WorldWideScience

Sample records for biocatalysis

  1. Preface: Biocatalysis and Bioenergy

    Science.gov (United States)

    This book was assembled with the intent of bringing together current advances and in-depth review of biocatalysis and bioenergy with emphasis on biodiesel, bioethanol, biohydrogen and industrial products. Biocatalysis and bioenergy defined in this book include enzyme catalysis, biotransformation, b...

  2. Biocatalysis for Biobased Chemicals

    Directory of Open Access Journals (Sweden)

    Rubén de Regil

    2013-10-01

    Full Text Available The design and development of greener processes that are safe and friendly is an irreversible trend that is driven by sustainable and economic issues. The use of Biocatalysis as part of a manufacturing process fits well in this trend as enzymes are themselves biodegradable, require mild conditions to work and are highly specific and well suited to carry out complex reactions in a simple way. The growth of computational capabilities in the last decades has allowed Biocatalysis to develop sophisticated tools to understand better enzymatic phenomena and to have the power to control not only process conditions but also the enzyme’s own nature. Nowadays, Biocatalysis is behind some important products in the pharmaceutical, cosmetic, food and bulk chemicals industry. In this review we want to present some of the most representative examples of industrial chemicals produced in vitro through enzymatic catalysis.

  3. Catalysis and biocatalysis program

    Science.gov (United States)

    Ingham, J. D.

    1993-01-01

    This final report presents a summary of research activities and accomplishments for the Catalysis and Biocatalysis Program, which was renamed the Biological and Chemical Technologies Research (BCTR) Program, currently of the Advanced Industrial Concepts Division (AICD), Office of Industrial Technologies of the Department of Energy (DOE). The Program was formerly under the Division of Energy Conversion and Utilization Technologies (ECUT) until the DOE reorganization in April, 1990. The goals of the BCTR Program are consistent with the initial ECUT goals, but represent an increased effort toward advances in chemical and biological technology transfer. In addition, the transition reflects a need for the BCTR Program to assume a greater R&D role in chemical catalysis as well as a need to position itself for a more encompassing involvement in a broader range of biological and chemical technology research. The mission of the AICD is to create a balanced Program of high risk, long-term, directed interdisciplinary research and development that will improve energy efficiency and enhance fuel flexibility in the industrial sector. Under AICD, the DOE Catalysis and Biocatalysis Program sponsors research and development in furthering industrial biotechnology applications and promotes the integrated participation of universities, industrial companies, and government research laboratories.

  4. Green polymer chemistry: biocatalysis and biomaterials

    Science.gov (United States)

    This overview briefly surveys the practice of green chemistry in polymer science. Eight related themes can be discerned from the current research activities: 1) biocatalysis, 2) bio-based building blocks and agricultural products, 3) degradable polymers, 4) recycling of polymer products and catalys...

  5. Coal desulfurization through reverse micelle biocatalysis process

    Energy Technology Data Exchange (ETDEWEB)

    Lee, K.; Yen, T.F.

    1988-01-01

    A novel bioprocess using micelle biocatalysis has been attempted to minimize several disadvantages of conventional microbial coal desulfurization scale-up processes. The reverse micelle biocatalysis process consists of a water-immiscible organic medium, a surfactant, an aqueous phase and sulfur-oxidizing bacteria or enzymes. This process has been successful for removing sulfur from bituminous coal (Illinois coal 5). The preliminary results showed that coal desulfurization through the use of cell-free enzyme extracts of Thiobacillus ferrooxidans ATCC 19859 was better than that of bacteria itself. The use of enzymes has shown potential for commercial coal desulfurization process as well. This same process is being applied to the thermophillic bacteria Sulfolobus acidocaldarius ATCC 33909. The implications of these experimental results are discussed, including a hypothetical mechanism using reverse micelle biocatalytical process for coal desulfurization.

  6. Enzyme immobilisation in biocatalysis: why, what and how

    NARCIS (Netherlands)

    Sheldon, R.A.; Van Pelt, S.

    2013-01-01

    In this tutorial review, an overview of the why, what and how of enzyme immobilisation for use in biocatalysis is presented. The importance of biocatalysis in the context of green and sustainable chemicals manufacture is discussed and the necessity for immobilisation of enzymes as a key enabling tec

  7. The application of reaction engineering to biocatalysis

    DEFF Research Database (Denmark)

    Ringborg, Rolf Hoffmeyer; Woodley, John

    2016-01-01

    Biocatalysis is a growing area of synthetic and process chemistry with the ability to deliver not only improved processes for the synthesis of existing compounds, but also new routes to new compounds. In order to assess the many options and strategies available to an engineer developing a new...... outline the benefits of reaction engineering in this development process, with particular emphasis of reaction kinetics. Future research needs to focus on rapid methods to collect such data at sufficient accuracy that it can be used forthe effective design of new biocatalytic processes....

  8. ECUT: Energy Conversion and Utilization Technologies program - Biocatalysis research activity

    Science.gov (United States)

    Wilcox, R.

    1984-01-01

    The activities of the Biocatalysis Research Activity are organized into the Biocatalysis and Molecular Modeling work elements and a supporting planning and analysis function. In the Biocatalysis work element, progress is made in developing a method for stabilizing genetically engineered traits in microorganisms, refining a technique for monitoring cells that are genetically engineered, and identifying strains of fungi for highly efficient preprocessing of biomass for optimizing the efficiency of bioreactors. In the Molecular Modeling work element, a preliminary model of the behavior of enzymes is developed. A preliminary investigation of the potential for synthesizing enzymes for use in electrochemical processes is completed. Contact with industry and universities is made to define key biocatalysis technical issues and to broaden the range of potential participants in the activity. Analyses are conducted to identify and evaluate potential concepts for future research funding.

  9. Biocatalysis--key to sustainable industrial chemistry.

    Science.gov (United States)

    Wohlgemuth, Roland

    2010-12-01

    The ongoing trends to process improvements, cost reductions and increasing quality, safety, health and environment requirements of industrial chemical transformations have strengthened the translation of global biocatalysis research work into industrial applications. One focus has been on biocatalytic single-step reactions with one or two substrates, the identification of bottlenecks and molecular as well as engineering approaches to overcome these bottlenecks. Robust industrial procedures have been established along classes of biocatalytic single-step reactions. Multi-step reactions and multi-component reactions (MCRs) enable a bottom-up approach with biocatalytic reactions working together in one compartment and recations hindering each other within different compartments or steps. The understanding of the catalytic functions of known and new enzymes is key for the development of new sustainable chemical transformations.

  10. Biopolymeric Formulations for Biocatalysis and Biomedical Applications

    Directory of Open Access Journals (Sweden)

    Magdy M. M. Elnashar

    2014-01-01

    Full Text Available Three gel disks formulations prepared using chitosan (Chito or polyethylenimine (PEI followed by glutaraldehyde were prepared for biocatalysis and biomedical applications. The carriers have been used to immobilize lactase covalently and it was evaluated in terms of enzyme loading capacity and enzyme kinetics (km and Vmax. The Km of the Chito formulation was almost half that of the PEI formulations, which is favored in industries. On the other hand, the gel disks were evaluated in terms of their swelling kinetics and the gels’ morphology using SEM. The mechanism of the three gels’ swelling was also studied and it was found to be non-Fickian, where the mechanism of transport depends on both the diffusion and polymer relaxation, which are controlling the overall rate of water uptake. The Chito formulation was 2–5 folds and PEI formulations were 33–62 folds in terms of the swelling rate constant and the diffusion rate, respectively. These results were highly supported by the SEM. This study will help scientists to design the right polymer network for enzymes immobilization as well as control the surface area and the swelling power of the polymers for different applications such as drug delivery systems and tissue engineering.

  11. New opportunities for biocatalysis: making pharmaceutical processes greener

    DEFF Research Database (Denmark)

    Woodley, John

    2008-01-01

    , and in this review some of these opportunities are outlined and outstanding challenges presented. Future development will require research targeted towards increased commercial availability of key enzymes, as well as the improvement of enzyme stability and substrate repertoire, to fully realize the potential...... of biocatalysis for making pharmaceutical processes greener....

  12. ECUT (Energy Conversion and Utilization Technologies) program: Biocatalysis project

    Science.gov (United States)

    Baresi, Larry

    1989-03-01

    The Annual Report presents the fiscal year (FY) 1988 research activities and accomplishments, for the Biocatalysis Project of the U.S. Department of Energy, Energy Conversion and Utilization Technologies (ECUT) Division. The ECUT Biocatalysis Project is managed by the Jet Propulsion Laboratory, California Institute of Technology. The Biocatalysis Project is a mission-oriented, applied research and exploratory development activity directed toward resolution of the major generic technical barriers that impede the development of biologically catalyzed commercial chemical production. The approach toward achieving project objectives involves an integrated participation of universities, industrial companies and government research laboratories. The Project's technical activities were organized into three work elements: (1) The Molecular Modeling and Applied Genetics work element includes research on modeling of biological systems, developing rigorous methods for the prediction of three-dimensional (tertiary) protein structure from the amino acid sequence (primary structure) for designing new biocatalysis, defining kinetic models of biocatalyst reactivity, and developing genetically engineered solutions to the generic technical barriers that preclude widespread application of biocatalysis. (2) The Bioprocess Engineering work element supports efforts in novel bioreactor concepts that are likely to lead to substantially higher levels of reactor productivity, product yields and lower separation energetics. Results of work within this work element will be used to establish the technical feasibility of critical bioprocess monitoring and control subsystems. (3) The Bioprocess Design and Assessment work element attempts to develop procedures (via user-friendly computer software) for assessing the energy-economics of biocatalyzed chemical production processes, and initiation of technology transfer for advanced bioprocesses.

  13. Industrial applications of enzyme biocatalysis: Current status and future aspects.

    Science.gov (United States)

    Choi, Jung-Min; Han, Sang-Soo; Kim, Hak-Sung

    2015-11-15

    Enzymes are the most proficient catalysts, offering much more competitive processes compared to chemical catalysts. The number of industrial applications for enzymes has exploded in recent years, mainly owing to advances in protein engineering technology and environmental and economic necessities. Herein, we review recent progress in enzyme biocatalysis, and discuss the trends and strategies that are leading to broader industrial enzyme applications. The challenges and opportunities in developing biocatalytic processes are also discussed.

  14. Biocatalysis in ionic liquids - advantages beyond green technology.

    Science.gov (United States)

    Park, Seongsoon; Kazlauskas, Romas J

    2003-08-01

    In recent years researchers have started to explore a particular class of organic solvents called room temperature ionic liquids - or simply ionic liquids - to identify their unique advantages for biocatalysis. Because they lack vapour pressure, ionic liquids hold potential as green solvents. Furthermore, unlike organic solvents of comparable polarity, they often do not inactivate enzymes, which simplifies reactions involving polar substrates such as sugars. Biocatalytic reactions in ionic liquids have also shown higher selectivity, faster rates and greater enzyme stability; however, these solvents present other challenges, among them difficulties in purifying ionic liquids and controlling water activity and pH, higher viscosity and problems with product isolation.

  15. Phosphoketolase pathway engineering for carbon-efficient biocatalysis

    Energy Technology Data Exchange (ETDEWEB)

    Henard, Calvin Andrew; Freed, Emily Frances; Guarnieri, Michael Thomas

    2015-12-01

    Recent advances in metabolic engineering have facilitated the development of microbial biocatalysts capable of producing an array of bio-products, ranging from fuels to drug molecules. These bio-products are commonly generated through an acetyl-CoA intermediate, which serves as a key precursor in the biological conversion of carbon substrates. Moreover, conventional biocatalytic upgrading strategies proceeding through this route are limited by low carbon efficiencies, in large part due to carbon losses associated with pyruvate decarboxylation to acetyl-CoA. Bypass of pyruvate decarboxylation offers a means to dramatically enhance carbon yields and, in turn, bioprocess economics. Here, we discuss recent advances and prospects for employing the phosphoketolase pathway for direct biosynthesis of acetyl-CoA from carbon substrates, and phosphoketolase-based metabolic engineering strategies for carbon efficient biocatalysis.

  16. Biocatalysis in organic chemistry and biotechnology: past, present, and future.

    Science.gov (United States)

    Reetz, Manfred T

    2013-08-28

    Enzymes as catalysts in synthetic organic chemistry gained importance in the latter half of the 20th century, but nevertheless suffered from two major limitations. First, many enzymes were not accessible in large enough quantities for practical applications. The advent of recombinant DNA technology changed this dramatically in the late 1970s. Second, many enzymes showed a narrow substrate scope, often poor stereo- and/or regioselectivity and/or insufficient stability under operating conditions. With the development of directed evolution beginning in the 1990s and continuing to the present day, all of these problems can be addressed and generally solved. The present Perspective focuses on these and other developments which have popularized enzymes as part of the toolkit of synthetic organic chemists and biotechnologists. Included is a discussion of the scope and limitation of cascade reactions using enzyme mixtures in vitro and of metabolic engineering of pathways in cells as factories for the production of simple compounds such as biofuels and complex natural products. Future trends and problems are also highlighted, as is the discussion concerning biocatalysis versus nonbiological catalysis in synthetic organic chemistry. This Perspective does not constitute a comprehensive review, and therefore the author apologizes to those researchers whose work is not specifically treated here.

  17. Nanoassembly of immobilized ligninolytic enzymes for biocatalysis, bioremediation, and biosensing

    Science.gov (United States)

    Kuila, Debasish; Tien, Ming; Lvov, Yuri M.; McShane, Michael J.; Aithal, Rajendra K.; Singh, Saurabh; Potluri, Avinash; Kaul, Swati; Patel, Devendra S.; Krishna, Gopal

    2004-12-01

    Extracellular enzymes, lignin peroxidase (LiP) and manganese peroxidase (MnP) from white rot fungus Phanerochaete chrysosoporium, have been shown to degrade various harmful organic compounds ranging from chlorinated compounds to polycyclic aromatic hydrocarbons (PAH) to polymeric dyes. The problems in using immobilized enzymes for biocatalysis/bioremediation are their loss of activity and long-term stability. To address these issues, adsorption by layer-by-layer assembly (LbL) using polyelectrolytes, entrapment using gelatin, and chmisorption using coupling reagents have been investigated. In order to increase surface area for catalysis, porous silicon, formed by electrochemical etching of silicon, has been considered. The efficacy of these extremely stable nanoassemblies towards degradation of model organic compounds-veratryl alcohol (VA and 2,6-dimethoxyphenol (DMP)-in aqueous and in a mixture of aqueous/acetone has already been demonstrated. In parallel, we are pursuing development of sensors using these immobilized enzymes. Experiments carried out in solution show that NO can reversibly bind Ferri-LiP to produce a diamagnetic complex with a distinct change in its optical spectrum. NO can be photolyzed off to produce the spectrum of native paramagnetic ferri-species. Preliminary data on the detection of NO by LiP, based on surface plasmon resonance (SPR) using fiber optic probe, are presented.

  18. Xenobiology meets enzymology: Exploring the potential of unnatural building blocks in biocatalysis.

    Science.gov (United States)

    Budisa, Nediljko; Völler, Jan-Stefan; Koksch, Beate; Acevedo-Rocha, Carlos G; Kubyshkin, Vladimir; Agostini, Federica

    2017-01-13

    Xenobiology (XB) aims to design biological systems endowed with unusual biochemistries, while enzymology concerns the study of enzymes, the workhorses of biocatalysis. Biocatalysis employs enzymes and organisms to perform useful biotransformations in synthetic chemistry and biotechnology. During the past years, the effects of incorporating noncanonical amino acids (ncAAs) into enzymes with potential applications in biocatalysis have been increasingly investigated. Here we provide an overview of the effects of new chemical functionalities that have been introduced into proteins to improve various facets of enzymatic catalysis. We also discuss future research avenues that will complement unnatural mutagenesis with the standard protein-engineering toolbox for producing novel and versatile biocatalysts with applications in synthetic organic chemistry and biotechnology.

  19. Using Biocatalysis to Integrate Organic Chemistry into a Molecular Biology Laboratory Course

    Science.gov (United States)

    Beers, Mande; Archer, Crystal; Feske, Brent D.; Mateer, Scott C.

    2012-01-01

    Current cutting-edge biomedical investigation requires that the researcher have an operational understanding of several diverse disciplines. Biocatalysis is a field of science that operates at the crossroads of organic chemistry, biochemistry, microbiology, and molecular biology, and provides an excellent model for interdisciplinary research. We…

  20. Predicting when precipitation-driven synthesis is feasible : application to biocatalysis

    NARCIS (Netherlands)

    Ulijn, R.V.; Janssen, A.E.M.; Moore, B.D.; Halling, P.J.

    2001-01-01

    Precipitation-driven synthesis offers the possibility of obtaining high reaction yields using very low volume reactors and is finding increasing applications in biocatalysis. Here, a model that allows straightforward prediction of when such a precipitation-driven reaction will be thermodynamically f

  1. More efficient redox biocatalysis by utilising 1,4-butanediol as a ‘smart cosubstrate’

    NARCIS (Netherlands)

    Kara, S.; Spickermann, D.; Schrittwieser, J.H.; Leggewie,C.; Van Berkel, W.J.H.; Arendsa, I.W.C.E.; Hollmann, F.

    2012-01-01

    1,4-Butanediol is shown to be an efficient cosubstrate to promote NAD(P)H-dependent redox biocatalysis. The thermodynamically and kinetically inert lactone coproduct makes the regeneration reaction irreversible. Thereby not only the molar surplus of cosubstrate is dramatically reduced but also faste

  2. More efficient redox biocatalysis by utilizing 1,4-butanediol as a ‘smart cosubstrate'

    NARCIS (Netherlands)

    Kara, S.; Spickermann, D.; Schrittwieser, J.H.; Leggewie, C.; Berkel, van W.J.H.; Arends, I.W.C.E.; Hollmann, F.

    2013-01-01

    1,4-Butanediol is shown to be an efficient cosubstrate to promote NAD(P)H-dependent redox biocatalysis. The thermodynamically and kinetically inert lactone coproduct makes the regeneration reaction irreversible. Thereby not only the molar surplus of cosubstrate is dramatically reduced but also faste

  3. ECUT: Energy Conversion and Utilization Technologies Program. Biocatalysis Research Activity annual report, FY 1983

    Energy Technology Data Exchange (ETDEWEB)

    1984-04-15

    The activities of the Biocatalysis Research Activity during FY 1983 were organized into the Biocatalysis and Molecular Modeling work elements and a supporting planning and analysis function. In the biocatalysis work element, progress was made in developing a method for stabilizing genetically engineered traits in microorganisms, refining a technique for monitoring cells that have been genetically engineered, identifying strains of fungi for highly efficient preprocessing of biomass for biocatalyzed processes, and determining molecular level conditions for optimizing the efficiency of bioreactors. In the Molecular Modeling work element, a preliminary model of the behavior of enzymes was developed. Also, a preliminary investigation of the potential for synthesizing enzymes for use in electrochemical processes was completed. As part of the Activity's supporting planning and analysis efforts, contact with industry and universities was made to define key biocatalysis technical issues and to broaden the range of potential participants in the Activity. Additionally, analyses were conducted to identify and evaluate potential concepts for future research funding by the Activity. 1 figure, 2 tables.

  4. 8th International Congress on Biocatalysis (Biocat2016, Hamburg, Germany, 28 August–1 September, 2016

    Directory of Open Access Journals (Sweden)

    Skander Elleuche

    2016-10-01

    Full Text Available The “8th International Congress on Biocatalysis (biocat2016” is part of a biennial conference series. Biocatalysis is a topic based on the edge of biology and chemistry, which brings together scientists from the life sciences, engineers and computer scientists. This international conference serves as a platform to meet researchers from all over the world, to find collaboration partners for future projects and to gain novel insights into modern topics and techniques. Biocat covers the most exciting aspects and the latest developments in biocatalysis, including enzyme discovery, evolution and application, bioprocess engineering, cascade reaction systems and nanobiotechnology. In 2016, we welcomed 367 expert delegates in the respective fields. Established and young scientists from academia and the industry presented 51 lectures, 37 lightning talks and 234 posters. In addition, the biocat award, which is among the most prestigious awards in the field of biotechnology, has been awarded for the sixth time in the categories “Science in academia”, “Lifetime achievement” and “Industry”.

  5. Process considerations for the scale-up and implementation of biocatalysis

    DEFF Research Database (Denmark)

    Tufvesson, Pär; Fu, Wenjing; Jensen, Jacob Skibsted

    2010-01-01

    and biocatalysis in particular is a rather young technology. Although significant progress has been made in the implementation of new processes (especially in the pharmaceutical industry) no fixed methods for process design have been established to date. In this paper we present some of the considerations required...... to scale-up a biocatalytic process and some of the recently developed engineering tools available to assist in this procedure. The tools will have a decisive role in helping to identify bottlenecks in the biocatalytic development process and to justify where to put effort and resources....

  6. On the (ungreenness of Biocatalysis: Some challenging figures and some promising options

    Directory of Open Access Journals (Sweden)

    Pablo eDomínguez de María

    2015-11-01

    Full Text Available Biocatalysis is generally regarded as a ‘green’ technology. This statement is justified by the mild reaction conditions, the use of aqueous reaction media – with water as the paradigm of green solvents –, and the renewable nature of the biocatalysts. However, researchers making these statements frequently do not take into account the entire picture of their processes. Aspects like water consumption, wastewater production, titers and metrics of the (diluted? biocatalytic processes are important as well. With those figures at hand, many biocatalytic reactions do not appear so green anymore. This article critically discusses some common wrong assumptions given for biocatalytic approaches, with regard to their environmental impact and actual greenness. Some promising biocatalytic approaches, such as the use of biphasic systems involving biogenic solvents, deep-eutectic-solvents (and biogenic ionic liquids, water-free media, solvent-free processes, are briefly introduced, showing that enzyme catalysis can actually be a robust sustainable alternative for chemical processes.

  7. Chemomimetic biocatalysis: exploiting the synthetic potential of cofactor-dependent enzymes to create new catalysts.

    Science.gov (United States)

    Prier, Christopher K; Arnold, Frances H

    2015-11-11

    Despite the astonishing breadth of enzymes in nature, no enzymes are known for many of the valuable catalytic transformations discovered by chemists. Recent work in enzyme design and evolution, however, gives us good reason to think that this will change. We describe a chemomimetic biocatalysis approach that draws from small-molecule catalysis and synthetic chemistry, enzymology, and molecular evolution to discover or create enzymes with non-natural reactivities. We illustrate how cofactor-dependent enzymes can be exploited to promote reactions first established with related chemical catalysts. The cofactors can be biological, or they can be non-biological to further expand catalytic possibilities. The ability of enzymes to amplify and precisely control the reactivity of their cofactors together with the ability to optimize non-natural reactivity by directed evolution promises to yield exceptional catalysts for challenging transformations that have no biological counterparts.

  8. High-throughput strategies for the discovery and engineering of enzymes for biocatalysis.

    Science.gov (United States)

    Jacques, Philippe; Béchet, Max; Bigan, Muriel; Caly, Delphine; Chataigné, Gabrielle; Coutte, François; Flahaut, Christophe; Heuson, Egon; Leclère, Valérie; Lecouturier, Didier; Phalip, Vincent; Ravallec, Rozenn; Dhulster, Pascal; Froidevaux, Rénato

    2017-02-01

    Innovations in novel enzyme discoveries impact upon a wide range of industries for which biocatalysis and biotransformations represent a great challenge, i.e., food industry, polymers and chemical industry. Key tools and technologies, such as bioinformatics tools to guide mutant library design, molecular biology tools to create mutants library, microfluidics/microplates, parallel miniscale bioreactors and mass spectrometry technologies to create high-throughput screening methods and experimental design tools for screening and optimization, allow to evolve the discovery, development and implementation of enzymes and whole cells in (bio)processes. These technological innovations are also accompanied by the development and implementation of clean and sustainable integrated processes to meet the growing needs of chemical, pharmaceutical, environmental and biorefinery industries. This review gives an overview of the benefits of high-throughput screening approach from the discovery and engineering of biocatalysts to cell culture for optimizing their production in integrated processes and their extraction/purification.

  9. Expression of a Dianthus flavonoid glucosyltransferase in Saccharomyces cerevisiae for whole-cell biocatalysis.

    Science.gov (United States)

    Werner, Sean R; Morgan, John A

    2009-07-15

    Glycosyltransferases are promising biocatalysts for the synthesis of small molecule glycosides. In this study, Saccharomyces cerevisiae expressing a flavonoid glucosyltransferase (GT) from Dianthus caryophyllus (carnation) was investigated as a whole-cell biocatalyst. Two yeast expression systems were compared using the flavonoid naringenin as a model substrate. Under in vitro conditions, naringenin-7-O-glucoside was formed and a higher specific glucosyl transfer activity was found using a galactose inducible expression system compared to a constitutive expression system. However, S. cerevisiae expressing the GT constitutively was significantly more productive than the galactose inducible system under in vivo conditions. Interestingly, the glycosides were recovered directly from the culture broth and did not accumulate intracellularly. A previously uncharacterized naringenin glycoside formed using the D. caryophyllus GT was identified as naringenin-4'-O-glucoside. It was found that S. cerevisiae cells hydrolyze naringenin-7-O-glucoside during whole-cell biocatalysis, resulting in a low final glycoside titer. When phloretin was added as a substrate to the yeast strain expressing the GT constitutively, the natural product phlorizin was formed. This study demonstrates S. cerevisiae is a promising whole-cell biocatalyst host for the production of valuable glycosides.

  10. Using biocatalysis to integrate organic chemistry into a molecular biology laboratory course.

    Science.gov (United States)

    Beers, Mande; Archer, Crystal; Feske, Brent D; Mateer, Scott C

    2012-01-01

    Current cutting-edge biomedical investigation requires that the researcher have an operational understanding of several diverse disciplines. Biocatalysis is a field of science that operates at the crossroads of organic chemistry, biochemistry, microbiology, and molecular biology, and provides an excellent model for interdisciplinary research. We have developed an inquiry-based module that uses the mutagenesis of the yeast reductase, YDL124w, to study the bioorganic synthesis of the taxol side-chain, a pharmacologically important molecule. Using related structures, students identify regions they think will affect enzyme stereoselective, design and generate site-specific mutants, and then characterize the effect of these changes on enzyme activity. This laboratory activity gives our students experience, working in a scientific discipline outside of biology and exposes them to techniques and equipment they do not normally work with in a molecular biology course. These inter-disciplinary experiences not only show the relevance of other sciences to biology, but also give our students the ability to communicate more effectively with scientists outside their discipline.

  11. The Protagonism of Biocatalysis in Green Chemistry and Its Environmental Benefits

    Directory of Open Access Journals (Sweden)

    Viridiana Santana Ferreira-Leitão

    2017-01-01

    Full Text Available The establishment of a bioeconomy era requires not only a change of production pattern, but also a deep modernization of the production processes through the implementation of novel methodologies in current industrial units, where waste materials and byproducts can be utilized as starting materials in the production of commodities such as biofuels and other high added value chemicals. The utilization of renewable raw resources and residues from the agro-industries, and their exploitation through various uses and applications through technologies, particularly solid-state fermentation (SSF, are the main focus of this review. The advocacy for biocatalysis in green chemistry and the environmental benefits of bioproduction are very clear, although this kind of industrial process is still an exception and not the rule. Potential and industrial products, such as biocatalysts, animal feed, fermentation medium, biofuels (biodiesel, lignocelulose ethanol, CH4, and H2, pharmaceuticals and chemicals are dealt with in this paper. The focus is the utilization of renewable resources and the important role of enzymatic process to support a sustainable green chemical industry.

  12. P450cam biocatalysis in surfactant-stabilized two-phase emulsions.

    Science.gov (United States)

    Ryan, Jessica D; Clark, Douglas S

    2008-04-15

    -stabilized two-phase emulsion is a promising reaction medium for practical P450 biocatalysis, although its effectiveness for a given P450/substrate combination can depend on several factors, including competitive or sequential reactions, product inhibition, and NAD(P)H uncoupling.

  13. Nitrile-converting enzymes as a tool to improve biocatalysis in organic synthesis: recent insights and promises.

    Science.gov (United States)

    Gong, Jin-Song; Shi, Jin-Song; Lu, Zhen-Ming; Li, Heng; Zhou, Zhe-Min; Xu, Zheng-Hong

    2017-02-01

    Nitrile-converting enzymes, including nitrilase and nitrile hydratase (NHase), have received increasing attention from researchers of industrial biocatalysis because of their critical role as a tool in organic synthesis of carboxylic acids and amides from nitriles. To date, these bioconversion approaches are considered as one of the most potential industrial processes using resting cells or purified enzymes as catalysts for production of food additives, pharmaceutical, and agrochemical precursors. This review focuses on the distribution and catalytic mechanism research of nitrile-converting enzymes in recent years. Molecular biology aspects to improve the biocatalytic performance of microbial nitrilase and NHase are demonstrated. The process developments of microbial nitrilase and NHase for organic synthesis are also discussed.

  14. Immobilization of Saccharomyces cerevisiae cells and Rhizomucor miehei lipase for the production and extractive biocatalysis of ethanol

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, A.C. [Instituto Nacional de Engenharia e Tecnologia Industrial, Lisboa (Portugal). Dept. de Energias Renovaveis; Rosa, M.F. [Instituto Nacional de Engenharia e Tecnologia Industrial, Lisboa (Portugal). Dept. de Energias Renovaveis; Cabral, J.M.S. [Lab. de Engenharia Bioquimica, Centro de Engenharia Biologica e Quimica, Lisboa (Portugal); Aires-Barros, M.R. [Lab. de Engenharia Bioquimica, Centro de Engenharia Biologica e Quimica, Lisboa (Portugal)

    1997-05-01

    The production of ethanol by Saccharomyces cerevisiae immobilized cells and its esterification with oleic acid, catalysed by a lipase from Rhizomucor miehei, was the biochemical process considered as model to illustrate the concept of extractive biocatalysis. The selection of the most suitable support for lipase immobilization was carried out. The best results for the ethanol/oleic acid esterification reaction were obtained with the lipase adsorbed on a polyamide type support, Accurel EP 700. The immobilization method was optimized in terms of immobilization pH, contact time and protein/support ratio. The better performances of the extractive fermentations of ethanol were obtained when entrapped k-carrageenan Saccharomyces cerevisiae cells and a lipase from Rhizomucor miehei, free or immobilized in Accurel EP 700, were used simultaneously. The observed reutilization capacity of the immobilized enzyme could be advantageous for its application in a continuous reactor. (orig.). With 5 figs., 2 tabs.

  15. Progress of whole cell-based biocatalysis in nonaqueous media%非水相细胞催化研究进展

    Institute of Scientific and Technical Information of China (English)

    侯丹丹; 于炜婷; 戴小敏; 刘袖洞; 马小军

    2011-01-01

    Nonaqueous whole cell-based biocatalysis, as an important part of biocatalysis, which can enhance the solubility of poorly soluble compounds, change the thermodynamic equilibrium in favor of product synthesis and so on. In this paper, we introduce the selection of organic solvents and biocatalysts in nonaqueous whole cell biocatalysis system, such as lgP method, computer aided molecule design based on high product extractability, and solvent resistance of biocatalysts. Moreover,we review the methods to improve cell catalytic activity in nonaqueous media, including screening and construction of extreme microorganisms, cell immobilization, and recent application of nonaqueous whole cell-based biocatalysis in spices, drugs and medicine intermediates. Finally, we propose the main efforts on nonaqueous whole cell-based biocatalysis in view of biology and engineering.%非水相细胞催化可提高水不溶化合物溶解度,改变热力学平衡以利于产物合成,是生物催化的重要组成部分.本文介绍了非水相细胞催化体系中溶剂和催化剂的筛选,如1gP值法和以产物高萃取率为目标的计算机辅助分子设计,以及催化剂的溶刺耐受性;综述了提高非水相细胞催化活性的方法,包括极端微生物的筛选和构建、细胞固定化等,以及非水相细胞催化反应在香料、药物及药物中间体等方面的应用现状;最后从生物学和工程学角度展望了非水相细胞催化研究的努力方向.

  16. Laccase Immobilized on a PAN/Adsorbents Composite Nanofibrous Membrane for Catechol Treatment by a Biocatalysis/Adsorption Process

    Directory of Open Access Journals (Sweden)

    Qingqing Wang

    2014-03-01

    Full Text Available The treatment of catechol via biocatalysis and adsorption with a commercial laccase immobilized on polyacrylonitrile/montmorillonite/graphene oxide (PAN/MMT/GO composite nanofibers was evaluated with a homemade nanofibrous membrane reactor. The properties in this process of the immobilized laccase on PAN, PAN/MMT as well as PAN/MMT/GO with different weight ratios of MMT and GO were investigated. These membranes were successfully applied for removal of catechol from an aqueous solution. Scanning electron microscope images revealed different morphologies of the enzyme aggregates on different supports. After incorporation of MMT or MMT/GO, the optimum pH showed an alkaline shift to 4, compared to 3.5 for laccase immobilized on pure PAN nanofibers. The optimum temperature was at 55 °C for all the immobilized enzymes. Besides, the addition of GO improved the operational stability and storage stability. A 39% ± 2.23% chemical oxygen demand (COD removal from the catechol aqueous solution was achieved. Experimental results suggested that laccase, PAN, adsorbent nanoparticles (MMT/GO can be combined together for catechol treatment in industrial applications.

  17. Laccase immobilized on a PAN/adsorbents composite nanofibrous membrane for catechol treatment by a biocatalysis/adsorption process.

    Science.gov (United States)

    Wang, Qingqing; Cui, Jing; Li, Guohui; Zhang, Jinning; Li, Dawei; Huang, Fenglin; Wei, Qufu

    2014-03-19

    The treatment of catechol via biocatalysis and adsorption with a commercial laccase immobilized on polyacrylonitrile/montmorillonite/graphene oxide (PAN/MMT/GO) composite nanofibers was evaluated with a homemade nanofibrous membrane reactor. The properties in this process of the immobilized laccase on PAN, PAN/MMT as well as PAN/MMT/GO with different weight ratios of MMT and GO were investigated. These membranes were successfully applied for removal of catechol from an aqueous solution. Scanning electron microscope images revealed different morphologies of the enzyme aggregates on different supports. After incorporation of MMT or MMT/GO, the optimum pH showed an alkaline shift to 4, compared to 3.5 for laccase immobilized on pure PAN nanofibers. The optimum temperature was at 55 °C for all the immobilized enzymes. Besides, the addition of GO improved the operational stability and storage stability. A 39% ± 2.23% chemical oxygen demand (COD) removal from the catechol aqueous solution was achieved. Experimental results suggested that laccase, PAN, adsorbent nanoparticles (MMT/GO) can be combined together for catechol treatment in industrial applications.

  18. Ultrasonication--a complementary 'green chemistry' tool to biocatalysis: a laboratory-scale study of lycopene extraction.

    Science.gov (United States)

    Konwarh, Rocktotpal; Pramanik, Sujata; Kalita, Dipankar; Mahanta, Charu Lata; Karak, Niranjan

    2012-03-01

    Lycopene is bequeathed with multiple bio-protective roles, primarily attributed to its unique molecular structure. The concomitant exploitation of two of the green chemistry tools viz., sonication and biocatalysis is reported here for the laboratory scale extraction of lycopene from tomato peel. The coupled system improved the extraction by 662%, 225% and 150% times over the unaided, only cellulase 'Onozuka R-10' treated and only sonication treated samples respectively. The sonication parameters (duration, cycle and amplitude) during the coupled operation were optimized using response surface methodology (RSM). Derivative UV-visible spectra (i.e., dA/dλ and d(2)A/dλ(2) against λ), FTIR analysis, and DPPH scavenging test suggested that the reported extraction protocol did not affect the molecular structure and bioactivity of the extracted lycopene. The influence of sonication on the probable structural modulation (through UV-visible spectral analysis) and activity of the enzyme were also analyzed. A plausible mechanism is proposed for the enhanced extraction achieved via the coupled system.

  19. Detection of Prostate Specific Membrane Antigen at Picomolar Levels Using Biocatalysis Coupled to Assisted Ion Transfer Voltammetry at a Liquid-Organogel Microinterface Array.

    Science.gov (United States)

    Akter, Rashida; Arrigan, Damien W M

    2016-12-06

    A label-free electrochemical strategy for the detection of a cancer biomarker, prostate specific membrane antigen (PSMA), at picomolar concentrations without the use of antibodies, was investigated. The approach is based on the assisted ion transfer of protons, generated by a series of enzymatic reactions, at an array of microinterfaces between two immiscible electrolyte solutions (μ-ITIES). This nonredox electrochemical approach based on biocatalysis-coupled proton transfer at the μ-ITIES array opens a new way to detect the prostate cancer biomarker, with detection capability achieved at concentrations below those indicative of disease presence. The strategy is expected to contribute to cancer diagnostics, recurrence monitoring, and therapeutic treatment efficacy.

  20. ECUT: Energy Conversion and Utilization Technologies program. Industry, university and research interest in the US Department of Energy ECUT biocatalysis research activity

    Science.gov (United States)

    Wilcox, R. E.

    1983-01-01

    The results of a Research Opportunity Notice (RON) disseminated by the Jet Propulsion Laboratory for the U.S. Department of Energy Conversion and Utilization Technologies (ECUT) Program's Biocatalysis Research Activity are presented. The RON was issued in late April of 1983 and solicited expressions of interest from petrochemical and chemical companies, bioengineering firms, biochemical engineering consultants, private research laboratories, and universities for participating in a federal research program to investigate potential applications of biotechnology in producing chemicals. The RON results indicate that broad interest exists within the nation's industry, universities, and research institutes for the Activity and its planned research and development program.

  1. Electrochemically driven biocatalysis of the oxygenase domain of neuronal nitric oxide synthase in indium tin oxide nanoparticles/polyvinyl alcohol nanocomposite.

    Science.gov (United States)

    Xu, Xuan; Wollenberger, Ulla; Qian, Jing; Lettau, Katrin; Jung, Christiane; Liu, Songqin

    2013-12-01

    Nitric oxide synthase (NOS) plays a critical role in a number of key physiological and pathological processes. Investigation of electron-transfer reactions in NOS would contribute to a better understanding of the nitric oxide (NO) synthesis mechanism. Herein, we describe an electrochemically driven catalytic strategy, using a nanocomposite that consisted of the oxygenase domain of neuronal NOS (D290nNOSoxy), indium tin oxide (ITO) nanoparticles and polyvinyl alcohol (PVA). Fast direct electron transfer between electrodes and D290nNOSoxy was observed with the heterogeneous electron transfer rate constant (ket) of 154.8 ± 0.1s(-1) at the scan rate of 5 Vs(-1). Moreover, the substrate N(ω)-hydroxy-L-arginine (NHA) was used to prove the concept of electrochemically driven biocatalysis of D290nNOSoxy. In the presence of the oxygen cosubstrate and tetrahydrobiopterin (BH4) cofactor, the addition of NHA caused the decreases of both oxidation current at +0.1 V and reduction current at potentials ranging from -0.149 V to -0.549 V vs Ag/AgCl. Thereafter, a series of control experiments such as in the absence of BH4 or D290nNOSoxy were performed. All the results demonstrated that D290nNOSoxy biocatalysis was successfully driven by electrodes in the presence of BH4 and oxygen. This novel bioelectronic system showed potential for further investigation of NOS and biosensor applications.

  2. Enzymatic reduction of 4-(dimethylamino)benzaldehyde with carrot bits (Daucus carota): a simple experiment for understanding biocatalysis; Reducao enzimatica do 4-(dimetilamino)benzaldeido com pedacos de cenoura (Daucus carota): um experimento simples na compreensao da biocatalise

    Energy Technology Data Exchange (ETDEWEB)

    Omori, Alvaro Takeo; Portas, Viviane Barbosa; Oliveira, Camila de Souza de, E-mail: alvaro.omori@ufabc.edu.br [Centro de Ciencias Naturais e Humanas, Universidade Federal do ABC, SP (Brazil)

    2012-07-01

    The present paper describes a simple, low-costly and environmentally friendly procedure for reduction of 4-(dimethylamino)benzaldehyde using carrot bits in water. This interdisciplinary experiment can be used to introduce the concepts of biocatalysis and green chemistry to undergraduate students. (author)

  3. Miniaturization in Biocatalysis

    Directory of Open Access Journals (Sweden)

    Pedro Fernandes

    2010-03-01

    Full Text Available The use of biocatalysts for the production of both consumer goods and building blocks for chemical synthesis is consistently gaining relevance. A significant contribution for recent advances towards further implementation of enzymes and whole cells is related to the developments in miniature reactor technology and insights into flow behavior. Due to the high level of parallelization and reduced requirements of chemicals, intensive screening of biocatalysts and process variables has become more feasible and reproducibility of the bioconversion processes has been substantially improved. The present work aims to provide an overview of the applications of miniaturized reactors in bioconversion processes, considering multi-well plates and microfluidic devices, update information on the engineering characterization of the hardware used, and present perspective developments in this area of research.

  4. Biocatalysis conversion of methanol to methane in an upflow anaerobic sludge blanket (UASB) reactor: Long-term performance and inherent deficiencies.

    Science.gov (United States)

    Lu, Xueqin; Zhen, Guangyin; Chen, Mo; Kubota, Kengo; Li, Yu-You

    2015-12-01

    Long-term performance of methanol biocatalysis conversion in a lab-scale UASB reactor was evaluated. Properties of granules were traced to examine the impact of methanol on granulation. Methanolic wastewater could be stably treated during initial 240d with the highest biogas production rate of 18.6 ± 5.7 L/Ld at OLR 48 g-COD/Ld. However, the reactor subsequently showed severe granule disintegration, inducing granule washout and process upsets. Some steps (e.g. increasing influent Ca(2+) concentration, etc.) were taken to prevent rising dispersion, but no clear improvement was observed. Further characterizations in granules revealed that several biotic/abiotic factors all caused the dispersion: (1) depletion of extracellular polymeric substances (EPS) and imbalance of protein/polysaccharide ratio in EPS; (2) restricted formation of hard core and weak Ca-EPS bridge effect due to insufficient calcium supply; and (3) simplification of species with the methanol acclimation. More efforts are required to solve the technical deficiencies observed in methanolic wastewater treatment.

  5. Identification and use of an alkane transporter plug-in for applications in biocatalysis and whole-cell biosensing of alkanes.

    Science.gov (United States)

    Grant, Chris; Deszcz, Dawid; Wei, Yu-Chia; Martínez-Torres, Rubéns Julio; Morris, Phattaraporn; Folliard, Thomas; Sreenivasan, Rakesh; Ward, John; Dalby, Paul; Woodley, John M; Baganz, Frank

    2014-07-28

    Effective application of whole-cell devices in synthetic biology and biocatalysis will always require consideration of the uptake of molecules of interest into the cell. Here we demonstrate that the AlkL protein from Pseudomonas putida GPo1 is an alkane import protein capable of industrially relevant rates of uptake of C7-C16 n-alkanes. Without alkL expression, native E.coli n-alkane uptake was the rate-limiting step in both the whole-cell bioconversion of C7-C16 n-alkanes and in the activation of a whole-cell alkane biosensor by C10 and C11 alkanes. By coexpression of alkL as a transporter plug-in, specific yields improved by up to 100-fold for bioxidation of >C12 alkanes to fatty alcohols and acids. The alkL protein was shown to be toxic to the host when overexpressed but when expressed from a vector capable of controlled induction, yields of alkane oxidation were improved a further 10-fold (8 g/L and 1.7 g/g of total oxidized products). Further testing of activity on n-octane with the controlled expression vector revealed the highest reported rates of 120 μmol/min/g and 1 g/L/h total oxidized products. This is the first time AlkL has been shown to directly facilitate enhanced uptake of C10-C16 alkanes and represents the highest reported gain in product yields resulting from its use.

  6. Display of a thermostable lipase on the surface of a solvent-resistant bacterium, Pseudomonas putida GM730, and its applications in whole-cell biocatalysis

    Directory of Open Access Journals (Sweden)

    Kwon Seok-Joon

    2006-04-01

    Full Text Available Abstract Background Whole-cell biocatalysis in organic solvents has been widely applied to industrial bioprocesses. In two-phase water-solvent processes, substrate conversion yields and volumetric productivities can be limited by the toxicity of solvents to host cells and by the low mass transfer rates of the substrates from the solvent phase to the whole-cell biocatalysts in water. Results To solve the problem of solvent toxicity, we immobilized a thermostable lipase (TliA from Pseudomonas fluorescens on the cell surface of a solvent-resistant bacterium, Pseudomonas putida GM730. Surface immobilization of enzymes eliminates the mass-transfer limitation imposed by the cell wall and membranes. TliA was successfully immobilized on the surface of P. putida cells using the ice-nucleation protein (INP anchoring motif from Pseudomonas syrinage. The surface location was confirmed by flow cytometry, protease accessibility and whole-cell enzyme activity using a membrane-impermeable substrate. Three hundred and fifty units of whole-cell hydrolytic activity per gram dry cell mass were obtained when the enzyme was immobilized with a shorter INP anchoring motif (INPNC. The surface-immobilized TliA retained full enzyme activity in a two-phase water-isooctane reaction system after incubation at 37°C for 12 h, while the activity of the free form enzyme decreased to 65% of its initial value. Whole cells presenting immobilized TliA were shown to catalyze three representative lipase reactions: hydrolysis of olive oil, synthesis of triacylglycerol and chiral resolution. Conclusion In vivo surface immobilization of enzymes on solvent-resistant bacteria was demonstrated, and appears to be useful for a variety of whole-cell bioconversions in the presence of organic solvents.

  7. Biocatalysis: synthesis of chiral intermediates for drugs.

    Science.gov (United States)

    Patel, Ramesh N

    2006-11-01

    Chirality is a key factor in the safety and efficacy of many drug products and thus the production of single enantiomers of drug intermediates has become increasingly important in the pharmaceutical industry. Chiral intermediates and fine chemicals are in high demand for the bulk preparation of drug substances and agricultural products. There has been an increasing awareness of the enormous potential of the use of microorganisms and microorganism-derived enzymes for the transformation of synthetic chemicals with high chemo-, regio- and enantioselectivities. In this article, biocatalytic processes are described for the synthesis of chiral intermediates for drugs.

  8. Biosilica-Immobilized Enzymes for Biocatalysis (Preprint)

    Science.gov (United States)

    2007-08-01

    Manufacture of glucose syrups and starch modification Maltogenic alpha- amylase Improves shelf life of bread Lipoxygenase Used for bleaching and...Table 1) [1-3]. Table I: Examples of enzymes catalysis in common household items Enzyme Application Lipases, Amylases , Proteases, Cellulases...paper manufacturing Phytases Improves nutritional value of animal feeds Lipases, Acylase Drug products and pharmaceutical intermediates Amylase

  9. Mechanotransductive surfaces for reversible biocatalysis activation

    Science.gov (United States)

    Mertz, Damien; Vogt, Cédric; Hemmerlé, Joseph; Mutterer, Jérôme; Ball, Vincent; Voegel, Jean-Claude; Schaaf, Pierre; Lavalle, Philippe

    2009-09-01

    Fibronectin, like other proteins involved in mechanotransduction, has the ability to exhibit recognition sites under mechanical stretch. Such cryptic sites are buried inside the protein structure in the native fold and become exposed under an applied force, thereby activating specific signalling pathways. Here, we report the design of new active polymeric nanoassembled surfaces that show some similarities to these cryptic sites. These nanoassemblies consist of a first polyelectrolyte multilayer stratum loaded with enzymes and capped with a second polyelectrolyte multilayer acting as a mechanically sensitive nanobarrier. The biocatalytic activity of the film is switched on/off reversibly by mechanical stretching, which exposes enzymes through the capping barrier, similarly to mechanisms involved in proteins during mechanotransduction. This first example of a new class of biologically inspired surfaces should have great potential in the design of various devices aimed to trigger and modulate chemical reactions by mechanical action with applications in the field of microfluidic devices or mechanically controlled biopatches for example.

  10. Computer-Aided Solvent Screening for Biocatalysis

    DEFF Research Database (Denmark)

    Abildskov, Jens; Leeuwen, M.B. van; Boeriu, C.G.;

    2013-01-01

    . Esterification of acrylic acid with octanol is also addressed. Solvents are screened and candidates identified, confirming existing experimental results. Although the examples involve lipases, the method is quite general, so there seems to be no preclusion against application to other biocatalysts....

  11. Enzyme immobilization and biocatalysis of polysiloxanes

    Science.gov (United States)

    Poojari, Yadagiri

    Lipases have been proven to be versatile and efficient biocatalysts which can be used in a broad variety of esterification, transesterification, and ester hydrolysis reactions. Due to the high chemo-, regio-, and stereo-selectivity and the mild conditions of lipase-catalyzed reactions, the vast potential of these biocatalysts for use in industrial applications has been increasingly recognized. Polysiloxanes (silicones) are well known for their unique physico-chemical properties and can be prepared in the form of fluids, elastomers, gels and resins for a wide variety of applications. However, the enzymatic synthesis of silicone polyesters and copolymers is largely unexplored. In the present investigations, an immobilized Candida antarctica lipase B (CALB) on macroporous acrylic resin beads (Novozym-435 RTM) has been successfully employed as a catalyst to synthesize silicone polyesters and copolymers under mild reaction conditions. The silicone aliphatic polyesters and the poly(dimethylsiloxane)--poly(ethylene glycol) (PDMS-PEG) copolymers were synthesized in the bulk (without using a solvent), while the silicone aromatic polyesters, the silicone aromatic polyamides and the poly(epsilon-caprolactone)--poly(dimethylsiloxane)--poly(epsilon-caprolactone) (PCL-PDMS-PCL) triblock copolymers were synthesized in toluene. The synthesized silicone polyesters and copolymers were characterized by Gel Permeation Chromatography (GPC), Fourier Transform Infrared Spectroscopy (FTIR), Thermogravimetric Analysis (TGA), Differential Scanning Calorimetry (DSC) and Wide Angle X-ray Diffraction (WAXD). This dissertation also describes a methodology for physical immobilization of the enzyme pepsin from Porcine stomach mucosa in silicone elastomers utilizing condensation-cure room temperature vulcanization (RTV) of silanol-terminated poly(dimethylsiloxane) (PDMS). The activity and the stability of free pepsin and pepsin immobilized in silicone elastomers were studied with respect to pH, temperature, cross-link density, organic solvents and storage time using a hemoglobin assay. A notable finding was that free pepsin had zero activity in neutral buffer solution (pH 7) after incubation for 5 hours, while pepsin immobilized in the silicone elastomers was found to retain more than 70% of its maximum normalized activity. These results demonstrate that cross-linked poly(dimethylsiloxane) (PDMS) is a promising support material for the physical entrapment of hydrolytic enzymes such as pepsin. The Novozym-435 has been widely employed as a biocatalyst for esterification and transesterification of a variety of organic compounds including synthesis of polyesters and polylactones due to its high catalytic-efficiency and high thermal stability in organic media. However, the Novozym-435 was found to have poor mechanical stability and the enzyme was found to leach out from the resin into the organic media. In the present research work, efforts were made to solve the above two problems by chemical immobilization of CALB on surface modified porous silica gel particles. The surface of the porous silica gel particles was silanized using (gamma-Aminopropyl)triethoxysilane and then the CALB was chemically crosslinked onto the surface of the silica gel particles using glutaraldehyde. Although the thermal stability of the CALB immobilized silica gel particles was found to be lower compared to that of Novozym-435. The CALB immobilized silica gel particles showed higher enzymatic activity and higher mechanical stability compared to that of Novozym-435.

  12. Lipase biocatalysis for useful biodegradable products

    Energy Technology Data Exchange (ETDEWEB)

    Linko, Y.Y.; Wang, Zhuo Lin; Uosukainen, E.; Seppaelae, J. [Helsinki Univ. of Technology, Espoo (Finland); Laemsae, M. [Raisio Group Oil Milling Industry, Raisio (Finland)

    1996-12-31

    It was shown that lipases can be used as biocatalysts in the production of useful biodegradable compounds such as 1-butyl oleate by direct esterification of butanol and oleic acid to decrease viscosity of biodiesel in winter use. By enzymic transesterification, a mixture of 2-ethyl-1-hexyl esters from rapeseed oil fatty acids can be obtained in good yields for use as a solvent, and of trimethylolpropane esters for use as a lubricant. Finally, it was demonstrated that polyesters with a mass average molar mass in excess of 75,000 g mol{sup -}1 can be obtained by esterification or transesterification by using lipase as biocatalyst. (author) (3 refs.)

  13. Actinobacterial peroxidases: an unexplored resource for biocatalysis.

    Science.gov (United States)

    le Roes-Hill, Marilize; Khan, Nuraan; Burton, Stephanie Gail

    2011-07-01

    Peroxidases are redox enzymes that can be found in all forms of life where they play diverse roles. It is therefore not surprising that they can also be applied in a wide range of industrial applications. Peroxidases have been extensively studied with particular emphasis on those isolated from fungi and plants. In general, peroxidases can be grouped into haem-containing and non-haem-containing peroxidases, each containing protein families that share sequence similarity. The order Actinomycetales comprises a large group of bacteria that are often exploited for their diverse metabolic capabilities, and with recent increases in the number of sequenced genomes, it has become clear that this metabolically diverse group of organisms also represents a large resource for redox enzymes. It is therefore surprising that, to date, no review article has been written on the wide range of peroxidases found within the actinobacteria. In this review article, we focus on the different types of peroxidases found in actinobacteria, their natural role in these organisms and how they compare with the more well-described peroxidases. Finally, we also focus on work remaining to be done in this research field in order for peroxidases from actinobacteria to be applied in industrial processes.

  14. Surface-immobilized DNAzyme-type biocatalysis

    Science.gov (United States)

    Stefan, Loic; Lavergne, Thomas; Spinelli, Nicolas; Defrancq, Eric; Monchaud, David

    2014-02-01

    The structure of the double helix of deoxyribonucleic acid (DNA, also called duplex-DNA) was elucidated sixty years ago by Watson, Crick, Wilkins and Franklin. Since then, DNA has continued to hold a fascination for researchers in diverse fields including medicine and nanobiotechnology. Nature has indeed excelled in diversifying the use of DNA: beyond its canonical role of repository of genetic information, DNA could also act as a nanofactory able to perform some complex catalytic tasks in an enzyme-mimicking manner. The catalytic capability of DNA was termed DNAzyme; in this context, a peculiar DNA structure, a quadruple helix also named quadruplex-DNA, has recently garnered considerable interest since its autonomous catalytic proficiency relies on its higher-order folding that makes it suitable to interact efficiently with hemin, a natural cofactor of many enzymes. Quadruplexes have thus been widely studied for their hemoprotein-like properties, chiefly peroxidase-like activity, i.e., their ability to perform hemin-mediated catalytic oxidation reactions. Recent literature is replete with applications of quadruplex-based peroxidase-mimicking DNAzyme systems. Herein, we take a further leap along the road to biochemical applications, assessing the actual efficiency of catalytic quadruplexes for the detection of picomolar levels of surface-bound analytes in an enzyme-linked immunosorbent (ELISA)-type assay. To this end, we exploit an innovative strategy based on the functionalization of DNA by a multitasking platform named RAFT (for regioselectivity addressable functionalized template), whose versatility enables the grafting of DNA whatever its nature (duplex-DNA, quadruplex-DNA, etc.). We demonstrate that the resulting biotinylated RAFT/quadruplex systems indeed acquire catalytic properties that allow for efficient luminescent detection of picomoles of surface-bound streptavidin. We also highlight some of the pitfalls that have to be faced during optimization, notably demonstrating that highly optimized experimental conditions can make DNA pre-catalysts catalytically competent whatever their secondary structures.

  15. Directed Evolution of Enzymes for Industrial Biocatalysis.

    Science.gov (United States)

    Porter, Joanne L; Rusli, Rukhairul A; Ollis, David L

    2016-02-01

    Enzymes have the potential to catalyse a wide variety of chemical reactions. They are increasingly being sought as environmentally friendly and cost-effective alternatives to conventional catalysts used in industries ranging from bioremediation to applications in medicine and pharmaceutics. Despite the benefits, they are not without their limitations. Many naturally occurring enzymes are not suitable for use outside of their native cellular environments. However, protein engineering can be used to generate enzymes tailored for specific industrial applications. Directed evolution is particularly useful and can be employed even when lack of structural information impedes the use of rational design. The aim of this review is to provide an overview of current industrial applications of enzyme technology and to show how directed evolution can be used to modify and to enhance enzyme properties. This includes a brief discussion on library generation and a more detailed focus on library screening methods, which are critical to any directed evolution experiment.

