitigation feedback. We agree that these results increase our understanding of the global carbon cycle. At the same time, their relevance in the context of the international climate change negotiations is much more complicated than portrayed by newspapers such as the New York Times (“Role of Trees in Curbing Greenhouse Gases is Challenged”, May 24, 2001 and the Christian Science Monitor (“Trees No Savior for Global Warming”, May 25, 2001.

  12. Environmental Responses to Carbon Mitigation through Geological Storage

    Energy Technology Data Exchange (ETDEWEB)

    Cunningham, Alfred [Montana State Univ., Bozeman, MT (United States); Bromenshenk, Jerry [Montana State Univ., Bozeman, MT (United States)

    2013-08-30

    In summary, this DOE EPSCoR project is contributing to the study of carbon mitigation through geological storage. Both deep and shallow subsurface research needs are being addressed through research directed at improved understanding of environmental responses associated with large scale injection of CO2 into geologic formations. The research plan has two interrelated research objectives. Objective 1: Determine the influence of CO2-related injection of fluids on pore structure, material properties, and microbial activity in rock cores from potential geological carbon sequestration sites. Objective 2: Determine the Effects of CO2 leakage on shallow subsurface ecosystems (microbial and plant) using field experiments from an outdoor field testing facility.

  13. Impacts of biochar addition on soil dissolved organic matter characteristics in a wheat-maize rotation system in Loess Plateau of China.

    Science.gov (United States)

    Zhang, Afeng; Zhou, Xu; Li, Ming; Wu, Haiming

    2017-11-01

    Biochar amendment in soil has the potential to sequester carbon, improve soil quality and mitigate greenhouse gas (GHG) emission in agriculture, but the impact of biochar amendments on dissolved organic matter (DOM) properties of soils in the fertilized agro-ecosystem has received little research attention. This study performed a long-term field experiment to assess the influence of biochar amendments (different addition rate: 4 t ha -1 and 8 t ha -1 ) on DOM characteristics in soils in wheat-maize rotation system in Loess Plateau of China by exploiting fluorescence excitation-emission spectrophotometry and parallel factor analysis (EEM-PARAFAC). Our results showed that the content of soil DOM was significantly influenced by the addition of biochar, and the higher biochar addition markedly increased the mean concentration of dissolved organic carbon (DOC) (from 83.99 mg kg -1 to 144.27 mg kg -1 ) in soils under the same fertilizer application. Three identified fluorescent components (fulvic acid-like, humic acid-like and tryptophan-like) were found, and fluorescence intensity of those components (especially humic-like material) was enhanced with the increasing DOC in the biochar treatments but the composition of DOM was not changed. These findings would be beneficial to understand the biochar's effects and processes in decreasing GHG emissions from soils. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Allowable carbon emissions for medium-to-high mitigation scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Tachiiri, Kaoru; Hargreaves, Julia C.; Annan, James D.; Kawamiya, Michio [Research Inst. for Global Change, Japan Agency for Marine-Earth Science and Technology, Yokohama, (Japan)], e-mail: tachiiri@jamstec.go.jp; Huntingford, Chris [Centre for Ecology and Hydrology, Wallingford (United Kingdom)

    2013-11-15

    Using an ensemble of simulations with an intermediate complexity climate model and in a probabilistic framework, we estimate future ranges of carbon dioxide (CO{sub 2}) emissions in order to follow three medium-high mitigation concentration pathways: RCP2.6, RCP4.5 and SCP4.5 to 2.6. Uncertainty is first estimated by allowing modelled equilibrium climate sensitivity, aerosol forcing and intrinsic physical and biogeochemical processes to vary within widely accepted ranges. Results are then constrained by comparison against contemporary measurements. For both constrained and unconstrained projections, our calculated allowable emissions are close to the standard (harmonised) emission scenarios associated with these pathways. For RCP4.5, which is the most moderate scenario considered in terms of required emission abatement, then after year 2100 very low net emissions are needed to maintain prescribed year 2100 CO{sub 2} concentrations. As expected, RCP2.6 and SCP4.5 to 2.6 require more strict emission reductions. The implication of this is that direct sequestration of carbon dioxide is likely to be required for RCP4.5 or higher mitigation scenarios, to offset any minimum emissions for society to function (the 'emissions floor'). Despite large uncertainties in the physical and biogeochemical processes, constraints from model-observational comparisons support a high degree of confidence in predicting the allowable emissions consistent with a particular concentration pathway. In contrast the uncertainty in the resulting temperature range remains large. For many parameter sets, and especially for RCP2.6, the land will turn into a carbon source within the twenty first century, but the ocean will remain as a carbon sink. For land carbon storage and our modelling framework, major reductions are seen in northern high latitudes and the Amazon basin even after atmospheric CO{sub 2} is stabilised, while for ocean carbon uptake, the tropical ocean regions will be a

  15. [Effects of biochar application three-years ago on global warming potentials of CH4 and N2O in a rice-wheat rotation system.

    Science.gov (United States)

    Wu, Zhen; Dong, Yu Bing; Xiong, Zheng Qin

    2018-01-01

    To evaluate the long-term effects of biochar amendment on greenhouse gas emissions (GHGs), a field experiment was conducted to examine the effects of 3-year field-aged biochar (B 3 ) and fresh biochar (B 0 ) on global warming potential (GWP) and greenhouse gas intensity (GHGI) of methane (CH 4 ) and nitrous oxide (N 2 O) in a typical rice-wheat rotation system. Four treatments were established as control without nitrogen fertilizer (CK), urea without biochar (N), urea with fresh biochar amended in 2015 (NB 0 ), and urea with 3-year field-aged biochar amended in 2012 (NB 3 ). Results showed that both the NB 0 and NB 3 treatments obviously increased soil pH, soil organic carbon (SOC), total nitrogen (TN) and influenced the potential activity of functional microorganisms related to GHGs compared to the N treatment. Relative to the N treatment, the NB 3 treatment significantly improved crop yield by 14.1% while reduced the CH 4 and N 2 O emissions by 9.0% and 34.0%, respectively. In addition, the NB 0 treatment significantly improved crop yield by 9.3%, while reduced the N 2 O emission by 38.6% though increased the CH 4 emissions by 4.7% relative to the N treatment. Moreover, both the NB 0 and NB 3 treatments could significantly reduce both GWP and GHGI, with NB 3 being more effective in simultaneously mitigating the GHGs emissions and enhancing crop yield. Since field-aged biochar showed obvious effects on GHGs mitigation and carbon sequestration after 3 years, biochar incorporations had long-term effect on GHGs mitigation and crop production in the rice-wheat rotation system.

  16. Biomass energy development and carbon dioxide mitigation options

    International Nuclear Information System (INIS)

    Hall, D.O.; House, J.I.

    1995-01-01

    Studies on climate change and energy production increasingly recognize the crucial role of biological systems. Carbon sinks in forests (above and below ground), CO 2 emissions from deforestation, planting trees for carbon storage, and biomass as a substitute for fossil fuels are some of the key issues which arise. Halting deforestation is of paramount importance, but there is also great potential for reforestation of degraded lands, agroforestry and improved forest management. We conclude that biomass energy plantations and other types of energy cropping could be a more effective strategy for carbon mitigation than simply growing trees as a carbon store. Using the biomass for production of modern energy carriers such as electricity, and liquid and gaseous fuels also has a wide range of other environmental, social and economic benefits. In order for biomass projects to succeed, it is necessary to ensure that these benefits are felt locally as well as nationally, furthermore, environmental sustainability of bioenergy projects is an essential requirement. The constraints to achieving environmentally-acceptable biomass production are not insurmountable. Rather they should be seen as scientific and entrepreneurial opportunities which will yield numerous advantages at local, national and international levels in the long term. (au) 76 refs

  17. Using biochar in animal farming to recycle nutrients and reduce greenhouse gas emissions

    Science.gov (United States)

    Schmidt, Hans-Peter; Wilson, Kelpie; Kammann, Claudia

    2017-04-01

    year in California alone. It was further shown that feeding 0.3 to 1% biochar could replace antibiotic treatment in chicken and ducks, respectively. Feeding biochar could thus have an indirect effect on GHG emissions when it is able to replace regular antibiotic "feeding" that produces high indirect GHG emissions after soil application of antibiotic contaminated manure. Moreover, it was demonstrated that feeding biochar to grazing cows had positive secondary effects on soil fertility and fertilizer efficiency reducing mineral N-fertilizing requirements which could be another indirect biochar GHG mitigation effect. Considering an average C-content of fed biochar of 80% and produced at recommended temperatures above 500°C resulting in H/Corg ratios below 0.4, at least 56% of the dry weight of the fed and manure-applied biochar would persist as stable carbon in soil for at least 100 years. If the global livestock would receive 1% of their feed in form of such a biochar, a total of about 400 Mt of CO2eq or 1.2 % of the global CO2 emissions could be compensated. The apparent potential for improving animal health and nutrient efficiency, for reducing enteric methane emissions as well as GHG emissions from manure management and for sequestering carbon with soil fertility improvements makes it compelling to increase the scientific effort to investigate, measure and optimize the GHG reduction potential of biochar use in animal farming systems. The main results from literature and own experiments will be presented to illustrate and calculate this potential.

  18. BIOCHAR MODIFICATION, THERMAL STABILITY AND TOXICITY OF PRODUCTS MODIFICATION

    Directory of Open Access Journals (Sweden)

    Romana FRIEDRICHOVÁ

    2017-12-01

    Full Text Available Biochar is a product obtained from processing of waste biomass. The main application of biochar is in soil and environment remediation. Some new applications of this carbonaceous material take advantage of its adsorption capacity use it as a heterogeneous catalyst for energy storage and conversion etc. This contribution describes thermal stability of the original biochar. It discusses biochar modified by chemical and physical methods including a new compound of biochar-graphene oxide. The purpose of the modifications is to increase its active surface to introduce active functional groups into the carbon structure of biochar in relation to fire safety and toxicity of those products.

  19. Induced seismicity and carbon storage: Risk assessment and mitigation strategies

    Energy Technology Data Exchange (ETDEWEB)

    White, Joshua A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Foxall, William [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Bachmann, Corinne [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Chiaramonte, Laura [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Daley, Thomas M. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2016-01-28

    Geologic carbon storage (GCS) is widely recognized as an important strategy to reduce atmospheric carbon dioxide (CO2) emissions. Like all technologies, however, sequestration projects create a number of potential environmental and safety hazards that must be addressed. These include earthquakes—from microseismicity to large, damaging events—that can be triggered by altering pore-pressure conditions in the subsurface. To date, measured seismicity due to CO2 injection has been limited to a few modest events, but the hazard exists and must be considered. There are important similarities between CO2 injection and fluid injection from other applications that have induced significant events—e.g. geothermal systems, waste-fluid injection, hydrocarbon extraction, and others. There are also important distinctions among these technologies that should be considered in a discussion of seismic hazard. This report focuses on strategies for assessing and mitigating risk during each phase of a CO2 storage project. Four key risks related to fault reactivation and induced seismicity were considered. Induced slip on faults could potentially lead to: (1) infrastructure damage, (2) a public nuisance, (3) brine-contaminated drinking water, and (4) CO2-contaminated drinking water. These scenarios lead to different types of damage—to property, to drinking water quality, or to the public welfare. Given these four risks, this report focuses on strategies for assessing (and altering) their likelihoods of occurrence and the damage that may result. This report begins with an overview of the basic physical mechanisms behind induced seismicity. This science basis—and its gaps—is crucial because it forms the foundation for risk assessment and mitigation. Available techniques for characterizing and monitoring seismic behavior are also described. Again, this technical basis—and its limitations—must be factored into the risk

  20. Water repellency of two forest soils after biochar addition

    Science.gov (United States)

    D. S. Page-Dumroese; P. R. Robichaud; R. E. Brown; J. M. Tirocke

    2015-01-01

    Practical application of black carbon (biochar) to improve forest soil may be limited because biochar is hydrophobic. In a laboratory, we tested the water repellency of biochar application (mixed or surface applied) to two forest soils of varying texture (a granitic coarse-textured Inceptisol and an ash cap fine-textured Andisol) at four different application rates (0...

  1. The effect of young biochar on soil respiration

    Science.gov (United States)

    The low temperature pyrolysis of organic material produces biochar, a charcoal like substance. Biochar is being promoted as a soil amendment to enhance soil quality, it is also seen as a mechanism of long-term sequestration of carbon. Our experiments tested the hypothesis that biochar is inert in so...

  2. Earthworms Contribute to Increased Turnover in Biochar Amended Soils

    Science.gov (United States)

    With increased interest in bioenergy production from pyrolysis, biochar is likely to become a widely available co-product. Research on using biochar as a source of fertility or to increase carbon sequestration is growing; however, land application of biochar is likely to impact the biotic component...

  3. Nitrogen availability from residues-based biochar at two pyrolisis temperatures

    Science.gov (United States)

    Coscione, Aline Renee; Silveira Bibar, Maria Paula; de Andrade, Cristiano Alberto

    2014-05-01

    Biochar has been studied for several applications, such as soil quality improvement, heavy metals remediation and N2O mitigation. Considering the soil quality improvement aspect it is desirable to evaluate if the nitrogen content in biochar samples obtained from several residues used as the biomass sources could be available for plants. Samples of sewage sludge (SS), coffee grounds (CG), chicken manure (CM) and fungi mycelia (FM) were pyrolyzed at two temperatures, 400 and 700 oC (indicated by the number 4 and 7 in this abstract, respectively), in order to obtain the biochar samples. The Kjeldahl nitrogen of biochar was (% m/m): 3.0 (CM4, CG7, FM7 and CG4); 2.0 (CM7 e SS4); 3.4 (FM7); 1.4 (SS7), with organic carbon (potassium dichromate method) ranging from 2.0 to 3.0% for all but CG4 (6%). The C/N ratio of biochar samples was: 9 (CM4, SS4 and CG7); 11 (CM7); 15 (SS7); 7 (FM4 and FM7); 21 (CG4). The eight soil + biochar resulting mixtures, prepared using the equivalent to 60 t/ha of biochar (about 3% w/w), and one additional control treatment (no biochar added) were incubated for 90 days, with four replications of each treatment per time evaluated. Inorganic nitrogen and soil pH measurements were performed for all treatments at 0, 5, 15, 30, 60 and 90 days of incubation. Soil moisture was kept at 40% soil water holding capacity, by weighting, during the experiment. The data was submitted to ANOVA with Tukey's average comparison test (p organic residues with C/N ratios lower than 20 applied to the soil a fast degradation, with the corresponding increase in inorganic nitrogen availability is expect. Although all the biochar samples tested had C/N ratios below that cutting point, just 2 of 8 presented inorganic nitrogen available in the soil+biochar mixtures. These results show that soil incubation tests are ultimate for the evaluation of the nitrogen potential release to the soil. Low temperature SS based biochar may offer additional nitrogen release to soil besides

  4. Impacts of low-carbon power policy on carbon mitigation in Guangdong Province, China

    International Nuclear Information System (INIS)

    Cheng, Beibei; Dai, Hancheng; Wang, Peng; Xie, Yang; Chen, Li; Zhao, Daiqing; Masui, Toshihiko

    2016-01-01

    This paper analyzes the impacts of the low-carbon policy in the power sector of Guangdong Province in China on its energy and carbon emission targets by 2020, as well as their costs and co-benefits, using a regional CGE model with seven scenarios: business as usual (BaU), renewable energy (RE), renewable energy and natural gas (RE–NG), CAP only (CAP), CAP and RE–NG (CAP–RE–NG), carbon emission trading (ETS), and ETS with RE–NG (ETS–RE–NG). Analysis results reveal that provincial energy and carbon intensity targets can be achieved in the assumed carbon mitigation scenarios with carbon cap, ETS, and clean energy development policies. While the carbon constraint exerts negative impacts on the economy, GDP loss could be lowered by the ETS and RE policies. The RE scenario is more economically efficient than the ETS scenario, and coupling the RE and ETS scenarios appears to be the most economically efficient scenario to achieve the desired carbon and energy intensity targets. One of the benefits of the low-carbon policy is its improvement of the energy security of Guangdong in terms of reduced reliance on external coal and oil; in particular, Guangdong coal consumption could peak in 2017–2019. - Highlights: • This study analyzes the low carbon policy in the power sector in Guangdong of China. • The role of power sector in achieving carbon and energy intensity target is shown. • Renewable energy and natural gas are very important for Guangdong Province. • Additional efforts in other sectors are needed to achieve the intensity targets. • The mitigation cost and economic impacts are assessed under various policy settings.

  5. Multiplying Forest Garden Systems with biochar based organic fertilization for high carbon accumulation, improved water storage, nutrient cycling, and increased food diversity and farm productivity

    Science.gov (United States)

    Schmidt, Hans-Peter; Pandit, Bishnu Hari; Lucht, Wolfgang; Gerten, Dieter; Kammann, Claudia

    2017-04-01

    On abandoned, erosion prone terraces in the middle hills of Nepal, 86 participating farmer families planted >25,000 mixed trees in 2015/16. Since it was convincingly demonstrated by more than 20 field trials in this region that this was the most plant-growth promoting method, all trees were planted with farmer-made organic biochar-based fertilizer. Planting pits were mulched with rice straw and were pipe irrigated from newly established water retention ponds during the 7 months of the dry season. A peer control system of farmer triads ensured an efficient maintenance of the plantations. Tree survival rate was above 80% after one year compared to below 50% on average for countrywide forestation projects over the last 30 years. In between the young Cinnamon, Moringa, Mulberry, Lemon, Michelia, Paulownia, nut and other trees, other secondary crops were cultivated such as ginger, turmeric, black beans, onions, lentils, all with organic biochar-based fertilizer and mulching. The objective of this forest garden project was to establish robust social-agronomic systems that can be multiplied from village to village for increasing soil fertility, protecting abandoned terraces from erosion, replenishing natural water resources, generating a stable income with climate-smart agriculture, as well as capturing and sequestering atmospheric carbon. The initial financing of the set-up of the forest garden systems (tree nursery, plantation, preparation of organic biochar based fertilizer, mulching materials, building of irrigation pits and pipe irrigation system, and general maintenance) was covered by carbon credits paid in advance by the international community in the form of a monthly carbon compensation subscription. All planted trees are GIS inventoried and the yearly biomass carbon uptake will be calculated as an average value of the first ten years of tree growth. The 25,000 mixed trees accumulated the equivalent of 350 t CO2 per year (10 years total C-accumulation divided by

  6. A Comparison of Producer Gas, Biochar, and Activated Carbon from Two Distributed Scale Thermochemical Conversion Systems Used to Process Forest Biomass

    Directory of Open Access Journals (Sweden)

    Nathaniel Anderson

    2013-01-01

    Full Text Available Thermochemical biomass conversion systems have the potential to produce heat, power, fuels and other products from forest biomass at distributed scales that meet the needs of some forest industry facilities. However, many of these systems have not been deployed in this sector and the products they produce from forest biomass have not been adequately described or characterized with regards to chemical properties, possible uses, and markets. This paper characterizes the producer gas, biochar, and activated carbon of a 700 kg h−1 prototype gasification system and a 225 kg h−1 pyrolysis system used to process coniferous sawmill and forest residues. Producer gas from sawmill residues processed with the gasifier had higher energy content than gas from forest residues, with averages of 12.4 MJ m−3 and 9.8 MJ m−3, respectively. Gases from the pyrolysis system averaged 1.3 MJ m−3 for mill residues and 2.5 MJ m−3 for forest residues. Biochars produced have similar particle size distributions and bulk density, but vary in pH and carbon content. Biochars from both systems were successfully activated using steam activation, with resulting BET surface area in the range of commercial activated carbon. Results are discussed in the context of co-locating these systems with forest industry operations.

  7. Barriers to Mitigate Carbon Footprint in a Selected Academic Institution in Bacoor City, Cavite, Philippines

    Science.gov (United States)

    Adanza, Jonathan R.

    2016-01-01

    Carbon footprint is an environmental menace that needs to be addressed at once. Various mitigating measures were proposed and yet manifestations of its proliferation are very much observable. This study seeks to determine primarily the barriers of non-adherence to identified measures to mitigate carbon footprint in the environment. Using the mixed…

  8. Phenanthrene sorption on biochar-amended soils

    DEFF Research Database (Denmark)

    Kahawaththa Gamage, Inoka Damayanthi Kumari; Moldrup, Per; Paradelo Pérez, Marcos

    2014-01-01

    on their influences on the sorption of environmental contaminants. In a field-based study at two experimental sites in Denmark, we investigated the effect of birch wood-derived biochar (Skogans kol) on the sorption of phenanthrene in soils with different properties. The soil sorption coefficient, Kd (L kg-1......), of phenanthrene was measured on sandy loam and loamy sand soils which have received from zero up to 100 t ha-1 of biochar. Results show that birch wood biochar had a higher Kd compared to soils. Furthermore, the application of birch wood biochar enhanced the sorption of phenanthrene in agricultural soils...... carbon, while it negatively correlated with clay content. The results also revealed that biochar-mineral interactions play an important role in the sorption of phenanthrene in biochar-amended soil....

  9. Remediation of an acidic mine spoil: Miscanthus biochar and lime amendment affects metal availability, plant growth, and soil enzyme activity.

    Science.gov (United States)

    Novak, Jeffrey M; Ippolito, James A; Ducey, Thomas F; Watts, Donald W; Spokas, Kurt A; Trippe, Kristin M; Sigua, Gilbert C; Johnson, Mark G

    2018-08-01

    Biochar may be a tool for mine spoil remediation; however, its mechanisms for achieving this goal remain unclear. In this study, Miscanthus (Miscanthus giganteus) biochar was evaluated for its ability to reclaim acidic mine spoils (pH lime/no lime and fertilizer additions. Blue Wildrye (Elymus glaucus cv. 'Elkton') was planted and later the shoots and roots were collected and metal concentrations determined. Afterwards, each pot was leached with deionized water, and the leachate analyzed for pH, electrical conductivity (EC), dissolved organic carbon (DOC) and soluble metal concentrations. After drying, the spoil was extracted with 0.01 M CaCl 2 and Mehlich 3 (M3) to determine extractable Al, Cu, and Zn concentrations. Additionally, microbial activity was measured using a fluorescent β-glucosidase and N-acetyl-β-d-glucosaminidase assay. Spoil treated with lime and biochar had significantly greater pH and EC values. Significantly greater β-glucosidase activity occurred only in the 5% biochar plus lime treatment, while N-acetyl-β-d-glucosaminidase activities were not altered. Metal concentrations in rye shoot and roots were mixed. Lime additions significantly reduced extractable metal concentrations. Increasing biochar rates alone significantly reduced leachate DOC concentrations, and subsequently reduced leachable metal concentrations. Surprisingly, miscanthus biochar, by itself, was limited at mitigation, but when combined with lime, the combination was capable of further reducing extractable metal concentrations and improving β-glucosidase enzyme activity. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  10. Biochar for horticultural rooting media improvement

    NARCIS (Netherlands)

    Blok, Chris; Salm, van der Caroline; Hofland-Zijlstra, Jantineke; Streminska, Marta; Eveleens-Clark, Barbara; Regelink, Inge; Fryda, Lydia; Visser, Rianne

    2017-01-01

    Peat is used as rooting medium in greenhouse horticulture. Biochar is a sustainable alternative for the use of peat, which will reduce peat derived carbon dioxide emissions. Biochar in potting soil mixtures allegedly increases water storage, nutrient supply, microbial life and disease suppression

  11. Carbon uptake by mature Amazon forests has mitigated Amazon nations' carbon emissions.

    Science.gov (United States)

    Phillips, Oliver L; Brienen, Roel J W

    2017-12-01

    Several independent lines of evidence suggest that Amazon forests have provided a significant carbon sink service, and also that the Amazon carbon sink in intact, mature forests may now be threatened as a result of different processes. There has however been no work done to quantify non-land-use-change forest carbon fluxes on a national basis within Amazonia, or to place these national fluxes and their possible changes in the context of the major anthropogenic carbon fluxes in the region. Here we present a first attempt to interpret results from ground-based monitoring of mature forest carbon fluxes in a biogeographically, politically, and temporally differentiated way. Specifically, using results from a large long-term network of forest plots, we estimate the Amazon biomass carbon balance over the last three decades for the different regions and nine nations of Amazonia, and evaluate the magnitude and trajectory of these differentiated balances in relation to major national anthropogenic carbon emissions. The sink of carbon into mature forests has been remarkably geographically ubiquitous across Amazonia, being substantial and persistent in each of the five biogeographic regions within Amazonia. Between 1980 and 2010, it has more than mitigated the fossil fuel emissions of every single national economy, except that of Venezuela. For most nations (Bolivia, Colombia, Ecuador, French Guiana, Guyana, Peru, Suriname) the sink has probably additionally mitigated all anthropogenic carbon emissions due to Amazon deforestation and other land use change. While the sink has weakened in some regions since 2000, our analysis suggests that Amazon nations which are able to conserve large areas of natural and semi-natural landscape still contribute globally-significant carbon sequestration. Mature forests across all of Amazonia have contributed significantly to mitigating climate change for decades. Yet Amazon nations have not directly benefited from providing this global scale

  12. Effects of the amendment of biochars and carbon nanotubes on the bioavailability of hexabromocyclododecanes (HBCDs) in soil to ecologically different species of earthworms.

    Science.gov (United States)

    Li, Bing; Zhu, Hongkai; Sun, Hongwen; Xu, Jiayao

    2017-03-01

    Biochar is a promising material used in soil amendment and carbon nanotubes may enter soil due to its increasing application. These carbonaceous materials may change the bioavailability of pollutants in soil. In this concern, 0.5% w/w multi-walled carbon nanotubes (MWCNTs) and 3 corn-straw biochars acquired at different pyrolyzing temperatures were used in soil amendment and their influences on the bioavailability of hexabromocyclododecanes (HBCDs), a brominated flame retardant, to 2 ecologically different earthworm species were studied. The amendment of 4 carbonaceous materials all reduced the bioaccumulation of HBCDs in earthworms by 18.2%-67.3%, which varied depending on the type of carbonaceous materials and the pyrolyzing temperature of biochars. The reduction in HBCDs uptake by Eisenia fetida (an epigeic species) was greater than by Metaphire guillelmi (an anecic species). The 2 earthworm species both showed bioaccumulative selectivity on certain HBCD diastereoisomer and enantiomer in the amended soils, which was similar to that in the control soil. Moreover, Tenax-assisted HBCDs desorption test was carried out for the simulation of their bioavailability. The rapid desorption fraction (F rap ), total desorption (15 d), and 24 h desorption all correlated well with the uptake of HBCDs in the earthworms, suggesting that the 24 h-desorption, due to its easy availability, can be a good proxy to predict the bioavailability of HBCDs to earthworms in soil. Copyright © 2016. Published by Elsevier Ltd.

  13. Biochar alters the resistance and resilience to drought in a tropical soil

    International Nuclear Information System (INIS)

    Liang, Chenfei; Zhu, Xiaolin; Fu, Shenglei; Paz-Ferreiro, Jorge; Méndez, Ana; Gascó, Gabriel

    2014-01-01

    Soil microbes play a key role in nutrient cycling and carbon sequestration. Global change can alter soil microbial population composition and behavior. Biochar addition has been explored in the last years as a way to mitigate global warming. However, responses of microbial communities to biochar addition in particular in relation to abiotic disturbances are seldom documented. An example of these disturbances, which is predicted to be exacerbated with global warming, is regional drought. It has been known that fungal-based food webs are more resistant to drought than their bacterial counterparts. Our study found that biochar addition can increase the resistance of both the bacterial and fungal networks to drought. Contrary to expected, this result was not related to a change in the dominance of fungal or bacteria. In general, soil amended with biochar was characterized by a faster recovery of soil microbial properties to its basal values. Biochar addition to the soil also suppressed the Birch effect, a result that has not been previously reported. (papers)

  14. The Interfacial Behavior between Biochar and Soil Minerals and Its Effect on Biochar Stability.

    Science.gov (United States)

    Yang, Fan; Zhao, Ling; Gao, Bin; Xu, Xiaoyun; Cao, Xinde

    2016-03-01

    In this study, FeCl3, AlCl3, CaCl2, and kaolinite were selected as model soil minerals and incubated with walnut shell derived biochar for 3 months and the incubated biochar was then separated for the investigation of biochar-mineral interfacial behavior using XRD and SEM-EDS. The XPS, TGA, and H2O2 oxidation were applied to evaluate effects of the interaction on the stability of biochar. Fe8O8(OH)8Cl1.35 and AlCl3·6H2O were newly formed on the biochar surface or inside of the biochar pores. At the biochar-mineral interface, organometallic complexes such as Fe-O-C were generated. All the 4 minerals enhanced the oxidation resistance of biochar surface by decreasing the relative contents of C-O, C═O, and COOH from 36.3% to 16.6-26.5%. Oxidation resistance of entire biochar particles was greatly increased with C losses in H2O2 oxidation decreasing by 13.4-79.6%, and the C recalcitrance index (R50,bicohar) in TGA analysis increasing from 44.6% to 45.9-49.6%. Enhanced oxidation resistance of biochar surface was likely due to the physical isolation from newly formed minerals, while organometallic complex formation was probably responsible for the increase in oxidation resistance of entire biochar particles. Results indicated that mineral-rich soils seemed to be a beneficial environment for biochar since soil minerals could increase biochar stability, which displays an important environmental significance of biochar for long-term carbon sequestration.

  15. In-situ biochar application conserves nutrients while simultaneously mitigating runoff and erosion of an Fe-oxide-enriched tropical soil.

    Science.gov (United States)

    Lee, Chia-Hsing; Wang, Chung-Chi; Lin, Huan-Hsuan; Lee, Sang Soo; Tsang, Daniel C W; Jien, Shih-Hao; Ok, Yong Sik

    2018-04-01

    Climate change gives rise to rapid degradation of rural soils in sloping subtropical and tropical areas and might further threaten environmental sustainability. In this study, we conducted an integrated evaluation of the effects of wood biochar (WB) application mixed with a green waste dreg compost (GWC) on runoff quality, soil losses, and agricultural productivity for a highly weathered tropical soil. A conventional agriculture method, in which soils are treated with anionic polyacrylamide (PAM), was also conducted for comparison. The amounts of runoff and soil loss, and nutrient retention were evaluated a year after WB application. Soil fertility was also investigated through a year pot experiment with rape (Brassica campestris L.) cultivation. Our results showed that the WB application not only effectively increased soil pH, soil organic carbon (SOC) and exchangeable K + but also increased the production of rape plants. Significant reduction of runoff and the increases of inorganic nitrogen (IN) and total phosphorus (TP) were found in the WB-treated soil. Compared to the control, the co-application of WB and GWC, particularly for the WB at 4%, decreased runoff by 16.8%, soil loss by 25%, and IN loss (via runoff) by 41.8%. Meanwhile, compared to the control and PAM treatments, the co-application of WB and GWC improved soil acidity and the contents of SOC, IN, TP, and exchangeable K + . The co-application of WB and GWC could be an alternative agricultural strategy to obtain benefits to agricultural productivity and environmental sustainability. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Biochar and the other COP21 agenda: the 4/1000 Initiative and climate solution right under our feet.

    Science.gov (United States)

    Gaspard, J., II; Burchell, A.; Shields, F.; Beierwaltes, W.; Parks, D.; Ranney, S.

    2016-12-01

    Anthropogenic activities have altered the global carbon cycle. Restoring degraded lands and increasing soil carbon will play an important role in addressing the challenges of food security, drought and mitigating anthropogenic emissions. Regenerative soil practices are crucial to limiting global temperature increase to 2°C (3.6°F)." To achieve this, scientists, policy makers and the business sector face a collaborative challenge of judiciously implementing solutions that work, are profitable and need to be included in every nation's climate toolbox. High-quality biochar provides an intriguing carbon management strategy. To understand temperature variation, feedstock properties and to produce biochar with reproducible and tunable properties, our thermal conversion kilns use advanced control technology to enable a slow pyrolysis process that is: (i) "feedstock-blind" (drought and pest-killed trees, agricultural waste, construction residue, etc.) and (ii) resilient to feedstock properties (moisture, composition). The result is a high-quality, stable biochar with a high carbon content, a well-defined pore structure that promotes water retention and microbe integration, desired ionic properties and thousand year residence times. Cost of production has reached a point that now assures profitability for specialty high-quality biochar sold to target drought, turf growth, plant disease suppression, adsorption of heavy metals from polluted waters, adsorption of excess phosphorus and nitrates in streams and lakes, production of durable construction materials and other industrial applications. Given published estimates of 1.5 - 2.9 MT CO2e/ MT biochar applied to soils, this translates to less than $20 /MT CO2 sequestered - and less the carbon-offset prices being discussed. This suggests commercial biochar strategies may be sufficiently economically attractive to now incentivize important agriculture, forest and grassland carbon storage policy decisions.

  17. Nonzero-Sum Relationships in Mitigating Urban Carbon Emissions: A Dynamic Network Simulation.

    Science.gov (United States)

    Chen, Shaoqing; Chen, Bin; Su, Meirong

    2015-10-06

    The "stove-pipe" way of thinking has been mostly used in mitigating carbon emissions and managing socioeconomics because of its convenience of implementation. However, systems-oriented approaches become imperative in pursuit of an efficient regulation of carbon emissions from systems as complicated as urban systems. The aim of this paper is to establish a dynamic network approach that is capable of assessing the effectiveness of carbon emissions mitigation in a more holistic way. A carbon metabolic network is constructed by modeling the carbon flows between economic sectors and environment. With the network shocked by interventions to the sectoral carbon flows, indirect emissions from the city are accounted for under certain carbon mitigation strategies. The nonzero-sum relationships between sectors and environmental components are identified based on utility analysis, which synthesize the nature of direct and indirect network interactions. The results of the case study of Beijing suggest that the stove-pipe mitigation strategies targeted the economic sectors might be not as efficient as they were expected. A direct cutting in material or energy import to the sectors may result in a rebound in indirect emissions and thus fails to achieve the carbon mitigation goal of the city as a whole. A promising way of foreseeing the dynamic mechanism of emissions is to analyze the nonzero-sum relationships between important urban components. Thinking cities as systems of interactions, the network approach is potentially a strong tool for appraising and filtering mitigation strategies of carbon emissions.

  18. Synthesis, characterization, and environmental implications of graphene-coated biochar.

    Science.gov (United States)

    Zhang, Ming; Gao, Bin; Yao, Ying; Xue, Yingwen; Inyang, Mandu

    2012-10-01

    Biochar has attracted much research attention recently because of its potential applications in many environmental areas. In this work, the biochar technology was combined with the emerging graphene technology to create a new engineered graphene-coated biochar from cotton wood. The biomass feedstock was first treated with graphene/pyrene-derivative and was then annealed at 600°C in a quartz tube furnace under N(2) environment. Laboratory characterization with different microscopy and spectrometry tools showed that the graphene sheets were "soldered" by the pyrene molecules on the biochar surface during the annealing process. Thermogravimetric analysis showed that the graphene "skin" could improve the thermal stability of the biochar, making the engineered biochar a better carbon sequester for large scale land applications. Batch sorption experimental results indicated that the graphene-coated biochar has excellent adsorption ability of polycyclic aromatic hydrocarbons (PAHs) with a maximum methylene blue adsorption capacity of 174 mg g(-1), which is more than 20 times higher than that of the unmodified cotton wood biochar and comparable to those of some physically or chemically activated carbons. The enhanced adsorption of methylene blue on the graphene-coated biochar is mainly controlled by the strong π-π interactions between aromatic molecules and the graphene sheets on biochar surface. It is anticipated that this novel, facile, and low-cost method can be expanded to other carbon-rich materials to create engineered biochar for various environmental applications. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. 磷酸二氢钙与生物质共热解提高生物炭固碳效果%Biomass co-pyrolysis with calcium dihydrogen phosphate improving carbon fixation of biochar

    Institute of Scientific and Technical Information of China (English)

    李飞跃; 张丽; 李孝良; 谢越; 王艳; 汪建飞

    2016-01-01

    Turning biomass wastes into biochar under low temperature and limited oxygen conditions has recently proven as a promising approach for long term carbon sequestration. In order to reveal the effects of mineral addition which is a pretreatment of biochar production on carbon retention and stability of biochar and provide an creative idea for further improvement of carbon sequestration potential by turning biomass into biochar. Calcium dihydrogen phosphate using as a typical mineral was added to sawdust and dairy manure feedstock at the ratio of 20% for biochar formation through co-pyrolysis treatment under lab condition, a typical slow pyrolysis process, heated in a Muffle Furnace at a speed of approximately 20℃/min under limited oxygen and held at 200 to 500℃ with every other 100℃ for 1 h. Moreover, two reliable methods were applied to test biochar stability: One was a simulated long-term stability method using chemical oxidation treatment to assess the labile fraction of C in biochar samples after hydrogen peroxide (H2O2) oxidation, this method was to determine the chemical stability of biochar; The other was simulated mineralization experiment to test the biochar's microbe-resistance stability, this method was to evaluate the biological stability of biochar in terms of microbial mineralization rate under simulated soil microbial conditions in a lab-scale experiment. The carbon retention was defined as the proportion of the original carbon, which was from plant photosynthesis by sequestrating the CO2 from atmosphere in feedstock, retained in the biochar after the pyrolysis. Compared with the original biochar, modified biochar produced with calcium dihydrogen phosphate addition to sawdust and dairy manure were increased by 31.3% and 26.1%, respectively; With H2O2 oxidation, the carbon loss of modified biochar produced with calcium dihydrogen phosphate addition to sawdust was reduced by 93.1%, compared with its unmodified biochar. However, the carbon loss of

  20. 不同原料生物炭理化性质的对比分析%Comparison of Biochars Characteristics from Different Raw Materials

    Institute of Scientific and Technical Information of China (English)

    孙涛; 朱新萍; 李典鹏; 顾祝禹; 张佳喜; 贾宏涛

    2017-01-01

    Biochar is the carbon-rich product from biomass under limited supply of oxygen. Biochar has been well recognized in enhancing terrestrial carbon sequestration and greenhouse gas mitigation as well as in improving soil fertility and plant productivity. To explore the differences of biochars produced from different raw materials, six biochar samples made from alfalfa straw , wheat straw, cotton straw, grape vines, sludge and lignite were selected as test material. Qualitative and quantitative analysis by fourier transform infrared spectroscopy (FTIR)and Boehm titration were used to determine the amount of the surface functional groups of biochars. Meanwhile the scanning electron microscopy(SEM)was used to characterize the surface morphology of biochar samples. In addition, the basic physicochemical characteristics of biochar samples, such as pH value, organic carbon content and cation exchange capacity were also determined. The results showed that all of the biochar were alkaline except the sludge biochar was acidic. The organic carbon content of alfalfa biochar was the highest(588.43 g·kg-1) and sludge biochar was the lowest(168.17 g·kg-1). Furthermore, the rank of cation exchange capacity was alfalfa straw biochar, cotton straw biochar>grape vine biochar>wheat straw biochar>sludge biochar>lignite biochar. FTIR spectrum showed that there were the aromatic hydrocarbon and the oxygen group on the surface of biochar and the structure of biochar was mainly based on the aromatic rings skeleton. The total functional groups content of alfalfa straw biochar was the highest, but that of sludge biochar was the lowest. The SEM results showedthat there were obvious pore structure on the surface of plant-based biochar, but none on the surface of mineral-based biochar. Alfalfa straw biochar, wheat straw biochar, cotton straw biochar and grape vine biochar can be applied to improve farmland soil quality and increase soil fertility, and lignite biochar and sludge biochar can be

  1. Biochar for Horticultural Rooting Media Improvement: Evaluation of Biochar from Gasification and Slow Pyrolysis

    Directory of Open Access Journals (Sweden)

    Chris Blok

    2017-01-01

    Full Text Available Peat is used as rooting medium in greenhouse horticulture. Biochar is a sustainable alternative for the use of peat, which will reduce peat derived carbon dioxide emissions. Biochar in potting soil mixtures allegedly increases water storage, nutrient supply, microbial life and disease suppression but this depends on feedstock and the production process. The aim of this paper is to find combinations of feedstock and production circumstances which will deliver biochars with value for the horticultural end user. Low-temperature (600 °C–750 °C gasification was used for combined energy and biochar generation. Biochars produced were screened in laboratory tests and selected biochars were used in plant experiments. Tests included dry bulk density, total pore space, specific surface area, phytotoxicity, pH, EC, moisture characteristics and microbial stability. We conclude that biochars from nutrient-rich feedstocks are too saline and too alkaline to be applied in horticultural rooting media. Biochars from less nutrient-rich feedstocks can be conveniently neutralized by mixing with acid peat. The influence of production parameters on specific surface area, pH, total pore space and toxicity is discussed. Biochar mildly improved the survival of beneficial micro-organisms in a mix with peat. Overall, wood biochar can replace at least 20% v/v of peat in potting soils without affecting plant growth.

