WorldWideScience

Sample records for biobased products industry

  1. Multidisciplinary Graduate Curriculum in Support of the Biobased Products Industry

    Energy Technology Data Exchange (ETDEWEB)

    John R. Dorgan

    2005-07-31

    The project had a dominant education component. The project involved revising curriculum to educate traditional engineering students in the emerging field of industrial biotechnology. New classes were developed and offered. As a result, the curriculum of the Colorado School of Mines was expanded to include new content. Roughly 100 undergraduates and about 10 graduate students each year benefit from this curricular expansion. The research associated with this project consisted of developing new materials and energy sources from renewable resources. Several significant advances were made, most importantly the heat distortion temperature of polylactide (PLA) was increased through the addition of cellulosic nanowhiskers. The resulting ecobionanocomposites have superior properties which enable the use of renewable resource based plastics in a variety of new applications. Significant amounts of petroleum are thereby saved and considerable environmental benefits also result. Effectiveness and economic feasibility of the project proved excellent. The educational activities are continuing in a sustainable fashion, now being supported by tuition revenues and the normal budgeting of the University. The PI will be teaching one of the newly developed classes will next Fall (Fall 2006), after the close of the DOE grant, and again repeatedly into the future. Now established, the curriculum in biobased products and energy will grow and evolve through regular teaching and revision. On the research side, the new plastic materials appear economically feasible and a new collaboration between the PI’s group and Sealed Air, a major food-packaging manufacturer, has been established to bring the new green plastics to market. Public benefits of the project are noteworthy in many respects. These include the development of a better educated workforce and citizenry capable of providing technological innovation as a means of growing the economy and providing jobs. In particular, the

  2. Establishment of a Graduate Certificate Program in Biobased Industrial Products – Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    John R. Schlup

    2005-11-04

    A certificate of graduate studies in Biobased Industrial Products is to be established at Kansas State University (KSU) along with the development of a similar program at Pittsburg State University, Pittsburg, KS. At KSU, the program of study will be coordinated through the steering committee of the Agricultural Products Utilization Forum (APUF); the certificate of graduate studies will be awarded through the Graduate School of Kansas State University. This certificate will establish an interdisciplinary program of study that will: (1) ensure participating students receive a broad education in several disciplines related to Biobased Industrial Products, (2) provide a documented course of study for students preferring a freestanding certificate program, and (3) provide a paradigm shift in student awareness away from petroleum-based feedstocks to the utilization of renewable resources for fuels and chemical feedstocks. The academic program described herein will accomplish this goal by: (1) providing exposure to several academic disciplines key to Biobased Industrial Products; (2) improving university/industry collaboration through an external advisory board, distance learning opportunities, and student internships; (3) expanding the disciplines represented on the students' supervisory committee; (4) establishing a seminar series on Biobased Industrial Products that draws upon expert speakers representing several disciplines; and (5) increasing collaboration between disciplines. Numerous research programs emphasizing Biobased Industrial Products currently exist at KSU and PSU. The certificate of graduate studies, the emphasis on interdisciplinary collaboration within the students? thesis research, the proposed seminar series, and formation of an industrial advisory board will: (1) provide an interdisciplinary academic experience that spans several departments, four colleges, four research centers, and two universities; (2) tangibly promote collaboration between

  3. Biobased chemicals: the convergence of green chemistry with industrial biotechnology.

    Science.gov (United States)

    Philp, Jim C; Ritchie, Rachael J; Allan, Jacqueline E M

    2013-04-01

    Policy issues around biobased chemicals are similar to those for biobased plastics. However, there are significant differences that arise from differences in production volumes and the more specific applications of most chemicals. The drivers for biobased chemicals production are similar to those for biobased plastics, particularly the environmental drivers. However, in Europe, biobased chemical production is further driven by the need to improve the competitiveness of the chemicals industry.

  4. Metabolic engineering of Escherichia coli: a sustainable industrial platform for bio-based chemical production.

    Science.gov (United States)

    Chen, Xianzhong; Zhou, Li; Tian, Kangming; Kumar, Ashwani; Singh, Suren; Prior, Bernard A; Wang, Zhengxiang

    2013-12-01

    In order to decrease carbon emissions and negative environmental impacts of various pollutants, more bulk and/or fine chemicals are produced by bioprocesses, replacing the traditional energy and fossil based intensive route. The Gram-negative rod-shaped bacterium, Escherichia coli has been studied extensively on a fundamental and applied level and has become a predominant host microorganism for industrial applications. Furthermore, metabolic engineering of E. coli for the enhanced biochemical production has been significantly promoted by the integrated use of recent developments in systems biology, synthetic biology and evolutionary engineering. In this review, we focus on recent efforts devoted to the use of genetically engineered E. coli as a sustainable platform for the production of industrially important biochemicals such as biofuels, organic acids, amino acids, sugar alcohols and biopolymers. In addition, representative secondary metabolites produced by E. coli will be systematically discussed and the successful strategies for strain improvements will be highlighted. Moreover, this review presents guidelines for future developments in the bio-based chemical production using E. coli as an industrial platform.

  5. Biobased industrial lubricants and biopreferred program

    Science.gov (United States)

    Global chemical industry growth is projected at 3 to 6 percent per year through 2025, while the biobased chemicals market share is expected to grow from 2 to 22 percent and biobased polymers are expected to increase from 0.1 to 10-20 percent market share. Finding a renewable replacement for petrole...

  6. Development of biobased products.

    Science.gov (United States)

    Montgomery, Rex

    2004-01-01

    Research conducted over the past seven years by the biotechnology byproducts consortium (BBC) addresses its mission to investigate the opportunities to add value to agricultural products, byproducts and coproducts and to manage the wastewater arising from agribusinesses in an environmentally favorable way. Since a wide variety of research approaches have been taken, the results are collected in five topic groups: (1) bioremediation that includes anaerobic fermentations of wastes to produce methane and hydrogen, the genetics of methanogenesis and in situ remediation of contaminated aquifer systems, landfill leachates and industrial effluents; (2) land application of fermentation byproducts and their use in animal feeds; (3) biocatalytic studies of transformations of components of corn and soybean oils, peroxidases present in plant products, such as soybean hulls; (4) biochemical reactions for the production of de-icers from industrial water streams, biodiesel production from fats and greases, biodegradable plastics from polymerizable sugar derivatives, single cell foods derived from fungal growth on waste streams, and bacterial polysaccharides from Erwinia species; (5) separation and recovery of components by membrane technologies.

  7. Biobased Packaging - Application in Meat Industry

    Directory of Open Access Journals (Sweden)

    S. Wilfred Ruban

    2009-04-01

    Full Text Available Because of growing problems of waste disposal and because petroleum is a nonrenewable resource with diminishing quantities, renewed interest in packaging research is underway to develop and promote the use of “bio-plastics.” In general, compared to conventional plastics derived from petroleum, bio-based polymers have more diverse stereochemistry and architecture of side chains which enable research scientists a greater number of opportunities to customize the properties of the final packaging material. The primary challenge facing the food (Meat industry in producing bio-plastic packaging, currently, is to match the durability of the packaging with product shelf-life. Notable advances in biopolymer production, consumer demand for more environmentally-friendly packaging, and technologies that allow packaging to do more than just encompass the food are driving new and novel research and developments in the area of packaging for muscle foods. [Vet. World 2009; 2(2.000: 79-82

  8. Fibre crops as sustainable source of biobased material for industrial products in Europe and China

    NARCIS (Netherlands)

    Dam, van J.E.G.

    2014-01-01

    Bast fibre industries have a long standing tradition, both in China and Europe. In the past decades significant changes have taken place in the sector and strong competition is faced on the market with manmade fibres on the one hand, and on the other hand at the farm level with other crops that offe

  9. Synergy between bio-based industry and the feed industry through biorefinery.

    Science.gov (United States)

    Teekens, Amanda M; Bruins, Marieke E; van Kasteren, Johannes Mn; Hendriks, Wouter H; Sanders, Johan Pm

    2016-06-01

    Processing biomass into multi-functional components can contribute to the increasing demand for raw materials for feed and bio-based non-food products. This contribution aims to demonstrate synergy between the bio-based industry and the feed industry through biorefinery of currently used feed ingredients. Illustrating the biorefinery concept, rapeseed was selected as a low priced feed ingredient based on market prices versus crude protein, crude fat and apparent ileal digestible lysine content. In addition it is already used as an alternative protein source in diets and can be cultivated in European climate zones. Furthermore, inclusion level of rapeseed meal in pig diet is limited because of its nutritionally active factors. A conceptual process was developed to improve rapeseeds nutritional value and producing other bio-based building blocks simultaneously. Based on the correlation between market prices of feed ingredients and its protein and fat content, the value of refined products was estimated. Finally, a sensitivity analysis, under two profit scenario, shows that the process is economically feasible. This study demonstrates that using biorefinery processes on feed ingredients can improve feed quality. In conjunction, it produces building blocks for a bio-based industry and creates synergy between bio-based and feed industry for more efficient use of biomass. © 2015 Society of Chemical Industry.

  10. Challenges for bio-based products in sustainable value chains

    OpenAIRE

    L. Cardon; Lin, J.W.; De Groote, M.; Ragaert, K.; Kopecka, J.A.; Koster, R.P.

    2011-01-01

    This work concerns studies related to strategic development of products in which bio-based plastics are or will be applied, referred to as bio-based products. The studies cover (1) current and potential benefits of bio-based products in extended value chains including activities after end-of-life of products, (2) value communication between stakeholders in extended value chains, and (3) creating an integrated development approach for optimized bio-based products. Most existing models for valu...

  11. Challenges for bio-based products in sustainable value chains

    NARCIS (Netherlands)

    Cardon, L.; Lin, J.W.; De Groote, M.; Ragaert, K.; Kopecka, J.A.; Koster, R.P.

    2011-01-01

    This work concerns studies related to strategic development of products in which bio-based plastics are or will be applied, referred to as bio-based products. The studies cover (1) current and potential benefits of bio-based products in extended value chains including activities after end-of-life of

  12. Integrated automation for continuous high-throughput synthetic chromosome assembly and transformation to identify improved yeast strains for industrial production of biofuels and bio-based chemicals

    Science.gov (United States)

    An exponential increase in our understanding of genomes, proteomes, and metabolomes provides greater impetus to address critical biotechnological issues such as sustainable production of biofuels and bio-based chemicals and, in particular, the development of improved microbial biocatalysts for use i...

  13. Opportunities for Bio-Based Solvents Created as Petrochemical and Fuel Products Transition towards Renewable Resources

    Directory of Open Access Journals (Sweden)

    James H. Clark

    2015-07-01

    Full Text Available The global bio-based chemical market is growing in size and importance. Bio-based solvents such as glycerol and 2-methyltetrahydrofuran are often discussed as important introductions to the conventional repertoire of solvents. However adoption of new innovations by industry is typically slow. Therefore it might be anticipated that neoteric solvent systems (e.g., ionic liquids will remain niche, while renewable routes to historically established solvents will continue to grow in importance. This review discusses bio-based solvents from the perspective of their production, identifying suitable feedstocks, platform molecules, and relevant product streams for the sustainable manufacturing of conventional solvents.

  14. Biobased organic acids production by metabolically engineered microorganisms

    DEFF Research Database (Denmark)

    Chen, Yun; Nielsen, Jens

    2016-01-01

    Bio-based production of organic acids via microbial fermentation has been traditionally used in food industry. With the recent desire to develop more sustainable bioprocesses for production of fuels, chemicals and materials, the market for microbial production of organic acids has been further ex...... performance microbes for production of succinic acid and 3-hydroxypropionic acid. Also, the key limitations and challenges in microbial organic acids production are discussed......Bio-based production of organic acids via microbial fermentation has been traditionally used in food industry. With the recent desire to develop more sustainable bioprocesses for production of fuels, chemicals and materials, the market for microbial production of organic acids has been further...... expanded as organic acids constitute a key group among top building block chemicals that can be produced from renewable resources. Here we review the current status for production of citric acid and lactic acid, and we highlight the use of modern metabolic engineering technologies to develop high...

  15. Techno-economic assessment of the production of bio-based chemicals from glutamic acid

    NARCIS (Netherlands)

    Lammens, T.M.; Gangarapu, S.; Franssen, M.C.R.; Scott, E.L.; Sanders, J.P.M.

    2012-01-01

    In this review, possible process steps for the production of bio-based industrial chemicals from glutamic acid are described, including a techno-economic assessment of all processes. The products under investigation were those that were shown to be synthesized from glutamic acid on lab-scale, namely

  16. Biobased industrial chemicals from glutamic acid

    NARCIS (Netherlands)

    Lammens, T.M.

    2011-01-01

    In dit onderzoek is op zoek gegaan naar routes om van glutaminezuur vier producten te maken die van waarde zijn voor de industrie, die nu uit olie gemaakt worden. Dat zijn grondstoffen voor allerlei soorten kunststof, zoals nylon en rubbers. Het onderzoek laat zien dat alle vier die producten inderd

  17. Bio-based production of organic acids with Corynebacterium glutamicum.

    Science.gov (United States)

    Wieschalka, Stefan; Blombach, Bastian; Bott, Michael; Eikmanns, Bernhard J

    2013-03-01

    The shortage of oil resources, the steadily rising oil prices and the impact of its use on the environment evokes an increasing political, industrial and technical interest for development of safe and efficient processes for the production of chemicals from renewable biomass. Thus, microbial fermentation of renewable feedstocks found its way in white biotechnology, complementing more and more traditional crude oil-based chemical processes. Rational strain design of appropriate microorganisms has become possible due to steadily increasing knowledge on metabolism and pathway regulation of industrially relevant organisms and, aside from process engineering and optimization, has an outstanding impact on improving the performance of such hosts. Corynebacterium glutamicum is well known as workhorse for the industrial production of numerous amino acids. However, recent studies also explored the usefulness of this organism for the production of several organic acids and great efforts have been made for improvement of the performance. This review summarizes the current knowledge and recent achievements on metabolic engineering approaches to tailor C. glutamicum for the bio-based production of organic acids. We focus here on the fermentative production of pyruvate, L- and D-lactate, 2-ketoisovalerate, 2-ketoglutarate, and succinate. These organic acids represent a class of compounds with manifold application ranges, e.g. in pharmaceutical and cosmetics industry, as food additives, and economically very interesting, as precursors for a variety of bulk chemicals and commercially important polymers.

  18. Succinic acid production derived from carbohydrates: An energy and greenhouse gas assessment of a platform chemical toward a bio-based economy

    NARCIS (Netherlands)

    Cok, B.; Tsiropoulos, I.; Roes, A.L.; Patel, M.K.

    2014-01-01

    Bio-based succinic acid has the potential to become a platform chemical, i.e. a key building block for deriving both commodity and high-value chemicals, which makes it an attractive compound in a bio-based economy. A few companies and industrial consortia have begun to develop its industrial product

  19. Biobased lubricant additives

    Science.gov (United States)

    Fully biobased lubricants are those formulated using all biobased ingredients, i.e. biobased base oils and biobased additives. Such formulations provide the maximum environmental, safety, and economic benefits expected from a biobased product. Currently, there are a number of biobased base oils that...

  20. 48 CFR 52.223-2 - Affirmative Procurement of Biobased Products Under Service and Construction Contracts.

    Science.gov (United States)

    2010-10-01

    ... Biobased Products Under Service and Construction Contracts. 52.223-2 Section 52.223-2 Federal Acquisition... Procurement of Biobased Products Under Service and Construction Contracts (DEC 2007) (a) In the performance of... CONTRACT CLAUSES Text of Provisions and Clauses 52.223-2 Affirmative Procurement of Biobased Products...

  1. Assessing the Economic Viability of Bio-based Products for Missouri Value-added Crop Production

    Energy Technology Data Exchange (ETDEWEB)

    Nicholas Kalaitzandonakes

    2005-11-30

    While research and development on biobased products has continued strong over the years, parallel attention on the economics and management of such product innovation has been lacking. With the financial support of the Department of Energy, the Economics and Management of Agrobiotechnology Center at the University of Missouri-Columbia has launched a pilot graduate education program that seeks to fill the gap. Within this context, a multi-disciplinary research and teaching program has been structured with an emphasis on new product and innovation economics and management. More specifically, this pilot graduate education program has the following major objectives: (1) To provide students with a strong background in innovation economics, management, and strategy. (2) To diversify the students academic background with coursework in science and technology. (3) To familiarize the student with biobased policy initiatives through interaction with state and national level organizations and policymakers. (4) To facilitate active collaboration with industry involved in the development and production of biobased products. The pilot education program seeks to develop human capital and research output. Although the research is, initially, focused on issues related to the State of Missouri, the results are expected to have national implications for the economy, producers, consumers and environment.

  2. Health, safety, and ecological implications of using biobased floor-stripping products.

    Science.gov (United States)

    Massawe, Ephraim; Geiser, Kenneth; Ellenbecker, Michael; Marshall, Jason

    2007-05-01

    Pro Strip. One product, Botanic Gold, had a screening score of 49 out of a possible 50. This score was much higher than the score of 26 achieved by Pro Strip. The other biobased floor strippers had EHS-screening scores of > or =37, which is the average value of solvent-based cleaning solutions. These results indicate that biobased cleaning products capable of floor stripping are potentially better than traditional products with respect to the five EHS parameters used. The cost of switching to biobased floor strippers at their full strength ranged from a minimum of U.S. $15.50 per gallon ($4.10 per liter) for Eco Natural Floor Stripper (WPR) to about $59.00 per gallon ($15.61 per liter) for Botanic Gold. At 25 percent volume by volume (v/v), the recommended dilution ratio for the traditional product, the cost of the Botanic Gold was $14.75 per gallon ($3.90 per liter), or about five times more than that of Pro Strip, which was $2.48 per gallon ($0.65 per liter). Since these figures do not reflect all of the EHS costs, such as disposal and recycling fees, it is likely that use of Botanic Gold could be cost-effective in the long run. The authors therefore recommend that detailed EHS analysis be conducted on this alternative biobased floor stripper. It is also recommended that large field trials be conducted and that janitors' or consumers' perceptions be determined. For detailed assessment of eco-toxicological properties of the biobased floor strippers, investigations of the common additives in the Botanic Gold formulation should be conducted through use of databases on the World Wide Web such as Toxnet. Finally, the current policies, regulations, and standards that promote biobased products should be investigated to determine their strengths and weaknesses. This would encourage a broader public debate about the future of the biobased industry in the context of sustainability.

  3. 77 FR 25632 - Guidelines for Designating Biobased Products for Federal Procurement

    Science.gov (United States)

    2012-05-01

    ... manufactured using biobased plastic resins Component X weighs 5 pounds and is made from a resin with 40 percent... components are made from steel and the other 3 are plastic and could be manufactured using biobased plastic...; ] DEPARTMENT OF AGRICULTURE 7 CFR Part 3201 RIN 0503-AA40 Guidelines for Designating Biobased Products...

  4. Design of reactive distillation processes for the production of butyl acrylate:Impact of bio-based raw materials☆

    Institute of Scientific and Technical Information of China (English)

    Alexander Niesbach⁎; Natalia Fink; Philip Lutze; Andrzej Górak

    2015-01-01

    The chemical industry is nowadays predominantly using fossil raw materials, but the alternative use of bio-based resources is investigated to account for the foreseeable scarcity of fossil feedstocks. A main challenge of using bio-based feedstocks is the complexity of the impurity profile. For an economic production of bio-based chemicals, the use of intensified processes is inevitable and approaches are needed for the various process intensification techniques to identify their applicability to be used for the production of bio-based components. In the presented study, an approach is shown for the reactive distil ation (RD) technology to identify the most critical bio-based impurities and their impact on the reactive distillation process. The investigated case-study is the production of n-butyl acrylate from acrylic acid and n-butanol. Among al initially identified impurities, the key impurities, having the biggest impact on the product purity in the reactive distil ation process, are found. These impurities are then studied in more detail and an operating window depending on the impurity concentration is identified for the reactive distil ation column. Furthermore, an integrated design of upstream and downstream processes is facilitated, as the presented results can be used in the development of the fermentation processes for the produc-tion of the bio-based reactants by decreasing the concentration of the critical impurities.

  5. Biobased plastics in a bioeconomy.

    Science.gov (United States)

    Philp, J C; Ritchie, R J; Guy, K

    2013-02-01

    Bioeconomy plans include a biobased industries sector in which some oil-derived plastics and chemicals are replaced by new or equivalent products derived, at least partially, from biomass. Some of these biobased products are here today, but to fulfil their societal potential, greater attention is required to promote awareness, and to improve their market share while making valuable contributions to climate change mitigation.

  6. Recirculation: A New Concept to Drive Innovation in Sustainable Product Design for Bio-Based Products

    Directory of Open Access Journals (Sweden)

    James Sherwood

    2016-12-01

    Full Text Available Bio-based products are made from renewable materials, offering a promising basis for the production of sustainable chemicals, materials, and more complex articles. However, biomass is not a limitless resource or one without environmental and social impacts. Therefore, while it is important to use biomass and grow a bio-based economy, displacing the unsustainable petroleum basis of energy and chemical production, any resource must be used effectively to reduce waste. Standards have been developed to support the bio-based product market in order to achieve this aim. However, the design of bio-based products has not received the same level of attention. Reported here are the first steps towards the development of a framework of understanding which connects product design to resource efficiency. Research and development scientists and engineers are encouraged to think beyond simple functionality and associate value to the potential of materials in their primary use and beyond.

  7. Recirculation: A New Concept to Drive Innovation in Sustainable Product Design for Bio-Based Products.

    Science.gov (United States)

    Sherwood, James; Clark, James H; Farmer, Thomas J; Herrero-Davila, Lorenzo; Moity, Laurianne

    2016-12-29

    Bio-based products are made from renewable materials, offering a promising basis for the production of sustainable chemicals, materials, and more complex articles. However, biomass is not a limitless resource or one without environmental and social impacts. Therefore, while it is important to use biomass and grow a bio-based economy, displacing the unsustainable petroleum basis of energy and chemical production, any resource must be used effectively to reduce waste. Standards have been developed to support the bio-based product market in order to achieve this aim. However, the design of bio-based products has not received the same level of attention. Reported here are the first steps towards the development of a framework of understanding which connects product design to resource efficiency. Research and development scientists and engineers are encouraged to think beyond simple functionality and associate value to the potential of materials in their primary use and beyond.

  8. Fostering the Bioeconomic Revolution in Biobased Products and Bioenergy: An Environmental Approach

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2001-01-01

    This document is a product of the Biomass Research and Development Board and presents a high-level summary of the emerging national strategy for biobased products and bioenergy. It provides the first integrated approach to policies and procedures that will promote R&D and demonstration leading to accelerated production of biobased products and bioenergy.

  9. Editorial: from plant biotechnology to bio-based products.

    Science.gov (United States)

    Stöger, Eva

    2013-10-01

    From plant biotechnology to bio-based products - this Special Issue of Biotechnology Journal is dedicated to plant biotechnology and is edited by Prof. Eva Stöger (University of Natural Resources and Life Sciences, Vienna, Austria). The Special Issue covers a wide range of topics in plant biotechnology, including metabolic engineering of biosynthesis pathways in plants; taking advantage of the scalability of the plant system for the production of innovative materials; as well as the regulatory challenges and society acceptance of plant biotechnology.

  10. 76 FR 3789 - Voluntary Labeling Program for Biobased Products

    Science.gov (United States)

    2011-01-20

    ... USDA's proposal requiring that biobased content testing facilities be ISO 9001 conformant to promote... standard, such as ISO 9001 or ISO 17025, for biobased content testing laboratories but rather should allow... program that biobased testing be performed by ISO 9001 conformant testing facilities. This will...

  11. 77 FR 10939 - Driving Innovation and Creating Jobs in Rural America Through Biobased and Sustainable Product...

    Science.gov (United States)

    2012-02-24

    ... Documents#0;#0; #0; #0;Title 3-- #0;The President ] Memorandum of February 21, 2012 Driving Innovation and Creating Jobs in Rural America Through Biobased and Sustainable Product Procurement Memorandum for the... procurement of biobased products to promote rural economic development, create new jobs, and provide...

  12. Replacing fossil based plastic performance products by bio-based plastic products-Technical feasibility.

    Science.gov (United States)

    van den Oever, Martien; Molenveld, Karin

    2017-07-25

    Larger scale market introduction of new bio-based products requires a clear advantage regarding sustainability, as well as an adequate techno-economic positioning relative to fossil based products. In a previous paper [Broeren et al., 2016], LCA results per kg and per functionality equivalent of bio-based plastics were presented, together with economic considerations. The present paper discusses the mechanical and thermal properties of a range of commercially available bio-based plastics based on polylactic acid (PLA), cellulose esters, starch and polyamides, and the feasibility of replacing fossil-based counterparts based on performance. The evaluation is approached from an end user perspective. First, potentially suitable bio-based plastics are selected based on manufacturers' specifications in technical data sheets, then a first experimental evaluation is performed on injection moulded ISO specimens, and finally a further selection of plastics is tested on large 50×70cm panels. This technical feasibility study indicates that so far bio-based plastics do not completely match the properties of high performance materials like flame retardant V-0 PC/ABS blends used in electronic devices. The performance gap is being decreased by the development of stereocomplex PLA and hybrid PLA blends with polycarbonate, which offer clearly improved properties with respect to maximum usage temperature and toughness. In addition, several materials meet the V-0 flammability requirements needed in specific durable applications. On the other hand, improving these properties so far has negative consequences for the bio-based content. This study also shows that replacement of bulk polymers like PS is feasible using PLA compounds with a bio-based content as high as 85%.

  13. Replacing fossil based plastic performance products by bio-based plastic products-Technical feasibility

    NARCIS (Netherlands)

    Oever, van den Martien; Molenveld, Karin

    2016-01-01

    Larger scale market introduction of new bio-based products requires a clear advantage regarding sustainability, as well as an adequate techno-economic positioning relative to fossil based products. In a previous paper [Broeren et al., 2016], LCA results per kg and per functionality equivalent of

  14. Replacing fossil based plastic performance products by bio-based plastic products-Technical feasibility

    NARCIS (Netherlands)

    Oever, van den Martien; Molenveld, Karin

    2017-01-01

    Larger scale market introduction of new bio-based products requires a clear advantage regarding sustainability, as well as an adequate techno-economic positioning relative to fossil based products. In a previous paper [Broeren et al., 2016], LCA results per kg and per functionality equivalent of bio

  15. Steam explosion and its combinatorial pretreatment refining technology of plant biomass to bio-based products.

    Science.gov (United States)

    Chen, Hong-Zhang; Liu, Zhi-Hua

    2015-06-01

    Pretreatment is a key unit operation affecting the refinery efficiency of plant biomass. However, the poor efficiency of pretreatment and the lack of basic theory are the main challenges to the industrial implementation of the plant biomass refinery. The purpose of this work is to review steam explosion and its combinatorial pretreatment as a means of overcoming the intrinsic characteristics of plant biomass, including recalcitrance, heterogeneity, multi-composition, and diversity. The main advantages of the selective use of steam explosion and other combinatorial pretreatments across the diversity of raw materials are introduced. Combinatorial pretreatment integrated with other unit operations is proposed as a means to exploit the high-efficiency production of bio-based products from plant biomass. Finally, several pilot- and demonstration-scale operations of the plant biomass refinery are described. Based on the principle of selective function and structure fractionation, and multi-level and directional composition conversion, an integrated process with the combinatorial pretreatments of steam explosion and other pretreatments as the core should be feasible and conform to the plant biomass refinery concept. Combinatorial pretreatments of steam explosion and other pretreatments should be further exploited based on the type and intrinsic characteristics of the plant biomass used, the bio-based products to be made, and the complementarity of the processes.

  16. {sup 14}C determination in different bio-based products

    Energy Technology Data Exchange (ETDEWEB)

    Santos Arévalo, Francisco-Javier, E-mail: fj.santos@csic.es [Centro Nacional de Aceleradores (Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, Junta de Andalucía), Thomas Alva Edison 7, 41092 Seville (Spain); Gómez Martínez, Isabel; Agulló García, Lidia; Reina Maldonado, María-Teresa [Centro Nacional de Aceleradores (Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, Junta de Andalucía), Thomas Alva Edison 7, 41092 Seville (Spain); García León, Manuel [Centro Nacional de Aceleradores (Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, Junta de Andalucía), Thomas Alva Edison 7, 41092 Seville (Spain); Dpto. de Física Atómica Molecular y Nuclear, Universidad de Sevilla, Reina Mercedes s/n, 41012 Seville (Spain)

    2015-10-15

    Radiocarbon determination can be used as a tool to investigate the presence of biological elements in different bio-based products, such as biodiesel blends. These products may also be produced from fossil materials obtaining the same final molecules, so that composition is chemically indistinguishable. The amount of radiocarbon in these products can reveal how much of these biological elements have been used, usually mixed with petrol derived components, free of {sup 14}C. Some of these products are liquid and thus the handling at the laboratory is not as straightforward as with solid samples. At Centro Nacional de Aceleradores (CNA) we have tested the viability of these samples using a graphitization system coupled to an elemental analyzer used for combustion of the samples, thus avoiding any vacuum process. Samples do not follow any chemical pre-treatment procedure and are directly graphitized. Specific equipment for liquid samples related to the elemental analyzer was tested. Measurement of samples was performed by low-energy AMS at the 1 MV HVEE facility at CNA, paying special attention to background limits and reproducibility during sample preparation.

  17. Production of bio-based materials using photobioreactors with binary cultures

    Energy Technology Data Exchange (ETDEWEB)

    Beliaev, Alex S.; Pinchuk, Grigoriy E.; Hill, Eric A.

    2017-01-31

    A method, device and system for producing preselected products, (either finished products or preselected intermediary products) from biobased precursors or CO.sub.2 and/or bicarbonate. The principal features of the present invention include a method wherein a binary culture is incubated with a biobased precursor in a closed system to transform at least a portion of the biobased precursor to a preselected product. The present invention provides a method of cultivation that does not need sparging of a closed bioreactor to remove or add a gaseous byproduct or nutrient from a liquid medium. This improvement leads to significant savings in energy consumption and allows for the design of photobioreactors of any desired shape. The present invention also allows for the use of a variety of types of waste materials to be used as the organic starting material.

  18. Production of bio-based materials using photobioreactors with binary cultures

    Science.gov (United States)

    Beliaev, Alex S; Pinchuk, Grigoriy E; Hill, Eric A; Fredrickson, Jim K

    2013-08-27

    A method, device and system for producing preselected products, (either finished products or preselected intermediary products) from biobased precursors or CO.sub.2 and/or bicarbonate. The principal features of the present invention include a method wherein a binary culture is incubated with a biobased precursor in a closed system to transform at least a portion of the biobased precursor to a preselected product. The present invention provides a method of cultivation that does not need sparging of a closed bioreactor to remove or add a gaseous byproduct or nutrient from a liquid medium. This improvement leads to significant savings in energy consumption and allows for the design of photobioreactors of any desired shape. The present invention also allows for the use of a variety of types of waste materials to be used as the organic starting material.

  19. Bio-based and biodegradable plastics for use in crop production.

    Science.gov (United States)

    Riggi, Ezio; Santagata, Gabriella; Malinconico, Mario

    2011-01-01

    The production and management of crops uses plastics for many applications (e.g., low tunnels, high tunnels, greenhouses, mulching, silage bags, hay bales, pheromone traps, coatings of fertilizers or pesticides or hormones or seeds, and nursery pots and containers for growing transplants). All these applications have led some authors to adopt the term "plasticulture" when discussing the use of plastic materials in agriculture and related industries. Unfortunately, the sustainability of this use of plastics is low, and renewability and degradability have become key words in the debate over sustainable production and utilization of plastic. Recently, researchers and the plastics industry have made strong efforts (i) to identify new biopolymers and natural additives from renewable sources that can be used in plastics production and (ii) to enhance the degradability (biological or physical) of the new ecologically sustainable materials. In the present review, we describe the main research results, current applications, patents that have been applied for in the last two decades, and future perspectives on sustainable use of plastics to support crop production. The article presents some promising patents on bio-based and biodegradable plastics for use in crop production.

  20. Energy and greenhouse gas assessment of European glucose production from corn – a multiple allocation approach for a key ingredient of the bio-based economy

    NARCIS (Netherlands)

    Tsiropoulos, I.; Cok, B.; Patel, M.K.

    2013-01-01

    Bio-based products are considered to be a sustainable alternative to conventional fossil fuel-based materials. This paper studies the production of glucose from corn starch, an important feedstock for a wide range of bio-based products (e.g. ethanol, bio-based monomers), in a European corn wet mill

  1. Biomass. Energy carrier and biobased products; Biomasse. Energietraeger und biobasierte Produkte

    Energy Technology Data Exchange (ETDEWEB)

    Muecke, W. [Technische Univ. Muenchen (Germany). Inst. fuer Toxikologie und Umwelthygiene; Groeger, G. (eds.) [BioRegionUlm Foerderverein Biotechnologie e.V., Ulm (Germany)

    2006-07-01

    Within the scope of the 3rd Reivensburg Environmental Biotechnology Meeting at 29th June, 2007, at Castle Reivensburg near Guenzburg (Federal Republic of Germany), the following lectures were held: (a) Challenges according to materials management, land use and power generation in the background of precarious economical situation in the Federal Republic of Germany (H.-G. Petersen); (b) Regenerative raw materials in Germany: Plant sources and potentials (W. Luehs, W. Friedt); (c) Biobased industrial products and bioraffinery systems (B. Kamm, M. Kamm); (d) Potential of biomass materials conversion in chemical industries (R. Busch); (e) Environmental compatible processes and low-priced ecological materials from the processing of biotechnological poly-3-hydroxybutyrate (H. Seliger, H. Haeberlein, R. Kohler, P. Sulzberger); (f) New starch from potatoes - a regenerative raw material (T. Servay); (g) Fuels from renewable energy sources: potential, production, perspectives (M. Specht, U. Zuberbuehler, A. Bandi); (h) Application of biogas as a fuel from the view of a car manufacturer (S. Schrahe); (i) Large-scale production of bioethanol (P. Johne, C. Sauter); (j) Environmental political evaluation of the use of biofuels and politics of biofuels of selected countries (J.M. Henke).

  2. Life cycle risks for human health: a comparison of petroleum versus bio-based production of five bulk organic chemicals.

    Science.gov (United States)

    Roes, Alexander L; Patel, Martin K

    2007-10-01

    This article describes the development and application of a generic approach to the comparative assessment of risks related to the production of organic chemicals by petrochemical processes versus white biotechnology. White biotechnology, also referred to as industrial biotechnology, typically uses bio-based feedstocks instead of the fossil raw materials used in the petrochemical sector. The purpose of this study was to investigate whether the production of chemicals by means of white biotechnology has lower conventional risks than their production by petrochemical processes. Conventional risks are the risks of well-established processes, and not those related to genetically modified microorganisms and plants. Our approach combines classical risk assessment methods (largely based on toxicology), as developed by the life cycle assessment (LCA) community, with statistics on technological disasters, accidents, and work-related illnesses. Moreover, it covers the total process chain for both petrochemical and bio-based products from cradle to grave. The approach was applied to five products: the plastics polytrimethylene terephthalate (PTT), polyhydroxyalkanoates (PHA), polyethylene terephthalate (PET), polyethylene (PE), and ethanol. Our results show that the conventional risks related to the white biotechnology products studied are lower than those of the petrochemical products. However, considering the uncertainties with respect to the ranges of input data, the (incomplete) coverage of emissions by the environmental priority strategies (EPS) 2000 method, and the uncertainties of the assumptions made in this study (i.e., large to very large), the differences in results between bio-based and petrochemical products fall into the uncertainty range. Because of this, future research is necessary to decrease the uncertainties before we can conclude that the conventional risks of biotechnologically produced chemicals are lower than those of fossil-fuel-derived chemicals.

  3. Valorization of an industrial organosolv-sugarcane bagasse lignin: Characterization and use as a matrix in biobased composites reinforced with sisal fibers.

    Science.gov (United States)

    Ramires, Elaine C; Megiatto, Jackson D; Gardrat, Christian; Castellan, Alain; Frollini, Elisabete

    2010-11-01

    In the present study, the main focus was the characterization and application of the by-product lignin isolated through an industrial organosolv acid hydrolysis process from sugarcane bagasse, aiming at the production of bioethanol. The sugarcane lignin was characterized and used to prepare phenolic-type resins. The analysis confirmed that the industrial sugarcane lignin is of HGS type, with a high proportion of the less substituted aromatic ring p-hydroxyphenyl units, which favors further reaction with formaldehyde. The lignin-formaldehyde resins were used to produce biobased composites reinforced with different proportions of randomly distributed sisal fibers. The presence of lignin moieties in both the fiber and matrix increases their mutual affinity, as confirmed by SEM images, which showed good adhesion at the biocomposite fiber/matrix interface. This in turn allowed good load transference from the matrix to the fiber, leading to biobased composites with good impact strength (near 500 J m(-1) for a 40 wt% sisal fiber-reinforced composite). The study demonstrates that sugarcane bagasse lignin obtained from a bioethanol plant can be used without excessive purification in the preparation of lignocellulosic fiber-reinforced biobased composites displaying high mechanical properties.

  4. How biobased products contribute to the establishment of sustainable, phthalate free, plasticizers and coatings

    NARCIS (Netherlands)

    Haveren, van J.; Oostveen, E.A.; Micciche, F.; Weijnen, J.G.J.

    2006-01-01

    Biobased components for the development of environmentally friendly, durable products are being described. The potential and versatility of isosorbide diesters as subsitutes for the currently phthalate based plasticisers for PVC and other resins, is shown. Also high solid alkyd resins for decorative

  5. Design methodology for bio-based processing: Biodiesel and fatty alcohol production

    DEFF Research Database (Denmark)

    Simasatikul, Lida; Arpornwichanop, Amornchai; Gani, Rafiqul

    2012-01-01

    A systematic design methodology is developed for producing two main products plus side products starting with one or more bio-based renewable source. A superstructure that includes all possible reaction and separation operations is generated through thermodynamic insights and available data. The ....... Economic analysis and net present value are determined to find the best economically and operationally feasible process. The application of the methodology is presented through a case study involving biodiesel and fatty alcohol productions....

  6. Design methodology for bio-based processing: Biodiesel and fatty alcohol production

    DEFF Research Database (Denmark)

    Simasatikul, Lida; Arpornwichanopa, Amornchai; Gani, Rafiqul

    2013-01-01

    A systematic design methodology is developed for producing multiple main products plus side products starting with one or more bio-based renewable source. A superstructure that includes all possible reaction and separation operations is generated through thermodynamic insights and available data........ Economic analysis and net present value are determined to find the best economically and operationally feasible process. The application of the methodology is presented through a case study involving biodiesel and fatty alcohol productions....

  7. Multi-scale exploration of the technical, economic, and environmental dimensions of bio-based chemical production

    DEFF Research Database (Denmark)

    Zhuang, Kai; Herrgard, Markus

    2015-01-01

    investment in a new bio-based chemical industry, there is a need for assessing the technological, economic, and environmental potentials of combinations of biomass feedstocks, biochemical products, bioprocess technologies, and metabolic engineering approaches in the early phase of development of cell...... factories. To address this issue, we have developed a comprehensive Multi-scale framework for modeling Sustainable Industrial Chemicals production (MuSIC), which integrates modeling approaches for cellular metabolism, bioreactor design, upstream/downstream processes and economic impact assessment. We...... demonstrate the use of the MuSIC framework in a case study where two major polymer precursors (1,3-propanediol and 3-hydroxypropionic acid) are produced from two biomass feedstocks (corn-based glucose and soy-based glycerol) through 66 proposed biosynthetic pathways in two host organisms (Escherichia coli...

  8. Green Products and Services from the Defense Logistics Agency: Support for Environmental Requirements

    Science.gov (United States)

    2009-05-07

    further information please call our toll free number 1-800-352-2852 Defense Supply Center Philadelphia Biobased Plastic Flatware • Biobased resin... Biobased Plastic Flatware Offered by JWOD NIB/NISH Partner: L C Industries Product Description NSN Biobased Dining Packet...Remanufactured Toner Cartridges • Vehicular Wet Battery Program • Heavy Equipment Procurement Program • Energy Efficient Lighting • Biobased Fuels • Biobased

  9. Development Of Sustainable Biobased Products And Bioenergy In Cooperation With The Midwest Consortium For Sustainable Biobased Products And Energy

    Energy Technology Data Exchange (ETDEWEB)

    Michael Ladisch; Randy Woodson

    2009-03-18

    Collaborative efforts of Midwest Consortium have been put forth to add value to distiller's grains by further processing them into fermentable sugars, ethanol, and a protein rich co-product consistent with a pathway to a biorenewables industry (Schell et al, 2008). These studies were recently published in the enclosed special edition (Volume 99, Issue 12) of Bioresource Technology journal. Part of them have demonstrated the utilization of distillers grains as additional feedstock for increased ethanol production in the current dry grind process (Kim et al., 2008a, b; Dien et al.,2008, Ladisch et al., 2008a, b). Results showed that both liquid hot water (LHW) pretreatment and ammonia fiber expansion (AFEX) were effective for enhancing digestibility of distiller's grains. Enzymatic digestion of distiller's grains resulted in more than 90% glucose yield under standard assay conditions, although the yield tends to drop as the concentration of dry solids increases. Simulated process mass balances estimated that hydrolysis and fermentation of distillers grains can increase the ethanol yield by 14% in the current dry milling process (Kim et al., 2008c). Resulting co-products from the modified process are richer in protein and oil contents than conventional distiller's grains, as determined both experimentally and computationally. Other research topics in the special edition include water solubilization of DDGS by transesterification reaction with phosphite esters (Oshel el al., 2008) to improve reactivity of the DDGS to enzymes, hydrolysis of soluble oligomers derived from DDGS using functionalized mesoporous solid catalysts (Bootsma et al., 2008), and ABE (acetone, butanol, ethanol) production from DDGS by solventogenic Clostridia (Ezeji and Blaschek, 2008). Economic analysis of a modified dry milling process, where the fiber and residual starch is extracted and fermented to produce more ethanol from the distillers grains while producing highly

  10. Opportunities, barriers, and strategies for forest bioenergy and bio-based product development in the Southern United States

    Energy Technology Data Exchange (ETDEWEB)

    Mayfield, Chyrel A.; Foster, C. Darwin; Gan, Jianbang [Department of Ecosystem Science and Management, Texas A and M University, MS 2138, College Station, TX 77842-2135 (United States); Smith, C. Tattersall [Faculty of Forestry, University of Toronto, 33 Willcocks Street, Toronto, Ontario (Canada); Fox, Susan [USDA Forest Service, Southern Research Station, 200 WT Weaver Boulevard, Asheville, NC 28804 (United States)

    2007-09-15

    Focus groups were used to identify opportunities, barriers, and strategies for increased utilization of forest biomass in the Southern United States. The groups were based on the seven critical components in the bioenergy and bio-based products value chain, as identified by the International Energy Agency (IEA) Bioenergy Task 31 ''Biomass Production for Energy from Sustainable Forestry.'' These components include sustainable biomass production, sustainable forest operations, product delivery logistics, manufacturing and energy production, environmental sustainability, consumer demand, and rural economic development. Participants included handpicked experts from each of the seven component areas. Six common themes emerged from the focus groups. Market creation, infrastructure development, community engagement, incentives, collaboration, and education will all be critical to the successful development of the biomass industry. The forest industry, the energy industry, academia, extension personnel, and rural communities should collaborate together to support research, policy issues, and educational programs that enhance the efficiency of current forest biomass operations and promote the use of forest biomass for bioenergy. (author)

  11. Sustainable Systems Analysis of Production and Transportation Scenarios for Conventional and Bio-based Energy Commodities

    Science.gov (United States)

    Doran, E. M.; Golden, J. S.; Nowacek, D. P.

    2013-12-01

    commerce. To demonstrate the usefulness of the framework, we construct several scenarios as case studies to explore the emerging trends of larger ship deployment and the changing portfolio of energy resources including the increased consumption of bio-based energy. The maritime transportation industry remains heavily reliant on fossil fuels to power transport, while energy, mineral and grain remain the largest bulk commodities shipped. Emerging markets for such commodities, as well as new production methods and locations are considered. We overlay these trends and shifts with ecological areas of concern and biological migration routes. The diversity of governance regimes is also considered to produce a clearer picture of the emerging hot-spots for further study and for the synergies and tradeoffs that must be considered to achieve a sustainable ocean system. References Turner BL, Lambin EF, Reenberg A (2007) Proc Natl Acad Sci, (104):20666-20671. UN Trade and Development Board (2013) Recent developments and trends in international maritime transport affecting trade of developing countries, TD/B/C.1/30.

  12. Multi-scale exploration of the technical, economic, and environmental dimensions of bio-based chemical production.

    Science.gov (United States)

    Zhuang, Kai H; Herrgård, Markus J

    2015-09-01

    In recent years, bio-based chemicals have gained traction as a sustainable alternative to petrochemicals. However, despite rapid advances in metabolic engineering and synthetic biology, there remain significant economic and environmental challenges. In order to maximize the impact of research investment in a new bio-based chemical industry, there is a need for assessing the technological, economic, and environmental potentials of combinations of biomass feedstocks, biochemical products, bioprocess technologies, and metabolic engineering approaches in the early phase of development of cell factories. To address this issue, we have developed a comprehensive Multi-scale framework for modeling Sustainable Industrial Chemicals production (MuSIC), which integrates modeling approaches for cellular metabolism, bioreactor design, upstream/downstream processes and economic impact assessment. We demonstrate the use of the MuSIC framework in a case study where two major polymer precursors (1,3-propanediol and 3-hydroxypropionic acid) are produced from two biomass feedstocks (corn-based glucose and soy-based glycerol) through 66 proposed biosynthetic pathways in two host organisms (Escherichia coli and Saccharomyces cerevisiae). The MuSIC framework allows exploration of tradeoffs and interactions between economy-scale objectives (e.g. profit maximization, emission minimization), constraints (e.g. land-use constraints) and process- and cell-scale technology choices (e.g. strain design or oxygenation conditions). We demonstrate that economy-scale assessment can be used to guide specific strain design decisions in metabolic engineering, and that these design decisions can be affected by non-intuitive dependencies across multiple scales.

  13. Comparing biobased products from oil crops versus sugar crops with regard to non-renewable energy use, GHG emissions and land use

    NARCIS (Netherlands)

    Bos, Harriëtte L.; Meesters, Koen P.H.; Conijn, Sjaak G.; Corré, Wim J.; Patel, Martin K.

    2016-01-01

    Non-renewable energy use, greenhouse gas emissions and land use of two biobased products and biofuel from oil crops is investigated and compared with products from sugar crops. In a bio-based economy chemicals, materials and energy carriers will be produced from biomass. Next to side streams, als

  14. Finding the "bio" in biobased products: electrophoretic identification of wheat proteins in processed products.

    Science.gov (United States)

    Robertson, George H; Hurkman, William J; Cao, Trung K; Tanaka, Charlene K; Orts, William J

    2010-04-14

    Verification of the biocontent in biobased or "green" products identifies genuine products, exposes counterfeit copies, supports or refutes content claims, and ensures consumer confidence. When the biocontent includes protein, elemental nitrogen analysis is insufficient for verification since non-protein, but nitrogen-rich, content also may be present. However, the proteins can be extracted, separated by electrophoretic methods, and detected by UV absorption, protein stain, or immunoblotting. We utilized capillary zone electrophoresis (CZE) to separate proteins in a gliadin fraction that had been dissolved in aqueous ethanol (70%) and polyacrylamide gel electrophoresis (PAGE) to separate proteins in a gliadin-plus-glutenin fraction that had been dissolved in water containing both sodium dodecyl sulfate (SDS) and a reducing agent, dithiothreitol (DTT). We sought to verify the presence of these wheat grain proteins in wheat bread, a wheat flake cereal, wheat beer, and an enclosure for an antique automobile ignition coil reputed to contain wheat gluten. Proteins extracted from commercial wheat, corn, and soy flours served as standards, and proteins from heat-altered wheat served as process condition references. This approach successfully identified wheat proteins in these products especially if the process temperature did not exceed 120 degrees C. Above this temperature attenuation was nearly complete for proteins analyzed by CZE, but wheat-like patterns could still be recognized by one- and two-dimensional PAGE. Immunoblots reacted with grain-specific antibodies confirmed the identities of the cereal component especially when the protein pattern was greatly altered by thermal modification, specific protein adsorption, or protein digestion. In addition to verifying that wheat proteins are present, the complementary use of these methods can reveal whether whole wheat gluten or merely an alcohol-soluble fraction had been used in the specific product and indicate the

  15. From zero to hero - production of bio-based nylon from renewable resources using engineered Corynebacterium glutamicum.

    Science.gov (United States)

    Kind, Stefanie; Neubauer, Steffi; Becker, Judith; Yamamoto, Motonori; Völkert, Martin; Abendroth, Gregory von; Zelder, Oskar; Wittmann, Christoph

    2014-09-01

    Polyamides are important industrial polymers. Currently, they are produced exclusively from petrochemical monomers. Herein, we report the production of a novel bio-nylon, PA5.10 through an integration of biological and chemical approaches. First, systems metabolic engineering of Corynebacterium glutamicum was used to create an effective microbial cell factory for the production of diaminopentane as the polymer building block. In this way, a hyper-producer, with a high diaminopentane yield of 41% in shake flask culture, was generated. Subsequent fed-batch production of C. glutamicum DAP-16 allowed a molar yield of 50%, a productivity of 2.2gL(-1)h(-1), and a final titer of 88gL(-1). The streamlined producer accumulated diaminopentane without generating any by-products. Solvent extraction from alkalized broth and two-step distillation provided highly pure diaminopentane (99.8%), which was then directly accessible for poly-condensation. Chemical polymerization with sebacic acid, a ten-carbon dicarboxylic acid derived from castor plant oil, yielded the bio-nylon, PA5.10. In pure form and reinforced with glass fibers, the novel 100% bio-polyamide achieved an excellent melting temperature and the mechanical strength of the well-established petrochemical polymers, PA6 and PA6.6. It even outperformed the oil-based products in terms of having a 6% lower density. It thus holds high promise for applications in energy-friendly transportation. The demonstration of a novel route for generation of bio-based nylon from renewable sources opens the way to production of sustainable bio-polymers with enhanced material properties and represents a milestone in industrial production.

  16. Progress in Industrialization of Biobased Materials%生物基材料产业化进展

    Institute of Scientific and Technical Information of China (English)

    谭天伟; 苏海佳; 杨晶

    2012-01-01

    在全球石油资源供给日趋紧张,环保问题日益突出,对低碳经济发展需求日益迫切的情势下,以可再生资源为基础的生物基材料迅速发展成为必然趋势。综述了目前国内外生物基材料产业化的最新进展,系统介绍和总结了乳酸、1,3-丙二醇、聚乳酸、聚丁二酸丁二醇酯、聚羟基脂肪酸酯、透明质酸、大豆蛋白、聚天冬氨酸、木塑复合材料等几种生物基材料产业化最新结果。对比了美国、日本和欧洲等国家生物基材料产业状况,分析了生物基材料产业化的发展趋势及前景。%The latest progress in industrialization of biobased materials was reviewed. The new results of industrialization of several representative biobased materials such as lactic acid, 1, 3-propanediol, poly ( lactic acid) , poly ( butylene succinate) , poly (hydroxyalkanoate) , hyaluronic acid, Xanthan Gum, polyaspartic acid, and wood-plastic composed ma- terials were systematically introduced and summarized. The industrialization situations in US, Japan and Europe were compared. Furthermore, the possible development trend and future were discussed.

  17. Preparation of biobased sponges from un-tanned hides

    Science.gov (United States)

    One of our research endeavors to address ongoing challenges faced by the U.S. hide and leather industries is to develop innovative uses and novel biobased products from hides to improve prospective markets and to secure a viable future for hides and leather industries. We had previously investigate...

  18. Producing Bio-Based Bulk Chemicals Using Industrial Biotechnology Saves Energy and Combats Climate Change

    NARCIS (Netherlands)

    Hermann, B.G.; Blok, K.; Patel, M.K.

    2007-01-01

    The production of bulk chemicals from biomass can make a significant contribution to solving two of the most urgent environmental problems: climate change and depletion of fossil energy. We analyzed current and future technology routes leading to 15 bulk chemicals using industrial biotechnology and

  19. Producing bio-based bulk chemicals using industrial biotechnology saves energy and combats climate change.

    Science.gov (United States)

    Hermann, B G; Blok, K; Patel, M K

    2007-11-15

    The production of bulk chemicals from biomass can make a significant contribution to solving two of the most urgent environmental problems: climate change and depletion of fossil energy. We analyzed current and future technology routes leading to 15 bulk chemicals using industrial biotechnology and calculated their CO2 emissions and fossil energy use. Savings of more than 100% in non-renewable energy use and greenhouse gas emissions are already possible with current state of the art biotechnology. Substantial further savings are possible for the future by improved fermentation and downstream processing. Worldwide CO2 savings in the range of 500-1000 million tons per year are possible using future technology. Industrial biotechnology hence offers excellent opportunities for mitigating greenhouse gas emissions and decreasing dependence on fossil energy sources and therefore has the potential to make inroads into the existing chemical industry.