  16. 基于生物催化氧化技术的生物聚合硫酸铁制备及性能研究综述%Progress in the Preparation and Properties of Bio-polymeric Ferric Sulfate Based on the Bio-catalysis and Oxidation Technology

    Institute of Scientific and Technical Information of China (English)

    关晓辉; 王立刚; 鲁敏; 徐小惠

    2013-01-01

    Based on the bio-catalysis and oxidation technology and microorganism for the green cata-lyst,bio-polymeric ferric sulfate (BPFS)was prepared.BPFS has the following characteristics:proper-ties of turbidity and COD removal etc,mild condition of preparation,low cost,pollution-free,coagula-tion of microbial secretions in the BPFS product.Because of BPFS’many benefits,it can be applied for different water treatment such as drink water,feed water,domestic sewage and industrial wastewater. Main research achievements on preparation and properties of BPFS and development trend by research group are summarized in this paper.%基于生物催化氧化技术,以微生物为绿色催化剂制备的液体生物聚合硫酸铁(bio-polymeric ferric sulfate,BPFS)具有良好的除浊、除COD等性能,且生产条件温和、生产成本低、无污染,成品 BPFS中含有的微生物分泌物还可以起到一定的助絮作用,广泛用于饮用水、给水、生活污水和工业废水的处理中,且综述了课题组多年来在BPFS的制备及性能研究领域的主要成果及今后的研究方向。

  17. Biocatalysis with Sol-Gel Encapsulated Acid Phosphatase

    Science.gov (United States)

    Kulkarni, Suhasini; Tran, Vu; Ho, Maggie K.-M.; Phan, Chieu; Chin, Elizabeth; Wemmer, Zeke; Sommerhalter, Monika

    2010-01-01

    This experiment was performed in an upper-level undergraduate biochemistry laboratory course. Students learned how to immobilize an enzyme in a sol-gel matrix and how to perform and evaluate enzyme-activity measurements. The enzyme acid phosphatase (APase) from wheat germ was encapsulated in sol-gel beads that were prepared from the precursor…

  18. The Effects of Engineering Design on Heterogeneous Biocatalysis in Microchannels

    Science.gov (United States)

    Jones, Frank; Bailey, Robert; Wilson, Stephanie; Hiestand, James

    The results of a numerical study of the fundamental interactions of engineering design and micromixing on conversion in packed microchannels are presented. Previously, channel-based microreactors made of molded silicon plastic were designed, fabricated, and experimentally tested. These reactors have enzymes immobilized on the channel walls by various methods including layerby-layer nano self-assembly techniques. They also contain molded packing features to add reactive surface area and to redistribute the fluid. An arbitrary but intuitively sensible packing arrangement was initially chosen and used in experimental studies. The current computer simulation study was undertaken to understand how static laminar mixing affects the conversion efficiency. The reactors previously used experimentally have been simulated using CFD-ACE+ multiphysics software (ESI CFD Inc., Huntsville, AL). It is found that packing significantly increases conversion when compared with empty channels over the entire flow rate range of the study (0.25

  19. Engineering protein scaffolds for protein separation, biocatalysis and nanotechnology applications

    Science.gov (United States)

    Liu, Fang

    Globally, there is growing appreciation for developing a sustainable economy that uses eco-efficient bio-processes. Biotechnology provides an increasing range of tools for industry to help reduce cost and improve environmental performance. Inspired by the naturally evolved machineries of protein scaffolds and their binding ligands, synthetic protein scaffolds were engineered based on cohesin-dockerin interactions and metal chelating peptides to tackle the challenges and make improvements in three specific areas: (1) protein purification, (2) biofuel cells, and (3) nanomaterial synthesis. The first objective was to develop efficient and cost-effective non-chromatographic purification processes to purify recombinant proteins in an effort to meet the dramatically growing market of protein drugs. In our design, the target protein was genetically fused with a dockerin domain from Clostridium thermocellum and direct purification and recovery was achieved using thermo-responsive elastin-like polypeptide (ELP) scaffold containing the cohesin domain from the same species. By exploiting the highly specific interaction between the dockerin and cohesin domain and the reversible aggregation property of ELP, highly purified and active dockerin-tagged proteins, such as endoglucanase CelA, chloramphenicol acetyl transferase (CAT) and enhanced green fluorescence protein (EGFP), were recovered directly from crude cell extracts in a single purification step with yields achieving over 90%. Incorporation of a self-cleaving intein domain enabled rapid removal of the affinity tag from the target proteins by another cycle of thermal precipitation. The purification cost can be further reduced by regenerating and recycling the ELP-cohesin capturing scaffolds. However, due to the high binding affinity between cohesin and dockerin domains, the bound dockerin-intein tag cannot be completely disassociated from ELP-cohesin scaffold after binding. Therefore, a truncated dockerin with the calcium-coordinating function impaired was used in replace of the original full length dockerin domain. The truncated dockerin domain maintained its functionality as an effective affinity tag, and efficient EDTA mediated dissociation of the bound dockerin-intein tag was also realized. The regenerated ELP capturing scaffold was reused for additional purification cycles without any decrease in efficiency. The second objective was to assemble biocatalysts for biofuel cells. Three beta-NAD dependent dehydrogenases, alcohol dehydrogenase (ADH), formaldehyde dehydrogenase (FALDH) and formate dehydrogenase (FDH), were site-specifically co-localized onto the scaffolds displayed on the yeast surface based on the high-affinity interactions between three orthogonal cohesin/dockerin pairs. The assembled multi-enzyme cascades, which can completely convert methanol to CO2, showed improved production yield compared with that of the non-complexed enzyme mixture, indicating efficient substrate channeling among the three enzymes. This strategy can be easily extended to other complex cascade reactions for enzymatic fuel cell applications. To further explore the role of biotechnology toward environmental sustainability, Escherichia coli was engineered to express phytochelatin synthase, which converted glutathione into the metal-binding peptide phytochelatin (PC). PCs served as peptide scaffolds and mediated synthesis of CdS nanocrystals. This approach may be generalized to guide the in vitro self-assembly of a wide range of nanocrystals with different compositions and sizes.

  20. Engineering Non-Heme Mono- and Dioxygenases for Biocatalysis

    Directory of Open Access Journals (Sweden)

    Adi Dror

    2012-09-01

    Full Text Available Oxygenases are ubiquitous enzymes that catalyze the introduction of one or two oxygen atoms to unreactive chemical compounds. They require reduction equivalents from NADH or NADPH and comprise metal ions, metal ion complexes, or coenzymes in their active site. Thus, for industrial purposes, oxygenases are most commonly employed using whole cell catalysis, to alleviate the need for co-factor regeneration. Biotechnological applications include bioremediation, chiral synthesis, biosensors, fine chemicals, biofuels, pharmaceuticals, food ingredients and polymers. Controlling activity and selectivity of oxygenases is therefore of great importance and of growing interest to the scientific community. This review focuses on protein engineering of non-heme monooxygenases and dioxygenases for generating improved or novel functionalities. Rational mutagenesis based on x-ray structures and sequence alignment, as well as random methods such as directed evolution, have been utilized. It is concluded that knowledge-based protein engineering accompanied with targeted libraries, is most efficient for the design and tuning of biocatalysts towards novel substrates and enhanced catalytic activity while minimizing the screening efforts.

  1. Oxygen transfer rates and requirements in oxidative biocatalysis

    DEFF Research Database (Denmark)

    Pedersen, Asbjørn Toftgaard; Rehn, Gustav; Woodley, John M.

    2015-01-01

    scenarios, considering different biocatalyst formats and variation of the desired productivity. Also, the applicability of two different oxygen supply methods (bubbling and membrane aeration) is considered. The results indicate that growing cells could be used to reach productivities up to 3.5 g L-1h-1...

  2. Oxygen transfer rates and requirements in oxidative biocatalysis

    DEFF Research Database (Denmark)

    Pedersen, Asbjørn Toftgaard; Rehn, Gustav; Woodley, John

    Biocatalytic oxidation reactions offer several important benefits such as regio- and stereoselectivity, avoiding the use of toxic metal based catalysts and replacing oxidizing reagents by allowing the use of oxygen. However, the development of biocatalytic oxidation processes is a complex task wh......-up is relatively straight forward (Gabelman and Hwang, 1999), and membrane contactors are implemented for various industrial applications (Klaassen et al., 2005)....

  3. Applications and Prospective of Peroxidase Biocatalysis in the Environmental Field

    Science.gov (United States)

    Torres-Duarte, Cristina; Vazquez-Duhalt, Rafael

    Environmental protection is, doubtless, one of the most important challenges for the human kind. The huge amount of pollutants derived from industrial activities represents a threat for the environment and ecologic equilibrium. Phenols and halogenated phenols, polycyclic aromatic hydrocarbons, endocrine disruptive chemicals, pesticides, dioxins, polychlorinated biphenyls, industrial dyes, and other xenobiotics are among the most important pollutants. A large variety of these xenobiotics are substrates for peroxidases and thus susceptible to enzymatic transformation. The literature reports mainly the use of horseradish peroxidase, manganese peroxidase, lignin peroxidase, and chloroperoxidase on the transformation of these pollutants. Peroxidases are enzymes able to transform a variety of compounds following a free radical mechanism, giving oxidized or polymerized products. The peroxidase transformation of these pollutants is accompanied by a reduction in their toxicity, due to a biological activity loss, a reduction in the bioavailability or due to the removal from aqueous phase, especially when the pollutant is found in water. In addition, when the pollutants are present in soil, peroxidases catalyze a covalent binding to soil organic matter. In most of cases, oxidized products are less toxic and easily biodegradable than the parent compounds. In spite of their versatility and potential use in environmental processes, peroxidases are not applied at large scale yet. Diverse challenges, such as stability, redox potential, and the production of large amounts, should be solved in order to apply peroxidases in the pollutant transformation. In this chapter, we critically review the transformation of different xenobiotics by peroxidases, with special attention on the identified transformation products, the probable reaction mechanisms, and the toxicity reports. Finally, the design and development of an environmental biocatalyst is discussed. The design challenges are mainly focused on the enzyme stability in the presence of hydrogen peroxide and operational conditions, an enzyme with high redox potential to be able to oxidize a wide range of xenobiotics or pollutants, and the protein overexpression at large-scale in industrial microorganisms is discussed.

  4. Development of novel mesoporous silicates for bioseparations and biocatalysis

    Science.gov (United States)

    Katiyar, Amit

    The recent growth of the biopharmaceutical industry is due to the discovery of monoclonal antibodies and recombinant DNA technologies. Large-scale production of therapeutic proteins and monoclonal antibodies requires efficient technologies to separate products from complex synthesis mixtures. Chromatography is widely used for this purpose at both the analytical and process scales. Research in the last three decades has provided an improved understanding of the thermodynamic and mass transfer effects underlying the chromatographic behavior of biomolecules, leading to improvements in chromatographic equipment, separation media, and operating procedures. This dissertation reports on the development of ordered mesoporous silica-based adsorbents for chromatographic protein separations. The synthesis of mesoporous materials with different structural properties is reported here. Protein adsorption and enzymatic catalysis studies were conducted to evaluate the chromatographic performance of these materials. Initial studies focused on small pore materials (MCM-41), which had high protein adsorption capacities. These high protein loadings were attributed to high external surface area (˜600 m 2/g), meaning that MCM-41 materials are of limited use for size-selective chromatographic protein separation. Synthesis strategies were developed to produce large pore fibrous and spherical SBA-15 particles. The effects of synthesis conditions on particle properties are presented. Large pore Spherical ordered SBA-15 materials were used to demonstrate for the first time the size-selective separation of proteins. BSA and lysozyme were tagged with fluorescent molecules, allowing direct visualization of the size selective separation of these proteins. Flow microcalorimetry (FMC) results were used to interpret the size-selective behavior of these materials. The potential of siliceous SBA-15 materials to serve as hosts for enzymes in biocatalytic transformations was also explored. Materials with different pore sizes were used to study the effects of pore size and surface curvature on lipase activity. The synthesis and characterization of SBA-15 functionalized with amine and sulfonic groups is reported. Functionalized SBA-15 can be effectively used to selectively adsorb and desorb proteins based on ion exchange and hydrophobic interactions. Unusually high catalytic activity was observed for lipase immobilized on sulfonic SBA-15; FMC measurements for lipase immobilization suggested that structural rearrangements of lipase were responsible for this effect.

  5. Continuous Membrane-Based Screening System for Biocatalysis

    Directory of Open Access Journals (Sweden)

    Matthias Kraume

    2011-02-01

    Full Text Available The use of membrane reactors for enzymatic and co-factor regenerating reactions offers versatile advantages such as higher conversion rates and space-time-yields and is therefore often applied in industry. However, currently available screening and kinetics characterization systems are based on batch and fed-batch operated reactors and were developed for whole cell biotransformations rather than for enzymatic catalysis. Therefore, the data obtained from such systems has only limited transferability for continuous membrane reactors. The aim of this study is to evaluate and to improve a novel screening and characterization system based on the membrane reactor concept using the enzymatic hydrolysis of cellulose as a model reaction. Important aspects for the applicability of the developed system such as long-term stability and reproducibility of continuous experiments were very high. The concept used for flow control and fouling suppression allowed control of the residence time with a high degree of precision (±1% accuracy in a long-term study (>100 h.

  6. Polysaccharide Biocatalysis : From Synthesizing Carbohydrate Standards to Establishing Characterization Methods

    NARCIS (Netherlands)

    Ciric, Jelena; Petrovic, Dejan M.; Loos, Katja

    2014-01-01

    Starch, glycogen, and cellulose are all around us. They are eaten and used on a daily basis but they are not understood completely. Even though these carbohydrates are simple, concerning their repeating unit, they are hard to characterize. In order to try to understand as much as possible about thei

  7. Multi-enzyme catalyzed processes: Next generation biocatalysis

    DEFF Research Database (Denmark)

    Andrade Santacoloma, Paloma de Gracia; Sin, Gürkan; Gernaey, Krist

    2011-01-01

    considerations for mathematical modeling are discussed for the specific case where the synthetic reactions are carried out in a single reactor, the so-called multienzyme ‘in-pot’ process. In addition, options for multienzyme ‘in-pot’ process improvements via process engineering and enzyme immobilization...... technology are described. Finally, enzyme modification via protein engineering is also discussed, such that a better compatibility of the enzymes in the reactor is achieved as a means of assisting the implementation of multienzyme ‘in-pot’ processes....

  8. Nitrilases in nitrile biocatalysis: recent progress and forthcoming research

    Directory of Open Access Journals (Sweden)

    Gong Jin-Song

    2012-10-01

    Full Text Available Abstract Over the past decades, nitrilases have drawn considerable attention because of their application in nitrile degradation as prominent biocatalysts. Nitrilases are derived from bacteria, filamentous fungi, yeasts, and plants. In-depth investigations on their natural sources function mechanisms, enzyme structure, screening pathways, and biocatalytic properties have been conducted. Moreover, the immobilization, purification, gene cloning and modifications of nitrilase have been dwelt upon. Some nitrilases are used commercially as biofactories for carboxylic acids production, waste treatment, and surface modification. This critical review summarizes the current status of nitrilase research, and discusses a number of challenges and significant attempts in its further development. Nitrilase is a significant and promising biocatalyst for catalytic applications.

  9. Enzyme-Embedded, Microstructural Reactors for Industrial Biocatalysis

    Energy Technology Data Exchange (ETDEWEB)

    Baker, Sarah E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Knipe, J. M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Oakdale, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Stolaroff, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-10-04

    In this project we explored enzyme-catalyzed methane conversion to methanol. Industrial biological approaches to methane conversion using whole organisms are predicted to be more energy efficient than chemical approaches, but are limited by mass transfer of the gas phase reactants, methane and oxygen, to the organisms. We demonstrated that 3D printing the enzyme particulate Methane Mono Oxygenase (pMMO) embedded in a polymer can improve the kinetics of methane to methanol conversion. This improvement was likely due to the ability to increase the surface area of the catalytic material using 3D printing. We also demonstrated the first continuous use of pMMO in a flow-through reactor. In order to understand the fundamental kinetic properties of pMMO, we conducted an in-depth study of pMMO kinetics using analytical tools developed in our lab. Finally, we developed a new copolymer system that allowed tuning of the gas permeability of the biocatalytic material.

  10. Membrane transporter engineering in industrial biotechnology and whole cell biocatalysis.

    Science.gov (United States)

    Kell, Douglas B; Swainston, Neil; Pir, Pınar; Oliver, Stephen G

    2015-04-01

    Because they mainly do not involve chemical changes, membrane transporters have been a Cinderella subject in the biotechnology of small molecule production, but this is a serious oversight. Influx transporters contribute significantly to the flux towards product, and efflux transporters ensure the accumulation of product in the much greater extracellular space of fermentors. Programmes for improving biotechnological processes might therefore give greater consideration to transporters than may have been commonplace. Strategies for identifying important transporters include expression profiling, genome-wide knockout studies, stress-based selection, and the use of inhibitors. In addition, modern methods of directed evolution and synthetic biology, especially those effecting changes in energy coupling, offer huge opportunities for increasing the flux towards extracellular product formation by transporter engineering.

  11. μ-structured devices as tools for screening process intensification in biocatalysis

    DEFF Research Database (Denmark)

    Bodla, Vijaya Krishna; Woodley, John

    in productivity is evaluated through process metrics. A case study demonstrates the applicability of using a micro-scale packed bed column for screening synthetic resins for in-situ product removal. CFD simulations were performed to guide the design of a packed column for efficient operation. Further case studies...... demonstrate the development of modular set-ups with integrated processes at microscale to address process limitations which were determined by initial experiments at lab scale. The degree of integration of functionalities requires process optimization. Thus optimization studies were also performed by varying...... different modules can be developed at microscale. Such configurations enable effective screening and rapid process development of biocatalytic reactions assuring economic viability and shorter time to market for pharmaceutical products. Thus the work presented in this thesis is based on the application...

  12. Biocatalysis for the application of CO2 as a chemical feedstock

    Directory of Open Access Journals (Sweden)

    Apostolos Alissandratos

    2015-12-01

    Full Text Available Biocatalysts, capable of efficiently transforming CO2 into other more reduced forms of carbon, offer sustainable alternatives to current oxidative technologies that rely on diminishing natural fossil-fuel deposits. Enzymes that catalyse CO2 fixation steps in carbon assimilation pathways are promising catalysts for the sustainable transformation of this safe and renewable feedstock into central metabolites. These may be further converted into a wide range of fuels and commodity chemicals, through the multitude of known enzymatic reactions. The required reducing equivalents for the net carbon reductions may be drawn from solar energy, electricity or chemical oxidation, and delivered in vitro or through cellular mechanisms, while enzyme catalysis lowers the activation barriers of the CO2 transformations to make them more energy efficient. The development of technologies that treat CO2-transforming enzymes and other cellular components as modules that may be assembled into synthetic reaction circuits will facilitate the use of CO2 as a renewable chemical feedstock, greatly enabling a sustainable carbon bio-economy.

  13. Biocatalysis on the surface of Escherichia coli: melanin pigmentation of the cell exterior

    Science.gov (United States)

    Gustavsson, Martin; Hörnström, David; Lundh, Susanna; Belotserkovsky, Jaroslav; Larsson, Gen

    2016-01-01

    Today, it is considered state-of-the-art to engineer living organisms for various biotechnology applications. Even though this has led to numerous scientific breakthroughs, the enclosed interior of bacterial cells still restricts interactions with enzymes, pathways and products due to the mass-transfer barrier formed by the cell envelope. To promote accessibility, we propose engineering of biocatalytic reactions and subsequent product deposition directly on the bacterial surface. As a proof-of-concept, we used the AIDA autotransporter vehicle for Escherichia coli surface expression of tyrosinase and fully oxidized externally added tyrosine to the biopolymer melanin. This resulted in a color change and creation of a black cell exterior. The capture of ninety percent of a pharmaceutical wastewater pollutant followed by regeneration of the cell bound melanin matrix through a simple pH change, shows the superior function and facilitated processing provided by the surface methodology. The broad adsorption spectrum of melanin could also allow removal of other micropollutants. PMID:27782179

  14. COLLABORATIVE RESEARCH AND DEVELOPMENT CONTRACT. Delivery Order 0038: Microbial Biotechnology and Biocatalysis

    Science.gov (United States)

    2010-04-01

    resolution of (S)- ketoprofen from its constituent enantiomers. The optically pure (S)-isomer was obtained with >99% ee at a conversion rate of ~30...and a productivity rate of 1.5 mg g-1 biocatalyst h-1. (S)- ketoprofen is a non-steroidal antiflammatory drug used to reduce inflammation and relieve...enantiomers of ketoprofen by HPLC: a review. Biomed Chromatogr 2003, 17, 423-434. 111. Jamali, F.; Brocks, D. R. Clinical pharmacokinetics of ketoprofen

  15. Whole-Cell Biocatalysis for Producing Ginsenoside Rd from Rb1 Using Lactobacillus rhamnosus GG.

    Science.gov (United States)

    Ku, Seockmo; You, Hyun Ju; Park, Myeong Soo; Ji, Geun Eog

    2016-07-28

    Ginsenosides are the major active ingredients in ginseng used for human therapeutic plant medicines. One of the most well-known probiotic bacteria among the various strains on the functional food market is Lactobacillus rhamnosus GG. Biocatalytic methods using probiotic enzymes for producing deglycosylated ginsenosides such as Rd have a growing significance in the functional food industry. The addition of 2% cellobiose (w/v) to glucose-free de Man-Rogosa-Sharpe broths notably induced β-glucosidase production from L. rhamnosus GG. Enzyme production and activity were optimized at a pH, temperature, and cellobiose concentration of 6.0, 40°C, and 2% (w/v), respectively. Under these controlled conditions, β-glucosidase production in L. rhamnosus GG was enhanced by 25-fold. Additionally, whole-cell homogenates showed the highest β-glucosidase activity when compared with disrupted cell suspensions; the cell disruption step significantly decreased the β-glucosidase activity. Based on the optimized enzyme conditions, whole-cell L. rhamnosus GG was successfully used to convert ginsenoside Rb1 into Rd.

  16. Enantioselective synthesis and (bio)catalysis : routes to enantiomerically pure alcohols and thiols

    NARCIS (Netherlands)

    Hof, Robert Patrick

    1995-01-01

    A unifying topic in this thesis is the development of routes to optically active compounds. The importance today of chiral -- optically pure -- compounds is evident. The phenomena of optical activity and chirality were discovered about one and a half century ago by pioneering work of Pasteur, van 't

  17. Thermostable α-amylase immobilization: Enhanced stability and performance for starch biocatalysis.

    Science.gov (United States)

    Kumar, Gudi Satheesh; Rather, Gulam Mohmad; Gurramkonda, Chandrasekhar; Reddy, Bontha Rajasekhar

    2016-01-01

    The uses of thermostable starch hydrolytic biocatalysts are steadily increasing for the industrial application because of their obvious need for biocatalytic performance at elevated temperatures. The starch liquefaction and saccharification can be carried out simultaneously by the use of thermostable starch hydrolytic biocatalysts, thus minimizing the unit operations, time, and efforts. The cost factor hampers the industrialization of expensive soluble (free) enzymes for biocatalytic applications and the immobilization of enzymes offers promising alternative to the hurdle. The present investigation was aimed for immobilization of thermostable α-amylase using calcium alginate, and statistical optimization studies were carried out for enhanced biocatalytic performance. Initially, one-parameter at a time optimization studies were carried out for identification of significant factors influencing the immobilization. Furthermore, a statistical approach, response surface methodology, was applied for immobilization of α-amylase. The immobilized α-amylase in alginate microbeads showed enhanced stability to temperature and reusable property for up to seven cycles (with the retention of 50% initial activity). Finally, the kinetic behavior of free and immobilized enzyme showed the Km value of 1.2% and 2.6% (w/v) and Vmax of 1,020 and 1,030 U, respectively. Fifty percent reduction in affinity of the immobilized enzyme toward substrate was compensated by its longer stability.

  18. Introducing an In Situ Capping Strategy in Systems Biocatalysis To Access 6-Aminohexanoic acid

    DEFF Research Database (Denmark)

    Sattler, Johann H.; Fuchs, Michael; Mutti, Francesco G.

    2014-01-01

    The combination of two cofactor self-sufficient biocatalytic cascade modules allowed the successful transformation of cyclohexanol into the nylon-6 monomer 6- aminohexanoic acid at the expense of only oxygen and ammonia. A hitherto unprecedented carboxylic acid capping strategy was introduced to ...

  19. Microreactors and CFD as Tools for Biocatalysis Reactor Design: A case study

    DEFF Research Database (Denmark)

    Bodla, Vijaya Krishna; Seerup, R.; Krühne, Ulrich;

    2013-01-01

    Microreactors have been used for acquiring process data while consuming significantly lower amounts of expensive reagents. In this article, the combination of microreactor technology and computational fluid dynamics (CFD) is shown to contribute significantly towards understanding the diffusional ...... with similar dimensions to the ones tested here can be used as a screening tool for screening biocatalyst and process alternatives....

  20. Process Design for the Biocatalysis of Value-Added Chemicals from Carbon Dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Mark A. Eiteman

    2006-07-31

    This report describes results toward developing a process to sequester CO{sub 2} centered on the enzyme pyruvate carboxylase. The process involves the use of bacteria to convert CO{sub 2} and glucose as a co-substrate and generates succinic acid as a commodity chemical product. The phases of research have included strain development and process development. Though we continue to work on one important component of strain development, the research has principally focused on process development. In the previous year we constructed several strains which would serve as templates for the CO{sub 2} sequestration, including the knock-out of genes involved in the formation of undesirable byproducts. This project period the focus has been on the integration of the pyruvate carboxylase gene (pyc) onto the E. coli chromosome. This has proven to be a difficult task because of relatively low expression of the gene and resulting low enzyme activity when only one copy of the gene is present on the chromosome. Several molecular biology techniques have been applied, with some success, to improve the level of protein activity as described herein. Progress in process development has come as a result of conducting numerous fermentation experiments to select optimal conditions for CO{sub 2} sequestration. This process-related research has progressed in four areas. First, we have clarified the range of pH which results in the optimal rate of sequestration. Second, we have determined how the counterion used to control the pH affects the sequestration rate. Third, we have determined how CO{sub 2} gas phase composition impacts sequestration rate. Finally, we have made progress in determining the affect of several potential gaseous impurities on CO{sub 2} sequestration; in particular we have completed a study using NO{sub 2}. Although the results provide significant guidance as to process conditions for CO{sub 2} sequestration and succinate production, in some cases we do not yet understand the underlying mechanism or reason for the observation. Also, process development has used the ''baseline'' organism in the absence of the pyruvate carboxylase gene. In some cases the conclusions regarding the process may change when the ''final'' strain is used which incorporates the key CO{sub 2} sequestration technology.

  1. Process Design for the Biocatalysis of Value-Added Chemicals from Carbon Dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Mark A. Eiteman

    2005-11-01

    This report describes results toward developing a process to sequester CO{sub 2} centered on the enzyme pyruvate carboxylase. The process involves the use of bacteria to convert CO{sub 2} and glucose as a co-substrate and generates succinic acid as a commodity chemical product. The first phase of this research has focused on strain development and on process development. Progress in strain development has been made in three areas. The gene encoding for alcohol dehydrogenase has been ''knocked out'' of the bacteria, and thereby eliminating the synthesis of the by-product ethanol. The gene for glucokinase has been overexpressed in the production strain with the goal of faster utilization of glucose (and hence CO{sub 2}). Efforts have continued toward integrating pyruvate carboxylase gene (pyc) onto the E. coli chromosome. Progress in process development has come in conducting several dozen fermentation experiments to find a defined medium that would be successful for the growth of the bacteria, while permitting a high rate of CO{sub 2} utilization in a subsequent prolonged production phase. Using this defined medium, the strains that continue to be constructed are being compared for CO{sub 2} utilization, so that we may understand the factors that govern the biological sequestration process.

  2. Biodiesel production by biocatalysis using alternative method for lipase immobilization in hydrogel

    OpenAIRE

    Fernanda Marder; Mariéli Milanesi Ceolin; Mariele da Silva Mazuim; Rosana de Cassia de Souza Schneider; Marilda Teixeira Macagnan; Valeriano Antonio Corbellini

    2009-01-01

    The society has been looking for alternatives in order to stop the process of environmental destruction installed in the world, however, starting from last century, a new vision on the indiscriminate use of the environmental resources started to be discussed leading to the use of new technologies of production of cleaner fuel, as the biodiesel, produced from vegetable oils. The enzymatic processes are a production alternative, for they are methods with losses reduction and larger efficiency, ...

  3. Biodiesel production by biocatalysis using alternative method for lipase immobilization in hydrogel

    Directory of Open Access Journals (Sweden)

    Fernanda Marder

    2009-03-01

    Full Text Available The society has been looking for alternatives in order to stop the process of environmental destruction installed in the world, however, starting from last century, a new vision on the indiscriminate use of the environmental resources started to be discussed leading to the use of new technologies of production of cleaner fuel, as the biodiesel, produced from vegetable oils. The enzymatic processes are a production alternative, for they are methods with losses reduction and larger efficiency, presenting however, high production cost. With the objective of reducing costs and increasing the efficiency we have searched the enzymes immobilization through alternative method and to use them as biocatalysts in the biodiesel production. The immobilization of the lipase PS Amano was accomplished in spheres formed by the hydration of commercial hydrogel in aqueous solution containing the enzyme. With the immobilized enzyme it was accomplished the transesterification, in which it was obtained conversions in methyl esters of up to 70%, in organic solvent, with 24h, 55°C, 100 rpm and 40 hydrogel spheres with immobilized enzyme. The method comes as a promising alternative technology for the biodiesel obtaining.

  4. Development of in-situ product removal strategies in biocatalysis applying scaled-down unit operations

    DEFF Research Database (Denmark)

    Heintz, Søren; Börner, Tim; Ringborg, Rolf Hoffmeyer;

    2017-01-01

    different process steps while operating it as a combined system, giving the possibility to test and characterize the performance of novel process concepts and biocatalysts with minimal influence of inhibitory products. Here the capabilities of performing process development by applying scaled-down unit......An experimental platform based on scaled-down unit operations combined in a plug-and-play manner enables easy and highly flexible testing of advanced biocatalytic process options such as in-situ product removal (ISPR) process strategies. In such a platform it is possible to compartmentalize......-automatically characterize ω-transaminases in a scaled-down packed-bed reactor (PBR) module, showing MPPA as a strong inhibitor. To overcome the inhibition, a two-step liquid-liquid extraction (LLE) ISPR concept was tested using scaled-down unit operations combined in a plug-and-play manner. Through the tested ISPR concept...

  5. Ionic liquids for two-phase systems and their application for purification, extraction and biocatalysis.

    Science.gov (United States)

    Oppermann, Sebastian; Stein, Florian; Kragl, Udo

    2011-02-01

    The development of biotechnological processes using novel two-phase systems based on molten salts known as ionic liquids (ILs) got into the focus of interest. Many new approaches for the beneficial application of the interesting solvent have been published over the last years. ILs bring beneficial properties compared to organic solvents like nonflammability and nonvolatility. There are two possible ways to use the ILs: first, the hydrophobic ones as a substitute for organic solvents in pure two-phase systems with water and second, the hydrophilic ones in aqueous two-phase systems (ATPS). To effectively utilise IL-based two-phase systems or IL-based ATPS in biotechnology, extensive experimental work is required to gain the optimal system parameters to ensure selective extraction of the product of interest. This review will focus on the most actual findings dealing with the basic driving forces for the target extraction in IL-based ATPS as well as presenting some selected examples for the beneficial application of ILs as a substitute for organic solvents. Besides the research focusing on IL-based two-phase systems, the "green aspect" of ILs, due to their negligible vapour pressure, is widely discussed. We will present the newest results concerning ecotoxicity of ILs to get an overview of the state of the art concerning ILs and their utilisation in novel two-phase systems in biotechnology.

  6. Ru(II)-diimine functionalized metalloproteins: From electron transfer studies to light-driven biocatalysis.

    Science.gov (United States)

    Lam, Quan; Kato, Mallory; Cheruzel, Lionel

    2016-05-01

    The unique photochemical properties of Ru(II)-diimine complexes have helped initiate a series of seminal electron transfer studies in metalloenzymes. It has thus been possible to experimentally determine rate constants for long-range electron transfers. These studies have laid the foundation for the investigation of reactive intermediates in heme proteins and for the design of light-activated biocatalysts. Various metalloenzymes such as hydrogenase, carbon monoxide dehydrogenase, nitrogenase, laccase and cytochrome P450 BM3 have been functionalized with Ru(II)-diimine complexes. Upon visible light-excitation, these photosensitized metalloproteins are capable of sustaining photocatalytic activity to reduce small molecules such as protons, acetylene, hydrogen cyanide and carbon monoxide or activate molecular dioxygen to produce hydroxylated products. The Ru(II)-diimine photosensitizers are hence able to deliver multiple electrons to metalloenzymes buried active sites, circumventing the need for the natural redox partners. In this review, we will highlight the key achievements of the light-driven biocatalysts, which stem from the extensive electron transfer investigations. This article is part of a Special Issue entitled Biodesign for Bioenergetics--the design and engineering of electronic transfer cofactors, proteins and protein networks, edited by Ronald L. Koder and J.L. Ross Anderson.

  7. A microfluidic toolbox for the development of in-situ product removal strategies in biocatalysis

    DEFF Research Database (Denmark)

    Heintz, Søren; Mitic, Aleksandar; Ringborg, Rolf Hoffmeyer;

    2016-01-01

    A microfluidic toolbox for accelerated development of biocatalytic processes has great potential. This is especially the case for the development of advanced biocatalytic process concepts, where reactors and product separation methods are closely linked together to intensify the process performan...... biocatalytic processes, which in many cases have proven too difficult in conventional batch equipment.......A microfluidic toolbox for accelerated development of biocatalytic processes has great potential. This is especially the case for the development of advanced biocatalytic process concepts, where reactors and product separation methods are closely linked together to intensify the process performance......, e.g., by the use of in-situ product removal (ISPR).This review provides a general overview of currently available tools in a microfluidic toolbox and how this toolbox can be applied to the development of advanced biocatalytic process concepts. Emphasis is placed on describing the possibilities...

  8. Potential application in biocatalysis of mycelium-bound lipases from Amazonian fungi

    Energy Technology Data Exchange (ETDEWEB)

    Zanotto, Sandra P.; Romano, Israel P.; Lisboa, Lilian U.S.; Duvoisin Junior, Sergio; Lima, Fabiana A.; Silva, Soraya F.; Alburquerque, Patricia M. [Universidade Federal do Amazonas (UFAM), Manaus, AM (Brazil). Programa em Biotecnologia e Recursos Naturais da Amazonia. Lab. de Biorganica; Martins, Mayra K. [Centro de Biotecnologia do Amazonas, Manaus, AM (Brazil)

    2009-07-01

    In this study, 212 fungi were isolated from Amazon region plants, aiming to obtain mycelium bound-lipase-producing biocatalysts. These isolates were submitted to hydrolytic and synthetic activity assays. When submitted to the tributyrine substrate test, 87% of the isolates showed hydrolytic activity. Of these, 30% showed good growth in lipase inducing liquid media and were submitted to evaluation of synthetic activity in esterification and transesterification reactions in organic solvents. The nine fungi which had the best synthetic activity were evaluated in the (R, S)-2-octanol resolution reaction, in order to verify the enantioselectivity of mycelium-bound lipases. The isolate UEA{sub 1}15 was the most versatile biocatalyst, showing good performance in esterification reactions (conversion > 90%) and good ability for the resolution of (R, S)-2-octanol (ees 29%; eep 99%; c 22%; E > 200). Thus, this study has demonstrated the great potential of the Amazonian fungi as lipase suppliers for biocatalysts.(author)

  9. Characterization of a continuous agitated cell reactor for oxygen dependent biocatalysis

    DEFF Research Database (Denmark)

    Pedersen, Asbjørn Toftgaard; Teresa de Melo Machado Simoes Carvalho, Ana; Sutherland, Euan

    2017-01-01

    for the ACR was developed. The model consisted of ten tanks-in-series with back-mixing occurring within and between each cell. The back-mixing was a necessary addition to the model in order to explain the observed phenomenon that the ACR behaved as two continuous stirred tank reactors (CSTRs) at low flow...... rates, while it at high flow rates behaved as the expected ten CSTRs in series. The performance of the ACR was evaluated by comparing the steady state conversion at varying residence times with the conversion observed in a stirred batch reactor of comparable size. It was found that the ACR could more......Biocatalytic oxidation reactions employing molecular oxygen as the electron acceptor are difficult to conduct in a continuous flow reactor because of the requirement for high oxygen transfer rates. In this paper, the oxidation of glucose to glucono-1,5-lactone by glucose oxidase was used as a model...

  10. Preparation of cobalt nanoparticles from polymorphic bacterial templates: A novel platform for biocatalysis.

    Science.gov (United States)

    Jang, Eunjin; Shim, Hyun-Woo; Ryu, Bum Han; An, Deu Rae; Yoo, Wan Ki; Kim, Kyeong Kyu; Kim, Dong-Wan; Kim, T Doohun

    2015-11-01

    Nanoparticles have gathered significant research attention as materials for enzyme immobilization due to their advantageous properties such as low diffusion rates, ease of manipulation, and large surface areas. Here, polymorphic cobalt nanoparticles of varied sizes and shapes were prepared using Micrococcus lylae, Bacillus subtilis, Escherichia coli, Paracoccus sp., and Haloarcula vallismortis as bacterial templates. Furthermore, nine lipases/carboxylesterases were successfully immobilized on these cobalt nanoparticles. Especially, immobilized forms of Est-Y29, LmH, and Sm23 were characterized in more detail for potential industrial applications. Immobilization of enzymes onto cobalt oxide nanoparticles prepared from polymorphic bacterial templates may have potential for efficient hydrolysis on an industrial-scale, with several advantages such as high retention of enzymatic activity, increased stability, and strong reusability.

  11. Biocatalysis for the application of CO2 as a chemical feedstock

    OpenAIRE

    Apostolos Alissandratos; Easton, Christopher J.

    2015-01-01

    Biocatalysts, capable of efficiently transforming CO2 into other more reduced forms of carbon, offer sustainable alternatives to current oxidative technologies that rely on diminishing natural fossil-fuel deposits. Enzymes that catalyse CO2 fixation steps in carbon assimilation pathways are promising catalysts for the sustainable transformation of this safe and renewable feedstock into central metabolites. These may be further converted into a wide range of fuels and commodity chemicals, thro...

  12. Biocatalysis of azidolysis of epoxides: Computational evidences on the role of halohydrin dehalogenase (HheC)

    Indian Academy of Sciences (India)

    Dhurairajan senthilnathan; Venkatachalam Tamilmani; Ponnambalam Venuvanalingam

    2011-05-01

    Biocatalytic azidolysis of 9 unsymmetrical epoxides by halohydrin dehalogenase enzyme (HheC) in gas phase and uncatalysed azidolysis of the same epoxides in gas phase and in aqueous solution have been modelled at DFT level. Aliphatic epoxides (1-6) and aromatic epoxides (9) undergo cleavage while styrene oxide (7) and -nitro styrene (8) oxide prefer cleavage in the gas phase. Inclusion of aqueous solvation effect via Polarizable Continuum Model (PCM) increases the activation barrier and makes the reaction endothermic due to extensive solvation of azide anion and oxido anionic products, but does not alter the regioselectivity. Halohydrin dehalogenase from Agrobacterium radiobactor AD1 catalyses (E1-E9) ring opening of all these epoxides by azide ion with selectivity and the reversal of selectivity in epoxide 7 and 8 is notable. These reactions follow, in both enzymatic and non-enzymatic environment, S2 mechanism. Calculations while agreeing totally with experimental results offer better insights on the factors determining the regioselectivity and particularly the role of enzyme. Active site model and crystal structure data reveal that the Tyr145 and Ser132 form weak hydrogen bonds with epoxide oxygen lone pair and form reactant enzyme complex (REC). The enzyme complex activates the epoxide ring towards azidolysis. The NBO deletion and second order perturbation analyses clearly bring out the role of catalytic duo Tyr145 and Ser132 and particularly shed light on the dominant contribution of Tyr145 in selectively activating C-O bond. The present results indicate that Arg149 or other residues in the pocket do not seem to have any significant effect on the reaction.

  13. Designing macromolecular electron delivery systems for artificial biocatalysis. Final report, 1994--1997

    Energy Technology Data Exchange (ETDEWEB)

    Beratan, D.N.

    1997-10-01

    This research focuses on the following four areas: multi-electron transfer processes; coupled quantum/molecular dynamics studies of protein electron transfer; quantum mechanical studies of DNA electron transfer processes; and inverse design of new materials. A theory for two-electron transfer reactions in Debye solvents was developed. The electron transfer processes are described in terms of diffusional motion along a one-dimensional reaction coordinate with tunneling transitions at the intersection points of the parabolas. Coupled quantum mechanics and molecular dynamics simulations were performed to investigate the role of secondary structure and small geometrical fluctuations on the long range electronic coupling in peptides. An inverse molecular design strategy was developed to assist in the development of new molecules with optimized properties.

  14. Process Design for the Biocatalysis of Value-Added Chemicals from Carbon Dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Mark Eiteman

    2007-07-31

    This report describes results toward developing a process to sequester CO{sub 2} centered on the enzymes PEP carboxylase and pyruvate carboxylase. The process involves the use of bacteria to convert CO{sub 2} and glucose as a co-substrate and generates succinic acid as a commodity chemical product. The study reports on strain development and process development. In the area of strain development, knockouts in genes which divert carbon from the enzymatic steps involved in CO{sub 2} consumption were completed, and were shown not to affect significantly the rate of CO{sub 2} sequestration and succinic acid generation. Furthermore, the pyc gene encoding for pyruvate carboxylase proved to be unstable when integrated onto the chromosome. In the area of process development, an optimal medium, pH and base counterion were obtained, leading to a sequestration rate as great as 800 mg/Lh. Detailed studies of gas phase composition demonstrated that CO{sub 2} composition has a significant affect on CO{sub 2} sequestration, while the presence of 'toxic' compounds in the gas, including NO{sub 2}, CO and SO{sub 2} did not have a detrimental effect on sequestration. Some results on prolonging the rate of sequestration indicate that enzyme activities decrease with time, suggesting methods to prolong enzyme activity may benefit the overall process.

  15. High production of ectoine from aspartate and glycerol by use of whole-cell biocatalysis in recombinant Escherichia coli

    OpenAIRE

    He, Yong-Zhi; Gong, Jiao; Yu, Hai-Ying; Tao, Yong; Zhang, Shan; Dong, Zhi-Yang

    2015-01-01

    Background Recently, the compatible solute 1, 4, 5, 6-tetrahydro-2-methyl-4-pyrimidinecarboxylic acid (ectoine) has attracted considerable interest due to its great potential as a protecting agent. To overcome the drawbacks of high salinity in the traditional bioprocess of ectoine using halophilic bacteria, various attempts have been made to engineer ectoine biosynthesis in nonhalophilic bacteria. Unfortunately, the yields of ectoine in these producers are still low and hardly meet the demand...

  16. Applied catastrophic phase inversion: a continuous non-centrifugal phase separation step in biphasic whole-cell biocatalysis.

    Science.gov (United States)

    Glonke, Sebastian; Sadowski, Gabriele; Brandenbusch, Christoph

    2016-11-01

    Biphasic whole-cell biotransformations are known to be efficient alternatives to common chemical synthesis routes, especially for the production of, e.g. apolar enantiopure organic compounds. They provide high stereoselectivity combined with high product concentrations owing to the presence of an organic phase serving as substrate reservoir and product sink. Industrial implementation suffers from the formation of stable Pickering emulsions caused by the presence of cells. State-of-the-art downstream processing includes inefficient strategies such as excessive centrifugation, use of de-emulsifiers or thermal stress. In contrast, using the catastrophic phase inversion (CPI) phenomenon (sudden switch of emulsion type caused by addition of dispersed phase), Pickering-type emulsions can be destabilized efficiently. Within this work a model system using bis(2-ethylhexyl) phthalate (BEHP) as organic phase in combination with E. coli, JM101 was successfully separated using a continuous mixer settler setup. Compared to the state-of-the-art centrifugal separations, this process allows complete phase separation with no detectable water content or cells in the organic phase with no utilities/additives required. Furthermore, the concentration of the product is not affected by the separation. It is therefore a simple applicable method that can be used for separation of stable Pickering-type emulsions based on the knowledge of the point of inversion.

  17. PCR-based amplification and heterologous expression of Pseudomonas alcohol dehydrogenase genes from the soil metagenome for biocatalysis.

    Science.gov (United States)

    Itoh, Nobuya; Isotani, Kentaro; Makino, Yoshihide; Kato, Masaki; Kitayama, Kouta; Ishimota, Tuyoshi

    2014-02-05

    The amplification of useful genes from metagenomes offers great biotechnological potential. We employed this approach to isolate alcohol dehydrogenase (adh) genes from Pseudomonas to aid in the synthesis of optically pure alcohols from various ketones. A PCR primer combination synthesized by reference to the adh sequences of known Pseudomonas genes was used to amplify full-length adh genes directly from 17 samples of DNA extracted from soil. Three such adh preparations were used to construct Escherichia coli plasmid libraries. Of the approximately 2800 colonies obtained, 240 putative adh-positive clones were identified by colony-PCR. Next, 23 functional adh genes named using the descriptors HBadh and HPadh were analyzed. The adh genes obtained via this metagenomic approach varied in their DNA and amino acid sequences. Expression of the gene products in E. coli indicated varying substrate specificity. Two representative genes, HBadh-1 and HPadh-24, expressed in E. coli and Pseudomonas putida, respectively, were purified and characterized in detail. The enzyme products of these genes were confirmed to be useful for producing anti-Prelog chiral alcohols.

  18. Potencial de biocatálise enantiosseletiva de lipases microbianas Potential of enantioselective biocatalysis by microbial lipases

    Directory of Open Access Journals (Sweden)

    Patrícia de O. Carvalho

    2005-08-01

    Full Text Available Microbial lipases have a great potential for commercial applications due to their stability, selectivity and broad substrate specificity because many non-natural acids, alcohols or amines can be used as the substrate. Three microbial lipases isolated from Brazilian soil samples (Aspergillus niger; Geotrichum candidum; Penicillium solitum were compared in terms of their stability and as biocatalysts in the enantioselective esterification using racemic substrates in organic medium. The lipase from Aspergillus niger showed the highest activity (18.2 U/mL and was highly thermostable, retaining 90% and 60% activity at 50 ºC and 60 ºC after 1 hour, respectively. In organic medium, this lipase provided the best results in terms of enantiomeric excess of the (S-active acid (ee = 6.1% and conversion value (c = 20% in the esterification of (R,S-ibuprofen with 1-propanol in isooctane. The esterification reaction of the racemic mixture of (R,S-2-octanol with decanoic acid proceeded with high enantioselectivity when lipase from Aspergillus niger (E = 13.2 and commercial lipase from Candida antarctica (E = 20 were employed.

  19. Hemin-block copolymer micelle as an artificial peroxidase and its applications in chromogenic detection and biocatalysis.

    Science.gov (United States)

    Qu, Rui; Shen, Liangliang; Chai, Zhihua; Jing, Chen; Zhang, Yufeng; An, Yingli; Shi, Linqi

    2014-01-01

    Following an inspiration from the fine structure of natural peroxidases, such as horseradish peroxidase (HRP), an artificial peroxidase was constructed through the self-assembly of diblock copolymers and hemin, which formed a functional micelle with peroxidase-like activity. The pyridine moiety in block copolymer poly(ethylene glycol)-block-poly(4-vinylpyridine) (PEG-b-P4VP) can coordinate with hemin, and thus hemin is present in a five-coordinate complex with an open site for binding substrates, which mimics the microenvironment of heme in natural peroxidases. The amphiphilic core-shell structure of the micelle and the coordination interaction of the polymer to the hemin inhibit the formation of hemin μ-oxo dimers, and thereby enhance the stability of hemin in the water phase. Hemin-micelles exhibited excellent catalytic performance in the oxidation of phenolic and azo compounds by H2O2. In comparison with natural peroxidases, hemin-micelles have higher catalytic activity and better stability over wide temperature and pH ranges. Hemin-micelles can be used as a detection system for H2O2 with chromogenic substrates, and they anticipate the possibility of constructing new biocatalysts tailored to specific functions.

  20. Fibrous networks with incorporated macrocycles: a chiral stimuli-responsive supramolecular supergelator and its application to biocatalysis in organic media.

    Science.gov (United States)

    Qi, Zhenhui; Wu, Changzhu; Malo de Molina, Paula; Sun, Han; Schulz, Andrea; Griesinger, Christian; Gradzielski, Michael; Haag, Rainer; Ansorge-Schumacher, Marion B; Schalley, Christoph A

    2013-07-29

    A new and versatile, crown ether appended, chiral supergelator has been designed and synthesized based on the bis-urea motif. The introduction of a stereogenic center improved its gelation ability significantly relative to its achiral analogue. This low-molecular-weight gelator forms supramolecular gels in a variety of organic solvents. It is sensitive to multiple chemical stimuli and the sol-gel phase transitions can be reversibly triggered by host-guest interactions. The gel can be used to trap enzymes and release them on demand by chemical stimuli. It stabilizes the microparticles in Pickering emulsions so that enzyme-catalyzed organic reactions can take place in the polar phase inside the microparticles, the organic reactants diffusing through the biphasic interface from the surrounding organic phase. Because of the higher interface area between the organic and polar phases, enzyme activity is enhanced in comparison with simple biphasic systems.

  1. Enhanced biocatalysis mechanism under microwave irradiation in isoquercitrin production revealed by circular dichroism and surface plasmon resonance spectroscopy.

    Science.gov (United States)

    Gong, An; Zhu, Dan; Mei, Yi-Yuan; Xu, Xiao-Hui; Wu, Fu-An; Wang, Jun

    2016-04-01

    An efficient and rapid process for isoquercitrin production by hesperidinase-catalyzed hydrolysis of rutin was successfully developed under microwave irradiation detecting the affinity by circular dichroism (CD) and surface plasmon resonance (SPR) spectroscopy. A maximum isoquercitrin yield of 91.5±2.7% was obtained in 10min with the conditions of 10g/L hesperidinase, 2g/L rutin, 30°C and microwave power density 88.9W/L. Enzymatic reaction rate and Vm/Km in the microwave reactor were 6.34-fold higher than in a continuous flow microreactor and 1.24-fold higher than in a biphasic system. CD and SPR analysis results also showed that hesperidinase has a better selectivity and affinity (3.3-fold than in a batch reactor) to generate isoquercitrin under microwave irradiation. Microwave irradiation greatly improved the reaction efficiency and productivity, leading to a more positive economical assessment. The binding affinity indicates the presence of strong multivalent interactions between rutin and hesperidinase under microwave irradiation.

  2. Biotechnology and genetic engineering in the new drug development. Part III. Biocatalysis, metabolic engineering and molecular modelling.

    Science.gov (United States)

    Stryjewska, Agnieszka; Kiepura, Katarzyna; Librowski, Tadeusz; Lochyński, Stanisław

    2013-01-01

    Industrial biotechnology has been defined as the use and application of biotechnology for the sustainable processing and production of chemicals, materials and fuels. It makes use of biocatalysts such as microbial communities, whole-cell microorganisms or purified enzymes. In the review these processes are described. Drug design is an iterative process which begins when a chemist identifies a compound that displays an interesting biological profile and ends when both the activity profile and the chemical synthesis of the new chemical entity are optimized. Traditional approaches to drug discovery rely on a stepwise synthesis and screening program for large numbers of compounds to optimize activity profiles. Over the past ten to twenty years, scientists have used computer models of new chemical entities to help define activity profiles, geometries and relativities. This article introduces inter alia the concepts of molecular modelling and contains references for further reading.

  3. Production, properties and application to biocatalysis of a novel extracellular alkaline phenol oxidase from the thermophilic fungus Scytalidium thermophilum.

    Science.gov (United States)

    Ogel, Z B; Yüzügüllü, Y; Mete, S; Bakir, U; Kaptan, Y; Sutay, D; Demir, A S

    2006-08-01

    Scytalidium thermophilum produces an extracellular phenol oxidase on glucose-containing medium. Certain phenolic acids, specifically gallic acid and tannic acid, induce the expression of the enzyme. Production at 45 degrees C in batch cultures is growth-associated and is enhanced in the presence of 160 microM CuSO4 x 5 H2O and 3 mM gallic acid. The highest enzyme activity is observed at pH 7.5 and 65 degrees C, on catechol. When incubated for 1 h at pH 7 and pH 8, 95% and 86% of the activity is retained. Thermostability decreases gradually from 40 degrees C to 80 degrees C. Estimated molecular mass is c. 83 kDa, and pI is acidic at c. 5.4. Substrate specificity and inhibition analysis in culture supernatants suggest that the enzyme has unique properties showing activity towards catechol; 3,4-dihydroxy-L-phenylalanine (L-DOPA); 4-amino-N, N-diethylaniline (ADA); p-hydroquinone; gallic acid; tannic acid and caffeic acid, and no activity towards L-tyrosine, guaiacol, 2,2'-azino-bis(3-ethyl-benzthiazoline-6-sulphonic acid) (ABTS) and syringaldazine. Inhibition is observed in the presence of salicyl hydroxamic acid (SHAM) and p-coumaric acid. Enzyme activity is enhanced by cetyltrimethylammonium bromide (CTAB) and polyvinylpyrrolidone (PVP), and the organic solvents dimethyl sulfoxide (DMSO) and ethanol. No inhibition is observed in the presence of carbon monoxide. Benzoin, benzoyl benzoin and hydrobenzoin are converted into benzil, and stereoselective oxidation is observed on hydrobenzoin. The reported enzyme is novel due to its catalytic properties resembling mainly catechol oxidases, but displaying some features of laccases at the same time.

  4. Integrated organic-aqueous biocatalysis and product recovery for quinaldine hydroxylation catalyzed by living recombinant Pseudomonas putida.

    Science.gov (United States)

    Ütkür, F Ozde; Thanh Tran, Tan; Collins, Jonathan; Brandenbusch, Christoph; Sadowski, Gabriele; Schmid, Andreas; Bühler, Bruno

    2012-07-01

    In an earlier study, biocatalytic carbon oxyfunctionalization with water serving as oxygen donor, e.g., the bioconversion of quinaldine to 4-hydroxyquinaldine, was successfully achieved using resting cells of recombinant Pseudomonas putida, containing the molybdenum-enzyme quinaldine 4-oxidase, in a two-liquid phase (2LP) system (Ütkür et al. J Ind Microbiol Biotechnol 38:1067-1077, 2011). In the study reported here, key parameters determining process performance were investigated and an efficient and easy method for product recovery was established. The performance of the whole-cell biocatalyst was shown not to be limited by the availability of the inducer benzoate (also serving as growth substrate) during the growth of recombinant P. putida cells. Furthermore, catalyst performance during 2LP biotransformations was not limited by the availability of glucose, the energy source to maintain metabolic activity in resting cells, and molecular oxygen, a possible final electron acceptor during quinaldine oxidation. The product and the organic solvent (1-dodecanol) were identified as the most critical factors affecting biocatalyst performance, to a large extent on the enzyme level (inhibition), whereas substrate effects were negligible. However, none of the 13 alternative solvents tested surpassed 1-dodecanol in terms of toxicity, substrate/product solubility, and partitioning. The use of supercritical carbon dioxide for phase separation and an easy and efficient liquid-liquid extraction step enabled 4-hydroxyquinaldine to be isolated at a purity of >99.9% with recoveries of 57 and 84%, respectively. This study constitutes the first proof of concept on an integrated process for the oxyfunctionalization of toxic substrates with a water-incorporating hydroxylase.

  5. Mediatorless Microbial Fuel Cell Based on the Biocatalysis of E coli%基于大肠杆菌催化的微生物燃料电池

    Institute of Scientific and Technical Information of China (English)

    张甜; 彭汉勇; 陈胜利; 杨汉西

    2006-01-01

    使用不同PTFE含量的石墨/PTFE复合膜电极作微生物燃料电池(Microbial fuel cells,MFCs)的阳极,通过大肠杆菌(Escherichia coli)的生物催化作用来获取电流.结果表明,细菌在电化学环境中会经历一个类似于自然选择的活化过程,经过电化学活化的细菌对葡萄糖的生物电催化活性显著提高.此外,复合电极中PTFE的含量能够显著影响微生物燃料电池中电流产生的效率.由恒阻和恒流2种放电模型得到的结果表明,在微生物燃料电池阳极上葡萄糖的电催化氧化涉及到2个动力学过程.

  6. Stereochemical determination and bioactivity assessment of {(S)}-(+)-curcuphenol dimers isolated from the marine sponge Didiscus aceratus and synthesized through laccase biocatalysis

    DEFF Research Database (Denmark)

    Lassen, Peter Rygaard

    2005-01-01

    Electrospray ionization mass spectrometry-guided isolation of extracts from Didiscus aceratus led to the discovery of several new derivatives of the bioactive bisabolene-type sponge metabolite (S)-(+)-curcuphenol (1). The compounds obtained by this method included a mixture of known (2) and new (3...

  7. Identification and use of an alkane transporter plug-in for application in biocatalysis and whole-cell biosensing of alkanes

    DEFF Research Database (Denmark)

    Grant, Chris; Deszcz, Dawid; Wei, Yu-Chia

    2014-01-01

    plug-in, specific yields improved by up to 100-fold for bioxidation of>C12 alkanes to fatty alcohols and acids. The alkL protein was shown to be toxic to the host when overexpressed but when expressed from a vector capable of controlled induction, yields of alkane oxidation were improved a further 10...

  8. The Power of Biocatalysis: A One‐Pot Total Synthesis of Rhamnolipids from Butane as the Sole Carbon and Energy Source

    Science.gov (United States)

    Gehring, Christian; Wessel, Mirja; Schaffer, Steffen

    2016-01-01

    Abstract Microbially derived surfactants, so‐called biosurfactants, have drawn much attention in recent years and are expected to replace current petrochemical surfactants, owing to their environmental and toxicological benefits. One strategy to support that goal is to reduce production costs by replacing relatively expensive sugars with cheaper raw materials, such as short‐chain alkanes. Herein, we report the successful one‐pot total synthesis of rhamnolipids, a class of biosurfactants with 12 stereocenters, from butane as sole carbon and energy source through the design of a tailored whole‐cell biocatalyst. PMID:28032017

  9. 生物催化技术在化学工业中的应用(二)%Application of Biocatalysis in the Chemical Industry(Ⅱ)

    Institute of Scientific and Technical Information of China (English)

    李祖义; 陈颖

    2003-01-01

    @@ (接上期) 3.2合成丙烯酰胺 在日用化学品的生物催化生产中,最成功的一个例子是将丙烯腈转化为丙烯酰胺[27].现年产2万t丙烯酰胺的Mitsubishi Rayon有限公司(日本东京)使用第三代生物催化剂--Rhodococcus rhodo-chrous J1,该催化剂是由Kobayashi和Yamada最先分离出来的[28],Nitto Chemical Industries(现为Mit-subishi Rayon有限公司的一部分)开发了其商业应用.