  2. Effects of pyrolysis temperature on carbon retention and stability of biochar%热解温度对生物质炭碳保留量及稳定性的影响

    Institute of Scientific and Technical Information of China (English)

    李飞跃; 汪建飞; 谢越; 李贺; 李孝良; 李粉茹

    2015-01-01

    以核桃壳为生物质炭生产原料,研究热解温度(200~700℃)对生物质炭产率、元素组成、表面官能团分布及其稳定性的影响,以期探明生物质炭基本性质随热解温度变化的规律,为全面了解生物质炭固碳减排效果提供理论参考。结果表明,生物质炭的C含量随温度升高而增加,H和O元素含量却随温度升高而降低。此外,生物质炭的H/C和O/C随着温度增加而减少。生物质炭的产率及碳保留量随着温度的升高而降低。红外光谱分析结果表明,经过热解核桃壳原材料分子中所含的-C-O和O-CH3基团消失,随着热解温度升高,生物质炭中的烷烃基团-CH逐渐减少,芳香化程度逐渐升高。500℃制备生物质炭的K2Cr2O7和KMnO4氧化碳损失量均最低,分别为10.4%和1.66%。相关分析表明,生物质炭的产率、碳保留量及稳定性与热解温度之间均具有显著相关关系。%Turning biomass wastes into biochar under the conditions of low temperature and limited oxygen has recently proven to be a promising approach for long-term carbon sequestration. However, the ultimate carbon sequestration efficiency of biochar depends not only on the feedstock type and production condition, but also on the environmental conditions of soil. In order to reveal the effects of pyrolysis temperature which is main parameter of biochar production condition on carbon retention and biochar stability, and provide more information for further improvement of carbon sequestration potential by turning biomass into biochar, the characteristics of biochar derived from walnut shell under lab condition were analyzed. During a typical slow pyrolysis process, the biochar was heated at a speed of approximately 20℃/minin a Muffle Furnace under limited oxygen and held at 200-700℃ for 2 h; then, biochar yield, elemental composition, functional groups distribution using Fourier transform infrared spectroscopy (FTIR

  3. Electrochemical determination of copper ions in spirit drinks using carbon paste electrode modified with biochar.

    Science.gov (United States)

    Oliveira, Paulo Roberto; Lamy-Mendes, Alyne C; Rezende, Edivaltrys Inayve Pissinati; Mangrich, Antonio Sálvio; Marcolino, Luiz Humberto; Bergamini, Márcio F

    2015-03-15

    This work describes for first time the use of biochar as electrode modifier in combination with differential pulse adsorptive stripping voltammetric (DPAdSV) techniques for preconcentration and determination of copper (II) ions in spirit drinks samples (Cachaça, Vodka, Gin and Tequila). Using the best set of the experimental conditions a linear response for copper ions in the concentration range of 1.5 × 10(-6) to 3.1 × 10(-5) mol L(-1) with a Limit of Detection (LOD) of 4.0 × 10(-7) mol L(-1). The repeatability of the proposed sensor using the same electrode surface was measured as 3.6% and 6.6% using different electrodes. The effect of foreign species on the voltammetric response was also evaluated. Determination of copper ions content in different samples of spirit drinks samples was also realized adopting inductively coupled plasma optical emission spectroscopy (ICP-OES) and the results achieved are in agreement at a 95% of confidence level. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Engineered carbon (biochar) prepared by direct pyrolysis of Mg-accumulated tomato tissues: characterization and phosphate removal potential.

    Science.gov (United States)

    Yao, Ying; Gao, Bin; Chen, Jianjun; Zhang, Ming; Inyang, Mandu; Li, Yuncong; Alva, Ashok; Yang, Liuyan

    2013-06-01

    An innovative method was developed to produce engineered biochar from magnesium (Mg) enriched tomato tissues through slow pyrolysis in a N2 environment. Tomato plants treated with 25mM Mg accumulated much higher level of Mg in tissue, indicating Mg can be substantially enriched in tomato plants, and pyrolysis process further concentrated Mg in the engineered biochar (8.8% Mg). The resulting Mg-biochar composites (MgEC) showed better sorption ability to phosphate (P) in aqueous solutions compared to the other four tomato leaves biochars. Statistical analysis showed a strong and significant correlation between P removal rate and biochar Mg content (R(2)=0.78, and p<0.001), indicating the enriched Mg in the engineered biochar is the main factor controlling its P removal ability. SEM-EDX, XRD and XPS analyses showed that nanoscale Mg(OH)2 and MgO particles were presented on the surface of MgEC, which serve as the main adsorption sites for aqueous P. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Influence of Carbonization Temperature on Physicochemical Properties of Biochar derived from Slow Pyrolysis of Durian Wood (Durio zibethinus Sawdust

    Directory of Open Access Journals (Sweden)

    Zaira Zaman Chowdhury

    2016-02-01

    Full Text Available The objective of this study was to explore the influence of pyrolysis temperature on the physicochemical properties of biochar synthesized from durian wood (Durio zibethinus sawdust. Surface morphological features, including the porosity and BET surface area of biochars, provide appropriate dimensions for growing clusters of microorganisms with excellent water retention capacity in soil. Oxygen-containing surface functional groups play a vital role in improving soil fertility by increasing its cation and anion exchange capacities with reduced leaching of nutrients from the soil surface. Biochar was produced via slow pyrolysis of woody biomass (WS using a fixed bed reactor under an oxygen-free atmosphere at different pyrolysis temperatures (350, 450, and 550 °C. The biochars obtained were characterized using ultimate and proximate analyses, Brunauer-Emmett-Teller (BET surface area, field-emission scanning electron microscopy (FE-SEM, Fourier transform infrared spectroscopy (FTIR, and X-ray diffraction (XRD. The yield of biochar decreased from 66.46 to 24.56%, whereas the BET surface area increased sharply from 2.567 to 220.989 m2/g, when the pyrolysis temperature was increased from 350 to 550 °C. The results highlighted the effect of pyrolysis temperature on the structure of the biochar, which could be advantageous for agricultural industries.

  6. Linking Mitigation and Adaptation in Carbon Forestry Projects: Evidence from Belize

    DEFF Research Database (Denmark)

    Kongsager, Rico; Corbera, Esteve

    2015-01-01

    that linking mitigation and adaptation has not been possible, because the mandate of forest carbon markets does not incorporate adaptation concerns. The projects’ contribution to forest ecosystems’ adaptation, for instance, by reducing human encroachments and by increasing ecosystem connectivity, has been...... instead to promote more holistic and territorial-based approaches targeting both mitigation and adaptation goals....

  7. Biochar strategies as measures for climate protection

    International Nuclear Information System (INIS)

    Bach, Martin; Wilske, Burkhard; Bai, Mo

    2014-01-01

    Biochar is advertised by stakeholders both public and private as an innovative interface in materials stream management which holds potential for added value in the fields of climate protection, energy, agriculture, soil improvement, and waste management. A number of factors must be considered in undertaking a comprehensive assessment and valuation for climate protection purposes of the option of a ''biochar strategy'', meaning carbon sequestration by biomass carbonisation (pyrolysis, HTC): biochar production and uptake capacities, energy and carbon balance, product stability, impact on soil functions and yield effects and, not least, economic aspects. This article addresses the more important of these factors.

  8. Effect of biochar on reclaimed tidal land soil properties and maize (Zea mays L.) response.

    Science.gov (United States)

    Kim, Hyuck-Soo; Kim, Kwon-Rae; Yang, Jae E; Ok, Yong Sik; Owens, Gary; Nehls, Thomas; Wessolek, Gerd; Kim, Kye-Hoon

    2016-01-01

    Reclaimed tidal land soil (RTLS) often contains high levels of soluble salts and exchangeable Na that can adversely affect plant growth. The current study examined the effect of biochar on the physicochemical properties of RTLS and subsequently the influence on plant growth performance. Rice hull derived biochar (BC) was applied to RTLS at three different rates (1%, 2%, and 5% (w/w)) and maize (Zea mays L.) subsequently cultivated for 6weeks. While maize was cultivated, 0.1% NaCl solution was supplied from the bottom of the pots to simulate the natural RTLS conditions. Biochar induced changes in soil properties were evaluated by the water stable aggregate (WSA) percentage, exchangeable sodium percentage (ESP), soil organic carbon contents, cation exchange capacity, and exchangeable cations. Plant response was measured by growth rate, nutrient contents, and antioxidant enzyme activity of ascorbate peroxidase (APX) and glutathione reductase (GR). Application of rice hull derived biochar increased the soil organic carbon content and the percentage of WSA by 36-69%, while decreasing the ESP. The highest dry weight maize yield was observed from soil which received 5% BC (w/w), which was attributed to increased stability of water-stable aggregates and elevated levels of phosphate in BC incorporated soils. Moreover, increased potassium, sourced from the BC, induced mitigation of Na uptake by maize and consequently, reduced the impact of salt stress as evidenced by overall declines in the antioxidant activities of APX and GR. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Fate of heavy metals and agrochemicals in biochar amended soils

    Science.gov (United States)

    Heavy metals and agrochemicals are the key targets for biochar-induced mitigation of runoff/groundwater contamination. Inorganic and organic contaminants interact differently with biochars as well as soil components. Mechanistic understandings are needed on sorption, desorption, and competitive sor...

  10. Biochar boosts tropical but not temperate crop yields

    NARCIS (Netherlands)

    Jeffery, Simon; Abalos Rodriguez, Diego; Prodana, Marija; Bastos, Ana Catarina; Groenigen, van Jan Willem; Hungate, Bruce A.; Verheijen, Frank

    2017-01-01

    Applying biochar to soil is thought to have multiple benefits, from helping mitigate climate change [1, 2], to managing waste [3] to conserving soil [4]. Biochar is also widely assumed to boost crop yield [5, 6], but there is controversy regarding the extent and cause of any yield benefit [7].

  11. A supply chain approach to biochar systems [Chapter 2

    Science.gov (United States)

    Nathaniel M. Anderson; Richard D. Bergman; Deborah S. Page-Dumroese

    2017-01-01

    Biochar systems are designed to meet four related primary objectives: improve soils, manage waste, generate renewable energy, and mitigate climate change. Supply chain models provide a holistic framework for examining biochar systems with an emphasis on product life cycle and end use. Drawing on concepts in supply chain management and engineering, this chapter presents...

  12. Effect of biochar addition on short-term N2O and CO2 emissions during repeated drying and wetting of an anthropogenic alluvial soil.

    Science.gov (United States)

    Yang, Fang; Lee, Xinqing; Theng, Benny K G; Wang, Bing; Cheng, Jianzhong; Wang, Qian

    2017-06-01

    Agricultural soils are an important source of greenhouse gases (GHG). Biochar application to such soils has the potential of mitigating global anthropogenic GHG emissions. Under irrigation, the topsoils in arid regions experience repeated drying and wetting during the crop growing season. Biochar incorporation into these soils would change the soil microbial environment and hence affect GHG emissions. Little information, however, is available regarding the effect of biochar addition on carbon dioxide (CO 2 ) and nitrous oxide (N 2 O) emissions from agricultural soils undergoing repeated drying and wetting. Here, we report the results of a 49-day aerobic incubation experiment, incorporating biochar into an anthropogenic alluvial soil in an arid region of Xinjiang Province, China, and measuring CO 2 and N 2 O emissions. Under both drying-wetting and constantly moist conditions, biochar amendment significantly increased cumulative CO 2 emission. At the same time, there was a significant reduction (up to ~20 %) in cumulative N 2 O emission, indicating that the addition of biochar to irrigated agricultural soils may effectively slow down global warming in arid regions of China.

  13. Morphological investigation and physical characterization of ancient fragments of pyrogenic carbon

    International Nuclear Information System (INIS)

    Pusceddu, E; Miglietta, F; Criscuoli, I

    2013-01-01

    In the latest years, the attention toward the use of pyrogenic carbon as a climate mitigation strategy has increasingly grown. Biochar (BC) contains substantial amount (60–90%) of pyrogenic carbon, which is a recalcitrant material and it is hardly decomposed by biotic and abiotic oxidation. The carbon mitigation potential of biochar is associated to the fact that carbon is not easily released back into the atmosphere, even after very long incubation time in the soil. Several studies have been addressing the understanding of the fate of pyrogenic carbon in the soil in a quantitative way, but only a few actually considered materials that were produced in the past and they were not fully able to estimate the fraction of carbon that was oxidized on centennial time scales. In this paper, an old deposits of biochar in soils of the Eastern Alps (Trentino, Val di Pejo) was dated at 1859 by means of a dendroanthracological approach. Carbon decomposition in those soils was then investigated to calculate the fraction of carbon that was lost over 155 years. Part of this study is focused on the morphological and physical characterization of several fragments of biochar, using a scanning electron microscope (SEM). Such study enabled the identification of specific morphological features of tracheids in the old biochar, which were tentatively associated to a differential oxidation of the structures that were created during carbonization from lignin and cellulose

  14. Biochar in vineyards: impact on soil quality and crop yield four years after the application

    Science.gov (United States)

    Ferreira, Carla; Verheijen, Frank; Puga, João; Keizer, Jacob; Ferreira, António

    2017-04-01

    Biochar is a recalcitrant organic carbon compound, created by biomass heating at high temperatures (300-1000°C) under low oxygen concentrations. Biochar application to agricultural soils has received increasing attention over the last years, due to its climate change mitigation and adaptation potential and reported improved soil properties and functions relevant to agronomic and environmental performance. Reported impacts are linked with increased cation exchange capacity, enhanced nutrient and water retention, and positive influences on soil microbial communities, which influence crop yields. Nevertheless, few studies have focused on mid-to-long term impacts of biochar application. This study investigated the impact of biochar on soil quality and crop yield four years after biochar application in a vineyard in North-Central Portugal. The site has a Mediterranean climate with a strong Atlantic Ocean influence, with mean annual rainfall and temperature of 1100 mm and 15°C, respectively. The soil is a relatively deep ( 80cm) sandy loam Cambisol, with gentle slopes (3°). The experimental design included three treatments: (i) control, without biochar; (ii) high biochar application rate (40 ton/ha); and (iii) biochar compost (40 ton/ha, 10% biochar). Three plots per treatment (2m×3m) were installed in March 2012, using a mini-rotavator (0-15cm depth). In May 2016, soil quality was also assessed through soil surveys and sampling. Penetration resistance was performed at the soil surface with a pocket penetrometer, and soil surface sampling rings were used for bulk density analyses (100 cm3). Bulked soil samples (0-30 cm) were collected in each plot for aggregate stability, microbial biomass (by chloroform fumigation extraction) and net mineralization rate (through photometric determination of non-incubated and incubated samples). Decomposition rate and litter stabilisation was assessed over a 3-month period through the Tea Bag Index (Keuskamp et al., 2013). The number

  15. Biochar and manure affect calcareous soil and corn silage nutrient concentrations and uptake.

    Science.gov (United States)

    Lentz, R D; Ippolito, J A

    2012-01-01

    Carbon-rich biochar derived from the pyrolysis of biomass can sequester atmospheric CO, mitigate climate change, and potentially increase crop productivity. However, research is needed to confirm the suitability and sustainability of biochar application to different soils. To an irrigated calcareous soil, we applied stockpiled dairy manure (42 Mg ha dry wt) and hardwood-derived biochar (22.4 Mg ha), singly and in combination with manure, along with a control, yielding four treatments. Nitrogen fertilizer was applied when needed (based on preseason soil test N and crop requirements) in all plots and years, with N mineralized from added manure included in this determination. Available soil nutrients (NH-N; NO-N; Olsen P; and diethylenetriaminepentaacetic acid-extractable K, Mg, Na, Cu, Mn, Zn, and Fe), total C (TC), total N (TN), total organic C (TOC), and pH were evaluated annually, and silage corn nutrient concentration, yield, and uptake were measured over two growing seasons. Biochar treatment resulted in a 1.5-fold increase in available soil Mn and a 1.4-fold increase in TC and TOC, whereas manure produced a 1.2- to 1.7-fold increase in available nutrients (except Fe), compared with controls. In 2009 biochar increased corn silage B concentration but produced no yield increase; in 2010 biochar decreased corn silage TN (33%), S (7%) concentrations, and yield (36%) relative to controls. Manure produced a 1.3-fold increase in corn silage Cu, Mn, S, Mg, K, and TN concentrations and yield compared with the control in 2010. The combined biochar-manure effects were not synergistic except in the case of available soil Mn. In these calcareous soils, biochar did not alter pH or availability of P and cations, as is typically observed for acidic soils. If the second year results are representative, they suggest that biochar applications to calcareous soils may lead to reduced N availability, requiring additional soil N inputs to maintain yield targets. Copyright © by the

  16. Potential for carbon sequestration and mitigation of climate change by irrigation of grasslands

    International Nuclear Information System (INIS)

    Olsson, Alexander; Campana, Pietro Elia; Lind, Mårten; Yan, Jinyue

    2014-01-01

    Highlights: • A generic method for climate change mitigation feasibility of PVWPS is developed. • Restoration of degraded lands in China has large climate change mitigation potential. • PV produces excess electricity included in the mitigation potential of the system. • The benefit is higher than if the PV were to produce electricity for the grid only. - Abstract: The climate change mitigation potential of irrigation powered by a photovoltaic water pumping system (PVWPS) to restore degraded grasslands has been investigated using the Intergovernmental Panel on Climate Change (IPCC) 2006 Guidelines for National Greenhouse Gas Inventories for Agriculture, Forestry and Other Land Use. The purpose of this study is to develop a generic and simple method to estimate the climate change mitigation benefit of a PVWPS. The possibility to develop carbon credits for the carbon offset markets has also been studied comparing carbon sequestration in grasslands to other carbon sequestration projects. The soil carbon sequestration following irrigation of the grassland is calculated as an annual increase in the soil organic carbon pool. The PVWPS can also generate an excess of electricity when irrigation is not needed and the emissions reductions due to substitution of grid electricity give additional climate change mitigation potential. The results from this study show that the carbon sequestration and emissions reductions benefits per land area using a PVWPS for irrigating grasslands are comparable to other carbon sequestration options such as switching to no-till practice. Soil carbon in irrigated grasslands is increased with over 60% relative to severely degraded grasslands and if nitrogen fixing species are introduced the increase in soil organic carbon can be almost 80%. Renewable electricity generation by the PVWPS will further increase the mitigation benefit of the system with 70–90%. When applying the methodology developed in this paper to a case in Qinghai, China

  17. 碳酸钾添加比例对玉米秸秆生物炭表面特性的影响%Effect of Potassium Carbonate Addition Rate on Surface Characteristics of Corn Stalk Derived Biochar

    Institute of Scientific and Technical Information of China (English)

    祝凌; 王月瑛; 吕贻忠

    2017-01-01

    在600℃的热解温度下通过添加不同比例的碳酸钾制备活性生物炭.对比分析了碳酸钾活化生物炭(KBC)和普通生物炭(BC)的特性,包括生物炭红外光谱特征、表面官能团、比表面积和孔径分布及吸附动力学过程等.结果表明,经碳酸钾活化的生物炭比表面积大为提高,最高达到566 m2 g-1(KBC-2-600),而普通生物炭(BC600)的比表面积仅为86.8 m2 g-1,KBC600系列的介孔容积和微孔容积均显著高于BC600,介孔容积平均扩大了16倍,微孔容积平均扩大了4倍,同时提高了微孔率.经碳酸钾活化的生物炭表面官能团的数量和饱和度发生改变,在1256 cm-1~3414 cm-1处,官能团的总体含量均低于普通生物炭,酯类羰基消失,形成氢键的能力减弱,非饱和醚类增加,芳香性和非极性提高,此表面特征更有利于吸附非极性芳香类污染物.对萘吸附的动力学实验表明,BC600和KBC-4-600均适合以二级动力学模型拟合,经碳酸钾活化后,生物炭的吸附性能提高,颗粒内扩散模型拟合结果表明,经碳酸钾活化后,生物炭内部孔隙复杂程度和数量均得到提高.碳酸钾活化的生物炭表面性质优良,作为高效吸附剂用于修复非极性芳香类污染有很大潜力.%[Objective]In recent years,biochar as an environment-friendly material has been arousing more and more attention the world over. The use of biochar as an adsorbent has been proved to be an effective way in managing polluted soil and water. Ordinary biochar is quite low in specific surface area and underdeveloped in internal pore structure,which greatly affects adsorption efficiency of the biochar. Therefore,usually biochar needs activating for higher adsorption capacity. In this study,effect of the amendment of potassium carbonate on surface properties of biochar was studied.[Method]Activated biochar was prepared under 600℃ from corn stalk amended with potassium carbonate at a varying ratio

  18. Removing Gaseous NH3 Using Biochar as an Adsorbent

    Directory of Open Access Journals (Sweden)

    Kyoung S. Ro

    2015-09-01

    Full Text Available Ammonia is a major fugitive gas emitted from livestock operations and fertilization production. This study tested the potential of various biochars in removing gaseous ammonia via adsorption processes. Gaseous ammonia adsorption capacities of various biochars made from wood shaving and chicken litter with different thermal conditions and activation techniques were determined using laboratory adsorption column tests. Ammonia adsorption capacities of non-activated biochars ranged from 0.15 to 5.09 mg·N/g, which were comparable to that of other commercial activated carbon and natural zeolite. There were no significant differences in ammonia adsorption capacities of steam activated and non-activated biochars even if the surface areas of the steam activated biochars were about two orders of magnitude greater than that of non-activated biochars. In contrast, phosphoric acid activation greatly increased the biochar ammonia adsorption capacity. This suggests that the surface area of biochar did not readily control gaseous NH3 adsorption. Ammonia adsorption capacities were more or less linearly increased with acidic oxygen surface groups of non-activated and steam-activated biochars. Phosphoric acid bound to the acid activated biochars is suspected to contribute to the exceptionally high ammonia adsorption capacity. The sorption capacities of virgin and water-washed biochar samples were not different, suggesting the potential to regenerate spent biochar simply with water instead of energy- and capital-intensive steam. The results of this study suggest that non-activated biochars can successfully replace commercial activated carbon in removing gaseous ammonia and the removal efficiency will greatly increase if the biochars are activated with phosphoric acid.

  19. Dynamac molecular structure of plant biomass-derived black carbon (Biochar)

    Science.gov (United States)

    Char black carbon (BC), the solid residue of incomplete combustion, is continuously being added to soils and sediments due to natural vegetation fires, anthropogenic pollution, and new strategies for carbon sequestration (“biochar”). Here we present a molecular-level assessment o...

  20. Thailand's Low-Carbon Scenario 2050: The AIM/CGE analyses of CO2 mitigation measures

    International Nuclear Information System (INIS)

    Thepkhun, Panida; Limmeechokchai, Bundit; Fujimori, Shinichiro; Masui, Toshihiko; Shrestha, Ram M.

    2013-01-01

    Climate change and CO 2 mitigation have become increasingly important environmental issues. Recently Thailand has proposed policies on GHG mitigation such as Thailand’s Nationally Appropriate Mitigation Action (NAMA), which aims at GHG mitigation in the energy sector. This study used the computable general equilibrium (CGE) model, called “AIM/CGE” model, to analyse GHG mitigation measures under emission trading and carbon capture and storage (CCS) technology in Thailand. Results show that the international free emission trading policy can drive more GHG reduction by decreasing energy supply and demand, and increasing prices of emissions. The CCS technologies would balance emission reduction but they would reduce energy efficiency improvement and renewable energy utilization. In the energy security aspect, the policy options in this study would improve energy security, energy import dependency, and co-benefits of GHG mitigation in forms of improving local air quality. Results are also helpful to GHG mitigation policy in developing countries. -- Highlights: •A Computable General Equilibrium (CGE) model was used to analyze GHG mitigation policies in Thailand. •The CCS and emission trading will increase GHG mitigation in Thailand. •The 30% GHG mitigation target with 50% emission trading will give the best result in GDP. •The share of biomass resource and energy efficiency will decrease with CCS. •The emission trading will play an important role in decreasing fossil consumption and increasing renewable energy utilization

  1. Spacesuit Integrated Carbon Nanotube Dust Mitigation System for Lunar Exploration

    Science.gov (United States)

    Manyapu, Kavya Kamal

    Lunar dust proved to be troublesome during the Apollo missions. The lunar dust comprises of fine particles, with electric charges imparted by solar winds and ultraviolet radiation. As such, it adheres readily, and easily penetrates through smallest crevices into mechanisms. During Apollo missions, the powdery dust substantially degraded the performance of spacesuits by abrading suit fabric and clogging seals. Dust also degraded other critical equipment such as rovers, thermal control and optical surfaces, solar arrays, and was thus shown to be a major issue for surface operations. Even inside the lunar module, Apollo astronauts were exposed to this dust when they removed their dust coated spacesuits. This historical evidence from the Apollo missions has compelled NASA to identify dust mitigation as a critical path. This important environmental challenge must be overcome prior to sending humans back to the lunar surface and potentially to other surfaces such as Mars and asteroids with dusty environments. Several concepts were successfully investigated by the international research community for preventing deposition of lunar dust on rigid surfaces (ex: solar cells, thermal radiators). However, applying these technologies for flexible surfaces and specifically to spacesuits has remained an open challenge, due to the complexity of the suit design, geometry, and dynamics. The research presented in this dissertation brings original contribution through the development and demonstration of the SPacesuit Integrated Carbon nanotube Dust Ejection/Removal (SPIcDER) system to protect spacesuits and other flexible surfaces from lunar dust. SPIcDER leverages the Electrodynamic Dust Shield (EDS) concept developed at NASA for use on solar cells. For the SPIcDER research, the EDS concept is customized for application on spacesuits and flexible surfaces utilizing novel materials and specialized design techniques. Furthermore, the performance of the active SPIcDER system is enhanced

  2. Governing Carbon Mitigation and Climate Change within Local Councils: A Case Study of Adelaide, South Australia

    Directory of Open Access Journals (Sweden)

    Heather Zeppel

    2012-08-01

    Full Text Available There is growing concern about climate change impacts on local government areas. In Australia, the federal carbon tax (from 1 July 2012 will also increase costs for local councils. This paper evaluates what carbon mitigation (i.e. energy, water, and waste management actions have been implemented by metropolitan Adelaide councils (n=14 and why (or why not. A survey of environmental officers profiled carbon mitigation actions, emissions auditing, and motives for emissions reduction by Adelaide councils. The main reasons for adopting carbon actions were a climate change plan, climate leadership, and cost savings. Internal council governance of climate change actions was also evaluated. A climate governance framework based on adaptive management, communication, and reflective practice (Nursey-Bray 2010 was applied to assess climate mitigation by Adelaide councils.

  3. Microbial Carbonic Anhydrases in Biomimetic Carbon Sequestration for Mitigating Global Warming: Prospects and Perspectives

    Directory of Open Access Journals (Sweden)

    Himadri Bose

    2017-08-01

    Full Text Available All the leading cities in the world are slowly becoming inhospitable for human life with global warming playing havoc with the living conditions. Biomineralization of carbon dioxide using carbonic anhydrase (CA is one of the most economical methods for mitigating global warming. The burning of fossil fuels results in the emission of large quantities of flue gas. The temperature of flue gas is quite high. Alkaline conditions are necessary for CaCO3 precipitation in the mineralization process. In order to use CAs for biomimetic carbon sequestration, thermo-alkali-stable CAs are, therefore, essential. CAs must be stable in the presence of various flue gas contaminants too. The extreme environments on earth harbor a variety of polyextremophilic microbes that are rich sources of thermo-alkali-stable CAs. CAs are the fastest among the known enzymes, which are of six basic types with no apparent sequence homology, thus represent an elegant example of convergent evolution. The current review focuses on the utility of thermo-alkali-stable CAs in biomineralization based strategies. A variety of roles that CAs play in various living organisms, the use of CA inhibitors as drug targets and strategies for overproduction of CAs to meet the demand are also briefly discussed.

  4. Microbial Carbonic Anhydrases in Biomimetic Carbon Sequestration for Mitigating Global Warming: Prospects and Perspectives.

    Science.gov (United States)

    Bose, Himadri; Satyanarayana, Tulasi

    2017-01-01

    All the leading cities in the world are slowly becoming inhospitable for human life with global warming playing havoc with the living conditions. Biomineralization of carbon dioxide using carbonic anhydrase (CA) is one of the most economical methods for mitigating global warming. The burning of fossil fuels results in the emission of large quantities of flue gas. The temperature of flue gas is quite high. Alkaline conditions are necessary for CaCO 3 precipitation in the mineralization process. In order to use CAs for biomimetic carbon sequestration, thermo-alkali-stable CAs are, therefore, essential. CAs must be stable in the presence of various flue gas contaminants too. The extreme environments on earth harbor a variety of polyextremophilic microbes that are rich sources of thermo-alkali-stable CAs. CAs are the fastest among the known enzymes, which are of six basic types with no apparent sequence homology, thus represent an elegant example of convergent evolution. The current review focuses on the utility of thermo-alkali-stable CAs in biomineralization based strategies. A variety of roles that CAs play in various living organisms, the use of CA inhibitors as drug targets and strategies for overproduction of CAs to meet the demand are also briefly discussed.

  5. Attenuation of Escherichia Coli in a biochar-amended soil

    Science.gov (United States)

    Advances in research on biochar have highlighted its tremendous potential for mitigating climate change, improving soil properties, and reducing chemical pollution of soils and groundwater. However, studies that evaluate its potential in treating bacterial contaminants are lacking. This study evalu...

  6. Essays on the economics of forestry-based carbon mitigation

    NARCIS (Netherlands)

    Benítez-Ponce, P.C.

    2005-01-01

    Keywords:climate change, carbon costs, afforestation, risk, secondary forests, conservation payments, ecosystem services

    This thesis is a collection of articles that deal with the economics of carbon sequestration in forests. It pays

  7. Mitigation of Global Warming with Focus on Personal Carbon Allowances

    DEFF Research Database (Denmark)

    The paper discusses a novel approach to address the carbon challenge by making it personal. Just as commodities like food and petrol are rationed at times of scarcity, carbon, in principle, can also be rationed, say, on a per capita basis. This, of course, raises serious equity issues since prese...

  8. Carbon cycle observations: gaps threaten climate mitigation policies

    Science.gov (United States)

    Richard Birdsey; Nick Bates; MIke Behrenfeld; Kenneth Davis; Scott C. Doney; Richard Feely; Dennis Hansell; Linda Heath; et al.

    2009-01-01

    Successful management of carbon dioxide (CO2) requires robust and sustained carbon cycle observations. Yet key elements of a national observation network are lacking or at risk. A U.S. National Research Council review of the U.S. Climate Change Science Program earlier this year highlighted the critical need for a U.S. climate observing system to...

  9. Pyrolysis temperature influences ameliorating effects of biochars on acidic soil.

    Science.gov (United States)

    Wan, Qing; Yuan, Jin-Hua; Xu, Ren-Kou; Li, Xing-Hui

    2014-02-01

    The biochars were prepared from straws of canola, corn, soybean, and peanut at different temperatures of 300, 500, and 700 °C by means of oxygen-limited pyrolysis.Amelioration effects of these biochars on an acidic Ultisol were investigated with incubation experiments, and application rate of biochars was 10 g/kg. The incorporation of these biochars induced the increase in soil pH, soil exchangeable base cations, base saturation, and cation exchange capacity and the decrease in soil exchangeable acidity and exchangeable Al. The ameliorating effects of biochars on acidic soil increased with increase in their pyrolysis temperature. The contribution of oxygen-containing functional groups on the biochars to their ameliorating effects on the acidic soil decreased with the rise in pyrolysis temperature, while the contribution from carbonates in the biochars changed oppositely. The incorporation of the biochars led to the decrease in soil reactive Al extracted by 0.5mol/L CuCl2, and the content of reactive Al was decreased with the increase in pyrolysis temperature of incorporated biochars. The biochars generated at 300 °C increased soil organically complexed Al due to ample quantity of oxygen-containing functional groups such as carboxylic and phenolic groups on the biochars, while the biochars generated at 500 and 700 °C accelerated the transformation of soil exchangeable Al to hydroxyl-Al polymers due to hydrolysis of Al at higher pH. Therefore, the crop straw-derived biochars can be used as amendments for acidic soils and the biochars generated at relatively high temperature have great ameliorating effects on the soils.

  10. Biochar effect on the mineralization of soil organic matter

    Directory of Open Access Journals (Sweden)

    Sander Bruun

    2012-05-01

    Full Text Available The objective of this work was to verify whether the addition of biochar to the soil affects the degradation of litter and of soil organic matter (SOM. In order to investigate the effect of biochar on the mineralization of barley straw, soil was incubated with 14C-labelled barley straw with or without unlabelled biochar. To investigate the effect of straw on the mineralization of biochar, soil was incubated with 14C-labelled biochar with or without straw. In addition, to investigate the effect of biochar on old SOM, a soil labelled by applying labelled straw 40 years ago was incubated with different levels of biochar. All experiments had a control treatment, without any soil amendment. The effect of biochar on the straw mineralization was small and nonsignificant. Without biochar, 48±0.2% of the straw carbon was mineralized within the 451 days of the experiment. In comparison, 45±1.6% of C was mineralized after biochar addition of 1.5 g kg-1. In the SOM-labelled soil, the organic matter mineralized more slowly with the increasing doses of biochar. Biochar addition at 7.7 g kg-1 reduced SOM mineralization from 6.6 to 6.3%, during the experimental period. The addition of 15.5 g kg-1 of biochar reduced the mineralized SOM to 5.7%. There is no evidence of increased degradation of either litter or SOM due to biochar addition; consequently, there is no evidence of decreased stability of SOM.

  11. Large uncertainty in carbon uptake potential of land-based climate-change mitigation efforts.

    Science.gov (United States)

    Krause, Andreas; Pugh, Thomas A M; Bayer, Anita D; Li, Wei; Leung, Felix; Bondeau, Alberte; Doelman, Jonathan C; Humpenöder, Florian; Anthoni, Peter; Bodirsky, Benjamin L; Ciais, Philippe; Müller, Christoph; Murray-Tortarolo, Guillermo; Olin, Stefan; Popp, Alexander; Sitch, Stephen; Stehfest, Elke; Arneth, Almut

    2018-07-01

    Most climate mitigation scenarios involve negative emissions, especially those that aim to limit global temperature increase to 2°C or less. However, the carbon uptake potential in land-based climate change mitigation efforts is highly uncertain. Here, we address this uncertainty by using two land-based mitigation scenarios from two land-use models (IMAGE and MAgPIE) as input to four dynamic global vegetation models (DGVMs; LPJ-GUESS, ORCHIDEE, JULES, LPJmL). Each of the four combinations of land-use models and mitigation scenarios aimed for a cumulative carbon uptake of ~130 GtC by the end of the century, achieved either via the cultivation of bioenergy crops combined with carbon capture and storage (BECCS) or avoided deforestation and afforestation (ADAFF). Results suggest large uncertainty in simulated future land demand and carbon uptake rates, depending on the assumptions related to land use and land management in the models. Total cumulative carbon uptake in the DGVMs is highly variable across mitigation scenarios, ranging between 19 and 130 GtC by year 2099. Only one out of the 16 combinations of mitigation scenarios and DGVMs achieves an equivalent or higher carbon uptake than achieved in the land-use models. The large differences in carbon uptake between the DGVMs and their discrepancy against the carbon uptake in IMAGE and MAgPIE are mainly due to different model assumptions regarding bioenergy crop yields and due to the simulation of soil carbon response to land-use change. Differences between land-use models and DGVMs regarding forest biomass and the rate of forest regrowth also have an impact, albeit smaller, on the results. Given the low confidence in simulated carbon uptake for a given land-based mitigation scenario, and that negative emissions simulated by the DGVMs are typically lower than assumed in scenarios consistent with the 2°C target, relying on negative emissions to mitigate climate change is a highly uncertain strategy. © 2018 John

  12. Bioavailability and toxicity of pyrene in soils upon biochar and compost addition.

    Science.gov (United States)

    Bielská, Lucie; Kah, Melanie; Sigmund, Gabriel; Hofmann, Thilo; Höss, Sebastian

    2017-10-01

    The study investigates the role of biochar and/or compost in mitigating the toxic effects of pyrene in soils using reproduction of nematodes and porewater concentration as measures of pyrene toxicity and bioavailability, respectively. Two soils were spiked with increasing levels of pyrene to achieve a concentration-response relationship for the reproduction of Caenorhabditis elegans. The observed EC50 values (pyrene concentration causing 50% inhibition of reproduction) were 14mg/kg and 31mg/kg (dry mass) for these soils, corresponding to equilibrium porewater concentrations of 37μg/L and 47μg/L, respectively. Differences in organic carbon content were not sufficient to explain the variability in toxicity between the different soils. Soils causing a significant inhibition of reproduction were further amended with 10%-compost, 5%-biochar, or both, and the effects on reproduction and porewater concentration determined. Combined addition of compost and biochar was identified as the most effective strategy in reducing pyrene concentration in soil porewater, which was also partly reflected in soil toxicity. However, porewater concentrations predicted only 52% of pyrene toxicity to nematodes, pointing to particle-bound or dietary exposure pathways. Capsule: Amending pyrene-spiked soil with biochar and compost effectively reduced pyrene porewater concentrations and toxicity to nematodes, which were significantly related. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Structural transformation of biochar black carbon by C60 superstructure: Environmental implications

    Science.gov (United States)

    Aqueous fullerene C60 nanoparticles (nC60) are frequently considered within the environmental engineering community as the aggregate of 60-carbon molecules. This study employed transmission electron microscopy (TEM) and x-ray diffraction (XRD) to demonstrate that nC60 formed via prolonged stirring ...

  14. Nanoscale Interactions between Engineered Nanomaterials and Black Carbon (Biochar) in Soil

    Science.gov (United States)

    An understanding of the interactions between engineered nanomaterials (NMs) and soil constituents, and a comprehension of how these interactions may affect biological uptake and toxicity are currently lacking. Charcoal black carbon is a normal constituent of soils due to fire history, and can be pre...

  15. Opportunities and uses of biochar on forest sites in North America [Chapter 15

    Science.gov (United States)

    Deborah S. Page-Dumroese; Mark D. Coleman; Sean C. Thomas

    2017-01-01

    Biochar may be useful for restoring or revitalizing degraded forest soils and help with carbon sequestration, nutrient leaching losses, and reducing greenhouse gas emissions. However, biochar is not currently widely used on forested lands across North America. This chapter provides an overview of several biochar experiments conducted in North America and discusses the...

  16. NAMAs and the carbon market. Nationally appropriate mitigation actions of developing countries

    Energy Technology Data Exchange (ETDEWEB)

    Holm Olsen, K.; Fenhann, J.; Hinostroza, M.

    2009-07-01

    The role of carbon markets in scaling up mitigation actions in developing countries in the post-2012 climate regime is the topic of Perspectives 2009: NAMAs and the Carbon Market - Nationally Appropriate Mitigation Actions of Developing Countries. The eight papers presented explore how mitigation actions in developing countries, in the context of sustainable development, may be supported by technology, finance and capacity development in a measurable, reportable and verifiable manner. Key issues discussed are the pros and cons of market and non-market mechanisms in raising private and public finance, and the appropriate governance structures at the international and national levels. The aim of this publication is to present possible answers to these questions, with a specific focus on the role of existing and emerging carbon markets to finance NAMAs. (LN)

  17. Land-Based Mitigation Strategies under the Mid-Term Carbon Reduction Targets in Indonesia

    Directory of Open Access Journals (Sweden)

    Tomoko Hasegawa

    2016-12-01

    Full Text Available We investigated the key mitigation options for achieving the mid-term target for carbon emission reduction in Indonesia. A computable general equilibrium model coupled with a land-based mitigation technology model was used to evaluate specific mitigation options within the whole economic framework. The results revealed three primary findings: (1 If no climate policy were implemented, Indonesia’s total greenhouse gas emissions would reach 3.0 GtCO2eq by 2030; (2 To reduce carbon emissions to meet the latest Intended Nationally-Determined Contributions (INDC target, ~58% of total reductions should come from the agriculture, forestry and other land use sectors by implementing forest protection, afforestation and plantation efforts; (3 A higher carbon price in 2020 suggests that meeting the 2020 target would be economically challenging, whereas the INDC target for 2030 would be more economically realistic in Indonesia.