  20. Bio-based chemicals - green, but also sustainable?

    DEFF Research Database (Denmark)

    Ögmundarson, Ólafur; Herrgard, Markus; Förster, Jochen;

    For almost two decades, the chemical industry has put great effort into developing bio-chemicals,among others to fight global warming caused by greenhouse gas emissions, one of the biggest threats that are faced by our society today. To facilitate a growing and versatile bio-based chemical...... production, the US Department of Energy proposed in 2004 a list of 12 building block chemicals which can either be converged through biological or chemical conversions. Moving toward more bio-based chemicals, the chemical industry does not only claim to reduce climate change impacts, but also...... that they are increasing overall sustainability in chemical production. Whether such claims are justifiable is unclear. When sustainability of bio-based polymer production is assessed, various environmental trade-offs occur that need to be considered. It is not enough to claim that a bio-chemical is sustainable...

  1. Enzymatic Synthesis of Biobased Polyesters and Polyamides

    Directory of Open Access Journals (Sweden)

    Yi Jiang

    2016-06-01

    Full Text Available Nowadays, “green” is a hot topic almost everywhere, from retailers to universities to industries; and achieving a green status has become a universal aim. However, polymers are commonly considered not to be “green”, being associated with massive energy consumption and severe pollution problems (for example, the “Plastic Soup” as a public stereotype. To achieve green polymers, three elements should be entailed: (1 green raw materials, catalysts and solvents; (2 eco-friendly synthesis processes; and (3 sustainable polymers with a low carbon footprint, for example, (biodegradable polymers or polymers which can be recycled or disposed with a gentle environmental impact. By utilizing biobased monomers in enzymatic polymerizations, many advantageous green aspects can be fulfilled. For example, biobased monomers and enzyme catalysts are renewable materials that are derived from biomass feedstocks; enzymatic polymerizations are clean and energy saving processes; and no toxic residuals contaminate the final products. Therefore, synthesis of renewable polymers via enzymatic polymerizations of biobased monomers provides an opportunity for achieving green polymers and a future sustainable polymer industry, which will eventually play an essential role for realizing and maintaining a biobased and sustainable society.

  2. Conditions for industrial production

    DEFF Research Database (Denmark)

    Jensen, Karsten Ingerslev; Schultz, Jørgen Munthe; Brauer, H.

    1996-01-01

    The possibility of an industrial aerogel glazing production is discussed with respect to sample size, sales volume and prices. Different ways of an industrial assembling line is outlined and the total costs of a 1 square meter aerogel glazing is calculated.......The possibility of an industrial aerogel glazing production is discussed with respect to sample size, sales volume and prices. Different ways of an industrial assembling line is outlined and the total costs of a 1 square meter aerogel glazing is calculated....

  3. Production and 3D printing processing of bio-based thermoplastic filament

    Directory of Open Access Journals (Sweden)

    Gkartzou Eleni

    2017-01-01

    Full Text Available In this work, an extrusion-based 3D printing technique was employed for processing of biobased blends of Poly(Lactic Acid (PLA with low-cost kraft lignin. In Fused Filament Fabrication (FFF 3D printing process, objects are built in a layer-by-layer fashion by melting, extruding and selectively depositing thermoplastic fibers on a platform. These fibers are used as building blocks for more complex structures with defined microarchitecture, in an automated, cost-effective process, with minimum material waste. A sustainable material consisting of lignin biopolymer blended with poly(lactic acid was examined for its physical properties and for its melt processability during the FFF process. Samples with different PLA/lignin weight ratios were prepared and their mechanical (tensile testing, thermal (Differential Scanning Calorimetry analysis and morphological (optical and scanning electron microscopy, SEM properties were studied. The composition with optimum properties was selected for the production of 3D-printing filament. Three process parameters, which contribute to shear rate and stress imposed on the melt, were examined: extrusion temperature, printing speed and fiber’s width varied and their effect on extrudates’ morphology was evaluated. The mechanical properties of 3D printed specimens were assessed with tensile testing and SEM fractography.

  4. Synthesis of Biobased Succinonitrile from Glutamic Acid and Glutamine

    NARCIS (Netherlands)

    Lammens, T.M.; Nôtre, Le J.; Franssen, M.C.R.; Scott, E.L.; Sanders, J.P.M.

    2011-01-01

    Succinonitrile is the precursor of 1,4-diaminobutane, which is used for the industrial production of polyamides. This paper describes the synthesis of biobased succinonitrile from glutamic acid and glutamine, amino acids that are abundantly present in many plant proteins. Synthesis of the intermedia

  5. Conditions for industrial production

    DEFF Research Database (Denmark)

    Jensen, Karsten Ingerslev; Schultz, Jørgen Munthe; Brauer, H.

    1996-01-01

    The possibilities of making xerogel glazings in an industrial way is discussed and a schematic outline of a production line is presented.......The possibilities of making xerogel glazings in an industrial way is discussed and a schematic outline of a production line is presented....

  6. Compatibilized blends and value added products from leather industry waste

    Science.gov (United States)

    Sartore, Luciana; Di Landro, Luca

    2014-05-01

    Blends based on poly(ethylene-co-vinyl acetate) (EVA) and hydrolyzed proteins (IP), derived from waste products of the leather industry, have been obtained by reactive blending and their chemical physical properties as well as mechanical and rheological behavior were evaluated. The effect of vinyl acetate content and of transesterification agent addition to increase interaction between polymer and bio-based components were considered. These blends represent a new type of biodegradable material and resulted promising for industrial application in several fields such as packaging and agriculture as transplanting or mulching films with additional fertilizing action of IP.

  7. Uncertainty in the Life Cycle Greenhouse Gas Emissions from U.S. Production of Three Biobased Polymer Families.

    Science.gov (United States)

    Posen, I Daniel; Jaramillo, Paulina; Griffin, W Michael

    2016-03-15

    Interest in biobased products has been motivated, in part, by the claim that these products have lower life cycle greenhouse gas (GHG) emissions than their fossil counterparts. This study investigates GHG emissions from U.S. production of three important biobased polymer families: polylactic acid (PLA), polyhydroxybutyrate (PHB) and bioethylene-based plastics. The model incorporates uncertainty into the life cycle emission estimates using Monte Carlo simulation. Results present a range of scenarios for feedstock choice (corn or switchgrass), treatment of coproducts, data sources, end of life assumptions, and displaced fossil polymer. Switchgrass pathways generally have lower emissions than corn pathways, and can even generate negative cradle-to-gate emissions if unfermented residues are used to coproduce energy. PHB (from either feedstock) is unlikely to have lower emissions than fossil polymers once end of life emissions are included. PLA generally has the lowest emissions when compared to high emission fossil polymers, such as polystyrene (mean GHG savings up to 1.4 kg CO2e/kg corn PLA and 2.9 kg CO2e/kg switchgrass PLA). In contrast, bioethylene is likely to achieve the greater emission reduction for ethylene intensive polymers, like polyethylene (mean GHG savings up to 0.60 kg CO2e/kg corn polyethylene and 3.4 kg CO2e/kg switchgrass polyethylene).

  8. Bio-based and recycled polymers for cleaner production : an assessment of plastics and fibres

    OpenAIRE

    Shen, L.

    2011-01-01

    Today, almost all man-made plastics and fibres are produced from synthetic polymers. Synthetic polymers, made from petroleum which took millions of years to form, have three sustainability challenges: (i) the limited fossil fuel resources, (ii) the environmental impacts caused by non-degradable plastics waste, and (iii) greenhouse gas emissions caused by combusting fossil fuels. To tackle these sustainability challenges, two strategies have been proposed. First, use bio-based polymers to repl...

  9. More chemistry between green and growth. The opportunities and dilemmas of a bio-based economy; Meer chemie tussen groen en groei. De kansen en dilemma's van een biobased economy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-12-15

    A bio-based economy is one in which enterprises manufacture non-food products from biomass. Such products include fuel for the transport industry, chemicals, materials, and energy. Biomass is the biological material of living or recently living organisms, either animal or vegetable. With technology becoming more sophisticated, it is growing easier to turn plants, trees, crops, and residual animal waste into biomass. Waste and waste streams are increasingly being used as input in production processes, thereby gaining an economic value of their own. They are giving rise to new, sustainable products with considerable added value that replace products based on non-renewable materials. New bio-based products may offer the Netherlands new economic opportunities. The Dutch can already boast a number of distinct advantages in that respect, thanks to the sophistication of their industrial sector, agro-industry, chemicals and energy industries, and transport and logistics sector - all key sectors in a bio-based economy. However, the growing world population and increasing level of prosperity worldwide, and the environmental and climate problems associated with such growth, are adding to the complexity of policy-making aimed at developing a bio-based economy. The shift from fossil-based to bio-based materials must be part of a comprehensive policy aimed at achieving a sustainable economy. [Dutch] In dit advies gaat de SER in op mogelijkheden en knelpunten van de biobased economy. In een biobased economy dienen plantaardige en dierlijke biomassa (zoals gewassen, planten, snijafval, mest) als groene grondstoffen om non-food producten mee te maken (denk aan cosmetica, bioplastics, brandstoffen). De SER vindt dat de rijksoverheid stevig moet inzetten op een biobased economy met meer gesloten kringlopen. Dit draagt immers bij aan economische groei en aan een meer duurzame economie (gesloten kringlopen, gunstige arbeidsomstandigheden)

  10. Characterizing compositional changes of Napier grass at different stages of growth for biofuel and biobased products potential.

    Science.gov (United States)

    Takara, Devin; Khanal, Samir Kumar

    2015-01-01

    Napier grass, Pennisetum purpureum, is a high yielding, perennial feedstock that can be harvested year-round in (sub)tropical geographies of the world. Because of its high moisture content (∼ 80%w/w), Napier grass presents a unique opportunity for fractionation into solid and liquid streams, where the extruded cellulosic fibers can serve as a substrate for biofuel production, and the nutrient-rich juice can serve as a substrate for co-product generation. The aim of this study evaluated the effects of biomass age on constituents relevant to biofuel and biobased product generation. Although obvious morphological changes can be observed in the field due to natural senescence, the results obtained in this work suggested that the cellulose content does not change significantly with respect to age. Data surrounding the hemicellulose and lignin contents, however, were inconclusive as their degree of significance varied with the statistics applied to analyze the raw data.

  11. The physical properties, morphology and viscoelasticity of biobased sponges prepared from un-tanned hides

    Science.gov (United States)

    One of our research endeavors to address ongoing challenges faced by the U.S. hide and leather industries is to develop innovative uses and novel biobased products from hides to improve prospective markets and to secure a viable future for hides and leather industries. We had previously investigate...

  12. Fostering the Bioeconomic Revolution ... in Biobased Products and Bioenergy: An Environmental Approach

    Science.gov (United States)

    2001-01-01

    crops, we can use fermentation and chemistry to make hundreds of products including: • Alcohols, such as ethanol, glycols, and sorbitol. Ethanol is...biotech Plant Pesticides http://www.epa.gov/pesticides/ biopesticides Extramural Research and Development http://www.epa.gov/AthensR/extrmural/index.html...C2H5OH: a colorless liquid that is the product of fermentation used in alcoholic beverages, industrial processes, and as a fuel additive. Also known as

  13. A synthetic biochemistry module for production of bio-based chemicals from glucose.

    Science.gov (United States)

    Opgenorth, Paul H; Korman, Tyler P; Bowie, James U

    2016-06-01

    Synthetic biochemistry, the cell-free production of biologically based chemicals, is a potentially high-yield, flexible alternative to in vivo metabolic engineering. To limit costs, cell-free systems must be designed to operate continuously with minimal addition of feedstock chemicals. We describe a robust, efficient synthetic glucose breakdown pathway and implement it for the production of bioplastic. The system's performance suggests that synthetic biochemistry has the potential to become a viable industrial alternative.

  14. Sustainability aspects of biobased products : comparison of different crops and products from the vegetable oil platform

    NARCIS (Netherlands)

    Meesters, K.P.H.; Corré, W.J.; Conijn, J.G.; Patel, M.K.; Bos, H.L.

    2012-01-01

    This study focusses on the production of vegetable oil based products. A limited number of aspacts of the sustainability of the full chain (from agriculture to product at the factory gate) was evaluated. Three different vegetable oils were taken into account: palm oil, soy oil and rapeseed oil. Also

  15. The circular economy of seaweed as nutrient management instrument for biobased production

    DEFF Research Database (Denmark)

    Thomsen, Marianne; Seghetta, Michele; Bruhn, Annette

    portfolio (processing and cascade utilization) are needed for a seaweed biorefinery industry to become economically viable. The break-even point for the MAB3 EP biorefinery system is obtained by an increase in the seaweed productivity of a factor 2 to 4. Development of seaweed cultivation technology...... is ongoing and requires expanding the scale of production. Regarding the product portfolio, especially use of seaweed for pharmaceuticals and cosmetics will increase the profitability of the seaweed utilization compared to use for energy, feed and fertilizers. There are not synergies between the economic...

  16. Biobased production of alkanes and alkenes through metabolic engineering of microorganisms

    DEFF Research Database (Denmark)

    Kang, Min Kyoung; Nielsen, Jens

    2016-01-01

    hydrocarbon biosynthesis, and in particular, alkanes and alkenes are important high-value chemicals as they can be utilized for a broad range of industrial purposes as well as ‘drop-in’ biofuels. Some microorganisms have the ability to biosynthesize alkanes and alkenes naturally, but their production level...... is extremely low. Therefore, there have been various attempts to recruit other microbial cell factories for production of alkanes and alkenes by applying metabolic engineering strategies. Here we review different pathways and involved enzymes for alkane and alkene production and discuss bottlenecks...

  17. Fatty acid from the renewable sources: a promising feedstock for the production of biofuels and biobased chemicals.

    Science.gov (United States)

    Liu, Hui; Cheng, Tao; Xian, Mo; Cao, Yujin; Fang, Fang; Zou, Huibin

    2014-01-01

    With the depletion of the nonrenewable petrochemical resources and the increasing concerns of environmental pollution globally, biofuels and biobased chemicals produced from the renewable resources appear to be of great strategic significance. The present review described the progress in the biosynthesis of fatty acid and its derivatives from renewable biomass and emphasized the importance of fatty acid serving as the platform chemical and feedstock for a variety of chemicals. Due to the low efficient conversions of lignocellulosic biomass or carbon dioxide to fatty acid, we also put forward that rational strategies for the production of fatty acid and its derivatives should further derive from the consideration of whole bioprocess (pretreatment, saccharification, fermentation, separation), multiscale analysis and interdisciplinary combinations (omics, kinetics, metabolic engineering, synthetic biology, fermentation and so on).

  18. Production of hydrophobic amino acids from biobased resources: wheat gluten and rubber seed proteins.

    Science.gov (United States)

    Widyarani; Sari, Yessie W; Ratnaningsih, Enny; Sanders, Johan P M; Bruins, Marieke E

    2016-09-01

    Protein hydrolysis enables production of peptides and free amino acids that are suitable for usage in food and feed or can be used as precursors for bulk chemicals. Several essential amino acids for food and feed have hydrophobic side chains; this property may also be exploited for subsequent separation. Here, we present methods for selective production of hydrophobic amino acids from proteins. Selectivity can be achieved by selection of starting material, selection of hydrolysis conditions, and separation of achieved hydrolysate. Several protease combinations were applied for hydrolysis of rubber seed protein concentrate, wheat gluten, and bovine serum albumin (BSA). High degree of hydrolysis (>50 %) could be achieved. Hydrophobic selectivity was influenced by the combination of proteases and by the extent of hydrolysis. Combination of Pronase and Peptidase R showed the highest selectivity towards hydrophobic amino acids, roughly doubling the content of hydrophobic amino acids in the products compared to the original substrates. Hydrophobic selectivity of 0.6 mol-hydrophobic/mol-total free amino acids was observed after 6 h hydrolysis of wheat gluten and 24 h hydrolysis of rubber seed proteins and BSA. The results of experiments with rubber seed proteins and wheat gluten suggest that this process can be applied to agro-industrial residues.

  19. Securing renewable resource supplies for changing market demands in a bio-based economy

    NARCIS (Netherlands)

    Dam, van J.E.G.; Klerk-Engels, de B.; Struik, P.C.; Rabbinge, R.

    2005-01-01

    Establishment of a bio-based economy has been recognised as one of the key issues for sustainable development For future developments renewable resources will play a key role as CO2 neutral raw material for sustainable industrial production to curb depletion of fossil resources. Options to fully exp

  20. From petrochemical polyurethanes to biobased polyhydroxyurethanes

    OpenAIRE

    Nohra, Bassam; Candy, Laure; Blanco, Jean-François; Guerin, Celine; Raoul, Yann; Mouloungui, Zephirin

    2013-01-01

    From a green and sustainable chemistry standpoint, the current challenge in the polyurethane's industry is to switch from petrobased polyurethanes (PUs) to biobased polyhydroxyurethanes (PHUs). This review describes the main alternative strategies being developed with a focus on PHUs from vegetable oils and derivatives. The substitution of petrobased polyols by natural oil based polyols was the first route to biobased PUs to be developed. The second strategy involves synthesis without the nee...

  1. Extraction of medium chain fatty acids from organic municipal waste and subsequent production of bio-based fuels.

    Science.gov (United States)

    Kannengiesser, Jan; Sakaguchi-Söder, Kaori; Mrukwia, Timo; Jager, Johannes; Schebek, Liselotte

    2016-01-01

    This paper provides an overview on investigations for a new technology to generate bio-based fuel additives from bio-waste. The investigations are taking place at the composting plant in Darmstadt-Kranichstein (Germany). The aim is to explore the potential of bio-waste as feedstock in producing different bio-based products (or bio-based fuels). For this investigation, a facultative anaerobic process is to be integrated into the normal aerobic waste treatment process for composting. The bio-waste is to be treated in four steps to produce biofuels. The first step is the facultative anaerobic treatment of the waste in a rotting box namely percolate to generate a fatty-acid rich liquid fraction. The Hydrolysis takes place in the rotting box during the waste treatment. The organic compounds are then dissolved and transferred into the waste liquid phase. Browne et al. (2013) describes the hydrolysis as an enzymatically degradation of high solid substrates to soluble products which are further degraded to volatile fatty acids (VFA). This is confirmed by analytical tests done on the liquid fraction. After the percolation, volatile and medium chain fatty acids are found in the liquid phase. Concentrations of fatty acids between 8.0 and 31.5 were detected depending on the nature of the input material. In the second step, a fermentation process will be initiated to produce additional fatty acids. Existing microorganism mass is activated to degrade the organic components that are still remaining in the percolate. After fermentation the quantity of fatty acids in four investigated reactors increased 3-5 times. While fermentation mainly non-polar fatty acids (pentanoic to octanoic acid) are build. Next to the fermentation process, a chain-elongation step is arranged by adding ethanol to the fatty acid rich percolate. While these investigations a chain-elongation of mainly fatty acids with pair numbers of carbon atoms (acetate, butanoic and hexanoic acid) are demonstrated. After

  2. Socio-economic opportunities of the biobased economy in the south-west of the Netherlands. Estimated employment impact in 2020; Sociaaleconomische kansen van de biobased economy in Zuidwest-Nederland. Inschatting werkgelegenheidseffecten in 2020

    Energy Technology Data Exchange (ETDEWEB)

    Van Lieshout, M.; Warringa, G.; Bergsma, G.; Croezen, H.

    2013-06-15

    This study, commissioned by the Socio-Economic Councils (SER) of the Dutch provinces of Zeeland and Brabant, was carried out in collaboration with a supervisory committee comprising numerous stakeholders in the biobased economy in the south-west of the Netherlands. The motto was 'agro meets chemistry'. Given that it was clear from the outset that the volume of locally available biomass is insufficient for large-scale power generation without inducing serious competition with food production, it was opted to restrict the scope of the 'biobased economy' to production of biobased chemicals and innovative materials. Because of the study's limited scope and duration, gross employment effects were also calculated for Zeeland and West Brabant only. To this end, three factors critical for the growth of the biobased economy and thus for potential employment effects were analysed: the price of fossil feedstocks, the availability of biomass for chemical industry applications, and the availability of capital for investing in innovative biobased processes. To cover the full range of possible developments in the biobased economy, two scenarios were developed: high and low, with in each case employment effects being estimated on the basis of a biomass flow analysis and employment indices [Dutch] Deze studie is uitgevoerd in opdracht van de SER Zeeland en de SER Brabant, in samenwerking met een begeleidingscommissie met brede vertegenwoordiging van stakeholders van de biobased economy in Zuidwest Nederland. De insteek was 'agro meets chemistry'. Aangezien bij aanvang vast stond dat de lokaal beschikbare biomassa onvoldoende is voor grootschalige energieopwekking, zonder ernstige concurrentie met voedselproductie te veroorzaken, is er voor gekozen om de biobased economy te beperken tot de productie van biobased chemie en innovatieve materialen. Verder is gezien de beperkte omvang en doorlooptijd van de studie besloten om

  3. Forest Products Industry Technology Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2010-04-01

    This document describes the forest products industry's research and development priorities. The original technology roadmap published by the industry in 1999 and was most recently updated in April 2010.

  4. Bio-Based Polymers with Potential for Biodegradability

    OpenAIRE

    Thomas F. Garrison; Amanda Murawski; Rafael L. Quirino

    2016-01-01

    A variety of renewable starting materials, such as sugars and polysaccharides, vegetable oils, lignin, pine resin derivatives, and proteins, have so far been investigated for the preparation of bio-based polymers. Among the various sources of bio-based feedstock, vegetable oils are one of the most widely used starting materials in the polymer industry due to their easy availability, low toxicity, and relative low cost. Another bio-based plastic of great interest is poly(lactic acid) (PLA), wi...

  5. Sustainable Industrial Production

    DEFF Research Database (Denmark)

    Brattebö, Helge; Jørgensen, Michael Søgaard; Lorentzen, Børge

    The book discusses the concepts of waste minimization, cleaner technology and industrial ecology, including the experiences with employee participation in preventive environmental activities in companies.......The book discusses the concepts of waste minimization, cleaner technology and industrial ecology, including the experiences with employee participation in preventive environmental activities in companies....

  6. Sustainable Industrial Production

    DEFF Research Database (Denmark)

    Christensen, Irene

    2015-01-01

    The purpose of this case is to create awareness about a somewhat unfamiliar industry that accounts for over €3 billion in Scandinavia and £5,6 billion in the UK, the Metals recycling industry. The case features a Scandinavian Company and includes several perspectives from managerial disciplines...

  7. Towards a carbon-negative sustainable bio-based economy.

    Science.gov (United States)

    Vanholme, Bartel; Desmet, Tom; Ronsse, Frederik; Rabaey, Korneel; Van Breusegem, Frank; De Mey, Marjan; Soetaert, Wim; Boerjan, Wout

    2013-01-01

    The bio-based economy relies on sustainable, plant-derived resources for fuels, chemicals, materials, food and feed rather than on the evanescent usage of fossil resources. The cornerstone of this economy is the biorefinery, in which renewable resources are intelligently converted to a plethora of products, maximizing the valorization of the feedstocks. Innovation is a prerequisite to move a fossil-based economy toward sustainable alternatives, and the viability of the bio-based economy depends on the integration between plant (green) and industrial (white) biotechnology. Green biotechnology deals with primary production through the improvement of biomass crops, while white biotechnology deals with the conversion of biomass into products and energy. Waste streams are minimized during these processes or partly converted to biogas, which can be used to power the processing pipeline. The sustainability of this economy is guaranteed by a third technology pillar that uses thermochemical conversion to valorize waste streams and fix residual carbon as biochar in the soil, hence creating a carbon-negative cycle. These three different multidisciplinary pillars interact through the value chain of the bio-based economy.

  8. Towards a carbon-negative sustainable bio-based economy

    Directory of Open Access Journals (Sweden)

    Bartel eVanholme

    2013-06-01

    Full Text Available The bio-based economy relies on sustainable, plant-derived resources for fuels, chemicals, materials, food and feed rather than on the evanescent usage of fossil resources. The cornerstone of this economy is the biorefinery, in which renewable resources are intelligently converted to a plethora of products, maximizing the valorization of the feedstocks. Innovation is a prerequisite to move a fossil-based economy towards sustainable alternatives, and the viability of the bio-based economy depends on the integration between plant (green and industrial (white biotechnology. Green biotechnology deals with primary production through the improvement of biomass crops, while white biotechnology deals with the conversion of biomass into products and energy. Waste streams are minimized during these processes or partly converted to biogas, which can be used to power the processing pipeline. The sustainability of this economy is guaranteed by a third technology pillar that uses thermochemical conversion to valorize waste streams and fix residual carbon as biochar in the soil, hence creating a carbon-negative cycle. These three different multidisciplinary pillars interact through the value chain of the bio-based economy.

  9. Biohydrogen production from industrial wastewaters.

    Science.gov (United States)

    Moreno-Andrade, Iván; Moreno, Gloria; Kumar, Gopalakrishnan; Buitrón, Germán

    2015-01-01

    The feasibility of producing hydrogen from various industrial wastes, such as vinasses (sugar and tequila industries), and raw and physicochemical-treated wastewater from the plastic industry and toilet aircraft wastewater, was evaluated. The results showed that the tequila vinasses presented the maximum hydrogen generation potential, followed by the raw plastic industry wastewater, aircraft wastewater, and physicochemical-treated wastewater from the plastic industry and sugar vinasses, respectively. The hydrogen production from the aircraft wastewater was increased by the adaptation of the microorganisms in the anaerobic sequencing batch reactor.

  10. Acid and Base Catalyzed Hydrolysis of Cyanophycin for the Biobased Production of Nitrogen Containing Chemicals

    NARCIS (Netherlands)

    Könst, P.M.; Scott, E.L.; Franssen, M.C.R.; Sanders, J.P.M.

    2011-01-01

    While growing on side-streams of the agro-industries, engineered microorganisms can produce ethanol and simultaneously bind L-aspartic acid and L-arginine in equimolar amounts in the polyamino acid cyanophycin. In this way, widely available amino acids can be isolated and utilized as an alternative

  11. Impact of synthetic biology and metabolic engineering on industrial production of fine chemicals.

    Science.gov (United States)

    Jullesson, David; David, Florian; Pfleger, Brian; Nielsen, Jens

    2015-11-15

    Industrial bio-processes for fine chemical production are increasingly relying on cell factories developed through metabolic engineering and synthetic biology. The use of high throughput techniques and automation for the design of cell factories, and especially platform strains, has played an important role in the transition from laboratory research to industrial production. Model organisms such as Saccharomyces cerevisiae and Escherichia coli remain widely used host strains for industrial production due to their robust and desirable traits. This review describes some of the bio-based fine chemicals that have reached the market, key metabolic engineering tools that have allowed this to happen and some of the companies that are currently utilizing these technologies for developing industrial production processes.

  12. Biocatalysts and methods for conversion of hemicellulose hydrolysates to biobased products

    Science.gov (United States)

    Preston, James F

    2015-03-31

    The invention relates to processes and biocatalysts for producing ethanol and other useful products from biomass and/or other materials. Initial processing of lignocellulosic biomass frequently yields methylglucuronoxylose (MeGAX) and related products which are resistant to further processing by common biocatalysts. Strains of Enterobacter asburiae are shown to be useful in bioprocessing of MeGAX and other materials into useful bioproducts such as ethanol, acetate, lactate, and many others. Genetic engineering may be used to enhance production of desired bioproducts.

  13. Life Cycle Risks for Human Health: A Comparison of Petroleum Versus Bio-Based Production of Five Bulk Organic Chemicals

    NARCIS (Netherlands)

    Roes, A.L.; Patel, M.K.

    2007-01-01

    This article describes the development and application of a generic approach to the comparative assessment of risks related to the production of organic chemicals by petrochemical processes versus white biotechnology. White biotechnology, also referred to as industrial biotechnology, typically uses

  14. 75 FR 63695 - Designation of Biobased Items for Federal Procurement

    Science.gov (United States)

    2010-10-18

    ... ethanol led to additional rain forest destruction. The commenter further stated that because more corn was... Agriculture (USDA) is amending the Guidelines for Designating Biobased Products for Federal Procurement, to add eight sections to designate items within which biobased products will be afforded...

  15. Research Extension and Education Programs on Bio-based Energy Technologies and Products

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, Sam [University of Tennessee, Knoxville, TN (United States). Tennessee Agricultural Experiment Station; Harper, David [University of Tennessee, Knoxville, TN (United States). Tennessee Agricultural Experiment Station; Womac, Al [University of Tennessee, Knoxville, TN (United States). Tennessee Agricultural Experiment Station

    2010-03-02

    The overall objectives of this project were to provide enhanced educational resources for the general public, educational and development opportunities for University faculty in the Southeast region, and enhance research knowledge concerning biomass preprocessing and deconstruction. All of these efforts combine to create a research and education program that enhances the biomass-based industries of the United States. This work was broken into five primary objective areas: • Task A - Technical research in the area of biomass preprocessing, analysis, and evaluation. • Tasks B&C - Technical research in the areas of Fluidized Beds for the Chemical Modification of Lignocellulosic Biomass and Biomass Deconstruction and Evaluation. • Task D - Analyses for the non-scientific community to provides a comprehensive analysis of the current state of biomass supply, demand, technologies, markets and policies; identify a set of feasible alternative paths for biomass industry development and quantify the impacts associated with alternative path. • Task E - Efforts to build research capacity and develop partnerships through faculty fellowships with DOE national labs The research and education programs conducted through this grant have led to three primary results. They include: • A better knowledge base related to and understanding of biomass deconstruction, through both mechanical size reduction and chemical processing • A better source of information related to biomass, bioenergy, and bioproducts for researchers and general public users through the BioWeb system. • Stronger research ties between land-grant universities and DOE National Labs through the faculty fellowship program. In addition to the scientific knowledge and resources developed, funding through this program produced a minimum of eleven (11) scientific publications and contributed to the research behind at least one patent.

  16. Membranes in the biobased economy : electrodialysis of amino acids for the production of biochemicals

    NARCIS (Netherlands)

    Kattan Readi, O.M.

    2013-01-01

    The depletion of fossil fuels, increasing oil prices and CO2 emissions, rise the need for green alternatives for the production of energy, fuels and chemicals. Emerging sustainable technologies based on renewable resources promote the shift of conventional refineries toward biorefinery concepts. Bio

  17. Production and applications of carbohydrate-derived sugar acids as generic biobased chemicals.

    Science.gov (United States)

    Mehtiö, Tuomas; Toivari, Mervi; Wiebe, Marilyn G; Harlin, Ali; Penttilä, Merja; Koivula, Anu

    2016-10-01

    This review considers the chemical and biotechnological synthesis of acids that are obtained by direct oxidation of mono- or oligosaccharide, referred to as sugar acids. It focuses on sugar acids which can be readily derived from plant biomass sources and their current and future applications. The three main classes of sugar acids are aldonic, aldaric and uronic acids. Interest in organic acids derived from sugars has recently increased, as part of the interest to develop biorefineries which produce not only biofuels, but also chemicals to replace those currently derived from petroleum. More than half of the most desirable biologically produced platform chemicals are organic acids. Currently, the only sugar acid with high commercial production is d-gluconic acid. However, other sugar acids such as d-glucaric and meso-galactaric acids are being produced at a lower scale. The sugar acids have application as sequestering agents and binders, corrosion inhibitors, biodegradable chelators for pharmaceuticals and pH regulators. There is also considerable interest in the use of these molecules in the production of synthetic polymers, including polyamides, polyesters and hydrogels. Further development of these sugar acids will lead to higher volume production of the appropriate sugar acids and will help support the next generation of biorefineries.

  18. Life cycle impact assessment of bio-based plastics from sugarcane ethanol

    NARCIS (Netherlands)

    Tsiropoulos, I.; Faaij, A. P C; Lundquist, L.; Schenker, U.; Briois, J. F.; Patel, M. K.

    2015-01-01

    The increasing production of bio-based plastics calls for thorough environmental assessments. Using life cycle assessment, this study compares European supply of fully bio-based high-density polyethylene and partially bio-based polyethylene terephthalate from Brazilian and Indian sugarcane ethanol w

  19. Valorization of rendering industry wastes and co-products for industrial chemicals, materials and energy: review.

    Science.gov (United States)

    Mekonnen, Tizazu; Mussone, Paolo; Bressler, David

    2016-01-01

    Over the past decades, strong global demand for industrial chemicals, raw materials and energy has been driven by rapid industrialization and population growth across the world. In this context, long-term environmental sustainability demands the development of sustainable strategies of resource utilization. The agricultural sector is a major source of underutilized or low-value streams that accompany the production of food and other biomass commodities. Animal agriculture in particular constitutes a substantial portion of the overall agricultural sector, with wastes being generated along the supply chain of slaughtering, handling, catering and rendering. The recent emergence of bovine spongiform encephalopathy (BSE) resulted in the elimination of most of the traditional uses of rendered animal meals such as blood meal, meat and bone meal (MBM) as animal feed with significant economic losses for the entire sector. The focus of this review is on the valorization progress achieved on converting protein feedstock into bio-based plastics, flocculants, surfactants and adhesives. The utilization of other rendering streams such as fat and ash rich biomass for the production of renewable fuels, solvents, drop-in chemicals, minerals and fertilizers is also critically reviewed.

  20. Improving succinic acid production by Actinobacillus succinogenes from raw industrial carob pods.

    Science.gov (United States)

    Carvalho, Margarida; Roca, Christophe; Reis, Maria A M

    2016-10-01

    Carob pods are an inexpensive by-product of locust bean gum industry that can be used as renewable feedstock for bio-based succinic acid. Here, for the first time, unprocessed raw carob pods were used to extract a highly enriched sugar solution, afterwards used as substrate to produce succinic acid using Actinobacillus succinogenes. Batch fermentations containing 30g/L sugars resulted in a production rate of 1.67gSA/L.h and a yield of 0.39gSA/g sugars. Taking advantage of A. succinogenes' metabolism, uncoupling cell growth from succinic acid production, a fed-batch mode was implemented to increase succinic acid yield and reduce by-products formation. This strategy resulted in a succinic acid yield of 0.94gSA/g sugars, the highest yield reported in the literature for fed-batch and continuous experiments, while maintaining by-products at residual values. Results demonstrate that raw carob pods are a highly efficient feedstock for bio-based succinic acid production.

  1. Utilization of inulin-containing waste in industrial fermentations to produce biofuels and bio-based chemicals.

    Science.gov (United States)

    Hughes, Stephen R; Qureshi, Nasib; López-Núñez, Juan Carlos; Jones, Marjorie A; Jarodsky, Joshua M; Galindo-Leva, Luz Ángela; Lindquist, Mitchell R

    2017-04-01

    Inulins are polysaccharides that belong to an important class of carbohydrates known as fructans and are used by many plants as a means of storing energy. Inulins contain 20 to several thousand fructose units joined by β-2,1 glycosidic bonds, typically with a terminal glucose unit. Plants with high concentrations of inulin include: agave, asparagus, coffee, chicory, dahlia, dandelion, garlic, globe artichoke, Jerusalem artichoke, jicama, onion, wild yam, and yacón. To utilize inulin as its carbon and energy source directly, a microorganism requires an extracellular inulinase to hydrolyze the glycosidic bonds to release fermentable monosaccharides. Inulinase is produced by many microorganisms, including species of Aspergillus, Kluyveromyces, Penicillium, and Pseudomonas. We review various inulinase-producing microorganisms and inulin feedstocks with potential for industrial application as well as biotechnological efforts underway to develop sustainable practices for the disposal of residues from processing inulin-containing crops. A multi-stage biorefinery concept is proposed to convert cellulosic and inulin-containing waste produced at crop processing operations to valuable biofuels and bioproducts using Kluyveromyces marxianus, Yarrowia lipolytica, Rhodotorula glutinis, and Saccharomyces cerevisiae as well as thermochemical treatments.

  2. A multi-scale, multi-disciplinary approach for assessing the technological, economic and environmental performance of bio-based chemicals.

    Science.gov (United States)

    Herrgård, Markus; Sukumara, Sumesh; Campodonico, Miguel; Zhuang, Kai

    2015-12-01

    In recent years, bio-based chemicals have gained interest as a renewable alternative to petrochemicals. However, there is a significant need to assess the technological, biological, economic and environmental feasibility of bio-based chemicals, particularly during the early research phase. Recently, the Multi-scale framework for Sustainable Industrial Chemicals (MuSIC) was introduced to address this issue by integrating modelling approaches at different scales ranging from cellular to ecological scales. This framework can be further extended by incorporating modelling of the petrochemical value chain and the de novo prediction of metabolic pathways connecting existing host metabolism to desirable chemical products. This multi-scale, multi-disciplinary framework for quantitative assessment of bio-based chemicals will play a vital role in supporting engineering, strategy and policy decisions as we progress towards a sustainable chemical industry.

  3. 14th congress of combustion by-products and their health effects-origin, fate, and health effects of combustion-related air pollutants in the coming era of bio-based energy sources.

    Science.gov (United States)

    Weidemann, Eva; Andersson, Patrik L; Bidleman, Terry; Boman, Christoffer; Carlin, Danielle J; Collina, Elena; Cormier, Stephania A; Gouveia-Figueira, Sandra C; Gullett, Brian K; Johansson, Christer; Lucas, Donald; Lundin, Lisa; Lundstedt, Staffan; Marklund, Stellan; Nording, Malin L; Ortuño, Nuria; Sallam, Asmaa A; Schmidt, Florian M; Jansson, Stina

    2016-04-01

    The 14th International Congress on Combustion By-Products and Their Health Effects was held in Umeå, Sweden from June 14th to 17th, 2015. The Congress, mainly sponsored by the National Institute of Environmental Health Sciences Superfund Research Program and the Swedish Research Council for Environment, Agricultural Sciences and Spatial Planning, focused on the "Origin, fate and health effects of combustion-related air pollutants in the coming era of bio-based energy sources". The international delegates included academic and government researchers, engineers, scientists, policymakers and representatives of industrial partners. The Congress provided a unique forum for the discussion of scientific advances in this research area since it addressed in combination the health-related issues and the environmental implications of combustion by-products. The scientific outcomes of the Congress included the consensus opinions that: (a) there is a correlation between human exposure to particulate matter and increased cardiac and respiratory morbidity and mortality; (b) because currently available data does not support the assessment of differences in health outcomes between biomass smoke and other particulates in outdoor air, the potential human health and environmental impacts of emerging air-pollution sources must be addressed. Assessment will require the development of new approaches to characterize combustion emissions through advanced sampling and analytical methods. The Congress also concluded the need for better and more sustainable e-waste management and improved policies, usage and disposal methods for materials containing flame retardants.

  4. Special on the Bio-based Economy. Making money with a green economy; Special Biobased Economy. Geld verdienen met een groene economie

    Energy Technology Data Exchange (ETDEWEB)

    Waterval, R. (ed.)

    2011-12-15

    Bio-based is booming. Increasingly more businesses see a healthy business case in products that are not made with fossil raw materials, but with biomass. But where are the opportunities for the Netherlands? And which roles can the government, trade and industry and science play? This PM special contains interviews with and experiences of pioneering entrepreneurs and agricultural attaches in the Netherlands and abroad [Dutch] Biobased is booming. Steeds meer bedrijven zien een gezonde businesscase in producten die niet gemaakt zijn met fossiele grondstoffen maar met biomassa. Waar liggen de kansen voor Nederland? En welke rol is daarbij weggelegd voor de overheid, het bedrijfsleven en de wetenschap? In deze PM-special onder meer interviews met en ervaringen van pionerende entrepreneurs en landbouwattaches in binnen- en buitenland.

  5. Current Trends in Biobased Lubricant Development

    Science.gov (United States)

    Biobased lubricants are those comprising ingredients derived from natural raw materials such as those harvested from farms, forests, etc. Biolubricants provide a number of benefits over petroleum-based products including: biodegradability, renewability, and non-toxicity. As a result, manufacture ...

  6. Biobased Lubricant Development - Problems and Opportunities

    Science.gov (United States)

    Biobased lubricants are those comprising ingredients derived from natural sources such as those harvested from farms, forests, etc. Biolubricants provide a number of economic, environmental and health benefits over petroleum-based products. Among these are: biodegradability, renewability and non-t...

  7. Recent Advances in the Sound Insulation Properties of Bio-based Materials

    Directory of Open Access Journals (Sweden)

    Xiaodong Zhu

    2013-12-01

    Full Text Available Many bio-based materials, which have lower environmental impact than traditional synthetic materials, show good sound absorbing and sound insulation performances. This review highlights progress in sound transmission properties of bio-based materials and provides a comprehensive account of various multiporous bio-based materials and multilayered structures used in sound absorption and insulation products. Furthermore, principal models of sound transmission are discussed in order to aid in an understanding of sound transmission properties of bio-based materials. In addition, the review presents discussions on the composite structure optimization and future research in using co-extruded wood plastic composite for sound insulation control. This review contributes to the body of knowledge on the sound transmission properties of bio-based materials, provides a better understanding of the models of some multiporous bio-based materials and multilayered structures, and contributes to the wider adoption of bio-based materials as sound absorbers.

  8. Valorization of industrial waste and by-product streams via fermentation for the production of chemicals and biopolymers.

    Science.gov (United States)

    Koutinas, Apostolis A; Vlysidis, Anestis; Pleissner, Daniel; Kopsahelis, Nikolaos; Lopez Garcia, Isabel; Kookos, Ioannis K; Papanikolaou, Seraphim; Kwan, Tsz Him; Lin, Carol Sze Ki

    2014-04-21

    The transition from a fossil fuel-based economy to a bio-based economy necessitates the exploitation of synergies, scientific innovations and breakthroughs, and step changes in the infrastructure of chemical industry. Sustainable production of chemicals and biopolymers should be dependent entirely on renewable carbon. White biotechnology could provide the necessary tools for the evolution of microbial bioconversion into a key unit operation in future biorefineries. Waste and by-product streams from existing industrial sectors (e.g., food industry, pulp and paper industry, biodiesel and bioethanol production) could be used as renewable resources for both biorefinery development and production of nutrient-complete fermentation feedstocks. This review focuses on the potential of utilizing waste and by-product streams from current industrial activities for the production of chemicals and biopolymers via microbial bioconversion. The first part of this review presents the current status and prospects on fermentative production of important platform chemicals (i.e., selected C2-C6 metabolic products and single cell oil) and biopolymers (i.e., polyhydroxyalkanoates and bacterial cellulose). In the second part, the qualitative and quantitative characteristics of waste and by-product streams from existing industrial sectors are presented. In the third part, the techno-economic aspects of bioconversion processes are critically reviewed. Four case studies showing the potential of case-specific waste and by-product streams for the production of succinic acid and polyhydroxyalkanoates are presented. It is evident that fermentative production of chemicals and biopolymers via refining of waste and by-product streams is a highly important research area with significant prospects for industrial applications.

  9. Center for BioBased Binders and Pollution Reduction Technology

    Energy Technology Data Exchange (ETDEWEB)

    Thiel, Jerry [Univ. of Northern Iowa, Cedar Falls, IA (United States)

    2013-07-01

    Funding will support the continuation of the Center for Advanced Bio-based Binders and Pollution Reduction Technology Center (CABB) in the development of bio-based polymers and emission reduction technologies for the metal casting industry. Since the formation of the center several new polymers based on agricultural materials have been developed. These new materials have show decreases in hazardous air pollutants, phenol and formaldehyde as much as 50 to 80% respectively. The polymers termed bio-polymers show a great potential to utilize current renewable agricultural resources to replace petroleum based products and reduce our dependence on importing of foreign oil. The agricultural technology has shown drastic reductions in the emission of hazardous air pollutants and volatile organic compounds and requires further development to maintain competitive costs and productivity. The project will also research new and improved inorganic binders that promise to eliminate hazardous emissions from foundry casting operations and allow for the beneficial reuse of the materials and avoiding the burdening of overcrowded landfills.

  10. From crops to products for crops: preserving the ecosystem through the use of bio-based molecules

    Directory of Open Access Journals (Sweden)

    Godard Anaïs

    2016-09-01

    Full Text Available In a context of dwindling oil reserves and environmental pressures, the chemical industry needs to innovate by developing new processes for producing bioproducts from raw plant materials. Unsaturated fatty acids from vegetable oils constitute a highly promising renewable resource that can be used to diversify productions, decreasing reliance on petroleum. A starting material rich in oleic acid has been obtained through the selection of high-oleic sunflower varieties and enzymatic hydrolysis of the oil they produce. The double bonds of this unsaturated raw material have been cleaved in green oxidizing conditions involving a biphasic lipophilic-aqueous system including hydrogen peroxide as an oxidant and a peroxo-tungsten complex Q3 {PO2[WO(O22]4} as a phase-transfer catalyst (PTC and co-oxidant. This PTC efficiently transferred oxygen to the substrate in the lipophilic phase. A mono-acid (pelargonic acid and a di-acid (azelaic acid, with shorter, unusual hydrocarbon chains not present in the natural state, were synthesized and purified through an intensive process. Pelargonic acid was then formulated as an environmentally friendly biocontrol agent for weeds. We extended this green process of oxidative scission to other fatty acids and derivatives, to obtain other short-chain acids with diverse potential applications. This production chain (crops, reaction and purification processes, products, applications is based on a sustainable development strategy.

  11. Synthesis and Verification of Biobased Terephthalic Acid from Furfural

    Science.gov (United States)

    Tachibana, Yuya; Kimura, Saori; Kasuya, Ken-Ichi

    2015-02-01

    Exploiting biomass as an alternative to petrochemicals for the production of commodity plastics is vitally important if we are to become a more sustainable society. Here, we report a synthetic route for the production of terephthalic acid (TPA), the monomer of the widely used thermoplastic polymer poly(ethylene terephthalate) (PET), from the biomass-derived starting material furfural. Biobased furfural was oxidised and dehydrated to give maleic anhydride, which was further reacted with biobased furan to give its Diels-Alder (DA) adduct. The dehydration of the DA adduct gave phthalic anhydride, which was converted via phthalic acid and dipotassium phthalate to TPA. The biobased carbon content of the TPA was measured by accelerator mass spectroscopy and the TPA was found to be made of 100% biobased carbon.

  12. Biobased chemicals from lignin

    OpenAIRE

    Kloekhorst, Arjan

    2015-01-01

    Dalende ruwe olie reserves, de toenemende vraag naar energie en nadelige gevolgen voor het milieu hebben de zoektocht naar hernieuwbare bronnen voor energieopwekking, transport brandstoffen en petrochemische producten een sterke stimulans gegeven. De laatste 20 jaar zijn er grote doorbraken op het gebied van cellulose en hemicellulose omzetting naar koolstof gebaseerde transportbrandstoffen (bijvoorbeeld bio-ethanol en biodiesel) en biobased chemicaliën gerealiseerd. Echter de valorisatie van...

  13. Biobased Contents of Natural Rubber Model Compound and Its Separated Constituents

    Directory of Open Access Journals (Sweden)

    Masao Kunioka

    2014-02-01

    Full Text Available Production of rubber products with biobased constituents from biomass resources is desirable for conserving our planet’s limited resources and preventing global warming. Herein, a natural rubber model compound was produced to determine the biobased contents as per various indices for calculating the amount of biomass resources used in rubber products. The biobased mass and biobased carbon contents of the natural rubber model compound were 38.7% and 39.2%, respectively, which were calculated from the feed amounts of the constituents as per the International Organization for Standardization (ISO/the draft of International Standard (DIS 16620-2 and 16620-4. The model compound was separated into its constituents such as polymer, additive, carbon black, and zinc oxide using ISO 1407, 4650, 7720-2, and 9924-3. The biobased carbon content of this model compound was 37.6%, calculated from the percent of modern carbon (pMC, which was measured directly using accelerator mass spectrometry (AMS. The calculated values for this model compound agreed with those calculated from the feed amounts of the constituents. Thus, it was confirmed that these calculation and determination methods of the biobased mass and the biobased carbon contents for rubber products should be published as new ISO international standards after a discussion at technical committee 45, “rubber and rubber products” to evaluate rubber products with larger biobased contents of natural rubber and other biobased ingredients.

  14. Synthesis and Characterization of Bio-based Nanomaterials from Jabon (Anthocephalus cadamba (Roxb. Miq Wood Bark: an Organic Waste Material from Community Forest

    Directory of Open Access Journals (Sweden)

    Sutrisno

    2015-06-01

    Full Text Available The application of nanotechnology to produce nanomaterials from renewable bio-based materials, like wood bark, has great potential to benefit the wood processing industry. To support this issue, we investigated the production of bio-based nanomaterials using conventional balls milling. Jabon (Anthocephalus cadamba(Roxb. Miq wood bark (JWB, an organic waste material from a community forest was subjected to conventional balls milling for 96 h and was converted into bio-based nanomaterial. The morphology and particle size, chemical components, functional groups and crystallinity of the bio-based nanomaterial were evaluated using scanning electron microscopy (SEM, scanning electron microscopy extended with energy dispersive X-ray spectroscopy (SEM-EDS, Fourier transform infrared spectroscopy (FTIR, and X-ray diffraction (XRD. The particle-sizes obtained for the JWB bio-based nanomaterial were between 43 nm to 469 nm and the functional groups were detected as cellulose. The chemical components found were carbon, oxygen, chloride, potassium and calcium, except for the sample produced from sieve type T14, which did not contain chloride. The crystalline structure was calcium oxalate hydrate (C2CaO4.H2O with crystalline sizes 21 nm and 15 nm, produced from sieve types T14 and T200 respectively.

  15. Bio-Based Polymers with Potential for Biodegradability

    Directory of Open Access Journals (Sweden)

    Thomas F. Garrison

    2016-07-01

    Full Text Available A variety of renewable starting materials, such as sugars and polysaccharides, vegetable oils, lignin, pine resin derivatives, and proteins, have so far been investigated for the preparation of bio-based polymers. Among the various sources of bio-based feedstock, vegetable oils are one of the most widely used starting materials in the polymer industry due to their easy availability, low toxicity, and relative low cost. Another bio-based plastic of great interest is poly(lactic acid (PLA, widely used in multiple commercial applications nowadays. There is an intrinsic expectation that bio-based polymers are also biodegradable, but in reality there is no guarantee that polymers prepared from biorenewable feedstock exhibit significant or relevant biodegradability. Biodegradability studies are therefore crucial in order to assess the long-term environmental impact of such materials. This review presents a brief overview of the different classes of bio-based polymers, with a strong focus on vegetable oil-derived resins and PLA. An entire section is dedicated to a discussion of the literature addressing the biodegradability of bio-based polymers.

  16. Bio-Based Adhesives and Evaluation for Wood Composites Application

    Directory of Open Access Journals (Sweden)

    Fatemeh Ferdosian

    2017-02-01

    Full Text Available There has been a rapid growth in research and innovation of bio-based adhesives in the engineered wood product industry. This article reviews the recent research published over the last few decades on the synthesis of bio-adhesives derived from such renewable resources as lignin, starch, and plant proteins. The chemical structure of these biopolymers is described and discussed to highlight the active functional groups that are used in the synthesis of bio-adhesives. The potentials and drawbacks of each biomass are then discussed in detail; some methods have been suggested to modify their chemical structures and to improve their properties including water resistance and bonding strength for their ultimate application as wood adhesives. Moreover, this article includes discussion of techniques commonly used for evaluating the petroleum-based wood adhesives in terms of mechanical properties and penetration behavior, which are expected to be more widely applied to bio-based wood adhesives to better evaluate their prospect for wood composites application.

  17. Processing biobased polymers using plasticizers: Numerical simulations versus experiments

    Science.gov (United States)

    Desplentere, Frederik; Cardon, Ludwig; Six, Wim; Erkoç, Mustafa

    2016-03-01

    In polymer processing, the use of biobased products shows lots of possibilities. Considering biobased materials, biodegradability is in most cases the most important issue. Next to this, bio based materials aimed at durable applications, are gaining interest. Within this research, the influence of plasticizers on the processing of the bio based material is investigated. This work is done for an extrusion grade of PLA, Natureworks PLA 2003D. Extrusion through a slit die equipped with pressure sensors is used to compare the experimental pressure values to numerical simulation results. Additional experimental data (temperature and pressure data along the extrusion screw and die are recorded) is generated on a dr. Collin Lab extruder producing a 25mm diameter tube. All these experimental data is used to indicate the appropriate functioning of the numerical simulation tool Virtual Extrusion Laboratory 6.7 for the simulation of both the industrial available extrusion grade PLA and the compound in which 15% of plasticizer is added. Adding the applied plasticizer, resulted in a 40% lower pressure drop over the extrusion die. The combination of different experiments allowed to fit the numerical simulation results closely to the experimental values. Based on this experience, it is shown that numerical simulations also can be used for modified bio based materials if appropriate material and process data are taken into account.