  10. Recent Progress on Biocatalysis and Biotransformations in Ionic Liquids%离子液介质中生物催化与生物转化的研究进展

    Institute of Scientific and Technical Information of China (English)

    娄文勇; 宗敏华; 吴虹; 许若

    2004-01-01

    Ionic liquids have negligibly low vapor pressure, high stability and polarity. They are regarded as green solvents. Enzymes, especially lipases, as well as whole-cell of microbe, are catalytically active in ionic liquids or aqueous-ionic liquid biphasic systems. Up to date, there have been many reports on enzyme-exhibited features and enzyme-mediated reactions in ionic liquids. In many cases, remarkable results with respect to yield, catalytic activity, stability and (enantio-, regio-) selectivity were obtained in ionic liquids in comparison with those observed in conventional media. Accordingly, ionic liquids provide new possibilities for the application of new type of solvent in biocatalytic reactions.

  11. Biocatalysis by metallated cyclotriphosphazenes: L2Zn(NO3)2 {L = spiro-N3P3[O2C12H8][N(CH3)NH2]} as a synthetic phosphoesterase and nuclease

    Indian Academy of Sciences (India)

    Vadapalli Chandrasekhar; Venkatasubbiah Krishnan; Ramachandran Azhakar; C Madhavaiah; Sandeep Verma

    2005-03-01

    Catalytic activity of [L2.Zn][NO3]2 (L = spiro-N3P3[O2C12H8][N(CH3)NH2]) towards the hydrolysis of two phosphodiesters, [bis(-nitrophenyl)phosphate, bNPP] and [2-(hydroxypropyl)-p-nitrophenyl phosphate, hNPP] has been examined. While the rate of hydrolysis of the former is accelerated over a million-fold, the rate of hydrolysis of the latter also is enhanced considerably. Detailed kinetic evaluation of these reactions has been carried out and all the kinetic parameters including the Michaelis-Menten parameters are reported. The catalyst [L2.Zn][NO3]2 has also been found to be an effective nuclease. Relaxation of supercoiled plasmid DNA, pBR322, occurs in presence of [L2.Zn][NO3]2 without the need for any exogenous reagents.

  12. Advances in the Process Development of Biocatalytic Processes

    DEFF Research Database (Denmark)

    Tufvesson, Pär; Lima Ramos, Joana; Al-Haque, Naweed;

    2013-01-01

    Biocatalysis is already established in chemical synthesis on an industrial scale, in particular in the pharmaceutical sector. However, the wider implementation of biocatalysis is currently hindered by the extensive effort required to develop a competitive process. In order that resources spent on...

  13. Microbial alcohol dehydrogenases: identification, characterization and engineering

    NARCIS (Netherlands)

    Machielsen, M.P.

    2007-01-01

    Keywords: alcohol dehydrogenase, laboratory evolution, rational protein engineering, Pyrococcus furiosus, biocatalysis, characterization, computational design, thermostability.   Alcohol dehydrogeases (ADHs) catalyze the interconversion of alcohols, aldehydes and ketones. They display a wide variety

  14. Asymmetric reactions in continuous flow

    Directory of Open Access Journals (Sweden)

    Xiao Yin Mak

    2009-04-01

    Full Text Available An overview of asymmetric synthesis in continuous flow and microreactors is presented in this review. Applications of homogeneous and heterogeneous asymmetric catalysis as well as biocatalysis in flow are discussed.

  15. Applying Enzymatic Cascades for ISCPR in ω-transaminase Systems

    OpenAIRE

    Janes, Kresimir; Woodley, John; Tufvesson, Pär; Gernaey, Krist

    2014-01-01

    Biocatalysis complements the classical organic synthesis, and in many cases the superior selectivity of a biocatalyst is a strong driver explaining why there are an increasing number of processes where traditional organic synthesis has been replaced or combined with biocatalytic industrial process steps. An important fact is also that different types of selectivity make biocatalysis an excellent tool for overcoming difficulties typically associated with organic synthesis. Regioselectivity of ...

  16. Biocatalytic portfolio of Basidiomycota.

    Science.gov (United States)

    Schmidt-Dannert, Claudia

    2016-04-01

    Basidiomycota fungi have received little attention for applications in biocatalysis and biotechnology and remain greatly understudied despite their importance for carbon recycling, ecosystem functioning and medicinal properties. The steady influx of genome data has facilitated detailed studies aimed at understanding the evolution and function of fungal lignocellulose degradation. These studies and recent explorations into the secondary metabolomes have uncovered large portfolios of enzymes useful for biocatalysis and biosynthesis. This review will provide an overview of the biocatalytic repertoires of Basidiomycota characterized to date with the hope of motivation more research into the chemical toolkits of this diverse group of fungi.

  17. Integrating Porous Resins In Enzymatic Processes

    DEFF Research Database (Denmark)

    Al-Haque, Naweed

    Increasing pressure mandated by different government policies, for developing sustainable chemical processes for the synthesis of optically pure compounds, has resulted in increased considerations of biocatalysis as a viable option by many industries. Biocatalysis, with its exquisite selective...... capacity points towards the need for higher resin loading, which in turn determines the equilibrium concentration of the substrate in the reactor and the type of reactor that can be used (stirred tank reactor or packed bed reactor). Similarly low product selectivity would result in higher product...

  18. Model visualization for evaluation of biocatalytic processes

    DEFF Research Database (Denmark)

    Law, HEM; Lewis, DJ; McRobbie, I

    2008-01-01

    Biocatalysis offers great potential as an additional, and in some cases as an alternative, synthetic tool for organic chemists, especially as a route to introduce chirality. However, the implementation of scalable biocatalytic processes nearly always requires the introduction of process and/or bi...

  19. DOE Laboratory Catalysis Research Symposium - Abstracts

    Energy Technology Data Exchange (ETDEWEB)

    Dunham, T.

    1999-02-01

    The conference consisted of two sessions with the following subtopics: (1) Heterogeneous Session: Novel Catalytic Materials; Photocatalysis; Novel Processing Conditions; Metals and Sulfides; Nuclear Magnetic Resonance; Metal Oxides and Partial Oxidation; Electrocatalysis; and Automotive Catalysis. (2) Homogeneous Catalysis: H-Transfer and Alkane Functionalization; Biocatalysis; Oxidation and Photocatalysis; and Novel Medical, Methods, and Catalyzed Reactions.

  20. Biocatalyzed Regioselective Synthesis in Undergraduate Organic Laboratories: Multistep Synthesis of 2-Arachidonoylglycerol

    Science.gov (United States)

    Johnston, Meghan R.; Makriyannis, Alexandros; Whitten, Kyle M.; Drew, Olivia C.; Best, Fiona A.

    2016-01-01

    In order to introduce the concepts of biocatalysis and its utility in synthesis to organic chemistry students, a multistep synthesis of endogenous cannabinergic ligand 2-arachidonoylglycerol (2-AG) was tailored for use as a laboratory exercise. Over four weeks, students successfully produced 2-AG, purifying and characterizing products at each…

  1. Impedance Spectroscopy as a Tool for Non-Intrusive Detection of Extracellular Mediators in Microbial Fuel Cells

    Science.gov (United States)

    2009-12-01

    1):78. Heijnen JJ. 1999. Bioenergetics of microbial growth. In: Flickiger MC, Drew SW, editors. Bioprocess technology: Fermentation , biocatalysis and...Bug juice : Harvesting electricity with microorganisms. Nature Rev Microbiol 4:497. Manohar AK, Bretschger O, Nealson KH, Mansfeld F. 2008. The use of

  2. Heterologous Expression of Peroxidases : Chapter 12

    NARCIS (Netherlands)

    Lokman, Christien; Weert, S. de

    2010-01-01

    This monograph describes many applications of peroxidase-based biocatalysis in the biotechnology industry. The need for such a book emerges from the considerable amount of new data regarding the phylogeny, reaction mechanisms, thermodynamic characterization and structural features of fungal and plan

  3. Structure, function and operational stability of peroxidases

    NARCIS (Netherlands)

    Haandel, van M.J.H.

    2000-01-01

    This PhD project was started in 1995 and was supported by the dutch Ministry of Economic Affairs through the programme "IOP Catalysis". The main goal of "IOP catalysis" is to obtain clean and more efficient technologies, to improve the quality of the Dutch fine chemistry. Biocatalysis provides a way

  4. [The rise of enzyme engineering in China].

    Science.gov (United States)

    Li, Gaoxiang

    2015-06-01

    Enzyme engineering is an important part of the modern biotechnology. Industrial biocatalysis is considered the third wave of biotechnology following pharmaceutical and agricultural waves. In 25 years, China has made a mighty advances in enzyme engineering research. This review focuses on enzyme genomics, enzyme proteomics, biosynthesis, microbial conversion and biosensors in the Chinese enzyme engineering symposiums and advances in enzyme preparation industry in China.

  5. Marine Biocatalysts: Enzymatic Features and Applications

    Directory of Open Access Journals (Sweden)

    Antonio Trincone

    2011-03-01

    Full Text Available In several recent reports related to biocatalysis the enormous pool of biodiversity found in marine ecosystems is considered a profitable natural reservoir for acquiring an inventory of useful biocatalysts. These enzymes are characterized by well-known habitat-related features such as salt tolerance, hyperthermostability, barophilicity and cold adaptivity. In addition, their novel chemical and stereochemical characteristics increase the interest of biocatalysis practitioners both in academia and research industry. In this review, starting from the analysis of these featuring habitat-related properties, important examples of marine enzymes in biocatalysis will be reported. Completion of this report is devoted to the analysis of novel chemical and stereochemical biodiversity offered by marine biocatalysts with particular emphasis on current or potential applications of these enzymes in chemical and pharmaceutical fields. The analysis of literature cited here and the many published patent applications concerning the use of marine enzymes supports the view that these biocatalysts are just waiting to be discovered, reflecting the importance of the marine environment. The potential of this habitat should be thoroughly explored and possibly the way to access useful biocatalysts should avoid destructive large-scale collections of marine biomass for enzyme production. These two aspects are day by day increasing in interest and a future increase in the use of marine enzymes in biocatalysis should be expected.

  6. Extractant selection strategy for solvent-impregnated resins in fermentations

    NARCIS (Netherlands)

    Berg, C. van den; Roelands, C.P.M.; Bussmann, P.J.Th.; Goetheer, E.L.V.; Verdoes, D.; Wielen, L. van der

    2008-01-01

    The application of extractants in whole-cell biocatalysis can have a positive impact on industrial fermentations, in terms of productivity, total amount of product produced, and cell growth. When a product is continuously removed from the microorganism surroundings, product inhibition will be dimini

  7. Process technology for the application of d-amino acid oxidases in pharmaceutical intermediate manufacturing

    DEFF Research Database (Denmark)

    Tindal, Stuart; Carr, Reuben; Archer, Ian V. J.

    2011-01-01

    Recent advances in biocatalysis have seen increased interest in the use of D-amino acid oxidase to synthesize optically pure amino acids. However, the creation of a genuine oxidase based platform technology will require suitable process technology as well as an understanding of the challenges and...

  8. Not so monofunctional-a case of thermostable Thermobifida fusca catalase with peroxidase activity

    NARCIS (Netherlands)

    Lončar, Nikola; Fraaije, Marco W

    2014-01-01

    Thermobifida fusca is a mesothermophilic organism known for its ability to degrade plant biomass and other organics, and it was demonstrated that it represents a rich resource of genes encoding for potent enzymes for biocatalysis. The thermostable catalase from T. fusca has been cloned and overexpre

  9. Economic Considerations for Selecting an Amine Donor in Biocatalytic Transamination

    DEFF Research Database (Denmark)

    Tufvesson, Pär; Nordblad, Mathias; Krühne, Ulrich

    2015-01-01

    The industrial implementation of biocatalysis for production of pharma and fine chemicals has grown substantially over recent years. An upcoming application is that of chiral synthesis of optically pure amines, a technology known for many years but that is now seeing a renewed and wider interest ...

  10. Not so monofunctional-a case of thermostable Thermobifida fusca catalase with peroxidase activity

    NARCIS (Netherlands)

    Lončar, Nikola; Fraaije, Marco W

    2015-01-01

    Thermobifida fusca is a mesothermophilic organism known for its ability to degrade plant biomass and other organics, and it was demonstrated that it represents a rich resource of genes encoding for potent enzymes for biocatalysis. The thermostable catalase from T. fusca has been cloned and overexpre

  11. Petroleum-Degrading Enzymes: Bioremediation and New Prospects

    Directory of Open Access Journals (Sweden)

    R. S. Peixoto

    2011-01-01

    Full Text Available Anthropogenic forces, such as petroleum spills and the incomplete combustion of fossil fuels, have caused an accumulation of petroleum hydrocarbons in the environment. The accumulation of petroleum and its derivatives now constitutes an important environmental problem. Biocatalysis introduces new ways to improve the development of bioremediation strategies. The recent application of molecular tools to biocatalysis may improve bioprospecting research, enzyme yield recovery, and enzyme specificity, thus increasing cost-benefit ratios. Enzymatic remediation is a valuable alternative as it can be easier to work with than whole organisms, especially in extreme environments. Furthermore, the use of free enzymes avoids the release of exotic or genetically modified organisms (GMO in the environment.

  12. Microbial steroid transformations: current state and prospects.

    Science.gov (United States)

    Donova, Marina V; Egorova, Olga V

    2012-06-01

    Studies of steroid modifications catalyzed by microbial whole cells represent a well-established research area in white biotechnology. Still, advances over the last decade in genetic and metabolic engineering, whole-cell biocatalysis in non-conventional media, and process monitoring raised research in this field to a new level. This review summarizes the data on microbial steroid conversion obtained since 2003. The key reactions of structural steroid functionalization by microorganisms are highlighted including sterol side-chain degradation, hydroxylation at various positions of the steroid core, and redox reactions. We also describe methods for enhancement of bioprocess productivity, selectivity of target reactions, and application of microbial transformations for production of valuable pharmaceutical ingredients and precursors. Challenges and prospects of whole-cell biocatalysis applications in steroid industry are discussed.

  13. Enzymatic processes in alternative reaction media: a mini review

    Directory of Open Access Journals (Sweden)

    Mansour Ghaffari-Moghaddam

    2015-08-01

    Full Text Available Biocatalysis is a growing field in the production of fine chemicals and will most probably increase its share in the future. Enzymatic reactions are carried out under mild conditions, i.e., non-toxic solvents, low temperature and pressure, which eliminates most environmental drawbacks associated with conventional production methods. The superiority of chemo-, regio- and enantioselectivity of enzymes exhibit significant advantages over conventional catalysts for production of fine chemicals, flavors, fragrances, agrochemicals and pharmaceuticals. Enzymes can function both in aqueous and non-aqueous solvents. As a result of the growing scientific and industrial interest towards green chemistry, green solvent systems, which are mainly water, supercritical fluids, ionic liquids, fluorinated solvents, and solvent-free systems have become more popular in biocatalysis. However, the activity and selectivity of an enzyme is heavily dependent on solvent properties. In this review, various green solvents were classified and some of their influential features on enzyme activity were discussed.

  14. In vitro characterization of an enzymatic redox cascade composed of an alcohol dehydrogenase, an enoate reductases and a Baeyer-Villiger monooxygenase.

    Science.gov (United States)

    Oberleitner, Nikolin; Peters, Christin; Rudroff, Florian; Bornscheuer, Uwe T; Mihovilovic, Marko D

    2014-12-20

    An artificial enzyme cascade composed of an alcohol dehydrogenase, an enoate reductase and a Baeyer-Villiger monooxygenase was investigated in vitro to gain deeper mechanistic insights and understand the assets and drawbacks of this multi-step biocatalysis. Several substrates composed of different structural motifs were examined and provided access to functionalized chiral compounds in high yields (up to >99%) and optical purities (up to >99%). Hence, the applicability of the presented enzymatic cascade was exploited for the synthesis of biorenewable polyesters.

  15. Non-conventional gas phase remediation of volatile halogenated compounds by dehydrated bacteria

    OpenAIRE

    Erable, Benjamin; Goubet, Isabelle; Seltana, Amira; Maugard, Thierry

    2009-01-01

    Traditional biological removal processes are limited by the low solubility of halogenated compounds in aqueous media. A new technology appears very suitable for the remediation of these volatile organic compounds (VOCs). Solid/gas bio-catalysis applied in VOC remediation can transform halogenated compounds directly in the gas phase using dehydrated cells as a bio-catalyst. The hydrolysis of volatile halogenated substrates into the corresponding alcohol was studied in a solid/gas bio...

  16. Catalytic Promiscuity of Transaminases: Preparation of Enantioenriched b-Fluoroamines by Formal Tandem Hydrodefluorination/Deamination

    OpenAIRE

    Cuetos, Aníbal; García-Ramos, Marina; Fischereder, Eva-Maria; Díaz-Rodríguez, Alba; Grogan, Gideon; Gotor,Vicente; Kroutil, Wolfgang; Lavandera, Iván

    2017-01-01

    Transaminases are valuable enzymes for industrial biocatalysis and enable the preparation of optically pure amines. For these transformations they require either an amine donor (amination of ketones) or an amine acceptor (deamination of racemic amines). Herein transaminases are shown to react with aromatic b-fluoroamines, thus leading to simultaneous enantioselective dehalogenation and deamination to form the corresponding acetophenone derivatives in the absence of an amine acceptor. A series...

  17. Role of L-alanine for redox self-sufficient amination of alcohols

    OpenAIRE

    Klatte, Stephanie; Wendisch, Volker F

    2015-01-01

    Background In white biotechnology biocatalysis represents a key technology for chemical functionalization of non-natural compounds. The plasmid-born overproduction of an alcohol dehydrogenase, an L-alanine-dependent transaminase and an alanine dehydrogenase allows for redox self-sufficient amination of alcohols in whole cell biotransformation. Here, conditions to optimize the whole cell biocatalyst presented in (Bioorg Med Chem 22:5578–5585, 2014), and the role of L-alanine for efficient amin...

  18. A capital market's view on Industrial Biotechnology:proper valuation is the key for picking the right investment opportunities in stormy times

    OpenAIRE

    Schneider, B.W. (Bernd)

    2009-01-01

    Industrial biotechnology, also known as white biotechnology, is considered to be a revolutionary biotechnology field beside red and green biotechnology. After red (medicine) and green (agriculture), white biotechnology is now gaining momentum. With numerous applications e.g. in biocatalysis and fermentation technology, white biotech companies are able to produce – often from biomass out of agricultural products - biobased chemicals (like vitamins, amino acids or enzymes for textile finishing ...

  19. GBF scientific report 1991. GBF Gesellschaft fuer Biotechnologische Forschung. Wissenschaftlicher Ergebnisbericht 1991

    Energy Technology Data Exchange (ETDEWEB)

    Walsdorff, J.H. (comp.)

    1992-01-01

    Research in 1991 focused on the following subjects: 1. Biosynthesis and biocatalysis (Central Projekt: Biologically active secondary raw materials out of microorganisms). 2. Biomolecules and molecule design (genome analysis and gene function; protein design; infection and immunity). 3. Environmental biotechnology (biological disposal of pollutants). 4. Biological process development (integrated process development). The status of central projects and projects is reviewed in several individual contributions. The interdisciplinary approach of the GBF is illustrated by several survey articles. (LU)

  20. Protein engineering of the cytochrome P450 monooxygenase from bacillus megaterium

    OpenAIRE

    Urlacher, Vlada B.; Schmid, Rolf D

    2004-01-01

    The role and importance of cytochrome P450 enzymes (CYP) in drug development, biodegradation processes and biocatalysis has been widely acknowledged. P450 monooxygenases exhibit an extremely wide substrate spectrum which is the basis of their ability to activate or detoxify a large variety of target molecules. P450 monooxygenases have been isolated from bacteria, yeasts, insects, as well as mammalian and plant tissues. Currently, the enzyme family is one of the best known gene subfamilies wit...

  1. Molecular catalysts structure and functional design

    CERN Document Server

    Gade, Lutz H

    2014-01-01

    Highlighting the key aspects and latest advances in the rapidly developing field of molecular catalysis, this book covers new strategies to investigate reaction mechanisms, the enhancement of the catalysts' selectivity and efficiency, as well as the rational design of well-defined molecular catalysts. The interdisciplinary author team with an excellent reputation within the community discusses experimental and theoretical studies, along with examples of improved catalysts, and their application in organic synthesis, biocatalysis, and supported organometallic catalysis. As a result, readers wil

  2. Magnetic biocatalysts and their uses to obtain bioproducts

    OpenAIRE

    Carmen eLópez; Álvaro eCruz-Izquierdo; Picó, Enrique A.; Teresa eGarcía-Bárcena; Noelia eVillarroel; Llama, María J.; Serra, Juan L.

    2014-01-01

    Nanobiocatalysis, as the synergistic combination of nanotechnology and biocatalysis, is rapidly emerging as a new frontier of biotechnology. The use of immobilized enzymes in industrial applications often presents advantages over their soluble counterparts, mainly in view of stability, reusability and simpler operational processing. Because of their singular properties, such as biocompatibility, large and modifiable surface and easy recovery, iron oxide magnetic nanoparticles (MNPs) are attra...

  3. Extraction and Application of Laccases from Shimeji Mushrooms (Pleurotus ostreatus) Residues in Decolourisation of Reactive Dyes and a Comparative Study Using Commercial Laccase from Aspergillus oryzae

    OpenAIRE

    Teixeira, Ricardo Sposina S.; Patrícia Maia Pereira; Ferreira-Leitão, Viridiana S

    2010-01-01

    Oxidases are able to degrade organic pollutants; however, high costs associated with biocatalysts production still hinder their use in environmental biocatalysis. Our study compared the action of a commercial laccase from Aspergillus oryzae and a rich extract from Pleurotus ostreatus cultivation residues in decolourisation of reactive dyes: Drimaren Blue X-3LR (DMBLR), Drimaren Blue X-BLN (DMBBLN), Drimaren Rubinol X-3LR (DMR), and Drimaren Blue C-R (RBBR). The colour removal was evaluated by...

  4. Feasibility of gas/solid carboligation: conversion of benzaldehyde to benzoin using thiamine diphosphate-dependent enzymes.

    Science.gov (United States)

    Mikolajek, R; Spiess, A C; Büchs, J

    2007-05-10

    A carboligation was investigated for the first time as an enzymatic gas phase reaction, where benzaldehyde was converted to benzoin using thiamine diphosphate (ThDP)-dependent enzymes, namely benzaldehyde lyase (BAL) and benzoylformate decarboxylase (BFD). The biocatalyst was immobilized per deposition on non-porous support. Some limitations of the gas/solid biocatalysis are discussed based on this carboligation and it is also demonstrated that the solid/gas system is an interesting tool for more volatile products.

  5. Whole cell biotransformation for reductive amination reactions

    OpenAIRE

    Klatte, Stephanie; Lorenz, Elisabeth; Wendisch, Volker F.

    2013-01-01

    Whole cell biotransformation systems with enzyme cascading increasingly find application in biocatalysis to complement or replace established chemical synthetic routes for production of, e.g., fine chemicals. Recently, we established an Escherichia coli whole cell biotransformation system for reductive amination by coupling a transaminase and an amino acid dehydrogenase with glucose catabolism for cofactor recycling. Transformation of 2-keto-3-methylvalerate to l-isoleucine by E. coli cells w...

  6. Substrate specificity in enzymatic fluorination. The fluorinase from Streptomyces cattleya accepts 2'-deoxyadenosine substrates.

    Science.gov (United States)

    Cobb, Steven L; Deng, Hai; McEwan, Andrew R; Naismith, James H; O'Hagan, David; Robinson, David A

    2006-04-21

    The fluorinase enzyme from Streptomyces cattleya displays an unusual ability in biocatalysis in that it forms a C-F bond. We now report that the enzyme will accept 2'-deoxyadenosine in place of adenosine substrates, and structural evidence reveals a reorganisation in hydrogen bonding to accommodate this substrate series. It emerges from this study that the enzyme does not require a planar ribose conformation of the substrate to catalyse C-F bond formation.

  7. Sortase A-mediated multi-functionalization of protein nanoparticles.

    Science.gov (United States)

    Chen, Qi; Sun, Qing; Molino, Nicholas M; Wang, Szu-Wen; Boder, Eric T; Chen, Wilfred

    2015-08-01

    We report here a new strategy to enable fast, covalent, and site-directed functionalization of protein nanoparticles using Sortase A-mediated ligation using functional proteins ranging from monomeric to large tetrameric structures. Easy purification of the modified E2 nanoparticles is achieved by functionalization with a thermo-responsive elastin-like-peptide. The resulting protein nanoparticles remained intact and active even after repeated phase transitions, suggesting their use in biocatalysis, biosensing, and imaging applications.

  8. Decylacetate synthesis by enzyme catalysis in SC-CO2

    OpenAIRE

    Oliveira,M.V.; Rebocho, Sílvia F.; Ribeiro, Adriano S.; Ferreira, Olga; Vidinha, Pedro; Barreiros, Susana; Macedo, Eugénia A.; LOUREIRO, José M.

    2009-01-01

    The main purpose of this work was the study of long chain esters production, using decyl acetate as model compound, by enzymatic catalysis in supercritical media, with the aim of developing a sustainable, clean and efficient process as an alternative to the traditional chemical processes. The combination of a sustainable and clean technology, as biocatalysis, with a green/natural solvent, as supercritical CO2, besides allowing the establishment of processes with less environmental costs, lead...

  9. Fossil energy biotechnology: A research needs assessment. [Report recommends biocatalyst approaches

    Energy Technology Data Exchange (ETDEWEB)

    Finnerty, W.R. (Consultec Scientific, Inc., Knoxville, TN (United States))

    1992-04-01

    The Office of Program Analysis of the US Department of Energy commissioned this study to evaluate and prioritize research needs in fossil energy biotechnology. The objectives were to identify research initiatives in biotechnology that offer timely and strategic options for the more efficient and effective uses of the Nation's fossil resource base, particularly the early identification of new and novel applications of biotechnology for the use or conversion of domestic fossil fuels. Fossil energy biotechnology consists of a number of diverse and distinct technologies, all related by the common denominator -- biocatalysis. The expert panel organized 14 technical subjects into three interrelated biotechnology programs: (1) upgrading the fuel value of fossil fuels; (2) bioconversion of fossil feedstocks and refined products to added value chemicals; and, (3) the development of environmental management strategies to minimize and mitigate the release of toxic and hazardous petrochemical wastes. The integration of these programs as viable bioprocessing initiatives proposes an innovative and conceptual principle for the development of a new'' approach to fossil energy biotechnology. This unifying principle is NON-AQUEOUS BIOCATALYSIS. Biocatalysis coupled to conventional chemical catalysis in organic-based media offers bioprocessing options uniquely characterized by the selectivity of biocatalysts plus fast reaction rates and specificity of chemical catalysts.

  10. Fossil energy biotechnology: A research needs assessment. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Finnerty, W.R. [Consultec Scientific, Inc., Knoxville, TN (United States)

    1992-04-01

    The Office of Program Analysis of the US Department of Energy commissioned this study to evaluate and prioritize research needs in fossil energy biotechnology. The objectives were to identify research initiatives in biotechnology that offer timely and strategic options for the more efficient and effective uses of the Nation`s fossil resource base, particularly the early identification of new and novel applications of biotechnology for the use or conversion of domestic fossil fuels. Fossil energy biotechnology consists of a number of diverse and distinct technologies, all related by the common denominator -- biocatalysis. The expert panel organized 14 technical subjects into three interrelated biotechnology programs: (1) upgrading the fuel value of fossil fuels; (2) bioconversion of fossil feedstocks and refined products to added value chemicals; and, (3) the development of environmental management strategies to minimize and mitigate the release of toxic and hazardous petrochemical wastes. The integration of these programs as viable bioprocessing initiatives proposes an innovative and conceptual principle for the development of a ``new`` approach to fossil energy biotechnology. This unifying principle is NON-AQUEOUS BIOCATALYSIS. Biocatalysis coupled to conventional chemical catalysis in organic-based media offers bioprocessing options uniquely characterized by the selectivity of biocatalysts plus fast reaction rates and specificity of chemical catalysts.

  11. Set-Up and Validation of a Dynamic Solid/Gas Bioreactor

    KAUST Repository

    Lloyd-Randol, Jennifer D.

    2012-05-01

    The limited availability of fossil resourses mandates the development of new energy vectors, which is one of the Grand Challenges of the 21st Century [1]. Biocatalytic energy conversion is a promising solution to meet the increased energy demand of industrialized societies. Applications of biocatalysis in the gas-phase are so far limited to production of fine chemicals and pharmaceuticals. However, this technology has the potential for large scale biocatalytic applications [2], e.g. for the formation of novel energy carriers. The so-called solid/gas biocatalysis is defined as the application of a biocatalyst immobilized on solid-phase support acting on gaseous substrates [3]. This process combines the advantages of bio-catalysis (green chemistry, mild reaction conditions, high specicity & selectivity) and heterogeneous dynamic gas-phase processes (low diffusion limitation, high conversion, simple scale-up). This work presents the modifications of a PID Microactivity Reference reactor in order to make it suitable for solid/gas biocatalysis. The reactor design requirements are based on previously published laboratory scale solid/gas systems with a feed of saturated vapors [4]. These vapors are produced in saturation flasks, which were designed and optimized during this project. Other modifications included relocation of the gas mixing chamber, redesigning the location and heating mechanism for the reactor tube, and heating of the outlet gas line. The modified reactor system was verified based on the Candida antarctica lipase B catalyzed transesterication of ethyl acetate with 1-hexanol to hexyl acetate and ethanol and results were compared to liquid-phase model reactions. Products were analyzed on line by a gas chromatograph with a flame ionization detector. C. antarc- tica physisorbed on silica particles produced a 50% conversion of hexanol at 40 C in the gas-phase. A commercial immobilized lipase from Iris Biotech produced 99% and 97% conversions of hexanol in

  12. Rationally engineering natural protein assemblies in nanobiotechnology.

    Science.gov (United States)

    Howorka, Stefan

    2011-08-01

    Multimeric protein assemblies are essential components in viruses, bacteria, eukaryotic cells, and organisms where they act as cytoskeletal scaffold, storage containers, or for directional transport. The bottom-up structures can be exploited in nanobiotechnology by harnessing their built-in properties and combining them with new functional modules. This review summarizes the design principles of natural protein assemblies, highlights recent progress in their structural elucidation, and shows how rational engineering can create new biomaterials for applications in vaccine development, biocatalysis, materials science, and synthetic biology.

  13. Enzymatic synthesis and modification of polymers and nanomaterials

    Science.gov (United States)

    Kim, Dae-Yun

    Biocatalysis perform chemical reactions in mild reaction environments with high catalytic rates to transform a particular set of substrates to specific reaction products. The broad substrate specificity and exquisite selectivity of enzymes have made them applicable in diverse applications. This thesis work explores biocatalysis in varied modes of synthesis, discovery, and also functional application as nanomaterial immobilized catalysts. First, biocatalysis is explored as a synthesis tool to generate carbohydrate-based polymers with regioselective acylation of the disaccharides sucrose and trehalose with diester derivatives. Sugar-based polymers are difficult to synthesize chemically due to the presence of multiple hydroxyl moieties and a selective catalytic route enhances the systematic incorporation of sugars into the polymer to rationally alter physicochemical properties. The sugar esters (containing reactive end groups) are polymerized with a variety of diols and enzymes in diverse reaction solvent conditions. Biocatalysis is well suited to becoming a discovery tool for new materials. Enzyme-catalyzed reactions are performed in 96-well microtiter plates to implement a combinatorial methodology to polymer synthesis. Two libraries are generated: the first is synthesized with bifunctional monomers under varying solvent conditions and multiple enzymes to identify optimal reaction conditions. The second library includes diverse polyols (sugars, nucleic acids, and steroids) to demonstrate the positional selectivity and broad reactivity of enzyme-mediated polymerization. The last part of this work incorporates enzymes onto nanoscale materials for functional material synthesis and modification. Silicon nanopillars are used as three-dimensional supports for high-density enzyme immobilization. Maleic anhydride coupling chemistries are explored for attachment and enzyme kinetic measurements are compared to enzyme immobilized on flat supports with equal projected surface

  14. Genome Sequence of the Ethene- and Vinyl Chloride-Oxidizing Actinomycete Nocardioides sp Strain JS614

    Energy Technology Data Exchange (ETDEWEB)

    Coleman, Nicholas V [University of Sydney, Australia; Wilson, Neil L [University of Sydney, Australia; Barry, Kerrie [U.S. Department of Energy, Joint Genome Institute; Bruce, David [Los Alamos National Laboratory (LANL); Copeland, A [U.S. Department of Energy, Joint Genome Institute; Dalin, Eileen [U.S. Department of Energy, Joint Genome Institute; Detter, J. Chris [U.S. Department of Energy, Joint Genome Institute; Glavina Del Rio, Tijana [U.S. Department of Energy, Joint Genome Institute; Goodwin, Lynne A. [Los Alamos National Laboratory (LANL); Hammon, Nancy [U.S. Department of Energy, Joint Genome Institute; Han, Shunsheng [Los Alamos National Laboratory (LANL); Hauser, Loren John [ORNL; Israni, Sanjay [U.S. Department of Energy, Joint Genome Institute; Kim, Edwin [U.S. Department of Energy, Joint Genome Institute; Kyrpides, Nikos C [U.S. Department of Energy, Joint Genome Institute; Land, Miriam L [ORNL; Lapidus, Alla L. [U.S. Department of Energy, Joint Genome Institute; Larimer, Frank W [ORNL; Lucas, Susan [U.S. Department of Energy, Joint Genome Institute; Pitluck, Sam [U.S. Department of Energy, Joint Genome Institute; Richardson, Paul [U.S. Department of Energy, Joint Genome Institute; Schmutz, Jeremy [Stanford University; Tapia, Roxanne [Los Alamos National Laboratory (LANL); Thompson, Sue [Los Alamos National Laboratory (LANL); Tice, Hope [U.S. Department of Energy, Joint Genome Institute; Spain, Jim C [Georgia Institute of Technology; Gossett, James G [Cornell University; Mattes, Timothy E [University of Iowa

    2011-01-01

    Nocardioides sp. strain JS614 grows on ethene and vinyl chloride (VC) as sole carbon and energy sources and is of interest for bioremediation and biocatalysis. Sequencing of the complete genome of JS614 provides insight into the genetic basis of alkene oxidation, supports ongoing research into the physiology and biochemistry of growth on ethene and VC, and provides biomarkers to facilitate detection of VC/ethene oxidizers in the environment. This is the first genome sequence from the genus Nocardioides and the first genome of a VC/ethene-oxidizing bacterium.

  15. Lipases as biocatalyst for biodiesel production.

    Science.gov (United States)

    Fan, Xiaohu; Niehus, Xochitl; Sandoval, Georgina

    2012-01-01

    The global shortages of fossil fuels, significant increase in the price of crude oil, and increased environmental concerns have stimulated the rapid growth in biodiesel production. Biodiesel is generally produced through transesterification reaction catalyzed either chemically or enzymatically. Enzymatic transesterification draws high attention because that process shows certain advantages over the chemical catalysis of transesterification and it is "greener." This paper reviews the current status of biodiesel production with lipase-biocatalysis approach, including sources of lipases, kinetics, and reaction mechanism of biodiesel production using lipases, and lipase immobilization techniques. Factors affecting biodiesel production and economic feasibility of biodiesel production using lipases are also covered.

  16. Discovery and Utilization of Biocatalysts for Chiral Synthesis: An Overview of Chinese Scientists Research and Development

    Science.gov (United States)

    Yu, Hui-Lei; Xu, Jian-He; Lu, Wen-Ya; Lin, Guo-Qiang

    The importance of chiral issues in active pharmaceutical ingredients has been widely recognized not only by pharmacologists, but also by chemists, chemical engineers and administrators. In fact, the worldwide sales of single-enantiomer drugs have exceeded US 150 billion. Among them the contribution rate of biocatalysis technology is ever increasing (up to 15-20%). This chapter will focus on the biocatalytic synthesis of chiral compounds useful for pharmaceutical industry. Diverse enzymes, such as oxidoreductases, epoxide hydrolases, nitrilases/nitrile hydratases and hydroxy nitrile lyases which were isolated from various sources including microorganisms and plants, and the methodology for utilizing these enzymes in enantioselective or asymmetric synthesis will be discussed briefly.

  17. Biotransformação de limoneno: uma revisão das principais rotas metabólicas Biotransformation of limonene: a review of the main metabolic pathways

    Directory of Open Access Journals (Sweden)

    Mário Roberto Maróstica Júnior

    2007-04-01

    Full Text Available There is considerable progress in the study of the biotransformation of limonene. Extensive research on the biotransformation of limonene has resulted in the elucidation of new metabolic pathways. Natural flavors can be produced via biotransformation, satisfying consumer demand for natural products. This review presents some elements concerning the biotransformation of limonene with emphasis on the metabolic pathways. Some comments are also made on problems related to biocatalysis as well as on the application of some compounds originating from the biotransformation of the inexpensive limonene.

  18. Next-Generation Catalysis for Renewables: Combining Enzymatic with Inorganic Heterogeneous Catalysis for Bulk Chemical Production

    DEFF Research Database (Denmark)

    Vennestrøm, Peter Nicolai Ravnborg; Christensen, C.H.; Pedersen, S.

    2010-01-01

    chemical platform under different conditions than those conventionally employed. Indeed, new process and catalyst concepts need to be established. Both enzymatic catalysis (biocatalysis) and heterogeneous inorganic catalysis are likely to play a major role and, potentially, be combined. One type...... of combination involves one-pot cascade catalysis with active sites from bio- and inorganic catalysts. In this article the emphasis is placed specifically on oxidase systems involving the coproduction of hydrogen peroxide, which can be used to create new in situ collaborative oxidation reactions for bulk...

  19. Aplicações de enzimas na síntese e na modificação de polímeros

    Directory of Open Access Journals (Sweden)

    Marcos de Campos Cavalcanti de Albuquerque

    2014-01-01

    Full Text Available Enzymes are biological catalysts that offer great potential for use in the synthesis and modification of polymers, being more specific and greener than chemical catalysts. In this work, enzymes from the classes of hydrolases (lipase, cutinase and protease and of oxidoreductases (horseradish peroxidase, manganese peroxidase and laccase were identified as the main biocatalysts responsible for the synthesis of polymers. Biocatalysis can potentially be part of the life cycle of several polymers, including polyesters, polyurethanes, polycarbonates, polyamides, functionalized polysaccharides and polystyrene, allowing the synthesis of specialty macromolecules for fine applications and with higher added-value than commodity polymers.

  20. Inhibition by N'-nitrosonornicotine of the catalytic activity of glutamate dehydrogenase in alpha-ketoglutarate amination.

    Science.gov (United States)

    Mao, You-An; Zhong, Ke-Jun; Wei, Wan-Zhi; Wei, Xin-Liang; Lu, Hong-Bing

    2005-02-01

    The effect of N'-nitrosonornicotine (NNN), one of the tobacco-specific nitrosamines, on the catalytic activity of glutamate dehydrogenase (GLDH) in the alpha-ketoglutarate amination, using reduced nicotinamide adenine dinucleotide as coenzyme, was studied by a chronoamperometric method. The maximum reaction rate of the enzyme-catalyzed reaction and the Michaelis-Menten constant, or the apparent Michaelis-Menten constant, were determined in the absence and presence of NNN. NNN remarkably inhibited the bio-catalysis activity of GLDH, and was a reversible competitive inhibitior with K(i), estimated as 199 micromol l(-1) at 25 degrees C and pH 8.0.

  1. White biotechnology: ready to partner and invest in.

    Science.gov (United States)

    Kircher, Manfred

    2006-01-01

    It needs three factors to build an industry: market demand, product vision and capital. White biotechnology already produces high volume products such as feed additive amino acids and specialty products like enzymes for enantioselective biocatalysis. It serves large and diverse markets in the nutrition, wellness, pharmaceutical, agricultural and chemical industry. The total volume adds up to $ 50 billion worldwide. In spite of its proven track record, white biotechnology so far did not attract as much capital as red and even green biotechnology. However, the latest finance indicators confirm the continuously growing attractiveness of investment opportunities in white biotechnology. This article discusses white biotechnology's position and potential in the finance market and success factors.

  2. Non-Conventional Yeasts Whole Cells as Efficient Biocatalysts for the Production of Flavors and Fragrances

    Directory of Open Access Journals (Sweden)

    Luca Forti

    2015-06-01

    Full Text Available The rising consumer requests for natural flavors and fragrances have generated great interest in the aroma industry to seek new methods to obtain fragrance and flavor compounds naturally. An alternative and attractive route for these compounds is based on bio-transformations. In this review, the application of biocatalysis by Non Conventional Yeasts (NCYs whole cells for the production of flavor and fragrances is illustrated by a discussion of the production of different class of compounds, namely Aldehydes, Ketones and related compounds, Alcohols, Lactones, Terpenes and Terpenoids, Alkenes, and Phenols.

  3. Non-Conventional Yeasts Whole Cells as Efficient Biocatalysts for the Production of Flavors and Fragrances.

    Science.gov (United States)

    Forti, Luca; Di Mauro, Simone; Cramarossa, Maria Rita; Filippucci, Sara; Turchetti, Benedetta; Buzzini, Pietro

    2015-06-04

    The rising consumer requests for natural flavors and fragrances have generated great interest in the aroma industry to seek new methods to obtain fragrance and flavor compounds naturally. An alternative and attractive route for these compounds is based on bio-transformations. In this review, the application of biocatalysis by Non Conventional Yeasts (NCYs) whole cells for the production of flavor and fragrances is illustrated by a discussion of the production of different class of compounds, namely Aldehydes, Ketones and related compounds, Alcohols, Lactones, Terpenes and Terpenoids, Alkenes, and Phenols.

  4. Applications, benefits and challenges of flow chemistry

    DEFF Research Database (Denmark)

    Mitic, Aleksandar; Heintz, Søren; Ringborg, Rolf Hoffmeyer

    2013-01-01

    Organic synthesis (incorporating both chemo-catalysis and biocatalysis) is essential for the production of a wide range of small-molecule pharmaceuticals. However, traditional production processes are mainly based on batch and semi-batch operating modes, which have disadvantages from an economic......, environmental and manufacturing perspective. A potential solution to resolve these issues is to use flow chemistry in such processes, preferably with applications of micro-and mini-sized equipment. In addition, Process Analytical Technology (PAT) may be implemented in a very efficient way in such equipment due...

  5. Biocatálisis y biotecnología

    Directory of Open Access Journals (Sweden)

    Arroyo, Miguel

    2014-08-01

    Full Text Available Biocatalysis has emerged as a rich field within Biotechnology, enabling the application of enzymes in a wide range of industries ranging from pharmaceuticals and fine chemicals to food and energy. This striking development of Biocatalysis is due to novel technologies such as bioinformatics, high-throughput screening (HTS, directed evolution, as well as other well-established techniques such as enzyme immobilization and protein engineering or medium engineering. Sustainable manufacturing is a major driver of Biocatalysis, which will provide many real challenges and opportunities for the future. In this article, some of the main methods in enzyme technology have been reviewed, as well as several biotechnological applications of enzymes in industry. Finally, a brief overview of the situation of Biocatalysis in both Spanish academia and industry has also been reported.La Biocatálisis ha surgido como un área de gran riqueza dentro de la Biotecnología, y ha permitido la aplicación de las enzimas en un amplio número de industrias dedicadas a la fabricación de fármacos y otros compuestos químicos, así como alimentos o biocombustibles. Este sorprendente desarrollo de la Biocatálisis se debe a nuevas tecnologías como la bioinformática, el cribado de alta resolución, la evolución dirigida, así como otras técnicas arraigadas como la inmovilización de enzimas y la ingeniería de proteínas o del medio de reacción. La fabricación sostenible de productos de consumo es uno de los objetivos principales de la Biocatálisis, y supondrá muchos desafíos y oportunidades en el futuro. En este artículo, se han revisado algunos de los principales métodos empleados en tecnología enzimática, así como varios ejemplos de aplicaciones de las enzimas en la industria. Finalmente, se indica un breve comentario sobre la situación actual de los grupos de investigación y empresas dedicados a la Biocatálisis en España.

  6. Increasing importance of protein flexibility in designing biocatalytic processes

    Directory of Open Access Journals (Sweden)

    Joyeeta Mukherjee

    2015-06-01

    Full Text Available Enzymes require some flexibility for catalysis. Biotechnologists prefer stable enzymes but often this stabilization comes at the cost of reduced efficiency. Enzymes from thermophiles have low flexibility but poor catalytic rates. Enzymes from psychrophiles are less stable but show good catalytic rates at low temperature. In organic solvents enzymes perform poorly as the prior drying makes the enzyme molecules very rigid. Adding water or increasing reaction temperature improves flexibility and catalytic rates. In case of hydrolases, flexibility and enantioselectivity have interdependence. Understanding the complex role of protein flexibility in biocatalysis can help in designing biotechnological processes.

  7. Label-free and ratiometric detection of nuclei acids based on graphene quantum dots utilizing cascade amplification by nicking endonuclease and catalytic G-quadruplex DNAzyme.

    Science.gov (United States)

    Wang, Guang-Li; Fang, Xin; Wu, Xiu-Ming; Hu, Xue-Lian; Li, Zai-Jun

    2016-07-15

    Herein, we report a ratiometric fluorescence assay based on graphene quantum dots (GQDs) for the ultrasensitive DNA detection by coupling the nicking endonuclease assisted target recycling and the G-quadruplex/hemin DNAzyme biocatalysis for cascade signal amplifications. With o-phenylenediamine acted as the substrate of G-quadruplex/hemin DNAzyme, whose oxidization product (that is, 2,3-diaminophenazine, DAP) quenched the fluorescence intensity of GQDs (at 460nm) obviously, accompanied with the emergence of a new emission of DAP (at 564nm). The ratiometric signal variations at the emission wavelengths of 564 and 460nm (I564/I460) were utilized for label-free, sensitive, and selective detection of target DNA. Utilizing the nicking endonuclease assisted target recycling and the G-quadruplex/hemin DNAzyme biocatalysis for amplified cascade generation of DAP, the proposed bioassay exhibited high sensitivity toward target DNA with a detection limit of 30fM. The method also had additional advantages such as facile preparation and easy operation.

  8. Are Lipases Still Important Biocatalysts? A Study of Scientific Publications and Patents for Technological Forecasting.

    Directory of Open Access Journals (Sweden)

    Karina de Godoy Daiha

    Full Text Available The great potential of lipases is known since 1930 when the work of J. B. S. Haldane was published. After eighty-five years of studies and developments, are lipases still important biocatalysts? For answering this question the present work investigated the technological development of four important industrial sectors where lipases are applied: production of detergent formulations; organic synthesis, focusing on kinetic resolution, production of biodiesel, and production of food and feed products. The analysis was made based on research publications and patent applications, working as scientific and technological indicators, respectively. Their evolution, interaction, the major players of each sector and the main subject matters disclosed in patent documents were discussed. Applying the concept of technology life cycle, S-curves were built by plotting cumulative patent data over time to monitor the attractiveness of each technology for investment. The results lead to a conclusion that the use of lipases as biocatalysts is still a relevant topic for the industrial sector, but developments are still needed for lipase biocatalysis to reach its full potential, which are expected to be achieved within the third, and present, wave of biocatalysis.

  9. Process Evaluation Tools for Enzymatic Cascades Welcome Message

    DEFF Research Database (Denmark)

    Abu, Rohana

    Biocatalysis is attracting significant attention from both academic and industrial scientists due to the excellent capability of enzyme to catalyse selective reactions. Recently, much interest has been shown in the application of enzymatic cascades as a useful tool in organic synthesis to synthes......Biocatalysis is attracting significant attention from both academic and industrial scientists due to the excellent capability of enzyme to catalyse selective reactions. Recently, much interest has been shown in the application of enzymatic cascades as a useful tool in organic synthesis...... the atom economy. The scheme consists of two primary enzymes (alcohol dehydrogenase and ω-transaminase) that are directly involved in the main synthesis. Alanine dehydrogenase was introduced as a secondary enzyme to regenerate the co-factor NAD+ and co-substrate alanine in situ as well as to shift...... the equilibrium positions in the main syntheses. In principle, this strategy could successfully achieve high conversion, using ammonia as the sole reagent used in excess to drive the conversion. The findings herein indicate that quantitatively the possibilities for improving the conversion of thermodynamically...

  10. From water-in-oil to oil-in-water emulsions to optimize the production of fatty acids using ionic liquids in micellar systems.

    Science.gov (United States)

    Santos, Luísa D F; Coutinho, João A P; Ventura, Sónia P M

    2015-01-01

    Biocatalysis is nowadays considered as one of the most important tools in green chemistry. The elimination of multiple steps involved in some of the most complex chemical synthesis, reducing the amounts of wastes and hazards, thus increasing the reaction yields and decreasing the intrinsic costs, are the major advantages of biocatalysis. This work aims at improving the enzymatic hydrolysis of olive oil to produce valuable fatty acids through emulsion systems formed by long alkyl chain ionic liquids (ILs). The optimization of the emulsion and the best conditions to maximize the production of fatty acids were investigated. The stability of the emulsion was characterized considering the effect of several parameters, namely, the IL and its concentration and different water/olive oil volumetric ratios. ILs from the imidazolium and phosphonium families were evaluated. The results suggest that the ILs effect on the hydrolysis performance varies with the water concentration and the emulsion system formed, that is, water-in-oil or oil-in-water emulsion. Although at low water concentrations, the presence of ILs does not present any advantages for the hydrolysis reaction, at high water contents (in oil-in-water emulsions), the imidazolium-based IL acts as an enhancer of the lipase catalytic capacity, super-activating 1.8 times the enzyme, and consequently promoting the complete hydrolysis of the olive oil for the highest water contents [85% (v/v)].

  11. Engineered protein nano-compartments for targeted enzyme localization.

    Directory of Open Access Journals (Sweden)

    Swati Choudhary

    Full Text Available Compartmentalized co-localization of enzymes and their substrates represents an attractive approach for multi-enzymatic synthesis in engineered cells and biocatalysis. Sequestration of enzymes and substrates would greatly increase reaction efficiency while also protecting engineered host cells from potentially toxic reaction intermediates. Several bacteria form protein-based polyhedral microcompartments which sequester functionally related enzymes and regulate their access to substrates and other small metabolites. Such bacterial microcompartments may be engineered into protein-based nano-bioreactors, provided that they can be assembled in a non-native host cell, and that heterologous enzymes and substrates can be targeted into the engineered compartments. Here, we report that recombinant expression of Salmonella enterica ethanolamine utilization (eut bacterial microcompartment shell proteins in E. coli results in the formation of polyhedral protein shells. Purified recombinant shells are morphologically similar to the native Eut microcompartments purified from S. enterica. Surprisingly, recombinant expression of only one of the shell proteins (EutS is sufficient and necessary for creating properly delimited compartments. Co-expression with EutS also facilitates the encapsulation of EGFP fused with a putative Eut shell-targeting signal sequence. We also demonstrate the functional localization of a heterologous enzyme (β-galactosidase targeted to the recombinant shells. Together our results provide proof-of-concept for the engineering of protein nano-compartments for biosynthesis and biocatalysis.

  12. A new technological approach proposed for distillate production using immobilized cells.

    Science.gov (United States)

    Loukatos, Paul; Kanellaki, Maria; Komaitis, Michael; Athanasiadis, Ilias; Koutinas, Athanasios A

    2003-01-01

    A new technological approach to distillate production using immobilized cells was investigated. The effect of temperature on the main volatile by-products in distillates was determined. Wines produced by delignified cellulose-, gluten- and kissiris-supported biocatalysis were used as starting materials. The produced distillates were analyzed for ethanol, methanol, acetaldehyde, ethyl acetate, propanol-1, isobutanol and amyl alcohol content. The results showed that distillates from delignified cellulosic material (DCM) at 16 degrees C contained smaller amounts of amyl alcohols, 57% of that produced by gluten and 32% of that produced by kissiris. The ethyl acetate content of distillates from DCM improved the aroma of distillates. These results agree with those of sensory evaluation. Subsequently, the scale-up for low-temperature distillate production at 16 degrees C using DCM was further investigated. A new version of an industrial multi-stage fixed bed tower (MFBT) bioreactor with a capacity of 11,000 l proved to be suitable for continuous fermentation by DCM-supported biocatalysis. Economic analysis showed a reduction in the cost of almost 30% for distillate production and 78% for wine production.

  13. Efficiency Analysis and Mechanism Insight of that Whole-Cell Biocatalytic Production of Melibiose from Raffinose with Saccharomyces cerevisiae.

    Science.gov (United States)

    Zhou, Yingbiao; Zhu, Yueming; Dai, Longhai; Men, Yan; Wu, Jinhai; Zhang, Juankun; Sun, Yuanxia

    2017-01-01

    Melibiose is widely used as a functional carbohydrate. Whole-cell biocatalytic production of melibiose from raffinose could reduce its cost. However, characteristics of strains for whole-cell biocatalysis and mechanism of such process are unclear. We compared three different Saccharomyces cerevisiae strains (liquor, wine, and baker's yeasts) in terms of concentration variations of substrate (raffinose), target product (melibiose), and by-products (fructose and galactose) in whole-cell biocatalysis process. Distinct difference was observed in whole-cell catalytic efficiency among three strains. Furthermore, activities of key enzymes (invertase, α-galactosidase, and fructose transporter) involved in process and expression levels of their coding genes (suc2, mel1, and fsy1) were investigated. Conservation of key genes in S. cerevisiae strains was also evaluated. Results show that whole-cell catalytic efficiency of S. cerevisiae in the raffinose substrate was closely related to activity of key enzymes and expression of their coding genes. Finally, we summarized characteristics of producing strain that offered advantages, as well as contributions of key genes to excellent strains. Furthermore, we presented a dynamic mechanism model to achieve some mechanism insight for this whole-cell biocatalytic process. This pioneering study should contribute to improvement of whole-cell biocatalytic production of melibiose from raffinose.

  14. Process Evaluation Tools for Enzymatic Cascades Welcome Message

    DEFF Research Database (Denmark)

    Abu, Rohana

    Biocatalysis is attracting significant attention from both academic and industrial scientists due to the excellent capability of enzyme to catalyse selective reactions. Recently, much interest has been shown in the application of enzymatic cascades as a useful tool in organic synthesis to synthes......Biocatalysis is attracting significant attention from both academic and industrial scientists due to the excellent capability of enzyme to catalyse selective reactions. Recently, much interest has been shown in the application of enzymatic cascades as a useful tool in organic synthesis...... improvement and implementation. Hence, the goal of this thesis is to evaluate the process concepts in enzymatic cascades in a systematic manner, using tools such as thermodynamic and kinetic analysis. Three relevant case studies have been used to exemplify the approach. In the first case study, thermodynamic...... the equilibrium positions in the main syntheses. In principle, this strategy could successfully achieve high conversion, using ammonia as the sole reagent used in excess to drive the conversion. The findings herein indicate that quantitatively the possibilities for improving the conversion of thermodynamically...

  15. Cold and hot extremozymes: industrial relevance and current trends

    Directory of Open Access Journals (Sweden)

    Felipe eSarmiento

    2015-10-01

    Full Text Available The development of enzymes for industrial applications relies heavily on the use of microorganisms. The intrinsic properties of microbial enzymes e.g. consistency, reproducibility and high yields along with many others, has pushed their introduction into a wide range of products and industrial processes. Extremophilic microorganisms represent an underutilized and innovative source of novel enzymes. These microorganisms have developed unique mechanisms and molecular means to cope with extreme temperatures, acidic and basic pH, high salinity, high radiation, low water activity, and high metal concentrations among other environmental conditions.Extremophile derived enzymes, or extremozymes, are able to catalyze chemical reactions under harsh conditions, like those found in industrial processes, which were previously not thought to be conducive for enzymatic activity. Due to their optimal activity and stability under extreme conditions, extremozymes offer new catalytic alternatives for current industrial applications. These extremozymes also represent the cornerstone for the development of environmentally-friendly, efficient and sustainable industrial technologies. Many advances in industrial biocatalysis have been achieved in recent years, however, the potential of biocatalysis through the use of extremozymes is far from being fully realized. In this article, the adaptations and significance of psychrophilic, thermophilic and hyperthermophilic enzymes, and their applications in selected industrial markets will be reviewed. Also the current challenges in the development and mass-production of extremozymes as well as future prospects and trends for their biotechnological application will be discussed.