  18. Exploring the options for carbon dioxide mitigation in Turkish electric power industry: System dynamics approach

    International Nuclear Information System (INIS)

    Saysel, Ali Kerem; Hekimoğlu, Mustafa

    2013-01-01

    Electric power industry has a huge carbon mitigation potential, fundamentally because there are large carbon-free, renewable resource options. In Turkey, with growing demand in electricity consumption and incentives offered for natural gas fired electricity generation, CO 2 emissions sourced from electric power industry had tripled over the last two decades. Current governmental strategy focuses on energy security and resource diversity in a growing economy and does not articulate sufficient mitigation targets and appropriate regulations. In this research, an original dynamic simulation model is built, validated and analyzed to explore the options for carbon mitigation in Turkish electric power industry. Model structure represents the investment, dispatch and pricing heuristics as well as the natural resource base of electricity generation in Turkey. It operates on annual basis over 30 years to simulate installed capacities and generations of power plants with alternative resources and their resulting CO 2 emissions. The analysis presented in this paper reveals that there are mitigation options below 50% of business as usual growth, with common policy options such as feed-in-tariffs, investment subsidies and carbon taxes. The model can serve as an experimental platform for further analysis of problems related to carbon mitigation in Turkish electricity sector. - Highlights: • An original computer model is created to investigate carbon mitigation. • It is holistic and comprises investment, generation, dispatch, and resources. • The model's structure, information base and foresights are specific to Turkey. • Direct and indirect strategies are explored and integrated. • Dramatic reductions are possible only with supply side strategies

  19. Analysis of low-carbon industrial symbiosis technology for carbon mitigation in a Chinese iron/steel industrial park: A case study with carbon flow analysis

    International Nuclear Information System (INIS)

    Zhang, Hui; Dong, Liang; Li, Huiquan; Fujita, Tsuyoshi; Ohnishi, Satoshi; Tang, Qing

    2013-01-01

    CO 2 mitigation strategies in industrial parks are a significant component of the Chinese climate change mitigation policy, and industrial symbiosis can provide specific CO 2 mitigation opportunity. Technology is important to support symbiosis, but few studies in China have focused on this topic at the industrial park level. This research presented a case study in a national iron and steel industrial park in China. Focus was given onto carbon mitigation through industrial symbiosis technology using substance flow analysis (SFA). Three typical iron and steel industry technologies, including coke dry quenching (CDQ), combined cycle power plant (CCPP), and CO 2 capture by slag carbonization (CCSC) were evaluated with SFA. Technology assessment was further conducted in terms of carbon mitigation potential and unit reduction cost. Compared with the Business as usual (BAU) scenario, application with CDQ, CCPP, and CCSC reduced the net carbon emissions by 56.18, 134.43, and 222.89 kg CO 2 per ton crude steel inside the industrial parks, respectively, including both direct and indirect emissions. Economic assessment revealed that the unit costs for the three technologies were also high, thereby necessitating national financial support. Finally, relevant policy suggestions and future concerns were proposed and discussed. - Highlights: • A typical carbon mitigation case study on China iron/steel industrial park. • Using carbon SFA to investigate mitigation effects of industrial symbiosis technology. • CCPP greatly reduced the indirect carbon emission embodied in power purchase. • CCSC reduced the carbon emission by distributing fixed carbon into by-product. • Specific low carbon-tech promotion policies fit to China was discussed and proposed

  20. Biochar activated by oxygen plasma for supercapacitors

    Science.gov (United States)

    Gupta, Rakesh Kumar; Dubey, Mukul; Kharel, Parashu; Gu, Zhengrong; Fan, Qi Hua

    2015-01-01

    Biochar, also known as black carbon, is a byproduct of biomass pyrolysis. As a low-cost, environmental-friendly material, biochar has the potential to replace more expensive synthesized carbon nanomaterials (e.g. carbon nanotubes) for use in future supercapacitors. To achieve high capacitance, biochar requires proper activation. A conventional approach involves mixing biochar with a strong base and baking at a high temperature. However, this process is time consuming and energy inefficient (requiring temperatures >900 °C). This work demonstrates a low-temperature (characteristics are studied. Significant enhancement of the capacitance is achieved: 171.4 F g-1 for a 5-min oxygen plasma activation, in comparison to 99.5 F g-1 for a conventional chemical activation and 60.4 F g-1 for untreated biochar. This enhancement of the charge storage capacity is attributed to the creation of a broad distribution in pore size and a larger surface area. The plasma activation mechanisms in terms of the evolution of the biochar surface and microstructure are further discussed.

  1. Phytotoxicity and Plant Productivity Analysis of Tar-Enriched Biochars

    Science.gov (United States)

    Keller, M. L.; Masiello, C. A.; Dugan, B.; Rudgers, J. A.; Capareda, S. C.

    2008-12-01

    Biochar is one of the three by-products obtained by the pyrolysis of organic material, the other two being syngas and bio-oil. The pyrolysis of biomass has generated a great amount of interest in recent years as all three by-products can be put toward beneficial uses. As part of a larger project designed to evaluate the hydrologic impact of biochar soil amendment, we generated a biochar through fast pyrolysis (less than 2 minutes) of sorghum stock at 600°C. In the initial biochar production run, the char bin was not purged with nitrogen. This inadvertent change in pyrolysis conditions produced a fast-pyrolysis biochar enriched with tars. We chose not to discard this batch, however, and instead used it to test the impact of tar-enriched biochars on plants. A suite of phytotoxicity tests were run to assess the effects of tar-rich biochar on plant germination and plant productivity. We designed the experiment to test for negative effects, using an organic carbon and nutrient-rich, greenhouse- optimized potting medium instead of soil. We used Black Seeded Simpson lettuce (Lactuca sativa) as the test organism. We found that even when tars are present within biochar, biochar amendment up to 10% by weight caused increased lettuce germination rates and increased biomass productivity. In this presentation, we will report the statistical significance of our germination and biomass data, as well as present preliminary data on how biochar amendment affects soil hydrologic properties.

  2. Biochar boosts tropical but not temperate crop yields

    Science.gov (United States)

    Jeffery, Simon; Abalos, Diego; Prodana, Marija; Catarina Bastos, Ana; van Groenigen, Jan Willem; Hungate, Bruce A.; Verheijen, Frank

    2017-05-01

    Applying biochar to soil is thought to have multiple benefits, from helping mitigate climate change [1, 2], to managing waste [3] to conserving soil [4]. Biochar is also widely assumed to boost crop yield [5, 6], but there is controversy regarding the extent and cause of any yield benefit [7]. Here we use a global-scale meta-analysis to show that biochar has, on average, no effect on crop yield in temperate latitudes, yet elicits a 25% average increase in yield in the tropics. In the tropics, biochar increased yield through liming and fertilization, consistent with the low soil pH, low fertility, and low fertilizer inputs typical of arable tropical soils. We also found that, in tropical soils, high-nutrient biochar inputs stimulated yield substantially more than low-nutrient biochar, further supporting the role of nutrient fertilization in the observed yield stimulation. In contrast, arable soils in temperate regions are moderate in pH, higher in fertility, and generally receive higher fertilizer inputs, leaving little room for additional benefits from biochar. Our findings demonstrate that the yield-stimulating effects of biochar are not universal, but may especially benefit agriculture in low-nutrient, acidic soils in the tropics. Biochar management in temperate zones should focus on potential non-yield benefits such as lime and fertilizer cost savings, greenhouse gas emissions control, and other ecosystem services.

  3. Biochar Ameliorate Drought and Salt Stress in Plants

    DEFF Research Database (Denmark)

    Saleem Akhtar, Saqib

    Biochar is a charcoal-like material obtained by heating any organic waste (crop residue, vegetable/ animal waste etc.) at high temperature through process of pyrolysis. It is produced with an intention to improve soil fertility, enhance crop productivity and mitigate greenhouse gas emission....... Drought and salinity are the two most crucial abiotic stresses that limit crops production worldwide. In this PhD project, it was hypothesized that biochar could be used to effectively mitigate drought and salinity stresses in crop plants due to its putative physiochemical properties. The overall...... objectives of the present PhD project were to reveal the mechanisms by which biochar addition mitigates negative effect of drought and salinity stress on plants and to test the efficacy of biochar when applied in combination with already existing drought (like DI and PRD) and salt management (inoculation...

  4. Underground coal gasification with integrated carbon dioxide mitigation supports Bulgaria's low carbon energy supply

    Science.gov (United States)

    Nakaten, Natalie; Kempka, Thomas; Azzam, Rafig

    2013-04-01

    plants can be economically substituted by low carbon based technologies. Furthermore, the integrated annual load management notably contributes to innovative process integration becoming economic in an energy system affected by low efficiency and flexibility. Further limiting flexibility, the geographic location of this innovative low carbon energy production technology strictly depends on geological boundary conditions, namely the presence of exploitable coal resources, and availability of energy transport networks to supply potential end users with the product. Hereby, feeding upgraded synthesis gas directly into the Bulgarian gas pipeline network avoiding its conversion into electricity is an alternative approach with relevant economic potentials. For that purpose, the proximity and availability of these transport networks as well as the demand of end users are validated by the integrated energy system model. Coupling our techno-economic process model to an energy system-modelling framework allows the determination of the future economical potentials and the limitations for the implementation of a low carbon energy production technology into the Bulgarian energy system. The obtained results show that the Bulgarian energy system can significantly benefit from the integration of underground coal gasification considering carbon dioxide mitigation technologies potentially initiating a continuous substitution of imported fuels by domestic coal resources.

  5. The effects of alternative carbon mitigation policies on Japanese industries

    International Nuclear Information System (INIS)

    Sugino, Makoto; Arimura, Toshi H.; Morgenstern, Richard D.

    2013-01-01

    To address the climate change issue, developed nations have considered introducing carbon pricing mechanisms in the form of a carbon tax or an emissions trading scheme (ETS). Despite the small number of programmes actually in operation, these mechanisms remain under active discussion in a number of countries, including Japan. Using an input–output model of the Japanese economy, this article analyses the effects of carbon pricing on Japan′s industrial sector. We also examine the impact of a rebate programme of the type proposed for energy-intensive trade-exposed (EITE) industries in U.S. legislation, the Waxman–Markey Bill (H.R. 2454), and in the European Union′s ETS. We find that a carbon pricing scheme would impose a disproportionate burden on a limited number of sectors – namely, pig iron, crude steel (converters), cement and other EITE industries. Out of 401 industries, 23 would be eligible for rebates according to the Waxman–Markey-type programme, whereas 122 industries would be eligible for rebates according to the E.U.-type programme, if adopted in Japan. Overall, despite the differences in coverage, we find that the Waxman–Markey and E.U. rebate programmes have roughly similar impacts in reducing the average burden on EITE industries. - Highlights: • Energy-intensive trade-exposed (EITE) industries suffer the most due to carbon pricing policies. • Twenty-three industries will be eligible under a Waxman–Markey (WM)-type rebate programme. • The E.U. emissions trading scheme (ETS)-type programme identifies 122 industries. • Both WM- and E.U.-type programmes will lower the cost of production to similar levels. • Industries eligible for rebates must be determined carefully

  6. The potential contribution to climate change mitigation from temporary carbon storage in biomaterials

    DEFF Research Database (Denmark)

    Jørgensen, Susanne Vedel; Hauschild, Michael Zwicky; Nielsen, Per H.

    2015-01-01

    of biomaterials.The recently developed approach for quantifying the climate tipping potential (CTP) of emissions is used, with some adaption, to account for the value of temporary carbon storage. CTP values for short-, medium- and long-term carbon storage in chosen biomaterials are calculated for two possible...... future atmospheric greenhouse gas (GHG) concentration development scenarios. The potential magnitude of the temporary carbon storage in biomaterials is estimated by considering the global polymer production being biobased in the future.Both sets of CTP values show the same trend; storage which releases...... contributes with negative CTP values, which means mitigation. The longer the duration of the storage, the larger the mitigation potential.Temporary carbon storage in biomaterials has a potential for contributing to avoid or postpone the crossing of a climatic target level of 450 ppm CO2e, depending on GHG...

  7. Can Thermally Sprayed Aluminum (TSA) Mitigate Corrosion of Carbon Steel in Carbon Capture and Storage (CCS) Environments?

    Science.gov (United States)

    Paul, S.; Syrek-Gerstenkorn, B.

    2017-01-01

    Transport of CO2 for carbon capture and storage (CCS) uses low-cost carbon steel pipelines owing to their negligible corrosion rates in dry CO2. However, in the presence of liquid water, CO2 forms corrosive carbonic acid. In order to mitigate wet CO2 corrosion, use of expensive corrosion-resistant alloys is recommended; however, the increased cost makes such selection economically unfeasible; hence, new corrosion mitigation methods are sought. One such method is the use of thermally sprayed aluminum (TSA), which has been used to mitigate corrosion of carbon steel in seawater, but there are concerns regarding its suitability in CO2-containing solutions. A 30-day test was carried out during which carbon steel specimens arc-sprayed with aluminum were immersed in deionized water at ambient temperature bubbled with 0.1 MPa CO2. The acidity (pH) and potential were continuously monitored, and the amount of dissolved Al3+ ions was measured after completion of the test. Some dissolution of TSA occurred in the test solution leading to nominal loss in coating thickness. Potential measurements revealed that polarity reversal occurs during the initial stages of exposure which could lead to preferential dissolution of carbon steel in the case of coating damage. Thus, one needs to be careful while using TSA in CCS environments.

  8. The theory-practice gap of black carbon mitigation technologies in rural China

    Science.gov (United States)

    Zhang, Weishi; Li, Aitong; Xu, Yuan; Liu, Junfeng

    2018-02-01

    Black carbon mitigation has received increasing attention for its potential contribution to both climate change mitigation and air pollution control. Although different bottom-up models concerned with unit mitigation costs of various technologies allow the assessment of alternative policies for optimized cost-effectiveness, the lack of adequate data often forced many reluctant explicit and implicit assumptions that deviate away from actual situations of rural residential energy consumption in developing countries, where most black carbon emissions occur. To gauge the theory-practice gap in black carbon mitigation - the unit cost differences that lie between what is estimated in the theory and what is practically achieved on the ground - this study conducted an extensive field survey and analysis of nine mitigation technologies in rural China, covering both northern and southern regions with different residential energy consumption patterns. With a special focus on two temporal characteristics of those technologies - lifetimes and annual utilization rates, this study quantitatively measured the unit cost gaps and explain the technical as well as sociopolitical mechanisms behind. Structural and behavioral barriers, which have affected the technologies' performance, are discussed together with policy implications to narrow those gaps.

  9. Carbon sequestration in Himalaya's alpine meadows: Mitigating cropping encroachment on pastures in Northern Pakistan

    OpenAIRE

    Rueff, Henri; Syed Rehman, Aziz; Rahim, Inam; Maselli, Daniel; Nafees, Mohammad; Wiesmann, Urs

    2011-01-01

    Rangelands store about 30% of the world’s carbon and support over 120 million pastoralists globally. Adjusting the management of remote alpine pastures bears a substantial climate change mitigation potential that can provide livelihood support for marginalized pastoralists through carbon payment. Landless pastoralists in Northern Pakistan seek higher income by cropping potatoes and peas over alpine pastures. However, tilling steep slopes without terracing exposes soil to erosion. Moreover, yi...

  10. The Near-Term Impacts of Carbon Mitigation Policies on Manufacturing Industries

    OpenAIRE

    Morgenstern, Richard; Shih, Jhih-Shyang; Ho, Mun; Zhang, Xuehua

    2002-01-01

    Who will pay for new policies to reduce carbon dioxide and other greenhouse gas emissions in the United States? This paper considers a slice of the question by examining the near-term impact on domestic manufacturing industries of both upstream (economy-wide) and downstream (electric power industry only) carbon mitigation policies. Detailed Census data on the electricity use of four-digit manufacturing industries is combined with input-output information on interindustry purchases to paint a ...

  11. Adsorption and catalytic hydrolysis of carbaryl and atrazine on pig manure-derived biochars: Impact of structural properties of biochars

    International Nuclear Information System (INIS)

    Zhang, Peng; Sun, Hongwen; Yu, Li; Sun, Tieheng

    2013-01-01

    Highlights: ► High ash content biochar can increase solution pH and released metal ions. ► Ash in biochar can combine pesticide through specific interactions. ► Composition and structure of biochar is favor for the hydrolysis of pesticides. -- Abstract: Biochars were produced from pig manure to elucidate the influence of biochars with high ash contents on the fate of pesticides. Adsorption and catalytic hydrolysis of carbaryl and atrazine on original biochars and deashed biochars were investigated. The two pesticides were substantially adsorbed by the biochars, with organic carbon normalized sorption coefficient (K oc ) values of 10 2.65 –10 3.66 L/kg for carbaryl and 10 1.90 –10 3.57 L/kg for atrazine at C e of 0.5 mg/L. Hydrophobic effect alone could not explain the sorption, and several other processes including pore-filling and π–π electron donor–acceptor interactions were involved in pesticide adsorption. Adsorption increased greatly on the deashed biochar, indicating that some organic sorption sites in the original biochars were blocked or difficult to access due to their interactions with inorganic moiety. The pesticides were found to hydrolyze faster in the presence of biochars, and in the presence of biochar pyrolyzed at 700 °C, carbaryl and atrazine were decomposed by 71.8% and 27.9% in 12 h, respectively. The elevated solution pH was the main reason for the enhanced hydrolysis; however both the mineral surface and dissolved metal ions released from the biochars were confirmed to catalyze the hydrolysis

  12. Adsorption and catalytic hydrolysis of carbaryl and atrazine on pig manure-derived biochars: Impact of structural properties of biochars

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Peng, E-mail: phevos1983@yahoo.com.cn [MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071 (China); Sun, Hongwen, E-mail: sunhongwen@nankai.edu.cn [MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071 (China); Yu, Li [MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071 (China); Sun, Tieheng [Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016 (China)

    2013-01-15

    Highlights: ► High ash content biochar can increase solution pH and released metal ions. ► Ash in biochar can combine pesticide through specific interactions. ► Composition and structure of biochar is favor for the hydrolysis of pesticides. -- Abstract: Biochars were produced from pig manure to elucidate the influence of biochars with high ash contents on the fate of pesticides. Adsorption and catalytic hydrolysis of carbaryl and atrazine on original biochars and deashed biochars were investigated. The two pesticides were substantially adsorbed by the biochars, with organic carbon normalized sorption coefficient (K{sub oc}) values of 10{sup 2.65}–10{sup 3.66} L/kg for carbaryl and 10{sup 1.90}–10{sup 3.57} L/kg for atrazine at C{sub e} of 0.5 mg/L. Hydrophobic effect alone could not explain the sorption, and several other processes including pore-filling and π–π electron donor–acceptor interactions were involved in pesticide adsorption. Adsorption increased greatly on the deashed biochar, indicating that some organic sorption sites in the original biochars were blocked or difficult to access due to their interactions with inorganic moiety. The pesticides were found to hydrolyze faster in the presence of biochars, and in the presence of biochar pyrolyzed at 700 °C, carbaryl and atrazine were decomposed by 71.8% and 27.9% in 12 h, respectively. The elevated solution pH was the main reason for the enhanced hydrolysis; however both the mineral surface and dissolved metal ions released from the biochars were confirmed to catalyze the hydrolysis.

  13. Book review of biochar application: Essential soil microbiology

    Science.gov (United States)

    Biochar, charcoal produced following biomass pyrolysis, has the potential to positively impact soil physical and chemical properties, improving soil fertility and water holding capacity as well as adsorbing contaminants. In addition, a large proportion of biochar carbon is highly recalcitrant and s...

  14. Investigating biochar as a tool for mine soil remediation

    Science.gov (United States)

    Biochar is a cost-effective, carbon negative soil amendment that can lead to improved soil quality. Research has also demonstrated the efficacy of biochar to sorb heavy metals and agricultural chemicals from contaminated soils, thus effectively reducing the potential for metal and chemical contamin...

  15. Renewable and low-carbon energies as mitigation options of climate change for China

    NARCIS (Netherlands)

    Urban, F.; Benders, R. M. J.; Moll, H. C.

    This article discusses how renewable and low-carbon energies can serve as mitigation options of climate change in China's power sector. Our study is based on scenarios developed in PowerPlan, a bottom-up model simulating a countries' power sector and its emissions. We first adjusted the model to

  16. Abatement and mitigation of carbon dioxide emissions from power generation

    International Nuclear Information System (INIS)

    Freund, P.; Audus, H.

    1998-01-01

    Current understanding of the world's climate indicates that human-induced changes are occurring and may be sufficient in magnitude to require preventative action, such as limiting atmospheric concentrations of greenhouse gases. The main anthropogenic greenhouse gas is carbon dioxide and its largest source is combustion of fossil fuels for power generation. Many different technologies can be used for reducing emissions, as well as increasing the removal of CO 2 from the atmosphere through enhancement of natural sinks, such as by forestry. Some of these options are available today and could be implemented at relatively little overall cost. For example, improving energy efficiency and switching from high carbon fuels to low carbon fuels, if suitable supplies are available. These can achieve significant reductions in CO 2 emissions. Introduction of renewable sources of energy or nuclear power to displace fossil fuels would achieve deep reductions in emissions if applied widely. However, to avoid disruptive changes, it will also be necessary to find ways of continuing to use fossil fuels but with much less emissions. Capture and storage of CO 2 is a technology which could deliver deep reductions in emissions from fossil fuels. In this paper, methods of removing CO 2 from the flue gas streams of coal and gas-fired power plants are examined, considering both plant as built today as well as possible future variants. Methods of CO 2 storage are also discussed. The results on capture and storage of CO 2 are put into perspective by comparison with studies of the large-scale application of forestry for sequestering atmospheric CO 2 , and also large-scale use of renewable energy sources, in this case growth and harvesting of woody biomass for power generation. Each of these options has different characteristics, providing a range of choices of ways of tackling climate change

  17. Creep mitigation in composites using carbon nanotube additives

    International Nuclear Information System (INIS)

    Zhang, W; Joshi, A; Wang, Z; Kane, R S; Koratkar, N

    2007-01-01

    A major limitation of thermosetting epoxy based polymeric materials in long-term structural applications is mechanical creep. Here it is demonstrated that single-walled carbon nanotube additives in low weight fractions (0.1-0.25%) are effective in limiting the load-induced re-orientation of epoxy chains, resulting in a significant slowing of the creep response. Nanotube additives could therefore be the key enabler for the long-term higher-temperature application of polymeric structures which would otherwise fail by excessive creep deformation

  18. Creep mitigation in composites using carbon nanotube additives

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, W [Department of Mechanical Aerospace and Nuclear Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180 (United States); Joshi, A [Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180 (United States); Wang, Z [Department of Mechanical Aerospace and Nuclear Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180 (United States); Kane, R S [Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180 (United States); Koratkar, N [Department of Mechanical Aerospace and Nuclear Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180 (United States)

    2007-05-09

    A major limitation of thermosetting epoxy based polymeric materials in long-term structural applications is mechanical creep. Here it is demonstrated that single-walled carbon nanotube additives in low weight fractions (0.1-0.25%) are effective in limiting the load-induced re-orientation of epoxy chains, resulting in a significant slowing of the creep response. Nanotube additives could therefore be the key enabler for the long-term higher-temperature application of polymeric structures which would otherwise fail by excessive creep deformation.

  19. Enhanced bioremediation of PAH-contaminated soil by immobilized bacteria with plant residue and biochar as carriers

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Baoliang; Yuan, Miaoxin; Qian, Linbo [Zhejiang Univ., Hangzhou (China). Dept. of Environmental Science; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou (China)

    2012-10-15

    Polycyclic aromatic hydrocarbons (PAHs) are largely accumulated in soils in China. The immobilized-microorganism technique (IMT) is a potential approach for abating soil contamination with PAHs. However, few studies about the application of IMT to contaminated soil remediation were reported. Due to recalcitrance to decomposition, biochar application to soil may enhance soil carbon sequestration, but few studies on the application of biochars to remediation of contaminated soil were reported. In this study, we illustrated enhanced bioremediation of soil having a long history of PAH contamination by IMT using plant residues and biochars as carriers. Two PAH-degrading bacteria, Pseudomonas putida and an unidentified indigenous bacterium, were selected for IMT. The extractability and biodegradation of 15 PAHs in solution and an actual PAH-contaminated soil amended with immobilized-bacteria materials were investigated under different incubation periods. The effects of carriers and the molecular weight of PAHs on bioremediation efficiency were determined to illustrate their different bio-dissipation mechanisms of PAHs in soil. The IMT can considerably enhance the removal of PAHs. Carriers impose different effects on PAH bio-dissipation by amended soil with immobilized-bacteria, which can directly degrade the carrier-associated PAHs. The removal of PAHs from soil depended on PAH molecular weight and carrier types. Enhanced bio-dissipation by IMT was much stronger for 4- and 5-ring PAHs than for 3- and 6-ring ones in soil. Only P400 biochar-immobilized bacteria enhanced bio-dissipation of all PAHs in contaminated soil after a 90-day incubation. Biochar can promote bioremediation of contaminated soil as microbial carriers of IMT. It is vital to select an appropriate biochar as an immobilized carrier to stimulate biodegradation. It is feasible to use adsorption carriers with high sorptive capabilities to concentrate PAHs as well as microorganisms and thereby enhance

  20. Analysis of carbon mitigation policies. Feed-in tariffs, energy and carbon price interactions and competitive distortions on carbon markets

    Energy Technology Data Exchange (ETDEWEB)

    Reichenbach, Johanna

    2011-07-19

    I study several policy instruments for carbon mitigation with a focus on subsidies for renewable energies, emission taxes and emission allowances. In Chapter 1, I analyze the optimal design and the welfare implications of two policies consisting of an emission tax for conventional fossil-fuel utilities combined with a subsidy for the producers of renewable energy equipment and an emission tax combined with a feed-in tariff for renewable electricity. In Chapter 2 I study the empirical interrelationships between European emission allowance prices and prices for electricity, hard coal and natural gas with an application to portfolio allocation. In Chapters 3 and 4, I discuss several policy-related issues of emissions trading, in particular the potential for market manipulations by firms holding a dominant position in the emission market, the output market or both, and competitive distortions and leakage due to unequal emission regulations across industries, sectors, regions, or countries. (orig.)

  1. Organic Biochar Based Fertilization

    Science.gov (United States)

    Schmidt, Hans-Peter; Pandit, Bishnu Hari; Cornelissen, Gerard; Kammann, Claudia

    2017-04-01

    Biochar produced in cost-efficient flame curtain kilns (Kon-Tiki) was nutrient enriched either with cow urine or with dissolved mineral (NPK) fertilizer to produce biochar-based fertilizers containing between 60-100 kg N, 5-60 kg P2O5 and 60-100 kg K2O, respectively, per ton of biochar. In 21 field trials nutrient-enriched biochars were applied at rates of 0.5 to 2 t ha-1 into the root zone of 13 different annual and perennial crops. Treatments combining biochar, compost and organic or chemical fertilizer were evaluated; control treatments contained the same amounts of nutrients but without biochar. All nutrient-enriched biochar substrates improved yields compared to their respective no-biochar controls. Biochar enriched with dissolved NPK produced on average 20% ± 5.1% (N=4) higher yields than standard NPK fertilization without biochar. Cow urine-enriched biochar blended with compost resulted on average in 123% ± 76.7% (N=13) higher yields compared to the organic farmer practice with cow urine-blended compost and outcompeted NPK-enriched biochar (same nutrient dose) by 103% ± 12.4% (N=4) on average. 21 field trials robustly revealed that low-dosage root zone application of organic biochar-based fertilizers caused substantial yield increases in rather fertile silt loam soils compared to traditional organic fertilization and to mineral NPK- or NPK-biochar fertilization. This can likely be explained by the nutrient carrier effect of biochar causing a slow nutrient release behavior, more balanced nutrient fluxes and reduced nutrient losses especially when liquid organic nutrients are used for the biochar enrichment. The results promise new pathways for optimizing organic farming and improving on-farm nutrient cycling.

  2. Local-scale analysis of carbon mitigation strategies: Tompkins County, New York, USA

    International Nuclear Information System (INIS)

    Vadas, Timothy M.; Fahey, Timothy J.; Sherman, Ruth E.; Kay, David

    2007-01-01

    The costs and potential for several carbon mitigation options were analyzed for Tompkins County, NY, within several categories: terrestrial carbon sequestration, local power generation, transportation, and energy end-use efficiency. The total county emissions are about 340 Gg C/year, with current biomass sequestration rates of about 121 Gg C/year. The potential for mitigation with the options examined, assuming full market penetration, amounts to at least 234 Gg C/year (69%), with 100 Gg C/year (29%) at no net cost to the consumer. Effective carbon mitigation strategies for this county based on costs per mg carbon and maximum potential include reforestation of abandoned agricultural lands for terrestrial carbon sequestration, biomass production for residential heating and co-firing in coal power plants, changes in personal behavior related to transportation (e.g., carpooling or using public transportation), installation of numerous residential energy-efficient products and development of local wind power. The principal barriers to the implementation of these approaches are discussed and policies for overcoming these barriers are analyzed

  3. Local-scale analysis of carbon mitigation strategies: Tompkins County, New York, USA

    Energy Technology Data Exchange (ETDEWEB)

    Vadas, Timothy M. [Department of Biological and Environmental Engineering, Cornell University, Riley-Robb Hall, Ithaca, NY 14853 (United States); Fahey, Timothy J.; Sherman, Ruth E. [Department of Natural Resources, Cornell University, Fernow Hall, Ithaca, NY 14853 (United States); Kay, David [Department of Applied Economics and Management, Cornell University, Warren Hall, Ithaca, NY 14853 (United States)

    2007-11-15

    The costs and potential for several carbon mitigation options were analyzed for Tompkins County, NY, within several categories: terrestrial carbon sequestration, local power generation, transportation, and energy end-use efficiency. The total county emissions are about 340 Gg C/year, with current biomass sequestration rates of about 121 Gg C/year. The potential for mitigation with the options examined, assuming full market penetration, amounts to at least 234 Gg C/year (69%), with 100 Gg C/year (29%) at no net cost to the consumer. Effective carbon mitigation strategies for this county based on costs per mg carbon and maximum potential include reforestation of abandoned agricultural lands for terrestrial carbon sequestration, biomass production for residential heating and co-firing in coal power plants, changes in personal behavior related to transportation (e.g., carpooling or using public transportation), installation of numerous residential energy-efficient products and development of local wind power. The principal barriers to the implementation of these approaches are discussed and policies for overcoming these barriers are analyzed. (author)

  4. Carbon stock corridors to mitigate climate change and promote biodiversity in the tropics

    Science.gov (United States)

    Jantz, Patrick; Goetz, Scott; Laporte, Nadine

    2014-02-01

    A key issue in global conservation is how biodiversity co-benefits can be incorporated into land use and climate change mitigation activities, particularly those being negotiated under the United Nations to reduce emissions from tropical deforestation and forest degradation. Protected areas have been the dominant strategy for tropical forest conservation and they have increased substantially in recent decades. Avoiding deforestation by preserving carbon stored in vegetation between protected areas provides an opportunity to mitigate the effects of land use and climate change on biodiversity by maintaining habitat connectivity across landscapes. Here we use a high-resolution data set of vegetation carbon stock to map corridors traversing areas of highest biomass between protected areas in the tropics. The derived corridors contain 15% of the total unprotected aboveground carbon in the tropical region. A large number of corridors have carbon densities that approach or exceed those of the protected areas they connect, suggesting these are suitable areas for achieving both habitat connectivity and climate change mitigation benefits. To further illustrate how economic and biological information can be used for corridor prioritization on a regional scale, we conducted a multicriteria analysis of corridors in the Legal Amazon, identifying corridors with high carbon, high species richness and endemism, and low economic opportunity costs. We also assessed the vulnerability of corridors to future deforestation threat.

  5. Global and regional ocean carbon uptake and climate change: sensitivity to a substantial mitigation scenario

    Energy Technology Data Exchange (ETDEWEB)

    Vichi, Marcello; Masina, Simona; Navarra, Antonio [Centro Euro-Mediterraneo per i Cambiamenti Climatici (CMCC), Bologna (Italy); Istituto Nazionale di Geofisica e Vulcanologia, Bologna (Italy); Manzini, Elisa [Centro Euro-Mediterraneo per i Cambiamenti Climatici (CMCC), Bologna (Italy); Istituto Nazionale di Geofisica e Vulcanologia, Bologna (Italy); Max Planck Institute for Meteorology, Hamburg (Germany); Fogli, Pier Giuseppe [Centro Euro-Mediterraneo per i Cambiamenti Climatici (CMCC), Bologna (Italy); Alessandri, Andrea [Centro Euro-Mediterraneo per i Cambiamenti Climatici (CMCC), Bologna (Italy); ENEA, Rome (Italy); Patara, Lavinia [Centro Euro-Mediterraneo per i Cambiamenti Climatici (CMCC), Bologna (Italy); Leibniz Institute of Marine Sciences (IFM-GEOMAR), Kiel (Germany); Scoccimarro, Enrico [Istituto Nazionale di Geofisica e Vulcanologia, Bologna (Italy)

    2011-11-15

    Under future scenarios of business-as-usual emissions, the ocean storage of anthropogenic carbon is anticipated to decrease because of ocean chemistry constraints and positive feedbacks in the carbon-climate dynamics, whereas it is still unknown how the oceanic carbon cycle will respond to more substantial mitigation scenarios. To evaluate the natural system response to prescribed atmospheric ''target'' concentrations and assess the response of the ocean carbon pool to these values, 2 centennial projection simulations have been performed with an Earth System Model that includes a fully coupled carbon cycle, forced in one case with a mitigation scenario and the other with the SRES A1B scenario. End of century ocean uptake with the mitigation scenario is projected to return to the same magnitude of carbon fluxes as simulated in 1960 in the Pacific Ocean and to lower values in the Atlantic. With A1B, the major ocean basins are instead projected to decrease the capacity for carbon uptake globally as found with simpler carbon cycle models, while at the regional level the response is contrasting. The model indicates that the equatorial Pacific may increase the carbon uptake rates in both scenarios, owing to enhancement of the biological carbon pump evidenced by an increase in Net Community Production (NCP) following changes in the subsurface equatorial circulation and enhanced iron availability from extratropical regions. NCP is a proxy of the bulk organic carbon made available to the higher trophic levels and potentially exportable from the surface layers. The model results indicate that, besides the localized increase in the equatorial Pacific, the NCP of lower trophic levels in the northern Pacific and Atlantic oceans is projected to be halved with respect to the current climate under a substantial mitigation scenario at the end of the twenty-first century. It is thus suggested that changes due to cumulative carbon emissions up to present and the

  6. Physical disintegration of biochar: An overlooked process

    Science.gov (United States)

    Biochar is a form of black carbon (BC) that has been documented to be resistant to both microbial and chemical degradation pathways as well as simultaneously sequestering atmospheric carbon (C) and postulated to act as a soil fertility agent by providing critical inorganic plant ...

  7. Biochar amendment to lead-contaminated soil: Effects on fluorescein diacetate hydrolytic activity and phytotoxicity to rice.

    Science.gov (United States)

    Tan, Xiaofei; Liu, Yunguo; Gu, Yanling; Zeng, Guangming; Hu, Xinjiang; Wang, Xin; Hu, Xi; Guo, Yiming; Zeng, Xiaoxia; Sun, Zhichao

    2015-09-01

    The amendment effects of biochar on total microbial activity was measured by fluorescein diacetate (FDA) hydrolytic activity, and phytotoxicity in Pb(II)-contaminated soils was examined by the application of 4 different biochars to soil, with rice as a test plant. The FDA hydrolytic activities of biochar-amended soils were much higher than that of the control. The survival rate of rice in lead-contaminated biochar-amended soils showed significant improvement over the control, especially for bamboo biochar-amended soil (93.3%). In addition, rice grown in lead-contaminated control sediment displayed lower biomass production than that in biochar-amended soil. The immobilization of Pb(II) and the positive effects of biochar amendment on soil microorganisms may account for these effects. The results suggest that biochar may have an excellent ability to mitigate the toxic effects of Pb(II) on soil microorganisms and rice. © 2015 SETAC.

  8. Effect of formation conditions on biochars: Compositional and structural properties of cellulose, lignin, and pine biochars

    International Nuclear Information System (INIS)

    Rutherford, David W.; Wershaw, Robert L.; Rostad, Colleen E.; Kelly, Charlene N.

    2012-01-01

    The application of biochar to soil has been proposed as a long-term sink for atmospheric carbon dioxide in terrestrial ecosystems while providing improved soil fertility and increased crop production. Because biochar differs from the widely documented activated carbon, initial characterization information on effects of formation conditions on physical and chemical properties of biochar is important prior to its large-scale incorporation into soils. Plant biomass is composed primarily of cellulose and lignin. As a means of predicting biochar characteristics, samples of cellulose, lignin, and pine were charred under a nitrogen atmosphere at temperatures ranging from 250 °C to 500 °C for times ranging from 1 h to 168 h. Mass loss, elemental composition (carbon, hydrogen, and oxygen), Fourier transform infrared and 13 C Nuclear Magnetic Resonance (NMR) spectra of the biochars produced were compared. Mass loss combined with NMR spectrometry showed that the initial rapid loss of material is attributed to aliphatic components, which are either lost or converted to aromatic carbon early in the charring process, and oxygen was lost more rapidly than carbon. The biomass contains a labile oxygen fraction that is quickly removed or lost upon initial heating, and a recalcitrant oxygen fraction which remains fixed in the char. If biochar is to be incorporated into agricultural soils, formation conditions should be tailored to optimize desirable characteristics, such as recalcitrance to degradation, soil fertility and pollutant sequestration, and minimize less desirable characteristics of degradability or low yield (mass loss). -- Highlights: ► Effects of formation conditions on physical and chemical properties of biochar. ► Cellulose, lignin, pine charred under inert atmosphere at various times and temperatures. ► Mass loss, elemental composition (C, H, and O), FTIR, NMR spectra compared. ► Aliphatic components either lost or converted to aromatic carbon early in

  9. Embodied carbon mitigation and reduction in the built environment - What does the evidence say?

    Science.gov (United States)

    Pomponi, Francesco; Moncaster, Alice

    2016-10-01

    Of all industrial sectors, the built environment puts the most pressure on the natural environment, and in spite of significant efforts the International Energy Agency suggests that buildings-related emissions are on track to double by 2050. Whilst operational energy efficiency continues to receive significant attention by researchers, a less well-researched area is the assessment of embodied carbon in the built environment in order to understand where the greatest opportunities for its mitigation and reduction lie. This article approaches the body of academic knowledge on strategies to tackle embodied carbon (EC) and uses a systematic review of the available evidence to answer the following research question: how should we mitigate and reduce EC in the built environment? 102 journal articles have been reviewed systematically in the fields of embodied carbon mitigation and reduction, and life cycle assessment. In total, 17 mitigation strategies have been identified from within the existing literature which have been discussed through a meta-analysis on available data. Results reveal that no single mitigation strategy alone seems able to tackle the problem; rather, a pluralistic approach is necessary. The use of materials with lower EC, better design, an increased reuse of EC-intensive materials, and stronger policy drivers all emerged as key elements for a quicker transition to a low carbon built environment. The meta-analysis on 77 LCAs also shows an extremely incomplete and short-sighted approach to life cycle studies. Most studies only assess the manufacturing stages, often completely overlooking impacts occurring during the occupancy stage and at the end of life of the building. The LCA research community have the responsibility to address such shortcomings and work towards more complete and meaningful assessments. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.

  10. Impacts of climate mitigation strategies in the energy sector on global land use and carbon balance

    Science.gov (United States)

    Engström, Kerstin; Lindeskog, Mats; Olin, Stefan; Hassler, John; Smith, Benjamin

    2017-09-01

    Reducing greenhouse gas emissions to limit damage to the global economy climate-change-induced and secure the livelihoods of future generations requires ambitious mitigation strategies. The introduction of a global carbon tax on fossil fuels is tested here as a mitigation strategy to reduce atmospheric CO2 concentrations and radiative forcing. Taxation of fossil fuels potentially leads to changed composition of energy sources, including a larger relative contribution from bioenergy. Further, the introduction of a mitigation strategy reduces climate-change-induced damage to the global economy, and thus can indirectly affect consumption patterns and investments in agricultural technologies and yield enhancement. Here we assess the implications of changes in bioenergy demand as well as the indirectly caused changes in consumption and crop yields for global and national cropland area and terrestrial biosphere carbon balance. We apply a novel integrated assessment modelling framework, combining three previously published models (a climate-economy model, a socio-economic land use model and an ecosystem model). We develop reference and mitigation scenarios based on the narratives and key elements of the shared socio-economic pathways (SSPs). Taking emissions from the land use sector into account, we find that the introduction of a global carbon tax on the fossil fuel sector is an effective mitigation strategy only for scenarios with low population development and strong sustainability criteria (SSP1 Taking the green road). For scenarios with high population growth, low technological development and bioenergy production the high demand for cropland causes the terrestrial biosphere to switch from being a carbon sink to a source by the end of the 21st century.

  11. Impacts of climate mitigation strategies in the energy sector on global land use and carbon balance

    Directory of Open Access Journals (Sweden)

    K. Engström

    2017-09-01

    Full Text Available Reducing greenhouse gas emissions to limit damage to the global economy climate-change-induced and secure the livelihoods of future generations requires ambitious mitigation strategies. The introduction of a global carbon tax on fossil fuels is tested here as a mitigation strategy to reduce atmospheric CO2 concentrations and radiative forcing. Taxation of fossil fuels potentially leads to changed composition of energy sources, including a larger relative contribution from bioenergy. Further, the introduction of a mitigation strategy reduces climate-change-induced damage to the global economy, and thus can indirectly affect consumption patterns and investments in agricultural technologies and yield enhancement. Here we assess the implications of changes in bioenergy demand as well as the indirectly caused changes in consumption and crop yields for global and national cropland area and terrestrial biosphere carbon balance. We apply a novel integrated assessment modelling framework, combining three previously published models (a climate–economy model, a socio-economic land use model and an ecosystem model. We develop reference and mitigation scenarios based on the narratives and key elements of the shared socio-economic pathways (SSPs. Taking emissions from the land use sector into account, we find that the introduction of a global carbon tax on the fossil fuel sector is an effective mitigation strategy only for scenarios with low population development and strong sustainability criteria (SSP1 Taking the green road. For scenarios with high population growth, low technological development and bioenergy production the high demand for cropland causes the terrestrial biosphere to switch from being a carbon sink to a source by the end of the 21st century.