  18. Washington State Biofuels Industry Development

    Energy Technology Data Exchange (ETDEWEB)

    Gustafson, Richard [Univ. of Washington, Seattle, WA (United States)

    2017-04-09

    The funding from this research grant enabled us to design, renovate, and equip laboratories to support University of Washington biofuels research program. The research that is being done with the equipment from this grant will facilitate the establishment of a biofuels industry in the Pacific Northwest and enable the University of Washington to launch a substantial biofuels and bio-based product research program.

  19. Recent Advances in the Sound Insulation Properties of Bio-based Materials

    OpenAIRE

    Xiaodong Zhu; Birm-June Kim; Qingwen Wang; Qinglin Wu

    2013-01-01

    Many bio-based materials, which have lower environmental impact than traditional synthetic materials, show good sound absorbing and sound insulation performances. This review highlights progress in sound transmission properties of bio-based materials and provides a comprehensive account of various multiporous bio-based materials and multilayered structures used in sound absorption and insulation products. Furthermore, principal models of sound transmission are discussed in order to aid in an ...

  20. Product Platform Development in Industrial Networks

    DEFF Research Database (Denmark)

    Karlsson, Christer; Skold, Martin

    2011-01-01

    The article examines the strategic issues involved in the deployment of product platform development in an industrial network. The move entails identifying the types and characteristics of generically different product platform strategies and clarifying strategic motives and differences. Number...

  1. Today’s and tomorrow’s bio-based bulk chemicals from white biotechnology

    NARCIS (Netherlands)

    Hermann, B.G.; Patel, M.K.

    2007-01-01

    Little information is yet available on the economic viability of the production of bio-based bulk chemicals and intermediates from white biotechnology (WB). This paper details a methodology to systematically evaluate the techno-economic prospects of present and future production routes of bio-based

  2. Setting up international biobased commodity trade chains : a guide and 5 examples in Ukraine

    NARCIS (Netherlands)

    Dam, van J.E.G.; Elbersen, W.; Ree, van R.; Wubben, E.F.M.

    2014-01-01

    Setting up biobased production chains, from biomass feedstock to final biobased product (energy, chemicals, materials) is a complicated process in which a whole range of decisions have to be made. Choices include what feedstocks to use, arranging logistics and most important of all the locating faci

  3. Influence of the biobased economy on agricultural markets. Preparation of a modelling approach

    Energy Technology Data Exchange (ETDEWEB)

    Nowicki, P.L.; Van Leeuwen, M.G.A.; Bos, H.L.; Chant, L.J.; Molenveld, K.; Tabeau, A.A.

    2010-06-15

    This report is the conclusion of research undertaken to better understand the impact of the developing biobased economy on agricultural land markets. This has involved understanding the true dimension of the biobased economy, namely the large range of products for which a biobased component exists or could exist, and in this regard the likely evolution in the substitution of elements produced from fossil oil. This research is also a first step to determine whether the overall result of the development of the biobased economy will be positive, negative or neutral for the Dutch economy as a whole.

  4. Addressing production stops in the food industry

    DEFF Research Database (Denmark)

    Hansen, Zaza Nadja Lee; Herbert, Luke Thomas; Jacobsen, Peter

    2014-01-01

    This paper investigates the challenges in the food industry which causes the production lines to stop, illustrated by a case study of an SME size company in the baked goods sector in Denmark. The paper proposes key elements this sector needs to be aware of to effectively address production stops......, and gives examples of the unique challenges faced by the SME food industry....

  5. Bio-Based Coatings for Paper Applications

    Directory of Open Access Journals (Sweden)

    Vibhore Kumar Rastogi

    2015-11-01

    Full Text Available The barrier resistance and wettability of papers are commonly controlled by the application of petroleum-based derivatives such as polyethylene, waxes and/or fluor- derivatives as coating. While surface hydrophobicity is improved by employing these polymers, they have become disfavored due to limitations in fossil-oil resources, poor recyclability, and environmental concerns on generated waste with lack of biodegradation. Alternatively, biopolymers including polysaccharides, proteins, lipids and polyesters can be used to formulate new pathways for fully bio-based paper coatings. However, difficulties in processing of most biopolymers may arise due to hydrophilicity, crystallization behavior, brittleness or melt instabilities that hinder a full exploitation at industrial scale. Therefore, blending with other biopolymers, plasticizers and compatibilizers is advantageous to improve the coating performance. In this paper, an overview of barrier properties and processing of bio-based polymers and their composites as paper coating will be discussed. In particular, recent technical advances in nanotechnological routes for bio-based nano- composite coatings will be summarized, including the use of biopolymer nanoparticles, or nanofillers such as nanoclay and nanocellulose. The combination of biopolymers along with surface modification of nanofillers can be used to create hierarchical structures that enhance hydrophobicity, complete barrier protection and functionalities of coated papers.

  6. Explaining Spatial Convergence of China's Industrial Productivity

    DEFF Research Database (Denmark)

    Deng, Paul Duo; Jefferson, Gary H.

    2011-01-01

    This article investigates the conditions that may auger a reversal of China's increasingly unequal levels of regional industrial productivity during China's first two decades of economic reform. Using international and Chinese firm and industry data over the period 1995–2004, we estimate...... a productivity growth–technology gap reaction function. We find that as China's coastal industry has closed the technology gap with the international frontier, labour productivity growth in the coastal region has begun to slow in relation to the interior. This may serve as an early indicator of China's initial...

  7. Environmental comparison of biobased chemicals from glutamic acid with their petrochemical equivalents

    NARCIS (Netherlands)

    Lammens, T.M.; Potting, J.; Sanders, J.P.M.; Boer, de I.J.M.

    2012-01-01

    Glutamic acid is an important constituent of waste streams from biofuels production. It is an interesting starting material for the synthesis of biobased chemicals, thereby decreasing the dependency on fossil fuels. The objective of this paper was to compare the environmental impact of four biobased

  8. Environmental Comparison of Biobased Chemicals from Glutamic Acid with Their Petrochemical Equivalents

    NARCIS (Netherlands)

    Lammens, T.M.; Potting, J.; Sanders, J.P.M.; Boer, de I.J.M.

    2011-01-01

    Glutamic acid is an important constituent of waste streams from biofuels production. It is an interesting starting material for the synthesis of biobased chemicals, thereby decreasing the dependency on fossil fuels. The objective of this paper was to compare the environmental impact of four biobased

  9. Environmentally friendly and biobased lubricants

    Science.gov (United States)

    Biobased and environmentally friendly lubricants are finding applications in many areas ranging from hydraulic fluids to grease. They offer excellent biodegradability and very low ecotoxicity; high viscosity index; improved tribological properties; lower volatility and flash points relative to petro...

  10. Strategies Behind The Successful Industrial Product Launch

    OpenAIRE

    Choffray, Jean-Marie; Gary L. Lilien

    1984-01-01

    In this paper, we discuss a newly-developed microcomputer decision support system useful for predicting sales growth and testing launch strategies prior to an industrial product market introduction. Peer reviewed

  11. Bioprocessing of bio-based chemicals produced from lignocellulosic feedstocks.

    Science.gov (United States)

    Kawaguchi, Hideo; Hasunuma, Tomohisa; Ogino, Chiaki; Kondo, Akihiko

    2016-12-01

    The feedstocks used for the production of bio-based chemicals have recently expanded from edible sugars to inedible and more recalcitrant forms of lignocellulosic biomass. To produce bio-based chemicals from renewable polysaccharides, several bioprocessing approaches have been developed and include separate hydrolysis and fermentation (SHF), simultaneous saccharification and fermentation (SSF), and consolidated bioprocessing (CBP). In the last decade, SHF, SSF, and CBP have been used to generate macromolecules and aliphatic and aromatic compounds that are capable of serving as sustainable, drop-in substitutes for petroleum-based chemicals. The present review focuses on recent progress in the bioprocessing of microbially produced chemicals from renewable feedstocks, including starch and lignocellulosic biomass. In particular, the technological feasibility of bio-based chemical production is discussed in terms of the feedstocks and different bioprocessing approaches, including the consolidation of enzyme production, enzymatic hydrolysis of biomass, and fermentation.

  12. Cleaner Production Assessment in Textile Industry

    Institute of Scientific and Technical Information of China (English)

    ZHANG Zhi-zong; LU Shu-yu

    2007-01-01

    Cleaner Production focuses on environmental improvement with economic benefits. Based on the benefit assessment home and abroad, the assessment method and wocess in textile industry is discussed, including maneuverable indicator system, mathematics model. According to corresponding principles of Cleaner Production, representative problems are mentioned. With Analytic Hierarchy Process and Fuzzy Mathematics, some enterprise is collected to attain the economic, environmental and social benefit of Cleaner Production. The results show that Cleaner Production improves utilization efficiency of resources, energy sources even waste, and creates conditions of Sustainable Development in textile industry.

  13. ESTIMATING WATER FOOTPRINT AND MANAGING BIOREFINERY WASTEWATER IN THE PRODUCTION OF BIO-BASED RENEWABLE DIESEL BLENDSTOCK

    Energy Technology Data Exchange (ETDEWEB)

    Wu, May M. [Argonne National Lab. (ANL), Argonne, IL (United States); Sawyer, Bernard M [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-12-01

    This analysis covers the entire biorefinery operation. The study focuses on net water consumed for the production of a unit of biofuel: blue, green, and grey water footprint. Blue water is defined as the water consumed in the biorefinery that is withdrawn from surface and ground water. Blue water footprint includes enzyme cultivation, pretreatment, hydrolysis, bioreactor, cooling system, boiler, fuel upgrading, combustor track, and on-site WWT. Grey water is defined as wastewater generated from the biorefinery and was evaluated based on the wastewater treatment plant design. Green water, defined as rainwater consumed for the production, is not required in the RDB process. Approximately 7–15 gal of water are required to produce a gallon of RDB when corn stover or non-irrigated perennial grasses, switchgrass and Miscanthus x giganteus (Miscanthus), serve as the feedstock in the contiguous United States. Bioelectricity generation from the biorefinery resulted in a net water credit, which reduced the water footprint. The life cycle grey water footprint for nitrogen is primarily from nitrogen in the feedstock production stage because no wastewater is discharged into the environment in the RDB process. Perennial grasses-based RDB production shows a promising grey water footprint, while corn stover-based RDB production has a relatively low green water footprint. Results from the study can help improve our understanding of the water sustainability of advanced biofuel technology under development. Make-up water for cooling and boiling remains a major demand in the biorefinery. The work revealed a key issue or trade-off between achieving zero liquid discharge to maximize water resource use and potentially increasing cost of fuel production. Solid waste disposal was identified as a management issue, and its inverse relationship with wastewater management could affect economic sustainability.

  14. Multi-scale Exploration of the Technical, Economic, and Environmental Dimensions of Bio-based Chemical Production

    DEFF Research Database (Denmark)

    Zhuang, Kai; Herrgard, Markus

    2014-01-01

    this issue, we developed a multiscale framework that integrates modeling approaches across scales of cellular metabolism, bioreactor, bioprocess, and economy/ecosystem, and is able to simultaneously assess biological, technological, economic and environmental feasibility of different production scenarios....... Using our framework, we assess the production of two major polymer precursors (1,3-propanediol and 3-hydroxypropionic acid) from two biomass feedstocks (corn-based glucose and soy-based glycerol) using two host organisms (E.coli and S. cerevisiae). We explore the sustainability and economic impacts...

  15. Biocatalysis for Biobased Chemicals

    Directory of Open Access Journals (Sweden)

    Rubén de Regil

    2013-10-01

    Full Text Available The design and development of greener processes that are safe and friendly is an irreversible trend that is driven by sustainable and economic issues. The use of Biocatalysis as part of a manufacturing process fits well in this trend as enzymes are themselves biodegradable, require mild conditions to work and are highly specific and well suited to carry out complex reactions in a simple way. The growth of computational capabilities in the last decades has allowed Biocatalysis to develop sophisticated tools to understand better enzymatic phenomena and to have the power to control not only process conditions but also the enzyme’s own nature. Nowadays, Biocatalysis is behind some important products in the pharmaceutical, cosmetic, food and bulk chemicals industry. In this review we want to present some of the most representative examples of industrial chemicals produced in vitro through enzymatic catalysis.

  16. Product modelling in the seafood industry

    DEFF Research Database (Denmark)

    Jonsdottir, Stella; Vesterager, Johan

    1997-01-01

    assessments, speed up the process and ensure a constant renewal of the seafood products. The objective, therefore, is to estimate the suitability of the CE, and especially CE through product modelling, in the seafood industry as a means to obtain an integration of the entire chain, i.e., a business and market...... based integration obtained by the CE approach and tools. It is described how the knowledge and information of a seafood product can be modelled by using object oriented techniques.......The paper addresses the aspects of Concurrent Engineering (CE) as a means to obtain integrated product development in the seafood industry. It is assumed that the future New Product Development (NPD) in seafood industry companies will shift from being retailer driven and reactive to be more company...

  17. Industrial wastewater treatment plant of sugar production

    OpenAIRE

    Čad, Luka

    2016-01-01

    Sugar as product in our every day’s life’s been consumed in enormous quantities as one of main resources in food and drink industry. Production processes of sugar from sugar beet bring significant environmental impacts with it’s waste waters as the biggest pollutant. The thesis deals with sugar production waste water’s treatment process by presenting an example of waste water treatment plant of sugar factory, therefor presenting the production processes in sugar factories and their environmen...

  18. Industrial vegetable oil by-products increase the ductility of polylactide

    Directory of Open Access Journals (Sweden)

    A. Ruellan

    2015-12-01

    Full Text Available The use of industrial by-products of the vegetable oil industry as ductility increasing additives of polylactide (PLA was investigated. Vegetable oil deodorization condensates were melt-blended by twin-screw extrusion up to a maximum inclusion quantity of 20 wt% without preliminary purification. Sample films were obtained by single screw cast extrusion. Compounded PLA films featured largely improved ductility in tensile testing with an elongation at break up to 180%. The glass transition temperature remained higher than room temperature. The native mixture of molecules, which composed the deodorization condensates, had superior performance compared to a synthetic mixture of main compounds. The investigation of the correlation between composition of the additives and the ductility of the PLA blends by Principal Component Analysis showed synergy in property improvement between fatty acids having a melting point below and beyond the room temperature. Furthermore, a compatibilizing effect of molecules present in the native mixture was evidenced. Oil deodorization condensates, which are a price competitive by-product of the vegetable oil industry, are therefore a very promising biobased and biodegradable additive for improving the ductility of PLA.

  19. Development of Bio-based Modified Fiber Sorona R Knitted Functional Products%生物基改性纤维Sorona R功能针织产品的开发

    Institute of Scientific and Technical Information of China (English)

    王显其; 关燕; 李良; 位国栋

    2014-01-01

    在介绍生物基改性纤维Sorona R性能特点的基础上,采用14.8 tex的生物基改性纤维Sorona R、芦荟纤维、珍珠纤维(40∶30∶30)混纺纱为主要原料,与18.5 tex的腈纶、Viloft R、牛奶纤维(55∶40∶5)混纺纱,以及4.4 tex氨纶进行交织,在双面花盘提花针织机上开发生物基改性纤维Sorona R功能舒适性针织产品。详细介绍产品的织造工艺和染整工艺,以及编织和染整过程中的技术难点和解决方案,并对产品的各项功能性指标进行检测。结果表明,该织物含有氨基酸等生物活性成分,具有抗菌抑菌、营养肌肤、防紫外线等保健功能,符合纺织品舒适性、功能性、环保性的要求,是一种具有广阔市场前景的新型生态纺织品。%Based on the characteristics of bio-based modified fiber Sorona R , the paper develops new kinds of bio-based modified fiber Sorona R knitted comfort products on the double jacquard knitting machine, by using 14.8 tex bio-based modified fiber Sorona R/aloe fiber/pearl fiber (40/30/30)blended yarn, 18.5 tex acrylic/viloft R/milk fiber (55/40/5)blended yarn, and 4.4 tex spandex inter-knitted. It introduces in detail the knitting technology and dyeing and finishing technology, as well as the technical difficulties and solutions. In addition, the various wearing proper_ties of these products are tested and compared. The results show that the bio-based modified fiber Sorona R knitted fabric with amino acids and other bioactive components bears excellent properties of anti-bacteria , skin-care and UV protection, and can meet the comfort, functional and environmentally friendly requirement, which is a new kind of ecological textile with a promising market prospect.

  20. Industrial requirements for interactive product configurators

    DEFF Research Database (Denmark)

    Queva, Matthieu Stéphane Benoit; Probst, Christian W.; Vikkelsøe, Per

    2009-01-01

    The demand for highly customized products at low cost is driving the industry towards Mass Customization. Interactive product configurators play an essential role in this new trend, and must be able to support more and more complex features. The purpose of this paper is, firstly, to identify requ...

  1. Biobased economy : state-of-the-art assessment

    NARCIS (Netherlands)

    Nowicki, P.L.; Banse, M.A.H.; Bolck, C.H.; Bos, H.L.; Scott, E.L.

    2008-01-01

    The interest in the biobased economy stems from the possibility to substitute biologically derived materials and processes for the production of goods that will, therefore, result in a reduced use of petroleum and petro-chemistry. Other reasons are the reduction in the energy required in production

  2. Ionic liquid as a promising biobased green solvent in combination with microwave irradiation for direct biodiesel production.

    Science.gov (United States)

    Wahidin, Suzana; Idris, Ani; Shaleh, Sitti Raehanah Muhamad

    2016-04-01

    The wet biomass microalgae of Nannochloropsis sp. was converted to biodiesel using direct transesterification (DT) by microwave technique and ionic liquid (IL) as the green solvent. Three different ionic liquids; 1-butyl-3-metyhlimidazolium chloride ([BMIM][Cl], 1-ethyl-3-methylimmidazolium methyl sulphate [EMIM][MeSO4] and 1-butyl-3-methylimidazolium trifluoromethane sulfonate [BMIM][CF3SO3]) and organic solvents (hexane and methanol) were used as co-solvents under microwave irradiation and their performances in terms of percentage disruption, cell walls ruptured and biodiesel yields were compared at different reaction times (5, 10 and 15 min). [EMIM][MeSO4] showed highest percentage cell disruption (99.73%) and biodiesel yield (36.79% per dried biomass) after 15 min of simultaneous reaction. The results demonstrated that simultaneous extraction-transesterification using ILs and microwave irradiation is a potential alternative method for biodiesel production.

  3. Global interdependence and restructuring of industrial production

    Directory of Open Access Journals (Sweden)

    Miletić Radmila

    2008-01-01

    Full Text Available The main objective of this paper is to emphasize particular aspects in connection with deindustrialization and globalization processes during transformation of the economic structure in postindustrial age. Conceptions and main features of globalization are presented, i.e. growing interdependence on the global level, then primary characteristics of industrial globalization as one of the forms of globalization process, and in general some brief considerations about the influence of the economic globalization on deindustrialization. In modern economic environment, transformation of production includes, besides other structural changes, modification of the geography of manufacturing and new industrial space - development of the newly industrializing countries, and new spatial forms of production allocation and possibilities for linking of various activities and services (technopolis, industrial, technology and science park, etc..

  4. Potential food applications of biobased materials. An EU- concerted action project

    DEFF Research Database (Denmark)

    Haugaard, V.K.; Udsen, A.M.; Mortensen, G.

    2001-01-01

    and coatings to food but novel commercial applications of these are scarce. Based on information currently available on the properties of biobased packaging materials the study identified products in the fresh meat, dairy, ready meal, beverage, fruit and vegetable, snack, frozen food and dry food categories......The objective of the study was to ascertain the state of the art with regard to the applicability of biobased packaging materials to foods and to identify potential food applications for biobased materials. The study revealed relatively few examples of biobased materials used as primary, secondary...... or tertiary packaging materials for foods. This is due to the fact that published investigations on the use of biobased materials are still scarce, and results obtained remain unpublished because of commercial pressures. The scientific literature contains numerous reports on applications of edible films...

  5. Industrial parks as an innovative vector of industrial production development

    Directory of Open Access Journals (Sweden)

    Malyuta, Lyudmyla Yaroslavivna

    2014-05-01

    Full Text Available The urgent problem of industrial parks foundation and their activity organization as an innovative structure to provide industrial production and business development has been considered. Etymological role of industrial parks under present economic conditions, preconditions and main stages of their creation in Ukraine have been described. It’s mentioned that the mechanism of industrial parks foundation as a business development instrument provides the customers number increase, markets extension, partnership building and development. The main subjects of the above-mentioned innovative formation, fundamental and competitive features of IP, conditions and advantages of every project participant investing have been determined. A model of managerial decision making about IP foundation has been built. Key factors of success and efficiency of the above-mentioned entrepreneurship structures have been determined. Law basis, possible financing and state support conditions of IP have been analyzed. Some examples of their foundation in certain regions of Ukraine have been considered. Advantages and disadvantages of these innovative structures have been determined.

  6. Production of novel microbial biopolymers

    Science.gov (United States)

    Microorganisms are well known to produce a wide variety of biobased polymers. These biopolymers have found a wide range of commercial uses, including food, feed, and consumer and industrial products. The production and possible uses of several novel biopolymers from both bacteria and fungi will be d...

  7. Forest Products Industry of the Future

    Energy Technology Data Exchange (ETDEWEB)

    Los Alamos Technical Associates, Inc

    2002-05-01

    Los Alamos Technical Associates, Inc (LATA) conducted an evaluation of the potential impact and value of a portion of the current portfolio of r&d projects supported by the Office of Industrial Technology and the Forest Products Industry of the Future. The mission of the evaluation was to (a) assess the potential impact of the projects to meet the critical goals of the industry as identified in the vision and roadmapping documents. (b) Evaluate the relationship between the current portfolio of projects and the Agenda 202 Implementation Plan. In addition, evaluate the relationship between the portfolio and the newly revised draft technology strategy being created by the industry. (c) Identify areas where current efforts are making significant progress towards meeting industry goals and identify areas where additional work my be required to meet these goals. (d) Make recommendations to the DOE and the Forest Products Industry on possible improvements in the portfolio and in the current methodology that DOE uses to assess potential impacts on its R&D activities.

  8. Agronomical evaluation and chemical characterization of Linum usitatissimum L. as oilseed crop for bio-based products in two environments of Central and Northern Italy

    Directory of Open Access Journals (Sweden)

    Silvia Tavarini

    2016-06-01

    Full Text Available In the recent years, new perspectives for linseed (Linum usitatissimum L. are open as renewable raw material for bio-based products (Bb, due to its oil composition, and the interesting amounts of coproducts (lignocellulosic biomass. Therefore, the possibility to introduce linseed crop in two environments of central and northern Italy, traditionally devoted to cereal cultivation, has been evaluated. Twoyears field trials were carried out in the coastal plain of Pisa (Tuscany region and in the Po valley (Bologna, Emilia Romagna region, comparing two linseed varieties (Sideral and Buenos Aires. Agronomical evaluation (yield and yield components, seed and oil characterization (oil, protein content, and fatty acid composition, together with carbon (C and nitrogen (N content of the residual lignocellulosic biomass were investigated. The two varieties, grown as autumn crop, showed a different percentage of plant survival at the end of winter, with Sideral most resistant to cold. The achieved results showed significant influence of cultivar, location and growing season on yield and yield components, as well as on chemical biomass composition. In particular, Sideral appeared to be the most suitable variety for tested environments, since higher seed yield (3.05 t ha–1 as mean value over years and locations and above-ground biomass (6.98 t ha–1 as mean value over years and locations were recorded in comparison with those detected for Buenos Aires (1.93 and 4.48 t ha–1 of seed production and lignocellulosic biomass, respectively. Interestingly, in the northern area, during the 1st year, Buenos Aires was the most productive, despite its low plant survival at the end of winter, which determined a strong reduction in plant density and size. In such conditions, the plants produced a larger number of capsules and, consequently, high seed yield (3.18 t ha–1. Relevant differences were also observed between the two years, due to the variability of climatic

  9. Setting up international biobased commodity trade chains : a guide and 5 examples in Ukraine

    OpenAIRE

    Dam, van, A.M.; Elbersen, W.; Ree; Wubben, E.F.M.

    2014-01-01

    Setting up biobased production chains, from biomass feedstock to final biobased product (energy, chemicals, materials) is a complicated process in which a whole range of decisions have to be made. Choices include what feedstocks to use, arranging logistics and most important of all the locating facilities to compact and dewater and convert the biomass into intermediates and final products. Choices depend on the local conditions and factors such as the economy-of-scale of intermediate steps an...

  10. Drivers for Cleaner Production in Malaysian Industry

    DEFF Research Database (Denmark)

    Wangel, Arne

    2003-01-01

    This working paper tries to piece together information on regulatory initiatives promoting cleaner production (CP) in Malaysian industry, as well as points of discussion on environmental performance in the sector. It draws upon initial data collection by the team of the research project ‘A Study ...

  11. Bio-composites : opportunities for value-added biobased materials

    Energy Technology Data Exchange (ETDEWEB)

    Drzal, L.T. [Michigan State Univ., East Lansing, MI (United States). Dept. of Chemical Engineering and Materials Science]|[Michigan State Univ., East Lansing, MI (United States). Composite Materials and Structures Center

    2003-07-01

    In order to reduce dependency on foreign oil, there is a growing need to develop and commercialize new bio-based green materials and technologies that can produce bio-based structural materials that are competitive with current synthetic products. The use of bio-based products would also improve the environment and create new opportunities for the agricultural economy. This paper described ongoing research into bio-based materials and products that replace petroleum-based products. In particular, it examined the use of biocomposites made by embedding natural/biofibers such as kenaf, hemp, flax, jute, henequen, pineapple leaf fiber, corn stalk fibers and native Michigan grasses into petroleum-derived traditional plastics such as polypropylene, unsaturated polyesters and epoxies. It also examines the use of green biocomposites developed by embedding these bio-fibers into renewable resource-based bioplastics such as cellulosic plastics and soy-based plastics. New processing methods that combine biofibers with plastics were needed to produce the biocomposites with desirable mechanical properties. The study showed that biofiber reinforced petroleum-based plastic biocomposites can produce a structural material that offers a balance between ecology, economy and technology. The potential for using these materials for automotive and building materials was also presented. 1 tab., 28 figs.

  12. Camelina sativa: An ideal platform for the metabolic engineering and field production of industrial lipids.

    Science.gov (United States)

    Bansal, Sunil; Durrett, Timothy P

    2016-01-01

    Triacylglycerols (TAG) containing modified fatty acids with functionality beyond those found in commercially grown oil seed crops can be used as feedstocks for biofuels and bio-based materials. Over the years, advances have been made in transgenically engineering the production of various modified fatty acids in the model plant Arabidopsis thaliana. However, the inability to produce large quantities of transgenic seed has limited the functional testing of the modified oil. In contrast, the emerging oil seed crop Camelina sativa possesses important agronomic traits that recommend it as an ideal production platform for biofuels and industrial feedstocks. Camelina possesses low water and fertilizer requirements and is capable of yields comparable to other oil seed crops, particularly under stress conditions. Importantly, its relatively short growing season enables it to be grown as part of a double cropping system. In addition to these valuable agronomic features, Camelina is amenable to rapid metabolic engineering. The development of a simple and effective transformation method, combined with the availability of abundant transcriptomic and genomic data, has allowed the generation of transgenic Camelina lines capable of synthesizing high levels of unusual lipids. In some cases these levels have surpassed what was achieved in Arabidopsis. Further, the ability to use Camelina as a crop production system has allowed for the large scale growth of transgenic oil seed crops, enabling subsequent physical property testing. The application of new techniques such as genome editing will further increase the suitability of Camelina as an ideal platform for the production of biofuels and bio-materials.

  13. Bio-based targeted chemical engineering education : Role and impact of bio-based energy and resourcedevelopment projects

    NARCIS (Netherlands)

    Márquez Luzardoa, N.M.; Venselaar, Jan

    2012-01-01

    Avans University of Applied Sciences is redrafting its courses and curricula in view of sustainability. For chemical engineering in particular that implies a focus on 'green' and bio-based processes, products and energy. Avans is situated in the Southwest region of the Netherlands and specifically i

  14. The biobased book : Energy transition

    NARCIS (Netherlands)

    Hamm, P.; Bemer, G.G.; Botman, M.; Bruggink, A.; Sanders, J.P.M.

    2007-01-01

    Biobased grondstoffen kunnen een belangrijke bijdrage leveren aan de oplossing van de energieproblemen in de wereld. Dit boek vat de kennis over en de mogelijkheden van het gebruik van biomassa samen. Biomassa kan gebruikt worden voor verschillende doeleinden: biobrandstof, productie van chemicaliën

  15. Novel, Fully Biobased Semicrystalline Polyamides

    NARCIS (Netherlands)

    Jasinska, L.; Villani, M.; Es, van D.S.; Klop, E.; Rastogi, S.; Koning, C.E.

    2011-01-01

    Novel, semicrystalline polyamides and co(polyamides) were synthesized from biobased sebacic acid (SA), 2,5-diamino-2,5-dideoxy-1,4;3,6-dianhydroiditol (diaminoisoidide, DAII) as well as from 1,4-diaminobutane (DAB), also known as putrescine in nature. Low molecular weight polyamides were obtained by

  16. L-(+-Lactic acid production by Lactobacillus rhamnosus B103 from dairy industry waste

    Directory of Open Access Journals (Sweden)

    Marcela Piassi Bernardo

    Full Text Available ABSTRACT Lactic acid, which can be obtained through fermentation, is an interesting compound because it can be utilized in different fields, such as in the food, pharmaceutical and chemical industries as a bio-based molecule for bio-refinery. In addition, lactic acid has recently gained more interest due to the possibility of manufacturing poly(lactic acid, a green polymer that can replace petroleum-derived plastics and be applied in medicine for the regeneration of tissues and in sutures, repairs and implants. One of the great advantages of fermentation is the possibility of using agribusiness wastes to obtain optically pure lactic acid. The conventional batch process of fermentation has some disadvantages such as inhibition by the substrate or the final product. To avoid these problems, this study was focused on improving the production of lactic acid through different feeding strategies using whey, a residue of agribusiness. The downstream process is a significant bottleneck because cost-effective methods of producing high-purity lactic acid are lacking. Thus, the investigation of different methods for the purification of lactic acid was one of the aims of this work. The pH-stat strategy showed the maximum production of lactic acid of 143.7 g/L. Following purification of the lactic acid sample, recovery of reducing sugars and protein and color removal were 0.28%, 100% and 100%, respectively.

  17. Promotion on the industrial products market

    Directory of Open Access Journals (Sweden)

    Raluca-Dania TODOR

    2015-12-01

    Full Text Available The literature abounds with articles and books on marketing and especially promoting consumer products. As consumers for these goods we are exposed each day to promotional messages of major product brands in order to attract or retain us when we are already buyers. Fewer things have been written about how to do promotion of industrial goods, which are a special category of goods, but have a very high quota in trade of goods, both nationally and internationally. This article will analy

  18. Biological hydrogen production from industrial wastewaters

    Energy Technology Data Exchange (ETDEWEB)

    Peixoto, Guilherme; Pantoja Filho, Jorge Luis Rodrigues; Zaiat, Marcelo [Universidade de Sao Paulo (EESC/USP), Sao Carlos, SP (Brazil). School of Engineering. Dept. Hydraulics and Sanitation], Email: peixoto@sc.usp.br

    2010-07-01

    This research evaluates the potential for producing hydrogen in anaerobic reactors using industrial wastewaters (glycerol from bio diesel production, wastewater from the parboilization of rice, and vinasse from ethanol production). In a complementary experiment the soluble products formed during hydrogen production were evaluated for methane generation. The assays were performed in batch reactors with 2 liters volume, and sucrose was used as a control substrate. The acidogenic inoculum was taken from a packed-bed reactor used to produce hydrogen from a sucrose-based synthetic substrate. The methanogenic inoculum was taken from an upflow anaerobic sludge blanket reactor treating poultry slaughterhouse wastewater. Hydrogen was produced from rice parboilization wastewater (24.27 ml H{sub 2} g{sup -1} COD) vinasse (22.75 ml H{sub 2} g{sup -1} COD) and sucrose (25.60 ml H{sub 2} g{sup -1} COD), while glycerol only showed potential for methane generation. (author)

  19. Antimicrobial Effectiveness of Biobased Film Against Escherichia coli 0157:H7, Listeria monocytogenes and Salmonella typhimurium

    Directory of Open Access Journals (Sweden)

    Pornpun Theinsathid

    2011-08-01

    Full Text Available Antimicrobial packaging, an active packaging concept, can be considered challenging technology that could have a significant impact on food safety of meat and meat products. The feasibility of polylactic acid (PLA-based film was evaluated for its application as a material for antimicrobial film. A bio-based commercial polylactic acid (PLA product, Ecovio®, was used as an environmentally friendly polymer matrix. The PLA based film was incorporated with lactic acid or sodium lactate by extrusion film-blowing process. The antimicrobial activity of films against Escherichia coli O157:H7, Listeria monocytogenes and Salmonella enterica Serovar Typhimurium (S. Typhimurium were evaluated. Antimicrobial film incorporated with lactic acid packaging film was found to be highly effective in inhibiting L. monocytogenes. In contrast, no inhibitory activity was observed against E. coli O157:H7 and S. Typhimurium. This is consistent with Minimum Inhibitory Concentration (MIC studies which indicated that undissociated lactic acid was more efficient in inhibiting L. monocytogenes than enterobacteria. This preliminary study shows the potential use of bio-based film as one hurdle technology in combination with good manufacturing practices and adequate storage temperatures. The use of antimicrobial packaging may contribute to improve the safety in minimally processed foods. Further work is required to improve the mechanical properties of the material in order to meet industry requirements.

  20. Factors Influencing Productivity Change in the Forest Products Industry,

    Science.gov (United States)

    1985-04-01

    Braun, E. 1981. Constellations for Manufacturing Innovation. OMEGA 9(3):247-253. Bresson , C. and J. Townsend. 1981. Multivariate Models for Innovation...Productivity. Monthly Labor Review. March 1980: 25-28. Zaremba, J. 1963. Economics of the American Lumber Industry. New York: Robert Speller & Sons. 142

  1. Pioneering a Biobased UAS

    Science.gov (United States)

    Block, Eli; Byemerwa, Jovita; Dispenza, Ross; Doughty, Benjamin; Gillyard, KaNesha; Godbole, Poorwa; Gonzales-Wright, Jeanette; Hull, Ian; Kannappan, Jotthe; Levine, Alexander; Nelakanti, Raman; Ruffner, Lydia; Shumate, Alaina; Sorayya, Aryo; Ugwu, Kyla; Rothschild, Lynn J.

    2015-01-01

    With the exponential growth of interest in unmanned aerial vehicles (UAVs) and their vast array of applications in both space exploration and terrestrial uses such as the delivery of medicine and monitoring the environment, the 2014 Stanford-Brown-Spelman iGEM team is pioneering the development of a fully biological UAV for scientific and humanitarian missions. The prospect of a biologically-produced UAV presents numerous advantages over the current manufacturing paradigm. First, a foundational architecture built by cells allows for construction or repair in locations where it would be difficult to bring traditional tools of production. Second, a major limitation of current research with UAVs is the size and high power consumption of analytical instruments, which require bulky electrical components and large fuselages to support their weight. By moving these functions into cells with biosensing capabilities – for example, a series of cells engineered to report GFP, green fluorescent protein, when conditions exceed a certain threshold concentration of a compound of interest, enabling their detection post-flight – these problems of scale can be avoided. To this end, we are working to engineer cells to synthesize cellulose acetate as a novel bioplastic, characterize biological methods of waterproofing the material, and program this material’s systemic biodegradation. In addition, we aim to use an “amberless” system to prevent horizontal gene transfer from live cells on the material to microorganisms in the flight environment. So far, we have: successfully transformed Gluconacetobacter hansenii, a cellulose-producing bacterium, with a series of promoters to test transformation efficiency before adding the acetylation genes; isolated protein bands present in the wasp nest material; transformed the cellulose-degrading genes into Escherichia coli; and we have confirmed that the amberless construct prevents protein expression in wild-type cells. In addition, as

  2. Advanced biotechnology: metabolically engineered cells for the bio-based production of chemicals and fuels, materials, and health-care products.

    Science.gov (United States)

    Becker, Judith; Wittmann, Christoph

    2015-03-09

    Corynebacterium glutamicum, Escherichia coli, and Saccharomyces cerevisiae in particular, have become established as important industrial workhorses in biotechnology. Recent years have seen tremendous progress in their advance into tailor-made producers, driven by the upcoming demand for sustainable processes and renewable raw materials. Here, the diversity and complexity of nature is simultaneously a challenge and a benefit. Harnessing biodiversity in the right manner through synergistic progress in systems metabolic engineering and chemical synthesis promises a future innovative bio-economy.

  3. Development of Biobased Composites of Structural Quality

    Science.gov (United States)

    Taylor, Christopher Alan

    Highly biobased composites with properties and costs rivaling those consisting of synthetic constituents are a goal of much current research. The obvious material choices, vegetable oil based resins and natural fibers, present the challenges of poor resin properties and weak fiber/matrix bonding, respectively. Conventional methods of overcoming poor resin quality involve the incorporation of additives, which dilutes the resulting composite's bio-content and increases cost. To overcome these limitations while maintaining high bio-content and low cost, epoxidized sucrose soyate is combined with surface-treated flax fiber to produce biocomposites. These composites are fabricated using methods emphasizing scalability and efficiency, for cost effectiveness of the final product. This approach resulted in the successful production of biocomposites having properties that meet or exceed those of conventional pultruded members. These properties, such as tensile and flexural strengths of 223 and 253 MPa, respectively, were achieved by composites having around 85% bio-content.

  4. Environmental comparison of biobased chemicals from glutamic acid with their petrochemical equivalents.

    Science.gov (United States)

    Lammens, Tijs M; Potting, José; Sanders, Johan P M; De Boer, Imke J M

    2011-10-01

    Glutamic acid is an important constituent of waste streams from biofuels production. It is an interesting starting material for the synthesis of biobased chemicals, thereby decreasing the dependency on fossil fuels. The objective of this paper was to compare the environmental impact of four biobased chemicals from glutamic acid with their petrochemical equivalents, that is, N-methylpyrrolidone (NMP), N-vinylpyrrolidone (NVP), acrylonitrile (ACN), and succinonitrile (SCN). A consequential life cycle assessment was performed, wherein glutamic acid was obtained from sugar beet vinasse. The removed glutamic acid was substituted with cane molasses and ureum. The comparison between the four biobased and petrochemical products showed that for NMP and NVP the biobased version had less impact on the environment, while for ACN and SCN the petrochemical version had less impact on the environment. For the latter two an optimized scenario was computed, which showed that the process for SCN can be improved to a level at which it can compete with the petrochemical process. For biobased ACN large improvements are required to make it competitive with its petrochemical equivalent. The results of this LCA and the research preceding it also show that glutamic acid can be a building block for a variety of molecules that are currently produced from petrochemical resources. Currently, most methods to produce biobased products are biotechnological processes based on sugar, but this paper demonstrates that the use of amino acids from low-value byproducts can certainly be a method as well.

  5. Engineering organisms for industrial fuel production.

    Science.gov (United States)

    Berry, David A

    2010-01-01

    Volatile fuel costs, the need to reduce greenhouse gas emissions and fuel security concerns are driving efforts to produce sustainable renewable fuels and chemicals. Petroleum comes from sunlight, CO(2) and water converted via a biological intermediate into fuel over a several million year timescale. It stands to reason that using biology to short-circuit this time cycle offers an attractive alternative--but only with relevant products at or below market prices. The state of the art of biological engineering over the past five years has progressed to allow for market needs to drive innovation rather than trying to adapt existing approaches to the market. This report describes two innovations using synthetic biology to dis-intermediate fuel production. LS9 is developing a means to convert biological intermediates such as cellulosic hydrolysates into drop-in hydrocarbon product replacements such as diesel. Joule Unlimited is pioneering approaches to eliminate feedstock dependency by efficiently capturing sunlight, CO(2) and water to produce fuels and chemicals. The innovations behind these companies are built with the market in mind, focused on low cost biosynthesis of existing products of the petroleum industry. Through successful deployment of technologies such as those behind LS9 and Joule Unlimited, alternative sources of petroleum products will mitigate many of the issues faced with our petroleum-based economy.

  6. New Product Introduction in the Pharmaceutical Industry

    DEFF Research Database (Denmark)

    Hansen, Klaus Reinholdt Nyhuus

    is unknown and negotiations with authorities have become harder, making market introduction more difficult. This dissertation treats the new product introduction process in the pharmaceutical industry from an operations perspective. The overarching aim of this dissertation is to improve the planning......Due to the limited time of the monopoly provided by patent protection that is used for recouping the R&D investment, pharmaceutical companies focus on keeping time-to-market for new products as short as possible. This process is however getting more uncertain, as the outcome of clinical trials...... methodology in this critical process. In an empirical study, the process is first analyzed in detail, leading to the identification of several gaps in the industry’s current planning approaches. To support a set of key operational decisions towards market launch, a model is subsequently developed, considering...

  7. Exergetical Evaluation of Biobased Synthesis Pathways

    Directory of Open Access Journals (Sweden)

    Philipp Frenzel

    2014-01-01

    Full Text Available The vast majority of today’s chemical products are based on crude oil. An attractive and sustainable alternative feedstock is biomass. Since crude oil and biomass differ in various properties, new synthesis pathways and processes have to be developed. In order to prioritize limited resources for research and development (R & D, their economic potential must be estimated in the early stages of development. A suitable measure for an estimation of the economic potential is based on exergy balances. Different structures of synthesis pathways characterised by the chemical exergy of the main components are evaluated. Based on a detailed evaluation of the underlying processes, general recommendations for future bio-based synthesis pathways are derived.

  8. Novel bio-based and biodegradable polymer blends

    Science.gov (United States)

    Yang, Shengzhe

    Most plastic materials, including high performance thermoplastics and thermosets are produced entirely from petroleum-based products. The volatility of the natural oil markets and the increasing cost of petroleum have led to a push to reduce the dependence on petroleum products. Together with an increase in environmental awareness, this has promoted the use of alternative, biorenewable, environmentally-friendly products, such as biomass. The growing interest in replacing petroleum-based products by inexpensive, renewable, natural materials is important for sustainable development into the future and will have a significant impact on the polymer industry and the environment. This thesis involved characterization and development of two series of novel bio-based polymer blends, namely polyhydroxyalkanoate (PHA)/polyamide (PA) and poly(lactic acid) (PLA)/soy protein. Blends with different concentrations and compatible microstructures were prepared using twin-screw extruder. For PHA/PA blends, the poor mechanical properties of PHA improved significantly with an excellent combination of strength, stiffness and toughness by adding PA. Furthermore, the effect of blending on the viscoelastic properties has been investigated using small-amplitude oscillatory shear flow experiments as a function of blend composition and angular frequency. The elastic shear modulus (G‧) and complex viscosity of the blends increased significantly with increasing the concentration of PHA. Blending PLA with soy protein aims at reducing production cost, as well as accelerating the biodegradation rate in soil medium. In this work, the mechanical, thermal and morphological properties of the blends were investigated using dynamic mechanical analysis (DMA), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), and tensile tests.

  9. 木粉酯化改性制备生物基塑料%Modification of Wood Powder by Esterification for the Production of Bio-based Plastic Material

    Institute of Scientific and Technical Information of China (English)

    杭飞; 罗彦卿; 洪建国

    2015-01-01

    以胡桑枝条木粉为原料制备木质纤维类生物基塑料,木粉先经过球磨预处理后,在二甲亚砜( DMSO)分散介质中,以邻苯二甲酸酐( PA)为改性试剂, 4-二甲氨基吡啶( DMAP)为催化剂对其进行酯化改性,并考察了反应温度、时间和试剂用量对改性产物质量增长率及材料力学性能的影响. 研究结果表明,以木质纤维为原料,可以成功制备注塑级的生物基塑料,实现木质纤维原料全组分的高效利用. 在最佳工艺条件下,经改性制备材料的质量增长率为98. 8%,熔融指数0. 903 g/min,其拉伸和弯曲强度分别达到24. 1和41. 9 MPa,具有较好的热塑性和力学性能.%Mulberry branches wood powder was used as the raw material for preparation of bio-based plastic material. After ball milling,wood powder was first esterified by phthalic anhydride(PA) using 4-dimethylaminopyridine (DMAP)as the catalyst in dimethyl sulfoxide ( DMSO ) as the dispersion medium. The effects of temperature, time and the weight of reagents on weight percent gain( WPG ) and mechanical property of modified production were studied. The results showed that esterified lignocellulosic material could be used as bio-based plastic injection molding product with whole components. Under the optimum conditions,the mass growth rate and melt index of the modified product were 98. 8% and 0. 903 g/min, respectively, and the modified product was found with good thermoplastic and mechanical properties with the tensile strength of 24. 1 MPa and the flexural strength of 41. 9 MPa.

  10. Production planning and scheduling in refinery industry

    Energy Technology Data Exchange (ETDEWEB)

    Persson, Jan

    1999-07-01

    In this thesis we consider production planning and scheduling in refinery industry, in particular we study the planning and scheduling at the Nynaes AB refinery and at the Scanraff AB refinery. The purpose is to contribute to the development and the use of optimization models to support efficient decision making. We identify various decision problems concerning the aggregated production planning, the shipment planning, the scheduling of operation modes, and the utilization of pipes and tanks; and we discuss the potential to successfully apply optimization models on these problems. We formulate a mixed integer linear programming model for the scheduling of operation modes at Nynaes. The model concerns decisions about which mode of operation to use at a particular point in time in order to minimize costs of changing modes and costs of keeping inventories, given demands for products. We derive several types of valid inequalities for this mathematical problem and show how these inequalities can improve the lower bound obtained from the linear programming relaxation of the problem. We also show how the valid inequalities can be used to improve the performance of a branch and bound solution approach. Further, a tabu search heuristic is developed for the scheduling problem. The solution methods are tested on data provided by the Nynaes refinery, and the performance of the methods are discussed. We present several extensions of the proposed model, and illustrate how the model can be used to support both operational and strategic decision making at the refinery. 66 refs, 6 figs, 32 tabs. Also published as: Dissertation from the International Graduate School of Management and Industrial Engineering, No 25, Licenciate Thesis.

  11. Production planning and scheduling in refinery industry

    Energy Technology Data Exchange (ETDEWEB)

    Persson, Jan

    1999-06-01

    In this thesis we consider production planning and scheduling in refinery industry, in particular we study the planning and scheduling at the Nynaes AB refinery and at the Scanraff AB refinery. The purpose is to contribute to the development and the use of optimization models to support efficient decision making. We identify various decision problems concerning the aggregated production planning, the shipment planning, the scheduling of operation modes, and the utilization of pipes and tanks; and we discuss the potential to successfully apply optimization models on these problems. We formulate a mixed integer linear programming model for the scheduling of operation modes at Nynaes. The model concerns decisions about which mode of operation to use at a particular point in time in order to minimize costs of changing modes and costs of keeping inventories, given demands for products. We derive several types of valid inequalities for this mathematical problem and show how these inequalities can improve the lower bound obtained from the linear programming relaxation of the problem. We also show how the valid inequalities can be used to improve the performance of a branch and bound solution approach. Further, a tabu search heuristic is developed for the scheduling problem. The solution methods are tested on data provided by the Nynaes refinery, and the performance of the methods are discussed. We present several extensions of the proposed model, and illustrate how the model can be used to support both operational and strategic decision making at the refinery. 66 refs, 6 figs, 32 tabs. Also published as: Dissertation from the International Graduate School of Management and Industrial Engineering, No 25, Licenciate Thesis

  12. The Future of Ethenolysis in Biobased Chemistry

    NARCIS (Netherlands)

    Spekreijse, Jurjen; Sanders, Johan P.M.; Bitter, Johannes H.; Scott, Elinor L.

    2017-01-01

    The desire to utilise biobased feedstocks and develop more sustainable chemistry poses new challenges in catalysis. A synthetically useful catalytic conversion is ethenolysis, a cross metathesis reaction with ethylene. In this Review, the state of the art of ethenolysis in biobased chemistry was ext

  13. Chemical production from industrial by-product gases: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Lyke, S.E.; Moore, R.H.

    1981-04-01

    The potential for conservation of natural gas is studied and the technical and economic feasibility and the implementation of ventures to produce such chemicals using carbon monoxide and hydrogen from byproduct gases are determined. A survey was performed of potential chemical products and byproduct gas sources. Byproduct gases from the elemental phosphorus and the iron and steel industries were selected for detailed study. Gas sampling, preliminary design, market surveys, and economic analyses were performed for specific sources in the selected industries. The study showed that production of methanol or ammonia from byproduct gas at the sites studied in the elemental phosphorus and the iron and steel industries is technically feasible but not economically viable under current conditions. Several other applications are identified as having the potential for better economics. The survey performed identified a need for an improved method of recovering carbon monoxide from dilute gases. A modest experimental program was directed toward the development of a permselective membrane to fulfill that need. A practical membrane was not developed but further investigation along the same lines is recommended. (MCW)

  14. Industrial recovered-materials-utilization targets for the textile-mill-products industry

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-01-01

    The Congress, in the National Energy Conservation and Policy Act of 1978 (NECPA), directed the Department of Energy to establish materials recovery targets for the metals and metal products, paper and allied products, rubber, and textile-mill-products industries. The targets were developed to provide incentives for using energy-saving recorded materials and to provied a yardstick for measuring progress and improvement in this endeavor. The NECPA indicates that the targets should represent the maximum technically and economically feasible increase in the use of energy-saving recovered materials that each industry can achieve progressively by January 1, 1987. Materials affected by recovered-materials targets include and are limited to aluminum, copper, lead, zinc, iron, steel, paper and associated products, textile-mill, products, and rubber. Using information gathered from the textile-mill-products industry and from other textile-relaed sources, DOE has developed recovered materials targets for that industry. This report presents those targets and their basis and justification. Following an overview of the textile industry, the chapters are: Textile-Mill-Products Industry Operations; Economic Analysis of the Textile-Mill-Products Industry; Governmental and Regulatory Influence on the US Textile Industry; Current Mill Use of Recovered Materials in the Textile-Mill-Products Industry; Limitations on the Use of Recovered Materials in the US Textile-Mill-Products Industry; Materials-Recovery Targets; and Government and Industry Actions That Could Increase the Use of Recovered Materials.

  15. Clean Production of Steel and Refractories in China's Steel Industry

    Institute of Scientific and Technical Information of China (English)

    SU Tiansen

    2002-01-01

    The paper describes the importance of clean production of steel and the relationships amongst sustaining development of steel industry, environment protection and the role of refractories in the clean production of steel. The main achievements and main shortcomings in the clean production of China' s steel industry have been reviewed together with the introduction of the policy supporting system and the future development of clean production in China' s steel industry.

  16. Bio-based polyurethane foams from renewable resources

    Science.gov (United States)

    Stanzione, M.; Russo, V.; Sorrentino, A.; Tesser, R.; Lavorgna, M.; Oliviero, M.; Di Serio, M.; Iannace, S.; Verdolotti, L.

    2016-05-01

    In the last decades, bio-derived natural materials, such as vegetable oils, polysaccharides and biomass represent a rich source of hydroxyl precursors for the synthesis of polyols which can be potentially used to synthesize "greener" polyurethane foams. Herein a bio-based precursor (obtained from succinic acid) was used as a partial replacement of conventional polyol to synthesize PU foams. A mixture of conventional and bio-based polyol in presence of catalysts, silicone surfactant and diphenylmethane di-isocyanate (MDI) was expanded in a mold and cured for two hours at room temperature. Experimental results highlighted the suitability of this bio-precursor to be used in the production of flexible PU foams. Furthermore the chemo-physical characterization of the resulting foams show an interesting improvement in thermal stability and elastic modulus with respect to the PU foams produced with conventional polyol.

  17. Cascading of Biomass. 13 Solutions for a Sustainable Bio-based Economy. Making Better Choices for Use of Biomass Residues, By-products and Wastes

    Energy Technology Data Exchange (ETDEWEB)

    Odegard, I.; Croezen, H.; Bergsma, G.