  16. Mechanistic modeling of biocorrosion caused by biofilms of sulfate reducing bacteria and acid producing bacteria.

    Science.gov (United States)

    Xu, Dake; Li, Yingchao; Gu, Tingyue

    2016-08-01

    Biocorrosion is also known as microbiologically influenced corrosion (MIC). Most anaerobic MIC cases can be classified into two major types. Type I MIC involves non-oxygen oxidants such as sulfate and nitrate that require biocatalysis for their reduction in the cytoplasm of microbes such as sulfate reducing bacteria (SRB) and nitrate reducing bacteria (NRB). This means that the extracellular electrons from the oxidation of metal such as iron must be transported across cell walls into the cytoplasm. Type II MIC involves oxidants such as protons that are secreted by microbes such as acid producing bacteria (APB). The biofilms in this case supply the locally high concentrations of oxidants that are corrosive without biocatalysis. This work describes a mechanistic model that is based on the biocatalytic cathodic sulfate reduction (BCSR) theory. The model utilizes charge transfer and mass transfer concepts to describe the SRB biocorrosion process. The model also includes a mechanism to describe APB attack based on the local acidic pH at a pit bottom. A pitting prediction software package has been created based on the mechanisms. It predicts long-term pitting rates and worst-case scenarios after calibration using SRB short-term pit depth data. Various parameters can be investigated through computer simulation.

  17. Efficient production of (R-2-hydroxy-4-phenylbutyric acid by using a coupled reconstructed D-lactate dehydrogenase and formate dehydrogenase system.

    Directory of Open Access Journals (Sweden)

    Binbin Sheng

    Full Text Available (R-2-hydroxy-4-phenylbutyric acid [(R-HPBA] is a key precursor for the production of angiotensin-converting enzyme inhibitors. However, the product yield and concentration of reported (R-HPBA synthetic processes remain unsatisfactory.The Y52L/F299Y mutant of NAD-dependent D-lactate dehydrogenase (D-nLDH in Lactobacillus bulgaricus ATCC 11842 was found to have high bio-reduction activity toward 2-oxo-4-phenylbutyric acid (OPBA. The mutant D-nLDHY52L/F299Y was then coexpressed with formate dehydrogenase in Escherichia coli BL21 (DE3 to construct a novel biocatalyst E. coli DF. Thus, a novel bio-reduction process utilizing whole cells of E. coli DF as the biocatalyst and formate as the co-substrate for cofactor regeneration was developed for the production of (R-HPBA from OPBA. The biocatalysis conditions were then optimized.Under the optimum conditions, 73.4 mM OPBA was reduced to 71.8 mM (R-HPBA in 90 min. Given its high product enantiomeric excess (>99% and productivity (47.9 mM h(-1, the constructed coupling biocatalysis system is a promising alternative for (R-HPBA production.

  18. Synthesis of some derivatives of compounds β-aminoketonic through Mannich reaction by usingbiocatalysts

    Directory of Open Access Journals (Sweden)

    Ana Claudia S. Lima

    2012-06-01

    Full Text Available The Mannich reaction is one of the most widely used reactions in organic chemistry, and also one of the first examples of a multicomponent reaction already described on the literature. This reaction results in β-aminocarbonylated compounds which allow the generation of several structures that can be used in the synthesis of both biologically active molecules, and natural products, however, just a few synthetic routes resulting in the formation of β-aminocarbonylated compound are known. In this sense, new methodologies have been developed by involving new catalysts or chiral auxiliaries in the synthesis of β-aminocarbonylated compounds with biological activity. One of these methodologies is the biocatalysis, which is a technique that uses biological catalysts, like enzymes or micro-organisms to convert a substrate in a limited number of enzymatic steps. The use of micro-organisms, plants or isolated enzymes as chiral catalysts has proportioned a significant advance in the synthetic chemistry, because it is known that the biocatalysts have selective catalytic sites that afford the formation of enantiomerically pure products and which is extremely important, because it is known that differences of the chirality may have tragic or spectacular effects in humans. Concerning to the environmental issue, the biocatalysis is placed within the context of a new philosophy called Green Chemistry. However, in the State of Mato Grosso do Sul the researches involving this issue of biocatalysis are still incipient once that by the year of 2010 there was only one research group focused on this themeregistered in the Lattes Platform in the State. Because of the need of support to the researches focused on this issue in the State of Mato Grosso do Sul and to evaluate thebiocatalytic potential of different lineage of microorganisms and enzymes in the synthesis of compounds β-aminoketonic through Mannich reaction it was proposed the use of someenzymes such as

  19. HbIDI, SlIDI and EcIDI: A comparative study of isopentenyl diphosphate isomerase activity and structure.

    Science.gov (United States)

    Berthelot, Karine; Estevez, Yannick; Quiliano, Miguel; Baldera-Aguayo, Pedro A; Zimic, Mirko; Pribat, Anne; Bakleh, Marc-Elias; Teyssier, Emeline; Gallusci, Philippe; Gardrat, Christian; Lecomte, Sophie; Peruch, Frédéric

    2016-08-01

    In this study, we cloned, expressed and purified the isopentenyl diphosphate isomerases (IDIs) from two plants, Hevea brasiliensis and Solanum lycopersicum, and compared them to the already well characterized Escherichia coli IDI. Phylogenetic analysis showed high homology between the three enzymes. Their catalytic activity was investigated in vitro with recombinant purified enzymes and in vivo by complementation colorimetric tests. The three enzymes displayed consistent activities both in vitro and in vivo. In term of structure, studied by ATR-FTIR and molecular modeling, it is clear that both plant enzymes are more related to their human homologue than to E. coli IDI. But it is assumed that EcIDI represent the minimalistic part of the catalytic core, as both plant enzymes present a supplementary sequence forming an extra α-helice surrounding the catalytic site that could facilitate the biocatalysis. New potential biotechnological applications may be envisaged.

  20. Evaluation of pressure tuning of enzymes

    DEFF Research Database (Denmark)

    Naghshineh, Mahsa

    The current industrial technique of pectin production is based on relatively harsh chemical process,which does not allow pectin to be extracted entirely with no damage to its structure. It is also not an environmentally friendly method due to acid usage, production of large amounts of waste...... and high energy consumption. Therefore, searching for an environmentally friendly method of pectin extraction is a task for science and industry. Employment of hydrolytic enzymes may represent a green approach to obtain intact pectin polymer. However, the low stability/activity of enzymes, and low polymer...... pressure treatment at 100 or 200 MPa for 30 min at 50 °C improved the enzymatic release of pectin providing higher polymer yield compared to enzymatic extractions at ambient pressure. The combined use of high pressure and enzyme adds a novel dimension to biocatalysis reactio ns as being environmentally...

  1. Challenging Density Functional Theory Calculations with Hemes and Porphyrins

    Directory of Open Access Journals (Sweden)

    Sam P. de Visser

    2016-04-01

    Full Text Available In this paper we review recent advances in computational chemistry and specifically focus on the chemical description of heme proteins and synthetic porphyrins that act as both mimics of natural processes and technological uses. These are challenging biochemical systems involved in electron transfer as well as biocatalysis processes. In recent years computational tools have improved considerably and now can reproduce experimental spectroscopic and reactivity studies within a reasonable error margin (several kcal·mol−1. This paper gives recent examples from our groups, where we investigated heme and synthetic metal-porphyrin systems. The four case studies highlight how computational modelling can correctly reproduce experimental product distributions, predicted reactivity trends and guide interpretation of electronic structures of complex systems. The case studies focus on the calculations of a variety of spectroscopic features of porphyrins and show how computational modelling gives important insight that explains the experimental spectra and can lead to the design of porphyrins with tuned properties.

  2. Biodiesel synthesis and conformation of lipase from Burkholderia cepacia in room temperature ionic liquids and organic solvents.

    Science.gov (United States)

    Liu, Yun; Chen, Dawei; Yan, Yunjun; Peng, Cheng; Xu, Li

    2011-11-01

    Biodiesel synthesis and conformation of Burkholderia cepacia lipase (BCL) were studied in 19 different room temperature ionic liquids (RTLLs) with a range of cation and anion structures. Overall, anion selection had a greater influence on biodiesel conversion than cation choice. RTILs containing Tf2N- and PF6- anions were suitable reaction media, while RTIL of [OmPy][BF4] was the best reaction medium with a biodiesel yield of 82.2±1.2%. RTILs with strong water miscible properties showed very low biodiesel yields. Conformational analysis by FT-IR revealed that higher biodiesel conversion in RTILs was correlated with a low tendency in α-helix content of BCL. An ultrasound-assisted biocatalysis process in RTILs was used to improve mass transfer rate, leading to 83% reduction of the reaction time for biodiesel production.

  3. Fossil energy biotechnology: A research needs assessment. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1993-11-01

    The Office of Program Analysis of the US Department of Energy commissioned this study to evaluate and prioritize research needs in fossil energy biotechnology. The objectives were to identify research initiatives in biotechnology that offer timely and strategic options for the more efficient and effective uses of the Nation`s fossil resource base, particularly the early identification of new and novel applications of biotechnology for the use or conversion of domestic fossil fuels. Fossil energy biotechnology consists of a number of diverse and distinct technologies, all related by the common denominator -- biocatalysis. The expert panel organized 14 technical subjects into three interrelated biotechnology programs: (1) upgrading the fuel value of fossil fuels; (2) bioconversion of fossil feedstocks and refined products to added value chemicals; and, (3) the development of environmental management strategies to minimize and mitigate the release of toxic and hazardous petrochemical wastes.

  4. Marine Microorganisms as Source of Stereoselective Esterases and Ketoreductases: Kinetic Resolution of a Prostaglandin Intermediate

    KAUST Repository

    De Vitis, Valerio

    2014-09-30

    A screening among bacterial strains isolated from water-brine interface of the deep hypersaline anoxic basins (DHABs) of the Eastern Mediterranean was carried out for the biocatalytical resolution of racemic propyl ester of anti-2-oxotricyclo[2.2.1.0]heptan-7-carboxylic acid (R,S)-1, a key intermediate for the synthesis of d-cloprostenol. Bacillus horneckiae 15A gave highly stereoselective reduction of (R,S)-1, whereas Halomonas aquamarina 9B enantioselectively hydrolysed (R,S)-1; in both cases, enantiomerically pure unreacted (R)-1 could be easily recovered and purified at molar conversion below 57–58 %, showing the potential of DHAB extremophile microbiome and marine-derived enzymes in stereoselective biocatalysis.

  5. Proteins as templates for complex synthetic metalloclusters: towards biologically programmed heterogeneous catalysis

    Science.gov (United States)

    Fehl, Charlie

    2016-01-01

    Despite nature’s prevalent use of metals as prosthetics to adapt or enhance the behaviour of proteins, our ability to programme such architectural organization remains underdeveloped. Multi-metal clusters buried in proteins underpin the most remarkable chemical transformations in nature, but we are not yet in a position to fully mimic or exploit such systems. With the advent of copious, relevant structural information, judicious mechanistic studies and the use of accessible computational methods in protein design coupled with new synthetic methods for building biomacromolecules, we can envisage a ‘new dawn’ that will allow us to build de novo metalloenzymes that move beyond mono-metal centres. In particular, we highlight the need for systems that approach the multi-centred clusters that have evolved to couple electron shuttling with catalysis. Such hybrids may be viewed as exciting mid-points between homogeneous and heterogeneous catalysts which also exploit the primary benefits of biocatalysis. PMID:27279776

  6. Alkene cleavage catalysed by heme and nonheme enzymes: reaction mechanisms and biocatalytic applications.

    Science.gov (United States)

    Mutti, Francesco G

    2012-01-01

    The oxidative cleavage of alkenes is classically performed by chemical methods, although they display several drawbacks. Ozonolysis requires harsh conditions (-78°C, for a safe process) and reducing reagents in a molar amount, whereas the use of poisonous heavy metals such as Cr, Os, or Ru as catalysts is additionally plagued by low yield and selectivity. Conversely, heme and nonheme enzymes can catalyse the oxidative alkene cleavage at ambient temperature and atmospheric pressure in an aqueous buffer, showing excellent chemo- and regioselectivities in certain cases. This paper focuses on the alkene cleavage catalysed by iron cofactor-dependent enzymes encompassing the reaction mechanisms (in case where it is known) and the application of these enzymes in biocatalysis.

  7. Renewable biofuels bioconversion of lignocellulosic biomass by microbial community

    CERN Document Server

    Rana, Vandana

    2017-01-01

    This book offers a complete introduction for novices to understand key concepts of biocatalysis and how to produce in-house enzymes that can be used for low-cost biofuels production. The authors discuss the challenges involved in the commercialization of the biofuel industry, given the expense of commercial enzymes used for lignocellulose conversion. They describe the limitations in the process, such as complexity of lignocellulose structure, different microbial communities’ actions and interactions for degrading the recalcitrant structure of lignocellulosic materials, hydrolysis mechanism and potential for bio refinery. Readers will gain understanding of the key concepts of microbial catalysis of lignocellulosic biomass, process complexities and selection of microbes for catalysis or genetic engineering to improve the production of bioethanol or biofuel.

  8. Bacterial diterpene synthases: new opportunities for mechanistic enzymology and engineered biosynthesis.

    Science.gov (United States)

    Smanski, Michael J; Peterson, Ryan M; Huang, Sheng-Xiong; Shen, Ben

    2012-04-01

    Diterpenoid biosynthesis has been extensively studied in plants and fungi, yet cloning and engineering diterpenoid pathways in these organisms remain challenging. Bacteria are emerging as prolific producers of diterpenoid natural products, and bacterial diterpene synthases are poised to make significant contributions to our understanding of terpenoid biosynthesis. Here we will first survey diterpenoid natural products of bacterial origin and briefly review their biosynthesis with emphasis on diterpene synthases (DTSs) that channel geranylgeranyl diphosphate to various diterpenoid scaffolds. We will then highlight differences of DTSs of bacterial and higher organism origins and discuss the challenges in discovering novel bacterial DTSs. We will conclude by discussing new opportunities for DTS mechanistic enzymology and applications of bacterial DTS in biocatalysis and metabolic pathway engineering.

  9. Synthetic metabolism: engineering biology at the protein and pathway scales.

    Science.gov (United States)

    Martin, Collin H; Nielsen, David R; Solomon, Kevin V; Prather, Kristala L Jones

    2009-03-27

    Biocatalysis has become a powerful tool for the synthesis of high-value compounds, particularly so in the case of highly functionalized and/or stereoactive products. Nature has supplied thousands of enzymes and assembled them into numerous metabolic pathways. Although these native pathways can be use to produce natural bioproducts, there are many valuable and useful compounds that have no known natural biochemical route. Consequently, there is a need for both unnatural metabolic pathways and novel enzymatic activities upon which these pathways can be built. Here, we review the theoretical and experimental strategies for engineering synthetic metabolic pathways at the protein and pathway scales, and highlight the challenges that this subfield of synthetic biology currently faces.

  10. Chemical reactions in supercritical fluids%超临界流体中的化学反应

    Institute of Scientific and Technical Information of China (English)

    杨梅; 邵荣; 云志; 钱仁渊

    2001-01-01

    超临界流体中的化学反应可分为两大类,即超临界流体作为反应介质的反应和超临界流体作为反应原料的反应,分别介绍了其研究进展,着重介绍了第一类反应中的酶催化反应、超临界水氧化、高分子合成。%The progress of the reactions in supercritical fluids, which were classified into two sorts, was reviewed. Biocatalysis in supercritical CO2, supercritical water oxidation and synthesis in supercritical fluids were introduced in detail.

  11. Fully automatized high-throughput enzyme library screening using a robotic platform.

    Science.gov (United States)

    Dörr, Mark; Fibinger, Michael P C; Last, Daniel; Schmidt, Sandy; Santos-Aberturas, Javier; Böttcher, Dominique; Hummel, Anke; Vickers, Clare; Voss, Moritz; Bornscheuer, Uwe T

    2016-07-01

    A fully automatized robotic platform has been established to facilitate high-throughput screening for protein engineering purposes. This platform enables proper monitoring and control of growth conditions in the microtiter plate format to ensure precise enzyme production for the interrogation of enzyme mutant libraries, protein stability tests and multiple assay screenings. The performance of this system has been exemplified for four enzyme classes important for biocatalysis such as Baeyer-Villiger monooxygenase, transaminase, dehalogenase and acylase in the high-throughput screening of various mutant libraries. This allowed the identification of novel enzyme variants in a sophisticated and highly reliable manner. Furthermore, the detailed optimization protocols should enable other researchers to adapt and improve their methods. Biotechnol. Bioeng. 2016;113: 1421-1432. © 2016 Wiley Periodicals, Inc.

  12. NREL Advancements in Methane Conversion Lead to Cleaner Air, Useful Products

    Energy Technology Data Exchange (ETDEWEB)

    2016-06-01

    Researchers at NREL leveraged the recent on-site development of gas fermentation capabilities and novel genetic tools to directly convert methane to lactic acid using an engineered methanotrophic bacterium. The results provide proof-of-concept data for a gas-to-liquids bioprocess that concurrently produces fuels and chemicals from methane. NREL researchers developed genetic tools to express heterologous genes in methanotrophic organisms, which have historically been difficult to genetically engineer. Using these tools, researchers demonstrated microbial conversion of methane to lactate, a high-volume biochemical precursor predominantly utilized for the production of bioplastics. Methane biocatalysis offers a means to concurrently liquefy and upgrade natural gas and renewable biogas, enabling their utilization in conventional transportation and industrial manufacturing infrastructure. Producing chemicals and fuels from methane expands the suite of products currently generated from biorefineries, municipalities, and agricultural operations, with the potential to increase revenue and significantly reduce greenhouse gas emissions.

  13. Preservation of cell viability and protein conformation on immobilization within nanofibers via electrospinning functionalized yeast.

    Science.gov (United States)

    Canbolat, M Fatih; Gera, Nimish; Tang, Christina; Monian, Brinda; Rao, Balaji M; Pourdeyhimi, Behnam; Khan, Saad A

    2013-10-09

    We investigate the immobilization of a model system of functionalized yeast that surface-display enhanced green fluorescent protein (eGFP) within chemically crosslinked polyvinyl alcohol (PVA) nanofibers. Yeast is incorporated into water insoluble nanofibrous materials by direct electrospinning with PVA followed by vapor phase chemical crosslinking of the polymer. Incorporation of yeast into the fibers is confirmed by elemental analysis and the viability is indicated by live/dead staining. Following electrospinning and crosslinking, we confirm that the yeast maintains its viability as well as the ability to express eGFP in the correct conformation. This method of processing functionalized yeast may thus be a powerful tool in the direct immobilization of properly folded, active enzymes within electrospun nanofibers with potential applications in biocatalysis.

  14. Activation of carboxylic acids in asymmetric organocatalysis.

    Science.gov (United States)

    Monaco, Mattia Riccardo; Poladura, Belén; Diaz de Los Bernardos, Miriam; Leutzsch, Markus; Goddard, Richard; List, Benjamin

    2014-07-01

    Organocatalysis, catalysis using small organic molecules, has recently evolved into a general approach for asymmetric synthesis, complementing both metal catalysis and biocatalysis. Its success relies to a large extent upon the introduction of novel and generic activation modes. Remarkably though, while carboxylic acids have been used as catalyst directing groups in supramolecular transition-metal catalysis, a general and well-defined activation mode for this useful and abundant substance class is still lacking. Herein we propose the heterodimeric association of carboxylic acids with chiral phosphoric acid catalysts as a new activation principle for organocatalysis. This self-assembly increases both the acidity of the phosphoric acid catalyst and the reactivity of the carboxylic acid. To illustrate this principle, we apply our concept in a general and highly enantioselective catalytic aziridine-opening reaction with carboxylic acids as nucleophiles.

  15. Cooperative role of electrical stimulation on microbial metabolism and selection of thermophilic communities for p-fluoronitrobenzene treatment.

    Science.gov (United States)

    Zhang, Xueqin; Shen, Dongsheng; Feng, Huajun; Wang, Yanfeng; Li, Na; Han, Jingyi; Long, Yuyang

    2015-01-01

    A novel thermophilic bioelectrochemical system (TBES) based on electrical stimulation was established for the enhanced treatment of p-fluoronitrobenzene (p-FNB) wastewater. p-FNB removal rate constant in the TBES was 78.6% higher than that of the mesophilic BES (MBES), the elevation of which owing to high-temperature overtook the rate improvement of 50.8% in the electrocatalytic system (ECS). Additionally, an overwhelming mineralization efficiency of 91.96% ± 5.70% was obtained in the TBES. The superiority of TBES was attributed to the integrated role of electrical stimulation and high-temperature. Electrical stimulation provided an alternative for the microbial growth independent energy requirements, compensating insufficient energy support from p-FNB metabolism under the high-temperature stress. Besides, electrical stimulation facilitated microbial community evolution to form specific thermophilic biocatalysis. The uniquely selected thermophilic microorganisms including Coprothermobacter sp. and other ones cooperated to enhance p-FNB mineralization.

  16. Biosynthesis of monomers for plastics from renewable oils.

    Science.gov (United States)

    Lu, Wenhua; Ness, Jon E; Xie, Wenchun; Zhang, Xiaoyan; Minshull, Jeremy; Gross, Richard A

    2010-11-03

    Omega-hydroxyfatty acids are excellent monomers for synthesizing a unique family of polyethylene-like biobased plastics. However, ω-hydroxyfatty acids are difficult and expensive to prepare by traditional organic synthesis, precluding their use in commodity materials. Here we report the engineering of a strain of the diploid yeast Candida tropicalis to produce commercially viable yields of ω-hydroxyfatty acids. To develop the strain we identified and eliminated 16 genes encoding 6 cytochrome P450s, 4 fatty alcohol oxidases, and 6 alcohol dehydrogenases from the C. tropicalis genome. We also show that fatty acids with different chain lengths and degrees of unsaturation can be more efficiently oxidized by expressing different P450s within this strain background. Biocatalysis using engineered C. tropicalis is thus a potentially attractive biocatalytic platform for producing commodity chemicals from renewable resources.

  17. Genomics of Clostridium

    Science.gov (United States)

    Jacobson, Mark Joseph; Johnson, Eric A.

    The clostridia have a rich history and contemporary importance in industrial, environmental, and medical microbiology. Due to their ability to form endospores, clostridia are ubiquitous in nature and are found in many environments, especially in soils and the intestinal tract of animals including humans. Many clostridia cause devastating diseases of humans and animals, such as botulism, tetanus, and gas gangrene, through the production of protein toxins. The clostridia produce more protein toxins that are lethal for humans and animals than any other bacterial genus (Johnson, 2005; Van Heyningen, 1950). Other species are important in the formation of solvents and organic acids by anaerobic fermentations or as a source of unique enzymes for biocatalysis (Bradshaw and Johnson, 2010; Hatheway and Johnson, 1998).

  18. Biodecontamination of concrete

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, R.D. [Idaho National Engineering Lab., Idaho Falls, ID (United States)

    1995-12-31

    This paper describes the development and results of a demonstration for a continuous bioprocess for mixed waste treatment. A key element of the process is a unique microbial strain, which tolerates high levels of aromatic solvents and surfactants. This microorganism is the biocatalysis of the continuous flow system designed for processing stored liquid scintillation wastes. During the past year, a process demonstration has been conducted on commercial formulation of liquid scintillation cocktails (LSQ). Based on data obtained from this demonstration, the Ohio Environmental Protection Agency granted the Mound Applied Technologies Laboratory a treatability permit allowing the limited processing of actual mixed waste. Since August 1994, the system has been successfully processing stored {open_quotes}hot{close_quotes} LSC waste. This paper discusses the bioprocess, rates of processing, effluent, and implications of bioprocessing for mixed waste management.

  19. Heterologous expression systems for lipases: a review.

    Science.gov (United States)

    Valero, Francisco

    2012-01-01

    The production of heterologous lipases is one of the most promising strategies to increase the productivity of the bioprocesses and to reduce costs, with the final objective that more industrial lipase applications could be implemented. In this chapter, an overview of the most common microbial expression systems for the overproduction of microbial lipases is presented. Prokaryotic system as Escherichia coli and eukaryotic systems as Saccharomyces cerevisiae and Pichia pastoris are analyzed and compared in terms of productivity, operational, and downstream processing facilities. Finally, an overview of heterologous Candida rugosa and Rhizopus oryzae lipases, two of the most common lipases used in biocatalysis, is presented. In both cases, P. pastoris has been shown as the most promising host system.

  20. The effect of cultivation media and washing whole-cell biocatalysts on monoamine oxidase catalyzed oxidative desymmetrization of 3-azabicyclo[3,3,0]octane

    DEFF Research Database (Denmark)

    Ramesh, Hemalata; Zajkoska, Petra; Rebros, Martin

    2016-01-01

    It is well known that washing whole-cells containing enzyme activities after fermentation, but prior to biocatalysis can improve their activity in the subsequent reaction. In this paper, we quantify the impact of both the fermentation media and cell washing on the performance of whole-cell....... Unlike cells grown in LB medium, washing of the cells was essential for cells grown on TB medium. With TB media, washing the cells improved the final conversion by approximately a factor of two. Additionally, over 50-fold improvement was achieved in initial activity. A potential reason...... for this improvement in activity was identified to be the increase in transfer of substrates across the cell membrane as a result of cell washing. (C) 2015 Elsevier Inc. All rights reserved....

  1. From dirt to industrial applications: Pseudomonas putida as a Synthetic Biology chassis for hosting harsh biochemical reactions.

    Science.gov (United States)

    Nikel, Pablo I; Chavarría, Max; Danchin, Antoine; de Lorenzo, Víctor

    2016-10-01

    The soil bacterium Pseudomonas putida is endowed with a central carbon metabolic network capable of fulfilling high demands of reducing power. This situation arises from a unique metabolic architecture that encompasses the partial recycling of triose phosphates to hexose phosphates-the so-called EDEMP cycle. In this article, the value of P. putida as a bacterial chassis of choice for contemporary, industrially-oriented metabolic engineering is addressed. The biochemical properties that make this bacterium adequate for hosting biotransformations involving redox reactions as well as toxic compounds and intermediates are discussed. Finally, novel developments and open questions in the continuous quest for an optimal microbial cell factory are presented at the light of current and future needs in the area of biocatalysis.

  2. A green approach to the synthesis of novel ``Desert rose stone''-like nanobiocatalytic system with excellent enzyme activity and stability

    Science.gov (United States)

    Wang, Min; Bao, Wen-Jing; Wang, Jiong; Wang, Kang; Xu, Jing-Juan; Chen, Hong-Yuan; Xia, Xing-Hua

    2014-10-01

    3D hierarchical layer double hydroxides (LDHs) have attracted extensive interest due to their unique electronic and catalytic properties. Unfortunately, the existing preparation methods require high temperature or toxic organic compounds, which limits the applications of the 3D hierarchical LDHs in biocatalysis and biomedicine. Herein, we present a green strategy to synthesize ``Desert Rose Stone''-like Mg-Al-CO3 LDH nanoflowers in situ deposited on aluminum substrates via a coprecipitation method using atmospheric carbon dioxide. Using this method, we construct a novel ``Desert Rose Stone''-like nanobiocatalytic system by using HRP as the model enzyme. Compared with the free HRP, the HRP/Mg-Al-LDH nanobiocatalytic system exhibits higher catalytic activity and stability. A smaller apparent Michaelis-Menten constant (0.16 mM) of this system suggests that the encapsulated HRP shows higher affinity towards H2O2.

  3. Transformações biológicas: contribuições e perspectivas Biological transformations: contributions and perspectives

    Directory of Open Access Journals (Sweden)

    Luciana Gonzaga de Oliveira

    2009-01-01

    Full Text Available In a moment that amazingly advances are being reached on the development of technologies to obtain high value chemical compounds as polymers, fine chemicals, pharmaceutical industry intermediates and chemical entities, we cannot refuse that a meaningful progress is due to the maturing in knowledge of biological transformations. Biocatalysis and biotransformations are being widespread applied to generate processes and products with incredible success. In this review article we present the main contributions of biotechnology and biological catalytic processes to Chemistry, the most important evolution steps on enzymatic transformations, how it has being applied and which are the perspectives to academic and industrial environments. We also would like to stimulate the community to step out research in biotechnology applicable to chemical and pharmaceutical industries, trying to achieve what we believe to be the ideal layout: integrating chemical transformations, enzymatic conversions and fermentation processes.

  4. Archaeal Enzymes and Applications in Industrial Biocatalysts.

    Science.gov (United States)

    Littlechild, Jennifer A

    2015-01-01

    Archaeal enzymes are playing an important role in industrial biotechnology. Many representatives of organisms living in "extreme" conditions, the so-called Extremophiles, belong to the archaeal kingdom of life. This paper will review studies carried by the Exeter group and others regarding archaeal enzymes that have important applications in commercial biocatalysis. Some of these biocatalysts are already being used in large scale industrial processes for the production of optically pure drug intermediates and amino acids and their analogues. Other enzymes have been characterised at laboratory scale regarding their substrate specificity and properties for potential industrial application. The increasing availability of DNA sequences from new archaeal species and metagenomes will provide a continuing resource to identify new enzymes of commercial interest using both bioinformatics and screening approaches.

  5. Magnetically recoverable nanocatalysts

    KAUST Repository

    Polshettiwar, Vivek

    2011-05-11

    A broad overview on magnetically recoverable nanocatalysts is presented and the use of magnetic nanomaterials as catalysts is discussed. Magnetic materials are used as organocatalysts and their applications range to challenging reactions, such as hydroformylation and olefin metathesis. Magnetic nanomaterials are also being used in environmental applications, such as for photo- and biocatalysis and for the adsorption and removal of pollutants from air and water. These materials show great promise as enantioselective catalysts, which are used extensively for the synthesis of medicines, drugs, and other bioactive molecules. By functionalizing these materials using chiral ligands, a series of chiral nanocatalysts can be designed, offering great potential to reuse these otherwise expensive catalyst systems. Characterization of magnetic catalysts is often a challenging task, and NMR characterization of these catalysts is difficult because the magnetic nature of the materials interferes with the magnetic field of the spectrometer.

  6. Bacterial Diterpene Synthases: New Opportunities for Mechanistic Enzymology and Engineered Biosynthesis

    Science.gov (United States)

    Smanski, Michael J.; Peterson, Ryan M.; Huang, Sheng-Xiong; Shen, Ben

    2012-01-01

    Diterpenoid biosynthesis has been extensively studied in plants and fungi, yet cloning and engineering diterpenoid pathways in these organisms remain challenging. Bacteria are emerging as prolific producers of diterpenoid natural products, and bacterial diterpene synthases are poised to make significant contributions to our understanding of terpenoid biosynthesis. Here we will first survey diterpenoid natural products of bacterial origin and briefly review their biosynthesis with emphasis on diterpene synthases (DTSs) that channel geranylgeranyl diphosphate to various diterpenoid scaffolds. We will then highlight differences of DTSs of bacterial and higher organism origins and discuss the challenges in discovering novel bacterial DTSs. We will conclude by discussing new opportunities for DTS mechanistic enzymology and applications of bacterial DTS in biocatalysis and metabolic pathway engineering. PMID:22445175

  7. Whole cell biotransformation for reductive amination reactions

    Science.gov (United States)

    Klatte, Stephanie; Lorenz, Elisabeth; Wendisch, Volker F

    2014-01-01

    Whole cell biotransformation systems with enzyme cascading increasingly find application in biocatalysis to complement or replace established chemical synthetic routes for production of, e.g., fine chemicals. Recently, we established an Escherichia coli whole cell biotransformation system for reductive amination by coupling a transaminase and an amino acid dehydrogenase with glucose catabolism for cofactor recycling. Transformation of 2-keto-3-methylvalerate to l-isoleucine by E. coli cells was improved by genetic engineering of glucose metabolism for improved cofactor regeneration. Here, we compare this system with different strategies for cofactor regeneration such as cascading with alcohol dehydrogenases, with alternative production hosts such as Pseudomonas species or Corynebacterium glutamicum, and with improving whole cell biotransformation systems by metabolic engineering of NADPH regeneration. PMID:24406456

  8. Structural DNA Nanotechnology: State of the Art and Future Perspective

    Science.gov (United States)

    2015-01-01

    Over the past three decades DNA has emerged as an exceptional molecular building block for nanoconstruction due to its predictable conformation and programmable intra- and intermolecular Watson–Crick base-pairing interactions. A variety of convenient design rules and reliable assembly methods have been developed to engineer DNA nanostructures of increasing complexity. The ability to create designer DNA architectures with accurate spatial control has allowed researchers to explore novel applications in many directions, such as directed material assembly, structural biology, biocatalysis, DNA computing, nanorobotics, disease diagnosis, and drug delivery. This Perspective discusses the state of the art in the field of structural DNA nanotechnology and presents some of the challenges and opportunities that exist in DNA-based molecular design and programming. PMID:25029570

  9. Behavior of metal ions in bioelectrochemical systems: A review

    Science.gov (United States)

    Lu, Zhihao; Chang, Dingming; Ma, Jingxing; Huang, Guangtuan; Cai, Lankun; Zhang, Lehua

    2015-02-01

    Bioelectrochemical systems (BESs) have been focused on by many researchers to treat wastewater and recover energy or valuable chemicals from wastes. In BESs, metal ions play an important role in the conductivity of solution, reactors' internal resistance, power generation, chemical production and activity of microorganisms. Additionally, the metal ions are also involved in anodic or cathodic reaction processes directly or indirectly in BESs. This paper reviews the behavior of metal ions in BESs, including (1) increase of the conductivity of electrolyte and decrease of internal resistance, (2) transfer for desalination, (3) enhancement or inhibition of the biocatalysis in anode, (4) improvement of cathodic performance by metal ions through electron acceptance or catalysis in cathodic process and (5) behavior of metal ions on membranes. Moreover, the perspectives of BESs removing heavy metal ions in wastewater or solid waste are discussed to realize recovery, reduction and detoxification simultaneously.

  10. Process Technology for Immobilized LipaseProcess Technology for Immobilized Lipase-catalyzed

    DEFF Research Database (Denmark)

    Xu, Yuan

    Biocatalysis has attracted significant attention recently, mainly due to its high selectivity and potential benefits for sustainability. Applications can be found in biorefineries, turning biomass into energy and chemicals, and also for products in the food and pharmaceutical industries. However......, most applications remain in the production of high-value fine chemicals, primarily because of the expense of introducing new technology. In particular lipasecatalyzed synthesis has already achieved efficient operations for high-value products and more interesting now is to establish opportunities...... for the production of biodiesel. The two processes are focused on the conversion of the two main components of vegetable oil materials, glyceride esters and free fatty acids respectively, into fatty acid alkyl esters. Although biodiesel is conventionally prepared via chemical-catalyzed transesterification...

  11. Process Technology for Immobilized Lipasecatalyzed Reactions

    DEFF Research Database (Denmark)

    Xu, Yuan

    Biocatalysis has attracted significant attention recently, mainly due to its high selectivity and potential benefits for sustainability. Applications can be found in biorefineries, turning biomass into energy and chemicals, and also for products in the food and pharmaceutical industries. However......, most applications remain in the production of high-value fine chemicals, primarily because of the expense of introducing new technology. In particular lipasecatalyzed synthesis has already achieved efficient operations for high-value products and more interesting now is to establish opportunities...... for the production of biodiesel. The two processes are focused on the conversion of the two main components of vegetable oil materials, glyceride esters and free fatty acids respectively, into fatty acid alkyl esters. Although biodiesel is conventionally prepared via chemical-catalyzed transesterification...

  12. Immobilization of Thermostable Lipase QLM on Core-Shell Structured Polydopamine-Coated Fe3O4 Nanoparticles

    Directory of Open Access Journals (Sweden)

    Chenhui Wang

    2017-02-01

    Full Text Available Here, core-shell structured polydopamine-coated Fe3O4 nanoparticles were constructed to immobilize thermostable lipase QLM from Alcaligenes sp. Systematical characterization indicated that lipase QLM was successfully immobilized on the surface of nanoparticles with an enzyme loading of 21.4 ± 1.47 mg/g immobilized enzyme. Then, the immobilized enzyme was demonstrated to possess favorable catalytic activity and stability in the ester hydrolysis, using p-nitrophenyl caprylate as the substrate. Further, it was successfully employed in the kinetic resolution of (R, S-2-octanol, and satisfactory enantioselectivity and recyclability could be obtained with an enantiomeric ratio (E of 8–15 over 10 cycle reactions. Thus, core-shell structured polydopamine-coated Fe3O4 nanoparticles can be potentially used as a carrier for enzyme immobilization to improve their activity, stability, and reusability, which is beneficial for constructing efficient catalysts for industrial biocatalysis.

  13. Enzymatic Production of FAME Biodiesel with Soluble Lipases

    DEFF Research Database (Denmark)

    T. Gundersen, Maria; Heltborg, Carsten Kirstejn; Yang, V

    Biodiesel is a viable alternative to fossil fuels, and biocatalysis is gaining interest as a greener process. We focus on converting oils to Fatty Acid Methyl Ester (FAME) using soluble lipases, which offer an advantage compared to immobilized enzymes by cost efficiency and ease of implementation.......p.) of certain oils, which is not compatible with the temperature range where lipases are most active. To address this, here we explored a novel production strategy that accommodates the enzymatic requirements with the chemical limits of the substrates. The m.p. of the methyl ester product is lower than...... that of the starting material. Thus, we have incorporated a varying amount of the product to lower the m.p. of the starting material. Our case study is the reaction of Palm Fatty Acid Distillate (PFAD) to FAME. Conversion rates have been measured with varying temperatures, water concentration, and initial methanol...

  14. Preparation of hollow silica nanospheres in O/W microemulsion system by hydrothermal temperature changes

    Science.gov (United States)

    Wang, Dandan; Li, Xiuyan; Liu, Zuohua; Shi, Xue; Zhou, Guowei

    2017-01-01

    Hollow silica nanospheres with wrinkled or smooth surfaces were successfully fabricated through a hydrothermal method. In this method, oil-in-water microemulsion (composed of cyclohexane, water, ethanol, and cetyltrimethylammonium bromide), and polyvinylpyrrolidone were utilized as template and capping agent, respectively. In such a facile synthesis, we can well realize the morphological transformation of spheres with radially oriented mesochannels to hollow structures of silica nanoparticle only by regulating the hydrothermal temperature from 100 °C to 200 °C. Synthesized samples with different mesostructures were then used as supports to immobilize Candida rugosa lipase (CRL). The immobilized CRL was employed as a new biocatalyst for biodiesel production through the esterification of heptanoic acid with ethanol. The conversion ratio of heptanoic acid with ethanol catalyzed by the immobilized CRL was also evaluated. Results of this study suggest that the prepared samples have potential applications in biocatalysis.

  15. Metagenomics as a Tool for Enzyme Discovery: Hydrolytic Enzymes from Marine-Related Metagenomes.

    Science.gov (United States)

    Popovic, Ana; Tchigvintsev, Anatoly; Tran, Hai; Chernikova, Tatyana N; Golyshina, Olga V; Yakimov, Michail M; Golyshin, Peter N; Yakunin, Alexander F

    2015-01-01

    This chapter discusses metagenomics and its application for enzyme discovery, with a focus on hydrolytic enzymes from marine metagenomic libraries. With less than one percent of culturable microorganisms in the environment, metagenomics, or the collective study of community genetics, has opened up a rich pool of uncharacterized metabolic pathways, enzymes, and adaptations. This great untapped pool of genes provides the particularly exciting potential to mine for new biochemical activities or novel enzymes with activities tailored to peculiar sets of environmental conditions. Metagenomes also represent a huge reservoir of novel enzymes for applications in biocatalysis, biofuels, and bioremediation. Here we present the results of enzyme discovery for four enzyme activities, of particular industrial or environmental interest, including esterase/lipase, glycosyl hydrolase, protease and dehalogenase.

  16. Maximizing the efficiency of multienzyme process by stoichiometry optimization.

    Science.gov (United States)

    Dvorak, Pavel; Kurumbang, Nagendra P; Bendl, Jaroslav; Brezovsky, Jan; Prokop, Zbynek; Damborsky, Jiri

    2014-09-05

    Multienzyme processes represent an important area of biocatalysis. Their efficiency can be enhanced by optimization of the stoichiometry of the biocatalysts. Here we present a workflow for maximizing the efficiency of a three-enzyme system catalyzing a five-step chemical conversion. Kinetic models of pathways with wild-type or engineered enzymes were built, and the enzyme stoichiometry of each pathway was optimized. Mathematical modeling and one-pot multienzyme experiments provided detailed insights into pathway dynamics, enabled the selection of a suitable engineered enzyme, and afforded high efficiency while minimizing biocatalyst loadings. Optimizing the stoichiometry in a pathway with an engineered enzyme reduced the total biocatalyst load by an impressive 56 %. Our new workflow represents a broadly applicable strategy for optimizing multienzyme processes.

  17. Archaeal Enzymes and Applications in Industrial Biocatalysts

    Directory of Open Access Journals (Sweden)

    Jennifer A. Littlechild

    2015-01-01

    Full Text Available Archaeal enzymes are playing an important role in industrial biotechnology. Many representatives of organisms living in “extreme” conditions, the so-called Extremophiles, belong to the archaeal kingdom of life. This paper will review studies carried by the Exeter group and others regarding archaeal enzymes that have important applications in commercial biocatalysis. Some of these biocatalysts are already being used in large scale industrial processes for the production of optically pure drug intermediates and amino acids and their analogues. Other enzymes have been characterised at laboratory scale regarding their substrate specificity and properties for potential industrial application. The increasing availability of DNA sequences from new archaeal species and metagenomes will provide a continuing resource to identify new enzymes of commercial interest using both bioinformatics and screening approaches.

  18. Chemical vs. biotechnological synthesis of C13-apocarotenoids: current methods, applications and perspectives.

    Science.gov (United States)

    Cataldo, Vicente F; López, Javiera; Cárcamo, Martín; Agosin, Eduardo

    2016-07-01

    Apocarotenoids are natural compounds derived from the oxidative cleavage of carotenoids. Particularly, C13-apocarotenoids are volatile compounds that contribute to the aromas of different flowers and fruits and are highly valued by the Flavor and Fragrance industry. So far, the chemical synthesis of these terpenoids has dominated the industry. Nonetheless, the increasing consumer demand for more natural and sustainable processes raises an interesting opportunity for bio-production alternatives. In this regard, enzymatic biocatalysis and metabolically engineered microorganisms emerge as attractive biotechnological options. The present review summarizes promising bioengineering approaches with regard to chemical production methods for the synthesis of two families of C13-apocarotenoids: ionones/dihydroionones and damascones/damascenone. We discuss each method and its applicability, with a thorough comparative analysis for ionones, focusing on the production process, regulatory aspects, and sustainability.

  19. Bound phenolics in foods, a review.

    Science.gov (United States)

    Acosta-Estrada, Beatriz A; Gutiérrez-Uribe, Janet A; Serna-Saldívar, Sergio O

    2014-01-01

    Among phytochemicals, phenolic compounds have been extensively researched due to their diverse health benefits. Phenolic compounds occur mostly as soluble conjugates and insoluble forms, covalently bound to sugar moieties or cell wall structural components. Absorption mechanisms for bound phenolic compounds in the gastrointestinal tract greatly depend on the liberation of sugar moieties. Food processes such as fermentation, malting, thermoplastic extrusion or enzymatic, alkaline and acid hydrolyses occasionally assisted with microwave or ultrasound have potential to release phenolics associated to cell walls. Different kinds of wet chemistry methodologies to release and detect bound phenolic have been developed. These include harsh heat treatments, chemical modifications or biocatalysis. New protocols for processing and determining phenolics in food matrices must be devised in order to release bound phenolics and for quality control in the growing functional food industry.

  20. Theoretical pKa prediction of the α-phosphate moiety of uridine 5‧-diphosphate-GlcNAc

    Science.gov (United States)

    Vipperla, Bhavaniprasad; Griffiths, Thomas M.; Wang, Xingyong; Yu, Haibo

    2017-01-01

    The pKa value of the α-phosphate moiety of uridine 5‧-diphosphate-GlcNAc (UDP-GlcNAc) has been successfully calculated using density functional theory methods in conjunction with the Polarizable Continuum Models. Theoretical methods were benchmarked over a dataset comprising of alkyl phosphates. B3LYP/6-31+G(d,p) calculations using SMD solvation model provide excellent agreement with the experimental data. The predicted pKa for UDP-GlcNAc is consistent with most recent NMR studies but much higher than what it has long been thought to be. The importance of this study is evident that the predicted pKa for UDP-GlcNAc supports its potential role as a catalytic base in the substrate-assisted biocatalysis.

  1. Neutrons for Catalysis: A Workshop on Neutron Scattering Techniques for Studies in Catalysis

    Energy Technology Data Exchange (ETDEWEB)

    Overbury, Steven {Steve} H [ORNL; Coates, Leighton [ORNL; Herwig, Kenneth W [ORNL; Kidder, Michelle [ORNL

    2011-10-01

    This report summarizes the Workshop on Neutron Scattering Techniques for Studies in Catalysis, held at the Spallation Neutron Source (SNS) at Oak Ridge National Laboratory (ORNL) on September 16 and 17, 2010. The goal of the Workshop was to bring experts in heterogeneous catalysis and biocatalysis together with neutron scattering experimenters to identify ways to attack new problems, especially Grand Challenge problems in catalysis, using neutron scattering. The Workshop locale was motivated by the neutron capabilities at ORNL, including the High Flux Isotope Reactor (HFIR) and the new and developing instrumentation at the SNS. Approximately 90 researchers met for 1 1/2 days with oral presentations and breakout sessions. Oral presentations were divided into five topical sessions aimed at a discussion of Grand Challenge problems in catalysis, dynamics studies, structure characterization, biocatalysis, and computational methods. Eleven internationally known invited experts spoke in these sessions. The Workshop was intended both to educate catalyst experts about the methods and possibilities of neutron methods and to educate the neutron community about the methods and scientific challenges in catalysis. Above all, it was intended to inspire new research ideas among the attendees. All attendees were asked to participate in one or more of three breakout sessions to share ideas and propose new experiments that could be performed using the ORNL neutron facilities. The Workshop was expected to lead to proposals for beam time at either the HFIR or the SNS; therefore, it was expected that each breakout session would identify a few experiments or proof-of-principle experiments and a leader who would pursue a proposal after the Workshop. Also, a refereed review article will be submitted to a prominent journal to present research and ideas illustrating the benefits and possibilities of neutron methods for catalysis research.

  2. Solvent-Free Lipase-Catalyzed Synthesis of Technical-Grade Sugar Esters and Evaluation of Their Physicochemical and Bioactive Properties

    Directory of Open Access Journals (Sweden)

    Ran Ye

    2016-05-01

    Full Text Available Technical-grade oleic acid esters of sucrose and fructose were prepared using solvent-free biocatalysis at 65 °C, without any downstream purification applied, and their physicochemical and bioactivity-related properties were evaluated and compared to a commercially available sucrose laurate emulsifier. To increase the conversion of sucrose and fructose oleate, prepared previously using solvent-free lipase-catalyzed esterification catalyzed by Rhizomucor miehei lipase (81% and 83% ester, respectively, the enzymatic reaction conditions was continued using CaSO4 to control the reactor’s air headspace and a lipase (from Candida antarctica B with a hydrophobic immobilization matrix to provide an ultralow water activity, and high-pressure homogenation, to form metastable suspensions of 2.0–3.3 micron sized saccharide particles in liquid-phase reaction media. These measures led to increased ester content of 89% and 96% for reactions involving sucrose and fructose, respectively. The monoester content among the esters decreased from 90% to <70% due to differences in regioselectivity between the lipases. The resultant technical-grade sucrose and fructose lowered the surface tension to <30 mN/m, and possessed excellent emulsification capability and stability over 36 h using hexadecane and dodecane as oils, comparable to that of sucrose laurate and Tween® 80. The technical-grade sugar esters, particularly fructose oleate, more effectively inhibited gram-positive foodborne pathogens (Lactobacillus plantarum, Pediococcus pentosaceus and Bacillus subtilis. Furthermore, all three sugar esters displayed antitumor activity, particularly the two sucrose esters. This study demonstrates the importance of controlling the biocatalysts’ water activity to achieve high conversion, the impact of a lipase’s regioselectivity in dictating product distribution, and the use of solvent-free biocatalysis to important biobased surfactants useful in foods, cosmetics

  3. Rheology of Lignocellulose Suspensions and Impact of Hydrolysis: A Review.

    Science.gov (United States)

    Nguyen, Tien Cuong; Anne-Archard, Dominique; Fillaudeau, Luc

    2015-01-01

    White biotechnologies have several challenges to overcome in order to become a viable industrial process. Achieving highly concentrated lignocellulose materials and releasing fermentable substrates, with controlled kinetics in order to regulate micro-organism activity, present major technical and scientific bottlenecks. The degradation of the main polymeric fractions of lignocellulose into simpler molecules is a prerequisite for an integrated utilisation of this resource in a biorefinery concept. The characterisation methods and the observations developed for rheology, morphology, etc., that are reviewed here are strongly dependent on the fibrous nature of lignocellulose, are thus similar or constitute a good approach to filamentous culture broths. This review focuses on scientific works related to the study of the rheological behaviour of lignocellulose suspensions and their evolution during biocatalysis. In order to produce the targeted molecules (synthon), the lignocellulose substrates are converted by enzymatic degradation and are then metabolised by micro-organisms. The dynamics of the mechanisms is limited by coupled phenomena between flow, heat and mass transfers in regard to diffusion (within solid and liquid phases), convection (mixing, transfer coefficients, homogeneity) and specific inhibitors (concentration gradients). As lignocellulose suspensions consist of long entangled fibres for the matrix of industrial interest, they exhibit diverse and complex properties linked to this fibrous character (rheological, morphological, thermal, mechanical and biochemical parameters). Among the main variables to be studied, the rheological behaviour of such suspensions appears to be determinant for process efficiency. It is this behaviour that will determine the equipment to be used and the strategies applied (substrate and biocatalysis feed, mixing, etc.). This review provides an overview of (i) the rheological behaviour of fibrous materials in suspension, (ii) the

  4. Enzymatic Menthol Production: One-Pot Approach Using Engineered Escherichia coli.

    Science.gov (United States)

    Toogood, Helen S; Ní Cheallaigh, Aisling; Tait, Shirley; Mansell, David J; Jervis, Adrian; Lygidakis, Antonios; Humphreys, Luke; Takano, Eriko; Gardiner, John M; Scrutton, Nigel S

    2015-10-16

    Menthol isomers are high-value monoterpenoid commodity chemicals, produced naturally by mint plants, Mentha spp. Alternative clean biosynthetic routes to these compounds are commercially attractive. Optimization strategies for biocatalytic terpenoid production are mainly focused on metabolic engineering of the biosynthesis pathway within an expression host. We circumvent this bottleneck by combining pathway assembly techniques with classical biocatalysis methods to engineer and optimize cell-free one-pot biotransformation systems and apply this strategy to the mint biosynthesis pathway. Our approach allows optimization of each pathway enzyme and avoidance of monoterpenoid toxicity issues to the host cell. We have developed a one-pot (bio)synthesis of (1R,2S,5R)-(-)-menthol and (1S,2S,5R)-(+)-neomenthol from pulegone, using recombinant Escherichia coli extracts containing the biosynthetic genes for an "ene"-reductase (NtDBR from Nicotiana tabacum) and two menthone dehydrogenases (MMR and MNMR from Mentha piperita). Our modular engineering strategy allowed each step to be optimized to improve the final production level. Moderate to highly pure menthol (79.1%) and neomenthol (89.9%) were obtained when E. coli strains coexpressed NtDBR with only MMR or MNMR, respectively. This one-pot biocatalytic method allows easier optimization of each enzymatic step and easier modular combination of reactions to ultimately generate libraries of pure compounds for use in high-throughput screening. It will be, therefore, a valuable addition to the arsenal of biocatalysis strategies, especially when applied for (semi)-toxic chemical compounds.

  5. Magnetic biocatalysts and their uses to obtain biodiesel and biosurfactants.

    Science.gov (United States)

    López, Carmen; Cruz-Izquierdo, Alvaro; Picó, Enrique A; García-Bárcena, Teresa; Villarroel, Noelia; Llama, María J; Serra, Juan L

    2014-01-01

    Nanobiocatalysis, as the synergistic combination of nanotechnology and biocatalysis, is rapidly emerging as a new frontier of biotechnology. The use of immobilized enzymes in industrial applications often presents advantages over their soluble counterparts, mainly in view of stability, reusability and simpler operational processing. Because of their singular properties, such as biocompatibility, large and modifiable surface and easy recovery, iron oxide magnetic nanoparticles (MNPs) are attractive super-paramagnetic materials that serve as a support for enzyme immobilization and facilitate separations by applying an external magnetic field. Cross-linked enzyme aggregates (CLEAs) have several benefits in the context of industrial applications since they can be cheaply and easily prepared from unpurified enzyme extracts and show improved storage and operational stability against denaturation by heat and organic solvents. In this work, by using the aforementioned advantages of MNPs of magnetite and CLEAs, we prepared two robust magnetically-separable types of nanobiocatalysts by binding either soluble enzyme onto the surface of MNPs functionalized with amino groups or by cross-linking aggregates of enzyme among them and to MNPs to obtain magnetic CLEAs. For this purpose the lipase B of Candida antarctica (CALB) was used. The hydrolytic and biosynthetic activities of the resulting magnetic nanobiocatalysts were assessed in aqueous and organic media. Thus, the hydrolysis of triglycerides and the transesterification reactions to synthesize biodiesel and biosurfactants were studied using magnetic CLEAs of CALB. The efficiency and easy performance of this magnetic biocatalysis validates this proof of concept and sets the basis for the application of magnetic CLEAs at industrial scale.

  6. Multifunctional nanoparticle-protein conjugates with controllable bioactivity and pH responsiveness

    Science.gov (United States)

    Liu, Feng; Xue, Lulu; Yuan, Yuqi; Pan, Jingjing; Zhang, Chenjie; Wang, Hongwei; Brash, John L.; Yuan, Lin; Chen, Hong

    2016-02-01

    The modulation of protein activity is of significance for disease therapy, molecular diagnostics, and tissue engineering. Nanoparticles offer a new platform for the preparation of protein conjugates with improved protein properties. In the present work, Escherichia coli (E. coli) inorganic pyrophosphatase (PPase) and poly(methacrylic acid) (PMAA) were attached together to gold nanoparticles (AuNPs), forming AuNP-PPase-PMAA conjugates having controllable multi-biofunctionalities and responsiveness to pH. By treating with poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA) and regulating the pH, the bioactivity of the conjugate becomes ``on/off''-switchable. In addition, by taking advantage of the ability of AuNPs to undergo reversible aggregation/dispersion, the conjugates can be recycled and reused multiple times; and due to the shielding effect of the PMAA, the conjugated enzyme has high resistance to protease digestion. This approach has considerable potential in areas such as controlled delivery and release of drugs, biosensing, and biocatalysis.The modulation of protein activity is of significance for disease therapy, molecular diagnostics, and tissue engineering. Nanoparticles offer a new platform for the preparation of protein conjugates with improved protein properties. In the present work, Escherichia coli (E. coli) inorganic pyrophosphatase (PPase) and poly(methacrylic acid) (PMAA) were attached together to gold nanoparticles (AuNPs), forming AuNP-PPase-PMAA conjugates having controllable multi-biofunctionalities and responsiveness to pH. By treating with poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA) and regulating the pH, the bioactivity of the conjugate becomes ``on/off''-switchable. In addition, by taking advantage of the ability of AuNPs to undergo reversible aggregation/dispersion, the conjugates can be recycled and reused multiple times; and due to the shielding effect of the PMAA, the conjugated enzyme has high resistance to protease digestion

  7. Understanding the formation of CuS concave superstructures with peroxidase-like activity

    Science.gov (United States)

    He, Weiwei; Jia, Huimin; Li, Xiaoxiao; Lei, Yan; Li, Jing; Zhao, Hongxiao; Mi, Liwei; Zhang, Lizhi; Zheng, Zhi

    2012-05-01

    Copper sulfide (CuS) concave polyhedral superstructures (CPSs) have been successfully prepared in an ethanolic solution by a simple solvothermal reaction without the use of surfactants or templates. Two typical well defined, high symmetry CuS concave polyhedrons, forming a concave truncated cuboctahedron and icosahedron were prepared. The effect of the reaction time, temperature and different Cu ion and sulfur sources on the formation of CuS CPSs were investigated and a possible formation mechanism was proposed and discussed based on gas chromatography-mass spectrometry. More importantly, we found, for the first time, that the CuS CPSs exhibit intrinsic peroxidase-like activity, as they can quickly catalyze the oxidation of typical horseradish peroxidase (HRP) substrates, 3,3',5,5'-tetramethylbenzidine (TMB) and o-phenylenediamine (OPD), in the presence of hydrogen peroxide. In addition to the recent discoveries regarding peroxidase mimetics on Fe3O4 NPs and carbon nanostructures, our findings suggest a new kind of candidate for peroxidase mimics. This may open up a new application field of CuS micro-nano structures in biodetection, biocatalysis and environmental monitoring.Copper sulfide (CuS) concave polyhedral superstructures (CPSs) have been successfully prepared in an ethanolic solution by a simple solvothermal reaction without the use of surfactants or templates. Two typical well defined, high symmetry CuS concave polyhedrons, forming a concave truncated cuboctahedron and icosahedron were prepared. The effect of the reaction time, temperature and different Cu ion and sulfur sources on the formation of CuS CPSs were investigated and a possible formation mechanism was proposed and discussed based on gas chromatography-mass spectrometry. More importantly, we found, for the first time, that the CuS CPSs exhibit intrinsic peroxidase-like activity, as they can quickly catalyze the oxidation of typical horseradish peroxidase (HRP) substrates, 3

  8. Multi-Scale Computational Enzymology: Enhancing Our Understanding of Enzymatic Catalysis

    Directory of Open Access Journals (Sweden)

    Rami Gherib

    2013-12-01

    Full Text Available Elucidating the origin of enzymatic catalysis stands as one the great challenges of contemporary biochemistry and biophysics. The recent emergence of computational enzymology has enhanced our atomistic-level description of biocatalysis as well the kinetic and thermodynamic properties of their mechanisms. There exists a diversity of computational methods allowing the investigation of specific enzymatic properties. Small or large density functional theory models allow the comparison of a plethora of mechanistic reactive species and divergent catalytic pathways. Molecular docking can model different substrate conformations embedded within enzyme active sites and determine those with optimal binding affinities. Molecular dynamics simulations provide insights into the dynamics and roles of active site components as well as the interactions between substrate and enzymes. Hybrid quantum mechanical/molecular mechanical (QM/MM can model reactions in active sites while considering steric and electrostatic contributions provided by the surrounding environment. Using previous studies done within our group, on OvoA, EgtB, ThrRS, LuxS and MsrA enzymatic systems, we will review how these methods can be used either independently or cooperatively to get insights into enzymatic catalysis.