  12. Biochar-Induced Changes in Soil Hydraulic Conductivity and Dissolved Nutrient Fluxes Constrained by Laboratory Experiments

    Science.gov (United States)

    Barnes, Rebecca T.; Gallagher, Morgan E.; Masiello, Caroline A.; Liu, Zuolin; Dugan, Brandon

    2014-01-01

    The addition of charcoal (or biochar) to soil has significant carbon sequestration and agronomic potential, making it important to determine how this potentially large anthropogenic carbon influx will alter ecosystem functions. We used column experiments to quantify how hydrologic and nutrient-retention characteristics of three soil materials differed with biochar amendment. We compared three homogeneous soil materials (sand, organic-rich topsoil, and clay-rich Hapludert) to provide a basic understanding of biochar-soil-water interactions. On average, biochar amendment decreased saturated hydraulic conductivity (K) by 92% in sand and 67% in organic soil, but increased K by 328% in clay-rich soil. The change in K for sand was not predicted by the accompanying physical changes to the soil mixture; the sand-biochar mixture was less dense and more porous than sand without biochar. We propose two hydrologic pathways that are potential drivers for this behavior: one through the interstitial biochar-sand space and a second through pores within the biochar grains themselves. This second pathway adds to the porosity of the soil mixture; however, it likely does not add to the effective soil K due to its tortuosity and smaller pore size. Therefore, the addition of biochar can increase or decrease soil drainage, and suggests that any potential improvement of water delivery to plants is dependent on soil type, biochar amendment rate, and biochar properties. Changes in dissolved carbon (C) and nitrogen (N) fluxes also differed; with biochar increasing the C flux from organic-poor sand, decreasing it from organic-rich soils, and retaining small amounts of soil-derived N. The aromaticity of C lost from sand and clay increased, suggesting lost C was biochar-derived; though the loss accounts for only 0.05% of added biochar-C. Thus, the direction and magnitude of hydraulic, C, and N changes associated with biochar amendments are soil type (composition and particle size) dependent

  13. Characterization and influence of biochars on nitrous oxide emission from agricultural soil

    International Nuclear Information System (INIS)

    Wang, Zhenyu; Zheng, Hao; Luo, Ye; Deng, Xia; Herbert, Stephen; Xing, Baoshan

    2013-01-01

    Extensive use of biochar to mitigate N 2 O emission is limited by the lack of understanding on the exact mechanisms altering N 2 O emissions from biochar-amended soils. Biochars produced from giant reed were characterized and used to investigate their influence on N 2 O emission. Responses of N 2 O emission varied with pyrolysis temperature, and the reduction order of N 2 O emission by biochar (BC) was: BC200 ≈ BC600 > BC500 ≈ BC300 ≈ BC350 > BC400. The reduced emission was attributed to enhanced N immobilization and decreased denitrification in the biochar-amended soils. The remaining polycyclic aromatic hydrocarbons (PAHs) in low-temperature biochars (300–400 °C) played a major role in reducing N 2 O emission, but not for high-temperature biochars (500–600 °C). Removal of phenolic compounds from low-temperature (200–400 °C) biochars resulted in a surprising reduction of N 2 O emission, but the mechanism is still unknown. Overall, adding giant reed biochars could reduce N 2 O evolution from agricultural soil, thus possibly mitigating global warming. -- Highlights: ► C content of biochar increased with temperature but O and H content decreased. ► Biochars produced at 200–600 °C reduced N 2 O emissions from agricultural soil. ► PAHs in biochars (300–400 °C) seem a dominant factor for the reduced N 2 O emission. ► Phenolic compounds in biochars ( 2 O emission. -- Biochars (200–600 °C) produced from giant reed reduced N 2 O emissions from a soil due to enhanced N immobilization and decreased denitrification

  14. Plant development effects of biochars from different raw materials

    Science.gov (United States)

    Cely, Paola; Méndez, Ana; Paz-Ferreiro, Jorge; Gascó, Gabriel

    2015-04-01

    Biochar can provide multiple benefits in the ecosystem. However, the presence of phytotoxic compounds in some biochars is an important concern that needs to be addressed and that depends on the raw material and the pyrolysis conditions used in biochar production. For example, sewage sludge biochars can have elevated heavy metal contents as they were present in the feedstock and were enriched during pyrolysis. Also during carbonization, some phytotoxic compounds such as polycyclic aromatic hydrocarbons (PAHs), polyphenols or volatile organic compounds (VOCs) could be formed representing a risk of contamination to soils and crops. In this work we report the results from seed germination and plant development for three biochars prepared from wood, paper sludge plus wheat husks and sewage sludge. Five higher plant species (cress, lentils, cucumber, tomato and lettuce) were studied. Biochar from wood shows seed inhibition in several species and the paper sludge biochar on lettuce. For the rest, the effect on seed germination was positive. No inhibition of root growth was detected, but in some cases leaves and stems growth were inhibited. Our results are significant in terms of advancing or current understanding on the impacts of biochar on vegetative growth and linking those effects to biochar properties.

  15. Efficiency of small scale carbon mitigation by patch iron fertilization

    Science.gov (United States)

    Sarmiento, J. L.; Slater, R. D.; Dunne, J.; Gnanadesikan, A.; Hiscock, M. R.

    2010-11-01

    While nutrient depletion scenarios have long shown that the high-latitude High Nutrient Low Chlorophyll (HNLC) regions are the most effective for sequestering atmospheric carbon dioxide, recent simulations with prognostic biogeochemical models have suggested that only a fraction of the potential drawdown can be realized. We use a global ocean biogeochemical general circulation model developed at GFDL and Princeton to examine this and related issues. We fertilize two patches in the North and Equatorial Pacific, and two additional patches in the Southern Ocean HNLC region north of the biogeochemical divide and in the Ross Sea south of the biogeochemical divide. We evaluate the simulations using observations from both artificial and natural iron fertilization experiments at nearby locations. We obtain by far the greatest response to iron fertilization at the Ross Sea site, where sea ice prevents escape of sequestered CO2 during the wintertime, and the CO2 removed from the surface ocean by the biological pump is carried into the deep ocean by the circulation. As a consequence, CO2 remains sequestered on century time-scales and the efficiency of fertilization remains almost constant no matter how frequently iron is applied as long as it is confined to the growing season. The second most efficient site is in the Southern Ocean. The North Pacific site has lower initial nutrients and thus a lower efficiency. Fertilization of the Equatorial Pacific leads to an expansion of the suboxic zone and a striking increase in denitrification that causes a sharp reduction in overall surface biological export production and CO2 uptake. The impacts on the oxygen distribution and surface biological export are less prominent at other sites, but nevertheless still a source of concern. The century time scale retention of iron in this model greatly increases the long-term biological response to iron addition as compared with simulations in which the added iron is rapidly scavenged from the

  16. Sustainable gasification–biochar systems? A case-study of rice-husk gasification in Cambodia, Part II: Field trial results, carbon abatement, economic assessment and conclusions

    International Nuclear Information System (INIS)

    Shackley, Simon; Carter, Sarah; Knowles, Tony; Middelink, Erik; Haefele, Stephan; Haszeldine, Stuart

    2012-01-01

    In part I we described the gasification technology and characterised the physio-chemical properties and environmental impacts of the rice husk char (RHC) by-product. In part II we present summary results from field trials using the RHC, and provide an estimate of the carbon abatement and economic evaluation of the system. Statistically significant yield increases are demonstrated for RHC addition in irrigated rice cultivation (33% increase in paddy rice yield for a 41.5 t (dry weight) RHC application per hectare). The carbon abatement from the RHC addition is approximately 0.42 t CO 2 t −1 rice husk; including energy generation from gasification this increases to ca. 0.86 tCO 2 t −1 . Assuming a carbon value of $5 t CO 2 t −1 , and agronomic value of $3 t −1 RHC based on the field trials, the economic value of the RHC varies from $9 t −1 (including only recalcitrant carbon) to $15 t −1 (including avoided emissions from energy production). We summarise results from parts I and II, concluding that the gasification–biochar system meets many of the criteria of sustainability, but requires better waste water management and more field trials to demonstrate repeatable agronomic efficacy of RHC application. - Highlights: ► Field trials show statistically significant rice yield increases using rice husk char (RHC). ► Carbon abatement of 0.42 t CO 2 t −1 rice husk from RHC production. ► Bioenergy generation via gasification gives carbon abatement of 0.44 t CO 2 t −1 husk. ► Total carbon abatement is therefore ca. 0.86 t CO 2 t −1 husk. ► Agronomic value from trials is $3 t −1 char; assuming $5 CO 2 t −1 , the total value of RHC is $9–$15 t −1 .

  17. Biochar has no effect on soil respiration across Chinese agricultural soils.

    Science.gov (United States)

    Liu, Xiaoyu; Zheng, Jufeng; Zhang, Dengxiao; Cheng, Kun; Zhou, Huimin; Zhang, Afeng; Li, Lianqing; Joseph, Stephen; Smith, Pete; Crowley, David; Kuzyakov, Yakov; Pan, Genxing

    2016-06-01

    Biochar addition to soil has been widely accepted as an option to enhance soil carbon sequestration by introducing recalcitrant organic matter. However, it remains unclear whether biochar will negate the net carbon accumulation by increasing carbon loss through CO2 efflux from soil (soil respiration). The objectives of this study were to address: 1) whether biochar addition increases soil respiration; and whether biochar application rate and biochar type (feedstock and pyrolyzing system) affect soil respiration. Two series of field experiments were carried out at 8 sites representing the main crop production areas in China. In experiment 1, a single type of wheat straw biochar was amended at rates of 0, 20 and 40 tha(-1) in four rice paddies and three dry croplands. In experiment 2, four types of biochar (varying in feedstock and pyrolyzing system) were amended at rates of 0 and 20 tha(-1) in a rice paddy under rice-wheat rotation. Results showed that biochar addition had no effect on CO2 efflux from soils consistently across sites, although it increased topsoil organic carbon stock by 38% on average. Meanwhile, CO2 efflux from soils amended with 40 t of biochar did not significantly higher than soils amended with 20 t of biochar. While the biochars used in Experiment 2 had different carbon pools and physico-chemical properties, they had no effect on soil CO2 efflux. The soil CO2 efflux following biochar addition could be hardly explained by the changes in soil physic-chemical properties and in soil microbial biomass. Thus, we argue that biochar will not negate the net carbon accumulation by increasing carbon loss through CO2 efflux in agricultural soils. Copyright © 2016. Published by Elsevier B.V.

  18. Exploring Opportunities for Promoting Synergies between Climate Change Adaptation and Mitigation in Forest Carbon Initiatives

    Directory of Open Access Journals (Sweden)

    Eugene L. Chia

    2016-01-01

    Full Text Available There is growing interest in designing and implementing climate change mitigation and adaptation (M + A in synergy in the forest and land use sectors. However, there is limited knowledge on how the planning and promotion of synergies between M + A can be operationalized in the current efforts to mitigate climate change through forest carbon. This paper contributes to fill this knowledge gap by exploring ways of planning and promoting M + A synergy outcomes in forest carbon initiatives. It examines eight guidelines that are widely used in designing and implementing forest carbon initiatives. Four guiding principles with a number of criteria that are relevant for planning synergy outcomes in forest carbon activities are proposed. The guidelines for developing forest carbon initiatives need to demonstrate that (1 the health of forest ecosystems is maintained or enhanced; (2 the adaptive capacity of forest-dependent communities is ensured; (3 carbon and adaptation benefits are monitored and verified; and (4 adaptation outcomes are anticipated and planned in forest carbon initiatives. The forest carbon project development guidelines can encourage the integration of adaptation in forest carbon initiatives. However, their current efforts guiding projects and programs to deliver biodiversity and environmental benefits, ecosystem services, and socioeconomic benefits are not considered explicitly as efforts towards enhancing adaptation. An approach for incentivizing and motivating project developers, guideline setters, and offset buyers is imperative in order to enable existing guidelines to make clear contributions to adaptation goals. We highlight and discuss potential ways of incentivizing and motivating the explicit planning and promotion of adaptation outcomes in forest carbon initiatives.

  19. Efficiency of small scale carbon mitigation by patch iron fertilization

    Directory of Open Access Journals (Sweden)

    J. L. Sarmiento

    2010-11-01

    Full Text Available While nutrient depletion scenarios have long shown that the high-latitude High Nutrient Low Chlorophyll (HNLC regions are the most effective for sequestering atmospheric carbon dioxide, recent simulations with prognostic biogeochemical models have suggested that only a fraction of the potential drawdown can be realized. We use a global ocean biogeochemical general circulation model developed at GFDL and Princeton to examine this and related issues. We fertilize two patches in the North and Equatorial Pacific, and two additional patches in the Southern Ocean HNLC region north of the biogeochemical divide and in the Ross Sea south of the biogeochemical divide. We evaluate the simulations using observations from both artificial and natural iron fertilization experiments at nearby locations. We obtain by far the greatest response to iron fertilization at the Ross Sea site, where sea ice prevents escape of sequestered CO2 during the wintertime, and the CO2 removed from the surface ocean by the biological pump is carried into the deep ocean by the circulation. As a consequence, CO2 remains sequestered on century time-scales and the efficiency of fertilization remains almost constant no matter how frequently iron is applied as long as it is confined to the growing season. The second most efficient site is in the Southern Ocean. The North Pacific site has lower initial nutrients and thus a lower efficiency. Fertilization of the Equatorial Pacific leads to an expansion of the suboxic zone and a striking increase in denitrification that causes a sharp reduction in overall surface biological export production and CO2 uptake. The impacts on the oxygen distribution and surface biological export are less prominent at other sites, but nevertheless still a source of concern. The century time scale retention of iron in this model greatly increases the long-term biological response to iron addition as compared with

  20. Directed Selection of Biochars for Amending Metal ...

    Science.gov (United States)

    Approximately 500,000 abandoned mines across the U.S. pose a considerable, pervasive risk to human health and the environment. World-wide the problem is even larger. Lime, organic matter, biosolids and other amendments have been used to decrease metal bioavailability in contaminated mine wastes and to promote the development of a mine waste stabilizing plant cover. The demonstrated properties of biochar make it a viable candidate as an amendment for remediating metal contaminated mine soils. In addition to sequestering potentially toxic metals, biochar can also be a source of plant nutrients, used to adjust soil pH, improve soil water holding characteristics, and increase soil carbon content. However, methods are needed for matching biochar beneficial properties with mine waste toxicities and soil health deficiencies. In this presentation we will report on a study in which we used mine soil from an abandoned Cu and Zn mine to develop a three-step procedure for identifying biochars that are most effective at reducing heavy metal bioavailability. Step 1: a slightly acidic extract of the mine spoil soil was produced, representing the potentially available metals, and used to identify metal removal properties of a library of 38 different biochars (e.g., made from a variety of feedstocks and pyrolysis or gasification conditions). Step 2: evaluation of how well these biochars retained (i.e., did not desorb) previously sorbed metals. Step 3: laboratory evalua

  1. Indispensable role of biochar-inherent mineral constituents in its environmental applications: A review.

    Science.gov (United States)

    Xu, Xiaoyun; Zhao, Yinghao; Sima, Jingke; Zhao, Ling; Mašek, Ondřej; Cao, Xinde

    2017-10-01

    Biochar typically consists of both carbon and mineral fractions, and the carbon fraction has been generally considered to determine its properties and applications. Recently, an increasing body of research has demonstrated that mineral components inherent in biochar, such as alkali or alkaline earth metals in the form of carbonates, phosphates, or oxides, could also influence the properties and thus the applications. The review articles published thus far have mainly focused on multiple environmental and agronomic applications of biochar, including carbon sequestration, soil improvement, environmental remediation, etc. This review aims to highlight the indispensable role of the mineral fraction of biochar in these different applications, especially in environmental applications. Specifically, it provides a critical review of current research findings related to the mineral composition of biochar and the effect of the mineral fraction on the physicochemical properties, contaminant sorption, carbon retention and stability, and nutrient bioavailability of biochar. Furthermore, the role of minerals in the emerging applications of biochar, as a precursor for fuel cells, supercapacitors, and photoactive components, is also summarized. Overall, inherent minerals should be fully considered while determining the most appropriate application for any given biochar. A thorough understanding of the role of biochar-bound minerals in different applications will also allow the design or selection of the most suitable biochar for specific applications based on the consideration of feedstock composition, production parameters, and post-treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Ultra-Low Carbon Emissions from Coal-Fired Power Plants through Bio-Oil Co-Firing and Biochar Sequestration.

    Science.gov (United States)

    Dang, Qi; Mba Wright, Mark; Brown, Robert C

    2015-12-15

    This study investigates a novel strategy of reducing carbon emissions from coal-fired power plants through co-firing bio-oil and sequestering biochar in agricultural lands. The heavy end fraction of bio-oil recovered from corn stover fast pyrolysis is blended and co-fired with bituminous coal to form a bio-oil co-firing fuel (BCF). Life-cycle greenhouse gas (GHG) emissions per kWh electricity produced vary from 1.02 to 0.26 kg CO2-eq among different cases, with BCF heavy end fractions ranging from 10% to 60%, which corresponds to a GHG emissions reduction of 2.9% to 74.9% compared with that from traditional bituminous coal power plants. We found a heavy end fraction between 34.8% and 37.3% is required to meet the Clean Power Plan's emission regulation for new coal-fired power plants. The minimum electricity selling prices are predicted to increase from 8.8 to 14.9 cents/kWh, with heavy end fractions ranging from 30% to 60%. A minimum carbon price of $67.4 ± 13 per metric ton of CO2-eq was estimated to make BCF power commercially viable for the base case. These results suggest that BCF co-firing is an attractive pathway for clean power generation in existing power plants with a potential for significant reductions in carbon emissions.

  3. Characterization and Mineralization Rates of Low Temperature Peanut Hull and Pine Chip Biochars

    Directory of Open Access Journals (Sweden)

    K.C. Das

    2013-04-01

    Full Text Available Biochar can potentially increase soil fertility and sequester carbon by incorporating nutrients and stable black carbon into the soil; however its effect on soil nitrogen (N and carbon (C processes is not well understood. A defined methodology to characterize biochar is necessary to predict how specific biochars will affect C and N mineralization. We amended a Tifton soil (Fine-loamy, siliceous, thermic Plinthic Kandiudults with peanut hull (Arachis hypogaea; PH; 2.1% N and pine chip (Pinus taeda; PC: 0.4% N biochar at application rates of 1% and 2% (w/w and performed a 136-day mineralization study. A companion 24-day mineralization study amended Tifton soil with PH and PC biochar at 2% and their respective feedstocks at equal C rates. Soil C mineralization rates were monitored periodically throughout each study and total N mineralization rates were also measured. In addition, we characterized each biochar using thermogravimetric analysis with mass spectrometer (TGA-MS, proximate analysis, Fourier transform infrared spectroscopy (FTIR, and total mineral analysis to identify biochar characteristics that might correlate with mineralization properties. Limited C (<2% mineralized from both biochars, but mineralization rates of soil amended with PH biochar were higher than PC biochar. Carbon mineralization correlated well with estimated aliphatic content determined by TGA-MS but not with volatile content indicated by proximate analysis. Nitrogen was not mineralized from either biochar, indicating that plant-based biochar should not be considered a source of N for plant growth. The N in biochar may be contained in the stable aromatic structure of the biochar, as indicated by TGA-MS, and not available to soil microbes.

  4. A novel approach in organic waste utilization through biochar addition in wood/polypropylene composites

    Energy Technology Data Exchange (ETDEWEB)

    Das, Oisik [Department of Civil and Environmental Engineering, University of Auckland, Auckland 1142 (New Zealand); Sarmah, Ajit K., E-mail: a.sarmah@auckland.ac.nz [Department of Civil and Environmental Engineering, University of Auckland, Auckland 1142 (New Zealand); Bhattacharyya, Debes [Department of Mechanical Engineering, Center for Advanced Composite Materials, University of Auckland, Auckland 1142 (New Zealand)

    2015-04-15

    Highlights: • Biochar made from waste wood was added with wood polypropylene composites. • 24% biochar gave the best mechanical properties. • 6% biochar had no effect on physico-mechanical properties of composites. • Coupling agent remained unreacted in composites having higher amount of biochar. - Abstract: In an attempt to concurrently address the issues related to landfill gas emission and utilization of organic wastes, a relatively novel idea is introduced to develop biocomposites where biochar made from pyrolysis of waste wood (Pinus radiata) is added with the same wood, plastic/polymer (polypropylene) and maleated anhydride polypropylene (MAPP). Experiments were conducted by manufacturing wood and polypropylene composites (WPCs) mixed with 6 wt%, 12 wt%, 18 wt%, 24 wt%, and 30 wt% biochar. Though 6 wt% addition had similar properties to that of the control (composite without biochar), increasing biochar content to 24 wt% improved the composite’s tensile/flexural strengths and moduli. The biochar, having high surface area due to fine particles and being highly carbonised, acted as reinforcing filler in the biocomposite. Composites having 12 wt% and 18 wt% of biochar were found to be the most ductile and thermally stable, respectively. This study demonstrates that, WPCs added with biochar has good potential to mitigate wastes while simultaneously producing biocomposites having properties that might be suited for various end applications.

  5. A novel approach in organic waste utilization through biochar addition in wood/polypropylene composites

    International Nuclear Information System (INIS)

    Das, Oisik; Sarmah, Ajit K.; Bhattacharyya, Debes

    2015-01-01

    Highlights: • Biochar made from waste wood was added with wood polypropylene composites. • 24% biochar gave the best mechanical properties. • 6% biochar had no effect on physico-mechanical properties of composites. • Coupling agent remained unreacted in composites having higher amount of biochar. - Abstract: In an attempt to concurrently address the issues related to landfill gas emission and utilization of organic wastes, a relatively novel idea is introduced to develop biocomposites where biochar made from pyrolysis of waste wood (Pinus radiata) is added with the same wood, plastic/polymer (polypropylene) and maleated anhydride polypropylene (MAPP). Experiments were conducted by manufacturing wood and polypropylene composites (WPCs) mixed with 6 wt%, 12 wt%, 18 wt%, 24 wt%, and 30 wt% biochar. Though 6 wt% addition had similar properties to that of the control (composite without biochar), increasing biochar content to 24 wt% improved the composite’s tensile/flexural strengths and moduli. The biochar, having high surface area due to fine particles and being highly carbonised, acted as reinforcing filler in the biocomposite. Composites having 12 wt% and 18 wt% of biochar were found to be the most ductile and thermally stable, respectively. This study demonstrates that, WPCs added with biochar has good potential to mitigate wastes while simultaneously producing biocomposites having properties that might be suited for various end applications

  6. Carbon sequestration index as a determinant for climate change mitigation: Case study of Bintan Island

    Science.gov (United States)

    Wahyudi, A.'an J.; Afdal; Prayudha, Bayu; Dharmawan, I. W. E.; Irawan, Andri; Abimanyu, Haznan; Meirinawati, Hanny; Surinati, Dewi; Syukri, Agus F.; Yuliana, Chitra I.; Yuniati, Putri I.

    2018-02-01

    The increase of the anthropogenic carbon dioxide (CO2) affects the global carbon cycle altering the atmospheric system and initiates the climate changes. There are two ways to mitigate these changes, by maintaining the greenhouse gasses below the carbon budget and by conserving the marine and terrestrial vegetation for carbon sequestration. These two strategies become variable to the carbon sequestration index (CSI) that represents the potential of a region in carbon sequestration, according to its natural capacity. As a study case, we conducted carbon sequestration research in Bintan region (Bintan Island and its surrounding), Riau Archipelago province. This research was aimed to assess the CSI and its possibility for climate change mitigation. We observed carbon sequestration of seagrass meadows and mangrove, greenhouse gas (CO2) emission (correlated to population growth, the increase of vehicles), and CSI. Bintan region has 125,849.9 ha of vegetation area and 14,879.6 ha of terrestrial and marine vegetation area, respectively. Both vegetation areas are able to sequester 0.262 Tg C yr-1 in total and marine vegetation contributes about 77.1%. Total CO2 emission in Bintan region is up to 0.273 Tg C yr-1, produced by transportation, industry and land use sectors. Therefore, CSI of the Bintan region is 0.98, which is above the global average (i.e. 0.58). This value demonstrates that the degree of sequestration is comparable to the total carbon emission. This result suggests that Bintan’s vegetation has high potential for reducing greenhouse gas effects.

  7. Understanding mechanisms to predict and optimize biochar for agrochemical sorption

    Science.gov (United States)

    Hall, Kathleen; Gámiz, Beatriz; Cox, Lucia; Spokas, Kurt; Koskinen, William

    2017-04-01

    The ability of biochars to bind various organic compounds has been widely studied due to the potential effects on pesticide fate in soil and interest in the adoption of biochar as a "low-cost" filter material. However, the sorptive behaviors of biochars are extremely variable and much of the reported data is limited to specific biochar-chemical interactions. The lack of knowledge regarding biochar sorption mechanisms limits our current ability to predict and optimize biochar's use. This work unveils mechanistic drivers of organic pesticide sorption on biochars through targeted alteration of biochar surface chemistry. Changes in the quantity and type of functional groups on biochars and other black carbon materials were achieved through treatments with H2O2, and CO2, and characterized using Fourier transform infrared spectroscopy and scanning electron microscope (SEM/EDX). The sorption capacities of these treated biochars were subsequently measured to evaluate the effects of different surface moieties on the binding of target herbicides cyhalofop acid ((R)-2-[4-(4-cyano-2-fluorophenoxy)phenoxy]propionic acid) and clomazone (2-[(2-chlorophenyl)methyl]-4,4-dimethyl-1,2-oxazolidin-3-one). Sorption of both herbicides on the studied biochars increased following H2O2 activation; however, the influence of the H2O2 activation on sorption was more pronounced for cyhalofop acid (pKa = 3.9) than clomazone, which is non-ionizable. Increased cyhalofop acid sorption on H2O2 treated biochars can be attributed to the increase in oxygen containing functional groups as well as the decrease in biochar pH. In contrast, CO2 activation reduced the sorption of cyhalofop acid compared to untreated biochar. FTIR data suggest the reduced sorption on CO2 -treated biochar was due to the removal of surface carboxyl groups, further supporting the role of specific functionality in the sorption of ionizable herbicides. Results from this work offer insight into the mechanisms of sorption and

  8. A three-year experiment confirms continuous immobilization of cadmium and lead in contaminated paddy field with biochar amendment

    International Nuclear Information System (INIS)

    Bian, Rongjun; Joseph, Stephen; Cui, Liqiang; Pan, Genxing; Li, Lianqing; Liu, Xiaoyu; Zhang, Afeng; Rutlidge, Helen; Wong, Singwei; Chia, Chee; Marjo, Chris; Gong, Bin; Munroe, Paul; Donne, Scott

    2014-01-01

    Highlights: • Biochar significantly increased soil pH, organic matter and immobilized soil Cd and Pb. • Biochar treatment consistently reduced rice Cd and Pb content in three years. • Contaminated biochar from the study field contained much higher heavy metals than fresh biochar. • Biochar caused metal immobilization primarily due to the precipitation and surface adsorption. - Abstract: Heavy metal contamination in croplands has been a serious concern because of its high health risk through soil-food chain transfer. A field experiment was conducted in 2010–2012 in a contaminated rice paddy in southern China to determine if bioavailability of soil Cd and Pb could be reduced while grain yield was sustained over 3 years after a single soil amendment of wheat straw biochar. Contaminated biochar particles were separated from the biochar amended soil and microscopically analyzed to help determine where, and how, metals were immobilized with biochar. Biochar soil amendment (BSA) consistently and significantly increased soil pH, total organic carbon and decreased soil extractable Cd and Pb over the 3 year period. While rice plant tissues’ Cd content was significantly reduced, depending on biochar application rate, reduction in plant Pb concentration was found only in root tissue. Analysis of the fresh and contaminated biochar particles indicated that Cd and Pb had probably been bonded with the mineral phases of Al, Fe and P on and around and inside the contaminated biochar particle. Immobilization of the Pb and Cd also occurred to cation exchange on the porous carbon structure

  9. A three-year experiment confirms continuous immobilization of cadmium and lead in contaminated paddy field with biochar amendment

    Energy Technology Data Exchange (ETDEWEB)

    Bian, Rongjun [Institute of Resources, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, 1 Weigang, Nanjing 210095 (China); Joseph, Stephen [Institute of Resources, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, 1 Weigang, Nanjing 210095 (China); School of Materials Science and Engineering, University of New South Wales, Sydney, NSW 2052 (Australia); Discipline of Chemistry, University of Newcastle, Callaghan, NSW 2308 (Australia); Cui, Liqiang [Institute of Resources, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, 1 Weigang, Nanjing 210095 (China); Pan, Genxing, E-mail: pangenxing@aliyun.com [Institute of Resources, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, 1 Weigang, Nanjing 210095 (China); Li, Lianqing [Institute of Resources, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, 1 Weigang, Nanjing 210095 (China); Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, 1 Weigang, Nanjing 210095 (China); Liu, Xiaoyu; Zhang, Afeng [Institute of Resources, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, 1 Weigang, Nanjing 210095 (China); Rutlidge, Helen [Solid State and Elemental Analysis Unit, Mark Wainwright Analytical Centre, University of New South Wales, Kensington, NSW 2052 (Australia); Wong, Singwei [Electron Microscope Unit, University of Newcastle, Callaghan, NSW 2308 (Australia); Chia, Chee [School of Materials Science and Engineering, University of New South Wales, Sydney, NSW 2052 (Australia); Marjo, Chris; Gong, Bin [Solid State and Elemental Analysis Unit, Mark Wainwright Analytical Centre, University of New South Wales, Kensington, NSW 2052 (Australia); Munroe, Paul [School of Materials Science and Engineering, University of New South Wales, Sydney, NSW 2052 (Australia); Donne, Scott [Discipline of Chemistry, University of Newcastle, Callaghan, NSW 2308 (Australia)

    2014-05-01

    Highlights: • Biochar significantly increased soil pH, organic matter and immobilized soil Cd and Pb. • Biochar treatment consistently reduced rice Cd and Pb content in three years. • Contaminated biochar from the study field contained much higher heavy metals than fresh biochar. • Biochar caused metal immobilization primarily due to the precipitation and surface adsorption. - Abstract: Heavy metal contamination in croplands has been a serious concern because of its high health risk through soil-food chain transfer. A field experiment was conducted in 2010–2012 in a contaminated rice paddy in southern China to determine if bioavailability of soil Cd and Pb could be reduced while grain yield was sustained over 3 years after a single soil amendment of wheat straw biochar. Contaminated biochar particles were separated from the biochar amended soil and microscopically analyzed to help determine where, and how, metals were immobilized with biochar. Biochar soil amendment (BSA) consistently and significantly increased soil pH, total organic carbon and decreased soil extractable Cd and Pb over the 3 year period. While rice plant tissues’ Cd content was significantly reduced, depending on biochar application rate, reduction in plant Pb concentration was found only in root tissue. Analysis of the fresh and contaminated biochar particles indicated that Cd and Pb had probably been bonded with the mineral phases of Al, Fe and P on and around and inside the contaminated biochar particle. Immobilization of the Pb and Cd also occurred to cation exchange on the porous carbon structure.

  10. Composting-derived organic coating on biochar enhances its affinity to nitrate

    Science.gov (United States)

    Hagemann, Nikolas; Joseph, Stephen; Conte, Pellegrino; Albu, Mihaela; Obst, Martin; Borch, Thomas; Orsetti, Silvia; Subdiaga, Edisson; Behrens, Sebastian; Kappler, Andreas

    2017-04-01

    Biochar is defined charcoal that is produced by the thermal treatment of biomass in the (partial) absence of oxygen (pyrolysis) for non-oxidative applications, especially in agriculture. Due to its high surface area and porous structure, it is suggested as a beneficial soil amendment to increase crop yields and to tailor biogeochemical cycles in agro-ecosystems to reduce both greenhouse gas emissions and nutrient leaching. While early research focused on single applications of large amounts of biochar (>10 t ha-1), economic and ecological boundaries as well as practical considerations and recent findings shifted the focus towards low-dose (˜1 t ha-1) and potentially repeated applications of nutrient-enriched biochars, i.e. biochar-based fertilizers in the root-zone. Thus, biochar must be "loaded" with nutrients prior to its use as a root-zone amendment. Co-composting is suggested as a superior method, as co-composted biochar was shown to promote plant growth and showed the desired slow release of nutrients such as nitrate ("nitrate capture", Kammann et al., 2015 SR5:11080). However, the underlying mechanisms are not understood and nitrate capture has been quantified only for isolated biochars but not for e.g. biochar-amended composts without prior separation of the biochar. In the present study, we used repeated extractions with 2 M KCl and found that up to 30% of the nitrate present in a biochar-amended compost is captured in biochar, although biochar was amended to the initial composting feedstock (manure) only at 4% (w/w). Additionally, we quantified nitrate capture by pristine biochar after soaking the biochar in NH4NO3 solution in the absence of any additional organic carbon and nitrate capture of separated co-composted biochar. Assuming pseudo-first order kinetics for biochar nitrate release, we found an increase of biochar's affinity to nitrate after co-composting. Spectro-microscopical investigations (scanning transmission electron microscopy with electron

  11. Meta analysis on impacts of biochar on trace greenhouse gases emissions from staple crops in China%Meta分析生物质炭对中国主粮作物痕量温室气体排放的影响

    Institute of Scientific and Technical Information of China (English)

    赵红; 孙滨峰; 逯非; 王效科; 张国; 王海勇; 张利钧; 张梦汝

    2017-01-01

    Biochar inputs have important impliations for agricultural soils, also have a significant influence on greenhouse gas emissions. This paper conducted a meta-analysis to quantitatively synthesize influence of biochar inputs on trace greenhouse gases from staple crops in China, and explored available mitigation method. The data were collected from published papers before December, 2016. The effective data were selected from the literatures including: 1) both treatments with and without biochar input; 2) methane and nitrous oxide emissions; 3) field experiment; 4) greenhouse gases from rice planting to maturity;5) reliable measurements; 6) clear and reliable yield data; 7) wheat, rice and maize in China. A total of 134 datasets were obtained. They were classified by rice paddy field and dry land, rotary tillage and plowing tillage, different biochar amount and biochar types. The response ratio was calculated with the biochar input as the treatment and no biochar input as the control. The global warming potential and the greenhouse gas intensity were calculated. The results showed that the biochar input averagely decreased the global warming potential by 18% compared with no biochar input. The global warming potential decrease by inputting biochar in the dry land was significantly higher than that in the paddy field (P<0.01). The reduction in global warming potential by inputting less than 10 t/hm2 biochar was higher than that by inputting the biochar higher than 10 t/hm2. Plowing tillage could significantly reduce the GWP by 19%. The rate of change in GWP was highest in the other biochar (41%), followed by maize biochar (20%) and wheat biochar (13%). The biochar input didn't greatly affect the methane emission in paddy field. However, the rotary tillage could significantly increase the methane emission by 30% and the inputting biochar without N application also greatly increase the methane emission. The biochar input average decreased the nitric oxides by 41% for the

  12. Dynamics and climate change mitigation potential of soil organic carbon sequestration.

    Science.gov (United States)

    Sommer, Rolf; Bossio, Deborah

    2014-11-01

    When assessing soil organic carbon (SOC) sequestration and its climate change (CC) mitigation potential at global scale, the dynamic nature of soil carbon storage and interventions to foster it should be taken into account. Firstly, adoption of SOC-sequestration measures will take time, and reasonably such schemes could only be implemented gradually at large-scale. Secondly, if soils are managed as carbon sinks, then SOC will increase only over a limited time, up to the point when a new SOC equilibrium is reached. This paper combines these two processes and predicts potential SOC sequestration dynamics in agricultural land at global scale and the corresponding CC mitigation potential. Assuming that global governments would agree on a worldwide effort to gradually change land use practices towards turning agricultural soils into carbon sinks starting 2014, the projected 87-year (2014-2100) global SOC sequestration potential of agricultural land ranged between 31 and 64 Gt. This is equal to 1.9-3.9% of the SRES-A2 projected 87-year anthropogenic emissions. SOC sequestration would peak 2032-33, at that time reaching 4.3-8.9% of the projected annual SRES-A2 emission. About 30 years later the sequestration rate would have reduced by half. Thus, SOC sequestration is not a C wedge that could contribute increasingly to mitigating CC. Rather, the mitigation potential is limited, contributing very little to solving the climate problem of the coming decades. However, we deliberately did not elaborate on the importance of maintaining or increasing SOC for sustaining soil health, agro-ecosystem functioning and productivity; an issue of global significance that deserves proper consideration irrespectively of any potential additional sequestration of SOC. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Biochar: a green sorbent to sequester acidic organic contaminants

    Science.gov (United States)

    Sigmund, Gabriel; Kah, Melanie; Sun, Huichao; Hofmann, Thilo

    2015-04-01

    Biochar is a carbon rich product of biomass pyrolysis that exhibits a high sorption potential towards a wide variety of inorganic and organic contaminants. Because it is a valuable soil additive and a potential carbon sink that can be produced from renewable resources, biochar has gained growing attention for the development of more sustainable remediation strategies. A lot of research efforts have been dedicated to the sorption of hydrophobic contaminants and metals to biochar. Conversely, the understanding of the sorption of acidic organic contaminants remains limited, and questions remain on the influence of biochar characteristics (e.g. ash content) on the sorption behaviour of acidic organic contaminants. To address this knowledge gap, sorption batch experiments were conducted with a series of structurally similar acidic organic contaminants covering a range of dissociation constant (2,4-D, MCPA, 2,4-DB and triclosan). The sorbents selected for experimentation included a series of 10 biochars covering a range of characteristics, multiwalled carbon nanotubes as model for pure carbonaceous phases, and an activated carbon as benchmark. Overall, sorption coefficient [L/kg] covered six orders of magnitude and generally followed the order 2,4-D pH dependent lipophilicity ratio (i.e. D instead of Kow), ash content and ionic strength are key factors influencing the sorption of acidic organic contaminants to biochars. Overall, the identified factors, as well as the environmental matrix, should be carefully considered when selecting the type of biochar for sequestration purposes.

  14. Physical and chemical characterization of waste wood derived biochars.

    Science.gov (United States)

    Yargicoglu, Erin N; Sadasivam, Bala Yamini; Reddy, Krishna R; Spokas, Kurt

    2015-02-01

    Biochar, a solid byproduct generated during waste biomass pyrolysis or gasification in the absence (or near-absence) of oxygen, has recently garnered interest for both agricultural and environmental management purposes owing to its unique physicochemical properties. Favorable properties of biochar include its high surface area and porosity, and ability to adsorb a variety of compounds, including nutrients, organic contaminants, and some gases. Physical and chemical properties of biochars are dictated by the feedstock and production processes (pyrolysis or gasification temperature, conversion technology and pre- and post-treatment processes, if any), which vary widely across commercially produced biochars. In this study, several commercially available biochars derived from waste wood are characterized for physical and chemical properties that can signify their relevant environmental applications. Parameters characterized include: physical properties (particle size distribution, specific gravity, density, porosity, surface area), hydraulic properties (hydraulic conductivity and water holding capacity), and chemical and electrochemical properties (organic matter and organic carbon contents, pH, oxidation-reduction potential and electrical conductivity, zeta potential, carbon, nitrogen and hydrogen (CHN) elemental composition, polycyclic aromatic hydrocarbons (PAHs), heavy metals, and leachable PAHs and heavy metals). A wide range of fixed carbon (0-47.8%), volatile matter (28-74.1%), and ash contents (1.5-65.7%) were observed among tested biochars. A high variability in surface area (0.1-155.1g/m(2)) and PAH and heavy metal contents of the solid phase among commercially available biochars was also observed (0.7-83 mg kg(-1)), underscoring the importance of pre-screening biochars prior to application. Production conditions appear to dictate PAH content--with the highest PAHs observed in biochar produced via fast pyrolysis and lowest among the gasification

  15. Effect of Pinus radiata derived biochars on soil sorption and desorption of phenanthrene

    International Nuclear Information System (INIS)

    Zhang Honghua; Lin Kunde; Wang Hailong; Gan, Jay

    2010-01-01

    Biochars are anthropogenic carbonaceous sorbent and their influences on the sorption of environmental contaminants need to be characterized. Here we evaluated the effect of Pinus radiata derived biochars on soil sorption and desorption of phenanthrene. Two biochars separately produced at 350 o C and 700 o C and three soils were tested. Biochar amendment generally enhanced the soil sorption of phenanthrene. The biochar produced at 700 o C generally showed a greater ability at enhancing a soil's sorption ability than that prepared at 350 o C. The single-step desorption measurement showed an apparent hysteresis in biochar-amended soils. After 28 d equilibration, the sorptive capacity of biochar-amended soil (with an organic carbon content of 0.16%) significantly decreased. This study clearly suggested that biochar application enhanced soil sorption of hydrophobic organic compounds, but the magnitude of enhancement depended on the preparation of biochars, the indigenous soil organic carbon levels, and the contact time between soil and biochar. - Pinus radiata derived biochars influence soil sorption and desorption of phenanthrene.

  16. Effects of application of inhibitors and biochar to fertilizer on gaseous nitrogen emissions from an intensively managed wheat field.