    2012-08-15

    Smarter and more efficient use of biomass, referred to as cascading, can lead to an almost 30% reduction in European greenhouse gas emissions by 2030 compared with 2010. As the title study makes clear, cascading of woody biomass, agricultural and industrial residues and other waste can make a significant contribution to a greening of the economy. With the thirteen options quantitatively examined annual emissions of between 330 and 400 Mt CO2 can be avoided by making more efficient use of the same volume of biomass as well as by other means. 75% of the potential CO2 gains can be achieved with just four options: (1) bio-ethanol from straw, for use as a chemical feedstock; (2) biogas from manure; (3) biorefining of grass; and (4) optimisation of paper recycling. Some of the options make multiple use of residues, with biomass being used to produce bioplastics that, after several rounds of recycling, are converted to heat and power at the end of their life, for example. In other cases higher-grade applications are envisaged: more efficient use of recyclable paper and wood waste, in both economic and ecological terms, using them as raw materials for new paper and chipboard rather than as an energy source. Finally, by using smart technologies biomass can be converted to multiple products.

  18. Liquefaction of oak tree bark with different biomass/phenol mass ratios and utilizing bio-based polyols for carbon foam production

    Science.gov (United States)

    Ozbay, N.; Yargic, A. S.

    2017-02-01

    Carbon foam is sponge like carbonaceous material with low density, high conductivity and high strength; which is used in various applications such as catalyst supports, membrane separations, high thermally conductive heat sinks, energy absorption materials, high temperature thermal insulation. Coal or fossil oils are conventionally used to fabricate pitch, phenolic resin and polyurethane as carbon foam precursor. Biomass liquefaction is a developing technique to convert biomass resources into the industrial chemicals. In this study, oak tree bark was liquefied under mild conditions with different mass ratio of biomass/phenol; and the liquefaction product was used as polyol to produce porous resin foams. Obtained resin foams were carbonized at 400 °C, and then activated at 800 °C under nitrogen atmosphere. Structure evaluation of resin foams, carbonized foams and activated carbon foams from liquefied oak tree bark was investigated by using elemental analysis, x-ray diffraction, nitrogen adsorption/desorption isotherms, scanning electron microscopy, bulk density and compressive strength tests.

  19. Use of NMR Imaging to Determine the Diffusion Coefficient of Water in Bio-based Hydrogels

    Science.gov (United States)

    The diffusion of liquid in a hydrogel material is a fundamental property which must be controlled in order to create effective delivery systems for the agricultural and pharmaceutical industries. NMR spectroscopy has been used to determine the diffusion of water and deuterium oxide in a bio-based h...

  20. PRODUCT PROMOTION STRATEGY IN SPORTS INDUSTRY

    Directory of Open Access Journals (Sweden)

    Alla V. Nosova

    2015-01-01

    Full Text Available Sports industry is presented like the partof entertainment industry. The authorsemphasize the main income items ofSnowsports unions in Russia and abroad.This paper presents the analysis of development of commercial successful productby foreign federations. The article gives new ways of raising the attractiveness and profitability of the Russian sport.

  1. The Rebirth of Waste Cooking Oil to Novel Bio-based Surfactants.

    Science.gov (United States)

    Zhang, Qi-Qi; Cai, Bang-Xin; Xu, Wen-Jie; Gang, Hong-Ze; Liu, Jin-Feng; Yang, Shi-Zhong; Mu, Bo-Zhong

    2015-01-01

    Waste cooking oil (WCO) is a kind of non-edible oil with enormous quantities and its unreasonable dispose may generate negative impact on human life and environment. However, WCO is certainly a renewable feedstock of bio-based materials. To get the rebirth of WCO, we have established a facile and high-yield method to convert WCO to bio-based zwitterionic surfactants with excellent surface and interfacial properties. The interfacial tension between crude oil and water could reach ultra-low value as 0.0016 mN m(-1) at a low dosage as 0.100 g L(-1) of this bio-based surfactant without the aid of extra alkali, which shows a strong interfacial activity and the great potential application in many industrial fields, in particular, the application in enhanced oil recovery in oilfields in place of petroleum-based surfactants.

  2. Lignin as a renewable aromatic resource for the chemical industry

    OpenAIRE

    Gosselink, R.J.A.

    2011-01-01

    Valorization of lignin plays a key role in the further development of lignocellulosic biorefinery processes for biofuels and biobased materials production. Today’s increased demand for alternatives to fossil carbon-based products expands the interest and the need to create added value to the unconverted lignin fraction. The aim of the research was to study the potential of lignin to become a renewable aromatic resource for the chemical industry. Lignin can be considered as an abundantly...

  3. Project and Production Management in the Construction Industry

    OpenAIRE

    Chien-Ho Ko

    2012-01-01

    In this issue, the Journal of Engineering, Project, and Production Management (EPPM-Journal) presents five original research papers related to project and production management in the construction industry from authors in Africa, Asia, and Europe.

  4. INDUSTRIAL ENGINEERING AND VISUALISATION-A PRODUCT DEVELOPMENT PERSPECTIVE

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Taking the actual project of teaching and researching process for example, the relationship between the industrial engineering and product development is discussed. And use the novel visualization technology to support the industrial engineering and product development. How to use the new computer modeling and simulating technologies to support the product development and industrial engineering, is introduced especially. The support includes both domestic products and industrial systems. The visualization and computer technologies take a very important role in some system or multi-direction modeling, those technologies mentioned above can help the industrial engineers study the effect of design on the whole life circle, including the producing steps. So the engineers can avoid making the wrong decision which may cause bad effects on the whole industrial engineering.

  5. Benefits of nitrogen for food, fibre and industrial production

    NARCIS (Netherlands)

    Stoumann Jensen, L.; Schjoerring, J.K.; Hoek, K.W. van der; Damgaard Poulsen, H.; Zevenbergen, J.F.; Pallière, C.; Lammel, J.; Brentrup, F.; Jongbloed, A.W.; Willems, J.; Grinsven, H. van

    2011-01-01

    Nature of the issue • Reactive nitrogen (N r ) has well-documented positive eff ects in agricultural and industrial production systems, human nutrition and food security. Limited N r supply was a key constraint to European food and industrial production, which has been overcome by Nr from the Haber–

  6. Industrial mineral powder production in China

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The recent annual output of major industrial mineral powders in the mainland of China has been more than 100 million t, accompanied by active development of such supporting technology as comminution, classification, separation/purification, and surface modification. In particular, the present paper reviews technologies for preparing ultra-fine particles involving dry and wet processing, modification and composition, calcination of kaolin clay, and processing of spherical/acerous industrial minerals.

  7. Developing engineering design core competences through analysis of industrial products

    DEFF Research Database (Denmark)

    Hansen, Claus Thorp; Lenau, Torben Anker

    2011-01-01

    Most product development work carried out in industrial practice is characterised by being incremental, i.e. the industrial company has had a product in production and on the market for some time, and now time has come to design a new and upgraded variant. This type of redesign project requires...... a product analysis method and a staging of it, which seems to be very productive. Product Analysis and Redesign is a first year course module of the bachelor education Design & Innovation at the Technical University of Denmark. In this paper we will present our product analysis method and we will reflect...

  8. FUTURE MARKETING DRIVERS FOR THE FOREST PRODUCTS INDUSTRY

    Directory of Open Access Journals (Sweden)

    Sudipta Dasmohapatra

    2009-11-01

    Full Text Available The forest products industry in North America is increasingly losing its share in its domestic markets. The pressure of low cost manufacturing combined with a slowing economy has painfully caused many mills to close and many workers to lose their jobs in recent years. We ask ourselves whether the forest products industry will be able to survive these gloomy times and what, if any are the factors that would drive the future of the forest products industry. Opening our minds to global markets beyond domestic consumption, targeting products towards changing demographic structure and resulting change in consumer tastes, developing and marketing products with the environmental conscious consumer in mind, product innovations, efficient management of the supply chain, and trade practices and policies will be some of the marketing drivers in the forest products industry in the new era.

  9. Product models for the Construction industry

    DEFF Research Database (Denmark)

    Sørensen, Lars Schiøtt

    1996-01-01

    Different types of product models for the building sector was elaborated and grouped. Some discussion on the different models was given. The "definition" of Product models was given.......Different types of product models for the building sector was elaborated and grouped. Some discussion on the different models was given. The "definition" of Product models was given....

  10. Bio-based alkyds by direct enzymatic bulk polymerization

    DEFF Research Database (Denmark)

    Nguyen, Hiep Dinh

    Alkyd coating systems have been largely used to preserve exterior wood applications as well as to provide them with a decorative appearance. In the current stage of sustainability concerns, there has been a stronger focus on development and production of bio-based coating components, heading toward....... Moreover, the studies on more sensitive monomers such as itaconic acid in enzymatic polymerization has showed that the method is useful in the production of alkyds from such building blocks, which could not be prepared by the corresponding classical boiling method at high temperature. Such systems...... that their functionalized surface markedly altered their solubility, but provided only moderate improvement in the mechanical properties of the alkyd....

  11. Operational impact of product variety in the process industry

    DEFF Research Database (Denmark)

    Moseley, Alexandria Lee; Hvam, Lars; Herbert-Hansen, Zaza Nadja Lee

    2016-01-01

    to quantify the impact of longer runs on productivity . In testing the hypothesis that longer runs lead to higher productivity, the results show that the number of variants in itself is not a sufficient parameter to explain the variation in production performance; rather, the different types of product......The purpose of this research article is to examine the impact of product variety on production performance in the process industry. As the number of product variants sold by a process company typically impacts the run length, production data from a mineral wool insulation manufacturer is analyzed...... variants and their production sequence must also be considered. Based on the findings, a method for quantifying the production cost of product variety in the process industry is developed, add ing to the literature a rich case howcasing factors which influence production performance and the impact...

  12. Productivity Change in the Australian Sheep Industry Revisited

    OpenAIRE

    Villano, Renato A.; Fleming, Euan M.; Farrell, Terence C.; Fleming, Pauline

    2006-01-01

    Recent low estimates of total factor productivity change for wool producers in the Australian sheep industry indicate that they are struggling to improve their performance. This evidence is at odds with the views of many technical observers of industry performance, prompting us to re-estimate total factor productivity change for farmers in a benchmarking group in south-west Victoria who had been the subject of such a negative finding. An important transformation in sheep production in Austral...

  13. Boron brings big benefits to bio-based blends

    Science.gov (United States)

    The solution to the problems with bio-based lubrication can be approached by a combination of blending and additive strategies. However, many additives do not show efficacy when used in bio-based lubricants. Additive addition also lowers the bio-based content of the blend, which in turn limits the a...

  14. Traceability: a demand of agro industrial chain for special products

    Directory of Open Access Journals (Sweden)

    José Verissimo Foggiatto Silveira

    2007-10-01

    Full Text Available The inclusion of agricultural products with different nutritional features has altered the relationship, the upstream and the downstream of enterprises that produce and commercialize them. Coordination in the Agro Industrial System is demanded, including traceability as a way to guarantee the conformity of products, attending external clients and agricultural industries that require quality certification. This quality tool enables the identification of some details in the productive chain, such as seeds, farming, harvesting, storage, transportation and industrialization of products. Thus, this essay describes the concept of traceability and provides information of special products from a cooperative from Paraná, which has controlled process in the productive chain, demanded by contractual partnerships done with enterprises that provide fertilizers and food processors. It was identified that this cooperative commercializes three products that need traceability: two special kinds of corn and the regular kind of soybean.

  15. Bioconversion technologies of crude glycerol to value added industrial products

    Directory of Open Access Journals (Sweden)

    Vijay Kumar Garlapati

    2016-03-01

    Full Text Available Crude glycerol that is produced as the by-product from biodiesel, has to be effectively utilized to contribute to the viability of biodiesel. Crude glycerol in large amounts can pose a threat to the environment. Therefore, there is a need to convert this crude glycerol into valued added products using biotechnological processes, which brings new revenue to biodiesel producers. Crude glycerol can serve as a feedstock for biopolymers, poly unsaturated fatty acids, ethanol, hydrogen and n-butanol production and as a raw material for different value added industrial products. Hence, in this review we have presented different bioconversion technologies of glycerol to value added industrial products.

  16. Drug discovery in pharmaceutical industry: productivity challenges and trends.

    Science.gov (United States)

    Khanna, Ish

    2012-10-01

    Low productivity, rising R&D costs, dissipating proprietary products and dwindling pipelines are driving the pharmaceutical industry to unprecedented challenges and scrutiny. In this article I reflect on the current status of the pharmaceutical industry and reasons for continued low productivity. An emerging 'symbiotic model of innovation', that addresses underlying issues in drug failure and attempts to narrow gaps in current drug discovery processes, is discussed to boost productivity. The model emphasizes partnerships in innovation to deliver quality products in a cost-effective system. I also discuss diverse options to build a balanced research portfolio with higher potential for persistent delivery of drug molecules.

  17. Development of expert system for biobased polymer material selection: food packaging application.

    Science.gov (United States)

    Sanyang, M L; Sapuan, S M

    2015-10-01

    Biobased food packaging materials are gaining more attention owing to their intrinsic biodegradable nature and renewability. Selection of suitable biobased polymers for food packaging applications could be a tedious task with potential mistakes in choosing the best materials. In this paper, an expert system was developed using Exsys Corvid software to select suitable biobased polymer materials for packaging fruits, dry food and dairy products. If - Then rule based system was utilized to accomplish the material selection process whereas a score system was formulated to facilitate the ranking of selected materials. The expert system selected materials that satisfied all constraints and selection results were presented in suitability sequence depending on their scores. The expert system selected polylactic acid (PLA) as the most suitable material.

  18. Sustainability aspects of biobased applications : comparison of different crops and products from the sugar platform BO-12.05-002-008

    NARCIS (Netherlands)

    Bos, H.L.; Meesters, K.P.H.; Conijn, J.G.; Corre, W.J.; Patel, M.

    2011-01-01

    In this study different uses of biomass are compared. In order to allow for a systematic comparison the study focuses on three different chemicals that can be produced from sugar. In this way it is also, in principle, possible to compare different crops for the production of the same product. The st

  19. Intermediate product selection and blending in the food processing industry

    DEFF Research Database (Denmark)

    Kilic, Onur A.; Akkerman, Renzo; van Donk, Dirk Pieter

    2013-01-01

    This study addresses a capacitated intermediate product selection and blending problem typical for two-stage production systems in the food processing industry. The problem involves the selection of a set of intermediates and end-product recipes characterising how those selected intermediates...

  20. Defense Logistics Agency Green Products / Hazardous Minimization Warfighter Team: Helping the Warfighter Become Green!

    Science.gov (United States)

    2010-06-01

    Supply Center Philadelphia 29 Biobased Plastic Flatware • Biobased resin uses wheat to replace 50% of Polypropylene • Meets or exceeds all current...Remanufactured Toner Cartridges • Vehicular Wet Battery Program • Energy Efficient Lighting • Biobased Fuels • Biobased Cutlery 10 DOD EMALL DOD’s...Power • Asbestos Alternative • Biobased • Non-mercury Alternative • Electronic Products Environmental Assessment Tool (EPEAT) • Non

  1. Bioactive compounds in industrial red seaweed used in carrageenan production

    DEFF Research Database (Denmark)

    Naseri, Alireza; Holdt, Susan Løvstad; Jacobsen, Charlotte

    The main seaweed species used in industrial scale for carrageenan production are Kappaphycus alvarezii, Eucheuma denticulatum, Chondrus crispus, Gigartina sp. and also Furcellaria lumbricalis as a source of furcellaran (Danish Agar) is also classified together with carrageenan. The chemical...

  2. RELIABILITY,COMPONENT OF INDUSTRIAL PRODUCTION QUALITY

    Directory of Open Access Journals (Sweden)

    Monica BALDEA

    2012-05-01

    Full Text Available The reliability defined through probability, reflects the measurement of the product's quality depending on time. We use the probability parameters as aleatory variables, the density functions of probability, the distribution functions

  3. Bio-based liquid crystalline polyesters

    Science.gov (United States)

    Wilsens, Carolus; Rastogi, Sanjay; Dutch Collaboration

    2013-03-01

    The reported thin-film polymerization has been used as a screening method in order to find bio-based liquid crystalline polyesters with convenient melting temperatures for melt-processing purposes. An in depth study of the structural, morphological and chemical changes occurring during the ongoing polycondensation reactions of these polymers have been performed. Structural and conformational changes during polymerization for different compositions have been followed by time resolved X-ray and Infrared spectroscopy. In this study, bio-based monomers such as vanillic acid and 2,5-furandicarboxylic acid are successfully incorporated in liquid crystalline polyesters and it is shown that bio-based liquid crystalline polymers with high aromatic content and convenient processing temperatures can be synthesized. Special thanks to the Dutch Polymer Institute for financial support

  4. CONTRIBUTION TO THE IMPROVEMENT OF PRODUCTS QUALITY IN BAKING INDUSTRY

    OpenAIRE

    Aleksandar Marić; Slavko Arsovski; Jasna Mastilović

    2009-01-01

    Food industry occupies special place in the processing industry, especially when we talk on the manufacturing of bakery products. Variable products quality on the market initiated the authors of this study to make an attempt, using comparative analysis of methods for quality control that are at most applied in bakery plants and other "convenient" methods to indicate the shortcomings and to argue convenience of using of methods that would improve testing of the quality. That approach could cre...

  5. Sunshine Group Builds High-End Aluminum Product Industrial Base

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    In order to propel development of the aluminum industry to move toward featured,specialized,and ecological directions,Sunlight Sanyuan Aluminum Company plans to expropriate 300 mu of land in Hanjiang District of Putian City,Fujian province,where it plans to construct high-end aluminum product industrial park,introduce the world’s most advanced fully automatic production equipment and technologies for aluminum profile and

  6. Composites and blends from biobased materials

    Energy Technology Data Exchange (ETDEWEB)

    Kelley, S.S. [National Renewable Energy Laboratory, Golden, CO (United States)

    1995-05-01

    The program is focused on the development of composites and blends from biobased materials to use as membranes, high value plastics, and lightweight composites. Biobased materials include: cellulose derivative microporous materials, cellulose derivative copolymers, and cellulose derivative blends. This year`s research focused on developing an improved understanding of the molecular features that cellulose based materials with improved properties for gas separation applications. Novel cellulose ester membrane composites have been developed and are being evaluated under a collaborative research agreement with Dow Chemicals Company.

  7. CONTRIBUTION TO THE IMPROVEMENT OF PRODUCTS QUALITY IN BAKING INDUSTRY

    Directory of Open Access Journals (Sweden)

    Aleksandar Marić

    2009-09-01

    Full Text Available Food industry occupies special place in the processing industry, especially when we talk on the manufacturing of bakery products. Variable products quality on the market initiated the authors of this study to make an attempt, using comparative analysis of methods for quality control that are at most applied in bakery plants and other "convenient" methods to indicate the shortcomings and to argue convenience of using of methods that would improve testing of the quality. That approach could create a base for designing of model of quality improvement the baking industry.

  8. Implementation of NFC technology for industrial applications: case flexible production

    Science.gov (United States)

    Sallinen, Mikko; Strömmer, Esko; Ylisaukko-oja, Arto

    2007-09-01

    Near Field communication (NFC) technology enables a flexible short range communication. It has large amount of envisaged applications in consumer, welfare and industrial sector. Compared with other short range communication technologies such as Bluetooth or Wibree it provides advantages that we will introduce in this paper. In this paper, we present an example of applying NFC technology to industrial application where simple tasks can be automatized and industrial assembly process can be improved radically by replacing manual paperwork and increasing trace of the products during the production.

  9. A New Color-Texture Approach for Industrial Products Inspection

    Directory of Open Access Journals (Sweden)

    Moulay A. Akhloufi

    2008-07-01

    Full Text Available This work presents an approach for color-texture classification of industrial products. An extension of Gray Level Co-occurrence Matrix (GLCM to color images is proposed. Statistical features are computed from an isotropic Color Co-occurrence Matrix for classification. The following color spaces are used: RGB, HSL and La*b*. New combination schemes for texture analysis are introduced. A comparison with Local Binary Patterns (LBP is also performed. The tests were conducted in a variety of industrial samples. The obtained results are promising and show the possibility of efficiently classifying complex industrial products based on color and texture features.

  10. Supply of the Industrial Products in Romania. A Territorial Approach

    Directory of Open Access Journals (Sweden)

    Adriana Grigorescu

    2008-03-01

    Full Text Available The industrial products and services supply was analyzed in the present paper through the statistical indicators of the industrial production, applied for Romania (2005, both at macroeconomic and regional level (on development regions. The first part of the paper presents some of the methodological reglamentations used in determining the “industrial production” statistical indicator, according to the European Union statistical practices (Pack, 2000; *** ìMethodology of short-term business statisticsî, 2006; Peneder, 2001. In the second part of the paper, the authors analyze the main industrial policy previsions in Romania in order to accelerate the process of resource allocation among and within the various sectors, to improve the competitiveness, to attenuate the discrepancies between the economic development level of Romanian regions and to become part of a common European industrial policy. Regional analysis is a domain largely studied by Kangas, Leskinen, Kangas, 2007; Leskinen, Kangas, 2005; Rondinelli, 1996; Banai-Kashani, Reza, 1989.  

  11. Innovations in the Forest Products Industry: The Malaysian Experience

    Directory of Open Access Journals (Sweden)

    Jegatheswaran RATNASINGAM

    2013-12-01

    Full Text Available The forest products industry is an important socioeconomic sector to many developing countries, both in terms of foreign exchange earnings and employment. In the case of Malaysia, the industry has been one of the fastest growing manufacturing sectors in the country, driven primarily by comparative advantages derived from factor inputs. However, with increasing competition from other cheaper producing nations particularly China and Vietnam, the Malaysian forest products industry is forced to transform and move along the value-chain through innovation and value-addition. Although the government has played a pivotal role in providing a broad policy framework to support value-adding and innovative activities, success on the ground has been limited. The creativity environment, which is plagued with by low-wage economy, coupled with limited network between research, market and industrial enterprises have stifled innovation within the industry. The lack of information and the poor quality human capital has also contributed to the limited innovation within the forest products industry in the country. Against this background, most innovation within the industry is confined to the realms of alternative raw materials, with minimal technological and design variations. Although extensive research and development activities are undertaken, the commercialization potential of the research outputs is limited due to being not market-driven. Inevitably, innovation in the forest products sector must be based on market-needs and must be driven through technological and design change in order to ensure long-term competitiveness.

  12. Development of polyion-complex hydrogels as an alternative approach for the production of bio-based polymers for food packaging applications: A review

    Science.gov (United States)

    Development of packaging materials from renewable resources has for a long time been desirable for sustainability reasons, but with the recent explosion in prices of petroleum products, this now becomes also more economically viable. This paper shows how fundamental chemistry underlying three forms ...

  13. Biodegradable and bio-based polymers: future prospects of eco-friendly plastics.

    Science.gov (United States)

    Iwata, Tadahisa

    2015-03-09

    Currently used plastics are mostly produced from petrochemical products, but there is a growing demand for eco-friendly plastics. The use of bio-based plastics, which are produced from renewable resources, and biodegradable plastics, which are degraded in the environment, will lead to a more sustainable society and help us solve global environmental and waste management problems.

  14. Environmentally Friendly Bio-Based Vinyl Ester Resins for Military Composite Structures

    Science.gov (United States)

    2008-12-01

    Protection Agency, 2003: National Emission Standards for Hazardous Air Pollutants: Reinforced Plastic Composites Production, Federal Register, 68...G.R., 2007: Fatty acid-based vinyl ester composites with low hazardous air pollutant contents, J. of BioBased Matl. and BioEnergy, 1, 409-416

  15. Encapsulation of a model compound in pectin delays its release from a biobased polymeric material

    Science.gov (United States)

    A model compound was encapsulated in pectin and then extruded with thermoplastic starch to form a composite. The intended product was a food-contact tray made of biobased polymers infused with an anti-microbial agent; however, caffeine was used as the model compound in the preliminary work. The mode...

  16. Proposed industrial recovered materials utilization targets for the metals and metal products industry

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-05-01

    Set targets for increased utilization of energy-saving recovered materials in the metals and metal products industries (ferrous, aluminium, copper, zinc, and lead) are discussed. Data preparation and methodology development and analysis of the technological and economic factors in order to prepare draft targets for the use of recovered materials are covered. Chapter 2 provides an introductory discussion of the factors that affect the recovery and reuse of secondary materials and the competition between the primary and secondary metals industries. Chapter 3 presents general profiles for the major industrial segments comprising SIC 33, including industry structure, process technology, materials and recycling flow, and future trends for the 5 industries: ferrous, aluminium, copper, zinc, and lead. Chapter 4 presents the evaluation of recycling targets for those industries. (MCW)

  17. Industrial Hemp in North America: Production, Politics and Potential

    Directory of Open Access Journals (Sweden)

    Jerome H. Cherney

    2016-11-01

    Full Text Available Most of the Western World banned the cultivation of Cannabis sativa in the early 20th century because biotypes high in ∆9-tetrahydrocannabinol (THC, the principal intoxicant cannabinoid are the source of marijuana. Nevertheless, since 1990, dozens of countries have authorized the licensed growth and processing of “industrial hemp” (cultivars with quite low levels of THC. Canada has concentrated on hemp oilseed production, and very recently, Europe changed its emphasis from fiber to oilseed. The USA, historically a major hemp producer, appears on the verge of reintroducing industrial hemp production. This presentation provides updates on various agricultural, scientific, social, and political considerations that impact the commercial hemp industry in the United States and Canada. The most promising scenario for the hemp industry in North America is a continuing focus on oilseed production, as well as cannabidiol (CBD, the principal non-intoxicant cannabinoid considered by many to have substantial medical potential, and currently in great demand as a pharmaceutical. Future success of the industrial hemp industry in North America is heavily dependent on the breeding of more productive oilseed cultivars, the continued development of consumer goods, reasonable but not overly restrictive regulations, and discouragement of overproduction associated with unrealistic enthusiasm. Changing attitudes have generated an unprecedented demand for the cannabis plant and its products, resulting in urgent needs for new legislative, regulatory, and business frameworks, as well as scientific, technological, and agricultural research.

  18. Microbial xylanases: engineering, production and industrial applications.

    Science.gov (United States)

    Juturu, Veeresh; Wu, Jin Chuan

    2012-01-01

    and paper industries for a longer time but more and more attention has been paid to using them in producing sugars and other chemicals from lignocelluloses in recent years. Mining new genes from nature, rational engineering of known genes and directed evolution of these genes are required to get tailor-made xylanases for various industrial applications.

  19. Efficiency and Import Penetration on the Productivity of Textile Industry and Textile Products

    Directory of Open Access Journals (Sweden)

    Catur Basuki Rakhmawan

    2012-12-01

    Full Text Available Although textile industry and textile products belong to the strategic sub-sector of manufacturing industry in Indonesia, they are facing problems on the availability of energy, old production machines, and the flooding of imported products into the domestic market. This study is aimed to analyze the efficiency and productivity as performance indicators and how the efficiency and import penetration affect the productivity of textile industry and textile products. The methods of data analysis used in this research are divided in two phases. The first phase, the non-metric approach of Data Envelopment Analysis (DEA is applied to measure the efficiency and productivity. Secondly, the fixed effect model of econometric regression approach is used to find out the effects of efficiency and import penetration on the productivity of textile industry and textile products. The result shows that the average level of efficiency of textile industry and textile products during the period of 2004 – 2008 is about 40 percent with a growth rate of average productivity increases 2.4 percent. Whereas, the econometric estimation results indicate that the increase of efficiency will positively and significantly affect the productivity of textile industry and textile products. On the other hand, the increase of import penetration will negatively affect the productivity of this industry.

  20. Microwaves and the industrial production of ethanol

    Energy Technology Data Exchange (ETDEWEB)

    Senise, J.T.; Concone, B.R.V.; Moraes, V.L.V.; Doin, P.A.; Medugno, C.C.; Andrade, A.O.M.; Perri, E.B.; Perin, A.H.

    1981-01-01

    Production of ethanol from starchy materials is now being investigated in Brazil as an alternative source for alcohol production apart from sugar cane. In the present work, with the objective of optimizing the energy balance of the process, substitution of conventional sources of energy by electricity at one stage of the process is sought. Cooking and dextrinization of cassava roots, previously treated by conventional pretreatments, by microwaves heating (at 2450 MHz) has been studied. Results of saccharification and fermentation of the mash thus obtained were used to evaluate the technical feasibility of the process. Specific energy consumption figures (for the cooking and dextrinization stage) of 600 kcal/l of ethanol produced and efficiencies of 90% (in terms of the theoretical maximum yield from the available starch) were easily and consistently obtained.

  1. AUTOMATION RESEARCHES IN FOREST PRODUCTS INDUSTRY

    Directory of Open Access Journals (Sweden)

    İsmail Aydın

    2004-04-01

    Full Text Available Wood is a natural polymeric material which has a heterogenic nature. The natural growth process and environmental influence can lead to features in wood that are undesirable for certain applications and are known as defects. Defects in wood affect the visual appearance and structural properties of wood. The type of defect is based on whether growth, environmental conditions, handling or processing causes it. The definition and acceptability of defect types can vary between industries. Wood materials such as log, lumber and parquet are usually subject to a classification before selling and these materials are sold based on their quality grades. The ability to detect internal defects both in the log and lumber can save mills time and processing costs. In this study, information on the automation research conducted for detection the defects in wood materials were given. As a result, it is indicated that there are numerous scanning methods able to detect wood features, but no one method is adequate for all defect types

  2. The biosynthesis of cutin and suberin as an alternative source of enzymes for the production of bio-based chemicals and materials.

    Science.gov (United States)

    Li, Yonghua; Beisson, Fred

    2009-06-01

    Oxygenated fatty acids such as ricinoleic acid and vernolic acid can serve in the industry as synthons for the synthesis of a wide range of chemicals and polymers traditionally produced by chemical conversion of petroleum derivatives. Oxygenated fatty acids can also be useful to synthesize specialty chemicals such as cosmetics and aromas. There is thus a strong interest in producing these fatty acids in seed oils (triacylglycerols) of crop species. In the last 15 years or so, much effort has been devoted to isolate key genes encoding proteins involved in the synthesis of oxygenated fatty acids and to express them in the seeds of the model plant Arabidopsis thaliana or crop species. An often overlooked but rich source of enzymes catalyzing the synthesis of oxygenated fatty acids and their esterification to glycerol is the biosynthetic pathways of the plant lipid polyesters cutin and suberin. These protective polymers found in specific tissues of all higher plants are composed of a wide variety of oxygenated fatty acids, many of which have not been reported in seed oils (e.g. saturated omega-hydroxy fatty acids and alpha,omega-diacids). The purpose of this mini-review is to give an overview of the recent advances in the biosynthesis of cutin and suberin and discuss their potential utility in producing specific oxygenated fatty acids for specialty chemicals. Special emphasis is given to the role played by specific acyltransferases and P450 fatty acid oxidases. The use of plant surfaces as possible sinks for the accumulation of high value-added lipids is also highlighted.

  3. Competition and product quality in the supermarket industry.

    Science.gov (United States)

    Matsa, David A

    2011-01-01

    This article analyzes the effect of competition on a supermarket firm's incentive to provide product quality. In the supermarket industry, product availability is an important measure of quality. Using U.S. Consumer Price Index microdata to track inventory shortfalls, I find that stores facing more intense competition have fewer shortfalls. Competition from Walmart—the most significant shock to industry market structure in half a century—decreased shortfalls among large chains by about a third. The risk that customers will switch stores appears to provide competitors with a strong incentive to invest in product quality.

  4. Aggregate productivity in the post-war British coal industry

    Energy Technology Data Exchange (ETDEWEB)

    Harvie, D.

    1996-02-01

    An economic model, using OLS regression, of aggregate productivity in the post-war British coal industry is presented. Some of the methods used by Weisskopf, Bowles and Gordon (1983) in their `social model` of aggregate productivity in the US economy are drawn upon; however, all `social` variables included in this coal productivity model are found not to be significant. The results suggest that pit closures have been an important source of aggregate productivity growth throughout the period; this does not imply, however, that `unproductive`, or `uneconomic`, pits are intrinsically so, rather their status as such may be the result of a political process. Average colliery size and the industry`s capital stock were also found to be important explanatory variables. Attention was paid to the effects of the national miners` strikes during the period; these were found to be structurally insignificant. 45 refs., 10 figs., 5 tabs.

  5. Environmental, Social and Economic Sustainability of Biobased Plastics. Bio-polyethylene from Brazil and polylactic acid from the U.S.

    NARCIS (Netherlands)

    Haer, Toon

    2012-01-01

    SUMMARY Ever depleting fossil resources, growing fossil feedstock prices and global environmental impact associated with continuously rising greenhouse gas emissions have led to increased attention for biobased products as alternatives for the present fo

  6. Biobased polymers for corrosion protection of metals

    Science.gov (United States)

    Anticorrosive biobased polymers were developed in our lab. We isolated an exopolysaccharide produced by a microbe that, when coated on metal substrates, exhibited unique corrosion inhibition. Corrosion is a worldwide problem and impacts the economy, jeopardizes human health and safety, and impedes t...

  7. Mixed film lubrication with biobased oils

    Science.gov (United States)

    Most tribological processes (e.g. metalworking), occur in the mixed film regime where the boundary and hydrodynamic properties of the oils play critical roles. In the work described here, the boundary and hydrodynamic properties of various biobased oils were evaluated. The oils were then investiga...

  8. Healthy living in a biobased society

    NARCIS (Netherlands)

    Domingus, S.; Nieuwenhuizen, van de J.

    2012-01-01

    This publication covers a wide array of subjects, ranging from physical chemistry to food microbiology, from water technology to food for the elderly. While the subjects may not initially seem related, they all focus on the same question: How can we lead healthy lives in a biobased society? This vit

  9. Product Innovation Development in the Companies of Creative Industries

    Directory of Open Access Journals (Sweden)

    Rolandas Strazdas

    2011-10-01

    Full Text Available Many authors distinguish product innovation as a key factor for long-term competitiveness. Dominant narrow perception of a product is leading towards incorrect product development process and the consequent result is a bad product. Narrow perception of a product is one of the main paralysing factors affecting the creator in the process of product development, which leads towards a low level of product innovation. As a result, a company is losing its uniqueness, originality, and is not of  interest neither for consumers nor the product developers themselves. This article deals with the product perception problems in the companies of creative industries. The main limiting factors for the perception of a product are analysed in the article as well as possibilities to expand the perception of a product. Five main product development methods: conservative, delegative, holistic, limited open, fully open are described in the article. The choice of the product development methods is especially important for the creative industries companies whose product development process is very intensive. 

  10. Scenario projections for future market potentials of biobased bulk chemicals.

    Science.gov (United States)

    Dornburg, Veronika; Hermann, Barbara G; Patel, Martin K

    2008-04-01

    Three scenario projections for future market potentials of biobased bulk chemicals produced by means of white biotechnology are developed for Europe (EU-25) until the year 2050, and potential nonrenewable energy savings, greenhouse gas emission reduction, and land use consequences are analyzed. These scenarios assume benign, moderate, and disadvantageous conditions for biobased chemicals. The scenario analysis yields a broad range of values for the possible market development of white biotechnology chemicals, that is, resulting in a share of white biotechnology chemicals relative to all organic chemicals of about 7 (or 5 million tonnes), 17.5 (or 26 million tonnes), or 38% (or 113 million tonnes) in 2050. We conclude that under favorable conditions, white biotechnology enables substantial savings of nonrenewable energy use (NREU) and greenhouse gas (GHG) emissions compared to the energy use of the future production of all organic chemicals from fossil resources. Savings of NREU reach up to 17% for starch crops and up to 31% for lignocellulosic feedstock by 2050, and saving percentages for GHG emissions are in a similar range. Parallel to these environmental benefits, economic advantages of up to 75 billion Euro production cost savings arise.

  11. Development of the University of Washington Biofuels and Biobased Chemicals Process Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Gustafson, Richard [University of Washington

    2014-02-04

    The funding from this research grant enabled us to design and build a bioconversion steam explosion reactor and ancillary equipment such as a high pressure boiler and a fermenter to support the bioconversion process research. This equipment has been in constant use since its installation in 2012. Following are research projects that it has supported: • Investigation of novel chip production method in biofuels production • Investigation of biomass refining following steam explosion • Several studies on use of different biomass feedstocks • Investigation of biomass moisture content on pretreatment efficacy. • Development of novel instruments for biorefinery process control Having this equipment was also instrumental in the University of Washington receiving a $40 million grant from the US Department of Agriculture for biofuels development as well as several other smaller grants. The research that is being done with the equipment from this grant will facilitate the establishment of a biofuels industry in the Pacific Northwest and enable the University of Washington to launch a substantial biofuels and bio-based product research program.

  12. Do ICTs Affect Workforce Productivity in Egyptian Industrial Organizations?

    Directory of Open Access Journals (Sweden)

    M. Elsaadani

    2014-06-01

    Full Text Available The present study aims to investigate the influence of Information Communication Technologies-ICTs’ dimensions (Information Technology (IT, Management Information System (MIS, Office automation (OA, Intranet and Internet on workforce productivity for a group of industrial organizations in Alexandria - Egypt. The population of the study included managers and staff members working in different areas related to ICTs in selected industrial organizations at various managerial levels. A descriptive-statistical combined research study was conducted. Simple random sampling was used for the selection of the participating industrial organization. A questionnaire was used as the data collection method. Expert comments were used to check the validity of study instrument, and the reliability of questions was calculated as 79% using Cronbach’s Alpha coefficient. Single variable t-test, Friedman and variance analysis tests were used for the analysis. Study findings revealed that the specified dimensions of ICTs positively affect workforce productivity of industrial organizations in Alexandria - Egypt.

  13. Applications of Mass Customization Production Mode in Chinese Steel Industry

    Institute of Scientific and Technical Information of China (English)

    ZhouShichun; DingJianhua; ChenChao

    2005-01-01

    In this paper, the conflict between individual needs of market and the efficient mass production requirement of manufacture under the background of market globalization is discussed, a trend that the main production mode for domestic steel industry should be the mass customization is pointed out, and the problems to be solved for domestic enterprise are analyzed. Summarizing the practice of Baosteel Co. LTD on the new production mode, the achievements and experiences are presented.

  14. Formation algorithm indicative planning of the food industry production activities

    Directory of Open Access Journals (Sweden)

    A. M. Bukreev

    2013-01-01

    Full Text Available The current process of planning production activities in the food industry in Russia is very different interpretations of both the characteristics of the different stages, and maintaining them in a single scheduling algorithm. In this article, we attempt to form an algorithm indicative planning of production activities with general theoretical positions by considering the process of determining the overall purpose, objectives and consistency of production planning.

  15. Production, composition, and application of coffee and its industrial residues

    OpenAIRE

    Mussatto, Solange I.; Machado, Ercília M. S.; Martins, Silvia; Teixeira, J.A.

    2012-01-01

    Coffee is one of the most consumed beverages in the world and is the second largest traded commodity after petroleum. Due to the great demand of this product, large amounts of residues are generated in the coffee industry, which are toxic and represent serious environmental problems. Coffee silverskin and spent coffee grounds are the main coffee industry residues, obtained during the beans roasting, and the process to prepare “instant coffee”, respectively. Recently, some attempts have been m...

  16. The utilization of renewable resources in German industrial production.

    Science.gov (United States)

    Busch, Rainer; Hirth, Thomas; Liese, Andreas; Nordhoff, Stefan; Puls, Jürgen; Pulz, Otto; Sell, Dieter; Syldatk, Christoph; Ulber, Roland

    2006-01-01

    Renewable resources will be an increasingly important issue for the chemical industry in the future. In the context of white biotechnology, they represent the intersection point of agriculture and the chemical industry. The scarcity and related increase in the price of fossil resources make renewable resources an interesting alternative. If one considers the production of bulk chemicals, it is evident that for this area besides the C sources, sugar and starch, new sources of raw materials must be opened up. One possible solution is to utilize lignocellulose both for materials and energy. This article discusses this interesting prospective for the future, particularly from the point of view of the German industry.

  17. Fungal Morphology in Industrial Enzyme Production - Modelling and Monitoring

    DEFF Research Database (Denmark)

    Quintanilla, D.; Hagemann, T.; Hansen, K.

    2015-01-01

    Filamentous fungi are widely used in the biotechnology industry for the production of industrial enzymes. Thus, considerable work has been done with the purpose of characterizing these processes. The ultimate goal of these efforts is to be able to control and predict fermentation performance......, and on the way the data is interpreted-i.e. which models were applied. The main filamentous fungi used in industrial fermentation are introduced, ranging from Trichoderma reesei to Aspergillus species. Due to the fact that secondary metabolites, like antibiotics, are not to be considered bulk products, organisms...... like e.g. Penicillium chrysogenum are just briefly touched upon for the description of some characterization techniques. The potential for development of different morphological phenotypes is discussed as well, also in view of what this could mean to productivity and-equally important-the collection...

  18. Oil industry waste: a potential feedstock for biodiesel production.

    Science.gov (United States)

    Abbas, Javeria; Hussain, Sabir; Iqbal, Muhammad Javid; Nadeem, Habibullah; Qasim, Muhammad; Hina, Saadia; Hafeez, Farhan

    2016-08-01

    The worldwide rising energy demands and the concerns about the sustainability of fossil fuels have led to the search for some low-cost renewable fuels. In this scenario, the production of biodiesel from various vegetable and animal sources has attracted worldwide attention. The present study was conducted to evaluate the production of biodiesel from the oil industry waste following base-catalysed transesterification. The transesterification reaction gave a yield of 83.7% by 6:1 methanol/oil molar ratio, at 60°C over 80 min of reaction time in the presence of NaOH. The gas chromatographic analysis of the product showed the presence of 16 fatty acid methyl esters with linoleic and oleic acid as principal components representing about 31% and 20.7% of the total methyl esters, respectively. The fourier transform infrared spectroscopy spectrum of oil industry waste and transesterified product further confirmed the formation of methyl esters. Furthermore, the fuel properties of oil industry waste methyl esters, such as kinematic viscosity, cetane number, cloud point, pour point, flash point, acid value, sulphur content, cold filter plugging point, copper strip corrosion, density, oxidative stability, higher heating values, ash content, water content, methanol content and total glycerol content, were determined and discussed in the light of ASTM D6751 and EN 14214 biodiesel standards. Overall, this study presents the production of biodiesel from the oil industry waste as an approach of recycling this waste into value-added products.

  19. Xanthophyllomyces dendrorhous for the industrial production of astaxanthin.

    Science.gov (United States)

    Rodríguez-Sáiz, Marta; de la Fuente, Juan Luis; Barredo, José Luis

    2010-10-01

    Astaxanthin is a red xanthophyll (oxygenated carotenoid) with large importance in the aquaculture, pharmaceutical, and food industries. The green alga Haematococcus pluvialis and the heterobasidiomycetous yeast Xanthophyllomyces dendrorhous are currently known as the main microorganisms useful for astaxanthin production at the industrial scale. The improvement of astaxanthin titer by microbial fermentation is a requirement to be competitive with the synthetic manufacture by chemical procedures, which at present is the major source in the market. In this review, we show how the isolation of new strains of X. dendrorhous from the environment, the selection of mutants by the classical methods of random mutation and screening, and the rational metabolic engineering, have provided improved strains with higher astaxanthin productivity. To reduce production costs and enhance competitiveness from an industrial point of view, low-cost raw materials from industrial and agricultural origin have been adopted to get the maximal astaxanthin productivity. Finally, fermentation parameters have been studied in depth, both at flask and fermenter scales, to get maximal astaxanthin titers of 4.7 mg/g dry cell matter (420 mg/l) when X. dendrorhous was fermented under continuous white light. The industrial scale-up of this biotechnological process will provide a cost-effective method, alternative to synthetic astaxanthin, for the commercial exploitation of the expensive astaxanthin (about $2,500 per kilogram of pure astaxanthin).

  20. Synthesis of biobased N-methylpyrrolidone by one-pot cyclization and methylation of c-aminobutyric acid

    NARCIS (Netherlands)

    Lammens, T.M.; Franssen, M.C.R.; Scott, E.L.; Sanders, J.P.M.

    2010-01-01

    N-Methylpyrrolidone (NMP) is an industrial solvent that is currently based on fossil resources. In order to prepare it in a biobased way, the possibility to synthesize NMP from -aminobutyric acid (GABA) was investigated, since GABA can be obtained from glutamic acid, an amino acid that is present in

  1. Applying distance-to-target weighing methodology to evaluate the environmental performance of bio-based energy, fuels, and materials

    NARCIS (Netherlands)

    Weiss, M.; Patel, M.K.; Heilmeier, H.; Bringezu, S.

    2007-01-01

    The enhanced use of biomass for the production of energy, fuels, and materials is one of the key strategies towards sustainable production and consumption. Various life cycle assessment (LCA) studies demonstrate the great potential of bio-based products to reduce both the consumption of non-renewabl

  2. Towards a Bioeconomy in Europe: National, Regional and Industrial Strategies

    Directory of Open Access Journals (Sweden)

    Matteo de Besi

    2015-08-01

    Full Text Available Establishing an advanced European bioeconomy is an important step in achieving the transition towards sustainable development and away from fossil fuels. The bioeconomy can be defined as an economy based on the sustainable production and conversion of renewable biomass into a range of bio-based products, chemicals, and energy. Several strategies have been produced in Europe from different perspectives that outline visions, intentions, and recommendations for the transition to a bioeconomy. An analysis of twelve of these strategies was conducted using a meta-analytical framework. This paper outlines the results of this study covering national, regional, and industrial perspectives on the bio-based economy in Europe. The analysis shows that a common direction for the bioeconomy, based on research and technological innovation in the various applications of biotechnology, is developing in Europe. It highlights the important role that the regional level will play in facilitating collaborations between industries and research institutions needed to foster innovation and optimize the use of biomass. The analysis also identifies that the development of European bio-based product markets are needed for bioeconomy expansion. However, the transition needs to have a lifecycle perspective in order to ensure that an economy founded on biomass is sustainable and equitable.

  3. Physico-chemical durability criteria of oils and linked bio-based polymers

    Directory of Open Access Journals (Sweden)

    Irshad Ambreen

    2015-01-01

    Full Text Available The oxidative stability or durability is an important indicator of performance that depends on the composition of the sample. The fatty oil or polymer degradation processes have generally been established as being free radical mechanism yielding primary oxidation products. We propose to explain in detail all the analytical methods and tools used for the determination of the initial physico-chemical properties of oils and the properties in ageing conditions. Chemical titrations for acid or peroxide value, Rancimat method or thermogravimetric measurements are discussed. Accelerated ageing tools for thermal or photochemical exposures are also shown. After the assessment of oil durability, the development of new bio-based polymer with vegetable oil is tackled because of its industrial interest. It is essential to understand the long term behavior of oils and biopolymers and to assess exactly the durability which is useful to produce life cycle analysis of materials. At last we underline the advantages of a new Fourier transform infrared (FTIR instrumentation with in-situ irradiation and gas cell to give a screening of the durability of various oils or polymers. Main durability criteria of oils and biopolymers are linked to the production of volatile organic compounds and the resistance to the oxidation process.

  4. The Use of Biodiesel Residues for Heat Insulating Biobased Polyurethane Foams

    Directory of Open Access Journals (Sweden)

    Nihan Özveren

    2017-01-01

    Full Text Available The commercial and biobased polyurethane foams (PUF were produced and characterized in this study. Commercial polyether polyol, crude glycerol, methanol-free crude glycerol, and pure glycerol were used as polyols. Crude glycerol is byproduct of the biodiesel production, and it is a kind of biofuel residue. Polyol blends were prepared by mixing the glycerol types and the commercial polyol with different amounts, 10 wt%, 30 wt%, 50 wt%, and 80 wt%. All types of polyol blends were reacted with polymeric diphenyl methane diisocyanates (PMDI for the production of rigid foams. Thermal properties of polyurethane foams are examined by thermogravimetric analysis (TGA and thermal conductivity tests. The structures of polyurethane foams were examined by Fourier Transformed Infrared Spectroscopy (FTIR. Changes in morphology of foams were investigated by Scanning Electron Microscopy (SEM. Mechanical properties of polyurethane foams were determined by compression tests. This study identifies the critical aspects of polyurethane foam formation by the use of various polyols and furthermore offers new uses of crude glycerol and methanol-free crude glycerol which are byproducts of biodiesel industry.

  5. BIOREFINERIES – NEW GREEN STRATEGY FOR DEVELOPMENT OF SMART AND INNOVATIVE INDUSTRY

    Directory of Open Access Journals (Sweden)

    Grażyna A. PŁAZA

    2016-07-01

    Full Text Available Ecological engineering or ecotechnology is defined as the design of sustainable production that integrate human society with the natural environment for the benefit of both. In order to reach the goal of sustainability therefore important that bioproduct production systems are converted from to natural cycle oriented. In natural cycles there are not waste, but products are generated at different stages of the cycle. The ecotechnology creates a sustainable bioeconomy using biomass in a smart and efficient way. The biorefining sector, which uses smart, innovative and efficient technologies to convert biomass feedstocks into a range of bio-based products including fuels, chemicals, power, food, and renewable oils, currently presents the innovative and efficient bio-based production can revitalize existing industries. The paper presents the concept of biorefinery as the ecotechnological approach for creating a sustainable bioeconomy using biomass in a smart and efficient way.

  6. Innovation in product and services in the shipping retrofit industry

    DEFF Research Database (Denmark)

    Hermann, Roberto Rivas; Köhler, Jonathan

    . Similarly, given the deindustrialisation dynamics to regions with lower manufacturing costs, it is argued that a combination of knowledge intensive and service-based economy will eventually fill the gap left by manufacturing industries. To create added value to their products, some leading firms...... are increasingly developing product-service systems. It is however, argued that product-service systems are not always sustainable, and thus little evidence connect them with green growth. To fill in this gap, we are carrying a case study guided by the following research question: “How the ballast water treatment...... regulation could create innovation in green products and services in the maritime retrofitting industry?” Our case study focus on business models for the development, installation and operation of ballast water management systems in Denmark. We engaged the perspectives of ship-owners, equipment manufacturers...

  7. Procedimientos y productos industriales - Procedures and industrial products

    Directory of Open Access Journals (Sweden)

    Santos López, Pascual

    2009-12-01

    Full Text Available This paper gives news of the six patents filed by the inventor Antonio Pérez Cano, Cieza neighbor, in the period from 1916-1922. All related to industry of esparto of Cieza booming in those years. Four of these patents were registered in the year of the crisis of 1917 that led to the First World War (1914-1918. The first patent covers a bleaching process, three on new industrial products and the remaining two on addition or enhancement of these products.Often the patent specifications speak of the art at the time they were recorded as well as the opportunity of the inventors to take advantage of the historical economic situation and increase the production of goods and products manufactured with raw materials not imported.

  8. Integration of Mobile Manipulators in an Industrial Production

    DEFF Research Database (Denmark)

    Madsen, Ole; Bøgh, Simon; Schou, Casper

    2015-01-01

    , it was possible to program both robots to perform the production scenario in collaboration. Despite the success, the experiment clearly demonstrated several topics in need of further research before the technology can be made available to the industry: robustness and cycle time, safety investigations and possibly...... reports from such a real-world industrial experiment with two mobile manipulators. Design/methodology/approach – In the experiment, autonomous industrial mobile manipulators are integrated into the actual manufacturing environment of the pump manufacturer Grundfos. The two robots together solve the task...... of producing rotors; a task constituted by several sub-tasks ranging from logistics to complex assembly. With a total duration of 10 days, the experiment includes workspace adaptation, safety regulations, rapid robot instruction and running production. Findings – With a setup time of less than one day...

  9. GROWTH PERFORMANCE AND PRODUCTIVITY OF RUBBER & PLASTIC PRODUCTS INDUSTRY IN PUNJAB

    Directory of Open Access Journals (Sweden)

    GULSHAN KUMAR

    2010-01-01

    Full Text Available Present study is an endeavour to investigate growth pattern and productivity trends in small scale rubber and plastic products industry of Punjab. The growth of industry has been gauged in terms of variables - number of units, fixed investment, employment and production. Yearly growth rates have been computed to catch year- to- year fluctuations in growth and compound annual growth rates (CAGRs have been worked out to ascertain the impact of the policies of liberalized regime on growth of this industry. Productivity trends have been sketched in terms of partial factor productivities of labour and capital. In order to understand the strengths and weaknesses of the industry, SWOT analysis has been conducted. The study revealed that the liberalisation has promoted the use of capital intensive and labour saving techniques of production leading to a dismal growth of employment and sluggish growth of number of units.