  9. Biocatalytic nerve agent detoxification in fire fighting foams.

    Science.gov (United States)

    LeJeune, K E; Russell, A J

    1999-03-20

    Current events across the globe necessitate rapid technological advances to combat the epidemic of nerve agent chemical weapons. Biocatalysis has emerged as a viable tool in the detoxification of organophosphorus neurotoxins, such as the chemical weapons VX and sarin. Efficient detoxification of contaminated equipment, machinery, and soils are of principal concern. This study describes the incorporation of a biocatalyst (organophosphorus hydrolase, E.C. 3.1.8.1) into conventional formulations of fire fighting foam. The capacity of fire fighting foams to decrease volatilization of contained contaminants, increase surface wettability, and control the rate of enzyme delivery to large areas makes them useful vehicles for enzyme application at surfaces. The performance of enzyme containing foams has been shown to be not only reproducible but also predictable. An empirical model provides reasonable estimations for the amounts of achievable surface decontamination as a function of the important parameters of the system. Theoretical modeling illustrates that the enzyme-containing foam is capable of extracting agent from the surface and is catalytically active at the foam-surface interface and throughout the foam itself. Biocatalytic foam has proven to be an effective, "environmentally friendly" means of surface and soil decontamination.

  10. Untangling the multiple monooxygenases of Mycobacterium chubuense strain NBB4, a versatile hydrocarbon degrader.

    Science.gov (United States)

    Coleman, Nicholas V; Yau, Sheree; Wilson, Neil L; Nolan, Laura M; Migocki, Margaret D; Ly, Mai-Anh; Crossett, Ben; Holmes, Andrew J

    2011-06-01

    Mycobacterium strain NBB4 was isolated on ethene as part of a bioprospecting study searching for novel monooxygenase (MO) enzymes of interest to biocatalysis and bioremediation. Previous work indicated that strain NBB4 contained an unprecedented diversity of MO genes, and we hypothesized that each MO type would support growth on a distinct hydrocarbon substrate. Here, we attempted to untangle the relationships between MO types and hydrocarbon substrates. Strain NBB4 was shown to grow on C2 -C4 alkenes and C2 -C16 alkanes. Complete gene clusters encoding six different monooxygenases were recovered from a fosmid library, including homologues of ethene MO (etnABCD), propene MO (pmoABCD), propane MO (smoABCD), butane MO (smoXYB1C1Z), cytochrome P450 (CYP153; fdx-cyp-fdr) and alkB (alkB-rubA1-rubA2). Catabolic enzymes involved in ethene assimilation (EtnA, EtnC, EtnD, EtnE) and alkane assimilation (alcohol and aldehyde dehydrogenases) were identified by proteomics, and we showed for the first time that stress response proteins (catalase/peroxidase, chaperonins) were induced by growth on C2 -C5 alkanes and ethene. Surprisingly, none of the identified MO genes could be specifically associated with oxidation of small alkanes, and thus the nature of the gaseous alkane MO in NBB4 remains mysterious.

  11. Biocatalytic induction of supramolecular order

    Science.gov (United States)

    Hirst, Andrew R.; Roy, Sangita; Arora, Meenakshi; Das, Apurba K.; Hodson, Nigel; Murray, Paul; Marshall, Stephen; Javid, Nadeem; Sefcik, Jan; Boekhoven, Job; van Esch, Jan H.; Santabarbara, Stefano; Hunt, Neil T.; Ulijn, Rein V.

    2010-12-01

    Supramolecular gels, which demonstrate tunable functionalities, have attracted much interest in a range of areas, including healthcare, environmental protection and energy-related technologies. Preparing these materials in a reliable manner is challenging, with an increased level of kinetic defects observed at higher self-assembly rates. Here, by combining biocatalysis and molecular self-assembly, we have shown the ability to more quickly access higher-ordered structures. By simply increasing enzyme concentration, supramolecular order expressed at molecular, nano- and micro-levels is dramatically enhanced, and, importantly, the gelator concentrations remain identical. Amphiphile molecules were prepared by attaching an aromatic moiety to a dipeptide backbone capped with a methyl ester. Their self-assembly was induced by an enzyme that hydrolysed the ester. Different enzyme concentrations altered the catalytic activity and size of the enzyme clusters, affecting their mobility. This allowed structurally diverse materials that represent local minima in the free energy landscape to be accessed based on a single gelator structure.

  12. Carbohydrates in sustainable development I. Renewable resources for chemistry and biotechnology

    Energy Technology Data Exchange (ETDEWEB)

    Rauter, Amelia, P. [Lisboa Univ. (Portugal). Dept. Quimica e Bioquimica; Vogel, Pierre [Swiss Institute of Technology (EPFL), Lausanne (Switzerland). Lab. of Glycochemistry and Asymmetric Synthesis; Queneau, Yves (eds.) [Lyon Univ. Villeurbanne (France). Inst. de Chimie et Biochimie

    2010-07-01

    Sucrose: A Prospering and Sustainable Organic Raw Material, By S. Peters, T. Rose, and M. Moser; Sucrose-Utilizing Transglucosidases for Biocatalysis, By I. Andre, G. Potocki-Veronese, S. Morel, P. Monsan, and M. Remaud-Simeon; Difructose Dianhydrides (DFAs) and DFA-Enriched Products as Functional Foods, By C. Ortiz Mellet and J. M. Garcia Fernandez; Development of Agriculture Left-Overs: Fine Organic Chemicals from Wheat Hemicellulose-Derived Pentoses, By F. Martel, B. Estrine, R. Plantier-Royon, N. Hoffmann, and C. Portella; Cellulose and Derivatives from Wood and Fibers as Renewable Sources of Raw-Materials, By J.A. Figueiredo, M.I. Ismael, C.M.S. Anjo, and A.P. Duarte; Olive Pomace, a Source for Valuable Arabinan-Rich Pectic Polysaccharides, By M. A. Coimbra, S. M. Cardoso, and J. A. Lopes-da-Silva; Oligomannuronates from Seaweeds as Renewable Sources for the Development of Green Surfactants,By T. Benvegnu and J.-F. Sassi; From Natural Polysaccharides to Materials for Catalysis, Adsorption, and Remediation, By F. Quignard, F. Di Renzo, and E. Guibal. (orig.)

  13. Glycolysis of poly(3-hydroxybutyrate) via enzyme catalysis; Glicolise do poli(3-hidroxibutirato) por via enzimatica

    Energy Technology Data Exchange (ETDEWEB)

    Paula, Everton Luiz de, E-mail: everton2804@gmail.com [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Departamento de Quimica; Campos, Tiago Ferreira; Mano, Valdir [Universidade Federal de Sao Joao del-Rei (UFSJ), MG (Brazil). Departamento de Ciencias Naturais

    2014-05-15

    Poly(3-hydroxybutyrate), PHB, is a polymer with broad potential applications because of its biodegradability and biocompatibility. However, its high crystallinity is a limiting factor for many applications. To overcome this drawback, one strategy currently employed involves the reduction of the molecular weight of PHB with the concomitant formation of end-functionalized chains, such as those obtained via glycolysis. The glycolysis of PHB can be catalyzed by acid, base, or organometallic compounds. However, to our knowledge, there are no reports regarding PHB glycolysis catalyzed enzymatically. Among the major types of enzymes used in biocatalysis, the lipases stand out because they have the ability to catalyze reactions in both aqueous and organic media. Thus, in this study, we performed the enzymatic glycolysis of PHB using the lipase Amano PS (Pseudomonas cepacia) with ethane-1,2-diol (ethylene glycol) as the functionalizing agent. The results indicated that the glycolysis was successful and afforded hydroxyl-terminated oligomeric PHB polyols. Nuclear magnetic resonance spectra of the products showed characteristic signals for the terminal hydroxyl groups of the polyols, while thermogravimetric and differential scanning calorimetry analyses confirmed an increase in the thermal stability and a decrease in the crystallinity of the polyols compared with the starting PHB polymer, which were both attributed to the reduction in the molecular weight due to glycolysis. (author)

  14. Resolution of Racemic Acids, Esters and Amines by Candida rugosa Lipase in Slightly Hydrated Organic Media

    Directory of Open Access Journals (Sweden)

    Andrés R. Alcántara

    2004-01-01

    Full Text Available Commercial crude lipase from Candida rugosa is widely used as a biocatalyst in the resolution of racemic mixtures and in organic synthesis in slightly hydrated organic solvents. In many cases, reproducible results are not obtained when the same crude lipase is used, but from different suppliers of lots, this being due to the presence of different isoenzymes. The current work addresses this problem and strategies to overcome it. The yeast Candida rugosa ATCC 14380 was cultivated in a minimal culture medium, using different substances as inducers and carbon sources. The percentage of inducer that gave the optimum productivity of extracellular lipases was determined. Lyophilized extracellular enzymes were characterized by SDS-PAGE electrophoresis and isoelectric focusing (IEF. Depending on the nature of the carbon source, different isoenzymes were produced in various proportions. These samples were partially purified by different methodologies, including dialysis, adsorption chromatography and precipitation with ammonium sulfate or organic solvents. These characterizations allowed us to explain the relative catalytic activity of different samples, showing that in biocatalysis enzymes should not be treated simply as a »white magic powder« that can solve all the challenges in organic synthesis. Heptyl oleate synthesis, alcoxycarbonylation of amines and hydrolysis of the ester of ketoprofen are excellent reaction tests for the evaluation of lipase samples as biocatalysts.

  15. Impact of Extraction Parameters on the Recovery of Lipolytic Activity from Fermented Babassu Cake

    Science.gov (United States)

    Silva, Jaqueline N.; Godoy, Mateus G.; Gutarra, Melissa L. E.; Freire, Denise M. G.

    2014-01-01

    Enzyme extraction from solid matrix is as important step in solid-state fermentation to obtain soluble enzymes for further immobilization and application in biocatalysis. A method for the recovery of a pool of lipases from Penicillium simplicissimum produced by solid-state fermentation was developed. For lipase recovery different extraction solution was used and phosphate buffer containing Tween 80 and NaCl showed the best results, yielding lipase activity of 85.7 U/g and 65.7 U/g, respectively. The parameters with great impacts on enzyme extraction detected by the Plackett-Burman analysis were studied by Central Composite Rotatable experimental designs where a quadratic model was built showing maximum predicted lipase activity (160 U/g) at 25°C, Tween 80 0.5% (w/v), pH 8.0 and extraction solution 7 mL/g, maintaining constant buffer molarity of 0.1 M and 200 rpm. After the optimization process a 2.5 fold increase in lipase activity in the crude extract was obtained, comparing the intial value (64 U/g) with the experimental design (160 U/g), thus improving the overall productivity of the process. PMID:25090644

  16. Actinomycetes: a repertory of green catalysts with a potential revenue resource.

    Science.gov (United States)

    Prakash, Divya; Nawani, Neelu; Prakash, Mansi; Bodas, Manish; Mandal, Abul; Khetmalas, Madhukar; Kapadnis, Balasaheb

    2013-01-01

    Biocatalysis, one of the oldest technologies, is becoming a favorable alternative to chemical processes and a vital part of green technology. It is an important revenue generating industry due to a global market projected at $7 billion in 2013 with a growth of 6.7% for enzymes alone. Some microbes are important sources of enzymes and are preferred over sources of plant and animal origin. As a result, more than 50% of the industrial enzymes are obtained from bacteria. The constant search for novel enzymes with robust characteristics has led to improvisations in the industrial processes, which is the key for profit growth. Actinomycetes constitute a significant component of the microbial population in most soils and can produce extracellular enzymes which can decompose various materials. Their enzymes are more attractive than enzymes from other sources because of their high stability and unusual substrate specificity. Actinomycetes found in extreme habitats produce novel enzymes with huge commercial potential. This review attempts to highlight the global importance of enzymes and extends to signify actinomycetes as promising harbingers of green technology.

  17. Integration of Artificial Photosynthesis System for Enhanced Electronic Energy-Transfer Efficacy: A Case Study for Solar-Energy Driven Bioconversion of Carbon Dioxide to Methanol.

    Science.gov (United States)

    Ji, Xiaoyuan; Su, Zhiguo; Wang, Ping; Ma, Guanghui; Zhang, Songping

    2016-09-01

    Biocatalyzed artificial photosynthesis systems provide a promising strategy to store solar energy in a great variety of chemicals. However, the lack of direct interface between the light-capturing components and the oxidoreductase generally hinders the trafficking of the chemicals and photo-excited electrons into the active center of the redox biocatalysts. To address this problem, a completely integrated artificial photosynthesis system for enhanced electronic energy-transfer efficacy is reported by combining co-axial electrospinning/electrospray and layer-by-layer (LbL) self-assembly. The biocatalysis part including multiple oxidoreductases and coenzymes NAD(H) was in situ encapsulated inside the lumen polyelectrolyte-doped hollow nanofibers or microcapsules fabricated via co-axial electrospinning/electrospray; while the precise and spatial arrangement of the photocatalysis part, including electron mediator and photosensitizer for photo-regeneration of the coenzyme, was achieved by ion-exchange interaction-driven LbL self-assembly. The feasibility and advantages of this integrated artificial photosynthesis system is fully demonstrated by the catalyzed cascade reduction of CO2 to methanol by three dehydrogenases (formate, formaldehyde, and alcohol dehydrogenases), incorporating the photo-regeneration of NADH under visible-light irradiation. Compared to solution-based systems, the methanol yield increases from 35.6% to 90.6% using the integrated artificial photosynthesis. This work provides a novel platform for the efficient and sustained production of a broad range of chemicals and fuels from sunlight.

  18. Innovative approaches for effective selection of lipase-producing microorganisms as whole cell catalysts for biodiesel production.

    Science.gov (United States)

    Ciudad, Gustavo; Reyes, Isaac; Azócar, Laura; Briones, Reinaldo; Jorquera, Milko; Wick, Lukas Y; Navia, Rodrigo

    2011-07-01

    The high cost of commercial lipases limits their industrial application in the production of biodiesel or fatty acid methyl esters (FAME). This disadvantage has encouraged the search for lipase-producing microorganisms (LPMs) as potential whole cell catalysts for FAME production. The aim of this study, therefore, was to evaluate innovative procedures for easy selection and testing of LPMs as a low-cost whole cell catalyst, based on catalytic performance, methanol tolerance and physico-chemical cell surface properties. The latter (in particular the cell surface hydrophobicity and charge) were analyzed because of their crucial role in microbial adhesion to surfaces and the concomitant increase in cell immobilization and bioavailability of hydrophobic substrates. Biocatalysis experiments performed in the presence of nutrient, rapeseed oil and methanol were an effective tool for studying and identifying, in just two experiments, the capacity of different LPMs as biocatalysts in organic media, as well as the methanol tolerance of the cell and the lipase. This indicates the potential for using live microorganisms for FAME production. Another finding was that the inhibitory effect of methanol is more significant for lipase activity than LPM growth, indicating that the way in which alcohol is supplied to the reaction is a crucial step in FAME production by biocatalysts. According to these results, the application of these innovative assessments should simplify the search for new strains which are able to effectively catalyze the FAME production process.

  19. Highly selective anti-Prelog synthesis of optically active aryl alcohols by recombinant Escherichia coli expressing stereospecific alcohol dehydrogenase.

    Science.gov (United States)

    Li, Ming; Nie, Yao; Mu, Xiao Qing; Zhang, Rongzhen; Xu, Yan

    2016-07-03

    Biocatalytic asymmetric synthesis has been widely used for preparation of optically active chiral alcohols as the important intermediates and precursors of active pharmaceutical ingredients. However, the available whole-cell system involving anti-Prelog specific alcohol dehydrogenase is yet limited. A recombinant Escherichia coli system expressing anti-Prelog stereospecific alcohol dehydrogenase from Candida parapsilosis was established as a whole-cell system for catalyzing asymmetric reduction of aryl ketones to anti-Prelog configured alcohols. Using 2-hydroxyacetophenone as the substrate, reaction factors including pH, cell status, and substrate concentration had obvious impacts on the outcome of whole-cell biocatalysis, and xylose was found to be an available auxiliary substrate for intracellular cofactor regeneration, by which (S)-1-phenyl-1,2-ethanediol was achieved with an optical purity of 97%e.e. and yield of 89% under the substrate concentration of 5 g/L. Additionally, the feasibility of the recombinant cells toward different aryl ketones was investigated, and most of the corresponding chiral alcohol products were obtained with an optical purity over 95%e.e. Therefore, the whole-cell system involving recombinant stereospecific alcohol dehydrogenase was constructed as an efficient biocatalyst for highly enantioselective anti-Prelog synthesis of optically active aryl alcohols and would be promising in the pharmaceutical industry.

  20. Biological conversion of synthesis gas. Final report, August 31, 1990--September 3, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Basu, R.; Klasson, K.T.; Johnson, E.R.; Takriff, M.; Clausen, E.C.; Gaddy, J.L.

    1993-09-01

    Based upon the results of this culture screening study, Rhodospirillum rubrum is recommended for biocatalysis of the water gas shift reaction and Chlorobium thiosulfatophilum is recommended for H{sub 2}S conversion to elemental sulfur. Both bacteria require tungsten light for growth and can be co-cultured together if H{sub 2}S conversion is not complete (required concentration of at least 1 ppM), thereby presenting H{sub 2} uptake by Chlorobium thiosulfatophilum. COS degradation may be accomplished by utilizing various CO-utilizing bacteria or by indirectly converting COS to elemental sulfur after the COS first undergoes reaction to H{sub 2} in water. The second alternative is probably preferred due to the low expected concentration of COS relative to H{sub 2}S. Mass transfer and kinetic studies were carried out for the Rhodospirillum rubrum and Chlorobium thiosulfatophilum bacterial systems. Rhodospirillum rubrum is a photosynthetic anaerobic bacterium which catalyzes the biological water gas shift reaction: CO + H{sub 2}O {yields} CO{sub 2} + H{sub 2}. Chlorobium thiosulfatophilum is also a photosynthetic anaerobic bacteria, and converts H{sub 2}S and COS to elemental sulfur.

  1. Simultaneous size control and surface functionalization of titania nanoparticles through bioadhesion-assisted bio-inspired mineralization

    Energy Technology Data Exchange (ETDEWEB)

    Shi Jiafu; Yang Dong; Jiang Zhongyi, E-mail: zhyjiang@tju.edu.cn [Tianjin University, Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology (China); Jiang Yanjun [Hebei University of Technology, Department of Bioengineering, School of Chemical Engineering (China); Liang Yanpeng; Zhu Yuanyuan; Wang Xiaoli; Wang Huihui [Tianjin University, Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology (China)

    2012-09-15

    Simultaneous size control and surface functionalization of inorganic nanoparticles (NPs) are often desired for their efficient applications in (bio)catalysis, drug and/or DNA delivery, and photonics, etc. In this study, a novel strategy 'bioadhesion-assisted bio-inspired mineralization (BABM)' was put forward to prepare titania nanoparticles (TiNPs) with tunable particle size and multiple surface functionality. Specifically, the initial formation and subsequent growth of TiNPs were enabled by arginine via bio-inspired mineralization, while the mineralization process was terminated through the addition of the pre-polymerized dopa (oligodopa). By adjusting the addition time of oligodopa, the size of TiNPs could be facilely tailored from ca. 30-350 nm; meanwhile, the surface of TiNPs could be functionalized by oligodopa through metal-catechol coordination interaction (a typical bioadhesion phenomenon). In other words, oligodopa coating could not only exquisitely control the size of TiNPs, but also render TiNPs surface multifunctional groups for secondary treatment such as conjugating proteins through amine-catechol adduct formation. Hopefully, this BABM approach will construct a versatile platform for green and facile synthesis of inorganic NPs, in particular transition metal oxide NPs.

  2. Bioprospecting Archaea: Focus on Extreme Halophiles

    KAUST Repository

    Antunes, André

    2016-12-12

    In 1990, Woese et al. divided the Tree of Life into three separate domains: Eukarya, Bacteria, and Archaea. Archaea were originally perceived as little more than “odd bacteria” restricted to extreme environmental niches, but later discoveries challenged this assumption. Members of this domain populate a variety of unexpected environments (e.g. soils, seawater, and human bodies), and we currently witness ongoing massive expansions of the archaeal branch of the Tree of Life. Archaea are now recognized as major players in the biosphere and constitute a significant fraction of the earth’s biomass, yet they remain underexplored. An ongoing surge in exploration efforts is leading to an increase in the (a) number of isolated strains, (b) associated knowledge, and (c) utilization of Archaea in biotechnology. They are increasingly employed in fields as diverse as biocatalysis, biocomputing, bioplastic production, bioremediation, bioengineering, food, pharmaceuticals, and nutraceuticals. This chapter provides a general overview on bioprospecting Archaea, with a particular focus on extreme halophiles. We explore aspects such as diversity, ecology, screening techniques and biotechnology. Current and future trends in mining for applications are discussed.

  3. Tailoring crystallinity and configuration of silica nanotubes by electron irradiation

    Science.gov (United States)

    Taguchi, Tomitsugu; Yamaguchi, Kenji

    2015-05-01

    SiO2 nanotubes show potential in applications such as nanoscale electronic and optical devices, bioseparation, biocatalysis, and nanomedicine. As-grown SiO2 nanotubes in the previous studies always have an amorphous wall, and here we demonstrate the successful synthesis of single-crystal nanotubes for the first time by the heat treatment of SiC nanotubes at 1300 °C for 10 h under low-vacuum conditions. According to TEM observations, the single-crystal SiO2 was α-cristobalite. We also demonstrate that single-crystal SiO2 nanotubes can be transformed into amorphous SiO2 nanotubes by electron beam irradiation. Moreover, we synthesized a crystalline/amorphous SiO2 composite nanotube, in which crystalline and amorphous SiO2 coexisted in different localized regions. In addition, for biomedical applications such as drug delivery systems, controlling the configuration of the open end, the diameter, and capsulation of SiO2 nanotubes is crucial. We can also obturate, capsulate, and cut a SiO2 nanotube, as well as modify the inner diameter of the nanotube at a specific, nanometer-sized region using the focused electron beam irradiation technique.

  4. Biobased Fat Mimicking Molecular Structuring Agents for Medium-Chain Triglycerides (MCTs) and Other Edible Oils.

    Science.gov (United States)

    Silverman, Julian R; John, George

    2015-12-01

    To develop sustainable value-added materials from biomass, novel small-molecule sugar ester gelators were synthesized using biocatalysis. The facile one-step regiospecific coupling of the pro-antioxidant raspberry ketone glucoside and unsaturated or saturated long- and medium-chain fatty acids provides a simple approach to tailor the structure and self-assembly of the amphiphilic product. These low molecular weight molecules demonstrated the ability to self-assemble in a variety of solvents and exhibited supergelation, with a minimum gelation concentration of 0.25 wt %, in numerous organic solvents, as well as in a range of natural edible oils, specifically a relatively unstudied group of liquids: natural medium-chain triglyceride oils, notably coconut oil. Spectroscopic analysis details the gelator structure as well as the intermolecular noncovalent interactions, which allow for gelation. X-ray diffraction studies indicate fatty acid chain packing of gelators is similar to that of natural fats, signifying the crystalline nature may lead to desirable textural properties and mouthfeel.

  5. Design and synthesis of organic-inorganic hybrid capsules for biotechnological applications.

    Science.gov (United States)

    Shi, Jiafu; Jiang, Yanjun; Wang, Xiaoli; Wu, Hong; Yang, Dong; Pan, Fusheng; Su, Yanlei; Jiang, Zhongyi

    2014-08-07

    Organic-inorganic hybrid capsules, which typically possess a hollow lumen and a hybrid wall, have emerged as a novel and promising class of hybrid materials and have attracted enormous attention. In comparison to polymeric capsules or inorganic capsules, the hybrid capsules combine the intrinsic physical/chemical properties of the organic and inorganic moieties, acquire more degrees of freedom to manipulate multiple interactions, create hierarchical structures and integrate multiple functionalities. Thus, the hybrid capsules exhibit superior mechanical strength (vs. polymeric capsules) and diverse functionalities (vs. inorganic capsules), which may give new opportunities to produce high-performance materials. Much effort has been devoted to exploring innovative and effective methods for the synthesis of hybrid capsules that exhibit desirable performance in target applications. This tutorial review firstly presents a brief description of the capsular structure and hybrid materials in nature, then classifies the hybrid capsules into molecule-hybrid capsules and nano-hybrid capsules based upon the size of the organic and inorganic moieties in the capsule wall, followed by a detailed discussion of the design and synthesis of the hybrid capsules. For each kind of hybrid capsule, the state-of-the-art synthesis methods are described in detail and a critical comment is embedded. The applications of these hybrid capsules in biotechnological areas (biocatalysis, drug delivery, etc.) have also been summarized. Hopefully, this review will offer a perspective and guidelines for the future research and development of hybrid capsules.

  6. Sucrose Hydrolysis in a Bespoke Capillary Wall-Coated Microreactor

    Directory of Open Access Journals (Sweden)

    Filipe Carvalho

    2017-01-01

    Full Text Available Microscale technology has been increasingly used in chemical synthesis up to production scale, but in biocatalysis the implementation has been proceeding at a slower pace. In this work, the design of a low cost and versatile continuous flow enzyme microreactor is described that illustrates the potential of microfluidic reactors for both the development and characterization of biocatalytic processes. The core structure of the developed reactor consists of an array of capillaries with 450 μm of inner diameter with their inner surface functionalized with (3-aminopropyltriethoxysilane (APTES and glutaraldehyde where Saccharomyces cerevisiae invertase was covalently bound. The production of invert sugar syrup through enzymatic sucrose hydrolysis was used as model system. Once the microreactor assembly reproducibility and the immobilized enzyme behavior were established, the evaluation of the immobilized enzyme kinetic parameters was carried out at flow rates ranging from 20.8 to 219.0 μL·min−1 and substrate concentrations within 2.0%–10.0% (w/v. Despite the impact of immobilization on the kinetic parameters, viz. Km(app was increased two fold and Kcat showed a 14-fold decrease when compared to solution phase invertase, the immobilization proved highly robust. For a mean residence time of 48.8 min, full conversion of 5.0% (w/v sucrose was observed over 20 days.

  7. Amyloglucosidase enzymatic reactivity inside lipid vesicles

    Directory of Open Access Journals (Sweden)

    Kim Jin-Woo

    2007-10-01

    Full Text Available Abstract Efficient functioning of enzymes inside liposomes would open new avenues for applications in biocatalysis and bioanalytical tools. In this study, the entrapment of amyloglucosidase (AMG (EC 3.2.1.3 from Aspergillus niger into dipalmitoylphosphatidylcholine (DPPC multilamellar vesicles (MLVs and large unilamellar vesicles (LUVs was investigated. Negative-stain, freeze-fracture, and cryo-transmission electron microscopy images verified vesicle formation in the presence of AMG. Vesicles with entrapped AMG were isolated from the solution by centrifugation, and vesicle lamellarity was identified using fluorescence laser confocal microscopy. The kinetics of starch hydrolysis by AMG was modeled for two different systems, free enzyme in aqueous solution and entrapped enzyme within vesicles in aqueous suspension. For the free enzyme system, intrinsic kinetics were described by a Michaelis-Menten kinetic model with product inhibition. The kinetic constants, Vmax and Km, were determined by initial velocity measurements, and Ki was obtained by fitting the model to experimental data of glucose concentration-time curves. Predicted concentration-time curves using these kinetic constants were in good agreement with experimental measurements. In the case of the vesicles, the time-dependence of product (glucose formation was experimentally determined and simulated by considering the kinetic behavior of the enzyme and the permeation of substrate into the vesicle. Experimental results demonstrated that entrapped enzymes were much more stable than free enyzme. The entrapped enzyme could be recycled with retention of 60% activity after 3 cycles. These methodologies can be useful in evaluating other liposomal catalysis operations.

  8. Biomimetic and bioinspired silica: recent developments and applications.

    Science.gov (United States)

    Patwardhan, Siddharth V

    2011-07-21

    In a previous review of biological and bioinspired silica formation (S. V. Patwardhan et al., Chem. Commun., 2005, 1113 [ref. 1]), we have identified and discussed the roles that organic molecules (additives) play in silica formation in vitro. Tremendous progress has been made in this field since and this review attempts to capture, with selected examples from the literature, the key advances in synthesising and controlling properties of silica-based materials using bioinspired approaches, i.e. conditions of near-neutral pH, all aqueous environments and room temperature. One important reason to investigate biosilicifying systems is to be able to develop novel materials and/or technologies suitable for a wide range of applications. Therefore, this review will also focus on applications arising from research on biological and bioinspired silica. A range of applications such as in the areas of sensors, coatings, hybrid materials, catalysis and biocatalysis and drug delivery have started appearing. Furthermore, scale-up of this technology suitable for large-scale manufacturing has proven the potential of biologically inspired synthesis.

  9. Simultaneous photocatalytic and microbial degradation of dye-containing wastewater by a novel g-C3N4-P25/photosynthetic bacteria composite

    Science.gov (United States)

    Zhang, Xinying; Wu, Yan; Xiao, Gao; Tang, Zhenping; Wang, Meiyin; Liu, Fuchang; Zhu, Xuefeng

    2017-01-01

    Azo dyes are very resistant to light-induced fading and biodegradation. Existing advanced oxidative pre-treatment methods based on the generation of non-selective radicals cannot efficiently remove these dyes from wastewater streams, and post-treatment oxidative dye removal is problematic because it may leave many byproducts with unknown toxicity profiles in the outgoing water, or cause expensive complete mineralization. These problems could potentially be overcome by combining photocatalysis and biodegradation. A novel visible-light-responsive hybrid dye removal agent featuring both photocatalysts (g-C3N4-P25) and photosynthetic bacteria encapsulated in calcium alginate beads was prepared by self-assembly. This system achieved a removal efficiency of 94% for the dye reactive brilliant red X-3b and also reduced the COD of synthetic wastewater samples by 84.7%, successfully decolorized synthetic dye-contaminated wastewater and reduced its COD, demonstrating the advantages of combining photocatalysis and biocatalysis for wastewater purification. The composite apparently degrades X-3b by initially converting the dye into aniline and phenol derivatives whose aryl moieties are then attacked by free radicals to form alkyl derivatives, preventing the accumulation of aromatic hydrocarbons that might suppress microbial activity. These alkyl intermediates are finally degraded by the photosynthetic bacteria. PMID:28273118

  10. Under the lens: carbon nanotube and protein interaction at the nanoscale.

    Science.gov (United States)

    Marchesan, S; Prato, M

    2015-03-14

    The combination of the very different chemical natures of carbon nanotubes (CNTs) and proteins gives rise to systems with unprecedented performance, thanks to a rich pool of very diverse chemical, electronic, catalytic and biological properties. Here we review recent advances in the field, including innovative and imaginative aspects from a nanoscale point of view. The tubular nature of CNTs allows for internal protein encapsulation, and also for their external coating by protein cages, affording bottom-up ordering of molecules in hierarchical structures. To achieve such complex systems it is imperative to master the intermolecular forces between CNTs and proteins, including geometry effects (e.g. CNT diameter and curvature) and how they translate into changes in the local environment (e.g. water entropy). The type of interaction between proteins and CNTs has important consequences for the preservation of their structure and, in turn, function. This key aspect cannot be neglected during the design of their conjugation, be it covalent, non-covalent, or based on a combination of both methods. The review concludes with a brief discussion of the very many applications intended for CNT-protein systems that go across various fields of science, from industrial biocatalysis to nanomedicine, from innovative materials to biotechnological tools in molecular biology research.

  11. Gluconic acid production.

    Science.gov (United States)

    Anastassiadis, Savas; Morgunov, Igor G

    2007-01-01

    Gluconic acid, the oxidation product of glucose, is a mild neither caustic nor corrosive, non toxic and readily biodegradable organic acid of great interest for many applications. As a multifunctional carbonic acid belonging to the bulk chemicals and due to its physiological and chemical characteristics, gluconic acid itself, its salts (e.g. alkali metal salts, in especially sodium gluconate) and the gluconolactone form have found extensively versatile uses in the chemical, pharmaceutical, food, construction and other industries. Present review article presents the comprehensive information of patent bibliography for the production of gluconic acid and compares the advantages and disadvantages of known processes. Numerous manufacturing processes are described in the international bibliography and patent literature of the last 100 years for the production of gluconic acid from glucose, including chemical and electrochemical catalysis, enzymatic biocatalysis by free or immobilized enzymes in specialized enzyme bioreactors as well as discontinuous and continuous fermentation processes using free growing or immobilized cells of various microorganisms, including bacteria, yeast-like fungi and fungi. Alternatively, new superior fermentation processes have been developed and extensively described for the continuous and discontinuous production of gluconic acid by isolated strains of yeast-like mold Aureobasidium pullulans, offering numerous advantages over the traditional discontinuous fungi processes.

  12. Recent advances in exploiting ionic liquids for biomolecules: Solubility, stability and applications.

    Science.gov (United States)

    Sivapragasam, Magaret; Moniruzzaman, Muhammad; Goto, Masahiro

    2016-08-01

    The technological utility of biomolecules (e.g. proteins, enzymes and DNA) can be significantly enhanced by combining them with ionic liquids (ILs) - potentially attractive "green" and "designer" solvents - rather than using in conventional organic solvents or water. In recent years, ILs have been used as solvents, cosolvents, and reagents for biocatalysis, biotransformation, protein preservation and stabilization, DNA solubilization and stabilization, and other biomolecule-based applications. Using ILs can dramatically enhance the structural and chemical stability of proteins, DNA, and enzymes. This article reviews the recent technological developments of ILs in protein-, enzyme-, and DNA-based applications. We discuss the different routes to increase biomolecule stability and activity in ILs, and the design of biomolecule-friendly ILs that can dissolve biomolecules with minimum alteration to their structure. This information will be helpful to design IL-based processes in biotechnology and the biological sciences that can serve as novel and selective processes for enzymatic reactions, protein and DNA stability, and other biomolecule-based applications.

  13. Magnetic biocatalysts and their uses to obtain bioproducts

    Directory of Open Access Journals (Sweden)

    Carmen eLópez

    2014-08-01

    Full Text Available Nanobiocatalysis, as the synergistic combination of nanotechnology and biocatalysis, is rapidly emerging as a new frontier of biotechnology. The use of immobilized enzymes in industrial applications often presents advantages over their soluble counterparts, mainly in view of stability, reusability and simpler operational processing. Because of their singular properties, such as biocompatibility, large and modifiable surface and easy recovery, iron oxide magnetic nanoparticles (MNPs are attractive super-paramagnetic materials that serve as a support for enzyme immobilization and facilitate separations by applying an external magnetic field. Cross-linked enzyme aggregates (CLEAs have several benefits in the context of industrial applications since they can be cheaply and easily prepared from unpurified enzyme extracts and show improved storage and operational stability against denaturation by heat and organic solvents. In this work, by using the aforementioned advantages of MNPs of magnetite and CLEAs, we prepared two robust magnetically-separable types of nanobiocatalysts by binding either soluble enzyme onto the surface of MNPs functionalized with amino groups or by cross-linking aggregates of enzyme among them and to MNPs to obtain magnetic CLEAs. For this purpose the lipase B of Candida antarctica (CALB was used. The hydrolytic and biosynthetic activities of the resulting magnetic nanobiocatalysts were assessed in aqueous and organic media and compared between them and to those showed by the corresponding soluble enzyme. Thus, the hydrolysis of triglycerides or the transesterification reactions to synthesize biodiesel and biosurfactants were studied using magnetic CLEAs of CALB.

  14. Magnetic biocatalysts and their uses to obtain bioproducts

    Science.gov (United States)

    López, Carmen; Cruz-Izquierdo, Álvaro; Picó, Enrique; García-Bárcena, Teresa; Villarroel, Noelia; Llama, María; Serra, Juan

    2014-08-01

    Nanobiocatalysis, as the synergistic combination of nanotechnology and biocatalysis, is rapidly emerging as a new frontier of biotechnology. The use of immobilized enzymes in industrial applications often presents advantages over their soluble counterparts, mainly in view of stability, reusability and simpler operational processing. Because of their singular properties, such as biocompatibility, large and modifiable surface and easy recovery, iron oxide magnetic nanoparticles (MNPs) are attractive super-paramagnetic materials that serve as a support for enzyme immobilization and facilitate separations by applying an external magnetic field. Cross-linked enzyme aggregates (CLEAs) have several benefits in the context of industrial applications since they can be cheaply and easily prepared from unpurified enzyme extracts and show improved storage and operational stability against denaturation by heat and organic solvents. In this work, by using the aforementioned advantages of MNPs of magnetite and CLEAs, we prepared two robust magnetically-separable types of nanobiocatalysts by binding either soluble enzyme onto the surface of MNPs functionalized with amino groups or by cross-linking aggregates of enzyme among them and to MNPs to obtain magnetic CLEAs. For this purpose the lipase B of Candida antarctica (CALB) was used. The hydrolytic and biosynthetic activities of the resulting magnetic nanobiocatalysts were assessed in aqueous and organic media and compared between them and to those showed by the corresponding soluble enzyme. Thus, the hydrolysis of triglycerides or the transesterification reactions to synthesize biodiesel and biosurfactants were studied using magnetic CLEAs of CALB.

  15. Peptide-modified surfaces for enzyme immobilization.

    Directory of Open Access Journals (Sweden)

    Jinglin Fu

    Full Text Available BACKGROUND: Chemistry and particularly enzymology at surfaces is a topic of rapidly growing interest, both in terms of its role in biological systems and its application in biocatalysis. Existing protein immobilization approaches, including noncovalent or covalent attachments to solid supports, have difficulties in controlling protein orientation, reducing nonspecific absorption and preventing protein denaturation. New strategies for enzyme immobilization are needed that allow the precise control over orientation and position and thereby provide optimized activity. METHODOLOGY/PRINCIPAL FINDINGS: A method is presented for utilizing peptide ligands to immobilize enzymes on surfaces with improved enzyme activity and stability. The appropriate peptide ligands have been rapidly selected from high-density arrays and when desirable, the peptide sequences were further optimized by single-point variant screening to enhance both the affinity and activity of the bound enzyme. For proof of concept, the peptides that bound to β-galactosidase and optimized its activity were covalently attached to surfaces for the purpose of capturing target enzymes. Compared to conventional methods, enzymes immobilized on peptide-modified surfaces exhibited higher specific activity and stability, as well as controlled protein orientation. CONCLUSIONS/SIGNIFICANCE: A simple method for immobilizing enzymes through specific interactions with peptides anchored on surfaces has been developed. This approach will be applicable to the immobilization of a wide variety of enzymes on surfaces with optimized orientation, location and performance, and provides a potential mechanism for the patterned self-assembly of multiple enzymes on surfaces.

  16. Multi-scale computational enzymology: enhancing our understanding of enzymatic catalysis.

    Science.gov (United States)

    Gherib, Rami; Dokainish, Hisham M; Gauld, James W

    2013-12-31

    Elucidating the origin of enzymatic catalysis stands as one the great challenges of contemporary biochemistry and biophysics. The recent emergence of computational enzymology has enhanced our atomistic-level description of biocatalysis as well the kinetic and thermodynamic properties of their mechanisms. There exists a diversity of computational methods allowing the investigation of specific enzymatic properties. Small or large density functional theory models allow the comparison of a plethora of mechanistic reactive species and divergent catalytic pathways. Molecular docking can model different substrate conformations embedded within enzyme active sites and determine those with optimal binding affinities. Molecular dynamics simulations provide insights into the dynamics and roles of active site components as well as the interactions between substrate and enzymes. Hybrid quantum mechanical/molecular mechanical (QM/MM) can model reactions in active sites while considering steric and electrostatic contributions provided by the surrounding environment. Using previous studies done within our group, on OvoA, EgtB, ThrRS, LuxS and MsrA enzymatic systems, we will review how these methods can be used either independently or cooperatively to get insights into enzymatic catalysis.

  17. Glicólise do poli(3-hidroxibutirato por via enzimática

    Directory of Open Access Journals (Sweden)

    Everton Luiz de Paul

    2014-06-01

    Full Text Available Poly(3-hydroxybutyrate, PHB, is a polymer with broad potential applications because of its biodegradability and biocompatibility. However, its high crystallinity is a limiting factor for many applications. To overcome this drawback, one strategy currently employed involves the reduction of the molecular weight of PHB with the concomitant formation of end-functionalized chains, such as those obtained via glycolysis. The glycolysis of PHB can be catalyzed by acid, base, or organometallic compounds. However, to our knowledge, there are no reports regarding PHB glycolysis catalyzed enzymatically. Among the major types of enzymes used in biocatalysis, the lipases stand out because they have the ability to catalyze reactions in both aqueous and organic media. Thus, in this study, we performed the enzymatic glycolysis of PHB using the lipase Amano PS (Pseudomonas cepacia with ethane-1,2-diol (ethylene glycol as the functionalizing agent. The results indicated that the glycolysis was successful and afforded hydroxyl-terminated oligomeric PHB polyols. Nuclear magnetic resonance spectra of the products showed characteristic signals for the terminal hydroxyl groups of the polyols, while thermogravimetric and differential scanning calorimetry analyses confirmed an increase in the thermal stability and a decrease in the crystallinity of the polyols compared with the starting PHB polymer, which were both attributed to the reduction in the molecular weight due to glycolysis.

  18. Extraction and Application of Laccases from Shimeji Mushrooms (Pleurotus ostreatus) Residues in Decolourisation of Reactive Dyes and a Comparative Study Using Commercial Laccase from Aspergillus oryzae.

    Science.gov (United States)

    Teixeira, Ricardo Sposina S; Pereira, Patrícia Maia; Ferreira-Leitão, Viridiana S

    2010-11-01

    Oxidases are able to degrade organic pollutants; however, high costs associated with biocatalysts production still hinder their use in environmental biocatalysis. Our study compared the action of a commercial laccase from Aspergillus oryzae and a rich extract from Pleurotus ostreatus cultivation residues in decolourisation of reactive dyes: Drimaren Blue X-3LR (DMBLR), Drimaren Blue X-BLN (DMBBLN), Drimaren Rubinol X-3LR (DMR), and Drimaren Blue C-R (RBBR). The colour removal was evaluated by considering dye concentration, reaction time, absence or presence of the mediator ABTS (2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid), and the source of laccase. The presence of ABTS was essential for decolourisation of DMR (80-90%, 1 h) and RBBR (80-90%, 24 h) with both laccases. The use of ABTS was not necessary in reactions containing DMBLR (85-97%, 1 h) and DMBBLN (63-84%, 24 h). The decolourisation of DMBBLN by commercial laccase showed levels near 60% while the crude extract presented 80% in 24 h.

  19. Tailored functionalization of iron oxide nanoparticles for MRI, drug delivery, magnetic separation and immobilization of biosubstances.

    Science.gov (United States)

    Hola, Katerina; Markova, Zdenka; Zoppellaro, Giorgio; Tucek, Jiri; Zboril, Radek

    2015-11-01

    In this critical review, we outline various covalent and non-covalent approaches for the functionalization of iron oxide nanoparticles (IONPs). Tuning the surface chemistry and design of magnetic nanoparticles are described in relation to their applicability in advanced medical technologies and biotechnologies including magnetic resonance imaging (MRI) contrast agents, targeted drug delivery, magnetic separations and immobilizations of proteins, enzymes, antibodies, targeting agents and other biosubstances. We review synthetic strategies for the controlled preparation of IONPs modified with frequently used functional groups including amine, carboxyl and hydroxyl groups as well as the preparation of IONPs functionalized with other species, e.g., epoxy, thiol, alkane, azide, and alkyne groups. Three main coupling strategies for linking IONPs with active agents are presented: (i) chemical modification of amine groups on the surface of IONPs, (ii) chemical modification of bioactive substances (e.g. with fluorescent dyes), and (iii) the activation of carboxyl groups mainly for enzyme immobilization. Applications for drug delivery using click chemistry linking or biodegradable bonds are compared to non-covalent methods based on polymer modified condensed magnetic nanoclusters. Among many challenges, we highlight the specific surface engineering allowing both therapeutic and diagnostic applications (theranostics) of IONPs and magnetic/metallic hybrid nanostructures possessing a huge potential in biocatalysis, green chemistry, magnetic bioseparations and bioimaging.

  20. A sandwich structured SiO(2)/cytochrome c/SiO(2) on a boron-doped diamond film electrode as an electrochemical nitrite biosensor.

    Science.gov (United States)

    Geng, Rong; Zhao, Guohua; Liu, Meichuan; Li, Mingfang

    2008-06-01

    A novel sandwich structured SiO(2) gel/cytochrome c (Cyt c)/SiO(2) gel was designed and constructed on conductive boron-doped diamond (BDD) film substrate. A SiO(2) gel membrane was first in situ deposited on the pretreated positive charged H-terminated BDD electrode with a simple and artful surface vapor sol-gel method. Cyt c was subsequently immobilized onto the SiO(2) membranes by electrostatic attraction, followed by another SiO(2) gel layer in situ depositing on it. The SiO(2) interlayer was conceived to play an important role in the resultant sandwich structured SiO(2)/Cyt c/SiO(2)/BDD electrode as a selective "semi-open" medium, which guaranteed the immobilized Cyt c to maintain high stability and perform good electrochemistry and biocatalysis responses. The bioactivity of Cyt c was well protected and the immobilized biomolecule even didn't denature at extremely high or low pH condition. More attractively, Cyt c in the sandwich structured electrode could be further oxidized into highly reactive Cyt c pi-cation by two-step electrochemical oxidation, which could oxidize NO(2)(-) into NO(3)(-) in the solution. A sensitive determination approach of nitrite was accordingly built up based on this biocatalytic oxidative interaction for the first time and a possible mechanism of the interaction was herein proposed.

  1. Recent developments in manufacturing oligosaccharides with prebiotic functions.

    Science.gov (United States)

    Kovács, Zoltán; Benjamins, Eric; Grau, Konrad; Ur Rehman, Amad; Ebrahimi, Mehrdad; Czermak, Peter

    2014-01-01

    The market for prebiotics is steadily growing. To satisfy this increasing worldwide demand, the introduction of effective bioprocessing methods and implementation strategies is required. In this chapter, we review recent developments in the manufacture of galactooligosaccharides (GOS) and fructooligosaccharides (FOS). These well-established oligosaccharides (OS) provide several health benefits and have excellent technological properties that make their use as food ingredients especially attractive. The biosyntheses of lactose-based GOS and sucrose-based FOS show similarities in terms of reaction mechanisms and product formation. Both GOS and FOS can be synthesized using whole cells or (partially) purified enzymes in immobilized or free forms. The biocatalysis results in a final product that consists of OS, unreacted disaccharides, and monosaccharides. This incomplete conversion poses a challenge to manufacturers because an enrichment of OS in this mixture adds value to the product. For removing digestible carbohydrates from OS, a variety of bioengineering techniques have been investigated, including downstream separation technologies, additional bioconversion steps applying enzymes, and selective fermentation strategies. This chapter summarizes the state-of-the-art manufacturing strategies and recent advances in bioprocessing technologies that can lead to new possibilities for manufacturing and purifying sucrose-based FOS and lactose-based GOS.

  2. ENABLING MULTIENZYME BIOACTIVE SYSTEMS USING A MULTISCALE APPROACH

    Institute of Scientific and Technical Information of China (English)

    Ping Wang; Guanghui Ma; Fei Gao; Liang Liao

    2005-01-01

    The potentials of multi-scale design that combines both nanoscale and microscale mechanisms for biocatalysis involving multiple enzymes and cofactor(s) are examined. Performance of these complex systems depends on proper interactions among the enzymes and cofactor(s). In this work, nanoparticle-based multiple enzymes and tethered cofactor are designed to stimulate such interactions. Furthermore, the nanostructures are encapsulated in microcapsules with membranes possessing pores that are comparable to the size of nanoparticles. While the nanoparticles are the "motor" driving.the complex reactions inside the capsules, the nano-sized pores of the microspheres allow efficient molecular diffusion for rapid reactant supply and product removal. The microcapsules can then be used in form of packed bed or suspension reactors for large-scale industrial operations. The multi-level design provides the mechanism for matching reaction and mass transfer rates, and for optimizing the volumetric productivity. This study showcases an interesting concept which entails interactions among nanostructured multiple enzymes and cofactor, the integration of complex nano-scale catalytic structures into micro-scale and then industrial process-scale systems for long-term continuous operations.

  3. Real-Time Monitoring of Chemical and Topological Rearrangements in Solidifying Amphiphilic Polymer Co-Networks: Understanding Surface Demixing.

    Science.gov (United States)

    Guzman, Gustavo; Nugay, Turgut; Kennedy, Joseph P; Cakmak, Mukerrem

    2016-04-12

    Amphiphilic polymer co-networks provide a unique route to integrating contrasting attributes of otherwise immiscible components within a bicontinuous percolating morphology and are anticipated to be valuable for applications such as biocatalysis, sensing of metabolites, and dual dialysis membranes. These co-networks are in essence chemically forced blends and have been shown to selectively phase-separate at surfaces during film formation. Here, we demonstrate that surface demixing at the air-film interface in solidifying polymer co-networks is not a unidirectional process; instead, a combination of kinetic and thermodynamic interactions leads to dynamic molecular rearrangement during solidification. Time-resolved gravimetry, low contact angles, and negative out-of-plane birefringence provided strong experimental evidence of the transitory trapping of thermodynamically unfavorable hydrophilic moieties at the air-film interface due to fast asymmetric solvent depletion. We also find that slow-drying hydrophobic elements progressively substitute hydrophilic domains at the surface as the surface energy is minimized. These findings are broadly applicable to common-solvent bicontinuous systems and open the door for process-controlled performance improvements in diverse applications. Similar observations could potentially be coupled with controlled polymerization rates to maximize the intermingling of bicontinuous phases at surfaces, thus generating true three-dimensional, bicontinuous, and undisturbed percolation pathways throughout the material.

  4. Technical and economic assessment of processes for the production of butanol and acetone. Phase two: analysis of research advances. Energy Conversion and Utilization Technologies Program

    Energy Technology Data Exchange (ETDEWEB)

    None

    1984-08-01

    The initial objective of this work was to develop a methodology for analyzing the impact of technological advances as a tool to help establish priorities for R and D options in the field of biocatalysis. As an example of a biocatalyzed process, butanol/acetone fermentation (ABE process) was selected as the specific topic of study. A base case model characterizing the technology and economics associated with the ABE process was developed in the previous first phase of study. The project objectives were broadened in this second phase of work to provide parametric estimates of the economic and energy impacts of a variety of research advances in the hydrolysis, fermentation and purification sections of the process. The research advances analyzed in this study were based on a comprehensive literature review. The six process options analyzed were: continuous ABE fermentaton; vacuum ABE fermentation; Baelene solvent extraction; HRI's Lignol process; improved prehydrolysis/dual enzyme hydrolysis; and improved microorganism tolerance to butanol toxicity. Of the six options analyzed, only improved microorganism tolerance to butanol toxicity had a significant positive effect on energy efficiency and economics. This particular process option reduced the base case production cost (including 10% DCF return) by 20% and energy consumption by 16%. Figures and tables.

  5. Non-conventional gas phase remediation of volatile halogenated compounds by dehydrated bacteria.

    Science.gov (United States)

    Erable, Benjamin; Goubet, Isabelle; Seltana, Amira; Maugard, Thierry

    2009-06-01

    Traditional biological removal processes are limited by the low solubility of halogenated compounds in aqueous media. A new technology appears very suitable for the remediation of these volatile organic compounds (VOCs). Solid/gas bio-catalysis applied in VOC remediation can transform halogenated compounds directly in the gas phase using dehydrated cells as a bio-catalyst. The hydrolysis of volatile halogenated substrates into the corresponding alcohol was studied in a solid/gas biofilter where lyophilised bacterial cultures were used as the catalyst. Four strains containing dehalogenase enzymes were tested for the hydrolysis of 1-chlorobutane. The highest removal yield was obtained using the dhaA-containing strains, the maximal reaction rate of 0.8 micromol min(-1)g(-1) being observed with Escherichia coli BL21(DE3)(dhaA). Various treatments such as cell disruption by lysozyme or alkaline gas addition in the bio-filter could stabilise the dehalogenase activity of the bacteria. A pre-treatment of the dehydrated bacterial cells by ammonia vapour improved the stability of the catalyst and a removal activity of 0.9 micromol min(-1)g(-1) was then obtained for 60h. Finally, the process was extended to a range of halogenated substrates including bromo- and chloro-substrates. It was shown that the removal capacity for long halogenated compounds (C(5)-C(6)) was greatly increased relative to traditional biological processes.

  6. Directed evolution strategies for improved enzymatic performance

    Directory of Open Access Journals (Sweden)

    Dalby Paul A

    2005-10-01

    Full Text Available Abstract The engineering of enzymes with altered activity, specificity and stability, using directed evolution techniques that mimic evolution on a laboratory timescale, is now well established. However, the general acceptance of these methods as a route to new biocatalysts for organic synthesis requires further improvement of the methods for both ease-of-use and also for obtaining more significant changes in enzyme properties than is currently possible. Recent advances in library design, and methods of random mutagenesis, combined with new screening and selection tools, continue to push forward the potential of directed evolution. For example, protein engineers are now beginning to apply the vast body of knowledge and understanding of protein structure and function, to the design of focussed directed evolution libraries, with striking results compared to the previously favoured random mutagenesis and recombination of entire genes. Significant progress in computational design techniques which mimic the experimental process of library screening is also now enabling searches of much greater regions of sequence-space for those catalytic reactions that are broadly understood and, therefore, possible to model. Biocatalysis for organic synthesis frequently makes use of whole-cells, in addition to isolated enzymes, either for a single reaction or for transformations via entire metabolic pathways. As many new whole-cell biocatalysts are being developed by metabolic engineering, the potential of directed evolution to improve these initial designs is also beginning to be realised.

  7. Esterase Active in Polar Organic Solvents from the Yeast Pseudozyma sp. NII 08165

    Directory of Open Access Journals (Sweden)

    Deepthy Alex

    2014-01-01

    Full Text Available Esterases/lipases active in water miscible solvents are highly desired in biocatalysis where substrate solubility is limited and also when the solvent is desired as an acyl acceptor in transesterification reactions, as with the case of biodiesel production. We have isolated an esterase from the glycolipid producing yeast-Pseudozyma sp. NII 08165 which in its crude form was alkali active, thermo stable, halo tolerant and also capable of acting in presence of high methanol concentration. The crude enzyme which maintained 90% of its original activity after being treated at 70°C was purified and the properties were characterized. The partially purified esterase preparation had temperature and pH optima of 60°C and 8.0 respectively. The enzyme retained almost complete activity in presence of 25% methanol and 80% activity in the same strength of ethanol. Conditions of enzyme production were optimized, which lead to 9 fold increase in the esterase yield. One of the isoforms of the enzyme LIP1 was purified to homogeneity and characterized. Purified LIP1 had a Km and Vmax of 0.01 and 1.12, respectively. The purified esterase lost its thermo and halo tolerance but interestingly, retained 97% activity in methanol.

  8. A water-forming NADH oxidase from Lactobacillus pentosus suitable for the regeneration of synthetic biomimetic cofactors.

    Science.gov (United States)

    Nowak, Claudia; Beer, Barbara; Pick, André; Roth, Teresa; Lommes, Petra; Sieber, Volker

    2015-01-01

    The cell-free biocatalytic production of fine chemicals by oxidoreductases has continuously grown over the past years. Since especially dehydrogenases depend on the stoichiometric use of nicotinamide pyridine cofactors, an integrated efficient recycling system is crucial to allow process operation under economic conditions. Lately, the variety of cofactors for biocatalysis was broadened by the utilization of totally synthetic and cheap biomimetics. Though, to date the regeneration has been limited to chemical or electrochemical methods. Here, we report an enzymatic recycling by the flavoprotein NADH-oxidase from Lactobacillus pentosus (LpNox). Since this enzyme has not been described before, we first characterized it in regard to its optimal reaction parameters. We found that the heterologously overexpressed enzyme only contained 13% FAD. In vitro loading of the enzyme with FAD, resulted in a higher specific activity towards its natural cofactor NADH as well as different nicotinamide derived biomimetics. Apart from the enzymatic recycling, which gives water as a by-product by transferring four electrons onto oxygen, unbound FAD can also catalyze the oxidation of biomimetic cofactors. Here a two electron process takes place yielding H2O2 instead. The enzymatic and chemical recycling was compared in regard to reaction kinetics for the natural and biomimetic cofactors. With LpNox and FAD, two recycling strategies for biomimetic cofactors are described with either water or hydrogen peroxide as by-product.