    Science.gov (United States)

    He, Tiehu; Liu, Deyan; Yuan, Junji; Luo, Jiafa; Lindsey, Stuart; Bolan, Nanthi; Ding, Weixin

    2018-07-01

    The effects of biochar combined with the urease inhibitor, hydroquinone, and nitrification inhibitor, dicyandiamide, on gaseous nitrogen (N 2 O, NO and NH 3 ) emissions and wheat yield were examined in a wheat crop cultivated in a rice-wheat rotation system in the Taihu Lake region of China. Eight treatments comprised N fertilizer at a conventional application rate of 150kgNha -1 (CN); N fertilizer at an optimal application rate of 125kgNha -1 (ON); ON+wheat-derived biochar at rates of 7.5 (ONB1) and 15tha -1 (ONB2); ON+nitrification and urease inhibitors (ONI); ONI+wheat-derived biochar at rates of 7.5 (ONIB1) and 15tha -1 (ONIB2); and, a control. The reduced N fertilizer application rate in the ON treatment decreased N 2 O, NO, and NH 3 emissions by 45.7%, 17.1%, and 12.3%, respectively, compared with the CN treatment. Biochar application increased soil organic carbon, total N, and pH, and also increased NH 3 and N 2 O emissions by 32.4-68.2% and 9.4-35.2%, respectively, compared with the ON treatment. In contrast, addition of urease and nitrification inhibitors decreased N 2 O, NO, and NH 3 emissions by 11.3%, 37.9%, and 38.5%, respectively. The combined application of biochar and inhibitors more effectively reduced N 2 O and NO emissions by 49.1-49.7% and 51.7-55.2%, respectively, compared with ON and decreased NH 3 emission by 33.4-35.2% compared with the ONB1 and ONB2 treatments. Compared with the ON treatment, biochar amendment, either alone or in combination with inhibitors, increased wheat yield and N use efficiency (NUE), while addition of inhibitors alone increased NUE but not wheat yield. We suggest that an optimal N fertilizer rate and combined application of inhibitors+biochar at a low application rate, instead of biochar application alone, could increase soil fertility and wheat yields, and mitigate gaseous N emissions. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Biochar feedstock and pyrolysis temperature effects on leachate: DOC characteristics and nitrate losses from a Brazilian Cerrado Arenosol mixed with agricultural waste biochars.

    Science.gov (United States)

    Speratti, Alicia B; Johnson, Mark S; Sousa, Heiriane Martins; Dalmagro, Higo J; Couto, Eduardo Guimarães

    2018-04-01

    Dissolved organic carbon (DOC) leached from Brazilian Cerrado Arenosols can lead to carbon (C) losses and lower soil fertility, while excessive nutrient, e.g. nitrate (NO 3 - ), leaching can potentially cause water contamination. As biochar has been shown to stabilize C and retain soil nutrients, a greenhouse experiment was conducted to test different biochars' contributions to DOC and NO 3 - leaching from a sandy soil. Biochars were made from four local agricultural waste feedstocks (cotton residue, swine manure, eucalyptus sawmill residue, sugarcane filtercake) pyrolysed at 400, 500 and 600 °C. Biochar was mixed with soil at 5% weight in pots and maize seeds planted. Leachate was collected weekly for six weeks and analyzed for DOC and NO 3 - concentrations, while fluorescence spectroscopy with parallel factor analysis (PARAFAC) was used to interpret DOC characteristics. Cotton and swine manure biochar treatments had higher DOC and NO 3 - losses than eucalyptus biochar, filtercake biochar, and control treatments. Cotton and swine manure biochar treatments at high temperatures lost mostly terrestrial, humified DOC, while swine manure, filtercake, and eucalyptus biochars at low temperatures lost mostly labile, microbially-derived DOC. Through the practical use of fluorescence spectroscopy, our study identified filtercake and eucalyptus biochars as most promising for retaining DOC and NO 3 - in a Cerrado Arenosol, potentially reducing stable C and nutrient losses. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Mapping of soil organic carbon stocks for spatially explicit assessments of climate change mitigation potential

    International Nuclear Information System (INIS)

    Vågen, Tor-Gunnar; Winowiecki, Leigh A

    2013-01-01

    Current methods for assessing soil organic carbon (SOC) stocks are generally not well suited for understanding variations in SOC stocks in landscapes. This is due to the tedious and time-consuming nature of the sampling methods most commonly used to collect bulk density cores, which limits repeatability across large areas, particularly where information is needed on the spatial dynamics of SOC stocks at scales relevant to management and for spatially explicit targeting of climate change mitigation options. In the current study, approaches were explored for (i) field-based estimates of SOC stocks and (ii) mapping of SOC stocks at moderate to high resolution on the basis of data from four widely contrasting ecosystems in East Africa. Estimated SOC stocks for 0–30 cm depth varied both within and between sites, with site averages ranging from 2 to 8 kg m −2 . The differences in SOC stocks were determined in part by rainfall, but more importantly by sand content. Results also indicate that managing soil erosion is a key strategy for reducing SOC loss and hence in mitigation of climate change in these landscapes. Further, maps were developed on the basis of satellite image reflectance data with multiple R-squared values of 0.65 for the independent validation data set, showing variations in SOC stocks across these landscapes. These maps allow for spatially explicit targeting of potential climate change mitigation efforts through soil carbon sequestration, which is one option for climate change mitigation and adaptation. Further, the maps can be used to monitor the impacts of such mitigation efforts over time. (letter)

  19. Biochar effects on soils: overview and knowledge gaps

    Science.gov (United States)

    Verheijen, F. G. A.; Jeffery, S.; Bastos, A. C.; van der Velde, M.

    2012-04-01

    One of the cornerstones of the sustainable biochar concept is to improve, or at least to not deteriorate, soil quality and functioning. The idea of global sustainable biochar systems, with biochar applied to global cropland and grassland soils, has highlighted limitations in: i) current scientific understanding of biochar interactions with soil components, ii) the capacity to assess ecosystem services provided by soils, and iii) the uncertainty in spatio-temporal representation of both (i) and (ii). Pyrolysis conditions and feedstock characteristics largely control the physico-chemical properties of the resulting biochar, which in turn determine the suitability for a given application. Soils are highly heterogeneous systems at a range of scales. Combinations of land use, soil management and changing climatic conditions further enhance this heterogeneity. While this leads to difficulties in identifying the underlying mechanisms behind reported effects in the scientific literature, it also provides an opportunity for 'critical matching' of biochar properties that are best suited to a particular site (depending on soil type, hydrology, climate, land use, soil contaminants, etc.). Biochar's relatively long mean residence times in soils (100s of years) make it a potential instrument for sequestering carbon (if done sustainably). However, that same long mean residence time sets biochar apart from conventional soil amendments (such as manures and other organic fertilizers) that are considered as transient in the soil (1-10s of years). The functional life time of biochar in soils essentially moves biochar from a soil management tool to a geo-engineering technique. One of the consequences is that desired ecosystem services that are provided by soils, have to be projected for the same time period. This presentation aims to discuss critical knowledge gaps in biochar-soil-ecosystem interactions against a background of ecosystem services.

  20. Characterization the potential of biochar from cow and pig manure for geoecology application

    Science.gov (United States)

    Gunamantha, I. M.; Widana, G. A. B.

    2018-03-01

    Biochar is a solid product generated from the carbonization of biomass with various potential benefits. The utilisation of biochar should be adapted to its characteristic which is mainly influenced by its feedstock. In this study, cow and pig manure biochar generated by a conventional process, were characterized by its physical and chemical analysis and its potential to be used as soil amendment. For this purpose, several main parameters were analyzed: organic carbon, Nutrient (total-N, available P and K) status, Cation Exchange Capacity (CEC), proximate data analysis (moisture content, ash, volatile matter and fixed carbon) and its ash composition. The comparison between biochar and feedstock will be based on these parameters. The results of this study show that the organic carbon, available P, ash, and fixed carbon content of pig-manure biochar is higher than cow manure-derived biochar; while total-N, available K, CEC and volatile matter is lower. On its ash composition, the pig manure-derived biochar is dominated by SiO2, Al2O3, Fe2O3, P2O5, and CaO while the cow manure-derived biochar is dominated by SiO2, CaO, Al2O3, K2O, and P2O5. However, both biochar show potential for improving soil quality and reducing carbon emission from animal manure.

  1. The costs of mitigating carbon emissions in China: findings from China MARKAL-MACRO modeling

    International Nuclear Information System (INIS)

    Chen Wenying

    2005-01-01

    In this paper MARKAL-MACRO, an integrated energy-environment-economy model, is used to generate China's reference scenario for future energy development and carbon emission through the year 2050. The results show that with great efforts on structure adjustment, energy efficiency improvement and energy substitution, China's primary energy consumption is expected to be 4818 Mtce and carbon emission 2394 MtC by 2050 with annual decrease rate of 3% for the carbon intensity per GDP during the period 2000-2050. On the basis of this reference scenario, China's marginal abatement cost curves of carbon for the year 2010, 2020 and 2030 are derived from the model, and the impacts of carbon emission abatement on GDP are also simulated. The results are compared with those from other sources. The research shows that the marginal abatement costs vary from 12US$/tC to 216US$/tC and the rates of GDP losses relative to reference range from 0.1% to 2.54% for the reduction rates between 5% and 45%. Both the marginal abatement costs and the rates of GDP losses further enlarge on condition that the maximum capacity of nuclear power is constrained to 240 GW or 160 GW by 2050. The paper concludes that China's costs of carbon abatement is rather high in case of carbon emissions are further cut beyond the reference scenario, and China's carbon abatement room is limited due to her coal-dominant energy resource characteristic. As economic development still remains the priority and per capita income as well as per capita carbon emission are far below the world average, it will be more realistic for China to make continuous contributions to combating global climate change by implementing sustainable development strategy domestically and playing an active role in the international carbon mitigation cooperation mechanisms rather than accepting a carbon emission ceiling

  2. Land use strategies to mitigate climate change in carbon dense temperate forests.

    Science.gov (United States)

    Law, Beverly E; Hudiburg, Tara W; Berner, Logan T; Kent, Jeffrey J; Buotte, Polly C; Harmon, Mark E

    2018-04-03

    Strategies to mitigate carbon dioxide emissions through forestry activities have been proposed, but ecosystem process-based integration of climate change, enhanced CO 2 , disturbance from fire, and management actions at regional scales are extremely limited. Here, we examine the relative merits of afforestation, reforestation, management changes, and harvest residue bioenergy use in the Pacific Northwest. This region represents some of the highest carbon density forests in the world, which can store carbon in trees for 800 y or more. Oregon's net ecosystem carbon balance (NECB) was equivalent to 72% of total emissions in 2011-2015. By 2100, simulations show increased net carbon uptake with little change in wildfires. Reforestation, afforestation, lengthened harvest cycles on private lands, and restricting harvest on public lands increase NECB 56% by 2100, with the latter two actions contributing the most. Resultant cobenefits included water availability and biodiversity, primarily from increased forest area, age, and species diversity. Converting 127,000 ha of irrigated grass crops to native forests could decrease irrigation demand by 233 billion m 3 ⋅y -1 Utilizing harvest residues for bioenergy production instead of leaving them in forests to decompose increased emissions in the short-term (50 y), reducing mitigation effectiveness. Increasing forest carbon on public lands reduced emissions compared with storage in wood products because the residence time is more than twice that of wood products. Hence, temperate forests with high carbon densities and lower vulnerability to mortality have substantial potential for reducing forest sector emissions. Our analysis framework provides a template for assessments in other temperate regions. Copyright © 2018 the Author(s). Published by PNAS.

  3. Land use strategies to mitigate climate change in carbon dense temperate forests

    Science.gov (United States)

    Hudiburg, Tara W.; Berner, Logan T.; Kent, Jeffrey J.; Buotte, Polly C.; Harmon, Mark E.

    2018-01-01

    Strategies to mitigate carbon dioxide emissions through forestry activities have been proposed, but ecosystem process-based integration of climate change, enhanced CO2, disturbance from fire, and management actions at regional scales are extremely limited. Here, we examine the relative merits of afforestation, reforestation, management changes, and harvest residue bioenergy use in the Pacific Northwest. This region represents some of the highest carbon density forests in the world, which can store carbon in trees for 800 y or more. Oregon’s net ecosystem carbon balance (NECB) was equivalent to 72% of total emissions in 2011–2015. By 2100, simulations show increased net carbon uptake with little change in wildfires. Reforestation, afforestation, lengthened harvest cycles on private lands, and restricting harvest on public lands increase NECB 56% by 2100, with the latter two actions contributing the most. Resultant cobenefits included water availability and biodiversity, primarily from increased forest area, age, and species diversity. Converting 127,000 ha of irrigated grass crops to native forests could decrease irrigation demand by 233 billion m3⋅y−1. Utilizing harvest residues for bioenergy production instead of leaving them in forests to decompose increased emissions in the short-term (50 y), reducing mitigation effectiveness. Increasing forest carbon on public lands reduced emissions compared with storage in wood products because the residence time is more than twice that of wood products. Hence, temperate forests with high carbon densities and lower vulnerability to mortality have substantial potential for reducing forest sector emissions. Our analysis framework provides a template for assessments in other temperate regions. PMID:29555758

  4. Field applications of pure biochar in the North Sea region and across Europe

    DEFF Research Database (Denmark)

    Ruysschaert, Greet; Nelissen, Victoria; Postma, Romke

    2016-01-01

    As demonstrated by several scientific studies there is no doubt that biochar in general is very recalcitrant compared to other organic matter additions and soil organic matter fractions and also that it is possible to sequester carbon at a climate change relevant time scale (~100 years or more......) by soil application of biochar. However, the carbon stability of biochar in soil is strongly correlated with the degree of thermal alteration of the original feedstock (the lower the temperature, the larger the labile fraction) and in depth understanding of the technology used and its effect...... on the biochar quality is necessary in order to produce the most beneficial biochars for soil application. Beside carbon sequestration in soil biochar may improve the GHG balance by reducing N2O and CH4 soil emissions, although contrasting results are found in the literature. The mechanisms behind...

  5. Biochar from swine manure solids: influence on carbon sequestration and Olsen phosphorus and mineral nitrogen dynamics in soil with and without digestate incorporation

    Directory of Open Access Journals (Sweden)

    Rosa Marchetti

    2012-05-01

    Full Text Available Interest in biochar (BC has grown dramatically in recent years, due mainly to the fact that its incorporation into soil reportedly enhances carbon sequestration and fertility. Currently, BC types most under investigation are those obtained from organic matter (OM of plant origin. As great amounts of manure solids are expected to become available in the near future, thanks to the development of technologies for the separation of the solid fraction of animal effluents, processing of manure solids for BC production seems an interesting possibility for the recycling of OM of high nutrient value. The aim of this study was to investigate carbon (C sequestration and nutrient dynamics in soil amended with BC from dried swine manure solids. The experiment was carried out in laboratory microcosms on a silty clay soil. The effect on nutrient dynamics of interaction between BC and fresh digestate obtained from a biogas plant was also investigated to test the hypothesis that BC can retain nutrients. A comparison was made of the following treatments: soil amended with swine manure solids (LC, soil amended with charred swine manure solids (LT, soil amended with wood chip (CC, soil amended with charred wood chip (CT, soil with no amendment as control (Cs, each one of them with and without incorporation of digestate (D for a total of 10 treatments. Biochar was obtained by treating OM (wood chip or swine manure with moisture content of less than 10% at 420°C in anoxic conditions. The CO2-C release and organic C, available phosphorus (P (Olsen P, POls and inorganic (ammonium+nitrate nitrogen (N (Nmin contents at the start and three months after the start of the experiment were measured in the amended and control soils. After three months of incubation at 30°C, the CO2-C emissions from soil with BC (CT and LT, ±D were the same as those in the control soil (Cs and were lower than those in the soils with untreated amendments (CC and LC, ±D. The organic C content

  6. Sorption of Pharmaceuticals, Heavy Metals, and Herbicides to Biochar in the Presence of Biosolids.

    Science.gov (United States)

    Bair, Daniel A; Mukome, Fungai N D; Popova, Inna E; Ogunyoku, Temitope A; Jefferson, Allie; Wang, Daoyuan; Hafner, Sarah C; Young, Thomas M; Parikh, Sanjai J

    2016-11-01

    Agricultural practices are increasingly incorporating recycled waste materials, such as biosolids, to provide plant nutrients and enhance soil functions. Although biosolids provide benefits to soil, municipal wastewater treatment plants receive pharmaceuticals and heavy metals that can accumulate in biosolids, and land application of biosolids can transfer these contaminants to the soil. Environmental exposure of these contaminants may adversely affect wildlife, disrupt microbial communities, detrimentally affect human health through long-term exposure, and cause the proliferation of antibiotic-resistant bacteria. This study considers the use of biochar co-amendments as sorbents for contaminants from biosolids. The sorption of pharmaceuticals (ciprofloxacin, triclocarban, triclosan), and heavy metals (Cu, Cd, Ni, Pb) to biochars and biochar-biosolids-soil mixtures was examined. Phenylurea herbicide (monuron, diuron, linuron) sorption was also studied to determine the potential effect of biochar on soil-applied herbicides. A softwood (SW) biochar (510°C) and a walnut shell (WN) biochar (900°C) were used as contrasting biochars to highlight potential differences in biochar reactivity. Kaolinite and activated carbon served as mineral and organic controls. Greater sorption for almost all contaminants was observed with WN biochar over SW biochar. The addition of biosolids decreased sorption of herbicides to SW biochar, whereas there was no observable change with WN biochar. The WN biochar showed potential for reducing agrochemical and contaminant transport but may inhibit the efficacy of soil-applied herbicides. This study provides support for minimizing contaminant mobility from biosolids using biochar as a co-amendment and highlights the importance of tailoring biochars for specific characteristics through feedstock selection and pyrolysis-gasification conditions. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science

  7. Effects of pressure on morphology and structure of bio-char from pressurized entrained-flow pyrolysis of microalgae

    Directory of Open Access Journals (Sweden)

    Kristina Maliutina

    2018-06-01

    Full Text Available The present dataset describes the entrained-flow pyrolysis of Microalgae Chlorella vulgaris and the results obtained during bio-char characterization. The dataset includes a brief explanation of the experimental procedure, experimental conditions and the influence of pyrolysis conditions on bio-chars morphology and carbon structure. The data show an increase in sphericity and surface smoothness of bio-chars at higher pressures and temperatures. Data confirmed that the swelling ratio of bio-chars increased with pressure up to 2.0 MPa. Consequently, changes in carbon structure of bio-chars were investigated using Raman spectroscopy. The data showed the increase in carbon order of chars at elevated pressures. Changes in the chemical structure of bio-char as a function of pyrolysis conditions were investigated using FTIR analysis. Keywords: Microalgae, Bio-char, Particle swelling, Pressurized pyrolysis

  8. Return to 1990: The cost of mitigating United States carbon emissions in the post-2000 period

    Energy Technology Data Exchange (ETDEWEB)

    Edmonds, J.A.; Kim, S.H.; MacCracken, C.N.; Sands, R.D.; Wise, M.A.

    1997-10-01

    The Second Generation Model (SGM) is employed to examine four hypothetical agreements to reduce emissions in Annex 1 nations (OECD nations plus most of the nations of Eastern Europe and the former Soviet Union) to levels in the neighborhood of those which existed in 1990, with obligations taking effect in the year 2010. The authors estimate the cost to the US of complying with such agreements under three distinct conditions: no trading of emissions rights, trading of emissions rights only among Annex 1 nations, and a fully global trading regime. The authors find that the marginal cost of returning to 1990 emissions levels in the US in the absence of trading opportunities is approximately $108 per metric ton carbon in 2010. The total cost in that year is approximately 0.2% of GDP. International trade in emissions permits lowers the cost of achieving any mitigation objective by equalizing the marginal cost of carbon mitigation among countries. For the four mitigation scenarios in this study, economic costs to the US remain below 1% of GDP through at least the year 2020.

  9. Carbon flows and economic evaluation of mitigation options in Tanzania's forest sector

    International Nuclear Information System (INIS)

    Makundi, W.; Okiting'ati, Aku

    1995-01-01

    This paper presents estimates of the rate of forest use, deforestation and forest degradation, as well as the corresponding carbon flows, in the Tanzanian forest sector. It is estimated that the country lost 525,000 ha of forests in 1990, with associated committed emissions of 31.5 Mt carbon (MtC), and 7.05 MtC of committed carbon sequestration. The paper then describes the possible response options in the forest sector to mitigate GHG emissions, and evaluates the most stable subset of these - i.e. forest conservation, woodfuel plantations and agroforestry. The conservation options were found to cost an average of US$1.27 per tonne of carbon (tC) conserved. Five options for fuelwood plantations and agroforestry, with two different ownership regimes were evaluated. Each one of the options gives a positive net present value at low rates of discount, ranging from U.S.$1.06 to 3.4/tC of avoided emissions at 0% discount rate. At 10% discount, the eucalyptus and maize option has a highest PNV of U.S.$1.73/tC, and the government plantation gives a negative PNV (loss) of U.S.$ 0.13 tC sequestered. The options with a private/community type of ownership scheme fared better than government run options. This conclusion also held true when ranking the options by the BRAC indicator, with the government fuelwood plantation ranked the lowest, and the private agroforestry option of eucalyptus and corn performing best. The mitigation options evaluated here show that the forest sector in Tanzania has one of the most cost-effective GHG mitigation opportunities in the world, and they are within the development aspirations of the country. (Author)

  10. Analysis of carbon mitigation technology to 2050 in Japan through integrated energy economic model

    International Nuclear Information System (INIS)

    Komiyama, Ryoichi; Suzuki, Kengo; Nagatomi, Yu; Matsuo, Yuji; Suehiro, Shigeru

    2011-01-01

    This paper describes the outline of integrated energy economic model and calculated result concerning the outlook of energy and carbon dioxide emissions in Japan to 2050. The energy model developed in this paper is integrated one which consistently combines econometric model endogenously generating socio-economic outlook and bottom-up type technology model, MARKAL, identifying cost-minimizing optimal mix of various energy technologies. In reference scenario which imposes no carbon emissions constraint, CO 2 emission in 2050 will decrease by approximately 40% from the level of emissions in 2005. In carbon-constraints scenario, imposing emissions cap of 60% reduction by 2050 from the emissions in 2005, natural gas-fired power plant equipped with CCS and renewable energy are expected to expand its portion in power generation mix. In transportation sector on this scenario, clean energy vehicles such as electric vehicle (EV) and hydrogen fuel cell vehicle (FCV) will be deployed and contribute to mitigate CO 2 emissions. (author)

  11. Review on Biochar Decomposition and Priming Effect%黑炭分解的影响因素及其激发效应机制研究进展

    Institute of Scientific and Technical Information of China (English)

    巢林; 张伟东; 汪思龙

    2017-01-01

    Biochar is a continuum of C-rich solid organic material produced by incomplete combustion of biomass and fossil fuel consumption.Biochar is ubiquitous in the environment,and application of biochar to soil has the potential to enhance long-term sequestration of carbon.Biochar plays an important role in global C cycles and considered as a strategy to mitigate global change.However,knowledge of biochar decomposition and the mechanisms responsible for biochar induced priming effect remains limited.It is necessarily therefore to research on factors controlling biochar decomposition and the possible mechanisms for priming effect.Thus,the aim of this study is to review the decomposition of biochar and priming effect.This review includes decomposition of biochar,the effects of climate/incubation,soil characteristics,biochar properties,and disturbances on biochar decomposition.Methods used to measure the priming effect induced by biochar,direction and magnitude of the biochar priming effects and the possible mechanisms for biochar induced priming effect were summarized.Lack of current studies on biochar decomposition and priming effect,and perspectives for incorporating the biochar into soil organic matter and ecosystem models were also discussed.%黑炭是生物质和化石燃料不完全燃烧形成的富含C的固体有机材料,广泛存在于环境中,具有长期存储C的潜力,在全球C循环中具有重要作用,并且被作为减缓气候变化的重要策略.然而,当前我们有关黑炭分解及其激发效应机制的知识是有限的.因此,需要全面深入了解影响黑炭分解的控制因素及其激发效应的可能机制.本文首先对黑炭分解研究进行综合分析,详细评述了气候/培养条件,土壤特征、黑炭性质以及干扰因素对黑炭分解的影响及其机理.其次,介绍了黑炭激发效应的测定方法,重点综述了黑炭激发效应大小与方向的影响因素及其可能机制.最后,指出了

  12. Selected dark sides of biomass-derived biochars as environmental amendments

    Institute of Scientific and Technical Information of China (English)

    Zien Chen; Lei Luo; Diyi Xiao; Jitao Lv; Bei Wen; Yibing Ma; Shuzhen Zhang

    2017-01-01

    With the rapid increase in the application of biochars as amendments,studies are needed to clarify the possible environmental risks derived from biochars to use safely the biomass resources.This work reported selected dark sides of maize straw-and swine manurederived biochars pyrolyzed at 300 and 500℃C.During the pyrolysis processes,total heavy metals in the biochars were enriched greatly accompanying with considerable emission of the heavy metals into atmosphere and the trends became increasingly obvious with pyrolysis temperature.Meanwhile,the biochars showed distinctly decreased available heavy metals compared with raw feedstocks,which could be mainly attributed to the sorption by the inorganics in the biochars.The water-and acid-washing treatments significantly increased the releasing risks of heavy metals from biochars into the environments.Electron paramagnetic resonance analysis indicated that persistent free radicals,emerged strongly in the biochars as a function of the aromatization of biomass feedstocks,were free from the influence of water-,acid-,or organic-washing of the biochars and could remain stable even after aged in soils for 30 days.Dissolved biochars,highly produced during pyrolysis processes,showed distinct properties including lower molecular weight distribution while higher aromaticity compared with soil dissolved organic carbon.The results of this study provide important perspectives on the safe usage of biochars as agricultural/environmental amendments.

  13. Interactive priming of biochar and labile organic matter mineralization in a smectite-rich soil.

    Science.gov (United States)

    Keith, Alexandra; Singh, Balwant; Singh, Bhupinder Pal

    2011-11-15

    Biochar is considered as an attractive tool for long-term carbon (C) storage in soil. However, there is limited knowledge about the effect of labile organic matter (LOM) on biochar-C mineralization in soil or the vice versa. An incubation experiment (20 °C) was conducted for 120 days to quantify the interactive priming effects of biochar-C and LOM-C mineralization in a smectitic clayey soil. Sugar cane residue (source of LOM) at a rate of 0, 1, 2, and 4% (w/w) in combination with two wood biochars (450 and 550 °C) at a rate of 2% (w/w) were applied to the soil. The use of biochars (~ -36‰) and LOM (-12.7‰) or soil (-14.3‰) with isotopically distinct δ(13)C values allowed the quantification of C mineralized from biochar and LOM/soil. A small fraction (0.4-1.1%) of the applied biochar-C was mineralized, and the mineralization of biochar-C increased significantly with increasing application rates of LOM, especially during the early stages of incubation. Concurrently, biochar application reduced the mineralization of LOM-C, and the magnitude of this effect increased with increasing rate of LOM addition. Over time, the interactive priming of biochar-C and LOM-C mineralization was stabilized. Biochar application possesses a considerable merit for long-term soil C-sequestration, and it has a stabilizing effect on LOM in soil.

  14. The near-term impacts of carbon mitigation policies on manufacturing industries

    International Nuclear Information System (INIS)

    Morgenstern, Richard D.; Ho Mun; Shih, J.-S.; Zhang Xuehua

    2004-01-01

    Who pays for new policies to reduce carbon dioxide and other greenhouse gas emissions in the United States? This paper considers a slice of the question by examining the near-term impact on domestic manufacturing industries of both upstream (economy-wide) and downstream (electric power industry only) carbon mitigation policies. Detailed Census data on the electricity use of four-digit manufacturing industries are combined with input-output information on inter-industry purchases to paint a detailed picture of carbon use, including effects on final demand. Regional information on electricity supply and use by region is also incorporated. A relatively simple model is developed which yields estimates of the relative burdens within the manufacturing sector of alternative carbon policies. Overall, the principal conclusion is that within the manufacturing sector (which by definition excludes coal production and electricity generation), only a small number of industries would bear a disproportionate short-term burden of a carbon tax or similar policy. Not surprisingly, an electricity-only policy affects very different manufacturing industries than an economy-wide carbon tax

  15. Carrot, Corn, Lettuce and Soybean Nutrient Contents are Affected by Biochar

    Science.gov (United States)

    Biochar, the carbon-rich material remaining after pyrolysis of cellulosic and manure feedstocks, has the potential as a soil amendment to sequester carbon and to improve soil water-holding and nutrient properties- thereby enhancing plant growth. However, biochar produced from so...

  16. Mitigation potential of carbon dioxide emissions by management of forests in Asia

    International Nuclear Information System (INIS)

    Brown, Sandra

    1996-01-01

    Substantial areas of available forest lands in Asia could be managed for conservation and sequestration of carbon. These include 133 Mha for establishment of plantations and agroforests, 33.5 Mha for slowed tropical deforestation, and 48 Mha for natural and assisted regeneration of tropical forests. The potential quantity of C conserved and sequestered on these lands was conservatively estimated to be 24 Pg C (1 Pg = 10 15 g) by 2050. Establishment of plantations and agroforests could account for 58% of the total mitigation potential on Asian forest lands. The amount of C that could be conserved and sequestered by all forest sector practices by 2050 under baseline conditions is equivalent to about 4% of the global fossil fuel emissions over the same time period. The uncertainties in estimates of mitigation potential presented in this paper are likely to be high, particularly with respect to the land area available for forestation projects and the rate at which deforestation could be slowed. The uncertainty terms are compounded in making global estimates of the mitigation potential, perhaps to large proportions, but to what extent is presently unknown. An example of a forestry project in China whose main goal was to rehabilitate degraded lands and at the same time provide biomass fuel for the local rural inhabitants is presented to demonstrate that C sequestration, and thus mitigation, is an added benefit to more traditional uses of forests. This forestry project is currently mitigating CO 2 emissions (up to 1.4 Mg C ha -1 yr -1 ) and, with a change in management, an almost two-fold increase in the current reduction of net C emissions would occur. 33 refs, 2 figs, 2 tabs

  17. Using the Lashof Accounting Methodology to Assess Carbon Mitigation Projects Using LCA: Ethanol Biofuel as a Case Study

    DEFF Research Database (Denmark)

    Courchesne, Alexandre; Becaert, Valerie; Rosenbaum, Ralph K.

    2010-01-01

    and comparison of different carbon mitigation projects (e.g. biofuel use, sequestering plant, afforestation project, etc.). The Lashof accounting methodology is chosen amid other methods of greenhouse gas (GHG) emission characterization for its relative simplicity and capability of characterizing all types...... of carbon mitigation projects. It calculates the cumulative radiative forcing caused by GHG emission within a predetermined time frame. Basically, the developed framework uses the Mg-year as a functional unit and isolates impacts related to the climate mitigation function with system expansion. The proposed...... framework is demonstrated with a case study of tree ethanol pathways (maize, sugarcane and willow). Study shows that carbon mitigation assessment through LCA is possible and that it could be a useful tool for decision makers as it can compare different projects regardless of their original context. Case...

  18. Tree species diversity mitigates disturbance impacts on the forest carbon cycle.

    Science.gov (United States)

    Silva Pedro, Mariana; Rammer, Werner; Seidl, Rupert

    2015-03-01

    Biodiversity fosters the functioning and stability of forest ecosystems and, consequently, the provision of crucial ecosystem services that support human well-being and quality of life. In particular, it has been suggested that tree species diversity buffers ecosystems against the impacts of disturbances, a relationship known as the "insurance hypothesis". Natural disturbances have increased across Europe in recent decades and climate change is expected to amplify the frequency and severity of disturbance events. In this context, mitigating disturbance impacts and increasing the resilience of forest ecosystems is of growing importance. We have tested how tree species diversity modulates the impact of disturbance on net primary production and the total carbon stored in living biomass for a temperate forest landscape in Central Europe. Using the simulation model iLand to study the effect of different disturbance regimes on landscapes with varying levels of tree species richness, we found that increasing diversity generally reduces the disturbance impact on carbon storage and uptake, but that this effect weakens or even reverses with successional development. Our simulations indicate a clear positive relationship between diversity and resilience, with more diverse systems experiencing lower disturbance-induced variability in their trajectories of ecosystem functioning. We found that positive effects of tree species diversity are mainly driven by an increase in functional diversity and a modulation of traits related to recolonization and resource usage. The results of our study suggest that increasing tree species diversity could mitigate the effects of intensifying disturbance regimes on ecosystem functioning and improve the robustness of forest carbon storage and the role of forests in climate change mitigation.

  19. Effects and mechanisms of biochar-microbe interactions in soil improvement and pollution remediation: A review.

    Science.gov (United States)

    Zhu, Xiaomin; Chen, Baoliang; Zhu, Lizhong; Xing, Baoshan

    2017-08-01

    Biochars have attracted tremendous attention due to their effects on soil improvement; they enhance carbon storage, soil fertility and quality, and contaminant (organic and heavy metal) immobilization and transformation. These effects could be achieved by modifying soil microbial habitats and (or) directly influencing microbial metabolisms, which together induce changes in microbial activity and microbial community structures. This review links microbial responses, including microbial activity, community structures and soil enzyme activities, with changes in soil properties caused by biochars. In particular, we summarized possible mechanisms that are involved in the effects that biochar-microbe interactions have on soil carbon sequestration and pollution remediation. Special attention has been paid to biochar effects on the formation and protection of soil aggregates, biochar adsorption of contaminants, biochar-mediated transformation of soil contaminants by microorganisms, and biochar-facilitated electron transfer between microbial cells and contaminants and soil organic matter. Certain reactive organic compounds and heavy metals in biochar may induce toxicity to soil microorganisms. Adsorption and hydrolysis of signaling molecules by biochar interrupts microbial interspecific communications, potentially altering soil microbial community structures. Further research is urged to verify the proposed mechanisms involved in biochar-microbiota interactions for soil remediation and improvement. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. A multi-period superstructure optimisation model for the optimal planning of China's power sector considering carbon dioxide mitigation

    International Nuclear Information System (INIS)

    Zhang Dongjie; Ma Linwei; Liu Pei; Zhang Lili; Li Zheng

    2012-01-01

    Power sector is the largest CO 2 emitter in China. To mitigate CO 2 emissions for the power sector is a tough task, which requires implementation of targeted carbon mitigation policies. There might be multiple forms for carbon mitigation policies and it is still unclear which one is the best for China. Applying a superstructure optimisation model for optimal planning of China's power sector built by the authors previously, which was based on real-life plants composition data of China's power sector in 2009, and could incorporate all possible actions of the power sector, including plants construction, decommission, and application of carbon capture and sequestration (CCS) on coal-fuelled plants, the implementation effects of three carbon mitigation policies were studied quantitatively, achieving a conclusion that the so-called “Surplus-Punishment and Deficit-Award” carbon tax policy is the best from the viewpoint of increasing CO 2 reduction effect and also reducing the accumulated total cost. Based on this conclusion, the corresponding relationships between CO 2 reduction objectives (including the accumulated total emissions reduction by the objective year and the annual emissions reduction in the objective year) were presented in detail. This work provides both directional and quantitative suggestions for China to make carbon mitigation policies in the future. - Highlights: ► We study the best form of carbon mitigation policy for China's power sector. ► We gain quantitative relationship between CO 2 reduction goal and carbon tax policy. ► The “Surplus-Punishment and Deficit-Award” carbon tax policy is the best. ► Nuclear and renewable power and CCS can help greatly reduce CO 2 emissions of the power sector. ► Longer objective period is preferred from the viewpoint of policy making.

  1. Suitability of marginal biomass-derived biochars for soil amendment

    Energy Technology Data Exchange (ETDEWEB)

    Buss, Wolfram [UK Biochar Research Centre, School of Geosciences, University of Edinburgh, Crew Building, Alexander Crum Brown Road, Edinburgh EH9 3FF (United Kingdom); Graham, Margaret C. [School of Geosciences, University of Edinburgh, Crew Building, Alexander Crum Brown Road, Edinburgh EH9 3FF (United Kingdom); Shepherd, Jessica G. [UK Biochar Research Centre, School of Geosciences, University of Edinburgh, Crew Building, Alexander Crum Brown Road, Edinburgh EH9 3FF (United Kingdom); School of Geosciences, University of Edinburgh, Crew Building, Alexander Crum Brown Road, Edinburgh EH9 3FF (United Kingdom); Mašek, Ondřej, E-mail: ondrej.masek@ed.ac.uk [UK Biochar Research Centre, School of Geosciences, University of Edinburgh, Crew Building, Alexander Crum Brown Road, Edinburgh EH9 3FF (United Kingdom)

    2016-03-15

    The term “marginal biomass” is used here to describe materials of little or no economic value, e.g. plants grown on contaminated land, food waste or demolition wood. In this study 10 marginal biomass-derived feedstocks were converted into 19 biochars at different highest treatment temperatures (HTT) using a continuous screw-pyrolysis unit. The aim was to investigate suitability of the resulting biochars for land application, judged on the basis of potentially toxic element (PTE) concentration, nutrient content and basic biochar properties (pH, EC, ash, fixed carbon). It was shown that under typical biochar production conditions the percentage content of several PTEs (As, Al, Zn) and nutrients (Ca, Mg) were reduced to some extent, but also that biochar can be contaminated by Cr and Ni during the pyrolysis process due to erosion of stainless steel reactor parts (average + 82.8% Cr, + 226.0% Ni). This can occur to such an extent that the resulting biochar is rendered unsuitable for soil application (maximum addition + 22.5 mg Cr kg{sup −1} biochar and + 44.4 mg Ni kg{sup −1} biochar). Biomass grown on land heavily contaminated with PTEs yielded biochars with PTE concentrations above recommended threshold values for soil amendments. Cd and Zn were of particular concern, exceeding the lowest threshold values by 31-fold and 7-fold respectively, despite some losses into the gas phase. However, thermal conversion of plants from less severely contaminated soils, demolition wood and food waste anaerobic digestate (AD) into biochar proved to be promising for land application. In particular, food waste AD biochar contained very high nutrient concentrations, making it interesting for use as fertiliser. - Highlights: • Marginal biomass feedstocks are materials of little economic value. • Biochar from biomass grown on PTE-rich soils tends to exceed guideline values. • Biochar from biomass with high mineral content can be a beneficial nutrient source. • Cr and Ni

  2. Suitability of marginal biomass-derived biochars for soil amendment

    International Nuclear Information System (INIS)

    Buss, Wolfram; Graham, Margaret C.; Shepherd, Jessica G.; Mašek, Ondřej

    2016-01-01

    The term “marginal biomass” is used here to describe materials of little or no economic value, e.g. plants grown on contaminated land, food waste or demolition wood. In this study 10 marginal biomass-derived feedstocks were converted into 19 biochars at different highest treatment temperatures (HTT) using a continuous screw-pyrolysis unit. The aim was to investigate suitability of the resulting biochars for land application, judged on the basis of potentially toxic element (PTE) concentration, nutrient content and basic biochar properties (pH, EC, ash, fixed carbon). It was shown that under typical biochar production conditions the percentage content of several PTEs (As, Al, Zn) and nutrients (Ca, Mg) were reduced to some extent, but also that biochar can be contaminated by Cr and Ni during the pyrolysis process due to erosion of stainless steel reactor parts (average + 82.8% Cr, + 226.0% Ni). This can occur to such an extent that the resulting biochar is rendered unsuitable for soil application (maximum addition + 22.5 mg Cr kg −1 biochar and + 44.4 mg Ni kg −1 biochar). Biomass grown on land heavily contaminated with PTEs yielded biochars with PTE concentrations above recommended threshold values for soil amendments. Cd and Zn were of particular concern, exceeding the lowest threshold values by 31-fold and 7-fold respectively, despite some losses into the gas phase. However, thermal conversion of plants from less severely contaminated soils, demolition wood and food waste anaerobic digestate (AD) into biochar proved to be promising for land application. In particular, food waste AD biochar contained very high nutrient concentrations, making it interesting for use as fertiliser. - Highlights: • Marginal biomass feedstocks are materials of little economic value. • Biochar from biomass grown on PTE-rich soils tends to exceed guideline values. • Biochar from biomass with high mineral content can be a beneficial nutrient source. • Cr and Ni from the

  3. Influence of biochar on isoproturon partitioning and bioaccessibility in soil

    International Nuclear Information System (INIS)

    Reid, B.J.; Pickering, F.L.; Freddo, A.; Whelan, M.J.; Coulon, F.

    2013-01-01

    The influence of biochar (5%) on the loss, partitioning and bioaccessibility of 14 C-isoproturon ( 14 C-IPU) was evaluated. Results indicated that biochar had a dramatic effect upon 14 C-IPU partitioning: 14 C-IPU extractability (0.01 M CaCl 2 ) in biochar-amended treatments was reduced to 14 C-IPU extractability in biochar free treatments decreased with ageing from 90% to 40%. A partitioning model was constructed to derive an effective partition coefficient for biochar:water (K BW of 7.82 × 10 4 L kg −1 ). This was two orders of magnitude greater than the apparent K foc value of the soil organic carbon:water (631 L kg −1 ). 14 C-radiorespirometry assays indicated high competence of microorganisms to mineralise 14 C-IPU in the absence of biochar (40.3 ± 0.9%). Where biochar was present 14 C-IPU mineralisation never exceeded 2%. These results indicate reduced herbicide bioaccessibility. Increasing IPU application to ×10 its recommended dose was ineffective at redressing IPU sequestration and its low bioaccessibility. Highlights: •Biochar had a dramatic effect on IPU partitioning. •IPU extractability was reduced to BW ) was 7.82 × 10 4 L kg −1 . •K BW was 124 times greater than the apparent K foc value of the control. •Biochar precluded microbial bioaccessibility – no catabolic response was observed. -- Biochar dramatically reduced 14 C-IPU extractability ( BW being ×123 greater than the apparent K foc . Correspondingly, microbial bioaccessibility of IPU was negligible

  4. How large are the impacts of carbon-motivated border tax adjustments on China and how to mitigate them?

    International Nuclear Information System (INIS)

    Li, Aijun; Zhang, Aizhen; Cai, Hongbo; Li, Xingfeng; Peng, Shishen

    2013-01-01

    There have been growing clamours for carbon-motivated border tax adjustments (CBTAs) targeted at countries that do not accept the carbon emission reduction targets. Currently, China is the largest carbon emitter with large annual incremental carbon emissions and might have to face the challenge of CBTA. Therefore, it is a pressing policy challenge for the government to get prepared for mitigating the negative impacts of CBTAs on China. In this article, we compare the impacts of CBTAs across large developing economies and compare the performances of different policy options to mitigate the negative impacts. The main findings are as follows. First, CBTA would affect different economies and different sectors differently. CBTA would result in a shift of production across sectors and relocation of output from the target countries to CBTA users. Second, CBTA would contribute to world's emissions reduction, but less than expected due to carbon leakage. Finally, policy options, which could reduce the present distorting effects, would be preferred to other policy options that would add additional distorting effects to the economy. Looking ahead, the Chinese government should get prepared for mitigating the negative impacts of CBTAs because its economy could be adversely affected. - Highlights: • We compare impacts of carbon-motivated border tax adjustments (CBTAs) across large emerging countries. • We test effectiveness of different policy options to mitigate the negative impacts. • We investigate how to design policy mix to mitigate negative impacts of CBTAs

  5. [Effect of bamboo leaf biochar addition on soil CO2 efflux and labile organic carbon pool in a Chinese chestnut plantation].