  10. Industrial transformation and green production to reduce environmental emissions:Taking cement industry as a case

    Institute of Scientific and Technical Information of China (English)

    LU¨ Yong-Long; GENG Jing; HE Gui-Zhen

    2015-01-01

    Industrial transformation and green production (ITGP) is a new 10-year international research initiative proposed by the Chinese National Committee for Future Earth. It is also an important theme for adapting and responding to global environmental change. Aiming at a thorough examination of the implementation of ITGP in China, this paper presents its objectives, its three major areas, and their progress so far. It also identifies the key elements of its management and proposes new perspectives on managing green transformation. For instance, we introduce a case study on cement industry that shows the positive policy effects of reducing backward production capacity on PCDD/Fs emissions. Finally, to develop different transformation scenarios for a green future, we propose four strategies:1) policy integration for promoting green industry, 2) system innovation and a multidisciplinary approach, 3) collaborative governance with all potential stakeholders, and 4) managing uncertainty, risks, and long-time horizons.

  11. Description of the production process - industrial phase; Descricao do processo produtivo - fase industrial

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-10-15

    This chapter presents the description of the present state-of-art, in this paper called first generation of the productive process of sugar-cane bio ethanol in Brazil, related to the industrial phase involving their improvements and also the aspects related to the second generation technologies, particularly the hydrolysis and gasification of the biomass technologies. The chapter also approaches the aspects referred to the use of sugar cane bagasse and the straw cape, and also the production of electric power surplus.

  12. Production Management in SME's Industry: Case Study of CV Wiracana

    Directory of Open Access Journals (Sweden)

    Apriani Kurnia Suci

    2015-08-01

    Full Text Available Production Management is the act of designing, operating, and improving the productive systems – a system for getting the work done. Along the process, the synergy in between machineries, facilities and people could empower the sustainable of the production. In fact, for some cases, the implementation of unique system is needed for the production process. The example for this transformation production management is in the case of CV Wiracana, a handmade manufacturing company for folding hand fans from Bali. CV Wiracana's products are very unique, combined from mass production for the speed and an art for the custom made product. At one side, the market forces them to speed up the production and for this purpose, they must set up the new system on their production line. On the other side, the masterpiece also needs to be produced without jeopardizing mass production line schedule. The transformation production system needs to be done no later than 2015 as the urgency to fulfill the customer demand, business growth, compete in the industry and sustainability. The changes are expected to improve the production at least about 20% or doubled from the current production.

  13. Ethanol production in Brazil: a bridge between science and industry

    Directory of Open Access Journals (Sweden)

    Mario Lucio Lopes

    Full Text Available ABSTRACT In the last 40 years, several scientific and technological advances in microbiology of the fermentation have greatly contributed to evolution of the ethanol industry in Brazil. These contributions have increased our view and comprehension about fermentations in the first and, more recently, second-generation ethanol. Nowadays, new technologies are available to produce ethanol from sugarcane, corn and other feedstocks, reducing the off-season period. Better control of fermentation conditions can reduce the stress conditions for yeast cells and contamination by bacteria and wild yeasts. There are great research opportunities in production processes of the first-generation ethanol regarding high-value added products, cost reduction and selection of new industrial yeast strains that are more robust and customized for each distillery. New technologies have also focused on the reduction of vinasse volumes by increasing the ethanol concentrations in wine during fermentation. Moreover, conversion of sugarcane biomass into fermentable sugars for second-generation ethanol production is a promising alternative to meet future demands of biofuel production in the country. However, building a bridge between science and industry requires investments in research, development and transfer of new technologies to the industry as well as specialized personnel to deal with new technological challenges.

  14. Ethanol production in Brazil: a bridge between science and industry.

    Science.gov (United States)

    Lopes, Mario Lucio; Paulillo, Silene Cristina de Lima; Godoy, Alexandre; Cherubin, Rudimar Antonio; Lorenzi, Marcel Salmeron; Giometti, Fernando Henrique Carvalho; Bernardino, Claudemir Domingues; Amorim Neto, Henrique Berbert de; Amorim, Henrique Vianna de

    2016-12-01

    In the last 40 years, several scientific and technological advances in microbiology of the fermentation have greatly contributed to evolution of the ethanol industry in Brazil. These contributions have increased our view and comprehension about fermentations in the first and, more recently, second-generation ethanol. Nowadays, new technologies are available to produce ethanol from sugarcane, corn and other feedstocks, reducing the off-season period. Better control of fermentation conditions can reduce the stress conditions for yeast cells and contamination by bacteria and wild yeasts. There are great research opportunities in production processes of the first-generation ethanol regarding high-value added products, cost reduction and selection of new industrial yeast strains that are more robust and customized for each distillery. New technologies have also focused on the reduction of vinasse volumes by increasing the ethanol concentrations in wine during fermentation. Moreover, conversion of sugarcane biomass into fermentable sugars for second-generation ethanol production is a promising alternative to meet future demands of biofuel production in the country. However, building a bridge between science and industry requires investments in research, development and transfer of new technologies to the industry as well as specialized personnel to deal with new technological challenges.

  15. Inner Mongolia to Implement Production Quota in Iron Alloy Industry

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    <正>During the 12th Five-Year Plan period, Inner Mongolia will accelerate to eliminate outdated capacity, speed up to work out implementation plan for key industries to eliminate outdated production capacity during the 12th Five-Year Plan period, break down and assign the tasks by year to all leagues and cities; improve the

  16. Towards eco-agro industrial clusters in aquatic production: the case of shrimp processing industry in Vietnam

    NARCIS (Netherlands)

    Pham Thi Ahn,; Tran Thi My Dieu,; Mol, A.P.J.; Kroeze, C.; Bush, S.R.

    2011-01-01

    The concept of industrial ecology has been applied in this research to study possibilities to develop an eco-industrial cluster model for fishery production industry in Vietnam. By learning from experiments of other developed countries, we apply the principles of Industrial Ecology and of Ecological

  17. GGDC Productivity Level Database: International Comparisons of Output, Inputs and Productivity at the Industry Level

    OpenAIRE

    Inklaar, Robert; Timmer, Marcel P.

    2008-01-01

    In this paper we introduce the GGDC Productivity Level database. This database provides comparisons of output, inputs and productivity at a detailed industry level for a set of thirty OECD countries. It complements the EU KLEMS growth and productivity accounts by providing comparative levels and follows it in terms of country and industry coverage, variable definition and basic data (O?Mahony and Timmer, 2008). As such, the level and growth accounts can be used together in comparative analyse...

  18. Industrial water demand management and cleaner production potential: a case of three industries in Bulawayo, Zimbabwe

    Science.gov (United States)

    Gumbo, Bekithemba; Mlilo, Sipho; Broome, Jeff; Lumbroso, Darren

    The combination of water demand management and cleaner production concepts have resulted in both economical and ecological benefits. The biggest challenge for developing countries is how to retrofit the industrial processes, which at times are based on obsolete technology, within financial, institutional and legal constraints. Processes in closed circuits can reduce water intake substantially and minimise resource input and the subsequent waste thereby reducing pollution of finite fresh water resources. Three industries were studied in Bulawayo, Zimbabwe to identify potential opportunities for reducing water intake and material usage and minimising waste. The industries comprised of a wire galvanising company, soft drink manufacturing and sugar refining industry. The results show that the wire galvanising industry could save up to 17% of water by recycling hot quench water through a cooling system. The industry can eliminate by substitution the use of toxic materials, namely lead and ammonium chloride and reduce the use of hydrochloric acid by half through using an induction heating chamber instead of lead during the annealing step. For the soft drink manufacturing industry water intake could be reduced by 5% through recycling filter-backwash water via the water treatment plant. Use of the pig system could save approximately 12 m 3/month of syrup and help reduce trade effluent fees by Z30/m 3 of “soft drink”. Use of a heat exchanger system in the sugar refining industry can reduce water intake by approximately 57 m 3/100 t “raw sugar” effluent volume by about 28 m 3/100 t “raw sugar”. The water charges would effectively be reduced by 52% and trade effluent fees by Z3384/100 t “raw sugar” (57%). Proper equipment selection, equipment modification and good house-keeping procedures could further help industries reduce water intake and minimise waste.

  19. Innovation in product and services in the shipping retrofit industry

    DEFF Research Database (Denmark)

    Hermann, Roberto Rivas; Köhler, Jonathan; Scheepens, Arno

    2015-01-01

    to shed light on this issue, the authors develop a conceptual framework to show how a specific type of business model (Product-Service Systems) could be applied to the context of the maritime industry. With a focus on the Danish maritime industry, the case study addresses two questions: Which business...... to propose a possible product-service system. These results suggest that port-based systems have the highest potential for eco-efficient value creation and a possible product-service system can be designed for this kind of technology. The article highlights the point that authorities need to improve...... models are being used to develop, install and service the ballast water treatment technology? And, How can these business models add value to the ballast water treatment systems in the market? The case shows that different business models are applied depending on whether the installation is on new...

  20. Design and industrial production of frequency standards in the USSR

    Science.gov (United States)

    Demidov, Nikolai A.; Uljanov, Adolph A.

    1990-01-01

    Some aspects of research development and production of quantum frequency standards, carried out in QUARTZ Research and Production Association (RPA), Gorky, U.S.S.R., were investigated for the last 25 to 30 years. During this period a number of rubidium and hydrogen frequency standards, based on the active maser, were developed and put into production. The first industrial model of a passive hydrogen maser was designed in the last years. Besides frequency standards for a wide application range, RPA QUARTZ investigates metrological frequency standards--cesium standards with cavity length 1.9 m and hydrogen masers with a flexible storage bulb.

  1. Environmental Design of Industrial Products (EDIP), anchoring of the life cycle concept in industry and society

    DEFF Research Database (Denmark)

    Alting, Leo; Wenzel, Henrik; Hauschild, Michael Zwicky

    1999-01-01

    The Danish methodology and tools for environmental assessment of products (EDIP) became public available in 1996-97. Following the EDIP-project, projects reflecting methodological developments and simplifications for a broader use have been lanuched, also taking the methodology beyond Danish bord...... borders and into Europe and Asia. Simplification projects comprise development of a manual for SME's and identification of product families. Industrial applications are exemplified by a product development project at the pump manufacturer Grundfos, and by this company's use of the EDIP......-methodology in connection with EMAS-registration....

  2. Fumonisin and ochratoxin production in industrial Aspergillus niger strains.

    Directory of Open Access Journals (Sweden)

    Jens C Frisvad

    Full Text Available Aspergillus niger is perhaps the most important fungus used in biotechnology, and is also one of the most commonly encountered fungi contaminating foods and feedstuffs, and occurring in soil and indoor environments. Many of its industrial applications have been given GRAS status (generally regarded as safe. However, A. niger has the potential to produce two groups of potentially carcinogenic mycotoxins: fumonisins and ochratoxins. In this study all available industrial and many non-industrial strains of A. niger (180 strains as well as 228 strains from 17 related black Aspergillus species were examined for mycotoxin production. None of the related 17 species of black Aspergilli produced fumonisins. Fumonisins (B(2, B(4, and B(6 were detected in 81% of A. niger, and ochratoxin A in 17%, while 10% of the strains produced both mycotoxins. Among the industrial strains the same ratios were 83%, 33% and 26% respectively. Some of the most frequently used strains in industry NRRL 337, 3112 and 3122 produced both toxins and several strains used for citric acid production were among the best producers of fumonisins in pure agar culture. Most strains used for other biotechnological processes also produced fumonisins. Strains optimized through random mutagenesis usually maintained their mycotoxin production capability. Toxigenic strains were also able to produce the toxins on media suggested for citric acid production with most of the toxins found in the biomass, thereby questioning the use of the remaining biomass as animal feed. In conclusion it is recommended to use strains of A. niger with inactive or inactivated gene clusters for fumonisins and ochratoxins, or to choose isolates for biotechnological uses in related non-toxigenic species such as A. tubingensis, A. brasiliensis, A vadensis or A. acidus, which neither produce fumonisins nor ochratoxins.

  3. Cascade use indicators for selected biopolymers: Are we aiming for the right solutions in the design for recycling of bio-based polymers?

    Science.gov (United States)

    Hildebrandt, Jakob; Bezama, Alberto; Thrän, Daniela

    2017-01-01

    When surveying the trends and criteria for the design for recycling (DfR) of bio-based polymers, priorities appear to lie in energy recovery at the end of the product life of durable products, such as bio-based thermosets. Non-durable products made of thermoplastic polymers exhibit good properties for material recycling. The latter commonly enjoy growing material recycling quotas in countries that enforce a landfill ban. Quantitative and qualitative indicators are needed for characterizing progress in the development towards more recycling friendly bio-based polymers. This would enable the deficits in recycling bio-based plastics to be tracked and improved. The aim of this paper is to analyse the trends in the DfR of bio-based polymers and the constraints posed by the recycling infrastructure on plastic polymers from a systems perspective. This analysis produces recommendations on how life cycle assessment indicators can be introduced into the dialogue between designers and recyclers in order to promote DfR principles to enhance the cascading use of bio-based polymers within the bioeconomy, and to meet circular economy goals.

  4. Biobased lubricants via ruthenium catalysis

    Science.gov (United States)

    The development of effective lubricants from natural oils is an ongoing mission. A few of the efforts have led to some promise, but many others have led elsewhere. An alternative approach to the direct use of natural oils may be needed. The drop-in replacement strategy allows industry to utilize mon...

  5. Factors affecting the dairy industry's products export in Iran

    Directory of Open Access Journals (Sweden)

    Aazam Yazdaninasab

    2016-09-01

    Full Text Available Export dairy products as an important part of non-oil exports can play an important role in improving the economic situation of Iran. Therefore, in this study factors affecting the exports of dairy products in the period 2002-2014 will be discussed. The results indicate a trend of increasing exports of dairy products during the 13 year study. This reflects the fact that the dairy industry of great potential capacity to provide part of the non-oil revenues in the agricultural subsector. In this study, the dependent variable was the amount of exports of dairy products. Independent variables included: investment in large dairy factories, the price of goods and services consumed by this sector, GDP, exchange rate, export prices for dairy products. The results showed that the effect of all independent variables on the dependent variable is positive and rising: such as investment and exchange rate. So that with an increase of 10 percent each of the indicators the country's exports of dairy products will be increase. The original proposal of the present study is: the use of policies and financial instruments and non-financial, such as paying attention to the comparative advantages of export, focusing on the right target export markets in order to support the country's dairy industry to increase production and exports.

  6. Synthesis of bio-based building blocks from vegetable oils: a platform chemicals approach

    Directory of Open Access Journals (Sweden)

    Desroches Myriam

    2013-01-01

    Full Text Available This review reports the synthesis of various building blocks from vegetable oils in one or two-steps syntheses. Thiol-ene coupling allows to synthesize new biobased reactants with various function and functionality with reaction conditions in agreement with green chemistry principles: it does not use neither solvent nor initiator or need simple purification step, feasible at industrial scale. Esterification and amidification were also used to insert ester or amide groups in fatty chains in order to modifiy properties of thereof synthesized polymers. Building blocks synthesized have various functions and functionality: polyols, polyacids, polyamines and dicyclocarbonates from vegetable oils and from glycerine derivatives. They were used for the synthesis of biobased polyurethanes, polyhydroxyurethanes and epoxy resins.

  7. GGDC Productivity Level Database : International Comparisons of Output, Inputs and Productivity at the Industry Level

    NARCIS (Netherlands)

    Inklaar, Robert; Timmer, Marcel P.

    2008-01-01

    In this paper we introduce the GGDC Productivity Level database. This database provides comparisons of output, inputs and productivity at a detailed industry level for a set of thirty OECD countries. It complements the EU KLEMS growth and productivity accounts by providing comparative levels and fol

  8. Biosurfactants' Production from Renewable Natural Resources: Example of Innovativeand Smart Technology in Circular Bioeconomy

    Science.gov (United States)

    Satpute, Surekha K.; Płaza, Grażyna A.; Banpurkar, Arun G.

    2017-03-01

    A strong developed bio-based industrial sector will significantly reduce dependency on fossil resources, help the countries meet climate change targets, and lead to greener and more environmental friendly growth. The key is to develop new technologies to sustainably transform renewable natural resources into bio-based products and biofuels. Biomass is a valuable resource and many parameters need to be taken in to account when assessing its use and the products made from its. The bioeconomy encompass the production of renewable biological resources and their conversion into food, feed and bio-based products (chemicals, materials and fuels) via innovative and efficient technologies provided by industrial biotechnology. The paper presents the smart and efficient way to use the agro-industrial, dairy and food processing wastes for biosurfactant's production. Clarification processes are mandatory to use the raw substrates for microbial growth as well as biosurfactant production for commercial purposes. At the same time it is very essential to retain the nutritional values of those cheap substrates. Broad industrial perspectives can be achieved when quality as well as the quantity of the biosurfactant is considered in great depth. Since substrates resulting from food processing, dairy, animal fat industries are not explored in great details; and hence are potential areas which can be explored thoroughly.

  9. BIOSURFACTANTS’ PRODUCTION FROM RENEWABLE NATURAL RESOURCES: EXAMPLE OF INNOVATIVEAND SMART TECHNOLOGY IN CIRCULAR BIOECONOMY

    Directory of Open Access Journals (Sweden)

    Surekha K. SATPUTE

    2017-01-01

    Full Text Available A strong developed bio-based industrial sector will significantly reduce dependency on fossil resources, help the coun-tries meet climate change targets, and lead to greener and more environmental friendly growth. The key is to develop new technologies to sustainably transform renewable natural resources into bio-based products and biofuels. Biomass is a valuable resource and many parameters need to be taken in to account when assessing its use and the products made from its. The bioeconomy encompass the production of renewable biological resources and their conversion into food, feed and bio-based products (chemicals, materials and fuels via innovative and efficient technologies provided by indus-trial biotechnology. The paper presents the smart and efficient way to use the agro-industrial, dairy and food processing wastes for biosurfactant’s production. Clarification processes are mandatory to use the raw substrates for microbial growth as well as biosurfactant production for commercial purposes. At the same time it is very essential to retain the nutritional values of those cheap substrates. Broad industrial perspectives can be achieved when quality as well as the quantity of the biosurfactant is considered in great depth. Since substrates resulting from food processing, dairy, animal fat industries are not explored in great details; and hence are potential areas which can be explored thoroughly.

  10. Experimental Measurements of Journal Bearing Friction Using Mineral, Synthetic, and Bio-Based Lubricants

    Directory of Open Access Journals (Sweden)

    Pantelis G. Nikolakopoulos

    2015-04-01

    Full Text Available The environmental impact of many industrial and naval applications is becoming increasingly important. Journal bearings are crucial components related with the reliable, safe and environmentally friendly operation of rotating machinery in many applications, e.g., in hydroplants, ships, power generation stations. The maintenance activities in certain cases also have considerable environmental impact. Fortunately, it is relatively easy to reduce the impact by changing the way lubricants are being used. Selecting the proper lubricant is important to sharply reduce long-term costs. The best-fit product selection can mean longer lubricant life, reduced machine wear, reduced incipient power losses and improved safety. Suitable basestocks and additives reduce environmental impact. In this paper, three types of lubricants are used in order to examine their effects on the tribological behavior of journal bearings. A mineral oil, a synthetic oil and a bio-based lubricant are experimentally and analytically examined for several configurations of load and journal rotational velocity. The friction forces and the hydrodynamic friction coefficients are calculated and compared. This investigation can assist the correct choice of lubricant in journal bearings with minimized environmental footprint.

  11. Products Depend on Creative Potential: A Comment on the Productivist Industrial Model of Knowledge Production

    Science.gov (United States)

    Runco, Mark A.

    2010-01-01

    Ghassib (2010) presents a provocative view of science as industry. He ties science specifically to a "productivist" industrial model and to knowledge production. If judged based on what is explicit in this article, his theory is useful and logical. There are, however, several concerns as well. Some of these are implied by the title of his article,…

  12. Investigation of tribological properties of biobased polymers and polymeric composites

    Science.gov (United States)

    Bhuyan, Satyam Kumar

    Worldwide potential demands for replacing petroleum derived raw materials with renewable plant-based ones in the production of valuable polymeric materials and composites are quite significant from the social and environmental standpoints. Therefore, using low-cost renewable resources has deeply drawn the attention of many researchers. Among them, natural oils are expected to be ideal alternative feedstock since oils, derived from plant and animal sources, are found in profusion in the world. The important feature of these types of materials is that they can be designed and tailored to meet different requirements. The real challenge lies in finding applications which would use sufficiently large quantities of these materials allowing biodegradable polymers to compete economically in the market. Lack of material and tribological characterizations have created an awareness to fulfill this essential objective. In order to understand the viability of biobased polymers in structural applications, this thesis work elucidates the study of friction and wear characteristics of polymers and polymeric composites made out of natural oil available profusely in plants and animals. The natural oils used in this study were soybean and tung oil. Various monomeric components like styrene, divinely benzene etc. were used in the synthesis of biobased polymers through Rh-catalyzed isomerization techniques. For the different polymeric composites, spent germ, a byproduct of ethanol production, is used as the filler and an organoclay called montmorillonite is used as the reinforcing agent in the polymer matrix. The effect of crosslinker concentration, filler composition and reinforcement agent concentration was studied under dry sliding. A ball-on-flat tribometer with a probe made out of steel, silicon nitride or diamond was used for most of the experimental work to measure friction and generate wear. The wear tracks were quantified with an atomic force microscope and a contact

  13. DETECTING VERTICAL INTRA-INDUSTRY TRADE IN CULTURAL PRODUCTS

    Directory of Open Access Journals (Sweden)

    Affortunato Francesca

    2012-12-01

    Full Text Available The European integration process has always since markedly characterized by the increasing incidence of Intra-Industry Trade. This has been theoretically justified on the grounds of the new approaches emerging in international trade literature, based on imperfect competition and differentiated products. In recent years another distinctive economic feature of European Union is the importance gained by the so called “cultural and creative sectors”, which are often studied and monitored by reports for their great growth potential. We provide here a systematic decomposition of world trade in “cultural/creative goods” for the year 2009 (using harmonised bilateral flows for some 213 products defined as “cultural products” by UNESCO, 2009 into three trade types: inter-industry, intra-industry (IIT in horizontally versus vertically differentiated products. We show that the world trade in cultural goods is significantly characterised by two-way trade of vertically differentiated products. Moreover we specifically focus on the Italian peculiarities in the “cultural trade”: therefore we first work out which ones of the world countries are the “top exporters” of these categories of products and then we compute an indicator of the Italian goods’ quality relative to each of these competitors. Not surprisingly, we find that the most important bilateral IIT intensities in cultural products are observed in Europe. However the presence of developing countries is not unimportant. This can be explained partly to as a consequence of the increasing level of trade integration among some Asian countries and as a consequence of an increasing despecialization of firstly industrialized countries in the production and trading of these products. Finally, with reference to the relative quality of Italian cultural products compared with that of the other top-exporters in these sectors, we find that Italian

  14. Industrial production of insulators using isostatic compaction method

    Energy Technology Data Exchange (ETDEWEB)

    Drugoveiko, O.P.; Ermolaeva, L.V.; Koren' , M.G.; Kreimer, B.D.; Panichev, G.I.; Ponomarev, A.P.; Rutkovskii, V.N.

    1985-07-01

    The process of shaping ceramic products from powders using isostatic compaction method is finding increasing industrial application. The production of electrical-engineering porcelain using isostatic compaction method is, according to the authors, a promising direction since this method permits one to obtain large and complex shaped products having uniform density distribution. The authors introduce an automatic isostatic compaction line at the ''Proletarii'' Factory for the production of the IOS-110-20000UKhL, T1 type insulators having the described dimensions. According to the technological process developed at the ''Elektrokeramika'' Production Complex, insulators were manufactured on the isostatic compaction line from the G-33 mass. Presspowder having a moisture content of 0.3-0.6% and a particle size of 90-160 micrometers was obtained in a spray dryer using disk spraying. The authors studied saturability by moisture of the powder obtained.

  15. 78 FR 32667 - Draft Guidance for Industry on Rheumatoid Arthritis: Developing Drug Products for Treatment...

    Science.gov (United States)

    2013-05-31

    ... HUMAN SERVICES Food and Drug Administration Draft Guidance for Industry on Rheumatoid Arthritis... guidance for industry entitled ``Rheumatoid Arthritis: Developing Drug Products for Treatment.'' This... products developed as drug-device combination products. This guidance revises the guidance for...

  16. 生物基聚氨酯的研究进展%Research Progress on Bio-based Polyurethane

    Institute of Scientific and Technical Information of China (English)

    赵鑫

    2016-01-01

    Bio-based polyurethane ( PU) has been used extensively from last few decades and replaced petrochemical based coating due to their lower environmental impact, easy availability, low cost and biodegradability. Bio-derived material, such as vegetable oils, cashew nut shell liquid ( CNSL), terpene, eucalyptus tar and other bio-renewable sources, constitutes a rich source of precursors for the synthesis of polyols and isocynates which are being considered for the production of “greener” PU. Various chemical modifications of bio-based precursors, synthesis of various PU from these modified materials. The technological and future challenges were discussed in bringing these materials to a wide range of applications, together with potential solutions, the major industry players who were bringing these materials to the market were also discussed.%近年来,随着化石能源的短缺以及环保意识的提高,由于生物基聚氨酯具有来源绿色、价廉易得和易于降解,得到了越来越多的关注。植物油、腰果壳油、萜烯类、桉溚以及其他的生物基可再生材料是合成多元醇、聚氰酸酯的最重要的原料,而多元醇和聚氰酸酯则可用来合成聚氨酯前体。对聚氨酯生物基前体进行不同的化学修饰,就能得到不同类型的聚氨酯。本文对合成聚氨酯的不同的生物基材料进行了总结,并探讨了其应用前景及缺陷。

  17. The Productivity Analysis of Chennai Automotive Industry Cluster

    Science.gov (United States)

    Bhaskaran, E.

    2014-07-01

    Chennai, also called the Detroit of India, is India's second fastest growing auto market and exports auto components and vehicles to US, Germany, Japan and Brazil. For inclusive growth and sustainable development, 250 auto component industries in Ambattur, Thirumalisai and Thirumudivakkam Industrial Estates located in Chennai have adopted the Cluster Development Approach called Automotive Component Cluster. The objective is to study the Value Chain, Correlation and Data Envelopment Analysis by determining technical efficiency, peer weights, input and output slacks of 100 auto component industries in three estates. The methodology adopted is using Data Envelopment Analysis of Output Oriented Banker Charnes Cooper model by taking net worth, fixed assets, employment as inputs and gross output as outputs. The non-zero represents the weights for efficient clusters. The higher slack obtained reveals the excess net worth, fixed assets, employment and shortage in gross output. To conclude, the variables are highly correlated and the inefficient industries should increase their gross output or decrease the fixed assets or employment. Moreover for sustainable development, the cluster should strengthen infrastructure, technology, procurement, production and marketing interrelationships to decrease costs and to increase productivity and efficiency to compete in the indigenous and export market.

  18. Risk Management for New Product Development Projects in Food Industry

    Directory of Open Access Journals (Sweden)

    Porananond, D.

    2014-07-01

    Full Text Available Project risk management provides a guideline for decision making in new product development (NPD projects, reducing uncertainty and increasing success rate. However, the acceptance of formal risk management applications in industry, especially for NPD projects is still in question. A study of a food conglomerate in Thailand found that only 9% of NPD projects used a systematic approach for managing risk. 61% of the projects realised the importance of risk management, while the remaining 30% did not involve risk management at all. This study aims to develop a risk management model for NPD projects in the food industry. The first section of this paper reviews the literature on risk management theory, including international standards for risk and project management (ISO31000 and ISO21500, publications for the Project Management Body of Knowledge (PMBOK, by a professional organisation the Project Management Institute (PMI, and also academic research. 182 academic papers, published between January 2002 and August 2012 were selected. The second part interviews conducted with eight NPD experts from five of the major food manufacturers in Thailand to examine their risk management practices and problems. Conclusions are made on five topics : classification of research method, project type and industrial segment, distribution of articles by region, tools & techniques for risk management and risk factors in projects. Specific requirements of risk management for NPD projects in the food industry are identified. A risk management model and the concept of risk management applications for the food industry are proposed.

  19. Dedicated Industrial Oilseed Crops as Metabolic Engineering Platforms for Sustainable Industrial Feedstock Production

    Science.gov (United States)

    Zhu, Li-Hua; Krens, Frans; Smith, Mark A.; Li, Xueyuan; Qi, Weicong; van Loo, Eibertus N.; Iven, Tim; Feussner, Ivo; Nazarenus, Tara J.; Huai, Dongxin; Taylor, David C.; Zhou, Xue-Rong; Green, Allan G.; Shockey, Jay; Klasson, K. Thomas; Mullen, Robert T.; Huang, Bangquan; Dyer, John M.; Cahoon, Edgar B.

    2016-01-01

    Feedstocks for industrial applications ranging from polymers to lubricants are largely derived from petroleum, a non-renewable resource. Vegetable oils with fatty acid structures and storage forms tailored for specific industrial uses offer renewable and potentially sustainable sources of petrochemical-type functionalities. A wide array of industrial vegetable oils can be generated through biotechnology, but will likely require non-commodity oilseed platforms dedicated to specialty oil production for commercial acceptance. Here we show the feasibility of three Brassicaceae oilseeds crambe, camelina, and carinata, none of which are widely cultivated for food use, as hosts for complex metabolic engineering of wax esters for lubricant applications. Lines producing wax esters >20% of total seed oil were generated for each crop and further improved for high temperature oxidative stability by down-regulation of fatty acid polyunsaturation. Field cultivation of optimized wax ester-producing crambe demonstrated commercial utility of these engineered crops and a path for sustainable production of other industrial oils in dedicated specialty oilseeds. PMID:26916792

  20. Dedicated Industrial Oilseed Crops as Metabolic Engineering Platforms for Sustainable Industrial Feedstock Production.

    Science.gov (United States)

    Zhu, Li-Hua; Krens, Frans; Smith, Mark A; Li, Xueyuan; Qi, Weicong; van Loo, Eibertus N; Iven, Tim; Feussner, Ivo; Nazarenus, Tara J; Huai, Dongxin; Taylor, David C; Zhou, Xue-Rong; Green, Allan G; Shockey, Jay; Klasson, K Thomas; Mullen, Robert T; Huang, Bangquan; Dyer, John M; Cahoon, Edgar B

    2016-02-26

    Feedstocks for industrial applications ranging from polymers to lubricants are largely derived from petroleum, a non-renewable resource. Vegetable oils with fatty acid structures and storage forms tailored for specific industrial uses offer renewable and potentially sustainable sources of petrochemical-type functionalities. A wide array of industrial vegetable oils can be generated through biotechnology, but will likely require non-commodity oilseed platforms dedicated to specialty oil production for commercial acceptance. Here we show the feasibility of three Brassicaceae oilseeds crambe, camelina, and carinata, none of which are widely cultivated for food use, as hosts for complex metabolic engineering of wax esters for lubricant applications. Lines producing wax esters >20% of total seed oil were generated for each crop and further improved for high temperature oxidative stability by down-regulation of fatty acid polyunsaturation. Field cultivation of optimized wax ester-producing crambe demonstrated commercial utility of these engineered crops and a path for sustainable production of other industrial oils in dedicated specialty oilseeds.

  1. BUSINESS CLIMATE INDICATOR AS A PREDICTOR OF CROATIAN INDUSTRIAL PRODUCTION

    Directory of Open Access Journals (Sweden)

    Mirjana Čižmešija

    2010-12-01

    Full Text Available Business and Consumer Surveys (BCS are one of the most frequently used tools to assess economy’s cyclical behavior. Croatia has been conducting the surveys continually since 1995. Nevertheless, there is still a research niche in the Croatian BCS framework that has not been adequately represented. The Joint Harmonised EU Programme of Business and Consumer Surveys suggests Business Climate Indicator (BCI as a composite leading indicator of the economy as a whole. In accordance to the EU methodology, this paper examines managers’ qualitative assessments on five important variables related to their economic environment. Using factor analysis one factor was extracted from those five variables, representing the BCI. It’s predictive properties were analyzed with regards to Croatian industrial production using Granger causality test, impulse response and variance decomposition analysis. Results strongly confirm the precedence of BCI to the changes of Croatian industrial production, validating the importance of its introduction and utilization in Croatian economic cycles analysis.

  2. Benefits of nitrogen for food, fibre and industrial production

    DEFF Research Database (Denmark)

    Jensen, L S; Schjoerring, J K; van der Hoek, K W

    2011-01-01

    Nature of the issue • Reactive nitrogen (N r ) has well-documented positive effects in agricultural and industrial production systems, human nutrition and food security. Limited N r supply was a key constraint to European food and industrial production, which has been overcome by N r from the Haber–Bosch...... value of N benefi ts to the European economy is very substantial. Almost half of the global food can be produced because of N r from the Haber–Bosch, and cereal yields in Europe without fertilizer would only amount to half to two-thirds of those with fertilizer application at economically optimal rates...... to achieve this via N-conserving field practices such as catch crops, reduced soil tillage, better estimation of crop N requirements and improved timing and placement of N inputs. Also modifications to livestock diets, enhanced recycling of livestock wastes, prevention of ammonia loss from animal housing...

  3. Nanotechnology for the Forest Products Industry Vision and Technology Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    Atalla, Rajai [USDA Forest Service, Washington, DC (United States); Beecher, James [USDA Forest Service, Washington, DC (United States); Caron, Robert [Technical Association of the Pulp and Paper Industry, Peachtree Corners, GA (United States); Catchmark, Jeffrey [Pennsylvania State Univ., State College, PA (United States); Deng, Yulin [Georgia Inst. of Technology, Atlanta, GA (United States); Glasser, Wolfgang [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Gray, Derek [McGill Univ., Montreal, QC (Canada); Haigler, Candace [North Carolina State Univ., Raleigh, NC (United States); Jones, Philip [Imerys, Paris (France); Joyce, Margaret [Western Michigan Univ., Kalamazoo MI (United States); Kohlman, Jane [USDA Forest Service, Washington, DC (United States); Koukoulas, Alexander [Technical Association of the Pulp and Paper Industry, Peachtree Corners, GA (United States); Lancaster, Peter [Weyerhaeuser Company, Longview, WA (United States); Perine, Lori [American Forest and Paper Association, Washington, DC (United States); Rodriguez, Augusto [Georgia-Pacific Corporation, Atlanta, GA (United States); Ragauskas, Arthur [Georgia Inst. of Technology, Atlanta, GA (United States); Wegner, Theodore [USDA Forest Service, Washington, DC (United States); Zhu, Junyong [USDA Forest Service, Washington, DC (United States)

    2005-03-01

    A roadmap for Nanotechnology in the Forest Products Industries has been developed under the umbrella of the Agenda 2020 program overseen by the CTO committee. It is expected that the use of new analytical techniques and methodologies will allow us to understand the complex nature of wood based materials and allow the dramatically enhanced use of the major strategic asset the US has in renewable, recyclable resources based on its well managed Forests.

  4. Robust control charts in industrial production of olive oil

    Science.gov (United States)

    Grilo, Luís M.; Mateus, Dina M. R.; Alves, Ana C.; Grilo, Helena L.

    2014-10-01

    Acidity is one of the most important variables in the quality analysis and characterization of olive oil. During the industrial production we use individuals and moving range charts to monitor this variable, which is not always normal distributed. After a brief exploratory data analysis, where we use the bootstrap method, we construct control charts, before and after a Box-Cox transformation, and compare their robustness and performance.

  5. Biobased greases: soap structure and composition effects on tribological properties

    Science.gov (United States)

    A review containing 58 references on bio-based grease. Bio-based grease use is limited but a successful part of the lubricant market and will likely grow considerably due to economic, environmental and legislative factors. There is not one formulation of grease or grease thickener that will be suc...

  6. 76 FR 43808 - Designation of Biobased Items for Federal Procurement

    Science.gov (United States)

    2011-07-22

    ... simply dilute the microbiological active ingredient is a logical response to USDA's contemplated biobased... content and its profile against environmental and health measures and life-cycle costs (the ASTM Standard... biobased hydraulic fluid is to be used to address a Federal agency's certain environmental or...

  7. Implementing total productive maintenance in Nigerian manufacturing industries

    Energy Technology Data Exchange (ETDEWEB)

    Eti, M.C. [Rivers State University of Science and Technology, Port Harcourt (Nigeria). Mechanical Engineering Department; Ogaji, S.O.T.; Probert, S.D. [Cranfield University, Bedfordshire (United Kingdom). School of Engineering

    2004-12-01

    Remarkable improvements have occurred recently in the maintenance management of physical assets and productive systems, so that less wastages of energy and resources occur. The requirement for optimal preventive maintenance, using, for instance, just-in-time (JIT) and total quality-management (TQM) techniques, has given rise to what has been called the total productive-maintenance (TPM) approach. This study explores the ways in which Nigerian manufacturing industries can implement TPM as a strategy and culture for improving its performance and suggests self-auditing and bench-marking as desirable prerequisites before TPM implementation. (author)

  8. Applied TRIZ in Improving Productivity in Textile Industry

    Directory of Open Access Journals (Sweden)

    Ahmad Aminah

    2017-01-01

    Full Text Available TRIZ is a methodology and a collection of problem solving tools and strategies that has been used in many other fields. Therefore, this paper proposes TRIZ method for improving the productivity in a textile industry. It focuses at the packing department in a textile company situated in Malaysia. The process was monitored and the problem was observed. TRIZ method is applied in this problem using Functional Analysis and trimming method. A comparison between before and after implementation is done in order to evaluate the productivity effectiveness.

  9. Phenotypic evaluation of natural and industrial Saccharomyces yeasts for different traits desirable in industrial bioethanol production.

    Science.gov (United States)

    Mukherjee, Vaskar; Steensels, Jan; Lievens, Bart; Van de Voorde, Ilse; Verplaetse, Alex; Aerts, Guido; Willems, Kris A; Thevelein, Johan M; Verstrepen, Kevin J; Ruyters, Stefan

    2014-11-01

    Saccharomyces cerevisiae is the organism of choice for many food and beverage fermentations because it thrives in high-sugar and high-ethanol conditions. However, the conditions encountered in bioethanol fermentation pose specific challenges, including extremely high sugar and ethanol concentrations, high temperature, and the presence of specific toxic compounds. It is generally considered that exploring the natural biodiversity of Saccharomyces strains may be an interesting route to find superior bioethanol strains and may also improve our understanding of the challenges faced by yeast cells during bioethanol fermentation. In this study, we phenotypically evaluated a large collection of diverse Saccharomyces strains on six selective traits relevant for bioethanol production with increasing stress intensity. Our results demonstrate a remarkably large phenotypic diversity among different Saccharomyces species and among S. cerevisiae strains from different origins. Currently applied bioethanol strains showed a high tolerance to many of these relevant traits, but several other natural and industrial S. cerevisiae strains outcompeted the bioethanol strains for specific traits. These multitolerant strains performed well in fermentation experiments mimicking industrial bioethanol production. Together, our results illustrate the potential of phenotyping the natural biodiversity of yeasts to find superior industrial strains that may be used in bioethanol production or can be used as a basis for further strain improvement through genetic engineering, experimental evolution, or breeding. Additionally, our study provides a basis for new insights into the relationships between tolerance to different stressors.

  10. An Explanatory Study of Lean Practices in Job Shop Production/ Special Job Production/ Discrete Production/ Batch Shop Production Industries

    Directory of Open Access Journals (Sweden)

    Lavlesh Kumar Sharma

    2014-05-01

    Full Text Available In this paper, the study explores the benefits and advantages of Lean Practices or Lean Thinking in Job shop production/ Special job production/ Discrete production/ Batch shop production industries. The Lean Practices have been applied more compatible in Job shop production than in the continuous/ mass production because of several barriers and hurdles in the industrial context that influence the whole processes again and again, this happens due to the lack of knowledge about the wastes during the production of a variety of jobs or discrete manufacturing. This paper provides the guidelines to adopt and mentions to become Lean. In variety of production, it is very difficult to find out all the wastes during the processes from input to desired output, thus Lean techniques may be most suitable to minimize the wastage, time, inventory and assist to improve quality and become economical. These wastes may be managed by means of several Lean principles and techniques available. This paper gives a brief introduction of VSM, in order to recognize the opportunities for the various lean techniques, VSM is the main tool, especially it is used to observe the wastes and time spoilage through knowledge management.

  11. Food Safety Practices in the Egg Products Industry.

    Science.gov (United States)

    Viator, Catherine L; Cates, Sheryl C; Karns, Shawn A; Muth, Mary K; Noyes, Gary

    2016-07-01

    We conducted a national census survey of egg product plants (n = 57) to obtain information on the technological and food safety practices of the egg products industry and to assess changes in these practices from 2004 to 2014. The questionnaire asked about operational and sanitation practices, microbiological testing practices, food safety training for employees, other food safety issues, and plant characteristics. The findings suggest that improvements were made in the industry's use of food safety technologies and practices between 2004 and 2014. The percentage of plants using advanced pasteurization technology and an integrated, computerized processing system increased by almost 30 percentage points. Over 90% of plants voluntarily use a written hazard analysis and critical control point (HACCP) plan to address food safety for at least one production step. Further, 90% of plants have management employees who are trained in a written HACCP plan. Most plants (93%) conduct voluntary microbiological testing. The percentage of plants conducting this testing on egg products before pasteurization has increased by almost 30 percentage points since 2004. The survey findings identify strengths and weaknesses in egg product plants' food safety practices and can be used to guide regulatory policymaking and to conduct required regulatory impact analysis of potential regulations.

  12. My 2030s. Citizens about the Biobased Economy; My 2030s. Burgers over de Biobased Economy

    Energy Technology Data Exchange (ETDEWEB)

    Van den Berg, N.; Hulshof, M.; Van der Veen, M.

    2013-02-15

    My 2030s is the first qualitative study of the needs and concerns of citizens about the Biobased Economy, an economy in which fossil fuels are largely substituted by vegetable alternatives. This final report describes the reason and purpose of My 2030s, the course of the public debates and the results of research into ideas of citizens on the Biobased Economy The report concludes with recommendations on how the stakeholders can actively involve citizens in one of the major transitions of the next century [Dutch] My 2030s is het eerste kwalitatieve onderzoek naar de wensen en zorgen van burgers over de Biobased Economy, een economie waarin fossiele grondstoffen grotendeels zijn vervangen door plantaardige alternatieven. Dit eindrapport beschrijft de aanleiding en opzet van My 2030s, het verloop van de publieksdebatten en de resultaten van het onderzoek naar denkbeelden van burgers over de Biobased Economy. Het rapport eindigt met aanbevelingen over hoe de stakeholders burgers actief kunnen betrekken bij een van de belangrijkste transities van de komende eeuw.

  13. Cleaner production at pharmaceutical industry: first steps assessment

    Directory of Open Access Journals (Sweden)

    Edilaine Conceição Rezende

    2015-12-01

    Full Text Available The Cleaner Production (CP is an environmental management system effective to comply the environmental obligations and promote sustainable development of enterprises. In this study, the implementing possibilities of CP practices were evaluated to pharmaceutical industry, through prior identification procedures for Pharmaceutical Manufacturing Practices. The study was conducted in a scientific and health care institution, which produces pharmaceutical drugs and makes assistance for public health. The production process was evaluated and made a survey of the main points of waste and sewage generations in each stage, in order to diagnose the measures of CP established and propose new actions. Thus, by using this tool, it was possible to demonstrate the reduction of environmental impacts associated with pharmaceutical production. The Pharmaceutical Manufacturing Practices also contributed to the implementation of measures CP, preserving the final product quality, and generating environmental and economic benefits.

  14. [Example of product development by industry and research solidarity].

    Science.gov (United States)

    Seki, Masayoshi

    2014-01-01

    When the industrial firms develop the product, the research result from research institutions is used or to reflect the ideas from users on the developed product would be significant in order to improve the product. To state the software product which developed jointly as an example to describe the adopted development technique and its result, and to consider the modality of the industry solidarity seen from the company side and joint development. The software development methods have the merit and demerit and necessary to choose the optimal development technique by the system which develops. We have been jointly developed the dose distribution browsing software. As the software development method, we adopted the prototype model. In order to display the dose distribution information, it is necessary to load four objects which are CT-Image, Structure Set, RT-Plan, and RT-Dose, are displayed in a composite manner. The prototype model which is the development technique was adopted by this joint development was optimal especially to develop the dose distribution browsing software. In a prototype model, since the detail design was created based on the program source code after the program was finally completed, there was merit on the period shortening of document written and consist in design and implementation. This software eventually opened to the public as an open source. Based on this developed prototype software, the release version of the dose distribution browsing software was developed. Developing this type of novelty software, it normally takes two to three years, but since the joint development was adopted, it shortens the development period to one year. Shortening the development period was able to hold down to the minimum development cost for a company and thus, this will be reflected to the product price. The specialists make requests on the product from user's point of view are important, but increase in specialists as professionals for product

  15. Fixed bed gasification for production of industrial fuel gas

    Energy Technology Data Exchange (ETDEWEB)

    1977-10-01

    This report summarizes the results of technical and economic evaluations of six commercially available, fixed-bed coal gasification processes for the production of industrial fuel gas. The study was performed for DOE and is intended to assist industrial companies in exploring the feasibility of producing gaseous fuels for both retrofit and new industrial plant situations. The report includes a technical analysis of the physical configuration, performance capabilities, and commercial experiments to-date for both air-blown and oxygen-blown fixed bed gasifiers. The product gas from these gasifiers is analyzed economically for three different degrees of cleanliness: (1) hot raw gas, (2) dust-, tar-, and oil-free gas, and (3) dust-, tar-, oil-free and desulfurized gas. The evaluations indicate that low-Btu gases produced from fixed bed gasifiers constitute one of the most logical short-term solutions for helping ease the shortage of natural gas for industrial fuel applications because the technology is well-proven and has been utilized on a commercial scale for several decades both in this country and overseas; time from initiation of design to commercial operation is about two years; the technology is not complicated to construct, operate, or maintain; and a reliable supply of product gas can be generated on-site. The advantages and disadvantages of fixed bed gasification technology are listed. The cost of the low Btu gas is estimated at $2 to $4 per MM Btu depending on gas purity, cost of coal ($20 to $50 per ton) and a number of specified assumptions with respect to financing, reliability, etc. (LTN)

  16. Opportunities, perspectives and limits in lactic acid production from waste and industrial by-products

    Directory of Open Access Journals (Sweden)

    Mladenović Dragana D.

    2016-01-01

    Full Text Available In line with the goals of sustainable development and environmental protection today great attention is directed towards new technologies for waste and industrial by-products utilization. Waste products represent potentially good raw material for production other valuable products, such as bioethanol, biogas, biodiesel, organic acids, enzymes, microbial biomass, etc. Since the first industrial production to the present, lactic acid has found wide application in food, cosmetic, pharmaceutical and chemical industries. In recent years, the demand for lactic acid has been increasing considerably owing to its potential use as a monomer for the production of poly-lactic acid (PLA polymers which are biodegradable and biocompatible with wide applications. Waste and industrial by-products such are whey, molasses, stillage, waste starch and lignocellulosic materials are a good source of fermentable sugars and many other substances of great importance for the growth of microorganisms, such as proteins, minerals and vitamins. Utilization of waste products for production of lactic acid could help to reduce the total cost of lactic acid production and except the economic viability of the process offers a solution of their disposal. Fermentation process depends on chemical and physical nature of feedstocks and the lactic acid producer. This review describes the characteristics, abilities and limits of microorganisms involved in lactic acid production, as well as the characteristics and types of waste products for lactic acid production. The fermentation methods that have been recently reported to improve lactic acid production are summarized and compared. In order to improve processes and productivity, fed-batch fermentation, fermentation with immobilized cell systems and mixed cultures and opportunities of open (non-sterilized fermentation have been investigated.

  17. The feasibility of biodiesel production by microalgae using industrial wastewater.

    Science.gov (United States)

    Wu, Li Fen; Chen, Pei Chung; Huang, Ai Ping; Lee, Chi Mei

    2012-06-01

    This study investigated nitrogen and phosphorus assimilation and lipid production of microalgae in industrial wastewater. Two native strains of freshwater microalgae were evaluated their biomass growth and lipid production in modified BBM medium. Chlamydomonas sp. TAI-2 had better biomass growth and higher lipid production than Desmodesmus sp.TAI-1. The optimal growth and lipid accumulation of Chlamydomonas sp. TAI-2 were tested under different nitrogen sources, nitrogen and CO(2) concentrations and illumination period in modified BBM medium. The optimal CO(2) aeration was 5% for Chlamydomonas sp. TAI-2 to achieve maximal lipid accumulation under continuous illumination. Using industrial wastewater as the medium, Chlamydomonas sp. TAI-2 could remove 100% NH(4)(+)-N (38.4 mg/L) and NO(3)(-)-N (3.1mg/L) and 33% PO(4)(3-)-P (44.7 mg/L) and accumulate the lipid up to 18.4%. Over 90% of total fatty acids were 14:0, 16:0, 16:1, 18:1, and 18:3 fatty acids, which could be utilized for biodiesel production.

  18. INTEGRATED PRODUCTION SYSTEMS OF AGRO-INDUSTRIAL COMPLEX

    Directory of Open Access Journals (Sweden)

    Loyko V. I.

    2015-11-01

    Full Text Available This article is devoted to consideration of questions of agro-industrial integration. Agro-industrial complex is a difficult dynamic system, including different branches of a national economy. In this work, the scheme of agro-enterprise functioning is submitted. The scheme was constructed with use of so-called “black box” model. The agro-enterprise significantly differs from the enterprises of other branches by a number of signs of. It is connected with the fact that agricultural production is characterized by high degree of uncertainty. Tasks of the uncertainty analysis, and, as a result, different risks of the agroenterprises are actual. Development of the effective mechanism of risk management is also an important task. In this article, the features of risk classification in agroindustrial complex, including the specific risks, are considered. The agroenterprises actively use integration mechanisms for decrease of possible consequences of a risk event. There are vertical and horizontal integration. Structures of the integrated agro-industrial production systems, which construct taking into account vertical and horizontal communications, are considered in this article. The most effective is vertically matrix integration in which the diversification mechanism of business is considered. The feasibility of the risk assessment with due regard for integration communications is proved

  19. Evaluation of total productivity growth of production factors in industries of Iran

    Directory of Open Access Journals (Sweden)

    Mahmodzadeh Mahmod

    2016-06-01

    Full Text Available Economists try to develop some models to investigate the relationship between economic growth and production growth in different sectors. This study has been conducted with this question that what is portion of technological promotion, technical efficiency and allocated efficiency and effects of scale in productivity growth of production factors in Iran industries in rows 15-36 of ISIC classification and with the hypothesis that effects of scale are the most important drivers of total productivity growth of production factors in these industries. Previous studies had considered two factors of technological promotion and technical efficiency, in addition to 4 above mentioned factors. Time scope of the study is 2000-2007. Production function used in this study is Tran slog and the estimations have been analyzed using Frontier 4.1 and Reviews software using Panel Data. Obtained results from the study show that in Iranian factory industries, technologic promotion is the only factor for productivity growth. Moreover, it is possible to increase production capacity to 24.3% in factory industries.

  20. Systems of attitudes towards production in the pork industry

    DEFF Research Database (Denmark)

    Sørensen, Bjarne Taulo; Dutra de Barcellos, Marcia; Veflen Olsen, Nina

    2012-01-01

    search algorithms and structural equation models. The results suggest that evaluative judgments of the importance of pork production system attributes are generated in a schematic manner, driven by personal value orientations. The effect of personal value orientations was strong and largely unmediated......, understanding them as embedded into a wider attitude system that consists of attitudes towards objects of different abstraction levels, ranging from personal value orientations over general socio-political attitudes to evaluations of specific characteristics of agricultural production systems. It is assumed...... production systems was modelled. The analysis was based on data from a cross-national survey involving 1931 participants from Belgium, Denmark, Germany and Poland. The survey questionnaire contained measures of personal value orientations and attitudes towards environment and nature, industrial food...

  1. CAD/CAM approach to improving industry productivity gathers momentum

    Science.gov (United States)

    Fulton, R. E.