  9. Self-powered sensor for trace Hg2+ detection.

    Science.gov (United States)

    Wen, Dan; Deng, Liu; Guo, Shaojun; Dong, Shaojun

    2011-05-15

    A self-powered electrochemical sensor has been facilely designed for sensitive detection of Hg(2+) based on the inhibition of biocatalysis process of enzymatic biofuel cell (BFC) for the first time. The as-prepared one-compartment BFC, which was consisted of alcohol dehydrogenase supported on single-walled carbon nanohorns-based mediator system as the anode and bilirubin oxidase as the cathodic biocatalyst, generated an open circuit potential (V(oc)) of 636 mV and a maximum power density of 137 μW cm(-2). It was interestingly found that the presence of Hg(2+) would affect the performance of the constructed BFC (e.g., V(oc)). Taking advantage of the inhibitive effect of Hg(2+), a novel self-powered Hg(2+) sensor has been developed, which showed a linear range of 1-500 nM (R(2) = 0.999) with a detection limit of 1 nM at room temperature. In addition, this BFC-type sensor exhibited good selectivity for Hg(2+) against other common environmental metal ions, and the feasibility of the method for Hg(2+) detection in actual water samples (i.e., tap, ground, and lake water) was demonstrated with satisfactory results.

  10. Preparation and Characterization of Immobilized Lipase from Pseudomonas Cepacia onto Magnetic Cellulose Nanocrystals

    Science.gov (United States)

    Cao, Shi-Lin; Huang, Yu-Mei; Li, Xue-Hui; Xu, Pei; Wu, Hong; Li, Ning; Lou, Wen-Yong; Zong, Min-Hua

    2016-02-01

    Magnetic cellulose nanocrystals (MCNCs) were prepared and used as an enzyme support for immobilization of Pseudomonas cepacialipase (PCL). PCL was successfully immobilized onto MCNCs (PCL@MCNC) by a precipitation-cross-linking method. The resulting PCL@MCNC with a nanoscale size had high enzyme loading (82.2 mg enzyme/g) and activity recovery (95.9%). Compared with free PCL, PCL@MCNC exhibited significantly enhanced stability and solvent tolerance, due to the increase of enzyme structure rigidity. The observable optimum pH and temperature for PCL@MCNC were higher than those of free PCL. PCL@MCNC manifested relatively higher enzyme-substrate affinity and catalytic efficiency. Moreover, PCL@MCNC was capable of effectively catalyzing asymmetric hydrolysis of ketoprofenethyl ester with high yield of 43.4% and product e.e. of 83.5%. Besides, immobilization allowed PCL@MCNC reuse for at least 6 consecutive cycles retaining over 66% of its initial activity. PCL@MCNC was readily recycled by magnetic forces. Remarkably, the as-prepared nanobiocatalyst PCL@MCNC is promising for biocatalysis.

  11. Advances in lipase-catalyzed esterification reactions.

    Science.gov (United States)

    Stergiou, Panagiota-Yiolanda; Foukis, Athanasios; Filippou, Michalis; Koukouritaki, Maria; Parapouli, Maria; Theodorou, Leonidas G; Hatziloukas, Efstathios; Afendra, Amalia; Pandey, Ashok; Papamichael, Emmanuel M

    2013-12-01

    Lipase-catalyzed esterification reactions are among the most significant chemical and biochemical processes of industrial relevance. Lipases catalyze hydrolysis as well as esterification reactions. Enzyme-catalyzed esterification has acquired increasing attention in many applications, due to the significance of the derived products. More specifically, the lipase-catalyzed esterification reactions attracted research interest during the past decade, due to an increased use of organic esters in biotechnology and the chemical industry. Lipases, as hydrolyzing agents are active in environments, which contain a minimum of two distinct phases, where all reactants are partitioned between these phases, although their distribution is not fixed and changes as the reaction proceeds. The kinetics of the lipase-catalyzed reactions is governed by a number of factors. This article presents a thorough and descriptive evaluation of the applied trends and perspectives concerning the enzymatic esterification, mainly for biofuel production; an emphasis is given on essential factors, which affect the lipase-catalyzed esterification reaction. Moreover, the art of using bacterial and/or fungal strains for whole cell biocatalysis purposes, as well as carrying out catalysis by various forms of purified lipases from bacterial and fungal sources is also reviewed.

  12. Esterification of oleic acid with methanol by immobilized lipase on wrinkled silica nanoparticles with highly ordered, radially oriented mesochannels.

    Science.gov (United States)

    Pang, Jinli; Zhou, Guowei; Liu, Ruirui; Li, Tianduo

    2016-02-01

    Mesoporous silica nanoparticles with a wrinkled structure (wrinkled silica nanoparticles, WSNs) having highly ordered, radially oriented mesochannels were synthesized by a solvothermal method. The method used a mixture of cyclohexane, ethanol, and water as solvent, tetraethoxysilane (TEOS) as source of inorganic silica, ammonium hydroxide as hydrolysis additive, cetyltrimethylammonium bromide (CTAB) as surfactant, and polyvinylpyrrolidone (PVP) as stabilizing agent of particle growth. Particle size (240nm to 540nm), specific surface areas (490m(2)g(-1) to 634m(2)g(-1)), surface morphology (radial wrinkled structures), and pore structure (radially oriented mesochannels) of WSN samples were varied using different molar ratios of CTAB to PVP. Using synthesized WSN samples with radially oriented mesochannels as support, we prepared immobilized Candida rugosa lipase (CRL) as a new biocatalyst for biodiesel production through the esterification of oleic acid with methanol. These results suggest that WSNs with highly ordered, radially oriented mesochannels have promising applications in biocatalysis, with the highest oleic acid conversion rate of about 86.4% under the optimum conditions.

  13. Highly stereoselective biosynthesis of (R)-α-hydroxy carboxylic acids through rationally re-designed mutation of D-lactate dehydrogenase.

    Science.gov (United States)

    Zheng, Zhaojuan; Sheng, Binbin; Gao, Chao; Zhang, Haiwei; Qin, Tong; Ma, Cuiqing; Xu, Ping

    2013-12-02

    An NAD-dependent D-lactate dehydrogenase (D-nLDH) of Lactobacillus bulgaricus ATCC 11842 was rationally re-designed for asymmetric reduction of a homologous series of α-keto carboxylic acids such as phenylpyruvic acid (PPA), α-ketobutyric acid, α-ketovaleric acid, β-hydroxypyruvate. Compared with wild-type D-nLDH, the Y52L mutant D-nLDH showed elevated activities toward unnatural substrates especially with large substitutes at C-3. By the biocatalysis combined with a formate dehydrogenase for in situ generation of NADH, the corresponding (R)-α-hydroxy carboxylic acids could be produced at high yields and highly optical purities. Taking the production of chiral (R)-phenyllactic acid (PLA) from PPA for example, 50 mM PPA was completely reduced to (R)-PLA in 90 min with a high yield of 99.0% and a highly optical purity (>99.9% e.e.) by the coupling system. The results presented in this work suggest a promising alternative for the production of chiral α-hydroxy carboxylic acids.

  14. Enzyme surface rigidity tunes the temperature dependence of catalytic rates.

    Science.gov (United States)

    Isaksen, Geir Villy; Åqvist, Johan; Brandsdal, Bjørn Olav

    2016-07-12

    The structural origin of enzyme adaptation to low temperature, allowing efficient catalysis of chemical reactions even near the freezing point of water, remains a fundamental puzzle in biocatalysis. A remarkable universal fingerprint shared by all cold-active enzymes is a reduction of the activation enthalpy accompanied by a more negative entropy, which alleviates the exponential decrease in chemical reaction rates caused by lowering of the temperature. Herein, we explore the role of protein surface mobility in determining this enthalpy-entropy balance. The effects of modifying surface rigidity in cold- and warm-active trypsins are demonstrated here by calculation of high-precision Arrhenius plots and thermodynamic activation parameters for the peptide hydrolysis reaction, using extensive computer simulations. The protein surface flexibility is systematically varied by applying positional restraints, causing the remarkable effect of turning the cold-active trypsin into a variant with mesophilic characteristics without changing the amino acid sequence. Furthermore, we show that just restraining a key surface loop causes the same effect as a point mutation in that loop between the cold- and warm-active trypsin. Importantly, changes in the activation enthalpy-entropy balance of up to 10 kcal/mol are almost perfectly balanced at room temperature, whereas they yield significantly higher rates at low temperatures for the cold-adapted enzyme.

  15. Magnetic separations: From steel plants to biotechnology

    Energy Technology Data Exchange (ETDEWEB)

    Cafer T. Yavuz; Arjun Prakash; J.T. Mayo; Vicki L. Colvin [Rice University, Houston, TX (United States). Department of Chemistry

    2009-05-15

    Magnetic separations have for decades been essential processes in diverse industries ranging from steel production to coal desulfurization. In such settings magnetic fields are used in continuous flow processes as filters to remove magnetic impurities. High gradient magnetic separation (HGMS) has found even broader use in wastewater treatment and food processing. Batch scale magnetic separations are also relevant in industry, particularly biotechnology where fixed magnetic separators are used to purify complex mixtures for protein isolation, cell separation, drug delivery, and biocatalysis. In this review, we introduce the basic concepts behind magnetic separations and summarize a few examples of its large scale application. HGMS systems and batch systems for magnetic separations have been developed largely in parallel by different communities. However, in this work we compare and contrast each approach so that investigators can approach both key areas. Finally, we discuss how new advances in magnetic materials, particularly on the nanoscale, as well as magnetic filter design offer new opportunities for industries that have challenging separation problems.

  16. Structure-Function Relationships in l-Amino Acid Deaminase, a Flavoprotein Belonging to a Novel Class of Biotechnologically Relevant Enzymes.

    Science.gov (United States)

    Motta, Paolo; Molla, Gianluca; Pollegioni, Loredano; Nardini, Marco

    2016-05-13

    l-Amino acid deaminase from Proteus myxofaciens (PmaLAAD) is a membrane flavoenzyme that catalyzes the deamination of neutral and aromatic l-amino acids into α-keto acids and ammonia. PmaLAAD does not use dioxygen to re-oxidize reduced FADH2 and thus does not produce hydrogen peroxide; instead, it uses a cytochrome b-like protein as an electron acceptor. Although the overall fold of this enzyme resembles that of known amine or amino acid oxidases, it shows the following specific structural features: an additional novel α+β subdomain placed close to the putative transmembrane α-helix and to the active-site entrance; an FAD isoalloxazine ring exposed to solvent; and a large and accessible active site suitable to bind large hydrophobic substrates. In addition, PmaLAAD requires substrate-induced conformational changes of part of the active site, particularly in Arg-316 and Phe-318, to achieve the correct geometry for catalysis. These studies are expected to pave the way for rationally improving the versatility of this flavoenzyme, which is critical for biocatalysis of enantiomerically pure amino acids.

  17. Biocatalytic carbon capture via reversible reaction cycle catalyzed by isocitrate dehydrogenase.

    Science.gov (United States)

    Xia, Shunxiang; Frigo-Vaz, Benjamin; Zhao, Xueyan; Kim, Jungbae; Wang, Ping

    2014-09-12

    The practice of carbon capture and storage (CCS) requires efficient capture and separation of carbon dioxide from its gaseous mixtures such as flue gas, followed by releasing it as a pure gas which can be subsequently compressed and injected into underground storage sites. This has been mostly achieved via reversible thermochemical reactions which are generally energy-intensive. The current work examines a biocatalytic approach for carbon capture using an NADP(H)-dependent isocitrate dehydrogenase (ICDH) which catalyzes reversibly carboxylation and decarboxylation reactions. Different from chemical carbon capture processes that rely on thermal energy to realize purification of carbon dioxide, the biocatalytic strategy utilizes pH to leverage the reaction equilibrium, thereby realizing energy-efficient carbon capture under ambient conditions. Results showed that over 25 mol of carbon dioxide could be captured and purified from its gas mixture for each gram of ICDH applied for each carboxylation/decarboxylation reaction cycle by varying pH between 6 and 9. This work demonstrates the promising potentials of pH-sensitive biocatalysis as a green-chemistry route for carbon capture.

  18. Metabolic engineering in methanotrophic bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Kalyuzhnaya, MG; Puri, AW; Lidstrom, ME

    2015-05-01

    Methane, as natural gas or biogas, is the least expensive source of carbon for (bio)chemical synthesis. Scalable biological upgrading of this simple alkane to chemicals and fuels can bring new sustainable solutions to a number of industries with large environmental footprints, such as natural gas/petroleum production, landfills, wastewater treatment, and livestock. Microbial biocatalysis with methane as a feedstock has been pursued off and on for almost a half century, with little enduring success. Today, biological engineering and systems biology provide new opportunities for metabolic system modulation and give new optimism to the concept of a methane-based bio-industry. Here we present an overview of the most recent advances pertaining to metabolic engineering of microbial methane utilization. Some ideas concerning metabolic improvements for production of acetyl-CoA and pyruvate, two main precursors for bioconversion, are presented. We also discuss main gaps in the current knowledge of aerobic methane utilization, which must be solved in order to release the full potential of methane-based biosystems. (C) 2015 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  19. Efficient production of D-tagatose using a food-grade surface display system.

    Science.gov (United States)

    Liu, Yi; Li, Sha; Xu, Hong; Wu, Lingtian; Xu, Zheng; Liu, Jing; Feng, Xiaohai

    2014-07-16

    D-tagatose, a functional sweetener, is commonly transformed from D-galactose by L-arabinose isomerase (L-AI). In this study, a novel type of biocatalyst, L-AI from Lactobacillus fermentum CGMCC2921 displayed on the spore surface of Bacillus subtilis 168, was developed for producing D-tagatose. The anchored L-AI, exhibiting the relatively high bioactivity, suggested that the surface display system using CotX as the anchoring protein was successfully constructed. The stability of the anchored L-AI was significantly improved. Specifically, the consolidation of thermal stability representing 87% of relative activity was retained even at 80 °C for 30 min, which remarkably favored the production of D-tagatose. Under the optimal conditions, the robust spores can convert 75% D-galactose (100 g/L) into D-tagatose after 24 h, and the conversion rate remained at 56% at the third cycle. Therefore, this biocatalysis system, which could express the target enzyme on the food-grade vector, was an alternative method for the value-added production of D-tagatose.

  20. Enzymes as modular catalysts for redox half-reactions in H2-powered chemical synthesis: from biology to technology

    Science.gov (United States)

    Reeve, Holly A.; Ash, Philip A.; Park, HyunSeo; Huang, Ailun; Posidias, Michalis; Tomlinson, Chloe; Lenz, Oliver

    2017-01-01

    The present study considers the ways in which redox enzyme modules are coupled in living cells for linking reductive and oxidative half-reactions, and then reviews examples in which this concept can be exploited technologically in applications of coupled enzyme pairs. We discuss many examples in which enzymes are interfaced with electronically conductive particles to build up heterogeneous catalytic systems in an approach which could be termed synthetic biochemistry. We focus on reactions involving the H+/H2 redox couple catalysed by NiFe hydrogenase moieties in conjunction with other biocatalysed reactions to assemble systems directed towards synthesis of specialised chemicals, chemical building blocks or bio-derived fuel molecules. We review our work in which this approach is applied in designing enzyme-modified particles for H2-driven recycling of the nicotinamide cofactor NADH to provide a clean cofactor source for applications of NADH-dependent enzymes in chemical synthesis, presenting a combination of published and new work on these systems. We also consider related photobiocatalytic approaches for light-driven production of chemicals or H2 as a fuel. We emphasise the techniques available for understanding detailed catalytic properties of the enzymes responsible for individual redox half-reactions, and the importance of a fundamental understanding of the enzyme characteristics in enabling effective applications of redox biocatalysis. PMID:28062838

  1. Coenzyme Engineering of a Hyperthermophilic 6-Phosphogluconate Dehydrogenase from NADP+ to NAD+ with Its Application to Biobatteries

    Science.gov (United States)

    Chen, Hui; Zhu, Zhiguang; Huang, Rui; Zhang, Yi-Heng Percival

    2016-11-01

    Engineering the coenzyme specificity of redox enzymes plays an important role in metabolic engineering, synthetic biology, and biocatalysis, but it has rarely been applied to bioelectrochemistry. Here we develop a rational design strategy to change the coenzyme specificity of 6-phosphogluconate dehydrogenase (6PGDH) from a hyperthermophilic bacterium Thermotoga maritima from its natural coenzyme NADP+ to NAD+. Through amino acid-sequence alignment of NADP+- and NAD+-preferred 6PGDH enzymes and computer-aided substrate-coenzyme docking, the key amino acid residues responsible for binding the phosphate group of NADP+ were identified. Four mutants were obtained via site-directed mutagenesis. The best mutant N32E/R33I/T34I exhibited a ~6.4 × 104-fold reversal of the coenzyme selectivity from NADP+ to NAD+. The maximum power density and current density of the biobattery catalyzed by the mutant were 0.135 mW cm-2 and 0.255 mA cm-2, ~25% higher than those obtained from the wide-type 6PGDH-based biobattery at the room temperature. By using this 6PGDH mutant, the optimal temperature of running the biobattery was as high as 65 °C, leading to a high power density of 1.75 mW cm-2. This study demonstrates coenzyme engineering of a hyperthermophilic 6PGDH and its application to high-temperature biobatteries.

  2. Bioprocessing of a stored mixed liquid waste

    Energy Technology Data Exchange (ETDEWEB)

    Wolfram, J.H.; Rogers, R.D. [Idaho National Engineering Lab., Idaho Falls, ID (United States); Finney, R. [Mound Applied Technologies, Miamisburg, OH (United States)] [and others

    1995-12-31

    This paper describes the development and results of a demonstration for a continuous bioprocess for mixed waste treatment. A key element of the process is an unique microbial strain which tolerates high levels of aromatic solvents and surfactants. This microorganism is the biocatalysis of the continuous flow system designed for the processing of stored liquid scintillation wastes. During the past year a process demonstration has been conducted on commercial formulation of liquid scintillation cocktails (LSC). Based on data obtained from this demonstration, the Ohio EPA granted the Mound Applied Technologies Lab a treatability permit allowing the limited processing of actual mixed waste. Since August 1994, the system has been successfully processing stored, {open_quotes}hot{close_quotes} LSC waste. The initial LSC waste fed into the system contained 11% pseudocumene and detectable quantities of plutonium. Another treated waste stream contained pseudocumene and tritium. Data from this initial work shows that the hazardous organic solvent, and pseudocumene have been removed due to processing, leaving the aqueous low level radioactive waste. Results to date have shown that living cells are not affected by the dissolved plutonium and that 95% of the plutonium was sorbed to the biomass. This paper discusses the bioprocess, rates of processing, effluent, and the implications of bioprocessing for mixed waste management.

  3. Enzymes as modular catalysts for redox half-reactions in H2-powered chemical synthesis: from biology to technology.

    Science.gov (United States)

    Reeve, Holly A; Ash, Philip A; Park, HyunSeo; Huang, Ailun; Posidias, Michalis; Tomlinson, Chloe; Lenz, Oliver; Vincent, Kylie A

    2017-01-15

    The present study considers the ways in which redox enzyme modules are coupled in living cells for linking reductive and oxidative half-reactions, and then reviews examples in which this concept can be exploited technologically in applications of coupled enzyme pairs. We discuss many examples in which enzymes are interfaced with electronically conductive particles to build up heterogeneous catalytic systems in an approach which could be termed synthetic biochemistry We focus on reactions involving the H(+)/H2 redox couple catalysed by NiFe hydrogenase moieties in conjunction with other biocatalysed reactions to assemble systems directed towards synthesis of specialised chemicals, chemical building blocks or bio-derived fuel molecules. We review our work in which this approach is applied in designing enzyme-modified particles for H2-driven recycling of the nicotinamide cofactor NADH to provide a clean cofactor source for applications of NADH-dependent enzymes in chemical synthesis, presenting a combination of published and new work on these systems. We also consider related photobiocatalytic approaches for light-driven production of chemicals or H2 as a fuel. We emphasise the techniques available for understanding detailed catalytic properties of the enzymes responsible for individual redox half-reactions, and the importance of a fundamental understanding of the enzyme characteristics in enabling effective applications of redox biocatalysis.

  4. Structural and functional insights into asymmetric enzymatic dehydration of alkenols.

    Science.gov (United States)

    Nestl, Bettina M; Geinitz, Christopher; Popa, Stephanie; Rizek, Sari; Haselbeck, Robert J; Stephen, Rosary; Noble, Michael A; Fischer, Max-Philipp; Ralph, Erik C; Hau, Hoi Ting; Man, Henry; Omar, Muhiadin; Turkenburg, Johan P; van Dien, Stephen; Culler, Stephanie J; Grogan, Gideon; Hauer, Bernhard

    2017-03-01

    The asymmetric dehydration of alcohols is an important process for the direct synthesis of alkenes. We report the structure and substrate specificity of the bifunctional linalool dehydratase isomerase (LinD) from the bacterium Castellaniella defragrans that catalyzes in nature the hydration of β-myrcene to linalool and the subsequent isomerization to geraniol. Enzymatic kinetic resolutions of truncated and elongated aromatic and aliphatic tertiary alcohols (C5-C15) that contain a specific signature motif demonstrate the broad substrate specificity of LinD. The three-dimensional structure of LinD from Castellaniella defragrans revealed a pentamer with active sites at the protomer interfaces. Furthermore, the structure of LinD in complex with the product geraniol provides initial mechanistic insights into this bifunctional enzyme. Site-directed mutagenesis confirmed active site amino acid residues essential for its dehydration and isomerization activity. These structural and mechanistic insights facilitate the development of hydrating catalysts, enriching the toolbox for novel bond-forming biocatalysis.

  5. Not so monofunctional--a case of thermostable Thermobifida fusca catalase with peroxidase activity.

    Science.gov (United States)

    Lončar, Nikola; Fraaije, Marco W

    2015-03-01

    Thermobifida fusca is a mesothermophilic organism known for its ability to degrade plant biomass and other organics, and it was demonstrated that it represents a rich resource of genes encoding for potent enzymes for biocatalysis. The thermostable catalase from T. fusca has been cloned and overexpressed in Escherichia coli with a yield of 400 mg/L. Heat treatment of disrupted cells at 60 °C for 1 h resulted in enzyme preparation of high purity; hence, no chromatography steps are needed for large-scale production. Except for catalyzing the dismutation of hydrogen peroxide, TfuCat was also found to catalyze oxidations of phenolic compounds. The catalase activity was comparable to other described catalases while peroxidase activity was quite remarkable with a k obs of nearly 1000 s(-1) for catechol. Site directed mutagenesis was used to alter the ratio of peroxidase/catalase activity. Resistance to inhibition by classic catalase inhibitors and an apparent melting temperature of 74 °C classifies this enzyme as a robust biocatalyst. As such, it could compete with other commercially available catalases while the relatively high peroxidase activity also offers new biocatalytic possibilities.

  6. An updated view on horseradish peroxidases: recombinant production and biotechnological applications.

    Science.gov (United States)

    Krainer, Florian W; Glieder, Anton

    2015-02-01

    Horseradish peroxidase has been the subject of scientific research for centuries. It has been used exhaustively as reporter enzyme in diagnostics and histochemistry and still plays a major role in these applications. Numerous studies have been conducted on the role of horseradish peroxidase in the plant and its catalytic mechanism. However, little progress has been made in its recombinant production. Until now, commercial preparations of horseradish peroxidase are still isolated from plant roots. These preparations are commonly mixtures of various isoenzymes of which only a small fraction has been described so far. The composition of isoenzymes in these mixed isolates is subjected to uncontrollable environmental conditions. Nowadays, horseradish peroxidase regains interest due to its broad applicability in the fields of medicine, life sciences, and biotechnology in cancer therapy, biosensor systems, bioremediation, and biocatalysis. These medically and commercially relevant applications, the recent discovery of new natural isoenzymes with different biochemical properties, as well as the challenges in recombinant production render this enzyme particularly interesting for future biotechnological solutions. Therefore, we reviewed previous studies as well as current developments with biotechnological emphasis on new applications and the major remaining biotechnological challenge-the efficient recombinant production of horseradish peroxidase enzymes.

  7. Amino acids-incorporated nanoflowers with an intrinsic peroxidase-like activity

    Science.gov (United States)

    Wu, Zhuo-Fu; Wang, Zhi; Zhang, Ye; Ma, Ya-Li; He, Cheng-Yan; Li, Heng; Chen, Lei; Huo, Qi-Sheng; Wang, Lei; Li, Zheng-Qiang

    2016-03-01

    Functional molecules synthesized by self-assembly between inorganic salts and amino acids have attracted much attention in recent years. A simple method is reported here for fabricating hybrid organic–inorganic nanoflowers using copper (II) ions as the inorganic component and natural amino acids as the organic component. The results indicate that the interactions between amino acid and copper ions cause the growth of the nanoflowers composed by C, N, Cu, P and O elements. The Cu ions and Cu(AA)n complexes containing Cu-O bond are present in the nanoflowers. The nanoflowers have flower-like porous structure dominated by the R groups of amino acids with high surface-to-volume ratios, which is beneficial for exerting its peroxidase-like activity depending on Fenton-like reaction mechanism with ABTS and Rhodamine B as the substrates. It is expected that the nanoflowers hold great promise as enzyme mimics for application in the field of biosensor, bioanalysis and biocatalysis.

  8. Characterization of two novel alcohol short-chain dehydrogenases/reductases from Ralstonia eutropha H16 capable of stereoselective conversion of bulky substrates.

    Science.gov (United States)

    Magomedova, Zalina; Grecu, Andreea; Sensen, Christoph W; Schwab, Helmut; Heidinger, Petra

    2016-03-10

    Biocatalysis has significant advantages over organic synthesis in the field of chiral molecule production and several types of stereoselective enzymes are already in use in industrial biotechnology. However, there is still a high demand for new enzymes capable of transforming bulky molecules with sufficient operability. In order to reveal novel high-potential biocatalysts, the complete genome of the β-proteobacterium Ralstonia eutropha H16 was screened for potential short-chain dehydrogenases/reductases (SDRs). We were able to identify two (S)-enantioselective SDRs named A5 and B3. These showed clear preference towards long-chain and aromatic secondary alcohols, aldehydes and ketones, with diaryl diketone benzil as one of the best substrates. In addition the phylogenetic analysis of all enzyme types, which are known to facilitate benzil reduction, revealed at least two separate evolutionary clusters. Our results indicate the biotechnological potential of SDRs A5 and B3 for the production of chiral compounds with potential commercial value.

  9. Extraction and Application of Laccases from Shimeji Mushrooms (Pleurotus ostreatus Residues in Decolourisation of Reactive Dyes and a Comparative Study Using Commercial Laccase from Aspergillus oryzae

    Directory of Open Access Journals (Sweden)

    Ricardo Sposina S. Teixeira

    2010-01-01

    Full Text Available Oxidases are able to degrade organic pollutants; however, high costs associated with biocatalysts production still hinder their use in environmental biocatalysis. Our study compared the action of a commercial laccase from Aspergillus oryzae and a rich extract from Pleurotus ostreatus cultivation residues in decolourisation of reactive dyes: Drimaren Blue X-3LR (DMBLR, Drimaren Blue X-BLN (DMBBLN, Drimaren Rubinol X-3LR (DMR, and Drimaren Blue C-R (RBBR. The colour removal was evaluated by considering dye concentration, reaction time, absence or presence of the mediator ABTS (2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid, and the source of laccase. The presence of ABTS was essential for decolourisation of DMR (80–90%, 1 h and RBBR (80–90%, 24 h with both laccases. The use of ABTS was not necessary in reactions containing DMBLR (85–97%, 1 h and DMBBLN (63–84%, 24 h. The decolourisation of DMBBLN by commercial laccase showed levels near 60% while the crude extract presented 80% in 24 h.

  10. Fundamentals of green chemistry: efficiency in reaction design.

    Science.gov (United States)

    Sheldon, Roger A

    2012-02-21

    In this tutorial review, the fundamental concepts underlying the principles of green and sustainable chemistry--atom and step economy and the E factor--are presented, within the general context of efficiency in organic synthesis. The importance of waste minimisation through the widespread application of catalysis in all its forms--homogeneous, heterogeneous, organocatalysis and biocatalysis--is discussed. These general principles are illustrated with simple practical examples, such as alcohol oxidation and carbonylation and the asymmetric reduction of ketones. The latter reaction is exemplified by a three enzyme process for the production of a key intermediate in the synthesis of the cholesterol lowering agent, atorvastatin. The immobilisation of enzymes as cross-linked enzyme aggregates (CLEAs) as a means of optimizing operational performance is presented. The use of immobilised enzymes in catalytic cascade processes is illustrated with a trienzymatic process for the conversion of benzaldehyde to (S)-mandelic acid using a combi-CLEA containing three enzymes. Finally, the transition from fossil-based chemicals manufacture to a more sustainable biomass-based production is discussed.

  11. Uml2 is a novel CalB-type lipase of Ustilago maydis with phospholipase A activity.

    Science.gov (United States)

    Buerth, Christoph; Kovacic, Filip; Stock, Janpeter; Terfrüchte, Marius; Wilhelm, Susanne; Jaeger, Karl-Erich; Feldbrügge, Michael; Schipper, Kerstin; Ernst, Joachim F; Tielker, Denis

    2014-06-01

    CalB of Pseudozyma aphidis (formerly named Candida antarctica) is one of the most widely applied enzymes in industrial biocatalysis. Here, we describe a protein with 66 % sequence identity to CalB, designated Ustilago maydis lipase 2 (Uml2), which was identified as the product of gene um01422 of the corn smut fungus U. maydis. Sequence analysis of Uml2 revealed the presence of a typical lipase catalytic triad, Ser-His-Asp with Ser125 located in a Thr-Xaa-Ser-Xaa-Gly pentapeptide. Deletion of the uml2 gene in U. maydis diminished the ability of cells to hydrolyse fatty acids from tributyrin or Tween 20/80 substrates, thus demonstrating that Uml2 functions as a lipase that may contribute to nutrition of this fungal pathogen. Uml2 was heterologously produced in Pichia pastoris and recombinant N-glycosylated Uml2 protein was purified from the culture medium. Purified Uml2 released short- and long-chain fatty acids from p-nitrophenyl esters and Tween 20/80 substrates. Furthermore, phosphatidylcholine substrates containing long-chain saturated or unsaturated fatty acids were effectively hydrolysed. Both esterase and phospholipase A activity of Uml2 depended on the Ser125 catalytic residue. These results indicate that Uml2, in contrast to CalB, exhibits not only esterase and lipase activity but also phospholipase A activity. Thus, by genome mining, we identified a novel CalB-like lipase with different substrate specificities.

  12. High Performance Protein-Coated Microcrystals of Rhizomucor miehei Lipase: Preparation and Application for Organic Synthesis.

    Science.gov (United States)

    Kazlauskas, Simas; Kiriliauskaitė, Vita; Kalėdienė, Lilija; Bendikienė, Vida

    2015-05-01

    The goal of obtaining enzyme forms with higher catalytic activity, greater stability, and improved reusability has been pursued for the last few decades. Various novel biocatalyst designs have been created, and protein-coated microcrystals (PCMCs) are one of them. PCMC is an enzyme immobilization method based on simultaneous precipitation of protein and carrier, forming micron-sized enzyme-coated crystals. Highly active Rhizomucor miehei lipase (RML) PCMCs were prepared by immobilizing the protein onto K2SO4 as a carrier salt in acetone as a precipitating solvent. The formation of RML PCMCs was confirmed by scanning electron microscopy. Preparation of RML PCMCs was optimized by response surface methodology (RSM). Obtained PCMCs were found to be more active and stable during p-nitrophenyl palmitate hydrolysis in n-hexane, compared to liquid RML. The enzymatic activity and temperature optimum increased from 0.011 U/mg(soluble) lipase to 8.70 U/mg(immobilized) lipase and from 30 to 37 °C, respectively. Additionally, the ability of RML PCMCs to catalyze flavor ester 2-phenethyl octanoate synthesis was investigated. Some reaction parameters were optimized, resulting in 80 % conversion within 1 h with an enhanced reusability, compared to commercial immobilized RML preparation. Thus, PCMCs offer a cheap and effective technology for obtaining highly active lipase preparations for biocatalysis in organic media.

  13. Amphiphilic conetworks as activating carriers for the enhancement of enzymatic activity in supercritical CO2.

    Science.gov (United States)

    Bruns, Nico; Bannwarth, Willi; Tiller, Joerg C

    2008-09-01

    Enzymatic reactions in supercritical carbon dioxide (scCO2) represent a way of combining the advantages of biocatalysis with the environmental benign nature of scCO2 as a solvent. Here we demonstrate that activities of enzymes in scCO2 can be greatly enhanced by incorporating them into amphiphilic conetworks (APCNs), a novel type of enzyme support. Two sets of hydrophilic/scCO2-philic APCNs, poly(2-hydroxyethyl acrylate)-linked by-poly(dimethylsiloxane) (PHEA-l-PDMS) and poly(2-hydroxyethyl acrylate)-linked by-perfluoropolyether (PHEA-l-PFPE), were prepared and loaded with the synthetically relevant lipase from Rhizomucor miehei. The effect of the APCNs' composition on the amount of the absorbed lipase was studied. It is observed that both sets of lipase-loaded APCNs enhance the catalytic activity of the enzyme in scCO2. The chemical nature of the scCO2-philic phase as well as the conetworkscomposition greatly influences the activity of the lipase in the conetworks. Activities obtained with PFPE-basedAPCNS were up to 10-fold higher than those obtained with PDMS-based conetworks. The highest specific activity measured corresponds to a 2,000-fold activation compared to the lyophilized enzyme powder. This activity is 10 times higher than the specific activity of the lipase immobilized on an optimized commercial carrier.

  14. Lipase-catalyzed reactions at different surfaces.

    Science.gov (United States)

    Reis, P; Holmberg, K; Debeche, T; Folmer, B; Fauconnot, L; Watzke, H

    2006-09-12

    Starting from gold chips, we have tailor-made three surfaces by the self-assembly monolayer technique: one entirely hydrophobic, one hydrophobic with dispersed carboxyl groups, and one hydrophilic, containing hydroxyl groups. Rhizomucor miehei lipase has been adsorbed to the hydrophobic and the hydrophilic surfaces and covalently bound to the surface containing carboxyl groups. The adsorption of two substrates-capric acid (decanoic acid) and monocaprin-on the lipase-covered surfaces was monitored by the surface plasmon resonance (SPR) technique. Biocatalysis was also performed in the SPR instrument by circulating a solution of the substrate, dissolved in an 85:15 water-glycerol mixture at a(w) = 0.81, through the instrument, thus exposing the capric acid or the monocaprin to the lipase-covered surfaces. The product composition was found to depend on the type of surface used. Lipase adsorbed at the hydrophilic surface favored hydrolysis, and capric acid was the main product formed when monocaprin was used as substrate. Lipase adsorbed at a hydrophobic surface and, in particular, lipase covalently bound to a hydrophobic surface favored condensation. More dicaprin than capric acid was formed in experiments with monocaprin as the substrate. Reactions performed outside the SPR instrument showed that small amounts of triglyceride were also formed under these conditions. We believe that this work constitutes the first example of the SPR instrument being used for in-situ biotransformation.

  15. Electrocatalytic hydrogen evolution under densely buffered neutral pH conditions

    KAUST Repository

    Shinagawa, Tatsuya

    2015-08-18

    Under buffered neutral pH conditions, solute concentrations drastically influence the hydrogen evolution reaction (HER). The iR-free HER performance as a function of solute concentration was found to exhibit a volcano-shaped trend in sodium phosphate solution at pH 5, with the maximum occurring at 2 M. A detailed microkinetic model that includes calculated activity coefficients, solution resistance, and mass-transport parameters accurately describes the measured values, clarifying that the overall HER performance is predominantly governed by mass-transport of slow phosphate ions (weak acid). In the HER at the optimum concentration of approximately 2 M sodium phosphate at pH 5, our theoretical model predicts that the concentration overpotential accounts for more than half of the required overpotential. The substantial concentration overpotential would originate from the electrolyte property, suggesting that the proper electrolyte engineering will result in an improved apparent HER performances. The significance of concentration overpotential shown in the study is critical in the advancement of electrocatalysis, biocatalysis, and photocatalysis.

  16. Polyphosphonate induced coacervation of chitosan: encapsulation of proteins/enzymes and their biosensing.

    Science.gov (United States)

    Liu, Hailing; Cui, Yanyun; Li, Pan; Zhou, Yiming; Chen, Yu; Tang, Yawen; Lu, Tianhong

    2013-05-07

    Based on the polyphosphonate-assisted coacervation of chitosan, a simple and versatile procedure for the encapsulation of proteins/enzymes in chitosan-carbon nanotubes (CNTs) composites matrix was developed. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), energy dispersive spectrum (EDS) mapping demonstrated the hemoglobin (Hb) uniformly distributed into chitosan-CNTs composites matrix. Raman measurements indicated the CNTs in composites matrix retained the electronic and structural integrities of the pristine CNTs. Fourier transform infrared (FT-IR), ultraviolet-visible (UV-vis) and circular dichroism (CD) spectroscopy displayed the encapsulated Hb preserved their near-native structure, indicating the polyphosphonate-chitosan-CNTs composites possessed excellent biocompatibility for the encapsulation of proteins/enzymes. Electrochemical measurements indicated the encapsulated Hb could directly exchange electron with the substrate electrode. Moreover, the modified electrode showed excellent bioelectrocatalytic activity for the reduction of hydrogen peroxide. Under optimum experimental conditions, the fabricated electrochemical sensor displayed the fast response (less than 3s), wide linear range (7.0×10(-7) to 2.0×10(-3)M) and low detection limit (4.0×10(-7)M) for the determination of hydrogen peroxide. This newly developed protocol was simple and mild and would certainly find extensive applications in biocatalysis, biosensors, bioelectronics and biofuel cells.

  17. Glycerol Carbonate: A Novel Biosolvent with Strong Ionizing and Dissociating Powers

    Directory of Open Access Journals (Sweden)

    Guangnan Ou

    2012-01-01

    Full Text Available The activity of biocatalysts in nonaqueous solvents is related to the interaction of organic solvents with cells or enzymes. The behavior of proteins is strongly dependent on the protonation state of their ionizable groups, which ionization constants are greatly affected by the solvent. Due to the weak ionizing and dissociating powers of common organic solvents, the charge of the protein will change significantly when the protein is transferred from water to common organic solvents, resulting in protein denaturation. In this work, glycerol carbonate (GC was synthesized, which ionizing and dissociating abilities were very close to those of water. Transesterification activities of Candida antarctica lipase B (CALB in GC were comparable to those in water and remained constant during 4-week storage. Bacillus subtilis and Saccharomyecs cerevisiae were cultured in liquid media containing GC with test tubes. In the medium containing low GC concentration, Bacillus subtilis and Saccharomyecs cerevisiae grew well as in a medium containing no organic solvent, but, in the medium containing high GC concentration, the growth of Bacillus subtilis and Saccharomyecs cerevisiae was suppressed. The results suggested that GC is a potential biosolvent, which has great significance to biocatalysis in nonaqueous solvents.

  18. Hydrolase stabilization via entanglement in poly(propylene sulfide) nanoparticles: stability towards reactive oxygen species

    Science.gov (United States)

    Allen, Brett L.; Johnson, Jermaine D.; Walker, Jeremy P.

    2012-07-01

    In the advancement of green syntheses and sustainable reactions, enzymatic biocatalysis offers extremely high reaction rates and selectivity that goes far beyond the reach of chemical catalysts; however, these enzymes suffer from typical environmental constraints, e.g. operational temperature, pH and tolerance to oxidative environments. A common hydrolase enzyme, diisopropylfluorophosphatase (DFPase, EC 3.1.8.2), has demonstrated a pronounced efficacy for the hydrolysis of a variety of substrates for potential toxin remediation, but suffers from the aforementioned limitations. As a means to enhance DFPase’s stability in oxidative environments, enzymatic covalent immobilization within the polymeric matrix of poly(propylene sulfide) (PPS) nanoparticles was performed. By modifying the enzyme’s exposed lysine residues via thiolation, DFPase is utilized as a comonomer/crosslinker in a mild emulsion polymerization. The resultant polymeric polysulfide shell acts as a ‘sacrificial barrier’ by first oxidizing to polysulfoxides and polysulfones, rendering DFPase in an active state. DFPase-PPS nanoparticles thus retain activity upon exposure to as high as 50 parts per million (ppm) of hypochlorous acid (HOCl), while native DFPase is observed as inactive at 500 parts per billion (ppb). This trend is also confirmed by enzyme-generated (chloroperoxidase (CPO), EC 1.11.1.10) reactive oxygen species (ROS) including both HOCl (3 ppm) and ClO2 (100 ppm).

  19. Actinomycetes: A Repertory of Green Catalysts with a Potential Revenue Resource

    Directory of Open Access Journals (Sweden)

    Divya Prakash

    2013-01-01

    Full Text Available Biocatalysis, one of the oldest technologies, is becoming a favorable alternative to chemical processes and a vital part of green technology. It is an important revenue generating industry due to a global market projected at $7 billion in 2013 with a growth of 6.7% for enzymes alone. Some microbes are important sources of enzymes and are preferred over sources of plant and animal origin. As a result, more than 50% of the industrial enzymes are obtained from bacteria. The constant search for novel enzymes with robust characteristics has led to improvisations in the industrial processes, which is the key for profit growth. Actinomycetes constitute a significant component of the microbial population in most soils and can produce extracellular enzymes which can decompose various materials. Their enzymes are more attractive than enzymes from other sources because of their high stability and unusual substrate specificity. Actinomycetes found in extreme habitats produce novel enzymes with huge commercial potential. This review attempts to highlight the global importance of enzymes and extends to signify actinomycetes as promising harbingers of green technology.

  20. A water-forming NADH oxidase from Lactobacillus pentosus and its potential application in the regeneration of synthetic biomimetic cofactors

    Directory of Open Access Journals (Sweden)

    Claudia eNowak

    2015-09-01

    Full Text Available The cell-free biocatalytic production of fine chemicals by oxidoreductases has continuously grown over the past years. Since especially dehydrogenases depend on the stoichiometric use of nicotinamide pyridine cofactors, an integrated efficient recycling system is crucial to allow process operation under economic conditions. Lately, the variety of cofactors for biocatalysis was broadened by the utilization of totally synthetic and cheap biomimetics. Though, to date the regeneration has been limited to chemical or electrochemical methods. Here, we report an enzymatic recycling by the flavoprotein NADH-oxidase from Lactobacillus pentosus (LpNox. Since this enzyme has not been described before, we first characterized it in regard to its optimal reaction parameters. We found that the heterologously overexpressed enzyme only contained 13 % FAD. In vitro loading of the enzyme with FAD, resulted in a higher specific activity towards its natural cofactor NADH as well as different nicotinamide derived biomimetics. Apart from the enzymatic recycling, which gives water as a by-product by transferring four electrons onto oxygen, unbound FAD can also catalyse the oxidation of biomimetic cofactors. Here a two electron process takes place yielding H2O2 instead. The enzymatic and chemical recycling was compared in regard to reaction kinetics for the natural and biomimetic cofactors. With LpNox and FAD, two recycling strategies for biomimetic cofactors are described with either water or hydrogen peroxide as a by-product.

  1. Adsorption of polar lipids at the water-oil interface.

    Science.gov (United States)

    Reis, P; Miller, R; Leser, M; Watzke, H; Fainerman, V B; Holmberg, K

    2008-06-03

    Dietary fat has long been recognized as an essential component in nutrition. However, most of the lipids present in food need to be converted into more bioavailable compounds. Lipases have a crucial role in converting triglycerides into more polar lipids with increased water solubility and a tendency to form micelles. However, the surface active molecules generated by lipolysis may have a detrimental effect on the interfacial biocatalysis. In the present work we evaluate the interfacial properties of lipase-generated molecules during fat digestion. By using the pendant drop technique we assessed the amphiphilic character of fatty acid salts, monoglycerides, and diglycerides as individual surfactants and mixtures. The experimental results are fitted with a mathematical model, which assists in the determination of the interfacial properties of the surfactants. Our results show that monoglycerides have considerably higher interfacial activity than fatty acid salts and diglycerides. Therefore, the interface will soon be dominated by monoglycerides. The pH dependency of the interfacial activity of fatty acids is also explored in the current work. We believe that our results can contribute to a better understanding of the complex interfacial phenomena occurring during fat digestion.

  2. The locks and keys to industrial biotechnology.

    Science.gov (United States)

    Wohlgemuth, Roland

    2009-04-01

    The sustainable use of resources by Nature to synthesize the required products at the right place, when they are needed, continues to be the role model for total synthesis and production in general. The combination of molecular and engineering science and technology in the biotechnological approach needs no protecting groups at all and has therefore been established for numerous large-scale routes to both natural and synthetic products in industry. The use of biobased raw materials for chemical synthesis, and the economy of molecular transformations like atom economy and step economy are of growing importance. As safety, health and environmental issues are key drivers for process improvements in the chemical industry, the development of biocatalytic reactions or pathways replacing hazardous reagents is a major focus. The integration of the biocatalytic reaction and downstream processing with product isolation has led to a variety of in situ product recovery techniques and has found numerous successful applications. With the growing collection of biocatalytic reactions, the retrosynthetic thinking can be applied to biocatalysis as well. The introduction of biocatalytic reactions is uniquely suited to cost reductions and higher quality products, as well as to more sustainable processes. The transfer of Nature's simple and robust sensing and control principles as well as its reaction and separation organization into useful technical systems can be applied to different fermentations, biotransformations and downstream processes. Biocatalyst and pathway discovery and development is the key towards new synthetic transformations in industrial biotechnology.

  3. Designing Catalysts for Clean Technology, Green Chemistry, and Sustainable Development

    Science.gov (United States)

    Meurig Thomas, John; Raja, Robert

    2005-08-01

    There is a pressing need for cleaner fuels (free or aromatics and of minimal sulfur content) or ones that convert chemical energy directly to electricity, silently and without production of noxious oxides and particulates; chemical, petrochemical and pharmaceutical processes that may be conducted in a one-step, solvent-free manner and that use air as the preferred oxidant; and industrial processes that minimize consumption of energy, production of waste, or the use of corrosive, explosive, volatile, and nonbiodegradable materials. All these needs and other desiderata, such as the in situ production and containment of aggressive and hazardous reagents, and the avoidance of use of ecologically harmful elements, may be achieved by designing the appropriate heterogeneous inorganic catalyst, which ideally should be cheap, readily preparable and fully characterizable, preferably under in situ reaction conditions. A range of nanoporous and nanoparticle catalysts that meet most of the stringent demands of sustainable development and responsible (clean) technology is described. Specific examples that are highlighted include the production of adipic acid (precursor of polyamides and urethanes) without the use of concentrated nitric acid nor the production of greenhouse gases such as nitrous oxide; the production of caprolactam (precursor of nylon) without the use of oleum and hydroxylamine sulfate; and the terminal oxyfunctionalization of linear alkanes in air. The topic of biocatalysis and sustainable development is also briefly discussed for the epoxidation of terpenes and fatty acid methyl esters; for the generation of polymers, polylactides, and polyesters; and for the production of 1,3-propanediol from corn.

  4. Cytochrome p450 enzymes and electrochemistry: crosstalk with electrodes as redox partners and electron sources.

    Science.gov (United States)

    Shumyantseva, Victoria V; Bulko, Tatiana; Shich, Evgeniya; Makhova, Anna; Kuzikov, Alexey; Archakov, Alexander

    2015-01-01

    The functional significance of cytochrome P450 (P450) enzymes includes their ability to catalyze the biotransformation of xenobiotics (foreign compounds) and endogenous compounds. P450 enzymes play an important role in the detoxification of exogenous bioactive compounds and hydrophobic xenobiotics (e.g. carcinogens, drugs, environment pollutants, food supplements, medicines, plant products) and in the biotransformation of endogenous bioactive compounds (e.g. amino acids, cholesterol, eicosanoids, saturated/unsaturated fatty acids, melatonin, steroid hormones). Electrode/P450 systems are analyzed in terms of the mechanisms underlying P450-catalyzed reactions. Bioelectrocatalysis-based screening of potential substrates or inhibitors of P450 enzymes, the stoichiometry of the electrocatalytic cycle, oxidation-reduction (redox) thermodynamics, and the peroxide shunt pathway are described. Electrochemical techniques are utilized for investigating the influence of (1) the vitamin B group, (2) vitamins (e.g. vitamins A and B) and antioxidants (e.g. taurine), and (3) drugs and antioxidants (e.g. mexidol, ethoxidol) on biocatalysis using P450 enzymes, and on the metabolism of drugs catalyzed by P450 3A4. The characteristics, performance and potential applications of P450 electrochemical systems are also discussed.

  5. Production of Rebaudioside A from Stevioside Catalyzed by the Engineered Saccharomyces cerevisiae.

    Science.gov (United States)

    Li, Yan; Li, Yangyang; Wang, Yu; Chen, Liangliang; Yan, Ming; Chen, Kequan; Xu, Lin; Ouyang, Pingkai

    2016-04-01

    Rebaudioside A has superior taste quality among the steviol glycosides extracted from Stevia rebaudiana leaves. Given its high purity as a general-purpose sweetener, rebaudioside A has received significant attention and has been widely applied in food and beverages in recent decades. Stevioside is one of the major steviol glycosides and can be converted to rebaudioside A by the uridine-diphosphate dependent glucosyltransferase UGT76G1 in S. rebaudiana. To explore the applicability of and limits in producing rebaudioside A from stevioside through whole-cell biocatalysis, the engineered Saccharomyces cerevisiae expressing UGT76G1, using a newly constructed constitutive expression vector, was used as the whole-cell biocatalyst. Citrate was added to the reaction mixture to allow metabolic regulation when glucose was fed to provide the activated sugar donor UDP-glucose for glycosylation of stevioside in vivo. In an evaluation of the whole-cell reaction parameters involving cell permeability, temperature, pH, citrate and Mg(2+) concentrations, and glucose feeding, production of 1160.5 mg/L rebaudioside A from 2 g/L stevioside was achieved after 48 h without supplementation of extracellular UDP-glucose.

  6. Expanding ester biosynthesis in Escherichia coli.

    Science.gov (United States)

    Rodriguez, Gabriel M; Tashiro, Yohei; Atsumi, Shota

    2014-04-01

    To expand the capabilities of whole-cell biocatalysis, we have engineered Escherichia coli to produce various esters. The alcohol O-acyltransferase (ATF) class of enzyme uses acyl-CoA units for ester formation. The release of free CoA upon esterification with an alcohol provides the free energy to facilitate ester formation. The diversity of CoA molecules found in nature in combination with various alcohol biosynthetic pathways allows for the biosynthesis of a multitude of esters. Small to medium volatile esters have extensive applications in the flavor, fragrance, cosmetic, solvent, paint and coating industries. The present work enables the production of these compounds by designing several ester pathways in E. coli. The engineered pathways generated acetate esters of ethyl, propyl, isobutyl, 2-methyl-1-butyl, 3-methyl-1-butyl and 2-phenylethyl alcohols. In particular, we achieved high-level production of isobutyl acetate from glucose (17.2 g l(-1)). This strategy was expanded to realize pathways for tetradecyl acetate and several isobutyrate esters.

  7. Recent advances on halohydrin dehalogenases-from enzyme identification to novel biocatalytic applications.

    Science.gov (United States)

    Schallmey, Anett; Schallmey, Marcus

    2016-09-01

    Halohydrin dehalogenases are industrially relevant enzymes that catalyze the reversible dehalogenation of vicinal haloalcohols with formation of the corresponding epoxides. In the reverse reaction, also other negatively charged nucleophiles such as azide, cyanide, or nitrite are accepted besides halides to open the epoxide ring. Thus, novel C-N, C-C, or C-O bonds can be formed by halohydrin dehalogenases, which makes them attractive biocatalysts for the production of various β-substituted alcohols. Despite the fact that only five individual halohydrin dehalogenase enzyme sequences have been known until recently enabling their heterologous production, a large number of different biocatalytic applications have been reported using these enzymes. The recent characterization of specific sequence motifs has facilitated the identification of novel halohydrin dehalogenase sequences available in public databases and has largely increased the number of recombinantly available enzymes. These will help to extend the biocatalytic repertoire of this enzyme family and to foster novel biotechnological applications and developments in the future. This review gives a general overview on the halohydrin dehalogenase enzyme family and their biochemical properties and further focuses on recent developments in halohydrin dehalogenase biocatalysis and protein engineering.

  8. Enzyme directed formation of un-natural side-chains for covalent surface attachment of proteins.

    Science.gov (United States)

    Cho, Hwayoung; Jaworski, Justyn

    2014-10-01

    The covalent immobilization of proteins onto surfaces is an essential aspect of several fields of research, including proteomics, sensing, heterogeneous biocatalysis, and more broadly biotechnology. Site-specific, covalent attachment of proteins has been achieved in recent years by the use of expanded genetic codes to produce proteins with controlled placement of un-natural amino acids bearing bio-orthogonal functional groups. Unfortunately, the complexity of developing such systems is impractical for most laboratories; hence, a less complicated approach to generating un-natural amino acid side-chains has been employed. Utilizing a straightforward reaction with formylglycine generating enzyme, we use the site-specific modification of engineered proteins to yield un-natural amino acid side-chains for protein immobilization. Using this approach, we demonstrate the controlled immobilization of various enzymes onto a variety of amine coated surfaces. Our results reveal reusability of the immobilized enzymes via this strategy, and furthermore, we find the activity of the immobilized enzymes to remain even after a month of use indicating significant stability of the linkage.

  9. Some like it hot, some like it cold: Temperature dependent biotechnological applications and improvements in extremophilic enzymes.

    Science.gov (United States)

    Siddiqui, Khawar Sohail

    2015-12-01

    The full biotechnological exploitation of enzymes is still hampered by their low activity, low stability and high cost. Temperature-dependent catalytic properties of enzymes are a key to efficient and cost-effective translation to commercial applications. Organisms adapted to temperature extremes are a rich source of enzymes with broad ranging thermal properties which, if isolated, characterized and their structure-function-stability relationship elucidated, could underpin a variety of technologies. Enzymes from thermally-adapted organisms such as psychrophiles (low-temperature) and thermophiles (high-temperature) are a vast natural resource that is already under scrutiny for their biotechnological potential. However, psychrophilic and thermophilic enzymes show an activity-stability trade-off that necessitates the use of various genetic and chemical modifications to further improve their properties to suit various industrial applications. This review describes in detail the properties and biotechnological applications of both cold-adapted and thermophilic enzymes. Furthermore, the review critically examines ways to improve their value for biotechnology, concluding by proposing an integrated approach involving thermally-adapted, genetically and magnetically modified enzymes to make biocatalysis more efficient and cost-effective.

  10. Protein design for pathway engineering.

    Science.gov (United States)

    Eriksen, Dawn T; Lian, Jiazhang; Zhao, Huimin

    2014-02-01

    Design and construction of biochemical pathways has increased the complexity of biosynthetically-produced compounds when compared to single enzyme biocatalysis. However, the coordination of multiple enzymes can introduce a complicated set of obstacles to overcome in order to achieve a high titer and yield of the desired compound. Metabolic engineering has made great strides in developing tools to optimize the flux through a target pathway, but the inherent characteristics of a particular enzyme within the pathway can still limit the productivity. Thus, judicious protein design is critical for metabolic and pathway engineering. This review will describe various strategies and examples of applying protein design to pathway engineering to optimize the flux through the pathway. The proteins can be engineered for altered substrate specificity/selectivity, increased catalytic activity, reduced mass transfer limitations through specific protein localization, and reduced substrate/product inhibition. Protein engineering can also be expanded to design biosensors to enable high through-put screening and to customize cell signaling networks. These strategies have successfully engineered pathways for significantly increased productivity of the desired product or in the production of novel compounds.

  11. From gene to biorefinery: microbial β-etherases as promising biocatalysts for lignin valorization

    Directory of Open Access Journals (Sweden)

    Pere ePicart

    2015-09-01

    Full Text Available The set-up of biorefineries for the valorization of lignocellulosic biomass will be core in the future to reach sustainability targets. In this area, biomass-degrading enzymes are attracting significant research interest for their potential in the production of chemicals and biofuels from renewable feedstock. Gluthatione-dependent β-etherases are emerging enzymes for the biocatalytic depolymerization of lignin, a heterogeneous aromatic polymer abundant in Nature. They selectively catalyze the reductive cleavage of β-O-4 aryl-ether bonds which account for 45-60% of linkages present in lignin. Hence, application of β-etherases in lignin depolymerization would enable a specific lignin breakdown, selectively yielding (valuable low-molecular-mass aromatics. Albeit β-etherases have been biochemically known for decades, only very recently novel β-etherases have been identified and thoroughly characterized for lignin valorization, expanding the enzyme toolbox for efficient β-O-4 aryl-ether bond cleavage. Given their emerging importance and potential, this mini-review discusses recent developments in the field of β-etherase biocatalysis covering all aspects from enzyme identification to biocatalytic applications with real lignin samples.

  12. Packaging protein drugs as bacterial inclusion bodies for therapeutic applications

    Directory of Open Access Journals (Sweden)

    Villaverde Antonio

    2012-06-01

    Full Text Available Abstract A growing number of insights on the biology of bacterial inclusion bodies (IBs have revealed intriguing utilities of these protein particles. Since they combine mechanical stability and protein functionality, IBs have been already exploited in biocatalysis and explored for bottom-up topographical modification in tissue engineering. Being fully biocompatible and with tuneable bio-physical properties, IBs are currently emerging as agents for protein delivery into mammalian cells in protein-replacement cell therapies. So far, IBs formed by chaperones (heat shock protein 70, Hsp70, enzymes (catalase and dihydrofolate reductase, grow factors (leukemia inhibitory factor, LIF and structural proteins (the cytoskeleton keratin 14 have been shown to rescue exposed cells from a spectrum of stresses and restore cell functions in absence of cytotoxicity. The natural penetrability of IBs into mammalian cells (reaching both cytoplasm and nucleus empowers them as an unexpected platform for the controlled delivery of essentially any therapeutic polypeptide. Production of protein drugs by biopharma has been traditionally challenged by IB formation. However, a time might have arrived in which recombinant bacteria are to be engineered for the controlled packaging of therapeutic proteins as nanoparticulate materials (nanopills, for their extra- or intra-cellular release in medicine and cosmetics.