    Science.gov (United States)

    Wang, Zhan-Lei; Li, Yong-Fu; Jiang, Pei-Kun; Zhou, Guo-Mo; Liu, Juan

    2014-11-01

    Effect of biochar addition on soil CO2 efflux in a typical Chinese chestnut (Castanea mollissima) plantation in Lin'an, Zhejiang Province, China was investigated from July 2012 to July 2013 by the static closed chamber-GC technique. Soil temperature, soil moisture, WSOC and MBC concentrations were determined as well. Results showed that soil CO2 efflux exhibited a strong sea- sonal pattern. Compared with the control (without biochar application), the biochar treatment increased the soil CO2 efflux only in the first month since application, and then the effect diminished thereafter. There were no significant differences in the annual cumulative value of soil CO2 efflux between the biochar and control treatments. The annual mean value in soil MBC concentration (362 mg · kg(-1)) in the biochar treatment was higher than that (322 mg · kg(-1)) in the control. However, no significant difference in the soil WSOC concentration was found between the biochar and control treatments. Strong exponential relationships between soil temperature and soil CO2 efflux were observed regardless of the treatment and soil layer. The apparent temperature sensitivity (Q10) of soil CO2 efflux in the biochar treatment was higher than that in the control. Soil CO2 efflux was related to soil WSOC concentration but not with soil MBC or moisture content. To conclude, the application of bamboo leaf biochar did not affect the annual cumulative CO2 emission in the Chinese chestnut plantation but increased the Q10, and the CO2 efflux was predominantly controlled by the soil temperature and soil WSOC level.

  6. Biochar affected by composting with farmyard manure.

    Science.gov (United States)

    Prost, Katharina; Borchard, Nils; Siemens, Jan; Kautz, Timo; Séquaris, Jean-Marie; Möller, Andreas; Amelung, Wulf

    2013-01-01

    Biochar applications to soils can improve soil fertility by increasing the soil's cation exchange capacity (CEC) and nutrient retention. Because biochar amendment may occur with the applications of organic fertilizers, we tested to which extent composting with farmyard manure increases CEC and nutrient content of charcoal and gasification coke. Both types of biochar absorbed leachate generated during the composting process. As a result, the moisture content of gasification coke increased from 0.02 to 0.94 g g, and that of charcoal increased from 0.03 to 0.52 g g. With the leachate, the chars absorbed organic matter and nutrients, increasing contents of water-extractable organic carbon (gasification coke: from 0.09 to 7.00 g kg; charcoal: from 0.03 to 3.52 g kg), total soluble nitrogen (gasification coke: from not detected to 705.5 mg kg; charcoal: from 3.2 to 377.2 mg kg), plant-available phosphorus (gasification coke: from 351 to 635 mg kg; charcoal: from 44 to 190 mg kg), and plant-available potassium (gasification coke: from 6.0 to 15.3 g kg; charcoal: from 0.6 to 8.5 g kg). The potential CEC increased from 22.4 to 88.6 mmol kg for the gasification coke and from 20.8 to 39.0 mmol kg for the charcoal. There were little if any changes in the contents and patterns of benzene polycarboxylic acids of the biochars, suggesting that degradation of black carbon during the composting process was negligible. The surface area of the biochars declined during the composting process due to the clogging of micropores by sorbed compost-derived materials. Interactions with composting substrate thus enhance the nutrient loads but alter the surface properties of biochars. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  7. Focus on cumulative emissions, global carbon budgets and the implications for climate mitigation targets

    Science.gov (United States)

    Damon Matthews, H.; Zickfeld, Kirsten; Knutti, Reto; Allen, Myles R.

    2018-01-01

    The Environmental Research Letters focus issue on ‘Cumulative Emissions, Global Carbon Budgets and the Implications for Climate Mitigation Targets’ was launched in 2015 to highlight the emerging science of the climate response to cumulative emissions, and how this can inform efforts to decrease emissions fast enough to avoid dangerous climate impacts. The 22 research articles published represent a fantastic snapshot of the state-or-the-art in this field, covering both the science and policy aspects of cumulative emissions and carbon budget research. In this Review and Synthesis, we summarize the findings published in this focus issue, outline some suggestions for ongoing research needs, and present our assessment of the implications of this research for ongoing efforts to meet the goals of the Paris climate agreement.

  8. Utilization of the cyanobacteria Anabaena sp CH1 in biological carbon dioxide mitigation processes

    Energy Technology Data Exchange (ETDEWEB)

    Chiang, C.L.; Lee, C.M.; Chen, P.C. [Hungkuang University, Taichung (Taiwan)

    2011-05-15

    Before switching totally to alternative fuel stage, CO{sub 2} mitigation process has considered a transitional strategy for combustion of fossil fuels inevitably. In comparison to other CO{sub 2} mitigation options, such as oceanic or geologic injection, the biological photosynthetic process would present a far superior and sustainable solution under both environmental and social considerations. The utilization of the cyanobacteria Anabaena sp. CH1 in carbon dioxide mitigation processes is analyzed in our research. It was found that an original developed photobioreactor with internal light source exhibits high light utilization. Anabaena sp. CH1 demonstrates excellent CO{sub 2} tolerance even at 15% CO{sub 2} level. This enables flue gas from power plant to be directly introduced to Anabaena sp. CH1 culture. Double light intensity and increased 47% CO{sub 2} bubble retention time could enhance CO{sub 2} removal efficiencies by 79% and 67%, respectively. A maximum CO{sub 2} fixation rate of 1.01 g CO{sub 2} L{sup -1} day{sup -1} was measured experimentally.

  9. Mitigation potential of soil carbon management overestimated by neglecting N2O emissions

    Science.gov (United States)

    Lugato, Emanuele; Leip, Adrian; Jones, Arwyn

    2018-03-01

    International initiatives such as the `4 per 1000' are promoting enhanced carbon (C) sequestration in agricultural soils as a way to mitigate greenhouse gas emissions1. However, changes in soil organic C turnover feed back into the nitrogen (N) cycle2, meaning that variation in soil nitrous oxide (N2O) emissions may offset or enhance C sequestration actions3. Here we use a biogeochemistry model on approximately 8,000 soil sampling locations in the European Union4 to quantify the net CO2 equivalent (CO2e) fluxes associated with representative C-mitigating agricultural practices. Practices based on integrated crop residue retention and lower soil disturbance are found to not increase N2O emissions as long as C accumulation continues (until around 2040), thereafter leading to a moderate C sequestration offset mostly below 47% by 2100. The introduction of N-fixing cover crops allowed higher C accumulation over the initial 20 years, but this gain was progressively offset by higher N2O emissions over time. By 2060, around half of the sites became a net source of greenhouse gases. We conclude that significant CO2 mitigation can be achieved in the initial 20-30 years of any C management scheme, but after that N inputs should be controlled through appropriate management.

  10. Mimicking biochar-albedo feedback in complex Mediterranean agricultural landscapes

    International Nuclear Information System (INIS)

    Bozzi, E; Genesio, L; Miglietta, F; Toscano, P; Pieri, M

    2015-01-01

    Incorporation of charcoal produced by biomass pyrolysis (biochar) in agricultural soils is a potentially sustainable strategy for climate change mitigation. However, some side effects of large-scale biochar application need to be investigated. In particular a massive use of a low-reflecting material on large cropland areas may impact the climate via changes in surface albedo. Twelve years of MODIS-derived albedo data were analysed for three pairs of selected agricultural sites in central Italy. In each pair bright and dark coloured soil were identified, mimicking the effect of biochar application on the land surface albedo of complex agricultural landscapes. Over this period vegetation canopies never completely masked differences in background soil colour. This soil signal, expressed as an albedo difference, induced a local instantaneous radiative forcing of up to 4.7 W m −2 during periods of high solar irradiance. Biochar mitigation potential might therefore be reduced up to ∼30%. This study proves the importance of accounting for crop phenology and crop management when assessing biochar mitigation potential and provides more insights into the analysis of its environmental feedback. (letter)

  11. Large variability of biochar stability and biochar properties

    Science.gov (United States)

    Lehmann, J.; Nguyen, B.; Hanley, K.; Enders, A.

    2008-12-01

    In general, charring or purposeful pyrolysis increases the stability of biomass. It is less clear, however, to what extent biochar properties influence its stability. Chemical and physical properties of biochars and biomass-derived black carbons (BC) vary greatly as a function of the type of biomass it was generated from and of the production temperature. We show that these properties greatly affect the stability of BC is a function of both these factors, with highly significant interactions. BC produced from corn stalks produced at 350°C decomposed much quicker when incubated at field capacity at 30°C for one year than those produced at 600°C. In contrast, there was hardly a difference noted between those two temperatures if oak was the precursor biomass. Such differences in labile carbon not only affect the proportion of stable carbon in BC, but also influence the quantification of long-term stability. Extrapolation from short-term decay to long-term stability may require prior knowledge about the decay rate of the labile fraction of BC. Some indications are provided for the short-term oxidation of BC.

  12. Development of the mitigation method for carbon steel corrosion with ceramics in PWR secondary system

    International Nuclear Information System (INIS)

    Okamura, Masato; Shibasaki, Osamu; Miyazaki, Toyoaki; Kaneko, Tetsuji

    2012-09-01

    To verify the effect of depositing ceramic (TiO 2 , La 2 O 3 , and Y 2 O 3 ) on carbon steel to mitigate corrosion, corrosion tests were conducted under simulated chemistry conditions in a PWR secondary system. Test specimens (STPT410) were prepared with and without deposited ceramics. The ceramics were deposited on the specimens under high-temperature and high-pressure water conditions. Corrosion tests were conducted under high pH conditions (9.8) with a flow rate of 1.0-4.7 m/s at 185 deg. C for 200 hours. At a flow rate of 1.0 m/s, the amount of corrosion of the specimens with the ceramics was less than half of that of the specimens without the ceramics. As the flow rate increased, the amount of corrosion increased. However, even at a flow rate of 4.7 m/s, the amount of corrosion was reduced by approximately 30% by depositing the ceramics. After the corrosion tests, the surfaces of the specimens were analyzed with SEM and XRD. When the deposited ceramic was TiO 2 , the surface was densely covered with fine particles (less than 1 μm). From XRD analysis, these particles were identified as ilmenite (FeTiO 3 ). We consider that ilmenite may play an important role in mitigating the corrosion of carbon steel. (authors)

  13. 生物质炭中多环芳烃的潜在环境风险研究进展%Progress of the Research on Potential Environmental Risk of Polycyclic Aromatic Hydrocarbons(PAHs)in Biochar

    Institute of Scientific and Technical Information of China (English)

    李增波; 王聪颖; 蒋新; 王芳

    2016-01-01

    作为土壤改良剂和环境污染修复材料,生物质炭在近年来得以广泛应用。生物质炭制备过程中会产生一定量的多环芳烃(PAHs),对其潜在环境负面效应和风险尚缺乏应有的认识。本文总结了生物质炭中PAHs的形成机理、影响因素(包括原材料、裂解温度、裂解升温速率和保留时间等)、总量和生物有效含量及其分析方法,旨在为生物质炭在环境中的安全应用提供理论依据和技术参考。%Biochar is a kind of highly aromatic carbonized material produced through thermal decomposition of biomass under reductive conditions(i.e. in the absence of or with a limited supply of oxygen). Biochar is found to be able to play an important role in mitigating global climate change,removing pollutants from water and soil,as well as maintaining functions of ecosystems. During the pyrolytic processes of biological materials,a certain amount of organic pollutants,such as polycyclic aromatic hydrocarbons (PAHs),would form and remain on the surface of the biochar. Consequently,increasing application of biochar may bring about a certain risk to the environment. Current researches pay much attention to the positive effects biochar may have,while ignoring its potential hazards to the ecosystem. To assess environmental risk of the PAHs in biochar,it is necessary to determine the contents of total and bioavailable PAHs in biochar. At present,the following four methods,i.e. Soxhlet extraction, accelerated solvent extraction(ASE),ultrasonication extraction and thermal extraction,are available for determining total PAHs in biochar. However,the four methods were often used to determine semivolatile organic compounds in solid matrix(soil or sediment). Among the four methods,the Soxhlet extraction and ASE methods are the most commonly used ones,because of their higher recoveries of target compounds. However,when they are used to extract PAHs in biochar,PAHs recoveries depend

  14. The Effect of Soil Warming on Decomposition of Biochar, Wood, and Bulk Soil Organic Carbon in Contrasting Temperate and Tropical Soils

    Science.gov (United States)

    Torn, Margaret; Tas, Neslihan; Reichl, Ken; Castanha, Cristina; Fischer, Marc; Abiven, Samuel; Schmidt, Michael; Brodie, Eoin; Jansson, Janet

    2013-04-01

    Biochar and wood are known to decay at different rates in soil, but the longterm effect of char versus unaltered wood inputs on soil carbon dynamics may vary by soil ecosystem and by their sensitivity to warming. We conducted an incubation experiment to explore three questions: (1) How do decomposition rates of char and wood vary with soil type and depth? (2) How vulnerable to warming are these slowly decomposing inputs? And (3) Do char or wood additions increase loss of native soil organic carbon (priming)? Soils from a Mediterranean grassland (Hopland Experimental Research Station, California) and a moist tropical forest (Tabunoco Forest, Puerto Rico) were collected from two soil depths and incubated at ambient temperature (14°C, 20°C for Hopland and Tabonuco respectively) and ambient +6°C. We added 13C-labeled wood and char (made from the wood at 450oC) to the soils and quantified CO2 and 13CO2 fluxes with continuous online carbon isotope measurements using a Cavity Ringdown Spectrometer (Picarro, Inc) for one year. As expected, in all treatments the wood decomposed much (about 50 times) more quickly than did the char amendment. With few exceptions, amendments placed in the surface soil decomposed more quickly than those in deeper soil, and in forest soil faster than that placed in grassland soil, at the same temperature. The two substrates were not very temperature sensitive. Both had Q10 less than 2 and char decomposition in particular was relatively insensitive to warming. Finally, the addition of wood caused a significant increase of roughly 30% in decomposition losses of the native soil organic carbon in the grassland and slightly less in forest. Char had only a slight positive priming effect but had a significant effect on microbial community. These results show that conversion of wood inputs to char through wildfire or intentional management will alter not only the persistence of the carbon in soil but also its temperature response and effect on

  15. Mobile organic compounds in biochar - a potential source of contamination - phytotoxic effects on cress seed (Lepidium sativum) germination.

    Science.gov (United States)

    Buss, Wolfram; Mašek, Ondřej

    2014-05-01

    Biochar can be contaminated during pyrolysis by re-condensation of pyrolysis vapours. In this study two biochar samples contaminated by pyrolysis liquids and gases to a high degree, resulting in high volatile organic compound (high-VOC) content, were investigated and compared to a biochar with low volatile organic compound (low-VOC) content. All biochar samples were produced from the same feedstock (softwood pellets) under the same conditions (550 °C, 20 min mean residence time). In experiments where only gaseous compounds could access germinating cress seeds (Lepidium sativum), application amounts ranging from 1 to 30 g of high-VOC biochar led to total inhibition of cress seed germination, while exposure to less than 1 g resulted in only partial reduction. Furthermore, leachates from biochar/sand mixtures (1, 2, 5 wt.% of biochar) induced heavy toxicity to germination and showed that percolating water could dissolve toxic compounds easily. Low-VOC biochar didn't exhibit any toxic effects in either germination test. Toxicity mitigation via blending of a high-VOC biochar with a low-VOC biochar increased germination rate significantly. These results indicate re-condensation of VOCs during pyrolysis can result in biochar containing highly mobile, phytotoxic compounds. However, it remains unclear, which specific compounds are responsible for this toxicity and how significant re-condensation in different pyrolysis units might be. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Fundamental and molecular composition characteristics of biochars produced from sugarcane and rice crop residues and by-products.

    Science.gov (United States)

    Jeong, Chang Yoon; Dodla, Syam K; Wang, Jim J

    2016-01-01

    Biochar conversion of sugarcane and rice harvest residues provides an alternative for managing these crop residues that are traditionally burned in open field. Sugarcane leaves, bagasse, rice straw and husk were converted to biochar at four pyrolysis temperatures (PTs) of 450 °C, 550 °C, 650 °C, and 750 °C and evaluated for various elemental, molecular and surface properties. The carbon content of biochars was highest for those produced at 650-750 °C. Biochars produced at 550 °C showed the characteristics of biochar that are commonly interpreted as being stable in soil, with low H/C and O/C ratios and pyrolysis fingerprints dominated by aromatic and polyaromatic hydrocarbons. At 550 °C, all biochars also exhibited maximum CEC values with sugarcane leaves biochar (SLB) > sugarcane bagasse biochar (SBB) > rice straw biochar (RSB) > rice husk biochar (RHB). The pore size distribution of biochars was dominated by pores of 20 nm and high PT increased both smaller and larger than 50 nm pores. Water holding capacity of biochars increased with PT but the magnitude of the increase was limited by feedstock types, likely related to the hydrophobicity of biochars as evident by molecular composition, besides pore volume properties of biochars. Py-GC/MS analysis revealed a clear destruction of lignin with decarboxylation and demethoxylation at 450 °C and dehydroxylation at above 550 °C. Overall, biochar molecular compositions became similar as PT increased, and the biochars produced at 550 °C demonstrated characteristics that have potential benefit as soil amendment for improving both C sequestration and nutrient dynamics. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Amending greenroof soil with biochar to affect runoff water quantity and quality

    Energy Technology Data Exchange (ETDEWEB)

    Beck, Deborah A.; Johnson, Gwynn R. [Portland State University, Mechanical and Materials Engineering, POB 751, Portland, OR 97207 (United States); Spolek, Graig A., E-mail: graig@cecs.pdx.edu [Portland State University, Mechanical and Materials Engineering, POB 751, Portland, OR 97207 (United States)

    2011-08-15

    Numbers of greenroofs in urban areas continue to grow internationally; so designing greenroof soil to reduce the amount of nutrients in the stormwater runoff from these roofs is becoming essential. This study evaluated changes in extensive greenroof water discharge quality and quantity after adding biochar, a soil amendment promoted for its ability to retain nutrients in soils and increase soil fertility. Prototype greenroof trays with and without biochar were planted with sedum or ryegrass, with barren soil trays used as controls. The greenroof trays were subjected to two sequential 7.4 cm/h rainfall events using a rain simulator. Runoff from the rain events was collected and evaluated. Trays containing 7% biochar showed increased water retention and significant decreases in discharge of total nitrogen, total phosphorus, nitrate, phosphate, and organic carbon. The addition of biochar to greenroof soil improves both runoff water quality and retention. - Highlights: > Biochar in green roof soil reduces nitrogen and phosphorus in the runoff. > Addition of biochar reduces turbidity of runoff. > Addition of biochar reduces total organic carbon content in runoff by 67-72%. > Biochar improves water retention of saturated soil. - In this controlled laboratory experiment, greenroof soil was amended by the addition of biochar, which reduced the water runoff concentration of nitrogen, phosphorus, and organic carbon.

  18. Amending greenroof soil with biochar to affect runoff water quantity and quality

    International Nuclear Information System (INIS)

    Beck, Deborah A.; Johnson, Gwynn R.; Spolek, Graig A.

    2011-01-01

    Numbers of greenroofs in urban areas continue to grow internationally; so designing greenroof soil to reduce the amount of nutrients in the stormwater runoff from these roofs is becoming essential. This study evaluated changes in extensive greenroof water discharge quality and quantity after adding biochar, a soil amendment promoted for its ability to retain nutrients in soils and increase soil fertility. Prototype greenroof trays with and without biochar were planted with sedum or ryegrass, with barren soil trays used as controls. The greenroof trays were subjected to two sequential 7.4 cm/h rainfall events using a rain simulator. Runoff from the rain events was collected and evaluated. Trays containing 7% biochar showed increased water retention and significant decreases in discharge of total nitrogen, total phosphorus, nitrate, phosphate, and organic carbon. The addition of biochar to greenroof soil improves both runoff water quality and retention. - Highlights: → Biochar in green roof soil reduces nitrogen and phosphorus in the runoff. → Addition of biochar reduces turbidity of runoff. → Addition of biochar reduces total organic carbon content in runoff by 67-72%. → Biochar improves water retention of saturated soil. - In this controlled laboratory experiment, greenroof soil was amended by the addition of biochar, which reduced the water runoff concentration of nitrogen, phosphorus, and organic carbon.

  19. Engaging western landowners in climate change mitigation: a guide to carbon-oriented forest and range management and carbon market opportunities

    Science.gov (United States)

    David D. Diaz; Susan Charnley; Hannah Gosnell

    2009-01-01

    There are opportunities for forest owners and ranchers to participate in emerging carbon markets and contribute to climate change mitigation through carbon oriented forest and range management activities. These activities often promote sutainable forestry and ranching and broader conservation goals while having the potential to provide a new income stream for...

  20. Mining-related environmental impacts of carbon mitigation; Coal-based carbon capture and sequestration and wind-enabling transmission expansion

    Energy Technology Data Exchange (ETDEWEB)

    Grubert, Emily

    2010-09-15

    Carbon mitigation can occur by preventing generation of greenhouse gases or by preventing emissions from entering the atmosphere. Accordingly, increasing the use of wind energy or carbon capture and storage (CCS) at coal-fired power plants could reduce carbon emissions. This work compares the direct mining impacts of increased coal demand associated with CCS with those of increased aluminum demand for expanding transmission systems to enable wind power incorporation. Aluminum needs for expanded transmission probably represent a one-time need for about 1.5% of Jamaica's annual bauxite production, while CCS coal needs for the same mitigation could almost double US coal demand.

  1. Interactive effects of biochar ageing in soils related to feedstock, pyrolysis temperature, and historic charcoal production.

    Science.gov (United States)

    Heitkötter, Julian; Marschner, Bernd

    2015-04-01

    Biochar is suggested for soil amelioration and carbon sequestration, based on its assumed role as the key factor for the long-term fertility of Terra preta soils. Several studies have shown that certain biochar properties can undergo changes through ageing processes, especially regarding charge characteristics. However, only a few studies determined the changes of different biochars under the same incubation conditions and in different soils. The objective of this study was to characterize the changes of pine chip (PC)- and corn digestate (CD)-derived biochars pyrolyzed at 400 or 600 °C during 100 days of laboratory incubation in a historical kiln soil and an adjacent control soil. Separation between soil and biochar was ensured by using mesh bags. Especially, changes in charge characteristics depended on initial biochar properties affected by feedstock and pyrolysis temperature and on soil properties affected by historic charcoal production. While the cation exchange capacity (CEC) markedly increased for both CD biochars during incubation, PC biochars showed no or only slight increases in CEC. Corresponding to the changes in CEC, ageing of biochars also increased the amount of acid functional groups with increases being in average about 2-fold higher in CD biochars than in PC biochars. Further and in contrast to other studies, the surface areas of biochars increased during ageing, likely due to ash leaching and degradation of tar residues. Changes in CEC and surface acidity of CD biochars were more pronounced after incubation in the control soil, while surface area increase was higher in the kiln soil. Since the two acidic forest soils used in this this study did not greatly differ in physical or chemical properties, the main process for inducing these differences in the buried biochar most likely is related to the differences in dissolved organic carbon (DOC). Although the kiln soil contained about 50% more soil organic carbon due to the presence of charcoal

  2. Amending Jasper County, Missouri soils with biochar and ...

    Science.gov (United States)

    Abandoned mines and the residuals from mining across the U.S. pose a considerable, pervasive risk to human health and the environment. Many soils in the Tri-State-Mining District (TSMD), located where Missouri, Kansas and Oklahoma meet, have been affected by the residuals of historic lead and zinc mining. Here we describe a research collaboration between ORD and Region 7 to investigate the use of customized soil amendments, which will include biochar, as a tool to provide both soil remediation and reestablishment of a soil-stabilizing native plant community at sites in the TSMD. Biochar is a charcoal-like, carbon-rich, porous by-product of thermal pyrolysis or gasification. A benefit of using biochar is the ability to engineer its properties to correspond to specific soil remediation needs. Specifically, it has properties that make it well suited for use in remediating mine soils and reestablishing vegetation, with studies indicating that biochar can complex and immobilize heavy metals. This is of critical importance for mining influenced sites. However, the optimized biochar properties for the remediation of acidic mine soils are not yet fully known. Biochar can be produced to have a range of pH values, depending upon feedstock and pyrolysis or gasification conditions, and post-production activation. Therefore, this material may be used as a liming agent to raise soil pH. Additionally, some biochars have been shown to improve soil water holding capacities and

  3. Nitrous oxide emission reduction in temperate biochar-amended soils

    Science.gov (United States)

    Felber, R.; Hüppi, R.; Leifeld, J.; Neftel, A.

    2012-01-01

    Biochar, a pyrolysis product of organic residues, is an amendment for agricultural soils to improve soil fertility, sequester CO2 and reduce greenhouse gas (GHG) emissions. In highly weathered tropical soils laboratory incubations of soil-biochar mixtures revealed substantial reductions for nitrous oxide (N2O) and carbon dioxide (CO2). In contrast, evidence is scarce for temperate soils. In a three-factorial laboratory incubation experiment two different temperate agricultural soils were amended with green waste and coffee grounds biochar. N2O and CO2 emissions were measured at the beginning and end of a three month incubation. The experiments were conducted under three different conditions (no additional nutrients, glucose addition, and nitrate and glucose addition) representing different field conditions. We found mean N2O emission reductions of 60 % compared to soils without addition of biochar. The reduction depended on biochar type and soil type as well as on the age of the samples. CO2 emissions were slightly reduced, too. NO3- but not NH4+ concentrations were significantly reduced shortly after biochar incorporation. Despite the highly significant suppression of N2O emissions biochar effects should not be transferred one-to-one to field conditions but need to be tested accordingly.

  4. Influence of biochar on isoproturon partitioning and bioaccessibility in soil.

    Science.gov (United States)

    Reid, B J; Pickering, F L; Freddo, A; Whelan, M J; Coulon, F

    2013-10-01

    The influence of biochar (5%) on the loss, partitioning and bioaccessibility of (14)C-isoproturon ((14)C-IPU) was evaluated. Results indicated that biochar had a dramatic effect upon (14)C-IPU partitioning: (14)C-IPU extractability (0.01 M CaCl2) in biochar-amended treatments was reduced to <2% while, (14)C-IPU extractability in biochar free treatments decreased with ageing from 90% to 40%. A partitioning model was constructed to derive an effective partition coefficient for biochar:water (KBW of 7.82 × 10(4) L kg(-1)). This was two orders of magnitude greater than the apparent Kfoc value of the soil organic carbon:water (631 L kg(-1)). (14)C-radiorespirometry assays indicated high competence of microorganisms to mineralise (14)C-IPU in the absence of biochar (40.3 ± 0.9%). Where biochar was present (14)C-IPU mineralisation never exceeded 2%. These results indicate reduced herbicide bioaccessibility. Increasing IPU application to ×10 its recommended dose was ineffective at redressing IPU sequestration and its low bioaccessibility. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Particulate matter emissions from biochar-amended soils as a potential tradeoff to the negative emission potential

    Science.gov (United States)

    Ravi, Sujith; Sharratt, Brenton S.; Li, Junran; Olshevski, Stuart; Meng, Zhongju; Zhang, Jianguo

    2016-10-01

    Novel carbon sequestration strategies such as large-scale land application of biochar may provide sustainable pathways to increase the terrestrial storage of carbon. Biochar has a long residence time in the soil and hence comprehensive studies are urgently needed to quantify the environmental impacts of large-scale biochar application. In particular, black carbon emissions from soils amended with biochar may counteract the negative emission potential due to the impacts on air quality, climate, and biogeochemical cycles. We investigated, using wind tunnel experiments, the particulate matter emission potential of a sand and two agriculturally important soils amended with different concentrations of biochar, in comparison to control soils. Our results indicate that biochar application considerably increases particulate emissions possibly by two mechanisms-the accelerated emission of fine biochar particles and the generation and emission of fine biochar particles resulting from abrasion of large biochar particles by sand grains. Our study highlights the importance of considering the background soil properties (e.g., texture) and geomorphological processes (e.g., aeolian transport) for biochar-based carbon sequestration programs.

  6. The limits to global-warming mitigation by terrestrial carbon removal

    Science.gov (United States)

    Boysen, Lena R.; Lucht, Wolfgang; Gerten, Dieter; Heck, Vera; Lenton, Timothy M.; Schellnhuber, Hans Joachim

    2017-05-01

    Massive near-term greenhouse gas emissions reduction is a precondition for staying "well below 2°C" global warming as envisaged by the Paris Agreement. Furthermore, extensive terrestrial carbon dioxide removal (tCDR) through managed biomass growth and subsequent carbon capture and storage is required to avoid temperature "overshoot" in most pertinent scenarios. Here, we address two major issues: First, we calculate the extent of tCDR required to "repair" delayed or insufficient emissions reduction policies unable to prevent global mean temperature rise of 2.5°C or even 4.5°C above pre-industrial level. Our results show that those tCDR measures are unable to counteract "business-as-usual" emissions without eliminating virtually all natural ecosystems. Even if considerable (Representative Concentration Pathway 4.5 [RCP4.5]) emissions reductions are assumed, tCDR with 50% storage efficiency requires >1.1 Gha of the most productive agricultural areas or the elimination of >50% of natural forests. In addition, >100 MtN/yr fertilizers would be needed to remove the roughly 320 GtC foreseen in these scenarios. Such interventions would severely compromise food production and/or biosphere functioning. Second, we reanalyze the requirements for achieving the 160-190 GtC tCDR that would complement strong mitigation action (RCP2.6) in order to avoid 2°C overshoot anytime. We find that a combination of high irrigation water input and/or more efficient conversion to stored carbon is necessary. In the face of severe trade-offs with society and the biosphere, we conclude that large-scale tCDR is not a viable alternative to aggressive emissions reduction. However, we argue that tCDR might serve as a valuable "supporting actor" for strong mitigation if sustainable schemes are established immediately.

  7. Effective sorption of atrazine by biochar colloids and residues derived from different pyrolysis temperatures.

    Science.gov (United States)

    Yang, Fan; Gao, Yan; Sun, Lili; Zhang, Shuaishuai; Li, Jiaojiao; Zhang, Ying

    2018-04-26

    Biochar has attracted much attention, which owns many environmental and agronomic benefits, including carbon sequestration, improvement of soil quality, and immobilization of environmental contaminants. Biochar has been also investigated as an effective sorbent in recent publications. Generally, biochar particles can be divided into colloids and residues according to particle sizes, while understanding of adsorption capacities towards organic pollutants in each section is largely unknown, representing a critical knowledge gap in evaluations on the effectiveness of biochar for water treatment application. Scanning electron microscopy (SEM) images, X-ray diffraction (XRD), Raman spectra, Fourier-transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), and Brunauer-Emmett-Teller (BET) method are used to examine the structures and surface properties of biochar colloids and residues derived from corn straws prepared at different pyrolysis temperatures. Also, their roles in atrazine (a typical organic pollutant) removal are investigated by batch adsorption experiments and fitted by different kinetic and thermodynamic models, respectively. The adsorption capacities of biochar colloids are much more than those of residues, resulting from the colloids containing abundant oxygen functional groups and mineral substances, and the adsorption capacities of biochar colloids and residues increase with the increase of pyrolysis temperatures. The highest adsorption performance of 139.33 mg g -1 can be obtained in biochar colloids prepared at 700 °C, suggesting the important functions of biochar colloids in the application of atrazine removal by biochar.

  8. Effects on soil quality of biochar and straw amendment in conjunction with chemical fertilizers

    Institute of Scientific and Technical Information of China (English)

    HE Li-li; ZHONG Zhe-ke; YANG Hui-min

    2017-01-01

    The objective of this study was to evaluate the effects on chemical and microbiological properties of paddy soil of short-term biochar,straw,and chemical fertilizers compared with chemical fertilization alone.Five soil fertilization treatments were evaluated:regular chemical fertilizers (RF),straw+regular chemical fertilizers (SRF),straw biochar+regular chemical fertilizers (SCRF),bamboo biochar (BC)+regular chemical fertilizers (BCRF),and straw biochar+70% regular chemical fertilizers (SC+70%RF).Their effects were investigated after approximately 1.5 years.The soil pH and cation exchange capacity (CEC) were significantly higher in biochar-treated soils.The soil phosphorous (P) and potassium (K) contents increased with biochar application.The soil Colwell P content was significantly increased with the addition of straw biochar in the treatments of SCRF and SC+70%RF.The oxygen (O):carbon (C) ratio doubled in BC picked from the soil.This indicated that BC underwent a significant oxidation process in the soil.The denaturing gradient gel electrophoresis (DGGE) fingerprints of microbial communities differed among the treatments.Soils with added biochar had higher Shannon diversity and species richness indices than soils without biochars.The results suggest that biochar can improve soil fertility.

  9. Biochar physico-chemical properties as affected by environmental exposure

    International Nuclear Information System (INIS)

    Sorrenti, Giovambattista; Masiello, Caroline A.; Dugan, Brandon; Toselli, Moreno

    2016-01-01

    To best use biochar as a sustainable soil management and carbon (C) sequestration technique, we must understand the effect of environmental exposure on its physical and chemical properties because they likely vary with time. These properties play an important role in biochar's environmental behavior and delivery of ecosystem services. We measured biochar before amendment and four years after amendment to a commercial nectarine orchard at rates of 5, 15 and 30 t ha −1 . We combined two pycnometry techniques to measure skeletal (ρ s ) and envelope (ρ e ) density and to estimate the total pore volume of biochar particles. We also examined imbibition, which can provide information about soil hydraulic conductivity. Finally, we investigated the chemical properties, surface, inner layers atomic composition and C1s bonding state of biochar fragments through X-ray photoelectron spectroscopy (XPS). Ageing increased biochar skeletal density and reduced the water imbibition rate within fragments as a consequence of partial pore clogging. However, porosity and the volume of water stored in particles remained unchanged. Exposure reduced biochar pH, EC, and total C, but enhanced total N, nitrate-N, and ammonium-N. X-ray photoelectron spectroscopy analyses showed an increase of O, Si, N, Na, Al, Ca, Mn, and Fe surface (0–5 nm) atomic composition (at%) and a reduction of C and K in aged particles, confirming the interactions of biochar with soil inorganic and organic phases. Oxidation of aged biochar fragments occurred mainly in the particle surface, and progressively decreased down to 75 nm. Biochar surface chemistry changes included the development of carbonyl and carboxylate functional groups, again mainly on the particle surface. However, changes were noticeable down to 75 nm, while no significant changes were measured in the deepest layer, up to 110 nm. Results show unequivocal shifts in biochar physical and chemical properties/characteristics over short (~ years

  10. Biochar physico-chemical properties as affected by environmental exposure

    Energy Technology Data Exchange (ETDEWEB)

    Sorrenti, Giovambattista, E-mail: g.sorrenti@unibo.it [Department of Agricultural Sciences, University of Bologna, viale G. Fanin 44, 40127 Bologna (Italy); Masiello, Caroline A., E-mail: masiello@rice.edu [Departments of Earth Science, BioSciences, and Chemistry, Rice University, Houston, TX 77005 (United States); Dugan, Brandon, E-mail: dugan@rice.edu [Department of Earth Science, Rice University, Houston, TX 77005 (United States); Toselli, Moreno, E-mail: moreno.toselli@unibo.it [Department of Agricultural Sciences, University of Bologna, viale G. Fanin 44, 40127 Bologna (Italy)

    2016-09-01

    To best use biochar as a sustainable soil management and carbon (C) sequestration technique, we must understand the effect of environmental exposure on its physical and chemical properties because they likely vary with time. These properties play an important role in biochar's environmental behavior and delivery of ecosystem services. We measured biochar before amendment and four years after amendment to a commercial nectarine orchard at rates of 5, 15 and 30 t ha{sup −1}. We combined two pycnometry techniques to measure skeletal (ρ{sub s}) and envelope (ρ{sub e}) density and to estimate the total pore volume of biochar particles. We also examined imbibition, which can provide information about soil hydraulic conductivity. Finally, we investigated the chemical properties, surface, inner layers atomic composition and C1s bonding state of biochar fragments through X-ray photoelectron spectroscopy (XPS). Ageing increased biochar skeletal density and reduced the water imbibition rate within fragments as a consequence of partial pore clogging. However, porosity and the volume of water stored in particles remained unchanged. Exposure reduced biochar pH, EC, and total C, but enhanced total N, nitrate-N, and ammonium-N. X-ray photoelectron spectroscopy analyses showed an increase of O, Si, N, Na, Al, Ca, Mn, and Fe surface (0–5 nm) atomic composition (at%) and a reduction of C and K in aged particles, confirming the interactions of biochar with soil inorganic and organic phases. Oxidation of aged biochar fragments occurred mainly in the particle surface, and progressively decreased down to 75 nm. Biochar surface chemistry changes included the development of carbonyl and carboxylate functional groups, again mainly on the particle surface. However, changes were noticeable down to 75 nm, while no significant changes were measured in the deepest layer, up to 110 nm. Results show unequivocal shifts in biochar physical and chemical properties/characteristics over

  11. Can heterotrophic uptake of dissolved organic carbon and zooplankton mitigate carbon budget deficits in annually bleached corals?

    Science.gov (United States)

    Levas, Stephen; Grottoli, Andréa G.; Schoepf, Verena; Aschaffenburg, Matthew; Baumann, Justin; Bauer, James E.; Warner, Mark E.

    2016-06-01

    Annual coral bleaching events due to increasing sea surface temperatures are predicted to occur globally by the mid-century and as early as 2025 in the Caribbean, and severely impact coral reefs. We hypothesize that heterotrophic carbon (C) in the form of zooplankton and dissolved organic carbon (DOC) is a significant source of C to bleached corals. Thus, the ability to utilize multiple pools of fixed carbon and/or increase the amount of fixed carbon acquired from one or more pools of fixed carbon (defined here as heterotrophic plasticity) could underlie coral acclimatization and persistence under future ocean-warming scenarios. Here, three species of Caribbean coral— Porites divaricata, P. astreoides, and Orbicella faveolata—were experimentally bleached for 2.5 weeks in two successive years and allowed to recover in the field. Zooplankton feeding was assessed after single and repeat bleaching, while DOC fluxes and the contribution of DOC to the total C budget were determined after single bleaching, 11 months on the reef, and repeat bleaching. Zooplankton was a large C source for P. astreoides, but only following single bleaching. DOC was a source of C for single-bleached corals and accounted for 11-36 % of daily metabolic demand (CHARDOC), but represented a net loss of C in repeat-bleached corals. In repeat-bleached corals, DOC loss exacerbated the negative C budgets in all three species. Thus, the capacity for heterotrophic plasticity in corals is compromised under annual bleaching, and heterotrophic uptake of DOC and zooplankton does not mitigate C budget deficits in annually bleached corals. Overall, these findings suggest that some Caribbean corals may be more susceptible to repeat bleaching than to single bleaching due to a lack of heterotrophic plasticity, and coral persistence under increasing bleaching frequency may ultimately depend on other factors such as energy reserves and symbiont shuffling.

  12. Effect of biochar amendment on nitrate retention in a silty clay loam soil

    Directory of Open Access Journals (Sweden)

    Angela Libutti

    2016-08-01

    Full Text Available Biochar incorporation into agricultural soils has been proposed as a strategy to decrease nutrient leaching. The present study was designed to assess the effect of biochar on nitrate retention in a silty clay loam soil. Biochar obtained from the pyrogasification of fir wood chips was applied to soil and tested in a range of laboratory sorption experiments. Four soil treatments were considered: soil only (control, soil with 2, 4 and 8% of biochar by mass. The Freundlich sorption isotherm model was used to fit the adsorbed amount of nitrate in the soil-biochar mixtures. The model performed very well in interpreting the experimental data according to a general linear regression (analysis of co-variance statistical approach. Nitrate retention in the soilbiochar mixtures was always higher than control, regardless the NO3 – concentration in the range of 0-400 mg L–1. Different sorption capacities and intensities were detected depending on the biochar application rate. The highest adsorption capacity was observed in the soils added with 2 and 4% of biochar, respectively. From the results obtained is possible to infer that nitrate retention is higher at lower biochar addition rate to soil (2 and 4% and at lower nitrate concentration in the soil water solution. These preliminary laboratory results suggest that biochar addition to a typical Mediterranean agricultural soil could be an effective management option to mitigate nitrate leaching.

  13. Reductions in soil surface albedo as a function of biochar application rate: implications for global radiative forcing

    NARCIS (Netherlands)

    Verheijen, F.G.A.; Jeffery, S.L.; Velde, te M.; Penizek, V.; Beland, M.; Bastos, A.C.; Keizer, J.J.