    1982-01-01

    Recent results and planning for the NASA/industry Integrated Programs for Aerospace-Vehicle Design (IPAD) program for improving productivity with CAD/CAM methods are outlined. The industrial group work is being mainly done by Boeing, and progress has been made in defining the designer work environment, developing requirements and a preliminary design for a future CAD/CAM system, and developing CAD/CAM technology. The work environment was defined by conducting a detailed study of a reference design process, and key software elements for a CAD/CAM system have been defined, specifically for interactive design or experiment control processes. Further work is proceeding on executive, data management, geometry and graphics, and general utility software, and dynamic aspects of the programs being developed are outlined

  2. (Industrial Research on Building Production: results and future developments

    Directory of Open Access Journals (Sweden)

    Giuseppe Alaimo

    2013-10-01

    Full Text Available In accordance with the most recent management mandate, ISTeA (Italian Society of Science, Technology and engineering of Architecture has devoted its efforts to outlining those topics which are of fundamental importance for the activity of its stakeholders, in line with the road maps of national and Community funding programmes and with the strategic objectives of (Industrial Research which range from the energy-environmental performance of buildings and districts to automation in construction within the context of Smart Cities and Social Innovation. These research programmes need to be planned and negotiated with industrial stakeholders and carried out in partnership with them. This explains why the 2011 ISTeA Conference produced a number of position papers, the 2012 Conference traced the state of the art in the topics identified and the 2013 Conferencedeals with the non-instrumental relationship between Building Production and ICT.

  3. Managing salinity in water associated with petrol industry production

    Directory of Open Access Journals (Sweden)

    Carlos Alberto Guerrero Fajardo

    2010-07-01

    Full Text Available This article describes a conceptual design for handling an oilfield’s industrial wastewater; its oblective was to use type-1 fractioned crystallisation within a feasible environmental and technical framework for obtaining the highest percentage of salt.La Gloria, La Gloria Norte and Morichal (all belonging to the Casanare department association stations were used for planning and analysing this handling alternative as they produce high salt-containing industrial effluent.This alternative was focused on treating 30% of the total volume of the associated water so produced. This volume is expected to be 1239 m3/d in 2000 in the oilfields being studied here. The process allows 92% retrieval from present NaCl (0.918 Ton/h, having 97% purity. Evaporation and aeration systems should be set prior to the crystallisation stage as a means of guaranteeing final product quality and making good use of the field’s facilities.

  4. THE TOTAL SOLUTION FOR DEVELOPING NEW PRODUCTS OF FOOTWEAR INDUSTRY

    Directory of Open Access Journals (Sweden)

    DRIŞCU Mariana

    2014-05-01

    Full Text Available This paper presents new solutions for shoemakers, for developing new products and new markets of footwear industry using the basic function of the system CRISPIN Dynamics CAD SUITE. These are the key issues - this is why CRISPIN Dynamics CAD SUITE has developed a range of quality software products to give the shoemaker a major advantage in shoe-making. This application offer functions for creating realistic looking designs of footwear products and for flattening the styles for development in 2D. There are also facilities to re-centre front and back guide lines, change foot (no need to re-digitize and set the correct heel height and roll. It is also possible to create guidelines to match with the last and extend the last for a boot design. The last type can also be changed to a type that allows the entire last surface to be used for a design. The system brings cutting-edge CAD/CAM technology to footwear designers providing benefits through all stages of their product development process. Major benefits include the ability to visualize a design for appraisal and the transfer of the design into CRISPIN 2D pattern development products. This allows increased productivity, shorter lead times, accurate interpretation of 3D designs in 2D and a reduction in the number of samples needed before approval of the design.

  5. India's Fertilizer Industry: Productivity and Energy Efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Schumacher, K.; Sathaye, J.

    1999-07-01

    Historical estimates of productivity growth in India's fertilizer sector vary from indicating an improvement to a decline in the sector's productivity. The variance may be traced to the time period of study, source of data for analysis, and type of indices and econometric specifications used for reporting productivity growth. Our analysis shows that in the twenty year period, 1973 to 1993, productivity in the fertilizer sector increased by 2.3% per annum. An econometric analysis reveals that technical progress in India's fertilizer sector has been biased towards the use of energy, while it has been capital and labor saving. The increase in productivity took place during the era of total control when a retention price system and distribution control was in effect. With liberalization of the fertilizer sector and reduction of subsidies productivity declined substantially since the early 1990s. Industrial policies and fiscal incentives still play a major role in the Indian fertilizer sect or. As substantial energy savings and carbon reduction potential exists, energy policies can help overcome barriers to the adoption of these measures in giving proper incentives and correcting distorted prices.

  6. Production of cement requiring low energy expenditure. An industrial test

    Energy Technology Data Exchange (ETDEWEB)

    Gimenez, S.; Blanco, M.T.; Palomo, A.; Puertas, F. (Instituto de Ciencias de la Construccion, Madrid (Spain))

    1991-01-01

    A new method for making cement is proposed. It is based on the use of CaF{sub 2} and CaSO{sub 4} for partial replacement of the usual raw materials in cement manufacturing. This paper shows the feasibility of the proposed method on an industrial scale. A test carried out in a Spanish cement factory (1500 t yield of the new cement) has revealed that the mehtod can not only be adapted to the current technology but also requires a much lower energy expenditure. The final product is shown to have excellent properties in comparison with OPC. (orig.).

  7. Arsenic in industrial waste water from copper production technological process

    Directory of Open Access Journals (Sweden)

    Biljana Jovanović

    2013-12-01

    Full Text Available Investigation of arsenic in industrial waste water is of a great importance for environment. Discharge of untreated waste water from a copper production process results in serious pollution of surface water, which directly affects flora and fauna, as well as humans. There is a need for efficient and environmentally acceptable treament of waste waters containing heavy metals and arsenic. The paper presents an analyisis of the waste water from The Copper Smelter which is discharged into the Bor river. The expected arsenic content in treated waste water after using HDS procedure is also presented.

  8. Context-Aware Software Ecosystem for Industrial Products

    DEFF Research Database (Denmark)

    Tomlein, Matus

    2016-01-01

    As software on embedded devices is becoming increasingly important, manufacturers are interested in new ways for continuous deployment of software to embedded devices. The success of app stores on smartphones has also created interest for a software ecosystem that would enable external developers...... to create add-on applications for embedded devices. These opportunities provide the motivation for this project. The project works on challenges in introducing a software ecosystem with continuous deployment of software components to physical and software-intensive industrial products. It is based...

  9. Development of Integrated Production Scheduling System in the Process Industry

    Directory of Open Access Journals (Sweden)

    Mohamed K. Omar

    2005-01-01

    Full Text Available This study introduces a three-level hierarchical production planning and scheduling approach developed and implemented in a resin factory. Our approach proposes at the first level a mixed-integer linear programming for solving the aggregate planning model. At the second level, a weighted-integer goal-programming model is developed to disaggregate the developed aggregate plans. A sequencing algorithm is developed for the third level that tends to minimize the total weighted tardiness. Real industrial data is used to test and validate the proposed models.

  10. Applying distance-to-target weighing methodology to evaluate the environmental performance of bio-based energy, fuels, and materials

    OpenAIRE

    Weiss, M.; Patel, M.K.; H. Heilmeier; Bringezu, S.

    2007-01-01

    The enhanced use of biomass for the production of energy, fuels, and materials is one of the key strategies towards sustainable production and consumption. Various life cycle assessment (LCA) studies demonstrate the great potential of bio-based products to reduce both the consumption of non-renewable energy resources and greenhouse gas emissions. However, the production of biomass requires agricultural land and is often associated with adverse environmental effects such as eutrophication of s...

  11. Energetics of Eco-Industry of Food Concentrates Production

    Directory of Open Access Journals (Sweden)

    Burdo O.

    2015-12-01

    Full Text Available The determination of eco-industry in food production is formulated. The problems of processes of dehydration, heat balance and prospects of technologies directed energy action are considered. We offer the ways of solving an energy problems in product drying. The hypostases are formulated and the possibilities of laminar and turbulent diffusion to heat transfer mechanisms are analyzed. Increasing of drying speed with barodiffusional flows involvement is demonstrated. The extraction kinetic model is given in differential form. The prospects of usage directed action principles in target compounds extraction processes are analyzed. The analysis of drying technologies energy efficiency on base new similarity (similarity of energy action is carried out. We demonstrated that impulse electromagnetic field can trigger in basically new effect, which one named mechanodiffusion.

  12. Exploitation of Food Industry Waste for High-Value Products.

    Science.gov (United States)

    Ravindran, Rajeev; Jaiswal, Amit K

    2016-01-01

    A growing global population leads to an increasing demand for food production and the processing industry associated with it and consequently the generation of large amounts of food waste. This problem is intensified due to slow progress in the development of effective waste management strategies and measures for the proper treatment and disposal of waste. Food waste is a reservoir of complex carbohydrates, proteins, lipids, and nutraceuticals and can form the raw materials for commercially important metabolites. The current legislation on food waste treatment prioritises the prevention of waste generation and least emphasises disposal. Recent valorisation studies for food supply chain waste opens avenues to the production of biofuels, enzymes, bioactive compounds, biodegradable plastics, and nanoparticles among many other molecules.

  13. From product to service orientation in the maritime equipment industry

    DEFF Research Database (Denmark)

    Matzen, Detlef; McAloone, Timothy Charles

    2008-01-01

    of their products in operation. In this paper we present a case study of a shipping equipment manufacturer that is currently shifting business focus from manufacturing towards services delivery. Using a modelling scheme to differentiate and categorise different development tasks within the frame of business...... development towards service oriented business, the case delivers insights into the broader context and product related parameters influencing the options and requirements for service system development.......In the shipping industry, operational performance of ships and their equipment is crucial to business. Suppliers of machinery and equipment are aware of this situation and see business development potential in setting up service systems that are dedicated to ensuring the performance...

  14. Industrial Assessment Centers - Small Manufacturers Reduce Energy & Increase Productivity

    Energy Technology Data Exchange (ETDEWEB)

    None

    2015-11-06

    Since 1976, the Industrial Assessment Centers (IACs), administered by the US Department of Energy, have supported small and medium-sized American manufacturers to reduce energy use and increase their productivity and competitiveness. The 24 IACs, located at premier engineering universities around the country (see below), send faculty and engineering students to local small and medium-sized manufacturers to provide no-cost assessments of energy use, process performance and waste and water flows. Under the direction of experienced professors, IAC engineering students analyze the manufacturer’s facilities, energy bills and energy, waste and water systems, including compressed air, motors/pumps, lighting, process heat and steam. The IACs then follow up with written energy-saving and productivity improvement recommendations, with estimates of related costs and payback periods.

  15. [The shoe industry: from productive reality to risk individualization].

    Science.gov (United States)

    Saretto, Gianni; Dulio, Sergio

    2012-01-01

    This article describes in detail each stage of the shoe manufacturing process: design, cutting and shearing, sewing and trimming, assemblage, sole preparation, finishing, packaging and stocking, shoe manufacturing with synthetic materials. It will then discuss new technologies and their impact on the improvement of the worker's health, safety and convenience. A definition of the shoe parts and of the materials and machinery employed in its production will be provided, as well as a synthesis of the occupational hazards involved in each department. Although dealing with competitors who can take advantage of low-cost production and lack of concern for labour protection and environmental issues, the industry should always take great care of topics such as innovation and automation, but also workplace health and safety, while pushing the limits of that technological advance which companies have to face.

  16. Industry

    Energy Technology Data Exchange (ETDEWEB)

    Bernstein, Lenny; Roy, Joyashree; Delhotal, K. Casey; Harnisch, Jochen; Matsuhashi, Ryuji; Price, Lynn; Tanaka, Kanako; Worrell, Ernst; Yamba, Francis; Fengqi, Zhou; de la Rue du Can, Stephane; Gielen, Dolf; Joosen, Suzanne; Konar, Manaswita; Matysek, Anna; Miner, Reid; Okazaki, Teruo; Sanders, Johan; Sheinbaum Parado, Claudia

    2007-12-01

    This chapter addresses past, ongoing, and short (to 2010) and medium-term (to 2030) future actions that can be taken to mitigate GHG emissions from the manufacturing and process industries. Globally, and in most countries, CO{sub 2} accounts for more than 90% of CO{sub 2}-eq GHG emissions from the industrial sector (Price et al., 2006; US EPA, 2006b). These CO{sub 2} emissions arise from three sources: (1) the use of fossil fuels for energy, either directly by industry for heat and power generation or indirectly in the generation of purchased electricity and steam; (2) non-energy uses of fossil fuels in chemical processing and metal smelting; and (3) non-fossil fuel sources, for example cement and lime manufacture. Industrial processes also emit other GHGs, e.g.: (1) Nitrous oxide (N{sub 2}O) is emitted as a byproduct of adipic acid, nitric acid and caprolactam production; (2) HFC-23 is emitted as a byproduct of HCFC-22 production, a refrigerant, and also used in fluoroplastics manufacture; (3) Perfluorocarbons (PFCs) are emitted as byproducts of aluminium smelting and in semiconductor manufacture; (4) Sulphur hexafluoride (SF{sub 6}) is emitted in the manufacture, use and, decommissioning of gas insulated electrical switchgear, during the production of flat screen panels and semiconductors, from magnesium die casting and other industrial applications; (5) Methane (CH{sub 4}) is emitted as a byproduct of some chemical processes; and (6) CH{sub 4} and N{sub 2}O can be emitted by food industry waste streams. Many GHG emission mitigation options have been developed for the industrial sector. They fall into three categories: operating procedures, sector-wide technologies and process-specific technologies. A sampling of these options is discussed in Sections 7.2-7.4. The short- and medium-term potential for and cost of all classes of options are discussed in Section 7.5, barriers to the application of these options are addressed in Section 7.6 and the implication of

  17. Technology for Price Management in Industrial Differential Product Market

    Directory of Open Access Journals (Sweden)

    E. V. Orlova

    2015-01-01

    Full Text Available The article studies price behavior of oligopolies in industrial market where price competition is replaced by non-price competition. There is a developed technology for pricing management of the products of industrial enterprises, which, unlike the existing ones, takes into account the dynamics of changes in consumer preferences and changes in the pricing policy of the enterprise competitor and is based on usage of system dynamics models to simulate the financial and economic performance of enterprises and the fuzzy model for situational analysis and decisionmaking on changes in prices for the products. A pricing simulation model is offered. It is based on system-dynamic modeling method, which takes into account the complex cause-to-effect concatenation of factors on price such as product quality, cost, price competition, price elasticity of economic demand, competitors’ quantity of output and estimates the impact of changing factors of internal and external enterprise environment on the effectiveness of its activities.The simulation model allows us to conduct diverse experiments and analyze the impact of management decisions on the efficiency of the enterprise. Based on the fuzzy approach a price decision-making model is developed. It operates not only precise (numeric values, but also qualitative assessments of variables and provides an adequate use of logical relationships and the laws of the mutual influence of market and production and economic factors. Qualitative dependences, which establish the influence of external and internal factors on the price change, are identified as a result of the study of economic laws and legal conformity that are in the context of rapid economic change and market turbulence may not be strictly formalized and take the form of linguistic statements, which express the conditional relationship between the qualitative assessments of initial factors and changes in the relative price.

  18. Utilization of agro-based industrial by-products for biogas production in Vietnam

    Energy Technology Data Exchange (ETDEWEB)

    Ngoc, U.N.; Schnitzer, H. [Graz Univ. of Technology, (Austria). Inst. for Resource Efficient and Sustainable Systems; Berghold, H. [Joanneum Research Inst. for Sustainable Techniques and Systems (Austria)

    2007-07-01

    Due to the rapid rates of urbanization occurring in many countries in the world, the importance of an efficient and effective solid waste management system and the utilization/reuse of waste are more critical than ever before, especially for agricultural residues and agro-based industrial by-products. Over the past decade, the amount of solid waste generated in Vietnam has been increasing steadily. Numbers are predicted to continue to increase as well. There is significant potential to use the large amount of wastes for biogas conversion processes and for further production of commercial energy. This paper presented starts with estimation and analysis of the amounts of organic waste, agricultural residues, and agro-based industrial by-products generated from food industrial processes using general data sources for Vietnam. A laboratory study examined the use of agro-based industrial by-products and agricultural residues from cassava, sweet potato, pineapple residues, organic wastes, manures as input materials for biogas production in the anaerobic process. This paper provided an overview of Vietnam as a country, as well as a general overview of the amount of organic waste generated in the country. It also discussed the fermentation tests that were conducted to find out the potential of biogas production from some residues. It was concluded that a significant portion of waste could be reused as an environmentally sound source of energy. The utilization of agricultural residues and industrial byproducts as input materials for biogas production will not only reduce the quantity of organic waste thrown into landfills, but also reduce the negative impact on the environment. 10 refs., 7 tabs., 7 figs.

  19. Bacterial Cellulose Production from Industrial Waste and by-Product Streams

    Science.gov (United States)

    Tsouko, Erminda; Kourmentza, Constantina; Ladakis, Dimitrios; Kopsahelis, Nikolaos; Mandala, Ioanna; Papanikolaou, Seraphim; Paloukis, Fotis; Alves, Vitor; Koutinas, Apostolis

    2015-01-01

    The utilization of fermentation media derived from waste and by-product streams from biodiesel and confectionery industries could lead to highly efficient production of bacterial cellulose. Batch fermentations with the bacterial strain Komagataeibacter sucrofermentans DSM (Deutsche Sammlung von Mikroorganismen) 15973 were initially carried out in synthetic media using commercial sugars and crude glycerol. The highest bacterial cellulose concentration was achieved when crude glycerol (3.2 g/L) and commercial sucrose (4.9 g/L) were used. The combination of crude glycerol and sunflower meal hydrolysates as the sole fermentation media resulted in bacterial cellulose production of 13.3 g/L. Similar results (13 g/L) were obtained when flour-rich hydrolysates produced from confectionery industry waste streams were used. The properties of bacterial celluloses developed when different fermentation media were used showed water holding capacities of 102–138 g·water/g·dry bacterial cellulose, viscosities of 4.7–9.3 dL/g, degree of polymerization of 1889.1–2672.8, stress at break of 72.3–139.5 MPa and Young’s modulus of 0.97–1.64 GPa. This study demonstrated that by-product streams from the biodiesel industry and waste streams from confectionery industries could be used as the sole sources of nutrients for the production of bacterial cellulose with similar properties as those produced with commercial sources of nutrients. PMID:26140376

  20. Bacterial Cellulose Production from Industrial Waste and by-Product Streams.

    Science.gov (United States)

    Tsouko, Erminda; Kourmentza, Constantina; Ladakis, Dimitrios; Kopsahelis, Nikolaos; Mandala, Ioanna; Papanikolaou, Seraphim; Paloukis, Fotis; Alves, Vitor; Koutinas, Apostolis

    2015-07-01

    The utilization of fermentation media derived from waste and by-product streams from biodiesel and confectionery industries could lead to highly efficient production of bacterial cellulose. Batch fermentations with the bacterial strain Komagataeibacter sucrofermentans DSM (Deutsche Sammlung von Mikroorganismen) 15973 were initially carried out in synthetic media using commercial sugars and crude glycerol. The highest bacterial cellulose concentration was achieved when crude glycerol (3.2 g/L) and commercial sucrose (4.9 g/L) were used. The combination of crude glycerol and sunflower meal hydrolysates as the sole fermentation media resulted in bacterial cellulose production of 13.3 g/L. Similar results (13 g/L) were obtained when flour-rich hydrolysates produced from confectionery industry waste streams were used. The properties of bacterial celluloses developed when different fermentation media were used showed water holding capacities of 102-138 g · water/g · dry bacterial cellulose, viscosities of 4.7-9.3 dL/g, degree of polymerization of 1889.1-2672.8, stress at break of 72.3-139.5 MPa and Young's modulus of 0.97-1.64 GPa. This study demonstrated that by-product streams from the biodiesel industry and waste streams from confectionery industries could be used as the sole sources of nutrients for the production of bacterial cellulose with similar properties as those produced with commercial sources of nutrients.

  1. Bacterial Cellulose Production from Industrial Waste and by-Product Streams

    Directory of Open Access Journals (Sweden)

    Erminda Tsouko

    2015-07-01

    Full Text Available The utilization of fermentation media derived from waste and by-product streams from biodiesel and confectionery industries could lead to highly efficient production of bacterial cellulose. Batch fermentations with the bacterial strain Komagataeibacter sucrofermentans DSM (Deutsche Sammlung von Mikroorganismen 15973 were initially carried out in synthetic media using commercial sugars and crude glycerol. The highest bacterial cellulose concentration was achieved when crude glycerol (3.2 g/L and commercial sucrose (4.9 g/L were used. The combination of crude glycerol and sunflower meal hydrolysates as the sole fermentation media resulted in bacterial cellulose production of 13.3 g/L. Similar results (13 g/L were obtained when flour-rich hydrolysates produced from confectionery industry waste streams were used. The properties of bacterial celluloses developed when different fermentation media were used showed water holding capacities of 102–138 g·water/g·dry bacterial cellulose, viscosities of 4.7–9.3 dL/g, degree of polymerization of 1889.1–2672.8, stress at break of 72.3–139.5 MPa and Young’s modulus of 0.97–1.64 GPa. This study demonstrated that by-product streams from the biodiesel industry and waste streams from confectionery industries could be used as the sole sources of nutrients for the production of bacterial cellulose with similar properties as those produced with commercial sources of nutrients.

  2. Life-cycle analysis of bio-based aviation fuels.

    Science.gov (United States)

    Han, Jeongwoo; Elgowainy, Amgad; Cai, Hao; Wang, Michael Q

    2013-12-01

    Well-to-wake (WTWa) analysis of bio-based aviation fuels, including hydroprocessed renewable jet (HRJ) from various oil seeds, Fischer-Tropsch jet (FTJ) from corn-stover and co-feeding of coal and corn-stover, and pyrolysis jet from corn stover, is conducted and compared with petroleum jet. WTWa GHG emission reductions relative to petroleum jet can be 41-63% for HRJ, 68-76% for pyrolysis jet and 89% for FTJ from corn stover. The HRJ production stage dominates WTWa GHG emissions from HRJ pathways. The differences in GHG emissions from HRJ production stage among considered feedstocks are much smaller than those from fertilizer use and N2O emissions related to feedstock collection stage. Sensitivity analyses on FTJ production from coal and corn-stover are also conducted, showing the importance of biomass share in the feedstock, carbon capture and sequestration options, and overall efficiency. For both HRJ and FTJ, co-product handling methods have significant impacts on WTWa results.

  3. The potential of the aquatic water fern Azolla within a biobased economy

    Science.gov (United States)

    Nierop, Klaas G. J.; Jongerius, Anna L.; Bijl, Peter K.; Bruijnincx, Pieter C. A.; Klein Gebbink, Robertus J. M.; Reichart, Gert-Jan

    2014-05-01

    Azolla is a free-floating freshwater fern capable of fixing atmospheric carbon dioxide and nitrogen, the latter of which through its symbiosis with the cyanobacteria Anabaena azollae. It is currently ranked among the fastest growing plants on Earth and occurs in both tropical and temperate freshwater ecosystems. Therefore, it is non-directly competitive with food crops. In addition, Azolla does not require inorganic fertilizers, which makes it a potential and unique source of biomass for the sustainable production of fuels and chemicals that are currently derived from fossil (fuel) sources. The biochemical composition of Azolla allows the production of biofuel or biobased chemicals that are of interest to the chemical industry. Of Azolla, two extractable groups of compounds are of particular interest, i.e. the polyphenols (condensed tannins and ester-bound caffeic acid) and the lipids. The antioxidant property of polyphenols and their application to the treatment of cancer, diabetes and cardiovascular diseases has further contributed to the growth of the polyphenol market. In addition, they can be chemically transformed into aromatic platform and specialty chemicals. The composition of the lipid fraction of Azolla is characterized by highly specific compounds consisting of C26-C36 carbon chains all bearing a ω20-hydroxy group. Such compounds produce an oil fraction upon hydrous pyrolysis, or, alternatively, are well suited to be converted to e.g. various specialty chemicals that are hardly available from both natural sources. Indeed, upon chemical conversion these lipids may yield components for fuels, plastics, cosmetics, and lubricants. Another group of interesting compounds within the lipid group are the polyunsaturated fatty acids (PUFAs). The demand for PUFAs has witnessed a significant increase over the last three years, particularly due to their benefits as cholesterol lowering agents. Here we will present some of the thermal and chemical conversions of the

  4. Factors driving and restraining adoption of Automation technologies in Swedish wood product industry.

    OpenAIRE

    Mapulanga, Mwanza; Saladi, Praveen

    2016-01-01

    Swedish wood product industry contributes significantly to the economy of the country. This industry adds more value to the sawn timber produced in order to manufacture different wooden products. Companies in Swedish wood product industry are presently seen as underdeveloped in terms of investments and developments in automation technologies. Automation technologies are seen by companies as a solution for improving productivity, product quality, manufacturing cost reduction and ultimately imp...

  5. Workshop on Indian Chemical Industry: perspectives on safety, cleaner production and environment production

    NARCIS (Netherlands)

    Ham, J.M.

    1996-01-01

    A Workshop on "Indian Chemical Industry: Perspectives on Safety, Cleaner Production and Environmental Protection" was held on 3, 4 and 5 January 1996, in Bombay, India. The main objective of the workshop, which was organised jointly by the Government of India, UNIDO/UNDP and the Indian Chemical Manu

  6. Synthetics, mineral oils, and bio-based lubricants chemistry and technology

    CERN Document Server

    Rudnick, Leslie R

    2005-01-01

    As the field of tribology has evolved, the lubrication industry is also progressing at an extraordinary rate. Updating the author's bestselling publication, Synthetic Lubricants and High-Performance Functional Fluids, this book features the contributions of over 60 specialists, ten new chapters, and a new title to reflect the evolving nature of the field: Synthetics, Mineral Oils, and Bio-Based Lubricants: Chemistry and Technology. The book contains chapters on all major lubricant fluids used in a wide range of applications. For each type of lubricant, the authors discuss the historical develo

  7. RENEWABLE FIBERS AND BIO-BASED MATERIALS FOR PACKAGING APPLICATIONS – A REVIEW OF RECENT DEVELOPMENTS

    Directory of Open Access Journals (Sweden)

    Caisa Johansson,

    2012-04-01

    Full Text Available This review describes the state-of-the-art of material derived from the forest sector with respect to its potential for use in the packaging industry. Some innovative approaches are highlighted. The aim is to cover recent developments and key challenges for successful introduction of renewable materials in the packaging market. The covered subjects are renewable fibers and bio-based polymers for use in bioplastics or as coatings for paper-based packaging materials. Current market sizes and forecasts are also presented. Competitive mechanical, thermal, and barrier properties along with material availability and ease of processing are identified as fundamental issues for sustainable utilization of renewable materials.

  8. A capital market's view on Industrial Biotechnology:proper valuation is the key for picking the right investment opportunities in stormy times

    OpenAIRE

    Schneider, B.W. (Bernd)

    2009-01-01

    Industrial biotechnology, also known as white biotechnology, is considered to be a revolutionary biotechnology field beside red and green biotechnology. After red (medicine) and green (agriculture), white biotechnology is now gaining momentum. With numerous applications e.g. in biocatalysis and fermentation technology, white biotech companies are able to produce – often from biomass out of agricultural products - biobased chemicals (like vitamins, amino acids or enzymes for textile finishing ...

  9. Scenario projections for future market potentials of biobased bulk chemicals

    OpenAIRE

    Dornburg, V.; Hermann, B.G.; Patel, M.K.

    2008-01-01

    Three scenario projections for future market potentials of biobased bulk chemicals produced by means of white biotechnology are developed for Europe (EU-25) until the year 2050, and potential nonrenewable energy savings, greenhouse gas emission reduction, and land use consequences are analyzed. These scenarios assume benign, moderate, and disadvantageous conditions for biobased chemicals. The scenario analysis yields a broad range of values for the possible market development of white biotech...

  10. Synthesis and Characterization of Partial Biobased Furan Polyamides

    Science.gov (United States)

    2014-02-01

    shown an average thermal stability of 400 °C, compared to that of manufactured petroleum-based Kevlar (Td, 427°–482 °C), and Tg values have been...observed to be greater than the degradation of the polymer materials. 15. SUBJECT TERMS biobased polymers, Kevlar , furan, carbohydrates, titration...polyamides. ....................................8 v List of Tables Table 1. Solubility of biobased Kevlar analogs

  11. Bio-based polycarbonate as synthetic toolbox

    Science.gov (United States)

    Hauenstein, O.; Agarwal, S.; Greiner, A.

    2016-06-01

    Completely bio-based poly(limonene carbonate) is a thermoplastic polymer, which can be synthesized by copolymerization of limonene oxide (derived from limonene, which is found in orange peel) and CO2. Poly(limonene carbonate) has one double bond per repeating unit that can be exploited for further chemical modifications. These chemical modifications allow the tuning of the properties of the aliphatic polycarbonate in nearly any direction. Here we show synthetic routes to demonstrate that poly(limonene carbonate) is the perfect green platform polymer, from which many functional materials can be derived. The relevant examples presented in this study are the transformation from an engineering thermoplastic into a rubber, addition of permanent antibacterial activity, hydrophilization and even pH-dependent water solubility of the polycarbonate. Finally, we show a synthetic route to yield the completely saturated counterpart that exhibits improved heat processability due to lower reactivity.

  12. Bio-based polycarbonate as synthetic toolbox

    Science.gov (United States)

    Hauenstein, O.; Agarwal, S.; Greiner, A.

    2016-01-01

    Completely bio-based poly(limonene carbonate) is a thermoplastic polymer, which can be synthesized by copolymerization of limonene oxide (derived from limonene, which is found in orange peel) and CO2. Poly(limonene carbonate) has one double bond per repeating unit that can be exploited for further chemical modifications. These chemical modifications allow the tuning of the properties of the aliphatic polycarbonate in nearly any direction. Here we show synthetic routes to demonstrate that poly(limonene carbonate) is the perfect green platform polymer, from which many functional materials can be derived. The relevant examples presented in this study are the transformation from an engineering thermoplastic into a rubber, addition of permanent antibacterial activity, hydrophilization and even pH-dependent water solubility of the polycarbonate. Finally, we show a synthetic route to yield the completely saturated counterpart that exhibits improved heat processability due to lower reactivity. PMID:27302694

  13. Ion beam system for implanting industrial products of various shapes

    Science.gov (United States)

    Denholm, A. S.; Wittkower, A. B.

    1985-01-01

    Implantation of metals and ceramics with ions of nitrogen and other species has improved surface properties such as friction, wear and corrosion in numerous industrial applications. Zymet has built a production machine to take advantage of this process which can implant a 2 × 10 17 ions/cm 2 dose of nitrogen ions into a 20 cm × 20 cm area in about 30 min using a 100 keV beam. Treatment is accomplished by mounting the product on a cooled, tiltable, turntable which rotates continuously, or is indexed in 15° steps to expose different surfaces in fixed position. Product cooling is accomplished by using a chilled eutectic metal to mount and grip the variously shaped objects. A high voltage supply capable of 10 mA at 100 kV is used, and the equipment is microcomputer controlled via serial light links. All important machine parameters are presented in sequenced displays on a CRT. Uniformity of treatment and accumulated dose are monitored by a Faraday cup system which provides the microprocessor with data for display of time to completion on the process screen. For routine implants the operator requires only two buttons; one for chamber vacuum control, and the other for process start and stop.

  14. Updates on industrial production of amino acids using Corynebacterium glutamicum.

    Science.gov (United States)

    Wendisch, Volker F; Jorge, João M P; Pérez-García, Fernando; Sgobba, Elvira

    2016-06-01

    L-Amino acids find various applications in biotechnology. L-Glutamic acid and its salts are used as flavor enhancers. Other L-amino acids are used as food or feed additives, in parenteral nutrition or as building blocks for the chemical and pharmaceutical industries. L-amino acids are synthesized from precursors of central carbon metabolism. Based on the knowledge of the biochemical pathways microbial fermentation processes of food, feed and pharma amino acids have been developed. Production strains of Corynebacterium glutamicum, which has been used safely for more than 50 years in food biotechnology, and Escherichia coli are constantly improved using metabolic engineering approaches. Research towards new processes is ongoing. Fermentative production of L-amino acids in the million-ton-scale has shaped modern biotechnology and its markets continue to grow steadily. This review focusses on recent achievements in strain development for amino acid production including the use of CRISPRi/dCas9, genome-reduced strains, biosensors and synthetic pathways to enable utilization of alternative carbon sources.

  15. PRACTICE OF GESTALT THEORY IN INDUSTRIAL PRODUCT DESIGN

    Directory of Open Access Journals (Sweden)

    Erkut ERYAYAR

    2011-08-01

    Full Text Available It is common knowledge that Gestalt Theory argues that an organized whole represents more than the sum of its parts. According to this theory, which emerged in studies on visual perception, a whole is made up of many parts each of which cannot reflect the whole on its own. Likewise, an industrial design comprises various parts which create a meaningful and functional whole. The success of a design can be measured against its ability to be perceived the same way as it is designed. In this respect, the inclusion of Gestalt theory principles in the process of design will enable the end product to differ from others and its user to perceive it in the right direction.

  16. To be, or not to be biodegradable… that is the question for the bio-based plastics.

    Science.gov (United States)

    Prieto, Auxiliadora

    2016-09-01

    Global warming, market and production capacity are being the key drivers for selecting the main players for the next decades in the market of bio-based plastics. The drop-in bio-based polymers such as the bio-based polyethylene terephtalate (PET) or polyethylene (PE), chemically identical to their petrochemical counterparts but having a component of biological origin, are in the top of the list. They are followed by new polymers such as PHA and PLA with a significant market growth rate since 2014 with projections to 2020. Research will provide improved strains designed through synthetic and systems biology approaches; furthermore, the use of low-cost substrates will contribute to the widespread application of these bio- based polymers. The durability of plastics is not considered anymore as a virtue, and interesting bioprospecting strategies to isolate microorganisms for assimilating the recalcitrant plastics will pave the way for in vivo strategies for plastic mineralization. In this context, waste management of bio-based plastic will be one of the most important issues in the near future in terms of the circular economy. There is a clear need for standardized labelling and sorting instructions, which should be regulated in a coordinated way by policymakers and material producers.

  17. Lipase production by Penicillium restrictum using solid waste of industrial babassu oil production as substrate.

    Science.gov (United States)

    Palma, M B; Pinto, A L; Gombert, A K; Seitz, K H; Kivatinitz, S C; Castilho, L R; Freire, D M

    2000-01-01

    Lipase, protease, and amylase production by Penicillium restrictum in solid-state fermentation was investigated. The basal medium was an industrial waste of babassu oil (Orbignya oleifera) production. It was enriched with peptone, olive oil, and Tween-80. The supplementation positively influenced both enzyme production and fungal growth. Media enriched with Tween-80 provided the highest protease activity (8.6 U/g), whereas those enriched with peptone and olive oil led to the highest lipase (27.8 U/g) and amylase (31.8 U/g) activities, respectively.

  18. Today's and tomorrow's bio-based bulk chemicals from white biotechnology: a techno-economic analysis.

    Science.gov (United States)

    Hermann, B G; Patel, M

    2007-03-01

    Little information is yet available on the economic viability of the production of bio-based bulk chemicals and intermediates from white biotechnology (WB). This paper details a methodology to systematically evaluate the techno-economic prospects of present and future production routes of bio-based bulk chemicals produced with WB. Current and future technology routes are evaluated for 15 products assuming prices of fermentable sugar between 70 euro/t and 400 euro/t and crude oil prices of US $25/barrel and US $50/barrel. The results are compared to current technology routes of petrochemical equivalents. For current state-of-the-art WB processes and a crude oil price of US $25/barrel, WB-based ethanol, 1,3-propanediol, polytrimethylene terephthalate and succinic acid are economically viable. Only three WB products are economically not viable for future technology: acetic acid, ethylene and PLA. Future-technology ethylene and PLA become economically viable for a higher crude oil price (US $50/barrel). Production costs plus profits of WB products decrease by 20-50% when changing from current to future technology for a crude oil price of US $25 per barrel and across all sugar prices. Technological progress in WB can thus contribute significantly to improved economic viability of WB products. A large-scale introduction of WB-based production of economically viable bulk chemicals would therefore be desirable if the environmental impacts are smaller than those of current petrochemical production routes.

  19. 75 FR 73109 - Guidance for Industry on Antibacterial Drug Products: Use of Noninferiority Trials to Support...

    Science.gov (United States)

    2010-11-29

    ... HUMAN SERVICES Food and Drug Administration Guidance for Industry on Antibacterial Drug Products: Use of.... SUMMARY: The Food and Drug Administration (FDA) is announcing the availability of a guidance for industry... of the draft guidance for industry entitled ``Antibacterial Drug Products: Use of...

  20. Product Migration Strategies to Product-Service Systems Based on Korean Industrial Cases

    Directory of Open Access Journals (Sweden)

    Hyun Chan Lee

    2012-10-01

    Full Text Available Product-service system (PSS is a system of products, service, supporting networks and infrastructure that is designed to be competitive. The concept of PSS is rather new and currently many companies and governmental institute are eager to implement the PSSs as a new business model. In this paper, we propose a three-dimensional model to classify PSS based on three axes. The three axes consist of selling product type, product usage type, and sustainability. The selling product type is classified as physical product, physical product and added services, and product-service system. The product usages type is classified as product-oriented, use-oriented, and result-oriented usage. The sustainability is classified as economy, society and environment. The 3D model is applied to the surveyed Korean industrial practices to identify some typical migration paths from physical product to PSS. Three typical migration paths are identified and the paths are used to suggest Sustainable PSS(SPSS development strategies. Three identified paths are value-extended SPSS, positioning-extended SPSS, and field-extended SPSS.

  1. Multivariate Statistical Process Optimization in the Industrial Production of Enzymes

    DEFF Research Database (Denmark)

    Klimkiewicz, Anna

    In modern biotech production, a massive number of diverse measurements, with a broad diversity in information content and quality, is stored in data historians. The potential of this enormous amount of data is currently under-employed in process optimization efforts. This is a result of the deman......In modern biotech production, a massive number of diverse measurements, with a broad diversity in information content and quality, is stored in data historians. The potential of this enormous amount of data is currently under-employed in process optimization efforts. This is a result...... and difficulties related to ‘recycling’ of historical data from a full-scale manufacturing of industrial enzymes. First, the crucial and tedious step of retrieving the data from the systems is presented. The prerequisites that need to be comprehended are discussed, such as sensors accuracy and reliability, aspects...... related to the actual measuring frequency and non-equidistance retaining strategies in data storage. Different regimes of data extraction can be employed, and some might introduce undesirable artifacts in the final analysis results (POSTER II1). Several signal processing techniques are also briefly...

  2. Production of High Value Fluorine Gases for the Semiconductor Industry

    Energy Technology Data Exchange (ETDEWEB)

    Bulko, J. B.

    2003-10-23

    The chemistry to manufacture high purity GeF{sub 4} and WF{sub 6} for use in the semiconductor industry using Starmet's new fluorine extraction technology has been developed. Production of GeF{sub 4} was established using a tube-style reactor system where conversion yields as high as 98.1% were attained for the reaction between and GeO{sub 2}. Collection of the fluoride gas improved to 97.7% when the reactor sweep gas contained a small fraction of dry air (10-12 vol%) along with helium. The lab-synthesized product was shown to contain the least amount of infrared active and elemental impurities when compared with a reference material certified at 99.99% purity. Analysis of the ''as-produced'' gas using ICP-MS showed that uranium could not be detected at a detection limit of 0.019ppm-wt. A process to make WF{sub 6} from WO{sub 2}, and UF{sub 4}, produced a WOF{sub 4} intermediate, which proved difficult to convert to tungsten hexafluoride using titanium fluoride as a fluorinating agent.

  3. Recombinant Acremonium chrysogenum strains for the industrial production of cephalosporin.

    Science.gov (United States)

    Díez, B; Mellado, E; Fouces, R; Rodríguez, M; Barredo, J L

    1996-09-01

    Conventional strain improvement programs based on random mutagenesis and rational screening have meant valuable results to the antibiotic producing companies. The development of recombinant DNA techniques and their applications to the industrially-used cephalosporin-producing fungus Acremonium chrysogenum has provided a new tool, complementary to classical mutation, promoting the design of alternative biosynthetic pathways making it possible to obtain new antibiotics and to improve cephalosporin production. Yield increases have been achieved by increasing the dosage of the biosynthetic genes cefEF (deacetoxycephalosporin C expandase/hydroxylase) and cefG (deacetylcephalosporin C acetyltransferase) or enhancing the oxygen uptake by expressing a bacterial oxygen-binding heme protein (Vitreoscilla hemoglobin). New biosynthetic capacities such as the production of 7-aminocephalosporanic acid (7-ACA) or penicillin G have been achieved through the expression of the foreign genes dao (D-amino acid oxidase) coupled with cephalosporin acylase or penDE(acyl-CoA:6-APA acyltransferase) respectively. Confined manipulation of the above-mentioned recombinant strains must be performed according to standing rules.

  4. Production optimisation in the petrochemical industry by hierarchical multivariate modelling

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Magnus; Furusjoe, Erik; Jansson, Aasa

    2004-06-01

    This project demonstrates the advantages of applying hierarchical multivariate modelling in the petrochemical industry in order to increase knowledge of the total process. The models indicate possible ways to optimise the process regarding the use of energy and raw material, which is directly linked to the environmental impact of the process. The refinery of Nynaes Refining AB (Goeteborg, Sweden) has acted as a demonstration site in this project. The models developed for the demonstration site resulted in: Detection of an unknown process disturbance and suggestions of possible causes; Indications on how to increase the yield in combination with energy savings; The possibility to predict product quality from on-line process measurements, making the results available at a higher frequency than customary laboratory analysis; Quantification of the gradually lowered efficiency of heat transfer in the furnace and increased fuel consumption as an effect of soot build-up on the furnace coils; Increased knowledge of the relation between production rate and the efficiency of the heat exchangers. This report is one of two reports from the project. It contains a technical discussion of the result with some degree of detail. A shorter and more easily accessible report is also available, see IVL report B1586-A.

  5. Selling green power in California: Product, industry, and market trends

    Energy Technology Data Exchange (ETDEWEB)

    Wiser, R.H.; Pickle, S.J.

    1998-05-01

    As one of the first US stages to open its doors to retail electric competition, California offers an important opportunity to assess the effectiveness of green power marketing as a mechanism for supporting renewable energy. This report is an interim assessment of key green power product, industry, and market trends in California. The report identifies and analyzes: the potential size of the green power market in California; the companies participating in the green power market; the green power products being offered and their prices; the impact of the green market on renewable generators and the environment; and the influence of several public policies and non-governmental programs on the market for green power. Data used in this paper have been collected, in large part, from surveys and interviews with green power marketers that took place between December 1997 and April 1998. There remain legitimate concerns over the viability of green power marketing to support significant quantities of renewable energy and provide large environmental gains, and it is far too early to assess the overall strength of customer demand for renewable energy. A critical finding of this report is that, because of the high cost of acquiring and servicing residential customers and the low utility default service price, green power marketing affords new energy service providers one of the only viable entrees to California`s residential marketplace.

  6. Semi-industrial production of methane from textile wastewaters

    Energy Technology Data Exchange (ETDEWEB)

    Opwis, Klaus; Mayer-Gall, Thomas; Gutmann, Jochen S. [Deutsches Textilforschungszentrum Nord-West e.V., Krefeld (DE)] (and others)

    2012-12-15

    The enzymatic desizing of starch-sized cotton fabrics leads to wastewaters with an extremely high chemical oxygen demand due to its high sugar content. Nowadays, these liquors are still disposed without use, resulting in a questionable ecological pollution and high emission charges for cotton finishing manufacturers. In this paper, an innovative technology for the production of energy from textile wastewaters from cotton desizing was developed. Such desizing liquors were fermented by methane-producing microbes to biogas. For this purpose, a semi-industrial plant with a total volume of more than 500 L was developed and employed over a period of several weeks. The robust and trouble-free system produces high amounts of biogas accompanied by a significant reduction of the COD of more than 85%. With regard to growing standards and costs for wastewater treatment and disposal, the new process can be an attractive alternative for textile finishing enterprises in wastewater management, combining economic and ecological benefits. Moreover, the production of biogas from textile wastewaters can help to overcome the global energy gap within the next decades, especially with respect to the huge dimension of cotton pretreatment and, therefore, huge desizing activities worldwide.

  7. 77 FR 74669 - Draft and Revised Draft Guidances for Industry Describing Product-Specific Bioequivalence...

    Science.gov (United States)

    2012-12-17

    ... Product-Specific Bioequivalence Recommendations; Availability AGENCY: Food and Drug Administration, HHS... additional draft and revised draft product-specific bioequivalence (BE) recommendations. The recommendations... industry entitled ``Bioequivalence Recommendations for Specific Products,'' which explained the...

  8. 78 FR 37230 - Draft and Revised Draft Guidances for Industry Describing Product-Specific Bioequivalence...

    Science.gov (United States)

    2013-06-20

    ... Product-Specific Bioequivalence Recommendations; Availability AGENCY: Food and Drug Administration, HHS... additional draft and revised draft product-specific bioequivalence (BE) recommendations. The recommendations... industry entitled ``Bioequivalence Recommendations for Specific Products,'' which explained the...

  9. 77 FR 3777 - Draft and Revised Draft Guidances for Industry Describing Product-Specific Bioequivalence...

    Science.gov (United States)

    2012-01-25

    ... Product-Specific Bioequivalence Recommendations; Availability AGENCY: Food and Drug Administration, HHS... additional draft and revised draft product-specific bioequivalence (BE) recommendations. The recommendations... guidance for industry entitled ``Bioequivalence Recommendations for Specific Products,'' explaining...

  10. 78 FR 66745 - Draft and Revised Draft Guidances for Industry Describing Product-Specific Bioequivalence...

    Science.gov (United States)

    2013-11-06

    ... Product-Specific Bioequivalence Recommendations; Availability AGENCY: Food and Drug Administration, HHS... additional draft and revised draft product-specific bioequivalence (BE) recommendations. The recommendations... industry entitled ``Bioequivalence Recommendations for Specific Products,'' which explained the...

  11. 77 FR 10536 - Draft and Revised Draft Guidances for Industry Describing Product-Specific Bioequivalence...

    Science.gov (United States)

    2012-02-22

    ... Product-Specific Bioequivalence Recommendations; Availability AGENCY: Food and Drug Administration, HHS... additional draft and revised draft product-specific bioequivalence (BE) recommendations. The recommendations... guidance for industry entitled ``Bioequivalence Recommendations for Specific Products,'' which...

  12. 78 FR 20925 - Draft and Revised Draft Guidances for Industry Describing Product-Specific Bioequivalence...

    Science.gov (United States)

    2013-04-08

    ... Product-Specific Bioequivalence Recommendations; Availability AGENCY: Food and Drug Administration, HHS... additional draft and revised draft product-specific bioequivalence (BE) recommendations. The recommendations... guidance for industry entitled ``Bioequivalence Recommendations for Specific Products,'' which...

  13. 77 FR 35688 - Draft and Revised Draft Guidances for Industry Describing Product-Specific Bioequivalence...

    Science.gov (United States)

    2012-06-14

    ... Product-Specific Bioequivalence Recommendations; Availability AGENCY: Food and Drug Administration, HHS... additional draft and revised draft product-specific bioequivalence (BE) recommendations. The recommendations... guidance for industry entitled ``Bioequivalence Recommendations for Specific Products,'' which...

  14. 77 FR 74196 - Draft Guidance for Industry on Safety Considerations for Product Design To Minimize Medication...

    Science.gov (United States)

    2012-12-13

    ... Product Design To Minimize Medication Errors; Availability AGENCY: Food and Drug Administration, HHS... guidance for industry entitled ``Safety Considerations for Product Design to Minimize Medication Errors... using a systems approach to minimize medication errors relating to product design. The draft...

  15. 75 FR 50771 - Draft Revised Guidance for Industry on Residual Solvents in New Veterinary Medicinal Products...

    Science.gov (United States)

    2010-08-17

    ... Industry on Residual Solvents in New Veterinary Medicinal Products, Active Substances and Excipients... comments of a draft revised guidance for industry ( 100) entitled ``Residual Solvents in New Veterinary... veterinary use by the International Cooperation on Harmonisation of Technical Requirements for...

  16. SUATU PENDEKATAN BARU DALAM PRODUCT DEVELOPMENT COSTING UNTUK BARANG-BARANG INDUSTRI

    Directory of Open Access Journals (Sweden)

    Monika Kussetya Ciptani

    1999-01-01

    Full Text Available In the very competitive bussiness environment, the company ability to create or develop its product is an important thing to keep. With the competitivenes of each product, especially industrial product, each product has a short life-cycle. The life-cycle of an industrial product become shorter because of the technology used in its development phase. This will be one of many factors that encourage industrial company to develop their product, besides the profitability factor that many companies achieve for. In industrial product development process, companies use many method to develop its product and shorten their industrial product life-cycle, but it is still difficult to obtain cost which incur to develop an industrial product. An industrial company has to know exactly its product development costs and determine its most expensive production activities in order to plan future financial performance and identify potential improvements. Using life-cycle costing, a company can anticipate the costs which occur in each phase of product life-cycle and determine the product cost of new industrial product which has been developed accurately. Abstract in Bahasa Indonesia : Dalam persaingan dunia bisnis yang sangat ketat, kemampuan perusahaan untuk dapat menciptakan atau mengembangkan produk baru sangat diperlukan. Dengan semakin ketatnya persaingan antar perusahaan tersebut produk yang dihasilkan oleh suatu perusahaan akan memiliki jangka waktu (umur tertentu di pasaran. Khusus untuk barang-barang industri, daur hidup produk industri akan memiliki kecenderungan umur hidup yang semakin pendek terutama didukung dengan adanya perkembangan teknologi yang digunakan oleh perusahaan tersebut. Hal ini menjadi salah satu faktor yang mendorong dilakukannya proses pengembangan produk industri selain faktor laba (profit yang diperoleh oleh perusahaan dengan melakukan usaha pengembangan produk. Dalam usaha pengembangan produk untuk barang-barang industri, perusahaan

  17. Proposed industrial recovered materials utilization targets for the metals and metal-products industry

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-05-01

    The introductory chapter provides a discussion of the factors that affect the recovery and reuse of secondary materials and the competition between the primary and secondary metals industries. It discusses these industries in terms of resource characteristics, industry technology, pollution control requirements, market structure, the economics of recycling, and the issues involved in econometrically estimating scrap supply response behavior. It further presents the methodology established by DOE for the metals, textiles, rubber, and pulp and paper industries. The areas in which government policies might have a significant impact on the utilization of primary and secondary metals and on any recycling targets between now and 1987 are noted. Chapter 3 presents general profiles for the major industrial segments comprising SIC 33. The profiles include such topics as industry structure, process technology, materials and recycling flow, and future trends. Chapter 4 specifically covers the evaluation of recycling targets for the ferrous, aluminum, copper, zinc, and lead industries. (MCW)

  18. Conceptualizing the use of system products and system deliveries in the building industry

    DEFF Research Database (Denmark)

    Hvam, Lars; Mortensen, Niels Henrik; Thuesen, Christian;

    2013-01-01

    This article describes the concepts system products and system deliveries based on the use of product modularization and product configuration. The concepts are outlined and discussed based on examples from both the construction industry and related industry. The description focuses partly...

  19. 76 FR 9028 - Guidance for Industry: Potency Tests for Cellular and Gene Therapy Products; Availability

    Science.gov (United States)

    2011-02-16

    ... Industry: Potency Tests for Cellular and Gene Therapy Products'' dated January 2011. The guidance document provides manufacturers of cellular and gene therapy (CGT) products with recommendations for developing... document entitled ``Guidance for Industry: Potency Tests for Cellular and Gene Therapy Products''...

  20. The Importance and Weaknesses of the Productivist Industrial Model of Knowledge Production

    Science.gov (United States)

    Persson, Roland S.

    2010-01-01

    To view contemporary Science as an industry is a very apt and timely stance. Ghassib's (2010) historical analysis of knowledge production, which he terms "A Productivist Industrial Model of Knowledge Production," is an interesting one. It is important, however, to observe that the outline of this model is based entirely on the production of…

  1. The Ministry of Industry and Information Technology Laid out Objectives and Tasks on Eliminating Backward Production Capacity for 18 Industries

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    @@ In order to implement the plan and requirements set forth by the State Council to further strengthen the work of eliminating backward production capacity,and assign and implement the tasks in 2010,the working conference of the national industrial system on eliminating backward production capacity was held in Beijing on May 27th and 28th,2010.