  13. Extraction and Application of Laccases from Shimeji Mushrooms (Pleurotus ostreatus) Residues in Decolourisation of Reactive Dyes and a Comparative Study Using Commercial Laccase from Aspergillus oryzae

    Science.gov (United States)

    Teixeira, Ricardo Sposina S.; Pereira, Patrícia Maia; Ferreira-Leitão, Viridiana S.

    2010-01-01

    Oxidases are able to degrade organic pollutants; however, high costs associated with biocatalysts production still hinder their use in environmental biocatalysis. Our study compared the action of a commercial laccase from Aspergillus oryzae and a rich extract from Pleurotus ostreatus cultivation residues in decolourisation of reactive dyes: Drimaren Blue X-3LR (DMBLR), Drimaren Blue X-BLN (DMBBLN), Drimaren Rubinol X-3LR (DMR), and Drimaren Blue C-R (RBBR). The colour removal was evaluated by considering dye concentration, reaction time, absence or presence of the mediator ABTS (2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid), and the source of laccase. The presence of ABTS was essential for decolourisation of DMR (80–90%, 1 h) and RBBR (80–90%, 24 h) with both laccases. The use of ABTS was not necessary in reactions containing DMBLR (85–97%, 1 h) and DMBBLN (63–84%, 24 h). The decolourisation of DMBBLN by commercial laccase showed levels near 60% while the crude extract presented 80% in 24 h. PMID:21052547

  14. Force spectroscopy predicts thermal stability of immobilized proteins by measuring microbead mechanics.

    Science.gov (United States)

    Gregurec, Danijela; Velasco-Lozano, Susana; Moya, Sergio E; Vázquez, Luis; López-Gallego, Fernando

    2016-10-26

    Optimal immobilization of enzymes on porous microbeads enables the fabrication of highly active and stable heterogeneous biocatalysts to implement biocatalysis in synthetic and analytical chemistry. However, empirical procedures for enzyme immobilization still prevail over rational ones because there is an unmet need for more comprehensive characterization techniques that aid to understand and trace the immobilization process. Here, we present the use of atomic force spectroscopy (AFS) as an innovative solution to indirectly characterize immobilized proteins on porous materials and monitor the immobilization process in real time. We investigate the mechanical properties of porous agarose microbeads immobilizing proteins by indenting a colloidal probe (silica microparticle) into a single bead. AFS demonstrates that the binding of proteins to the solid matrix of an agarose microbead alters its stiffness. Interestingly, we discovered that irreversible and multivalent immobilizations that make microbeads stiffer also stabilize the immobilized proteins against the temperature. Hence, we propose atomic force spectroscopy as a useful technique to indirectly unravel the stability of the immobilized enzymes investigating the mechanics of the heterogenous biocatalysts as a solid biomaterial beyond the intrinsic mechanics of the proteins.

  15. Noncovalent functionalization of graphene by CdS nanohybrids for electrochemical applications

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Li [Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); Qi, Wei, E-mail: qiwei@tju.edu.cn [Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072 (China); Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin 300072 (China); Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072 (China); Su, Rongxin [Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072 (China); Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin 300072 (China); Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072 (China); He, Zhimin [Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072 (China); Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072 (China)

    2014-10-01

    Graphene–CdS (GR–CdS) nanocomposites were synthesized via a noncovalent functionalization process. To retain the intrinsic electronic and mechanical properties of graphene, the pristine graphene was firstly modified with 1-aminopyrene based on a strong π–π bond between the pyrenyl groups and the carbon rings of the graphene. Then the CdS nanocrystals were uniformly grown on the amino-graphene. The GR–CdS nanocomposites were characterized by UV–vis spectroscopy and scanning electron microscopy. A glucose biosensor was then fabricated based on the as-prepared GR–CdS nanocomposite by immobilizing glucose oxidase (GOD) in a chitosan thin film on a glassy carbon electrode. Direct electron transfer between GOD and the electrode was achieved and the biosensor showed good electrocatalytic activity with glucose ranging from 0.5 to 7.5 mM and a sensitivity of 45.4 μA mM{sup −1} cm{sup −2}. This work provided a simple and nondestructive functionalization strategy to fabricate graphene-based hybrid nanomaterials and it is expected that this composite film may find more potential applications in biosensors and biocatalysis. - Highlights: • A simple noncovalent approach to synthesize graphene–CdS (GR–CdS) nanocomposites • Direct electrochemistry of glucose oxidase based on synergistic effect of GR–CdS • A sensitive glucose biosensor was fabricated based on the GR–CdS hybrids.

  16. In Situ Infrared Ellipsometry for Protein Adsorption Studies on Ultrathin Smart Polymer Brushes in Aqueous Environment.

    Science.gov (United States)

    Kroning, Annika; Furchner, Andreas; Aulich, Dennis; Bittrich, Eva; Rauch, Sebastian; Uhlmann, Petra; Eichhorn, Klaus-Jochen; Seeber, Michael; Luzinov, Igor; Kilbey, S Michael; Lokitz, Bradley S; Minko, Sergiy; Hinrichs, Karsten

    2015-06-17

    The protein-adsorbing and -repelling properties of various smart nanometer-thin polymer brushes containing poly(N-isopropylacrylamide) and poly(acrylic acid) with high potential for biosensing and biomedical applications are studied by in situ infrared-spectroscopic ellipsometry (IRSE). IRSE is a highly sensitive nondestructive technique that allows protein adsorption on polymer brushes to be investigated in an aqueous environment as external stimuli, such as temperature and pH, are varied. These changes are relevant to conditions for regulation of protein adsorption and desorption for biotechnology, biocatalysis, and bioanalytical applications. Here brushes are used as model surfaces for controlling protein adsorption of human serum albumin and human fibrinogen. The important finding of this work is that IRSE in the in situ experiments in protein solutions can distinguish between contributions of polymer brushes and proteins. The vibrational bands of the polymers provide insights into the hydration state of the brushes, whereas the protein-specific amide bands are related to changes of the protein secondary structure.

  17. Past, present, and future industrial biotechnology in China.

    Science.gov (United States)

    Li, Zhenjiang; Ji, Xiaojun; Kan, Suli; Qiao, Hongqun; Jiang, Min; Lu, Dingqiang; Wang, Jun; Huang, He; Jia, Honghua; Ouyuang, Pingkai; Ying, Hanjie

    2010-01-01

    Fossil resources, i.e. concentrated carbon from biomass, have been irrecoverably exhausted through modern industrial civilization in the last two hundred years. Serious consequences including crises in resources, environment and energy, as well as the pressing need for direct and indirect exploitation of solar energy, pose challenges to the science and technology community of today. Bioenergy, bulk chemicals, and biomaterials could be produced from renewable biomass in a biorefinery via biocatalysis. These sustainable industries will match the global mass cycle, creating a new form of civilization with new industries and agriculture driven by solar energy. Industrial biotechnology is the dynamo of a bioeconomy, leading to a new protocol for production of energy, bulk chemicals, and materials. This new mode of innovation will place the industry at center stage supported by universities and research institutes. Creativity in industrial biotechnology will be promoted and China will successfully follow the road to green modernization. China's rapid economic development and its traditional capacity in fermentation will place it in an advantageous position in the industrial biotechnology revolution. The development and current status of industrial biotechnology in China are summarized herein.

  18. An investigation of the mimetic enzyme activity of two-dimensional Pd-based nanostructures

    Science.gov (United States)

    Wei, Jingping; Chen, Xiaolan; Shi, Saige; Mo, Shiguang; Zheng, Nanfeng

    2015-11-01

    In this work, we investigated the mimetic enzyme activity of two-dimensional (2D) Pd-based nanostructures (e.g. Pd nanosheets, Pd@Au and Pd@Pt nanoplates) and found that they possess intrinsic peroxidase-, oxidase- and catalase-like activities. These nanostructures were able to activate hydrogen peroxide or dissolved oxygen for catalyzing the oxidation of organic substrates, and decompose hydrogen peroxide to generate oxygen. More systematic investigations revealed that the peroxidase-like activities of these Pd-based nanomaterials were highly structure- and composition-dependent. Among them, Pd@Pt nanoplates displayed the highest peroxidase-like activity. Based on these findings, Pd-based nanostructures were applied for the colorimetric detection of H2O2 and glucose, and also the electro-catalytic reduction of H2O2. This work offers a promising prospect for the application of 2D noble metal nanostructures in biocatalysis.In this work, we investigated the mimetic enzyme activity of two-dimensional (2D) Pd-based nanostructures (e.g. Pd nanosheets, Pd@Au and Pd@Pt nanoplates) and found that they possess intrinsic peroxidase-, oxidase- and catalase-like activities. These nanostructures were able to activate hydrogen peroxide or dissolved oxygen for catalyzing the oxidation of organic substrates, and decompose hydrogen peroxide to generate oxygen. More systematic investigations revealed that the peroxidase-like activities of these Pd-based nanomaterials were highly structure- and composition-dependent. Among them, Pd@Pt nanoplates displayed the highest peroxidase-like activity. Based on these findings, Pd-based nanostructures were applied for the colorimetric detection of H2O2 and glucose, and also the electro-catalytic reduction of H2O2. This work offers a promising prospect for the application of 2D noble metal nanostructures in biocatalysis. Electronic supplementary information (ESI) available: TEM images, EDX and dispersion stability of Pd-based nanomaterials

  19. Insights into regioselective metabolism of mefenamic acid by cytochrome P450 BM3 mutants through crystallography, docking, molecular dynamics, and free energy calculations.

    Science.gov (United States)

    Capoferri, Luigi; Leth, Rasmus; ter Haar, Ernst; Mohanty, Arun K; Grootenhuis, Peter D J; Vottero, Eduardo; Commandeur, Jan N M; Vermeulen, Nico P E; Jørgensen, Flemming Steen; Olsen, Lars; Geerke, Daan P

    2016-03-01

    Cytochrome P450 BM3 (CYP102A1) mutant M11 is able to metabolize a wide range of drugs and drug-like compounds. Among these, M11 was recently found to be able to catalyze formation of human metabolites of mefenamic acid and other nonsteroidal anti-inflammatory drugs (NSAIDs). Interestingly, single active-site mutations such as V87I were reported to invert regioselectivity in NSAID hydroxylation. In this work, we combine crystallography and molecular simulation to study the effect of single mutations on binding and regioselective metabolism of mefenamic acid by M11 mutants. The heme domain of the protein mutant M11 was expressed, purified, and crystallized, and its X-ray structure was used as template for modeling. A multistep approach was used that combines molecular docking, molecular dynamics (MD) simulation, and binding free-energy calculations to address protein flexibility. In this way, preferred binding modes that are consistent with oxidation at the experimentally observed sites of metabolism (SOMs) were identified. Whereas docking could not be used to retrospectively predict experimental trends in regioselectivity, we were able to rank binding modes in line with the preferred SOMs of mefenamic acid by M11 and its mutants by including protein flexibility and dynamics in free-energy computation. In addition, we could obtain structural insights into the change in regioselectivity of mefenamic acid hydroxylation due to single active-site mutations. Our findings confirm that use of MD and binding free-energy calculation is useful for studying biocatalysis in those cases in which enzyme binding is a critical event in determining the selective metabolism of a substrate.

  20. Exploiting enzyme catalysis in ultra-low ion strength media for impedance biosensing of avian influenza virus using a bare interdigitated electrode.

    Science.gov (United States)

    Fu, Yingchun; Callaway, Zachary; Lum, Jacob; Wang, Ronghui; Lin, Jianhan; Li, Yanbin

    2014-02-18

    Enzyme catalysis is broadly used in various fields but generally applied in media with high ion strength. Here, we propose the exploitation of enzymatic catalysis in ultra-low ion strength media to induce ion strength increase for developing a novel impedance biosensing method. Avian influenza virus H5N1, a serious worldwide threat to poultry and human health, was adopted as the analyte. Magnetic beads were modified with H5N1-specific aptamer to capture the H5N1 virus. This was followed by binding concanavalin A (ConA), glucose oxidase (GOx), and Au nanoparticles (AuNPs) to create bionanocomposites through a ConA-glycan interaction. The yielded sandwich complex was transferred to a glucose solution to trigger an enzymatic reaction to produce gluconic acid, which ionized to increase the ion strength of the solution, thus decreasing the impedance on a screen-printed interdigitated array electrode. This method took advantages of the high efficiency of enzymatic catalysis and the high susceptibility of electrochemical impedance on the ion strength and endowed the biosensor with high sensitivity and a detection limit of 8 × 10(-4) HAU in 200 μL sample, which was magnitudes lower than that of some analogues based on biosensing methods. Furthermore, the proposed method required only a bare electrode for measurements of ion strength change and had negligible change on the surficial properties of the electrode, though some modification of magnetic beads/Au nanoparticles and the construction of a sandwich complex were still needed. This helped to avoid the drawbacks of commonly used electrode immobilization methods. The merit for this method makes it highly useful and promising for applications. The proposed method may create new possibilities in the broad and well-developed enzymatic catalysis fields and find applications in developing sensitive, rapid, low-cost, and easy-to-operate biosensing and biocatalysis devices.

  1. Hydrogen Peroxide-Resistant CotA and YjqC of Bacillus altitudinis Spores Are a Promising Biocatalyst for Catalyzing Reduction of Sinapic Acid and Sinapine in Rapeseed Meal

    Science.gov (United States)

    Zhang, Yanzhou; Li, Xunhang; Hao, Zhikui; Xi, Ruchun; Cai, Yujie; Liao, Xiangru

    2016-01-01

    For the more efficient detoxification of phenolic compounds, a promising avenue would be to develop a multi-enzyme biocatalyst comprising peroxidase, laccase and other oxidases. However, the development of this multi-enzyme biocatalyst is limited by the vulnerability of fungal laccases and peroxidases to hydrogen peroxide (H2O2)-induced inactivation. Therefore, H2O2-resistant peroxidase and laccase should be exploited. In this study, H2O2-stable CotA and YjqC were isolated from the outer coat of Bacillus altitudinis SYBC hb4 spores. In addition to the thermal and alkali stability of catalytic activity, CotA also exhibited a much higher H2O2 tolerance than fungal laccases from Trametes versicolor and Trametes trogii. YjqC is a sporulation-related manganese (Mn) catalase with striking peroxidase activity for sinapic acid (SA) and sinapine (SNP). In contrast to the typical heme-containing peroxidases, the peroxidase activity of YjqC was also highly resistant to inhibition by H2O2 and heat. CotA could also catalyze the oxidation of SA and SNP. CotA had a much higher affinity for SA than B. subtilis CotA. CotA and YjqC rendered from B. altitudinis spores had promising laccase and peroxidase activities for SA and SNP. Specifically, the B. altitudinis spores could be regarded as a multi-enzyme biocatalyst composed of CotA and YjqC. The B. altitudinis spores were efficient for catalyzing the degradation of SA and SNP in rapeseed meal. Moreover, efficiency of the spore-catalyzed degradation of SA and SNP was greatly improved by the presence of 15 mM H2O2. This effect was largely attributed to synergistic biocatalysis of the H2O2-resistant CotA and YjqC toward SA and SNP. PMID:27362423

  2. Directed evolution of artificial metalloenzymes for in vivo metathesis

    Science.gov (United States)

    Jeschek, Markus; Reuter, Raphael; Heinisch, Tillmann; Trindler, Christian; Klehr, Juliane; Panke, Sven; Ward, Thomas R.

    2016-09-01

    The field of biocatalysis has advanced from harnessing natural enzymes to using directed evolution to obtain new biocatalysts with tailor-made functions. Several tools have recently been developed to expand the natural enzymatic repertoire with abiotic reactions. For example, artificial metalloenzymes, which combine the versatile reaction scope of transition metals with the beneficial catalytic features of enzymes, offer an attractive means to engineer new reactions. Three complementary strategies exist: repurposing natural metalloenzymes for abiotic transformations; in silico metalloenzyme (re-)design; and incorporation of abiotic cofactors into proteins. The third strategy offers the opportunity to design a wide variety of artificial metalloenzymes for non-natural reactions. However, many metal cofactors are inhibited by cellular components and therefore require purification of the scaffold protein. This limits the throughput of genetic optimization schemes applied to artificial metalloenzymes and their applicability in vivo to expand natural metabolism. Here we report the compartmentalization and in vivo evolution of an artificial metalloenzyme for olefin metathesis, which represents an archetypal organometallic reaction without equivalent in nature. Building on previous work on an artificial metallohydrolase, we exploit the periplasm of Escherichia coli as a reaction compartment for the ‘metathase’ because it offers an auspicious environment for artificial metalloenzymes, mainly owing to low concentrations of inhibitors such as glutathione, which has recently been identified as a major inhibitor. This strategy facilitated the assembly of a functional metathase in vivo and its directed evolution with substantially increased throughput compared to conventional approaches that rely on purified protein variants. The evolved metathase compares favourably with commercial catalysts, shows activity for different metathesis substrates and can be further evolved in

  3. Functional Analysis and Discovery of Microbial Genes Transforming Metallic and Organic Pollutants: Database and Experimental Tools

    Energy Technology Data Exchange (ETDEWEB)

    Lawrence P. Wackett; Lynda B.M. Ellis

    2004-12-09

    Microbial functional genomics is faced with a burgeoning list of genes which are denoted as unknown or hypothetical for lack of any knowledge about their function. The majority of microbial genes encode enzymes. Enzymes are the catalysts of metabolism; catabolism, anabolism, stress responses, and many other cell functions. A major problem facing microbial functional genomics is proposed here to derive from the breadth of microbial metabolism, much of which remains undiscovered. The breadth of microbial metabolism has been surveyed by the PIs and represented according to reaction types on the University of Minnesota Biocatalysis/Biodegradation Database (UM-BBD): http://umbbd.ahc.umn.edu/search/FuncGrps.html The database depicts metabolism of 49 chemical functional groups, representing most of current knowledge. Twice that number of chemical groups are proposed here to be metabolized by microbes. Thus, at least 50% of the unique biochemical reactions catalyzed by microbes remain undiscovered. This further suggests that many unknown and hypothetical genes encode functions yet undiscovered. This gap will be partly filled by the current proposal. The UM-BBD will be greatly expanded as a resource for microbial functional genomics. Computational methods will be developed to predict microbial metabolism which is not yet discovered. Moreover, a concentrated effort to discover new microbial metabolism will be conducted. The research will focus on metabolism of direct interest to DOE, dealing with the transformation of metals, metalloids, organometallics and toxic organics. This is precisely the type of metabolism which has been characterized most poorly to date. Moreover, these studies will directly impact functional genomic analysis of DOE-relevant genomes.

  4. Competition of Thermomyces lanuginosus lipase with its hydrolysis products at the oil-water interface.

    Science.gov (United States)

    Muth, Marco; Rothkötter, Stefanie; Paprosch, Steven; Schmid, Reiner P; Schnitzlein, Klaus

    2017-01-01

    Lipase-catalyzed hydrolysis of triglycerides yields glycerol and free fatty-acids, provided that the enzyme is non-regioselective. For an Sn-1,3 regioselective enzyme, such as lipase from Thermomyces lanuginosus, the final product is no longer glycerol but Sn-2 monoglyceride instead. However, surface active molecules generated by lipolysis may have a detrimental effect on the interfacial biocatalysis since it is known that low molecular weight surfactants can displace proteins from interfaces. By using drop profile analysis tensiometry, we evaluated the interfacial properties of the lipase-generated molecules and their competitive effect on the adsorption behavior of the lipase and on the proceeding lipolysis. Our results show that even at concentration ratios of 8.64×10(-4)M (Sn-2 monoglyceride) to 2.5×10(-7)M (lipase), the final interfacial pressure values are very similar as for the system containing the lipase alone (i.e. ∼26 mN/m). This is a strong indication that monoglycerides, as the most interfacially active products generated during regioselective lipolysis, are expelled from the oil-water interface by the lipase. We attribute this effect to intermolecular lipase-lipase interactions, resulting in a low desorption probability of the lipase. For low oleic acid concentrations, the interfacial tension is solely determined by the lipase, while for higher concentrations, lipase and oleic acid both contribute to the tension values. We propose a hypothesis based on the preferential interaction of oleic acid molecules with hydrophobic sites on the lipase. The pH dependence of the adsorption rate and the interfacial activity of the lipase were also investigated.

  5. Peroxidase activity of bacterial cytochrome P450 enzymes: modulation by fatty acids and organic solvents.

    Science.gov (United States)

    Rabe, Kersten S; Erkelenz, Michael; Kiko, Kathrin; Niemeyer, Christof M

    2010-08-01

    The modulation of peroxidase activity by fatty acid additives and organic cosolvents was determined and compared for four bacterial cytochrome P450 enzymes, thermostable P450 CYP119A1, the P450 domain of CYP102A1 (BMP), CYP152A1 (P450(bsbeta)), and CYP101A1 (P450(cam)). Utilizing a high-throughput microplate assay, we were able to readily screen more than 100 combinations of enzymes, additives and cosolvents in a convenient and highly reproducible assay format. We found that, in general, CYP119A1 and BMP showed an increase in peroxidative activity in the presence of fatty acids, whereas CYP152A1 revealed a decrease in activity and CYP101A1 was only slightly affected. In particular, we observed that the conversion of the fluorogenic peroxidase substrate Amplex Red by CYP119A1 and BMP was increased by a factor of 38 or 11, respectively, when isopropanol and lauric acid were present in the reaction mixture. The activity of CYP119A1 could thus be modulated to reach more than 90% of the activity of CYP152A1 without effectors, which is the system with the highest peroxidative activity. For all P450s investigated we found distinctive reactivity patterns, which suggest similarities in the binding site of CYP119A1 and BMP in contrast with the other two proteins studied. Therefore, this study points towards a role of fatty acids as activators for CYP enzymes in addition to being mere substrates. In general, our detailed description of fatty acid- and organic solvent-effects is of practical interest because it illustrates that optimization of modulators and cosolvents can lead to significantly increased yields in biocatalysis.

  6. An anomalous behavior of trypsin immobilized in alginate network.

    Science.gov (United States)

    Ganachaud, Chrystelle; Bernin, Diana; Isaksson, Dan; Holmberg, Krister

    2013-05-01

    Alginate is a biopolymer used in drug formulations and for surgical purposes. In the presence of divalent cations, it forms solid gels, and such gels are of interest for immobilization of cells and enzymes. In this work, we entrapped trypsin in an alginate gel together with a known substrate, N α-benzoyl-L-arginine-4-nitroanilide hydrochloride (L-BAPNA), and in the presence or absence of D-BAPNA, which is known to be a competitive inhibitor. Interactions between alginate and the substrate as well as the enzyme were characterized with transmission electron microscopy, rheology, and nuclear magnetic resonance spectroscopy. The biocatalysis was monitored by spectrophotometry at temperatures ranging from 10 to 42 °C. It was found that at 37 and 42 °C a strong acceleration of the reaction was obtained, whereas at 10 °C and at room temperature, the presence of D-BAPNA leads to a retardation of the reaction rate. The same effect was found when the reaction was performed in a non-cross-linked alginate solution. In alginate-free buffer solution, as well as in a solution of carboxymethylcellulose, a biopolymer that resembles alginate, the normal behavior was obtained; however, with D-BAPNA acting as an inhibitor at all temperatures. A more detailed investigation of the reaction kinetics showed that at higher temperature and in the presence of alginate, the curve of initial reaction rate versus L-BAPNA concentration had a sigmoidal shape, indicating an allosteric behavior. We believe that the anomalous behavior of trypsin in the presence of alginate is due to conformational changes caused by interactions between the positively charged trypsin and the strongly negatively charged alginate.

  7. Tailoring crystallinity and configuration of silica nanotubes by electron irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Taguchi, Tomitsugu, E-mail: taguchi.tomitsugu@jaea.go.jp; Yamaguchi, Kenji

    2015-05-01

    Highlights: •Single-crystal SiO{sub 2} nanotubes were successfully synthesized for the first time. •The single-crystal SiO{sub 2} was α-crystobalite. •Desired area of single-crystal nanotube can be changed to amorphous by electron irradiation. •The configuration of nanotube can be controlled using the focused electron irradiation technique. -- Abstract: SiO{sub 2} nanotubes show potential in applications such as nanoscale electronic and optical devices, bioseparation, biocatalysis, and nanomedicine. As-grown SiO{sub 2} nanotubes in the previous studies always have an amorphous wall, and here we demonstrate the successful synthesis of single-crystal nanotubes for the first time by the heat treatment of SiC nanotubes at 1300 °C for 10 h under low-vacuum conditions. According to TEM observations, the single-crystal SiO{sub 2} was α-cristobalite. We also demonstrate that single-crystal SiO{sub 2} nanotubes can be transformed into amorphous SiO{sub 2} nanotubes by electron beam irradiation. Moreover, we synthesized a crystalline/amorphous SiO{sub 2} composite nanotube, in which crystalline and amorphous SiO{sub 2} coexisted in different localized regions. In addition, for biomedical applications such as drug delivery systems, controlling the configuration of the open end, the diameter, and capsulation of SiO{sub 2} nanotubes is crucial. We can also obturate, capsulate, and cut a SiO{sub 2} nanotube, as well as modify the inner diameter of the nanotube at a specific, nanometer-sized region using the focused electron beam irradiation technique.

  8. Controlling enzyme inhibition using an expanded set of genetically encoded amino acids.

    Science.gov (United States)

    Zheng, Shun; Kwon, Inchan

    2013-09-01

    Enzyme inhibition plays an important role in drug development, metabolic pathway regulation, and biocatalysis with product inhibition. When an inhibitor has high structural similarities to the substrate of an enzyme, controlling inhibitor binding without affecting enzyme substrate binding is often challenging and requires fine-tuning of the active site. We hypothesize that an extended set of genetically encoded amino acids can be used to design an enzyme active site that reduces enzyme inhibitor binding without compromising substrate binding. As a model case, we chose murine dihydrofolate reductase (mDHFR), substrate dihydrofolate, and inhibitor methotrexate. Structural models of mDHFR variants containing non-natural amino acids complexed with each ligand were constructed to identify a key residue for inhibitor binding and non-natural amino acids to replace the key residue. Then, we discovered that replacing the key phenylalanine residue with two phenylalanine analogs (p-bromophenylalanine (pBrF) and L-2-naphthylalanine (2Nal)) enhances binding affinity toward the substrate dihydrofolate over the inhibitor by 4.0 and 5.8-fold, respectively. Such an enhanced selectivity is mainly due to a reduced inhibitor binding affinity by 2.1 and 4.3-fold, respectively. The catalytic efficiency of the mDHFR variant containing pBrF is comparable to that of wild-type mDHFR, whereas the mDHFR variant containing 2Nal exhibits a moderate decrease in the catalytic efficiency. The work described here clearly demonstrates the feasibility of selectively controlling enzyme inhibition using an expanded set of genetically encoded amino acids.

  9. Progress in Study on Magnetically Separable Nanocatalysts%磁性纳米催化剂的研究进展

    Institute of Scientific and Technical Information of China (English)

    郭祖鹏; 郭莉; 师存杰; 焉海波

    2011-01-01

    介绍了磁性纳米催化剂的特性,综述了近年来磁性纳米催化剂在在氢化催化、加氢甲酰化催化、C-C键偶联反应催化、氧化和环氧化催化、酯化反应催化、缩合反应催化、烯烃复分解催化、光催化、生物催化等领域应用的研究进展,旨在探讨磁性纳米催化剂制备方法和应用领域,同时提出其应用过程中存在的问题,并对发展前景进行了展望.%Magnetically separable nanocatalysts have the magnetic sensitivity and the unique properties of nano-materials as well as those of catalytic materials. Compared to their parent catalysts in solution, the magnetically separable nanocatalyst not only allow facile separation and recycling of the catalyst under the extern magnetic field, but also keep their previous dynamic performance such as high activity and selectivity due to the body size under the nano meter scale. In this paper, the applications of magnetically separable nanocatalyst in hydrogenation, hydroformylation, C-C coupling reaction, oxidation and epoxidation, esterification, condensation reaction, olefin metathesis, photocatalysis and biocatalysis were reviewed. The problems and the direction of the further research were also put forwarded.

  10. Deciphering the toxicity of bisphenol a to Candida rugosa lipase through spectrophotometric methods.

    Science.gov (United States)

    Zhang, Rui; Zhao, Lining; Liu, Rutao

    2016-10-01

    Bisphenol A is widely used in the manufacture of food packaging and beverage containers and can invade our food and cause contamination. Candida rugose lipase has been a versatile enzyme for biocatalysis and biotransformations to produce useful materials for food, pharmaceutical and flavor. The interactions between bisphenol A and Candida rugosa lipase in vitro were studied by UV-vis, steady-state fluorescence, circular dichroism, synchronous fluorescence, light scattering spectra, molecular docking and enzyme activity assay to better understand the toxicity and toxic mechanisms of bisphenol A. The intrinsic fluorescence of the tryptophan amino acid residue and the secondary structure of the globular protein candida rugose lipase were made use of to thoroughly investigate the structural changes caused by bisphenol A. The results of the fluorescence indicated that bisphenol A interacted with candida rugose lipase and made tryptophan be exposed to a hydrophobic environment. Multi-spectroscopic measurements showed that the addition of bisphenol A increased the intrinsic fluorescence of Candida rugosa lipase, loosened its skeleton structure and changed its secondary structure. Also, the increased activity of Candida rugosa lipase revealed that the position or the structure of the catalytic triad of Candida rugosa lipase may be changed. The molecular docking results showed that bisphenol A bound with the residue Serine 209 which could be another reason for the increased activity of Candida rugosa lipase. Moreover, as can be seen from the results of resonance light scattering and dynamic light scattering, the volume of the Candida rugosa lipase was decreased and the lid may be stripped.

  11. Engineering yield and rate of reductive biotransformation in Escherichia coli by partial cyclization of the pentose phosphate pathway and PTS-independent glucose transport.

    Science.gov (United States)

    Siedler, Solvej; Bringer, Stephanie; Blank, Lars M; Bott, Michael

    2012-02-01

    Optimization of yields and productivities in reductive whole-cell biotransformations is an important issue for the industrial application of such processes. In a recent study with Escherichia coli, we analyzed the reduction of the prochiral β-ketoester methyl acetoacetate by an R-specific alcohol dehydrogenase (ADH) to the chiral hydroxy ester (R)-methyl 3-hydroxybutyrate (MHB) using glucose as substrate for the generation of NADPH. Deletion of the phosphofructokinase gene pfkA almost doubled the yield to 4.8 mol MHB per mole of glucose, and it was assumed that this effect was due to a partial cyclization of the pentose phosphate pathway (PPP). Here, this partial cyclization was confirmed by (13)C metabolic flux analysis, which revealed a negative net flux from glucose 6-phosphate to fructose 6-phosphate catalyzed by phosphoglucose isomerase. For further process optimization, the genes encoding the glucose facilitator (glf) and glucokinase (glk) of Zymomonas mobilis were overexpressed in recombinant E. coli strains carrying ADH and deletions of either pgi (phosphoglucose isomerase), or pfkA, or pfkA plus pfkB. In all cases, the glucose uptake rate was increased (30-47%), and for strains Δpgi and ΔpfkA also, the specific MHB production rate was increased by 15% and 20%, respectively. The yield of the latter two strains slightly dropped by 11% and 6%, but was still 73% and 132% higher compared to the reference strain with intact pgi and pfkA genes and expressing glf and glk. Thus, metabolic engineering strategies are presented for improving yield and rate of reductive redox biocatalysis by partial cyclization of the PPP and by increasing glucose uptake, respectively.

  12. Engineering of alanine dehydrogenase from Bacillus subtilis for novel cofactor specificity.

    Science.gov (United States)

    Lerchner, Alexandra; Jarasch, Alexander; Skerra, Arne

    2016-09-01

    The l-alanine dehydrogenase of Bacillus subtilis (BasAlaDH), which is strictly dependent on NADH as redox cofactor, efficiently catalyzes the reductive amination of pyruvate to l-alanine using ammonia as amino group donor. To enable application of BasAlaDH as regenerating enzyme in coupled reactions with NADPH-dependent alcohol dehydrogenases, we alterated its cofactor specificity from NADH to NADPH via protein engineering. By introducing two amino acid exchanges, D196A and L197R, high catalytic efficiency for NADPH was achieved, with kcat /KM  = 54.1 µM(-1)  Min(-1) (KM  = 32 ± 3 µM; kcat  = 1,730 ± 39 Min(-1) ), almost the same as the wild-type enzyme for NADH (kcat /KM  = 59.9 µM(-1)  Min(-1) ; KM  = 14 ± 2 µM; kcat  = 838 ± 21 Min(-1) ). Conversely, recognition of NADH was much diminished in the mutated enzyme (kcat /KM  = 3 µM(-1)  Min(-1) ). BasAlaDH(D196A/L197R) was applied in a coupled oxidation/transamination reaction of the chiral dicyclic dialcohol isosorbide to its diamines, catalyzed by Ralstonia sp. alcohol dehydrogenase and Paracoccus denitrificans ω-aminotransferase, thus allowing recycling of the two cosubstrates NADP(+) and l-Ala. An excellent cofactor regeneration with recycling factors of 33 for NADP(+) and 13 for l-Ala was observed with the engineered BasAlaDH in a small-scale biocatalysis experiment. This opens a biocatalytic route to novel building blocks for industrial high-performance polymers.

  13. Preparation of Chitosan Nanocompositeswith a Macroporous Structure by Unidirectional Freezing and Subsequent Freeze-Drying

    Directory of Open Access Journals (Sweden)

    Inmaculada Aranaz

    2014-11-01

    Full Text Available Chitosan is the N-deacetylated derivative of chitin, a naturally abundant mucopolysaccharide that consists of 2-acetamido-2-deoxy-β-d-glucose through a β (1→4 linkage and is found in nature as the supporting material of crustaceans, insects, etc. Chitosan has been strongly recommended as a suitable functional material because of its excellent biocompatibility, biodegradability, non-toxicity, and adsorption properties. Boosting all these excellent properties to obtain unprecedented performances requires the core competences of materials chemists to design and develop novel processing strategies that ultimately allow tailoring the structure and/or the composition of the resulting chitosan-based materials. For instance, the preparation of macroporous materials is challenging in catalysis, biocatalysis and biomedicine, because the resulting materials will offer a desirable combination of high internal reactive surface area and straightforward molecular transport through broad “highways” leading to such a surface. Moreover, chitosan-based composites made of two or more distinct components will produce structural or functional properties not present in materials composed of one single component. Our group has been working lately on cryogenic processes based on the unidirectional freezing of water slurries and/or hydrogels, the subsequent freeze-drying of which produce macroporous materials with a well-patterned structure. We have applied this process to different gels and colloidal suspensions of inorganic, organic, and hybrid materials. In this review, we will describe the application of the process to chitosan solutions and gels typically containing a second component (e.g., metal and ceramic nanoparticles, or carbon nanotubes for the formation of chitosan nanocomposites with a macroporous structure. We will also discuss the role played by this tailored composition and structure in the ultimate performance of these materials.

  14. A novel amperometric alcohol biosensor developed in a 3rd generation bioelectrode platform using peroxidase coupled ferrocene activated alcohol oxidase as biorecognition system.

    Science.gov (United States)

    Chinnadayyala, Somasekhar R; Kakoti, Ankana; Santhosh, Mallesh; Goswami, Pranab

    2014-05-15

    Alcohol oxidase (AOx) with a two-fold increase in efficiency (Kcat/Km) was achieved by physical entrapment of the activator ferrocene in the protein matrix through a simple microwave based partial unfolding technique and was used to develop a 3rd generation biosensor for improved detection of alcohol in liquid samples. The ferrocene molecules were stably entrapped in the AOx protein matrix in a molar ratio of ~3:1 through electrostatic interaction with the Trp residues involved in the functional activity of the enzyme as demonstrated by advanced analytical techniques. The sensor was fabricated by immobilizing ferrocene entrapped alcohol oxidase (FcAOx) and sol-gel chitosan film coated horseradish peroxidase (HRP) on a multi-walled carbon nanotube (MWCNT) modified glassy carbon electrode through layer-by-layer technique. The bioelectrode reactions involved the formation of H2O2 by FcAOx biocatalysis of substrate alcohol followed by HRP-catalyzed reduction of the liberated H2O2 through MWCNT supported direct electron transfer mechanism. The amperometric biosensor exhibited a linear response to alcohol in the range of 5.0 × 10(-6) to 30 × 10(-4)mol L(-1) with a detection limit of 2.3 × 10(-6) mol L(-1), and a sensitivity of 150 µA mM(-1) cm(-2). The biosensor response was steady for 28 successive measurements completed in a period of 5h and retained ~90% of the original response even after four weeks when stored at 4 °C. The biosensor was successfully applied for the determination of alcohol in commercial samples and its performance was validated by comparing with the data obtained by GC analyses of the samples.

  15. Engineering cytochrome p450 enzymes.

    Science.gov (United States)

    Gillam, Elizabeth M J

    2008-01-01

    The last 20 years have seen the widespread and routine application of methods in molecular biology such as molecular cloning, recombinant protein expression, and the polymerase chain reaction. This has had implications not only for the study of toxicological mechanisms but also for the exploitation of enzymes involved in xenobiotic clearance. The engineering of P450s has been performed with several purposes. The first and most fundamental has been to enable successful recombinant expression in host systems such as bacteria. This in turn has led to efforts to solubilize the proteins as a prerequisite to crystallization and structure determination. Lagging behind has been the engineering of enzyme activity, hampered in part by our still-meager comprehension of fundamental structure-function relationships in P450s. However, the emerging technique of directed evolution holds promise in delivering both engineered enzymes for use in biocatalysis and incidental improvements in our understanding of sequence-structure and sequence-function relationships, provided that data mining can extract the fundamental correlations underpinning the data. From the very first studies on recombinant P450s, efforts were directed toward constructing fusions between P450s and redox partners in the hope of generating more efficient enzymes. While this aim has been allowed to lie fallow for some time, this area merits further investigation as does the development of surface-displayed P450 systems for biocatalytic and biosensor applications. The final application of engineered P450s will require other aspects of their biology to be addressed, such as tolerance to heat, solvents, and high substrate and product concentrations. The most important application of these enzymes in toxicology in the near future is likely to be the biocatalytic generation of drug metabolites for the pharmaceutical industry. Further tailoring will be necessary for specific toxicological applications, such as in

  16. Stability engineering of the Geobacillus stearothermophilus alcohol dehydrogenase and application for the synthesis of a polyamide 12 precursor.

    Science.gov (United States)

    Kirmair, Ludwig; Seiler, Daniel Leonard; Skerra, Arne

    2015-12-01

    The thermostable NAD(+)-dependent alcohol dehydrogenase from Geobacillus stearothermophilus (BsADH) was exploited with regard to the biocatalytic synthesis of ω-oxo lauric acid methyl ester (OLAMe), a key intermediate for biobased polyamide 12 production, from the corresponding long-chain alcohol. Recombinant BsADH was produced in Escherichia coli as a homogeneous tetrameric enzyme and showed high activity towards the industrially relevant substrate ω-hydroxy lauric acid methyl ester (HLAMe) with K M = 86 μM and 44 U mg(-1). The equilibrium constant for HLAMe oxidation to the aldehyde (OLAMe) with NAD(+) was determined as 2.16 × 10(-3) from the kinetic parameters of the BsADH-catalyzed forward and reverse reactions. Since BsADH displayed limited stability under oxidizing conditions, the predominant oxidation-prone residue Cys257 was mutated to Leu based on sequence homology with related enzymes and computational simulation. This substitution resulted in an improved BsADH variant exhibiting prolonged stability and an elevated inactivation temperature. Semi-preparative biocatalysis at 60 °C using the stabilized enzyme, employing butyraldehyde for in situ cofactor regeneration with only catalytic amounts of NAD(+), yielded up to 23 % conversion of HLAMe to OLAMe after 30 min. In contrast to other oxidoreductases, no overoxidation to the dodecanoic diacid monomethyl ester was detected. Thus, the mutated BsADH offers a promising biocatalyst for the selective oxidation of fatty alcohols to yield intermediates for industrial polymer production.

  17. Regioselective hydroxylation of trans-resveratrol via inhibition of tyrosinase from Streptomyces avermitilis MA4680.

    Science.gov (United States)

    Lee, Nahum; Kim, Eun Jung; Kim, Byung-Gee

    2012-10-19

    Secreted tyrosinase from melanin-forming Streptomyces avermitilis MA4680 was involved in both ortho-hydroxylation and further oxidation of trans-resveratrol, leading to the formation of melanin. This finding was confirmed by constructing deletion mutants of melC(2) and melD(2) encoding extracellular and intracellular tyrosinase, respectively; the melC2 deletion mutant did not produce piceatannol as well as melanin, whereas the melD2 deletion mutant oxidized resveratrol and synthesized melanin with the same yields, suggesting that MelC2 is responsible for ortho-hydroxylation of resveratrol. Extracellular tyrosinase (MelC2) efficiently converted trans-resveratrol into piceatannol in the presence of either tyrosinase inhibitors or reducing agents such as catechol, NADH, and ascorbic acid. Reducing agents slow down the dioxygenase reaction of tyrosinase. In the presence of catechol, the regio-specific hydroxylation of trans-resveratrol was successfully performed by whole cell biotransformation, and further oxidation of trans-resveratrol was efficiently blocked. The yield of this ortho-hydroxylation of trans-resveratrol was dependent upon inhibitor concentration. Using 1.8 mg of wild-type Streptomyces avermitilis cells, the conversion yield of 100 μM trans-resveratrol to piceatannol was 78% in 3 h in the presence of 1 mM catechol, indicating 14 μM piceatannol h(-1) DCW mg(-1) specific productivity, which was a 14-fold increase in conversion yield compared to that without catechol, which is a remarkably higher reaction rate than that of P450 bioconversion. This method could be generally applied to biocatalysis of various dioxygenases.

  18. Biocatalytic methanolysis activities of cross-linked protein-coated microcrystalline lipase toward esterification/transesterification of relevant palm products.

    Science.gov (United States)

    Raita, Marisa; Laosiripojana, Navadol; Champreda, Verawat

    2015-03-01

    Biocatalysis by immobilized lipase is an efficient alternative process for conversion of crude vegetable oil with high free fatty acid content to biodiesel, which is the limit of the conventional alkaline-catalyzed reaction. In this study, influences of solid-state organic and inorganic buffer core matrices with different pKa on catalytic performance of cross-linked protein coated microcrystalline biocatalysts prepared from Thermomyces lanuginosus lipase (CL-PCMC-LIP) toward esterification of palmitic acid (PA), transesterification of refined palm oil (RPO), and co-ester/transesterification of crude palm oil (CPO) to fatty acid methyl ester (FAME) was studied. Glycine, CAPSO (3-(cyclohexylamino)-2-hydroxy-1-propanesulfonic acid), and TAPS ([(2-hydroxy-1,1-bis(hydroxymethyl)ethyl)amino]-1-propanesulfonic acid) were shown to be potent core matrices for these reactions. The optimal reaction contained 4:1 [methanol]/[fatty acid] molar equivalence ratio with 20% (w/w) CL-PCMC-LIP on glycine in the presence of tert-butanol as a co-solvent. Deactivation effect of glycerol on the biocatalyst reactive surface was shown by FTIR, which could be alleviated by increasing co-solvent content. The maximal FAME yields from PA, RPO, and CPO reached 97.6, 94.9, and 95.5%, respectively on a molar basis under the optimum conditions after incubation at 50°C for 6h. The biocatalyst retained >80% activity after recycling in five consecutive batches. The work demonstrates the potential of CL-PCMC-LIP on one-step conversion of inexpensive crude fatty acid-rich feedstock to biodiesel.

  19. Adsorption of Candida rugosa lipase at water-polymer interface: The case of poly( DL)lactide

    Science.gov (United States)

    Kamel, Gihan; Bordi, Federico; Chronopoulou, Laura; Lupi, Stefano; Palocci, Cleofe; Sennato, Simona; Verdes, Pedro V.

    2011-12-01

    Insights into the interactions between biological macromolecules and polymeric surfaces are of great interest because of potential uses in developing biotechnologies. In this study we focused on the adsorption of a model lipolytic enzyme, Candida rugosa lipase (CRL), on poly-(D,L)-lactic acid (PDLLA) polymer with the aim to gain deeper insights into the interactions between the enzyme and the carrier. Such studies are of particular relevance in order to establish the optimal conditions for enzyme immobilization and its applications. We employed two different approaches; by analyzing the influence of adsorbed CRL molecules on the thermodynamic behavior of Langmuir films of PDLLA deposited at air-water interface, we gained interesting information on the molecular interactions between the protein and the polymer. Successively, by a systematic analysis of the adsorption of CRL on PDLLA nanoparticles, we showed that the adsorption of a model lipase, CRL, on PDLLA is described in terms of a Langmuir-type adsorption behavior. In this model, only monomolecular adsorption takes place (i.e. only a single layer of the protein adsorbs on the support) and the interactions between adsorbed molecules and surface are short ranged. Moreover, both the adsorption and desorption are activated processes, and the heat of adsorption (the difference between the activation energy for adsorption and desorption) is independent from the surface coverage of the adsorbing species. Finally, we obtained an estimate of the number of molecules of the protein adsorbed per surface unit on the particles, a parameter of a practical relevance for applications in biocatalysis, and a semi-quantitative estimate of the energies (heat of adsorption) involved in the adsorption process.

  20. Nitrile Metabolizing Yeasts

    Science.gov (United States)

    Bhalla, Tek Chand; Sharma, Monica; Sharma, Nitya Nand

    Nitriles and amides are widely distributed in the biotic and abiotic components of our ecosystem. Nitrile form an important group of organic compounds which find their applications in the synthesis of a large number of compounds used as/in pharmaceutical, cosmetics, plastics, dyes, etc>. Nitriles are mainly hydro-lyzed to corresponding amide/acid in organic chemistry. Industrial and agricultural activities have also lead to release of nitriles and amides into the environment and some of them pose threat to human health. Biocatalysis and biotransformations are increasingly replacing chemical routes of synthesis in organic chemistry as a part of ‘green chemistry’. Nitrile metabolizing organisms or enzymes thus has assumed greater significance in all these years to convert nitriles to amides/ acids. The nitrile metabolizing enzymes are widely present in bacteria, fungi and yeasts. Yeasts metabolize nitriles through nitrilase and/or nitrile hydratase and amidase enzymes. Only few yeasts have been reported to possess aldoxime dehydratase. More than sixty nitrile metabolizing yeast strains have been hither to isolated from cyanide treatment bioreactor, fermented foods and soil. Most of the yeasts contain nitrile hydratase-amidase system for metabolizing nitriles. Transformations of nitriles to amides/acids have been carried out with free and immobilized yeast cells. The nitrilases of Torulopsis candida>and Exophiala oligosperma>R1 are enantioselec-tive and regiospecific respectively. Geotrichum>sp. JR1 grows in the presence of 2M acetonitrile and may have potential for application in bioremediation of nitrile contaminated soil/water. The nitrilase of E. oligosperma>R1 being active at low pH (3-6) has shown promise for the hydroxy acids. Immobilized yeast cells hydrolyze some additional nitriles in comparison to free cells. It is expected that more focus in future will be on purification, characterization, cloning, expression and immobilization of nitrile metabolizing

  1. The Molecular Mechanism of the Catalase-like Activity in Horseradish Peroxidase.

    Science.gov (United States)

    Campomanes, Pablo; Rothlisberger, Ursula; Alfonso-Prieto, Mercedes; Rovira, Carme

    2015-09-02

    Horseradish peroxidase (HRP) is one of the most relevant peroxidase enzymes, used extensively in immunochemistry and biocatalysis applications. Unlike the closely related catalase enzymes, it exhibits a low activity to disproportionate hydrogen peroxide (H2O2). The origin of this disparity remains unknown due to the lack of atomistic information on the catalase-like reaction in HRP. Using QM(DFT)/MM metadynamics simulations, we uncover the mechanism for reduction of the HRP Compound I intermediate by H2O2 at atomic detail. The reaction begins with a hydrogen atom transfer, forming a peroxyl radical and a Compound II-like species. Reorientation of the peroxyl radical in the active site, concomitant with the transfer of the second hydrogen atom, is the rate-limiting step, with a computed free energy barrier (18.7 kcal/mol, ∼ 6 kcal/mol higher than the one obtained for catalase) in good agreement with experiments. Our simulations reveal the crucial role played by the distal pocket residues in accommodating H2O2, enabling formation of a Compound II-like intermediate, similar to catalases. However, out of the two pathways for Compound II reduction found in catalases, only one is operative in HRP. Moreover, the hydrogen bond network in the distal side of HRP compensates less efficiently than in catalases for the energetic cost required to reorient the peroxyl radical at the rate-determining step. The distal Arg and a water molecule in the "wet" active site of HRP have a substantial impact on the reaction barrier, compared to the "dry" active site in catalase. Therefore, the lower catalase-like efficiency of heme peroxidases compared to catalases can be directly attributed to the different distal pocket architecture, providing hints to engineer peroxidases with a higher rate of H2O2 disproportionation.

  2. Virtual Special Issue on Catalysis at the U.S. Department of Energy’s National Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Pruski, Marek; Sadow, Aaron D.; Slowing, Igor I.; Marshall, Christopher L.; Stair, Peter; Rodriguez, Jose; Harris, Alex; Somorjai, Gabor A.; Biener, Juergen; Matranga, Christopher; Wang, Congjun; Schaidle, Joshua A.; Beckham, Gregg T.; Ruddy, Daniel A.; Deutsch, Todd; Alia, Shaun M.; Narula, Chaitanya; Overbury, Steve; Toops, Todd; Bullock, R. Morris; Peden, Charles H. F.; Wang, Yong; Allendorf, Mark D.; Nørskov, Jens; Bligaard, Thomas

    2016-05-06

    Catalysis research at the U.S. Department of Energy’s (DOE’s) National Laboratories covers a wide range of research topics in heterogeneous catalysis, homogeneous/molecular catalysis, biocatalysis, electrocatalysis, and surface science. Since much of the work at National Laboratories is funded by DOE, the research is largely focused on addressing DOE’s mission to ensure America’s security and prosperity by addressing its energy, environmental, and nuclear challenges through transformative science and technology solutions. The catalysis research carried out at the DOE National Laboratories ranges from very fundamental catalysis science, funded by DOE’s Office of Basic Energy Sciences (BES), to applied research and development (R&D) in areas such as biomass conversion to fuels and chemicals, fuel cells, and vehicle emission control with primary funding from DOE’s Office of Energy Efficiency and Renewable Energy. National Laboratories are home to many DOE Office of Science national scientific user facilities that provide researchers with the most advanced tools of modern science, including accelerators, colliders, supercomputers, light sources, and neutron sources, as well as facilities for studying the nanoworld and the terrestrial environment. National Laboratory research programs typically feature teams of researchers working closely together, often joining scientists from different disciplines to tackle scientific and technical problems using a variety of tools and techniques available at the DOE national scientific user facilities. Along with collaboration between National Laboratory scientists, interactions with university colleagues are common in National Laboratory catalysis R&D. In some cases, scientists have joint appointments at a university and a National Laboratory.

  3. [Two-step synthesis of the full length Aspergillus niger lipase gene lipA leads to high-level expression in Pichia pastoris].

    Science.gov (United States)

    Yang, Jiangke; Yan, Xiangxiang; Zhang, Zhengping; Jiang, Xueqing; Yan, Yunjun

    2009-03-01

    Aspergillus niger lipases are important biocatalysis widely used in industries for food processing and pharmaceutical preparation. High-level expression recombinants can lead to cost effective lipase large scale production. Full length gene synthesis is an efficient measure to enhance the expression level of the gene. In order to reduce the non-specific binding between oligonucleotides and bases mutation caused by the complicate secondary structure of DNA and excessive PCR amplification, a frequently phenomenon in one-step gene synthesis, we used a two-step method including assembly PCR (A-PCR) and digestion-ligation step to synthesis Aspergillus niger lipase gene lipA. Assisted by DNA2.0 and Gene2Oliga software, we optimized the codon usage and secondary structure of RNA and induced enzyme sites Cla I (237 site) and Pst I (475 site) into the gene. In the first step, fragments F1 (237 bp), F2 (238 bp) and F3 (422 bp) were separately synthesized by assembly PCR. In the second step, fragments F1, F2 and F3 were separately digested by Cla I and Pst I, and then ligated into a full length lipA gene. Two-step method efficiently enhanced successful ratio for full-length gene synthesis and dispersed the risk for gene redesign. The synthesized gene was cloned into pPIC9K vector and transferred into Pichia pastoris. After methanol inducement, the expression level of the codon optimized lipA-syn gene reached 176.0 U/mL, 10.8-fold of the original lipA gene (16.3 U/mL) in Pichia pastoris GS1115. The recombinant offers the possibility for lipase large-scale production.

  4. Upscale production of ethyl (S)-4-chloro-3-hydroxybutanoate by using carbonyl reductase coupled with glucose dehydrogenase in aqueous-organic solvent system.

    Science.gov (United States)

    Liu, Zhi-Qiang; Ye, Jing-Jing; Shen, Zhen-Yang; Hong, Hua-Bin; Yan, Jian-Bo; Lin, Yi; Chen, Zheng-Xu; Zheng, Yu-Guo; Shen, Yin-Chu

    2015-03-01

    (S)-4-chloro-3-hydroxybutanoate ((S)-CHBE) is an important chiral intermediate to synthesize the side chain of cholesterol-lowering drug atorvastatin. To biosynthesize the (S)-CHBE, a recombinant Escherichia coli harboring the carbonyl reductase and glucose dehydrogenase was successfully constructed. The recombinant E. coli was cultured in a 500-L fermentor; after induction and expression, the enzyme activity and cell biomass were increased to 23,661.65 U/L and 13.90 g DCW/L which was 3.24 and 2.60-folds compared with those in the 50 L fermentor. The biocatalytic process for the synthesis of (S)-CHBE in an aqueous-organic solvent system was constructed and optimized with a substrate fed-batch strategy. The ethyl 4-chloro-3-oxobutanoate concentration reached to 1.7 M, and the (S)-CHBE with yield of 97.2 % and enantiomeric excess (e.e.) of 99 % was obtained after 4-h reaction in a 50-L reactor. In this study, the space-time yield and space-time yield per gram of biomass (dry cell weight, DCW) were 413.17 mM/h and 27.55 mM/h/g DCW for (S)-CHBE production, respectively, which were the highest values as compared to previous reports. Finally, (S)-CHBE was extracted from the reaction mixture with 82 % of yield and 95 % of purity. This study paved the foundation for the upscale production of (S)-CHBE by biocatalysis method.

  5. Immobilisation and characterisation of biocatalytic co-factor recycling enzymes, glucose dehydrogenase and NADH oxidase, on aldehyde functional ReSyn™ polymer microspheres.

    Science.gov (United States)

    Twala, Busisiwe V; Sewell, B Trevor; Jordaan, Justin

    2012-05-10

    The use of enzymes in industrial applications is limited by their instability, cost and difficulty in their recovery and re-use. Immobilisation is a technique which has been shown to alleviate these limitations in biocatalysis. Here we describe the immobilisation of two biocatalytically relevant co-factor recycling enzymes, glucose dehydrogenase (GDH) and NADH oxidase (NOD) on aldehyde functional ReSyn™ polymer microspheres with varying functional group densities. The successful immobilisation of the enzymes on this new high capacity microsphere technology resulted in the maintenance of activity of ∼40% for GDH and a maximum of 15.4% for NOD. The microsphere variant with highest functional group density of ∼3500 μmol g⁻¹ displayed the highest specific activity for the immobilisation of both enzymes at 33.22 U mg⁻¹ and 6.75 U mg⁻¹ for GDH and NOD with respective loading capacities of 51% (0.51 mg mg⁻¹) and 129% (1.29 mg mg⁻¹). The immobilised GDH further displayed improved activity in the acidic pH range. Both enzymes displayed improved pH and thermal stability with the most pronounced thermal stability for GDH displayed on ReSyn™ A during temperature incubation at 65 °C with a 13.59 fold increase, and NOD with a 2.25-fold improvement at 45 °C on the same microsphere variant. An important finding is the suitability of the microspheres for stabilisation of the multimeric protein GDH.

  6. Development of phosphonate modified Fe 1-x MnxFe2O4 mixed ferrite nanoparticles: novel peroxidase mimetics in enzyme linked immunosorbent assay.