    2013-01-01

    Biochar can be defined as pyrolysed (charred) biomass produced for application to soils with the aim of mitigating global climate change while improving soil functions. Sustainable biochar application to soils has been estimated to reduce global greenhouse gas emissions by 71-130 Pg CO2-C-e over 100

  14. Heterogeneity of biochar amendment to improve the carbon and nitrogen sequestration through reduce the greenhouse gases emissions during sewage sludge composting.

    Science.gov (United States)

    Awasthi, Mukesh Kumar; Wang, Meijing; Chen, Hongyu; Wang, Quan; Zhao, Junchao; Ren, Xiuna; Li, Dong-Sheng; Awasthi, Sanjeev Kumar; Shen, Feng; Li, Ronghua; Zhang, Zengqiang

    2017-01-01

    This study was performed to investigate the effects of biochar as an amendment to a gaseous emissions and sewage sludge (SS) composting dynamics. Six dosage of biochar [low dosage of biochar (LDB) - 2%, 4% and 6%; and higher dosage of biochar (HDB) - 8%, 12% and 18%] were amended to a mixture of SS and wheat straw (4:1 ratio on dry weight basis) and compared to control or without additive. The HDB significantly reduced CH 4 , N 2 O and NH 3 emission by 92.85-95.34%, 95.14-97.30% and 58.03-65.17%, but not the CO 2 emission. Meanwhile, humification results indicated that humic and fulvic acid 35-42% and 24-28% higher in the HDB amended treatments than those in the LDB and control treatments. The HDB significantly decreased total nitrogen losses and greenhouse gas emission, while LDB had significantly (pemissions. Due to effective performance of HDB, the 12% biochar was recommended to be used in SS composting practice. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Polycyclic aromatic hydrocarbons and volatile organic compounds in biochar and biochar-amended soil: A review

    Science.gov (United States)

    Residual pollutants including polycyclic aromatic hydrocarbons (PAHs), volatile organic compounds (VOCs), and carbon(aceous) nanoparticles are inevitably generated during the pyrolysis of waste biomass, and remain on the solid co-product called biochar. Such pollutants could have adverse effects on ...

  16. Remediation of metal polluted soils by phytorremediation combined with biochar addition

    Science.gov (United States)

    Méndez, Ana; Paz-Ferreiro, Jorge; Gómez-Limón, Dulce; César Arranz, Julio; Saa, Antonio; Gascó, Gabriel

    2016-04-01

    The main objective of this work is to optimize and quantify the treatment of metal polluted soils through phytoremediation techniques combined with the addition of biochar. Biochar is a carbon rich material obtained by thermal treatment of biomass in inert atmosphere. In recent years, it has been attracted considerable interest due to their positive effect after soil addition. The use of biochar also seems appropriate for the treatment of metal-contaminated soils decreasing their mobility. Biochar properties highly depend on the raw material composition and manufacturing conditions. This paper is based on the use of manure wastes, rich in nutrients and therefore interesting raw materials for biochar production, especially when combined with phytoremediation techniques since the biochar act as conditioner and slow release fertilizer. We are very grateful to Ministerio de Economia y Competitividad (Spain) for financial support under Project CGL2014-58322-R.

  17. Synergistic dye adsorption by biochar from co-pyrolysis of spent mushroom substrate and Saccharina japonica.

    Science.gov (United States)

    Sewu, Divine Damertey; Boakye, Patrick; Jung, Hwansoo; Woo, Seung Han

    2017-11-01

    The potential of activating terrestrial biomass (spent mushroom substrate, SMS) with ash-laden marine biomass [kelp seaweed, KE] via co-pyrolysis in the field of adsorption was first investigated. KE biochar (KBC), SMS biochar (SMSBC), biochar (SK10BC) from 10%-KE added SMS, and biochar (ESBC) from KE-extract added SMS were used for the adsorption of cationic dye crystal violet (CV). ESBC had highest fixed carbon content (70.60%) and biochar yield (31.6%). SK10BC exhibited high ash content, abundant functional groups, coarser surface morphology and Langmuir maximum adsorptive capacity (610.1mg/g), which is 2.2 times higher than that of SMSBC (282.9mg/g). Biochar activated by a small amount of high ash-containing biomass such as seaweed via co-pyrolysis can serve as viable alternative adsorbent for cationic dye removal. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Effect of biochar on aerobic processes, enzyme activity, and crop yields in two sandy loam soils

    DEFF Research Database (Denmark)

    Sun, Zhencai; Bruun, Esben; Arthur, Emmanuel

    2014-01-01

    Biochar added to agricultural soils may sequester carbon and improve physico-chemical conditions for crop growth, due to effects such as increased water and nutrient retention in the root zone. The effects of biochar on soil microbiological properties are less certain. We addressed the effects...... of wood-based biochar on soil respiration, water contents, potential ammonia oxidation (PAO), arylsulfatase activity (ASA), and crop yields at two temperate sandy loam soils under realistic field conditions. In situ soil respiration, PAO, and ASA were not significantly different in quadruplicate field...... plots with or without biochar (20 Mg ha−1); however, in the same plots, volumetric water contents increased by 7.5 % due to biochar (P = 0.007). Crop yields (oat) were not significantly different in the first year after biochar application, but in the second year, total yields of spring barley increased...

  19. Reduction of the efficacy of biochar as soil amendment by soil erosion

    DEFF Research Database (Denmark)

    Fister, Wolfgang; Heckrath, Goswin Johann; Greenwood, Philip

    Biochar is primarily used as soil amendment to improve soil quality and to sequester more carbon (C) to increase both medium- and long-term soil C stocks. These positive effects are obviously diminished if biochar is eroded and transported out of the field. Due to its low bulk density......, the preferential mobilization and redistribution of biochar in the landscape seems probable. Therefore, the question has been raised in recent years of how vulnerable biochar actually is to soil erosion. This is especially relevant on soils which are regularly cultivated and are vulnerable to soil erosion...... of the financial value of the eroded biochar and its cost-effectiveness were scaled up from plot to field scale. In this investigation, the biochar was applied to the soil surface of three plots on a recently cultivated sandy field near Viborg in northern Jutland, Denmark at concentrations equivalent to 1.5-2.0 kg...

  20. Mitigating climate change by sequestering carbon soils: A hypertext-based scientific assessment

    International Nuclear Information System (INIS)

    Rauscher, H.M.; Alban, D.H.; Johnson, D.W.

    1992-01-01

    The general objective of this project is the development of a hypertext-based scientific assessment on the subject of mitigating climate change by sequestering carbon in soils. Specifically, the authors want to (1) translate the scientific knowledge base on soil carbon cycling into a form meaningful for policy makers by using the theory of issue-based hypertext for problem solving using the argumentative approach developed by the late Horst Rittel, professor of planning and design at the University of California, Berkeley; (2) provide an organized and evaluated scientific knowledge base on soil carbon dynamics for research scientists to aid in the rapid and economical review and understanding of the subfield of science; and (3) test this new hybrid hypertext and AI methodology for use as a tool for program managers to help them evaluate a research domain to find knowledge gaps, to prioritize these knowledge gaps, to channel available research funding to these projects aimed at filling the most promising knowledge gaps in order to have the greatest possible impact on the entire knowledge base of the field, and to help explicitly measure scientific progress in terms that funding sources can understand. The authors began this project in fall 1991 and expect to complete it by fall 1993

  1. Effects of feedstock and pyrolysis temperature on biochar adsorption of ammonium and nitrate.

    Science.gov (United States)

    Gai, Xiapu; Wang, Hongyuan; Liu, Jian; Zhai, Limei; Liu, Shen; Ren, Tianzhi; Liu, Hongbin

    2014-01-01

    Biochar produced by pyrolysis of biomass can be used to counter nitrogen (N) pollution. The present study investigated the effects of feedstock and temperature on characteristics of biochars and their adsorption ability for ammonium N (NH4(+)-N) and nitrate N (NO3(-)-N). Twelve biochars were produced from wheat-straw (W-BC), corn-straw (C-BC) and peanut-shell (P-BC) at pyrolysis temperatures of 400, 500, 600 and 700°C. Biochar physical and chemical properties were determined and the biochars were used for N sorption experiments. The results showed that biochar yield and contents of N, hydrogen and oxygen decreased as pyrolysis temperature increased from 400°C to 700°C, whereas contents of ash, pH and carbon increased with greater pyrolysis temperature. All biochars could sorb substantial amounts of NH4(+)-N, and the sorption characteristics were well fitted to the Freundlich isotherm model. The ability of biochars to adsorb NH4(+)-N followed: C-BC>P-BC>W-BC, and the adsorption amount decreased with higher pyrolysis temperature. The ability of C-BC to sorb NH4(+)-N was the highest because it had the largest cation exchange capacity (CEC) among all biochars (e.g., C-BC400 with a CEC of 38.3 cmol kg(-1) adsorbed 2.3 mg NH4(+)-N g(-1) in solutions with 50 mg NH4(+) L(-1)). Compared with NH4(+)-N, none of NO3(-)-N was adsorbed to biochars at different NO3(-) concentrations. Instead, some NO3(-)-N was even released from the biochar materials. We conclude that biochars can be used under conditions where NH4(+)-N (or NH3) pollution is a concern, but further research is needed in terms of applying biochars to reduce NO3(-)-N pollution.

  2. Effects of feedstock and pyrolysis temperature on biochar adsorption of ammonium and nitrate.

    Directory of Open Access Journals (Sweden)

    Xiapu Gai

    Full Text Available Biochar produced by pyrolysis of biomass can be used to counter nitrogen (N pollution. The present study investigated the effects of feedstock and temperature on characteristics of biochars and their adsorption ability for ammonium N (NH4(+-N and nitrate N (NO3(--N. Twelve biochars were produced from wheat-straw (W-BC, corn-straw (C-BC and peanut-shell (P-BC at pyrolysis temperatures of 400, 500, 600 and 700°C. Biochar physical and chemical properties were determined and the biochars were used for N sorption experiments. The results showed that biochar yield and contents of N, hydrogen and oxygen decreased as pyrolysis temperature increased from 400°C to 700°C, whereas contents of ash, pH and carbon increased with greater pyrolysis temperature. All biochars could sorb substantial amounts of NH4(+-N, and the sorption characteristics were well fitted to the Freundlich isotherm model. The ability of biochars to adsorb NH4(+-N followed: C-BC>P-BC>W-BC, and the adsorption amount decreased with higher pyrolysis temperature. The ability of C-BC to sorb NH4(+-N was the highest because it had the largest cation exchange capacity (CEC among all biochars (e.g., C-BC400 with a CEC of 38.3 cmol kg(-1 adsorbed 2.3 mg NH4(+-N g(-1 in solutions with 50 mg NH4(+ L(-1. Compared with NH4(+-N, none of NO3(--N was adsorbed to biochars at different NO3(- concentrations. Instead, some NO3(--N was even released from the biochar materials. We conclude that biochars can be used under conditions where NH4(+-N (or NH3 pollution is a concern, but further research is needed in terms of applying biochars to reduce NO3(--N pollution.

  3. Methodological interference of biochar in the determination of extracellular enzyme activities in composting samples

    Science.gov (United States)

    Jindo, K.; Matsumoto, K.; García Izquierdo, C.; Sonoki, T.; Sanchez-Monedero, M. A.

    2014-07-01

    Biochar application has received increasing attention as a means to trap recalcitrant carbon and enhance soil fertility. Hydrolytic enzymatic assays, such as β-glucosidase and phosphatase activities, are used for the assessment of soil quality and composting process, which are based on use of p-nitrophenol (PNP) derivatives as substrate. However, sorption capacity of biochar can interfere with colorimetric determination of the hydrolysed PNP, either by the sorption of the substrate or the reaction product of hydrolysis into biochar surface. The aim of the present work is to study the biochar sorption capacity for PNP in biochar-blended composting mixtures in order to assess its impact on the estimation of the colorimetric-based enzymatic assays. A retention test was conducted by adding a solution of known amounts of PNP in universal buffer solution (pH = 5, 6.5 and 11, corresponding to the β-glucosidase, acid and alkaline phosphatase activity assays, respectively), in samples taken at the initial stage and after maturation stage from four different composting piles (two manure composting piles; PM: poultry manure, CM: cow manure and two other similar piles containing 10% of additional biochar (PM + B, CM + B)). The results show that biochar-blended composts (PM + B, CM + B) generally exhibited low enzymatic activities, compared to manure compost without biochar (PM, CM). In terms of the difference between the initial and maturation stage of composting process, the PNP retention in biochar was shown higher at maturation stage, caused most probably by an enlarged proportion of biochar inside compost mixture after the selective degradation of easily decomposable organic matter. TThe retention of PNP on biochar was influenced by pH dependency of sorption capacity of biochar and/or PNP solubility, since PNP was more efficiently retained by biochar at low pH values (5 and 6.5) than at high pH values (11).

  4. Carbon mitigation with biomass: An engineering, economic and policy assessment of opportunities and implications

    Science.gov (United States)

    Rhodes, James S., III

    2007-12-01

    Industrial bio-energy systems provide diverse opportunities for abating anthropogenic greenhouse gas ("GHG") emissions and for advancing other important policy objectives. The confluence of potential contributions to important social, economic, and environmental policy objectives with very real challenges to deployment creates rich opportunities for study. In particular, the analyses developed in this thesis aim to increase understanding of how industrial bio-energy may be applied to abate GHG emissions in prospective energy markets, the relative merits of alternate bio-energy systems, the extent to which public support for developing such systems is justified, and the public policy instruments that may be capable of providing such support. This objective is advanced through analysis of specific industrial bio-energy technologies, in the form of bottom-up engineering-economic analyses, to determine their economic performance relative to other mitigation options. These bottom-up analyses are used to inform parameter definitions in two higher-level stochastic models that explicitly account for uncertainty in key model parameters, including capital costs, operating and maintenance costs, and fuel costs. One of these models is used to develop supply curves for electricity generation and carbon mitigation from biomass-coal cofire in the U.S. The other is used to characterize the performance of multiple bio-energy systems in the context of a competitive market for low-carbon energy products. The results indicate that industrial bio-energy systems are capable of making a variety of potentially important contributions under scenarios that value anthropogenic GHG emissions. In the near term, cofire of available biomass in existing coal fired power plants has the potential to provide substantial emissions reductions at reasonable costs. Carbon prices between 30 and 70 per ton carbon could induce reductions in U.S. carbon emissions by 100 to 225 megatons carbon ("Mt

  5. Effects of biochar on dechlorination of hexachlorobenzene and the bacterial community in paddy soil.

    Science.gov (United States)

    Song, Yang; Bian, Yongrong; Wang, Fang; Herzberger, Anna; Yang, Xinglun; Gu, Chenggang; Jiang, Xin

    2017-11-01

    Anaerobic reductive dechlorination is an important degradation pathway for chlorinated organic contaminants in paddy soil. This study investigated the effects of amending paddy soil with wheat straw biochar on both the dechlorination of hexachlorobenzene (HCB), a typical highly chlorinated contaminant, and on the structure of soil bacteria communities. Soil amendment of 0.1% biochar did not significantly affect the dechlorination of HCB in the soil. However, biochar amendment at higher application levels (5%) stimulated the dechlorination of HCB in the first month of anaerobic incubation and inhibited the dechlorination of HCB after that period. The stimulation effect may be ascribed to the graphite carbon and carbon-centered persistent radicals, which are redox active, in biochar. The inhibiting effect could be partly ascribed to the reduced bioavailability of HCB in biochar-amended soils. High-throughput sequencing revealed that the amendment of biochar changed the soil bacterial community structure but not the bacterial abundances and diversities. The relative abundance of Dehalococcoidaceae in the tested soils showed a significant relationship with the dechlorination percentages of HCB, indicating that Dehalococcoidaceae may be the main HCB-dechlorinating bacteria in the studied paddy soil. The results indicated that low application levels of biochar did not affect the dechlorination of HCB in the paddy soil, while high application levels of biochar mainly inhibited the dechlorination of HCB due to the reduced bioavailability of HCB and the reduced abundances of certain dechlorinating bacteria in the biochar-amended paddy soil. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Beam Tests of Diamond-Like Carbon Coating for Mitigation of Electron Cloud

    Energy Technology Data Exchange (ETDEWEB)

    Eldred, Jeffrey [Fermilab; Backfish, Michael [Fermilab; Kato, Shigeki [KEK, Tsukuba; Tan, Cheng-Yang [Fermilab; Zwaska, Robert [Fermilab

    2017-05-01

    Electron cloud beam instabilities are an important consideration in virtually all high-energy particle accelerators and could pose a formidable challenge to forthcoming high-intensity accelerator upgrades. Our results evaluate the efficacy of a diamond-like carbon (DLC) coating for the mitigation of electron in the Fermilab Main Injector. The interior surface of the beampipe conditions in response to electron bombardment from the electron cloud and we track the change in electron cloud flux over time in the DLC coated beampipe and uncoated stainless steel beampipe. The electron flux is measured by retarding field analyzers placed in a field-free region of the Main Injector. We find the DLC coating reduces the electron cloud signal to roughly 2\\% of that measured in the uncoated stainless steel beampipe.

  7. Skin effect mitigation in laser processed multi-walled carbon nanotube/copper conductors

    Science.gov (United States)

    Keramatnejad, K.; Zhou, Y. S.; Gao, Y.; Rabiee Golgir, H.; Wang, M.; Jiang, L.; Silvain, J.-F.; Lu, Y. F.

    2015-10-01

    In this study, laser-processed multi-walled carbon nanotube (MWCNT)/Cu conductors are introduced as potential passive components to mitigate the skin effect of Cu at high frequencies (0-10 MHz). Suppressed skin effect is observed in the MWCNT/Cu conductors compared to primitive Cu. At an AC frequency of 10 MHz, a maximum AC resistance reduction of 94% was observed in a MWCNT/Cu conductor after being irradiated at a laser power density of 189 W/cm2. The reduced skin effect in the MWCNT/Cu conductors is ascribed to the presence of MWCNT channels which are insensitive to AC frequencies. The laser irradiation process is observed to play a crucial role in reducing contact resistance at the MWCNT-Cu interfaces, removing impurities in MWCNTs, and densifying MWCNT films.

  8. Skin effect mitigation in laser processed multi-walled carbon nanotube/copper conductors

    Energy Technology Data Exchange (ETDEWEB)

    Keramatnejad, K.; Zhou, Y. S.; Gao, Y.; Rabiee Golgir, H.; Wang, M.; Lu, Y. F., E-mail: ylu2@unl.edu [Department of Electrical and Computer Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska 68588-0511 (United States); Jiang, L. [School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081 (China); Silvain, J.-F. [Institut de Chimie de la Matière Condensée de Bordeaux (ICMCB-CNRS) 87, Avenue du Docteur Albert Schweitzer F-33608 Pessac Cedex (France)

    2015-10-21

    In this study, laser-processed multi-walled carbon nanotube (MWCNT)/Cu conductors are introduced as potential passive components to mitigate the skin effect of Cu at high frequencies (0–10 MHz). Suppressed skin effect is observed in the MWCNT/Cu conductors compared to primitive Cu. At an AC frequency of 10 MHz, a maximum AC resistance reduction of 94% was observed in a MWCNT/Cu conductor after being irradiated at a laser power density of 189 W/cm{sup 2}. The reduced skin effect in the MWCNT/Cu conductors is ascribed to the presence of MWCNT channels which are insensitive to AC frequencies. The laser irradiation process is observed to play a crucial role in reducing contact resistance at the MWCNT-Cu interfaces, removing impurities in MWCNTs, and densifying MWCNT films.

  9. Skin effect mitigation in laser processed multi-walled carbon nanotube/copper conductors

    International Nuclear Information System (INIS)

    Keramatnejad, K.; Zhou, Y. S.; Gao, Y.; Rabiee Golgir, H.; Wang, M.; Lu, Y. F.; Jiang, L.; Silvain, J.-F.

    2015-01-01

    In this study, laser-processed multi-walled carbon nanotube (MWCNT)/Cu conductors are introduced as potential passive components to mitigate the skin effect of Cu at high frequencies (0–10 MHz). Suppressed skin effect is observed in the MWCNT/Cu conductors compared to primitive Cu. At an AC frequency of 10 MHz, a maximum AC resistance reduction of 94% was observed in a MWCNT/Cu conductor after being irradiated at a laser power density of 189 W/cm 2 . The reduced skin effect in the MWCNT/Cu conductors is ascribed to the presence of MWCNT channels which are insensitive to AC frequencies. The laser irradiation process is observed to play a crucial role in reducing contact resistance at the MWCNT-Cu interfaces, removing impurities in MWCNTs, and densifying MWCNT films

  10. Meeting the Demand for Biofuels: Impact on Land Use and Carbon Mitigation

    Energy Technology Data Exchange (ETDEWEB)

    Khanna, Madhu; Jain, Atul; Onal, Hayri; Scheffran, Jurgen; Chen, Xiaoguang; Erickson, Matt; Huang, Haixiao; Kang, Seungmo.

    2011-08-14

    The purpose of this research was to develop an integrated, interdisciplinary framework to investigate the implications of large scale production of biofuels for land use, crop production, farm income and greenhouse gases. In particular, we examine the mix of feedstocks that would be viable for biofuel production and the spatial allocation of land required for producing these feedstocks at various gasoline and carbon emission prices as well as biofuel subsidy levels. The implication of interactions between energy policy that seeks energy independence from foreign oil and climate policy that seeks to mitigate greenhouse gas emissions for the optimal mix of biofuels and land use will also be investigated. This project contributes to the ELSI research goals of sustainable biofuel production while balancing competing demands for land and developing policy approaches needed to support biofuel production in a cost-effective and environmentally friendly manner.

  11. Biochar-macrofauna interplay: Searching for new bioindicators.

    Science.gov (United States)

    Castracani, C; Maienza, A; Grasso, D A; Genesio, L; Malcevschi, A; Miglietta, F; Vaccari, F P; Mori, A

    2015-12-01

    Biochar incorporation in agricultural soils has been proposed as a climate change mitigation strategy and has proved to substantially increase crop productivity via physical, chemical and biological mechanisms. The changes induced in soil properties are known to have a direct impact on soil ecosystem with consequences for soil biota community that, in turn, can influence biochar aging in soil. Despite several studies investigated in the interplay between biochar and soil microbiology, there is a clear lack of information on groups that live in the most superficial ground layers: soil meso and macro fauna. These groups are of great importance if we consider that biochar application should ideally be located in the soil's surface layer (0-30 cm). Our study is the first attempt to investigate the interactions between biochar soil amendments and aboveground soil macro-meso fauna in a field crop. This was made setting-up a randomized-block experiment on a processing tomato crop in northern Italy, using three different biochar types and periodically monitoring soil parameters and fauna abundances along the crop growing cycle in summer 2013. Results show that the impact of biochar application on soil fauna as a whole is small when compared to that of agricultural management, suggesting that this amendment does not have short-term ecological interferences. Nevertheless, ants exhibited variations in abundances and distribution connected to properties of amended soils such as temperature, pH and humidity, proving that they can be effectively used as a target group in the study of interactions between biochar and soil biota. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Sewage sludge biochar influence upon rice (Oryza sativa L) yield, metal bioaccumulation and greenhouse gas emissions from acidic paddy soil.

    Science.gov (United States)

    Khan, Sardar; Chao, Cai; Waqas, Muhammad; Arp, Hans Peter H; Zhu, Yong-Guan

    2013-08-06

    Biochar addition to soil has been proposed to improve plant growth by increasing soil fertility, minimizing bioaccumulation of toxic metal(liod)s and mitigating climate change. Sewage sludge (SS) is an attractive, though potentially problematic, feedstock of biochar. It is attractive because of its large abundance; however, it contains elevated concentrations of metal(loid)s and other contaminants. The pyrolysis of SS to biochar (SSBC) may be a way to reduce the availability of these contaminants to the soil and plants. Using rice plant pot experiments, we investigated the influence of SSBC upon biomass yield, bioaccumulation of nutrients, and metal(loid)s, and green housegas (GHG) emissions. SSBC amendments increased soil pH, total nitrogen, soil organic carbon and available nutrients and decreased bioavailable As, Cr, Co, Ni, and Pb (but not Cd, Cu, and Zn). Regarding rice plant properties, SSBC amendments significantly (P ≤ 0.01) increased shoot biomass (71.3-92.2%), grain yield (148.8-175.1%), and the bioaccumulation of phosphorus and sodium, though decreased the bioaccumulation of nitrogen (except in grain) and potassium. Amendments of SSBC significantly (P ≤ 0.05) reduced the bioaccumulation of As, Cr, Co, Cu, Ni, and Pb, but increased that of Cd and Zn, though not above limits set by Chinese regulations. Finally regarding GHG emissions, SSBC significantly (P rice paddy soil but the actual associated benefits will depend on site-specific conditions and source of SS; long-term effects remain a further unknown.

  13. Evaluation of the performance of biochars as an adsorbent for polycyclic aromatic hydrocarbons

    Science.gov (United States)

    Jung, J.; Kang, S.; Ok, Y.; Choi, Y.

    2016-12-01

    Biochars, byproducts generated by pyrolysis of biomass, are known to have several advantages as a soil amendment such as carbon sequestration effect, enhancement of soil microbial activity, and nutrient supply. Because of their high surface area and affinity to organic pollutants, biochars are also being evaluated as an adsorbent for hydrophobic organic pollutants such as polycyclic aromatic hydrocarbons (PAHs) in soils, stormwater, and wastewater. Depending on their organic precursors and pyrolysis temperatures, biochars have been shown to have various physicochemical properties, which should determine their performance as an adsorbent for hydrophobic organic pollutants. In this study, we obtained biochars derived from soybean stover, wood chip, rice husk, and sewage sludge with pyrolysis temperatures of 700°, 250°, 500°, and 500°, respectively, to investigate their performance for PAH adsorption. Adsorption kinetic and isotherm experiments were conducted using naphthalene and phenanthrene as model compounds. Soybean stover biochar reached close to equilibrium in 7 days while the others did in 25 days in the kinetic experiments. The first-order sorption rate constants were greater for naphthalene than for phenanthrene for all biochars studied, and they were generally in the order of soybean stover>rice husk>sewage sludge>wood chip biochars for the two contaminants. The removal rates of aqueous PAHs at equilibrium were in the order of soybean stover>rice husk>sewage sludge>wood chip biochars at a concentration range of a few ng/mL. The results suggested that the sorption capability and the rate is generally greater for biochar produced from plant materials than that from sludge, and for biochar produced at higher pyrolysis temperature. Comparing the sorption properties of the biochars and granular activated carbon (GAC), it is shown that biochar produced at optimal conditions can exhibit performance for PAH adsorption similar to GAC.

  14. Glyphosate sorption/desorption on biochars – Interactions of physical and chemical processes

    Science.gov (United States)

    BACKGROUND: Biochar, a carbon-rich product of biomass pyrolysis, could limit glyphosate transport in soil and remediate contaminated water. The present study investigates the sorption/desorption behavior of glyphosate on biochars prepared from different hardwoods at temperatures ranging from 350°C t...

  15. Earthworms, Microbes and the Release of C and N in Biochar Amended Soil

    Science.gov (United States)

    Land application of biochar has the potential to increase soil fertility and sequester carbon. It is unclear how soil microbes and earthworms interact with biochar and affect release or retention of nutrients. In order to determine the effects and interactions among soil microbes, earthworms, and bi...

  16. Laguna Madre Water Purification using Biochar from Citrus Peels

    Science.gov (United States)

    Lopez, C.; Al-Qudah, O. M.

    2017-12-01

    Laguna Madre is an important lagoon in the coast of Texas. It is one of the seven hypersaline lagoons in the world. Due to inflow of water with extreme amounts of phosphorus and nitrates and the low inflow of freshwater, the lagoon has high amount of phosphorus and nitrates which can be harmful for fish and plants situated in the lagoon. The goal is to be able to perform a filtration method with citrus peels biochar, and then to evaluate and compare the produced biochar, zeolite, and activated carbon as an infiltration filter by assessing reductions of nitrogen and phosphorus compounds, as well as sum selected trace elements. Furthermore, the current research will investigate how long the cleaning capacity of biochar lasts and how the performance of the filter changes under an increased load of contaminants. The performance of biochar from different parent materials and recycling options for the used filter materials are also included in this research.

  17. Impact of Biochar on Earthworm Populations: A Review

    Directory of Open Access Journals (Sweden)

    Sharon L. Weyers

    2011-01-01

    Full Text Available Despite the overwhelming importance of earthworm activity in the soil system, there are a limited number of studies that have examined the impact resulting from biochar addition to soil. Biochar is part of the black carbon continuum of chemo-thermal converted biomass. This review summarizes existing data pertaining to earthworms where biochar and other black carbon substances, including slash-and-burn charcoals and wood ash, have been applied. After analyzing existing studies on black carbon, we identified that these additions have a range from short-term negative impacts to long-term null effects on earthworm population density and total biomass. Documented cases of mortality were found with certain biochar-soil combinations; the cause is not fully understood, but hypothesized to be related to pH, whether the black carbon is premoistened, affects feeding behaviors, or other unknown factors. With wood ashes, negative impacts were overcome with addition of other carbon substrates. Given that field data is limited, soils amended with biochar did not appear to cause significant long-term impacts. However, this may indicate that the magnitude of short-term negative impacts on earthworm populations can be reduced with time.

  18. Benefits of biochar, compost and biochar–compost for soil quality, maize yield and greenhouse gas emissions in a tropical agricultural soil

    Energy Technology Data Exchange (ETDEWEB)

    Agegnehu, Getachew [College of Science, Technology and Engineering, Centre for Tropical Environmental and Sustainability Science, James Cook University, PO Box 6811, Cairns, Queensland 4870 (Australia); Bass, Adrian M. [Hawkesbury Institute for the Environment, University of Western Sydney, Science Road, Richmond, New South Wales 2753 (Australia); Nelson, Paul N.; Bird, Michael I. [College of Science, Technology and Engineering, Centre for Tropical Environmental and Sustainability Science, James Cook University, PO Box 6811, Cairns, Queensland 4870 (Australia)

    2016-02-01

    Soil quality decline represents a significant constraint on the productivity and sustainability of agriculture in the tropics. In this study, the influence of biochar, compost and mixtures of the two on soil fertility, maize yield and greenhouse gas (GHG) emissions was investigated in a tropical Ferralsol. The treatments were: 1) control with business as usual fertilizer (F); 2) 10 t ha{sup −1} biochar (B) + F; 3) 25 t ha{sup −1} compost (Com) + F; 4) 2.5 t ha{sup −1} B + 25 t ha{sup −1} Com mixed on site + F; and 5) 25 t ha{sup −1} co-composted biochar–compost (COMBI) + F. Total aboveground biomass and maize yield were significantly improved relative to the control for all organic amendments, with increases in grain yield between 10 and 29%. Some plant parameters such as leaf chlorophyll were significantly increased by the organic treatments. Significant differences were observed among treatments for the δ{sup 15}N and δ{sup 13}C contents of kernels. Soil physicochemical properties including soil water content (SWC), total soil organic carbon (SOC), total nitrogen (N), available phosphorus (P), nitrate-nitrogen (NO{sub 3}{sup −} N), ammonium-nitrogen (NH{sub 4}{sup +}-N), exchangeable cations and cation exchange capacity (CEC) were significantly increased by the organic amendments. Maize grain yield was correlated positively with total biomass, leaf chlorophyll, foliar N and P content, SOC and SWC. Emissions of CO{sub 2} and N{sub 2}O were higher from the organic-amended soils than from the fertilizer-only control. However, N{sub 2}O emissions generally decreased over time for all treatments and emission from the biochar was lower compared to other treatments. Our study concludes that the biochar and biochar–compost-based soil management approaches can improve SOC, soil nutrient status and SWC, and maize yield and may help mitigate greenhouse gas emissions in certain systems. - Graphical abstract: Grain yield, cation exchange capacity (CEC), soil

  19. Benefits of biochar, compost and biochar–compost for soil quality, maize yield and greenhouse gas emissions in a tropical agricultural soil

    International Nuclear Information System (INIS)

    Agegnehu, Getachew; Bass, Adrian M.; Nelson, Paul N.; Bird, Michael I.

    2016-01-01

    Soil quality decline represents a significant constraint on the productivity and sustainability of agriculture in the tropics. In this study, the influence of biochar, compost and mixtures of the two on soil fertility, maize yield and greenhouse gas (GHG) emissions was investigated in a tropical Ferralsol. The treatments were: 1) control with business as usual fertilizer (F); 2) 10 t ha"−"1 biochar (B) + F; 3) 25 t ha"−"1 compost (Com) + F; 4) 2.5 t ha"−"1 B + 25 t ha"−"1 Com mixed on site + F; and 5) 25 t ha"−"1 co-composted biochar–compost (COMBI) + F. Total aboveground biomass and maize yield were significantly improved relative to the control for all organic amendments, with increases in grain yield between 10 and 29%. Some plant parameters such as leaf chlorophyll were significantly increased by the organic treatments. Significant differences were observed among treatments for the δ"1"5N and δ"1"3C contents of kernels. Soil physicochemical properties including soil water content (SWC), total soil organic carbon (SOC), total nitrogen (N), available phosphorus (P), nitrate-nitrogen (NO_3"− N), ammonium-nitrogen (NH_4"+-N), exchangeable cations and cation exchange capacity (CEC) were significantly increased by the organic amendments. Maize grain yield was correlated positively with total biomass, leaf chlorophyll, foliar N and P content, SOC and SWC. Emissions of CO_2 and N_2O were higher from the organic-amended soils than from the fertilizer-only control. However, N_2O emissions generally decreased over time for all treatments and emission from the biochar was lower compared to other treatments. Our study concludes that the biochar and biochar–compost-based soil management approaches can improve SOC, soil nutrient status and SWC, and maize yield and may help mitigate greenhouse gas emissions in certain systems. - Graphical abstract: Grain yield, cation exchange capacity (CEC), soil organic carbon (SOC), soil water content (SWC) and N_2O

  20. Efficient and sustainable deployment of bioenergy with carbon capture and storage in mitigation pathways

    Science.gov (United States)

    Kato, E.; Moriyama, R.; Kurosawa, A.

    2016-12-01

    Bioenergy with Carbon Capture and Storage (BECCS) is a key component of mitigation strategies in future socio-economic scenarios that aim to keep mean global temperature rise well below 2°C above pre-industrial, which would require net negative carbon emissions at the end of the 21st century. Also, in the Paris agreement from COP21, it is denoted "a balance between anthropogenic emissions by sources and removals by sinks of greenhouse gases in the second half of this century" which could require large scale deployment of negative emissions technologies later in this century. Because of the additional requirement for land, developing sustainable low-carbon scenarios requires careful consideration of the land-use implications of large-scale BECCS. In this study, we present possible development strategies of low carbon scenarios that consider interaction of economically efficient deployment of bioenergy and/or BECCS technologies, biophysical limit of bioenergy productivity, and food production. In the evaluations, detailed bioenergy representations, including bioenergy feedstocks and conversion technologies with and without CCS, are implemented in an integrated assessment model GRAPE. Also, to overcome a general discrepancy about yield development between 'top-down' integrate assessment models and 'bottom-up' estimates, we applied yields changes of food and bioenergy crops consistent with process-based biophysical models; PRYSBI-2 (Process-Based Regional-Scale Yield Simulator with Bayesian Inference) for food crops, and SWAT (Soil and Water Assessment Tool) for bioenergy crops in changing climate conditions. Using the framework, economically viable strategy for implementing sustainable BECCS are evaluated.

  1. Biochar from Coffee Residues: A New Promising Sorbent

    Science.gov (United States)

    Fotopoulou, Kalliopi; Karapanagioti, Hrissi; Manariotis, Ioannis

    2014-05-01

    Biochar is a carbon-rich material produced by heating biomass in an oxygen-limited environment. Biochar is mainly used as an additive to soils to sequester carbon and improve soil fertility as well as a sorbent for environmental remediation processes. Surface properties such as point of zero charge, surface area and pore volume, surface topography, surface functional groups and acid-base behavior are important factors, which affect sorption efficiency. Understanding the surface alteration of biochars increases our understanding of the pollutant-sorbent interaction. The objective of the present study was to characterize the surface properties of biochar produced, and to investigate the effect of thermal treatment conditions on key characteristics that affect sorptive properties. The espresso coffee residue was obtained after the coffee was brewed through espresso machines in coffee shops. The coffee residue was dried and kept in an oven at 50oC until its pyrolysis at 850oC. Pyrolysis with different coffee mass and containers were tested in order to find optimum biochar characteristics. Detailed characterization techniques were carried out to determine the properties of the produced biochar. The surface area, the pore volume, and the average pore size of the biochars were determined using gas (N2) adsorption-desorption cycles using the Brunauer, Emmett, and Teller (BET) equation. Open surface area and micropore volume were determined using the t-plot method and the Harkins & Jura equation. Total organic carbon was also determined because it is an important factor that affects sorption. The results were compared with the corresponding properties of activated carbons. The biochar produced exhibited a wide range of surface area from 21 to 770 m2/g and open surface area from 21 to 65 m2/g. It is obvious that the surface area results from the formation of pores. Actually it was calculated that up to 90% of the porosity is due to the micropores. More specifically the

  2. The biochar effect: plant resistance to biotic stresses

    Directory of Open Access Journals (Sweden)

    YIGAL ELAD

    2012-01-01

    Full Text Available Biochar (charcoal is the solid co-product of pyrolysis, the thermal degradation of biomass in the absence of oxygen. Pyrolysis also yields gaseous and liquid biofuel products. There is a growing interest worldwide in the pyrolysis platform, for at least four reasons: (i pyrolysis can be a source of renewable biofuels; (ii many biomass waste materials can be treated by pyrolysis and thus converted into a fuel resource; (iii long-term sequestration of carbon dioxide which originated in the atmosphere may result from adding biochar to soil; and (iv biochar soil amendment contributes to improved soil fertility and crop productivity. Currently, however, very little biochar is utilized in agriculture, in part because its agronomic value in terms of crop response and soil health benefits have yet to be quantified, and because the mechanisms by which it improves soil fertility are poorly understood. The positive effects of biochar on crop productivity under conditions of extensive agriculture are frequently attributed to direct effects of biochar-supplied nutrients and to several other indirect effects, including increased water and nutrient retention, improvements in soil pH, increased soil cation exchange capacity, effects on P and S transformations and turnover, neutralization of phytotoxic compounds in the soil, improved soil physical properties, promotion of mycorrhizal fungi, and alteration of soil microbial populations and functions. Yet, the biochar effect is also evident under conditions of intensive production where many of these parameters are not limited. Biochar addition to soil alters microbial populations in the rhizosphere, albeit via mechanisms not yet understood, and may cause a shift towards beneficial microorganism populations that promote plant growth and resistance to biotic stresses. In addition to some scant evidence for biochar-induced plant protection against soilborne diseases, the induction of systemic resistance towards

  3. Influence of biochar pyrolysis temperature and post-treatment on the uptake of mercury from flue gas

    Science.gov (United States)

    Thermal processing, or pyrolysis, of plant and animal waste under oxygen limiting conditions results in a carbonized material called biochar. Most often, the proposed application for the biochar is soil applications as a conditioner or for the purpose of carbon sequestration. In this paper we demons...

  4. The southern Brazilian grassland biome: soil carbon stocks, fluxes of greenhouse gases and some options for mitigation.

    Science.gov (United States)

    Pillar, V D; Tornquist, C G; Bayer, C

    2012-08-01

    The southern Brazilian grassland biome contains highly diverse natural ecosystems that have been used for centuries for grazing livestock and that also provide other important environmental services. Here we outline the main factors controlling ecosystem processes, review and discuss the available data on soil carbon stocks and greenhouse gases emissions from soils, and suggest opportunities for mitigation of climatic change. The research on carbon and greenhouse gases emissions in these ecosystems is recent and the results are still fragmented. The available data indicate that the southern Brazilian natural grassland ecosystems under adequate management contain important stocks of organic carbon in the soil, and therefore their conservation is relevant for the mitigation of climate change. Furthermore, these ecosystems show a great and rapid loss of soil organic carbon when converted to crops based on conventional tillage practices. However, in the already converted areas there is potential to mitigate greenhouse gas emissions by using cropping systems based on no soil tillage and cover-crops, and the effect is mainly related to the potential of these crop systems to accumulate soil organic carbon in the soil at rates that surpass the increased soil nitrous oxide emissions. Further modelling with these results associated with geographic information systems could generate regional estimates of carbon balance.

  5. Do Kenya's climate change mitigation ambitions necessitate large-scale renewable energy deployment and dedicated low-carbon energy policy?

    NARCIS (Netherlands)

    Dalla Longa, F.; van der Zwaan, B.

    2017-01-01

    In this paper Kenya's climate change mitigation ambitions are analysed from an energy system perspective, with a focus on the role of renewable and other low-carbon energy technologies. At COP-21 in 2015 in Paris, Kenya has committed to a `nationally determined contribution' of reducing domestic

  6. Bodemverbeteraars met focus op biochar

    NARCIS (Netherlands)

    Reuler, van H.; Baltissen, A.H.M.C.