  2. Soluble phosphate fertilizer production using acid effluent from metallurgical industry.

    Science.gov (United States)

    Mattiello, Edson M; Resende Filho, Itamar D P; Barreto, Matheus S; Soares, Aline R; Silva, Ivo R da; Vergütz, Leonardus; Melo, Leônidas C A; Soares, Emanuelle M B

    2016-01-15

    Preventive and effective waste management requires cleaner production strategies and technologies for recycling and reuse. Metallurgical industries produce a great amount of acid effluent that must be discarded in a responsible manner, protecting the environment. The focus of this study was to examine the use of this effluent to increase reactivity of some phosphate rocks, thus enabling soluble phosphate fertilizer production. The effluent was diluted in deionized water with the following concentrations 0; 12.5; 25; 50; 75% (v v(-1)), which were added to four natural phosphate rocks: Araxá, Patos, Bayovar and Catalão and then left to react for 1 h and 24 h. There was an increase in water (PW), neutral ammonium citrate (PNAC) and citric acid (PCA) soluble phosphorus fractions. Such increases were dependent of rock type while the reaction time had no significant effect (p fertilizers with low toxic metal concentrations and a high level of micronutrients were produced compared to the original natural rocks. The minimum amount of total P2O5, PNAC and PW, required for national legislation for phosphate partially acidulated fertilizer, were met when using Catalão and the effluent at the concentration of 55% (v v(-1)). Fertilizer similar to partially acidulated phosphate was obtained when Bayovar with effluent at 37.5% (v v(-1)) was used. Even though fertilizers obtained from Araxá and Patos did not contain the minimum levels of total P2O5 required by legislation, they can be used as a nutrient source and for acid effluent recycling and reuse.

  3. Sustainability of the Biorefinery Industry for Fuel Production

    Directory of Open Access Journals (Sweden)

    Paulo Cesar Barbosa

    2013-01-01

    Full Text Available Biofuels have been extensively explored and applied in the Brazilian market. In Brazil, ethanol and biodiesel are produced on an industrial scale. Ethanol is commercialized and used in engines in both the hydrated form (96% °GL and the anhydrous form, mixed with gasoline at a proportion of up to 25% by volume. In turn, biodiesel is blended with diesel in a proportion of 5% by volume. Thus, the goal of the use of biofuels is to contribute to the mitigation of greenhouse gases and other pollutants emitted into the atmosphere during burning. This article describes some recent developments in the characterization of the environmental and economic impacts of the production of these biofuels from different biomass sources. On this regard, this review presents results of life-cycle assessments (LCAs, life-cycle cost assessments (LCCAs and Structural Path Analysis (SPA, this last one depicting a sectorial perspective rather than LCA process level data approaches. The results showed that the inclusion of biofuels in transportation activities can lead to the mitigation of the environmental impacts of certain activities, such as emissions of greenhouse gases. However, greater attention must be paid to the improvement of agricultural management to decrease fuel, fertilizer and herbicide consumption.

  4. STANDARD CALCULATION PER PRODUCT IN THE CHEMICAL FERTILIZER INDUSTRY

    Directory of Open Access Journals (Sweden)

    Ion Ionescu

    2016-12-01

    Full Text Available The main goal of the research is to present a way of organising the managerial accounting of totally and semi finished product obtained in chemical fertilizer industry entities. For this study, we analyzed the current principle of managerial accounting to an entity in the studied area, in order to emphasize the need of organizing and implementing a modern accounting management to control the cost and increase the performance of the entities in this area, starting from the premise that there are sufficient similarities between entities in the field. Research carried out has revealed that currently, the costing is organized in terms of using traditional methods and that it is necessary to organize and implement an accounting management based on the use of modern methods, namely the method of standard costs combined with the method of centres of costs. The major implications of the proposed system for the investigated field consist of determining a relevant cost-oriented management entity, highlighting the shortcomings of traditional methods of cost

  5. Les initiatives commerciales de bioraffinage en Région wallonne (Belgique : production de biocarburants et voies de valorisation connexes (synthèse bibliographique

    Directory of Open Access Journals (Sweden)

    Jacquet, N.

    2015-01-01

    Full Text Available Commercial biorefining initiatives in Wallonia: production of biofuels and related valorization routes. A review. Introduction. Biorefining is gaining increasing interest in Wallonia as a complement to the conventional petrochemical industry. Biorefineries are categorized according to the nature of the raw materials they treat (food or non-food and the nature of their products (energy and biofuels or biobased compounds. Literature. Production of first-generation (bioethanol and biodiesel and second-generation biofuels are described, as well as their parallel valorization pathways. A description of the Belgian biobased industry is also provided. Conclusions. Diversification of supply chains, as well as the need to promote a circular economy, is becoming a priority for the development of biorefining in Wallonia.

  6. Spore production of Beauveria bassiana from agro-industrial residues

    Directory of Open Access Journals (Sweden)

    Herta Stutz Dalla Santa

    2005-06-01

    Full Text Available The purpose of this work was to produce Beauveria bassiana by Solid-State Fermentation using agro-industrial residues and optimizing the cultivation conditions. Refused potatoes, coffee husks and sugar-cane bagasse were tested. The blend of refused potatoes and sugar-cane bagasse (60-40% with particle size in the range of 0.8-2 mm was used in the fermentation experiments. In Erlenmeyer flasks the best spore production was achieved with the following conditions: incubation temperature 26º C; initial pH 6.0; inoculum concentration 10(7 spores.g-1.dw and initial moisture 75%. In the column type reactor using forced aeration under the optimized conditions, the maximum production (1.07x10(10spores.g-1.dw was obtained at the 10th day of fermentation. The respirometric analyses of the fermentation showed a strong correlation between fungal growth and spore production.O objetivo deste trabalho foi produzir Beauveria bassiana por fermentação no estado sólido em resíduos agro-industriais e otimizar as condições de cultivo. Batata-refugo, polpa de café e bagaço de cana de açúcar foram testados. A mistura de batata-refugo e de bagaço de cana de açúcar (60:40%, com granulometria de 2 a 0,8 mm foi escolhida como melhor substrato/suporte. Em frascos de Erlenmeyer a produção de esporos foi maior com as seguintes condições: pH 6,0; temperatura de incubação de 26º C; taxa de inóculo de 10(7 esporos.g-1 de matéria seca; e umidade inicial de 75%. Em bioreator do tipo coluna com aeração forçada, as condições otimizadas possibilitaram uma produção máxima de esporos no 10º dia de fermentação, obtendo-se 1,07x10(10 esporos.g-1 de matéria seca. A análise respirométrica desta fermentação permitiu correlacionar o desenvolvimento do fungo com a produção de esporos.

  7. A New Bio-based Dielectric Material.

    Science.gov (United States)

    Zhan, Mingjiang; Wool, Richard P.

    2007-03-01

    Low dielectric constant (low-k) materials are widely used in modern high-speed microelectronics, such as printed circuit boards. A new bio-based composite was developed from soybean oil and chicken feather fibers, which has the potential to replace currently used petroleum-based dielectrics. Feather fibers have a unique hollow structure which distinguishes them from glass fibers and give very attractive properties. Due to the retained air in the hollow fibers, the dielectric constant can be lower than conventional epoxy-based dielectrics at both low and high frequencies. The coefficients of thermal expansion (CTE) of the materials decrease with addition of feather fibers and even can be negative. By controlling the fraction of fibers, delamination caused by CTE mismatch between the dielectric and the metal lines can be avoided. The enhancement of adhesion between copper surface and polymer matrix was investigated. The tough structure of fibers significantly improved the mechanical properties of the composites, such as flexural properties and storage modulus. Supported by USDA

  8. Biorefinery: Toward an industrial metabolism.

    Science.gov (United States)

    Octave, Stéphane; Thomas, Daniel

    2009-06-01

    Fossil fuel reserves are running out, global warming is becoming a reality, waste recycling is becoming ever more costly and problematic, and unrelenting population growth will require more and more energy and consumer products. There is now an alternative to the 100% oil economy; it is a renewable resource based on agroresources by using the whole plant. Production and development of these new products are based on biorefinery concept. Each constituent of the plant can be extracted and functionalized in order to produce non-food and food fractions, intermediate agro-industrial products and synthons. Three major industrial domains can be concerned: molecules, materials and energy. Molecules can be used as solvent surfactants or chemical intermediates in substitution of petrol derivatives. Fibers can be valorized in materials like composites. Sugars and oils are currently used to produce biofuels like bioethanol or biodiesel, but second-generation biofuels will use lignocellulosic biomass as raw material. Lipids can be used to produce a large diversity of products like solvent, lubricants, pastes or surfactants. Industrial biorefinery will be linked to the creation of new processes based on the twelve principles of green chemistry (clean processes, atom economy, renewable feedstocks...). Biotechnology, especially white biotechnology, will take a major part into these new processes with biotransformations (enzymology, micro-organisms...) and fermentation. The substitution of oil products by biobased products will develop a new bioeconomy and new industrial processes respecting the sustainable development concept. Industrial biorefinery can be developed on the principle that any residues of one can then be exploited as raw material by others in an industrial metabolism.

  9. 75 FR 73108 - Guidance for Industry on Abbreviated New Drug Applications: Impurities in Drug Products...

    Science.gov (United States)

    2010-11-29

    ... HUMAN SERVICES Food and Drug Administration Guidance for Industry on Abbreviated New Drug Applications...: The Food and Drug Administration (FDA) is announcing the availability of a guidance for industry...) guidance for industry ``Q3B(R) Impurities in New Drug Products,'' which was announced in August 2006....

  10. 78 FR 21611 - Guidance for Industry on Self-Selection Studies for Nonprescription Drug Products; Availability

    Science.gov (United States)

    2013-04-11

    ... HUMAN SERVICES Food and Drug Administration Guidance for Industry on Self-Selection Studies for...: The Food and Drug Administration (FDA) is announcing the availability of a guidance for industry... appropriate for them to use a drug product. The guidance provides recommendations to industry involved...

  11. 76 FR 60504 - Guidance for Industry on Time and Extent Applications for Nonprescription Drug Products...

    Science.gov (United States)

    2011-09-29

    ... HUMAN SERVICES Food and Drug Administration (Formerly 2004D-0027) Guidance for Industry on Time and... a guidance for industry entitled ``Time and Extent Applications for Nonprescription Drug Products... in 21 CFR part 25 and the guidance for industry entitled ``Environmental Assessment of Human Drug...

  12. 48 CFR 52.234-1 - Industrial Resources Developed Under Defense Production Act Title III.

    Science.gov (United States)

    2010-10-01

    ... 48 Federal Acquisition Regulations System 2 2010-10-01 2010-10-01 false Industrial Resources... CLAUSES Text of Provisions and Clauses 52.234-1 Industrial Resources Developed Under Defense Production Act Title III. As prescribed at 34.104, insert the following clause: Industrial Resources...

  13. FORMATION OF BRANCH TECHNOLOGY CLUSTERS IN INDUSTRIAL PRODUCTION

    Directory of Open Access Journals (Sweden)

    Sergei S. Kabanov

    2013-01-01

    Full Text Available A problem of cluster analysis as a universal method of interpreting the empirical research is considered in the article. Basic results of analysis of technological development of Russian industry are represented. Quantitative study of the existence of industrial clusters and practical recommendations to improve its internal economic characteristics are given.

  14. Dedicated Industrial Oilseed Crops as Metabolic Engineering Platforms for Sustainable Industrial Feedstock Production

    NARCIS (Netherlands)

    Zhu, Li Hua; Krens, Frans; Smith, Mark A.; Li, Xueyuan; Qi, Weicong; Loo, Van Eibertus N.; Iven, Tim; Feussner, Ivo; Nazarenus, Tara J.; Huai, Dongxin; Taylor, David C.; Zhou, Xue Rong; Green, Allan G.; Shockey, Jay; Klasson, Thomas K.; Mullen, Robert T.; Huang, Bangquan; Dyer, John M.; Cahoon, Edgar B.

    2016-01-01

    Feedstocks for industrial applications ranging from polymers to lubricants are largely derived from petroleum, a non-renewable resource. Vegetable oils with fatty acid structures and storage forms tailored for specific industrial uses offer renewable and potentially sustainable sources of petroch

  15. Industry regulation, competition, and the dynamics of productivity growth: evidence from China’s iron and steel industry

    Directory of Open Access Journals (Sweden)

    Jianbai Huang

    2015-12-01

    Full Text Available This study aims to investigate the characteristics of the efficient evolution of China’s iron and steel industry against the backdrop of limited openness and regulation and to discuss the important effects of regulatory policy and total factor productivity (TFP of China’s iron and steel industry. The method adopted the Cobb–Douglas production function combined with a semi-parametric method to decompose productivity. This study based on the micro-level dataset of iron and steel enterprises in the database of China’s industrial enterprises between 1998 and 2007 that investigated the intrinsic correlation among corporate entry and exit, market competition of existing enterprises, and TFP growth in the iron and steel industry. The results of the research show that the entry-exit would promote the growth of the aggregate productivity, while the low efficiency of resource allocation would significantly inhibit the TFP growth. The basic conclusion is that, with substantial government intervention in enterprise investments, market competition may not promote optimal resource allocation efficiency in China’s iron and steel industry, but make the allocation less efficient.

  16. EFFECTS OF OIL AND NATURAL GAS PRICES ON INDUSTRIAL PRODUCTION IN THE EUROZONE MEMBER COUNTRIES

    Directory of Open Access Journals (Sweden)

    Yılmaz BAYAR

    2014-04-01

    Full Text Available Industrial production is one of the leading indicators of gross domestic product which reflects the overall economic performance of a country. In other words decreases or increases in industrial production point out a contracting or expanding economy. Therefore, changes in prices of oil and natural gas which are the crucial inputs to the industrial production are also important for the overall economy. This study examines the effects of changes in oil and natural gas prices on the industrial production in the 18 Eurozone member countries during the period January 2001-September 2013 by using panel regression. We found that oil prices and natural gas prices had negative effect on industrial production in the Eurozone member countries.

  17. Comparing life cycle energy and GHG emissions of bio-based PET, recycled PET, PLA and man-made cellulosics

    NARCIS (Netherlands)

    Shen, L.; Worrell, E.; Patel, M.K.

    2012-01-01

    The purpose of this paper is to review the environmental profiles of petrochemical PET, (partially) bio-based PET, recycled PET, and recycled (partially) bio-based PET, and compare them with other bio-based materials, namely PLA (polylactic acid, a bio-based polyester) and man-made cellulose fibers

  18. 75 FR 33311 - Guidance for Industry on Bioequivalence Recommendations for Specific Products; Availability

    Science.gov (United States)

    2010-06-11

    ... Bioequivalence Recommendations for Specific Products; Availability AGENCY: Food and Drug Administration, HHS... guidance for industry entitled ``Bioequivalence Recommendations for Specific Products.'' This guidance... bioequivalence (BE) studies to support abbreviated new drug applications (ANDAs). Under this process,...

  19. Fumonisin and Ochratoxin Production in Industrial Aspergillus niger Strains

    DEFF Research Database (Denmark)

    Frisvad, Jens Christian; Larsen, Thomas Ostenfeld; Thrane, Ulf

    2011-01-01

    Aspergillus niger is perhaps the most important fungus used in biotechnology, and is also one of the most commonly encountered fungi contaminating foods and feedstuffs, and occurring in soil and indoor environments. Many of its industrial applications have been given GRAS status (generally regarded...... as safe). However, A. niger has the potential to produce two groups of potentially carcinogenic mycotoxins: fumonisins and ochratoxins. In this study all available industrial and many non-industrial strains of A. niger (180 strains) as well as 228 strains from 17 related black Aspergillus species were...

  20. Ensuring the sustainability of biobased chemicals and polymers

    Energy Technology Data Exchange (ETDEWEB)

    Harteveld, M.; Van der Staaij, J.; Gamba, L.; Yildiz, I.; Brasz, M.

    2012-11-15

    The Dutch Government, the Dutch rubber and polymer organisation (NRK), Plastics Europe and the company SABIC have signed a 'Green Deal' with the aim to develop a green certification system for biobased chemicals and polymers. Ecofys supported the first step in the implementation of the 'Green Deal' by investigating the applicability of existing sustainability frameworks and certification systems. A practical approach for the sustainability certification of new biobased value-chains has been tested on two pilot projects. The research also provided insights into the possibilities to extend this approach to other value chains.

  1. Spore production in Paecilomyces lilacinus (Thom.) samson strains on agro-industrial residues

    OpenAIRE

    Robl, Diogo; Sung, Letizia B.; Novakovich,João Henrique; Marangoni, Paulo R.D.; Zawadneak, Maria Aparecida C.; Dalzoto,Patricia R.; Gabardo,Juarez; Pimentel,Ida Chapaval

    2009-01-01

    Paecilomyces lilacinus has potential for pests control. We aimed to analyze mycelial growth and spore production in P. lilacinus strains in several agro-industrial residues and commercial media. This study suggests alternative nutrient sources for fungi production and that the biotechnological potential of agro-industrial refuses could be employed in byproducts development.

  2. Product modeling standards for the building and construction industry : Past, present and future

    NARCIS (Netherlands)

    Tolman, F.P.

    1999-01-01

    For the past ten years most sectors of industry have been developing standards for the electronic sharing and exchange of product model data. While several related industries, such as automotive and shipbuilding manufacturing have been relatively successful in integrating electronic product models i

  3. Biorefinery cascade processing for creating added value on tomato industrial by-products from Tunisia

    OpenAIRE

    Kehili, Mouna; Schmidt, Lisa Marie; Reynolds, Wienke; Zammel, Ayachi; Zetzl, Carsten; Smirnova, Irina; Allouche, Noureddine; Sayadi, Sami

    2016-01-01

    Background In today’s consumer perception of industrial processes and food production, aspects like food quality, human health, environmental safety, and energy security have become the keywords. Therefore, much effort has been extended toward adding value to biowastes of agri-food industries through biorefinery processing approaches. This study focused, for the first time, on the valorization of tomato by-products of a Tunisian industry for the recovery of value-added compounds using biorefi...

  4. Industrial Production of High-carotene-content Carrot Juice

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    @@ Scientific experiments have shown that β-carotene from fresh carrots and other fruits and vegetables, rather than chemosynthetic ones, could have preventive effects on the lung cancer. This makes β-carotene processing an industry with great prospects.

  5. Managing salinity in water associated with petrol industry production

    OpenAIRE

    Carlos Alberto Guerrero Fajardo; Sandra Escobar C; Diego Ramírez N

    2010-01-01

    This article describes a conceptual design for handling an oilfield’s industrial wastewater; its oblective was to use type-1 fractioned crystallisation within a feasible environmental and technical framework for obtaining the highest percentage of salt.La Gloria, La Gloria Norte and Morichal (all belonging to the Casanare department association) stations were used for planning and analysing this handling alternative as they produce high salt-containing industrial effluent.This alternative was...

  6. Industrial recovered-materials-utilization targets for the metals and metal-products industry

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-03-01

    The National Energy Conservation Policy Act of 1978 directs DOE to set targets for increased utilization of energy-saving recovered materials for certain industries. These targets are to be established at levels representing the maximum feasible increase in utilization of recovered materials that can be achieved progressively by January 1, 1987 and is consistent with technical and economic factors. A benefit to be derived from the increased use of recoverable materials is in energy savings, as state in the Act. Therefore, emhasis on different industries in the metals sector has been related to their energy consumption. The ferrous industry (iron and steel, ferrour foundries and ferralloys), as defined here, accounts for approximately 3%, and all others for the remaining 3%. Energy consumed in the lead and zinc segments is less than 1% each. Emphasis is placed on the ferrous scrap users, followed by the aluminum and copper industries. A bibliography with 209 citations is included.

  7. Sustainable Industrial Product Systems. Integration of Life Cycle Assessment in Product development and Optimization of Product Systems

    Energy Technology Data Exchange (ETDEWEB)

    Hanssen, Ole Joergen

    1997-12-31

    This thesis contributes to the development and testing of environmental life cycle assessment (LCA) in product development and management in industry. It is based on systems theory and systems engineering. It develops a method for sustainable product development that has been successfully tested in the Nordic project called NEP. The LCA method is also a basis for an optimization model, where life cycle economy and environmental impacts from product systems are optimized with a non-linear model. A more complete mathematical model for LCA, based on the functional requirements on a product system, is also developed. The statistical properties of emission factors are studied using a data set from the Swedish Kraft Mill industry. It is shown that emission factors may be assumed constants in the LCA model, but with rather large variations within a population of Kraft mills. It is shown that there are a few environmental impacts which are important for most types of products under Scandinavian conditions, especially global warming potential, acidification, human toxicity and fossil energy depletion. There are significant differences between the contribution to these impacts from different life cycle stages, where raw material processing and use of products are generally more important than the other stages. Test cases indicate that there are no large conflicts between improvements in environmental impacts and customer requirements. Environmental improvements seem to increase purchase cost of products in some cases, but the life cycle cost of the products seem in most cases to be reduced. It is concluded that there are opportunities for 30-50% improvements in product system, based on relatively simple modifications of the systems. 246 refs., 63 figs., 19 tabs.

  8. Monitoring and evaluation of production processes an analysis of the automotive industry

    CERN Document Server

    Panda, Anton; Pandová, Iveta

    2016-01-01

    This book presents topics on monitoring and evaluation of production processes in the automotive industry. Regulation of production processes is also described in details. The text deals with the implementation and evaluation of these processes during the mass production of components useful in the automotive industry. It evaluates the effects and results achieved after implementation in practice. The book takes into account the different methodologies of the world's automakers and applicable standards, such as standard EN ISO 9001 and the requirements of VDA and ISO/TS 16949. The content is used to those working with the development, production and quality control of new products in the demanding automotive industry. The information provided may also be useful to engineers and technical staff in organizations working with series production and production of spare parts for the automotive and other demanding industries. The content presented was written based on discussions with various companies and organiza...

  9. Development of industrial yeast for second generation bioethanol production

    Energy Technology Data Exchange (ETDEWEB)

    Hou, X.

    2012-01-15

    The cost of lignocellulose-based bioethanol needs to be reduced, in order to commercialize this clean and sustainable fuel substitute for fossil fuels. A microorganism that can completely and efficiently convert all the sugars in lignocellulose into ethanol is one of the prerequisites of a cost-effective production process. In addition, the microorganisms should also have a high tolerance towards the inhibitory compounds present in the lignocellulosic hydrolysate, which are formed during the pretreatment of lignocellulose. Baker's yeast, Saccharomyces cerevisiae, is generally regarded as a robust microorganism and can efficiently ferment glucose. But it lacks the ability to ferment xylose which comprises 20-35% of lignocellulose. Naturally xylose-fermenting yeast such as Pichia stipitis is much more sensitive to inhibitors than S. cerevisiae and it requires accurately controlled microaerophilic conditions during the xylose fermentation, rendering the process technically difficult and expensive. In this study, a novel xylose fermenting yeast Spathaspora passalidarum displayed fast cell growth and efficient xylose fermentation under anaerobic conditions. In contrast, P. stipitis was almost unable to utilize xylose under the same conditions. It is further demonstrated that S. passalidarum converts xylose by means of NADH-preferred xylose reductase (XR) and NAD+-dependent xylitol dehydrogenase (XDH). Thus, the capacity of S. passalidarum to utilize xylose under anaerobic conditions is possibly due to a balance between supply and demand of cofactor through this XR-XDH pathway. Only one other XR with NADH preference has been reported so far. Unfortunately, S. passalidarum also has a low tolerance towards inhibitors generated during pretreatment, which prevents immediate use of this yeast in industrial application. S. passalidarum is able to convert the inhibitor furfural to furfuryl alcohol in a synthetic medium when the addition of furfural is low. The enzymes

  10. Advances in in-situ product recovery (ISPR) in whole cell biotechnology during the last decade.

    Science.gov (United States)

    Van Hecke, Wouter; Kaur, Guneet; De Wever, Heleen

    2014-11-15

    The review presents the state-of-the-art in the applications of in-situ product recovery (ISPR) in whole-cell biotechnology over the last 10years. It summarizes various ISPR-integrated fermentation processes for the production of a wide spectrum of bio-based products. A critical assessment of the performance of various ISPR concepts with respect to the degree of product enrichment, improved productivity, reduced process flows and increased yields is provided. Requirements to allow a successful industrial implementation of ISPR are also discussed. Finally, supporting technologies such as online monitoring, mathematical modeling and use of recombinant microorganisms with ISPR are presented.

  11. Advanced Industrial Materials (AIM) Program: Annual progress report FY 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-04-01

    In many ways, the Advanced Industrial Materials (AIM) Program underwent a major transformation in Fiscal Year 1995 and these changes have continued to the present. When the Program was established in 1990 as the Advanced Industrial Concepts (AIC) Materials Program, the mission was to conduct applied research and development to bring materials and processing technologies from the knowledge derived from basic research to the maturity required for the end use sectors for commercialization. In 1995, the Office of Industrial Technologies (OIT) made radical changes in structure and procedures. All technology development was directed toward the seven ``Vision Industries`` that use about 80% of industrial energy and generated about 90% of industrial wastes. The mission of AIM has, therefore, changed to ``Support development and commercialization of new or improved materials to improve productivity, product quality, and energy efficiency in the major process industries.`` Though AIM remains essentially a National Laboratory Program, it is essential that each project have industrial partners, including suppliers to, and customers of, the seven industries. Now, well into FY 1996, the transition is nearly complete and the AIM Program remains reasonably healthy and productive, thanks to the superb investigators and Laboratory Program Managers. This Annual Report for FY 1995 contains the technical details of some very remarkable work by the best materials scientists and engineers in the world. Areas covered here are: advanced metals and composites; advanced ceramics and composites; polymers and biobased materials; and new materials and processes.

  12. [Fermentation production of microbial catalase and its application in textile industry].

    Science.gov (United States)

    Zhang, Dongxu; Du, Guocheng; Chen, Jian

    2010-11-01

    Microbial catalase is an important industrial enzyme that catalyzes the decomposition of hydrogen peroxide to water and oxygen. This enzyme has great potential of application in food, textile and pharmaceutical industries. The production of microbial catalase has been significantly improved thanks to advances in bioprocess engineering and genetic engineering. In this paper, we review the progresses in fermentation production of microbial catalase and its application in textile industry. Among these progresses, we will highlight strain isolation, substrate and environment optimization, enzyme induction, construction of engineering strains and application process optimization. Meanwhile, we also address future research trends for microbial catalase production and its application in textile industry. Molecular modification (site-directed mutagenesis and directed revolution) will endue catalase with high pH and temperature stabilities. Improvement of catalase production, based on the understanding of induction mechanism and the process control of recombinant stain fermentation, will further accelerate the application of catalase in textile industry.

  13. Operations management in automotive industries from industrial strategies to production resources management, through the industrialization process and supply chain to pursue value creation

    CERN Document Server

    Gobetto, Marco

    2014-01-01

    This book has proved its worth over the years as a text for courses in Production Management at the Faculty of Automotive Engineering in Turin, Italy, but deserves a wider audience as it presents a compendium of basics on Industrial Management, since it covers all major topics required. It treats all subjects from product development and “make or buy”-decision strategies to the manufacturing systems setting and management through analysis of the main resources needed in production and finally exploring the supply chain management and the procurement techniques. The very last chapter recapitulates the previous ones by analysing key management indicators to pursue the value creation that is the real purpose of every industrial enterprise. As an appendix, a specific chapter is dedicated to the basics of production management where all main relevant definitions, techniques and criteria are treated, including some numerical examples, in order to provide an adequate foundation for understanding the other chapte...

  14. Hydrogenated cottonseed oil as raw material for biobased materials

    Science.gov (United States)

    There has been a lot of recent interest in using vegetable oils as biodegradable and renewable raw materials for the syntheses of various biobased materials. Although most of the attention has been paid to soybean oil thus far, cottonseed oil is a viable alternative. An advantage of cottonseed oil...

  15. Scenario projections for future market potentials of biobased bulk chemicals

    NARCIS (Netherlands)

    Dornburg, V.; Hermann, B.G.; Patel, M.K.

    2008-01-01

    Three scenario projections for future market potentials of biobased bulk chemicals produced by means of white biotechnology are developed for Europe (EU-25) until the year 2050, and potential nonrenewable energy savings, greenhouse gas emission reduction, and land use consequences are analyzed. Thes

  16. De logistiek van biomassa voor de biobased economy

    NARCIS (Netherlands)

    Annevelink, E.

    2013-01-01

    Deze literatuurstudie bevat scenario’s voor de analyse van biomassaketens in de biobased economy (Hoofdstuk 2), het aanbod van biomassa (Hoofdstuk 3), de vraag naar biomassa (Hoofdstuk 4), de logistieke componenten van biomassaketens (Hoofdstuk 5), overwegingen bij het vormen van biomassaketens (Hoo

  17. Import Substitution in Regional Industrial Production: Theoretical and Practical Aspects

    Directory of Open Access Journals (Sweden)

    Yevgeniy Georgievich Animitsa

    2015-09-01

    Full Text Available The article proves the important role of import substitution in the economic security protection of state and its regions, especially in times of crisis, geopolitical and economical instability. The authors argue that the problem of import substitution is not modern, trendy scientific stream. The issue of displacement of import goods by domestic ones was brought up in famous classic theories of mercantilists. The particular emphasis is placed on the analysis and systematization of different scientific approaches, which are utilized by native and foreign scientists to bring out the matter of “import substitution,” to determine its essential characteristics. The authors suggest their own interpretation of the import substitution notion. In the article, the most significant pro and contra arguments in import substitution policy are defined. The regional aspects in the import substitution are approved: case study — organization of industrial import substitution in the Sverdlovsk region. In the article, the authors analyze the subject matter of the Program “Development of Intraregional Industrial Cooperation and Implementation of an Import Substitution in Branches of Industry in the Sverdlovsk Region.” It is resumed, that active policy of import substitution in the industry may become the driver of regional economic development.

  18. Recycling cellulases for cellulosic ethanol production at industrial relevant conditions

    DEFF Research Database (Denmark)

    Lindedam, Jane; Haven, Mai Østergaard; Chylenski, Piotr;

    2013-01-01

    wheat straw. Industrial conditions were used to study the impact of hydrolysis temperature (40 or 50. °C) and residence time on recyclability. Enzyme recycling at 12% DM indicated that hydrolysis at 50. °C, though ideal for ethanol yield, should be kept short or carried out at lower temperature...

  19. Films that Work : Industrial Film and the Productivity of Media

    NARCIS (Netherlands)

    2009-01-01

    Industriële films worden gezien als een apart filmgenre van de twintigste eeuw. Ze werden geproduceerd en gesponsord door de overheid en grote bedrijven en moesten vooral aan de wensen van de sponsors voldoen, en niet zo zeer aan die van de filmmakers. In de hoogtijdagen werkten er duizenden mensen

  20. Modern technologies of waste utilization from industrial tire production

    Science.gov (United States)

    Azimov, Yusuf; Gilmanshin, Iskander; Gilmanshina, Suriya

    2016-06-01

    The innovative technology of waste tire production recovery from JSC "Nizhnekamskshina", which determines the possibility of obtaining a new type of composite material in the form fiber filled rubber compound (FFRC) as the raw material, production of rubber products with high technical and operational characteristics.

  1. Industrialization of mAb production technology The bioprocessing industry at a crossroads

    OpenAIRE

    Kelley, Brian

    2009-01-01

    Manufacturing processes for therapeutic monoclonal antibodies (mAbs) have evolved tremendously since the first licensed mAb product in 1986. The rapid growth in product demand for mAbs triggered parallel efforts to increase production capacity through construction of large bulk manufacturing plants as well as improvements in cell culture processes to raise product titers. This combination has led to an excess of manufacturing capacity, and together with improvements in conventional purificati...

  2. Proposed industrial recoverd materials utilization targets for the textile mill products industry

    Energy Technology Data Exchange (ETDEWEB)

    1979-05-01

    Materials recovery targets were established to represent the maximum technically and economically feasible increase in the use of energy-saving materials by January 1, 1987. This report describes targets for the textile industry and describes how those targets were determined. (MCW)

  3. Impact of industrial production and packaging processes on the concentration of per- and polyfluorinated compounds in milk and dairy products.

    Science.gov (United States)

    Still, Mona; Schlummer, Martin; Gruber, Ludwig; Fiedler, Dominik; Wolz, Gerd

    2013-09-25

    Perfluorinated alkylated compounds (PFAA) have been identified in milk and dairy products at sub ppb levels, however, knowledge on the impact of industrial milk processing on PFAA levels is rare. This study examined industrial milk processing first by analytical screening of products of a cooperating dairy, which varied in kind and number of processing steps. Second, amounts of PFAA in raw milk, cream, skim milk, butter milk, and butter were mass balanced in industrial production. For migration testing, unpacked butter was sampled from the production and exposed to original packaging at 5 °C for 45 days. Screening identified dairy products with high fat contents to bear higher loads of PFAA. The mass balance of butter production revealed a significant impact of phase separation processes on concentrations in fat rich and aqueous phases. Storage of butter in packaging coated with a fluorinated polymer increased butter levels of both PFAA and FTOH.

  4. Development of A Flexible System for the Simultaneous Conversion of Biomass to Industrial Chemicals and the Production of Industrial Biocatalysts

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Johnway; Hooker, Brian S.; Skeen, R S.; Anderson, D B.; Lankey, R. L.; Anastas, P. T.

    2002-01-01

    A flexible system was developed for the simultaneous conversion of biomass to industrial chemicals and the production of industrial biocatalysts. In particular, the expression of a bacterial enzyme, beta-glucuronidase (GUS), was investigated using a genetically modified starch-degrading Saccharomyces strain in suspension cultures in starch media. Different sources of starch including corn and waste potato starch were used for yeast biomass accumulation and GUS expression studies under controls of inducible and constitutive promoters. A thermostable bacterial cellulase, Acidothermus cellulolyticus E1 endoglucanase gene was also cloned into an episomal plasmid expression vector and expressed in the starch-degrading Saccharomyces strain.

  5. Structure Property Relationships of Biobased Epoxy Resins

    Science.gov (United States)

    Maiorana, Anthony Surraht

    The thesis is about the synthesis, characterization, development, and application of epoxy resins derived from sustainable feedstocks such as lingo-cellulose, plant oils, and other non-food feedstocks. The thesis can be divided into two main topics 1) the synthesis and structure property relationship investigation of new biobased epoxy resin families and 2) mixing epoxy resins with reactive diluents, nanoparticles, toughening agents, and understanding co-curing reactions, filler/matrix interactions, and cured epoxy resin thermomechanical, viscoelastic, and dielectric properties. The thesis seeks to bridge the gap between new epoxy resin development, application for composites and advanced materials, processing and manufacturing, and end of life of thermoset polymers. The structures of uncured epoxy resins are characterized through traditional small molecule techniques such as nuclear magnetic resonance, high resolution mass spectrometry, and infrared spectroscopy. The structure of epoxy resin monomers are further understood through the process of curing the resins and cured resins' properties through rheology, chemorheology, dynamic mechanical analysis, tensile testing, fracture toughness, differential scanning calorimetry, scanning electron microscopy, thermogravimetric analysis, and notched izod impact testing. It was found that diphenolate esters are viable alternatives to bisphenol A and that the structure of the ester side chain can have signifi-cant effects on monomer viscosity. The structure of the cured diphenolate based epoxy resins also influence glass transition temperature and dielectric properties. Incorporation of reactive diluents and flexible resins can lower viscosity, extend gel time, and enable processing of high filler content composites and increase fracture toughness. Incorpora-tion of high elastic modulus nanoparticles such as graphene can provide increases in physical properties such as elastic modulus and fracture toughness. The synthesis

  6. Comparative Analysis of Capital Productivity in China's High-Tech Industries

    Institute of Scientific and Technical Information of China (English)

    LingWang; AdamSzirmai

    2005-01-01

    While labor productivity is a topic of constant debate and has been studied extensively, far less attention has been devoted to the question of capital productivity. Productive use of physical capital is an important source of economic growth and investment return. This paper presents a comparative study of capital productivity in China's high-tech industry. Using a version of the perpetual inventory method (PIM), new estimates have been made of the physical capital stock by sector. Capital productivity in China's high-tech industry is higher than in total manufacturing, but the gap between them has been shrinking. Comparison with high-tech industries in the US., highlights that China's high-tech industries could play a more important role in the growth of manufacturing and the whole economy.

  7. Investigating product development strategy in beverage industry using factor analysis

    Directory of Open Access Journals (Sweden)

    Naser Azad

    2013-03-01

    Full Text Available Selecting a product development strategy that is associated with the company's current service or product innovation, based on customers’ needs and changing environment, plays an important role in increasing demand, increasing market share, increasing sales and profits. Therefore, it is important to extract effective variables associated with product development to improve performance measurement of firms. This paper investigates important factors influencing product development strategies using factor analysis. The proposed model of this paper investigates 36 factors and, using factor analysis, we extract six most influential factors including information sharing, intelligence information, exposure strategy, differentiation, research and development strategy and market survey. The first strategy, partnership, includes five sub-factor including product development partnership, partnership with foreign firms, customers’ perception from competitors’ products, Customer involvement in product development, inter-agency coordination, customer-oriented approach to innovation and transmission of product development change where inter-agency coordination has been considered the most important factor. Internal strengths are the most influential factors impacting the second strategy, intelligence information. The third factor, introducing strategy, introducing strategy, includes four sub criteria and consumer buying behavior is the most influencing factor. Differentiation is the next important factor with five components where knowledge and expertise in product innovation is the most important one. Research and development strategy with four sub-criteria where reducing product development cycle plays the most influential factor and finally, market survey strategy is the last important factor with three factors and finding new market plays the most important role.

  8. A measure of productivity and innovation in the pharmaceutical industry 2011-2015.

    Science.gov (United States)

    Harrison, R

    2016-11-01

    The pharmaceutical industry has faced enormous pressures over the last few decades. Declining revenues, increasing payer pressures, and a constantly changing regulatory landscape have forced all companies to identify processes to increase productivity and innovation. However, to date, no one agrees on precisely how to measure these attributes or how to interpret these results to understand the state of the industry. We propose new quantitative measures of productivity and innovation and use these to illustrate an industry that has in recent years become more innovative and productive after years of decline.

  9. Development of industrial catalysts for sustainable chlorine production.

    Science.gov (United States)

    Mondelli, Cecilia; Amrute, Amol P; Moser, Maximilian; Schmidt, Timm; Pérez-Ramírez, Javier

    2012-01-01

    The heterogeneously catalyzed gas-phase oxidation of HCl to Cl(2) offers an energy-efficient and eco- friendly route to recover chlorine from HCl-containing byproduct streams in the chemical industry. This process has attracted renewed interest in the last decade due to an increased chlorine demand and the growing excess of byproduct HCl from chlorination processes. Since its introduction (by Deacon in 1868) and till recent times, the industrialization of this reaction has been hindered by the lack of sufficiently active and durable materials. Recently, RuO(2)-based catalysts with outstanding activity and stability have been designed and they are being implemented for large-scale Cl(2) recycling. Herein, we review the main limiting features of traditional Cu-based catalysts and survey the key steps in the development of the new generation of industrial RuO(2)-based materials. As the expansion of this technology would benefit from cheaper, but comparably robust, alternatives to RuO(2)-based catalysts, a nov el CeO(2)-based catalyst which offers promising perspectives for application in this field has been introduced.

  10. Nitrogen Sources Screening for Ethanol Production Using Carob Industrial Wastes.

    Science.gov (United States)

    Raposo, S; Constantino, A; Rodrigues, F; Rodrigues, B; Lima-Costa, M E

    2017-02-01

    Nowadays, bioethanol production is one of the most important technologies by the necessity to identify alternative energy resources, principally when based on inexpensive renewable resources. However, the costs of 2nd-generation bioethanol production using current biotechnologies are still high compared to fossil fuels. The feasibility of bioethanol production, by obtaining high yields and concentrations of ethanol, using low-cost medium, is the primary goal, leading the research done today. Batch Saccharomyces cerevisiae fermentation of high-density sugar from carob residues with different organic (yeast extract, peptone, urea) and inorganic nitrogen sources (ammonium sulfate, ammonium nitrate) was performed for evaluating a cost-effective ethanol production, with high ethanol yield and productivity. In STR batch fermentation, urea has proved to be a very promising nitrogen source in large-scale production of bioethanol, reaching an ethanol yield of 44 % (w/w), close to theoretical maximum yield value and an ethanol production of 115 g/l. Urea at 3 g/l as nitrogen source could be an economical alternative with a great advantage in the sustainability of ethanol production from carbohydrates extracted from carob. Simulation studies, with experimental data using SuperPro Design software, have shown that the bioethanol production biorefinery from carob wastes could be a very promising way to the valorization of an endogenous resource, with a competitive cost.

  11. Industrialization of mAb production technology: the bioprocessing industry at a crossroads.

    Science.gov (United States)

    Kelley, Brian

    2009-01-01

    Manufacturing processes for therapeutic monoclonal antibodies (mAbs) have evolved tremendously since the first licensed mAb product in 1986. The rapid growth in product demand for mAbs triggered parallel efforts to increase production capacity through construction of large bulk manufacturing plants as well as improvements in cell culture processes to raise product titers. This combination has led to an excess of manufacturing capacity, and together with improvements in conventional purification technologies, promises nearly unlimited production capacity in the foreseeable future. The increase in titers has also led to a marked reduction in production costs, which could then become a relatively small fraction of sales price for future products which are sold at prices at or near current levels. The reduction of capacity and cost pressures for current state-of-the-art bulk production processes may shift the focus of process development efforts and have important implications for both plant design and product development strategies for both biopharmaceutical and contract manufacturing companies.

  12. Industrial Production and Professional Application of Manufactured Nanomaterials-Enabled End Products in Dutch Industries: Potential for Exposure

    NARCIS (Netherlands)

    Bekker, C.; Brouwer, D.H.; Tielemans, E.; Pronk, A.

    2013-01-01

    Background: In order to make full use of the opportunities while responsibly managing the risks of working with manufactured nanomaterials (MNM), we need to gain insight into the potential level of exposure to MNM in the industry. Therefore, the goal of this study was to obtain an overview of the po

  13. Production yield analysis in the poultry processing industry

    NARCIS (Netherlands)

    Somsen, D.J.; Capelle, A.; Tramper, J.

    2004-01-01

    The paper outlines a case study where the PYA-method (production yield analysis) was implemented at a poultry-slaughtering line, processing 9000 broiler chicks per hour. It was shown that the average live weight of a flock of broilers could be used to predict the maximum production yield of the part

  14. Designing Integrated Product- Service System Solutions in Manufacturing Industries

    DEFF Research Database (Denmark)

    Costa, Nina; Patrício, Lia; Morelli, Nicola

    2015-01-01

    Manufacturing firms are increasingly evolving towards the design of integrated product-service solutions but servitization literature does not provide specific guidance on how to design these integrated solutions. Building upon ProductService System (PSS) and Service Design (SD) approaches...... how it brings new insights to manufacturing companies moving to a service, value cocreation perspective....

  15. Global production networks in the aerospace industry: the role of risk and revenue sharing partnerships

    OpenAIRE

    Smith, DJ; Williams, DA

    2012-01-01

    The last 30 years have seen a major trend towards the internationalisation of production. In some industry sectors this process has become global as production systems have been integrated on an inter-continental basis. Global production networks have been identified as an important factor in this development. A number of studies have explored the use of global production networks in sectors such as clothing and textiles, electronics and automotive products. In general this research has been ...

  16. Product Variety, Supply Chain Structure, and Firm Performance: Analysis of the U.S. Bicycle Industry

    OpenAIRE

    Taylor Randall; Karl Ulrich

    2001-01-01

    Using data from the U.S. bicycle industry, we examine the relation among product variety, supply chain structure, and firm performance. Variety imposes two types of costs on a supply chain: production costs and market mediation costs. Production costs include, among other costs, the incremental fixed investments associated with providing additional product variants. Market mediation costs arise because of uncertainty in product demand created by variety. In the presence of demand uncertainty,...

  17. High-level production of the industrial product lycopene by the photosynthetic bacterium Rhodospirillum rubrum.

    Science.gov (United States)

    Wang, Guo-Shu; Grammel, Hartmut; Abou-Aisha, Khaled; Sägesser, Rudolf; Ghosh, Robin

    2012-10-01

    The biosynthesis of the major carotenoid spirilloxanthin by the purple nonsulfur bacterium Rhodospirillum rubrum is thought to occur via a linear pathway proceeding through phytoene and, later, lycopene as intermediates. This assumption is based solely on early chemical evidence (B. H. Davies, Biochem. J. 116:93-99, 1970). In most purple bacteria, the desaturation of phytoene, catalyzed by the enzyme phytoene desaturase (CrtI), leads to neurosporene, involving only three dehydrogenation steps and not four as in the case of lycopene. We show here that the chromosomal insertion of a kanamycin resistance cassette into the crtC-crtD region of the partial carotenoid gene cluster, whose gene products are responsible for the downstream processing of lycopene, leads to the accumulation of the latter as the major carotenoid. We provide spectroscopic and biochemical evidence that in vivo, lycopene is incorporated into the light-harvesting complex 1 as efficiently as the methoxylated carotenoids spirilloxanthin (in the wild type) and 3,4,3',4'-tetrahydrospirilloxanthin (in a crtD mutant), both under semiaerobic, chemoheterotrophic, and photosynthetic, anaerobic conditions. Quantitative growth experiments conducted in dark, semiaerobic conditions, using a growth medium for high cell density and high intracellular membrane levels, which are suitable for the conventional industrial production in the absence of light, yielded lycopene at up to 2 mg/g (dry weight) of cells or up to 15 mg/liter of culture. These values are comparable to those of many previously described Escherichia coli strains engineered for lycopene production. This study provides the first genetic proof that the R. rubrum CrtI produces lycopene exclusively as an end product.

  18. Effects of Lean Work Organization and Industrialization on Workflow and Productive Time in Housing Renovation Projects

    NARCIS (Netherlands)

    Vrijhoef, Ruben

    2016-01-01

    This paper presents work aimed at improved organization and performance of production in housing renovation projects. The purpose is to explore and demonstrate the potential of lean work organization and industrialized product technology to improve workflow and productive time. The research included

  19. The Environmental Impact of Industrial Bamboo Products: Life-cycle Assessment and Carbon Sequestration

    NARCIS (Netherlands)

    Vogtlander, J.G.; Van der Lugt, P.

    2014-01-01

    This report gives a Life-Cycle Assessment (LCA) and carbon footprint analysis on a selection of industrial bamboo products. The LCA is made for cradle-to-gate, plus the end-of-life stages of the bamboo products. For end-of-life it is assumed that 90% of the bamboo products are incinerated in an elec

  20. Danish experience with the EDIP tool for environmental design of industrial products

    DEFF Research Database (Denmark)

    Wenzel, Henrik; Alting, Leo

    1999-01-01

    Since its publication in, 1996, the Danish method and tools for the environmental design of industrial products (EDIP) have been used in companies in Denmark and abroad, and experience has been gained with a variety of product categories such as electronics, electromechanical products, furniture...

  1. 75 FR 35493 - Guidance for Industry on Systemic Lupus Erythematosus-Developing Medical Products for Treatment...

    Science.gov (United States)

    2010-06-22

    ... Systemic Lupus Erythematosus--Developing Medical Products for Treatment; Availability AGENCY: Food and Drug... availability of a guidance for industry entitled ``Systemic Lupus Erythematosus--Developing Medical Products..., therapeutic biological products, and medical devices for the treatment of systemic lupus erythematosus......

  2. How integrating industrial design in the product development process impacts on company performance

    NARCIS (Netherlands)

    Gemser, G; Leenders, MAAM

    2001-01-01

    There is a growing belief that investing in industrial design is beneficial to company performance. This article sheds more light on how and when integrating industrial design in the product development process can enhance a company's competitive position. The basic premise is that the impact of ind

  3. Elements in a new sustainable industrial culture - Environmental assessment in product development

    DEFF Research Database (Denmark)

    Alting, Leo; Hauschild, Michael Zwicky; Wenzel, Henrik

    1997-01-01

    In the last few years the environmental focus in the manufacturing industry has shifted from the manufacturing processes to the products themselves, as these are accountable for the environmental impacts in all life cycle phases. The paper describes for 3 industrial cases how a newly developed LC...

  4. Of yeast and mushrooms : Patterns of industry-level productivity growth

    NARCIS (Netherlands)

    Inklaar, Robert; Timmer, Marcel P.

    2007-01-01

    In this paper we analyse labour productivity growth in the United States, four European countries (France, Germany, the Netherlands and United Kingdom), Australia and Canada between 1987 and 2003 from an industry perspective. Rather than analysing broad industry groups, we compare the pattern of gro

  5. Elements in a new sustainable industrial culture - Environmental assessment in product development

    DEFF Research Database (Denmark)

    Alting, Leo; Hauschild, Michael Zwicky; Wenzel, Henrik

    1997-01-01

    In the last few years the environmental focus in the manufacturing industry has shifted from the manufacturing processes to the products themselves, as these are accountable for the environmental impacts in all life cycle phases. The paper describes for 3 industrial cases how a newly developed LCA...

  6. Elements in a new sustainable industrial culture - Environmental assessment in product development

    DEFF Research Database (Denmark)

    Alting, Leo; Hauschild, Michael Zwicky; Wenzel, Henrik

    1998-01-01

    In the last few years the environmental focus in the manufacturing industry has shifted from the manufacturing processes to the products themselves, as these are accountable for the environmental impacts in all life cycle phases. The paper describes for three industrial cases how a newly developed...

  7. Elements in a new sustainable industrial culture - Environmental assessment in product development

    DEFF Research Database (Denmark)

    Alting, Leo; Wenzel, Henrik; Hauschild, Michael Zwicky

    1998-01-01

    In the last few years the environmental focus in the manufacturing industry has shifted from the manufacturing processes to the products themselves, as these are accountable for the environmental impacts in all life cycle phases. The paper describes for 3 industrial cases how a newly developed LCA...

  8. A future perspective on the role of industrial biotechnology for chemicals production

    DEFF Research Database (Denmark)

    Woodley, John; Breuer, Michael; Mink, Daniel

    2013-01-01

    The development of recombinant DNA technology, the need for renewable raw materials and a green, sustainable profile for future chemical processes have been major drivers in the implementation of industrial biotechnology. The use of industrial biotechnology for the production of chemicals is well...

  9. 77 FR 24722 - Draft Guidance for Industry: Safety of Nanomaterials in Cosmetic Products; Availability

    Science.gov (United States)

    2012-04-25

    ... HUMAN SERVICES Food and Drug Administration Draft Guidance for Industry: Safety of Nanomaterials in... ``Guidance for Industry: Safety of Nanomaterials in Cosmetic Products.'' The draft guidance, when finalized, will represent FDA's current thinking on the safety assessment of nanomaterials in cosmetic...

  10. 78 FR 78366 - Draft Guidance for Industry on Naming of Drug Products Containing Salt Drug Substances; Availability

    Science.gov (United States)

    2013-12-26

    ... HUMAN SERVICES Food and Drug Administration Draft Guidance for Industry on Naming of Drug Products Containing Salt Drug Substances; Availability AGENCY: Food and Drug Administration, HHS. ACTION: Notice... industry entitled ``Naming of Drug Products Containing Salt Drug Substances.'' The United...

  11. The locks and keys to industrial biotechnology.

    Science.gov (United States)

    Wohlgemuth, Roland

    2009-04-01

    The sustainable use of resources by Nature to synthesize the required products at the right place, when they are needed, continues to be the role model for total synthesis and production in general. The combination of molecular and engineering science and technology in the biotechnological approach needs no protecting groups at all and has therefore been established for numerous large-scale routes to both natural and synthetic products in industry. The use of biobased raw materials for chemical synthesis, and the economy of molecular transformations like atom economy and step economy are of growing importance. As safety, health and environmental issues are key drivers for process improvements in the chemical industry, the development of biocatalytic reactions or pathways replacing hazardous reagents is a major focus. The integration of the biocatalytic reaction and downstream processing with product isolation has led to a variety of in situ product recovery techniques and has found numerous successful applications. With the growing collection of biocatalytic reactions, the retrosynthetic thinking can be applied to biocatalysis as well. The introduction of biocatalytic reactions is uniquely suited to cost reductions and higher quality products, as well as to more sustainable processes. The transfer of Nature's simple and robust sensing and control principles as well as its reaction and separation organization into useful technical systems can be applied to different fermentations, biotransformations and downstream processes. Biocatalyst and pathway discovery and development is the key towards new synthetic transformations in industrial biotechnology.

  12. Bio-Based Polyols from Seed Oils for Water-Blown Rigid Polyurethane Foam Preparation

    Directory of Open Access Journals (Sweden)

    Paweena Ekkaphan

    2016-01-01

    Full Text Available The preparation of water-blown rigid polyurethane (RPUR foams using bio-based polyols from sesame seed oil and pumpkin seed oil has been reported. Polyols synthesis involved two steps, namely, hydroxylation and alcoholysis reaction. FTIR, NMR, and ESI-MS were used to monitor the process of the synthesized polyols and their physicochemical properties were determined. The resulting polyols have OH number in the range of 340–351 mg KOH/g. RPUR foams blown with water were produced from the reaction of biopolyols with commercial polymeric methylene diphenyl diisocyanate (PMDI. The proper PUR formulations can be manipulated to produce the desired material applications. These seed oil-based RPUR foams exhibited relatively high compressive strength (237.7–240.2 kPa with the density in the range of 40–45 kg/m3. Additionally, the cell foam morphology investigated by scanning electron microscope indicated that their cellular structure presented mostly polygonal closed cells. The experimental results demonstrate that these bio-based polyols can be used as an alternative starting material for RPUR production.