    Science.gov (United States)

    Bhattacharya, Dipsikha; Baksi, Ananya; Banerjee, Indranil; Ananthakrishnan, Rajakumar; Maiti, Tapas K; Pramanik, Panchanan

    2011-10-30

    A highly facile and feasible strategy on the fabrication of advanced intrinsic peroxidase mimetics based on Mn(2+) doped mixed ferrite (Mn(II)(x)Fe(II)(1-x)Fe(III)(2)O(4)) nanoparticles was demonstrated for the quantitative and sensitive detection of mouse IgG (as a model analyte). Mn(2+) doped Fe(1-x)Mn(x)Fe(2)O(4) nanoparticles were synthesized using varying ratios of Mn(2+):Fe(2+) ions and characterized by the well known complementary techniques. The increase of Mn(2+) proportion had remarkably enhanced the peroxidase activity and magnetism. The catalytic activity of mixed ferrites was found to follow Michaelis-Menten kinetics and was noticeably higher than native Fe(3)O(4). The calculated K(m) and K(cat) exhibited strong affinity with substrates which were remarkably higher than similar sized native magnetite nanoparticles and horseradish peroxidase (HRP). These findings stimulated us to develop carboxyl modified Fe(1-x)Mn(x)Fe(2)O(4) nanoparticles using phosphonomethyl immunodiacetic acid (PMIDA) to engineer PMIDA-Fe(1-x)Mn(x)Fe(2)O(4) fabricated enzyme linked immunosorbent assay (ELISA). Results of both PMIDA-Fe(1-x)Mn(x)Fe(2)O(4) linked ELISA revealed that the enhancements in absorbance during the catalysis of enzyme substrate were linearly proportional to the concentration of mouse IgG within the range between 0.1 μg/ml and 2.5 μg/ml. Further, this detection was ten times lower than previous reports and the detection limit of mouse IgG was 0.1 μg/ml. The advantages of our fabricated artificial peroxidase mimetics are combined of low cost, easy to prepare, better stability and tunable catalytic activity. Moreover, this method provides a new horizon for the development of promising analytical tools in the application of biocatalysis, bioassays, and bioseparation.

  7. A breakthrough in enzyme technology to fight penicillin resistance-industrial application of penicillin amidase.

    Science.gov (United States)

    Buchholz, Klaus

    2016-05-01

    Enzymatic penicillin hydrolysis by penicillin amidase (also penicillin acylase, PA) represents a Landmark: the first industrially and economically highly important process using an immobilized biocatalyst. Resistance of infective bacteria to antibiotics had become a major topic of research and industrial activities. Solutions to this problem, the antibiotics resistance of infective microorganisms, required the search for new antibiotics, but also the development of derivatives, notably penicillin derivatives, that overcame resistance. An obvious route was to hydrolyse penicillin to 6-aminopenicillanic acid (6-APA), as a first step, for the introduction via chemical synthesis of various different side chains. Hydrolysis via chemical reaction sequences was tedious requiring large amounts of toxic chemicals, and they were cost intensive. Enzymatic hydrolysis using penicillin amidase represented a much more elegant route. The basis for such a solution was the development of techniques for enzyme immobilization, a highly difficult task with respect to industrial application. Two pioneer groups started to develop solutions to this problem in the late 1960s and 1970s: that of Günter Schmidt-Kastner at Bayer AG (Germany) and that of Malcolm Lilly of Imperial College London. Here, one example of this development, that at Bayer, will be presented in more detail since it illustrates well the achievement of a solution to the problems of industrial application of enzymatic processes, notably development of an immobilization method for penicillin amidase suitable for scale up to application in industrial reactors under economic conditions. A range of bottlenecks and technical problems of large-scale application had to be overcome. Data giving an inside view of this pioneer achievement in the early phase of the new field of biocatalysis are presented. The development finally resulted in a highly innovative and commercially important enzymatic process to produce 6-APA that

  8. The crystal structure of D-threonine aldolase from Alcaligenes xylosoxidans provides insight into a metal ion assisted PLP-dependent mechanism.

    Science.gov (United States)

    Uhl, Michael K; Oberdorfer, Gustav; Steinkellner, Georg; Riegler-Berket, Lina; Mink, Daniel; van Assema, Friso; Schürmann, Martin; Gruber, Karl

    2015-01-01

    Threonine aldolases catalyze the pyridoxal phosphate (PLP) dependent cleavage of threonine into glycine and acetaldehyde and play a major role in the degradation of this amino acid. In nature, L- as well as D-specific enzymes have been identified, but the exact physiological function of D-threonine aldolases (DTAs) is still largely unknown. Both types of enantio-complementary enzymes have a considerable potential in biocatalysis for the stereospecific synthesis of various β-hydroxy amino acids, which are valuable building blocks for the production of pharmaceuticals. While several structures of L-threonine aldolases (LTAs) have already been determined, no structure of a DTA is available to date. Here, we report on the determination of the crystal structure of the DTA from Alcaligenes xylosoxidans (AxDTA) at 1.5 Å resolution. Our results underline the close relationship of DTAs and alanine racemases and allow the identification of a metal binding site close to the PLP-cofactor in the active site of the enzyme which is consistent with the previous observation that divalent cations are essential for DTA activity. Modeling of AxDTA substrate complexes provides a rationale for this metal dependence and indicates that binding of the β-hydroxy group of the substrate to the metal ion very likely activates this group and facilitates its deprotonation by His193. An equivalent involvement of a metal ion has been implicated in the mechanism of a serine dehydratase, which harbors a metal ion binding site in the vicinity of the PLP cofactor at the same position as in DTA. The structure of AxDTA is completely different to available structures of LTAs. The enantio-complementarity of DTAs and LTAs can be explained by an approximate mirror symmetry of crucial active site residues relative to the PLP-cofactor.

  9. Synthesis of thermo-responsive polymers recycling aqueous two-phase systems and phase formation mechanism with partition of ε-polylysine.

    Science.gov (United States)

    Xu, Chengning; Dong, Wenying; Wan, Junfen; Cao, Xuejun

    2016-11-11

    Aqueous two-phase systems (ATPS) have the potential application in bioseparation and biocatalysis engineering. In this paper, a recyclable ATPS was developed by two thermo-responsive copolymers, PVBAm and PN. Copolymer PVBAm was copolymerized using N-vinylcaprolactam, Butyl methacrylate and Acrylamide as monomers, and PN was synthesized by N-isopropylacrylamide. The lower critical solution temperature (LCST) of PVBAm and PN were 45.0°C and 33.5°C, respectively. The recoveries of both polymers could achieve over 95.0%. The phase behavior and formation mechanism of PVBAm/PN ATPS was studied. Low-field nuclear magnetic resonance (LF-NMR) was applied in the phase-forming mechanism study in ATPS. In addition, combining the analysis results of surface tension, transmission electron microscopy and dynamic light scattering, the phase-forming of the PVBAm/PN ATPS was proved. The application was performed by partition of ε-polylysine in the 2% PVBAm/2% PN (w/w) ATPS. The results demonstrated that ε-polylysine was extracted into the PN-rich phase, the maximal partition coefficient (1/K) and extraction recovery of pure ε-polylysine were 6.87 and 96.36%, respectively, and 7.41 partition coefficient and 97.85% extraction recovery for ε-polylysine fermentation broth were obtained in the presence of 50mM (NH4)2SO4 at room temperature. And this method can effectively remove the most impurities from fermentation broth when (NH4)2SO4 exists in the ATPS. It is believed that the thermo-responsive recycling ATPS has a good application prospect in the field of bio-separation.

  10. Carotenoid-cleavage activities of crude enzymes from Pandanous amryllifolius.

    Science.gov (United States)

    Ningrum, Andriati; Schreiner, Matthias

    2014-11-01

    Carotenoid degradation products, known as norisoprenoids, are aroma-impact compounds in several plants. Pandan wangi is a common name of the shrub Pandanus amaryllifolius. The genus name 'Pandanus' is derived from the Indonesian name of the tree, pandan. In Indonesia, the leaves from the plant are used for several purposes, e.g., as natural colorants and flavor, and as traditional treatments. The aim of this study was to determine the cleavage of β-carotene and β-apo-8'-carotenal by carotenoid-cleavage enzymes isolated from pandan leaves, to investigate dependencies of the enzymatic activities on temperature and pH, to determine the enzymatic reaction products by using Headspace Solid Phase Microextraction Gas Chromatography/Mass Spectrophotometry (HS-SPME GC/MS), and to investigate the influence of heat treatment and addition of crude enzyme on formation of norisoprenoids. Crude enzymes from pandan leaves showed higher activity against β-carotene than β-apo-8'-carotenal. The optimum temperature of crude enzymes was 70°, while the optimum pH value was 6. We identified β-ionone as the major volatile reaction product from the incubations of two different carotenoid substrates, β-carotene and β-apo-8'-carotenal. Several treatments, e.g., heat treatment and addition of crude enzymes in pandan leaves contributed to the norisoprenoid content. Our findings revealed that the crude enzymes from pandan leaves with carotenoid-cleavage activity might provide a potential application, especially for biocatalysis, in natural-flavor industry.

  11. Ultrasensitive detection of superoxide anion released from living cells using a porous Pt-Pd decorated enzymatic sensor.

    Science.gov (United States)

    Zhu, Xiang; Liu, Tingting; Zhao, Hongli; Shi, Libo; Li, Xiaoqing; Lan, Minbo

    2016-05-15

    Considering the critical roles of superoxide anion (O2(∙-)) in pathological conditions, it is of great urgency to establish a reliable and durable approach for real-time determination of O2(∙-). In this study, we propose a porous Pt-Pd decorated superoxide dismutase (SOD) sensor for qualitative and quantitative detection O2(∙-). The developed biosensor exhibits a fast, selective and linear amperometric response upon O2(∙-) in the concentration scope of 16 to 1,536 μM (R(2)=0.9941), with a detection limit of 0.13 μM (S/N=3) and a low Michaelis-Menten constant of 1.37 μM which indicating a high enzymatic activity and affinity to O2(∙-). Inspiringly, the proposed sensor possesses an ultrahigh sensitivity of 1270 μA mM(-1)cm(-2). In addition, SOD/porous Pt-Pd sensor exhibits excellent anti-interference property, reproducibility and long-term storage stability. Beyond our expectation, the trace level of O2(∙-) released from living cells has also been successfully captured. These satisfactory results are mainly ascribed to (1) the porous interface with larger surface area and more active sites to provide a biocompatible environment for SOD (2) the specific biocatalysis of SOD towards O2(∙-) and (3) porous Pt-Pd nanomaterials fastening the electron transfer. The superior electrochemical performance makes SOD/porous Pt-Pd sensor a promising candidate for monitoring the dynamic changes of O2(∙-)in vivo.

  12. Immobilization of superoxide dismutase on Pt-Pd/MWCNTs hybrid modified electrode surface for superoxide anion detection.

    Science.gov (United States)

    Zhu, Xiang; Niu, Xiangheng; Zhao, Hongli; Tang, Jie; Lan, Minbo

    2015-05-15

    Monitoring of reactive oxygen species like superoxide anion (O2(∙-)) turns to be of increasing significance considering their potential damages to organism. In the present work, we fabricated a novel O2(∙-) electrochemical sensor through immobilizing superoxide dismutase (SOD) onto a Pt-Pd/MWCNTs hybrid modified electrode surface. The Pt-Pd/MWCNTs hybrid was synthesized via a facile one-step alcohol-reduction process, and well characterized by transmission electron microscopy, X-ray photoelectron spectroscopy and X-ray diffraction. The immobilization of SOD was accomplished using a simple drop-casting method, and the performance of the assembled enzyme-based sensor for O2(∙-) detection was systematically investigated by several electrochemcial techniques. Thanks to the specific biocatalysis of SOD towards O2(∙-) and the Pt-Pd/MWCNTs - promoted fast electron transfer at the fabricated interface, the developed biosensor exhibits a fast, selective and linear amperometric response upon O2(∙-) in the concentration scope of 40-1550 μM (R(2)=0.9941), with a sensitivity of 0.601 mA cm(-2) mM(-1) and a detection limit of 0.71 μM (S/N=3). In addition, the favorable biocompatibility of this electrode interface endows the prepared biosensor with excellent long-term stability (a sensitivity loss of only 3% over a period of 30 days). It is promising that the proposed sensor will be utilized as an effective tool to quantitatively monitor the dynamic changes of O2(∙-) in biological systems.

  13. Direct electrochemistry and electrocatalytic properties of hemoglobin immobilized on a carbon ionic liquid electrode modified with mesoporous molecular sieve MCM-41.

    Science.gov (United States)

    Li, Yonghong; Zeng, Xiandong; Liu, Xiaoying; Liu, Xinsheng; Wei, Wanzhi; Luo, Shenglian

    2010-08-01

    The direct electron transfer and electrocatalysis of hemoglobin (Hb) entrapped in the MCM-41 modified carbon ionic liquid electrode (CILE) were investigated by using cyclic voltammetry in 0.10 M pH 7.0 phosphate buffer solution (PBS). Due to its uniform pore structure, high surface areas and good biocompatibility, the mesoporous silica sieve MCM-41 provided a suitable matrix for immobilization of biomolecule. The MCM-41 modified CILE showed significant promotion to the direct electron transfer of Hb, which exhibited a pair of well defined and quasi-reversible peaks for heme Fe(III)/Fe(II) with a formal potential of -0.284 V (vs. Ag/AgCl). Additionally, the Hb immobilized on the MCM-41 modified carbon ionic liquid electrode showed excellent electrocatalytic activity toward H(2)O(2). The electrocatalytic current values were linear with increasing concentration of H(2)O(2) in a wide range of 5-310 microM and the corresponding detection limit was calculated to be 5 x 10(-8)M (S/N=3). The surface coverage of Hb immobilized on the MCM-41 modified carbon ionic liquid electrode was about 2.54 x 10(-9) molcm(-2). The Michaelis-Menten constant K(m)(app) of 214 microM indicated that the Hb immobilized on the modified electrode showed high affinity to H(2)O(2). The proposed electrode had high stability and good reproducibility due to the protection effect of MCM-41 and ionic liquid, and it would have wide potential applications in direct electrochemistry, biosensors and biocatalysis.

  14. The crystal structure of D-threonine aldolase from Alcaligenes xylosoxidans provides insight into a metal ion assisted PLP-dependent mechanism.

    Directory of Open Access Journals (Sweden)

    Michael K Uhl

    Full Text Available Threonine aldolases catalyze the pyridoxal phosphate (PLP dependent cleavage of threonine into glycine and acetaldehyde and play a major role in the degradation of this amino acid. In nature, L- as well as D-specific enzymes have been identified, but the exact physiological function of D-threonine aldolases (DTAs is still largely unknown. Both types of enantio-complementary enzymes have a considerable potential in biocatalysis for the stereospecific synthesis of various β-hydroxy amino acids, which are valuable building blocks for the production of pharmaceuticals. While several structures of L-threonine aldolases (LTAs have already been determined, no structure of a DTA is available to date. Here, we report on the determination of the crystal structure of the DTA from Alcaligenes xylosoxidans (AxDTA at 1.5 Å resolution. Our results underline the close relationship of DTAs and alanine racemases and allow the identification of a metal binding site close to the PLP-cofactor in the active site of the enzyme which is consistent with the previous observation that divalent cations are essential for DTA activity. Modeling of AxDTA substrate complexes provides a rationale for this metal dependence and indicates that binding of the β-hydroxy group of the substrate to the metal ion very likely activates this group and facilitates its deprotonation by His193. An equivalent involvement of a metal ion has been implicated in the mechanism of a serine dehydratase, which harbors a metal ion binding site in the vicinity of the PLP cofactor at the same position as in DTA. The structure of AxDTA is completely different to available structures of LTAs. The enantio-complementarity of DTAs and LTAs can be explained by an approximate mirror symmetry of crucial active site residues relative to the PLP-cofactor.

  15. Tuning the specificity of the recombinant multicomponent toluene o-xylene monooxygenase from Pseudomonas sp. strain OX1 for the biosynthesis of tyrosol from 2-phenylethanol.

    Science.gov (United States)

    Notomista, Eugenio; Scognamiglio, Roberta; Troncone, Luca; Donadio, Giuliana; Pezzella, Alessandro; Di Donato, Alberto; Izzo, Viviana

    2011-08-01

    Biocatalysis is today a standard technology for the industrial production of several chemicals, and the number of biotransformation processes running on a commercial scale is constantly increasing. Among biocatalysts, bacterial multicomponent monooxygenases (BMMs), a diverse group of nonheme diiron enzymes that activate dioxygen, are of primary interest due to their ability to catalyze a variety of complex oxidations, including reactions of mono- and dihydroxylation of phenolic compounds. In recent years, both directed evolution and rational design have been successfully used to identify the molecular determinants responsible for BMM regioselectivity and to improve their activity toward natural and nonnatural substrates. Toluene o-xylene monooxygenase (ToMO) is a BMM isolated from Pseudomonas sp. strain OX1 which hydroxylates a wide spectrum of aromatic compounds. In this work we investigate the use of recombinant ToMO for the biosynthesis in recombinant cells of Escherichia coli strain JM109 of 4-hydroxyphenylethanol (tyrosol), an antioxidant present in olive oil, from 2-phenylethanol, a cheap and commercially available substrate. We initially found that wild-type ToMO is unable to convert 2-phenylethanol to tyrosol. This was explained by using a computational model which analyzed the interactions between ToMO active-site residues and the substrate. We found that residue F176 is the major steric hindrance for the correct positioning of the reaction intermediate leading to tyrosol production into the active site of the enzyme. Several mutants were designed and prepared, and we found that the combination of different mutations at position F176 with mutation E103G allows ToMO to convert up to 50% of 2-phenylethanol into tyrosol in 2 h.

  16. Green chemistry at work

    Energy Technology Data Exchange (ETDEWEB)

    Frost, J. [Michigan State Univ., East Lansing, MI (United States)

    1994-12-31

    The 1.7 billion pounds of benzene produced each year in the US provide one measure of its utility. At the same time, there are a number of environmental reasons for avoiding the use of benzene in chemical manufacture. Perhaps most compelling: benzene is a potent carcinogen. Scrutiny of many of the chemicals derived from benzene reveals that each molecule contains at least one oxygen atom while benzene completely lacks oxygen atoms. Introduction of oxygen to make up for this lack can require processes that are environmentally problematic. One of the steps used to introduce oxygen atoms during manufacture of adipic acid, a component of Nylon 66, is responsible for 10% of the annual global increase in atmospheric nitrous oxide. This by-product is a causative agent of atmospheric ozone depletion and has been implicated in global warming. With support from EPA and the National Science Foundation, alternative manufacturing processes are being explored. By these new methods, chemicals usually created from benzene are made instead from nontoxic glucose, a component of table sugar. Unlike benzene, glucose is obtained from such renewable resources as plant starch and cellulose. ``Green`` manufacturing routes ideally should lead to chemicals that are economically competitive with chemicals produced by traditional methods. For two chemicals of roughly comparable cost, the consumer or producer can then be realistically expected to choose in favor of the chemical produced by a ``green`` process. Projections indicate that catechol and hydroquinone can be biocatalytically produced from glucose at a cost competitive with current market prices. Synthesis of chemicals from glucose using biocatalysis offers the premise of achieving fundamental environmental improvement while increasing the demand for agricultural products. In the final analysis, what is good for the environment can also be good for American agriculture.

  17. Hydrogen Peroxide-Resistant CotA and YjqC of Bacillus altitudinis Spores Are a Promising Biocatalyst for Catalyzing Reduction of Sinapic Acid and Sinapine in Rapeseed Meal.

    Directory of Open Access Journals (Sweden)

    Yanzhou Zhang

    Full Text Available For the more efficient detoxification of phenolic compounds, a promising avenue would be to develop a multi-enzyme biocatalyst comprising peroxidase, laccase and other oxidases. However, the development of this multi-enzyme biocatalyst is limited by the vulnerability of fungal laccases and peroxidases to hydrogen peroxide (H2O2-induced inactivation. Therefore, H2O2-resistant peroxidase and laccase should be exploited. In this study, H2O2-stable CotA and YjqC were isolated from the outer coat of Bacillus altitudinis SYBC hb4 spores. In addition to the thermal and alkali stability of catalytic activity, CotA also exhibited a much higher H2O2 tolerance than fungal laccases from Trametes versicolor and Trametes trogii. YjqC is a sporulation-related manganese (Mn catalase with striking peroxidase activity for sinapic acid (SA and sinapine (SNP. In contrast to the typical heme-containing peroxidases, the peroxidase activity of YjqC was also highly resistant to inhibition by H2O2 and heat. CotA could also catalyze the oxidation of SA and SNP. CotA had a much higher affinity for SA than B. subtilis CotA. CotA and YjqC rendered from B. altitudinis spores had promising laccase and peroxidase activities for SA and SNP. Specifically, the B. altitudinis spores could be regarded as a multi-enzyme biocatalyst composed of CotA and YjqC. The B. altitudinis spores were efficient for catalyzing the degradation of SA and SNP in rapeseed meal. Moreover, efficiency of the spore-catalyzed degradation of SA and SNP was greatly improved by the presence of 15 mM H2O2. This effect was largely attributed to synergistic biocatalysis of the H2O2-resistant CotA and YjqC toward SA and SNP.

  18. New biotechnological perspectives of a NADH oxidase variant from Thermus thermophilus HB27 as NAD+-recycling enzyme

    Directory of Open Access Journals (Sweden)

    Rocha-Martín Javier

    2011-11-01

    Full Text Available Abstract Background The number of biotransformations that use nicotinamide recycling systems is exponentially growing. For this reason one of the current challenges in biocatalysis is to develop and optimize more simple and efficient cofactor recycling systems. One promising approach to regenerate NAD+ pools is the use of NADH-oxidases that reduce oxygen to hydrogen peroxide while oxidizing NADH to NAD+. This class of enzymes may be applied to asymmetric reduction of prochiral substrates in order to obtain enantiopure compounds. Results The NADH-oxidase (NOX presented here is a flavoenzyme which needs exogenous FAD or FMN to reach its maximum velocity. Interestingly, this enzyme is 6-fold hyperactivated by incubation at high temperatures (80°C under limiting concentrations of flavin cofactor, a change that remains stable even at low temperatures (37°C. The hyperactivated form presented a high specific activity (37.5 U/mg at low temperatures despite isolation from a thermophile source. Immobilization of NOX onto agarose activated with glyoxyl groups yielded the most stable enzyme preparation (6-fold more stable than the hyperactivated soluble enzyme. The immobilized derivative was able to be reactivated under physiological conditions after inactivation by high solvent concentrations. The inactivation/reactivation cycle could be repeated at least three times, recovering full NOX activity in all cases after the reactivation step. This immobilized catalyst is presented as a recycling partner for a thermophile alcohol dehydrogenase in order to perform the kinetic resolution secondary alcohols. Conclusion We have designed, developed and characterized a heterogeneous and robust biocatalyst which has been used as recycling partner in the kinetic resolution of rac-1-phenylethanol. The high stability along with its capability to be reactivated makes this biocatalyst highly re-useable for cofactor recycling in redox biotransformations.

  19. Enzyme electrode configurations : for application in biofuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Wang Xiaoju

    2012-07-01

    The conducting polymer, poly (3,4-ethylenedioxythiophene) (PEDOT) film is a suitable matrix material for the enzymes, due to its outstanding properties, specifically, high electrical conductivity and excellent inherent environmental stability. The counter ions for PEDOT have a significant effect on the structural features and morphology of the polymer film produced by electropolymerization. Different carbon-based materials, ranging from paper-like carbon ink paper or carbon paper to reticulated vitreous carbon foam (RVC foam), were explored as substrate materials for PEDOT film generation by electropolymerization. The immobilization of Trametes hirsuta laccase (ThL) in the PEDOT film was facilitated via in situ entrapment during electropolymerization. When 2,2'-azinobis(3-ethylbenzothiazoline-6- sulfonate) (ABTS{sup 2-}) was used as the mediator, the immobilized ThL exhibited catalytic activity for the reduction of O{sub 2} to water. The amount of ThL in the PEDOT matrix is tunable by controlling the manufacturing parameters, including the charge density used for the electropolymerization of the EDOT monomer and the ThL concentration in the electropolymerization electrolyte. The use of a porous material, e.g., RVC foam, as the PEDOT supporting template was tested to improve the current density per unit area/volume generated by biocathodes. These RVC foam-based biocathodes produced a large current density, reaching 1 mA/cm{sup 3} at 0.45 V when 19.5 {mu}g/ml of ThL was used in the electropolymerization electrolyte. In addition, direct electron transfer (DET) type biocatalysis was accomplished for ThL by immobilizing ThL into a fine-tuned dual-layer-architecture of PEDOT films. In a PEDOTNO{sub 3}/ ThL/PEDOT-PSS enzyme electrode, the reduction of O{sub 2} to water was catalyzed by ThL with the T1 Cu site as the primary electron acceptor. The fabrication parameters included different combinations of PEDOT films, ThL loadings, and thicknesses of both PEDOT layers

  20. Decolorization of industrial synthetic dyes using engineered Pseudomonas putida cells with surface-immobilized bacterial laccase

    Directory of Open Access Journals (Sweden)

    Wang Wei

    2012-06-01

    via a subsequent 4-h cell culturing. Conclusions This study demonstrates, for the first time, the methodology by which the engineered P. putida with surface-immobilized laccase was successfully used as regenerable biocatalyst for biodegrading synthetic dyes, thereby opening new perspectives in the use of biocatalysis in industrial dye biotreatment.

  1. Synthetic biology for the directed evolution of protein biocatalysts: navigating sequence space intelligently.

    Science.gov (United States)

    Currin, Andrew; Swainston, Neil; Day, Philip J; Kell, Douglas B

    2015-03-07

    The amino acid sequence of a protein affects both its structure and its function. Thus, the ability to modify the sequence, and hence the structure and activity, of individual proteins in a systematic way, opens up many opportunities, both scientifically and (as we focus on here) for exploitation in biocatalysis. Modern methods of synthetic biology, whereby increasingly large sequences of DNA can be synthesised de novo, allow an unprecedented ability to engineer proteins with novel functions. However, the number of possible proteins is far too large to test individually, so we need means for navigating the 'search space' of possible protein sequences efficiently and reliably in order to find desirable activities and other properties. Enzymologists distinguish binding (Kd) and catalytic (kcat) steps. In a similar way, judicious strategies have blended design (for binding, specificity and active site modelling) with the more empirical methods of classical directed evolution (DE) for improving kcat (where natural evolution rarely seeks the highest values), especially with regard to residues distant from the active site and where the functional linkages underpinning enzyme dynamics are both unknown and hard to predict. Epistasis (where the 'best' amino acid at one site depends on that or those at others) is a notable feature of directed evolution. The aim of this review is to highlight some of the approaches that are being developed to allow us to use directed evolution to improve enzyme properties, often dramatically. We note that directed evolution differs in a number of ways from natural evolution, including in particular the available mechanisms and the likely selection pressures. Thus, we stress the opportunities afforded by techniques that enable one to map sequence to (structure and) activity in silico, as an effective means of modelling and exploring protein landscapes. Because known landscapes may be assessed and reasoned about as a whole, simultaneously, this

  2. A molecular dynamics study on the transport of a charged biomolecule in a polymeric adsorbent medium and its adsorption onto a charged ligand.

    Science.gov (United States)

    Riccardi, E; Wang, J-C; Liapis, A I

    2010-08-28

    findings have significant practical implications to the design and construction of polymeric porous adsorbent media for effective bioseparations and to the synthesis and operation of processes employed in the separation of biomolecules. The modeling and analysis methods presented in this work could also be suitable for the study of biocatalysis where an enzyme is immobilized on the surface of the pores of a porous medium.

  3. 微生物胆固醇氧化酶的研究进展%Advances in cholesterol oxidase from microorganism.

    Institute of Scientific and Technical Information of China (English)

    马玉超

    2012-01-01

    Cholesterol oxidase is a bacterial FAD-dependent flavoprotein that efficiently oxidates steroidal 3/3- hydroxy group to catalyze the first step in cholesterol metabolism. Cholesterol oxidase is an enzyme with great commercial value and has been used in biocatalysis for producing a variety of steroids, as an insecticidal protein against the cotton boll weevil larvae in agriculture and, in particular, as a diagnostic enzyme for determining serun levels of cholesterol. These important applications promote the researchers to isolate the cholesterol oxidase producers, purify the enzyme and reveal the relationship between structure and function. This review focused on the recent progress about the microbial species of producing cholesterol oxidase, the type and structure, the catalytic mechanism and the application of cholesterol oxidase. The key of future research was prospected.%胆固醇氧化酶是细菌FAD依赖的黄素蛋白,能够高效地氧化固醇类物质的3β-羟基基团,完成胆固醇代谢的第一步反应。胆固醇氧化酶具有重要的应用价值:在生物催化方面,可用于生产多种固醇类物质;农业上作为抗虫蛋白,对棉铃虫幼虫具有显著的抗虫效果;医学上用于检测血清中胆固醇的含量。这些重要的应用促进了人们从不同来源的微生物中分离、纯化胆固醇氧化酶,详细研究其结构与功能的关系。本文综述了产胆固醇氧化酶的微生物种类、酶的类型与结构、酶的催化机理及胆固醇氧化酶的应用等的最新研究进展,并展望了未来的研究重点。

  4. Versatile and Amplified Biosensing through Enzymatic Cascade Reaction by Coupling Alkaline Phosphatase in Situ Generation of Photoresponsive Nanozyme.

    Science.gov (United States)

    Jin, Lu-Yi; Dong, Yu-Ming; Wu, Xiu-Ming; Cao, Gen-Xia; Wang, Guang-Li

    2015-10-20

    The alkaline phosphatase (ALP) biocatalysis followed by the in situ enzymatic generation of a visible light responsive nanozyme is coupled to elucidate a novel amplification strategy by enzymatic cascade reaction for versatile biosensing. The enzymatic hydrolysis of o-phosphonoxyphenol (OPP) to catechol (CA) by ALP is allowed to coordinate on the surface of TiO2 nanoparticles (NPs) due to the specificity and high affinity of enediol ligands to Ti(IV). Upon the stimuli by CA generated from ALP, the inert TiO2 NPs is activated, which demonstrates highly efficient oxidase mimicking activity for catalyzing the oxidation of the typical substrate of 3,3',5,5'-tetramethylbenzidine (TMB) under visible light (λ ≥ 400 nm) irradiation utilizing dissolved oxygen as an electron acceptor. On the basis of the cascade reaction of ALP and the nanozyme of CA coordinated TiO2 (TiO2-CA) NPs, we design exquisitely colorimetric biosensors for probing ALP activity and its inhibitor of 2, 4-dichlorophenoxyacetic acid (2,4-DA). Quantitative probing of ALP activity in a wide linear range from 0.01 to 150 U/L with the detection limit of 0.002 U/L is realized, which endows the methodology with sufficiently high sensitivity for potentially practical applications in real samples of human serum (ALP level of 40-190 U/L for adults). In addition, a novel immunoassay protocol by taking mouse IgG as an example is validated using the ALP/nanozyme cascade amplification reaction as the signal transducer. A low detection limit of 2.0 pg/mL is attained for mouse IgG, which is 4500-fold lower than that of the standard enzyme-linked immuno-sorbent assay (ELISA) kit. Although only mouse IgG is used as a proof-of-concept in our experiment, we believe that this approach is generalizable to be readily extended to other ELISA systems. This methodology opens a new horizon for amplified and versatile biosensing including probing ALP activity and following ALP-based ELISA immunoassays.

  5. Engineering a more sustainable world through catalysis and green chemistry.

    Science.gov (United States)

    Sheldon, Roger A

    2016-03-01

    The grand challenge facing the chemical and allied industries in the twenty-first century is the transition to greener, more sustainable manufacturing processes that efficiently use raw materials, eliminate waste and avoid the use of toxic and hazardous materials. It requires a paradigm shift from traditional concepts of process efficiency, focusing on chemical yield, to one that assigns economic value to replacing fossil resources with renewable raw materials, eliminating waste and avoiding the use of toxic and/or hazardous substances. The need for a greening of chemicals manufacture is readily apparent from a consideration of the amounts of waste generated per kilogram of product (the E factors) in various segments of the chemical industry. A primary source of this waste is the use of antiquated 'stoichiometric' technologies and a major challenge is to develop green, catalytic alternatives. Another grand challenge for the twenty-first century, driven by the pressing need for climate change mitigation, is the transition from an unsustainable economy based on fossil resources--oil, coal and natural gas--to a sustainable one based on renewable biomass. In this context, the valorization of waste biomass, which is currently incinerated or goes to landfill, is particularly attractive. The bio-based economy involves cross-disciplinary research at the interface of biotechnology and chemical engineering, focusing on the development of green, chemo- and biocatalytic technologies for waste biomass conversion to biofuels, chemicals and bio-based materials. Biocatalysis has many benefits to offer in this respect. The catalyst is derived from renewable biomass and is biodegradable. Processes are performed under mild conditions and generally produce less waste and are more energy efficient than conventional ones. Thanks to modern advances in biotechnology 'tailor-made' enzymes can be economically produced on a large scale. However, for economic viability it is generally

  6. Recent progress in fusion enzyme design and applications%融合酶的设计和应用研究进展

    Institute of Scientific and Technical Information of China (English)

    黄子亮; 张翀; 吴希; 苏楠; 邢新会

    2012-01-01

    酶的分子改造和重新设计是解决酶催化工业应用瓶颈的重要途径.基于融合蛋白设计的融合酶技术是分子酶工程的一个研究热点,已逐渐应用于多功能酶和酶靠近效应的构建与控制研究中,显示出重要的理论和应用研究价值.文中对近年来融合酶的分子设计策略和应用研究的进展进行了综述.首先介绍了融合酶的概念和特点,并对最近研究中出现的融合酶构建策略进行了归纳总结,重点阐述了不同种类连接肽对融合酶的影响及其可能机理.同时,对目前融合酶的应用研究进行了归纳和讨论.最后,结合本实验室的研究,指出了融合酶领域的关键问题并对其发展方向进行了探讨和展望.%Engineering and redesign of enzymes are important to industrial biocatalysis. Fusion enzyme technology, based on fusion protein design, is frequently used in multifunctional enzyme construction and enzyme proximity control. Here, we reviewed the recent progress in molecular design strategy and application studies of fusion enzymes. The concept and features of fusion enzymes were introduced, followed by a systematical summary of the design strategy of fusion enzymes. In particular, the effects of different linker properties on fusion enzymes and their possible mechanisms were discussed. In addition, recent studies on fusion enzyme applications were also discussed. Finally, based on our own studies on fusion enzymes and the current research progress, the key problems in fusion enzyme technology and perspectives of this field were discussed.

  7. Are ionic liquids extremophiles cell wall breakers? Esther Gutiérrez, M. Ángeles Sanromán, Ana Rodríguez, Francisco J. Deive * Department of Chemical Engineering, University of Vigo, 36310, Vigo, Spain * Corresponding author: Tel.: +34986818723; E-mail address: deive@uvigo.es

    Directory of Open Access Journals (Sweden)

    Esther Gutiérrez

    2014-06-01

    Full Text Available The increasing interest in the development of more competitive biotechnological processes is demanding the development of new downstream strategies to maximize product recovery and foster the economic feasibility and robustness of any desired process. From a biotechnological point of view, lipase production is considered one of the three most important bioprocesses in terms of enzyme sales. During the last years, lipolytic enzymes applications have been broaden to sectors ranging from the petrochemical, pharmaceutical, food and paper to waste management industries, as a result of a close collaboration between academics and industry (Houde et al., 2004. The interest on triacylglycerol hydrolases or lipases (EC 3.1.1.3 lies in the fact that they play a crucial role in biocatalysis of a plethora of chemical reactions, such as hydrolysis, interesterification, esterification, alcoholysis, acidolysis and aminolysis. Their reputation is built largely on their distinctive features, namely, they are quite stable and active in organic solvents, they do not require cofactors, they exhibit a high degree of chemo-, enantio- and regioselectivity, and they possess a wide range of substrate specificity. These features make these enzymes trade to be a well-known billion dollar business (Jaeger and Reetz, 1998; Hasan et al., 2006. However, there are concerns related to the stability of these enzymes at the operating conditions usually employed in biocatalysis. This problem can be circumvented by using extremozymes, whose naturally developed resistance to drastic reaction conditions (like resistance to denaturalization by chemical agents and by extreme values of temperature, pH and salinity turns out to be their main appeal. One of the main limitations observed for the industrial implementation of the processes to produce this kind of enzymes lies in the high costs of downstream operations which represent more than 50-80% of the total processing cost. Surprisingly

  8. Bacillus megaterium WZ009催化合成(R)-4-氯-3-羟基丁酸乙酯和(S)-3-羟-基-γ-丁内酯%Synthesis of ethyl-(R)-4-chloro-3-hydroxybutyrate and (S)-3-hydroxy-γ-butyrolactone by being catalyzed by resting cell of Bacillus megaterium WZ009

    Institute of Scientific and Technical Information of China (English)

    郑建永; 周沙沙; 付显锋; 汪钊

    2014-01-01

    以外消旋4氯3羟基丁酸乙酯为唯一C源的富集培养筛选得到一株菌株WZ009,经16S rDNA测序鉴定为巨大芽胞杆菌( Bacillus megaterium)。 B�megaterium WZ009静息细胞可以立体选择性催化( S)4氯3羟基丁酸乙酯水解和脱氯反应得到光学纯的( R)4氯3羟基丁酸乙酯( e�e�≥99%)和( S)3羟基γ丁内酯( e�e�≥95%)。笔者对B�megaterium WZ009不对称催化反应影响因素(温度、pH、中和剂、底物浓度、时间进程以及细胞重复利用)进行优化研究,确定了该反应体系最优条件:底物浓度200 mmol/L,中和剂氨水,pH 7�2,40℃反应12 h,转化率达到50�6%,底物对映体过量值为99�6%。该生物催化合成( R)4氯3羟基丁酸乙酯和( S)3羟基γ丁内酯过程具有良好的工业化应用前景。%A new strain WZ009 was isolated by enrichment culture with ethyl-4-chloro-3-hydroxybutyrate as the only source of carbon�Strain WZ009 was identified as Bacillus megaterium by 16S rDNA gene sequencing. The resting cell of B�megaterium WZ009 catalyzed stereoselective hydrolysis and dechlorination of ethyl-(S)-4-chloro-3-hydroxybutyrate,obtained high optical active ethyl-(R)-4-chloro-3-hydroxybutyrate ( e�e� ≥99%) and ( S )-3-hydroxy-γ-butyrolactone ( e�e� ≥95%) . The catalytic characteristics of B�megaterium WZ009 were studied. The optimal conditions were obtained as follows:substrate concentration 200 mmol/L,reaction temperature 40 ℃,pH 7�2, neutralizing agent NH3·H2 O and reaction time 12 h. Under the above-mentioned conditions, the conversion was 50�6% with e�e�99�6%. The biocatalysis synthesis of ethyl-( R )-4-chloro-3-hydroxybutyrate and ( S )-3-hydroxy-γ-butyrolactone has a bright industrialization future.

  9. Host cell and expression engineering for development of an E. coli ketoreductase catalyst: Enhancement of formate dehydrogenase activity for regeneration of NADH

    Directory of Open Access Journals (Sweden)

    Mädje Katharina

    2012-01-01

    Full Text Available Abstract Background Enzymatic NADH or NADPH-dependent reduction is a widely applied approach for the synthesis of optically active organic compounds. The overall biocatalytic conversion usually involves in situ regeneration of the expensive NAD(PH. Oxidation of formate to carbon dioxide, catalyzed by formate dehydrogenase (EC 1.2.1.2; FDH, presents an almost ideal process solution for coenzyme regeneration that has been well established for NADH. Because isolated FDH is relatively unstable under a range of process conditions, whole cells often constitute the preferred form of the biocatalyst, combining the advantage of enzyme protection in the cellular environment with ease of enzyme production. However, the most prominent FDH used in biotransformations, the enzyme from the yeast Candida boidinii, is usually expressed in limiting amounts of activity in the prime host for whole cell biocatalysis, Escherichia coli. We therefore performed expression engineering with the aim of enhancing FDH activity in an E. coli ketoreductase catalyst. The benefit resulting from improved NADH regeneration capacity is demonstrated in two transformations of technological relevance: xylose conversion into xylitol, and synthesis of (S-1-(2-chlorophenylethanol from o-chloroacetophenone. Results As compared to individual expression of C. boidinii FDH in E. coli BL21 (DE3 that gave an intracellular enzyme activity of 400 units/gCDW, co-expression of the FDH with the ketoreductase (Candida tenuis xylose reductase; XR resulted in a substantial decline in FDH activity. The remaining FDH activity of only 85 U/gCDW was strongly limiting the overall catalytic activity of the whole cell system. Combined effects from increase in FDH gene copy number, supply of rare tRNAs in a Rosetta strain of E. coli, dampened expression of the ketoreductase, and induction at low temperature (18°C brought up the FDH activity threefold to a level of 250 U/gCDW while reducing the XR activity by

  10. Center for Catalysis at Iowa State University

    Energy Technology Data Exchange (ETDEWEB)

    Kraus, George A.

    2006-10-17

    The overall objective of this proposal is to enable Iowa State University to establish a Center that enjoys world-class stature and eventually enhances the economy through the transfer of innovation from the laboratory to the marketplace. The funds have been used to support experimental proposals from interdisciplinary research teams in areas related to catalysis and green chemistry. Specific focus areas included: • Catalytic conversion of renewable natural resources to industrial materials • Development of new catalysts for the oxidation or reduction of commodity chemicals • Use of enzymes and microorganisms in biocatalysis • Development of new, environmentally friendly reactions of industrial importance These focus areas intersect with barriers from the MYTP draft document. Specifically, section 2.4.3.1 Processing and Conversion has a list of bulleted items under Improved Chemical Conversions that includes new hydrogenation catalysts, milder oxidation catalysts, new catalysts for dehydration and selective bond cleavage catalysts. Specifically, the four sections are: 1. Catalyst development (7.4.12.A) 2. Conversion of glycerol (7.4.12.B) 3. Conversion of biodiesel (7.4.12.C) 4. Glucose from starch (7.4.12.D) All funded projects are part of a soybean or corn biorefinery. Two funded projects that have made significant progress toward goals of the MYTP draft document are: Catalysts to convert feedstocks with high fatty acid content to biodiesel (Kraus, Lin, Verkade) and Conversion of Glycerol into 1,3-Propanediol (Lin, Kraus). Currently, biodiesel is prepared using homogeneous base catalysis. However, as producers look for feedstocks other than soybean oil, such as waste restaurant oils and rendered animal fats, they have observed a large amount of free fatty acids contained in the feedstocks. Free fatty acids cannot be converted into biodiesel using homogeneous base-mediated processes. The CCAT catalyst system offers an integrated and cooperative catalytic

  11. Cell-in-Shell Hybrids: Chemical Nanoencapsulation of Individual Cells.

    Science.gov (United States)

    Park, Ji Hun; Hong, Daewha; Lee, Juno; Choi, Insung S

    2016-05-17

    , bacterial endospores. Bioinspired silicification and phenolics-based coatings are, so far, the main approaches to the formation of cytoprotective cell-in-shell hybrids, because they ensure cell viability during encapsulations and also generate durable nanoshells on cell surfaces. The resulting cell-in-shell hybrids extrinsically possess enhanced resistance to external aggressors, and more intriguingly, the encapsulation alters their metabolic activity, exemplified by retarded or suppressed cell cycle progression. In addition, recent developments in the field have further advanced the synthetic tools available to the stage of chemical sporulation and germination of mammalian cells, where cytoprotective shells are formed on labile mammalian cells and broken apart on demand. For example, individual HeLa cells are coated with a metal-organic complex of ferric ion and tannic acid, and cellular adherence and proliferation are controlled by the programmed shell formation and degradation. Based on these demonstrations, the (degradable) cell-in-shell hybrids are anticipated to find their applications in various biomedical and bionanotechnological areas, such as cytotherapeutics, high-throughput screening, sensors, and biocatalysis, as well as providing a versatile research platform for single-cell biology.

  12. High power density yeast catalyzed microbial fuel cells

    Science.gov (United States)

    Ganguli, Rahul

    Microbial fuel cells leverage whole cell biocatalysis to convert the energy stored in energy-rich renewable biomolecules such as sugar, directly to electrical energy at high efficiencies. Advantages of the process include ambient temperature operation, operation in natural streams such as wastewater without the need to clean electrodes, minimal balance-of-plant requirements compared to conventional fuel cells, and environmentally friendly operation. These make the technology very attractive as portable power sources and waste-to-energy converters. The principal problem facing the technology is the low power densities compared to other conventional portable power sources such as batteries and traditional fuel cells. In this work we examined the yeast catalyzed microbial fuel cell and developed methods to increase the power density from such fuel cells. A combination of cyclic voltammetry and optical absorption measurements were used to establish significant adsorption of electron mediators by the microbes. Mediator adsorption was demonstrated to be an important limitation in achieving high power densities in yeast-catalyzed microbial fuel cells. Specifically, the power densities are low for the length of time mediator adsorption continues to occur. Once the mediator adsorption stops, the power densities increase. Rotating disk chronoamperometry was used to extract reaction rate information, and a simple kinetic expression was developed for the current observed in the anodic half-cell. Since the rate expression showed that the current was directly related to microbe concentration close to the electrode, methods to increase cell mass attached to the anode was investigated. Electrically biased electrodes were demonstrated to develop biofilm-like layers of the Baker's yeast with a high concentration of cells directly connected to the electrode. The increased cell mass did increase the power density 2 times compared to a non biofilm fuel cell, but the power density

  13. Nanoassembly and Biosensing of Porphyrins%卟啉纳米组装与生物传感

    Institute of Scientific and Technical Information of China (English)

    屠闻文; 雷建平; 鞠烷先

    2011-01-01

    Porphyrins are important classes of conjugated organic molecules,which could mimic the active site of many important enzymes.A series of porphyrin molecules,such as planar porphyrin,picket-fence porphyrin,macroporphyrin and triphyrin,have been synthesized to mimic the catalytic activity of biological protein.Many metalloprotein enzymes usually self-assemble in vivo to form nanosized supermolecular structure to realize their biocatalysis.The order nanoassembly of porphyrins on nanomaterials by covalent or noncovalent way can mimic metalloprotein enzymes and realize their functions.Metalloporphyrins have been well used as electron transfer mediators and exhibited good electrocatalytic activity toward the reduction or oxidation of many small molecules related to life process.Thus,the nanocomposites of metalloporphyrin-nanomaterials have been good candidates to construct novel electrochemical biosensors.Meanwhile,owing to the good photophysical and photochemical properties,the nanocomposites of metalloporphyrin-nanomaterials have also been employed to develop novel photoelectrochemical biosensing platforms for detection of biomolecules.In this review,the systhysis and nanoassembly of porphyrins,and biosensing application of the formed nanocomposite are highlighted to provide the reference information for the development of novel electrochemical and photoelectrochemical biosensors.%卟啉是一类重要的有机共轭分子,可以模拟许多酶的活性中心。一系列卟啉仿生酶已被合成,并用于模拟生物蛋白酶的催化活性,包括平面卟啉、栅栏卟啉、扩展环卟啉和三元环卟啉。在生物体内,许多金属蛋白酶经常自组装成纳米尺度的超分子结构来实现其基本的生物催化作用。卟啉可以通过共价或者非共价作用有序组装在纳米材料上,实现其模拟金属蛋白酶的功能。金属卟啉是良好的电子媒介体,对生命过程相关小分子的氧化还原具有较好的电催化活性

  14. Research advance in cembranoid compounds%西柏烯类化合物研究进展

    Institute of Scientific and Technical Information of China (English)

    贾春晓; 何峰; 马宇平; 陈芝飞; 毛多斌

    2016-01-01

    对西柏烯类化合物的分离鉴定与含量分析、生物合成与降解、化学合成等方面的研究进展进行了综述。纵观目前出现的分离与分析方法、烟草中西柏烯类化合物的形成与降解等方面的研究发现,柱层析和 HPLC 法可用于这类化合物的分离与定性定量分析,而 GC 和 GC-MS 方法对这类半挥发性化合物的分析灵敏度较低;烟草中西柏烯类化合物的形成与降解一般认为与光照、氧化和生物催化有关,并进行了大量的研究,但该问题目前尚无定论。未来对西柏烯类化合物的研究应集中在以下几个方面:建立更直接、准确和快速的分离与分析方法;深入开展烟草中西柏烯类化合物经过生物降解形成香味物质的方法研究和该类化合物的形成机制和降解机理研究。%The research progresses on cembranoids,such as separation,identification,qualitative and quanti-tative analysis,bio-synthesis and bio-degradation as well as chemical synthesis,have been reviewed.Based on the current available separation and analysis methods as well as studies on the formation and degradation of cembranoids in tobacco,column chromatography and HPLC methods have shown good performance on separa-ting and analyzing cembranoids both qualitatively and quantitatively whereas the procedures based on GC and GC-MS methods showed a relatively lower sensitivity to this kind of semi-volatile chemicals.The formation and degradation of cembranoids in tobacco were generally considered to be related to illumination,oxidation and biocatalysis.Many research works done on this aspect,however,no final conclusion has been made.Future research is expected to focus on the following directions:development of more straightforward,accurate and faster analysis methods;in-depth methodological research on biological degradation of cembranoids in tobacco to flavor components;mechanism studies on the formation and degradation of

  15. 可持续环境友好的经济发展模式展望%Prospects for Sustainable and Environment Friendly Economic Growth Model

    Institute of Scientific and Technical Information of China (English)

    陈重酉; 方艳; 房芳; 孙瑾; 胡艳芳; 李志国; 赵磊; 冯广青; 冯京桉; 马文筠; 唐晶

    2012-01-01

    Possessing sustainability is the only selection of human survival and social development. However, during the past more than a century, with respect to population growth, global climate change, freshwater deficiency, Earth's finite resources depletion( energy, mineral), agricultural production, environmental accumulation of persistent toxic waste, and a large number species extinction, human society has been emerging characteristics of obvious unsutainability and human habitat has been damaging. Against this background, ideas of industrial ecology and green chemistry arise at the historic moment) they have clearly indicated that changing type and way must be enforced for the utilization of resources. Biomass of plant produced belong in renewable resource, biodegradability, enter into biosphere cycle, it is possess of a lot of superiorities as respect resource and environment! but, overall efficiency of photosynthesis is generally no greater than 5 per cent; large scale production of biomass exist barriers of difficuty to exceed in land and freshwater and so on yet. Therefore, conducting biomimetic research in catalytic mechanism of chloro-plast) exploiting biocatalysis of high-efficiency utilization solar energy; photolyse H2O, obtain H2 energy; utilizing atmospheric CO2 as crude material for photo-synthetic biomass energy, for biodegradable polymeric materials, for high-purity pulp-cellulose, for photo-synthetic cotton fiber, for high-structural regularity cellulose fiber regard as crude material of carbon fiber and so on; these are human essential resources and energy; these work cannot be delayed even a moment. This is the optimum choice of sustainable development.%具有可持续性是人类生存和社会发展的唯一选择,然而近100多年来,人类社会在人口增长、全球气候变化、淡水资源短缺、不可再生资源终将耗尽(能源、矿石)、农业生产、持久性有害物质在生态环境积累、大量物种加速灭绝等方

  16. Hybrid schemes based on quantum mechanics/molecular mechanics simulations goals to success, problems, and perspectives.

    Science.gov (United States)

    Ferrer, Silvia; Ruiz-Pernía, Javier; Martí, Sergio; Moliner, Vicent; Tuñón, Iñaki; Bertrán, Juan; Andrés, Juan

    2011-01-01

    The development of characterization techniques, advanced synthesis methods, as well as molecular modeling has transformed the study of systems in a well-established research field. The current research challenges in biocatalysis and biotransformation evolve around enzyme discovery, design, and optimization. How can we find or create enzymes that catalyze important synthetic reactions, even reactions that may not exist in nature? What is the source of enzyme catalytic power? To answer these and other related questions, the standard strategies have evolved from trial-and-error methodologies based on chemical knowledge, accumulated experience, and common sense into a clearly multidisciplinary science that allows one to reach the molecular design of tailor-made enzyme catalysts. This is even more so when one refers to enzyme catalysts, for which the detailed structure and composition are known and can be manipulated to introduce well-defined residues which can be implicated in the chemical rearrangements taking place in the active site. The methods and techniques of theoretical and computational chemistry are becoming more and more important in both understanding the fundamental biological roles of enzymes and facilitating their utilization in biotechnology. Improvement of the catalytic function of enzymes is important from scientific and industrial viewpoints, and to put this fact in the actual perspective as well as the potentialities, we recommend the very recent report of Sanderson [Sanderson, K. (2011). Chemistry: enzyme expertise. Nature 471, 397.]. Great fundamental advances have been made toward the ab initio design of enzyme catalysts based on molecular modeling. This has been based on the molecular mechanistic knowledge of the reactions to be catalyzed, together with the development of advanced synthesis and characterization techniques. The corresponding molecular mechanism can be studied by means of powerful quantum chemical calculations. The catalytic

  17. Especially for High School Teachers

    Science.gov (United States)

    Howell, J. Emory

    1999-12-01

    -Minute Experiment. Block scheduling has brought an end to the 50-minute period in many classrooms, but the experiment is valid and potentially useful in providing experience with real-world samples. Write Now! With the coming of December days are shorter and nights are longer, and for many readers in the United States and Canada winter weather has set in. If you have been thinking about writing an article for JCE perhaps now is a good time to be doing it. I would like to call your attention to four feature columns designed especially for high school teachers: Chemical Principles Revisited Cary Kilner, Editor Exeter High School, 7 Salmon Street, Newmarket, NH 03857 Phone: 603/659-6825; Fax: 603/772-8287; email: CaryPQ@aol.com Interdisciplinary Connections Mark Alber, Editor Darlington School, 1014 Cave Spring Road, Rome, GA 30161 Phone: 706/236-0442; Fax: 706/236-0443; email: malber@darlington.rome.ga.us Second Year and Advanced Placement Chemistry John Fischer, Editor Ashwaubenon High School, 2391 Ridge Road, Green Bay, WI 54304 Phone: 414/492-2955 ext 2020; email: fischer@netnet.net View from My Classroom David Byrum, Editor Flowing Wells High School, 3301 E. Ft. Lowell Rd., Tucson, AZ 85716 Phone: 520/795-2928; email: DavidB1032@aol.com The titles are descriptive of the content sought for each feature, whose mission statement can be found at the JCE Web site, jchemed.chem.wisc.edu. Click on "Features" in the left-hand frame on your screen. All these editors will be happy to discuss your ideas for an article. Secondary School Feature Articles JCE Classroom Activity #22: Colors to Dye for: Preparation of Natural Dyes, p 1688A Applications of Biocatalysis to Industrial Processes, by John T. Sime, p 1658

  18. From Unnatural Amino Acid Incorporation to Artificial Metalloenzymes

    KAUST Repository

    Makki, Arwa A.

    2016-12-04

    Studies and development of artificial metalloenzymes have developed into vibrant areas of research. It is expected that artificial metalloenzymes will be able to combine the best of enzymatic and homogenous catalysis, that is, a broad catalytic scope, high selectivity and activity under mild, aqueous conditions. Artificial metalloenzyme consist of a host protein and a newly introduced artificial metal center. The host protein merely functions as ligand controlling selectivity and augmenting reactivity, while the metal center determines the reactivity. Potential applications range from catalytic production of fine chemicals and feedstock to electron transfer utilization (e.g. fuel cells, water splitting) and medical research (e.g. metabolic screening). Particularly modern asymmetric synthesis is expected to benefit from a successful combination of the power of biocatalysis (substrate conversion via multi-step or cascade reactions, potentially immortal catalyst, unparalleled selectivity and optimization by evolutionary methods) with the versatility and mechanism based optimization methods of homogeneous catalysis. However, so far systems are either limited in structural diversity (biotin-avidin technology) or fail to deliver the selectivities expected (covalent approaches). This thesis explores a novel strategy based on the site-selective incorporation of unnatural, metal binding amino acids into a host protein. The unnatural amino acids can either serve directly as metal binding centers can be used as anchoring points for artificial metallo-cofactors. The identification expression, purification and modification of a suitable protein scaffolds is fundamental to successfully develop this field. Chapter 2 and 3 detail a rational approach leading to a highly engineered host protein. Starting with fluorescent proteins, which combine high thermal and pH stability, high expression yields, and fluorescence for ease of quantification and monitoring an efficient and fast

  19. Computer-aided design of bromelain and papain covalent immobilization

    Directory of Open Access Journals (Sweden)

    Bessy Cutiño-Avila

    2014-06-01

    Full Text Available Título en español: Diseño asistido por computadora de la inmovilización covalente de bromelina y papaína.Título corto: Computer-aided design of bromelain and papain. Abstract: Enzymes as immobilized derivatives have been widely used in Food, Agrochemical, Pharmaceutical and Biotechnological industries. Protein immobilization is probably the most used technology to improve the operational stability of these molecules. Bromelain (Ananas comosus and papain (Carica papaya are cystein proteases extensively used as immobilized biocatalyst with several applications in therapeutics, racemic mixtures resolution, affinity chromatography and others industrial scenarios. The aim of this work was to optimize the covalent immobilization of bromelain and papain via rational design of immobilized derivatives strategy (RDID and RDID1.0 program. It was determined the maximum protein quantity to immobilize, the optimum immobilization pH (in terms of functional activity retention, and the most probable configuration of the immobilized derivative and the probabilities of multipoint covalent attachment was also predicted. As support material Glyoxyl-Sepharose CL 4B was used.  The accuracy of RDID1.0 program´s prediction was demonstrated comparing with experimental results. Bromelain and papain immobilized derivatives showed desired characteristics for industrial biocatalysis, such as: elevate pH stability retaining 95% and 100% residual activity at pH 7.0 and 8.0, for bromelain and papain, respectively; high thermal stability at 30 °C retaining 90% residual activity for both immobilized enzymes; a catalytic configuration bonded by immobilization at optimal pH; and the ligand load achieved, ensures the minimization of diffusional restrictions.Key words: bromelain, covalent immobilization, immobilized derivatives, papain, rational design.Resumen: Las enzimas inmovilizadas han sido ampliamente utilizadas en las industrias Alimentaria, Agroquímica, Farmac