    2016-01-01

    Biochar is een stabiele organische verbinding die hoofdzakelijk uit koolstof bestaat. Het ontstaat bij verhitting van biomassa onder zuurstofloze omstandigheden, z.g. pyrolyse. Biochar wordt geproduceerd als bodemverbeteraar. De discussie gaat om het effect van Biochar toediening op een aantal

  7. Differential effects of biochar on soils within an eroded field

    Science.gov (United States)

    Schumacher, Thomas; Chintala, Rajesh; Sandhu, Saroop; Kumar, Sandeep; Clay, Dave; Gelderman, Ron; Papiernik, Sharon; Malo, Douglas; Clay, Sharon; Julson, Jim

    2015-04-01

    Future uses of biochar will in part be dependent not only on the effects of biochar on soil processes but also on the availability and economics of biochar production. If pyrolysis for production of bio-oil and syngas becomes wide-spread, biochar as a by-product of bio-oil production will be widely available and relatively inexpensive compared to the production of biochar as primary product. Biochar produced as a by-product of optimized bio-oil production using regionally available feedstocks was examined for properties and for use as an amendment targeted to contrasting soils within an eroded field in an on-farm study initiated in 2013 at Brookings, South Dakota, USA. Three plant based biochar materials produced from carbon optimized gasification of corn stover (Zea mays L.), Ponderosa pine (Pinus ponderosa Lawson and C. Lawson) wood residue, and switchgrass (Panicum virgatum L.) were applied at a 1% (w/w) rate to a Maddock soil (Sandy, Mixed, Frigid Entic Hapludolls) located in an eroded upper landscape position and a Brookings soil (Fine-Silty, Mixed, Superactive, Frigid Pachic Hapludolls) located in a depositional landscape position. The cropping system within this agricultural landscape was a corn (Zea mays L.) and soybean (Glycine max L.) rotation. Biochar physical and chemical properties for each of the feedstocks were determined including pH, surface area, surface charge potential, C-distribution, ash content, macro and micro nutrient composition. Yields, nutrient content, and carbon isotope ratio measurements were made on the harvested seed. Soil physical properties measured included water retention, bulk density, and water infiltration from a ponded double ring infiltrometer. Laboratory studies were conducted to determine the effects of biochar on partitioning of nitrate and phosphorus at soil surface exchange complex and the extracellular enzymes activity of C and N cycles. Crop yields were increased only in the Maddock soil. Biochar interacted with each

  8. Sorption and desorption of diuron in Oxisol under biochar application

    Directory of Open Access Journals (Sweden)

    Fabiano André Petter

    Full Text Available ABSTRACT The objective of this study was to verify the kinetics of sorption and desorption of diuron in an Oxisol under application of biochar. The samples were collected in a field experiment conducted in randomized design blocks consisted of 2 base fertilization levels (0 and 400 kg∙ha−1 NPK 00-20-20 fertilizer formula and 3 doses of biochar (0, 8 and 16 Mg∙ha−1. In the evaluation of sorption and desorption, Batch Equilibrium method was used. The kinetics of sorption and desorption of diuron, total organic carbon, fulvic acid, humic acid and humin, pH and partition coefficient to organic carbon were evaluated. The Freundlich isotherm was adjusted appropriately to describe diuron sorption kinetics in all the studied treatments. The application of biochar provided increment in the sorption (Kf and reduction in the desorption of diuron in 64 and 44%, respectively. This effect is attributed to the biochar contribution to the total organic carbon and C-humin and of these to diuron through hydrophobic interactions and hydrogen bonds. The positive correlation between the partition coefficient to organic carbon and Kf confirms the importance of soil organic compartment in the sorption of diuron. There was no competition of NPK fertilizer for the same sorption site of diuron. The increase and reduction in sorption and desorption, respectively, show that the application of biochar is an important alternative for the remediation of soil leaching of diuron, especially in sandy soils.

  9. A review of biochars' potential role in the remediation, revegetation and restoration of contaminated soils

    International Nuclear Information System (INIS)

    Beesley, Luke; Moreno-Jimenez, Eduardo; Gomez-Eyles, Jose L.; Harris, Eva; Robinson, Brett; Sizmur, Tom

    2011-01-01

    Biochars are biological residues combusted under low oxygen conditions, resulting in a porous, low density carbon rich material. Their large surface areas and cation exchange capacities, determined to a large extent by source materials and pyrolysis temperatures, enables enhanced sorption of both organic and inorganic contaminants to their surfaces, reducing pollutant mobility when amending contaminated soils. Liming effects or release of carbon into soil solution may increase arsenic mobility, whilst low capital but enhanced retention of plant nutrients can restrict revegetation on degraded soils amended only with biochars; the combination of composts, manures and other amendments with biochars could be their most effective deployment to soils requiring stabilisation by revegetation. Specific mechanisms of contaminant-biochar retention and release over time and the environmental impact of biochar amendments on soil organisms remain somewhat unclear but must be investigated to ensure that the management of environmental pollution coincides with ecological sustainability. - Highlights: → Biochars can reduce mobilities of some organic and inorganic pollutants in soil. → Source material and production conditions influence pollutant retention. → Highly alkaline pH and water soluble carbon can undesirably mobilise some elements. → Large surface area may be toxic to soil fauna but create microbial niches. → Efficacy of biochar may depend on other organic materials applied in combination. - Biochars can reduce the mobility and impact of some soil pollutants but, if applied alone, may fail to support soil restoration, revegetation and hence ecologically circumspect remediation.

  10. Beyond pure offsetting: Assessing options to generate Net-Mitigation-Effects in carbon market mechanisms

    International Nuclear Information System (INIS)

    Warnecke, Carsten; Wartmann, Sina; Höhne, Niklas; Blok, Kornelis

    2014-01-01

    The current project-based carbon market mechanisms such as the Clean Development Mechanism (CDM) and the Joint Implementation (JI) do not have a direct impact on global greenhouse gas emission levels, because they only replace or offset emissions. Nor do they contribute to host country's national greenhouse gas emission reduction targets. Contributions to net emission reductions in host countries is likely to become mandatory in new mechanisms under development such as in the framework for various approaches, a new market-based mechanism and even in a reformed JI. This research analysed the question if approaches for carbon market-based mechanisms exist that allow the generation of net emission reductions in host countries while keeping project initiation attractive. We present a criteria-based assessment method and apply it for four generic options in existing mechanisms and derive implications for future mechanism frameworks. We identified the application of “discounts” on the amount of avoided emissions for the issuance of carbon credits and “standardisation below business as usual” as most promising options over “limiting the crediting period” and “over-conservativeness”. We propose to apply these options differentiated over project types based on internal rate of return to ensure cost-efficiency and attractiveness. - Highlights: • Options for net emission reductions of market-based mechanisms are assessed. • Research combines past and current views for project and sector-based mechanisms. • Implementation ensures initiation of mitigation activities is not discouraged. • Important insights for methodological design of new market-based mechanisms. • Profitability-based approach for project-based mechanisms suggested

  11. A Comparative Study on Biochar from Slow Pyrolysis of Corn Cob and Cassava Wastes

    OpenAIRE

    Adilah Shariff; Nurhidayah Mohamed Noor; Alexander Lau; Muhammad Azwan Mohd Ali

    2016-01-01

    Biomass such as corn and cassava wastes if left to decay will release significant quantities of greenhouse gases (GHG) including carbon dioxide and methane. The biomass wastes can be converted into biochar via thermochemical process such as slow pyrolysis. This approach can reduce the biomass wastes as well as preserve its carbon content. Biochar has the potential to be used as a carbon sequester and soil amendment. The aim of this study is to investigate the characteristics of the corn cob, ...

  12. Identification of long-term carbon sequestration in soils with historical inputs of biochar using novel stable isotope and spectroscopic techniques

    Science.gov (United States)

    Hernandez-Soriano, Maria C.; Kerré, Bart; Hardy, Brieuc; Dufey, Joseph; Smolders, Erik

    2013-04-01

    Biochar is the collective term for organic matter (OM) that has been produced by pyrolysis of biomass, e.g. during production of charcoal or during natural processes such as bush fires. Biochar production and application is now suggested as one of the economically feasible options for global C-sequestration strategies. The C-sequestration in soil through application of biochar is not only related to its persistence (estimated lifetime exceeds 1000 year in soil), but also due to indirect effects such as its potential to adsorb and increase OM stability in soil. Historical charcoal production sites that had been in use >200 years ago in beech/oak forests have been localized in the south of Belgium. Aerial photography identified black spots in arable land on former forest sites. Soil sampling was conducted in an arable field used for maize production near Mettet (Belgium) where charcoal production was intensive until late 18th century. Soils were sampled in a horizontal gradient across the 'black soils' that extend of few decametres, collecting soil from the spots (Biochar Amended, BA) as well as from the non-biochar amended (NBA). Stable C isotope composition was used to estimate the long-term C-sequestration derived from crops in these soils where maize had been produced since about 15 years. Because C in the biochar originates in forest wood (C3 plants), its isotopic signature (δ13C) differs from the maize (a C4 plant). The C and N content and the δ13C were determined for bulk soil samples and for microaggregate size fractions separated by wet sieving. Fourier Transform Infrared Spectroscopy (FTIR) coupled to optical microscopy was used to obtaining fingerprints of biochar and OM composition for soil microaggregates. The total C content in the BA soil (5.5%) and the C/N ratio (16.9) were higher than for NBA (C content 2.7%; C/N ratio 12.6), which confirms the persistence of OM in the BA. The average isotopic signature of bulk soil from BA (-26.08) was slightly

  13. Biochar as a soil amendment: Environmental friend or foe?

    Science.gov (United States)

    Pyrolysis to produce biofuels and biochar from biomass is not a new idea, but the use of pyrolysis to extract energy from biomass through a process that can be carbon neutral to carbon negative (i.e., reduces atmospheric CO2) is a novel application of an old technology to a curre...

  14. Mechanisms of metal sorption by biochars: Biochar characteristics and modifications.

    Science.gov (United States)

    Li, Hongbo; Dong, Xiaoling; da Silva, Evandro B; de Oliveira, Letuzia M; Chen, Yanshan; Ma, Lena Q

    2017-07-01

    Biochar produced by thermal decomposition of biomass under oxygen-limited conditions has received increasing attention as a cost-effective sorbent to treat metal-contaminated waters. However, there is a lack of information on the roles of different sorption mechanisms for different metals and recent development of biochar modification to enhance metal sorption capacity, which is critical for biochar field application. This review summarizes the characteristics of biochar (e.g., surface area, porosity, pH, surface charge, functional groups, and mineral components) and main mechanisms governing sorption of As, Cr, Cd, Pb, and Hg by biochar. Biochar properties vary considerably with feedstock material and pyrolysis temperature, with high temperature producing biochars with higher surface area, porosity, pH, and mineral contents, but less functional groups. Different mechanisms dominate sorption of As (complexation and electrostatic interactions), Cr (electrostatic interactions, reduction, and complexation), Cd and Pb (complexation, cation exchange, and precipitation), and Hg (complexation and reduction). Besides sorption mechanisms, recent advance in modifying biochar by loading with minerals, reductants, organic functional groups, and nanoparticles, and activation with alkali solution to enhance metal sorption capacity is discussed. Future research needs for field application of biochar include competitive sorption mechanisms of co-existing metals, biochar reuse, and cost reduction of biochar production. Published by Elsevier Ltd.

  15. [Effects of biochar on soil nitrogen cycle and related mechanisms: a review].

    Science.gov (United States)

    Pan, Yi-Fan; Yang, Min; Dong, Da; Wu, Wei-Xiang

    2013-09-01

    Biochar has its unique physical and chemical properties, playing a significant role in soil amelioration, nutrient retention, fertility improvement, and carbon storage, and being a hotspot in the research areas of soil ecosystem, biogeochemical cycling, and agricultural carbon sequestration. As a kind of anthropogenic materials, biochar has the potential in controlling soil nitrogen (N) cycle directly or indirectly, and thus, has profound effects on soil ecological functions. This paper reviewed the latest literatures regarding the effects of biochar applications on soil N cycle, with the focuses on the nitrogen species adsorption and the biochemical processes (nitrification, denitrification, and nitrogen fixation) , and analyzed the related action mechanisms of biochar. The future research areas for better understanding the interactions between biochar and soil N cycle were proposed.

  16. Effects of biochar amendment on geotechnical properties of landfill cover soil.

    Science.gov (United States)

    Reddy, Krishna R; Yaghoubi, Poupak; Yukselen-Aksoy, Yeliz

    2015-06-01

    Biochar is a carbon-rich product obtained when plant-based biomass is heated in a closed container with little or no available oxygen. Biochar-amended soil has the potential to serve as a landfill cover material that can oxidise methane emissions for two reasons: biochar amendment can increase the methane retention time and also enhance the biological activity that can promote the methanotrophic oxidation of methane. Hydraulic conductivity, compressibility and shear strength are the most important geotechnical properties that are required for the design of effective and stable landfill cover systems, but no studies have been reported on these properties for biochar-amended landfill cover soils. This article presents physicochemical and geotechnical properties of a biochar, a landfill cover soil and biochar-amended soils. Specifically, the effects of amending 5%, 10% and 20% biochar (of different particle sizes as produced, size-20 and size-40) to soil on its physicochemical properties, such as moisture content, organic content, specific gravity and pH, as well as geotechnical properties, such as hydraulic conductivity, compressibility and shear strength, were determined from laboratory testing. Soil or biochar samples were prepared by mixing them with 20% deionised water based on dry weight. Samples of soil amended with 5%, 10% and 20% biochar (w/w) as-is or of different select sizes, were also prepared at 20% initial moisture content. The results show that the hydraulic conductivity of the soil increases, compressibility of the soil decreases and shear strength of the soil increases with an increase in the biochar amendment, and with a decrease in biochar particle size. Overall, the study revealed that biochar-amended soils can possess excellent geotechnical properties to serve as stable landfill cover materials. © The Author(s) 2015.

  17. Effects of Different Biochar Application Patterns on Rice Growth and Yield

    Directory of Open Access Journals (Sweden)

    WANG Yue-man

    2017-12-01

    Full Text Available Biochar has positive effect on carbon sequestration and soil improvement, consequently biochar application has been attracted more and more attention in recent years. However, so far, few investigations about the effects of biochar application patterns on crop growth, which may have a direct impact on biochar's application and comprehensive environmental effects have been reported. Herein, soil column study was conducted using four biochars, i.e., wheat straw(WBC and wood sawdust(SBC that pyrolyzed at 500℃ and 700℃, respectively, to study the effects of two different biochar application patterns on rice growth. These two typical biochar application patterns were:generally mixed application(mixed treatment and surface application(surface treatment. The results showed that:(1In comparison with CK, all biochar application treatments promoted the growth of rice in terms of plant height and SPAD(Soil Plant Analysis Development value. Plant height of surface treatment was higher than that of mixed treatments at the heading, filling and maturation stages. SPAD and NDVI(Normalized Different Vegetation Index value of surface treatments were slightly lower than mixed treatment.(2Biochar significantly increased rice seeding setting rate by 4.88%~8.39%, moreover, surface treatments were observed higher rice seeding setting rate than mixed treatments. However, no significant difference was observed in the number of effective panicles, grains per spike and 1 000-grain weight between surface and mixed treatment. (3Application of biochar promoted rice yield, and surface treatments were more likely to increase rice yield compared with the conventional mixed treatments. (4All biochar treatments increased rice harvest index by 2.58%~10.56%, and no significant difference was found between surface and mixed treatment.(5All applications of biochar promoted nitrogen, phosphorus and potassium partial productivity, which was 9.81%~36.25% higher than that of CK.

  18. Potentials and costs of carbon dioxide mitigation in the world's buildings

    International Nuclear Information System (INIS)

    Urge-Vorsatz, Diana; Novikova, Aleksandra

    2008-01-01

    Buildings are responsible for over a third of global energy-related carbon dioxide (CO 2 ) emissions. A significant share of these emissions can be avoided cost effectively through improved energy efficiency, while providing the same or higher level of energy services. How large is this emission reduction potential globally and how much will it cost for society to unlock it? This paper provides answers to these questions, presenting the results of bottom-up research conducted for the Intergovernmental Panel on Climate Change (IPCC), based on the assessment of 80 country- or regional-level mitigation studies throughout the world. First, the paper analyses the findings of these studies in a common framework. Then, it aggregates their results into a global estimate of CO 2 mitigation potential. The paper concludes that by 2020 it is possible to cut cost effectively approximately 29% of buildings-related global CO 2 emissions, the largest among all sectors reported by the IPCC, representing a 3.2 GtCO 2 eq. reduction. Developing countries house the largest cost-effective potential with up to 52% of building-level emissions, whereas transition economies and industrialised countries have cost-effective potentials of up to 37% and 25%, respectively. Energy-efficient lighting was identified as the most attractive measure worldwide, in terms of both reduction potential and cost effectiveness. If this potential is realised, the building-related CO 2 emissions would stay constant over 2004-2030. These stabilisation levels (if achieved by all other sectors) would cancel about 3 o C temperature increase over the projected period of time

  19. Comparing black carbon types in sequestering polybrominated diphenyl ethers (PBDEs) in sediments

    International Nuclear Information System (INIS)

    Jia, Fang; Gan, Jay

    2014-01-01

    Polybrominated diphenyl ethers (PBDEs) are widely found in sediments, especially congeners from the penta-BDE formula. Due to their strong affinity for black carbon (BC), bioavailability of PBDEs may be decreased in BC-amended sediments. In this study, we used a matrix-SPME method to measure the freely dissolved concentration (C free ) of PBDEs as a parameter of their potential bioavailability and evaluated the differences among biochar, charcoal, and activated carbon. Activated carbon displayed a substantially greater sequestration capacity than biochar or charcoal. At 1% amendment rate in sediment with low organic carbon (OC) content (0.12%), C free of six PBDEs was reduced by 47.5–78.0%, 47.3–77.5%, and 94.1–98.3% with biochar, charcoal, and activated carbon, respectively, while the sequestration was more limited in sediment with high OC content (0.87%). Therefore, it is important to consider the type and properties of the BC and the sediment in BC-based remediation or mitigation. -- Highlights: • A matrix-SPME method was developed for measuring C free of PBDEs in sediment porewater. • Different black carbon types differed greatly in their ability to decrease C free of PBDEs in sediments. • Activated carbon was much more efficient in sequestering PBDEs than biochar or charcoal. • The effect of black carbon was more pronounced in sediment with lower indigenous OC content. -- Biochar, charcoal, and activated carbon have been compared for their efficacy in sequestering PBDEs in sediments by using a matrix-SPME method

  20. Biochar-Induced Changes in Soil Resilience: Effects of Soil Texture and Biochar Dosage

    Institute of Scientific and Technical Information of China (English)

    Ayodele Ebenezer AJAYI; Rainer HORN

    2017-01-01

    Biochars are,amongst other available amendment materials,considered as an attractive tool in agriculture for carbon sequestration and improvement of soil functions.The latter is widely discussed as a consequence of improved physical quality of the amended soil.However,the mechanisms for this improvement are still poorly understood.This study investigated the effect of woodchip biochar amendment on micro-structural development,micro-and macro-structural stability,and resilience of two differently textured soils,fine sand (FS) and sandy loam (SL).Test substrates were prepared by adding 50 or 100 g kg-1 biochar to FS or SL.Total porosity and plant available water were significantly increased in both soils.Moreover,compressive strength of the aggregates was significantly decreased when biochar amount was doubled.Mechanical resilience of the aggregates at both micro-and macro-scale was improved in the biochar-amended soils,impacting the cohesion and compressive behavior.A combination of these effects will result in an improved pore structure and aeration.Consequently,the physicochemical environment for plants and microbes is improved.Furthermore,the improved stability properties will result in better capacity of the biochar-amended soil to recover from the myriad of mechanical stresses imposed under arable systems,including vehicle traffic,to the weight of overburden soil.However,it was noted that doubling the amendment rate did not in any case offer any remarkable additional improvement in these properties,suggesting a further need to investigate the optimal amendment rate.

  1. Reductions in soil surface albedo as a function of biochar application rate: implications for global radiative forcing

    International Nuclear Information System (INIS)

    Verheijen, Frank G A; Bastos, Ana Catarina; Keizer, Jan Jacob; Jeffery, Simon; Van der Velde, Marijn; Penížek, Vít; Beland, Martin

    2013-01-01

    Biochar can be defined as pyrolysed (charred) biomass produced for application to soils with the aim of mitigating global climate change while improving soil functions. Sustainable biochar application to soils has been estimated to reduce global greenhouse gas emissions by 71–130 Pg CO 2 -C e over 100 years, indicating an important potential to mitigate climate change. However, these estimates ignored changes in soil surface reflection by the application of dark-coloured biochar. Through a laboratory experiment we show a strong tendency for soil surface albedo to decrease as a power decay function with increasing biochar application rate, depending on soil moisture content, biochar application method and land use. Surface application of biochar resulted in strong reductions in soil surface albedo even at relatively low application rates. As a first assessment of the implications for climate change mitigation of these biochar–albedo relationships, we applied a first order global energy balance model to compare negative radiative forcings (from avoided CO 2 emissions) with positive radiative forcings (from reduced soil surface albedos). For a global-scale biochar application equivalent to 120 t ha −1 , we obtained reductions in negative radiative forcings of 5 and 11% for croplands and 11 and 23% for grasslands, when incorporating biochar into the topsoil or applying it to the soil surface, respectively. For a lower global biochar application rate (equivalent to 10 t ha −1 ), these reductions amounted to 13 and 44% for croplands and 28 and 94% for grasslands. Thus, our findings revealed the importance of including changes in soil surface albedo in studies assessing the net climate change mitigation potential of biochar, and we discuss the urgent need for field studies and more detailed spatiotemporal modelling. (letter)

  2. Furfural and its biochar improve the general properties of a saline soil

    Science.gov (United States)

    Wu, Y.; Xu, G.; Shao, H. B.

    2014-07-01

    Organic materials (e.g., furfural residue) are generally believed to improve the physical and chemical properties of saline soils with low fertility. Recently, biochar has been received more attention as a possible measure to improve the carbon balance and improve soil quality in some degraded soils. However, little is known about their different amelioration of a sandy saline soil. In this study, 56 d incubation experiment was conducted to evaluate the influence of furfural and its biochar on the properties of saline soil. The results showed that both furfural and biochar greatly reduced pH, increased soil organic carbon (SOC) content and cation exchange capacity (CEC), and enhanced the available phosphorus (P) in the soil. Furfural is more efficient than biochar in reducing pH: 5% furfural lowered the soil pH by 0.5-0.8 (soil pH: 8.3-8.6), while 5% biochar decreased by 0.25-0.4 due to the loss of acidity in pyrolysis process. With respect to available P, furfural addition at a rate of 5% increased available P content by 4-6 times in comparison to 2-5 times with biochar application. In reducing soil exchangeable sodium percentage (ESP), biochar is slightly superior to furfural because soil ESP reduced by 51% and 43% with 5% furfural and 5% biochar at the end of incubation. In addition, no significant differences were observed between furfural and biochar about their capacity to retain N, P in leaching solution and to increase CEC in soil. These facts may be caused by the relatively short incubation time. In general, furfural and biochar exhibited a different effect depending on the property: furfural was more effective in decreasing pH and increasing available P, whereas biochar played a more important role in increasing SOC and reducing ESP of saline soil.

  3. Biochar composite membrane for high performance pollutant management: Fabrication, structural characteristics and synergistic mechanisms.

    Science.gov (United States)

    Ghaffar, Abdul; Zhu, Xiaoying; Chen, Baoliang

    2018-02-01

    Biochar, a natural sourced carbon-rich material, has been used commonly in particle shape for carbon sequestration, soil fertility and environmental remediation. Here, we report a facile approach to fabricate freestanding biochar composite membranes for the first time. Wood biochars pyrolyzed at 300 °C and 700 °C were blended with polyvinylidene fluoride (PVdF) in three percentages (10%, 30% and 50%) to construct membranes through thermal phase inversion process. The resultant biochar composite membranes possess high mechanical strength and porous structure with uniform distribution of biochar particles throughout the membrane surface and cross-section. The membrane pure water flux was increased with B300 content (4825-5411 ± 21 L m -2 h -1 ) and B700 content (5823-6895 ± 72 L m -2 h -1 ). The membranes with B300 were more hydrophilic with higher surface free energy (58.84-60.31 mJ m -2 ) in comparison to B700 (56.32-51.91 mJ m -2 ). The biochar composite membranes indicated promising adsorption capacities (47-187 mg g -1 ) to Rhodamine B (RhB) dye. The biochar membranes also exhibited high retention (74-93%) for E. coli bacterial suspensions through filtration. After simple physical cleaning, both the adsorption and sieving capabilities of the biochar composite membranes could be effectively recovered. Synergistic mechanisms of biochar/PVdF in the composite membrane are proposed to elucidate the high performance of the membrane in pollutant management. The multifunctional biochar composite membrane not only effectively prevent the problems caused by directly using biochar particle as sorbent but also can be produced in large scale, indicating great potential for practical applications. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Carbon emission and mitigation cost comparisons between fossil fuel, nuclear and renewable energy resources for electricity generation

    International Nuclear Information System (INIS)

    Sims, R.E.H.; Rogner, H.-H.; Gregory, Ken

    2003-01-01

    A study was conducted to compare the electricity generation costs of a number of current commercial technologies with technologies expected to become commercially available within the coming decade or so. The amount of greenhouse gas emissions resulting per kWh of electricity generated were evaluated. A range of fossil fuel alternatives (with and without physical carbon sequestration), were compared with the baseline case of a pulverised coal, steam cycle power plant. Nuclear, hydro, wind, bioenergy and solar generating plants were also evaluated. The objectives were to assess the comparative costs of mitigation per tonne of carbon emissions avoided, and to estimate the total amount of carbon mitigation that could result from the global electricity sector by 2010 and 2020 as a result of fuel switching, carbon dioxide sequestration and the greater uptake of renewable energy. Most technologies showed potential to reduce both generating costs and carbon emission avoidance by 2020 with the exception of solar power and carbon dioxide sequestration. The global electricity industry has potential to reduce its carbon emissions by over 15% by 2020 together with cost saving benefits compared with existing generation

  5. Biochar in viticulture

    Science.gov (United States)

    Niggli, C.; Schmidt, H.-P.

    2012-04-01

    Viticulture is becoming the pioneering culture for biochar research. Biochar has been applied to many large-scale viticulture experiments across Europe this spring. After the first large-scale and long term experiments at the Delinat Institute in 2007-08, expectations are high. The latest results confirm these expectations and also show that only scientifically sound experiments will lead to conclusive information on the effect of biochar on vine growth and wine quality in many different climates and soil types. In the last three years it has been clearly shown that biologically activated biochar does not only have positive impact on soil-plant systems in the tropics, but in all soil types and climatic zones [Crane Droescher [2011], Ogawa [2010], IBI [2011]). While biochar improves water availability for plants and microorganisms in dry or seasonally dry farming areas, it also plays a substantial role in high rainfall zones because it improves nutrient dynamics through prevention of nutrient leaching. Spectacular crop growth can be seen in extreme climates (tropical or semi-desert), partly due to biochar's buffering capacity leading to the compensation of strong limiting factors (water in semi-deserts, washed-out nutrients in the tropics). In temperate climates, however, the achievable increase in harvest is lower as there are no extremely limiting elements which have to be compensated. In addition, potential maximum growth of many plant species is easily reached in temperate zones through using good fertilizers and careful seed selection. Therefore the advantage of biochar application in temperate climates is less evident as crop growth but rather is seen as plant quality improvement through optimizing plant nutrition. 1. Increase of plant resistance and hence reduction of plant protection products 2. Stimulation of soil microbial activity and symbioses between plants and soil organisms 3. Reduction in fertilizer use by optimizing the supply of nutrients, limiting

  6. Mineralization of soil organic matter in biochar amended agricultural landscape

    Science.gov (United States)

    Chintala, R.; Clay, D. E.; Schumacher, T. E.; Kumar, S.; Malo, D. D.

    2015-12-01

    Pyrogenic biochar materials have been identified as a promising soil amendment to enhance climate resilience, increase soil carbon recalcitrance and achieve sustainable crop production. A three year field study was initiated in 2013 to study the impact of biochar on soil carbon and nitrogen storage on an eroded Maddock soil series - Sandy, Mixed, Frigid Entic Hapludolls) and deposition Brookings clay loam (Fine-Silty, Mixed, Superactive, Frigid Pachic Hapludolls) landscape positions. Three biochars produced from corn stover (Zea mays L.), Ponderosa pine (Pinus ponderosa Lawson and C. Lawson) wood residue, and switchgrass (Panicum virgatum L.) were incorporated at 9.75 Mg ha-1 rate (≈7.5 cm soil depth and 1.3 g/cm3 soil bulk density) with a rototiller. The changes in chemical fractionation of soil carbon (soluble C, acid hydrolyzable C, total C, and δ13 C) and nitrogen (soluble N, acid hydrolyzable N, total N, and δ14 N) were monitored for two soil depths (0-7.5 and 7.5 - 15 cm). Soluble and acid hydrolyzable fractions of soil C and N were influenced by soil series and were not significantly affected by incorporation of biochars. Based on soil and plant samples to be collected in the fall of 2015, C and N budgets are being developed using isotopic and non-isotopic techniques. Laboratory studies showed that the mean residence time for biochars used in this study ranged from 400 to 666 years. Laboratory and field studies will be compared in the presentation.

  7. A multi-period optimization model for planning of China's power sector with consideration of carbon dioxide mitigation—The importance of continuous and stable carbon mitigation policy

    International Nuclear Information System (INIS)

    Zhang, Dongjie; Liu, Pei; Ma, Linwei; LI, Zheng

    2013-01-01

    A great challenge China's power sector faces is to mitigate its carbon emissions whilst satisfying the ever-increasing power demand. Optimal planning of the power sector with consideration of carbon mitigation for a long-term future remains a complex task, involving many technical alternatives and an infinite number of possible plants installations, retrofitting, and decommissioning over the planning horizon. Previously the authors built a multi-period optimization model for the planning of China's power sector during 2010–2050. Based on that model, this paper executed calculations on the optimal pathways of China's power sector with two typical decision-making modes, which are based on “full-information” and “limited-information” hypothesis, and analyzed the impacts on the optimal planning results by two typical types of carbon tax policies including a “continuous and stable” one and a “loose first and tight later” one. The results showed that making carbon tax policy for long-term future, and improving the continuity and stability in policy execution can effectively help reduce the accumulated total carbon emissions, and also the cost for carbon mitigation of the power sector. The conclusion of this study is of great significance for the policy makers to make carbon mitigation policies in China and other countries as well. - Highlights: • A multi-stage optimization model for planning the power sector is applied as basis. • Difference of ideal and actual decision making processes are proposed and analyzed. • A “continuous and stable” policy and a “loose first and tight later” one are designed. • 4 policy scenarios are studied applying the optimal planning model and compared. • The importance of “continuous and stable” policy for long term is well demonstrated

  8. Wettability of poultry litter biochars at variable pyrolysis temperatures and their impact on soil wettability and water retention relationships

    Science.gov (United States)

    Yi, S. C.; Witt, B.; Guo, M.; Chiu, P.; Imhoff, P. T.

    2012-12-01

    To reduce the impact of poultry farming on greenhouse gas emissions, poultry farming waste - poultry litter - can be converted to biofuel and biochar through slow-pyrolysis, with the biochar added to agricultural soil for nutrient enrichment and carbon sequestration. While biochars from source materials other than poultry litter have been shown to sequester carbon and increase soil fertility, there is considerable variability in biochar behavior - even with biochars created from the same source material. This situation is exacerbated by our limited understanding of how biochars alter physical, chemical, and biological processes in agricultural soils. The focus of this work is to develop a mechanistic understanding of how poultry litter (PL) biochars affect the hydrology, microbial communities, N2O emissions, and nitrogen cycling in agricultural soils. The initial focus is on the impact of PL biochar on soil hydrology. PL from Perdue AgriRecycle, LLC (Seaford, Delaware) was used to produce biochars at pyrolysis temperatures from 300°C to 600°C. To explore the impact of these biochars on soil wettability, the PL biochars were mixed with a 30/40 Accusand in mass fractions from 0% to 100%. The water contact angle was then measured using a goniometer on these sand/biochar mixtures using the sessile drop method and a single layer of sample particles. The PL biochars produced at temperatures between 300°C to 400°C were hydrophobic, while those pyrolized at > 400°C were hydrophilic. Water contact angles for samples with 100% biochar varied systematically with pyrolysis temperature, decreasing from 101.12° to 20.57° as the pyrolysis temperature increased from 300 to 600°C. Even for small amounts of hydrophobic biochar added to the hydrophilic sand, the contact angle of the mixture was altered: for sand/biochar mixtures containing only 2% hydrophobic PL biochar by weight, the contact angle of the mixture increased from ~ 8° (0% biochar) to 20° (2% biochar). For

  9. Environmental Impacts of Large Scale Biochar Application Through Spatial Modeling

    Science.gov (United States)

    Huber, I.; Archontoulis, S.

    2017-12-01

    In an effort to study the environmental (emissions, soil quality) and production (yield) impacts of biochar application at regional scales we coupled the APSIM-Biochar model with the pSIMS parallel platform. So far the majority of biochar research has been concentrated on lab to field studies to advance scientific knowledge. Regional scale assessments are highly needed to assist decision making. The overall objective of this simulation study was to identify areas in the USA that have the most gain environmentally from biochar's application, as well as areas which our model predicts a notable yield increase due to the addition of biochar. We present the modifications in both APSIM biochar and pSIMS components that were necessary to facilitate these large scale model runs across several regions in the United States at a resolution of 5 arcminutes. This study uses the AgMERRA global climate data set (1980-2010) and the Global Soil Dataset for Earth Systems modeling as a basis for creating its simulations, as well as local management operations for maize and soybean cropping systems and different biochar application rates. The regional scale simulation analysis is in progress. Preliminary results showed that the model predicts that high quality soils (particularly those common to Iowa cropping systems) do not receive much, if any, production benefit from biochar. However, soils with low soil organic matter ( 0.5%) do get a noteworthy yield increase of around 5-10% in the best cases. We also found N2O emissions to be spatial and temporal specific; increase in some areas and decrease in some other areas due to biochar application. In contrast, we found increases in soil organic carbon and plant available water in all soils (top 30 cm) due to biochar application. The magnitude of these increases (% change from the control) were larger in soil with low organic matter (below 1.5%) and smaller in soils with high organic matter (above 3%) and also dependent on biochar

  10. Simulation of biogas production by adding biochar; Steigerung des Biogasertrages durch die Zugabe von Pflanzenkohle

    Energy Technology Data Exchange (ETDEWEB)

    Roedger, Jan-Markus; Ganagin, Waldemar; Krieg, Andreas; Roth, Christian; Loewen, Achim [HAWK Hildesheim/Holzminden/Goettingen, Goettingen (Germany). Fachgebiet Nachhaltige Energie- und Umwelttechnik (NEUTec)

    2013-09-15

    One instrument to withdraw carbon dioxide from the atmosphere is the so called Biochar. Through photosynthesis and a thermochemical biomass treatment (pyrolysis) the bound carbon will be stabilized and thereby stored permanently. The product (biochar) is intended to be mainly used as soil enhancer on arable land. Early analyses indicate no economic feasibility yet. Therefore new ways of utilization need to be identified along the agricultural value chain to generate additional earnings. One option is the application of biochar as an additive within the biogas process. Different international research institutes were able to measure an increase in biogas production due to the biochar addition. One reason might be accumulation of methanogenic bacteria as well as the increase of the surface area to improve the microbial functionality which leads to additional gas production. The study presented here investigated the optimal process stage within the fermentation process (main digester or secondary fermenter) to add the biochar and thereby improve the gas production. By adding biochar to the main digester an increase in gas production of approximately 9 % over a time span of 91 days was measured. To analyse the effect within the secondary fermenter two different approaches were tested. The effect of the surface area was assessed by comparing the influence of original biochar and large char particles. The original Biochar led to an increase of more than 13 % and the large particles even enhanced methane production by 24 % over 91 days. (orig.)

  11. Low Secondary Electron Yield Carbon Coatings for Electron Cloud Mitigation in Modern Particle Accelerators

    CERN Document Server

    Yin Vallgren, Christina; Taborelli, Mauro

    2011-01-01

    In order to upgrade the Large Hadron Collider (LHC) performance to be oriented towards higher energies and higher intensities in the future, a series of improvements of the existing LHC injectors is planned to take place over the next few years. Electron cloud effects are expected to be enhanced and play a central role in limiting the performance of the machines of the CERN complex. Electron cloud phenomena in beam pipes are based on electron multiplication and can be sufficiently suppressed if the Secondary Electron Yield (SEY) of the surface of the beam pipes is lower than unity. The goal of this work is to find and study a thin film coating with reliably low initial Secondary Electron Yield (SEY), which does not require bake-out or conditioning in situ with photons, is robust again air exposure and can easily be applied in the beam pipes of accelerators. In this work, amorphous carbon (a-C) thin films have been prepared by DC magnetron sputtering for electron cloud mitigation and antimultipactor applicatio...

  12. Applications of Advanced Technology for Monitoring Forest Carbon to Support Climate Change Mitigation

    Science.gov (United States)

    Birdsey, R.; Hurtt, G. C.; Dubayah, R.; Hagen, S. C.; Vargas, R.; Nehrkorn, T.; Domke, G. M.; Houghton, R. A.

    2015-12-01

    Measurement, Reporting, and Verification (MRV) is a broad concept guiding the application of monitoring technology to the needs of countries or entities for reporting and verifying reductions in greenhouse gas emissions or increases in greenhouse gas sinks. Credibility, cost-effectiveness, and compatibility are important features of global MRV efforts that can support implementation of climate change mitigation programs such as Reducing Emissions from Deforestation and Forest Degradation and Sustainable Forest Management (REDD+). Applications of MRV technology may be tailored to individual country circumstances following guidance provided by the Intergovernmental Panel on Climate Change; hence, there is no single approach that is uniquely viable but rather a range of ways to integrate new MRV methods. MRV technology is advancing rapidly with new remote sensing and advanced measurement of atmospheric CO2, and in situ terrestrial and ocean measurements, coupled with improvements in data analysis, modeling, and assessing uncertainty. Here we briefly summarize some of the most application-ready MRV technologies being developed under NASA's Carbon Monitoring System (CMS) program, and illustrate how these technologies may be applied for monitoring forests using several case studies that span a range of scales, country circumstances, and stakeholder reporting requirements. We also include remarks about the potential role of advanced monitoring technology in the context of the global climate accord that is expected to result from the 21st session of the Conference of the Parties to the United Nations Framework Convention on Climate Change, which is expected to take place in December 2015, in Paris, France.

  13. Acting Globally: Potential Carbon Emissions Mitigation Impacts from an International Standards and Labelling Program

    Energy Technology Data Exchange (ETDEWEB)

    McNeil, Michael A; Letschert, Virginie E.; de la Rue du Can, Stephane; Egan, Christine

    2009-05-29

    This paper presents an analysis of the potential impacts of an international initiative designed to support and promote the development and implementation of appliances standards and labelling programs throughout the world. As part of previous research efforts, LBNL developed the Bottom Up Energy Analysis System (BUENAS), an analysis framework that estimates impact potentials of energy efficiency policies on a global scale. In this paper, we apply this framework to an initiative that would result in the successful implementation of programs focused on high priority regions and product types, thus evaluating the potential impacts of such an initiative in terms of electricity savings and carbon mitigation in 2030. In order to model the likely parameters of such a program, we limit impacts to a five year period starting in 2009, but assume that the first 5 years of a program will result in implementation of 'best practice' minimum efficiency performance standards by 2014. The 'high priority' regions considered are: Brazil, China, the European Union,India, Mexico and the United States. The products considered are: refrigerators, air conditioners, lighting (both fluorescent and incandescent), standby power (for consumer electronics) and televisions in the residential sector, and air conditioning and lighting in commercial buildings. In 2020, these regions and enduses account for about 37percent of global residential electricity and 29percent of electricity in commercial buildings. We find that 850Mt of CO2 could be saved in buildings by 2030 compared to the baseline forecast.

  14. A hybrid energy-economy model for global integrated assessment of climate change, carbon mitigation and energy transformation

    International Nuclear Information System (INIS)

    Cai, Yiyong; Newth, David; Finnigan, John; Gunasekera, Don

    2015-01-01

    Highlights: • This paper introduces the design of a hybrid energy-economy model, GTEM-C. • The model offers a unified tool to analyse the energy-carbon-environment nexus. • Results are presented on global energy transformation due to carbon mitigation. • Electrification with renewable energies can contain the spiking of carbon prices. - Abstract: This paper introduces the design of the CSIRO variant of the Global Trade and Environment model (GTEM-C). GTEM-C is a hybrid model that combines the top-down macroeconomic representation of a computable general equilibrium model with the bottom-up engineering details of energy production. The model features detailed accounting for global energy flows that are embedded in traded energy goods, and it offers a unified framework to analyse the energy-carbon-environment nexus. As an illustrative example, we present simulation results on global energy transformation under the Intergovernmental Panel on Climate Change’s representative carbon pathways 4.5 and 8.5. By testing the model’s sensitivity to the relevant parameter, we find that the pace of electrification will significantly contain the spiking of carbon prices because electricity can be produced from carbon-free or less carbon-intensive technologies. The decoupling of energy use and carbon footprint, due to the uptake of clean electricity technologies, such as nuclear, wind, solar, and carbon capture and storage, allows the world to maintain high level of energy consumption, which is essential to economic growth

  15. Can Biochar Protect Labile Organic Matter Against Mineralization in Soil?

    Institute of Scientific and Technical Information of China (English)

    Gio