  13. Hollywood industry: Correlation between film production and political discourse

    Directory of Open Access Journals (Sweden)

    Zvijer Nemanja

    2005-01-01

    Full Text Available The paper focuses on the relation between Hollywood industry and political establishment of the USA, particularly US foreign policy and the military intervention as its specific form. Only the biggest and the most significant US military interventions were considered: World War Two, Korean War, Vietnam War, military interventions in Latin America, in the Middle East, Asia, Africa and on Balkan, concerning their treatment in Hollywood movies without analyzing them in broader socio-political context. In addition, the anticommunism in Hollywood is also considered, which was perhaps the most perennial content of the US foreign policy.

  14. Construction Industry Products Diversification by Implementation of BIM

    Directory of Open Access Journals (Sweden)

    Sergey Kalinichuk

    2013-10-01

    Full Text Available One way to increase the effectiveness and economic stability of a construction company is product diversification. Intention to diversify construction products can be initiated for such reasons as necessity of capital injection, reducing of risks and costs of production, desire for optimization of delivery system, increasing economic competitiveness, etc. BIM can help to solve assigned tasks by diversification and optimize system operation as a whole. It becomes an actuality especially under conditions of severe competition when the possibility of attaining a work contract is reduced by increased focus.

  15. 77 FR 10535 - Final Guidances for Industry Describing Product-Specific Bioequivalence Recommendations...

    Science.gov (United States)

    2012-02-22

    ... Bioequivalence Recommendations; Availability AGENCY: Food and Drug Administration, HHS. ACTION: Notice. SUMMARY... bioequivalence (BE) recommendations. The recommendations provide product-specific guidance on the design of BE... FR 33311), FDA announced the availability of a guidance for industry,...

  16. Introduction procedure of marketing testing innovative products in practical activity of industrial enterprises

    Directory of Open Access Journals (Sweden)

    E.I. Nagornyy

    2010-12-01

    Full Text Available The article considers the relevance of implementing marketing testing procedures in practical activities of industrial enterprises that develop, manufacture and sales of new or innovative products.

  17. 5th CIRP international conference on industrial product-service systems

    CERN Document Server

    2013-01-01

    “An Industrial Product-Service System is characterized by the integrated and mutually  determined planning, development, provision and use of product and service shares including its immanent software components in Business-to-Business applications and represents a knowledge-intensive socio-technical system.” – Meier, Roy, Seliger (2010) Since the first conference in 2009, the CIRP International Conference on Industrial Product-Service Systems has become a well-established international forum for the review and discussion of advances, research results and industrial improvements. Researchers from all over the world have met at previous IPS² conferences in Cranfield (2009), Linköping (2010), Braunschweig (2011) and Tokyo (2012). In 2013, the 5th CIRP International Conference on Industrial Product-Service Systems is held in Bochum. Important topics of IPS² research presented at the conference are: planning and development, sustainability, business models, operation, service engineering, knowledge mana...

  18. Industrial open source solutions for product life cycle management

    Directory of Open Access Journals (Sweden)

    Jaime Campos

    2014-12-01

    Full Text Available The authors go through the open source for product life cycle management (PLM and the efforts done from communities such as the open source initiative. The characteristics of the open source solutions are highlighted as well. Next, the authors go through the requirements for PLM. This is an area where more attention has been given as the manufacturers are competing with the quality and life cycle costs of their products. Especially, the need of companies to try to get a strong position in providing services for their products and thus to make themselves less vulnerable to changes in the market has led to high interest in product life cycle simulation. The potential of applying semantic data management to solve these problems discussed in the light of recent developments. In addition, a basic roadmap is presented as to how the above-described problems could be tackled with open software solutions.

  19. Technology Licensing Strategy for Network Product in a Service Industry

    Directory of Open Access Journals (Sweden)

    Xianpei Hong

    2015-01-01

    Full Text Available Technology licensing has gained significant attention in literature and practice as a rapid and effective way to improve firm’s capability of technology innovation. In this paper, we investigate a duopolistic service provider competition market, where service providers develop and sell a kind of network product. In this setting, we analyze the innovating service provider’s four licensing strategies: no licensing, fixed fee licensing, royalty licensing, and two-part tariff licensing. The literature suggests that when the network products can be completely substituted, two-part tariff licensing is the optimal strategy of the innovating service provider. We find that when the network products cannot be completely substituted, two-part tariff licensing is not always optimal. The degree of the product differentiation, the intensity of the network effects, and the R&D cost of the potential licensee play a key role in determining the innovating service provider’s optimal licensing strategies.

  20. Industrial production of amino acids by coryneform bacteria.

    Science.gov (United States)

    Hermann, Thomas

    2003-09-04

    In the 1950s Corynebacterium glutamicum was found to be a very efficient producer of L-glutamic acid. Since this time biotechnological processes with bacteria of the species Corynebacterium developed to be among the most important in terms of tonnage and economical value. L-Glutamic acid and L-lysine are bulk products nowadays. L-Valine, L-isoleucine, L-threonine, L-aspartic acid and L-alanine are among other amino acids produced by Corynebacteria. Applications range from feed to food and pharmaceutical products. The growing market for amino acids produced with Corynebacteria led to significant improvements in bioprocess and downstream technology as well as in molecular biology. During the last decade big efforts were made to increase the productivity and to decrease the production costs. This review gives an overview of the world market for amino acids produced by Corynebacteria. Significant improvements in bioprocess technology, i.e. repeated fed batch or continuous production are summarised. Bioprocess technology itself was improved furthermore by application of more sophisticated feeding and automatisation strategies. Even though several amino acids developed towards commodities in the last decade, side aspects of the production process like sterility or detection of contaminants still have increasing relevance. Finally one focus of this review is on recent developments in downstream technology.

  1. Ergonomics study for workers at food production industry

    Directory of Open Access Journals (Sweden)

    Mohd Fazi Hamizatun

    2017-01-01

    Full Text Available The health constraint faced by production workers affects the quality of the work. The productivity of the workers is affected by the Work-related Musculoskeletal Disorder (WMSD which limits the movement of the workers. The comfort workplace condition, known as ergonomic environment is important to prevent the occurrence of the WMSD. Proper ergonomic workplace considers the condition of the workers while doing the assigned work. The objectives of this study are to identify the current problems related to ergonomic in food production process, to analyse the actual production data by using Rapid Upper Limb Assessment (RULA and Rapid Entire Body Assessment (REBA and to recommend the ergonomic workplace environment based on the condition of the study. The study was done at a Small and Medium Enterprises (SME food production company in the Klang Valley of Malaysia. The condition of the workers affects the productivity of the company due to workers’ health deficiency. From the findings, the workers are exposed to the awkward postures which leads to the Work-Musculoskeletal Disorders (WMSDs. Besides, the best height of the worker at the study area (critical area to prevent the worker from WMSDs is within 155 cm to 160 cm. The results show that the workers are exposed to the WMSD in different level of risks which causes high absenteeism among the workers.

  2. Effect of Gasohol Production on the Sugarcane Industry in Thailand

    Directory of Open Access Journals (Sweden)

    Wanida Norasethasopon

    2010-05-01

    Full Text Available The purpose of this research is to investigate the effect ofgasohol production on sugarcane planting in Thailand. Pure ethanol of99.5 percent concentration is used to replace MTBE (Methyl TertiaryButyl Ether, which is normally used to increase octane number ofgasoline, to blend with gasoline at the rate of 10 percent to produceOctane 95 gasohol. There are several types of raw materials used inethanol production such as sugarcane, molasses, cassava, sweet potato, rice, corn, wheat, sweet sorghum, etc. The popular raw materials used in ethanol production in Thailand are molasses and cassava. Molasses are a by-product of sugar production process. They are the sugarcane residues that can no longer be extracted for more sugar. In many countries including Thailand, molasses are used as raw material to produce ethanol (1 ton of molasses can produce 260 liters of ethanol used in gasohol production. In this research, the researcher found that the problem of excess supply and low price of sugarcane can be solved if gasohol E20 or higher was used to replace the Octane 91 gasoline and Octane 95 gasoline.

  3. Trust or Control:How to Manage Behavioural Uncertainty for Industrial Product-Service System Provision?

    OpenAIRE

    Reim, Wiebke; Rönnberg Sjödin, David; Parida, Vinit

    2014-01-01

    Offering industrial product-services is argued to result in a significant change in the relational dynamics between provider and customer. The increased service content inherently leads to more co-creation of value with customers but may also increases the risks of opportunistic behaviour from customers. Such behaviour is hard to predict and therefore, understanding how provider can effectively manage such new behavioural challenges when offering industrial product-services is an important re...

  4. Vertical integration and product market competition: Evidence from the Spanish local TV industry

    OpenAIRE

    Gil, Ricard

    2011-01-01

    This paper empirically examines the relation between product market competition and vertical integration in the Spanish local TV industry. For this reason, I use a data set of Spanish local TV stations that provides station level information on vertical integration and product market competition, as well as other station and market characteristics, for the years 1996, 1999 and 2002. During this period, changes in regulation in this industry had a strong impact on the level of market competiti...

  5. Productivity Spillovers From Foreign Direct Investment: Evidence From UK Industry Level Panel Data

    OpenAIRE

    2000-01-01

    This paper examines intra-industry productivity spillovers from foreign direct investment (FDI) in the UK manufacturing sector. The empirical analysis uses panel data for 48 UK industries over the period 1991 – 1995. A major contribution is empirical evidence on spillover effects in situations where the host country is developed. The results indicate that the very presence of FDI has a positive spillover impact on the productivity of UK-owned firms. The analysis also shows that the extent to ...

  6. Availability Evaluation of the serial processes in a Paper Production Industry-A Numerical Approach

    Directory of Open Access Journals (Sweden)

    Archana Sharma

    2010-12-01

    Full Text Available The purpose of this research is to compute availability of the process of a paper production industry consisting of four subsystems. Mathematical formulation of the problem is carried out using probability considerations and the governing differential equations are solved using Runge-Kutta method of order four. Availability of the serial process in the paper production industry have been computed for various choice of failure and repair rates of subsystems of this plant.

  7. To Develop Production Technology for Further Improvement of Chinese Onshore Petroleum Industry

    Institute of Scientific and Technical Information of China (English)

    Liu Baohe

    1994-01-01

    @@ China's onshore petroleum industry has undergone great development in the last four decades. The annual crude oil production has increased from 120 000 tons in the early stage of new founded China to more than 100 million tons. China now is already a major oil producer.Especially a set of production and stimulation technologies got developed which are suitable for diversified oil reservoirs. China's petroleum industry will be gradually internationalized with further reform and opening to the outside world.

  8. The relationship between worker satisfaction and productivity in a repetitive industrial task.

    Science.gov (United States)

    Shikdar, Ashraf A; Das, Biman

    2003-11-01

    The objective of this investigation was to determine the manner by which production standards or goals, performance or production feedback and monetary or wage incentive affected or moderated the relationship between worker satisfaction and productivity in a repetitive production task in a fishing industry. The industrial study was conducted to measure worker satisfaction and productivity under various experimental conditions involving production standards, performance feedback and monetary incentive. Only the participative standard and performance feedback condition affected the worker satisfaction-productivity relationship significantly for the fish-trimming task. The positive correlation coefficient (0.87) for this condition was found to be highly significant. This has an important implication for setting a strategy for achieving higher worker satisfaction and productivity in such an industry. Production standards with feedback generally improved worker satisfaction and productivity. Monetary incentive further improved worker performance but added no incremental satisfaction gain. The incorporation of production standards, performance feedback and monetary incentive affected worker satisfaction and productivity differently and this had an effect on the worker satisfaction-productivity relationship. In an earlier laboratory study, no significant worker satisfaction-productivity relationship was found when subjects (college students) were provided with similar experimental conditions.

  9. EFFECTIVE FACTORS AND MODEL SYSTEMS IN THE INDUSTRIAL PRODUCTION OF NISIN

    Directory of Open Access Journals (Sweden)

    Ömer ŞİMŞEK

    2007-01-01

    Full Text Available Nisin is the first bacteriocin identified in Lactococcus lactis and belongs to type 1 lanthibiotic group. High nisin production in cultured media is related with the composition of fermentation medium, pH, produced nisin concentration and most importantly growth amount of cell. For industrial purpose, batch, fed-batch and continue fermentation systems were developed by regarding these factors. Maintaining efficient production of nisin having important potential at preservation of foods is important for both industrial production and using as starter culture. In this review the fermentation factors at nisin production were outlined and constructed model systems were compared.

  10. Green Acquisitions And Lifecycle Management Of Industrial Products In The Circular Economy

    Science.gov (United States)

    Popa, Vasile N.; Popa, Luminita I.

    2016-11-01

    The article addresses the issue of green acquisitions which occur within an industrial company focused on reducing inputs while maintaining output (substitution and efficiency). These processes characterize a circular economy oriented on resource efficiency (costs saved by reducing purchasing inputs). In our article, we focus on the industrial procurement practice which can help businesses save money and materials. Besides the possibility to negotiate prices, buyers can influence suppliers to offer products and services in an efficient manner in terms of green resources. The life cycle of industrial products is used to demonstrate the environmental advantages and disadvantages of various options for acquisitions and initiatives to totally reuse them.

  11. Biorefineries for the production of top building block chemicals and their derivatives

    DEFF Research Database (Denmark)

    Choi, Sol; Song, Chan Woo; Shin, Jae Ho

    2015-01-01

    Due to the growing concerns on the climate change and sustainability on petrochemical resources, DOE selected and announced the bio-based top 12 building blocks and discussed the needs for developing biorefinery technologies to replace the current petroleum based industry in 2004. Over the last 1...... using micro-organisms will be covered in detail with case studies on succinic acid and 3-hydroxypropionic acid as examples....... years after its announcement, many studies have been performed for the development of efficient technologies for the bio-based production of these chemicals and derivatives. Now, ten chemicals among these top 12 chemicals, excluding the l-aspartic acid and 3-hydroxybutyrolactone, have already been...

  12. ADDED VALUE AS EFFICIENCY CRITERION FOR INDUSTRIAL PRODUCTION PROCESS

    Directory of Open Access Journals (Sweden)

    L. M. Korotkevich

    2016-01-01

    Full Text Available Literary analysis has shown that the majority of researchers are using classical efficiency criteria for construction of an optimization model for production process: profit maximization; cost minimization; maximization of commercial product output; minimization of back-log for product demand; minimization of total time consumption due to production change. The paper proposes to use an index of added value as an efficiency criterion because it combines economic and social interests of all main interested subjects of the business activity: national government, property owners, employees, investors. The following types of added value have been considered in the paper: joint-stock, market, monetary, economic, notional (gross, net, real. The paper makes suggestion to use an index of real value added as an efficiency criterion. Such approach permits to bring notional added value in comparable variant because added value can be increased not only due to efficiency improvement of enterprise activity but also due to environmental factors – excess in rate of export price increases over rate of import growth. An analysis of methods for calculation of real value added has been made on a country-by-country basis (extrapolation, simple and double deflation. A method of double deflation has been selected on the basis of the executed analysis and it is counted according to the Laspeyires, Paasche, Fischer indices. A conclusion has been made that the used expressions do not take into account fully economic peculiarities of the Republic of Belarus: they are considered as inappropriate in the case when product cost is differentiated according to marketing outlets; they do not take account of difference in rate of several currencies and such approach is reflected in export price of a released product and import price for raw material, supplies and component parts. Taking this into consideration expressions for calculation of real value added have been specified

  13. Bio-Based Polyurethane Containing Isosorbide for Use in Composites and Coatings

    Science.gov (United States)

    2015-04-01

    ARL-TR-7259 ● APR 2015 US Army Research Laboratory Bio-Based Polyurethane Containing Isosorbide for Use in Composites and...copyright notation hereon. ARL-TR-7259 ● APR 2015 US Army Research Laboratory Bio-Based Polyurethane Containing Isosorbide for Use...4. TITLE AND SUBTITLE Bio-Based Polyurethane Containing Isosorbide for Use in Composites and Coatings 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c

  14. Phytoremediation of Industrial and Pharmaceutical Pollutants

    Directory of Open Access Journals (Sweden)

    Swarna Shikha

    2016-10-01

    Full Text Available Pollution in water bodies and soil is a major and ever-increasing environmental issue nowadays, and most conventional remediation approaches do not provide appropriate solutions. The contamination of soil is a major concern for the environment and needs to be remediated. These pollutants include complex organic compounds, heavy metals released from industries and plants and natural products such as oils from accidental release. Further the nature of pollution will be governed by the source and type of the contaminant, and other inorganic compounds are released into the environment from a number of sources like mining, smelting, electroplating, and farming. Plants can clean up many types of contaminants like metals, pesticides, oils, and explosives. Phytoremediation is emerging as a bio-based and low-cost alternative in the cleanup of heavy metal-contaminated soils.

  15. Aggregated services to the product of an equipment manufacturer of the oil industry: the PSS

    Directory of Open Access Journals (Sweden)

    Eduardo Magalhães Calvilho

    2014-08-01

    Full Text Available This article aims at analyzing the service operations that a manufacturer of equipment for the oil industry now offers together with their products, in order to maintain its position in a market in which technology is a competitive criterion. The research method is the case study. The integration between product and associated services is well suited described by PSS: Product-Service Systems. The research techniques were: analysis of industry-specific documents, semi-structured interviews, and non-participant observation in plant. Thirteen services which the manufacturer offers, associated with the product, gas turbines, where studied. The services were detailed and contextualized in industry and compared with theoretical elements found in the literature on PSS. Most services are based on the product and are offered as aftermarket activities. The study also describes expected economic and environmental gains.

  16. RAISE: a Product Supporting Industrial Use of Formal Methods

    DEFF Research Database (Denmark)

    Haxthausen, Anne Elisabeth; Pedersen, J. Storbank; Prehn, Søren

    1993-01-01

    This paper gives an overview of RAISE, a product consisting of a method for developing software, an associated formal specification language and tools supporting the method and the language. The method is based on the notion of stepwise refinement and offers the possibility of formal verification...

  17. Challenges in Shortening New Product Introduction in the Pharmaceutical Industry

    DEFF Research Database (Denmark)

    Hansen, Klaus Reinholdt Nyhuus; Grunow, Martin

    2010-01-01

    Drug developing companies are forced to utilize the effective protection of the patent by focusing on shortening the new product introduction [NPI] process measured as Time-to-Market [TTM]. Here the NPI process is considered and the trade-offs, which have to be address in the future are identified...

  18. Wintelism and Production Networks in the Electronics Industry

    NARCIS (Netherlands)

    van de Gevel, A.J.W.

    1997-01-01

    This paper deals with two interrelated elements of globalization: Wintelism and cross national production networks which have been underexposed in discussions about globalization.Wintelism refers to the shift in competition away from final assembly and vertical control of markets by final assemblers

  19. Product and Process Innovation in the Italian Food Industry

    NARCIS (Netherlands)

    Capitanio, F.; Coppola, A.; Pascucci, S.

    2010-01-01

    The driving factors of innovation in the Italian food sector could be identified either in internal and in external dynamics. On one hand, the responses to the competition with new actors coming from emerging countries and the reaction to high-tech products demand evolution. On the other hand, endog

  20. Case study: Industrial Portfolio Management for New Products

    DEFF Research Database (Denmark)

    Larsson, Flemming

    This report describes the content of a case-study, which was carried out in a Scandinavian company. The purpose of the study is to identify and indicate the current company approach to portfolio management (tools, methods, and processes) for new products combined with suggestions for improvement...

  1. Synthesis, properties and applications of bio-based materials

    Science.gov (United States)

    Srinivasan, Madhusudhan

    Bio-based feedstock have become very significant as they offer a value proposition in terms of carbon balance and also in terms of endowing biodegradability where needed. Thus a lot of attention is being given to the modification such feedstock for different applications. Soybean oil is one such feedstock. The oil is a triglyceride ester composed of different fatty acids, which are common to other plant oils. Thus soybean oil serves as a platform for plant oils, as modifications of this oil, can in theory be extended to cover other plant oils. Methyl oleate was used as a model fatty acid ester, to synthesize hydroxyesters with ethylene glycol via a two stage oxidative cleavage of the double bonds. Ozone was chosen as the oxidant due to its many advantages. The first stage involved oxidation of the double bond to aldehydes, ozonides and acetals, which were subsequently converted to hydroxyesters (hydroxy values of 220 - 270) in near quantitative yield by treatment with Oxone. This method could be extended to soybean oil to make "polyols" which could find applications in resin syntheses. Silylation was employed as another platform to functionalize soybean oil and fatty acid methyl esters with a reactive silane (vinyltrimethoxy silane). This simple modification produced materials that are cured by atmospheric moisture and are useful as coatings. The silylation was controlled by varying the grafting time, cure temperature and the concentration of the silane. Products with gel content as high as 90% could be achieved. The coating exhibited good adhesion to metal, glass, concrete and paper. Steel panels coated with these coatings exhibited good stability against corrosion in high humidity conditions and moderate stability against a salt spray. The silylation was also successfully utilized to improve the tensile strength of the blend of biodegradable polyester, poly (butylene adipate-co-terephthalate) with talc. A reactive extrusion process was employed to graft vinyl

  2. International co-production and collaborative agreements, the case of the Finnish film industry

    OpenAIRE

    Naarajärvi, Pia

    2011-01-01

    An often-used global model of international business (IB) cooperation in the film industry is ‘international film co-production’, consisting of two or more production companies from at least two different countries jointly producing a film. Based on their characteristics, international film co-productions can strongly be considered as international alliances between production companies, mainly coordinated and regulated by collaborative agreements called ‘co-production agreements’. Accordingl...

  3. New product testing and the utilization of user expertise: Evidence from the Pharmaceutical industry

    OpenAIRE

    Smed, Marie; Salomo, Søren; Schultz, Carsten; Getz, Kenneth A.

    2012-01-01

    A significant and often neglected obstacle in new product development is the testing and approval process in the late stages of development. The testing process has primarily been observed as an in-house decision process, however, in many industries products undergo extensive testing before market launch where external stakeholders play a key role. Users are often integrated in testing of new product candidates, and supply valuable knowledge to developers by testing the new product in natural...

  4. Competitiveness Analysis of Processing Industry Cluster of Livestock Products in Inner Mongolia Based on "Diamond Model"

    Institute of Scientific and Technical Information of China (English)

    YANG Xing-long; REN Ya-tong

    2012-01-01

    Using Michael Porter’s "diamond model", based on regional development characteristics, we conduct analysis of the competitiveness of processing industry cluster of livestock products in Inner Mongolia from six aspects (the factor conditions, demand conditions, corporate strategy, structure and competition, related and supporting industries, government and opportunities). And we put forward the following rational recommendations for improving the competitiveness of processing industry cluster of livestock products in Inner Mongolia: (i) The government should increase capital input, focus on supporting processing industry of livestock products, and give play to the guidance and aggregation effect of financial funds; (ii) In terms of enterprises, it is necessary to vigorously develop leading enterprises, to give full play to the cluster effect of the leading enterprises.

  5. A folk dance of the popularization; the industry's new product "Kolbastı"

    Directory of Open Access Journals (Sweden)

    Nihal Ötken

    2012-01-01

    Full Text Available In 19th and 20th centuries, as all works of art in the world, local cultural products became meta in culture industry. Kolbastı dance is one of the best examples to show as an industrial product-meta in culture industry. It is inevitable to make a short investigate for its origin as discussing commoditization process of Kolbastı which is only emphasized on its structural/figurative origins and is merely wrote papers on it in terms of popular cultural theories until today.In this paper Kolbastı which became a phenomenon in popular culture products in our country for a while will be emphasized in terms of social identity, denominational character, gender and relations with industry/market. And it will be marked cultural theoretical investigate on dance.

  6. How to improve R&D productivity: the pharmaceutical industry's grand challenge.

    Science.gov (United States)

    Paul, Steven M; Mytelka, Daniel S; Dunwiddie, Christopher T; Persinger, Charles C; Munos, Bernard H; Lindborg, Stacy R; Schacht, Aaron L

    2010-03-01

    The pharmaceutical industry is under growing pressure from a range of environmental issues, including major losses of revenue owing to patent expirations, increasingly cost-constrained healthcare systems and more demanding regulatory requirements. In our view, the key to tackling the challenges such issues pose to both the future viability of the pharmaceutical industry and advances in healthcare is to substantially increase the number and quality of innovative, cost-effective new medicines, without incurring unsustainable R&D costs. However, it is widely acknowledged that trends in industry R&D productivity have been moving in the opposite direction for a number of years. Here, we present a detailed analysis based on comprehensive, recent, industry-wide data to identify the relative contributions of each of the steps in the drug discovery and development process to overall R&D productivity. We then propose specific strategies that could have the most substantial impact in improving R&D productivity.

  7. Brazilian trade policies between 1994 and 2014 and its effects on productivity of the automotive industry

    Directory of Open Access Journals (Sweden)

    Stefan Hubertus Dörner

    2015-07-01

    Full Text Available This article analyzes protectionist measures adopted by Brazilian trade policy between 1994 and the present and possible impacts on productivity of domestic industry and welfare. To limit the scope of this paper, object is the automotive industry due to its outstanding economic importance and contribution to the development of the country. After a short presentation of the main protectionist measures in the world, aspects of productivity in general a brief summary of the automobile industry in Brazil is exposed. Thereafter, the most common protectionist measures as part of Brazilian foreign trade policy, in particular exchange rate, tariff and non-tariff policy and its possible impacts on the productivity of the automotive industry and welfare in the country are discussed

  8. Global product development interaction between local networks: A study of the Danish food industry

    DEFF Research Database (Denmark)

    Kristensen, Preben Sander

    A study of the Danish foods industry shows that producers of food products largely ignore home marekt demand in their product development activities. They have built up and maintain development of end-user products in interaction with customers in distant sophisticated markets. Concurrently......, the Danish agro-industrial complex has been singled out in other studies as a paradigmatic example of how crucial a sophisticated home demand is for the development of an industrial complex. The apparen contradiction arises from the complex's ability to utilize a complemntarity between companies' equidistant...... view of actors in the global end-user customer market and companies' euclidean view of actors in thelocal business-to-business market. In pr companies combine these two market views by interacting in networks: The global industrial network links various functions which again are each part of a local...

  9. Use of microwave ovens in the production of industrial ethanol

    Energy Technology Data Exchange (ETDEWEB)

    Senise, J.T.; Concone, B.R.V.; Moraes, V.L.V.; Doin, P.A.; Medugno, C.C.; Andrade, A.O.M.; Perri, E.B.; Perin, A.H.

    1980-01-01

    Production of ethanol from starchy materials is now being investigated in Brazil as an alternative source for alcohol production apart from sugar cane. In the present work, with the objective of optimizing the energy balance of the process, substitution of conventional sources of energy by electricity at one stage of the process is sought. Cooking and dextrinization of cassava roots, previously treated by conventional pretreatments, by microwaves heating (at 2450/sup -/ MHz) has been studied. Results of saccharification and fermentation of the mash thus obtained were used to evaluate the technical feasibility of the process. Specific energy consumption figures (for the cooking and dextrinization stage) of 600 kcal/l of ethanol produced and efficiencies of 90% (in terms of the theoretical maximum yield from the available starch) were easily and consistently obtained.

  10. Industrial side-products as possible soil-amendments.

    Science.gov (United States)

    Toth, Brigitta; Veres, Szilvia; Bakonyi, Nora; Gajdos, Eva; Marozsan, Marianna; Levai, Laszlo

    2012-04-01

    The protection of our environment is a common task. All pollution that expose our soils, plants or in the narrower and wider sense environment will appear sooner or later in the food chain and in human beings who are at the top of the food-chain pyramid. The aim of our work is to give a brief overview about the effects of some industrial wastes on the physiological parameters of plants. Compost, black soot, sewage sludge and lime sludge dust was examined. Sunflower seeds were used in the experiments. The filtrates of examined materials were added to the nutrient solution in different quantities because of different solubility. The contents of sample elements and uptake of the element were measured by ICP, the relative chlorophyll contents by SPAD 502. Disadvantageous and advantageous physiological effects of compost, black soot, sewage sludge and lime sludge were proved. Larger concentrations of aluminium were measured in the roots than in the shoots. The concentrations of chrome were below the control value in the shoots when black soot, compost, lime sludge and sewage sludge were added to the nutrient solution. The concentrations of zinc, phosphorous, magnesium and copper were very low when black soot was used, and it was lower than the control. The dry matter of shoots increased when compost and sewage sludge was used, but the growth of roots remained under the control level.

  11. A Study on an Executive Technique and Activation of Clean Production in Chemical Industry

    Energy Technology Data Exchange (ETDEWEB)

    Kong, Seong Yong; Lee, Hee Seok; Kim, Kang Seok [Korea Environment Institute, Seoul (Korea)

    2000-12-01

    Clean production does not only make the sustainable development possible through preventing the deterioration of the environmental pollution from the expansion of industrialization but also enhance the company's competitiveness. Clean production is required by all industrial fields but is the most important in chemical industry. The Government has made efforts to change the domestic industrial structure to the environmental-friendly structure through developing the research. However, the domestic industry has not yet activated overall except some large companies, which has concretized the activation of clean production. Especially, the medium and small companies are more sluggish due to the inferiority of capital and technology. With recognizing that the main body of clean production is a company, the effort based on the Government and the academic world, without companies' positive, will cannot help being limited in effects. Therefore, it is necessary to trigger the schemes that urge the companies' motivation to show the effects from the support that have concentrated in hardware like technology until now. It seems to be very important that the guidebook for clean production, which a company can easily adopt, is developed and spread. This report provides the guidebook for clean production that managers and engineers can easily understand and approach in a producing field and presents the scheme to promote clean production, for chemical industry that is seriously required clean production. Even if the presented contents are not perfect, they can be applied to the development of the Government's policy and the administrative activities of companies for clean production as a useful data. 53 refs., 5 figs., 30 tabs.

  12. Labour Productivity in the New Zealand Construction Industry: A Thorough Investigation

    Directory of Open Access Journals (Sweden)

    John E Tookey

    2011-03-01

    Full Text Available Productivity growth is strongly correlated to economic growth and increases in welfare. This fact also holds true at the industry level and is particularly true in the NZ construction industry, since productivity growth in this sector may have significant effects on the affordability of housing in the country. In recent years construction in NZ has been subjected to a series of reports that have either highlighted ‘failure’ to grow productivity or have exhorted the industry to improve its ‘poor performance’.  However thus far little by way of analysis has gone into the productivity figures that have been quoted, nor has much been done to explain and justify if or why these figures are correct or incorrect.This research seeks to deconstruct construction productivity figures in NZ and explain the patterns over recent years of ‘poor performance’ in comparison with other industries.  As such it will examine the nature of the NZ construction industry and analyse the historic statistics related to its labour productivity. This will provide an overall understanding of the sector as well as those extraneous factors that may have significant influences on the NZ construction sector.The research found that while factors influencing inputs of labour productivity measure such as labour and material costs remained stable, factors impacting the corresponding outputs such as house and land prices, value of work in Non-residential and Infrastructure construction grew significantly between 1997 and 2007. Given the positive skewing effect of standard economic indicators (inflation etc on construction labour productivity figures, the relatively poor performance of construction is worrying for the industry. The paper concludes by demonstrating labour productivity in construction is significantly worse performing than previously suspected.

  13. Bio-based amphiphilic materials development and applications

    Science.gov (United States)

    Farm-based raw materials are increasingly used in the development of amphiphilic materials that have potential applications in the production of a variety of consumer and industrial products, including lubricants. Raw materials of interest include: starches, proteins, fats, oils, and sugars. These ...

  14. Processing and characterization of bio-based composites

    Science.gov (United States)

    Lu, Hong

    Much research has focused on bio-based composites as a potential material to replace petroleum-based plastics. Considering the high price of Polyhydroxyalkanoates (PHAs), PHA/ Distiller's Dried Grains with Solubles (DDGS) composite is a promising economical and high-performance biodegradable material. In this paper, we discuss the effect of DDGS on PHA composites in balancing cost with material performance. Poly (lactic acid) PLA/DDGS composite is another excellent biodegradable composite, although as a bio-based polymer its degradation time is relatively long. The goal of this research is therefore to accelerate the degradation process for this material. Both bio-based composites were extruded through a twin-screw microcompounder, and the two materials were uniformly mixed. The morphology of the samples was examined using a Scanning Electron Microscope (SEM); thermal stability was determined with a Thermal Gravimetric Analyzer (TGA); other thermal properties were studied using Differential Scanning Calorimetry (DSC) and a Dynamic Mechanical Analyzer (DMA). Viscoelastic properties were also evaluated using a Rheometer.

  15. 76 FR 36133 - Draft Guidances for Industry and Food and Drug Administration Staff: Classification of Products...

    Science.gov (United States)

    2011-06-21

    ... HUMAN SERVICES Food and Drug Administration Draft Guidances for Industry and Food and Drug Administration Staff: Classification of Products as Drugs and Devices and Additional Product Classification...(h) of the Federal Food, Drug, and Cosmetic Act AGENCY: Food and Drug Administration, HHS....

  16. 78 FR 21612 - Medical Device Classification Product Codes; Guidance for Industry and Food and Drug...

    Science.gov (United States)

    2013-04-11

    ... HUMAN SERVICES Food and Drug Administration Medical Device Classification Product Codes; Guidance for Industry and Food and Drug Administration Staff; Availability AGENCY: Food and Drug Administration, HHS... Food, Drug, and Cosmetic Act (21 U.S.C. 321(h)) and does not discuss classification products codes...

  17. 41 CFR 101-26.702 - Purchase of products manufactured by the Federal Prison Industries, Inc.

    Science.gov (United States)

    2010-07-01

    ... Defense § 101-26.702 Purchase of products manufactured by the Federal Prison Industries, Inc. (a) Purchases by executive agencies of prison-made products carried in GSA supply distribution facilities must... 41 Public Contracts and Property Management 2 2010-07-01 2010-07-01 true Purchase of...

  18. Patent and market research level and value of novelty products developed by industry

    Directory of Open Access Journals (Sweden)

    E.I. Nagorniy

    2011-12-01

    Full Text Available The article discusses the basic approaches of scientists to identify and calculate the level of importance and novelty of new products, these major shortcomings you might encounter during its calculation. Propose their own methodology to determine the level of novelty and significance of the contemplated industrial products based on patent and market research.

  19. 76 FR 23823 - Guidance for Industry on Fish and Fishery Products Hazards and Controls, Fourth Edition...

    Science.gov (United States)

    2011-04-28

    ... principles of HACCP. Fish and fishery products are adulterated under section 402(a)(4) of the Federal Food... chapter has been added containing guidance for the control of pathogen survival through processes designed... HUMAN SERVICES Food and Drug Administration Guidance for Industry on Fish and Fishery Products...

  20. Analysis of the global production location dynamics in the industrial wood pellet market : an MCDA approach

    NARCIS (Netherlands)

    Smith, T. Pieter; Junginger, H. Martin

    2011-01-01

    Industrial wood pellet demand and international trade have been growing rapidly, requiring producers to build new production facilities. The purpose of this paper is to illustrate the trade-offs of different wood pellet production locations across the world within the next ten years and to improve t

  1. Pc Electrolytic System Of Zhangjiagang Copper Industry Company Successfully Produced Copper After Resuming Production

    Institute of Scientific and Technical Information of China (English)

    2016-01-01

    On March 17,the PC electrolytic system of Zhangjiagang Copper Industry Co.,Ltd successfully produced the first batch of qualified PC electrolytic copper after resuming production.This company’s 100,000 t/a PC electrolytic copper project was completed and launched into production in April last year.

  2. 78 FR 19492 - Draft Guidance for Industry on Formal Meetings Between FDA and Biosimilar Biological Product...

    Science.gov (United States)

    2013-04-01

    ... and Biosimilar Biological Product Sponsors or Applicants; Availability AGENCY: Food and Drug... availability of a draft guidance for industry entitled ``Formal Meetings Between the FDA and Biosimilar... biosimilar biological products regulated by the Center for Drug Evaluation and Research (CDER) and the...

  3. Resource Communication Technology and Marketing of Textile Products: A U.S. Textile Industry Case Study

    Science.gov (United States)

    Baah, Anthony

    2010-01-01

    The purpose of the qualitative positivistic case study was to explore whether resource communication technology has helped or would help the marketing of textile products in the U.S. textile industry. The contributions of human capital in the marketing department, the marketing-demand information system function, and the product supply chain…

  4. Firm size and productivity. Evidence from the electricity distribution industry in Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Tovar, Beatriz [Departmento de Analisis Economico Aplicado y EIT, Universidad de Las Palmas de Gran Canaria (Spain); Javier Ramos-Real, Francisco [Departamento de Analisis Economico, Facultad de Ciencias Economicas y Empresariales, Campus de Guajara, Universidad de La Laguna, La Laguna, S/C de Tenerife, Espana (Spain); De Almeida, Edmar Fagundes [IE-UFRJ (Instituto de Economia-Universidade Federal do Rio de Janeiro) (Brazil)

    2011-02-15

    In this paper we apply Stochastic Frontier Analysis through a distance function to investigate the impact of firm size on productivity development in electricity distribution. We use a sample of seventeen Brazilian firms from 1998 to 2005 and decompose productivity into technical efficiency, scale efficiency and technical change. Moreover, a further step is to decompose the technical change measurement into several components. The results indicate that firm size is important for industry's productivity, and therefore a key aspect to consider when making decisions that affect the market structure in the electricity distribution industry. (author)

  5. Analysis on Protection of GI Product Xiangshan Spirit and Suggestions of Its Industrial Supervision

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    From name, historic stories, reputation, traffic and location factors, and natural factors as production and processing, water, raw material and yeast, this paper firstly analyzes key factors for protection of GI product Xiangshan Spirit. Then, it discusses differences in quality characteristics between Xiangshan Spirit and other rice flavor type spirits. Besides, industrial development of Xiangshan Spirit is analyzed from residues of pesticides, quality of water for making wine, and exclusive use of geographical indication Xiangshan Spirit. Finally, it puts forward following suggestions, including formulating and implementing local standard GI Product Xiangshan Spirit, strengthening quality control over rice raw material, implementing "enterprise + base" industrial model, and support group enterprises with government as leader.

  6. Protein co-products and by-products of the biodiesel industry for ruminants feeding

    Directory of Open Access Journals (Sweden)

    Ricardo Andrés Botero Carrera

    2012-05-01

    Full Text Available The objective of the experiment was to classify 20 protein co-products and by-products of the biodiesel industry with potential to use in ruminant feeding. The meals evaluated were: cottonseed, canudo-de-pito, crambe, sunflower, castor-oil seeds detoxified with calcium, non-detoxified castor-oil seeds and soybean; and the cakes were: cottonseed, peanut, babassu, crambe, palm oil, sunflower, licuri, macauba seeds, non-detoxified castor-oil seeds, turnip and jatropha. The samples were quantified to determine dry matter (DM, organic matter (OM, crude protein (CP, ether extract (EE, neutral detergent fiber corrected for ash and protein (NDFap, non-fiber carbohydrates (NFC, acid detergent fiber corrected for ash and protein (ADFap, lignin, cutin and starch levels. The CP profile was characterized in fractions A, B1, B2, B3 and C. The in vitro dry matter digestibility (IVDMD, in vitro neutral detergent fiber digestibility (IVNDFD, rumen degradable and undegradable protein, intestinal digestibility, indigestible neutral detergent fiber and undegradable neutral detergent insoluble protein were evaluated. The OM, CP, EE, NDFap, NFC, ADFap, lignin, cutin and starch contents varied from 81.95 to 95.41%, 18.92 to 57.75%, 0.56 to 18.40%, 10.13 to 62.30%, 3.89 to 27.88%, 6.15 to 36.86%, 1.19 to 5.04%, 0 to 17.87% and 0.68 to 14.50%, respectively. The values of fractions A, B1, B2, B3 and C ranged from 5.40 to 43.31%, 0.08 to 37.63%, 16.75 to 79.39%, 1.86 to 59.15% and 0.60 to 11.47%, respectively. Concentrations of IVDMD, IVNDFD, rumen-degradable and undegradable protein, intestinal digestibility, indigestible NDF and undegradable neutral detergent insoluble protein ranged from 31.00 to 95.92%, 55.04 to 97.74%, 41.06 to 97.61%, 2.39 to 58.94, 9.27 to 94.26%, 1.05 to 40.80% and 0.29 to 2.92%, respectively. Some of these products can replace soybean meal, specially the Macauba seeds cake, cottonseed meal and peanut and turnip cakes based on digestive

  7. UTILIZATION OF BY-PRODUCT OF CHEESEMAKING AGRIBUSINESS INDUSTRY FOR DEVELOPMENT OF FOOD PRODUCTS AND REDUCTION OF THE ENVIRONMENTAL IMPACT

    Directory of Open Access Journals (Sweden)

    Ana Lúcia Becker Rohlfes

    2014-05-01

    Full Text Available The uses of by-products of cheese industry is still not significant in Brazil, since about 15% of liquid whey is used as raw material in food industry technology. The liquid whey has excellent technological properties, making it an alternative to minimize environmental impacts, besides it enables the use of the same nutritional properties in the production of new food products or adding value to the existing ones. The present study aimed to use liquid whey as an ingredient in the formulation of ice cream, hard candies, ham and breads, as well as to evaluate the influence of it in technological characteristics of the products and to quantify the volume of whey used. In order to evaluate the use of liquid whey, the products were developed with partial or total replacement of milk or water by whey, being the substitution accompanied by the determination of centesimal composition, as well as evaluating the visual characteristics of each product. The results show that the preparation of the products under study with substitution of raw milk or water is viable, proving that using liquid whey is a technological possibility of using a by-product considered to be an environmental pollutant. It was concluded that the use of liquid whey in the food industry reduces the environmental impact, since there is a reduction in the volume of whey discharged into the environment.

  8. Analysis on Protection of GI Product Hanyuan Chinese Prickly Ash and Suggestions of its Industrial Development

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    Hanyuan Prickly Ash is a type of GI products with very deep cultural essence.From such humanistic factors as name origin,historical origin,fame,cultivation technology,and management measure,and such natural factors as climatic environment and soil conditions,this paper analysis key factors for protection of GI product Hanyuan Prickly Ash.Then it discusses about industrial development of Hanyuan Prickly Ash from suitable planting areas and climate.It proposes that we should gradually raise safety and hygienic indexes,revise and implement local standards,strengthen popularization of harmless production technologies and quality control of product,promote "enterprise + base" industrial model,and implement government marketing of brand and industry.

  9. An alternative feedstock of corn meal for industrial fuel ethanol production: delignified corncob residue.

    Science.gov (United States)

    Lei, Cheng; Zhang, Jian; Xiao, Lin; Bao, Jie

    2014-09-01

    Delignified corncob residue is an industrial solid waste from xylose production using corncob as feedstock. In this study, delignified corncob residue was used as the feedstock of ethanol production by simultaneous saccharification and fermentation (SSF) and the optimal fermentation performance was investigated under various operation conditions. The ethanol titer and yield reached 75.07 g/L and 89.38%, respectively, using a regular industrial yeast strain at moderate cellulase dosage and high solids loading. A uniform SSF temperature of 37°C at both prehydrolysis and SSF stages was tested. The fermentation performance and cost of delignified corncob residue and corn meal was compared as feedstock of ethanol fermentation. The result shows that the delignified corncob residue is competitive to corn meal as ethanol production feedstock. The study gives a typical case to demonstrate the potential of intensively processed lignocellulose as the alternative feedstock of corn meal for industrial fuel ethanol production.

  10. Innovation Barriers and Enablers that Affect Productivity in Uganda Building Industry

    Directory of Open Access Journals (Sweden)

    Henry Mwanaki Alinaitwe, , and

    2007-06-01

    Full Text Available The construction industry has of recent been blamed for lack of innovation. Lack of innovation in the industry is believed to be responsible for the decreasing or stagnant levels of productivity in comparison with other industries. This paper reviews the major barriers and enablers to innovation in general. Propositions were made about the factors that affect innovation in the construction industry which were then formulated into a questionnaire. A survey was made on building contractors in Uganda, a developing country, targeting those with financial strength, large in size, and with high capacity to carry out big projects. The identified factors were then ranked and correlated. The level of training in science, engineering and technical education, and the level of research and development at the industry level are looked at as the greatest innovation enablers in building that will drive forward labour productivity. The size of the domestic market and the level of security are the worst innovation barriers that lead to low productivity in the building industry in Uganda. Contractors, policy makers and the government should address the identified factors in order to improve productivity.

  11. Relationship between ecological economics and circular economy,eco-industry,cleaner production,and other relevant categories

    Institute of Scientific and Technical Information of China (English)

    Ma Chuandong

    2006-01-01

    Eco-industry, circular economy, cleaner production, industrial ecology or industrial ecosystem and other subjects are all categories related to sustainable development. This paper studies the relations and differences between the four categories and sustainable development as well as ecological economics. Circular economy, eco-industry,industrial ecosystem and cleaner production were put forward during the revolution in "end treatment pattern" of traditional industrial society. Industrial ecology, eco-indtustry and circular economy theory are three content expansions of cleaner production. Ecological economics is of instructive function theoretically and methodologically for circular economy, eco-industrial, cleaner production and industrial ecology. Circular economy theory is easier to be accepted,compared with ecological economics theory. And circular economy in nature is the complete application of ecological economics theory.

  12. Enzymatic polymerization of biobased polyesters and polyamides

    NARCIS (Netherlands)

    Jiang, Yi

    2016-01-01

    Nowadays "green" is a hot topic almost everywhere, from retailers to universities to industries; and achieving green has become a universal perspective. However, polymers are commonly considered not to be “green”, being associated with massive energy consumption and severe pollution problems (e.g. t

  13. Enzymatic Synthesis of Biobased Polyesters and Polyamides

    NARCIS (Netherlands)

    Jiang, Yi; Loos, Katja

    2016-01-01

    Nowadays, "green" is a hot topic almost everywhere, from retailers to universities to industries; and achieving a green status has become a universal aim. However, polymers are commonly considered not to be "green", being associated with massive energy consumption and severe pollution problems (for

  14. Discussion about using Sugarcane biomass to manufacture bio-based polyvinyl alcohol polymer material advantage%利用生物质甘蔗制Z造生物基聚乙烯醇高分子材料的优势探讨

    Institute of Scientific and Technical Information of China (English)

    陆泰榕

    2013-01-01

    An overview of the development status of polyvinyl alcohol polymer materials, In-depth analysis the development of sugar cane as raw material for the"Biomass ethene biobased polymer materials-polyvinyl"product development,market, technical, economic and other advantages. Illustrates the continuous development of the legal system of biomass vinyl polymers such as polyvinyl alcohol bio-based chemical industry group biomass is an effective way to deepen the use of biomass sugarcane in Guangxi.%  概述了高分子材料聚乙烯醇的发展现状,对以甘蔗为原料开发“生物质乙烯制生物基高分子材料-聚乙烯醇”产品的发展,市场、技术、经济等方面的优势进行了深入分析,阐明了不断发展生物质乙烯法制生物基高分子材料聚乙烯醇等生物质化工产业群是广西生物质甘蔗深化利用的有效途径。

  15. Dry fermented sausages of Southern Italy: a comparison of free amino acids and biogenic amines between industrial and homemade products.

    Science.gov (United States)

    Leggio, Antonella; Belsito, Emilia L; De Marco, Rosaria; Di Gioia, Maria L; Liguori, Angelo; Siciliano, Carlo; Spinella, Mariagiovanna

    2012-04-01

    This paper compares some important parameters and the free amino acid and biogenic amine contents of cured industrial and homemade meat products. To this aim, industrial and homemade "soppressata" and "salsiccia", typical dry fermented sausages produced in Southern Italy, were analyzed. The homemade sausages showed a higher level of free biogenic amines than that manufactured industrially, most likely because biogenic amine formation in industrial products is limited by the use of starter cultures. The industrial sausages are characterized by a higher total free amino acid content than the homemade products. Overall, free amino acid and biogenic amine contents demonstrated that appreciable differences exist between homemade and industrial sausages.

  16. Thin film silicon modules: contributions to low cost industrial production

    Energy Technology Data Exchange (ETDEWEB)

    Shah, A. [Universite de Neuchatel, Neuchatel (Switzerland)

    2005-07-01

    This final report for the Swiss Federal Office of Energy (SFOE) discusses the research work done during the two-year period 2003-04 at the Thin-Film Solar Cell Laboratory of the Institute of Microtechnology (IMT) at the University of Neuchatel in Switzerland. The transition from fundamental research work to concrete industrialisation issues, and changes within the research staff are discussed. The main results of the work done are presented, including basic techniques for the production of p-i-n solar cells on glass, new technologies for the deposition of n-i-p cells on low-cost flexible substrates and the optimisation of zinc oxide deposition methods. The key role played by substrate chemistry and roughness in the nucleation and growth of micro-crystalline silicon layers is looked at and diagnostic tools for the analysis of micro-crystalline solar cells are discussed.

  17. Towards Industrialized Conception and Production of Serious Games

    CERN Document Server

    Marfisi-Schottman, Iza; George, Sébastien; Tarpin-Bernard, Franck; Prévôt, Patrick

    2009-01-01

    Serious Games (SGs) have experienced a tremendous outburst these last years. Video game companies have been producing fun, user-friendly SGs, but their educational value has yet to be proven. Meanwhile, cognition research scientist have been developing SGs in such a way as to guarantee an educational gain, but the fun and attractive characteristics featured often would not meet the public's expectations. The ideal SG must combine these two aspects while still being economically viable. In this article, we propose a production chain model to efficiently conceive and produce SGs that are certified for their educational gain and fun qualities. Each step of this chain will be described along with the human actors, the tools and the documents that intervene.

  18. Genomic mechanisms of stress tolerance for the industrial yeast Saccharomyces cerevisiae against major chemical classes of inhibitors

    Science.gov (United States)

    Numerous toxic chemical compounds liberated from lignocellulosic biomass pretreatment inhibit subsequent microbial fermentation that pose a significant challenge to a sustainable and renewable bio-based fermentation industry. Toxin removal procedures by physical or chemical means are essentially imp...

  19. Trends in utilization of agro-industrial byproducts for production of bacteriocins and their biopreservative applications.

    Science.gov (United States)

    Bali, Vandana; Panesar, Parmjit S; Bera, Manab B

    2016-01-01

    Bacteriocins are proteinaceous, ribosomally synthesized bio-molecules having major roles in food preservation due to their antimicrobial action against food spoilage microorganisms. These have gained importance in the last decades because of increasing interest in natural products and their applications in the field of biopreservation, pharmaceutical, aquaculture, livestock, etc. Their production is quite expensive which includes the cost of synthetic media and downstream processing of which 30% of the total production cost relies on synthetic media and nutritional supplements used for growth of microorganisms. The low cost agro-industrial by-products, rich in nutritional supplements, can act as a good substitute for high valued synthetic media. This review provides comprehensive information on the use of cost effective, renewable agro-industrial by-products as substrates for the production of bacteriocins and their application in food as biopreservatives.

  20. Greening Industrial Production through Waste Recovery: "Comprehensive Utilization of Resources" in China.

    Science.gov (United States)

    Zhu, Junming; Chertow, Marian R

    2016-03-01

    Using nonhazardous wastes as inputs to production creates environmental benefits by avoiding disposal impacts, mitigating manufacturing impacts, and conserving virgin resources. China has incentivized reuse since the 1980s through the "Comprehensive Utilization of Resources (CUR)" policy. To test whether and to what extent environmental benefits are generated, 862 instances in Jiangsu, China are analyzed, representing eight industrial sectors and 25 products that qualified for tax relief through CUR. Benefits are determined by comparing life cycle inventories for the same product from baseline and CUR-certified production, adjusted for any difference in the use phase. More than 50 million tonnes of solid wastes were reused, equivalent to 51% of the provincial industrial total. Benefits included reduction of 161 petajoules of energy, 23 million tonnes of CO2 equivalent, 75 000 tonnes of SO2 equivalent, 33 000 tonnes of NOX, and 28 000 tonnes of PM10 equivalent, which were 2.5%-7.3% of the provincial industrial consumption and emissions. The benefits vary substantially across industries, among products within the same industry, and when comparing alternative reuse processes for the same waste. This first assessment of CUR results shows that CUR has established a firm foundation for a circular economy, but also suggest additional opportunities to refine incentives under CUR to increase environmental gain.